HP64000
Logic Development
System

Emulator/Analyzer
6805P Series

(D Pyeet

CERTIFICATION

Hewlett -Packard Company certifies that this product met its published specifications at the
time of shipment from the factory. Hewlett-Packard further certifies that its calibration
measurements are traceable to the United States National Bureau of Standards, to the extent
allowed by the Bureau's calibration facility, and to the calibration facilities of other
international Standards Ovganization members.

WARRANTY

This Hewlett-Packard system product is warranted against defects in
materials and workmanship for a period of 90 days from date of
installation. During the warranty period, HP will, at its option, either
repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer’s facility
at no charge within HP service travel areas. Outside HP service travel
areas, warranty service will be performed at Buyer’s facility only upon
HP’s prior agreement and Buyer shall pay HP’s round trip travel
expenses. In all cases, products must be returned to a service facility
designated by HP.

For products returned to HP for warranty service, Buyer shall prepay
shipping charges to HP and HP shall pay shipping charges to return the
product to Buyer. However, Buyer shall pay all shipping charges, duties,
and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with
an instrument will execute its programming instructions when properly
installed on that instrument. HP does not warrant that the operation of
the instrument, or software, or firmware will be uninterrupted or error
free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from
improper or inadequate maintenance by Buyer, Buyer-supplied software or
interfacing, unauthorized modification or misuse, operation outside of
the environment specifications for the product, or improper site
preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER’S SOLE AND EXCLUSIVE REMEDIES.
HP SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER
LEGAL THEORY.

ASSISTANCE

Product maintenance agreements and other customcr assistance agreements are available for
Hewlett-Packard products.

For any assistance, contact your nearest Hewlett -Packard Sales and Service Office.

CW&A 9/79

Emulator/Analyzer
6805P Series

© COPYRIGHT HEWLETT-PACKARD COMPANY /LOGIC SYSTEMS DIVISION 1983
COLORADO SPRINGS, COLORADO, U.S.A.

ALL RIGHTS RESERVED

Printing History

Each new edition of this manual incorporates all material updated since
the previous edition. Manual change sheets are issued between editions,
allowing you to correct or insert information in the current edition.

The part number changes only when each new edition is published. Minor
corrections or additions may be made as the manual is reprinted between
editions. Vertical bars in a page margin indicate the location of
reprint corrections.

First Printing......... April 1983 (P/N 64193-90903)
Errata August 1983

ii

Model 64193A
6805P Series Emulator/Analyzer

Table Of Contents

Chapter I: Installation

Hardware Configuration...........ciutiiiiiiiiiniernneeneennennannaad-1

Installing the Emulation Pod and Emulation Control Board.............1-2

Installing Emulation Probe To Target System..........................1-3

Installing The Analysis Board........cooiviiiiiieeiiniernenennneennssal-3
Single Module Systems.......cuiiitiitiiiiietiinierieeineesssssnsseesasdl=3
Multiple Module Systems.ouoi e ieerisrneenneneeensoasenssasl=3

Installing The Bus CablesS.uvuereeeereeeeenoenennneonneeneeassasa 1l

Chapter 2: Theory of Operation

5 o5 7 oo Ts 1 Lo 7 oo T

System Bus Structures........ ..ottt iiiiiiitineititrioneenerensnnnnns

Emulation and Analysis Subsystem Functional Description.............
Subsystem Interfaces. ... vttt tireeiiietorneesennesenssosesesons
Target SysStemM. ...t it itnee et oensosstossassonososssssonsssss
Emulation Controller Functional Description...........ciovvvuveenn
Transparency Considerations.... ... i iiin e ionerenensoceonnsons
Break Conditions.. ...ttt eieeeneeeeennerossoeoosssasnnnnes
Emulation Processor Control.......ue et iie et neenesooenoonnes
Emulation Memory Functional Description................coivienn..
Emulator Operating Modes........oiiiiiiiiiiiietenienneesnnanennns
Internal Emulation... ...ttt eeeeiinninerrosensoeesnonnsnssnns
External Emulation..........coiitiitieiienineneeennenoeenrnssnnonns
Running The Emulator...............c0...
Emulation Configuration..........iiiuiiiiinirnnoroenssonnsnsnns
Using Symbols in Emulator Commands.
Analyzer Characteristics........ciuiiiiiiiinernnenneneeneeneenns
The Trace Command. ot tireineneenesesoneososonesssssesoneenns

Analyzer Status.. ...ttt ittt eretoiossosonsosnsnosssossensnnanas
The Display Command.eetvuetrseeensooesoonoessosossasassnnns

.
1

.
i

.

PMPRPRPMPPPPPPPODPPPDDODPDPODPDPDPDNDDPDND DN
]
VWOVOWOODOENNINONN EFFLWWWLwWER R

.

.
1

.
1

.

.
.
1

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1

.
.
1

.
]

.
]

Chapter 3: Operating Fundamentals

IntrodUuction. . vit ittt ittt i i e i ettt a3

Processor Architecture.c.ciiiiiiiriiiinrirneenreoeonnanneeenss.3-1

Emulator Status. ...ttt nnrtereeeeerseeonntoseoonenenenseennenees3-1
Numeric Status Specification........ceevitiiiiiiinninenerineeneenesns3-2
Soft Key Status Specification. 3-2

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Chapter 4. Emulation and Configuration
Introduction. . ottt ittt e i e e ettt e e e e e
L EoE oS < O
5 8 0 5 £ -
Absolute File. ... ottt it iineeneneotooenoennennennoneennnonns
010 o i = B o B 7 e o
Measurement System Command SyntaX......e.vueeetinineeneeneenonnnns
YU s s
Running The ProgramM.iueu e tensessonsornnneennseesoneeenneens
Configuration QUeSTIOoNS. .. .v ittt ittt irerennnnnnneeneennnns
Card SeleCtion. v ittt ioeeensorosenoeeeeeenennnnsnnennes

!
NN R R R R

.
1

L o R R i i g~ ~g
)

.

.

.

-

[S
("N
[N

Clock Selection.......

.

Real-Time Mode Selection.
Illegal Opcode Detection.
Write to ROM Selection...
Microprocessor Selection.
Timer Selection..........

Prescale Selection....

.

.

.

.

o v e 0

.

.

Simulated I/O Configuration.
Interactive Measurement Configuration.
Command File Designation..............

Chapter 5: Operational Commands and System Command Files

.

.

.

.

.

.

.

.

.

.

o e e

.

.

INtroAUCEiON .t it i it tt ettt e it e
Command Line Comment Delimiter.
Operational Command Syntax....

break......
end.........
execute.....
halt........
load........

.

.

.

.

.

.

.

o s 0.

.

.

.

modify..........
modify configuration.
modify memory...
modify register.
reset...........

TUN. oo o vn o
specify.....
step........
stop_trace..
store.......

.

B

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

LY

.

.

.

.

.

.

.

.

System Command Files.
<CMDFILE>..........
Command Delays.......

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Chapter 6: Display and List Commands
Display and List Command Capabilities
Memory Data................
Register Contents..........
Trace Information..........
Global and Local Symbols......
Display and List Command Syntax.
display/list.......cuivuenn..
global symbols.
loc_symb...
memory.....
registers..
trace......

display/list
display/list
display/list
display/list
display/list

.

.

.

.

.

.

.

.

.

.

.

.

R A A

.

.

.

.

.

.

.

.

.

.

.

Chapter 7: Analysis and Interactive Commands
Introduction.........civvvevennennn.
Trace. ..ttt it it i i i e e
Using Analysis Commands............
Interactive Measurement Selection..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Model 641934
6805P Series Emulator/Analyzer

.
.
.
.
.
.
.

.
.
.
.
.
.

-
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
-
.
.
.

.
.
1

[g g ¥ o - S
|

1
e

.

.

!
[y

FEEEE
1
]
WNOOOWOVNO O~

1
=

.

.
.
'

.
.
'

.
.

1 |
wpnmnowvw~Nan I FWLWNDERP PR

.
.

.
.
1

(R RV, RV, RV, RV RV, RV RV, RV
|

.
.

-
.
1

.
.

.
.

.
.

.
.

.
.

.
.
t

[eXWerNe e Wer oA e e 26 206N
1

G\b\:

1]

g \
MEPEOO~NONUVWV &R

Model 641934
6805P Series Emulator/Analyzer

Chapter 8: Simulated 1/0

TNt OQUCTIOM . v v v v v ee v e e e et vae oee e anane oenaeaneasonsenensooansnasenanns 8-1
0= e =N 8-2
Common At trabUtes .t it it it i it it i e i e e e e e 8-2
Printer I/0 Interface . cv v vttt it it it ettt ettt eanennns 8-3
Display I/0 Interfacl . oo ver v ene s ononeenneneneenoeesonesaeeaeensns 8-3
Keyboard I/0 Interface ..o vt e e trnneneeneeeeeeeoneoneeannnnnns 8-3
Disc Files I/0 Interface . v v e iieiiiteie ettt nneenesennennnns 8-Y4
RS-232 I/0 Inter ace. v vvt o it tsven ot eneneennennneeenesoneneenens 8-y
Printer I/0 Tnterface. v ittt ie et ittt ittt it tteeecnneennnn 8-9
Open Printer (BOH)oitir it ittt tee ittt einnnnnnn 8-9
Write to Printer (B2H)u vttt ittt ittt e it innan 8-10
Close Printer File (BlH) ... v v vt ittt ittt et enenennn 8-10
Display I/0 Interfac@. v ou vt ueetveeonnenunnenoneeenooneoneaeeaeeans 8-12
Open Display File (80H). ... ouir i iiiiienneeeeeeneeneneennnns 8-12
Roll To/Write Line 18 (B2H) ... i ittt it e e et iie e i 8-13
Select Starting Line/Column (83H)cotiriiiinirriiiiinennnnns 8-13
Write From Starting Line/Column (8LH)........coriiiiinrnnnunnnn. 8-14
Close Display File (81H)uirriitvnet e innnneneeeenennnenenns 8-14
Keyboard I/0 Interface. . uv et nne ittt ittt it et areneeeeenns 8-18
User Program Requests Keyboard Read (80H)..........covienieunn.n. 8-18
64000 Response to Keyboard Read Request..........ovivruveunnnnnnns 8-19
64000 Detects Positive KB-Output-Command Word............covuvunon. 8-19
User’s Program Detects 00 in CA.. ...t iiniintinernenneenenennnn 8-20
Disc File I/0 Interface . vt cun e e i ie ittt ineseeeseenneeneenenns 8-26
File Types.....cvvevennns PP 8-27
Creating New File.ueiveintre et irnnnneeneeeeeeeeneenoneennens 8-27
Accessing Existing Files........ututiitinintiieenenoeennnnennnnnns 8-28
Deleting Fales. o unvu ettt ene et ouneenueoneneoeensasnaneneeennnss 8-30
Changing File Name Assigned to a Particular CA..........ccivvernn. 8-30
RS-232 I/0 INterface. v et ein e neneeeeeeneeneseenesoeneosnennnns 8-39
Open RS-232 File (BOH) .. vt iitit it ittt ittt anenenns 8-39
Initialize 8251 (B2H) .\t v ittt ittt ittt ittt ettt et e 8-40
Command t0o 8251 (B3H) ittt ent ittt it ittt ettt et e e 8-41
Status From 8251 (BUH) .. vttt it ittt ettt e ettt 8-41
L TS S S - s O 8-Y42
Read From 825 L. it ittt it ittt et et et ettt et tttetennennnnnns 8-43
Updating Read/Write Buffers (8DH)viriietenrinineneeennnns 8-U45
Simulated I/0 Error CoGeS. vt vneteneneenenenonneneeennueeenneenss 8-69
Simulated I/0 Sample ProgramMS . ..ot e ervneneretnnnneeeennneneeneenss 8-71
BLO00 File FormMats. . uu v ue et nereeneennenneene oo eeneeeeeenneeneeens 8-82
Assembler Symbols File (File Type 12)...cuiuvinnrennnnnneennnnnnns 8-82
User Buffer/Assembler Symbols File Packing Formats................ 8-8Y4
Linker Symbols File (File Type 13) ..ottt iteinnrreeneunnennnennnn 8-8Y4
User Buffer/Linker Symbols File Packing Formats..............ou... 8-91
Source File (File TypPe 2) .u vt it ietineeneeneeeeeneeneenonnennnns 8-91
Listing File (File T¥Pe 5) e vt iuetintmenneente et eenenennnnns 8-91
Absolute File (File Type B) vttt i it 8-91
Relocatable File (File Type 3) . tvvunvvrie s veeennenenonennennens. 8-92
User Buffer/Relocatable File Packing Formats............vuvunr.... 8-97

Appendix A: Syntactical Variable Definitions
<ABSFILE>.......ccu... Gt et e st e ettt et et et e e s A-1

Model 6L4193A
6805P Series Emulator/Analyzer

CADDRE S S > . . i ittt it i e e e e e et e e e A-1

SADR LST> . e vttt e e e e e et et e e e e e e e A-1

CCOMDE ILE > . s ittt it et ettt oo tneansssoeeastonsonsennoneneanoesseenns A-1

D 817 A-2

SREAL VAL>. ..ttt ettt e et e e e ettt e e e e e e A-2

RV 1 A-3

SV ALUE >, & ittt it it e et e i e e e e et e A-3
Appendix B: 6805P Series Status and Error Messages

Status Messages. . vttt ittt i e e i i et e B-1

Brror MeSSages .t vttt it ittt it ittt it i it i i e e B-1
Appendix C: Radio Frequency Interference
Appendix D: Emulator Electrical Properties
Appendix E: 6805 Register Format and Names

List Of lllustrations
1-1. Installing The Emulation Probe..........citiiitreurnernnnnonnns 1-5
2-1. 64000 Logic Development System Simplified
Functional Block Diagram...........oui ittt nnennnnenns 2-2

2-2. Background Controller Transition Diagram...........eeeeeee.. ...2-6
3-1. Status Byte Format....... ..ottt iiieneeonesasonoonsnns 3-2
6-1. Memory Contents - Hexadecimal and ASCII.........ovvienuennennnn 6-2
6-2. Memory Contents =~ MNemMONic.uvuierienueeneeenonnonennennennns 6-3
6-3. Register Contents........vevueununenenenennnans e e 6-4
6-U. Trace Memory DisSplay. .. v eue et renneeneeneeennenneannenneeens 6-5
8-1. Simulated Printer I/O Interface Diagram......... e 8-6
8-2. Simulated Display I/O Interface Diagram.........ceeeeeuenennnns 8-6
8-3. Simulated Keyboard I/0 Interface Diagram.........ceeeueeeeenen.n. 8-7
8-4. Simulated Disc File I/0 Interface Diagram..........c.oevueeunn... 8-7
8-5. Simulated RS-232 I/0 Interface Diagram.......oeveeneeeeennennnn. 8-8
8-6. Display TechniquUes..........vveruinurennennennnnn e, 8-17
8-7. Keyboard I/0 Interface SeqUENCE.ovetuereenusenneroenannns 8-24
8-8. 8251 Initialization Formats......ouee et nn i nenneeennnanss 8-57
8-9. Command Mode Instruction Format.........oiutiiuienenneeenennns 8-58
8-10. Asynchronous Mode Instruction Format...........ceevvveenenn.. 8-59
8-11. Synchronous Mode Instruction Format........... e8-60
8-12. 8251 Status Word Formatouuueeeneireneenennenenenneenenenns 8-61
8-13. Writing RS-232 Record - Phase J.......civiviinnnennnnreenennnns 8-62
8-14. Writing RS-232 Record - Phase II.............. e 8-63
8-15. Writing RS-232 Record - Phase III.....c.iviiinnunnenennnnnnnn. 8-64

vi

Model 641934
6805P Series Emulator/Analyzer

8-16.
8-17.
8-18.
8-19.
8-20.
8-21.
8-22.
8-23.
8-24.
8-25.
8-26.
8-27.
8-28.
8-29.
8-30.
8-31.
8-32.
8-33.
8-3Y4.
8-35.
8-36.
8-37.
8-38.
8-39.
8-40.
8-41.
8-42.
8-43.
8-4Y,

.

.

1 1 1 1
(oo B NG, BN~ UVRN \V R

Cb(bOJOD(IDCDmCD

.

Writing RS-232 Record - Phase IV.......coviviennnunneenenennn. 8-65
Reading RS-232 Record - Phase I........utirinienennnnnneennannn 8-66
Reading RS-232 Record - Phase Il........uiuinineinnnnneennnenn 8-67
Reading RS-232 Record - Phase III......ccvvvienenuennenenennns 8-68
Reading RS-232 Record - Phase IV.......v'iiieeneenneennaennnns 8-69
Simulated Display I/0 - Sample Program A...........ccoevvuun.. 8-71
Simulated Disc I/0 - Sample Program -Z80............cccvevn... 8-75
Simulated Printer I/O Sample Program -Z8002................... 8-78
Simulated Printer I/0 Sample Program -Z8002..........00000 ... 8-79
Assembler Symbol File Overall Structure..........coveeievnvnn, 8-98
Assembler Symbol Record Structure............ ... 8-99
Assembler Symbol Record/User Buffer Format Detalls 8-100
Assembler Symbol Record/Symbol Definition Block.............. 8-101
Linker Symbol File Overall Structure................ e 8-102
Microprocessor Configuration Record Structure................ 8-103
Global Symbol Record StrucCtuUre.veuverenerennennneenennn 8-104
Global Symbol Definition BlocK.......vvvieiiiinneenenennnnnn 8-105
Program Name Record Structure..... e e e e 8-106
Program Name and Address Definition Bleck Format............. 8-107
RANGE Definition Block Format......covvrvevennernnnenenennnn 8-108
Source and Listing Files - Overall Structure................. 8-109
Source and Listing File Format........... .. i, 8-109
Absolute File - Overall Structure...........eeieeeenereunsnns 8-110
Absolute File Formats. . ..v ettt ureoreenoetnooeeoseneononnnns 8-111
Relocatable File Overall Format.......vvvvinenneeeenenneennns 8-113
Relocatable File Program Description Definition Block........ 8-11Y4
Relocatable File Data Definition Block.......covvvuruvnnenn.. 8-115
Relocatable File External Symbols Definition Block........... 8-116
Relocatable File End Definition Block........civiiieennnn.. 8-117
List Of Tables
Trace Status Soft Keys........... e et e e..3-3
Predefined Memory Map......oovevireneennnnnnnn e e 4-9
"And" Function Results........... e e e e e 7-4
Printer I/0 CodeS . vttt nreerieeneoeeneneenennnns e 8-11
Display I/O Codes.....cvvuveiinnnrennnnns e e e 8-15
Keyboard I/0 Interface Codes...... e e 8-21
Command Word Codes.....ovvenvnnennn. e e e 8-23
Disc File Type Numbers and Names...... e et e e 8-32
Disc File I/0 Codes...... e e e e 8-34
RS-232 I/0 Co@S. vt v vt innennenenrenneennn e e 8-46
Simulated I/0 Error Codes - General Definitions............... 8-70

vii

Model 641934
6805P Series Emulator/Analyzer

Chapter 1

INSTALLATION

HARDWARE CONFIGURATION

For information on installation and configuration of emulation and
analysis modules used with the Model 64100A and Model 64110A, including
power requirements and cabling, refer to the Installation and
Configuration Reference Manual. Pay particular attention to power
requirements when configuring multimodule systems.

Set the work station power switch to "off".

Unpack all emulation circuit boards, cables, pods and
related equipment. Compare the parts received with the
parts list to assure that all necessary items have been
shipped. If any -equipment 1is missing, contact the
nearest Hewlett-Packard Sales/Service Office as soon as
possible.

Carefully inspect the equipment for damage that may have
occurred during shipping.

NOTE

The following installation steps assume the instal-
lation of a complete system (with analysis).
Particular attention should be paid to the power
requirements for multimodule systems. Disregard
procedure steps for equipment you have not
purchased.

While the emulation and analysis circuit boards may be installed in any

card slot in the station chassis, mechanical considerations make the
following card groupings most convenient:

For single module systems:

Slot Slot

number number

Board 64100A 64110A
Emulation Control board 9 0
Analysis board (optional) 8 1

Model 64193A
6805P Series Emulator/Analyzer

For multimodule systems:

Slot Slot
number number
Boards for 6805 641004 6l110Aa
Emulation Control Board 9 0
Internal Analysis Board (optional) 8 1
Boards for other processors
Internal Analysis Board (optional) 7 2
Emulation Control board 6 3
Memory Control Board (optional) 5
Memory Board (optional) 4
Memory Board (optional) 3

Circuit cards are installed by aligning each card in the card guides
with the component side facing forward (Model 6L4100A) or up (Model
64110A). Apply gentle pressure until the board is seated in the mother
board connector. Make sure the ejector handles are fully horizontal.

INSTALLING EMULATION POD
AND EMULATION CONTROL BOARD

For emulation of a 6805P series microprocessor (6805P2, 6805P3, or
6805PL4), the Model 64193A emulator pod and Model 64191A emulation con-
trol board are required.

For emulation of a 6805R/U series microprocessor (6805R2,
6805R3, 6805U2, 6805U3) the Model 64192A emulator pod and Model
64191A emulation control board are required.

Two multicolored ribbon cables are used to connect the emulation pod to
the emulation control board. One of the cables is connected to a
surface-mounted connector and one cable is connected to the top edge of
the emulation control board. Pin 1 on the cable connectors is indicated
by a triangle molded into each connector. Pin 1 of the board-mounted
connectors is located at the left end of each connector. The surface-
mounted connector is located near the top left corner of the Emulation
Control board (on the component side). The edge connector is located at
the left, near the surface mounted connector. Proper connection is
facilitated by the color coding and keying of the connectors. Connect
the pod to the control board by joining the connectors.

The emulation control cable is covered by a black shield that
must be connected to the Model 64000 chassis ground. Refer to
the Model 64192A (6805R/U) or Model 64193A (6805P) Service
Manual for the installation procedure.

CAUTION
Protect against static discharge
The emulator pod contains devices that are susceptible to damage by

static discharge. Therefore, you should take precautionary measures
before handling the user plug to avoid emulator damage.

1-2

Model 6L4193A
6805P Series Emulator/Analyzer

INSTALLING EMULATION PROBE TO TARGET SYSTEM

Carefully remove the target processor from its socket and place the
processor into a protected area. Then, install the emulation probe into
the vacant socket.

CAUTION

Do not install the emulation probe into the proces-
sor socket with power applied to the target system.
The pod may be damaged if power is not turned off
before the probe is installed.

The emulation probe is provided with a pin protector that prevents
damage to the probe when connecting and removing the probe from the mic-
roprocessor socket. DO NOT use the probe without a pin protector in-
stalled. If the emulation probe is being installed on a densely popu-
lated circuit board there may not be enough room to accomodate the plas-
tic shoulders of the probe socket. If this occurs, another pin protector
can be stacked on the existing pin protector. The short wire extending
from the emulation probe may be connected to the target system signal
ground.

When installing the emulation probe, be sure the probe is inserted into
the processor socket so the chamfered corner on the cable connector
aligns with the pin 1 end of the processor socket. Damage to the emula-
tion equipment may result if the probe is incorrectly installed.

INSTALLING THE ANALYSIS BOARD

Either the Model 64300A or the Model 64301A Internal Analysis
board can be used with the 6805 emulators.

SINGLE MODULE SYSTEMS

Install the analysis board in the next slot adjacent to the emulation
control board. For example, if the emulation control board was installed
in slot 9, the analysis board should be installed in slot 8. The board
is installed with the component side facing the front of the work sta-
tion. To avoid scraping the emulation control cables when installing the
analysis board, make certain the cables are as flat as possible against
the emulation control board.

MULTIPLE MODULE SYSTEMS

Install the internal analysis boards between the emulation control
boards.

1-3

Model 64103A
6805P Series Emulator/Analyzer

INSTALLING THE BUS CABLES

Install bus cables after the circuit boards have been installed. Figure
1-1 shows the cable configuration for a complete system, including the
intermodule bus if a multimodule system has been installed.

The two cables in the center and on the right of the circuit board set
are the EMULATION bus cables. The connectors are keyed to facilitate
correct installation. The connectors are also color coded, with the
coding placed to the left end of each connector over pin 1. Each con-
nector has a triangle indicatoer molded into the connector to indicate
the location of pin 1 side and end in the connector. When properly in-
stalled, the red marker of the bus cable is on the left hand side of the
cable when viewed from above the card cage. Two cables, each having two
female connector blocks, are installed on the emulation control bhoard
and the analysis board.

The intermodule bus consists of a 20 conductor ribbon cable that is in-
stalled on the upper 1left corner of the appropriate board in each
module. For emulation modules, connection is made to the internal
analysis boards; for analyzer modules, connection is made to the
analysis control boards.

1-4

Model 641934
6805P Series Emulator/Analyzer

MEMORY BUS
PROCESSOR OTHER
EMULATION BUS

INTERMODULE BUS THAN 6805

7 &0]
.
s
;

ISEE0Z18

| f
i
g.v & v o # AN

Figure 1-1. Emulation and Intermodule Bus Cabling

Figure 1-1 shows the cable placement in a Model 64100A card cage. The
relative cable placement in a Model 6L4110A card cage is the same, al-

though the card cage is rotated 90 degrees to the horizontal.

1-5

1-6

Model 64193A
6805P Series Emulator/Analyzer

Model 64193A
6805P Series Emulator/Analyzer

Chapter 2

THEORY OF OPERATION

INTRODUCTION

The basic development system consists of a logic development station
with a magnetic tape drive or flexible disc drive, an optional hard disc
and printer, and software modules to edit, assemble or compile, link,
and store program modules.

SYSTEM BUS STRUCTURES

The Model 64000 system is designed with multiple independent buses for
the host environment and emulator subsystem. Since the host processor
and the emulation systems operate on separate buses, both can be running
at the same time with no contention for system resources. Figure 2-1
illustrates the Model 64000 Logic Development Station bus orientation.
The five basic bus structures for the Model 64000 are briefly described
in the following paragraphs.

System Bus -~ The address, data, and control buses for the 64000 system are
included in the system (HP-IB) bus. Communication among the printer,
hard disc, and development stations occurs via the system bus.

Emulation Bus - The address, data, and control buses for the emulator
processor are included in the emulation bus. Communication between the
emulation controller and analysis module takes place through the emula-
tion bus.

Host Processor Bus - The host processor bus is the path through which the
host processor communicates with the emulation and analysis subsystem,
the display, and host processor memory.

1/0 Bus - The Input/Output bus is dedicated to input and output devices
of the 64000 station. It handles data to and from the minicartridge
tape drive, the flexible disc drives, the keyboard, the hard disc drive,
the printer, and the system processor.

Intermodule Bus - The intermodule bus connects the appropriate control
boards in a multi-module system and carries signals related to sequence,

timing, and triggering between the modules.

All data transfers in the emulation system occur on the buses described
above.

2-1

Model 64193A
6805P Series Emulator/Analyzer

[5 =)

TAPE OR o
FLEXIBLE CONTROL SYSTEM BUS (HP-IB)
DISC w»
2
o
°
=
HOST SYSTEM o
PROCESSOR KEYBOARD oise RINTER
HOST PROCESSOR BUS
curon | [sranon | [omoaron| [emone awaron] [| [Erema] e
DISPLAY RAM/ROM CONTROL NOTE NOE ANALYZER ANALYZER ANALYZER
EMULATION BUS] | INTERMODULE BUS (IMB)

NOTE
1 The memory control and emu-

lation memory reside on the v

emulation control board

EMULATION
POD

TARGET
SYSTEM

Figure 2-1. 64000 Logic Development System Simplified
Functional Block Diagram

The architecture of the multimodule system, illustrated in Figure 2-1,

Model 6L4193A
6805P Series Emulator/Analyzer

allows monitoring of the emulation processor without interfering with
its operation. In addition, because the emulation bus is independent
from the host processor bus, it is possible for emulation to continue
while the development station is used for other purposes.

A major advantage of this architecture is the expandability of emulation
systems. Since the host processing system does not restrict the word
length or the speed of emulators connected to the host system, the sys-
tem is capable of handling future as well as current microprocessors.

EMULATION AND ANALYSIS
SUBSYSTEM FUNCTIONAL DESCRIPTION

A complete emulation and analysis subsystem consists of an emulation
pod, emulation probe, emulation control board, and analysis board. A
brief description of the subsystem is given in the following paragraphs.

SUBSYSTEM INTERFACES

There are two interfaces for the emulation and analysis subsystem. The
target system interface, consisting of the emulation probe and pod, and
the development station interface, which is the host processor bus.

TARGET SYSTEM

The target system shown in Figure 2-1 represents a typical system having
a microprocessor, control circuits, and I/0 circuits.

EMULATION CONTROLLER FUNCTIONAL DESCRIPTION

In foreground operation the emulation processor (in the emulator pod)
functions as the processor for the target system. Programs for the 6805
executed by the emulation processor can be resident in emulation memory,
target system memory, or a combination of both.

During operation in the background state, emulation processor operation
is suspended in the user system with the processor appearing to be inac-
tive. This condition is implemented with the control of emulation pod
buffers and latches by the background controller, which is located on
the emulation control board.

Operation of the emulator in the foreground state is exactly like opera-
tion of the target microprocessor in a normal environment.

Functional transparency of the emulator has been achieved with two fea-
tures: Ybackground memory and the associated controller. The associated
controller transfers processor control between the user program and the
host system; i.e., foreground and background, respectively.

Background memory is located on the emulation control board. This
memory is a 1024-byte RAM that is accessible by the emulation processor
and the Model 64000 host processor. The background memory is the
primary communication link between the processors.

2-3

Model 641934
6805P Series Emulator/Analyzer

The Dbackground memory contains the routines for control of target
processor execution. Routines to read and modify memory and registers
and a routine to unload target processor registers are supplied by the
host processor to the background memory. When the emulator changes the
operating context of the emulation processor to background, the emula-
tion processor will execute the routines in background memory.

A break to the background memory for the 6805 emulator is accomplished
by jamming a '"Software Interrupt instruction” to the emulation proces-
sor; i.e., forcing the processor to execute a SWI instruction, which
makes it dump its registers in known locations in BKG (background)
memory and start executing BKG code.

TRANSPARENCY CONSIDERATIONS

A goal of emulation is that the emulation processor operates functional-
ly and electrically in the same way as the target processor; i.e., to be
transparent.

Functional transparency is achieved when an emulator places no restric-
tions or demands on any of the functional operations of the target
processor; such as use of interrupts, restriction of memory address
range, or any other functional characteristics.

Electrical transparency implies that all timing specifications, electri-
cal loading, logic thresholds, drive levels, and any other electrical
characteristics of the target processor are upheld by the emulator. The
term "electrically identical" is a more accurate definition of electri-
cal transparency.

Unfortunately, in attempting to achieve these goals, some compromises
are sometimes necessary. Functional transparency cannot be achieved un-
less the "background activities' performed by the emulation system are
shielded from the target system. These background activities include
register interrogation, status checking, or other operations that may
disturb the operating context of the emulation processor.

The shielding or isolation of emulator background activities from the
target system is accomplished with buffers and latches. These buffers
and latches add propagation delays to the emulator, which sometimes com-
promise electrical transparency.

The Model 64000 Logic Development System has been designed to implement
functional transparency for the current generation of background control
emulators. Therefore, users of the Model 64000 can do system design
without arbitrary constraint from the emulators; however, users must be
aware of the slight propagation delays induced by the emulators.

BREAK CONDITIONS
A break condition initiates the context change of the emulation proces-
sor from foreground operation to background operation. There are three

sources of a break condition: the logic analyzer, the emulation control
board, or the host system.

2-4

Model 64193A
6805P Series Emulator/Analyzer

A break condition in normal operation is issued when an analyzer trace
specification has been met; i.e., 'break on trigger"” or “break on
measurement complete' is specified, or as a result of keyboard commands
to the emulator that stop or single-step the emulation processor.

Detected errors account for break conditions from the emulation control
board. A break condition will occur if an illegal opcode fetch or an
illegal memory access occurs.

Other sources of break conditions occur during nonreal-time operation.
An operation such as register access occurring during program execution
will cause alternation between foreground and background memory.

EMULATION PROCESSOR CONTROL

The technique used by the Model 64000 emulator for emulation processor
control involves Jjamming data information on the processor data bus.
This data jamming is asserted at the appropriate time in the processor
instruction cycle to vector the processor operation to a control routine
contained in the emulator background memory. The jamming process is
synchronized by the background controller to occur on the first opcode
fetch cycle following the occurrence of a break condition. This allows
the emulator to gain control of the processor at the earliest possible
time.

When the emulator has been changed to background state, the background
program causes the register values of the processor, the program count-
er, and the next insruction address to be saved. This information 1is
restored to the emulation processor when operation is returned to the
foreground state. This allows the processor to continue execution from
the point where the break occurred when the emulator was in the fore-
ground. This process is similar to a hardware implementation of a non-
maskable interrupt that is independent of the processor type.

The background controller is a state machine consisting of three states:
jam, background, and foreground. Figure 2-2 is a diagram showing the
background controller transition phases.

In Figure 2-2, we see the background controller causes the emulation
processor to enter the background state following the jamming operation.
At this time, the processor begins execution of a background entry
program. During execution of the background routine, the processor
registers are unloaded, return addresses are computed, and all other
"housekeeping" tasks are completed to allow proper control for returning
the emulation processor to foreground operation.

When these operations are complete, the emulation processor will enter a
TRAP loop and wait for instructions from the host processor.

All host processor background memory accesses are totally transparent to
the emulation processor. This makes it possible for the host processor
to modify the jump address of the trap to coincide with the starting ad-
dress of the background routine required to execute any host processor
requests.

2-5

Model 641934
6805P Series Emulator/Analyzer

BREAK

FOREGROUND

JAM
BACKGROUND

BACKGROUND

Figure 2~2. Background Controller Transition Diagram

EMULATION MEMORY FUNCTIONAL DESCRIPTION

Emulation memory for the 6805 emulator is on the emulator control board.
Total emulation memory can be 8K bytes. This memory is for exclusive
use by the emulator.

The memory control provides the ability to map the target processor’s
address space into 64-byte blocks in the 8K-byte address range.

This mapping function allows available emulation memory to be placed as
defined by the processor specifications. The memory control also
provides status bits to identify each block of memory, whether it is
mapped or not. This allows the emulator to determine if a block of
memory is emulation or user, RAM or ROM, or undefined. If an illegal
memory operation is attempted, such as a write operation to ROM, the
memory control will send a break signal to the emulator indicating an
error condition (if, during configuration, writes to ROM were chosen to
cause breaks).

Model 6L4193A
6805P Series Emulator/Analyzer

A write operation to emulation memory mapped as ROM is accomplished
with the "modify" or "load" command.

The memory control will not allow the emulation system to write to ROM
since memory designated as ROM was defined in the context of the
emulator.
EMULATOR OPERATING MODES
The emulation system has two modes of operation: real time and nonreal
time. In addition, there are several options available through emulator
configuration that affect these modes of operation. These options in-
clude the following:

a. Break on illegal opcodes

b. Restricting emulation to real time

c. Break on write to ROM
The real-time emulation mode allows the user to run real-time emulation
with or without a target system connected to the emulator. When emulat-

ing, consideration should be given to the emulation configuration and
also to the intent of the emulation session.

Host processor '"reads" and "writes" to emulation memory are
in the nonreal-time mode for the 6805 emulators.

INTERNAL EMULATION

Internal emulation (no target system) is usually performed with the in-

tent of debugging software. With internal emulation, the only clock
that can be used is the internal clock of the emulator; therefore, code
execution time will be relative to the internal clock speed. This

should be kept in mind if the target system will have a different clock
speed than the internal clock of the emulator.

EXTERNAL EMULATION

The Model 64000 can perform emulation in real-time or nonreal-time modes
with or without a target system. If the real-time performance of the
target system is important, emulation should be done in the real-time
mode with particular attention to the type of run and analysis commands
issued during emulation.

In some cases, emulation may be required to run in the real-time mode,
because running in nonreal time is not possible; e.g., with target sys-
tems that process interrupts and/or depend on a real-time clock for
operation. Target systems of these types could not be emulated
thoroughly if real-time emulation is not available. Therefore, it is
important to be aware of the types of emulator commands that will cause
the emulator to operate in the nonreal-time mode (these commands are
listed in Chapter 4).

2-7

Model 64193A
6805P Series Emulator/Analyzer

RUNNING THE EMULATOR

There are other considerations that should be taken into account in run-
ning the emulator. The ability to break on illegal opcodes and to
restrict running of the target processor to real-time can also be selec-
ted. These options are selected during configuration of the emulator.
Refer to Chapter 4 for information about these features.

EMULATION CONFIGURATION

Emulation software provides the interface between the emulator and the
host processor in the development station. When the "emulate' soft key
is pressed, the emulation software to configure the emulator is loaded
into the development station memory from the system disc. At this
point, the display will show a series of prompts or questions that will
configure the emulator to user specifications. Configuration options for
the emulator are explained in Chapter L.

When the emulator has been configured, the program that the user wishes
to execute on the target processor should be loaded to the emulator as
discussed in chapter 4.

USING SYMBOLS IN EMULATOR COMMANDS

Symbols can be used in any emulator command that allows expressions (as
defined in Chapter 7). A symbol is always interpreted as the address
value of that symbol. Variables in a program can be conveniently ac-
cessed by name. Although it is acceptable to use a symbol as a data
value in a trace command, remember the symbol will be interpreted as the
address value not the data value stored at the referenced address
location.

When using local symbols, the program module containing the symbol must
be loaded by the emulator before the symbol can be used in a command.
This is accomplished by using the "display" command or by specifying the
program module with the symbol: SYMBOL:MODULE NAME.

When using local symbols in emulator commands, only valid symbols will
succeed as specifications. A list of qualified local symbols can be
viewed by using the "display loc_symb" command, or by referring to the
asmb_sym file for the module.

The ability to use symbolic referencing in emulation provides a very
convenient tool for debugging code that has been assembled or compiled
on the Model 64000.

ANALYZER CHARACTERISTICS
The Model 64000 has an optional internal analysis board for analysis of

emulation processor operation. The analysis capabilities are enhanced
by the use of display or list commands, described in detail in Chapter

6.

2-8

Model 64193A
6805P Series Emulator/Analyzer

THE TRACE COMMAND

The "trace" command can be specified with a wide range of complexity.
In the simplest form, only "trace" need be specified. "Trace" also can
be specified with a trigger, a qualifier, a count, a break, or combina-
tions of any or all of those terms. In addition, the trace may be per-
formed repetitively, in which program execution continues while the
trace memory and trace display are updated; or the trace, with its most
recent specification, can be performed by "trace again".

The trace command causes program execution to be monitored and stored in
chronological order in a 256-position trace memory, The trace memory can
be displayed on the station CRT, or listed to a file or to the printer
for examination.

ANALYSIS STATUS

Emulation analysis status can be specified with a numeric format from
the keyboard, or through the soft key labels.

When status is specified with the numeric format, the specification may
be in either hexadecimal, octal, or binary base. Status can also be
specified using the four soft keys available. See Chapter 3 for details
on the status specification.

THE DISPLAY COMMAND

An important feature of the 64000 emulators is the ability to display
data for analysis in a format that is easy to interpret. This ability
is implemented in the emulator by means of the '"display” command. 1In
addition to displaying the trace results, the "display" command allows
the contents of memory, internal registers, and program symbols to be
displayed. The display commands are described in detail in chapter 6.

The "display count' mode selects either an absolute time of execution
(elapsed time after the trigger) or relative time of execution (elapsed
time between each state). See Chapter 7 for additional details about
the "count" mode.

2-9

Model 64193A
6805P Series Emulator/Analyzer

2-10

Model 64193A
6805P Series Emulator/Analyzer

Chapter 3

OPERATING FUNDAMENTALS

INTRODUCTION

This chapter contains general information pertaining to emulation and
analysis of the 6805P Series microprocessors. The information provided
refers to aspects of the processor’s architecture and status specifica-
tion.

PROCESSOR ARCHITECTURE

The 6805P Series consists of memory-mapped I/0 microprocessors with an
8-bit data bus and a 11-bit address bus(12-bit address bus 6805R/U).
Both the address and data bus are internal to the processor.

Each processor has five internal registers:

8-bit accumulator (A)
8-bit index register (IX)
5-bit condition register (CC)
H: half carry
I: interrupt mask
N: negative
Z: zero
C: carry/borrow
11-bit program counter (PC)(12 bits for 6805R/U)
11-bit stack pointer register (SP) (8 bits for 6805R/U)
(only the five LSB change)

A stack located in RAM, is used to handle subroutine return addresses
automatically during subroutine call and return instructions. All of
the CPU registers (except the stack pointer) are automatically pushed
onto the stack at the beginning of the interrupt service. Legal values
for the stack pointer are 60H through TFH.

EMULATOR STATUS

Emulation processor status can be specified to the analyzer either
numerically or by soft keys. Specification of status must be in a for-
mat the emulation processor recognizes. The status specification is
used in the trace command in the following form:

status OXXH

where "XX' represents the status byte.

3-1

Model 641934
6805P Series Emulator/Analyzer

NUMERIC STATUS SPECIFICATION

An 8-bit byte is used to specify status numerically. The status
byte may be specified in hexadecimal, octal, or binary; use X for
don’t care values.

The status bits given in Figure 3-1 can be used to qualify trace
specifications. For example, the specification:

trace only status 0XXXX1100B
will cause a trace of only those cycles that are both interrupt
acknowledge and write transactions (this condition occurs when the

processor status is pushed onto the stack during interrupt acknowledge).

Status Bits
MSB LSB

| | | | |int_ack|val_cyc|read/write|opcode|
int_ack 1is 1 for interrupt acknowledge

val cyc is 1 if the cycle is valid

read/write is 1 for read cycle; 0 for write cycle
opcode is 1 for first cycle of an instruction

Figure 3-1. Status Byte Format

SOFT KEY STATUS SPECIFICATION

Trace specifications can be input using soft keys. That is, the ap-
propriate bits are set for trace status qualification. An explanation
of the trace status soft keys is given in Table 3-1. The "Soft Key
Label” column lists the name of the soft key, the "Binary Code" column
lists the binary code making up the instruction, the "Command Line"
column lists the command as it appears on the command line of the dis-
play when the soft key is pressed, and the "Remarks" column gives a
brief explanation of the soft key function.

3-2

Model 641934

6805P Series Emulator/Analyzer

Soft Key Binary
Label Code

read 0XXXXX11XB

write 0XXXXX100B

opcode OXXXX0111B

int_ack OXXXX1XXXB

Table 3-1. Trace Status Soft Keys

Command
Line

read
write

opcode

int_ack

Remarks
Read memory
Write memory

First cycle of an
instruction

Interrupt acknowledge

3-3

3-4

Model 64193A
6805P Series Emulator/Analyzer

Model 6L4193A
6805P Series Emulator/Analyzer

Chapter 4

EMULATION AND CONFIGURATION

INTRODUCTION

In order to become familiar with the emulation and analysis user inter-
face and feature set, it is recommended that a short program be written
and executed with the emulation probe disconnected from the target sys-
tem or "out of circuit”. A simple program that increments a single
memory location or processor register will provide a good example.

ASSEMBLY

In general, source files are generated using the Model 64000 editor.
The first line of a program specifies the processor name in quotes fol-
lowed by options on the same line. The assembler or compiler will
generate the proper object code for the processor specified. The code
generated will be placed in a file of the same name as the source of
type "reloc”. Also, a file of type "asmb _sym" is generated. This file
contains all of the symbols local to the module and their addresses.
The address of a symbol can be absolute or relocatable and relative to
the program, data, or common program counter. This file is used to
determine the addresses of local symbols used in emulation commands. If
this file is not present during emulation, local symbols for that module
cannot be referenced, displayed, or listed.

LINKING

Relocatable files must be linked together to create an absolute file.
To begin the creation of a new absolute file, enter "link" followed by
"return”. This begins a sequence of questions that determine the files
to be linked and their relocated addresses. The first question asks for
object files. The name of the first program to be linked should be en-
tered. Following the library files question the load addresses are
requested.

ABSOLUTE FILE

The last question to be answered when linking is the name of the ab-
solute file in which the relocated program is placed. The name given is
also applied to a ’link com’ file and a ’link sym’ file.

In the ’link com’ file are the responses to the linker questions. The
’link_sym’ file contains the names and addresses of all global symbols
in the modules that have been linked, as well as the names and initial
addresses of the PROG, DATA, and COMN program counters.

4-1

Model 6L4193A
6805P Series Emulator/Analyzer

The program counter addresses are used to determine the addresses of all
global symbols used in the emulation commands.

CONFIGURATION

To begin emulation with the example program, the command is issued in
the form "measurement system”, for multimodule systems, or in the form
"emulate”, for single module systems. The syntax for each form is
described later in this chapter. The command initiates a series of
questions that configure the emulator for the particular application.
Each question is provided with a default answer that can be entered as
is with a "return” or modified by using the soft keys or keyboard. The
meaning of these questions and answers is described in detail later in
this chapter. The questions and answers for interactive measurement are
described in Chapter 7. For this example all of the default answers
will be sufficient. The last question asked during configuration is
"Command file name?"”. If a name is given, a file of type "emul_com"
will be created. This file is similar in function to the link com file
and is described later in this chapter. For the example above, a blank
answer is sufficient, but a file name can be entered.

MEASUREMENT SYSTEM COMMAND SYNTAX

The measurement system can be entered by pressing either of two soft
keys. If more than one module is present in the card cage, the command
"meas_sys" will appear at the first level of soft keys. If an emulator
is the only module present, then "emulate" will be present at the first
level of soft keys.

4-2

Model 6419034
6805P Series Emulator/Analyzer

For multiple module systems:

measurement__system

SYNTAX
measurement system [options continue]
Default Value

measurement system is treated as a new entry into
emulation.

FUNCTION

The command "measurement system” causes system operation
to enter the measurement system monitor. The
measurement system monitor coordinates and displays the
interaction between the modules present and, in multiple
module systems, controls entry to and exit from the
individual modules of the system. Once in the monitor
program, the emulator can be entered by issuing the
command "em6805 S", where "S" is the slot number of the
emulation control board. The choice is made through the
soft keys.

The "continue" option allows reentry into a previous
session without disrupting a measurement in progress.

If "continue" is not specified, all measurement system
modules will be reset to their default configuration and
any activity stopped. A "continue” is not possible
under any of the following conditions:

a. Power has been cycled or the station reset
by shift/reset.

b. Performance verification (option_test) has
been initiated.

c. The last session was exited by reset/reset.

d. The measurement system configuration file is
not present.

e. A module was exited in a noncontinuable
manner.

§-3

Model 64193A
6805P Series Emulator/Analyzer

em6805__S
SYNTAX

em6805 S [<CMD FILE>]

where "'S" is the slot number of the emulator
control board, and "<CMD_FILE>" is an optional
emulation command file.

Default Value

<CMD _FILE> The last specified command file.
FUNCTION

The emulate command, when issued from the
measurement system monitor program, transfers
control to the monitor program for the specified
emulator. If no command file is specified, or there
is a conflict between the specified command file and
the current hardware configuration, the questions are
initiated. A new command file will be generated or
the specified file will be edited.

4-4

Model 641934
6805P Series Emulator/Analyzer

For single module systems:
emulate
SYNTAX

[{ edit }
)

]
emulate [<CMDFILE>] [load <ABSFILE>] [options { continue }]

Examples:
emulate
emulate LOOP
emulate LOOP load MUCH

FUNCTION

If no options are selected, emulation configuration
is initiated and a new command file is constructed.
If <CMD FILE> is specified, an emulation session is
initiated using the configuration specified by the
command file. When a command file is specified, it
is possible to continue a previous session. Or, if
an altered configuration is needed, the edit option
can be selected, allowing a new configuration by
editing the previous one. Another option is
specifying an absolute file to be loaded into
emulation memory upon entry to the session.

Model 641934
6805P Series Emulator/Analyzer

EXECUTION

After configuration, the execution portion of emulation is entered. 1In
this case, the processor has been reset and is running in the
background. This condition is reported on the status line of the dis-
play (STATUS: 6805-- Reset in background). At this point, an absolute
file must be loaded into emulation memory using the load command in the
form "load <ABSFILE>".

RUNNING THE PROGRAM

Once the example program has been loaded, the run command can be issued
to begin execution of the program. If the command "run" is given,
program execution will begin at the transfer address specified in the
source program. This is either the label given with the END pseudo at
the end of an assembly language module, or the main routine of a PASCAL
program. Thereafter '"run" will cause execution to begin at the next
program counter address as specified in the register display. If "run

from <ADDRESS>" is issued, execution begins at the address specified.

CONFIGURATION QUESTIONS

The emulation configuration questions are used to prepare the emulation
hardware and software for a specific application. Each question is dis-
played along with a default response, plus one or more optional respons-
es shown in parentheses. Selecting the default responses will set up
the emulation configuration that is easiest to use in most applications.
The default response can be selected by pressing the ’return’ key;
another response can be selected by the appropriate soft key or by
typing in a suitable response.

Once the questions have been answered for the particular application,
the answers can be stored in a command file on disc so that the question
and answer sequence need not be repeated for each emulation session. If
changes to an emulation command file are desired, the file can be edited
using the "modify" 'config" soft keys. This allows changing only
specified answers. At the end of the modify configuration sequence, a
new file name can be assigned to the edited configuration, or the old
file can be overwritten with the new information.

Throughout this discussion, the available soft key entries for each
question are listed following the question. If an emulation command
file is being edited to reconfigure the emulator, the default responses
provided are the responses that were entered when the command file was
originated or last edited.

Model 6L4193A
6805P Series Emulator/Analyzer

The questions are divided into the eleven sections listed below.

Card Selection

Clock Selection

Real-Time Mode Selection
Illegal Opcode Detection
Write to ROM Selection
Microprocessor Selection
Timer Selection

Prescale Selection
Simulated I/O Configuration
Interactive Measurement Configuration
Command File Designation

R 150 H 0O 0 oW

These sections are discussed on the following pages. The questions dis-
cussed in Card Selection are only presented when more than one emulation
control board is installed in the Model 6L4000.

CARD SELECTION

It may be necessary in multiple module systems to specify the slot of
the internal analysis card associated with the emulator being used. The
following question will appear:

Slot number of analysis card? 0..9 (none)

The default answer will be the slot number of one of the
analysis cards or the slot number specified in a

command file. It is possible to emulate without the
benefit of an analysis card by selecting ’none’.
However, none of the functions that require an analysis
card will be usable. The functions requiring an
analysis card are "run until" and "trace."

CLOCK SELECTION
Microprocessor clock source? internal (external)
internal - Selects a 4-MHz clock source in the
probe pod; this source should be selected
when operating without a target system.
external - Selects the clock source in the user
system.
REAL-TIME MODE SELECTION
The question listed below provides an opportunity to restrict the
emulator to real-time program execution. "Real-time mode' refers to the

continuous execution of the user’s program without interference from the
development system except as instructed by the operator.

Model 64193A
6805P Series Emulator/Analyzer

Interference can come from two sources: stopping the processor (and DMA
activity) so that the host processor can modify emulation memory, and
automatically breaking into the background memory. Host processor
writes to emulation memory usually stop the emulation processor for 34
to 40 microseconds. The modify emulation memory feature accesses emula-
tion memory and pauses the emulator once for every location that is
specified. Features +that wutilize the background memory are dis-
play/modify registers and modify memory.

Breaking into the emulation background memory happens if a feature that
requires the background memory is invoked while the processor is execut-
ing user programs. After the feature is completed, the processor is
returned to the user program.

Restrict to real-time runs? no (yes)

no - If runs are not restricted to real-time mode, all keyboard
commands will be accepted.

The host processor will generate a break into the background
memory if a feature is invoked which requires the background
memory and the processor is executing a user program.

yes - If operation is restricted to real-time runs, emulator features
like modify memory and display/modify registers, which require
the host processor to write to emulation memory or to utilize the
background memory, must be enabled by an explicit break. Breaks
can be generated by an analysis ("trace break on...") command, by
the emulation control board (access to illegal memory or write to
ROM), or from the keyboard by entering "break".

Features that require a break are disabled by the "run" command,
and no automatic breaks into the background memory will be per-
formed. The user’s system will not experience any pauses or
other interference once the '"run" command has been entered.
The following features cannot be performed in the real-time mode.
memory accesses - display, list, load, modify, and store. Display,
list and store will be allowed for addresses not in
the 0-O0FH range.

register accesses - display, list, and modify.

symbol accesses - display and list. These commands will be done
with the contents field showing "**",

simulated I/0 - will not be allowed.

ILLEGAL OPCODE DETECTION

Break processor on illegal opcodes? yes (no)

Model 64103A
6805P Series Emulator/Analyzer

This option helps find unexpected executions in absolute code. If yes
is selected, the processor will stop emulation if an invalid opcode is
fetched. If no is selected, the emulation processor will attempt to ex-
ecute the opcode in the same manner as the microprocessor unit being
emulated.

WRITE TO ROM SELECTION
Break processor on write to ROM? yes (no)

A yes answer to this question will cause the emulator to break whenever
the processor attempts to write to ROM space. A no answer will allow the
write to be ignored. In either case, emulation ROM cannot be modified by
emulation processor activity.

MICROPROCESSOR SELECTION

Microprocessor to be emulated: M6805P2 (M6805P3) (M6805PL)
Or: Microprocessor to be emulated: M6805R2 (M6805R3) (M6805U2) (M6805U3) |

The user can select one of the processors shown on the soft keys. One
of the main differences between the processors is the predefined memory
map. Table 4-1 describes the maps for 6805P and 6805R/U processors.|

Table 4-1, Predefined Memory Map

Memory Map M6805P2 M6805P3 M6805PY
0-3F User/RAM Emul/RAM Emul/RAM
Lo-T7F Emul/RAM Emul/RAM Emul/RAM
80-FF Emul/ROM Emul/ROM Emul/ROM
100-3BF Guarded Emul/ROM Guarded
3CO-7BF Emul/ROM Emul/ROM Emul/ROM
TCO-TFF Emul/ROM Emul/ROM Emul/ROM
Memory Map M6805R2/U2 M6805R3/U3
0-3F Internal Emul/RAM
40-7F Emul/RAM Emul/RAM
80-FF Emul/ROM Emul/ROM
100-7BF Guarded Emul/ROM
TCO-FFF Emul/ROM Emul/ ROM
NOTE
Memory locations 10H-3FH cannot be displayed for the
M6805R2/U2. Data will always be read as OFFH and
displayed as "*".

User - designates memory to be supplied by the tar-
get system.

Emul - (emulation) designates memory to be supplied
by the emulation system. This memory is located on
the 6805 emulation control board.

Internal - designates address space that is
dedicated to I/0 ports and control registers.

Guarded - designates an address space that is not
expected to be accessed. A memory cycle to this
space will always attempt to break the processor. 4-9

Model 64193A
6805P Series Emulator/Analyzer

RAM - designates memory that can be accessed or
modified by the emulation processor without
restriction.

ROM - designates memory that can only be modified by
the host processor with modify memory and load
commands.

TIMER SELECTION

The M6805R3, M6805U3, and M6805P3 microprocessors allow the user
to select the timer mode. For mask option use the soft key:
mask_opt.

timer mode: mask opt (software)

Timer source selection for the M6805R2/U2, M6805P2/P4, and mask
option M6805R3/U3 and M6805P3 follows. For internal_gated option
use the soft key: gated.

timer source: gated (external)
For the software option M6805R3/U3 and M6805P3:
timer source: internal (off) (gated) (external)

PRESCALE SELECTION

prescale: 1 2 4 8 16 32 64 128

SIMULATED I/0 CONFIGURATION

Available host memory for simulated I/0 is determined by the number of
measurement system modules present. If the maximum number of measure-
ment system modules (U4) is present, then simulated I/O memory is not
available and the simulated I/0 configuration is not presented. If
three or less modules are present, then the host memory available is as
follows:

one measurement system module, available memory is 768 words.

two measurement system modules, available memory is 512 words.

three measurement system modules, available memory is 256 words.
Available memory is allocated during the actual emulation when an open
command is requested for simulated I/0 devices. Some devices do not
require additional memory. The simulated I/0 devices that require
memory are: display, printer, RS232, and disc files.
Each device, except RS232, requires a minimum of 145 words of memory

space. RS232 requires 128 words of memory space for the read buffer,
and 128 words of memory space for the write buffer.

4-10

Model 641934
6805P Series Emulator/Analyzer

A maximum of five devices, not including RS232, may be open at one time
for a single module measurement system or 768 words available. With

RS232 read and write buffer operation, another three devices may be
opened.

A maximum of three devices, not including RS232, may be open at one time
for a dual module measurement system or 512 words available. With RS232
read and write buffer operations, only one other device may be opened.

A maximum of one device, not including RS232, may be open at one time
for a triple module measurement system or 256 words available. With

RS232 operation, only one read buffer and one write buffer may be open,
but no other devices may be opened.

Available memory is deallocated during actual emulation when a close
command is requested for the simulated I/0 device. Deallocated memory
can then be allocated to some other simulated I/0 device.

If simulated I/O devices try to allocate more memory than is available,
an error return of 9 (request not allowed) is returned to the simulated

I/0O device control address.

When there is available memory for simulated I/0, the command line dis-
plays the following question and answer:

Modify simulated I/0? no (yes)
The status line shows:

STATUS: Simulated I/0 assignment
Answering yes to "modify simulated I/0?" will allow modification to all
available simulated I/0 devices. The simulated I/0 devices are: dis-
play, printer, RS232, keyboard, and up to six disc files.
Questions for a control address for each device are then asked. If a
reply of blank is made, then that device is not used. The control ad-
dress may be specified for a maximum width of 32 bits. The 16 most sig-
nificant bits, however, must be entered as zeros.
As each question is answered the results are displayed.
The simulated I/0 questions are:

a. display control address?

b. printer control address?

c. RS232 control address?

4. keyboard control address?

Each unit is identified with a physical address.

Next the command line displays:

4-11

Model 641934
6805P Series Emulator/Analyzer

modify simulated disc files? no (yes)

Answering no bypasses any modification to simulated disc files I/0.
Answering yes allows modification to simulated disc files.

The disc file simulated I/O questions are:
file 1 name? file 1 control address?
file 2 name? file 2 control address?
file 3 name? file 3 control address?
file 4 name? file 4 control address?
file 5 name? file 5 control address?
file 6 name? file 6 control address?

A blank file name disables simulated I/0 for the specified file number.
Refer to Chapter 8 for further details on simulated I/O.

INTERACTIVE MEASUREMENT CONFIGURATION

It is possible to coordinate measurements between the modules of a mul-
tiple module system by selecting various options possible under this
catagory. Since all of these options pertain to the capabilities of the
internal analysis card, and are used in conjunction with the trace com-
mand, a detailed explanation of these options is included in Chapter 7,
along with the other information about internal analysis. Options
selected for interaction will be displayed by the measurement system
monitor in mulitple module systems.

The following question is presented, allowing the user to modify or
leave the current interactions unchanged.

Modify interactive measurement specification? no (yes)

Allows modification of the internal analysis external inputs
and outputs.

If the interactive measurement specification is modified, any function
or measurement involving the analysis card will be discontinued. The
remainder of the system, however, will not be affected. Any conflict
between the interaction specified by a command file and the interaction
specified by the measurement system monitor that cannot be resolved,
will require modification of the interactive measurement specification
for resolution of the conflict.

4-12

Model 64193A
6805P Series Emulator/Analyzer

COMMAND FILE DESIGNATION
Command file name? <FILE NAME>

This question allows the user to establish a command file con-
taining all of the information pertaining to the questions
just answered for emulation configuration. The command file
is stored on disc and can then be called up for use during any
future emulation session.

All that is required to create the command file is to type in
a file name. If no file name is entered, the configuration
information will not be stored, and the questions will be
required to be answered for each emulation session.

Configuration questions and answers will be stored in a command file of
the name specified. Default is the current command file. If no command
file exists, a new file will be created under the name provided.
Specifying a command file avoids having to answer the configuration
questions each time an emulation session is begun. There must be a com-
mand file specified for each module in a multimodule emulation session.

Emulation can be started with the same configuration by specifying the
emul com file name along with the "emulate” command. The answers to the
questions may be changed by specifying "options" "edit" with the "emu-
late" command. When emulation is ended using the "end" command, the
current state of the processor is stored in the emul com file. An addi-
tional file of type "trace” is created containing the current analysis
specification. This information allows emulation to be reentered
without reseting the processor and analysis hardware. This is done by
specifying "options” "continue" in addition to the emul com file name
with the "emulate” command. When entering an emulation session through
"measurement_system” and "em6805_S", an emulation command file is the
only available option. An emulation session within measurement_system
will always be continued, if possible. Editing of an emul com file will
be allowed only if there is a conflict, between the configuration file
and the hardware, that must be resolved before entering the emulation
session.

4-13

Model 64193A
6805P Series Emulator/Analyzer

4-14

Model 6L4193A
6805P Series Emulator/Analyzer

Chapter 5

OPERATIONAL COMMANDS AND SYSTEM COMMAND FILES

INTRODUCTION

Operational commands and system command files are described in this
chapter. The display/list commands are described in Chapter 6 and
analysis commands are described in Chapter 7.

COMMAND LINE COMMENT DELIMITER

The comment delimiter is a semicolon and is interpreted in such a way
that any text following the semicolon to the end of the command line
will be ignored by the emulation system.

In the example:

run from START; causes program execution to begin

Only the command line text: "run from START" will be acted upon.

OPERATIONAL COMMAND SYNTAX

The syntax listings on the following pages are intended to acquaint the
user with the different operational commands. The syntactical variables
used in this discussion are described in detail in Appendix A.

5-1

Model 64193A
6805P Series Emulator/Analyzer

break

SYNTAX
break
Default Value
none
Example:
break
FUNCTION
Break causes the processor to be diverted from execution of the

user program to background memory. See Chapter 2 for details of
the break function.

5-2

Model 6L4193A
6805P Series Emulator/Analyzer

end

SYNTAX

end

Default Value

none

Example:

end

FUNCTION

The end command terminates the current emulation session and
returns the Model 64000 operating system to the station monitor
mode. The current states of the processor and trace are recorded
in the emulation command file and a trace file of the same name.
Emulation can then be resumed using the "emulate <CMDFILE> options
continue” command. If emulation is terminated using the RESET key,
emulation cannot be resumed and the emulation command file is not
overwritten. In a multiple module system, the 'end” command
returns control to the measurement system monitor program.

5-3

Model 6L4193A
6805P Series Emulator/Analyzer

execute
SYNTAX
execute [repetitively]
Examples:
execute
execute repetitively
FUNCTION

5-1

Execute causes a measurement to begin. The ’execute’ soft key
label will be replaced with the ’halt’ soft key label whenever
a measurement is in progress. If emulation is participating in
a system measurement, through cross-triggered analysis or the
emulation start function (specify run), then the global
measurement is initiated. Otherwise, a local measurement is
begun and execute functions identically to "trace again', i.e.,
it executes a trace using the previous specification. A
measurement can be executed repeatedly by issuing the execute
repetitively command. This will restart the current measure-
ment after each completion, until the wuser issues a halt
command.

A key feature of the execute command is that it will start all
the modules participating in a system measurement when issued
from any one of the modules. If an emulator is started as part
of a measurement it will continue running and will not be
started again by subsequent executions unless a specify run
command is again issued. The ’execute’ soft key is displayed
only with multiple module systems.

Model 64193
6805P Serie

SYNTAX

exampl

FUNCTI

A
s Emulator/Analyzer

halt

halt

e:
halt
ON

Halt causes the measurement currently executing to stop and
turns off the repetitive option. The halt soft key is only
displayed during execution in place of the execute soft key.
When the halt command is performed, some or all of the
modules involved may have completed their measurement. Halt
affects measurements caused by both trace and execute com-
mands. If emulation is entered with a measurement in
progress, halt will stop that measurement even if emulation
is not interacting in the measurement. The ‘halt’ soft key is
displayed only for multiple module systems.

Model 64193A
6805P Series Emulator/Analyzer

load
SYNTAX
[user_memory]
load [emulation memory] <FILE>
[trace]
Default Value
all memory
Examples:
load HF3000

load emulation memory HF3000
load trace HFS

FUNCTION

The load command transfers absolute code from the Model 64000 sys-
tem disc into user RAM or emulation memory. The destination of the
absolute code is determined by the memory configuration map that
was set up during emulation configuration and the address specified
during linking. Load trace allows the display command to access
and display a previously stored trace. Load trace also allows ex-
ecution of the trace specification via the trace again or execute
commands .

Parameters

<FILE> <FILE> is the identifier of the absolute file
to be loaded from the Model 64000 system memory
into user RAM or emulation memory or the trace
file containing a previously stored trace
specification. The syntax requirements for
<FILE> are discussed in Appendix A.

Model 6L4193A

6805P Series Emulator/Analyzer

SYNTAX

modify
{configuration

modify memory

{[short]}

{[1}
{[long]}

{
{
{
{
{
{[byte]
{

{

word]

modify

real{]] }<ADDRESS> [thru<ADDRESS>]

[
[]<ADDRESS>[thru<ADDRESS>]to<VALUE>[,VALUE>...]
[

modify

to<REAL_VAL>[,<REAL VAL>...]}

{register <REG_NAME> to <VALUE>[,<REG NAME> to <VALUE>...] }

Default value

memory real [short]: if display real is in effect,
[long] default is to mode of display,

memory

Examples:

modify
modify
modify
modify
modify
modify
modify
modify
modify

modify
modify
modify

[byte]:
[word]

Otherwise, default is to the last
mode specified or to short.

if memory display is in effect, default
is to mode of display. Otherwise,
default will be the last value
specified or to byte.

configuration

memory
memory
memory
memory
memory
memory
memory
memory
1.11E1,

word 0001H to 8642H

word OOAOH to 123L4H

byte DATA1l to OE3H,01H,08H

DATAl1 thru DATA100 to OFFFFH

byte ARRAY thru ARRAY+16 to O,OFFH
real 0675H to -1.303

real long TEMP to 0.5532E-8

real short FIRSTREAL thru LASTREAL to
2.22E-3,-4.56,9.99E17

register A to 39H
register A to 0AH, PC to 100H
register SP to TFH

5-7

Model 6L4193A
6805P Series Emulator/Analyzer

FUNCTION
The modify command is used to review or edit the configuration, to

modify the contents of memory (as integers or as real numbers), to
modify the contents of the processor registers.

Model 6L4193A
6805P Series Emulator/Analyzer

modify configuration

SYNTAX

modify { configuration }

Default Value

none

Example:

modify configuration

FUNCTION

The modify configuration command allows the current command file to
be reviewed and edited. Each of the configuration questions is
presented with the response previously entered. The prior response
can be entered as displayed by pressing RETURN, or modified as
necessary and then entered by pressing RETURN.

The command is invoked through the "modify" "config" soft keys.

5-9

Model 6L4193A
6805P Series Emulator/Analyzer

modify memory
SYNTAX

modify memory

{ { [short]) }
{real{|] } <ADDRESS > [thru<ADDRESS>] }
{ {[1} to<REAL_VAL>[,<REAL VAL>...]}}
{ {[long]} }
{)
{[byte])
(I] <ADDRESS> [thru<ADDRESS >] to<VALUE> [,VALUE>. ..] }
{ [word])

Default Values

For integer memory modifications, initial default is to the
display memory mode if in effect; otherwise, default is to
byte. Thereafter, default is to the display memory mode or
else to the last modify mode.

For real memory modifications, default is to the display
memory mode if in effect; otherwise, to short. Thereafter,
default is to the display memory real mode if in effect or
to the last mode.

Examples:

modify memory word O100H to 8642H

modify memory word OOAOH to 123L4H

modify memory byte DATAl to OE3H,01H,08H

modify memory DATA1l thru DATA100 to OFFFFH

modify memory byte ARRAY thru ARRAY+16 to 0,0FFH

modify memory real O675H to -1.303

modify memory real long TEMP to 0.5532E-8

modify memory real short FIRSTREAL thru LASTREAL to
1.11E1,2.22E-3,-4.56,9.99E17

FUNCTION

The modify memory command can modify the contents of each memory
location in a series to an individual value or the contents of all
of the locations in a memory block to a single or repeated sequence
of values.

Memory accesses to user and emulation memory cannot be performed

during real-time running. A break is necessary to guarantee the
access.

5-10

Model 64193A
6805P Series Emulator/Analyzer

Parameters
<ADDRESS > <ADDRESS> determines which memory
location or series of locations are to
be modified.
<VALUE> <VALUE> is the number which is to be
loaded into the specified memory
location or locations. The syntax for
<VALUE> is described in Appendix A.
<REAL_VAL> <REAL _VAL> is the real number value to
be loaded into the specified memory
location or locations. The syntax for
<REAL VAL> is described in Appendix A.
DESCRIPTION

A series of memory locations is modified by specifying the address
of the first location in the series to be modified (<ADDRESS>) and
the list of the <VALUE>s, including <REAL VAL>s, to which the con-
tents of that location and the succeeding locations are to be
changed. Both bytes must be addressed if a memory word is to be
modified. The first <VALUE> listed replaces the contents of the
specified memory location, the second <VALUE> replaces the contents
of the next location in the series, and so on until the list has
been exhausted. If only one number or symbol is specified, only

the single address indicated is modified. When more than one
<VALUE> is listed, the <VALUE> representations must be separated by
commas.

An entire block of memory can be modified such that the contents of
each location in the block is changed to the single specified
<VALUE>, or to a single or repeated sequence. This type of memory
modification is achieved by entering the limits of the memory block
to be modified (<ADDRESS> thru <ADDRESS>) and the <VALUE> or list
of values, <VALUE>,...,<VALUE>, to which the contents of all loca-
tions in the block are to be changed.

5-11

Model 64193A
6805P Series Emulator/Analyzer
modify register
SYNTAX
modify
{register <REG_NAME> to <VALUE>[,<REG_NAME> to <VALUE>...] }
Default Value

none

Examples:

modify register A to 39H
modify register A to OAH, PC to 100H
modify register SP to 6FH

FUNCTION

The modify register command is used to modify the contents of one
or more of the microprocessor’s internal registers. The entry for
<REG_NAME> determines which register is modified.

Register modification cannot be performed during real-time running
of the processor. A break must be performed to gain access to the
processor registers.

Parameters
<VALUE> <VALUE> is the number that is to be
loaded into the specified processor
register. The syntax for <VALUE> is
described in Appendix A.
<REG_NAME> <REG_NAME> represents the name of one of

the registers to be modified. The
possible entries for <REG_NAME> are
shown in the heading on the register
display.

5-12

Model 64193A
6805P Series Emulator/Analyzer

reset

SYNTAX

reset

Default Value
none
Example:

reset

FUNCTION

Reset suspends target system operation and reestablishes ini-
tial operating parameters, such as reloading control
registers.

5-13

Model 64193A
6805P Series Emulator/Analyzer

run
SYNTAX

run [from <ADDRESS>] [until <UNTIL_TRIGGER>]

Default Value

<ADDRESS > <ADDRESS> option may be an address or a
label. If the <ADDRESS> option is omitted,
the emulator will begin program execution at
the current address specified by the proces-
sor’s program counter. Or, if an absolute
file containing a transfer address has just
been loaded, execution will start at that
address.

Where <UNTIL TRIGGER> is defined as:

<STATE> [occurs <#times>] [or <STATE>]
<RANGE_STATE> [occurs <# times>]

See the trace command syntax for definitions of <STATE> and
<RANGE_STATE>.

Examples:
run
run from 1000H
run from COLD_START
run until OAFFH
run until 1FFH thru 20FH occurs 3 times

FUNCTION

If the processor is in a reset or break state, run will cause the
processor to begin executing from the Next PC, and if a "from" ad-
dress is specified, the processor will be directed to that address.
The program can be run from a specified <ADDRESS>, from the address
currently stored in the processor’s program counter, or from a
label specified in the program.

5-1Y4

Model 6L4193A
6805P Series Emulator/Analyzer

Parameters

from <ADDRESS> from <ADDRESS> represents a state on the ad-
dress bus that can be used to start a program
run. The syntax requirements for <ADDRESS> are
equivalent to those for <VALUE> as defined in
Appendix A.

until <UNTIL_ TRIGGER> uses internal analysis to cause an exit
from a user program to background memory
when a state satisfying the <UNTIL_TRIGGER>
term is encountered.

5-15

Model 64193A
6805P Series Emulator/Analyzer

specify

5-16

SYNTAX

specify {run [from <ADDRESS>]}
{<TRACE_COMMAND> }

examples:

specify run from START
specify trace after address 123H

FUNCTION

Specify is used to prepare a run or trace command for execution,
and is used in conjunction with the execute command. If the
processor is not reset, then specify run causes a break from a user
program, and initializes the PC to the default address or to the
specified address. An execute command will then cause the run to
occur. Once an execution has occurred, the run specification is
removed and can not be repeated without respecifying the run.

If the processor is reset and no address is specified, then an ex-
ecute will cause the processor to run from the next condition. If
the processor is reset from specified address, then the processor
is allowed to run and the next program count is set up for the
specified address.

Specify trace causes the trace hardware to be initialized with the
given trace specification. An execute command will then cause the
trace to be executed. A trace specification is not removed and can
be reexecuted without another specify trace command. Specify trace
and specify run can be used with a single execute command initiat-
ing both the run and the trace, but this mode can only be used if
the internal analysis is configured to participate in a system
measurement. If internal analysis is not configured, then specify
trace and specify run are mutually exclusive and issuing one after
the other will negate the first command. If specify trace is fol-
lowed by execute, the effect is identical to trace. If specify run
is followed by execute, the effect is the same as run, except that
if a system measurement is configured, it 1is initiated. The
’specify’ soft key label is displayed only with multiple module
systems.

Model 6U4193A

6805P Series Emulator/Analyzer

SYNTAX

step [<#

Default Values

<# STEPS>

from <ADDRESS>

Examples:

step

step

STEPS>] [from <ADDRESS>]

If no value is entered for number of
times, only one instruction is
executed each time the RETURN key is
pressed. Multiple instructions can
also be executed by holding down the
RETURN key.

If the from <ADDRESS> option
is omitted, stepping begins at the
next program counter address.

step from 100H
step 20 from 200H

FUNCTION

The step command allows program instructions to be sequentially
analyzed by causing the emulation processor to execute a specified
number of instructions. The contents of the processor registers
and the contents of emulation or user memory can be displayed after
each step command has been completed. A step from a WAI instruction
will cause the emulator to remain in foreground until an interrupt
takes place; the emulator then returns to background.

Parameters

<# STEPS>

from <ADDRESS>

<# STEPS> determines how many instuctions will
be executed by the step command. The number of
instructions to be executed can be entered in
binary(B), decimal(D), octal(0 or Q), or
hexadecimal(H) notation.

from <ADDRESS> represents a state on the ad-
dress bus which can be used to start a program
run. The syntax requirements for <ADDRESS> are
equivalent to those for <VALUE> as defined in
Appendix A.

5-17

Model 6L4193A
6805P Series Emulator/Analyzer

stop__trace
SYNTAX

stop trace

Default Value

none
Example:
stop_trace

FUNCTION

The stop_trace command terminates the current trace and stops the
execution of the current measurement. That is, the system stops
searching for trigger and trace states. Trace memory, although in-
complete, can be displayed. Stop trace will also halt internal
analysis if it is being used in "run until” mode.

The command is invoked through the "stop trc" soft key.

5-18

Model 64193A
6805P Series Emulator/Analyzer

store

SYNTAX

store {memory <ADDRESS> thru <ADDRESS>} to <FILE>
{ trace }

Default Value
None
Examples:
store 600H thru 7FFH to TEMP2
store EXEC thru DONE to TEMP3
store trace to TRACE
FUNCTION

The store command is used to store the contents of specific memory
locations in an absolute file or the trace memory in a trace file.

Parameters
<ADDRESS > <ADDRESS> determines the memory locations from
which data is to be stored into the specified
absolute file.
<FILE> <FILE> is the identifier for the absolute file
or trace file in which data is to be stored.
The syntax requirements for <FILE> are
described in Appendix A.
DESCRIPTION

<FILE> determines the name under which the absolute or trace file
is to be stored. The store command creates a new file having the
specified name as long as there is no absolute file presently on
the disc with that name. In the cases where a file represented by
the <FILE> variable already exists, the system asks whether the old
file is to be deleted. If the response is yes, the new file
replaces the old one. If the response is no, then the store com-
mand is cancelled and no data is stored. Transfer address of ab-
solute file is set to zero.

5-19

Model 64193A
6805P Series Emulator/Analyzer

SYSTEM COMMAND FILES

System command files can be used within an emulation session, but must
be constructed before the emulation session begins. A soft key prompt
allows insertion of the system command file into program execution.

A system command file can be constructed by using the following
procedure:

a. From the system monitor level, issue the command
"log_commands to NEW".

b. Enter emulation session.
c. Proceed through all desired commands.
d. End emulation, return to the system monitor level and

"log_commands off".

e. Edit NEW (the command file just created) by deleting the
undesired commands or making any changes needed.

f. The system command file is now ready for use within the
emulation session.

<CMDFILE>
SYNTAX
<CMDFILE> [PARMS]
FUNCTION
<CMDFILE> is the system command file name and is further

described in Appendix A. The use of [PARMS] is described in
the system manual under command files.

5-20

Model 64193A
6805P Series Emulator/Analyzer

Command Delays

wait
SYNTAX
[<NUMBER >]
wait []
[measurement_complete]

Default Value

any keystroke

Examples:
wait will wait for any keystroke before
accepting the next command.
wait 6 will wait for any keystroke or 6
seconds before accepting the next
command.
wait measurement complete will wait for any
keystroke or for a pending
measurement to become
complete. If no
measurement is in
progress, wait will be
satisfied immediately.
FUNCTION

Command delays are enhancements that allow flexible use
of system command files.

Parameters
<NUMBER> is the number of seconds (65,535 maximum)
before the next command is executed.
measurement complete is a delay until a measurement

has been completed before the
next command is executed.

When operating in REMOTE mode, wait for keystroke only is not
allowed. A <NUMBER> or measurement_complete term must be
included with the wait command. Pressing the system RESET key
will satisfy the "wait for keystroke" condition and will stop
execution of a command file, if a command file is currently
being executed.

5-21

Model 6L4193A
6805P Series Emulator/Analyzer

DESCRIPTION:

The usefulness of command delays lies in the capability to give
the emulation system and target processor time to reach some
condition or state before bringing in the next command. The
delay commands may be included in the system command file.

The following example shows the use of wait commands within a
system command file.

load PROGRAM

run from SUB1

trace about BEGINNING

wait measurement complete

trace only address range DATASTART thru DATAEND
run from SUB2

wait 8

stop_trace

list FILE1l trace

run from SUB3

Run from subroutine 1 and accept the next command after
measurement is completed. Trace in DATA area while running
subroutine 2, then list to a file after subroutine 2 has

been completed. Wait 8 allows the processor 8 seconds before
the stop_trace becomes effective.

5-22

Model 6L4193A
6805P Series Emulator/Analyzer

Chapter 6

DISPLAY AND LIST COMMANDS

DISPLAY AND LIST COMMAND CAPABILITIES

There are four basic types of information that may be viewed by
using either the display or list command. These are:

a. Memory data
b. Register contents
¢c. Trace information

d. Global and local symbols

MEMORY DATA

For data taken from memory the starting address in memory or a list of
memory address ranges can be specified.

Whether the data comes from emulation memory, user memory, or on-chip in
registers depends on the memory map assignments made during configuratio
the emulation command file and the mode used. Unless otherwise specified
memory data is displayed statically with the actual memory address shown
(The static display shows the memory contents existing when the display
command is executed.) The data is displayed in hexadecimal form with
corresponding ASCII characters as shown in the exa in Figure 6-1.

6-1

Memory tbytes
address data

Model 6L4193A
6805P Series Emulator/Analyzer

1ascl1

BN
N
N
N
RS

0000-07 FF
0008-0F FF
0010-17 FF
0018-1F 23
0020-27 FF
0028-2F FF
0030-37 FF
0038-3F FF
0040-47 FF
0048-4F FF
0050-57 FFE
0958-5F FF 20
0060-67 FF 00
0068-6F FF 00
0070-77 FF ‘ 20
Q078-7F FF 00

N
x
[N

>3 Y << €
~ & W
N W

NE O NN NN < v
RPN LPR-RK P
N AR AR AU ay W NN W W W
AR AN S NN
VW NE NN NNNZT SN0 XO N N

STATUS: 680S--Reset in background

—run _ trace _ step _display _modify _ break _ end = ==-fTC---

Figure 6-1. Memory Contents — Hexadecimal and ASCII

Syntax for the display and list commands is very similar. However, the
repetitive option is only available for display commands. The display
and list commands can be modified so that memory data is displayed or
listed using one or more of the following techniques.

6-2

a.

Data can be viewed in a repetitive mode, which causes the dis-
play to be constantly updated. This can be useful if the data
in the memory is continuously changing. However, the display is
not updated in real time.

Data can be viewed in mnemonic form rather than in hexadecimal
form as shown in Figure 6-2. However, it is advisable to use a
form consistent with the data being displayed. For instance, it
makes sense to display memory containing program code in
mnemonic form, but mnemonic form does not make sense for viewing
memory locations containing random arithmetic values. The
starting address for a mnemonic display should be the beginning
of an opcode.

The display address will increment or decrement by units of one
when using the up arrow or down arrow keys to view memory data
in the mnemonic format. In this way, the currently displayed
mnemonic page can be aligned, via inverse assembly, beginning at
a new starting address. The "roll up" (or "roll down") key in a

Model 641934
6805P Series Emulator/Analyzer

mnemonic display will disassemble the next (or previous) address
from the last (or first) displayed address, leaving the rest of
the display unchanged. ("Roll up" and up arrow, and '"roll down"
and down arrow keys are equivalent in either absolute or blocked
modes.)

The ''next page" and "prev page" keys will replace all of the
data with new data. The ''next page' will place the next in-
struction address and succeeding instruction addresses and cor-
responding data on the screen. The 'prev page" key will place
the preceeding instruction addresses and corresponding data on
the screen. In some cases in the "prev page' mode, there may be
a slight delay before the data is placed on the screen. The
delay results when the system steps backwards through the memory
until sufficient data has been gathered to fill the screen.

Memory :mnemonic

address
QSE4 LDA $#08H

9SE6 STA O2H
QSE8 STA 06H
QSER LDA 02H
QSEC AND $03H
OSEE CHP $03H
QsFo BEQ Q600H
QsF2 LD% #B8H
9cF4 LDA .
QSFS JSR QS88H
QSF8 INCX

QSF9 CPX #F1H
QSFB BNE OSFdH
QSFD SWI

9SFE BRA QSE4aH
0600 MP Q6B6H

STATUS: 680S--Reset in background

—run __trace step _display _modify __break _ end =---fTC---

Figure 6-2. Memory Contents - Mnemonic

. Real number display/list. Data can be viewed as real numbers in

either the short form (four bytes) or the long form (eight
bytes).

Memory addresses can be displayed "offset” from the actual
value. The address offset allows the actual addresses to bhe off-
set by a value specified by the user. If the value is correctly
chosen, the address space displayed will start at location 000OH
and will correspond to the listing generated by the assembler or

6-3

Model 6L4193A
6805P Series Emulator/Analyzer

compiler. For example, if a module originating at address X is
linked with other modules, it can be assigned a new starting
address X+Y, where Y is a value that depends on the number and
size of the other modules being linked. Therefore, offset al-
lows the user to enter "Y' so that the addresses appear the same
as in the assembly or compiler listing file.

e. Guarded memory will be displayed as asterisks.

REGISTER CONTENTS

Register data is displayed as shown in the example in Figure 6-3.

6805 Registers

T0SEq A6 LDA #08H 11000 Q07F OSE6

STATUS: 68@S--Step complete

Figure 6~3. Register Contents
The program counter (PC) value can be offset by a specified value and th

next program counter (Next PC) value will be offset by an equal amount.
The offset is done for the same reason as described above for memory

data.
TRACE INFORMATION

Trace information may also be displayed or listed using the display/list
command. Figure 6-4 shows a trace memory display.

6-U

Model 64193A
6805P Series Emulator/Analyzer

Trace: mnemon ic break: none count:
line¢ address opcs/data mnemonic opcode or status time, relative
-007 OSEA B6 LDA Q2H uS
-006 OSEB 02 operand or data read uS
-005 0002 08 operand or data read uS
-004 Q5EC A4 4#03H uS
-003 OSED 03 operand or data read
-002 OSEE Al #03H
-9001 OSEF Q3 operand or data read
AYMy osfFo = : Q600H
+001 oSk 1 (43 operand or data read
+002 06090 CcC J A6BEH
+003 0691 06 operand or data read
+004 0602 B6 operand or data read
+005 Q6B6 3C
+006 Q6B7 9B SE
+Q07 Q688 Ak 8 #FOH
+008 @6B9 Fa operand or data

)
uS
)
uS
US
uS
uS
uS
uS
uS
uS
uS

P NNy = o () = e e s s e Y e s

STATUS: 6805--Running Trace complete i 11:59

Figure 6-4. Trace Memory Display

GLOBAL AND LOCAL SYMBOLS

These symbols may be viewed on the display. Local symbols are symbols
defined in the source file for a single program module. Global symbols
are those that are declared to be global in any source file. They are
defined using the assembler pseudo instruction GLB (or $GLOBVAR+$ in the
compiler). When the display command is used to examine either of these
symbol types, the display will contain the symbol name, absolute ad-
dress, and for symbols located in emulation memory, their present value.
For local symbols, the relative value of PROG, DATA, and COMN is also
displayed. If the processor is running and is restricted to real-time
runs, the values are displayed as asterisks (*¥).

DISPLAY AND LIST COMMAND SYNTAX

The display and list commands initiate the display of local or global
symbols, the contents of registers or memory, and the contents of the
trace memory. For the purpose of this discussion, display and list com-
mand options are treated as separate commands and are described as such
on the following pages.

6-5

Model 64193A
6805P Series Emulator/Analyzer

display/list
SYNTAX
{display ¥ A global_ symbols }
{ y A local symbols }
{ { <FILE> }} (memory }
{list { 1y« registers }
{ {printer }} (trace)

6-6

Default Values

Depending on what is listed, defaults may be the options selec-
ted for the previous execution of the list or display command.

Examples:

list printer memory O001FH thru OOSFH

display registers

list printer trace

list HAL local symbols_in KEEP:USER

list printer global symbols

list oprinter memory --- (defaults to current
information on the display.)

FUNCTION

The list command produces a copy of the information selected. The
display command displays the information and allows the use of the
"ROLL UP", "ROLL DOWN', "PREV PAGE", "NEXT PAGE", and in some cases
the up and down arrow keys. The copy resulting from a list command
can be either a listing file stored in the 64000 memory or a hard
copy produced by the printer. If the information is written to an
existing file, the old file is overwritten by the new information.

Parameters
printer printer causes a hard copy to be
printed.
<FILE> <FILE> causes the information to be

copied to either a new or an existing
file identified by <FILE>. The syntax
for <FILE> is discussed in Appendix A.

Model 6L4193A
6805P Series Emulator/Analyzer

display/list global__symbols

SYNTAX
{ display }
{)
{ { <FILE>} } global symbols
{ list { y)
{ {printer})

Default Value
none
Examples:
display global symbols
list HAL global_symbols
FUNCTION

The display/list global symbols command displays the global symbols
defined for the current absolute file and the logical addresses and
present values of those symbols. Global symbols are looked up in
the link sym file which is generated during linking. If the
link sym file is not present, no symbols may be displayed or used
in expressions. Global symbols are those that are declared to be
global in the source file. When the list/display global symbols
command is used, the listing will include the symbol name, address,
and its present value. The present values of symbols in emulation
memory will be displayed. An asterisk (¥) will be displayed in the
value field for other symbols.

Parameter

glb_symb glb_symb represents the symbols and
labels defined as global in one of the
source programs from which the current
absolute file was generated. When the
glb_symb soft key is pressed,
"global_symbols" is displayed on the
screen.

6-7

Model 641934
6805P Series Emulator/Analyzer

display/list loc__symb

6-8

SYNTAX
{ display }
}
{ {<FILE> } } local_symbols_in <FILE>
{ 1list { })
{ {printer} }

Default Value
none
Examples:

display local symbols_in TEMPl
list printer local symbols_in TEMPl
list HAL local_symbols_in TEMP1

FUNCTION

The display/list loc_symb command displays the local symbols and
their present values and relative mode as defined in the source
(program, data, or common) <FILE>. Local symbols are looked up in
the asmb_sym file generated during assembly or compilation. If the
asmb_sym file is not present, no local symbols may be displayed or
used in expressions.

The present values of symbols in emulation memory will be dis-
played. An asterisk (¥) will be displayed in the value field for
other symbols.

Parameters
loc_symb Loc_symb refers to the symbols and
labels defined as local in the source
file identified by <FILE>. When the
loc_symb soft key is pressed,
"local symbols" is displayed.
<FILE> <FILE> represents the source file that

contains the local symbols to be
displayed. Refer to Appendix A for the
syntax requirements of <FILE>.

Model 6L4193A
6805P Series Emulator/Analyzer

display/list memory

SYNTAX
{ display }
)
{ {<FILE> } } memory[<MEMLIST>]
{ list { })
{ {printer} }
[byte]]
[repetitively][absolute]| 1]
[word]]
]
[byte]]
[repetitively] blocked |]1[offset_by<OFFSET>]
[word]]

]
[repetitively] real [long]]

[short]]
]

mnemonic]

Py ey gy (— (—) p— — p—y (— p— o p—

where <MEMLIST> is defined as:
<ADDRESS> [through <ADDRESS>][,<ADDRESS>[thru <ADDRESS>]...]
Default Values

Initial values are the same as specified by the command "dis-
play memory 0 blocked byte offset by 0".

Defaults are to values specified in previous display or 1list
memory command.

Repetitively must be specified each time display memory is
issued.

Examples:
display memory START mnemonic

display memory O thru 100H, START thru START+S5,
S500H, TARGET1l, TARGET2 blocked word

list memory 210H offset by @:MODULEl

6-9

6-10

Model 64193A
6805P Series Emulator/Analyzer

FUNCTION

The display/list memory command shows the contents of the specified
memory location or series of locations. The memory contents can be
viewed either statically or repetitively (display memory only) and
either in mnemonic or hexadecimal form. In addition, the memory
addresses can be displayed offset by a value which allows the in-
formation to be easily compared to the file listing.

Parameters

<MEMLIST> <MEMLIST> describes the addresses of
memory to be displayed. It consists of
either a single address, in which case
the memory display starts with that
address, or a list of single addresses
or ranges of addresses.

repetitively repetitively causes the display to be

(display only) periodically updated with the current
contents of memory. The program must be
interrupted in order to fetch the memory
data and update the display (doing so
one line at a time).

mnemonic mnemonic causes the program in memory to
be disassembled. The mnemonic opcodes,
memory locations, and associated
operands are then displayed or listed.

<OFFSET> <OFFSET> causes the system to subtract
the specified <OFFSET> from each of the
actual absolute addresses before the
addresses and the corresponding memory
contents are displayed. The value of
<OFFSET> can be selected such that each
module in a program appears to start at
address O0O00OH. The display/list of the
memory contents will then appear similar
to the assembly or compiler listing.

Model 64193A
6805P Series Emulator/Analyzer

display/list registers

SYNTAX
{ display }
{ }
{ {<FILE> } } registers [offset_by <OFFSET>]
{ list { })
{ {printer} }

Default Value

<QFFSET> Initially O; thereafter previous value.

Examples:

display registers
display registers offset by 81H
list HAL registers offset_by OAOH

FUNCTION

The display/list registers command gives program counter value, the
current contents of the processor’s registers and, if a step has
just been executed, the mnemonic of the last instruction. This
process does not occur in real time; therefore, if the registers
are to be displayed while the processor is running, the system must
be configured to allow nonreal-time operations.

The displayed values of both the program counter and the next
program counter can be offset from their actual values by a number
that allows the register information to be easily compared to the
assembled or compiled listing.

Parameters

<OFFSET> <OFFSET> represents the value by which
the displayed program counter (PC) and
next program counter (Next PC) addresses
are offset from their actual values.
The syntax for <OFFSET> is equivalent to
the syntax for <VALUE> as described in
Appendix A.

6-11

Model 64193A
6805P Series Emulator/Analyzer

display/list trace

SYNTAX

{ display }
{ } [mnemonic]
{ } []
{ } trace | [{binary }]]
{ } [absolute] [status <{hex 1]
{ } [[{mnemonic}]]
{)
{ {<FILE> })
{ list{ 3
{ {printer}}

[{absolute}]

[count { 1] [offset_by <OFFSET>]

[{relative}]

Default Values

Initial values are the same as specified by the command
"display trace mnemonic count relative offset by 0".

<OFFSET> Initially 0; thereafter previous value.

Examples:

display trace count relative
display trace status binary

list HAL +trace count absolute

list printer trace offset_by O0l00H

FUNCTION

The display/list trace command shows the contents of the trace
buffer. The information can be presented as absolute hexadecimal
code or in mnemonic form. The status captured by the analyzer can
be displayed mnemonically, independent of the address and data in-
formation, or it can be displayed in hexadecimal or binary form.
Addresses captured by analysis are physical addresses.

Refer to Figure 6-4 for an example of a "display trace count rela-
tive" command.

6-12

Model 64193A
6805P Series Emulator/Analyzer

The "offset by" option causes the system to subtract the specified
<OFFSET> from the addresses of the executed instructions before the
trace is displayed. With an appropriate entry for <OFFSET>, each
instruction in the displayed trace will appear as it does in the
assembled or compiled program listing.

The display/list count command is used after a trace has been ob-
tained to change the current display of time or state counts to one
in which the counts are displayed either relative to the previous
event or as an absolute count measured from the trigger event. If
time counts are currently selected, the display count command
causes an absolute or relative time count to be displayed. If the
current display contains state counts, a relative or absolute state
count results.

Parameters

mnemonic mnemonic directs the system to display
trace information with opcodes in
mnemonic format.

absolute absolute directs the system to display
the status information rather than
mnemonic opcodes.

status

hex displays status information in
hexadecimal form.

binary displays status information in binary
form.

mnemonic displays status information in mnemonic
form.

6-13

6-14

<OFFSET>

count

absolute

relative

Model 64193A
6805P Series Emulator/Analyzer

<OFFSET> represents the number by which
the address displayed for an executed
instruction is offset from the
instruction’s actual address. The
syntax for <OFFSET> is equivalent to the
syntax for <VALUE> as described in
Appendix A.

absolute causes the state or time count
for each event of the trace to be
displayed as the total count measured
from the trigger event.

relative causes the state or time count
for each event of the trace to be
displayed as the count measured relative
to the previous event.

Model 64193A
6805P Series Emulator/Analyzer

Chapter 7

ANALYSIS AND INTERACTIVE COMMANDS

INTRODUCTION

The analysis commands are used to specify the particular part of a
program that is to be traced and displayed. The trace measurement may
be made once and displayed statically or the same measurement may be
made repetitively and the results continually updated.

The trace command causes 256 states to be collected and stored in the
trace memory. The trace memory is displayed relative to the trigger
position. The trigger may occur at the beginning (after), at the middle
(about), or at the end (before) of the trace memory contents. Note that
the display is capable of listing only 16 lines per page, and therefore
the "prev page', ''next page', "roll up”, or "roll down" keys are used to
view all measured states.

Emulation can interact with other modules of a multiple module system
over the intermodule bus, or with external equipment through the BNC
ports. Commands that involve interaction are: specify, execute, trace,
stop_trace, and halt. Emulation can participate in coordinated measure-
ments and can also begin execution of a program in concert with the in-
itiation of a measurement. Chapter five contains details for specify,
execute, stop_trace, and halt. Details of measurement interaction pos-
sibilities appear in this chapter under the heading ’Interactive
Measurement Selection’. Details of the trace command follow.

NOTE

The first 10H Jlocations cannot be read by the
analysis card. These locations show invalid data in
the trace display. This is indicated by the message
"<<< Reads from O to 10H give invalid data" in the
opcode or status column of the trace display.

Model 641934
6805P Series Emulator/Analyzer
trace
SYNTAX
[again]
trace [
[[repetitively] [<TRIGGER>] [<QUALIFIER>] [<COUNT>] [<BREAK>]
where <TRIGGER> is defined as:
{after } {<STATE> [occurs <#TIMES>] [or <STATE>]}
{about } {<RANGE_STATE> [occurs <#TIMES>] }
{before}
<QUALIFIER> is defined as:
{ <STATE> [or <STATE>] }
{ <RANGE_STATE> }
<COUNT> is defined as:
counting { state <STATE>)
{ time }
<BREAK> is defined as:
break _on { measurement_complete }

{ trigger }

<RANGE_STATE> is defined as:

{ range <VALUE> thru <VALUE> }
address { not range <VALUE> thru <VALUE> }
{ not <VALUE> }

[data<VALUE>] [status<STATUS_EXPRESSION>]

Model 6L4193A
6805P Series Emulator/Analyzer

<STATE> is defined as:

{ address <VALUE> [data <VALUE>]
[status <STATUS_EXPRESSION>]}

{ data <VALUE> [status <STATUS_EXPRESSION> 1}
{ status <STATUS_EXPRESSION> }

<STATUS_EXPRESSION> is defined as:

{<STATUS_IDENT>}

{ } [and <STATUS EXPRESSION>]
{ <VALUE> }

Model 64193A
6805P Series Emulator/Analyzer

Figure 6-4, back in Chapter 6, showed the result of a trace specificatio
consisting of trigger (about), address (hexadecimal), qualifier (opcode)
count (time), and no break.

A shorthand syntax may be used when entering the information required by
the <STATE> variable. The words "address"”, "data", and "status” can be
omitted as long as commas are used to separate the fields which contain
the entries for each state. For example, "address T10H data OFFH status
14H" could be entered as follows: "T10H,0FFH,14H". Likewise, "address
T10H status 14H" could be entered as "T10H,,14H" using the shorthand
syntax. Notice that when a particular field has no entry, commas must
still be used to separate the fields. The first comma specifies the end
of the address field, and the second comma specifies the end of the data
field.

The trigger and qualifier parts do not have the entire syntax described
above. Only one may have a range on address and only one may have an
or’ed term. The soft keys and grammar reflect this and will not allow
entry of illegal specifications.

In all cases the term <VALUE> is an expression consisting of addition,
subtraction, multiplication, division, parentheses, numbers, and sym-
bols. In hexadecimal, binary, and octal numbers don’t cares (X) may be
used. They may not, however, be combined with arithmetic operations and
may not be used in the address <VALUE> of a <RANGE_STATE>.

<STATUS_IDENT> is any one of the predefined mnemonic status values.
Using "and" capability, status identifiers and/or values can be com-
bined. It is possible, for example, to enter status 00000000B and
status 11111111B; a combination that will result in the error message,
"Status expression error”.

The "and" function for status expressions operates bitwise on values en-

tered, or on the predefined values of the mnemonic status identifiers.
Table 7-1 defines the results of the "and" function for any bit.

Table 7-1. "And" Function Results

X 0 1
X:X 0 1
0 0 0 E
1:1 E 1

Where X is the symbol for a '"don’t care” bit, and E represents an in-
valid entry that will result in the message "Status expression error".

USING ANALYSIS COMMANDS

Analysis may be performed either by first initiating the program run and
then specifying the trace parameters or by specifying the trace
parameters first and then initiating the program run. In either case,

-4

Model 64193A
6805P Series Emulator/Analyzer

once a trace command is initiated, the analysis module monitors the
system buses of the emulation processor to detect the states specified
in the trace command. When the trace specification has been satisfied, a
message will appear on the status line showing "trace complete". At that
time the contents of the trace memory can be displayed. If the trace
memory contents exceed the page size of the display, the ‘next page”,
"prev page', "roll up", or "roll down" keys may be used to display all
the trace memory contents.

Trigger and storage qualification can be specified without initiating a
trace by using the specify trace command, and traces can be initiated
without altering the trigger and storage qualifications by using the ex-
ecute command.

The trace command consists of the components described in the following
paragraphs.

a. <TRIGGER> - The ’trigger’ is the event on the emulation
bus to be used as the starting, ending, or centering
event for the trace.

b. <QUALIFIER> - The storage specification determines which
of the traced states will be stored in the trace memory
for display upon completion of the trace. The trace
memory can be be filled by those states which occur
immediately before or immediately after the specified
trigger event, or half of the memory can be filled by
states which precede the trigger and half by those which
follow the trigger event. Events can be selectively
saved by pressing trace only and entering the
specific events to be saved. When this option is used,
only the indicated states occurring in the specified
position relative to the trigger are stored in the trace
memory.

¢. <COUNT> ~The count option specifies whether time or the
occurrence of a state will be counted during the trace.
The data can be displayed either ’relative’ to the count
at the previous stored state, or ‘absolute’ with respect
to the trigger. All count measurements can be displayed
in either absolute or relative mode. The absolute count
is the total count from the trigger to each measured
state. A plus sign (+) preceeding the trace number
indicates that the state occurred after the trigger
state. A minus sign (-) indicates that the state has
occurred before the trigger state.

The "relative count” mode displays the count between
consecutive states stored in the trace buffer. It can
be used to measure execution times of subroutines and
instructions or the time between the occurrence of the
same state in the execution of a program.

d. <BREAK> - The break specification causes an exit from

Model 64193A
6805P Series Emulator/Analyzer

the executing program to the background at a
predetermined point in the emulation program.

e. again - Entry of the "again" parameter causes the
trace to be performed again using the previous trace
parameters.

f. repetitively - Entry of the '"repetitively" parameter
causes a new trace to be initiated after the results of
the previous trace are displayed. The trace will
continue until a stop_trace or a new trace command is
issued.

INTERACTIVE MEASUREMENT SELECTION

The internal analysis unit can interact with other measurement equipment
during emulation through either or both of the BNC output ports located
on the back of the development station. The analysis unit can also in-
teract with other cardcage analysis modules through the IMB connector
located at the top of the analysis card. The following questions appear
during configuration.

Modify interactive measurement specifications? no (yes)

If interaction is desired or if a previously defined
interactive specification is to be modified, this
question allows the analysis interaction specification
format to be reviewed and modified as necessary. If no
modification is desired, the "no" response should be
selected. The Interactive Measurement questions will
then be skipped, leaving the responses in their default
or previously defined states.

If this question is answered "yes'", the following series of
of questions will be presented in sequence.

(a) PORT 1?7 off (drive)

The "drive" option causes the internal analysis unit to
output a pulse to Port 1 when the analysis trigger is
encountered. This function is useful for arming or
triggering an external measurement instrument such as a
scope or logic analyzer.

If "off" is selected, PORT 1 has no function.

(b) PORT 2? off (drive)
The "drive" option causes the internal analysis unit to
output a pulse to Port 2 when the analysis measurement is
complete. This function is useful for arming or

triggering an external measurement instrument such as a
scope or logic analyzer.

7-6

Model 641934
6805P Series Emulator/Analyzer

If "off" is selected, Port 2 has no function.
(c) Active edge? rising (falling)

This question is only encountered if either Port 1 or
Port 2 is configured to operate in the "drive" mode. The
response specifies the polarity of the drive pulse which
will be generated at the active ports.

"Rising" specifies a positive going output pulse whereas
"falling" specifies a negative going output pulse. The

polarity specification applies to both ports if both are
active.

The following questions refer to the lines available through the IMB
connector on the internal analysis board, and on other interacting
modules.

(d) Trigger enable? off (drive) (receive)
1. No IMB Interaction over the trigger enable 1line.

If the "off" option is selected, internal
analysis will not interact with the
trigger enable line.

2. Drive IMB Trigger Enable

Selection of the "drive" option causes internal
analysis to drive the IMB trigger enable line
when analysis finds the internal trigger point
or receives an external trigger.

3. Receive IMB Trigger Enable

Selection of the "receive" option prevents internal
analysis from finding its internal trigger point
until some other module has driven the trigger enable
line.

The trigger enable options are the only IMB functions available when
using the ULO channel (64300A) internal analysis board. With the Uu8
channel (64302A) ©board the following additional options become
available:

For 48 channel analysis there is one function that is always used when-
ever any other interaction is desired. This is the function of receiv-
ing the IMB Master Enable line in order to allow synchronous initiation
of the multiple modules. Internal analysis will select the correct op-
tion for this function depending on the options chosen for the other
functions.

(e) External trigger? off (drive) (receive) (drive and
receive)

-7

Model 6L4193A
6805P Series Emulator/Analyzer

1. No interaction over IMB trigger line.

When "off" is selected, internal analysis will not
participate in any interaction over the IMB trigger
line.

2. Drive IMB trigger

Selection of the '"drive" option causes internal
analysis to drive the trigger line when it finds its
internal trigger point.

3. Receive IMB trigger

Selection of the '"receive'" option allows internal
analysis to trigger either on finding its internal
trigger point or when another module drives the IMB
trigger line.

4. Drive and receive IMB trigger

Internal analysis will search until it finds its
internal trigger or until another module drives the
trigger line. Regardless of the source of the trigger,
once internal analysis has triggered, it begins to drive
the IMB trigger line.

(f) Internal trigger? on (off)
1. Enable internal trigger

If the "on" option is selected the internal triggering
mechanism is enabled. This means that triggers
specified via a '"trace" or "specify trace" command will
cause internal analysis to trigger if they are enabled
(see trigger enable option above).

2. Disable internal trigger

If the "off" option is selected, then the internal
triggering mechanism is disabled and will not cause a
trigger. Thus triggers specified by "trace" or "specify
trace” command will be ignored and internal analysis
will only trigger when it is receiving an external
trigger.

(g) Delay clock? off (drive)
1. No interaction on delay clock line

If the "off" option is selected then internal analysis
will not interact over the delay clock line.

Model 641934
6805P Series Emulator/Analyzer

2. Drive delay clock line

Selecting the "drive" option causes internal analysis to
drive the delay clock line once it has triggered, whether
by an internal trigger or a received external trigger.

7-9

Model 64193A
6805P Series Emulator/Analyzer

7-10

Model 64193A
6805P Series Emulator/Analyzer

Chapter 8

SIMULATED I/0

INTRODUCTION

The "Simulated I/0" feature of the 64000 System allows the user to
develop programs for, without actually using, the target system’s I/0
hardware. To do this, the 64000 system’s I/0 hardware is used to "simu-
late" the target system’s I/O hardware. This provides a double benefit.
First, programs may be developed concurrently with hardware development,
and second, if the target systems hardware exists but is not available
to the programmer, program development can continue uninterrupted.

The following 64000 system hardware may be used to "simulate” the target
system hardware during user-program development. (The 64000 hardware is
listed in the order of description.)

O PRINTER

O DISPLAY

O KEYBOARD

O DISC

O RS-232COMMUNICATIONS CHANNEL

Simulated I/0 is described in this section as follows. First an overview
is presented. The overview describes the common attributes of the five
simulated I/0 interfaces, and then briefly, the interfaces themselves.
The intent of the overview is to acquaint the reader with the simulated
I/0 features.

Following the overview, each interface is described in detail. The in-
tent of the detailed descriptions is to provide sufficient information
to allow a user to write the programs that will interface with the 64000
I/0 devices. Following the detailed descriptions is a list of error
codes, sample programs and file formats.

After the I/O programs have been written, assembled or compiled, and
linked, they may be incorporated into an emulation configuration, then
executed and tested.

Model 64193A
6805P Series Emulator/Analyzer

Emulation configuration is described in Chapter 4 of this manual.
Running and testing the programs is done with the commands described in
Chapters 4 through 7 of this manual.

OVERVIEW

A general description of each of the simulated I/0 interfaces is
described in the following paragraphs. However, all of the interfaces
have common attributes. These are described first.

COMMON ATTRIBUTES

Each simulated I/0 interface requires a unique memory location to which
all I/0 handshaking codes are sent by both the user and the Model 64000
programs. The address for this location is generically referred to as
the control address, or CA. The Model 64000 samples these addresses
periodically looking for commands. Location CA must be initially defined
in the users program and in the emulation configuration. If more than
one simulated I/O0 interface is to be implemented, then the user must
make sure that each I/0 program assigns a unique address for the CA.
Additionally, the user program must allow for contiguous buffer spaces
following the CA. The exact amount, and use, of this buffer space is
determined by the type of I/O interface. These requirements are
specified in the detailed descriptions of the interfaces.

The addresses for the different CA locations are entered into the 64000
program during emulation configuration. The processor must not be
restricted to real time runs when using simulated I/0. The CA locations
must be located in memory space assigned as either user RAM or emulation
RAM. It is recommended that the CA locations be in emulation RAM since
this will allow the user programs to run faster. Mapping the CA loca-
tions to user RAM will cause the emulator to go to the monitor program
while polling the CA locations for commands and or data.

Certain of the I/0 codes sent to location CA must also include sup-
plemental information. This supplemental information is contained in the
locations following CA, i.e., CA+l1 through CA+n. The supplemental infor-
mation must be placed in locations CA+1 through CA+n BEFORE the cor-
responding control code is placed in CA. If this is not done, the 64000
may respond to the control code in CA before the supplemental data 1is
set into locations CA+1l through CA+n.

The user program must initiate the request to open the simulated I/0 in-
terface. To do this, after setting up the supplemental information in
locations CA+1l through CA+n, the user program places the appropriate
code into location CA. (Code 80H opens all interfaces except the disc
file where it creates a file.) If the 64000 program successfully ex-
ecutes the request, it returns the appropriate code to 1location CA.
(Usually a 00 is returned, but not always.) If the 64000 program cannot
execute the request,

an error code is returned to location CA. A group of predefined error
codes is used. Within this group only a portion of the codes apply to
each interface. These error codes are defined in general terms in Table
8-8 which is located toward the end of this chapter. For those

8-2

Model 64193A
6805P Series Emulator/Analyzer

interfaces where the error codes also have specific meanings, the
meanings are defined in the detailed descriptions of the interface. When
the user is finished with the system resources, he should '"close" the
appropriate interfaces with the proper commands. All devices will auto-
matically be closed by an "end" command or by execution of a reset-
reset.

PRINTER 1/0 INTERFACE (SEE FIGURE 8-1)

This is the simplest of the five I/O interfaces. Only three user-control
codes are used to interface with the printer. These are: (1) open
printer file, (2) write to the printer, and (3) close printer file.

A buffer space contiguous to location CA contains a value indicating the
number of bytes (characters) to be printed followed by the characters
themselves.

DISPLAY 1/0 INTERFACE (SEE FIGURE 8-2)

This is somewhat more complex than the printer I/0 interface since it
has five user control codes. These codes are used to: (1) open the dis-
play file, (2) roll to and write line 18 (this is used to scroll lines
up on the display), (3) select a starting line and column, (kL) write
from the selected line and column, and (5) close the display.

Depending upon the control code issued, a buffer space contiguous to
location CA is required to hold one of the following parameter groups:
(1) line length in bytes followed by the bytes to be displayed, (2) line
and column number at which record display is to begin, or (3) record
length in bytes followed by the record bytes to be displayed. The open
and close codes use no additional buffer space other than location CA.

KEYBOARD 1/0 INTERFACE (SEE FIGURE 8-3)

The keyboard interface uses two user control codes and two keyboard in-
put command word codes. Additionally, the 64000 returns one of 2k
keyboard output command word codes.

The user control codes are used to open or close the keyboard interface
file. The two keyboard input command codes are used to either: (1)
clear the currently displayed line upon receipt of a keyboard character,
or (2) append the character to the existing line.

When the keyboard file is opened, a buffer space contiguous to location
CA is required to hold the keyboard input command word and the maximum
record length specification. This specification defines the maximum
record length that will be accepted from the keyboard. Thus, the buffer
must be large enough to accept the keyboard output parameters and the
maximum record length specified.

The keyboard output command word defines the manner in which the input

line was terminated or the status of the keyboard output record. The
output record consists of ASCII coded character bytes.

8-3

Model 641934
6805P Series Emulator/Analyzer

DISC FILES 1/0 INTERFACE (SEE FIGURE 8-4)
CAUTION

The disc file simulated I/0 control codes can be
used to access critical system files. Extreme care
should be used if any of the following types of
files are accessed:

Emulation Command Files (Type 6)
Linker Command Files (Type T)

Incorrectly accessing these files may destroy them
and cause serious system problems!

The simulated disc file interface uses ten user control codes. These
codes allow the user program to: (1) create, open, close, or delete a
file; (2) advance to, backup to, or randomly select a record position
within a file; (3) automatically select record postion 1 in the file;
and (4) read from, or write into any selected record postion in the
file. The user may also assign a different file name to be associated
with an already existing CA.

Depending upon the control code issued, a buffer space contiguous to
location CA is required to hold one of the following parameter groups:
(1) file type number, (2) disc number, (3) record number, (4) maximum
number of words to read or write, or (5) the actual number of words read
or written, followed by the words themselves. No buffer space is
required following the control codes used to close the file and to auto-
matically select record position 1 in a file.

RS-232 1/0 INTERFACE (SEE FIGURE 8-5)

This is the most complex of the five I/0 interfaces. To use this inter-
face, the following distinct events MUST be implemented between the user
and 64000 programs: (1) the RS-232 interface must be opened; (2) the
8251 Universal Synchronous/Asynchronous, Receiver/Transmitter, or USART,
is initialized; (3) using the appropriate command word, an 8251 operat-
ing mode is selected; (U4) data may be written to, or read from, the
8251; and (5) when data transfer is complete, the RS-232 file may be
closed.

To implement the interface, the user program must allow for control
space contiguous to location CA as shown in Figure 8-5. During 8251 in-
itialization, locations CA+1l through CA+5 hold the command and status
words used to initialize and select the operation of the 8251.

The user program may read or write single bytes or multiple-byte
records. When reading or writing single bytes, the single byte is passed
through location CA+1. If multiple byte records are to be handled, the
user propgram must set up read and write buffers as shown in Figure 8-5.

8-4

Model 641934
6805P Series Emulator/Analyzer

When writing multiple byte records, locations CA+6 through CA+22 hold
the write buffer pointers and the actual number of bytes sent by the
8251. This data is used interactively between the user and 64000
programs to transfer write data from the users program, via the users
and 64000 write buffers, to the 8251.

When reading multiple-byte records, location CA+23 through CA+39 hold
the read buffer pointers and the actual number of bytes received by the
8251. This data is used interactively between the user and 64000
programs to transfer read data from the 8251, via the 64000 and users
read buffers, to the user program.

The read and write buffers may be updated separately or together by the
user program.

8-5

8-6

Model 64193A
6805P Series Emulator/Analyzer

CONTROL CONTROL
CODES CODES
CcA
CA-1
ggFNRéR 64000 64000
ROUTINE PROGRAM PRINTER
PRINT PRINTER
DATA DATA
240 CA-n
BYTES
MAX USERS PRINTER |'O
CONTROL/DATA BUFFER
Figure 8-1. Simulated Printer 1/0 Interface Diagram
CONTROL CONTROL
CODES CODES
CcA
CA-1
USER'S
DISPLAY 64000 64000
ROUTINE PROGRAM DISPLAY
DISPLAY DISPLAY
DATA DATA
256 CA-+n
BYTES -
MAX USER'S DISPLAY 1/0

CONTROL/DATA BUFFER

Figure 8-2. Simulated Display 1/0 Interface Diagram

Model 64103A
6805P Series Emulator/Analyzer

CONTROL CONTROL
CODES oA CODES] COMMAND WORDS
COMMAND COMMAND :_ 1
WORDS oA WORDS]
. CA-2 64000
USER'S 64000
LS geTlégTA PROGRAM KEYBOARD
ROUTINE 240 MAX KBDATA | KB DATA
CA+n
USERS KB 1/0

CONTROL/DATA BUFFER

Figure 8-3. Simulated Keyboard 1/0 Interface Diagram

CONTROL CONTROL
CODES on CODES
. CA-1
USER'S READ/WRITE
bisc DATA 64000 DATA 64000
FILE 1/0 PROGRAM DISC
ROUTINE READ/WRITE
& FILES FILE OR
RECORD 1D
- OR
R/W DATA
Y20 WORDS CAD
(256 BYTES) USER'S DISC 1/0
MAX CONTROL DATA BUFFER

Figure 8-4. Simulated Disc File I/O Interface Diagram

8-7

USER'S
PROGRAM

Model 641934
6805P Series Emulator/Analyzer

XMIT
DATA

8251
USART"

64000
WRITE WRITE
USER'S WRITE BYTES
WRITE BYTES BUFFER""
WRITE BUFFER"™" (256 BYTES
BYTES MAX)
f 64000 CONTROL
CONTROL
CODES CA (CNTRL
ADDR)
CA+1
INITIALIZATION
& STATUS 8251
INITIALIZATION
BUFFER
CA+5
weiTE Care 64000 PROG
WRITE &
T
CONTROL CONTROL READ/WRITE CNTRL
BUFFER INTERRUPT
ROUTINES
CA+14
CA+15
READ
CONTROL READ
CONTROL
BUFFER
CA+23
USER'S RS-232
CONTROL BUFFER
64000 CONTROL
]
READ READ
BYTES BYTES
USER'S 64000
READ READ
BUFFER"" BUFFER""

*USART = Universal Synchronous/Asynchronous Receiver/Transmitter.
**Buffers are required only if records are to be read or written. Single bytes do not require these buffers.

Figure 8-5. Simulated RS-232 I/0 Interface Diagram

REC
DATA

Model 641934
6805P Series Emulator/Analyzer

PRINTER I/0 INTERFACE

The following paragraphs describe the events which must be implemented
between the user and the 64000 program for printer I/O0 to occur. The
events are:

O OPEN PRINTER FILE
O WRITE TO PRINTER
O CLOSE PRINTERFILE

The above events, the corresponding control codes, and parameters, where
applicable, are summarized in Table 8-1.

NOTE

During the time that a simulated I/O printer file is
open, no other user can access the printer. Thus, be
sure to close the file when finished.

OPEN PRINTER (80H)

Before using a "write to printer" code, the user program must request
that the printer interface be opened. This is done by placing code 80H
into location CA.

NOTE

CA represents the memory location to which all
printer I/0 "handshaking” codes are sent by both the
user and the 64000 program. The actual address for
the printer is defined in the user program and en-
tered into the 64000 program during the configura-
tion of the emulation CMDFILE. Each I/0 interface -
printer, RS-232, display, etc. - requires its own
unique CA address.

Certain of the I/0 codes sent to location CA must
also include supplemental information. This sup-
plemental information is generally contained in the
locations following CA, i.e., CA+l through CA+n. The
supplemental information must be placed into loca-
tions CA+1 through CA+n BEFORE the corresponding
control code is placed in CA. If this is not done,
the 64000 may respond to the control code in CA
before the supplemental data is set into locations
CA+1 through CA+n.

The 64000 program responds by opening the printer file and returning a

00 to location CA. If the file cannot be opened, error codes are return-
ed as shown in Table 8-1.

8-9

Model 64193A
6805P Series Emulator/Analyzer

After the file is opened, the user program may issue a write-to-printer
code as described in the next paragraph.

WRITE TO PRINTER (82H)

To send a write record to the printer, the user program places the fol-
lowing parameters into locations CA+1l through CA+n and then after set-
ting up locations CA+1 through CA+n, places code 82H into location CA.

The record length in bytes is entered into location CA+1l. The record
length must be a minimum of two bytes and may be a maximum of 240 bytes
in two byte increments. That is - the record must always contain an even
number of bytes. 0dd bytes should be padded with a space (20H).

Locations CA+2 through (CA+2)+n contain the ASCII codes of the character
to be printed.

The 64000 responds by supplying the write record to the printer and
returning a 00 to location CA. The 64000 automatically sends a carriage
return/linefeed to the printer following the user data. If the write-to-
printer record is not accepted, an error code is returned as listed in
Table 8-1.

CLOSE PRINTER FILE (81H)
The user program closes the printer file by placing code 81H into loca-
tion CA. The 64000 responds by closing the file and returning code 00 to

location CA. The 64000 will perform a form feed automatically.

If the close file is not accepted, an error code is returned to location
CA as shown in Table 8-1.

8-10

Model 6L4193A
6805P Series Emulator/Analyzer

Table 8-1. Printer 1/0 Codes

Request User Program 64000 Response To:
Name Request
Valid User Request Invalid Request
Address Contents Address Contents Error Code
OPEN CA 80H CA 00 01 thru 08
PRINTER
FILE 09: file is
already open.
10-14; NA
CLOSE CA 81H CA 00 01 thru 08
PRINTER
FILE 09: file is
already closed.
10-14: NA
WRITE CA 82H CA 00 01 thru 08
TO
PRINTER CA+1 Record The 64000 09: file is
Length accepts not open.
in bytes the record
(240 max.) and causes 10, 11, 13
it to be & 14: NA
printed.
CA+2 Record 12: Record
byte 1* length ex-
} | ceeded 240
bytes.
(CA+2) Record
+n byte n*

*All display characters must be formatted in ASCII code. A code greater than OFOH will not be
accepted by the 64000 program.

NA= Not Applicable.
See table 8-8 for complete error code listing.

8-11

Model 641934
6805P Series Emulator/Analyzer

DISPLAY I/O INTERFACE

The following paragraphs describe the events which must be implemented
between the user and the 64000 programs for display I/0 to occur. The
events are:

O OPEN DISPLAY FILE

O ROLLTO /WRITE LINE 18 (SCROLL AND WRITE)
O SELECT LINE AND COLUMN

O WRITE FROM SELECTED LINE/COLUMN

O CLOSE DISPLAY FILE

The above events, the corresponding control codes and parameters, where
applicable, are summarized in Table 8-2. Display techniques are shown in
Figure 8-6.

NOTE

During the time that the simulated I/0 display file
is open, the standard 64000 keyboard has no control
over the display.

To regain control, press the simulate soft key,
which closes the file. If the keyboard file is open,
it is also closed when the soft key is pressed.

OPEN DISPLAY FILE (80H)

Before any writing can be done on the display, the user program must
request that the display file be opened. This is done by placing code
80H into location CA.

NOTE

CA represents the memory location to which all dis-
play I1I/0 "handshaking" codes are sent by both the
user and the 64000 program. The actual address for
the display I/O CA is defined in the user program
and entered into the 64000 program during the con-
figuration of the emulation CMDFILE. Each I/0 inter-
face - display, RS-232, printer, etc. - requires its
own unique CA address.

Certain of the I/0 codes sent to location CA must
also include supplemental information. This sup-
plemental information is generally contained in the
locations following CA, i.e., CA+l through CA+n. The
supplemental information must be placed into loca-
tions CA+l1 +through CA+n BEFORE the corresponding
control code is placed in CA. If this is not done,

8-12

Model 64193A
6805P Series Emulator/Analyzer

the 64000 may respond to the control code in CA
before the supplemental data is set into locations
CA+1 through CA+n.

The 64000 program responds by opening the display file, and returning a
00 to location CA. If the file cannot be opened, error codes are return-
ed as shown in Table 8-2.

After the file is opened, the user program may write on the display as
described in the following paragraphs.

ROLL TO/WRITE LINE 18 (82H)

This command allows writing to be initiated at the bottom of the dis-
play. Sequential Roll Up/Write Line 18 commands cause the previously
written line 18 to roll to line 17, etc. Thus, writing is always done on
the bottom line and the previously written lines are shifted up as each
new line 18 is written.

To cause the display to roll up and begin writing on line 18, the user
program places the following parameters into location CA+1 through CA+n,
and after setting up locations CA+1l through CA+n, then places code 82H
into CA.

The line length in bytes is entered into location CA+l. The line length
must be a minimum of two bytes and may be a maximum of 80 bytes, in two
byte increments. That is, the line must always contain an even number of
bytes. If the user writes an odd number of bytes, the 64000 will pad the
line with a null.

Locations CA+2 through (CA+2)+n contain the ASCII codes of the charac-
ters to be written on line 18. The 6L000 responds by storing this data
in a display buffer and returning a 00 to location CA. A delay may occur
before the program rolls up and writes to line 18. Thus, a program wait
may be required. If writing cannot be done, especially if write rol-
1/column is used (roll/column does not use delay), an error code is
returned as listed in Table 8-2.

After initially rolling up and writing on line 18, subsequent Roll
Up/Write Line 18 commands cause the previously written line 18 to roll
up to line 17, line 17 to roll to line 16, etc. Although the 64000
responds almost immediately with a 00 in CA, the actual scrolling of a
line can take up to 200 msec. The 64000 will accept other commands
during this time. Future scrolls are buffered and performed in sequence.
Row/Column writes will be performed immediately and may be scrolled if a
previous scroll has not been completed.

SELECT STARTING LINE/COLUMN (83H)

The user programs may specify the line number and column number at which
writing, when indicated, will start. To do this, the user program places
the line number (1 through 18) into location CA+l, the column number (1
through 80) into location CA+2, ard then places code 83H into location
CA.

8-13

Model 641934
6805P Series Emulator/Analyzer

The 64000 responds by storing the line and column number and returning
code 00 to location CA. The 1line and column numbers are stored until
either writing is initiated (code 8LH) or the display file is closed.

If" the line and column numbers are not accepted by the Model 64000
program, an error code is returned to location CA as listed in Table
8-2. Figure 8-6 shows the display techniques.

WRITE FROM STARTING LINE/COLUMN (84H)

Before writing can be initiated, a starting line number and column num-
ber must be specified by the user program. After this is done, writing
may be initiated as follows: the user program initiates writing by plac-
ing the record length (i.e., number of characters to be displayed) into
location CA+1l, the actual display characters (ASCII codes) into loca-
tions CA+2 through (CA+2)+n, and then places code 84H into location CA.

The maximum record length is 255 bytes. The display characters must be
formatted in ASCII codes. The 64000 program will not accept a display
code greater than OFOCH.

The 64000 responds by displaying the record beginning at the starting
line and column specified by code 83H. If the record exceeds the length
of the starting line, writing continues at column one of the next line,
etc.

If the 6L000 cannot initiate writing as requested, an error code is
returned to location CA as shown in Table 8-2.

CLOSE DISPLAY FILE (81H)

The user program closes the display file by placing code 81H into loca-
tion CA. The 64000 responds by closing the file and returning code 00 to

location CA.

If the close file is not accepted, an error code is returned to location
CA as shown in Table 8-2.

Pressing the inverse video "simulate" key or performing a "reset-reset"

will automatically close the display. Closing the display also closes
the keyboard.

8-14

Model 6L4193A
6805P Series Emulator/Analyzer

Table 8-2. Display 1/0 Codes

Request
Name

OPEN
DISPLAY
FILE

CLOSE
DISPLAY
FILE

ROLL
TO/
WRITE
LINE
18

User Program

Address
CA

CA

CA

CA+1

CA+2

(CA+2)
+n

Request

Contents

80H

81H

82H

Line
length

in bytes
(80 max)

Line

byte 1*

Line
byte n*

Address

64000 Response To:

Valid User Request

CA 00

The 64000 program
opens the file and
clears the display

CA 00

CA 00

The 64000 program
stores this data

in a display

buffer. A delay
may occur before
rolling to and
writing on line 18
actually occurs.

A program wait
may be required.

If successive

line 18’s are
written, then

the preceeding line
18 is rolled to

line 17, 17 to 16,
etc.

Contents

Invalid Request
Error Code
01 thru 08 & 14
09 code >84H
or file is open

10 thru 13: NA

01 thru 08 & 14

09: file is
already closed.

10 thru 13: NA
01 thru 08 & 14
09: file is not

open

10, 11, & 13: NA

12: Invalid
record length

8-15

Model 64193A

6805P Series Emulator/Analyzer

Table 8-2. Display I/0 Codes (Cont’d)

Request
Name

SELECT
STARTING
LINE/
COLUMN

WRITE
FROM
STARTING
LINE/

User Program

Request
Address Contents
CA 83H
CA+1 Line #

(1-18)
CA+2 Column
Number
(1-80)
CA 84H
CA+1 Record
length
in bytes
(255 Max)
CA+2 Record
byte#1
1 |
(CA+2) Record
+n byte n*

64000 Response To:

Valid User Request

Address

CA 00

The 64000 program
stores the line

and column numbers

until a write
line/column re-
quest is issued
or the file is
closed.

CA 00

The 64000 program
displays the record
starting at line/
column selected by
code 83H. If record
exceeds one

line, writing con-
tinues at column

1 of next line,etc.
See figure 8-6.

Contents

Invalid Request

Error Code

01 thru 08 & 14
09: File is not
open

10, 12 & 13: NA

11: Invalid line or
column number.

01 thru 08, 13

& 14

09: file not
open.

10 & 12: NA

11: line/column
not specified
by 83H.

*All display characters must be formatted in ASCII code. A code greater than OFOH will

not be accepted by the 64000 program.

NA= Not Applicable.

See table 8-8 for complete error code listing.

8-16

Model 64193A
6805P Series Emulator/Analyzer

COLUMN #'s

64000 DISPLAY

DISPLAY
LETTER MEANING

A Code 82H automatically causes the display to roll to line 18. Up to 80 characters, in two
byte increments, may be written on the line. Sequential Roll To / Write Line 18
commands cause the previous line 18 to roll to line 17, line 17 to roll to line 16, etc.

B/C B is the point (line 2, column 5) defined by code 83H at which writing will begin. C is
the statement which is defined by code 84H and begins at point B. There is no limit on

the record length defined by 84H. If the record exceeds the length of line 2, it is
continued on line 3 at column 1, etc.

Figure 8-6. Display Techniques

8-17

Model 6)4193A
6805P Series Emulator/Analyzer

KEYBOARD I/0 INTERFACE

The operation of the keyboard I/0 interface is described in the follow-
ing four phases:

O USER PROGRAM REQUESTS KEYBOARD READ

O 64000 RESPONSE TO KEYBOARD READ REQUEST

O 64000 DETECTS POSITIVE KB OUTPUT COMMAND WORD
O USER'S PROGRAM DETECTS 00 IN CA4

Each of the above phases corresponds to a significant interaction which
must be implemented between the user program and the 64000 program for
keyboard I/0 to occur. The keyboard I/0 interface events are summarized
in Figure 8-7 and Table 8-3.

NOTE

To automatically close the simulated I/0 keyboard
file and return the keyboard to standard operation,
press the "simulate” soft key. If the display file
is open, it will also be closed when this soft key
is pressed.

USER PROGRAM REQUESTS KEYBOARD READ (80H)

Before any other keyboard operation can be initiated, the user program
must request that the KB I/O interface be opened. This is done by first
placing the KB-input-command word and the maximum record length
specification into the KB I/0 buffer as shown in Phase I of Figure 8-7.
Then, after setting up locations CA+l through CA+n, code 80H is placed
into location CA of the buffer.

NOTE

CA represents the memory location to which all KB
I/0 codes are sent by both the user program and the
64000 program. The actual address of CA is defined
in the user program and entered into the 64000
program during the configuration of the emulation
CMDFILE. Each I/O interface - keyboard, RS-232,
printer, etc., requires its own unique interface.

Certain I/0 codes sent to location CA must also in-
clude supplemental information. This supplemental
information is contained in the locations following
CA, i.e., CA+1 through CA+n. The supplemental infor-
mation must be placed into locations CA+1 through
CA+n BEFORE the corresponding control code is placed
into CA. If this is not done, the 64000 may respond
to the control code in CA before the supplemental
data is set into locations CA+1l through CA+n.

8-18

Model 641934
6805P Series Emulator/Analyzer

The KB-input-command word is placed in buffer location CA+l. This word
contains either a "-1" or "-2" code. A "-1" code causes the current line
not to be cleared on the first character (i.e., the current keyboard
characters are appended to any characters already displayed on the same
line). A "-2" code causes the current line to be cleared on the first
character (i.e., previously displayed characters are erased from the
line and only the current keyboard characters are displayed).

The maximum record length specification is placed in buffer location
CA+2. This is the maximum record length (i.e., number of Kkeyboard
characters) that the user program will accept from the keyboard. The
record length specification may specify up to 240 characters (3 lines on
the 64000 display). However, the keyboard may transmit more or less
characters than this specification. If the number of characters trans-
mitted exceeds the record length specification, the user program is in-
formed of this by an applicable code in the KB-output-command word as
described below.

64000 RESPONSE TO KEYBOARD READ REQUEST

The 64000 program responds to the KB read request by storing the
KB-input-command word and record length specification, and by placing
code 82H into location CA as shown in Figure 8-7.

The 64000 program sets the KB-output-command word to the same code
specified in the KB-input-command word (-1 or -2). The 64000 then
begins monitoring the keyboard until an output command word is detected.
The result of this detection is described in the following paragraphs.

64000 DETECTS POSITIVE KB-OUTPUT-COMMAND WORD

The keyboard may send either a KB-output-command word by itself or a
command word followed by one or more keyboard characters. In either
case, when a KB-output-command word is detected, the 64000 program
places the word, and if applicable, other data into the KB I/0 buffer as
shown in Figure 8-7 (Phase III). The KB output word, which is always
sent, is placed in buffer location CA+1.

The 64000 program places a 00 in location CA to indicate to the user
program that either a KB command and/or data is now available.

If keyboard characters are also sent and if a '"lost character" was
generated then the "lost character" is placed into location CA+2. (How
a "lost character" 1is generated is described later.) Also, when
keyboard characters are sent, the actual number of characters in the
string (i.e., actual record length) is placed into location CA+3. The
keyboard characters themselves (ASCII coded bytes) are placed into loca-
tions CA+4 through (CA+l4)+n.

The KB output command in location CA+l may be any one of the codes shown
in Table 8-4. Two of these codes, 8 and 24, will occur only if the ac-
tual record length from the keyboard exceeds the maximum record length
specification. If either of these codes is generated, then location CA+2

8-19

Model 64193A
6805P Series Emulator/Analyzer

contains the ASCII code of the surplus or lost character that exceeded
the specified record length. A lost character may be generated in either
of two ways:

8-20

a.

When characters are entered as a continuous string and the
string exceeds the specified record length. For this case, the
first character to exceed the specified record length is placed
in "lost character' location CA+2. If typing continues, each in-
dividual surplus character is placed into the "lost character”
location CA+2 replacing the previous character. Thus, the last
"lost character" entered remains in location CA+2.

When a character is inserted into a full record. For this case,
the character at the end of the already full record is placed
into "lost character" location CA+2. If additional characters
are inserted, each succeeding end character is placed into CA+2,
replacing the previous character.

USER’S PROGRAM DETECTS 00 IN CA

After detecting a 00 in location CA, the user program takes the
data from the KB I/0 buffer and places either 80H or 81H into
location CA. The results of each of these response codes are as
follows:

80H Response Code - Read Keyboard I/0

If the user program responds with code 80H, the
KB-input-command word and record length specifications
must be supplied by the user program as shown in

Figure 8-7.

The 64000 program responds by again reading the keyboard.

. 81H Response Code - Close KB I/0

If the user program responds with code 81H, the 64000
program closes the KB I/0 interface. This command will
also close the display file if it was open.

Model 64193A

6805P Series Emulator/Analyzer

Table 8-3. Keyboard I/0 Interface Codes

Request
Name
Address

OPEN CA
KB
INTER

FACE CA+1

CA+2

READ
IN
PROCESS

OUTPUT
AVAILABLE

User Program Request

Contents

80H

KB Input
Command
Word

Max.
Record
Length
Specifi-
cation

(up to

240 bytes)

Initiated

by 64000
program

in response
to 80H above

Initiated

by 64000
after

82H, above

64000 Response To:

Valid User Request Invalid Request

Address Contents Error Code
See 82H, 08, 12, or 14
below

Other codes
do not apply

CA 82H

64000 stores KB-
input-command
word & max. record
length spec. It then
monitors KB-
output-command
word until positive
word is detected
and then responds

as follows:

CA 00

CA+1 KB out-put
command
word

8-21

Model 641934
6805P Series Emulator/Analyzer

Table 8-3. Keyboard I/0 Interface Codes (Cont’d)

Request
Name
Address
CLOSE CA
KB
/{e]

User Program Request

Contents

User pro-
gram may
then re-
spond to
00 with
80H or
81H as
shown
below.

81H

64000 Response To:

Valid User Request Invalid Request

Address Contents Error Code
CA+2 Reserved
for Lost
Character
CA+3 Actual
record
length
(#of KB
bytes)
CA+4 KB Byte 0
| |
(CA+4) KB Byte n
+n
CA 00 08 or 14
Other
codes
do not
apply.

See table 8-8 for complete error code listing.

8-22

Model 641934
6805P Series Emulator/Analyzer

Table 8-4. Command Word Codes

Part A. KB - Input - Command Word
Code Meaning
-1 Current line not cleared. Characters appended to previously displayed
characters.
-2 Current line cleared. Previously displayed characters erased.
Part B. KB - Output - Command Word
Code Meaning
8 Insert character in full line (lost character placed in CA+2)
9 Tab Key
10 Down arrow key
11 Up arrow key
12 Display next page
13 Carriage return
14 Attempting to move cursor right past last allowed screen location
15 Attempting to move cursor left past first allowed screen location
16 Delete character from full line
17 Shift key
18 Display previous page
19 Roll display down
20 Roll display up
21 Shift right arrow key
22 Shift left arrow key
23 Clear line key
24 Actual record length exceeded record length specification (lost character

placed in CA+2)

8-23

Model 64193A
6805P Series Emulator/Analyzer

Phase | - User Requests Interface Opening

LOCATION CONTENTS (From User Program)

CA* 80H (OPEN KB 1/0)

CA+1 KB INPUT COMMAND WORD

MAX. RECORD LENGTH

CA+2 SPECIFICATION (UP TO 240)

KB | O BUFFER

*The actual address for location “"CA” is
defined by the user during configuration
of the emulation “CMDFILE".

Phase |l - 64000 Response to Open-Interface Request

LOCATION CONTENTS (From 64000)
CA 82H (READ IN PROCESS)
SEPARATE KB INPUT COMMAND WORD
S;’FZER SET UP MAX RECORD LENGTH
64000 SPECIFICATION

64000 BUFFER

Figure 8-7. Keyboard I1/0 Interface Sequence

8-24

Model 641934

6805P Series Emulator/Analyzer

Phase Il - 64000 Detects Positive KB Output Command Code

ADDRESS

CONTENTS

CA

0 KB OUTPUT AVAILABLE

CA+1

KB OUTPUT COMMAND WORD

| a—— SET BY 64000 PROGRAM

CA+2

RESERVED FOR LOST
CHARACTER

CA+3

ACTUAL RECORD LENGTH
(# OF KEYBOARD BYTES)

CA+4

(CA+4)
+n

KB BYTE 0

KB BYTE N

KB 1/0 BUFFER

KB OUTPUT
COMMAND
WORD*

KB DATA

KEYBOARD

*When word goes positive,
the 64000 transfers data
to 1/0 buffer.

Phase IV - The user program may respond with either an 80H code as shown for phase | or an
81H code which closes the simulated keyboard 1/0 interface.

Figure 8-7. Keyboard 1/0 Interface Sequence (Cont’d)

8-25

Model 641934
6805P Series Emulator/Analyzer

DISC FILE I/O INTERFACE

CAUTION
The disc file simulated I/0 control codes can be
used to access critical system files. Extreme care
should be used if any of the following types of
files are accessed:
Emulation Command Files (Type 6)
Linker Command Files (Type T)
Incorrectly accessing these files may destroy

them and cause serious system problems!

The following paragraphs describe the type of files and the events which
must be implemented between the user and the 64000 program to either:
(1) create a new disc file, or (2) read from, write into, delete, or
change the name of an existing file. The file types are described first.
Then, the program events are described in the following order:
a. Creating New File
1) Creating File (80H)
2) Writing First Record (89H)
3) Writing Additional Records (89H)
4) Closing Created File (82H)
b. Accessing Existing File
1) Opening File (81H)
2) Selecting Record
(a) Automatic selection of records 1, 2, 3, ... etc.
(b) Advance "N" records (8LH)
(¢) Backup "N" records (85H)

(d) Position to record "N" (86H)
(e) Rewind to record one (88H)

3) Reading Record (8TH)
4) Writing Record (89H)

5) Closing Open File (82H)

8-26

Model 6L4193A
6805P Series Emulator/Analyzer

c. Deleting File (83H)
d. Changing File Name Associated with a CA (8AH)
The predefined file types are listed in Table 8-5.

Table 8-6 summarizes the user program requests, the corresponding con-
trol codes, and, where applicable, corresponding parameters.

FILE TYPES
The names and type numbers are listed in Table 8-5.
CREATING NEW FILE

CREATING FILE.To create a new file, the user program places the file
type number into location CA+1l, the disc number into location CA+2, and
then places code 80H into location CA. (The disc number is the disc upon
which the file will reside.)

NOTE

CA represents the memory location to which all disc
file I/0 "handshaking" codes are sent by both the
user program and the 64000 program. The actual ad-
dress for the disc files CA is defined in the user
program and entered into the 64000 during the con-
figuration of the emulation CMDFILE. Each I/0 inter-
face - disc files, display, keyboard, etc. -
requires its own unique CA address.

Certain I/0 codes sent to location CA must also in-
clude supplemental information. This supplemental
information is contained in the locations following
CA, i.e., CA+1 through CA+n. The supplemental infor-
mation must be placed into locations CA+1 through
CA+n BEFORE the corresponding control code is placed
into CA. If this is not done, the 64000 may respond
to the control code in CA before the supplemental
data is set into locations CA+l1l through CA+n.

The 64000 responds by creating the file type requested and returning a
00 to location CA which indicates the file has been created.

If the file cannot be created, an error code as shown in Table 8-6 is
returned to location CA. (General definitions for the error codes are
listed in Table 8-8.)

After the file is created, the user program may either write records im-

mediately into it, or close it, and then reopen it and write records
into it later.

WRITING FIRST RECORD. After a file is created the first record is
written into it as follows. The user program places parameters, as

8-27

Model 64193A
6805P Series Emulator/Analyzer

described below, into locations CA+1 through CA+n, and then places code
890H into location CA.

The number of words in the write record is placed into location CA+1l. A
write record may contain up to a maximum of 128 words (256 bytes). Thus,
an even number of bytes (whole words) must always be written.

Locations CA+2 through (CA+2)+n contain the words of the write record.

The 64000 responds by automatically writing the records into the file as
record number 1. After the record is successfully written, the 64000
returns a 00 to location CA. If the record cannot be written, an error
code, as listed in Table 8-6, is returned to location CA.

Additional records are written into the file as described in the next
paragraph.

WRITING ADDITIONAL RECORDS. If the newly created file is still open
(i.e., has never been closed), additional records are written into the
file as described for record one with the following difference. Each
succeeding record is automatically written with the next corresponding

record number. Thus, the second record written becomes record number 2,
the third record written becomes record number 3, etc.

CLOSING CREATED FILE. To close the newly created file, the user program
places code 82H into location CA. The 64000 responds by closing the file
and returning a 00 to location CA. If the file cannot be closed, an er-
ror code, as listed in Table 8-6, is returned to location CA.

ACCESSING EXISTING FILES

OPENING FILE. To open an existing file, the user program places the file
type number into location CA+1l, the disc number into location CA+2, and
then places code 81H into location CA.

The 64000 responds by opening the file and returning a 00 to location CA
which indicates the file is open. If the file cannot be opened, an error
code, as shown in Table 8-6, is returned to location CA.

*CAUTION

When a record is written into a file, it always be-
comes the last record in the file. Thus, writing a
record into any location other than at the end of
the file effectively erases all the following
records in the file. When accomplishing the follow-
ing paragraph choose record positions with care!

After the file is opened, the user program may either: (1) immediately

read/write* record 1, (2) select any record for reading, or (3) select a
position within the file to begin writing¥.

8-28

Model 64193A
6805P Series Emulator/Analyzer

SELECTING RECORD. Records are selected in any of the following ways:

a. Automatic Selection Of Records 1, 2, 3, .., etc. When the file is opened, record 1
is automatically selected. Thus, it may be immediately written into, or
read from, without first selecting it with an "advance”, "position"”, or
"rewind" code. After reading or writing record 1, record 2 is automati-
cally selected and may be read from, or written into. This process can
be continued for records 3, L4, 5, ..., etc.

NOTE

Remember, that when a record is written into a file,
it becomes the end of the file.

b. Advance "N" Records. Records located ahead of the currently selected
record (i.e., those records with higher numbers) may be selected as fol-
lows. The user program places the number of records into locations CA+l
and CA+2, and then places code 84H into location CA. The number of
records is selected with a 15-bit word. The eight least significant bits
are located in CA+l. The seven most significant bits are located in
CA+2. The most significant bit in CA+2 is not used.

The 64000 responds by advancing the specified number and return-
ing a 00 to location CA. If the record cannot be selected, an
error code, as shown in Table 8-6, is returned to location CA.

After the record is selected, the user program may then either
read from or write into it.

c. Backup "N" Records. Records located behind the currently selected
record (i.e., those records with smaller numbers then the cur-
rent record) are selected in a way very similar to "advance "N"
records"”. The only difference is that backup code 85H is placed
into location CA. Locations CA+l1 and CA+2 contain the number of
records as defined in subparagraph b above. The 64000 also
responds as described above.

d. Position to Record "N", Any record within the file may also be selected
without knowing its location relative to the current record.
This method is also similar to the "advance" or ‘'backup"
methods. The difference is that position code 86H is placed into
location CA. Location CA+1l and CA+2 contain the record number as
defined in subparagraph b above. The 64000 responds as described
above.

e. Rewind to Record One. This is a fast way to select record 1. This
method differs from the previous selection method in several
ways. First, only record 1 can be selected using this method.
Second, the user program places code 88H into location CA.
Third, there are no entries required in locations CA+1 and CA+2.
The 64000 program responds as described in subparagraph b above.

READING RECORD. Once a record has been selected by one of the
methods described above, it may be read as follows. The user

8-29

Model 64193A
6805P Series Emulator/Analyzer

program places the maximum number of 16-bit words it will accept
from the record into location CA+l1. Up to 128 words may be
accepted. (The recommended technique is always set CA+1 to 128.
Then, after reading 1is complete, throw away those words not
wanted, if any.) After specifying location CA+l, code 87H is
placed into location CA.

If the record is read successfully, the 6L000 responds as follows: code
00 is returned to location CA. The actual number of 16-bit words read
from the buffer is placed in location CA+1l. Location CA+2 through
(CA+2)+n contains bytes 0 through n.

If the record cannot be read, an error code, as shown in Table 8-6, is
returned to location CA.

WRITING RECORD. A new record may be written into an existing file in
either one of two ways. The record may be added to the end of the file
or it may be written over an existing record in the file. However, if
an existing record is written over, then the newly written record becom-
es the last record in the file.

To add a record to the end of the file, the record selected must be one
greater than the last record in the file. For example, if a file con-
tains five records, then record 6 must be selected before writing is in-
itiated. (If record 5 is selected, it will be written over by the new
record.) After writing record 6, record 7 may be written by issuing
another write code, etc.

To write over an existing record, first select the record and then in-
itiate writing. Again, remember that all following records in the file
are erased. For example, if a file contains 10 records, and record three
is written over, then records four through ten are erased.

CLOSING OPEN FILE. An open file is closed in the same way as described
for a newly created file. That is, the user program places code 82H into
location CA. The 64000 responds by closing the file and returning a 00
to location CA. If the file cannot be closed, an error code, as listed
in Table 8-6, is returned to location CA.

DELETING FILES

To delete a file, the user program places the file type into location
CA+1, the disc number into location CA+2, and then places code 83H into
location CA. The 64000 responds by deleting the file. If the file cannot
be deleted, an error code is returned to location CA as shown in Table
8-6. This delete is similar to a "purge" command in the general operat-
ing system. The purged file does go into the recoverable file list.

CHANGING FILE NAME ASSIGNED TO A PARTICULAR CA

The file name associated with a given CA location may be changed. This

8-30

Model 64193A
6805P Series Emulator/Analyzer

does not rename any files on the disc, but simply changes the name in
the emulation command file associated with a given CA. To do this the
user must first make sure that the present file associated with the CA
of interest is closed.

To change the file name in the emulation configuration file, the user
program places the new name record into locations CA+l through CA+16,
and then places code 8AH into location CA. The name record is a fixed
length record consisting of eight, 16-bit words. This record contains
the record name, USERID, and specifies the length of both of these
items.

The name must contain at least one character and may be up to nine
characters long. The ID may be up to six characters long. However, the
name and ID lengths are specified in a unique way. Also, the words con-
taining these characters must be packed in the name record. Specifying
name and character lengths and packing the words are done in the same
way as described for the "microprocessor Configuration Record" in the
Linker Symbols File description. This discription is located toward the
end of this chapter.

To actually change the name of an existing file, the user must copy the
contents of the file under the old file name into the file with the new
file name. Either one or both of these files names may be specified by
the user program at run time and accessed after 'change file name" has
been issued to the appropriate CA locations.

8-31

Model 64193A
6805P Series Emulator/Analyzer

Table 8-5. Disc File Type Numbers and Names*

File Type Number File Name
2 Source
3 Relocatable
Yy Absolute
5 Listing
6 Emulation Command
7 Linker Command
8 Trace
10 Data
12 Assembler Symbols
13 Linker Symbol
®%1Y Types are defined
through and numbers assigned
255 by user program.

* Formats for selected files are described at the end of this
chapter.

%% HP may require some unassigned numbers for future use. It
is, therefore, strongly recommended that the DATA (type 10)
file be employed for the user defined type file.

There are predefined types of files, identified by numbers 2 through 13,
that may be created by the user program.

File type numbers 14 through 255 may be assigned to files defined by the
user program, as required. It should be noted, however, that HP may
require some unassigned numbers for future use. It is, therefore,
recommended that the user leave space for this possibility, starting
with number 1L4.

NOTE

Once created, file types 1U4 through 255 can only be
deleted by using the simulated I/0 delete command.

The overall file name is assigned during emulation configuration. Under
any one file name, only one each of a file type may be created. For ex-
ample, a file named USA may only have one each of file types 2 through
255. It cannot have two type 3 files.

CAUTION
The disc file simulated I/0 codes can be used to ac-
cess critical system files. Extreme care should be
used if any of the following types of files are

accessed:

Emulation Command Files (Type 6)

8-32

Model 64193A
6805P Series Emulator/Analyzer

Linker Command Files (Type T)

Incorrectly accessing these files may destroy them
and cause serious system problems!

8-33

Model 64193A

6805P Series Emulator/Analyzer

Table 8-6. Disc File I /O Codes

Request User Program
Name Request
Valid User Request
Address Contents Address Contents
CREATE CA 80H CA 00
FILE
CA+1 File Type
Number
CA+2 Disc #
OPEN CA 81H CA 00
FILE
CA+1 File Type
Number
CA+2 Disc #
CLOSE CA 82H CA 00
FILE
DELETE CA 83H CA 00
FILE
CA+1 File Type
Number

64000 Response To:

Invalid Request

Error Code

01 thru 08, 10

09: file is
not open

11 thru 14: NA

01 thru 08, 10

09: File is
already
open

11 thru 14: NA

01 thru 08
09: File is
already
closed

10 thru 14: NA

01 thru 08,10

09: File not
open

8-34

Model 64193A
6805P Series Emulator/Analyzer

Table 8-6. Disc File /0 Codes (cont’d)

Request User Program 64000 Response To:
Name Request
Valid User Request Invalid Request
Address Contents Address Contents Error Code

11 thru 14:NA

CA+2 Disc #
ADVANCE CA 84H CA 00 01 thru 08
HNH
RECORDS CA+1 LSB 15-bit* 09: File not
record open
CA+2 MSB number
(*bit 16 not 10 thru 14: NA
used)
BACKUP CA 85H CA 00 01 thru 08
MNH
RECORDS CA+1 LSB 15-bit* 09: File not
record open.
CA+2 MSB number
(*bit 16 not 10 thru 14: NA
used)
POSITION CA 86H CA 00 01 thru 08
TO
RECORD CA+1 LSB 15-bit* 09: File not
“N” i record open
CA+2 MSB number
(*bit 16 not 10 thru 14: NA
used)
READ CA 87H CA 00 01 thru 08
RECORD
CA+1 Max. CA+1 Actual # 09: File is
number of words not open
of words read
user can from 12
accept. buffer.

(128 words/
256 bytes max.)

8-35

Model 64193A

6805P Series Emulator/Analyzer

Table 8-6. Disc File I1/0 Codes (cont’d)

Request
Name

REWIND
TO
RECORD
ONE

WRITE
RECORD

User Program

Request
Address Contents
CA 88H
CA 89H
CA+1 Number of
words to be
written.
(128 words/
256 bytes
maximum.)
CA+2 Write byte 1
| |
(CA+2) Write byte n
+n

64000 Response To:

Valid User Request

Address Contents
CA+2 Read
| Byte 1
|
(CA+2) Read
+n Byte

n*

(*256 bytes/
128 words
is max.
record
length.)

CA 00

CA 00

Invalid Request
Error Code

10, 11, 13, 14:NA

01 thru 08
09: File is

not open
10 thru 14: NA

01 thru 08, 12

09: file is
not open.

10, 11, 13,14: NA

8-36

Model 64193A
6805P Series Emulator/Analyzer

Table 8-6. Disc File I/0 Codes (cont’d)

Request User Program
Name Request

Address Contents

CHANGE CA 8AH
FILE
NAME

SEE Bits 7-5

NOTE specify

BELOW length of
file name
in 16-bit
words-1.
Bits 4 & 3
specify
ID length
in 16-bit
words.
Bits 2-0
contain
all zeros.
(See note
below.)

CA+2 First
character
of file
name.
Limited to
capital
letters
A thru Z.

CA+3 Second
and
following
file name
characters
may be
small or
capital
letters,

Valid User Request

Address Contents

CA

64000 Response To:

00

Invalid Request
Error Code

01 thru 08
12 & 15

09: File
not open

10, 11, 13,
14: NA

8-37

Model 64193A
6805P Series Emulator/Analyzer

Table 8-6. Disc File 1/0 Codes (cont’d)

Request User Program
Name Request
Address Contents
numerals
0 thru 9,
underlines,
and
only if
required
one blank
may be used
to fill in
last character
in last word
of name.
CA+4 Up to 9
thru name
CA+n. characters
Where may be used.
n 10
CA+ First USERID
(n+1) character.
CA+ Up to 6
(n+2) USERID
l characters
thrlu may be used.
CA+16 See note
below.

64000 Response To:

Valid User Request Invalid Request
Address Contents Error Code

Note: The name and USERID characters must be packed into a fixed length record. This
record consists of 8, 16-bit words. Thus, the name record will always require a user buffer
consisting of 17 bytes (byte CA through byte CA+16). All unused 16-bit words must be at the
end of the record. No intervening unused words or bytes are allowed. If the last byte in the
last name and ID word is not required to define the name, then it must contain an ASCII
blank. The byte in buffer location CA+1 must be formatted the same as described for the
most significant byte of word 16 in the name and user ID word block of the microprocessor
configuration record. Refer to the “microprocessor Configuration Record” in the Linker
Symbols description for more information.

8-38

Model 641934
6805P Series Emulator/Analyzer

RS-232 1/0 INTERFACE

The following paragraphs describe the events which must be implemented
between the user and the 64000 programs for RS-232 I/0 to occur.

These events are:
O OPEN RS-232FILE
O INITIALIZE 8251
O COMMANDTO 8251
O STATUS FROM 8251
O WRITETO 8251
WRITE SINGLE BYTE
WRITE RECORD
O READ FROM 8251
READ SINGLE BYTE
READ RECORD
O UPDATING READ/WRITE BUFFERS
The above events, corresponding control codes, and parameters, where ap-
plicable, are summarized in Table 8-T.
OPEN RS-232 FILE (80H)
Before any other RS-232 operation can be initiated, the user program
must request that the RS-232 File be opened. This is done by placing
code 80H into location CA.
NOTE
CA represents the location where all RS-232 I/0
"handshaking” codes are seant by both the user and
the Model 64000 programs. The actual address for
the RS-232 CA is defined in the users program and
entered into the Model 64000 program during the con-
figuration of the emulation CMDFILE. Each I/O in-
terface - RS-232, display, printer, etc.- requires
its own unique CA address.
Some of the I/0 codes sent to location CA must also

include supplemental information. This supplemental
information is contained in the locations following

8-39

~ Model 64193A
6805P Series Emulator/Analyzer

CA, 1i.e., CA+1 through CA+n. The supplemental
information must be placed into locations CA+l
through CA+n BEFORE the corresponding control code
is placed in CA. If this is not done, the Model
64000 may respond to the control code in CA before
the supplemental data is set into locations CA+1l
through CA+n.

The Model 64000 responds by opening the RS-232 file and returning a 00
to location CA to indicate that the file is open. If the file cannot be
opened, error code 08 or 09 is returned to location CA.

After the file is opened, the 8251 must be initialized as described in
the next paragraph.

INITIALIZE 8251 (82H)

In general, 8251 initialization consists of resetting the 8251 and then
selecting one of the following three operating modes: (1) asynchronous,
(2) synchronous with one sync character, or (3) synchronous with two
sync characters. (See Figure 8-8.)

For each of the three modes, the user program requests initialization by
first setting up buffer locations CA+1 through CA+5 and then placing
code 82H into location CA. A command instruction with Internal Reset
(IR) bit D6 set is placed into location CA+l. (See Figure 8-9.) The
contents placed into locations CA+2 through CA+5 depend upon the operat-
ing mode selected as described in the following paragraphs.

ASYNCHRONOUS MODE, For this mode, the asynchronous mode instruction
is placed into location CA+2 and a sync option word specifying 0 must be
placed into location CA+3. Locations CA+l4 and CA+5 contain no meaning-
ful data.

The asynchronous mode instruction is used to select the baud rate¥*, the
character length, the parity parameters, and the number of stop bits.
(See Figure 8-10.) (*The only baud rates which may be used with the
64000 are the transmitter clock frequency (1 X Txc) or 1/16 X Txc. The
baud rate factor of 1/64 X Txc cannot be used with the 64000. The basic
frequency of Txc is selected by switches on the modem I/0 card. Thus,
the basic frequency (Txc) may be changed by the I/0 card switches.) The
user must format this instruction so that the appropriate parameters are
specified. 1/16 X Txc must be programmed if the baud rate is to match
the baud rate table in the System Overview manual.

The sync option specifies 0 since there are no sync characters for the
asynchronous mode.

SYNCHRONOUS MODE/SINGLE SYNC CHARACTER. For this mode, the
synchronous mode instruction is placed into location CA+2, the sync op-
tion word specifying "1" is placed into location CA+3, and the sync
character is placed into location CA+4. Location CA+5 contains no
meaningful data. (See Figure 8-8.)

8-ko

Model 641934
6805P Series Emulator/Analyzer

The synchronous mode instruction is used to select the character length,
and the parity and synchronization parameters. (See Figure 8-11.) Bit
D7 (SCS) of this word must specify a single sync character.The user must
format this instruction so that the other appropriate parameters are
specified.

The sync option word specifies "1 for a single sync character.
The format of the sync character must be defined by the user.

SYNCHRONOUS MODE/DOUBLE SYNC CHARACTER. For this mode, the
synchronous mode instruction is placed into location CA+2, the sync op-
tion word specifying "2" is placed into location CA+3 and sync charac-
ters 1 and 2 are placed into locations CA+4 and CA+5, respectively.
(See Figure 8-8.)

The synchronous mode instruction is used to select the character length,
and the parity and synchronization parameters. (See Figure 8-11.) Bit
D7 (SCS) of this word must specify a double sync character. The user
must format this instruction so that the other appropriate parameters
are specified.

The sync option word specifies "2" for double sync characters.
The format of both sync characters must be defined by the user.

After the 8251 is initialized, the 64000 returns a 00 to location CA.
If the 8251 cannot be initialized, error code 08 or 09 is returned as
shown in Table 8-7.

COMMAND TO 8251 (83H)

After the 8251 is initialized (i.e., reset and asynchronous or
synchronous operation selected), it must be placed in the appropriate
mode - transmit, receive, or combination transmit/receive, etc. To do
this, the user program first places the appropriately formatted command
word into location CA+l and then places code 83H into location CA. (The
user must format the command word to select the applicable operation as
shown in Figure 8-9.)

The 64000 responds by supplying the command word to the 8251 and return-
ing a 00 to location CA. If this cannot be done, code 08 or 09 is
returned to location CA. (See Table 8-7.)

STATUS FROM 8251 (84H)

The user may check the status of the 8251 at any time. To do this, code
84UH is placed into location CA. The 64000 responds to this status
request by returning a 00 to location CA and placing the 8251 status
word in location CA+1.

The status word format is shown in Figure 8-12.

The status bits DO, D1, and D2 may be cleared or set by the 64000
program when operating in any of the buffered modes. If the user

8-k1

Model 64193A
6805P Series Emulator/Analyzer

desires these bits to control operation, it is necessary to close the
appropriate Tx or Rx buffers first.

WRITE TO 8251

The user program may write to the 8251 in either of two ways. It may
write a byte at a time, or a write buffer may set up and data writen
continuously. Both methods are described. (Note: Before attempting to
write data, the 8251 must be initialized and the command word, in the
appropriate format, sent to the 8251 as described in the previous para-
graphs.)

WRITE SINGLE BYTE (86H). To write a single byte to the 8251, the user
program first places the write byte into location CA+1 and then places
code 86H into location CA. (See Table 8-7.) The 64000 responds by sup-
plying the byte to the 8251 and returning a 00 to location CA. If writ-
ing cannot be done, error code 08 or 09 is returned to CA. (See Table
8-7.) If more data is to be sent, it is recommended that the user poll
the 8251 status to determine if the 8251 is ready to receive more trans-
mit data.

WRITE RECORD (87H), UPDATE WRITE BUFFER (89H) (See also Update Read/Write
Buffer (8DH)). To write a record to the 8251, the user program must first
set up a write buffer and identify the beginning and ending locations in
the buffer. (The corresponding 64000 write buffer holds a maximum of
256 bytes.) (See Figure 8-13.) It then writes a record into the buffer
and identifies the buffer locations into which the first and last bytes
of the record are written.

The user program must then request that the record be transferred to the
8251. (See Figure 8-14.) This is done by first placing the user write
buffers beginning/ending and first/last byte address pointers into loca-
tions CA+7 through CA+22 and then placing code 87H into location CA.

The 64000 responds by transferring data from the users write buffer into
a 64000 write buffer. (See Figure 8-15.) For each byte transferred to
the 64000 buffer, the first byte address pointer (in locations CA+15
through CA+18) is incremented by one. Data transfer continues until
either all data in the users write buffer is transferred or the 64000
write buffer becomes full. (The 64000 write buffer holds a maximum of
256 bytes, or 128 words.) After a write buffer is set up and if update
code 8DH or 89H is used, then the number of bytes actually transmitted
by the 8251 is also entered into location CA+6 by the 64000 program.
The number of bytes transmitted refers to the number of bytes transmit-
ted from the 64000 buffer.

The user program should periodically examine the first and last address
byte pointers (and if using update code 8DH or 89H, the number of bytes
transmitted by the 8251 may also be examined) to determine the status of
the buffer. (If the first and last byte pointers are equal, all data was
transferred to the 64000 buffer.)

If all data was transferred, the user program may either supply another

write record, or <close the write buffer. If all data was not
transferred, the user program may either wait until the remaining data

8-k42

Model 6L4193A
6805P Series Emulator/Analyzer

is transferred, add more data to the buffer and update the last byte
pointer, or close the write buffer. Each of these options is described
in the following paragraphs.

Additional data may be added to, or a new record written into the buffer
and the last byte address pointer updated as follows: If the first and
last byte address pointers are pointing to the same location, the first
new byte goes into the location pointed to by both pointers. If the
first and last byte address pointers are not pointing to the same loca-
tion, then the first new byte goes into the location just ahead of the
one pointed to by the last byte address pointer (i.e., last byte address
pointer + 1). Then the following bytes are entered into succeeding
locations. (See Figure 8-15.)

After entering data into the buffer,the user program requests write data
transfer. This is done by first placing the updated last byte address
pointer into locations CA+19 through CA+22 and then placing code 89H
into location CA. (See Figure 8-16.)

The 64000 responds by transferring data from the users write buffer to
the 64000 write buffer, increments the first byte address pointer for
each byte transferred, and if update code 8DH or 89H is being used, the
number of bytes sent by the 8251 is also updated.

Once the user program has placed code 8DH or 89H (update buffer) into
location CA, the 64000 routinely monitors the last byte address pointer
to determine if more data has been loaded into the users write buffer.
If the 64000 detects that the last byte address pointer has been incre-
mented, it transfers the data and increments the first byte address
pointer to indicate the number of bytes written. It also updates the
number of bytes sent by the 8251.

To write another record, the user program updates the last address
pointer. The 64000 responds as described above. To close the buffer,
the user progiam places code 88H in location CA. The 6L000 closes the
write buffer and returns a 00 to location CA.

Data may be stored in the users write buffer using a "wrap around”
method. That is, once the last location in the buffer is filled, the
next byte is placed into the first location of the buffer. Thus, it is
possible for the last byte address pointer to be pointing to an address
that is less than (i.e., ahead of) the first byte address.

If any of the write buffer requests cannot be done, the 64000 returns
the appropriate error code to location CA as shown in Table 8-7.

READ FROM 8251

Reading data from the 8251 is similar to writing data to the 8251. The
user program may read data in either of two ways. It may read a byte at
a time or it may set up a read buffer and read a record at a time. Both
methods are described. Note: Before attempting to read data, the 8251
must have been initialized and the command word, in the applicable
format, sent to the 8251 as described in the previous paragraphs.

8-143

Model 64193A
6805P Series Emulator/Analyzer

READ SINGLE BYTE (85H). To read a single byte from the 8251, the user
program places code 85H into location CA. (See Table 8-7.)

The 64000 responds by returning a 00 to location CA and the read byte to
location CA+1. If reading cannot be done, error code 08 or 09 is
returned to CA.

The 64000 will return whatever character is: in the Rx buffer of the
8251. It is recommended that the user check the status of the 8251 to
see if Rx RDY is true before performing the single byte read. Any read
operation will clear Rx RDY, indicating that the character in the buffer
has been read.

READ RECORD (8AH), UPDATE READ BUFFER (8CH) (see also Update Read/Write
Buffer (8DH)). To read a record from the 8251, the user program must first
set up a read buffer and identify the beginning and ending locations in
the buffer. (See Figure 8-1T.)

This is done by first placing the address pointers into locations CA+24
through CA+39 and then placing code 8AH into location CA. Locations
CA+24 through CA+31 contain the address pointers for the beginning and
ending locations of the users read buffer.

Locations CA+32 through CA+39 contain the address pointers for the first
and last bytes written into the buffer. These pointers are both ini-
tially set to point to the first location in the users read buffer.
This indicates that the buffer is empty. (The 64000 will force the first
data pointer to always point to the beginning of the buffer.)

The 64000 responds by continuously transferring read data from the 8251
to the 64000 read buffer. (See Figure 8-19.) The user program must
then issue an 8CH or 8DH to transfer the data to the users buffer. For
each byte transferred into the users read buffer, the last byte address
pointer is incremented by one (see Figure 8-18). In addition, when up-
date code 8DH or 8CH is being used, the number of bytes received by the
8251 and transfered into the 64000 is entered into location CA+23.

To determine when and how much read data is available, the user program
must monitor the last byte address pointer and the number of bytes
received. When read data is found in the buffer, the user program
should process the data. If all data expected was received, the user
program may then close the read buffer.

Once the user program has placed code 8CH of 8DH into location CA, the
64000 periodically monitors the output of the 8251, transfers data into
the user read buffer, and updates the last byte address as required. The
user program in turn monitors the last byte address pointer to determine
if more data is available. This process continues until the user
program closes the read buffer.

If code 8CH or 8DH is being used, and the user issues an 8AH again, the

buffer is frozen for the user, yet the 64000 continues to receive data
into its buffer.

8-44

Model 641934
6805P Series Emulator/Analyzer

To close the read buffer, the user program places code 8BH into location
CA. The 64000 closes the buffer and returns a 00 to location CA.

Data may be stored in the user’s read buffer using a ‘'wrap around”
method. That is, once the last location in the buffer is filled, the
next byte is placed into the first location of the buffer. Thus, it is
possible for the last byte address pointer to be pointing to an address
that is less than (i.e., ahead of) the first byte address.

If any of the read buffer requests cannot be done, the 64000 returns the
appropriate error code to location CA as shown in Table 8-7.

UPDATING READ/WRITE BUFFERS (8DH)

Once the read and write buffers have been set up and opened as described
in preceding paragraphs "Write to 8251" and "Read from 8251", the buf-
fers may both be updated by using one code. To do this, the user program
places the updated first and last byte address pointers for both the
read and write buffers into the corresponding locations in the RS-232
I/0 control buffer and then places code 8DH into location CA.

The 64000 responds to the update request as described in the "Write to
8251" and "Read from 8251" paragraphs. However, in addition to setting,
monitoring, and updating the first and last byte address pointers, the
number of bytes received and transmitted by the 8251 is also set, up-
dated, and monitored. This provides an additional indication of how much
data has been sent and received.

8-45

Model 64193A

6805P Series Emulator/Analyzer

Table 8-7. RS-2321/0 Codes

Request
Name
Address
OPEN CA
RS-232
FILE
CLOSE CA
RS-232
FILE
INITI- CA
ALIZE
8251
CA+1
CA+2
CA+3
CA+4
CA+5

User Program
Request

Contents

80H

81H

82H

Command
Instruction

Mode In-
struction

Sync Op-
tion word

Sync Char-
acter,one

Sync Char-
acter,two

64000 Response To:

Valid User Request

Address Contents

00

00

00

Invalid Request

Error Code

01-07: NA
08

09: File already
open.

10-14: NA

01-07: NA
08

09: File not
open.

10-14: NA

Same as 81H,
above

8-u6

Model 64193A
6805P Series Emulator/Analyzer

Table 8-7. RS-232 1/0 Codes (Cont’d)

Request
Name

COMMAND
TO
8251

STATUS
FROM
8251

READ
SINGLE
BYTE
FROM
8251

WRITE
SINGLE
BYTE
TO

8251

OPEN
WRITE
BUFFER

User Program

Request
Address Contents
CA 83H
CA+1 Command
Word
CA 84H
CA 85H
CA 86H
CA+1 Write
Byte
CA 87H
CA+1 Reserved
for Ini-
| tialization
buffer

CA+5

64000 Response To:

Valid User Request

Address

CA

CA

CA+1

CA

CA+1

CA

CA

Contents

00

00
Status
Word
00

Byte
Read

00

87H

The 64000 trans-
fers write data
from the users

buffer to the
64000 buffer.

Invalid Request

Error Code

Same as 81H,
above

Same as 81H,
above

Same as 81H,
above

Same as 81H,
above

8-u7

Model 64193A
6805P Series Emulator/Analyzer

Table 8-7. RS-232 1/0 Codes (Cont’d)

Request User Program 64000 Response To:
Name Request
Valid User Request Invalid Request
Address Contents Address Contents Error Code
CA+6 #Bytes For each byte
sent by transferred
8251. to the 64000
Cleared buffer, first
by open byte address
(87H). pointer is

Updated by incremented by
64000 when one.
update code

89H or 8DH
is used.

CA+7 Buffer

(Isw, msb) Begin
Address

CA+8 pointer

(Isw, Isb)

CA+9

(msw, msb)

CA+10

(msw, Isb)

CA+11 Buffer

(Isw, msb) End
Address

CA+12 pointer

(Isw, Isb)

CA+13

(msw, msb)

CA+14

(msw, Isb)

8-48

Model 6L4193A
6805P Series Emulator/Analyzer

Table 8-7. RS-232 1/0 Codes (Cont’d)

Request
Name

User Program

Request
Address Contents
CA+15 First
(Isw, msb) Byte
Address
CA+16 pointer
(Isw, Isb)
CA+17
(msw, msb)
CA+18
(msw, Isb)
CA+19 Last
(Isw, msb) Byte
Address
CA+20 pointer
(Isw, Isb)
CA+21
(msw, msb)
CA+22
(msw, Isb)

64000 Response to:

Valid User Request
Address Contents

Invalid Request
Error Code

8-l9

Model 64193A
6805P Series Emulator/Analyzer

Table 8-7. RS-2321/0 Codes (Cont’d)

Request User Program
Name Request
Address Contents
CLOSE CA 88H
WRITE
BUFFER
UPDATE CA 89H
WRITE
BUFFER CA+1 Reserved
for Ini-
tialization
CA+5 Buffer
CA+6 # Bytes sent
by 8251.
CA+7 Not changed
\ by user.
CA+14
CA+15 First
(Isw, msb) Byte
Address
CA+16 pointer
(Isw, Isb)
CA+17
(msw, msb)
CA+18
(msw, Isb)
CA+19 Updated
(Isw, msb) Last
Byte
CA+20 Address
(Isw, Isb) pointer

64000 Response To:

Valid User Request Invalid Request

Address Contents Error Code
CA 00 Same as
81H, above.
CA 89H Same as
81H, above.

The user up-
dates the last
byte address
Pointer to
indicate how
much new write
data is in the
buffer. The
64000 processes
the write data,
increments the
first byte addr.
pointer, and
updates # bytes
sent by 8251

as required.

8-50

Model 6L4193A
6805P Series Emulator/Analyzer

Table 8-7. RS-232 1/0 Codes

Request User Program 64000 Response to:
Name Request
Valid User Request Invalid Request
Address Contents Address Contents Error Code
CA+21
(msw, msb)
CA+22
(msw, Isb)

8-51

Model 641934
6805P Series Emulator/Analyzer

Table 8-7. RS-232 1/0 Codes (Cont’d)

Request User Program
Name Request
Address Contents
OPEN CA 8AH
READ
BUFFER CA+1 Reserved for
{ Initialization
and write
CAt22 buffers.
CA+23 # Bytes
received by
8251. Cleared
by open
(8AH).
Updated
by 64000
when update
code 8CH or
8DH is used.
CA+24 Buffer
(Isw, msb) Begin
Address
CA+25 pointer
(Isw, Isb)
CA+26
(msw, msb)
CA+27
(msw, Isb)
CA+28 Buffer
(Isw, msb) End
Address
CA+29 pointer
(Isw, Isb)

64000 Response To:

Valid User Request Invalid Request

Address Contents Error Code
CA 8AH Same as
81H, above

The user sets
first and last
address pointers
to point to buf-
fer beginning
address. The
64000 will

transfer data
from the 8251
to the 64000
buffer.

The user

must use the
commands 8CH
or 8DH to
transfer the data
to the users
buffer.

8-52

Model 64193A
6805P Series Emulator/Analyzer

Table 8-7. RS~-232 I/0 Codes (Cont’d)

Request User Program
Name Request
Valid User Request
Address Contents Address Contents
CA+30
(msw, msb)
CA+31
(msw, Isb)
CA+32 First
(Isw, msb) Byte
Address
CA+33 pointer
(Isw, Isb)
CA+34
(msw, msb)
CA+35
(msw, Isb)
CA+36 Last
(Isw, msb) Byte
Address
CA+37 pointer
(Isw, Isb)
CA+38
(msw, msb)
CA+39
(msw, Isb)

64000 Response to:

Invalid Request
Error Code

8-53

Model 641934
6805P Series Emulator/Analyzer

Table 8-7. RS-2321,/0 Codes (Cont’d)

Request
Name

CLOSE
READ
BUFFER

UPDATE
READ
BUFFER

User Program

Request

Address Contents

CA 8BH

CA 8CH

CA+1 Reserved for
Initializa-

1 tion and

write

CA+22 buffers.

CA+23 #Bytes
received by
8251.

CA+24 Not changed

1 by user.

CA+31

CA+32 First

(Isw, msb) Byte
Address

CA+33 pointer

(Isw, Isb)

CA+34

(msw, msb)

CA+35

(msw, Isb)

64000 Response To:

Valid User Request Invalid Request

Address Contents Error Code
CA 00 Same as
81H
above
CA 80H Same as
81H
The 64000 con-

tinues to trans-
fer data,incre-
ments last byte
address pointer,
(updates #Bytes
received by
8251)

as required.
User program
monitors these
parameters to
determine how
much data is
received. (64000
forces first
byte address
pointer to
always point
to the begin-
ning of the
buffers.)

8-54

Model 641934

6805P Series Emulator/Analyzer

Table 8~7. RS-232 1/0 Codes (Cont’d)

Request User Program
Name Request
Address Contents
CA+36 Last
(Isw, msb) Byte
Address
CA+37 pointer
(Isw, Isb)
CA+38
(msw, msb)
CA+39
(msw, Isb)

64000 Response to:

Valid User Request

Address

Contents

Invalid Request
Error Code

8-55

Model 641934
6805P Series Emulator/Analyzer

Table 8-7. RS-232 1/0 Codes (Cont'd)

Request
Name

UPDATE
WRITE/
READ
BUFFERS

User Program 64000 Response To:
Request
Valid User Request Invalid Request
Address Contents Address Contents Error Code
CA 8DH CA 00H Same as 81H
above
CA+1 Reserved for
| Initialization
CA+5 Buffer

Write and read
buffers are
both updated

CA+6 Same as as described
shown for above.
| update
Write
Buffer,
CA+22 above.
CA+23 Same as
shown for
| update
Read
Buffer,
CA+39 above.

8-56

Model 641934
6805P Series Emulator/Analyzer

ASYNCHRONOUS
MODE - INITIALIZATION

SYNCHRONOUS MODE-
SINGLE SYNC CHARACTER
INITIALIZATION FORMAT

SYNCHRONOUS MODE -
DOUBLE SYNC CHARACTER
INITIALIZATION FORMAT

ADDRESS FORMAT ADDRESS
CA 82H - INITIALIZE 8251 82H - INITIALIZE 8251 82H - INITIALIZE 8251 CA
COMMAND INSTRUCTION COMMAND INSTRUCTION COMMAND INSTRUCTION CA+1
CA+1 (Internal Reset 8251) (Internal Reset 8251) (Internal Reset 8251)
CA+2 ASYNCHRONOUS SYNCHRONOUS SYNCHRONOUS CA+2
MODE INSTRUCTION MODE INSTRUCTION MODE INSTRUCTION
CA+3 SYNC OPTION WORD SYNC OPTION WORD SYNC OPTION WORD CA+3
0=No sync characters 1=1 sync character 2=2 sync characters
CA+4 Not Used SYNC CHARACTER 1 SYNC CHARACTER 1 CA+4
CA+5 Not Used Not Used SYNC CHARACTER 2 CA+5
CA+6 CA+6
RESERVED FOR RESERVED FOR RESERVED FOR
WRITE CONTROL WRITE CONTROL WRITE CONTROL
/

CA+22 CA+22
CA+23 CA+23
RESERVED FOR RESERVED FOR RESERVED FOR

\ READ CONTROL READ CONTROL READ CONTROL
CA+39 CA+39

Figure 8-8. 8251 Initialization Formats

8-57

8-58

D7

Model 641934
6805P Series Emulator/Analyzer

Dg D D, Dy D, D, Dy

EH

IR RTS ER SBRK RxE DTR TxEn

Transmit Enable/Disable

1 = Enables normal operation
at Transmit Data (TxD)
output pin providing
clear To Send Not (CTS)
input pin is low.

0 = Disables TxD output pin
after all data in 8251
is sent.

= Forces Data Terminal Ready Not
(DTR) pin to zero. (Normally used
for modem control.)

Receiver Enable/Disable

1 = Enables normal receiver operation.

0 = Holds receiver ready (RxRDY)
output line in reset state.

Send Break Character
1 = Forces Transmit Data (TxD) output pin low.
0 = Allows normal transmit data output.

Error Reset

1 = Resets: Parity (PE). Overrun (OE). and Framing (FE)
error flags.

Request To Send
1 = Forces RTS output pin to zero. (Normally used
for modem control.)

Internal Reset
1 = Places 8251 in “Idle” mode. Stays in “idie” until
initialized by mode instruction.

Enter Hunt Mode
= Enables search for Sync Characters. Has no affect in Async mode.

Figure 8-9. Command Mode Instruction Format

Model 6L4193A

6805P Series Emulator/Analyzer

D, Dg Ds D, D, D, D, Dy
S, S, EP | PEN| L, L, B, B,
p——ap——— N ——— ———
I L B B
NUMBER OF BAUD RATE L3
S, I S, STOP BITS SYNCHRONOUS MODE of o
olo INVALID CODE 1X TXe" = of 1
0 1 1BIT 1/16 X TXc* = 1 o
NOT ALLOWED WITH 64000 = 141
110 112BITS
1 2 BITS *TXc = TRANSMITTER CLOCK FREQUENCY

—

|

CHARACTER

-— LENGTH Ll L

5 BITS =
6 BITS =
7 BITS
8 BITS =

4 s 00
- O = O

PARITY ENABLED = 1
PARITY DISABLED = 1

EVEN PARITY = 1
ODD PARITY = 0

Figure 8-10. Asynchronous Mode Instruction Format

8-59

8-60

Model 641934
6805P Series Emulator/Analyzer

D; | Dg | Ds | Dsy Dy y Dy y Dy | D
SCS ESD EP PEN L, Ly 0 0
C
INDICATES SYNCHRONOUS
MODE INSTRUCTION
2 | b
CHARACTER LENGTH
5 BITS = 0 0
6 BITS = 0 1
7 BITS = 1 0
8 BITS = 1 1
PARITY ENABLED = 1
PARITY DISABLED = 0
L] evenPARITY =1
ODD PARITY =0
EXTERNAL SYNC DETECT
b—————————{ 1 = SYNC DETECT IS AN INPUT
0 = SYNC DETECT IS AN OUTPUT

|

SINGLE CHARACTER SYNC
1 = SINGLE SYNC CHARACTER
0 = DOUBLE SYNC CHARACTER

Figure 8-11. Synchronous Mode Instruction Format

Model 64193A
6805P Series Emulator/Analyzer

D; Dg Dg D4 D, D, D, Do
DSR SYN FE OE PE T Rx Tx
DET EMPTY RDY RDY

Synchronous mode -
High = Sync character detected in internal sync mode.
Start assembling characters in external sync mode.

Logic 1 = 8251 ready to
accept a write character
for transmission.

Logic 1 = 8251 contains a
received character ready for
reading.

Logic 1 = Previous character has
been transmitted - 8251A has
no characters to transmit.

Logic 1 = Parity error. Does not inhibit
8251 operation. Reset by ER bit of
Command Mode Instruction.

Logic 1 = Overrun Error. Incoming character overran
another character before it was read. Does

not inhibit 8251 operation. Reset by ER bit in
Command Mode Instruction.

Logic 1 = Framing Error. (Asynchronous mode only.) Set

when a valid stop bit is not detected. Does not

inhibit 8251 operation. Reset by ER bit in
Command Mode Instruction.

Async mode (Break Detect)
High = Rx Data remained low during two consecutive stop bit sequences.

Data Set Ready - Logic 1 indicates DSR input is low.

Figure 8-12. 8251 Status Word Format

8-61

Model 64193A
6805P Series Emulator/Analyzer

Phase | - User Sets Up Write Buffer

User sets up write buffer as follows:
1. Assigns buffer beginning and ending addresses: WBUFBEG and WBUFEND.

2. Writes block of characters into buffer shown as first byte through last byte.

ADDRESS CONTENTS
WBUFBEG FIRST BYTE
LAST BYTE
ADDRESS CONTENTS
CA"
WBUFEND CA+1
USERS WRITE
BUFFER BUFFER RESERVED

FOR RS-232 I/0
PARAMETERS SENT
WITH CONTROL

‘The actual address for CODES

location "CA" is defined
by the user during
configuration of the CA+23

lation “CMDFILE".
emuiation RS-232 1/0 CONTROL BUFFER

Figure 8-13. Writing RS-232 Record - Phase I

8-62

Model 64193A
6805P Series Emulator/Analyzer

ADDRESS | CONTENTS
0
»! WBUFBEG | FIRST BYTE |
LAST BYTE |
ADDRESS | CONTENTS (FROM USER PROG) s
CA 87H (OPEN WRITE BUFFER 64000 WRITE
WBUFEND () 64000 W
+
USER'S WRITE BUFFER CA*1 RESERVED FOR 8251 (128 WORDS)
CALs INITIALIZATION BUFFER
BYTES TRANSMITTED BY INITIALLY
CA+6 8251 SINCE BUFFER OPENED [+ SET TO 0
CA+7 Isw,msb
| CA+8 | _Isb __ WBUFBEG -
CA+9 msw,msb ADDR PTR
CA+10 Isb
CA+11 Isw,msb
| CA+12 | _sb _ _ WBUFEND _
CA+13 msw,msb ADDR PTR
CA+14 Isb
CA+15 Isw,msb
_5 | CA+16 | _Isb _ _ FIRSTBYTE
[can7 T mswmsb ADDR PTR
CA+18 Isb
CA+19 Isw,msb
| cA+20 | Isb LASTBYTE
CA+21 msw,msb ADDR PTR
CA+22 Isb
CONTROL BUFFER

Figure 8-14, Writing RS-232 Record - Phase I1

8-63

Model 64193A

6805P Series Emulator/Analyzer

FIRST BYTE

WRITE
DATA

LAST BYTE

64000
WRITE BUFFER
(256 BYTES 128 WORDS)

CONTROL
ja— — ——

TRANSMITTED

8251
USART

| CONTROL

P4

ADDRESS CONTENTS
WBUFBEG | FIRST BYTE
ALL BYTES TRANSFERRED
LAST BYTE
ADDRESS CONTENTS (FROM 64000)
WBUFEND CA 87H (OPEN WRITE BUFFER)
USER'S WRITE BUFFER CA+1 SAME AS SHOWN
CA+5 FOR PHASE 11
CA+6 #BYTES TRANSMITTED BY
8251 SINCE BUFFER OPENED
CA+7
SAME AS SHOWN
FOR PHASE Il
CA+14
CA+15 Isw,msb
LY cas6 | _isb _ _ FiRsTBYTE
)| CA+17 msw,msb ADDR PTR
CA+18 Isb
CA+19 Isw,msb
L | _caa0 | _isb _ _ LasTBYTE
/| CA+21 msw,msb ADDR PTR
CA+22 Isb

8-64

CONTROL BUFFER

#BYTES TRANSMITTED

Figure 8-15. Writing RS-232 Record - Phase III

64000 WRITE
TO-8251
ROUTINE
WRITING DONE
ON INTERRUPT
BASIS

Model 6L4193A
6805P Series Emulator/Analyzer

ADDRESS | CONTENTS
WBUFBEG
FIRST BYTE
)
WBUFEND | LAST BYTE

-

USER'S WRITE BUFFER

255

ADDRESS CONTENTS
CA 89H
CAH SAME AS SHOWN
CA+5 FOR PHASE |1
#BYTES TRANSMITTED BY
8251 SINCE BUFFER OPENED
CA+7
SAME AS SHOWN FOR
PHASE I
CA+14
CA+15 Isw,msb
| CA+16 | _sb __ _ FIRSTBYTE
CA+17 msw,msb ADDR PTR
CA+18 Isb
CA+19 Isw,msb
| CA+20 | _Isb _ _ LASTBYTE
CA+21 msw,msb ADDR PTR
CA+22 Isb

CONTROL BUFFER

—_—

FIRST BYTE

y

LAST BYTE

64000 WRITE
BUFFER
(256 BYTES 128 WORDS)

UPDATED BY 64700

Figure 8-16. Writing RS-232 Record - Phase IV

8-65

Model 64193A
6805P Series Emulator/Analyzer

ADDRESS | CONTENTS
RBUFBEG
ADDRESS CONTENTS
RBUFEND CA”
USER READ BUFFER CA+1
*The actual address for
location “CA” is defined
by the user during
configuration of the
P " BUFFER RESERVED
emulation “CMDFILE FOR RS-232
10 PARAMETERS
SENT WITH
CONTROL CODES
CA+39

CONTROL BUFFER

Figure 8-17. Reading RS-232 Record - Phase 1

8-66

Model 6L4193A
6805P Series Emulator/Analyzer

ADDRESS | CONTENTS
BYTE O
™1 RBUFBEG -
ADDRESS | CONTENTS (FROM USER PROG) BYTE N
64000 READ
™™ RBUFEND CA 8AH (OPEN READ BUFFER) BUFFER
CA+1 RESERVED FOR 8251
Y INITIALIZATION BUFFER
CA+22 & WRITE CONTROL BUFFER
#BYTES RECEIVED FROM < INITIALLY

CA+23 8251 SINCE BUFFER OPENED SETTOO
CA+24 Isw,msb

| CA+25 | _ Isb _ _ RBUFBEG]_
CA+26 msw,msb ADDR PTR
CA+27 Isb
CA+28 Isw,msb

| CA+29 [_Isb _ _ RBUFEND l
CA+30 msw,msb ADDR PTR]]
CA+31 Isb
CA+32 Isw,msb

| J|_CA+33 | _Isb __ FIRST BYTE

CA+34 msw,msb ADDR PTR
CA+35 Isb
CA+36 Isw,msb

| CA+37 | Isb LASTBYTE
CA+38 msw,msb ADDR PTR
CA+39 Isb

CONTROL BUFFER

Figure 8-18. Reading RS-232 Record - Phase 11

8-67

ADDRESS

CONTENTS

RBUFBEG

FIRST BYTE

LAST BYTE

RBUFEND

USER'S READ
BUFFER

8-68

ADDRESS CONTENTS
CA 8AH (OPEN READ BUFFER)
1
Cﬁ* SAME AS SHOWN
CAs22 FOR PHASE |
#BYTES RECEIVED BY
CA+23 8251 SINCE BUFF OPENED
CA+24
SAME AS SHOWN
FOR PHASE Il
CA+31
CA+32 Isw,msb
J_CA+33 | _Isb _ _ FIRST BYTE
CA+34 msw,msb ADDR PTR
CA+35 Isb
CA+36 [sw,msb
| CA+37 | _Isb _ _ LASTBYTE
CA+38 msw,msb ADDR PTR
CA+39 Isb

CONTROL BUFFER

Model 641934

6805P Series Emulator/Analyzer

FIRST BYTE
READ
DATA
l-— — —
LAST BYTE
N
64000 READ
BUFFER

64000 SETS POINTER TO
LAST BYTE

Figure 8-19. Reading RS-232 Record ~ Phase III

RECEIVED

8251 DATA

USART

T

}

| conTROL

P

64000
READ 8251
ROUTINE

Model 641934
6805P Series Emulator/Analyzer

ADDRESS | CONTENTS
RBUFBEG FIRST BYTE
LAST BYTE |« LAST BYTE
ADDRESS CONTENTS
RBUFEND cA 6CH
: A+1 64000 READ
USER'S READ BUFFER c SAME AS SHOWN 000 FE
CAY22 FOR PHASE Il
#BYTES RECEIVED BY 8251 | _
CA+23 SINCE BUFFER OPENED ~
CA+24
SAME AS SHOWN
FOR PHASE Il
CA+31
CA+32 Isw,msb
| M catss | 1sb FIRSTBYTE
(CA+34 msw,msb ADDR PTR
CA+35 Isb
CA+36 Isw,msb
' 4
LY casr | b _ LasTeYyE } UPDATED BY 64000
| cA+38 | msw,msb ADDR PTR
CA+39 Isb

CONTROL BUFFER

Figure 8-20. Reading RS-232 Record - Phase IV

SIMULATED i/0 ERROR CODES
The general definitions for the simulated I/0 eror codes are listed in
Table 8-8. Where applicable, more specialized definitions of these er-

ror codes are listed in individual I/0 code tables, 8-1, 8-2, etc.

When a request by the user program cannot be executed, the applicable
error code is returned by the 64000 program to location CA.

8-69

Model 64193A
6805P Series Emulator/Analyzer

Table 8-8. Simulated I1/0 Error Codes - General Definitions

Decimal
Code #

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14

15

(Hex)

mooOm>»

(F)

Meaning

No error - successful operation

End of file

Invalid disc

File not found

File already exists

No disc space available

No directory space available

File is Corrupt (bad linkage)

Cannot read/write assigned memory
Request not allowed

Invalid file type

Invalid row or column no.

Invalid record length

Invalid display character >OFOH

While in simulated display I/O or simulated
keyboard 1/0, the 64000 “simulate” soft key
was pressed to exit simulate 1/0. All open
files are closed.

Error in new disc file name when
attempting to change a disc file name.
First character in file name limited to
capital letters A through Z. Second and
fcllowing characters may contain capital
and lower case letters, numerals 0
through 9, underlines, and only if required
to fill in the last byte of the last word,

a blank is used.

8-70

Model 64193A
6805P Series Emulator/Analyzer

SIMULATED 1I/0 EXAMPLE PROGRAMS

Five simulated I/0 example programs are presented here. The first
program involves both keyboard and display simulated I/O. The second
program focuses on disc simulated I/0. The third and fourth programs use
simulated I/0 to the printer and the fifth program shows a wait loop.
All programs are written in PASCAL, with comments, rather than assembly
language to more clearly show program development.

Z80 PASCAL SIMULATED 1/0 EXAMPLES

"Z80"

PROGRAM DISPLAY 1;

The purpose of this program is to demonstrate the steps necessary to use display and
keyboard simulated I/0.
{This program will:
1) Open display simI/O0.
Repeat
2) Open keyboard siml/O0.
3) Read keyboard characters.

4) Transfer characters from keyboard CA to display CA.

5) Display characters typed from the keyboard.
Until first character typed in is an "e".

6) Close keyboard simI/O0.

7) Close display simI/0.}

Figure 8-21. Simulated Display I/0 - Sample Program

8-71

Model 64193A
6805P Series Emulator/Analyzer

$EXTENSIONS ON$ {Necessary to fix the locations of the display and keyboard Control
Addresses (CA’s). To do this, the ORG extension is needed.}
TYPE

KEYBOARD_CA_TYPE = ARRAY [0..39] OF BYTE;
DISPLAY_CA_TYPE = ARRAY [0..39] OF BYTE;

{Use BYTE as a type because characters are 8 bits.
Length of arrays, 40 addresses, is arbitrary.}
VAR

$GLOBVAR ON$ {With GLOBVAR ON, control addresses can easily be displayed, during
emulation, with a "display global_symbols" command. }

$ORG = 1080H$

DISPLAY_CA : DISPLAY_CA_TYPE;
$ORG = 1000H$

KEYBOARD_CA : KEYBOARD_CA_TYPE;
END_ORG

{Control addresses will be at the same locations whenever the program is compiled, even
if the program length changes due to program revision.}

$GLOBPROC ON$ {So routines can easily be viewed in emulation.}
PROCEDURE WAIT_FOR_DISPLAY;

{This procedure loops until DISPLAY CA[0] is 0, which means that the 64000 has read and
executed the last display simI/0 request. Note that this is not called right after
the request, but only before a need to use the display. This is done to cut down on
unnecessary waiting while doing something else in the program.}

BEGIN

REPEAT
UNTIL (DISPLAY_CA[O0] = 0);

END; ({Procedure wait_for_display.}

Figure 8-21. Simulated Display I/0O - Sample Program (Cont’d)

8-72

Model 64193A
6805P Series Emulator/Analyzer

PROCEDURE WAIT_FOR_KEYBOARD;

{This procedure 1loops until KEYBOARD CA[0] is 0, which means that the 64000 has read
and executed the last keyboard simI/0 request.}

BEGIN

REPEAT
UNTIL (KEYBOARD_CA[0] = 0);

END; {Procedure wait_for_display.}

PROCEDURE TRANSFER_CHARACTERS;

{This procedure copies KEYBOARD[3] (number of characters read) to DISPLAY_CA[1] (number
of characters to display). Then it copies the appropriate number of characters start-
ing at KEYBOARD_CA[4] to DISPLAY CA[2] and following. Note that if the number of
characters displayed is odd, a blank will be added to avoid displaying a "null".}

VAR

INDEX : BYTE; {Range is small enough to use type
of byte.}

BEGIN

DISPLAY_CA([1] := KEYBOARD_CA[3];
FOR INDEX := 1 TO DISPLAY CA[1] DO
DISPLAY_CA[1 + INDEX] := KEYBOARD_CA [3 + INDEX];

IF (ODD(DISPLAY_CA[1])) THEN
{0ODD is a PASCAL-supplied routine.}
BEGIN
DISPLAY_CA[1] := DISPLAY_CA[1] + 1;
DISPLAY_CA[DISPLAY CA[1] + 1] := " ",
END; {If an odd number of characters.}

END; ({Procedure transfer_characters. }

BEGIN {To run from here in emulation, the command "run from DISPLAY_ 1" must be used.
The program will start executing here, after SP is set up, etc., by PASCAL
initialization routine.}

DISPLAY_CA[0] := 80H;

{Writing 80H to DISPLAY_CA[0] informs the 64000 that the display will be used. Data
can be displayed when DISPLAY_CA[0] is set to 0 by the 64000.}

Figure 8-21. Simulated Display I/0 - Sample Program (Cont’d)

8-73

Model 64193A
6805P Series Emulator/Analyzer

REPEAT
BEGIN
KEYBOARD_CA[1] := -2;
KEYBOARD_CA[2] := 36;
KEYBOARD_CA[0] := 80H;

{Write -2 to KEYBOARD_CA[1] means that the input line shall be cleared after

the first character. Write 36 to KEYBOARD_CA(2] means that the maximum
characters allowed is 36. Write 80H to KEYBOARD_CA[0] notifies the Model
64000 that the keyboard will be used. After a line of text has been entered,
KEYBOARD_CA[0] is set to 0.}

WAIT_FOR_KEYBOARD;
{Wait until a line of text has been entered.
After a 1line of text has been typed, the information in KEYBOARD_CA[3]
through KEYBOARD_CA[3 + number of characters typed] is transferred to
DISPLAY_CA only after the previous display simI/0 request has been honored.}

WAIT_FOR_DISPLAY;

TRANSFER_CHARACTERS;
{Transfer_characters sets up all needed info.}

DISPLAY_CA[0] := 82H;

{Now the Model 64000 will put the characters up on the display, rolling
previous lines up as new lines are entered.}

END
UNTIL (KEYBOARD_CA[4] = "e");

{Finish loop if first character was an "e".}

KEYBOARD_CA[0] := 81H; {Close keyboard simI/0.}
DISPLAY_CA[0] := 81H; {Close display simI/0.}
END. {Program Display_1.}

Figure 8-21. Simulated Display I/0O - Sample Program (Cont’d)

8-74

Model 641934
6805P Series Emulator/Analyzer

"Z80"

PROGRAM DISC_1;
{The purpose of this program is to demonstrate how to use disc simI/0. The program
takes a block of data (presumably generated by the target system) and creates a file

named DATA:data so that it can be used later (for example, a HOST PASCAL program might
analyze it to see if the data is correct).

A record in the file DATA:data will be made 122 bytes long, consisting of data taken
consecutively beginning at address ACCUMULATED_DATA. The data will be put in the file
in the same order, all in one record. Because the disc file is organized in words, an
even number of bytes must be written to the file.

This program:

1) Opens the file. If an error occurs, the error code is placed at the variable
ERROR, and the procedure OPEN_ERROR is executed.

2) Transfers the data from ACCUMULATED_DATA to the disc Control Address area.

3) Writes the file. If an error occurs, the error code is placed at the variable
ERROR, and the procedure WRITE_ERROR is executed.

4) Closes the file,

Note that the name of the file is defined in the emulation command file (during emula-
tion configuration).}

$EXTENSIONS ON$ {Extensions to PASCAL will be used in this program. }
TYPE
DISC_CA_TYPE = ARRAY [0..257] OF BYTE;

{Since 280 data is organized in bytes, the type BYTE 1is appropriate for most
variables.}

VAR

$GLOBVAR ON$
ERROR : BYTE; {This will contain the error code inf
$ORG = 1000H$
DISC_CA : DISC_CA_TYPE;
END_ORG
{Org’d to keep control address at the same location whenever the program is com-
piled, even if the program length changed due to program revision. }

Figure 8-22. Simulated Disc T/0 - Sample Program

8-75

Model 6h193A
6805P Series Emulator/Analyzer

ACCUMULATED_DATA : ARRAY [1..122] OF BYTE;
$GLOBPROC ON$ {So routines can easily be viewed
in emulation.}

PROCEDURE WAIT_FOR_DISC;

{This procedure waits until DISC_CA[0] does not have a 1 in bit 7, which means the last
disc access request was acted on by the Model 64000.}

BEGIN

REPEAT
UNTIL (DISC_CA[0] >= 0); {Wait until bit 7 is zero.}

END; {Procedure wait_for_disc.}
PROCEDURE OPEN_ERROR;

{This procedure places the error code returned by the open request in the variable
"ERROR" and waits for operator action. The nature of the error, either open error or
write error, can be discerned from the address at which the repeat loop is acting.}

BEGIN
ERROR := DISC_CA[0];
REPEAT

UNTIL (1 = 0);

END; {Procedure open_error. }

PROCEDURE WRITE_ERROR;

{This procedure places the error code returned by the write request in the variable
"ERROR" and waits for operator action. The nature of the error, either write error or
open error, can be discerned from the address at which the repeat loop is acting.}

BEGIN

ERROR := DISC_CA[0];

REPEAT

UNTIL (1 = 0);

END; {Procedure write_error.}

Figure 8-22. Simulated Disc I/O - Sample Program (Cont’d)

8-76

Model 6L4193A
6805P Series Emulator/Analyzer

PROCEDURE TRANSFER_DATA;

{This procedure transfers 122 bytes of data from the array ACCUMULATED_DATA to DISC_CA
starting at DISC_cA(2].}

VAR
INDEX : BYTE;
BEGIN

FOR INDEX := 1 TO 122 DO
DISC_CA[1 + INDEX] := ACCUMULATED_DATA[INDEX];

END; {Procedure transfer_data.}

BEGIN {Main program: to begin here, insert the
command, "run from DISC_1".}

DISC_CA[1] := 10; {Type is data}

DISC_cA[2] 0; {on disc 0.}

DISC_CA[0] := 80H; {Tell 64000 that use of
disc simI/0 is requested.}

WAIT_FOR_DISC;
IF (DISC_CA[0] <> 0) THEN
OPEN_ERROR; {If there was an error, notify

the operator.}

TRANSFER_DATA;

DISC_cA[1] := 61; {Place number of WORDS to write
here. }
DISC_cA([0] := 89H; {Request write to disc.}

WAIT_FOR_DISC;

IF (DISC_CA[0] <> 0) THEN
WRITE_ERROR;

DISC_CA[0] := 82H; {Close disc file.}
END. {Program Disc_1.}

Figure 8-22. Simulated Disc I/0 - Sample Program (Cont’d)

8-77

Model 64193A
6805P Series Emulator/Analyzer

7.8002 PASCAL SIMULATED 1/0 EXAMPLES

"Z8002"

PROGRAM PRINT_SIO ;

{This example program uses simulated I/0 to the printer and is written in PASCAL. The
routine opens the printer, writes the characters "Hi" to the printer, and then closes
the printer. }

$EXTENSIONS+$
TYPE
INTEGER = SIGNED_16 ;
PTR_BYTE = " BYTE ;
PTR = RECORD
CASE BOOLEAN OF
TRUE : (P : © BYTE) ;
FALSE : (I : INTEGER) ;
END ;
VAR
$GLOBVAR+$
PRNT_CA : PIR ; {Printer control address. }

$GLOBVAR-$

ERR_CODE : BYTE ;
ADDRS : PIR ;

PROCEDURE SIOP_OPEN (VAR ERROR_CODE : BYTE) ; EXTERNAL ;
{This procedure opens the printer file. }

PROCEDURE SIOP_CLOSE (VAR ERROR_CODE : BYTE) ; EXTERNAL ;
{This procedure closes the printer file. }

PROCEDURE SIOP_WRITE (ADDR_DATA: INTEGER ; VAR ERROR_CODE : BYTE)
; EXTERNAL ;
{This procedure writes specified data to the printer.}

BEGIN {Main procedure. }
PRNT_CA.I := 3FO0OH ; {Set up control address.}
SIOP_OPEN (ERR_CODE) ; {Open printer file.}

Figure 8-23. Simulated Printer I/O - Sample Program

8-78

Model 6L4193A
6805P Series Emulator/Analyzer

IF ERR_CODE = 0 {If opened
THEN BEGIN
ADDRS.I := PRNT_CA.I + 10H ; { then set up the }
ADDRS.P" := 02 ; { length(2) and }
ADDRS.I := ADDRS.I + 1 ; { characters "Hi"}
ADDRS.P™ := 48H ; { in buffer located }
ADDRS.I := ADDRS.I + 1 ; { 10H from control }
ADDRS.P”™ := 69H ; { address. }
SIOP_WRITE (PRNT_CA.I+10H ,ERR_CODE); {Do write to }
{ printer.
END;
IF ERR_CODE = 0
THEN SIOP_CLOSE(ERR_CODE) ; {Finally, close printer file.}
END,
Figure 8-23. Simulated Printer I/O - Sample Program (Cont’d)
"Z28002"

PROGRAM SIO_PRINTER ;

{This code provides procedures to open printer, write to printer, and close printer. }

$EXTENSIONS+$
TYPE
INTEGER = SIGNED_16 ;
PTR_BYTE = ~ BYTE ;
BITS = (B7,B6,B5,B4,B3,B2,B1,B0) ;

PTR = RECORD

CASE BOOLEAN OF
TRUE : (P : ~ BYTE) ;
FALSE : (I : INTEGER) ;

END ;

SOB

[}

RECORD
CASE BOOLEAN OF
TRUE : (B : BYTE) ;
FALSE : (S : SET OF BITS) ;
END ;

Figure 8-24. Simulated Printer I/O - Sample Program A

8-79

Model 64193A
6805P Series Emulator/Analyzer

VAR

$EXTVAR+$
PRNT_CA : PTR ; {Printer control address. }

$EXTVAR-$

ADDRS : PTR ;
ADDRD : PTR ;
LENGTH : BYTE ;
DATA : SOB ;
MASK : SOB ;

PROCEDURE SIO_WAIT(ADDRESS : PTR_BYTE; VAR ERROR_CODE : BYTE)
{This procedure provides a wait loop for HOST response. }
PROCEDURE XFR_RBUF (ADDRESS : PTR_BYTE) ; FORWARD ;

{This procedure provides transfer of data from specified
address to printer data area. }

$GLOBPROC+$
PROCEDURE SIOP_OPEN (VAR ERR_CODE :BYTE);

{This procedure opens the printer file and returns status of open in ERR_CODE. }

BEGIN

ADDRS.I := PRNT_CA.I ; ({Write 80H to printer }

ADDRS.P ~ := 80H ; { control address. }

SI0_WAIT (ADDRS.P ,ERR_CODE) ; {Wait for HOST response. }
END;

PROCEDURE SIOP_CLOSE (VAR ERR_CODE :BYTE);

{This procedure closes the printer file and returns status of operation in ERR_CODE. }

BEGIN

ADDRS.I := PRNT_CA.I ; {Write 81H to printer }

ADDRS.P ~ := 81H ; { control address. }

SIO_WAIT (ADDRS.P ,ERR_CODE) ; {Wait for HOST response. }
END;

Figure 8-24. Simulated Printer /0O - Sample Program A (Cont’d)

8-80

Model 6L4193A
6805P Series Emulator/Analyzer

PROCEDURE SIOP_WRITE (ADDRESS : PTR_BYTE ; VAR ERR_CODE :BYTE);

{This procedure writes specified data to the printer file and returns status of open in

ERR_CODE. }
BEGIN

XFR_RBUF (ADDRESS) ; {Get specified data to printer}

MASK.B := 1 ; { data area. }

DATA.S := DATA.S * MASK.S ;

IF DATA.B <©> 0 {If length is odd }

THEN BEGIN {then add one to length }

ADDRS.I := PRNT_CA.I + 1 ; {and " " to end of string.}
LENGTH := ADDRS.P "~ + 1 ;

ADDRS.P © := LENGTH ;

ADDRS.I := PRNT_CA.I + LENGTH + 1 ;

DATA.B := 20H ;

ADDRS.P " := DATA.B ;

END ;
ADDRS.I := PRNT_CA.I ;
ADDRS.P © := 82H ; {Write 82H to printer control address.}
SIO_WAIT (ADDRS.P ,ERR_CODE) ; {Wait for HOST response. }
END;

$GLOBPROC-$
PROCEDURE XFR_RBUF {(ADDRESS : PTR_BYTE) } ;

{This procedure provides transfer of data from specified address to printer data area.

}

BEGIN
ADDRS.P := ADDRESS ;
ADDRD.I := PRNT CA.I + 1 ;
LENGTH := ADDRS.P * ;

DATA.B := LENGTH ;
ADDRD.P © := LENGTH ;
WHILE LENGTH <> 0

DO BEGIN
ADDRS.I := ADDRS.I + 1 ;
ADDRD.I := ADDRD.I + 1 ;

ADDRD.P ~ := ADDRS.P " ;
LENGTH := LENGTH -1 ;
END ;
END .

Figure 8-24, Simulated Printer I/O - Sample Program A (Cont’d)

8-81

Model 641934
6805P Series Emulator/Analyzer

"Z8002"

PROGRAM SIO_WAIT_FOR_REPLY ;

{This procedure provides a wait loop until the HOST system responds from some command
by setting bit 7 of data in some specified control address to zero. }

$EXTENSIONS+$
TYPE

PTR_BYTE = " BYIE ;

$GLOBPROC+$

PROCEDURE SIO_WAIT(ADDRESS : PTR_BYTE ; VAR ERROR_CODE : BYTE)
BEGIN
REPEAT
ERROR_CODE := ADDRESS " ;
UNTIL ERROR_CODE > -1 ;
END;

Figure 8-24. Simulated Printer I/0 - Sample Program B

MODEL 64000 FILE FORMATS

The 64000 file accessable to the user through the simulated disc file
I/0 interface are described in the following paragraphs.

ASSEMBLER SYMBOLS FILE (FILE TYPE 12)

This file contains the symbols and their corresponding values assigned
by the assembler. It also indicates the symbol type. Symbols may be
either ABS (absolute), or relocatable to the PROG, DATA, or COMN areas.
(These terms are all defined in the 64000 Assembler/Linker Reference
Manual.)

The assembler symbols file is generated each time a source program con-
taining symbols is assembled into an object file. The file consists of
a group of records with each record in turn conisting of up to 128
sixteen-bit words (0-127). Each record must be structured as follows:
(See figures 8-25 and 26.)

O RECORD IDENTIFICATION (ID) WORD

O SYMBOL DEFINITION BLOCKS (LENGTH VARIABLE FROM TWO
TO TEN WORDS.)

8-82

Model 6L4193A
6805P Series Emulator/Analyzer

O CHECKSUM WORD
Each of the three items are described in the following paragraphs.

RECORD ID WORD. The ID word is always the first word in each record and
contains the number "6". (The "6" is used internally and is not to be
confused with the file type number which is 12.)

SYMBOL DEFINITION BLOCKS. A symbol definition block consists of the
symbol word(s) and the value word(s). (See Figure 8-27.)

SYMBOL WORD(S). The ASCII character, or characters, are contained in
this word (or words). From one to fifteen ASCII characters may be
defined. To specify a single-character symbol, only one symbol word is
required. To specify either 14 or 15 ASCII characters, the maximum of
eight words is required. (Symbols longer than 15 characters are trun-
cated to 15 characters.)

FIRST SYMBOL WORD. The first word in each symbol definition block is
structured the same. The least significant eight bits (7 through 0)
contain the first ASCII character in the symbol. The most significant
eight bits (15 through 8) always contain the following information: o
Symbol Length (SL) - Bits 15, 14, and 13 specify the number of symbol
words -1 in this block. (See Figure 8-28, Example A.) For example, if
the symbol consists of two ASCII characters, which require two symbol
words, SL is equal to 1. Examples of symbols made up of one to five
characters, which require one and three words respectively, are shown in
Figure 8-28, examples B and C.

o0 Reserved Bits - Bits 12, 11, and 10 contain 000 and are reserved
for use by other program modules.

o Memory Relocation (Relo) - Bits 9 and 8 specify how the symbol may
be relocated as follows:

Bit 9 Bit 8 Storage Type
0 0 ABS (Absolute)
0 1 PROG area
1 0 DATA area
1 1 COMN area

ADDITIONAL SYMBOL WORDS. The second through the eighth symbol words
may each contain up to two ASCII characters. However, if in the last
symbol word, only one byte is required to define the last symbol charac-
ter, then the least significant byte in that word must contain an ASCII
blank (Code 20H). That is, the two bytes in each symbol word must con-
tain meaningful data, even in the last word.

The symbol words must be packed. Only the words actually required to
specify the symbols are to be used. Thus, if five symbol words are
required to define a symbol, then only five symbol words must be used.

VALUE WORD(S). Immediately following the last symbol word may be either
one or two value words, depending upon the size of the target processors

8-83

Model 64193A
6805P Series Emulator/Analyzer

addressable memory. This word ,or words, specifies the value assigned
to the symbol by the assembler. If the value can be contained in one
16-bit word, then only one word is to be used. Two 16-bit words are
used only if they are both required. When two words are used, the first
word contains the least significant 16-bits and the second word contains
the most significant 16 bits.

All symbol definition blocks within the assembler symbol file must be
structured as defined above. '

CHECKSUM WORD. The checksum word must be the last word in the as-
sembler symbols file. If the file is completely full, then the checksum
word will be the 128th word (word #12T).

The checksum word contains the arithmetic sum of the binary values of
the preceding words in the file.

USER BUFFER/ASSEMBLER SYMBOLS FILE PACKING FORMATS

The format relationship between the user buffer when reading from, or
writing into, a 64000 Assembler Symbols File is shown in Figure 8-27.

LINKER SYMBOLS FILE (FILE TYPE 13)

The Linker Symbols File is generated anytime program modules are linked
together. It consists of the following four types of records (see
Figure 8-29):

OTYPE 1 RECORD - MICROPROCESSOR CONFIGURATION RECORD
(ONE PER FILE)

OTYPE 2 RECORD - GLOBOL SYMBOLS RECORDS

O TYPE 3 RECORD - PROGRAM NAMES RECORDS

O TYPE 4 RECORD - MEMORY SPACE ALLOCATION (RANGE)
Each of these items is described below.

TYPE 1 RECORD (see Figure 8-30). The first record in the Linker Symbol File
is always a TYPE 1 record. It is similar to the NAME record in
relocatable files and is required for the linker to configure itself for
the correct microprocessor. The record is only used when a link sym file
is the first file given as a response to the linker question "Object
files?". This is a fixed- length record containing 26 words and is con-
figured as follows:

a. Record Identification (ID) Word. The record ID word is always
the first word in the record. It is also the first word in the
Linker Symbol File and contains the number "1". This number
identifies the record as the microprocessor configuration
record. (The "1" is used internally and should not be confused
with the file type number which is "13".

8-84

Model 641934
6805P Series Emulator/Analyzer

b. Pad Words 1 Through 15. These words are inserted so that word
positions 16 through 23 in this name record contains the same
information as do corresponding word positions in the name
records of the relocatable files.

c. Name and User ID Word Block. A fixed length 8-word block (words
16 through 23) that contains the microprocessor configuration
file name in standard file name format, i.e., 168000:HP. The MSB
of word 16 contains the following information:

Bits 15-13: indicates the number of 16-bit
words-1 in the file name.

Bits 12-11: indicates the number of 16-bit
words in the userid.

Bits 10-8 : "don’t care" conditions.

d. Address Size. This word (word 24) is required for emulation and
state analysis. It defines the number of 16-bit words required
to specify an address for the target processor. The LSB of this
word indicates the address size (1 = one word addresses (16
bits); 2 = two-word addresses (32 bits)). The MSB of this word,
hishift (see Figure 8-30), is used to convert 32-bit logical ad-
dresses (segment, offset) to physical addresses. This is ac-
complished by putting the segment in the MS 16 bits of a 32-bit
register, shift right the number of bits indicated in hishift,
then do a 32-bit add to offset.

e. Checksum. The checksum word (word 25) contains the arithmetic
sum of the binary values of the preceding 25 words in this
record.

TYPE 2 RECORD (see Figure 8-31). The Linker Symbol File may contain mul-
tiple Global Symbol Records (TYPE 2). The first Global Symbol Record
follows the Microprocessor Configuration Record and all subsequent
Global Symbol Records are contiguous. These records are copied from the
linker’s symbol table at the conclusion of pass 1.

A Global Symbols Record contains the global symbols and the relocated
address values (symbol values) generated when the program modules are
linked. Each record may consist of up to 128 16-bit words (0-127 words)
structured as follows (see Figure 8-32):

a. Record Identification (ID) Word. The record ID is always the
first word in each record and contains the number "2". (The "2"
is used internally and is not to be confused with the file type
number which is "13".)

b. Global Symbol Definition Blocks. A global symbol def- inition
block consists of the symbol word(s) and the value word(s) which
are described in more detail in this paragraph.

c¢. Checksum Word. The checksum word must be the last word in each

record. If the record is completely full, then the checksum word
will be the 128th word (word #127).

8-85

Model 64193A
6805P Series Emulator/Analyzer

Symbol Word(s). The ASCII character, or characters, are contained in
this word (or words).From one to fifteen ASCII characters may be
defined. To specify a single-character symbol, only one symbol word is
required. To specify either 1Y or 15 ASCII characters, the maximum of
eight words is required. (Symbols longer than 15 characters are trun-
cated as 15 characters.)

First Symbol Word. The first word in ever symbol definition block is struc-
tured the same. The least significant eight bits (7 through 0) contain
the first ASCII character in the symbol. The most significant eight
bits (15 through 8) always contains the following information (see
Figure 8-32):

a. Global Symbol Length (GSL). Bits 15, 14, and 13 specify the num-
ber of symbol words-1 in this block. For example, if the global
symbol consists of two ASCII characters, which require two sym-
bol words, GSL is equal to 1. (The second byte in the second
word will contain an ASCII blank, i.e., code 20H.)

b. Bits 12, 11, and 10. "don’t care" conditions.

¢. Memory Relocation (Relo). Bits 9 and 8 specify how the symbol
may be relocated as follows:

Bit 9 Bit 8 Storage Type
0 0 ABS (Absolute)
0 1 PROG area
1 0 DATA area
1 1 COMN area

Additional Symbol Words. The second through the eighth symbol words may each
contain up to two ASCII characters. However, if in the last symbol word,
only one byte is required to define the last symbol character, then the
least significant byte in that word must contain an ASCII blank (code
20H). That is the two bytes in each symbol word must contain meaningful
data, even in the last word.

The symbol words must be packed. Only the words actually required to
specify the symbols are to be used. Thus, if five symbol words required
to define a symbol, then only five symbol words must be used.

Symbol Value Word(s). Immediately following the last symbol word may be
either one or two value words, depending upon the size of the target
processor addressable memory. This word (or words) specifies the address
assigned to the symbol by either the assembler (if ABS-absolute) or by
the linker. If the address can be contained in one 16-bit word, then
only one word is to be used. Two 16-bit words are used only if they are
both required. When two words are used, the first word contains the
least significant 16 bits and the second word contains the most sig-
nificant bits of the symbol address.

All global symbol definition blocks within the Linker Symbol File must
be structured as just defined.

8-86

Model 641934
6805P Series Emulator/Analyzer

TYPE 3 RECORDS (see Figure 8-33). The Linker Symbol File may contain multi-
ple Program Names Records. The first Program Names Record follows the
last Global Symbols Record. All succeeding Program Names Records are
contiguous.

The names of type 3 records are not maintained in any internal struc-
ture. Program names have an implicit ordinal number value from O to N.
It should be noted that if a link sym file is given as an input to the
linker, the resulting link sym file does not contain the program names
from the inputed link sym file.

Type 3 records contain all source program names and their relocation ad-
dresses. The primary purpose of these records is to provide relocation
addresses for the symbols in asm_sym files.

Program names are not the same as file names. The most common example of
this is with libraries. Program names come from the Program Description
Records within Relocatable Files (File Type 3 - see Figure 8-39). The
name in the relocatable record (see Figure 8-40) is the name of the
source file that produced the relocatable file. The program name will be
the same as the relocatable file name as long as the relocatable file
has not been renamed or copied to a library.

For example, if two separate source file programs are assembled/ com-
piled, the result will be two separate relocatable files with each
having the file name of the source program as follows:

Source File Relocatable
Programs Files
| Name: | | Assembler/| | PROGl:reloc |
| PROGl:source |------- >| Compiler |------ >| |
I I 1 | R1 |
| |
| Name: | | Assembler/| | PROG2:reloc

| I | | R2

|
| PROG2:source |------- >| Compiler |------ >| [
|
|

8-87

Model 64193A
6805P Series Emulator/Analyzer

If the two relocatable files are linked together to form a
library, for example, a new relocatable file would be built under
a new file name as follows:

New Relocatable

Relocatable File
Files PROG__LIB:reloc

PROGl:reloc | PROG1:reloc

I I
I I I
| Rl I I I I R1
I I . I I

I

I

I

I

-->| LINKER |------- >| PROG2:reloc

- |
| |
| |

PROG2:reloc R2

I I
I I
I Re I
I I

The linker output listing for the above would be:
PROG LIB:ID

PROGL1:ID
PROG2: ID

8-88

Model 641934
6805P Series Emulator/Analyzer

Note the two original source file names are indented, indicating
multiple relocatables in PROG_LIB:ID file.

Using the 64000 system "rename” command will also result in a
relocatable file having a different name than the source file
program as follows:

Source File Relocatable
File File
| PROG1:source | | Assembler/ | | PROGl:reloc |
I |-->| Compiler [-->| |---
| [I R1 |
I (.
|
|
|
| New Relocatable
| File Name:
| CMDFIL:reloc
|
| | Rename | PROGl:reloc
----- >| Command |- >
|

I I
I I
I I R1 I
I I

The linker output listing for the above would be:

CMDFIL:ID
PROG1:ID

8-89

Model 64193A
6805P Series Emulator/Analyzer

A Program Names Record contains the names of the source file programs,
the corresponding user ID’s and the load addresses generated when the
program modules are 1linked. Each record may consist of up to 128
sixteen-bit words (words 0-127) structured as follows:

a. One Record Identification (ID) Word.

b. Multiple Program Name and Addresses Definition Blocks
(fixed length blocks of 14 words each).

¢. One checksum word.

Record Identification (ID) Word. The ID word is always the first word in each
record and contains the number "3". (The "3" is used internally and is
not to be confused with the file type number which is "13".)

Program name and addresses definition block - This is a fixed length
block consisting of 1U4 sixteen-bit words allocated as follows (see
Figure 8-3L4):

a. Eight words reserved for the program name and users ID.

b. Six words reserved for the linker load addresses.

Program Name and User ID Words. The formatting and packing of these words
are done in the same way as described for +the Microprocessor
Configuration Record (TYPE 1), Name and ID word Block.

Load Address Words. These words contain the load addresses assigned by the
linker. If an address is not assigned to a particular area, the address
words contain zeros (OOOOH). The MS 16-bit address word will be used
only if required by the target microprocessor’s addressable memory
space.

Checksum Word. The checksum word must be the last word in each record. If
the record is completely full, the the checksum word will be in the
128th word (word #127).

The checksum word contains the arithmetic sum of the binary values of
the preceding words in the record.

TYPE 4 RECORDS (see Figure 8-35). Type 4 records follow type 3 records and
contain a list of memory spaces used by the relocatable files. Each
block contains file, program name, and relocation information plus the
lower and upper bounds of the piece of memory used. Blocks are sorted on
lower bound from smallest to largest.

Records contain from 1 to 9 fixed length blocks with each block contain-
ing 14 words. A block may not cross a record boundary.

8-90

Model 6L4193A
6805P Series Emulator/Analyzer

USER BUFFER/LINKER SYMBOLS FILE PACKING FORMATS

The format relationship between the user buffer when reading or writing
into a 64000 Linker Symbols File is the same as shown for the Assembler
Symbols File in Figure 8-27.

SOURCE FILE (FILE TYPE 2)

The source file is generated by the programmer from the applicable mic-
roprocessor opcodes and assembler pseudo instructions. It consists of a
series of ASCII records. (See figures 8-36 and 8-37.)

Each ASCII source record in the file is structured the same. An ASCII
source record is of variable length and may contain up to 128 sixteen-
bit words. Each 16-bit word contains two 8-bit ASCII bytes. If the last
byte in the last word of a record is not used, it must contain an ASCII
blank (20H).

The format relationship between the user buffer when reading from or
writing into a 64000 source file is also shown in Figure 8-37.

LISTING FILE (FILE TYPE 5)

The listing file is a copy of a source file. It may be produced when
listing to a printer, a display, etc. The format is identical to that
described above, and shown in figures 8-36 and 8-37 for the source file.

ABSOLUTE FILE (FILE TYPE 4)

Absolute file is generated when the linker produces an absolute image of
an object file or files. The absolute file contains two types of
records; the first record and the additional records which follow the
first record. (See figures 8-38 and 8-39.)

FIRST RECORD. The first record has a fixed length of four 16-bit words.
The first word (word 0) specifies the processors data bus width (8, 16,
etc.). The second word (word 1) specifies the data width base of the
target microprocessor. The data width hase is the minimum addressable
entity (i.e. group of bits) used by the microprocessor. Normally this
will be 8-bits, but not always.

The last two words specify the transfer address value loaded into the
target microprocessor’s program counter. The most significant transfer
address word (bits 31 through 16) is used only if required. If not used
it will contain OOCOOH.

ADDITIONAL RECORDS. A1l records following record one are formatted the

same. Each is a variable length record consisting of up to 128 sixteen-
bit words (0-127).

8-91

Model 64193A
6805P Series Emulator/Analyzer

The first word in the record (word 0) specifies the number of data bytes
in the record (2 bytes/word). The following two words (words 1 and 2)
specify the load address for this record. (The load address is the
beginning location for storing this record.) The most significant load
address word (bits 31 through 16) will be used only if required. If not
used, bits 31 through 16 will contain OOOOH.
The remaining words in the record (3 through n) contain the data bytes.
If the last byte in the last word of a record is not used for data, it
must contain an ASCII blank (code 20H).
The format relationship between the user buffer when reading from or
writing into a 64000 absolute file is also shown in Figure 8-39.
RELOCATABLE FILE (FILE TYPE 3)
The relocatable file is produced by the assembler or compiler. It con-
tains information required by the linker to construct an absolute file.
This file consists of the following six types of records (see Figure
8-40):

O PROGRAM DESCRIPTION RECORD (ONE PER FILE)

O GLOBAL SYMBOLS RECORD

O DATA RECORD

O EXTERNAL SYMBOLS RECORD

O LOCAL SYMBOLS RECORD (OPTIONAL)

O END RECORD (ONE PER FILE)
Each type of record is defined in the following paragraphs.
PROGRAM DESCRIPTION RECORD (see Figure 8-41). The program description
record is the first record in the Relocatable File and only one is al-
lowed per file. This record identifies the source program, number of

externals, microprocessor, comments, and absolute code definitions.

This is a variable length record (up to 128 words) and is configured as
follows:

O ONE RECORD IDENTIFICATION (ID) WORD

O 14 WORDS ALLOCATED TO:
SOURCE PROGRAM NAME (9 CHARACTERS, MAXIMUM)
SOURCE PROGRAM ID (6 CHARACTERS, MAXIMUM)
PROG AREA LENGTH (2 WORDS, MAXIMUM)

DATA AREA LENGTH (2 WORDS, MAXIMUM)

8-92

Model 64193A
6805P Series Emulator/Analyzer

COMN AREA LENGTH (2 WORDS, MAXIMUM)

O ONE WORD ALLOCATED TO DEFINITION OF THE NUMBER OF
EXTERNAL VARIABLES AND PROCEDURES DEFINED IN THE MODULE.

O EIGHT WORDS ALLOCATED TO:
MICROPROCESSOR NAME (9 CHARACTERS, MAXIMUM)
MICROPROCESSOR ID (6 CHARACTERS, MAXIMUM)
O TWO WORDS ALLOCATED TO:
DATE (ONE WORD, MAXIMUM)
TIME (ONE WORD, MAXIMUM)
O 11 WORDS ALLOCATED TO COMMENTS

O UPTO 88 WORDS ALLOCATED TO ABSOLUTE CODE SEGMENT
DESCRIPTION.

O ONE CHECKSUM WORD

Each of these items are described as follows:

Record Identification (ID) Word. The record ID word is always the first word in
the record. In this case, it is also the first word in the Relocatable
File and contains the number "1". This number identifies the record as
the source program description record. (The "1" is used internally and
should not be confused with the file type number which is "3".)

Source Program Name And User ID Word Block. An eight word block (words 1
through 8) is allocated to contain the source program name and user ID
words. This is the same ID entered into the 64000 in response to the
user ID prompt. This block is always eight words long even if all words
are not required to define the source program name and user ID. These
eight words are constructed as follows:

a. Word 1. This is the first word and user ID word. The least sig-
nificant eight bits (7-0) in this word contain the first ASCII
character of the source program name. The most significant eight
bits (15-8) always contain the following information:

o Source Program Name Length (PNL). Bits 15, 14, and 13 specify the
number of 16-bit words -1 used for the name. The minimum number
of characters that may be used in the name is one, which requires
one word. Thus, the minimum value for PNL is zero. The maximum
number of characters that may be used in the name is nine, which
requires five words. Thus, the maximum value for PNL is four.
(See "Words 2 through 8", below.)

o User ID Length (IDL). Bits 12 and 11 specify the actual number of
16-bit words required for the user ID. (Note that IDL differs

8-93

Model 64193A
6805P Series Emulator/Analyzer

from PNL in that IDL specifies the actual number of words and PNL
specifies the number of words -1.) The maximum number of
characters that may be used in the user ID is six, which requires
three words. Thus, the maximum value for IDL is 3.

o Bits 10-8 contain the number of the disc which holds the record.

b. Words 2 Through 8. These words are used for the remaining name and
user ID characters. The name characters are specified first, fol-
lowed by the user ID characters. However, name and ID characters
can not be mixed within the same word. An unused least significant
byte in either a name or ID word must contain an ASCII blank (code
20H). The name and ID words must be packed. That is - the ID
words must follow the name words with no intervening unused words.
Unused words must be at the end of the block.

Length Word Block. A six word block (words 9 through 14) is allocated to
contain the word lengths of code produced by the assembler or compiler
in each of the three relocatable sections; PROG, DATA, and COMN.

Number Of Externals Word. One word (word 15) is allocated to contain the
number of external variables and procedures defined in the module. This
number can be from 0 to 511.

Microprocessor Name And User ID Word Block. This word block is the same as
described for the Linker Symbols File under the '"Microprocessor
Configuration Record, Name and User ID Word Block".

Date And Time Word Block. Two words (words 24 and 25) are allocated to con-
tain the date and time that the program was assembled or compiled.

Comments Word Block. A block of eleven words (words 26 through 36) is al-
located for comments. The block contains up to 22 ASCII characters
defined by the NAME psuedo in the assembler or compiler. All unused
characters must contain ASCII blanks (code 20H).

Absolute Code Segment Word Block. A variable length block which contains from
0 to 22 entries of four 16-bit words is allocated for absolute code seg-
ments. Each four-word entry defines an absolute code segment declared
in the assembler or compiler.

Checksum Word, The checksum word must be the last word in each record.
If the record is completely full, then the checksum word will be the
128th word. (Word #127.)

The checksum word contains the arithmetic sum of the binary values of
the preceding words in the record.

GLOBAL SYMBOLS RECORDS (See Figures 8-31 and 8-32). The global symbols
record formatting and packing for the Relocatable File is the same as
described for +the Linker Symbols File under the '"Global Symbols
Records".

DATA RECORDS (See Figure 8-42). The data records contains the relocation

8-94

Model 64193A
6805P Series Emulator/Analyzer

area and address of the program as assigned by the linker. It also
defines how the absolute codes are produced.

Record Identification (ID) Word. The ID word is always the first word in each
record and contains the number "3". (The "3" is used internally and is
not to be confused with the file type number, which is also “3".

Relocation Address Words. These words contain the relocation address assign-
ed by the linker to this program. The most-significant word is used
only when the ID offset equals 3.

Relocation Word. The relocation word identifies the relocation destination
code as follows: 00=ABS, 01=PROG, 10=DATA, and 11=COMN.

Event Selection Word. This word contains codes 00, 01, 10, and 11 in bit
locations Tl through T8. Any one of the codes may be contained in any
of the locations. As Tl through T8 are read, the event selected by the
specific code will be executed. Codes are defined as follows:

Tn=00 - Produce one byte of absolute code, which is found in
the low order byte of the corresponding word.

Tn=01 - Produce two bytes of absolute code, which is found in
the corresponding word.

Tn=10 - Relocate the address to be found in the second (and
optionally, the third) word based on the relocation
code in the first word. Then produce an absolute code
based on the processor dependent format number in the
first word and skeleton, if used.

Tn=11 - Look up the external symbol whose number is in the
first word (which has been previously defined in a
type 4 record). Add the displacement and then produce
an absolute code based on the format number and
skeleton, if used.

Checksum Word. The checksum word must be the last word in each record.
If the record is completely full, then the checksum will be the 128th
word (word #127).

The checksum word contains the arithmetic sum of the binary values of
the preceding words in the record.

EXTERNAL SYMBOLS RECORDS (See Figure 8-43). The Relocatable File may con-
tain multiple External Symbols Records.

An External Symbols Record contains the external symbols and the exter-
nal ID number assigned by the assembler or compiler. Each record may
consist of up to 128, sixteen-bit words (words 0-127) structured as
follows:

O ONE RECORD IDENTIFICATION (ID) WORD

O MULTIPLE EXTERNAL SYMBOL DEFINITION BLOCKS

8-95

Model 64193A
6805P Series Emulator/Analyzer

O ONE CHECKSUM WORD
Each of these items are described as follows:

Record Identification (ID) Word. The ID word is always the first word in each
record and contains the number "4". (The "4" is used internally and is
not to be confused with the file number, which is "3".)

External Symbol Definition Blocks. An external symbol definition block consists
of the symbol word(s) and the external ID number. (See Figure 8-43.)

Symbol Words. The ASCII character, or characters, are contained in this
word, or words. From one to fifteen ASCII characters may be defined.
To specify a single-character symbol, only one symbol word is required.
To specify either 1b or 15 ASCII characters, the maximum of eight words
is required. (Symbols 1longer than 15 characters are truncated to 15
characters.)

First Symbol Word. The first word in every symbol definition block is
structured the same. The least significant 8 bits (7-0) contain the
first ASCII character in the symbol. The most significant eight bits
(15-8) always contain the following information:

o External Symbol Length (ESL). Bits 15, 14, and 13 specify the num-
ber of symbol words -1 in this block. For example, if the exter-
nal symbol consists of two ASCII characters, which requires two
symbol words, then ESL is equal to 1. (The second byte in the
second word will contain an ASCII blank - i.e. code 20H.)

o Reserved Bits. Bits 12, 11, 10, 9, and 8 always contain 00100.

Additional Symbol Words. The second through the eighth symbol words may
each contain up to two ASCII characters. However, if in the last
symbol word, only one byte is required to define the last symbol
character, then the least significant byte in that word must con-
tain an ASCII blank (code 20H). That is, the two bytes in each
symbol word must contain meaningful data, even in the last word.

The symbol words must be packed. Only the words actually required to
specify the symbols are to be used. Thus, if five symbol words are
required to define a symbol, then only five words are to be used.

External ID Number Word. The external ID number is assigned by the as-
sembler or compiler. The number can be from 0 to 511.

Checksum Word. The checksum word must be the last word in each record.
If the record is completely full, then the checksum will be the 128th
word (word #127).

The checksum word contains the arithmetic sum of the binary values of
the preceding words in the record.

LOCAL SYMBOLS RECORDS (See Figures 8-31 and 8-32). The 1local symbols

records formatting and packing for the Relocatable File is the same as
described for the Linker Symbols File under the "Global Symbols

8-96

Model 6L4193A
6805P Series Emulator/Analyzer

Records", except the ID word contains the number "6".
END RECORD (See Figure 8-44). The end record is the last record in the
Relocatable File and only one is allowed per file. The end record con-
tains the relocation code and transfer address. Each record consists of
five, 16-bit words structured as follows:

O ONE RECORD IDENTIFICATION (ID) WORD

O ONE RELOCATION WORD

O TWO TRANSFER ADDRESS WORDS

O ONE CHECKSUM WORD
Each of these items are described as follows:
Record Identification (ID) Word. The ID word is always the first word in each
record and contains the number "5". (The "5" is used internally and is

not to be confused with the file number, which is "3".)

Relocation Word. The relocation word identifies the relocation destination
code, as follows: 00=ABS, 01=PROG, 10=DATA, and 11=COMN.

Transfer Address Words. The transfer address words contain the address where
control will be transferred to when the program is run.

Checksum Word. The checksum word must be the last word in each record.
The checksum word contains the arithmetic sum of the binary values of
the preceding words in the record.

USER BUFFER/RELOCATABLE FILE PACKING FORMATS
The format relationship between the user buffer when reading from, or

writing into, a 64000 Relocatable File is the same as shown for the
Assembler Symbols File in Figure 8-27.

8-97

Model 64193A
6805P Series Emulator/Analyzer

Record
Word # Contents
7 ("] Record ID Word = 6

First Symbol Definition Block
(variable length: 2 to 10 words)

Record \
no 1 |

Last Symbol Definition Block
(Variable length: 2 to 10 words)

n
(n<127) Checksum word for record 1

(%] Record ID word =6

First Symbol Definition Block
(Variable length: 2 to 10 words)

&

Record __|
no. 2
Last Symbol Definition Block
(Variable length: 2 to 10 words)
/
n
(n<127) Checksum v:ord for record 2
Record ID word =6
etc etc

Figure 8-25. Assembler Symbol File Overall Structure

8-98

Model 641934

6805P Series Emulator/Analyzer

Record
Type

First
Symbol
Definition
Block
Variable
length
block.”
(2 words min.
10 words max.)

Second
Symbol
Definition
Block”

etc.

Notes

N\

N/

ASSEMBLER SYMBOL RECORD STRUCTURE

Word
#
_ Identifies record as an
0 D Word =6 Assembler Symbol Record.
Symbol word or words. Symbol words and value words
Identifies symbol characters and must be packed. If only one symbol
the part or memory in which they word and one value word are
L are defined, i.e. ABS, Prog. Data, or required, then only two words are
Common. used in the definition block.
(L1 = 1 to 8 words)
S N .__________T__
. LS 16-bit
Symbol value Word
L2 -
_ MS 16-bit MS Word is
(L2 = 1 or 2 words) Word used only if
required to
specify symbol
value.

Symbol Word(s)

Symbol Value™*

#

n

(n<127)

\/

Checksum Word

Contains the arithmetic

sum of the binary
values of words
0 through n-1.

“For block structure details, see “Assembler-Symbol Record/User Buffer Format Details”.

**Symbol value as assigned by assembiler. If a relocatable value it will be relocated by the linker.

Figure 8-26. Assembler Symbol Record Structure

8-99

Model 641934
6805P Series Emulator/Analyzer

ASSEMBLER SYMBOL FILE

USERS BUFFER

DEFINITION BLOCK FORMATS CONTENTS ADDR
{ ‘ R'W Code CA
Word
N 15 8,7 0 #Words CA+1
T T T 7T
(4] ITD (ID WORD = 6) [} ! 1 : 1 : 0]—>C 15 8 CA+2
.
L - 7 0| ca+s
S 15 13,12 10,9 8,7 [
\
M [7 SL 0 0 0| R ASCII 1 15 8| ca+a
B L
7 0 | CA+5
(@]
L
15 8,7 0
r ASCII 2 ASCII 3 M 15 8 CA+6
| 7 0| cA+7
L1
First K M4 . M
Sym
Def 15 8,7 0
Blk -
(@to [ASCII 14 ASCII 15]—><: is 8| ca+
10 I
words) 7 0 | CA+
S 15 8,7 0
Y T
M r Sym. Value) (LS 16 sets) 4,3<: 15 8 | ca+
B8 T
1 7 0| ca+
v L2
A 15 8 X 7 0
+
L r Sym Value N (MS 16 bits - if used) 15 8 | ca+
T T
7 0| ca+
$ 15 13,12 10,9 8, 7 0
M [SL 0 00 R ASCII 1 15 8 CA+
8 L
0 7 0| cA+
L
15 8,7 [
[ASCII 2 ASCII 3 15 8 | ca+
1
7
Sec 0 Ca+
Sym s
Def v 15 8 'L 7 0
Blk M [Sym 2 Value | (LS 16 bits)]’X 15 8 | CA+
8 | - 7 0 | CA+
v
A 15 8 % 7 0
L [Sym 2 Value X (MS 16 bits - 1f used)—’_>C 15 8 | CA+
| - 7 o | car
. L] .
. L] L]
‘ . L] L]
7
etc ! 15 8 4 0
n Checlksum 15 8 | CA+
(n=127) I T N o1 casn
(n1<257)

8-100

Figure 8-27. Assembler Symbol Record/User Buffer Format Details

Model 6L4193A
6805P Series Emulator/Analyzer

EXAMPLE A. SYMBOL = HP
15 13 12 10,98 7 [} Definitions
(] SL=Number of 16-bit words - 1
0 0 110 0 0|Relo ASCII H required to define a symbol In
——— N — example A, SL=2-1 or 1
SL =1 Reserved
Two
Symbol
Words
15 8,7 [} “Reserved” indicates that these
bits are reserved for use by
ASCII P ASCII blank other program modules
—TT T —
Must specify a blank
1 7 " -
One 5 8 N 0 Relo'™=Memory type
T relocated to
Symbol Symbol value J 00=ABS
| » e
\xolrjj ! 91=PROG
10=DATA
Only one 16-bit word is required to 11=COMN
contain the value assigned by the
assembler. Thus, only one is used.
EXAMPLE B. SYMBOL = S
15 13 12 10 .9 8,7 (4] Same as
One st defined for
Symbol 0 0 0|0 0 0|Relo ASCII S ‘Reserved’ example A
Relo’ :
Word —— S — € above
SL-0 Reserved
One 15 8,7)
T
Symbol Symbol value
Value I
Word Al

Again, only one 16-bit word is required to contain the symbol value.
Thus, only one is used.

Figure 8-28. Assembler Symbol Record/Symbol Definition Block Examples

8-101

Model 64193A
6805P Series Emulator/Analyzer

Record
Word # Contents
/] Record type = 1
- ==
First Record
Microprocessor Microprocessor Name and ID Definition
Configuration Block
(Fixed length,
26 words) _ _23 —
24 Address Size
25 Checksum for this record
> 4 Record type = 2
Global Symbols
First Record __| Global Symbols Defimitions
(Vanable length.
128 words. max)
n
S (ng127) Checksum for this record
7 ') Record type = 2

Global Symbols
Last Record _|

(Variable length,

128 words max.)

Global Symbols Definitions

> (n<127) Checksum for this record
1) Record type = 3

Program Names
First Record
— P am Name Definitions
(Variable length rogr a !

128 words max.) ‘

n
\ (n=127) Checksum for this record

2 Record type = 3

Program Names
Last Record

(Vanable length

128 words max |

Program Name Definitions

W
3
I/\‘

127) Checksum for this record

/ 0 Record type = 4
Relocatable File
Memory Allocation
n
L(ngz-,) Checksum for this record

Figure 8-29. Linker Symbol File Overall Structure

8-102

Model 641934
6805P Series Emulator/Analyzer

Record
Word #
Record type 1 "]
1
P Words 1 through 15 contain all zeros

A

° r

Microprocessor 15 13 12 11 .10 8 7 0 15

Name and MNL DL | xxx ASCII 1 16
ID Definition N
Block. A

(Fixed length: M Name < 9 characters. ID < 6 characters Name
8 words) E and ID words must be packed within this block
All unused words must be at the end of this
& block Unused last (LS} bytes must contain
ASCII blanks (Code 20H)

|
D

ASCII 14 \ ASCII 15 23

ADDR
hishift address size
SIZE s 24
Checksum for this record 25

Notes

1.

Words 1 through 15 are added so that word positions 16-23 in this name record contain the same data as do the
corresponding word positions in the name records of the relocatable files.

MNL =Number of 16-bit words -1 required to define the microprocessor name. At least one character in the
“ASCII 1" byte is required. Thus, with a one character name, MNL =0. If all nine characters are used (5 words),
MNL = 4.

IDL = Actual number of 16-bit words required to define the user ID. If one word is used, IDL=1. If all three
words are used, IDL=3.

Bits 10, 9, and 8 - “don’t care” condition.

ASCI| bytes 1-15 contain the name and ID characters. These words must be packed. That is the ID words must
follow the name words. Unused words must be at the end of the block. An unused byte in either a name or ID
word must contain an ASCII blank (Code 20H).

Word 24 indicates address size where “address size” = 1 indicates one-word addresses (16 bits) and “address
size” = 2 indicates two-word addresses (32 bits). “hishift” used when converting logical addresses (segment,
offset) to physical addresses.

The checksum contains the arithmetic sum of the binary values of words @ through 24.

Figure 8-30. Microprocessor Configuration Record Structure

8-103

Record Type —

First Symbol

GLOBAL SYMBOLS RECORD

Contents

Model 64193A
6805P Series Emulator/Analyzer

Record type 2

Identifies Global Symbol
Record in Linker Sym File

Symbol word or words. Identifies
symbol characters and where they
are relocated

(L1 =1 to 8 words)

Symbol and value words
must be packed. If

only one of each is required,
then only two are used in
the definition block. (See

Deftinition Block figure 8-32)
Variable length
from 2 words
min. to 10
words max

LS 16-bit

Symbol value®*
word

L2 - —_—

MS 16-bit — MS word I1s
word used only if
required to
specify symbol

(L2 =1 or 2 words)

NV

Second Symbol

value
Definition — Symbol and value words
Block*®
n

etc
Contains the
arithmetic sum of
the binary values
of words @
through n-1

Checksum for this record

Notes
“For block structure details see “Global Symbols Definition Block Diagram.”

“*Symbol value assigned by assembler. If relocatable value (not ABS), it will be relocated by the linker.

Figure 8-31. Global Symbol Record Structure

8-104

Model 641934
6805P Series Emulator/Analyzer

15 13 12 10 9 8 7]
s GSL X X X | Relo ASCIlI 1 - 1(Tmn7 -
. ASCII 2 ASCII 3
g ASCII 4 ASCIl 5
L ASCII 6 ASCII 7 Variable
ASCII 8 ASCII 9 Lenath
ASCII 19 ASCII 11
ASCII 12 ASCIl 13
(L) ASCII 14 ASCII 15 8 (max)
Symbol Value assigned by linker (LS 16 bits) -T(m:) -
val (L2) Value assigned by linker (MS 16 bits — if used) 2 (max.)

Notes

1.

GSL = Number of 16-bit words -1 required to define a global symbol. At least one character is required in the
“ASCII 1" byte. Thus, with a one character name, name length = 0. If all 15 characters are used (8 words), name
length = 7.

Bits 12, 11, 10 - "don’t care” conditions.

“Relo” contains the binary code for area relocated to as follows: 80 = ABS, 81 = PROG, 10 = DATA, and
11 = COMN.

The bytes labeled ASCII 1-15 are the maximum number of bytes available to define the symbol. Only the actual
number of 16-bit words required to define the symbol will exist. However, if the first byte (MSB) is used, then the
second byte (LSB) must contain an ASCII blank (Code 20H).

The symbol value is assigned by the assembler. If a relocatable value it will be relocated by the linker. The 8086
microprocessor symbol values are in segment, offset form where LS = offset and MS = segment.

Figure 8-32. Global Symbol Definition Block

8-105

8-106

Model 6L4193A

6805P Series Emulator/Analyzer

PROGRAM NAME RECORD

Identities Program Name
Record in Linker Sym File

Fixed Length Block
14 Words
Words not required

F— will contain
meaningless information
and must be at the
end of the block

|__ Fixed length block
14 words

Contains the arithmetic
sum of the binary

values of words
4 through n-1

Word
Contents
[} Record type 3
i N
Program Name and ID. Name < 9
characters. ID < 6 characters
Name and ID words must be packed
Unused words must be at the end of this
First — block
Program Name
and Addresses — 8
Definition
Block * 9
PROG. DATA. and COMN load
addresses (Addresses not used will
! contain all @'s)
N <
a S
Program Name
Second — - —- — — - - - - — — 41
Program Name
and Addresses — Program 1D
Definition
Block * - e e — - — - = =
\ PROG. DATA. and COMN load
\ 29 addresses /
etc
]
n Checksum for this record
(n=127)
Notes

“For block structure details, see figure 8-34.

Figure 8-33. Program Name Record Structure

Model 641934
6805P Series Emulator/Analyzer

Block
Word #
15 13 12 1M 108 7 [}
PNL IDL Disc ASCII 1 1
N
A
M Name < 9 characters. ID < 6 characters. Name
E and ID words must be packed within this block Fixed
All unused words must be at the end of this - Length
& block. Unused last (LS) bytes must contain Block
Program ASCII blanks (code 20H)
Name and |
Addresses D
Definition __|
Block ASCII 14 | ASCII 15 8)
Length
Fixed PROG area 15 LS PROG address word "] 9
14 Words load address
° 31 MS PROG address word 16| 10
DATA area 15 LS DATA address word [} 1
load address | 5, g DATA address word 6| 12
13
COMN area 15 LS COMN address word 0
N load address | 37 g COMN address word 6] 14

Notes

1.

PNL =Number of 16-bit words -1 required to define the program name. At least one character in the "ASCII 1"
byte is required. Thus, with a one character name, PNL=@. If all nine characters are used (5 words), PNL = 4.

IDL = Actual number of 16-bit words required to define the user ID. If one word is used, IDL = 1. If all three words
are used, IDL=3.

DISC =The indentifying number of the disc upon which the program resides.

ASCII bytes 1-15 contain the name and ID characters. These words must be packed. That is - the ID words must
follow the name words. Unused words must be at the end of the block. An unused byte in either a name or ID
word must contain and ASCII blank (Code 20H).

Load Address Words - The load address words contain the load address assigned by the linker to this program.

Unused address words contain all zeros. Load addresses for the 8086 microprocessor are in segment, offset
form where LS = offset and MS = segment.

Figure 8-34. Program Name and Address Definition Block Format

8-107

8-108

n
(n- 127)

Model 64193A

6805P Series Emulator/Analyzer

Record type =~ 4

LSW low bound

MSW low bound

LSW high bound

MSW high bound

Program ordinal number

FNL

IDL
1

ASCII 1

fixed length 8-word file

name with user 1D in

standard file name format

(note: file names are not the

same as program names)

The above block may be

repealed until the record

is full

Checksum for this record

Figure 8-35. RANGE Definition Block Format

Model 6L4193A

6805P Series Emulator/Analyzer

15 File Structure]

First Record

Contains up to 128 16-bit
words with 2 ASCI! bytes/word

max.

-—
I

3
I
- 3

Second Record

Same as first record

VA NS

etc

SOURCE FILE FORMAT

("]
— 128 words
max

Variable length
128 words

Variable length.

Figure 8-36. Source and Listing Files - Overall Structure

USERS BUFFER

WORD #

Y

n
(N 127,

* * CONTENTS ADDR &
WORD DATA FORMAT R/W Code cA
15 8 7 0 # Words CA-1
—+
Two ASCII [ASCII 1 ASCII 2j><: 15 (ASC 1) 8 | CA-2
Bytes
Y L - 7 (ASC 210 cA-3
15 8l7 [}
T
Two ASCII l ASCII 3 ASCII 4 15 (ASC 3) 8 CA-4
Bytes T +
7 (ASC 40 CA~5
) 15 8,7)
T
Two ASCII | ASCIl x ASCIl y 15 (ASC x) 8
Bytes T 4 /
7 (ASCy) 0 CA+n
(n<257)

Figure 8-37. Source and Listing File Format

8-109

Model 64193A
6805P Series Emulator/Analyzer

Record
15 File Structure) Word #
o
First Record
| _ Fixed length.
Specifies data width base and 4 words.
transfer address. \
3
(]
Second Record
| Variable length
Specifies # of data bytes in 128 words, max.
this record, and load address
for record followed by data words. v
n
(N<127)
]
Third Record
| Variable length.
128 words, max.
Same as second record /
n
(N=127) /
—~ etc

Figure 8-38. Absolute File - Overall Structure

8-110

Model 64193A
6805P Series Emulator/Analyzer

ILLUSTRATION A.
RECORD 1 FORMAT ONLY.
(Format for all Other Records Shown on lllustration B)

USER BUFFER

ABSOLUTE FILE RECORD 1 FORMAT"
{ ; ‘ CONTENTS ADDR ‘

Word # Word Data FORMAT R/W Code CA
Words t CA-+1
i
Ll
0 DataBus Lvs 87 0 15 8| ca-2
Width T }
7 o| CA-3
t
1 Data Width |15 8 7 0 15 8| CA-4
Base"* T +
7 0| cA-5
+
2 Xfer Address |15 8 7 [} 15 8] CA+6
LS Word*** %
L 7 o| ca-7
32-BIT
L ADDRESS
3 Xfer Address 131 2423 16 31 24| ca-8 ALL ZEROS
MS Word*"* } FOR PROM-
L 23 16| CA-9 ABSOLUTE
FILES

Checksum tt

Notes
“Record 1 must precede all other records in an absolute file and it must always be formatted as shown.
(Always four words.)

“*The Data Width Base is the minimum addressable entity (i.e., group of bits) used by the microprocessor.
Normally this will be 8 bits but not always.

“**The transfer address is the value loaded into the microprocessor program counter.
This value is all zeros for PROM Absolute files.

****Width of processor data bus (i.e., 8, 16 etc.)

t Total number of words in record excluding checksum and number of words, (i.e. n-2), always equal to 4 for
record 1.

tt The checksum is the module 256 sum of bytes CA+2 through CA+9.

Figure 8-39. Absolute File Formats

8-111

Model 64193A
6805P Series Emulator/Analyzer

ILLUSTRATION B.
FORMAT FOR ALL RECORDS EXCEPT RECORD 1
(See lllustration A for Record 1 Format)

USER BUFFER

ABSOLUTE FILE RECORD FORMAT
‘ FOR ALL RECORDS EXCEPT #1 i ‘ 128 Words Max }
7 ("]
Word # Word Data Format R/W Code CA
Words CA+1

d
v
0 # Data l 15 8 J 1) 15 8 CA+2
Bytes T * . P CAs3
'
+
1 Load Addr L15 8 7 (4] 15 8 CA+4
LS Word* T +
| 7 ("] CA+5

32 BIT
i ADDRESS
1
2 Load Addr L31 24 23 16 31 24 CA+6
MS Word ——
r 23 16 CA+7
15 8 N 7 2
T
3 Data Word 1 L BYTE 1 N BYTE 2 15 (BYT 1) 8 CA+8

._.1
S

7 (BYT 2) CA+9

15 8 7 0

L
3+m Data Word m [BYTE x BYTE y**]—><: 15 (BYT xi 8
| CA+n
7 (BYTy) 0 (< 257)

-+

Note
“The load address is the address of the first location into which this record is stored.

“*This last byte will be a pad byte if the record contains an odd number of bytes. This is required to fill up the
word boundary.

***The checksum is the module 256 sum of bytes CA+2 through N-1.

Figure 8-39, Absolute File Formats (Cont’d)

8-112

Model 641934

6805P Series Emulator/Analyzer

Word
_
First Record __ﬂ__
Program
Description 1
(Variable length,
128 words, max.) n
n<127,
[}
Global Symbols
First Record l
(Variable length, "1
128 words, max.) n
. —o=12D

Global Symbols

Last Record
(Variable length,
128 words, max.)

Data Block

First Record
(Variable length,
128 words, max.)

Data Block
Last Record
(Variable length,
128 words, max.)

External Symbols

First Record
(Variable length,
128 words, max.)

External Symbols

Last Record
(Variable length,
128 words, max.)

Local Symbols
First Record
(Optonal)
(Variable length,
128 words, max.)

Local Symbols
Last Record
(Optional)
(Variable length,
128 words, max.)

End

Record
(Fixed length,
5 words)

Contents

Record 1D word = 1

(n<127)
r—— -

!

n
_ _.(n<eD

Program Description Block

Checksum for this record

Record 1D word = 2

Global Symbols Definitions

Checksum for this record

_—/

Record ID word =2

Global Symbols Definitions

Checksum for this record

Record ID word =3

Data Block

Checksum for this record

'_/

y—— ———

!

n

Record ID word =3

Data Block

Checksum for this record

(n<127)
m =

!

| _ i _

Record ID word = 4

External Symbols Definitions

Checksum for this record

///

Record ID word = 4

External Symbols Definitions

Checksum for this record

Record ID word = 6

Local Symbols Definitions
(Optional)

Checksum for this record

These records can
be in any order,

| but external symbols
must come before
they are referenced
in data records.

_}/

n

Losi2n_

Record 1D word = 6

Local Symbols Definitions
(Optional)

Checksum for this record

[4

Record 1D word =5

Do

End Block

5

Checksum for this record

Figure 8-40. Relocatable File Overall Format

8-113

Model 641934
6805P Series Emulator/Analyzer

Identifies Program 15 8,7 2
Deseription Record in—(-
Relocatable File Record (D word = 1 9
PnL | oL | oisc] ASCII 1 1
N SOURCE PROGRAM
M Name <9 characters. ID <6 characters. Name
s E and ID words must be packed within this block.
b ource All unused words must be at the end of this
N rograrg & block. Unused last (LS) bytes must contain
ame an ASCII blanks (Code 20H).
Length == |
Definition D
ASCII 14 ASCII 15
Block SC 1 S 8
Lang(h PROG area | 15 LSW PROG length] 9
ixed length 10
14 Words 9 31 MSW PROG length 16
DATA area | 15 LSW DATA length [’ BRI
length =57 Nisw DATA length 6] "2
COMNarea| 15 LSW COMN length o 13
y e N length [737 msw COMN length 6] 14
umber o xternals_(
Definition Block OsNo =5121 15 No_of Exterrnals 2L
-~ ML | oL Jeee | Ascint 16
Microprocessor N MICROPROCESSOR
Nanje‘a_nd A Name <9 characters. ID <6 Characters. Name
1D Definition _J M and ID must be packed within this block.
Block E All unused words must be at the end of this
Length Fixed & block. Unused last (LS) bytes must contain
8 Words ASCII blanks (Code 20H).
|
] ASCII 14 ASCII 15
) . N 23
Date and Time
Block Date 24
Length Fixed Time 25
2 Words
~ ASCII 1 ! asci2 | 26
ee—
COMMENTS BLOCK 27
Com_m_e_nts Comments <22 characters. Must be 28
Definition packed within this block. All —
B!OCK— unused words must be at the end
Length Fixed of this block. Unused last (LS) bytes
11 Words must contain ASCII blanks (Code 20H).
" ASCII 21 1 ASCII 22 36
~ 15 LSW Start Org 0137
31 MSW Start Org 16 | 38
Absolute Code 15 ﬂ End Org 2]3
Segment 31 MSW End Org 76 | 40
Description Block _] 4
Length Variable
0 - 88 Words
Contains the
Arithmetic Sum of the
Binary Values of : n
f h
Words 8 through m-1. { Checksum for this record (<127)

NOTES:
1.

oA w

8-11Y4

PNL and MNL = Number of 16-bit words-1 required to define program or microprocessor name. At least one character in the
“ASCII 1" byte is required. Thus, with a one character name, PNL or MNL = 0. If all nine characters are used (5 words) PNL or
MNL = 4.

IDL = Actual number of 16-bit words required to define the user ID. If one word is used, IDL = 1. If all three words are used IDL
=3

Disc (in program name segment) - The identifying number of the disc upon which the program resides.

Bits 10, 9, and 8 in microprocessor name segment always contain 900.

'ASCII bytes 1-15 contain the name and ID characters. These words must be packed. That is; the ID words must follow the

name words. Unused words must be at the end of the block. An unused byte in either a name or ID word must contain an ASCH
blank (Code 20H).

Length bytes or words - Contains the number of bytes or words (processor dependent) of code produced by the assembler or
compiler in each of the three relocatable sections; PROG, DATA, COMN.

Number cf externals - Contains the number of external variables and procedures defined in the module.

Comments - Contains up to 22 ASCII characters defined by the NAME psuedo in the assembler or compiler. All unused
characters must contain ASCI| blanks (Code 20H).

Absolute code segment description - Contains @ to 22 entries of four 16-bit words. Each four word entry defines an absolute
code segment declared in the assembler or compiler.

Figure 8-41. Relocatable File Program Description Definition Block

Model 64193A
6805P Series Emulator/Analyzer

15 8 7
Identifies Data 2
Record in —-E Record ID word =3 0
Relocatable File -
Defines Relocation Relocation | 15 LSW Relocation Address 1
Address address area | 15 Msw Relocation Address (if used) o] 2
Identifies File Type _C X
Destination of Relocation Relocation 3
Identifies Events —E Event selectionarea | 11 | 12 | ta [ra] s | te [17 | 18 | 4
to Follow
NOTE
Event and order of the
following events are selected by event
selection, above (see notes).
15 8 7
o Tn =00 l Don't Care I Low Byte]
15 8 7 [}
Tn = 01 I High Byte l Low Byte :I
15 8 7 6 0
Words or Word l Relo] Format No
Groups Selected
by Word 4 for — Tn = 10 LSW Unrelocated Address
Events to MSW Unrelocated Address (Optional)
Follow Word 4
Optional Skeleton
15 7 6 0
External ID No. I Format No.
Tn =11 LSW Signed Displacement
MSW Signed Displacement (Optional)
k Optional Skeleton
Contains the
Arithmetic
Sum of the n
heck: for th
Binary Values -‘ I Checksum for this,record]‘5127)
of Words

@ through n-1

NOTES:

1. Relocation Address Words - The relocation address words contain the relocation address assigned by the
linker to this program. The MSW is used only when the ID offset = 3.

2. Relocation contains the binary code for area relocated to as follows: 90 =ABS, 91 =PROG, 10 =DATA, and 11
= COMN.

3. Event Selection Area - Selects events to follow. T1through T8 may contain any one of codes 00, 81, 10, or 11.
Codes are defined as follows: @@ = one byte absolute with no modifications, @1 = two bytes absolute with no
modifications, 10 = relocatable reference, and 11 = external reference. As T1 through T8 are read, the event
selected by the specific code will be executed.

4. Tn=00- Produce one byte of absolute code, which is found in the low order byte of the corresponding word.

5. Tn =01 - Produce two bytes of absolute code, which is found in the corresponding word.

6. Tn =10 - relocate the address to be found in the second word (and optionally, the third word) based on the
relocation code in the first word. Then produce an absolute code based on the processor dependent format
number in the first word and skeleton, if present.

7. Tn=11-look uptheexternal symbol whose numberisinthe first word(which has been previously definedina

type 4 record). Add the displacement and then produce an absolute code based on format number and
optional skeleton.

Figure 8-42. Relocatable File Data Definition Block

8-115

Identifies External _.(
Symbols Record
in Relocatable File ¢~

First e
Symbol Definition
Block, Length
Variable From
2 to 9 Words

6805P Series

15 8 7

Model 64193A
Emulator/Analyzer

Record ID word = 4

roOmT<w

est | ee10e | Ascui

Symbol <15 characters. ASCII 1
must contain character. For all
others, unused last (LS) byte must
contain ASCII blank (Code 20H).

ASCII 14 1 ASCII 15

Last e

Symbol Definition
Block, Length
Variable From

2 to 9 Words

External ID Number

T ©®

est | oee100 | ascut

romZT<w» |

Symbol <15 characters. ASCII 1
must contain character. For all
others, unused last (LS) byte must
contain ASCII blank (Code 20H).

ASCII 14 ' ASCII 15

Contains the _E
Arithmetic Sum

of the Binary
Values of Words
@ through n-1.

NOTES:

External ID Number

Checksum for this record

n
(£127)

1. ESL =Number of 16-bit words required to define an external symbol. At least one characterinthe ASCI| 1 byte
is required. Thus, with a one character definition, ESL = 0. If all 15 characters are used (8 words) ESL =7.

2. Bits 8 through 12 always contain 90100.

3. The bytes labeled ASCII 1-15 are the maximum number of bytes available to define the symbol. Only the actual
number of 16-bit words required to define the symbol will exist. However, if the first byte (MSB) is used, then
the second byte (LSB) must contain an ASCII blank (Code 20H).

4. External ID Number is assigned by the assembler or compiler. ID number is <511.

Figure 8-43, Relocatable File External Symbols Definition Block

8-116

Model 6L4193A
6805P Series Emulator/Analyzer

Identifies End

Record in Relocatable 15 0
File Record ID Word=5 0
Defines Relocation 1
Transfer Address
Identifies Relocation Transfer Lsw Transfer Address 2
Destination address area MSW Transfer Address 3
Contains the Arithmetic Checksum for this record 4
Sum of the Binary

Values of Words
0 through 4

Notes:
1. Relocation-contains the binary code for area relocated to as follows: @0=ABS, 31=PROG, 10=DATA,
11=COMN, 100=No transfer address.

2. Transfer Address Words-Contains the address where control will be transferred to when the program is run.
Only one module in a program may have a transfer address, and it is defined in the END label psuedo in the
assembler or the presence of the main program block in a PASCAL module.

Figure 8-44. Relocatable File End Definition Block

8-117

Model 641934
6805P Series Emulator/Analyzer

8-118

Model 6L4193A
6805P Series Emulator/Analyzer

Appendix A

SYNTACTICAL VARIABLE DEFINITIONS

The syntactical variables used throughout this manual are described in
this appendix.

<ABSFILE>

The <ABSFILE> is the file identifier of an absolute file that contains
the emulation program. The emulation program is placed into the file by
assembling and linking to the file before application to the target mic-
roprocessor. <ABSFILE> has the same format requirements as the <FILE>
variable that is described later in this appendix.

<ADDRESS>

The <ADDRESS> variable defines a bit pattern of up to 16 bits which
specifies a particular location in mapped memory. That bit pattern can
be represented by a binary, octal, hexadecimal, or decimal number; a lo-
cal or global symbol; or a mathematical combination of numbers or sym-
bols. <ADDRESS> has the same format requirements as the <VALUE> vari-
able that is described later in this appendix.

<ADR__LST>

The variable <ADR LST> contains a list of addresses, separated by com-
mas, where the addresses are within the address space defined by the
processor.

<CMDFILE>

The <CMDFILE> variable is the file identifier for an existing emulation
configuration file. This command file contains the organizational com-
mands for the processor to be emulated. The command file can be
retained or modified for further use. <CMDFILE> has the same require-
ments as the <FILE> variable that is described later in this appendix.

A-1

Model 6L4193A
6805P Series Emulator/Analyzer

<FILE>

The <FILE> variable is used to identify files generated or accessed by
the development system commands. <FILE> consists of the following
parameters:

<FILE NAME>[:<USERID>][:<DISC#>]

where:

<FILE NAME> is the identifier given to a particular
file. <FILE NAME> must begin with an
upper case alphabetic character and can
have a total length of nine characters.
After the first character, any upper or
lower case alphanumeric character or an
underscore can be used. If more than
nine characters are specified, the name
is truncated to the first nine
characters.

<USERID> is the identifier assumed by a particular
system user. <USERID> must begin with an
upper case alphabetic character and can
have a total length of six characters.
The characters following the first
character can be any upper or lower case
alphanumeric characters, including the
underscore. If more than six characters
are specified, the userid is truncated to
the first six characters. If a userid is
not entered, the current userid is used
as the default.

<DISC#> specifies the disc on which the file is

stored. <DISC#> can be any digit from 0
through 7, but it must correspond to the
Logic Unit number assigned to one of the
discs at system power up. The default is
to search the discs for the file
specified, or to create the file on disc
zero.

<REAL__VAL>

The <REAL VAL> variable is an alphanumeric representation of a
real number value. The syntax is:

{[+]}]
{[+]} .<integer> [E {[-]} <integer>]
{[-]1} <integer>
+]} <integer>

[+]
(-1}

P Rt Nt Nt Lt
N N Nt N

AN AN

E

Model 6L4193A
6805P Series Emulator/Analyzer

Where <integer> is an unsigned decimal integer.

<STATE>

The <STATE> variable specifies a particular state on the emulation bus.
The <STATE> expression consists of an address, a data, and a status
specification.

<VALUE>

<VALUE> is a syntactical variable that allows specification of symbols
(labels), numbers, parentheses, and math operators (+, -, /, (), ¥) fol-
lowing standard algebraic rules to produce a value. Legal operands are
defined as follows:

<NUMBER> is an alphanumeric representation of a 16
bit pattern of ones, zeros, and don’t
cares (X’s). The bit pattern can be
represented in binary, octal,
hexadecimal, or decimal where binary is
indicated by a "B", octal by a "Q",
hexadecimal by an "H", and decimal by a
"D". Decimal is the default value and
the use of "D" is optional.

Examples:

(A+B)*C
10101011XXXXXXXB
1U5XXXQ

2563

The <LOCAL SYMBOL> variable represents the name of a symbol which can
only be used by the program module in which it is defined. The <GLOBAL
SYMBOL> variable represents the name of a symbol which can be called by
program modules other than the one in which it is defined. The global
symbol must be declared as such by a GLB statement in the source file.

<LOCAL SYMBOL> is specified as: SYMBOL NAME [: <MODULE>]
or: #<LINE #> [:<MODULE>] where
<MODULE> is the same as <FILE>.
For PASCAL programs, lines which generate
object code produce local line # symbols
corresponding to the source line.

<GLOBAL SYMBOL> is specified as <SYMBOL NAME> or
:<MODULE> which produces
the starting address of the specified
<MODULE>.

<MODULE> specifies the file in which the local
symbol is defined. If no <MODULE> is
specified, the global symbol table

A-Y4

<STRING>

Model 64193A
6805P Series Emulator/Analyzer

associated with the absolute program file
loaded by the emulator is searched for
the <SYMBOL NAME>. If the symbol

name is not found in the global symbol
table, a search is made of the last
referenced local symbol table. If the
symbol name is not found in the local
symbol table, an error message is
displayed on the status line. For more
information, refer to the description of
<FILE> which is included in this
appendix.

is an ASCII string delimited by " or °’
and produces a 16 bit code.

Examples:
’A° O0U1H
"AB" L142H

Model 64193A
6805P Series Emulator/Analyzer

Appendix B

6805P/R/U SERIES STATUS AND ERROR MESSAGES

STATUS MESSAGES

ACCESS TO GUARDED MEMORY, ADDRESS OXXXXH - Guarded memory is ac-
cessed by the 64000 station through display memory or modify
memory commands. OXXXXH is the address in guarded memory.

BREAK IN BACKGROUND - A break has occurred and the emulator
processor is executing in the background program. See Chapter
2 for details on "break".

BREAK UNKNOWN STATE - Control of the emulator processor is
lost. A reset command should be issued to recover the proces-
sor.

NO MEMORY CYCLES - The processor has not done a wvalid memory
cycle during the last 500 ms. This could be result of a WAI
instruction.

RESET IN BACKGROUND - A reset command has been issued by the
64000. The emulator processor is in background.

RESET UNKNOWN STATE - Control of the emulator processor is
lost. A reset command should be issued to recover the proces-
sor.

USER RESET - The reset line is pulled low by the target system
(¥RESET = 0).

RUNNING - The emulator processor is running in foreground. See
chapter 2 for details on "foreground".

STEP COMPLETE - Single-stepping was successfully completed.

STEP IN PROCESS - The emulator is single-stepping through target
program.

ERROR MESSAGES

COMMAND CAUSES BREAK, RUNS RESTRICTED TO REAL-TIME - If the
emulator is running and "restrict to real-time only" was

B-1

B-2

Model 641934
6805P Series Emulator/Analyzer

specified in the configuration, commands that will cause the
emulator to alternate between target program and background
program are not allowed, i.e., display registers, modify
memory, etc. See chapter 4 for details on real-time restric-

tions.

COMMAND NOT ALLOWED, PROCESSOR NOT IN BACKGROUND - The com-
mand requires the emulator processor to be in background. An
attempt has been made to break the processor, but was not suc-
cessful. The emulator will recover to a "Break in background”
state once the break has succeeded.

ILLEGAL MEMORY ACCESS PC=0XXXXH - An illegal memory access by
the emulator processor has occurred during execution of user
code (write to ROM or access to guarded memory). PC=0XXXXH is
the address of the last opcode to be executed by the emulator
processor before the illegal memory access.

ILLEGAL OPCODE OXXH AT OXXXXH - An illegal opcode was executed
by the emulator processor. The opcode and the opcode address

are displayed in the message.

Model 64193A
6805P Series Emulator/Analyzer

Appendix C

RADIO FREQUENCY INTERFERENCE

With an emulation system installed in the Model 64000, several methods
of operation (physical setup) may result in an increased emission of
radio frequency noise. To reduce the r.f. noise level, any of the fol-
lowing techniques may be used:

e.

When the emulator is used infrequently, disconnect the emulator
pod and cables from both the host system and target system.

For systems that use the emulator intermittently, select '"ex-

ternal clock” and disconnect the pod cable from the target sys-
tem when not in use.

Consistent with design needs, minimize the +time that the
emulator is used without being connected to a target system.

All 64000 system covers should be in place and properly at-
tached to the mainframe (all housing screws tight).

Emulator performance verification is a service tool. Minimize
its usage consistent with performance assurance.

NOTE
Running the emulator while connected to a target

system should produce little additional r.f. noise
above that generated by the target system itself.

C-1

c-2

Model 6L4193A
6805P Series Emulator/Analyzer

Model 6L4193A
6805P Series Emulator/Analyzer

Appendix D

EMULATOR ELECTRICAL PROPERTIES

The emulation equipment, when connected to a target system, will respond
similarly to the microprocessor it emulates. The timing of the proces-
sor signals at the probe closely approximates the timing of the micro-
processor normally inserted in the same plug. Voltage and current
requirements for the drive and receive circuitry of the emulator are
generally equivalent to LS TTL specifications. +the capacitive loading
of the emulation probe is equivalent to the LS TTL gate capacitance plus
the capacitance of the probe cable, which is approximately 20 pF.

NOTE

The emulation pod presents greater drive capability
and slightly greater capacitive loading to the tar-
get system than +the processor being replaced.
Consequently, it is conceivable that a user’s sys-
tem, which operates under emulation, may not operate
properly when driven by a microprocessor IC. Noise
margins and signal levels in marginally overloaded
designs may not cause problems when driven by emula-
tion but may be fatal to system operation under nor-
mal microprocessor drive conditions. Be sure that
your design allows for the added drive and loading
specifications of the 64000 emulation pod.

Model 64193A
6805P Series Emulator/Analyzer

Model 641903A
6805P Series Emulator/Analyzer

Appendix E

6805 REGISTER FORMAT AND NAMES

M6805 REGISTERS [OFFSET 0060H]

PC Opcode A IX CC[hinzc] SP Next PC
0000 AE LDX#60H FE 60 01000 OO0TF 0002
NOTE

The offset is applied to the PC and Next PC only
(0062H-0060H = 0002H).

To modify a 6805 register, use one of the following register
names:

PC -Program counter

A -Accumulator

IX -Index register

cc -Condition code register

SP -Stack pointer (valid 60H - TFH for the P series)

Polarities for the CC bits are 0 = clear and 1 = set. The bits
are identified below.

h - half carry

- interrupt mask
negative

- zero

- carry/borrow

0ONP P
]

E-1

Model 64193A
6805P Series Emulator/Analyzer

Model 64193A

6805P Series Emulator/Analyzer

<ABSFILE>....
<ADDRESS>. ...
<ADR_LST>....
<BREAK>.
<CMDFILE>. ...
<CMD_FILE>...
<COUNT>......
<DISC#>......
<FILE NAME>..
<FILE>.......

<GLOBAL SYMBOL>

.

.

.

.

<LOCAL SYMBOL>.

<MODULE>.....
<NUMBER>.....
<OFFSET>.....
<QUALIFIER>..

.

.

.

<RANGE_STATE>.

<REAL VAL>...
<STATE>......

.

.

.

.

.

.

.

<STATUS IDENT>.
<STRING>.......
<TRIGGER>......
<USERID>.......
<VALUE>........

ASCII string delimiter...
Absolute File............
Absolute time, count.....
Access to guarded memory.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Accessing an existing file, disc I/O.
Again....cvviii ittt
Analysis and interactive commands.
Analysis board...........c.cviiun
Analysis commands................
Analysis, functional description.

And function...................
Asmb_Sym........co00iiiiiian
Assembler symbols file, format.
Assembly..........ciiiiiiin..

.

.

.

b

BNC ports......cooiiiiiiiiinn.,
Background controller...........

.

.

.

.

.

.

.

.

.

.

ceeee . 172,5
4

I A A B B

.
.
.
.
.
.
.
.
1 -

1o i

> m;>-§ B o

I-1

I-2

dodel 64193A
6805P Series Emulator/Analyzer

BacKground MeMOT Y.« v vvveenreeeeennennnreneeeneennnnnennan. 2-5, L4-8
Background state....... .o i e e 2
BaUud TatesS. .o oueeneneennnenneeneennenneaneann B < B h
BreaK. .o ittt it e e e e e e e e, 27, 522
Break in background.vetivneeennneneinnennnnenaan. 2=k
Break on measurement complete................2-5
Break on trigger........... N
Break unknown state........ .. e e
Break, sources Of ...ttt ittt it e
Bus orientation, 64000 Logic development station...............
Bus, HP-IB. ... ittt ittt it etentesnsosnneeosoesssonasoossas
BUS, I/0. ittt ittt e e e e e e e e e
Bus, emUlation.ot in ittt ettt eeeeteanenennenes
Bus, host Processor. ...ttt ittt ittt e iaenennea
Bus, intermodule.ttt ittt ittt ittt et e e e
Bus, SysStem. .. it e e i et e e

-

1

-

-

.
.

.
.

.
.

.
1

.
]

) '
PRRPBBBRERPADRUOW

.

NNI\)T\)NI‘\)I’})I’\)UJN\IW\]

CA -control addressS. ...ttt it ittt ittt
CC -condition register........ ..ottt innetnnenrnneennss
COMM Program COUNTeI . ..ot iit it ittt ittt ittt eeesnoneroasosnas

.
1

-I:'UC'T\J:’L.OCD

010 | O
Capacitive loading, emulation probe...........cciveeriverennennn.
Card selection. .ottt ittt eornoneeesoreneeoeenananenenenns
Changing the file name, disc I/0....... ..ottt rninnnrnnnnnnn...B-
Clock SELleCtion. o vu e vn et inee ittt b
Close display file...vuuuiniiirnneeirneieonoeesenneonaneansa.8-1
Close printer file......euviireireennenineeeeeonennnennannna...8-10
Command causes break.......oive e eoreersssasessesosssnsesnae B2
Command AelayS...vuuieeretnetiesetenenoestnsasosenseneenanennsaad=2l
Command file designation.........ceviireenennnnnneenennnnenn...4-13
Command file, LinKer......'viuiiinerrinereennneennneeeenna....8-26
Command not allowed. .. ve ittt etreneneeeoneneneeeeneeenenenanns B2
Command t0 825, . ittt ittt ettt e e e e .. 8-
Command word codes, keyboard.............ciivivrininnnereenn....8-23
Comment delimiter, command line.........c.vtiiivrirnrrnrneennaes.h
Common attributes, simulated I/O interfaces.....................8
Configuration qUEStIONS. . .v.vut et iren et eennnnnennnnnnesns

4

1

1
FNNNPUNRY

1
2
6
Configuration, emulation................cvvvvnunen.....1-2, 2-8, 4-6
Configuration, hardware.......... .o iiiiiniriererenenranaaaaaa.l-1
Configuration, interactive measurement.................0.......b-12
Configuration, MeMOTY. ..ot eetneeneireneenennnnenenneanenann. =6
Configuration, simulated I/O.........c.vvvvvununnennrnaan....4-10
Continue OPtiomn. ..cu e vr e irnrenerreeneenneneennenneenn.. 4-3,5
Control addresSs. .. .viveveierneneennenennneannnea....b-11,12, 8-2,9
Count mode, absolute.......ccvvrevreurnnnennnens....2-9, 6-14, 7-5
Count mode, relative.........cccuviereennnnnnnnnen....2-9, 6-14, 7-5
Creating a new file, disc I/0..... ..ttt rnneneeena....8-26

Model 64193A

6805P Series Emulator/Analyzer

DATA. . .ttt it it i
DATA program counter............
Data jamming............c.oovn
Default responses...............
Delay clock...........coevv.
Deleting a file, disc I/O.......
Direct memory access............

Disc file
Disc file

I/0 interface codes...
type numbers..........

Disc files. simulated I/O.......
Display I/0 interface...........
Display I/0 interface codes.......
Display and list command capabilities.
Display and list command syntax...
Display and list commands.......
Display command............o....
Display count...................
Display, simulated I/0..........
Display/list......ccvvvruunnnnnn
Display/list count..............
Display/list global_ symbols.....

Display/list

loc symb...........

Display/list memory.............
Display/list real number........
Display/list registers..........
Display/list trace..............
Don’t Care.....ovvuieeeennneaanns
Drive.....coiiii e

Electrical transparency.

.

o 0 00 0 e

Emul com file...................
Emulate.. ... ieiiinnnnnnnnns
Emulate command..................
and analysis, functional description.
and configuration..........o0vueen..
command file..........covvvuuuinnnn
control board............
controller, functional description.
memory, functional description.....
probe, capacitive loading......
ProCeSSOT. v vt vvrensnsonns

Emulation
Emulation
Emulation
Emulation
Emulation
Emulation
Emulation
Emulation
Enulation

Emulation,

processor, control of.
external.............

Emulation, internal.............
Emulator electrical properties..
Emulator operating modes........
Emulator status.................
End...oi ittt

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

DRE R

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

-

IS

. .

Sl -
-

-

e T
el T

:‘-
[M)
|]
w &

IR “a
DRI <
IO <
o e JT

1

ViwmngOmppPhwOPPDD EEED &V
1
WkhENRPNNNUVIRPRRPRPOWWOANDWMNDW

I-4

6805P Series

End command.ttt i et e e e e e e

Error codes, simulated I/O0.......uviiiiinnnennn..
Error MeSSagesS. o it ittt it
Execute. i e e e

Execution, emulation.......... ..o,

External emulation....... ..ot ennnenn. ..

File formats, 64000...... ... v,
File 1inking.ottt iiieiin i iinnneanenns
File types, disc, predefined.....................
File, absolute..ottt erreneenneennnns
File, asmb _sym..........0tiiinnirunreinenannnen
File, emulation command.cctvvreeienneennnns
File, link com....... ..ottt
File, 1ink Sym.......couitiiietiinteinnnneennn.,
File, 1isting....vuviuiin e nnennennenns
File, relocatable.t iinieeneenannenns
I'ile, SOUICE. . it ive it tieteeenostonnontossonnens
File, system command..........ciiiiinrernenrnnns

Foreground mMemOTY. . ..ottt it iiiinr oo ennns

Foreground operation............. .. i,
Foreground state....... . iiininiinenns
Functional transparency.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Global SYyMBOLS. .t ii ittt ittt ittt ensnenosnnns
Global symbols record........ovuiiniineennsanns

3172 Y 5
5t 1 B
Halt (no memory cycClesS)..vveerenunerneeennnnnnnn

IMB connectors.t ii ittt nnnnss
IMB functions, 40 channel analysis...............
IMB functions, 48 channel analysis...............
I1legal MEMOTY ACCESS . et vvetreenneensonesaessons
Tllegal opCode. v iv ittt ittt tne et tnonnsnsnnos
Illegal opcode detection.........cvviviiernnnnnnn
Initialize B25L. . vt iit ittt ittt
Installation.......c.cvviiiiniiinnniinnennenenennns

Model 64193A
Emulator/Analyzer

cee.....b-13, 8-3
e iee.....8-67

D A I A A .

B_
e 5
Y-
2_

D I I SR R Y

~N A

.
.
.
.

Y

mr})\n
R R w»

Model 6L4193A

6805P Series Emulator/Analyzer

Installation,
Installation,
Installation,
Installation,
Installation,
Installation,
Installation,

Interactive commands.......
Interactive measurement configuration.
Interactive measurement selection.....

Interface,
Interface,
Interface,
Interface,
Interface,
Interface,

Interfaces, subsystem....
Internal analysis board,

Jam background.........
Jam background, state..

KB-input-command word..
KB-output-command word.
Key, next page.........
Key, prev page.........
Key, roll down.........

.

.

.

.

.

.

.

.

.

.

.

.

40
Internal analysis board, 48
Internal emulation.....

.

o o e e

.

.

.

.

..

.

.

analysis board.........
bus cables..............
emulation control board.
emulation pod...........
emulation probe.........
memory board............
memory control board.....

o v e e e

RS-232 I/0...........
development station.
disc file I/0.......
display I/0...
keyboard I1/0..
printer I/0...

.

.

.

.

.

.

.

DR

channel
channel

.

.

.

.

.

.

.

.

.

.

D I IR

DR

e e .

.

Key, roll up.....vevvvvvunnn.
Keyboard I/0 interface codes.
Keyboard, simulated I/0.....

Link com file.......
Link sym file.......
Linker symbols file.

Linking files..
List...........
Listing file...
Load...........
Local symbols..
Lost character.

.

.

.

.

.

.

.

.

.

e e 00 0 .

e s e e o0

PR AR

e e

(643004)
(643024)

.

.

e e 0 e e

DR

DR

DRI

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
1

.
.
.
.
.
.
.

W 1
O~N~NNFOWoOoOMAFTOANMEDMPDWNDNLD W

.
.
.
.
.
.
.
1

NRER R

&=
]
[y

ceeve.....8-18
ieie.....8-18
eee...6-2, T-4
eie...6-2, T-4
cee...6-2, T-Y4
cee...6-2, 7-Y4

e, 8719

I-5

I-6

m

Measurement system command syntax, multiple module.
Measurement system command syntax,
Measurement system.................
addresses, offset....
boards........covviuin..
contents, hexadecimal and ASCII.
contents, mnemonic..
control board......
data.........
background. .
emulation...
guarded.....
target system.
trace.........
user.........
Mode command to 8251.
Modify...............

Memory
Memory
Memory
Memory
Memory
Memory
Memory,
Memory,
Memory,
Memory,
Memory,
Memory,

Modify
Modify
Modify
Modify
Modify
Modify

command. .

.

.

o e e o

configuration.
interactive measurement specification.
MEMOYY . v v v vveeen s
register........
simulated I/0...

.

.

.

.

.

.

.

.

.

No memory cycles.......
Nonreal-time emulation.
Next PC..........

Offset.
Opcode.
Opcode

D A I TR

D A

bit........

Open RS-232 File..
Open display file.
Open printer file...
Operating fundamentals.
Operating modes........
Operating modes, 8251.....
Operational command syntax.
Operational commands....
Options continue........
Options edit............
Output ports............

.

.

.

DRSS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

DR

.

.

.

.

o e e s e e

.

.

.

.

.

.

.

.

.

.

.

e e

.

.

.

s .
..
..
..
..
..
..
..
..
..
.
..

.

.

.

.

.

single module...

e e e oo

o s e .

.

.

.

.

.

.

.

o s .

.
EEREY
o0 e
DEREEY
DR
o o0 e
EER Y
o s e e
o o0 e
¢ oo e
DEEETEY
o e s e
o o0

.

.

.

.

.

.

oo s e e e

..

.

.

DR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Model 64193A
6805P Series Emulator/Analyzer

E’F‘If

o .
1
[S=Y

.
.
.

o E’t‘@\?‘O\H O\ R

.
.
.

.
.

'
POWVOROORPRMMPWMDNDOWUTW

...B-1
Lol 2-T
.o.6-L

...5-1
...5-1
~h'3,5
...l4-5
.. T-6

Model 641934
6805P Series Emulator/Analyzer

|
POV MMOAAOAWORLWUV &

L 1 N

241

PROG program counter.ottt iininerernnenenceneas

Fag

1S I
[
N

= 11 =
Pin protector, emulation probe.........cciiiiiirirreecrnnneana..l
o' st 2Nt R
o o v~ P
Positive KB output command word detection, 64000...............8-
Predefined file tyPeS..cvue e ereeivennneeneeoeenannonnnnenessB
Printer I/0 interface COAeS. .. .uuitintinreineeeeeeeennneneeenns
Printer, simulated I/0.. ... civiiiiitintnieieirereneennneeas. B-
Processor architecture..ottt iiiieeiennerenenannenass

Qualification, storage.......covvii it vt ieionsinsssnenssoeenesl=D
Qualification, trigger.....cov ittt iienernirsnensnssosesl=D
Qualifier, analysSisS.. . uvee i iie st oeersonesossscsassosseesl™5

R/W buffers, RS-232.. . ututienettnnneernnneeeennennneenneenns...8-45
RAM. o oottt e e e e e e i -0 10
RESE T . ottt ittt ittt et soeetoonessosssonnsssosseasesnsnnassad=3
20 S | e I Ko
s - 1 I AV - Y 1Y
RS-232 I/0 interface CodeS. ..t vtinnvienereeneneneeeneeees...8-U6
RS-232 read buffer....coveurtiinerinneeneerneennennnnnea.. .. 410, 8-45
RS-232 write buffer.....c.uveveeinnneeennneerennennneesas..4-10, 8-45
RS-232, simulated I/0.....ttineineennnneueeneeennnenennnns..8-4,39
Radio frequency interference.............iiviiiiuinineeeeeesass.C-1
Read. . ittt i i i i i it e s tt ettt ssosananseneeas2=T, 3=-3
Read from 825 L. ..t uurvnt i inenteireneeennneennnseenneeonaneees. 8-U43
Read keyboard I/0. . .cieuteenertneneeennneeennnennneennnnnns...8-18
Read MemMOTy . o i v ittt it ittt ittt eneosonsooneassosesssnsnsneaesald=3
Read/wWrite Dit. . vu vt iine ittt ettt rneinnneeneeneeeass3
Real time. ..ttt it ittt iineneeeneneeennneenns2=T, 6-5, B
Real-time emulation....... .ottt iiieeeeneosoreenenonnanesl
Real-time Selection....vvur i inninnneeneeueerneennunneneeneneees b
Register contents.ot iierennennnnrneenenoneeneennnnnnb
Register mames. ittt ittt ineoneoesoneesnneeneneeeennsl
Relative time......vutiiinnrnieenenneeneeeenenneeneenna2-9, 6~
Relocatable file.....veuuenmunnuenneeneeneeeeennneneeena.i-1, 8
Repetitively. .ottt ittt ineeranennenes 2-9, 5= h, 7-6
Reset. . i i i i i i i ittt i it seestenseneenneeD-13
Reset (Nno mMemory CyClesS) . veeeeveenerennneeennneenneeennnnnee.sB-1
Reset in background..........iiiiiiiniinieeioesenoneeesoneannneassB
Reset unknown state....... ... ittt nnennnnen. B

I-7

Model 64193A
6805P Series Emulator/Analyzer

Response to keyboard read request, 64000.......................8-19
Response, CAZ00. .ot tuu it et tneeneeeneeeeneaeenenennnenenene...8-20
Roll to/write line 18. ... vttt iiieeiiieeneneennaa...8-13
RUN COMMANA .+« ot v vt ettt et eee et eeeieeeeeeenennen..4-6,8, 5-14
Running the emulator.........c..iitiiiiiiiiiiieeenereeiennanaes 2-5
RUNNING the PrrOgIaM. .. oovuunerenneeennneneneneneneeeeneenneen.. -6

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Sample programs, simulated I/0..
SE1eCt COLUMM. v e e e vt ee e et e ettt ettt et eninennnee.B8-13
Sl LAl e oot e et e e et e e e e e ... 813
Shield, emulation control cable........eeevureeenenenenenenenn.. 1l
SIMULATE KOY e vttt ie it iee ittt et tetieeninnnaeaneneeeenesns..8-18
Simulated I/O configuration........... P [¥4
Simulated I/0 @rror COA@S ... vt vt onrrennennenneneeneeeensens..8-69
Simulated I/0, introduction..........c.iiiiiiiinrinnnerrnnnnn....8-1
Simulated I/0, OVeI'VIeW. . vttt et ittt iteenniennaenneen. 8
Single StePPINg. .o ittt i ittt i e i e 2
SOft Key 1abels. o vn it ittt ittt e e 3T
Soft key, trace status.......oi it e 3
Software interrupt instruction............... ... a2
SOUTCE FAll .t i vt ittt ittt it et et et e ieee -1, 89
Specifications, interactive measurement........................4-1
Specifications, soft key status............ . i 3"
) 1Y o T 2
State transition...... ..ot i i i i e e
State, foreground..ttt inrnennnerensnenas
State, jam background........... e e e e e e e e e
Status bits. . ittt i et e e e et e
Status byte format....... ... i i i3
Status From 825 . .. ittt ittt e e e e e e
StatUs MeSSaAZeS. vt vttt it it it e e e e e e
Status specification, numeric............... et e e
Status specification, soft key.....o i iiiiiiii i,
Status word format. ittt i i e e e e
Status, analyzer. .. vt ittt i i e e e e e e e
Status, emulation analySis.ttt ittt
Status, emulator. .. ittt ittt ittt e

- Ul

N

Ve
(o))

U1 -
a
VP OREFRPUOIOORPRENROORNDNEPWRDWUTWN

.

.
1

I\)LIOI\)I\)

™
H
=

.
.
1

@ -
1T W w
(o 2 NI

.

1

w N
|

.
1

B = <
Step complete. ..t e e e e e e e
SteP 1N ProCESS. vt ittt ittt it i e e e e e
Stop Trace. . i e e e e e e e e

o W
[

g e o=

Symbol definition Blocks.viiiii it ittt
Symbolic referencing...... ..ottt ittt eieennenas
Symbols, global and locali.......covviiininniinevneenneea. .28,
Syntactical variable definitions........ ... i,
Syntax, shorthand........ ...ttt iiiiiiinnnnn
System bus structures.ttt i i e e s
System command file.......coiitiiii it ittt D
Systems, multimodule.........ouvirvnuunnnrnnenneneena.1-2, 4-3,
Systems, single module........ ..ttt 12,

Ul Ul .
[
Q@ B

.
1

!\)\l:ll>0'\l\)

i
LI)

F’\l

Model 6L4193A
6805P Series Emulator/Analyzer

Target System, components
Target processor removal.
Target system memory.....
Theory of operation..
Trace......coovuevuen.

Trace
Trace
Trace
Trace
Trace
Trace

Transparency considerations

command.....
complete....
file........
information.

.

.

.

.

.

.

Memory.ou ..
specifications......

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Transparency, electrical..
Transparency, functional..
Trap loop....vvvvinenneen
Trigger. ... iiiveennnn

Updating read buffers, RS-232

User buffer/assembler symbols file packing formats

.

.

.

.

1/0.
Updating write buffers, RS-232 I/O....

.

.

.

.

.

.

.

PRI

.

.

.

.

.

.

.

DR

User buffer/linker symbols file packing formats..
User buffer/relocatable file packing formats.
User program keyboard read request...........
User’s program detects 00 in CA....
Using analysis commands..........

Wait. ... i innennn.
Write.ot innnnnn
Write from selected line/column.
Write memory..............
operation to ROM....
to 8251.............
to emulation memory.

Write
Write
Write
Write

to printer.

D

.

.

.

.

..

w

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

[BRI
[N
e e
O+ o e

.
.

O\ v

N -
(G, I}
I \O -

o0 00

DEEREEEY

DRI

o v e .

O\-QNI\)TII\)I\)F-‘I\)

.
.
1

.
.

.
.

.
.
t

[
FUEEsErFNOEFRPEFEODDRPOOW

N
1
[y

.
.

ﬂll’\)f})l\)l\)ﬂ

.
.
]

.
.

.5-22
..3-2
.8-14
..3-3
..2-6
.8-42
L.2-7
.8-10

I-9

D

64193-90903, APRIL 1983 PACKARD PRINTED IN U.S.A.

	Front
	cover
	inside

	Contents
	title
	ii
	iii
	iv
	v
	vi
	vii/viii

	Chapter 1
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6

	Chapter 2
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10

	Chapter 3
	3-1
	3-2
	3-3
	3-4

	Chapter 4
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14

	Chapter 5
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22

	Chapter 6
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14

	Chapter 7
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10

	Chapter 8
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	8-38
	8-39
	8-40
	8-41
	8-42
	8-43
	8-44
	8-45
	8-46
	8-47
	8-48
	8-49
	8-50
	8-51
	8-52
	8-53
	8-54
	8-55
	8-56
	8-57
	8-58
	8-59
	8-60
	8-61
	8-62
	8-63
	8-64
	8-65
	8-66
	8-67
	8-68
	8-69
	8-70
	8-71
	8-72
	8-73
	8-74
	8-75
	8-76
	8-77
	8-78
	8-79
	8-80
	8-81
	8-82
	8-83
	8-84
	8-85
	8-86
	8-87
	8-88
	8-89
	8-90
	8-91
	8-92
	8-93
	8-94
	8-95
	8-96
	8-97
	8-98
	8-99
	8-100
	8-101
	8-102
	8-103
	8-104
	8-105
	8-106
	8-107
	8-108
	8-109
	8-110
	8-111
	8-112
	8-113
	8-114
	8-115
	8-116
	8-117
	8-118

	Appendix A
	A-1
	A-2
	A-3
	A-4

	Appendix B
	B-1
	B-2

	Appendix C
	C-1
	C-2

	Appendix D
	D-1
	D-2

	Appendix E
	E-1
	E-2

	Index
	index-1
	index-2
	index-3
	index-4
	index-5
	index-6
	index-7
	index-8
	index-9/index-10

	Back
	cover

