HP64000
Logic Development
System

Emulator/Analyzer
6800/6802

[crcicano

CERTIFICATION
Hewlett-Packard Company certifies that this product met jts published specifications at the
time of shipment from the factory. Hewlett-Packard further certifies that its calibration
measurements are traceable to the United States National Bureau of Standards, to the extent
allowed by the Bureau's calibration facility, and to the calibration facilities of other
International Standards Organization members.

WARRANTY

This Hewlett-Packard system product is warranted against defects in materials and
workmanship for a period of 90 days from date of installation. During the warranty period, HP
will, at its options, either repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer's facility at no charge within HP
service travel areas. Outside HP service travel areas, warranty service will be performed at
Buyer’s facility only upon HP’s prior agreement and Buyer shall pay HP's round trip travel
expenses. In all other cases, products must be returned to a service facility designated by HP.

For products returned to HP for warranty service. Buyer shall prepay shipping charges to HP
and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all
shipping charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with an instrument will
execute its programming instructions when properly installed on thatinstrument. HP does not
warrant that the operation of the instrument, or software, or firmware will be uninterrupted or
error free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate
maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or
misuse, operation outside of the environmental specifications for the product, orimproper site
preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

EXCLUSIVE REMEDIES
THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVEREMEDIES. HP
SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR

CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, ORANY OTHER
LEGAL THEORY.

ASSISTANCE
Product maintenance agreements and other customer assistance agreements are available for

Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

CW&A 2/81

Model 64000 Reference Manuals

The following block diagram shows the documentation scheme for the HP Model 64000
Logic Development System. The interconnecting arrows show the recommended
progression through the manuals as a way of gaining familiarity with the system.

Manual Map

System Overview
and
System Software
Reference Manuals

Analysis
and
System Debug
Installation . Measurement System
and Editor Manual Reference Manual
Contfiguration
Manual
HP64000 /Analy Processor-dependent
Host Pascal Reference Manua! Supplement
. Reference Manual -
Tape Drive (where applicable)
Reference
Manual
User-definable Emulator
Compiler Reference and ROM Emulator
Manual Reference Manuals
Flexible Disc
Drive
Reference
Manual

Processor-dependent
Supplement

Assembler Linker

Inverse Assembler
Reference Manual

Reference Manual s ""09"2 i‘:;?/zer General Purpose
o ga' om eY Preprocessor
eferenc Reference Manual
Manual
Processor-dependent
Supptement Togic Tim
ogic Timing B
Analyzer Processor dependent User-definable
Reference € Manual v Interface Module
Manual

User-definable
Assembler
Reference Manual

PROM Programmer
Reference Manual

Printing History

Each new edition of this manual incorporates all material updated since the previous edition.
Manual change sheets are issued between editions, allowing you to correct or insert
information in the current edition.

The part number on the back cover changes only when each new edition is published. Minor
corrections or additions may be made as the manual is reprinted between editions.

First Printing.............. March 1980 (Part Number 64210-90902)
New Edition March 1981 (Part Number 64210-90904)
Reprinted March 1982

Preliminary Edition...... October 1982 (Part Number 64210-90905)
New Edition December 1982 (Part Number 64210-90906)

Update U0283 February 1983

Manual Conventions

The manual conventions and syntax conventions used in this book are presented below. For
a full understanding of information in this manual, review the following conventions.

underlining Where it is necessary to distinguish user input from computer output,
the input is underlined.

E—j Dashed line key symbols indicate a softkey on the keyboard. The
B physical labels for the softkeys appear on the CRT display. In text, the

softkey label will appear within the symbol.

Solid outlined key symbols are used in text to represent labeled keys
on the keyboard.

[] Parameters enclosed in square brackets are optional. Several
parameters stacked inside a set of brackets indicate an either/or
situation. You may select any one or none of the parameters.

The use of square brackets implies that a default value exists.

Example:
A
[&]
This indicates A or B may be selected.
{ } Braces specify that the parameter enclosed is required information.
When several parameters are stacked within a set of braces, you must

select one and only one of the parameters.

Example:

A
B
C

This example says one and only one of A, B, or C must be
selected.

Choice of one and only one when several elements are enclosed.

Manual Conventions (Cont’d)

[1 Stacked square brackets indicate that enclosed parameters are
[1 optional and may be selected in any single occurrence, any
combination, or may be omitted.

Example:
]
]

[A
[B
[C

A and/or B and/or C may be selected, or this option may be omitted.

< > Angle brackets denote frequently used syntax elements which are
predefined.
lower-case Key words (softkey commands) are lower-case in the Model 64000.
bold type These key words will always be represented in text with lower-case
bold type.
Example:
edit <FILE>
= Arrow indicates “is defined as.”
An ellipsis indicates a previous bracketed element can be repeated.
UPPER-CASE

Literal information which is supplied in a command is represented in
text with upper case type.

Syntax symbols Indicates symbols are used for definition purposes and do not appear
in color on the CRT display.

Emulator/Analyzer
6800/6802

©COPYRIGHT HEWLETT-PACKARD COMPANY/LOGIC SYSTEMS DIVISION 1982
1900 GARDEN OF THE GODS ROAD, COLORADO SPRINGS, COLORADO, U.S.A.

ALL RIGHTS RESERVED

Table of Contents

Chapter 1: Installation

Hardware Configuration e e e e 1-1
Installing the Emulation Pod and Emulation Control Board 1-3
Installing Emulation Probe To Target System ...ttt 1-3
Installing the Analysis Board i e 1-5
Single Module Systems.t e 1-5
Multiple Module SystemsS e e e e e 1-5
Installing the Memory Control Board 1-5
Single Module SystemsS. i 1-5
Multiple Module Systems e 1-6
Installing the Memory Boards.o e e 1-7
Single Module SystemsS e 1-7
Multiple Module Systems 1-7
Installing the Bus Cables o e e e 1-8

Chapter 2: Theory of Operation

INtrOdUCHION . oo e 2-1
System BuUs StruCtUIesS 2-1
Emulation and Analysis Subsystem Functional Description 2-4
SUbsysteEmM INterfaCesS . ..o oot 2-4
Target SyStem ..o e 2-4
Emulation Controller Functional Descriptionot 2-4
Transparency Considerationsouiiiiii it et 2-5
Break Conditions e 2-6
Emulation Processor CoNntrolttt e 2-6
Emulation Memory Functional Description i 2-9
Emulator Operating MoOdEesttt e et et e 2-10
Internal Emulation o e 2-10
External Emulation e 2-10
Running The Emulator e et e 2-11
Emulation Memory and Target System Memory, 2-11
Emulation Configuration i e 2-12
Using Symbols in Emulator Commands ...ttt 2-12
Analyzer CharaCteristiCsovi it e 2-12
The Trace COmMMAaNdttt e e e e et 2-13
ANAlYzZer SlatUS ... o e e 2-13
The Display COmMMAaNGttt et et ettt e 2-13

Chapter 3: Operating Fundamentals
INtrOdUCH ON L o e e 3-1

Vi

Table of Contents (Cont’d)

Processor ArChiteCtUre e e 3-1
Special Considerations - 6802 MIiCrOPrOCESSOrttt e 3-2
MiCroprocessor RegiSters e 3-4
EmMUlator StatUS . ..ot 3-5
Numeric Status Specification 3-5
Softkey Status Specification ... 3-6
Operating Clock Specificationst i i 3-6
6800 Emulator Clock Specificationsot e 3-6
6802 Emulator Clock Specifications it i 3-7
Chapter 4: Emulation and Configuration
INtrOdUCT ON o e e e 4-1
ASS MDY e e 4-1
NI NG et 4-1
ADSOIULE File . o e e 4-2
CoNfIQUIAtION .o e 4-2
Measurement System Command Syntax............ouririiniii it 4-2
multiple module SYStemMS ... e 4-3
MEASUIEMENT Sy S EM . . e et e e 4-3
EMBB00 S o e 4-4
single module SYStemMS e 4-5
BMUIAEE . o e 4-5
EXECULION o e 4-6
RUNNING The Program e e e e et e 4-6
Configuration QUESHIONSttt e 4-6
Card SeleCtioN ..t 4-7
ClOCK SelECHON .ttt e 4-8
Real-Time Mode SeleCtiont et 4-8
lllegal Opcode DeteCtion e e et e 4-9
Memory Configurationo i e e 4-9
MEmMOry Map ..o 4-10
Ending the Mapping Session 4-12
Simulated I/0 Configuration 4-12
Interactive Measurement Configuration........ i 4-14
Command File Designation 4-15
Chapter 5: Operational Commands and System Command Files
INErOAUCTION . . e et e e 5-1
Command Line Comment Delimiter.......... 5-1
Operational Command SyNtaXuuuiiit ittt e it 5-1

vii

Table of Contents (Cont’d)

DrEaK o 5-2
BN o 5-3
BXECU o e e e 5-4
NIt . 5-5
L0 .t e e 5-6
MOAITY o 5-7
mModify CONfigUIratioN 5-9
MOAiIfY M EMOTY . e e e e 5-10
MOAifY FEGIS Ol . o e e 5-12
LTS 5-13
0T P 5-14
P I Y ottt e e 5-16
S (=T 0P 5-17
S O D raCE Lo e e e 5-18
SH O . e e e e e 5-19
System Command Filest e 5-20
SCOMDFILE> o 5-20
Command Delaysot 5-21
W . o e e 5-21

Chapter 6: Display and List Commands

Display and List Command Capabilities......... ..., 6-1
MemOory Data 6-1
Register Contents L B4
Trace INfOrmation 6-5
Global and Local Symbols.ot 6-5

Display and List Command Syntaxcouiuniiiii i 6-6
AiSplay/list oo e 6-7
display/list global _symbols e 6-8
display/list [0C _SYymMbD o e 6-9
display/lisSt MEMOrY . .. e 6-10
display/list registers 6-12
display/list trace. 6-13

Chapter 7: Analysis and Interactive Commands

INtrOdUCHION - . 7-1
PG . e e e 7-2
Status “and” FUNCHiON 7-3

Using Analysis COMMAaNdSttt ettt e 7-4

Interactive Measurement Selection i 7-5

viii

Table of Contents (Cont’d)

Chapter 8: Simulated 1/0

INtrOAUCH ON oo e 8-1
(@ 1Y7=1 V2 T= 1,2 8-2
CoMMON At DULES . . oo e e e e e 8-2
Printer 1/0 Interfacet 8-3
Display I/0 Interface ... 8-3
Keyboard I/O Interfaceo 8-3
Disc Files I/O Interface.ot e e e e e 8-4
RS-232 1/O INterface .. .o e e e e e e 8-5
Printer 1/0 Interfacet e 8-8
Open Printer (B0H) e 8-8
Write 10 Printer (82H) ... o e 8-9
Close Printer File (B1H) i e e e 8-9
Display I/0 Interface e e 8-11
Open Display File (B0H)o e 8-11
Roll To/Write Line 18 (82H) ... oo e e 8-12
Select Starting Line/Column (83H) ...ttt 8-13
Write From Starting Line/Column (84H) e 8-13
Close Display File (BTH) ...t e e e e 8-13
Keyboard 1/0 Interface e e e 8-17
User Program Requests Keyboard Read (80H)o iiiiiiiiinnan.. 8-17
64000 Response to Keyboard Read Request i, 8-18
64000 Detects Positive KB-Output-Command Word........... ..., 8-18
User's Program Detects 00 in CA ... i e et 8-19
Disc File 1/O Interface. ... e e et e e 8-25
File Ty DS ottt e e e e 8-26
Creating New File e e e e e 8-26
Creating File ... 8-26
Writing First RecCord e e e e 8-27
Writing Additonal ReCcords 8-27
Closing Created File i e e e e 8-28
Accessing EXisting Files e 8-28
Opening File ..o e 8-28
Selecting ReCOId ... 8-28
Reading ReCord 8-29
Writing ReCOrd ..o e 8-30
Closing Open File o e e e 8-30
Deleting Files ... e 8-30
Changing File Name Assigned to a Particular CA iiiiiiiiiinnaan. 8-30
RS-232 1/0 Interface ...t e 8-38

Table of Contents (Cont’d)

Open RS-232 File (BOH) ... e e 8-38
INItiAaliZe 8251 (B2H) ..\t e 8-39
ASynchronous MoOde. i e 8-39
Synchronous Mode/Single Sync Character o .. 8-40
Synchronous Mode/Double Sync Character, 8-40
Command to 82571 (B3H)t 8-40
Status From 8251 (BAH) ... 8-41
Wit T O 825 L e 8-41
Write Single Byte 8-41
Write Record, Update Write Buffer........ ... i 8-41
Read From 8251 ... 8-43
Read Single Byte. e 8-43
Read Record, Update Read Buffer i, 8-43
Updating Read/Write Buffers (8DH) e 8-44
Simulated 1/0 Error Codes ...ttt e e s 8-67
Simulated I/0 Sample Programsttt e e e e 8-68
64000 File FOrmatso e e e e e 8-78
Assembler Symbols File (File Type 12) ...t e i 8-78
Record ID WOrd e e 8-79
Symbol definition bIOCKS e 8-79
CheCKSUM WOId . .o e e e e et e et et 8-80
User Buffer/Assembler Symbols File Packing Formats........................... 8-80
Linker Symbols File (File Type 13) ... 8-80
Microprocessor Configuration Record......... i, 8-80
Global Symbols ReCords 8-82
Program Names ReCOordst e e 8-84
User Buffer/Linker Symbols File Packing Formats, 8-85
Source File (File TYPe 2) .t e e e 8-85
Listing File (File Type 5) ... e e e 8-85
Absolute File (File Type 4) ... e e 8-85
First reCOrd .. o e 8-86
Additional reCOrdsS . ..o 8-86
Relocatable File (File TYype 3) ..ot e e 8-86
Program Description Record. 8-87
Global Symbols ReCOrds e 8-89
Data ReCOrdsS ..ot 8-89
External Symbols ReCOrds e s 8-90
Local Symbols ReCOrdsooiiir i e e 8-91
ENd ReCOrd . ..o e 8-92
User Buffer/Relocatable File Packing Formats...................coiiiiiiinnn... 8-92

Table of Contents (Cont’'d)

Appendix A: Syntactical Variable Definitions

SABSFILE> . A-1
SAD D RES S > .o e A-1
CAD R LS T > o A-1
SCOMIDFILE> . A-1
S I A-1
SRE AL LV AL > e A-2
SO T AT B> o A-2
SV ALUE> e A-2
SNUMBER > Lo e A-3
<LOCAL SYMBO > L A-3
<GLOBAL SYMBO > . o e e e A-3
MO DU LE> . oo e e A-3
SO T RING > o e A-3

Appendix B: 6800/6802 Status and Error Messages

StatUS MBS SAGES . ittt et e e B-1
Error MesSsageso B-2
Appendix C: Radio Frequency Interference
Appendix D: Emulator Electrical Properties
Index

List of lllustrations
1-1. Installing the Emulation Probe 1-4

1-2. Memory Control Board....... ... i 1-6
1-8. Address Range Selection Sockets
1-4. Memory, Emulation, and Intermodule Bus Cabling

2-1. 64000 Logic Development System Simplified

Functional Block Diagramoi it 2-3
2-2. Background Controller Transition Diagram

Xi

8-10.
8-11.
8-12.
8-13.
8-14.
8-15.
8-16.
8-17.
8-18.
8-19.
8-20.
8-21.
8-22.
8-23.

8-24.

8-25.
8-26.
8-27.
8-28.
8-29.

List of lllustrations (Cont’d)

6800 Emulator Pod.o e 3-3
6802 Emulator Pod. 3-3
Status Byte Format 3-5
Memory Contents - Hexadecimal and ASCIl it 6-2
Memory Contents - MNEMONICttt e 6-3
Register Contents oo e 6-4
Trace Memory Display e 6-5
Simulated Printer 1/O Interface Diagram i, 8-5
Simulated Display I/O Interface Diagram, 8-6
Simulated Keyboard I/O Interface Diagramciiiiiiieennnan.. 8-6
Simulated Disc File 1/O Interface Diagram, 8-6
Simulated RS-232 I/O Interface Diagram............ccoiiii i, 8-7
Display TeChNIQUESttt e e e e e e 8-16
Keyboard I/0 Interface Sequencecoiiiiiiin . 8-23
8251 Initialization Formats. 8-56
Command Mode Instruction Format i 8-57
Asynchronous Mode Instruction Format i, 8-58
Synchronous Mode Instruction Format 8-59
8251 Status Word Format e 8-60
Writing RS-232 Record - Phase | ...t 8-61
Writing RS-232 Record - Phase |l ... i 8-62
Writing RS-232 Record - Phase Hl....... ..o i 8-62
Writing RS-232 Record - Phase IV. oo i 8-63
Reading RS-232 Record - Phase | ... i 8-64
Reading RS-232 Record - Phase Il i, 8-65
Reading RS-232 Record - Phase Hl..... i 8-66
Reading RS-232 Record - Phase IV.... ..., 8-66
Simulated Display I/0 - Sample Program A.......... ..ottt 8-68
Simulated Display I/O - Sample Program B............ 8-71
Simulated Keyboard, Display,

and One Disc File I/O Sample Programcccoiiiiiiiiiiinnnaon. 8-72
Simulated Keyboard, Display,

and Two Disc Files I/O Sample Programcoien... 8-75
Assembler Symbol File Overall Structureo iiiiiiiiein... 8-93
Assembler Symbol Record Structure......... ... 8-94
Assembler Symbol Record/User Buffer Format Details 8-95
Assembler Symbol Record/Symbol Definition Block Examples.............. 8-96
Linker Symbol File Overall Structure 8-97

Xii

8-30.
8-31.
8-32.
8-33.
8-34.
8-35.
8-36.
8-37.
8-38.
8-39.
8-40.
8-41.
8-42.
8-43.

List of lllustrations (Cont’d)

Microprocessor Configuration Record Structure.................. 8-98
Global Symbol Record Structureo 8-99
Global Symbol Definition BIOCK ...t e 8-100
Program Name Record Structure it 8-101
Program Name and Address Definition Block Format 8-102
Source and Listing Files - Overall Structure 8-103
Source and Listing File Format. 8-103
Absolute File - Overall Structure i 8-104
Absolute File Formats 8-105
Relocatable File Overall Format i e 8-107
Relocatable File Program Description Definition Block 8-108
Relocatable File Data Definition Block 8-109
Relocatable File External Symbols Definition Block 8-110
Relocatable File End Definition Block 8-111
List of Tables
Trace Status SOftKeySot 3-6
“And” Function Results ... i e 7-4
Printer 1/0 CodesS . ..ottt e e 8-10
Display 1/0 COQES .ottt e 8-14
Keyboard 1/0 Interface Codes....... ...t 8-20
Command Word COdES ...ttt e et e e 8-22
Disc File Type Numbers and Names.o i, 8-31
Disc File 1/0 COdeS . ..o ittt e 8-33
RS-232 1/0 COdeS oottt 8-45
Simulated 1/0O Error Codes ... 8-67

xiii

Chapter 1

Installation
Hardware Configuration

Information regarding the installation and configuration of emulation and analysis modules
into the 64100A and 64110A systems, including power requirements and cabling, is found in
the Installation and Configuration Reference Manual. Pay particular attention to power
requirements when configuring multi-module systems.

Set the work station power switch to “off”.

Unpack all emulation circuit boards, cables, pods and related equipment. Compare the parts
received with the parts list to assure that all necessary items have been shipped. If any
equipment is missing, contact the nearest Hewlett-Packard Sales/Service Office as soon as
possible.

Carefully inspect the equipment for damage that may have occurred during shipping.

NOTE

The following installation steps assume the installation of a
complete system (maximum memory). Particular attention
should be paid to the power requirements for multi-module
systems. Disregard procedure steps for equipment you have
not purchased.

EMULATOR/ANALYZER 6800/6802

1-1

While the emulation and analysis circuit boards may be installed in any card slot in the
station chassis, mechanical considerations make the following card groupings most
convenient:

For single module systems:

slot slot
number number
board 64100A 64110A
Emulation Control board 9 0
Analysis board (optional) 8 1
Memory Control board (optional) 7 2
Memory board (optional) 6 3
Memory board (optional) 5
For multi-module systems:
slot slot
number number
board 64100A 64110A
Memory board (optional) 9
Memory board (optional) 8
Memory Control board (optional) 7
Emulation Control board 6 0
Internal Analysis board (optional) 5 1
Internal Analysis board (optional) 4 2
Emulation Control board 3 3
Memory Control board (optional) 2
Memory board (optional) 1
Memory board (optional) 0

When an emulator is used in a system with state or timing analyzers, either half of the above
ordering may be used.

Installation of the circuit boards is accomplished by aligning each circuit card in the circuit
card guides, with the component side of the board facing forward, or up for the 64110A, and
applying a gentle pressure until the board is seated in the mother board connector. Be sure
the ejector handles are in their fully horizontal position.

1-2 EMULATOR/ANALYZER 6800/6802

Installing the Emulation Pod and Emulation Control
Board

For emulation of a 6800 microprocessor the model 64212A emulator pod is required. For
emulation of a 6802 microprocessor the model 64213A emulator pod is required.

The 64211A Emulation Control board can be used with both the 6800 and the 6802
microprocessors.

Two multi-colored ribbon cables are used to connect the emulation pod to the emulation
control board. One of the cables is connected to a surface-mounted connector, and one
cable is connected to the top edge of the emulation control board. Pin 1 on the cable
connectors is indicated by a triangle molded into each connector. Pin 1 of the board-
mounted connectors is located at the left end of each connector. The surface-mounted
connector is located near the top left corner of the Emulation Control board (on the
component side). The edge connector is located at the left, near the surface mounted
connector. Proper connection is facilitated by the color coding and keying of the connectors.
Connect the pod to the control board by joining the connectors.

Install the Emulation Control board into the station chassis to maximize the free cable length
outside the work station chassis, for single module systems.

CAUTION

PROTECT AGAINST STATIC DISCHARGE

The emulator pod contains devices that are susceptible to
damage by static discharge. Therefore, operators should take
precautionary measures before handling the user plug to
avoid emulator damage.

Installing Emulation Probe To Target System

Carefully remove the target processor from its socket, and place the processor into a
protected area. Then install the emulation probe into the vacant socket.

EMULATOR/ANALYZER 6800/6802

1-3

1-4

CAUTION

Do not install the emulation probe into the processor socket
with power applied to the target system. The pod may be
damaged if power is not removed before installation.

The emulation probe is provided with a pin protector that prevents damage to the probe when
connecting and removing the probe from the microprocessor socket. DO NOT use the probe
without a pin protector installed. If the emulation probe is being installed on a densely
populated circuit board there may not be enough room to accomodate the plastic shoulders
of the probe socket. If this occurs, another pin protector may be stacked onto the existing pin
protector. The short wire extending from the emulation probe may be connected to the target
system signal ground.

When installing the emulation probe, be sure the probe is inserted into the processor socket
so that the red edge of the cable aligns with the pin 1 end of the processor socket as shown in
Figure 1-1. Damage to the emulation equipment may result if the probe is incorrectly
installed.

é RED
— CABLE
STRIPE
RED STRIPE AND
PIN 1 MUST BE A EMULATION
IN ALIGNMENT. PROBE
40 PIN EXTENDER «— AT LEAST ONE IS REQUIRED
FTTTTrrrrvrrrrrn’y
PIN1 — | PROCESSOR SOCKET | «— |POWER TO PROCESSOR
SOCKET MUST BE OFF!

\ (target system)

Figure 1-1. Installing the Emulation Probe

EMULATOR/ANALYZER 6800/6802

Installing the Analysis Board

Either analysis board (64300A or 64301A) can be used with the 6800 or 6802 emulators.

Single Module Systems

Install the Analysis board in the next slot adjacent to the Emulation Control board. For
example, if the Emulation Control board was installed in slot 9, the Analysis board should be
installed in slot 8. The board is installed with the component side facing the front of the work
station. Avoid scuffing the emulation control cables when installing the Analysis board by
ensuring that the cables are as flat as possible against the emulation control board.

Multiple Module Systems

Install the internal analysis boards between the emulation control boards.
Installing the Memory Control Board

The memory control board and memory boards are not required if only target system
memory is to be used.

Set the data bits switch and address bus width cable to their correct positions before
installing the memory control board.

The data bits switch, located between the J2 and J3 edge connectors, should be set to select
a data bus of eight bits (switch moved to the left). Figure 1-2 shows the data bus switch in the
correct position.

The address bus width is selected by positioning the ribbon cable, located at the board
center, for a bus width of 16 bits. Figure 1-2 shows the cable position for a 16 bit address bus.

Single Module Systems

The memory control board is installed in the next vacant slot, adjacent to the analysis board.
If no analysis board is used, memory control may be installed in the slot next to the emulation
control board, or, leaving a slot vacant where the analysis board would normally be placed, in
a position two slots away from the emulation control board. As with the emulation control
board, install the memory control board, with the component side forward, or up, with a
gentle pressure until firmly seated in the mother board connector.

EMULATOR/ANALYZER 6800/6802

1-5

Multiple Module Systems

The memory control boards should be installed outside of the emulation control boards, i.e.,
one should be in front of the front emulation control board and one should be behind the rear
emulation control board.

There is room for only one memory controller in the 64110A card cage if a dual Emulation
and dual Analysis configuration is installed.

FEEFRLEY

I-,[w;;
Bz P
|\
=
S e A

.
.=

FET

=i’!‘..-....‘.......q
> i.- eanaamange |

--TF

33323733

.
aaamma iy
-

23333339
-
1TTTTde

2335235

sameany

IFEFFEFD]
saammn Y

.

Figure 1-2. Memory Control Board

1-6 EMULATOR/ANALYZER 6800/6802

Installing the Memory Boards

Memory boards in the model 6415X series may contain from 4K to 16K words (8K to 32K
bytes) of random access memory (RAM). The logical address of each board must be specified
by installing an 8-pin jumper plug in socket U11. U11 is located near the upper right corner,
and is adjacent to label boxes indicating address range options (see Figure 1-3). The address
range is selected by installing the 8-pin jumper plug into the half of the socket (U11)
associated with the address range being selected. The address range selection is used only
to distinguish one memory board from another for the emulation and analysis system, and
not to establish addresses for emulation. The address range may be split. For example, 0 to
16K and 48K to 64K may be found on the same board.

Memory boards in the model 6416X series may contain from 32K to 128K bytes of random
access memory. Refer to the 6416X series service manual for the necessary configuration
and installation procedures.

Address range specifications for the 6415X series memory boards are listed below:
a. Address range specification does not limit the address ranges which may be emulated.

b. No two memory boards, connected to the same memory controller, may be specified
as the same address range.

c. Two positions are available for address range selection for 8 bit emulation. One full or
partially loaded board must be set to 0 to 16K words address range.

d. A maximum of two boards may be connected to a memory controller for 6800/6802
emulation processors. Refer to the Installation and Configuration Reference Manual
for maximum allowable memory.

Single Module Systems

Install the Memory boards in the slots adjacent to the Memory Control board. The boards are
installed with the component side facing the front, or top, of the work station. Be sure that the
boards are firmly seated in the mother board connector.

Multiple Module Systems

Install the memory boards outside of the memory control boards. The memory boards should
be the boards closest to the front and to the rear (bottom and top) of the card cage.

EMULATOR/ANALYZER 6800/6802

1-7

1-8

M bt (b

e =~ 4 N

. e

e 1 ;ﬂ j
lad

1al

I U

— N e g

Figure 1-3. Address Range Selection Sockets

Installing the Bus Cables

Bus cable installation should take place after installation of the circuit boards has been
completed. See Figure 1-4 for the cable configuration for a complete system, including the
intermodule bus if a multi-module system has been installed.

The two cables in the center and on the right of the circuit board set are the EMULATION bus
cables. The connectors are keyed to facilitate correct installation. The connectors are also
color coded, with the coding placed to the left erid of each connector over pin 1. Each
connector has a triangle indicator molded into the connector to indicate thelocation of pin 1
side and end in the connector. When properly installed, the red marker of the bus cable is on
the left hand side of the cable when viewed from above the card cage. Two cables, each
having three female connector blocks, are installed on the Emulation Control board, the
Analysis board, and Memory Control board.

EMULATOR/ANALYZER 6800/6802

The Memory bus cable is on the left hand side of the board set, as you face the front of the
work station. The Memory Control board is joined to the Memory boards by a cable with
three connectors similar to the emulation bus cables. The connectors are color coded and
keyed to facilitate proper installation, with the color coding placed to the left end of the
connector. Each connector has a triangle indicator molded into the connector to indicate the
location of pin 1 side and end in the connector. When properly installed, the red marker strip
will be on the left of the ribbon cable as you look down on the card cage from the front of the
work station.

The intermodule bus consists of a 20 conductor ribbon cable that is installed on the upper left
corner of the appropriate board in each module. For emulation modules, connection is made
to the internal analysis boards; for analyzer modules, connection is made to the analysis

control boards.

MEMORY
BUs r‘wm
INTERMODULE /.' '
BUS :

EMULATION BUS
MEMORY BUS

idddillx

Figure 1-4. Memory, Emulation, and Intermodule Bus Cabling
Figure 1-4 shows the cable placement in a 64100A card cage. The relative cable placement in

a 64110A card cage is the same, although the card cage is rotated 90 degrees to the
horizontal.

EMULATOR/ANALYZER 6800/6802 1-9/(1-10 blank)

Chapter 2
Theory of Operation

Introduction

The basic development system consists of a logic development station having a magnetic
tape drive or flexible mini disc drive, an optional hard disc and printer, and software modules
to edit, assemble or compile, link, and store program modules.

System Bus Structures

The 64000 system is designed with multiple independent buses for the host environment and
emulator subsystem. Since the host processor and the emulation systems operate on
separate buses, both can be running at the same time with no contention for system
resources. Figure 2-1 illustrates the 64000 Logic Development Station bus orientation. The
five basic bus structures for the 64000 are briefly described in the following paragraphs.

System Bus

Emulation Bus

Host Processor Bus

The address, data, and control buses for the 64000 system are
included in the system (HP-IB) bus. Communication between the
printer, hard disc, and development stations occurs via the system
bus.

The address, data, and control buses for the emulator processor
are included in the emulation bus. Communication between the
emulation controller, analysis module, and the target system takes
place through the emulation bus.

The host processor bus is the path through which the host

processor communicates with the emulation and analysis
subsystem, the display, and host processor memory.

EMULATOR/ANALYZER 6800/6802

2-1

2-2

1/0 Bus The Input/Output bus is dedicated to input and output devices of
the 64000 station. It handles data to and from the minicartridge
tape drive, the flexible disc drives, the keyboard, the hard disc
drive, the printer, and the system processor.

Intermodule Bus The intermodule bus connects the appropriate control boards in a
multi-module system and carries signals related to sequence,
timing, and triggering between the modules.

All data transfers in the emulation system occur on the buses described above.

For example, to display user RAM memory, a command is transmitted on the host processor
bus from the host processor to the emulation control board. The Emulation Control board
obtains the desired information through the emulation bus from the target system memory.
The host processor then obtains the data from the emulation control board via the host
processor bus. From there the data is passed to the display controller for display on the CRT.
To display emulation memory, data in emulation memory is accessed by the host processor
through the memory control board via the host processor bus. From that point on, data is
transferred to the display.

EMULATOR/ANALYZER 6800/6802

TAPE OR
FLEXIBLE
pbisC

1/0 BUS

RS232

3

170
CONTROL

i

SYSTEM BUS (HP-1B)

HOST
PROCESSOR

KEYBOARD

SYSTEM
pisCc

PRINTER

HOST PROCESSOR BUS

i

i

U

STATION STATION
DISPLAY RAM/ROM

EMULATION
CONTROL

MEMORY
CONTROL

J 4

U

EMULATION
MEMORY

Figure 2-1. 64000 Logic Development System Simplified Functional Block Diagram

The architecture of the multi-module system, illustrated in Figure 2-1, allows monitoring of
the emulation processor without interfering with its operation. In addition, because the
emulation bus is independent from the host processor bus, it is possible for emulation to

J

EXTERNAL
STATE
ANALYZER

INTERNAL
ANALYZER

EXTERNAL
TIMING
ANALYZER

U

EMUALTION BUS

]

EMULATION
POD

i

[INTER MODULE BUS (IMB)

TARGET
SYSTEM

continue while the development station is used for other purposes.

A major advantage of this architecture is the expandability of emulation systems. Since the
host processing system does not restrict the word length or the speed of emulators
connected to the host system, the system is capable of handling future as well as current

microprocessors.

EMULATOR/ANALYZER 6800/6802

2-3

2-4

Emulation and Analysis Subsystem Functional
Description

A complete emulation and analysis subsystem consists of an emulation pod, emulation
probe, emulation control board, memory control board, memory board(s), and analysis
board. A brief description of the subsystem is given in the following paragraphs.

Subsystem Interfaces

The interfaces for the emulation and analysis subsystem are the target system interface
consisting of the emulation probe and pod, and the development station interface consisting
of the host processor bus.

Target System

The target system shown as part of Figure 2-1, represents a typical system having a
microprocessor, control circuits, memory (ROM/RAM), and 1/O circuits.

Emulation Controller Functional Description

In foreground operation the emulation processor (in the emulator pod) functions as the
processor for the target system. Programs executed by the emulation processor can be
resident in the target system memory, or emulation memory, or a combination of both.

In addition, the target system memory can be loaded into emulation memory and the
program modified. The memory map can be constructed to direct memory accesses to the
emulation memory. The modified program can then be executed without disturbing the
original version of the program.

During operation in the background state, emulation processor operation is suspended in the
user system with the processor appearing to be inactive. This condition is implemented with
the control of emulation pod buffers and latches by the background controller which is
located on the emulation control board.

Operation of the emulator in the foreground state is exactly like operation of the target
microprocessor in a normal environment.

EMULATOR/ANALYZER 6800/6802

Functional transparency of the emulator has been achieved with two features: background
memory and the associated controller. The associated controller transfers processor control
between the user program and the host system, i.e., foreground and background,
respectively.

Background memory is located on the emulation control board. This memory is a 256 byte
RAM which is accessible by the emulation processor and the 64000 host procesor. The
background memory is the primary communication link between the processors.

The background memory contains the routines for control of target processor execution.
Routines to read and modify memory and registers and a routine to unload target processor
registers are supplied by the host processor to the background memory. When the emulator
changes the operating context of the emulation processor to background, the emulation
processor will execute the routines in background memory.

A break to the background memory for the 6800/6802 emulators is accomplished by jamming
a “Software Interrupt Instruction” to the emulation processor, i.e., forcing the processor to
execute an SWI instruction that makes it dump its registers in known locations in BKG
(background) memory, and to start executing BKG code.

Transparency Considerations

A goal of emulation is that the emulation processor operates functionally and electrically in
the same way as the target processor, i.e., to be transparent.

Functional transparency is acheived when an emulator places no restrictions or demands on
any of the functional operations of the target processor, such as use of interrupts, restriction
of memory address range, or any other functional characteristics.

Electrical transparency implies that all timing specifications, electrical loading, logic
thresholds, drive levels, and any other electrical characteristics of the target processor are
upheld by the emulator. The term “electrically identical” is a more accurate definition of
electrical transparency.

Unfortunately, in attempting to achieve these goals, some compromises are sometimes
necessary. Functional transparency cannot be achieved unless the “background activities”
performed by the emulation system are shielded from the target system. These background
activities include register interrogation, status checking, detection of illegal opcodes, or
other operations that may disturb the operating context of the emulation processor.

EMULATOR/ANALYZER 6800/6802

2-5

2-6

The shielding or isolation of emulator background activities from the target system is
accomplished with buffers and latches. These buffers and latches add propagation delays to
the emulator which sometimes compromise electrical transparency.

The 64000 Logic Development System has been designed to implement functional
transparency for the current generation of background control emulators. Users of the 64000
system, therefore, can do system design without arbitrary constraint from the emulators,
being aware, however, of the slight propagation delays induced by the emulators.

Break Conditions

A break condition initiates the context change of the emulation processor from foreground
operation to background operation. There are four sources of a break condition: the logic
analyzer, the emulation memory control board, the emulation control board, and the host
system.

A break condition in normal operation is issued when an analyzer trace specification has
been met, i.e., “break on trigger” or “break on measurement complete” is specified, or as a
result of keyboard commands to the emulator that stop or single-step the emulation
processor.

Detected errors account for break conditions from emulation memory and the emulation
control board. Emulation memory control issues a break if an access to guarded memory
occurs, or if a write to ROM occurs. A break condition from the emulation control board will
be caused if an illegal opcode fetch occurs.

Other sources of break conditions occur during nonreal-time operation. Operations, such as
register access and memory access, that occur during program execution will cause the
alternation between foreground and background memory.

Emulation Processor Control

The technique used by the 64000 emulator for emulation processor control involves jamming
data information onto the processor data bus. This data jamming is asserted at the
appropriate time in the processor instruction cycle to vector the processor operation to a
control routine contained in the emulator background memory. The jamming process is
synchronized by the background controller to occur on the first opcode fetch cycle following
the occurrence of a break condition, thus allowing the emulator to gain control of the
processor at the earliest possible time.

EMULATOR/ANALYZER 6800/6802

When the emulator has been changed to background state, the background program causes
the register values of the processor, the program counter, and the next instruction address to
be saved. This information is restored to the emulation processor when operation is returned
to foreground (real-time) state. This allows the processor to continue execution from the
point at which the break occured when the emulator was in foreground. This process is
similar to a hardware implementation of a non-maskable interrupt that is independent of the
processor type.

The background controller is a state machine consisting of four states: jam background, idle
background, exit background, and foreground. Figure 2-2 is a diagram showing the
background controller transition phases.

A state transition in the background controller will occur only at the beginning of an opcode
fetch cycle that is coincident with other qualifying events. This is the earliest possible time
after a break condition occurs, in which the jam state can occur.

Refer to the background controller transition diagram (Figure 2-2) for the following
discussion. The background controller causes the emulation processor to enter the idle
background state following the jamming operation. At this time, control of the address bus is
returned to the emulation processor and the processor begins execution of a background
entry program. During execution of the background routine, the processor registers are
unloaded, return addresses are computed, and all other “housekeeping” tasks are completed
to allow proper control for returning the emulation processor to foreground operation.

When these operations are complete, the emulation processor will enter a TRAP loop and
wait for instructions from the host processor.

All host processor background memory accesses are totally transparent to the emulation
processor. This makes it possible for the host processor to modify the jump address of the
trap to coincide with the starting address of the background routine required to execute any
host processor requests.

EMULATOR/ANALYZER 6800/6802

2-7

2-8

BREAK

EXIT
BACKGROUND

BACKGROUND

BACKGROUND

Figure 2-2. Background Controller Transition Diagram

The EXIT background state is entered when the host processor causes the emulation
processor to make a jump to the EXIT routine in background memory.

In the EXIT routine, the emulation processor is directed to the desired foreground entry point
at which instruction execution would have continued if a break condition had not occurred.

In the transition from the EXIT background state, the background controller enables the user
interface buffers and allows processor execution of the foreground memory routine.
Foreground memory can be user and/or emulation memory. Refer to the functional
description of emulation memory for more information on foreground memory.

Transitions through the background controller states of Figure 2-2 occur whenever the host
processor is used to control emulator operation or when any other break condition occurs.
Single-stepping and continuous stepping of the emulation processor causes this type of
transition through the background states.

EMULATOR/ANALYZER 6800/6802

Emulation Memory Functional Description

Emulation memory for the 6800/6802 emulators consists of a memory control board and one
or two memory boards. Each memory board can contain from 8K bytes to 32K bytes
maximum of static RAM. Total emulation memory can be 64K bytes. This memory is for
exclusive use by the emulator.

The memory controller provides the ability to map the target processor’s address space into
1K byte blocks in the 64K byte address range.

This mapping function allows available target and/or emulation memory to be placed
anywhere in the address range of the target processor. The memory controller also provides
status bits to identify each block of memory, whether it is mapped or not. This allows the
emulator to determine whether a block of memory is RAM, ROM, or undefined. If an illegal
memory operation is attempted, such as a write operation to ROM, the memory controller will
send a break signal to the emulator indicating an error condition.

The memory control board is the interface between emulation memory and the emulation
control board. Itis also the interface between the host processor and emulation memory. The
host processor has no direct access to emulation memory. All memory accesses requested
by the host processor go to the memory controller. The memory controller will grant a
memory access to the host processor only if there is sufficient time between the emulation
processor operations, or if the emulation processor is stopped. When the emulation
processor is stopped, the memory controller will allow the host processor access to any
memory location, including writes to memory mapped as ROM.

A write operation to emulation memory mapped as ROM is accomplished with the “modify”
or “load” command.

The memory controller will not allow the emulation system to write to ROM since memory
designated as ROM was defined in the context of the emulator.

Host processor “writes” to emulation memory are nonreal-time for the 6800/6802 emulators.
Host processor “reads” of emulation memory take place in real-time mode.

EMULATOR/ANALYZER 6800/6802

2-9

Emulator Operating Modes

The emulation system has two modes of operation: real-time, and nonreal-time. In addition,
there are several options available through emulator configuration that affect these modes of
operation. These options include the following:

a. Detection of illegal opcodes
b. Restricting emulation to real-time mode
c. Memory mapping

The real-time emulation mode allows the user to run real-time emulation with or without a
target system connected to the emulator. In addition, emulation memory and user memory
can be used individually or in combination for real-time emulation. When emulating,
consideration should be given to the emulation configuration and also to the intent of the
emulation session.

Internal Emulation

Internal emulation (no target system) is usually performed with the intent of debugging
software. With internal emulation, the only clock that can be used is the internal clock of the
emulator; therefore, code execution time will be relative to the internal clock speed. This
should be kept in mind if the target system will have a different clock speed than the internal
clock of the emulator.

External Emulation

The 64000 can perform emulation in real-time or nonreal-time modes with or without a target
system. If the real-time performance of the target system is important, emulation should be
done in real-time with particular attention to the type of run commands and analysis
commands issued during emulation.

2-10 EMULATOR/ANALYZER 6800/6802

In some cases emulation may be required to run in real-time mode because running in
nonreal-time mode is not possible, such as with target systems that process interrupts and/or
depend on a real-time clock for operation. Target systems of these types cannot be emulated
thoroughly if real-time emulation is not available. Therefore, it is important to be aware of the
types of emulator commands that will cause the emulator to operate in nonreal-time mode.
Refer to the Real-Time Mode Selection portion of the configuration questions, in Chapter 4,
for a list of those commands.

In addition, the user should realize what implications arise when emulation memory is used
in part or in whole for emulation. The use of emulation memory could affect real-time
emulation, depending on the implementation of the target system. Refer to the following
paragraphs for use of emulation memory with respect to real-time emulation.

Running The Emulator

There are other considerations that should be taken into account for running the emulator.
The ability to detect illegal opcodes can be selected and the ability to restrict running of the
target processor to a real-time mode can also be selected. These options are selected during
configuration of the emulator. Refer to Chapter 4 for information concerning these features.

Emulation Memory and Target System Memory

The use of emulation memory and/or target system memory can have some significance in
the operation of the emulator. Ideally, emulation of a microprocessor should be done with as
much of the final target system hardware as possible. Since this is not feasible at the
beginning of the development cycle, the 64000 emulator provides emulation memory to
replace target system memory during the project development stage.

In general, the final target system memory will not have the same specifications as the 64000
emulation memory. Therefore, selection of the clock for emulation can affect memory
accesses by the target processor; so, the internal emulation clock would not be the clock to
use with external hardware. This, in fact, is an illegal configuration for the emulation system.
The emulator will, however, allow the user to specify use of the internal clock with a target
system. When making a selection of a clock during configuration, there is the option to select
an external clock to accomodate the target system.

EMULATOR/ANALYZER 6800/6802 2-11

Emulation Configuration

Emulation software provides the interface between the emulator and the host processor in
the development station. When the [emulate | softkey is pressed, the emulation software for
configuring the emulator is loaded into the development station memory from the system
disc. At this point, the display will present a series of questions for configuring the emulator
to the user specifications. The options for configuration of the emulator are covered in detail
in Chapter 4.

When the emulator has been configured, the program that the user wishes to execute on the
target processor should be loaded to the emulator as discussed in Chapter 4.

Using Symbols in Emulator Commands

Symbols may be used in any emulator command that allows expressions (as defined in
Chapter 7). A symbol is always interpreted as the address value of that symbol. Variables in a
program can be conveniently accessed by name. Even though it is legal to use a symbol as a
data value in a trace command, remember that the symbol will be interpreted as the address
value, not the data value stored at the referenced address location.

When using local symbols, the program module containing the symbol must be loaded by the
emulator before the symbol can be used in a command. This is accomplished by using the
“display” command or by specifying the program having the symbol with the format:
<SYMBOL>:<MODULE _NAME>.

When using local symbols in emulator commands, only valid symbols will succeed as
specifications. A list of qualified local symbols can be viewed by using the “display

loc_symb” command, or by referring to the asmb_sym file for the module.

The ability to use symbolic referencing in emulation provides a very convenient tool for
debugging code which has been assembled or compiled on the 64000 system.

Analyzer Characteristics

The 64000 system has an optional internal analysis board for analysis of emulation processor
operation. The analysis capabilities are enhanced by the use of display or list commands,
described in detail in Chapter 6.

2-12 EMULATOR/ANALYZER 6800/6802

The Trace Command

The “trace” command can be specified with a wide range of complexity. In the simplest form,
only “trace” need be specified. “Trace” also can be specified with a trigger, a qualifier, a
count, a break, or combinations of any or all of those terms. In addition, the trace may be
performed repetitively, in which program execution continues while the trace memory and
trace display are updated; or the trace, with its most recent specification, can be performed
by “trace again”.

The trace command causes program execution to be monitored and stored in chronological
order in a 256 position trace memory, The trace memory can be displayed on the station
CRT, or listed to a file or to the printer, for examination.

Analyzer Status

Emulation analysis status can be specified with a numeric format from the keyboard, or
through the softkey labels.

When status is specified with the numeric format, the specification may be in either
hexadecimal, octal, or binary base. Status may also be specified using the four softkeys
available. See Chapter 3 for details on status specification.

The Display Command

An important feature of the 64000 emulators is the ability to display data for analysis in a
format that is easy to interpret. This ability is implemented in the emulator by means of the
“display” command. In addition to displaying the trace results, the “display” command allows
the contents of memory, internal registers, and program symbols to be displayed. The
display commands are described in detail in Chapter 6.

The “display count” mode selects either an absolute time of execution (elapsed time after the
trigger), or relative time of execution (elapsed time between each state). See Chapter 7 for
additional details about the “count” mode.

EMULATOR/ANALYZER 6800/6802 2-13/(2-14 blank)

Chapter 3
Operating Fundamentals

Introduction

This chapter contains general information pertaining to emulation and analysis of the
6800/6802 microprocessors. The information provided refers to aspects of the processor’s
architecture and status specification.

Processor Architecture

The 6800 microprocessor is a memory-mapped |I/O device with an 8-bit data bus and a 16-bit
address bus. It contains six internal registers consisting of two 8-bit accumulators (A,B), a 16-
bit index register (1X), six internal status flags (H,I,N,Z,V,C) located in an 8-bit condition code
register (CC), a 16-bit program counter (PC), and a 16-bit stack pointer (SP).

The 8-bit data bus is a bi-directional bus. A stack, which must be located in RAM, is used to
handle subroutine return addresses automatically during subroutine call and return
instructions. All of the CPU registers (except the stack pointer) are automatically pushed
onto the stack at the beginning of an interrupt service. A wait for interrupt (WAI) instruction
provides quick interrupt servicing by placing all the CPU registers on the stack and then
halting operation to wait for the interrupt. The 6800 has on chip Direct Memory Access (DMA)
capabilities.

The 6802 microprocessor, in addition to the registers and accumulators of the 6800, has an
internal clock oscillator and driver on the same chip. Additionally, the 6802 has 128 bytes of
RAM located at addresses 0000H thru 007FH. The first 32 bytes of RAM, (addresses 0000H
thru 001FH) may be retained in a low power mode by utilizing Vcc standby. The 6802 is
completely software compatible with the 6800.

EMULATOR/ANALYZER 6800/6802

3-1

3-2

Special Considerations - 6802 Microprocessor

The 6802 microprocessor pod has two external wires, separate from the user connector,
labeled INT VEC and WROM. The purpose of the interrupt vector (INT VEC) wire is to allow
the user to temporarily override interrupt vector fetches from emulation memory and fetch
those vectors from outboard user memory. An example of the use of this line is with the
Motorola 6828 Priority Interrupt Controller which alters interrupt vector addresses in the user
system. Since these altered addresses cannot reach emulation memory, the user must supply
the fetch locations in the target system. The INT VEC input facilitates mapping this emulation
space so that the user does not have to burn a new EPROM with each change to the rest of
the memory in the EPROM space. The EPROM that the user does have in the target system
need only contain the interrupt vectors located at the addresses used by the 6828 PIC chip
for its fetches.

The WROM wire is similar in nature in that it allows memory, mapped as emulation ROM, to
be written to as an 1/O type space. This requires that the user have address decoding in his
target system such that anytime the ROM read/I/O write space is accessed the WROM line is
brought low. This line is qualified in the pod by R/W so that normal ROM read operations
occur as usual. However, whenever that space is accessed as a write, the data is output to the
user system instead of to the emulation memory where an illegal memory reference would
occur (write to emulation ROM).

The 68000 emulation pod is shown in Figure 3-1; the 6802 emulation pod is shown in
Figure 3-2.

EMULATOR/ANALYZER 6800/6802

Figure 3-1. 6800 Emulator Pod

7
(#g) | Ba2; .
L...&JJ we ‘3? 'EI{!LL‘AHQ;, PROBE

SE Wit g

Figure 3-2. 6802 Emulator Pod

EMULATOR/ANALYZER 6800/6802 3-3

3-4

Microprocessor Registers

The microprocessors each contain six registers. The register names and functions are listed
below. These names must be used when accessing the registers.

Register
Name Function
A A accumulator - An 8-bit register used as a temporary holding register for ALU

PC

SP

CcC

operations; may also be used as a general-purpose register.
B accumulator - Same function as A accumulator.

Index register - A 16-bit register used to modify addresses in the indexed
addressing mode. The IX register may be incremented,
decremented, stored, loaded, or compared.

Program counter - A 16-bit register which contains the next byte of the instructions
to be fetched from memory.

Stack pointer - A 16-bit register which contains the address where stack
information is stored. The stack pointer is decremented (by one)
immediately following the storage of a byte of information in the
stack. For information retrieval, the stack pointer is incremented
(by one) immediately before retrieving each byte of information
from the stack.

Condition code - An 8-bit register which contains status information used as test
conditions for conditional branching.

The condition codes are:

carry/borrow
overflow

zero

negative
Interrupt mask
half-carry

I -2N<O

Polarity of the condition code flags when set = 1; when cleared = 0.

EMULATOR/ANALYZER 6800/6802

Emulator Status

Emulation processor status can be specified to the analyzer in two ways: numerically or by
softkeys. Specification of status must be in a format which the emulation processor
recognizes. The status specification is used in the trace command in the following form:

status OXXH
where “XX" represents the status byte.
Numeric Status Specification
An 8-bit byte is used to specify status numerically. The status byte may be specified in
hexadecimal, octal, or binary, with “X” used for don’t care values. The status byte
organization is shown in Figure 3-3.
For example, the specification:

trace only status 11111X01B

will cause a trace of read cycles, including opcode fetches.

Status Bits
MSB LSB

1 1 1 1 1 opcode int_ack read/write

opcode = 0 for first cycle of an instruction
int_ack = 1 for interrupt acknowledge
read/write = 0 for write cycles

= 1 for read cycles

Figure 3-3. Status Byte Format

EMULATOR/ANALYZER 6800/6802

3-5

3-6

Softkey Status Specification

Trace specifications can be input using softkeys. That is, the appropriate bits are set for trace
status qualification. An explanation of the trace status softkeys is given in Table 3-1. The
“Softkey Label” column lists the name of the softkey, the “Binary Code” column lists the
binary code making up the instruction, the “Command Line” column lists the command as it
appears on the command line of the display when the softkey is pressed, and the “Remarks”
column gives a brief explanation of the softkey function.

Table 3-1. Trace Status Softkeys

Softkey Binary Command

Label Code Line Remarks

opcode 0XXXXX001B opcode First cycle of an
instruction

int_ack OXXXXX111B int_ack Interrupt
acknowledge

read OXXXXX101B read Read memory

write OXXXXX100B write Write memory

Operating Clock Specifications

Proper operation of the 6800/6802 emulators requires that the operating clock speeds be
within the specifications listed below.

6800 Emulator Clock Specifications
a. All memory mapped - user: maximum clock frequency is 2 MHz, provided that
Tacc < 235 nanoseconds and is equal to peripheral read access time.

b. Any memory mapped - emulation: minimum clock period is the greater of:
Tcyc = 520 nanoseconds, or
Tcyc = 410r + PWO1H + PWQ@2H.
where: PW@1H < 180 nanoseconds, and

PW@2H > 295 nanoseconds.

Note that PW@XH = minimum high-level pulse width.

EMULATOR/ANALYZER 6800/6802

6802 Emulator Clock Specifications
a. All memory mapped - user: maximum clock frequency is 2 MHz, provided that Tacc
< 245 nanoseconds.

b. Any memory mapped - emulation: maximum clock frequency is 1.4 MHz without wait
states; 2 MHz with emulation wait states.

When driving the 6802 microprocessor pin 39 (EXTAL) with a TTL clock, pin 38 (XTAL)
should be allowed to float high, i.e., left unconnected.

EMULATOR/ANALYZER 6800/6802 3-7/(3-8 blank)

Chapter 4
Emulation and Configuration

Introduction

In order to become familiar with the emulation and analysis user interface and feature set, it
is recommended that a short program be written and executed with the emulation probe
disconnected from the target system or “out of circuit”. A simple program that increments a
single memory location or processor register will provide a good example.

Assembly

In general, source files are generated using the 64000 editor. The first line of a program
specifies the processor name in quotes followed by options on the same line. The assembler
or compiler will generate the proper object code for the processor specified. The code
generated will be placed in a file of the same name as the source, of type “reloc”. Also, a file
of type “asmb_sym” is generated. This file contains all of the symbols local to the module
and their addresses. The address of a symbol may be absolute, or relocatable and relative to
the program, data, or common program counter. This file is used to determine the addresses
of local symbols used in emulation commands. If this file is not present during emulation,
local symbols for that module cannot be referenced, displayed, or listed.

Linking

Relocatable files must be linked together to create an absolute file. To begin the creation of a
new absolute file, enter | link | followed by . This begins a sequence of questions
which determine the files to be linked and their relocated addresses. The first question asks
for object files. The name of the first program to be linked should be entered. Following the
library files question the load addresses are requested.

EMULATOR/ANALYZER 6800/6802

4-1

4-2

Absolute File

The last question to be answered when linking is for the name of the absolute file into which
the relocated program is placed. The name given is also applied to a “link_com” file, and a
“link _sym” file.

The “link_com” file has in it the responses to the linker questions. The “link_sym” file
contains the names and addresses of all global symbols in the modules that have been linked;
and contains the names and initial addresses of the PROG, DATA, and COMN program
counters.

The program counter addresses are used to determine the addresses of all global symbols
used in the emulation commands.

Configuration

To begin emulation with the example program, the command is issued in the form
“measurement_system”, for multimodule systems, or in the form “emulate”, for single
module systems. The syntax for each form is described later in this chapter. The command
initiates a series of questions that configure the emulator for the particular application. Each
question is provided with a default answer that can be entered as is with a or
modified by using the softkeys or keyboard. The meaning of these questions and answers is
described in detail later in this chapter. The questions and answers for interactive
measurement are described in Chapter 7. For this example all of the default answers will be
sufficient except during memory mapping. When the memory map is displayed, some portion
of memory must be assigned. For this example the command "0 thru OFFFH emulation ram”
is sufficient provided the program has been Ioaded in this area of memory. The mapping
section of configuration is exited with the “end” command. The last question asked during
configuration is “Command file name?”. If a name is given, a file of type “emul_com” will be
created. This file is similar in function to the “link_com” file and is described later in this
chapter. For the example above a blank answer is sufficient but a file name may be entered.

Measurement System Command Syntax

The measurement system can be entered by pressing either one of two softkeys. If more than
one module is present in the card cage, the command! meas_sys |will appear at the first level
of softkeys. If an emulator is the only module present, then | emulate | will be present at the first
level of softkeys.

EMULATOR/ANALYZER 6800/6802

For multiple module systems:

measurement_system

SYNTAX

DEFAULT VALUE

measurement_system is treated as a new entry into emulation

FUNCTION
The command “measurement_system” causes system operation to enter the measurement
system monitor. The measurement system monitor coordinates and displays the interaction
between the modules present and, in multiple module systems, controls entry to and exit
from the individual modules of the system. Once in the monitor program, the emulator can be
entered by issuing the command “em6800_S” where “S” is the slot number of the emulation
control board. The choice is made through the softkeys.
The “continue” option allows reentry to a previous session without disrupting a measurement
in progress. If “continue” is not specified, all measurement system modules will be reset to
their default configuration and any activity stopped. A “continue” is not possible under any of
the following conditions:

a. Power has been cycled or the station reset by shift/reset.

b. Performance Verification (option_test) has been initiated.

c. The last session was exited by reset/reset.

d. The measurement system configuration file is not present.

e. A module was exited in a noncontinuable manner.

EMULATOR/ANALYZER 6800/6802 4-3

em6800_S

SYNTAX

DEFAULT VALUE

<CMD_FILE> The last specified command file.

4-4

FUNCTION

The “em6800_S” command, when issued from the measurement system monitor program,
transfers operating control to the emulator. If no command file is specified, or there is a
conflict between the specified command file and the current hardware configuration, the
emulation configuration questions will be initiated. A new command file will be generated, or
the specified file will be edited.

EMULATOR/ANALYZER 6800/6802

For single module systems:

SYNTAX

!_____

emulate

emulate [<CMDFILE>] [load <ABSFILE>] [options { edit }]

Examples:

emulate
emulate LOOP

continue

emulate LOOP load MUCH

FUNCTION

If no options are selected, emulation configuration is initiated and a new command file is

constructed.
PARAMETERS

<CMD _FILE>

[load <ABSFILE>]

[options edit]

[options continue]

If <CMD _FILE> is specified, an emulation session is initiated using
the configuration specified by the command file. If the current
hardware configuration is inconsistent with the specified
command file, editing of the command file configuration questions
is forced.

The absolute file named will be loaded into memory upon entry of
the emulation session.

The configuration questions will be presented with the specified
command file supplying the default answers. If no command file is

given, the result will be the same as if “emulate” had been selected.

The emulation session will be entered without changing the state
of the emulator.

EMULATOR/ANALYZER 6800/6802

4-5

4-6

Execution

After configuration the execution portion of emulation is entered. In this case the processor
has been reset and is running in background. This condition is reported on the Status line of
the display (Status: 6800/2 Reset in background). At this point the absolute file must be
loaded into emulation memory using the load command in the form “load <ABSFILE>".

Running The Program

Once the example program has been loaded, the run command can be issued to begin
execution of the program. If the command “run’ is given, program execution will begin at the
transfer address specified in the source program. This is either the label given with the END
pseudo-op at the end of an assembly language module, or the main routine of a PASCAL
program. Thereafter “run” will cause execution to begin at the next program counter address
as specified in the register display. If “run from <ADDRESS>" is issued, execution begins at
the address specified.

Configuration Questions

The emulation configuration questions are used to prepare the emulation hardware and
software for a specific application. Each question is displayed along with a default response,
with additional options shown in parentheses. Selecting the default responses will set up the
emulation configuration that is easiest to use in most applications. The default response can
be selected by pressing the key; or another response can be selected by the
appropriate softkey, or by typing in a suitable response.

Once the questions have been answered for the particular application, the answers can be
stored in a command file on disc so that the question and answer sequence need not be
repeated for each emulation session. If changes to an emulation command file are desired,
the file can be edited using the modity | [config Isoftkeys. This allows changing only specified
answers. At the end of the modify configuration sequence, a new file name can be assigned
to the edited configuration, or the old file can be over written with the new information.

Throughout this discussion, the available softkey entries for each question are listed
following the question. If an emulation command file is being edited to reconfigure the
emulator, the default responses provided are the responses that were entered when the
command file was originated or last edited.

EMULATOR/ANALYZER 6800/6802

The questions are divided into the eight sections listed below.

Card Selection

Clock Selection

Real Time Mode Selection

Illegal Opcode Detection

Memory Configuration

Simulated 17O Configuration
Interactive Measurement Configuration
Command File Designation

TQ -2 Q206 00

These sections are discussed on the following pages. The questions discussed in the first
section are only presented when more than one emulation control board and/or more than
one memory control board is installed in the 64000.

Card Selection
It may be necessary, in multiple module systems, to specify the slots of the memory
controller and internal analysis cards associated with the emulator being used. The following
questions will appear:

Slot number of memory controller card? 0.9 (none)

The default answer will be the slot number of one of the memory controllers, or the slot
number specified in a command file. It is possible for emulation to take place without a
memory controller, provided that all memory is user memory. The ability to detect
illegal memory references while the processor is executing the target program cannot
be provided without the memory controller installed.

Slot number of analysis card? 0.9 (none)

The default answer will be the slot number of one of the analysis cards, or the slot
number specified in a command file. It is possible to emulate without the benefit of an
analysis card by selecting “none”. None of the functions, however, that require an
analysis card will be usable. The functions requiring an analysis card are “run until”,
and “trace”.

EMULATOR/ANALYZER 6800/6802

4-7

4-8

Clock Selection
Microprocessor clock source? internal (external)

internal Selects a 1 MHz clock source in the probe pod; this source should
be selected when operating without a target system.

external Selects the clock source in the user system.

Real-Time Mode Selection

The question listed below provides an opportunity to restrict the emulator to real-time
program execution. “Real-time” in this case is not based on whether wait states are inserted
or not, since none are needed by the emulator. Instead, real-time refers to the continuous
execution of the user’s program without interference from the development system except as
instructed by the operator.

Interference can come from two sources: 1) stopping the processor (and DMA activity) so
that the host processor can access memory, 2) automatically breaking into the background
memory. Host processor access to emulation memory usually stops the emulation processor
for 34 to 40 microseconds. The display/modify emulation memory features access emulation
memory and pause the emulator once for every location that is specified. Features that utilize
the background memory are display/modify registers and display/modify memory.
Features that cannot be performed in real-time mode are the following:

a. memory accesses - Display, list, load, modify, and store.

b. register accesses - Display, list, and modify.

c. simulated 1/0.

d. symbol accesses - Display and list. These commands will be performed with the
contents field showing “**".

Breaking into the emulation background memory will happen if a feature that requires the

background memory is invoked while the processor is executing user programs. After the
feature is completed the processor is returned to the user program.

EMULATOR/ANALYZER 6800/6802

Restrict to real-time runs? no (yes)
no If runs are not restricted to real-time, all keyboard commands will be accepted.

The host processor will generate a break into the background memory if a feature
is invoked which requires the background memory and the processor is
executing a user program.

yes If operation is restricted to real-time runs, emulator features like display/modify
memory and display/modify registers, which require the host processor to access
emulation memory or utilize the background memory, must be enabled by an
explicit break. Breaks can be generated by an analysis (“trace break_on...”)
command, by the emulation memory controller (access to illegal memory or write
to ROM), or from the keyboard by entering “break”.

Features that require a break (with the exception of the load command) are
disabled by the “run” command, and no automatic breaks into the background
memory will be performed. The user’s system will not experience any pauses or
other interference once the “run” command has been entered.

lllegal Opcode Detection

Break processor on illegal opcodes? yes (no)

This option helps find unexpected executions in absolute code. If “yes” is selected, the
processor will stop emulation if an invalid opcode is fetched. If “no” is selected, the emulation
processor will attempt to execute the opcode in the same manner as the microprocessor unit
being emulated.

Memory Configuration

In order to perform emulation, the memory mapper must be properly programmed to
correspond to the desired emulation and user system memory resources. The memory
mapper allows the user to divide the processor’s address space into a number of blocks that
can be individually assigned any one of five descriptors: emulation RAM, emulation ROM,
user RAM, user ROM, or guarded memory. During emulation, the mapper monitors the
address bus and provides the descriptor for the address present at any given time. This
information is used by the emulator hardware to control the flow of data between the
emulation processor and the memory resources.

The responses to the memory configuration questions are used to configure the memory
mapper. These questions are explained on the following pages.

EMULATOR/ANALYZER 6800/6802

4-9

Modify memory configuration? no (yes)

Memory Map
The memory map describes the partitioning of the processor address range into
emulation RAM/ROM, user RAM/ROM, or illegal space for the emulation system.

The map is composed of from 0 to 32 entries plus memory default. Each entry must be
an integral multiple of the 1K byte (1024 bytes) block size. The remaining parts of the
address range, not covered by an entry, are mapped to the memory default.

At the top of the map display is information describing the amount of emulation
memory available to be mapped, the amount already mapped, and the memory block
size. The remainder of the screen above the status line shows up to 32 entries arranged
in two columns. Each entry is displayed as an entry number, the address range
covered, the memory type, and then (if the type was emulation memory) the physical
block number actually used.

Entries are made by typing in a single address for a single block, or an address range
followed by either:

rom
(a) user { }
ram

rom
(b) emulation } [overlay <ADDRESS>]
ram

(c) guarded

If a single address was specified, the entire 1K byte block containing that address will
be mapped, e.g., 55H emulation ROM will map the range 0-3FFH to emulation ROM.

where:
rom - designates memory for which the memory control circuitry can detect the
occurrence of write cycles and, if it is also emulation, memory which cannot be
modified by the emulation processor, but only by the host via the modify memory and
load commands.

ram - designates memory which can be read or written without restriction.

user - designates memory to be found in the user system.

4-10 EMULATOR/ANALYZER 6800/6802

emulation - designates memory to be supplied by the emulation system.

guarded - designates an address space which is not expected to be accessed. A
memory cycle to this space will always attempt to break the processor.

As indicated above, emulation memory may be overlayed for purposes of memory
management. Physical memory locations may be given more than one logical address. For
example, the following entries are made during memory configuration:

2000H thru 3FFFH emulation ram

OEOOOH thru OFFFFH emulation rom overlay 2000H

The screen will show:

Entry Range Type Blocks
1 2000H - 3FFFH RAM/EMUL 000 - 007
2 EOOOH - FFFFH ROM/EMUL 000 - 007

The effect is that emulation memory blocks 000 thru 007 can be accessed either as 2000H
thru 3FFFH or as OEOOOH thru OFFFFH. Locations 2000H and OEOOQOH refer to the same
physical location. The designation of ROM or RAM is not significant other than to show the
flexibility of this technique.
Table entries may be removed by entering:
<Entry #>
delete

all

The memory default is usually guarded, but it may be changed by entering:
rom))
user
ram X

L guarded

default o

EMULATOR/ANALYZER 6800/6802 4-11

A hard copy of the memory map can be obtained at any time during the mapping session by
pressing the [print] softkey. If no printer is connected to the system, an error message will be
displayed.

Ending the Mapping Session

The memory map configuration session is exited by pressing the [erEij softkey followed by
. If an attempt is made to end the mapping session with a blank memory map, an
error message will be displayed.

Simulated 1I/0 Configuration

Simulated 1/O configuration begins upon completion of memory configuration. Available
host memory for simulated 1/0 is determined by the number of measurement system
modules present. If the maximum number of measurement system modules (4) is present,
then simulated 1/0 memory is not available and the simulated 1/0O configuration is not
presented. If three or less modules are present, then the host memory available is as follows:

one measurement system module, available memory is 768 words.
two measurement system modules, available memory is 512 words.
three measurement system modules, available memory is 256 words.

Available memory is allocated during the actual emulation when an open command is
requested for simulated 1/0 devices. Some devices do not require additional memory. The
simulated 1/O devices that require memory are: display, printer, RS-232, and disc files.

Each device, except RS-232, requires a minimum of 145 words of memory space. RS-232
requires 128 words of memory space for the read buffer, and 128 words of memory space for
the write buffer.

A maximum of five devices, not including RS-232, may be open at one time for a single
module measurement system or 768 words available. With RS-232 read and write buffer
operation, another three devices may be opened.

A maximum of three devices, not including RS-232, may be open at one time for a dual
module measurement system or 512 words available. With RS-232 read and write buffer
operations, only one other device may be opened.

A maximum of one device, not including RS-232, may be open at one time for a triple module
measurement system or 256 words available. With RS-232 operation, only one read buffer

and one write buffer may be open, but no other devices may be opened.

4-12 EMULATOR/ANALYZER 6800/6802

Available memory is deallocated during actual emulation when a close command is
requested for the simulated I/O device. Deallocated memory can then be allocated to some
other simulated /O device.

If simulated 1/O devices try to allocate more memory than is available, an error return of 9
(request not allowed) is returned to the simulated I/0O device control address.

When there is available memory for simulated 1I/0, the command line displays the following
question and answer:

Modify simulated 1/0? no (yes)
The status line shows:
STATUS: Simulated 1/0 assignment
Answering “yes” to “modify simulated 1/0?” will allow modification to all available simulated
I/0 devices. The simulated 1/0O devices are: display, printer, RS-232, keyboard, and up to six
disc files.
Questions for a control address for each device are then asked. If a reply of blank is made,
then that device is not used. The control address may be specified for a maximum width of 32
bits. The 16 most significant bits, however, must be entered as zeros.
As each question is answered the results are displayed.
The simulated I/O questions are:
a. display control address?
b. printer control address?
c. RS-232 control address?
d. keyboard control address?
Each unit is identified with a physical address.

Next the command line displays:

modify simulated disc files? no (yes)

EMULATOR/ANALYZER 6800/6802 4-13

Answering “no” bypasses any modification to simulated disc files 1/0. Answering “yes”
allows modification to simulated disc files.

The disc file simulated I/0O questions are:

file 1 name?
file 1 control address?

file 2 name?
file 2 control address?

file 3 name?
file 3 control address?

file 4 name?
file 4 control address?

file 5 name?
file 5 control address?

file 6 name?
file 6 control address?

A blank file name disables simulated I/O for the specified file number. Refer to Chapter 8 for
further details on simulated 1/0.

Interactive Measurement Configuration

It is possible to coordinate measurements between the modules of a multiple module system
by selecting various options possible under this category. Since all of these options pertain
to the capabilities of the internal analysis card, and are used in conjunction with the trace
command, a detailed explanation of these options is included in Chapter 7, along with the
other information about internal analysis. Options selected for interaction will be displayed
by the measurement system monitor in mulitple module systems.

The following question is presented, allowing the user to modify or leave the current
interactions unchanged.

Modify interactive measurement specification? no (yes)

Allows modification of the internal analysis external inputs and outputs.

4-14 EMULATOR/ANALYZER 6800/6802

If the interactive measurement specification is modified, any function or measurement
involving the analysis card will be discontinued. The remainder of the system, however, will
not be affected. Any conflict between the interaction specified by a command file and the
interaction specified by the measurement system monitor that cannot be resolved, will
require modification of the interactive measurement specification for resolution of the
conflict.

Command File Designation
Command file name? <FILE_NAME>

This question allows the user to establish a command file containing all of the
information pertaining to the questions just answered for emulation configuration. The
command file is stored on disc and can then be called up for use during any future
emulation session.

All that is required to create the command file is to type in a file name. If no file name is
entered, the configuration information will not be stored, and the questions will be
required to be answered for each emulation session.

Configuration questions and answers will be stored in a command file of the name specified.
Default is the current command file. If no command file exists, a new file will be created under
the name provided. Specifying a command file avoids having to answer the configuration
questions each time an emulation session is begun. There must be a command file specified
for each module in a multi-module emulation session.

Emulation can be started with the same configuration by specifying the emul _com file name
along with the “emulate” command. The answers to the questions may be changed by
specifying “options” “edit” with the “emulate” command. When emulation is ended using the
“end” command, the current state of the processor is stored in the emul_com file. An
additional file of type “trace” is created containing the current analysis specification. This
information allows emulation to be re-entered without resetting the processor and analysis
hardware. This is done by specifying “options” “continue” in addition to the emul _com file
name with the “emulate” command. When entering an emulation session through
“measurement_system” and “em6800_S”, an emulation command file is the only available
option. An emulation session within measurement_system will always be continued, if
possible. Editing of an emul_com file will be allowed only if there is a conflict, between the
configuration file and the hardware, that must be resolved before entering the emulation
session.

EMULATOR/ANALYZER 6800/6802 4-15/(4-16 blank)

Chapter 5

Operational Commands and System
Command Files

Introduction

Operational commands and system command files are described in this chapter, display/list
commands are described in Chapter 6, and analysis commands are described in Chapter 7.

Command Line Comment Delimiter

The comment delimiter is a semicolon, and is interpreted in such a way that any text
following the semicolon, to the end of the command line, will be ignored by the emulation
system.

In the example:

run from START, causes program execution to begin

only the command line text, “run from START"”, will be acted upon.
Operational Command Syntax

The syntax listings on the following pages are intended to acquaint the user with the different
operational commands. The syntactical variables used in this discussion are described in
detail in Appendix A.

EMULATOR/ANALYZER 6800/6802

5-1

break

SYNTAX

DEFAULT VAUE

none

Example:
break
FUNCTION

“Break” causes the processor to be diverted from execution of the user program to
background memory. See Chapter 2 for details of the break function.

5-2 EMULATOR/ANALYZER 6800/6802

end

SYNTAX

end

DEFAULT VALUE

none

Example:
end
FUNCTION

The “end” command terminates the current emulation session and returns the 64000
operating system to the station monitor mode. The current states of the processor and trace
are recorded in the emulation command file and a trace file of the same name. Emulation can
then be resumed using the “emulate <CMDFILE> options continue” command. If emulation
is terminated using the key, emulation cannot be resumed, and the emulation
command file is not overwritten. In a multiple module system, the “end” command returns
control to the measurement system monitor program.

EMULATOR/ANALYZER 6800/6802 5-3

execute

SYNTAX

5-4

Examples:

execute
execute repetitively

FUNCTION

“Execute” causes a measurement to begin. The E@E softkey label will be replaced with
the[halt |softkey label whenever a measurement is in progress. If emulation is participating in
a system measurement, through cross-triggered analysis or the emulation start function
“specify run”, then the global measurement is initiated. Otherwise, a local measurement is
begun and “execute” functions identically to “trace again”, i.e., it executes a trace using the
previous specification. A measurement can be executed repeatedly by issuing the “execute
repetitively” command. This will restart the current measurement after each completion, until

the user issues a “halt” command.

A key feature of the “execute” command is that it will start all the modules participating in a
system measurement when issued from any one of the modules. If an emulator is started as
part of a measurement it will continue running and will not be started again by subsequent
executions unless a “specify run” command is again issued. The | execute | softkey is displayed
only with multiple module systems.

EMULATOR/ANALYZER 6800/6802

halt

SYNTAX
I halt I
| I
Example:
halt
FUNCTION

“Halt” causes the measurement currently executing to stop and turns off the “repetitive”
option. The [hait | softkey is only displayed during execution in the place of the [execute |
softkey. When the “halt” command is performed, some or all of the modules involved may
have completed their measurement. “Halt” affects measurements caused by both “trace” and
“execute” commands. If emulation is entered with a measurement in progress, “halt” will stop
that measurement even if emulation is not interacting in the measurement. The [hgltjsoftkey

is displayed only for multiple module systems.

EMULATOR/ANALYZER 6800/6802 5-5

load

SYNTAX

| user_memory
load [emulation_memory <FILE>
| trace
DEFAULT VALUE
all memory

5-6

Examples:

load KW3000
load emulation _memory KW3000
load trace K5

FUNCTION

The “load” command transfers absolute code from the 64000 system disc into user RAM or
emulation memory. The destination of the absolute code is determined by the memory
configuration map which was set up during emulation configuration and the address
specified during linking. “Load trace” allows the display command to access and display a
previously stored trace. “Load trace” also allows execution of the trace specification via the
“trace again” or “execute” commands.

PARAMETERS
<FILE> <FILE> is the identifier of the absolute file to be loaded from the
64000 system memory into user RAM or emulation memory or the

trace file containing a previously stored trace specification. The
syntax requirements for <FILE> are discussed in Appendix A.

EMULATOR/ANALYZER 6800/6802

SYNTAX

modify

modify

memory

|
|

modify

DEFAULT VALUES

{configuration

real

byte

word

short 1
<ADDRESS>[thru<ADDRESS>]
to<REAL _VAL>[,<REAL_VAL>...]
long

] <ADDRESS>[thru<ADDRESS> Jto<VALUE>[,<VALUE>...]

{register <REG_NAME> to <VALUE>[,<REG_NAME> to <VALUE>...] }

memory [byte]:
[word]

memory real [short]:
[long]

if display real is in effect, default is to mode of display, otherwise
default is to the last mode specified, or to short.

if memory display is in effect, default is to mode of display.
Otherwise, default will be the last value specified, or to byte.

EMULATOR/ANALYZER 6800/6802

5-7

modify

(Cont'd)

Examples:
modify configuration

modify memory word 0001H to 8642H

modify memory word 00AOH to 1234H

modify memory byte DATA1 to OE3H,01H,08H

modify memory DATA1 thru DATA100 to OFFFFH

modify memory byte ARRAY thru ARRAY+16 to 0,0FFH

modify memory real 0675H to —1.303

modify memory real long TEMP to 0.5532E-8

modify memory real short FIRSTREAL thru LASTREAL to
1.11E1,2.22E-3,-4.56,9.99E17

modify register A to 39H

modify register B to 0AH, PC to 18H

modify register SP to 13A0H
FUNCTION

The “modify” command is used to review or edit the configuration, to modify the contents of
memory (as integers or as real numbers), or to modify the contents of the processor registers.

5-8 EMULATOR/ANALYZER 6800/6802

modify configuration

SYNTAX

I modify { configuration }

DEFAULT VALUE

none

Example:
modify configuration
FUNCTION
The modify configuration command allows the current command file to be reviewed and

edited. Each of the configuration questions is presented with the response previously
entered. The prior response can be entered as displayed by pressing | RETURN |, or modified

as necessary and then entered by pressing |RETURN|.

The command is invoked through the[modity || config jsoftkeys.

EMULATOR/ANALYZER 6800/6802 5-9

modify memory

SYNTAX
modify _l
| short \) I
real <ADDRESS>[thru<ADDRESS>]
I to<REAL _VAL>[,<REAL_VAL>...] I
] memoryl long (I

DEFAULT VALUES

For integer memory modifications, default, initially, is to the “display memory” mode if in
effect, otherwise default is to byte; thereafter default is to the “display memory” mode, or else
to the last “modify” mode.

For real memory modifications, default is to the “display memory” mode if in effect, otherwise
to short; thereafter default is to the “display memory real” mode if in effect, or to the last
mode.

Examples:

modify memory word 0001H to 8642H

modify memory word 00AOH to 1234H

modify memory byte DATA1 to OE3H,01H,08H

modify memory DATA1 thru DATA100 to OFFFFH

modify memory byte ARRAY thru ARRAY+16 to 0,0FFH

modify memory real 0675H to —1.303

modify memory real long TEMP to 0.5532E-8

modify memory real short FIRSTREAL thru LASTREAL to
1.11E1,2.22E-3,-4.56,9.99E17

FUNCTION
The “modify memory” command can modify the contents of each memory location in a series

to an individual value or the contents of all of the locations in a memory block to single or
repeated sequence of values.

5-10 EMULATOR/ANALYZER 6800/6802

modify memory

(Cont'd)
PARAMETERS
<ADDRESS> <ADDRESS> determines which memory location or series of
locations are to be modified.
<VALUE> <VALUE> is the number which is to be loaded into the specified
memory location or locations. The syntax for <VALUE> is
described in Appendix A.
<REAL_VAL> <REAL _VAL=> is the real number value to be loaded into the
specified memory location or locations. The syntax for <REAL_
VAL> is described in Appendix A.
DESCRIPTION

A series of memory locations is modified by specifying the address of the first location in the
series to be modified (<ADDRESS>) and the list of the <VALUE>s, including <REAL _VAL>s,
to which the contents of that location and the succeeding locations are to be changed. Both
bytes must be addressed if a memory word is to be modified. The first <VALUE> listed
replaces the contents of the specified memory location, the second <VALUE> replaces the
contents of the next location in the series, and so on until the list has been exhausted. If only
one number or symbol is specified, only the single address indicated is modified. When more
than one <VALUE> is listed, the <VALUE> representations must be separated by commas.

An entire block of memory can be modified such that the contents of each location in the
block is changed to the single specified <VALUE>, or to a single or repeated sequence. This
type of memory modification is achieved by entering the limits of the memory block to be
modified (<ADDRESS> thru <ADDRESS>) and the <VALUE> or list of values,
<VALUE=>,...,.<VALUE>, to which the contents of all locations in the block are to be changed.

EMULATOR/ANALYZER 6800/6802 5-11

modify register

SYNTAX

DEFAULT VALUE

none

Examples:

modify register A to 39H
modify register B to 0AH, PC to 18H
modify register SP to 13A0H

FUNCTION
The “"modify register” command is used to modify the contents of one or more of the
microprocessor’s internal registers. The entry for <REG_NAME> determines which register

is modified.

Register modification cannot be performed during real-time running of the processor. A
break must be performed to gain access to the processor registers.

PARAMETERS
<VALUE> <VALUE> is the number which is to be loaded into the specified
processor register. The syntax for <VALUE> is described in
Appendix A.
<REG_NAME> <REG _NAME> represents the name of one of the registers to be

modified. The possible entries for <REG_NAME> are shown in the
heading on the register display.

5-12 EMULATOR/ANALYZER 6800/6802

reset

SYNTAX

I reset

DEFAULT VALUE

none

Example:
reset
FUNCTION

“Reset” suspends target system operation and reestablishes initial operating parameters,
such as reloading control registers.

EMULATOR/ANALYZER 6800/6802 5-13

run

SYNTAX

DEFAULT VALUE

<ADDRESS> <ADDRESS> option may be an address or a label. If the
<ADDRESS> option is omitted, the emulator will begin program
execution at the current address specified by the processor’s
program counter, or, if an absolute file containing a transfer
address has just been loaded, execution will start at that address.

Where <UNTIL_TRIGGER> is defined as:

<STATE> [occurs <# times>] [or <STATE>]
<RANGE _STATE> [occurs <# times>]

See the “trace” command syntax for definitions of <STATE> and <RANGE_STATE>.
Examples:

run
run from 1000H

run from COLD_START

run until OAFFH

run until 1FFH thru 20FH occurs 3 times

FUNCTION
If the processor is in a reset or break state, “run” will cause the processor to begin executing
from the Next PC, and if a “from” address is specified the processor will be directed to that

address. The program can either be run from a specified <ADDRESS> or from the address
currently stored in the processor’s program counter, or from a label specified in the program.

5-14 EMULATOR/ANALYZER 6800/6802

run

(Cont'd)

PARAMETERS

from <ADDRESS> from <ADDRESS> represents a state on the address bus
which can be used to start a program run. The syntax
requirements for <ADDRESS> are equivalent to those for
<VALUE> as defined in Appendix A.

until <UNTIL_TRIGGER> uses internal analysis to cause an exit from a user program to

background memory when a state satisfying the <UNTIL_
TRIGGER> term is encountered.

EMULATOR/ANALYZER 6800/6802 5-15

specify

SYNTAX

| specify run [from <ADDRESS>]
| <TRACE_COMMAND>

Examples:

specify run from START
specify trace after address 1234H

FUNCTION

“Specify” is used to prepare a “run” or “trace” command for execution, and is used in
conjunction with the “execute” command. If the processor is not reset, then “specify run”
causes a break from a user program, and initializes the PC to the default address or to the
specified address. An “execute” command will then cause the run to occur. Once an
execution has occured, the run specification is removed and can not be repeated without
respecifying the run.

If the processor is reset and no address is specified, then an “execute” will cause the
processor to run from the next condition. If the processor is reset from specified address,
then the processor is allowed to run and the next program count is set up for the specified
address.

“Specify trace” causes the trace hardware to be initialized with the given trace specification.
An “execute” command will then cause the trace to be executed. A trace specification is not
removed and can be reexecuted without another “specify trace” command. “Specify trace”
and “specify run” can be used with a single “execute” command initiating both the run and
the trace, but this mode can only be used if the internal analysis is configured to participate in
a system measurement. If internal analysis is not configured, then “specify trace” and
“specify run” are mutually exclusive and issuing one after the other will negate the first
command. If “specify trace” is followed by “execute”, the effect is identical to “trace”. If
“specify run” is followed by “execute”, the effect is the same as “run”, except that if a system
measurement is configured, it is initiated. The [specity | softkey label is displayed only with
multiple module systems.

5-16 EMULATOR/ANALYZER 6800/6802

SYNTAX

[_—_—— - 1

step [<# STEPS>][from <ADDRESS>]

DEFAULT VALUES

<# STEPS> If no value is entered for number of steps, only one instruction is

executed each time thekey is pressed. Multiple

instructions can also be executed by holding down the
key.

from <ADDRESS> If the from <ADDRESS> option is omitted, stepping begins at the
next program counter address.

Examples:

step
step from 1000H
step 20 from 2000H

FUNCTION

The “step” command allows program instructions to be sequentially analyzed by causing the
emulation processor to execute a specified number of instructions. The contents of the
processor registers and the contents of emulation or user memory can be displayed after
each “step” command has been completed.

PARAMETERS

<# STEPS> <# STEPS> determines how many instuctions will be executed by
the step command. The number of instructions to be executed can
be entered in binary (B), decimal (D), octal (O or Q), or
hexadecimal (H) notation.

from <ADDRESS> from <ADDRESS> represents a state on the address bus which can
be used to start a program run. The syntax requirements for
<ADDRESS> are equivalent to those for <VALUE> as defined in
Appendix A.

EMULATOR/ANALYZER 6800/6802 5-17

stop —_trace

SYNTAX

DEFAULT VALUE

none

Example:

stop_trace
FUNCTION
The “stop_trace” command terminates the current trace, and stops the execution of the
current measurement. That is, the system stops searching for trigger and trace states. Trace
memory, although incomplete, can be displayed. “Stop _trace” will also halt internal analysis

if it is being used in “run until” mode.

The command is invoked through the [stop_trc] softkey.

5-18 EMULATOR/ANALYZER 6800/6802

store

SYNTAX

| store |memory <ADDRESS> thru <ADDRESS>| to <FILE> |
| trace

DEFAULT VALUE

none

Examples:

store 800H thru 20FFH to TEMP2
store EXEC thru DONE to TEMP3
store trace to TRACE

FUNCTION

The “store” command is used to store the contents of specific memory locations in an
absolute file, or the trace memory in a trace file.

PARAMETERS
<ADDRESS> <ADDRESS> determines the memory locations from which data is
to be stored into the specified absolute file.
<FILE> <FILE> is the identifier for the absolute file or trace file in which
data is to be stored. The syntax requirements for <FILE> are
described in Appendix A.
DESCRIPTION

<FILE> determines the name under which the absolute or trace file is to be stored. The
“store” command creates a new file having the specified name as long as there is no absolute
file with that name presently on the disc. In the cases where a file represented by the <FILE>
variable already exists, the system asks whether the old file is to be deleted. If the response is
“yes”, the new file replaces the old one. If the response is “no”, then the “store” command is
cancelled and no data is stored. Transfer address of absolute file is set to zero.

EMULATOR/ANALYZER 6800/6802 5-19

System Command Files

System command files can be used within an emulation session, but must be constructed
before the emulation session begins. A softkey prompt allows insertion of the system
command file into program execution.
A system command file can be constructed by using the following procedure:

a. From the system monitor level, issue the command “log_commands to NEW”.

b. Enter emulation session.

c. Proceed thru all desired commands.

d. End emulation, return to the system monitor level and “log_commands off".

e. Edit NEW (the command file just created) by deleting the undesired commands or
making any changes needed.

f. The system command file is now ready for use within the emulation session.

<CMDFILE>

SYNTAX

FUNCTION

<CMDFILE> is the system command file name and is further described in Appendix A. The
use of [PARMS] is described in the system manual under command files.

5-20 EMULATOR/ANALYZER 6800/6802

SYNTAX

DEFAULT VALUE

Command Delays

wait

<NUMBER>
wait

measurement_complete

any keystroke

Examples:
wait will wait for any keystroke before accepting the next command.
wait 6 will wait for any keystroke or 6 seconds before accepting the next
command.
wait measurement_complete will wait for any keystroke or for a pending
measurement to become complete. If no
measurement is in progress, wait will be
satisfied immediately.
FUNCTION

Command delays are enhancements that allow flexible use of system command files.

EMULATOR/ANALYZER 6800/6802

5-21

wait

(Cont'd)
PARAMETERS
<NUMBER> is a number of seconds (65,535 maximum) before the next
command is executed.
measurement_complete is a delay until a measurement has been completed

before the next command is executed.

When operating in REMOTE mode, “wait” for keystroke only is not allowed. A <NUMBER=> or
measurement_complete term must be included with the “wait” command. Pressing the
system key will satisfy the “wait” for keystroke condition and will stop execution of a
command file, if a command file is currently being executed.

DESCRIPTION

The usefulness of command delays lies in the capability to give the emulation system and
target processor time to reach some condition or state before bringing in the next command.
The delay commands may be included in the system command file.

The following example shows the use of wait commands within a system command file.

load PROGRAM

run from SUBH1

trace about BEGINNING

wait measurement_complete

trace only address range DATASTART thru DATAEND
run from SUB2

wait 8

stop_trace

list FILE1 trace

run from SUBS3

Run from subroutine 1 and accept the next command after measurement is completed. Trace

in DATA area while running subroutine 2, then list to a file after subroutine 2 has been
completed. Wait 8 allows the processor 8 seconds before the stop_trace becomes effective.

5-22 EMULATOR/ANALYZER 6800/6802

Chapter 6
Display and List Commands

Display and List Command Capabilities

There are four basic types of information which may be viewed by using either the “display”
or “list” command. These are:

Memory data

Register contents

Trace information

Global and local symbols

Memory Data
For data taken from memory, the starting address in memory or a list of memory address
ranges may be specified.

Whether the data comes from emulation or user memory depends upon the memory map
assignments made during configuration of the emulation command file. Unless otherwise
specified, memory data is displayed statically with the actual memory address shown. (The
static display shows the memory contents existing when the display command is executed.)
The data is displayed in hexadecimal form with corresponding ASCIl characters as shown in
Figure 6-1.

EMULATOR/ANALYZER 6800/6802

6-1

6-2

ibytes :blocked

X

0000-07
2008-0F
29010-17
Q018-1F
2020-27
2028-2F
2030-37
9038-3F
2040-47
2048-4F
2050~57
2058-5F
2060-67
2268~

WE <P
O O«

~T =N NWVE
- € D

[B TP e

R A N]
ELHPFPUDEEED ~ — + @ ONO
CECMX m~N MO0
E &

—E P~
. N PRME > 2NV

ZX E N o~ PP}

STATUS: 6800/2--Reset in background

Figure 6-1. Memory Contents - Hexadecimal and ASCII

Syntax for the “display” and “list” commands is very similar. The “repetitive” option, however,
is available for “display” commands only. The “display” and “list” commands can be modified
so that memory data is displayed or listed using one or more of the following techniques:

a. Data may be viewed in a repetitive mode which causes the display to be constantly
updated. This can be useful if the data in the memory is continuously changing. The
display, however, is not updated in real-time.

b. Data may be viewed in mnemonic form rather than in hexadecimal form as shown in
Figure 6-2. However, it is advisable to use a form consistent with the data being
displayed. For instance, it makes sense to display memory containing program code in
mnemonic form, but mnemonic form does not make sense for viewing memory
locations containing random arithmetic values. The starting address for a mnemonic
display should be the beginning of an opcode.

EMULATOR/ANALYZER 6800/6802

The display address will increment or decrement by units of one when using the up
arrow or down arrow keys to view memory data in the mnemonic format. In this way
the currently displayed mnemonic page can be aligned via inverse assembly,
beginning at a new starting address. The roll up (or roll down) key in a mnemonic
display will disassemble the next (or previous) address from the last (or first) displayed
address, leaving the rest of the display unchanged. (Roll up and up arrow, and roll
down and down arrow keys, are equivalent in either absolute or blocked modes.)

The [next page | and | prev page | keys will replace all of the data with new data. The

next page | will place the next instruction address and succeeding instruction
addresses and corresponding data on the screen. The prev page key will place the
preceeding instruction addresses and corresponding data on the screen. In some
cases, in the “prev page” mode, there may be a slight delay before the data is placed on
the screen. The delay results when the system steps backwards through the memory
until sufficient data has been gathered to fill the screen.

?;emarg imnemonic

ORAB 0413H,E
1075 BEG 101FH
1077 LDARA @407H, E
107A CMPA #00H
107C BEQ 1081H
107E JnP 108DH,E
1081 LDX $#0407H
1084 JSR 10ACH,E
1087 LDX #0406H
1084 JSR 12D3H,E
108D JSR 1571H,E
1090 STX 10RAH, E
1093 LDX 0402H,E
1096 STX 1233H,E
1099 LDAB #80H
1088 LDX 1233H,E

STATUS: 6800/2--Reset in background i 11190

5 : {izal modif hreak snd PO & (o

Figure 6-2. Memory Contents - Mnemonic

EMULATOR/ANALYZER 6800/6802

c. Real number display/list. Data may be viewed as real numbers in either the short form
(four bytes) or the long form (eight bytes).

d. Memory addresses may be displayed “offset” from the actual value. The address offset
allows the actual addresses to be offset by a value specified by the user. If the value is
correctly chosen, the address space displayed will start at location 0000H and will
correspond to the listing generated by the assembler or compiler. For example, if a
module originating at address X is linked with other modules, it may be assigned a new
starting address X+Y where Y is a value that depends on the number and size of the
other modules being linked. Offset, therefore, allows the user to enter “Y” so that the
addresses appear the same as in the assembly or compiler listing file.

Register Contents
Register data is displayed as shown in Figure 6-3. The program counter (PC) value can be

offset by a specified value and the next program counter (Next_PC) value will be offset by an
equal amount. The offset is done for the same reason as described above for memory data.

6800/2 Registers
1000 BE LDS $#04BOH 00 00 o0e0e 010000 04BO 1003

STATUS: 6800/2--Step complete

L0 . trace _ step _display. .modify break end o oy

Figure 6-3. Register Contents

6-4 EMULATOR/ANALYZER 6800/6802

Trace Information
Trace information may also be displayed or listed using the display/list command. Figure 6-4

shows a trace memory display.

mnemonic : none
1016 operand data
1017 operand data
0407 operand data
1018 #00H

-003 1019 operand data

-002 101A 101FH

-001 101B operand data

101F 134CH, E

+001 1020 operand data

+202 1021 operand data

+003 134C operand data

+004 248 write

+005 O4AF write

+006 1021 operand or data

+007 134C #13DFH

+068 134D operand or data

STATUS: 6800/2--Running : Trace complete

. . drace. __step display .modify . break __end =eefl(lee-

Figure 6-4. Trace Memory Display

Global and Local Symbols

These symbols may be viewed on the display. Local symbols are symbols defined in the
source file for a single program module. Global symbols are those that are declared to be
global in any source file. They are defined using the assembler pseudo instruction, GLB (or
$GLOBVAR+$ in the compiler). When the display command is used to examine either of
these symbol types, the display will contain the symbol name, absolute address, and, for
symbols located in emulation memory, their present value (and for local symbols the relative
value of PROG, DATA, COMN). If the processor is running and is restricted to real-time runs,
the values are displayed as asterisks (**).

EMULATOR/ANALYZER 6800/6802 6-5

Display and List Command Syntax

The “display” and “list” commands initiate the display of local or global symbols, the
contents of registers or memory, the contents of the trace memory. For the purpose of this
discussion, “display” and “list” command options are treated as separate commands and are
described as such on the following pages.

6-6 EMULATOR/ANALYZER 6800/6802

display/list

SYNTAX

[(display T\ glbalsymoolsy]

local_symbols |

l <FILE> memory
{ } registers

L\ Apiner)) A wwce _

DEFAULT VALUE

Depending on what is listed, defaults may be the options selected for the previous execution
of the “list” or “display” command.

Examples:

list printer memory 001FH thru 005FH

display registers

list printer trace

list JIM local_symbols_in KEEP:USER

list printer global_symbols

list printer memory --- (defaults to current information on the display.)

FUNCTION

The “list” command produces a copy of the information selected. The “display” command
displays the information and allows the use of the [RoLL uP| , [RoLL Down] , |PREV PAGE |,
NEXT PAGE| , and in some cases the up arrow and down arrow keys. The copy resulting from
a “list” command can be either a listing file stored in the 64000 memory or a hard copy
produced by the printer. If the information is written to an existing file, the old file is
overwritten by the new information.

PARAMETERS
printer printer causes a hard copy to be printed.
<FILE> <FILE> causes the information to be copied to either a new or an

existing file identified by <FILE>. The syntax for <FILE> is
discussed in Appendix A.

EMULATOR/ANALYZER 6800/6802 6-7

display/list global_symbols

SYNTAX

[(display N

{ <FILE> } global_symbols

l_ printer 7 . _ -

DEFAULT VALUE

none

6-8

Examples:
display global_symbols
list JOE global_symbols
FUNCTION

The “display/list global_symbols” command displays the global symbols defined for the
current absolute file and the logical addresses and present values of those symbols. Global
symbols are looked up in the link_sym file which is generated during linking. If the link_sym
file is not present, no symbols may be displayed or used in expressions. Global symbols are
those that are declared to be global in the source file. When the “display/list global _symbols”
command is used, the listing will include the symbol name, address, and its present value.
The present values of symbols in emulation memory will be displayed. An asterisk (*) will be
displayed in the value field for other symbols.

PARAMETER
glb_symb glb_symb represents the symbols and labels defined as global in
one of the source programs from which the current absolute file

was generated. When the[glb_symb |softkey is pressed, “global_
symbols” is displayed on the screen.

EMULATOR/ANALYZER 6800/6802

display/list loc_symb

SYNTAX

{<FILE> } local_symbols_in <FILE>
printer

L~ leine _ — _

DEFAULT VALUE

none

Examples:

display local_symbols_in TEMP1
list printer local_symbols_in TEMP1
list BOB local_symbols_in TEMP1

FUNCTION

The “display/list loc_symb” command displays the local symbols and their present values
and relative mode as defined in the source (program, data, or common) <FILE>. Local
symbols are looked up in the asmb_sym file generated during assembly or compilation. If the
asmb_sym file is not present, no local symbols may be displayed or used in expressions.

The present values of symbols in emulation memory will be displayed. An asterisk (*) will be
displayed in the value field for other symbols.

PARAMETERS
loc_symb loc_symb refers to the symbols and labels defined as local in the
source file identified by <FILE>. When the [loc_symb | softkey is
pressed, “local_symbols” is displayed.
<FILE> <FILE> represents the source file that contains the local symbols to
be displayed. Refer to Appendix A for the syntax requirements of
<FILE>.

EMULATOR/ANALYZER 6800/6802 6-9

display/list memory

SYNTAX

display
| <FILE> memory[<MEMLIST>]

list { }

printer
I [byte] I
[repetitively][absolute]
Lword |

I [byte 7 I
| ! [repetitively] blocked [offset _by<OFFSET>] |
| L word |
I [repetitively] real [long | l
| short | I

I \ mnemonic l

where <MEMLIST> is defined as:
<ADDRESS>[thru<ADDRESS>][,<ADDRESS>[thru <ADDRESS>]...]

DEFAULT VALUES

Initial values are the same as specified by the command “display memory Q blocked byte
offset_by 0”.

Defaults are to values specified in the previous “display memory” or “list memory” command.

“Repetitively” must be specified each time “display memory” is issued.

6-10 EMULATOR/ANALYZER 6800/6802

display/list memory

(Cont'd)

Examples:
display memory START mnemonic

display memory 0 thru 100H, START thru START+S5,
500H, TARGET1, TARGET2 blocked word

list memory 810H offset_by @:MODULE1
FUNCTION

The “display/list memory” command shows the contents of the specified memory location or
series of locations. The memory contents can be viewed either statically or repetitively
(display memory only) and either in mnemonic or hexadecimal form. In addition, the memory
addresses can be displayed offset by a value which allows the information to be easily
compared to the file listing.

PARAMETERS

<MEMLIST> <MEMLIST> describes the addresses of memory to be displayed. It
consists of either a single address, in which case the memory
display starts with that address, or a list of single addresses or
ranges of addresses.

repetitively repetitively causes the display to be periodically updated with the

(display only) current contents of memory. The program must be interrupted in
order to fetch the memory data and update the display (doing so
one line at a time).

mnemonic mnemonic causes the program in memory to be disassembled. The
mnemonic opcodes, memory locations, and associated operands
are then displayed or listed.

<OFFSET> <OFFSET> causes the system to subtract the specified <OFFSET>

from each of the actual absolute addresses before the addresses
and the corresponding memory contents are displayed. The value
of <OFFSET> can be selected such that each module in a program
appears to start at address 0000H. The “display/list” of the memory
contents will then appear similar to the assembly or compiler
listing.

EMULATOR/ANALYZER 6800/6802 6-11

display/list registers

SYNTAX

DEFAULT VALUE

{<FILE>} registers [offset_by <OFFSET>]

printer

<OFFSET>

Initially O; thereafter previous value.

Examples:

display registers
display registers offset_by 810H
list JIM registers offset_by 0A10H

FUNCTION

The “display/list registers” command gives program counter value, the current contents of
the processor’s registers, and, if a step has just been executed, the mnemonic of the last
instruction. This process does not occur in real-time; therefore, if the registers are to be
displayed while the processor is running, the system must be configured to allow nonreal-

time operations.

The displayed values of both the program counter and the next program counter can be
offset from their actual values by a number that allows the register information to be easily
compared to the assembled or compiled listing.

PARAMETERS

<OFFSET>

<OFFSET> represents the value by which the displayed program
counter (PC) and next program counter (Next_PC) addresses are
offset from their actual values. The syntax for <OFFSET> is
equivalent to the syntax for <VALUE> as described in Appendix A.

6-12 EMULATOR/ANALYZER 6800/6802

display/list trace

SYNTAX

display |
mnemonic

trace binary
absolutejl [status { hex }:l
mnemonic
<FILE> |
list { }
L printer

absolute
I:count { ” [offset_by <OFFSET>] I

relative

DEFAULT VALUES

Initial values are the same as specified by the command “display trace mnemonic count
relative offset_by 0”.

<OFFSET> Initially O; thereafter previous value.

Examples:

display trace count relative
display trace status binary

list EXEC trace count absolute
list printer trace offset_by 0100H

FUNCTION

The “display/list trace” command shows the contents of the trace buffer. The information can
be presented as absolute hexadecimal code or in mnemonic form. The status captured by the
analyzer can be displayed mnemonically, independent of the address and data information,
or it can be displayed in hexadecimal or binary form. Addresses captured by analysis are
physical addresses.

Refer to Figure 6-4 for an example of a “display trace count relative” command.

EMULATOR/ANALYZER 6800/6802 6-13

display/list trace

(Cont'd)

The “offset_by” option causes the system to subtract the specified <OFFSET> from the
addresses of the executed instructions before the trace is displayed. With an appropriate
entry for <OFFSET>, each instruction in the displayed trace will appear as it does in the
assembled or compiled program listing.

The “display/list count” command is used, after a trace has been obtained, to change the
current display of time or state counts to one in which the counts are displayed either relative
to the previous event or as an absolute count measured from the trigger event. If time counts
are currently selected, the “display count” command causes an absolute or relative time
count to be displayed. If the current display contains state counts, a relative or absolute state

count results.

PARAMETERS

mnemonic

absolute

status

hex

binary

mnemonic

<OFFSET>

count

absolute

relative

mnemonic directs the system to display trace information with
opcodes in mnemonic format.

absolute directs the system to display the status information rather
than mnemonic opcodes.

displays status information in hexadecimal form.

displays status information in binary form.

displays status information in mnemonic form.

<OFFSET> represents the number by which the address displayed
for an executed instruction is offset from the instruction’s actual

address. The syntax for <OFFSET> is equivalent to the syntax for
<VALUE> as described in Appendix A.

absolute causes the state or time count for each event of the trace
to be displayed as the total count measured from the trigger event.

relative causes the state or time count for each event of the trace to
be displayed as the count measured relative to the previous event.

6-14 EMULATOR/ANALYZER 6800/6802

Chapter 7

Analysis and Interactive Commands
Introduction

The analysis commands are used to specify the particular part of a program that is to be
traced and displayed. The trace measurement may be made once and displayed statically or
the same measurement may be made repetitively and the results continually updated.

The “trace” command causes 256 states to be collected and stored in the trace memory. The
trace memory is displayed relative to the trigger position. The trigger may occur at the
beginning (after), at the middle (about), or at the end (before) of the trace memory contents.
Note that the display is capable of listing only 16 lines per page, and therefore the
| PREV PAGE |, [NEXT PAGE | [ROLL UP |, or [ROLL DOWN | keys are used to view all measured
states.

Emulation can interact with other modules of a multiple module system over the intermodule
bus, or with external equipment through the BNC ports. Commands that involve interaction
are: specify, execute, trace, stop_trace, and halt. Emulation can participate in coordinated
measurements and can also begin execution of a program in concert with the initiation of a
measurement. Chapter five contains details for “specify”, “execute”, “stop _trace”, and “halt”.
Details of measurement interaction possibilities appear in this chapter under the heading
“Interactive Measurement Selection”. Details of the “trace” command follow.

EMULATOR/ANALYZER 6800/6802

7-1

trace

SYNTAX

I trace

where <TRIGGER> is defined as:

after {<STATE> [occurs <#TIMES>] [or <STATE>]
{ about } <RANGE_STATE> [occurs <#TIMES>]
before

<QUALIFIER> is defined as:

’ <STATE> [or <STATE>] }
<RANGE_STATE>

<COUNT=> is defined as:

counting ‘ state <STATE> }
time

<BREAK> is defined as:

break _on measurement_complete
trigger

<RANGE _STATE> is defined as:
range <VALUE> thru <VALUE>
address not range <VALUE> thru <VALUE>
not <VALUE>

[data<VALUE>] [status<STATUS_EXPRESSION>]

7-2 EMULATOR/ANALYZER 6800/6802

trace

(Cont'd)

<STATE> is defined as:
{address <VALUE> [data <VALUE>] [status <STATUS_EXPRESSION> 1}

{data <VALUE> [status <STATUS_EXPRESSION>]
status <STATUS_EXPRESSION>

<STATUS_EXPRESSION> is defined as:

<STATUS_IDENT=>
[and <STATUS_EXPRESSION>]
<VALUE>

Figure 6-4 shows the result of a trace specification consisting of “trigger” (about), “address”
(hexadecimal), “qualifier” (opcode), “count” (time), and no “break’.

A shorthand syntax may be used when entering the information required by the <STATE>
variable. The words “address”, “data”, and “status” can be omitted as long as commas are
used to separate the fields which contain the entries for each state. For example, “address
810H data OFFH status 14H” could be entered as follows: “810H,0FFH,14H". Likewise,
“address 810H status 14H"” could be entered as “810H,,14H" using the shorthand syntax.
Notice that when a particular field has no entry, commas must still be used to separate the
fields. The first comma specifies the end of the address field, and the second comma
specifies the end of the data field.

The trigger and qualifier parts do not have the entire syntax described above. Only one may
have a range on address and only one may have an “or’ed term. The softkeys and grammar
reflect this and will not allow entry of illegal specifications.

In all cases the term <VALUE> is an expression consisting of addition, subtraction,
multiplication, division, parentheses, numbers, and symbols. In hexadecimal, binary, and
octal numbers don't cares (X) may be used. They may not, however, be combined with
arithmetic operations and may not be used in the address <VALUE> of a <RANGE _STATE>.

Status “and” Function

<STATUS_IDENT=> is any one of the predefined mnemonic status values. Using “and”
capability, status identifiers and/or values can be combined. It is possible, for example, to
enter status 00000000B and status 11111111B; a combination that will result in the error
message, “Status expression error”.

The “and” function for status expressions operates bitwise on values entered, or on the

predefined values of the mnemonic status identifiers. Table 7-1 defines the results of the
“and” function for any bit.

EMULATOR/ANALYZER 6800/6802

7-3

7-4

Table 7-1. “And” Function Results

X 01

o
- o X
m o o
—_ M =

Where X is the symbol for a “don’t care” bit, and E represents an invalid entry that will result
in the message “Status expression error”.

Using Analysis Commands

Analysis may be performed either by first initiating the program run and then specifying the
trace parameters or by specifying the trace parameters first and then initiating the program
run. In either case, once a trace command is initiated, the analysis module monitors the
system buses of the emulation processor to detect the states specified in the trace command.
When the trace specification has been satisfied, a message will appear on the status line
showing “trace complete”. At that time the contents of the trace memory can be displayed. If
the trace memory contents exceed the page size of the display, the [NEXT PAGE], [PREV PAGE],
[ROLL UP], or [ROLL DOWN] keys may be used to display all the trace memory contents.

Trigger and storage qualification can be specified without initiating a trace by using the
“specify trace” command, and traces can be initiated without altering the trigger and storage
qualifications by using the “execute” command.

The “trace” command consists of the components described in the following paragraphs:

a. <TRIGGER> - The “trigger” is the event on the emulation bus to be used as the
starting, ending, or centering event for the trace.

b. <QUALIFIER> - The storage specification determines which of the traced states will be
stored in the trace memory for display upon completion of the trace. The trace
memory can be be filled by those states which occur immediately before or
immediately after the specified trigger event, or half of the memory can be filled by
states which precede the trigger and half by those which follow the trigger event.
Events can be selectively saved by pressing “trace only” and entering the specific
events to be saved. When this option is used, only the indicated states occurring in the
specified position relative to the trigger are stored in the trace memory.

EMULATOR/ANALYZER 6800/6802

c. <COUNT> - The count option specifies whether time or the occurrence of a state will
be counted during the trace. The data can be displayed either “relative” to the count at
the previous stored state, or “absolute” with respect to the trigger. All count
measurements can be displayed in either absolute or relative mode. The absolute
count is the total count from the trigger to each measured state. A plus sign (+)
preceeding the trace number indicates that the state occurred after the trigger state. A
minus sign (-) indicates that the state has occurred before the trigger state.

The “relative count” mode displays the count between consecutive states stored in the
trace buffer. It can be used to measure execution times of subroutines and instructions
or the time between the occurrence of the same state in the execution of a program.

d. <BREAK> - The break specification causes an exit from the executing program to the
background at a predetermined point in the emulation program.

e. again - Entry of the “again” parameter causes the trace to be performed again using
the previous trace parameters.

f. repetitively - Entry of the “repetitively” parameter causes a new trace to be initiated
after the results of the previous trace are displayed. The trace will continue until a
“stop_trace” or a new “trace” command is issued.

Interactive Measurement Selection

The internal analysis unit can interact with other measurement equipment during emulation
through either or both of the BNC output ports located on the back of the development
station. The analysis unit can also interact with other cardcage analysis modules through the
IMB connector located at the top of the analysis card. The following questions appear during
configuration.

Modify interactive measurement specifications? no (yes)

If interaction is desired or if a previously defined interactive specification is to be
modified, this question allows the analysis interaction specification format to be
reviewed and modified as necessary. If no modification is desired, the “no” response
should be selected. The Interactive Measurement questions will then be skipped,
leaving the responses in their default or previously defined states.

EMULATOR/ANALYZER 6800/6802

7-5

7-6

If this question is answered “yes”, the following series of of questions will be presented in
sequence.

(a) PORT 1?7 off (drive)

The “drive” option causes the internal analysis unit to output a pulse to Port 1 when the
analysis trigger is encountered. This function is useful for arming or triggering an
external measurement instrument such as a scope or logic analyzer.

If “off” is selected, PORT 1 has no function.

(b) PORT 2? off (drive)

The “drive” option causes the internal analysis unit to output a pulse to Port 2 when the
analysis measurement is complete. This function is useful for arming or triggering an
external measurement instrument such as a scope or logic analyzer.

If “off” is selected, Port 2 has no function.

(c) Active edge? rising (falling)

This question is only encountered if either Port 1 or Port 2 is configured to operate in
the “drive” mode. The response specifies the polarity of the drive pulse which will be

generated at the active ports.

“Rising” specifies a positive going output pulse whereas “falling” specifies a negative
going output pulse. The polarity specification applies to both ports if both are active.

The following questions refer to the lines available through the IMB connector on the internal
analysis board, and on other interacting modules.

(d) Trigger enable? off (drive) (receive)
1. No IMB Interaction over the trigger enable line.

If the “off” option is selected, internal analysis will not interact with the trigger
enable line.

2. Drive IMB Trigger Enable
Selection of the ‘“drive” option causes internal analysis to drive the IMB trigger

enable line when alalysis finds the internal trigger point or receives an external
trigger.

EMULATOR/ANALYZER 6800/6802

3. Receive IMB Trigger Enable

Selection of the ‘“receive” option prevents internal analysis from finding its internal
trigger point until some other module has driven the trigger enable line.

The trigger enable options are the only IMB functions available when using the 40 channel

(64300A) internal analysis board. With the 48 channel (64302A) board the following additional
options become available:

For 48 channel analysis there is one function that is always used whenever any other
interaction is desired. This is the function of receiving the IMB Master line in order to allow
synchronous initiation of the multiple modules. Internal analysis will select the correct option
for this function depending on the options chosen for the other functions.

(e) External trigger? off (drive) (receive) (drive and receive)

1. No interaction over IMB trigger line.

When “off” is selected, internal analysis will not participate in any interaction over the
IMB trigger line.

2. Drive IMB trigger

Selection of the “drive” option causes internal analysis to drive the trigger line when it
finds its internal trigger point.

3. Receive IMB trigger

Selection of the “receive” option allows internal analysis to trigger either on finding its
internal trigger point or when another module drives the IMB trigger line.

4. Drive and receive IMB trigger
Internal analysis will search until it finds its internal trigger or until another module

drives the trigger line. Regardless of the source of the trigger, once internal analysis
has triggered, it begins to drive the IMB trigger line.

EMULATOR/ANALYZER 6800/6802

7-7

7-8

(f) Internal trigger? on (off)

1. Enable internal trigger

If the “on” option is selected the internal triggering mechanism is enabled. This means
that triggers specified via a “trace” or “specify trace” command will cause internal
analysis to trigger if they are enabled (see trigger enable option above).

2. Disable internal trigger

If the “off” option is selected, then the internal triggering mechanism is disabled and
will not cause a trigger. Thus triggers specified by “trace” or “specify trace”’command
will be ignored and internal analysis will only trigger when it is receiving an external
trigger.

(g) Delay clock? off (drive)

1. No interaction on delay clock line

If the “off” option is selected then internal analysis will not interact over the delay clock
line.

2. Drive delay clock line

Selecting the “drive” option causes internal analysis to drive the delay clock line once
it has triggered, whether by an internal trigger or a received external trigger.

EMULATOR/ANALYZER 6800/6802

Chapter 8

Simulated 1/0

Introduction

The “Simulated 1/O” feature of the 64000 System allows the user to develop programs for,
without actually using, the target system’s I/0 hardware. To do this, the 64000 system’s 1/0
hardware is used to “simulate” the target system’s I/O hardware. This provides a double
benefit. First, programs may be developed concurrently with hardware development, and
second, if the target systems hardware exists but is not available to the programmer, program
development can continue uninterrupted.

The following 64000 system hardware may be used to “simulate” the target system hardware
during user-program development. (The 64000 hardware is listed in the order of description.)

Printer

Display

Keyboard

Disc

RS-232 Communications Channel
Simulated 1/O is described in this section as follows. First an overview is presented. The
overview describes the common attributes of the five simulated 1/O interfaces, and then
briefly, the interfaces themselves. The intent of the overview is to acquaint the reader with the
simulated 1/0 features.
Following the overview, each interface is described in detail. The intent of the detailed
descriptions is to provide sufficient information to allow a user to write the programs that will

interface with the 64000 1/0O devices. Following the detailed descriptions is a list of error
codes, sample programs and file formats.

EMULATOR/ANALYZER 6800/6802

8-1

8-2

After the 1/0 programs have been written, assembled or compiled, and linked, they may be
incorporated into an emulation configuration, then executed and tested.

Emulation configuration is described in Chapter 4 of this manual. Running and testing the
programs is done with the commands described in Chapters 4 thru 7 of this manual.

Overview

A general description of each of the simulated 1/0 interfaces is described in the following
paragraphs. However, all of the interfaces have common attributes. These are described first.

Common Attributes

Each simulated I/0 interface requires a unique memory location to which all /O
handshaking codes are sent by both the user and the 64000 programs. The address for this
location is generically referred to as the control address, or CA. The 64000 samples these
addresses periodically looking for commands. Location CA must be initially defined in the
users program and in the emulation configuration. If more than one simulated 1/O interface is
to be implemented, then the user must make sure that each I/0 program assigns a unique
address for the CA. Additionally, the user program must allow for contiguous buffer spaces
following the CA. The exact amount, and use, of this buffer space is determined by the type
of 1I/0 interface. These requirements are specified in the detailed descriptions of the
interfaces.

The addresses for the different CA locations are entered into the 64000 program during
emulation configuration. The processor must not be restricted to real time runs when using
simulated I/0. The CA locations must be located in memory space assigned as either user
RAM or emulation RAM. It is recommended that the CA locations be in emulation RAM since
this will allow the user programs to run faster. Mapping the CA locations to user RAM will
cause the emulator to go to the monitor program while polling the CA locations for
commands and/or data.

Certain of the 1/0O codes sent to location CA must also include supplemental information.
This supplemental information is contained in the locations following CA, i.e., CA+1 thru
CA+n. The supplemental information must be placed in locations CA+1 thru CA+n BEFORE
the corresponding control code is placed in CA. If this is not done, the 64000 may respond to
the control code in CA before the supplemental data is set into locations CA+1 thru CA+n.

EMULATOR/ANALYZER 6800/6802

The user program must initiate the request to open the simulated 1/0 interface. To do this,
after setting up the supplemental information in locations CA+1 thru CA+n, the user program
places the appropriate code into location CA. (Code 80H opens all interfaces except the disc
file where it creates a file.) If the 64000 program successfully executes the request, it returns
the appropriate code to location CA. (Usually a 00 is returned, but not always.) If the 64000
program cannot execute the request, an error code is returned to location CA. A group of
predefined error codes is used. Within this group only a portion of the codes apply to each
interface. These error codes are defined in general terms in Table 8-8 which is located toward
the end of this chapter. For those interfaces where the error codes also have specific
meanings, the meanings are defined in the detailed descriptions of the interface. When the
user is finished with the system resources, he should “close” the appropriate interfaces with
the proper commands. All devices will automatically be closed by an “end” command or by
execution of a reset-reset.

Printer 1/0 Interface (See Figure 8-1)

This is the simplest of the five 1/0 interfaces. Only three user-control codes are used to
interface with the printer. These are: (1) open printer file, (2) write to the printer, and (3) close
printer file.

A buffer space contiguous to location CA contains a value indicating the number of bytes
(characters) to be printed followed by the characters themselves.

Display I/0 Interface (See Figure 8-2)

This is somewhat more complex than the printer 1/0 interface since it has five user control
codes. These codes are used to: (1) open the display file, (2) roll to and write line 18 (this is
used to scroll lines up on the display), (3) select a starting line and column, (4) write from the
selected line and column, and (5) close the display.

Depending upon the control code issued, a buffer space contiguous to location CA is
required to hold one of the following parameter groups: (1) line length in bytes followed by
the bytes to be displayed, (2) line and column number at which record display is to begin, or
(3) record length in bytes followed by the record bytes to be displayed. The open and close
codes use no additional buffer space other than location CA.

Keyboard I/O Interface (See Figure 8-3)

The keyboard interface uses two user control codes and two keyboard input command word
codes. Additionally, the 64000 returns one of 24 keyboard output command word codes.

The user control codes are used to open or close the keyboard interface file. The two

keyboard input command codes are used to either: (1) clear the currently displayed line upon
receipt of a keyboard character, or (2) append the character to the existing line.

EMULATOR/ANALYZER 6800/6802

8-3

8-4

When the keyboard file is opened, a buffer space contiguous to location CA is required to
hold the keyboard input command word and the maximum record length specification. This
specification defines the maximum record length that will be accepted from the keyboard.
Thus, the buffer must be large enough to accept the keyboard output parameters and the
maximum record length specified.

The keyboard output command word defines the manner in which the input line was
terminated or the status of the keyboard output record. The output record consists of ASCII
coded character bytes.

Disc Files 1/0 Interface (See Figure 8-4)

CAUTION

The disc file simulated 1/0O control codes can be used to
access critical system files. Extreme care should be used if
any of the following types of files are accessed:

Emulation Command Files (Type 6)

Linker Command Files (Type 7)

Linker Configuration Files (Type 8)

Incorrectly accessing these files may destroy them and cause
serious system problems!

The simulated disc file interface uses ten user control codes. These codes allow the user
program to: (1) create, open, close, or delete a file; (2) advance to, backup to, or randomly
select a record position within a file; (3) automatically select record postion 1 in the file; and
(4) read from, or write into any selected record postion in the file. The user may also assign a
different file name to be associated with an already existing CA.

Depending upon the control code issued, a buffer space contiguous to location CA is
required to hold one of the following parameter groups: (1) file type number, (2) disc number,
(3) record number, (4) maximum number of words to read or write, or (5) the actual number of
words read or written, followed by the words themselves.

No buffer space is required following the control codes used to close the file and to
automatically select record position 1 in a file.

EMULATOR/ANALYZER 6800/6802

RS-232 1/0O Interface (See Figure 8-5)

This is the most complex of the five I/0 interfaces. To use this interface, the following distinct
events MUST be implemented between the user and 64000 programs: (1) the RS-232
interface must be opened; (2) the 8251 Universal Synchronous/Asynchronous, Receiver/
Transmitter, or USART, is initialized; (3) using the appropriate command word, an 8251
operating mode is selected; (4) data may be written to, or read from, the 8251; and (5) when
data transfer is complete, the RS-232 file may be closed.

To implement the interface, the user program must allow for control space contiguous to
location CA as shown in Figure 8-5. During 8251 initialization, locations CA+1 thru CA+5
hold the command and status words used to initialize and select the operation of the 8251.

The user program may read or write single bytes or multiple-byte records. When reading
or writing single bytes, the single byte is passed through location CA+1. If multiple byte
records are to be handled, the user program must set up read and write buffers as shown
in Figure 8-5.

When writing multiple byte records, locations CA+6 thru CA+22 hold the write buffer
pointers and the actual number of bytes sent by the 8251. This data is used interactively
between the user and 64000 programs to transfer write data from the users program, via the
users and 64000 write buffers, to the 8251.

When reading multiple-byte records, location CA+23 thru CA+39 hold the read buffer
pointers and the actual number of bytes received by the 8251. This data is used interactively
between the user and 64000 programs to transfer read data from the 8251, via the 64000 and
users read buffers, to the user program.

The read and write buffers may be updated separately or together by the user program.

CONTROL CONTROL
CODES CODES
CA -
CA-1
USER'S
PRINTER 64000 64000
ROUTINE PROGRAM PRINTER
PRINT PRINTER
DATA DATA
240 CA-n
BYTES
MAX USERS PRINTER 1/0

CONTROL/DATA BUFFER

Figure 8-1. Simulated Printer 1/0 Interface Diagram

EMULATOR/ANALYZER 6800/6802

8-5

8-6

CONTROL CONTROL
CODES CODES
cA
CA+1
B,SSEPF‘Liv 64000 64000
ROUTINE PROGRAM DISPLAY
DISPLAY DISPLAY
DATA DATA
256 CA+n
BYT
MAXES USER'S DISPLAY 1/0
CONTROL/DATA BUFFER
Figure 8-2. Simulated Display 1I/O Interface Diagram
CONTROL CONTROL
CODES cA CODES — _], COMMAND WORDS
COMMAND COMMAND :'
WORDS CA WORDS -
. CA~+2 64000
USER'S 64000
i EETIE@TA PROGRAM KEYBOARD
ROUTINE 240 MAX. KBDATA | KB DATA
CA+n
USERS KB 1/0
CONTROL/DATA BUFFER
Figure 8-3. Simulated Keyboard 1/0 Interface Diagram
CONTROL CONTROL
CODES CODES
CA
. CA-1
USER'S
READ/WRITE
DISC 64000 64000
FILE 110 DATA PROGRAM 22 DISC
ROUTINE READ/WRITE
& FILES FILE OR
RECORD ID
OR
R/W DATA
\rlzgﬁvegaos CAD
(256 BYTES) USERS DISC 1/0
MAX CONTROL DATA BUFFER

Figure 8-4. Simulated Disc File 1/0 Interface Diagram

EMULATOR/ANALYZER 6800/6802

USER'S
PROGRAM

XMIT
DATA

8251
USART"

64000
WRITE WRITE
USER'S WRITE BYTES
WRITE BYTES BUFFER""
WRITE BUFFER'™ (256 BYTES
BYTES MAX)
f 64000 CONTROL
CONTROL
CODES CA (CNTRL
ADDR)
CA-1
INITIALIZATION
& STATUS 8251
INITIALIZATION
BUFFER
CA-5
A .
e cae 64000 PROG
WRI
WRITE &
CONTROL CONTROL READ WRITE CNTRL
BUFFER INTERRUPT
ROUTINES
CA-14
CA-15
READ
CONTROL READ
CONTROL
BUFFER
CA-23
USER'S RS-232
CONTROL BUFFER
64000 CONTROL
READ READ
BYTES BYTES
USER'S 64000
READ READ
BUFFER"" BUFFER""

“USART = Universal Synchronous/Asynchronous Receiver/Transmitter.
“*Buffers are required only if records are to be read or written. Single bytes do not require these buffers.

Figure 8-5. Simulated RS-232 1/0O Interface Diagram

REC
DATA

EMULATOR/ANALYZER 6800/6802

8-7

Printer 1/0 Interface

The following paragraphs describe the events which must be implemented between the user
and the 64000 program for printer 1/O to occur. The events are:

Open Printer File
Write to Printer
Close Printer File

The above events, the corresponding control codes, and parameters, where applicable, are
summarized in Table 8-1.

NOTE

During the time that a simulated 1/0O printer file is open, no
other user can access the printer. Thus, be sure to close the
file when finished.

Open Printer (80H)
Before using a “write to printer” code, the user program must request that the printer
interface be opened. This is done by placing code 80H into location CA.

NOTE

CA represents the memory location to which all printer 1/O
“handshaking” codes are sent by both the user and the 64000
program. The actual address for the printer is defined in the
user program and entered into the 64000 program during the
configuration of the emulation CMDFILE. Each I/O interface -
printer, RD-232, dispaly, etc. - requires its own unique CA
address.

Certain of the I/0 codes sent to location CA must also include
supplemental information. This supplemental information is
generally contained in the locations following CA, i.e., CA+1
thru CA+n. The supplemental information must be placed into
locations CA+1 thru CA+n BEFORE the corresponding
control code is placed in CA. If this is not done, the 64000 may
respond to the control code in CA before the supplemental
data is set into locations CA+1 thru CA+n.

8-8 EMULATOR/ANALYZER 6800/6802

The 64000 program responds by opening the printer file and returning a 00 to location CA. If
the file cannot be opened, error codes are returned as shown in Table 8-1.

After the file is opened, the user program may issue a write-to-printer code as described in
the next paragraph.

Write to Printer (82H)

To send a write record to the printer, the user program places the following parameters into
locations CA+1 thru CA+n and then after setting up locations CA+1 thru CA+n, places code
82H into location CA.

The record length in bytes is entered into location CA+1. The record length must be a
minimum of two bytes and may be a maximum of 240 bytes in two byte increments. That is -
the record must always contain an even number of bytes. Odd bytes should be padded with a
space (20H).

Locations CA+2 thru (CA+2)+n contain the ASCII codes of the character to be printed.

The 64000 responds by supplying the write record to the printer and returning a 00 to
location CA. The 64000 automatically sends a carriage return/linefeed to the printer
following the user data. If the write-to-printer record is not accepted, an error code is
returned as listed in Table 8-1.

Close Printer File (81H)

The user program closes the printer file by placing code 81H into location CA. The 64000
responds by closing the file and returning code 00 to location CA. The 64000 will perform a
form feed automatically.

If the close file is not accepted, an error code is returned to location CA as shown in
Table 8-1.

EMULATOR/ANALYZER 6800/6802

8-9

Request
Name

OPEN
PRINTER
FILE

CLOSE
PRINTER
FILE

WRITE
TO
PRINTER

Table 8-1. Printer 1/0 Codes
64000 Response To:

User Program

Request
Address Contents
CA 80H
CA 81H
CA 82H
CA+1 Record

Length
in bytes
(240 max.)
CA+2 Record
byte 1*
! |
(CA+2) Record
+n byte n*

Valid User Request

Address

CA 00

CA 00

CA 00

The 64000
accepts
the record
and causes
it to be
printed.

Contents

Invalid Request

Error Code
01 thru 08

09: file is
already open.

10-14: NA
01 thru 08

09: file is
already closed.

10-14: NA
01 thru 08

09: file is
not open.

10, 11, 13
& 14: NA

12: Record
length ex-
ceeded 240
bytes.

*All display characters must be formatted in ASCII code. A code greater than OFOH will not be
accepted by the 64000 program.

NA= Not Applicable.

See table 8-8 for complete error code listing.

8-10 EMULATOR/ANALYZER 6800/6802

Display 1/O Interface

The following paragraphs describe the events which must be implemented between the user
and the 64000 programs for display 1/O to occur. The events are:

Open Display File

Roll To / Write line 18 (scroll and write)

Select line and column

Write from selected line/column

Close Display File

The above events, the corresponding control codes and parameters, where applicable, are
summarized in Table 8-2. Display techniques are shown in Figure 8-6.

NOTE

During the time that the simulated I/O display file is open, the
standard 64000 keyboard has no control over the display.

To regain control, press the simulate softkey which closes the
file. If the keyboard file is open, it, too, is closed when the
softkey is pressed.

Open Display File (80H)
Before any writing can be done on the display, the user program must request that the
display file be opened. This is done by placing code 80H into location CA.

NOTE

CA represents the memory location to which all display I/0
“handshaking” codes are sent by both the user and the 64000
program. The actual address for the display I/O CA is defined
in the user program and entered into the 64000 program
during the configuration of the emulation CMDFILE. Each I/0O
interface - display, RS-232, printer, etc. - requires its own
unique CA address.

EMULATOR/ANALYZER 6800/6802 8-11

8-12

Certain of the 1/0 codes sent to location CA must also include
supplemental information. This supplemental information is
generally contained in the locations following CA, i.e., CA+1
thru CA+n. The supplemental information must be placed into
locations CA+1 thru CA+n BEFORE the corresponding
control code is placed in CA. If this is not done, the 64000 may
respond to the control code in CA before the supplemental
data is set into locations CA+1 thru CA+n.

The 64000 program responds by opening the display file, and returning a 00 to location CA. If
the file cannot be opened, error codes are returned as shown in Table 8-2.

After the file is opened, the user program may write on the display as described in the
following paragraphs.

Roll To/Write Line 18 (82H)

This command allows writing to be initiated at the bottom of the display. Sequential Roll
Up/Write Line 18 commands cause the previously written line 18 to roll to line 17, etc. Thus,
writing is always done on the bottom line and the previously written lines are shifted up as
each new line 18 is written.

To cause the display to roll up and begin writing on line 18, the user program places the
following parameters into location CA+1thru CA+n, and after setting up locations CA+1 thru
CA+n, then places code 82H into CA.

The line length in bytes is entered into location CA+1. The line length must be a minimum of
two bytes and may be a maximum of 80 bytes, in two byte increments. That is, the line must
always contain an even number of bytes. If the user writes an odd number of bytes, the 64000
will pad the line with a null.

Locations CA+2 thru (CA+2)+n contain the ASCII codes of the characters to be written on
line 18. The 64000 responds by storing this data in a display buffer and returning a 00 to
location CA. A delay may occur before the program rolls up and writes to line 18. Thus, a
program wait may be required. If writing cannot be done, especially if write roll/column is
used (roll/column does not use delay), an error code is returned as listed in Table 8-2.

After initially rolling up and writing on line 18, subsequent Roll Up/Write Line 18 commands
cause the previously written line 18 to roll up to line 17, line 17 to roll to line 16, etc. Although
the 64000 responds almost immediately with a 00 in CA, the actual scrolling of a line can take
up to 200 msec. The 64000 will accept other commands during this time. Future scrolls are
buffered and performed in sequence. Row/Column writes will be performed immediately and
may be scrolled if a previous scroll has not been completed.

EMULATOR/ANALYZER 6800/6802

Select Starting Line/Column (83H)

The user programs may specify the line number and column number at which writing, when
indicated, will start. To do this, the user program places the line number (1 thru 18) into
location CA+1, the column number (1 thru 80) into location CA+2, and then places code 83H
into location CA.

The 64000 responds by storing the line and column number and returning code 00 to location
CA. The line and column numbers are stored until either writing is initiated (code 84H) or the
display file is closed.

If the line and column numbers are not accepted by the 64000 program, an error code is
returned to location CA as listed in Table 8-2.

Figure 8-6 shows the display techniques.

Write From Starting Line/Column (84H)
Before writing can be initiated, a starting line number and column number must be specified
by the user program. After this is done, writing may be initiated as follows: the user program
initiates writing by placing the record length (i.e., number of characters to be displayed) into
location CA+1, the actual display characters (ASCIl codes) into locations CA+2 thru
(CA+2)+n, and then places code 84H into location CA.

The maximum record length is 255 bytes. The display characters must be formatted in ASCII
codes. The 64000 program will not accept a display code greater than OFOH.

The 64000 responds by displaying the record beginning at the starting line and column
specified by code 83H. If the record exceeds the length of the starting line, writing continues
at column one of the next line, etc.

If the 64000 cannot initiate writing as requested, an error code is returned to location CA as
shown in Table 8-2.

Close Display File (81H)
The user program closes the display file by placing code 81H into location CA. The 64000
responds by closing the file and returning code 00 to location CA.

If the close file is not accpeted, an error code is returned to location CA as shown in
Table 8-2.

Pressing the inverse video “simulate” key or performing a “reset-reset” will automatically
close the display. Closing the display also closes the keyboard.

EMULATOR/ANALYZER 6800/6802 8-13

Table 8-2. Display I/0 Codes
64000 Response To:

Request User Program
Name Request Valid User Request Invalid Request
Address Contents Address Contents Error Code
OPEN CA 80H CA 00 01 thru 08 & 14
DISPLAY
FILE The 64000 program 09 code >84H
opens the file and or file is open
clears the display
10 thru 13: NA
CLOSE CA 81H CA 00 01 thru 08 & 14
DISPLAY
FILE 09: file is
already closed.
10 thru 13: NA
ROLL CA 82H CA 00 01 thru 08 & 14
TO/
WRITE CA+1 Line The 64000 program 09: file is not
LINE length stores this data open
18 in bytes in a display
(80 max) buffer. A delay
may occur before 10, 11, & 13: NA
rolling to and
writing on line 18
actually occurs.
CA+2 Line A program wait 12: Invalid
byte 1* may be required. record length
If successive
line 18’s are
written, then
the preceeding line
18 is rolled to
line 17, 17 to 16,
etc.
(CA+2) Line
+n byte n*

8-14 EMULATOR/ANALYZER 6800/6802

Table 8-2. Display 1/0 Codes (Cont’d)
64000 Response To:

Request User Program
Name Request Valid User Request Invalid Request
Address Contents Address Contents Error Code
SELECT CA 83H CA 00 01 thru 08 & 14
STARTING
LINE/ CA+1 Line # The 64000 program 09: File is not
COLUMN (1-18) stores the line open
and column numbers
CA+2 Column until a write
Number line/column re- 10, 12 & 13: NA
(1-80) quest is issued
or the file is 11: Invalid line or
closed. column number.
WRITE CA 84H CA 00 01 thru 08, 13
FROM & 14
STARTING CA+1 Record The 64000 program 09: file not
LINE/ length displays the record open.
in bytes starting at line/
(255 Max) column selected by 10 & 12: NA
code 83H. If record
exceeds one 11: line/column
line, writing con- not specified
tinues at column by 83H.
CA+2 Record 1 of next line,etc.
| byte#1 See figure 8-6.
|
(CA+2) Record
+n byte n*

*All display characters must be formatted in ASCII code. A code greater than OFOH will
not be accepted by the 64000 program.

NA= Not Applicable.

See table 8-8 for complete error code listing.

EMULATOR/ANALYZER 6800/6802 8-15

COLUMN #'s

| #
LINE s 123 456 789..... 69 70 7172 73 747576 77 78 79 80

B/C C

64000 DISPLAY

DISPLAY
LETTER MEANING

A Code 82H automatically causes the display to roll to line 18. Up to 80 characters, in two
byte increments, may be written on the line. Sequential Roll To / Write Line 18
commands cause the previous line 18 to roll to line 17, line 17 to roll to line 16, etc.

B/C B is the point (line 2, column 5) defined by code 83H at which writing will begin. C is
the statement which is defined by code 84H and begins at point B. There is no limit on
the record length defined by 84H. If the record exceeds the length of line 2, it is
continued on line 3 at column 1, etc.

Figure 8-6. Display Techniques

8-16 EMULATOR/ANALYZER 6800/6802

Keyboard 1/0 Interface

The operation of the keyboard 1/0 interface is described in the following four phases:
User Program Requests Keyboard Read
64000 Response to Keyboard Read Request
64000 Detects Positive KB Output Command Word
User’'s Program Detects 00 in CA

Each of the above phases corresponds to a significant interaction which must be
implemented between the user program and the 64000 program for keyboard 1/0 to occur.

The keyboard 1/0 interface events are summarized in Figure 8-7 and Table 8-3.

NOTE

To automatically close the simulated 1/O keyboard file and
return the keyboard to standard operation, press the EmEaE
softkey. If the display file is also open, it, too, is closed when
the softkey is pressed.

User Program Requests Keyboard Read (80H)

Before any other keyboard operation can be initiated, the user program must request that the
KB 1/0 interface be opened. This is done by first placing the KB-input-command word and
the maximum record length specification into the KB I/O buffer as shown in Phase | of Figure
8-7. Then, after setting up locations CA+1 thru CA+n, code 80H is placed into location CA of
the buffer.

NOTE

CA represents the memory location to which all KB I/0O codes
are sent by both the user program and the 64000 program.
The actual address of CA is defined in the user program and
entered into the 64000 program during the configuration of
the emulation CMDFILE. Each 1/0 interface - keyboard, RS-
232, printer, etc., requires its own unique interface.

EMULATOR/ANALYZER 6800/6802 8-17

Certain 1/0 codes sent to location CA must also include
supplemental information. This supplemental information is
contained in the locations following CA, i.e., CA+1 thru CA+n.
The supplemental information must be placed into locations
CA+1 thru CA+n BEFORE the corresponding control code is
placed into CA. If this is not done, the 64000 may respond to
the control code in CA before the supplemental data is set
into locations CA+1 thru CA+n.

The KB-input-command word is placed in buffer location CA+1. This word contains either a
“—1” or “-2" code. A “~1” code causes the current line not to be cleared on the first character
(i.e., the current keyboard characters are appended to any characters already displayed on
the same line). A “~2” code causes the current line to be cleared on the first character (i.e,,
previously displayed characters are erased from the line and only the current keyboard
characters are displayed).

The maximum record length specification is placed in buffer location CA+2. This is the
maximum record length (i.e., number of keyboard characters) that the user program will
accept from the keyboard. The record length specification may specify up to 240 characters
(3 lines on the 64000 display). However, the keyboard may transmit more or less characters
than this specification. If the number of characters transmitted exceeds the record length
specification, the user program is informed of this by an applicable code in the KB-output-
command word as described below.

64000 Response to Keyboard Read Request

The 64000 program responds to the KB read request by storing the KB-input-command word
and record length specification, and by placing code 82H into location CA as shown in Figure
8-7.

The 64000 program sets the KB-output-command word to the same code specified in the KB-
input-command work (=1 or —2).

The 64000 then begins monitoring the keyboard until an output command word is detected.
The result of this detection is described in the following paragraphs.

64000 Detects Positive KB-Output-Command Word

The keyboard may send either a KB-output-command word by itself or a command word
followed by one or more keyboard characters. In either case, when a KB-output-command
word is detected, the 64000 program places the word, and if applicable, other data into the
KB 1/0 buffer as shown in Figure 8-7 (Phase II1). The KB output word, which is always sent, is
placed in buffer location CA+1.

The 64000 program places a 00 in location CA to indicate to the user program that either a KB
command and/or data is now available.

8-18 EMULATOR/ANALYZER 6800/6802

If keyboard characters are also sent and if a “lost character” was generated, then the “lost
character” is placed into location CA+2. (How a “lost character” is generated is described
later.) Also, when keyboard characters are sent, the actual number of characters in the string
(i.e., actual record length) is placed into location CA+3. The keyboard characters themselves
(ASCII coded bytes) are placed into locations CA+4 thru (CA+4)+n.

The KB output command in location CA+1 may be any one of the codes shown in Table 8-4.
Two of these codes, 8 and 24, will occur only if the actual record length from the keyboard
exceeds the maximum record length specification. If either of these codes is generated, then
location CA+2 contains the ASCII code of the surplus or lost character that exceeded the
specified record length. A lost character may be generated in either of two ways:

a. When characters are entered as a continuous string and the string exceeds the
specified record length. For this case, the first character to exceed the specified record
length is placed in “lost character” location CA+2. If typing continues, each individual
surplus character is placed into the “lost character” location CA+2 replacing the
previous character. Thus, the last “lost character” entered remains in location CA+2.

b. When a character is inserted into a full record. For this case, the character at the end of
the already full record is placed into “lost character” location CA+2. If additional
characters are inserted, each succeeding end character is placed into CA+2, replacing
the previous character.

User’'s Program Detects 00 in CA

After detecting a 00 in location CA, the user program takes the data from the KB I/O buffer
and places either 80H or 81H into location CA. The results of each of these response codes
are as follows:

a. 80H Response Code - Read Keyboard I/0

If the user program responds with code 80H, the KB-input-command word and record
length specifications must be supplied by the user program as shown in Figure 8-7.

The 64000 program responds by again reading the keyboard.
b. 81H Response Code - Close KB I/0

If the user program responds with code 81H, the 64000 program closes the KB I/0
interface. This command will also close the display file if it was open.

EMULATOR/ANALYZER 6800/6802 8-19

8-20

Request
Name

OPEN
KB
INTER
FACE

READ
IN
PROCESS

OUTPUT

AVAILABLE

EMULATOR/ANALYZER 6800/6802

User Program Request

Address

CA

CA+1

CA+2

Contents

80H

KB Input
Command
Word

Max.
Record
Length
Specifi-
cation

(up to

240 bytes)

Initiated
by 64000
program

in response
to 80H above

Initiated

by 64000
after

82H, above

Table 8-3. Keyboard 1/0 Interface Codes

64000 Response To:

Valid User Request Invalid Request

Address Contents Error Code
See 82H, 08, 12, or 14
below

Other codes
do not apply

CA 82H

64000 stores KB-
input-command
word & max. record
length spec. It then
monitors KB-
output-command
word until positive
word is detected
and then responds

as follows:

CA 00

CA+1 KB out-put
command
word

Table 8-3. Keyboard 1/0 Interface Codes (Cont'd)

64000 Response To:

Request User Program Request Valid User Request Invalid Request
Name
Address Contents Address Contents Error Code
User pro-
gram may CA+2 Reserved
then re- for Lost
spond to Character
00 with
80H or
81H as CA+3 Actual
shown record
below. length
(#of KB
bytes)
CA1+4 KBlByte 0
(CA+4) KB Byte n
+n
CLOSE CA 81H CA 00 08 or 14
KB
170
Other
codes
do not
apply.

See Table 8-8 for complete error code listing.

EMULATOR/ANALYZER 6800/6802 8-21

Table 8-4. Command Word Codes

Part A. KB - Input - Command Word
Code Meaning
-1 Current line not cleared. Characters appended to previously displayed
characters.
-2 Current line cleared. Previously displayed characters erased.
Part B. KB - Output - Command Word
Code Meaning
8 Insert character in full line (lost character placed in CA+2)
9 Tab Key
10 Down arrow key
11 Up arrow key
12 Display next page
13 Carriage return
14 Attempting to move cursor right past last allowed screen location
15 Attempting to move cursor left past first allowed screen location
16 Delete character from full line
17 Shift key
18 Display previous page
19 Roll display down
20 Roll display up
21 Shift right arrow key
22 Shift left arrow key
23 Clear line key
24 Actual record length exceeded record length specification (lost character

placed in CA+2)

8-22 EMULATOR/ANALYZER 6800/6802

Phase | - User Requests Interface Opening

LOCATION

CONTENTS (From User Program)

CA*

80H (OPEN KB 170

CA+1

KB INPUT COMMAND WORD

CA+2

MAX RECORD LENGTH
SPECIFICATION (UP TO 240

Phase Il - 64000 Response to Open-Interface Request

*The actual address for location “CA" is
defined by the user during configuration
of the emulation "CMDFILE"

KB I O BUFFER

CONTENTS (From 64000}

82H (READ IN PROCESS)

LOCATION
CA
SEPARATE
BUFFER SET UP
BY 64000

KB INPUT COMMAND WORD

MAX RECORD LENGTH
SPECIFICATION

64000 BUFFER

Figure 8-7. Keyboard 1/0 Interface Sequence

EMULATOR/ANALYZER 6800/6802

8-23

8-24

Phase Il - 64000 Detects Positive KB Output Command Code

ADDRESS

CONTENTS

CA

0 KB OUTPUT AVAILABLE

CA+1

KB OUTPUT COMMAND WORD

-—— SET BY 64000 PROGRAM

CA+2

RESERVED FOR LOST
CHARACTER

CA+3

ACTUAL RECORD LENGTH
(# OF KEYBOARD BYTES)

KB OUTPUT
COMMAND
WORD*

KB DATA

CA+4

(CA+4)
+n

KB BYTE 0

KB BYTE N

KEYBOARD

*When word goes positive,
the 64000 transfers data

to 1/0 buffer.

KB I/0 BUFFER

Phase IV - The user program may respond with either an 80H code as shown for phase | or an
81H code which closes the simulated keyboard 1/0O interface.

Figure 8-7. Keyboard 1/0 Interface Sequence (Cont'd)

EMULATOR/ANALYZER 6800/6802

Disc File 1/0 Interface

CAUTION

The disc file simulated I/O control codes can be used to
access critical system files. Extreme care should be used if
any of the following types of files are accessed:

Emulation Command Files (Type 6)

Linker Command Files (Type 7)

Linker Configuration Files (Type 8)

Incorrectly accessing these files may destroy them and cause
serious system problems!

The following paragraphs describe the type of files and the events which must be
implemented between the user and the 64000 program to either: (1) create a new disc file, or
(2) read from, write into, delete, or change the name of an existing file. The file types are
described first. Then, the program events are described in the following order:
a. Creating New File
1) Creating File (80H)
2) Writing First Record (89H)
3) Writing Additional Records (89H)
4) Closing Created File (82H)
b. Accessing Existing File
1) Opening File (81H)
2) Selecting Record

(a) Automatic selection of records 1, 2, 3, ... etc.

(b) Advance “N” records (84H)

EMULATOR/ANALYZER 6800/6802 8-25

(c) Backup “N” records (85H)
(d) Position to record “N” (86H)
(e) Rewind to record one (88H)
3) Reading Record (87H)
4) Writing Record (89H)
5) Closing Open File (82H)
c. Deleting File (83H)
d. Changing File Name Associated with a CA (8AH)
The predefined file types are listed in Table 8-5.

Table 8-6 summarizes the user program requests, the corresponding control codes, and,
where applicable, corresponding parameters.

File Types

The names and type numbers are listed in Table 8-5.

Creating New File

Creating File

To create a new file, the user program places the file type number into location CA+1, the
disc number into location CA+2, and then places code 80H into location CA. (The disc
number is the disc upon which the file will reside.)

NOTE

CA represents the memory location to which all disc file I/0
“handshaking” codes are sent by both the user program and
the 64000 program. The actual address for the disc files CA is
defined in the user program and entered into the 64000 during
the configuration of the emulation CMDFILE. Each 1/0
interface - disc files, display, keyboard, etc. - requires its own
unique CA address.

8-26 EMULATOR/ANALYZER 6800/6802

Certain 1/0O codes sent to location CA must also include
supplemental information. This supplemental information is
contained in the locations following CA, i.e., CA+1 thru CA+n.
The supplemental information must be placed into locations
CA+1 thru CA+n BEFORE the corresponding control code is
placed into CA. If this is not done, the 64000 may respond to
the control code in CA before the supplemental data is set
into locations CA+1 thru CA+n.

The 64000 responds by creating the file type requested and returning a 00 to location CA
which indicates the file has been created.

If the file cannot be created, an error code as shown in Table 8-6 is returned to location CA.
(General definitions for the error codes are listed in Table 8-8.)

After the file is created, the user program may either write records immediately into it, or
close it, and then reopen it and write records into it later.

Writing First Record

After a file is created the first record is written into it as follows. The user program places
parameters, as described below, into locations CA+1 thru CA+n, and then places code 89H
into location CA.

The number of words in the write record is placed into location CA+1. A write record may
contain up to a maximum of 128 words (256 bytes). Thus, an even number of bytes (whole
words) must always be written.

Locations CA+2 thru (CA+2)+n contain the words of the write record.

The 64000 responds by automatically writing the records into the file as record number 1.
After the record is successfully written, the 64000 returns a 00 to location CA. If the record
cannot be written, an error code, as listed in Table 8-6, is returned to location CA.

Additional records are written into the file as described in the next paragraph.

Writing Additional Records

If the newly created file is still open (i.e., has never been closed), additional records are
written into the file as described for record one with the following difference. Each
succeeding record is automatically written with the next corresponding record number.
Thus, the second record written becomes record number 2, the third record written becomes
record number 3, etc.

EMULATOR/ANALYZER 6800/6802 8-27

Closing Created File

To close the newly created file, the user program places code 82H into location CA. The
64000 responds by closing the file and returning a 00 to location CA. If the file cannot be
closed, an error code, as listed in Table 8-6, is returned to location CA.

Accessing Existing Files

Opening File
To open an existing file, the user program places the file type number into location CA+1, the
disc number into location CA+2, and then placed code 81H into location CA.

The 64000 responds by opening the file and returning a 00 to location CA which indicates the
file is open. If the file cannot be opened, an error code, as shown in Table 8-6, is returned to
location CA.

CAUTION

When a record is written into a file, it always becomes the last
record in the file. Thus, writing a record into any location
other than at the end of the file effectively erases all the
following records in the file. When accomplishing the
following paragraph choose record positions with care!

After the file is opened, the user program may either: (1) immediately read/write record 1, (2)
select any record for reading, or (3) select a position within the file to begin writing.

Selecting Record
Records are selected in any of the following ways:

a. Automatic selection of records 1, 2, 3, ..., etc. When the file is opened, record 1 is
automatically selected. Thus, it may be immediately written into, or read from, without
first selecting it with an “advance”, “position”, or “rewind” code. After reading or
writing record 1, record 2 is automatically selected and may be read from, or written
into. This process can be continued for records 3, 4, 5, ..., etc.

NOTE

Remember, that when a record is written into a file, it becomes
the end of the file.

8-28 EMULATOR/ANALYZER 6800/6802

b. Advance “N” Records. Records located ahead of the currently selected record (i.e.,
those records with higher numbers) may be selected as follows. The user program
places the number of records into locations CA+1 and CA+2, and then places code
84H into location CA. The number of records is selected with a 15-bit word. The eight
least significant bits are located in CA+1. The seven most significant bits are located in
CA+2. The most significant bit in CA+2 is not used.

The 64000 responds by advancing the specified number and returning a 00 to location
CA. If the record cannot be selected, an error code, as shown in Table 8-6, is returned
to location CA.

After the record is selected, the user program may then either read from or write into it.

c. Backup “N” Records. Records located behind the currently selected record (i.e., those
records with smaller numbers than the current record) are selected in a way very
similar to “advance ‘N’ records”. The only difference is that backup code 85H is placed
into location CA. Locations CA+1 and CA+2 contain the number of records as defined
in subparagraph b above. The 64000 also responds as described above.

d. Position to Record “N”. Any record within the file may also be selected without
knowing its location relative to the current record. This method is also similar to the
“advance” or “backup” methods. The difference is that position code 86H is placed
into location CA. Location CA+1 and CA+2 contain the record number as defined in
subparagraph b above. The 64000 responds as described above.

e. Rewind to Record One. This is a fast way to select record 1. This method differs from
the previous selection method in several ways. First, only record 1 can be selected
using this method. Second, the user program places code 88H into location CA. Third,
there are no entries required in locations CA+1 and CA+2. The 64000 program
responds as described in subparagraph b above.

Reading Record

Once a record has been selected by one of the methods described above, it may be read as
follows. The user program places the maximum number of 16-bit words it will accept from the
record into location CA+1. Up to 128 words may be accepted. (The recommended technique
is always set CA+1 to 128. Then, after reading is complete, throw away those words not
wanted, if any.) After specifying location CA+1, code 87H is placed into location CA.

EMULATOR/ANALYZER 6800/6802 8-29

If the record is read successfully, the 64000 responds as follows: code 00 is returned to
location CA. The actual number of 16-bit words read from the buffer is placed in location
CA+1. Location CA+2 thru (CA+2)+n contains bytes 0 thru n.

If the record cannot be read, an error code, as shown in Table 8-6, is returned to location CA.

Writing Record

A new record may be written into an existing file in either one of two ways. The record may be
added to the end of the file or it may be written over an existing record in the file. However, if
an existing record is written over, then the newly written record becomes the last record in
the file.

To add a record to the end of the file, the record selected must be one greater than the last
record in the file. For example, if a file contains five records, then record 6 must be selected
before writing is initiated. (If record 5 is selected, it will be written over by the new record.)
After writing record 6, record 7 may be written by issuing another write code, etc.

To write over an existing record, first select the record and then initiate writing. Again,-
remember that all following records in the file are erased. For example, if a file contains 10
records, and record three is written over, then records four thru ten are erased.

Closing Open File

An open file is closed in the same way as described for a newly created file. That is, the user
program places code 82H into location CA. The 64000 responds by closing the file and
returning a 00 to location CA. If the file cannot be closed, an error code, as listed in Table 8-6,
is returned to location CA.

Deleting Files

To delete afile, the user program places the file type into location CA+1, the disc number into
location CA+2, and then places code 83H into location CA. The 64000 responds by deleting
the file. If the file cannot be deleted, an error code is returned to location CA as shown in
Table 8-6. This delete is similar to a “purge” command in the general operating system. The
purged file does go into the recoverable file list.

Changing File Name Assigned to a Particular CA

The file name associated with a given CA location may be changed. This does not rename
any files on the disc, but simply changes the name in the emulation command file associated
with a given CA. To do this the user must first make sure that the present file associated with
the CA of interest is closed.

To change the file name in the emulation configuration file, the user program places the new
name record into locations CA+1 thru CA+16, and then places code 8AH into location CA.
The name record is a fixed length record consisting of eight, 16-bit words. This record
contains the record name, USERID, and specifies the length of both of these items.

8-30 EMULATOR/ANALYZER 6800/6802

The name must contain at least one character and may be up to nine characters long. The ID
may be up to six characters long. However, the name and ID lengths are specified in a unique
way. Also, the words containing these characters must be packed in the name record.
Specifying name and character lengths and packing the words are done in the same way as
described for the “Microprocessor Configuration Record” in the Linker Symbols File
description. This description is located toward the end of this chapter.

To actually change the name of an existing file, the user must copy the contents of the file
under the old file name into the file with the new file name. Either one or both of these files
names may be specified by the user program at run time and accessed after “change file
name” has been issued to the appropriate CA locations.

Table 8-5. Disc File Type Numbers and Names*

File Type Number File Name
2 Source
3 Relocatable
4 Absolute
5 Listing
6 Emulation Command
7 Linker Command
8 Trace
10 Data
12 Assembler Symbols
13 Linker Symbol
**14 Types are defined
thru and numbers assigned
255 by user program.

* Formats for selected files are described at the end of this chapter.
** HP may require some unassigned numbers for future use. It is, therefore, strongly
recommended that the DATA (type 10) file be employed for the user defined type file.

There are predefined types of files, identified by numbers 2 thru 13, that may be created by
the user program.

File type numbers 14 thru 255 may be assigned to files defined by the user program, as
required. It should be noted, however, that HP may require some unassigned numbers for
future use. It is, therefore, recommended that the user leave space for this possibility, starting
with number 14.

EMULATOR/ANALYZER 6800/6802 8-31

NOTE

Once created, file types 14 thru 255 can only be deleted by
using the simulated 1I/0 delete command.

The overall file name is assigned during emulation configuration. Under any one file name,
only one each of a file type may be created. For example, a file named USA may only have
one each of file types 2 thru 255. It cannot have two type 3 files.

CAUTION

The disc file simulated I/0O codes can be used to access
critical system files. Extreme care should be used if any of the
following types of files are accessed:

Emulation Command Files (Type 6)

Linker Command Files (Type 7)

Linker Configuration Files (Type 8)

Incorrectly accessing these files may destroy them and cause
serious system problems!

8-32 EMULATOR/ANALYZER 6800/6802

Table 8-6. Disc File I/0 Codes

Request User Program 64000 Response To:
Name Request
Valid User Request Invalid Request
Address Contents Address Contents Error Code
CREATE CA 80H CA 00 01 thru 08, 10
FILE
CA+1 File Type
Number 09: file is
not open
CA+2 Disc # 11 thru 14: NA
OPEN CA 81H CA 00 01 thru 08, 10
FILE
CA+1 File Type
Number 09: File is
already
open
CA+2 Disc #

11 thru 14: NA

CLOSE CA 82H CA 00 01 thru 08
FILE

09: File is

already

closed

10 thru 14: NA

DELETE CA 83H CA 00 01 thru 08,10
FILE
CA+1 File Type 09: File not
Number open

EMULATOR/ANALYZER 6800/6802 8-33

Request
Name

ADVANCE
t(N”
RECORDS

BACKUP
&IN”
RECORDS

POSITION
TO
RECORD
“N”

READ
RECORD

Table 8-6. Disc File 1/0 Codes (Cont'd)

User Program

Request
Address Contents Address
CA+2 Disc #
CA 84H CA
CA+1 LSB 15-bit*
record
CA+2 MSB number
(*bit 16 not
used)
CA 85H CA
CA+1 LSB 15-bit*
record
CA+2 MSB number
(*bit 16 not
used)
CA 86H CA
CA+1 LSB 15-bit*
record
CA+2 MSB number
(*bit 16 not
used)
CA 87H CA
CA+1 Max. CA+1
number
of words
user can
accept.

(128 words/
256 bytes max.)

8-34 EMULATOR/ANALYZER 6800/6802

Valid User Request

Contents

00

00

00

00

Actual #
of words
read
from
buffer.

64000 Response To:

Invalid Request

Error Code

11 thru 14: NA

01 thru 08

09: File not
open

10 thru 14: NA

01 thru 08

09: File not
open.

10 thru 14: NA

01 thru 08

09: File not
open

10 thru 14: NA

01 thru 08

09: File is

not open

12

Table 8-6. Disc File I/0 Codes (Cont'd)

Request User Program 64000 Response To:
Name Request
Valid User Request Invalid Request
Address Contents Address Contents Error Code
CA+2 Read
Byte 1 10, 11, 13, 14: NA
l
|
(CA+2) Read
+n Byte

n*

(*256 bytes/

128 words
is max.
record
length.)
REWIND CA 88H CA 00 01 thru 08
TO
RECORD
ONE 09: File is
not open
10 thru 14: NA
WRITE CA 89H CA 00 01 thru 08, 12
RECORD
CA+1 Number of
words to be 09: file is
written. not open.
(128 words/
256 bytes 10, 11, 13,14: NA
maximum.)
CA+2 Write byte 1
| |
(CA+2) Write byte n
+n

EMULATOR/ANALYZER 6800/6802 8-35

Table 8-6. Disc

Request
Name

User Program
Request

Address Contents

CHANGE
FILE
NAME

CA 8AH

SEE
NOTE
BELOW

Bits 7-5
specify
length of
file name
in 16-bit
words-1.
Bits 4 & 3
specify
ID length
in 16-bit
words.
Bits 2-0
contain
all zeros.
(See note
below.)
CA+2 First
character
of file
name.
Limited to
capital
letters
A thru Z.
CA+3 Second
and
following
file name
characters
may be
small or
capital
letters,

8-36 EMULATOR/ANALYZER 6800/6802

File I/0 Codes (Cont'd)
64000 Response To:

Valid User Request Invalid Request

Address Contents Error Code

CA 00 01 thru 08

12 & 15

09: File
not open

10, 11, 13,
14: NA

Table 8-6. Disc File I/0 Codes (Cont’d)

Request User Program
Name Request

Address

CA+4
thru
CA+n.
Where
n 10

CA+
(n+1)

CA+
(n+2)

|
thru

|
CA+16

Contents

numerals

0 thru 9,
underlines,
and

only if
required
one blank
may be used
to fill in

last character
in last word
of name.

Up to 9
name
characters
may be used.

First USERID
character.

Up to 6
USERID
characters
may be used.

See note
below.

Valid User Request

64000 Response To:

Contents Error Code

Invalid Request

Note: The name and USERID characters must be packed into a fixed length record. This
record consists of 8, 16-bit words. Thus, the name record will always require a user buffer
consisting of 17 bytes (byte CA through byte CA+16). All unused 16-bit words must be at the
end of the record. No intervening unused words or bytes are allowed. If the last byte in the
last name and ID word is not required to define the name, then it must contain an ASCII
blank. The byte in buffer location CA+1 must be formatted the same as described for the
most significant byte of word 16 in the name and user ID word block of the microprocessor
configuration record. Refer to the “Microprocessor Configuration Record” in the Linker
Symbols description for more information.

EMULATOR/ANALYZER 6800/6802

8-37

RS-232 1/0 Interface

The following paragraphs describe the events which must be implemented between the user
and the 64000 programs for RS-232 1/O to occur.

These events are:

Open RS-232 File

(e}

o Initialize 8251
o Command To 8251
o Status From 8251
o Write To 8251
Write Single Byte
Write Record
0 Read From 8251
Read Single Byte
Read Record
o Updating Read/Write Buffers

The above events, corresponding control codes, and parameters, where applicable, are
summarized in Table 8-7.

Open RS-232 File (80H)
Before any other RS-232 operation can be initiated, the user program must request that the
RS-232 File be opened. This is done by placing code 80H into location CA.

NOTE

CA represents the location to which all RS-232 /0
“handshaking” codes are sent by both the user and the 64000
programs. The actual address for the RS-232 CA is defined in
the users program and entered into the 64000 program during
the configuration of the emulation CMDFILE. Each 1/0
interface - RS-232, display, printer, etc.- requires its own
unique CA address.

8-38 EMULATOR/ANALYZER 6800/6802

Certain of the I/O codes sent to location CA must also include
supplemental information. This supplemental information is
contained in the locations following CA, i.e., CA+1 thru CA+n.
The supplemental information must be placed into locations
CA+1 thru CA+n BEFORE the corresponding control code is
placed in CA. If this is not done, the 64000 may respond to the
control code in CA before the supplemental data is set into
locations CA+1 thru CA+n.

The 64000 responds by opening the RS-232 file and returning a 00 to location CA to indicate
that the file is open. If the file cannot be opened, error code 08 or 09 is returned to location
CA.

After the file is opened, the 8251 must be initialized as described in the next paragraph.

Initialize 8251 (82H)

In general, 8251 initialization consists of resetting the 8251 and then selecting one of the
following three operating modes: (1) asynchronous, (2) synchronous with one sync
character, or (3) synchronous with two sync characters. (See Figure 8-8.)

For each of the three modes, the user program requests initialization by first setting up buffer
locations CA+1 thru CA+5 and then placing code 82H into location CA. A command
instruction with Internal Reset (IR) bit D6 set is placed into location CA+1. (See Figure 8-9.)
The contents placed into locations CA+2 thru CA+5 depend upon the operating mode
selected as described in the following paragraphs.

Asynchronous Mode

For this mode, the asynchronous mode instruction is placed into location CA+2 and a sync
option word specifying 0 must be placed into location CA+3. Locations CA+4 and CA+5
contain no meaningful data.

The asynchronous mode instruction is used to select the baud rate, the character length, the
parity parameters, and the number of stop bits. (See Figure 8-10.) (The only baud rates which
may be used within the 64000 are the transmitter clock frequency (1 X Txc) or 1/16 X Txc.
The baud rate factor of 1/64 X Txc cannot be used with the 64000. The basic frequency of Txc
is selected by switches on the modem 1/O card. Thus, the basic frequency (Txc) may be
changed by the I/O card switches.) The user must format this instruction so that the
appropriate parameters are specified. 1/16 X Txc must be programmed if the baud rate is to
match the baud rate Table in the Installation and Configuration Reference Manual.

The sync option specifies 0 since there are no sync characters for the asynchronous mode.

EMULATOR/ANALYZER 6800/6802 8-39

Synchronous Mode/Single Sync Character

For this mode, the synchronous mode instruction is placed into location CA+2, the sync
option word specifying “1” is placed into location CA+3, and the sync character is placed into
location CA+4. Location CA+5 contains no meaningful data. (See Figure 8-8)

The synchronous mode instruction is used to select the character length, and the parity and
synchronization parameters. (See Figure 8-11.) Bit D7 (SCS) of this word must specify a
single sync character.The user must format this instruction so that the other appropriate
parameters are specified.

The sync option word specifies “1” for a single sync character.
The format of the sync character must be defined by the user.

Synchronous Mode/Double Sync Character

For this mode, the synchronous mode instruction is placed into location CA+2, the sync
option word specifying “2” is placed into location CA+3 and sync characters 1 and 2 are
placed into locations CA+4 and CA+5, respectively. (See Figure 8-8.)

The synchronous mode instruction is used to select the character length, and the parity and
synchronization parameters. (See Figure 8-11.) Bit D7 (SCS) of this word must specify a
double sync character. The user must format this instruction so that the other appropriate
parameters are specified.

The sync option word specifies “2” for double sync characters.
The format of both sync characters must be defined by the user.

After the 8251 is initialized, the 64000 returns a 00 to location CA. If the 8251 cannot be
initialized, error code 08 or 09 is returned as shown in Table 8-7.

Command to 8251 (83H)

After the 8251 is initialized (i.e., reset and asynchronous or synchronous operation selected),
it must be placed in the appropriate mode - transmit, receive, or combination
transmit/receive, etc. To do this, the user program first places the appropriately formatted
command word into location CA+1 and then places code 83H into location CA. (The user
must format the command word to select the applicable operation as shown in Figure 8-9.)

The 64000 responds by supplying the command word to the 8251 and returning a 00 to
location CA. If this cannot be done, code 08 or 09 is returned to location CA. (See Table 8-7.)

8-40 EMULATOR/ANALYZER 6800/6802

Status From 8251 (84H)

The user may check the status of the 8251 at any time. To do this, code 84H is placed into
location CA. The 64000 responds to this status request by returning a 00 to location CA and
placing the 8251 status word in location CA+1.

The status word format is shown in Figure 8-12.

The status bits DO, D1, and D2 may be cleared or set by the 64000 program when operating in
any of the buffered modes. If the user desires these bits to control operation, it is necessary
to close the appropriate Tx or Rx buffers first.

Write To 8251

The user program may write to the 8251 in either of two ways. It may write a byte at a time, or
a write buffer may set up and data writen continuously. Both methods are described. (Note:
Before attempting to write data, the 8251 must be initialized and the command word, in the
appropriate format, sent to the 8251 as described in the previous paragraphs.)

Write Single Byte (86H)

To write a single byte to the 8251, the user program first places the write byte into location
CA+1 and then places code 86H into location CA. (See Table 8-7.) The 64000 responds by
supplying the byte to the 8251 and returning a 00 to location CA. If writing cannot be done,
error code 08 or 09 is returned to CA. (See Table 8-7.) If more data is to be sent, it is
recommended that the user poll the 8251 status to determine if the 8251 is ready to receive
more transmit data.

Write Record (87H), Update Write Buffer (89H)

(See also Update Read/Write Buffer (8DH)) - To write a record to the 8251, the user program
must first set up a write buffer and identify the beginning and ending locations in the buffer.
(The corresponding 64000 write buffer holds a maximum of 256 bytes.) (See Figure 8-13.) It
then writes a record into the buffer and identifies the buffer locations into which the first and
last bytes of the record are written.

The user program must then request that the record be transferred to the 8251. (See Figure 8-
14.) This is done by first placing the user write buffers beginning/ending and first/last byte
address pointers into locations CA+7 thru CA+22 and then placing code 87H into location
CA.

EMULATOR/ANALYZER 6800/6802 8-41

8-42

The 64000 responds by transferring data from the users write buffer into a 64000 write buffer.
(See Figure 8-15.) For each byte transferred to the 64000 buffer, the first byte address pointer
(in locations CA+15 thru CA+18) is incremented by one. Data transfer continues until either
all data in the users write buffer is transferred or the 64000 write buffer becomes full. (The
64000 write buffer holds a maximum of 256 bytes, or 128 words.) After a write buffer is set up
and if update code 8DH or 89H is used, then the number of bytes actually transmitted by the
8251 is also entered into location CA+6 by the 64000 program. The number of bytes
transmitted refers to the number of bytes transmitted from the 64000 buffer.

The user program should periodically examine the first and last address byte pointers (and if
using update code 8DH or 89H, the number of bytes transmitted by the 8251 may also be
examined) to determine the status of the buffer. (If the first and last byte pointers are equal,
all data was transferred to the 64000 buffer.)

If all data was transferred, the user program may either supply another write record, or close
the write buffer. If all data was not transferred, the user program may either wait until the
remaining data is transferred, add more data to the buffer and update the last byte pointer, or
close the write buffer. Each of these options is described in the following paragraphs.

Additional data may be added to, or a new record written into the buffer and the last byte
address pointer updated as follows: If the first and last byte address pointers are pointing to
the same location, the first new byte goes into the location pointed to by both pointers. If the
first and last byte address pointers are not pointing to the same location, then the first new
byte goes into the location just ahead of the one pointed to by the last byte address pointer
(i.e., last byte address pointer + 1). Then the following bytes are entered into succeeding
locations. (See Figure 8-15.)

After entering data into the buffer, the user program requests write data transfer. This is done
by first placing the updated last byte address pointer into locations CA+19 thru CA+22 and
then placing code 89H into location CA. (See Figure 8-16.)

The 64000 responds by transferring data from the users write buffer to the 64000 write buffer,
increments the first byte address pointer for each byte transferred, and if update code 8DH or
89H is being used, the number of bytes sent by the 8251 is also updated.

Once the user program has placed code 8DH or 89H (update buffer) into location CA, the
64000 routinely monitors the last byte address pointer to determine if more data has been
loaded into the users write buffer. If the 64000 detects that the last byte address pointer has
been incremented, it transfers the data and increments the first byte address pointer to
indicate the number of bytes written. It also updates the number of bytes sent by the 8251.

To write another record, the user program updates the last address pointer. The 64000
responds as described above.

EMULATOR/ANALYZER 6800/6802

To close the buffer, the user program places code 88H in location CA. The 64000 closes the
write buffer and returns a 00 to location CA.

Data may be stored in the users write buffer using a “wrap around” method. That is, once the
last location in the buffer is filled, the next byte is placed into the first location of the buffer.
Thus, it is possible for the last byte address pointer to be pointing to an address that is less
than (i.e., ahead of) the first byte address.

If any of the write buffer requests cannot be done, the 64000 returns the appropriate error
code to location CA as shown in Table 8-7.

Read From 8251

Reading data from the 8251 is similar to writing data to the 8251. The user program may read
data in either of two ways. It may read a byte at a time or it may set up a read bufferand read a
record at a time. Both methods are described. Note: Before attempting to read data, the 8251
must have been initialized and the command word, in the applicable format, sent to the 8251
as described in the previous paragraphs.

Read Single Byte (85H)
To read a single byte from the 8251, the user program places code 85H into location CA. (See
Table 8-7.)

The 64000 responds by returning a 00 to location CA and the read byte to location CA+1. If
reading cannot be done, error code 08 or 09 is returned to CA.

The 64000 will return whatever character is in the Rx buffer of the 8251. It is recommended
that the user check the status of the 8251 to see if Rx RDY is true before performing the single
byte read. Any read operation will clear Rx RDY, indicating that the character in the buffer
has been read.

Read Record (8AH) Update Read Buffer (8CH)

(See also Update Read/Write Buffer (8DH)) - To read a record from the 8251, the user
program must first set up a read buffer and identify the beginning and ending locations in the
buffer. (See Figure 8-17.)

This is done by first placing the address pointers into locations CA+24 thru CA+39 and then
placing code 8AH into location CA. Locations CA+24 thru CA+31 contain the address
pointers for the beginning and ending locations of the users read buffer.

Locations CA+32 thru CA+39 contain the address pointers for the first and last bytes written
into the buffer. These pointers are both initially set to point to the first location in the users
read buffer. This indicates that the buffer is empty. (The 64000 will force the first data pointer
to always point to the beginning of the buffer.)

EMULATOR/ANALYZER 6800/6802 8-43

The 64000 responds by continuously transferring read data from the 8251 to the 64000 read
buffer. (See Figure 8-19.) The user program must then issue an 8CH or 8DH to transfer the
data to the users buffer. For each byte transferred into the users read buffer, the last byte
address pointer is incremented by one (see Figure 8-18). In addition, when update code 8DH
or 8CH is being used, the number of bytes received by the 8251 and transfered into the 64000
is entered into location CA+23.

To determine when and how much read data is available, the user program must monitor the
last byte address pointer and the number of bytes received. When read data is found in the
buffer, the user program should process the data. If all data expected was received, the user
program may then close the read buffer.

Once the user program has placed code 8CH of 8DH into location CA, the 64000 periodically
monitors the output of the 8251, transfers data into the user read buffer, and updates the last
byte address as required. The user program in turn monitors the last byte address pointer to
determine if more data is available. This process continues until the user program closes the
read buffer.

If code 8CH or 8DH is being used, and the user issues an 8AH again, the buffer is frozen for
the user, yet the 64000 continues to receive data into its buffer.

To close the read buffer, the user program places code 8BH into Iccation CA. The 64000
closes the buffer and returns a 00 to location CA.

Data may be stored in the user’s read buffer using a “wrap around” method. That is, once the
last location in the buffer is filled, the next byte is placed into the first location of the buffer.
Thus, it is possible for the last byte address pointer to be pointing to an address that is less
than (i.e., ahead of) the first byte address.

If any of the read buffer requests cannot be done, the 64000 returns the appropriate error
code to location CA as shown in Table 8-7.

Updating Read/Write Buffers (8DH)

Once the read and write buffers have been set up and opened as described in preceding
paragraphs “Write to 8251” and “Read from 8251”, the buffers may both be updated by using
one code. To do this, the user program places the updated first and last byte address pointers
for both the read and write buffers into the corresponding locations in the RS-232 I/0 control
buffer and then places code 8DH into location CA.

The 64000 responds to the update request as described in the “Write to 8251” and “Read from
8251” paragraphs. However, in addition to setting, monitoring, and updating the first and last
byte address pointers, the number of bytes received and transmitted by the 8251 is also set,
updated, and monitored. This provides an additional indication of how much data has been
sent and received.

8-44 EMULATOR/ANALYZER 6800/6802

Table 8-7. RS-232 1/0 Codes

Request User Program
Name Request
Address Contents
OPEN CA 80H
RS-232
FILE
CLOSE CA 81H
RS-232
FILE
INITI- CA 82H
ALIZE
8251
CA+1 Command
Instruction
CA+2 Mode In-
struction
CA+3 Sync Op-
tion word
CA+4 Sync Char-
acter,one
CA+5 Sync Char-
acter,two

Valid User Request

Address

CA

CA

CA

Contents

00

00

00

64000 Response To:

Invalid Request

Error Code

01-07: NA
08

09: File already
open.

10-14: NA

01-07: NA
08

09: File not
open.

10-14: NA

Same as 81H,
above

EMULATOR/ANALYZER 6800/6802

8-45

Request
Name

COMMAND
TO
8251

STATUS
FROM
8251

READ
SINGLE
BYTE
FROM
8251

WRITE
SINGLE
BYTE
TO

8251

OPEN
WRITE
BUFFER

Table 8-7. RS-232 1/0 Codes (Cont'd)

User Program

Request
Address Contents
CA 83H
CA+1 Command
Word
CA 84H
CA 85H
CA 86H
CA+1 Write
Byte
CA 87H
CA+1 Reserved
for Ini-
| tialization
buffer
CA+5

8-46 EMULATOR/ANALYZER 6800/6802

64000 Response To:

Valid User Request Invalid Request
Address Contents Error Code
CA 00 Same as 81H,

above
CA 00 Same as 81H,
above
CA+1 Status
Word
CA 00 Same as 81H,
above
CA+1 Byte
Read
CA 00 Same as 81H,
above
CA 87H

The 64000 trans-
fers write data
from the users
buffer to the
64000 buffer.

Table 8-7. RS-232 1/0 Codes (Cont'd)

Request User Program 64000 Response To:
Name Request
Valid User Request Invalid Request
Address Contents Address Contents Error Code
CA+6 #Bytes For each byte
sent by transferred
8251. to the 64000
Cleared buffer, first
by open byte address
(87H). pointer is

Updated by incremented by
64000 when one.
update code

89H or 8DH
is used.

CA+7 Buffer

(Isw, msb) Begin
Address

CA+8 pointer

(Isw, Isb)

CA+9

(msw, msb)

CA+10

(msw, Isb)

CA+11 Buffer

(Isw, msb) End
Address

CA+12 pointer

(Isw, Isb)

CA+13

(msw, msb)

CA+14

(msw, Isb)

EMULATOR/ANALYZER 6800/6802 8-47

Table 8-7. RS-232 1/0 Codes (Cont'd)

Request User Program 64000 Response to:
Name Request
Valid User Request Invalid Request

Address Contents Address Contents Error Code
CA+15 First
(Isw, msb) Byte

Address
CA+16 pointer
(Isw, Isb)
CA+17
(msw, msb)
CA+18
(msw, Isb)
CA+19 Last
(Isw, msb) Byte

Address
CA+20 pointer
(Isw, Isb)
CA+21
(msw, msb)
CA+22
(msw, Isb)

8-48 EMULATOR/ANALYZER 6800/6802

Request
Name

CLOSE
WRITE
BUFFER

UPDATE
WRITE
BUFFER

Table 8-7. RS-232 1/0 Codes (Cont'd)

User Program

Request
Address Contents
CA 88H
CA 89H
CA+1 Reserved

for Ini-
tialization
CA+5 Buffer
CA+6 # Bytes sent
by 8251.
CA+7 Not changed
* by user.
CA+14
CA+15 First
(Isw, msb) Byte
Address
CA+16 pointer
(Isw, Isb)
CA+17
(msw, msb)
CA+18
(msw, Isb)
CA+19 Updated
(Isw, msb) Last
Byte
CA+20 Address
(Isw, Isb) pointer

64000 Response To:

Valid User Request

Address
CA 00
CA 89H

The user up-
dates the last
byte address
Pointer to
indicate how
much new write
data is in the
buffer. The
64000 processes
the write data,
increments the
first byte addr.
pointer, and
updates # bytes
sent by 8251

as required.

EMULATOR/ANALYZER 6800/6802

Contents

Invalid Request

Error Code

Same as
81H, above.

Same as
81H, above.

8-49

Table 8-7. RS-232 I/0 Codes (Cont'd)

Request User Program 64000 Response to:
Name Request
Valid User Request Invalid Request
Address Contents Address Contents Error Code
CA+21
(msw, msb)
CA+22
(msw, Isb)

8-50 EMULATOR/ANALYZER 6800/6802

Request
Name

OPEN
READ
BUFFER

Table 8-7. RS-232 1/0 Codes (Cont’'d)

User Program

Request

Address Contents

CA 8AH

CA+1 Reserved for

| Initialization

and write

CAt22 buffers.

CA+23 # Bytes
received by
8251. Cleared
by open
(8AH).
Updated
by 64000
when update
code 8CH or
8DH is used.

CA+24 Buffer

(Isw, msb) Begin
Address

CA+25 pointer

(Isw, Isb)

CA+26

(msw, msb)

CA+27

(msw, Isb)

CA+28 Buffer

(Isw, msb) End
Address

CA+29 pointer

(Isw, Isb)

64000 Response To:

Valid User Request

Address

CA 8AH

The user sets
first and last
address pointers
to point to buf-
fer beginning
address. The
64000 will

transfer data
from the 8251
to the 64000
buffer.

The user

must use the
commands 8CH
or 8DH to
transfer the data
to the users
buffer.

EMULATOR/ANALYZER 6800/6802

Contents

Invalid Request
Error Code

Same as
81H, above

8-51

Request
Name

Table 8-7. RS-232 I/0 Codes (Cont'd)

User Program
Request
Address Contents

CA+30
(msw, msb)

CA+31
(msw, Isb)

CA+32 First

(Isw, msb) Byte
Address

CA+33 pointer

(Isw, Isb)

CA+34
(msw, msb)

CA+35
(msw, Isb)

CA+36 Last

(Isw, msb) Byte
Address

CA+37 pointer

(Isw, Isb)

CA+38
(msw, msb)

CA+39
(msw, Isb)

EMULATOR/ANALYZER 6800/6802

64000 Response to:

Valid User Request
Address Contents

Invalid Request
Error Code

Request
Name

UPDATE
WRITE/
READ
BUFFERS

Table 8-7. RS-232 1/0 Codes (Cont'd)

User Program 64000 Response To:
Request
Valid User Request Invalid Request
Address Contents Address Contents Error Code
CA 8DH CA 00H Same as 81H
above

CA+1 Reserved for

Initialization
CA+5 Buffer

Write and read
buffers are
both updated
CA+6 Same as as described
shown for above.
update
Write
Buffer,
CA+22 above.

CA+23 Same as
shown for
update
Read
Buffer,

CA+39 above.

EMULATOR/ANALYZER 6800/6802

8-53

Table 8-7. RS-232 1/0 Codes (Cont'd)

Request User Program 64000 Response to:
Name Request
Valid User Request Invalid Request
Address Contents Address Contents Error Code
CA+36 Last
(Isw, msb) Byte
Address
CA+37 pointer
(Isw, Isb)
CA+38
(msw, msb)
CA+39
(msw, Isb)

8-54 EMULATOR/ANALYZER 6800/6802

Request
Name

UPDATE
WRITE/
READ
BUFFERS

Table 8-7. RS-232 I/0 Codes (Cont'd)

User Program 64000 Response To:
Request
Valid User Request Invalid Request
Address Contents Address Contents Error Code
CA 8DH CA 00H Same as 81H
above

CA+1 Reserved for

| Initialization
CA+5 Buffer

Write and read
buffers are
both updated

CA+6 Same as as described
shown for above.
| update
Write
Buffer,
CA+22 above.
CA+23 Same as
shown for
| update
Read
Buffer,
CA+39 above.

EMULATOR/ANALYZER 6800/6802

8-55

8-56

ASYNCHRONOUS
MODE - INITIALIZATION
FORMAT

SYNCHRONOUS MODE-
SINGLE SYNC CHARACTER
INITIALIZATION FORMAT

SYNCHRONOUS MODE -
DOUBLE SYNC CHARACTER
INITIALIZATION FORMAT

ADDRESS ADDRESS
CA 82H - INITIALIZE 8251 82H - INITIALIZE 8251 82H - INITIALIZE 8251 CA
COMMAND INSTRUCTION COMMAND INSTRUCTION COMMAND INSTRUCTION CA+1
CA+1 (Internal Reset 8251) (Internal Reset 8251) (Internal Reset 8251)
CA+2 ASYNCHRONOUS SYNCHRONOUS SYNCHRONOUS CA+2
MODE INSTRUCTION MODE INSTRUCTION MODE INSTRUCTION
CA+3 SYNC OPTION WORD SYNC OPTION WORD SYNC OPTION WORD CA+3
0=No sync characters 1=1 sync character 2=2 sync characters
CA+4 Not Used SYNC CHARACTER 1 SYNC CHARACTER 1 CA+4
CA+5 Not Used Not Used SYNC CHARACTER 2 CA+5
CA+6 CA+6
RESERVED FOR RESERVED FOR RESERVED FOR
WRITE CONTROL WRITE CONTROL WRITE CONTROL
\
CA+22 CA+22
CA+23 CA+23
RESERVED FOR RESERVED FOR RESERVED FOR
READ CONTROL READ CONTROL READ CONTROL \
CA+39 CA+39
Figure 8-8. 8251 Initialization Formats
EMULATOR/ANALYZER 6800/6802

Ds Ds Da Dy D2 D Do

EH

IR RTS ER SBRK RxE DTR TxEn

Transmit Enable Disable

1 Enables normal operation
at Transmit Data (TxD)
output pin providing
clear To Send Not (CTS)
nput pin Is low

0 Disables TxD output pin
after all data in 8251
1s sent

1=Forces Data Terminal Ready Not
(DTR) pin to zero (Normally used
for modem control)

Recetver Enabie Disable

1=Enables normal receiver operation

0=Holds receiver ready (RxRDY)
output line In reset state

Send Break Character
1=Forces Transmit Data (TxDi output pin low
0- Allows normal transmit data output

Error Reset
1 Resets Parity (PE) Overrun (OE) and Framing (FE)
error flags

Request To Send
1=Forces RTS output pin to zero (Normally used
tor modem control)

Internal Reset
1 Places 8251 in “Idle” mode Stays in “ldie” until
initialized by mode instruction

Enter Hunt Mode
1 Enables search for Sync Characters. Has no affect in Async mode

Figure 8-9. Command Mode Instruction Format

EMULATOR/ANALYZER 6800/6802

8-57

8-58

B

B
SYNCHRONOUS MODE 0 0

0 1

]

D~ De Ds Ds D3 D2 D Do
Sy Sy EP PEN Lo L B. B-
— N————— ~——
i L
NUMBER OF BAUD RATE
Sy S STOP BITS
0 0 INVALID CODE 1 X TXc*
0 1 1 BIT 1/16 X TXc
NOT ALLOWED WITH 64000
1 0 1128BITS
N = TRANSMITTER
y] 5 BITS TXc NS| ER CLOCK FREQUENCY

Figure 8-10. Asynchronous Mode Instruction Format

EMULATOR/ANALYZER 6800/6802

— |

|

CHARACTER
LENGTH

r—
—

5 BITS =
6 BITS =
7 BITS =
8 BITS =

PARITY ENABLED =1
PARITY DISABLED =0

EVEN PARITY =1
ODD PARITY =0

[=)
“ 0o = o

Ds

Da

Dx Dy Dy Do

SCS | ESD

EP

PEN

L - 0 0

—

{ SINGLE CHARACTER SYNC

‘ { PARITY ENABLED = 1

L CHARACTER

I INDICATES SYNCHRONOUS

MODE INSTRUCTION

LENGTH B
5BITS = 0 | o
6BITS = 0 | 1
7BITS = 1 | 0
8 BITS 1 1

PARITY DISABLED = 0

ODD PARITY = 0

‘ [EVEN PARITY = 1

EXTERNAL SYNC DETECT
1=SYNC DETECT IS AN INPUT

0=SYNC DETECT IS AN OUTPUT

1=SINGLE SYNC CHARACTER

0=DOUBLE SYNC CHARACTER

Figure 8-11. Synchronous Mode Instruction Format

EMULATOR/ANALYZER 6800/6802

8-59

8-60

D- De D Da D D. D o]
SYN Tx Rx Tx
DSR FE OE PE
DET EMPTY RDY RDY
Logic N 8251 ready to
accept a write characte
for transnission
Logic ! 8257 contains d
recewved characte: ready for
l_reaqu
Logic 1 Previous cnaracter has
been transmitted 8251A has
no characters to transmit
Logic ! Panity error Does not innibit

8251 operation Reset by ER Bit of
Command Mode Instruction

Logic 1 = Overrun Error Incoming character overran
another character before 1t was read Does

not inhibit 8251 operation Reset by ER bit in
Command Mode Instruction

Logic 1 - Framing Error (Asynchronous mode only) Set
when a vahd stop bit is not detected Does not

inhibit 8251 operation Reset by ER bit in

Command Mode Instruction

Synchronous mode-
High -Sync character detected n internal sync mode
Start assembling characters in external sync mode
Async mode (Break Detect)
High Rx Data remained low during two consecutive stop bit sequences

Data Set Ready - Logic 1 indicates DSR nput 1s low

Figure 8-12. 8251 Status Word Format

EMULATOR/ANALYZER 6800/6802

Phase | - User Sets Up Write Buffer

User sets up write buffer as follows:

1. Assigns buffer beginning and ending addresses: WBUFBEG and WBUFEND.

2. Writes block of characters into buffer shown as first byte through last byte.

ADDRESS CONTENTS

WBUFBEG FIRST BYTE

LAST BYTE

WBUFEND

USERS WRITE
BUFFER

“The actual address for
location “CA" is defined
by the user during
configuration of the
emulation "CMDFILE"

ADDRESS CONTENTS
CA"
CA+1
BUFFER RESERVED
FOR RS-232 1 O
PARAMETERS SENT
WITH CONTROL
CODES
CA+23

RS-232 1/0 CONTROL BUFFER

Figure 8-13. Writing RS-232 Record - Phase |

EMULATOR/ANALYZER 6800/6802

8-61

8-62

ADDRESS CONTENTS
0
»1 WBUFBEG | FIRST BYTE |=
LAST BYTE |
ADDRESS | CONTENTS (FROM USER PROG) 255
™1 WBUFEND CA 87H (OPEN WRITE BUFFER) 64000 WRITE
BUFFER
CA+1 128 WORDS
USER'S WRITE BUFFER) RESERVED FOR 8251 ()
CA+5 INITIALIZATION BUFFER
CA+6 # BYTES TRANSMITTED BY INITIALLY
8251 SINCE BUFFER OPENED SETTO 0
CA+7 Isw,msb
| CA+8 | _Isb _ _ WBUFBEG -
CA+9 msw,msb ADDR PTR
CA+10 ’
CA+11 Isw,msb
| _CA+12 | _ Isb __ WBUFEND o
CA+13 msw,msb ADDR PTR
CA+14
CA+15 Isw,msb
L)] CA+16 | _Isb _ _ FIRSTBYTE
CA+17 msw,msb ADDR PTR
CA+18
CA+19 Isw,msb
| CA+20 | Isb LASTBYTE
CA+21 | msw,msb ADDR PTR
CA+22
CONTROL BUFFER
Figure 8-14. Writing RS-232 Record - Phase II
ADDRESS | CONTENTS 0
WBUFBEG | FIRST BYTE FIRST BYTE
WRITE TRANSMITTED
(ALL BYTES TRANSFERRED DATA 8251 DATA
S — — — UsAaRT [— %
LAST BYTE LAST BYTE
ADDRESS CONTENTS (FROM 64000) CONTROL
fe— — — — | CONTROL
WBUFEND CA 87H (OPEN WRITE BUFFER) 55
USER'S WRITE BUFFER CA+1 SAME AS SHOWN 64000 ¥ *
CA+5 FOR PHASE Il WRITE BUFFER 64000 WRITE
(256 BYTES 128 WORDS) | TO-8251
CA+6 #BYTES TRANSMITTED BY ROUTINE
8251 SINCE BUFFER OPENED YBYTES TRANSMITTED | WRITING DONE
At ON INTERRUPT
BASIS
SAME AS SHOWN
FOR PHASE I
CA+14
CA+15 Isw,msb
|) _ca+16 | _1sb _ _ FIRSTBYTE
[~ ca«im | mswmsb ADDR PTR
CA+18 Isb
CA+19 Isw,msb
| cA+20 | _1sb _ LASTBYTE
[l CA+21 msw,msb ADDR PTR
CA+22 Isb

CONTROL BUFFER

Figure 8-15. Writing RS-232 Record - Phase llI

EMULATOR/ANALYZER 6800/6802

255

ADDRESS | CONTENTS
WBUFBEG
FIRST BYTE[™
¥ ADDRESS CONTENTS
WBUFEND | LAST BYTE [CA 89H
USER'S WRITE BUFFER CAV+1 SAME AS SHOWN
CA%S FOR PHASE II
#BYTES TRANSMITTED BY
8251 SINCE BUFFER OPENED
CA+7
SAME AS SHOWN FOR
PHASE II
CA+14
CA+15 Isw,msb
L) _CAt16 | _Isb _ _ FIRSTBYTE
CA+17 msw,msb ADDR PTR
CA+18 Isb
CA+19 Isw,msb
L N CAt20 | Isb | ASTBYTE
I~ carzr T msw.msb ADDR PTR
CA+22 Isb

CONTROL BUFFER

EMULATOR/ANALYZER 6800/6802

FIRST BYTE

i

LAST BYTE

64000 WRITE
BUFFER

(256 BYTES 128 WORDS)

UPDATED BY 64000

Figure 8-16. Writing RS-232 Record - Phase IV

8-63

ADDRESS CONTENTS

RBUFBEG
ADDRESS CONTENTS
RBUFEND CA”
USER READ BUFFER CA+1
*The actual address for
location “CA" is defined
by the user during
configuration of the
IR " BUFFER RESERVED
emulation "CMDFILE FOR RS-232
10 PARAMETERS
SENT WITH
CONTROL CODES
CA+39

CONTROL BUFFER

Figure 8-17. Reading RS-232 Record - Phase |

8-64 EMULATOR/ANALYZER 6800/6802

ADDRESS

CONTENTS

o

RBUFBEG

—]

RBUFEND

BYTE 0
ADDRESS | CONTENTS (FROM USER PROG) BYTE N
CA 8AH (OPEN READ BUFFER)
CA+1 RESERVED FOR 8251
Y INITIALIZATION BUFFER
CA+22 & WRITE CONTROL BUFFER
#BYTES RECEIVED FROM < INITIALLY
CA+23 8251 SINCE BUFFER OPENED SETTO 0
CA+24 Isw,msb
| cA+25 | Isb RBUFBEG l—__
CA+26 msw.msb ADDR PTR j
CA+27 Isb
CA+28 Isw,msb
| CA+29 | Isb RBUFEND
CA+30 msw.msb ADDR PTR |]
CA+31 Isb
CA+32 Isw,msb
_[CA+33 | _Isb _ FIRST BYTE
U— CA+34 msw.msb ADDR PTR
CA+35 Isb
CA+36 Isw,msb
| _caws7 | isb LaSTBYTE
| CA+38 msw.msb ADDR PTR
CA+39 Isb

CONTROL BUFFER

Figure 8-18. Reading RS-232 Record - Phase Il

64000 READ
BUFFER

EMULATOR/ANALYZER 6800/6802 8-65

ADDRESS | CONTENTS
0
RBUFBEG | FIRST BYTE [FIRST BYTE
READ RECEIVED
DATA 8051 DATA
= = 1 uUsarT [T
LAST BYTE [LAST BYTE *
ADDRESS CONTENTS
— — 7 | conTROL
RBUFEND cA 8AH (OPEN READ BUFFER) M *
USER'S READ CA"W SAME AS SHOWN 64000 READ *
BUFFER FOR PHASE II BUFFER
ca-22 64000
#BYTES RECEIVED BY READ 8251
CA-23 8251 SINCE BUFF OPENED ROUTINE
CA-24
SAME AS SHOWN
FOR PHASE II
CA-31
CA+32 Isw.msb
L | ca33 | 1sb FRSTBYTE
I[- CA~+34 msw,msb ADDR PTR
CA-35 Isb
CA+36 Isw.msb
L | ca-a7 | o LasTeYTE | 64000 SETS POINTER TO
|| ca+38 | mswmsb ADDR PTR | LASTBYTE
CA+39 Isb
CONTROL BUFFER
Figure 8-19. Reading RS-232 Record - Phase lll
ADDRESS CONTENTS
RBUFBEG FIRST BYTE
LAST BYTE |-y LAST BYTE
ADDRESS CONTENTS
RBUFEND CA 8CH
. CA+1 64000 READ
USER'S READ BUFFER v SAME AS SHOWN SUrFEn
CAvo2 FOR PHASE 1|
#BYTES RECEIVED BY 8251 .
CA+23 SINCE BUFFER OPENED ~
CA+24
SAME AS SHOWN
FOR PHASE |1
CA+31
CA+32 Isw.msb
| N _cAa«3 | isb FIRSTBYTE
|| CA+34 msw.msb ADDR PTR
CA+35 Isb
CA+36 Isw.msb -
| ca+37 | 1sb _ LASTBYTE ,(oA Lo, By 000
I ca+3s msw.msb ADDR PTR
CA+39 Isb

CONTROL BUFFER

Figure 8-20. Reading RS-232 Record - Phase IV

8-66 EMULATOR/ANALYZER 6800/6802

Simulated 1/0 Error Codes

The general definitions for the simulated I/O eror codes are listed in Table 8-8. Where
applicable, more specialized definitions of these error codes are listed in individual I/0 code
Tables, 8-1, 8-2, etc.

When a request by the user program cannot be executed, the applicable error code is
returned by the 64000 program to location CA.

Decimal

Table 8-8. Simulated 1/0 Error Codes - General Definitions

Code #

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14

15

—~ N AN~ o~
mooOw>»

(F)

(Hex)

Meaning

No error - successful operation

End of file

Invalid disc

File not found

File already exists

No disc space available

No directory space available

File is Corrupt (bad linkage)

Cannot read/write assigned memory
Request not allowed

Invalid file type

Invalid row or column no.

Invalid record length

Invalid display character >OFOH

While in simulated display I/O or simulated
keyboard 1/0, the 64000 “simulate” soft key
was pressed to exit simulate 1/0. All open
files are closed.

Error in new disc file name when
attempting to change a disc file name.
First character in file name limited to
capital letters A through Z. Second and
following characters may contain capital
and lower case letters, numerals 0
through 9, underlines, and only if required
to fill in the last byte of the last word,

a blank is used.

EMULATOR/ANALYZER 6800/6802

8-67

Simulated I/0 Sample Programs

The following Figures show the listing for source programs which actually use simulated 1/0
facilities. The programs are real and do work.

Figure Sample Program Type

8-21 Simulated Display I/O - Sample Program A
8-22 Simulated Display I/O - Sample Program B
8-23 Simulated Keyboard, Display, and One Disc

File 1/0O - Sample Program

8-24 Simulated Keyboard, Display, and Two Disc
Files I/0 - Sample Program

“8080”

*This 8080 program uses the simulated display 1/0 interface.
*The display is opened, and two messages are written; one to
*row/column 2,40 and one to row/column 18,20.

“Control address for display is 0000H.

*Program execution should start at 0200H.

ORG 200H
USR_ADR EQU 0
START LXI SP,100H
“OPEN DISPLAY
MVI A,80H
STA USR_ADR
CALL WAIT
*SET ROW/COLUMN 2/40
MVI A2
STA USR_ADR+1
MVI A40
STA USR_ADR+2
MVI A,83H
STA USR_ADR
CALL WAIT

Figure 8-21. Simulated Display 1/O - Sample Program A

8-68 EMULATOR/ANALYZER 6800/6802

*WRITE MESSAGE 1
LX!I HMESSAGE_1
CALL XFR_MSG
CALL WAIT
*SET ROW/COLUMN 18/20
MVI A,18
STA USR_ADR+1
MVI A,20
STA USR_ADR+2
MVI A,83H
STA USR_ADR
CALL WAIT
*WRITE MESSAGE 2
LX! HMESSAGE_2
CALL XFR_MSG
CALL WAIT
*LOOP HERE, LEAVE DISPLAY OPEN
JMP $

*WAIT FOR USR_ADR=0 ... IO REQUEST COMPLETED
WAIT

LDA USR_ADR

CPI O

JM WAIT

RET

*TRANSFER MESSAGE FROM C(DE) TO USR_ADR+1
*C(DE(0))=#BYTES
* C(DE(1))=BYTE 1

*
*

*

* C(DE(N))=BYTE N
*USR_ADR=84H ... REQUEST TO WRITE ROW/COLUMN
XFR_MSG

XCHG

LDAX D

MOV B,A ;B=#BYTES

INX D

LXI HUSR_ADR+1 ;HL=USR_ADR-+1
INX H

MOV M,A

INX H

Figure 8-21. Simulated Display I/0 - Sample Program A (Cont'd)

EMULATOR/ANALYZER 6800/6802

8-69

8-70

XFR_LOOP
LDAX D
MOV M,A
INX D
INX H
DCR B
MOV AB
CPI O
JNZ XFR_LOOP
MVI A,84H
STA USR_ADR
RET

*MESSAGE 1

MESSAGE_1
DB 12
ASC “Display test”

*MESSAGE 2

MESSAGE_2
DB 8
ASC “End test”
END START

;GET DATA BYTE
;AND STORE IN USR_ADR BUFFER

;AND CHECK FOR COMPLETION

;SET REQ FOR WRITE ROW/COLUMN

HBYTES

H#BYTES

Figure 8-21. Simulated Display I/O - Sample Program A (Contd)

EMULATOR/ANALYZER 6800/6802

This program scrolls ASCII characters onto the 64000 Display.

“8080"
DISP EQU

START LXI
LXI
CALL
MVI

LOOP INX
MVI

INX

MVI
INX
INR

MOV
INX
MVI
INX
MVI
LXI
MVI
CALL
MVI
CMP
JNZ
MVI
JMP
CHECK LDA
CPI
Rz
JMP
END

0DOOH :CONTROL ADDRESS FOR
; SIMULATED DISPLAY 10
SP,1000H ;STACK DOWN FROM OFFFH
H,DISP :LOAD H WITH CA
CHECK ‘WAIT FOR SERVICE
B,0 JINITIALIZE COUNTER
H ;SET M TO DISP+1
M,4 :SET BYTE COUNT TO FOUR
: CHARACTERS/LINE
H :SET M TO DISP+2
;THEN EACH LINE IS:
M,32 :ASCIlI BLANK (1ST CHAR)
H
B
;THEN:
M,B ;2ND CHAR
H ;THEN
M,32 ;ANOTHER BLANK (3RD CHAR)
H
M,0 ;AND A “NULL” (4TH CHAR)
H,DISP
M,82H ;REQ “SCROLL” 1 LINE
CHECK ;WAIT FOR SERVICE
A 127 ;AVOID SPECIAL CHARACTERS
B JAF B> 127 RESET B TO 0
LOOP
B,0
LOOP
DISP
0 SWAIT UNTIL CA=0
CHECK
START

Figure 8-22. Simulated Display I/0 - Sample Program B

EMULATOR/ANALYZER 6800/6802 8-71

“8080"
ORG 0
* THIS PROGRAM OPENS KEYBOARD AND DISPLAY FILE. THEN, UPON
* CARRIAGE RETURN IT COPIES KEYBOARD DATA TO DISPLAY AND FILE
* FIO.

* OPEN DISPLAY AND KEYBOARD
START
LX!I SP,400H
MVI A,80H ;OPEN DISPLAY
STA DSP_BUF
STA KEY_BUF
MVI A,02H ;DELETE FILE
STA FILE_BUF+1 ;TYPE 2(SCR)
MVI A0 ;DISC#0
STA FILE_LBUF+2
MVI A,83H
STA FILE_BUF
WAIT_FILE_D sWAIT FR FILE DELETE
LDA FILE_BUF
CPI O
JM WAIT_FILE_D
MVI A,80H ;CREATE FILE
STA FILE_BUF
WAIT_FILE_C 'WAIT FOR FILE CREATE
LDA FILE_BUF
CPI O
JM WAIT_FILE_C
NEXT_KEY_DATA
MVI A-2 ;NOW SETUP KEYBOARD FOR CMD=-2
STA KEY_BUF+1
MVI A,240 ;AND MAX # CHARS
STA KEY_BUF+2
LDA K_CMD ;AND OPEN/READ KEYBOARD
STA KEY_BUF
* WAIT FOR CR(CMD>=0)
WAIT_FOR_CR
LDA KEY_BUF
CPI O

Figure 8-23. Simulated Keyboard, Display, and One Disc File I/0
Sample Program

8-72 EMULATOR/ANALYZER 6800/6802

JM WAIT_FOR_CR
LX! D,DSP_BUF+1
CALL XFR_DATA

* WRITE TO DISPLAY

MVI A,82H
STA DSP_BUF

WAIT_FOR_DSP

LDA DSP_BUF
CPI O
JM WAIT_FOR_DSP

* WRITE TO FILE FIO

LX! D,FILE_BUF+1
CALL XFR_DATA
LDA KEY_BUF+3
INR A

STC

CMC

RAR

STA FILE2BUF+1
MVI A,89H

STA FILE_BUF

WAIT_FILE.W

*

LDA FILE_BUF
CPI O
JM WAIT_FILE_W

JMP NEXT_KEY_DATA

;SET # WORDS

;WAIT FOR FILE WRITE

* TRANSFER KEY BOARD DATA TO DISPLAY
XFR_DATA

LXlI H,KEY_BUF+3
MOV BM

MOV A,B

STAX D

INX D

INX H

JGET # BYTES

Figure 8-23. Simulated Keyboard, Display, and One Disc File 1/0

Sample Program (Cont'd)

EMULATOR/ANALYZER 6800/6802

8-73

8-74

XFR_LOOP

MOV AM

STAX D

INX D

INX H

DCR B

JNZ XFR_LOOP

MVI A0

STAX D

RET
K_CMD DB 80H
* DISPLAY BUFFER
DSP_BUF EQU 100H
* KEYBOARD BUFFER
KEY_BUF EQU 200H
FILE.BUF EQU 300H

ORG 100H

DB 0O

ORG 200H

DB 0O

ORG 300H

DB 0

END START

Figure 8-23. Simulated Keyboard, Display, and One Disc File 1/0
Sample Program (Contd)

EMULATOR/ANALYZER 6800/6802

“8080”

ORG 0
* THIS PROGRAM OPENS KEYBOARD, DISPLAY AND 2 FILES. THEN UPON
* CARRIAGE RETURN IT COPIES KEYBOARD DATA TO DISPLAY AND TO
* FILES F1 AND F2.

* OPEN DISPLAY AND KEYBOARD
START
LXI SP,400H ;STACK 03FFH AND BELOW
MVI A,80H ;OPEN DISPLAY
STA DSP_BUF
STA K_CMD
MVI A2
STA FB1+1 ;TYPE 2(SOURCE)
MVI A0 ;DISC#0
STA FB1+2 ;BOTH FILES ON DISC 0
STA FB2+2
MVI A,83H
STA FB1
WAIT_FILE_D1 JWAIT FOR FILE DELETE
LDA FB1
CPI O
JM WAIT_FILE_D1
MVI A,80H ;CREATE FILE
STA FB1
WAIT_FILE_CA ;WAIT FOR FILE CREATE
LDA FB1
CPI O
JM WAIT_FILE_C1
MVI A2
STA FB2+1 ;TYPE 2(SCR)
MVI A 83H
STA FB2
WAIT_FILE_D2 ;WAIT FOR FILE DELETE
LDA FB2
CPI O
JM WAIT_FILE D2

Figure 8-24. Simulated Keyboard, Display, and Two Disc Files
I/0 Sample Program

EMULATOR/ANALYZER 6800/6802

8-75

MVI A 80H ;CREATE FILE
STA FB2
WAIT_FILE_C2 'WAIT FOR FILE CREATE
LDA FB2
CPI O
JM WAIT_FILE_C2
NEXT_KEY_DATA
MVI A,-2 ;NOW SETUP KEYBOARD FOR CMD=-2
STA KEY_BUF+1
MVI A 240 ;AND MAX # CHARS
STA KEY_BUF+2
LDA K_CMD ;AND OPEN/READ KEYBOARD
STA KEY_BUF
* WAIT FOR CR(CMD>=0)
WAIT_FOR_CR
LDA KEY_BUF
CPI O
JM WAIT_FOR_CR
LXI D,DSP_BUF+1
CALL XFR_DATA
* WRITE TO DISPLAY
MVI A,82H
STA DSP_BUF
WAIT_FOR_DSP
LDA DSP_BUF
CPI O
JM WAIT_FOR_DSP
* WRITE TO FILE F1
LX! D,FB1+1
CALL XFR_DATA
LDA KEY_BUF+3
INR A
STC
CMC
RAR
STA FB1+1 ;SET # WORDS
MVI A,89H
STA FB1

Figure 8-24. Simulated Keyboard, Display, and Two Disc Files
I/0 Sample Program (Cont'd)

8-76 EMULATOR/ANALYZER 6800/6802

WAIT_FILE_W1

;WAIT FOR FILE WRITE
LDA FB1

CPI O

JM WAIT_FILE_W1

* WRITE TO FILE F2

WAIT_FILE_W2

*

LXI D,FB2+1
CALL XFR_DATA
LDA KEY_BUF+3
INR A

STC

CMC

RAR

STA FB2+1

MVI A,89H

STA FB2

;SET # WORDS

SWAIT FOR FILE WRITE
LDA FB2

CPI O

JM WAIT_FILE_W2

JMP NEXT_KEY_DATA

* TRANSFER KEY BOARD DATA TO DISPLAY
XFR_DATA

LXI H,KEY_BUF+3
MOV BM

MOV AB

STAX D

INX D

INX H

;GET # BYTES

XFR_LOOP

MOV AM
STAX D
INX D
INX H
DCR B

Figure 8-24. Simulated Keyboard, Display, and Two Disc Files
I/0 Sample Program (Cont'd)

EMULATOR/ANALYZER 6800/6802

8-77

JNZ XFR_LOOP

MVI A0

STAX D

RET
K_CMD DB 80H

ORG 100H ;CONTROL ADDRESS FOR DISPLAY
DSP_BUF DB 0

ORG 200H ;CONTROL ADDRESS FOR KEYBOARD
KEY_BUF DB O

ORG 300H ;CONTROL ADDRESS FOR FILE 1
FB1 DB 0

ORG 400H ;CONTROL ADDRESS FOR FILE 2
FB2 DB O
END START

Figure 8-24. Simulated Keyboard, Display, and Two Disc Files
I/0 Sample Program (Cont'd).

64000 File Formats

The 64000 file accessable to the user through the simulated disc file 1/O interface are
described in the following paragraphs.

Assembler Symbols File (File Type 12)

This file contains the symbols and their corresponding values assigned by the assembler. It
also indicates the symbol type. Symbols may be either ABS (absolute), or relocatable to the
PROG, DATA, or COMN areas. (These terms are all defined in the 64000 Assembler/Linker
Reference Manual.)

The assembler symbols file is generated each time a source program containing symbols is
assembled into an object file. The file consists of a group of records with each record in turn
conisting of up to 128 sixteen-bit words (0-127). Each record must be structured as follows:
(See Figures 8-25 and 26.)

o Record Identification (ID) Word

o Symbol Definition Blocks (Length variable from two to ten words.)

o Checksum Word

8-78 EMULATOR/ANALYZER 6800/6802

Each of the three items is described in the following paragraphs.

Record ID word
The ID word is always the first word in each record and contains the number “6”. (The “6” is
used internally and is not to be confused with the file type number which is 12.)

Symbol definition blocks
A symbol definition block consists of the symbol word(s) and the value word(s). (See Figure
8-27.)

Symbol word(s) - The ASCII character, or characters, are contained in this word (or words).
From one to fifteen ASCII characters may be defined. To specify a single-character symbol,
only one symbol word is required. To specify either 14 or 15 ASCII characters, the maximum
of eight words is required. (Symbols longer than 15 characters are truncated to 15
characters.)

First symbol word - The first word in each symbol definition block is structured the same. The
least significant eight bits (7 thru 0) contain the first ASCII character in the symbol. The most
significant eight bits (15 thru 8) always contain the following information:

o Symbol Length (SL) - Bits 15, 14, and 13 specify the number of symbol words -1 in this
block. (See Figure 8-28, Example A.) For example, if the symbol consists of two ASCI|
characters, which require two symbol words, SL is equal to 1. Examples of symbols
made up of one to five characters, which require one and three words respectively, are
shown in Figure 8-28, examples B and C.

o Reserved Bits - Bits 12, 11, and 10 contain 000 and are reserved for use by other
program modules.

o Memory Relocation (Relo) - Bits 9 and 8 specify how the symbol may be relocated as

follows:
Bit 9 Bit 8 Storage Type
0 0 ABS (Absolute)
0 1 PROG area
1 0 DATA area
1 1 COMN area

Additional symbol words - The second thru the eighth symbol words may each contain up to
two ASCII characters. However, if in the last symbol word, only one byte is required to define
the last symbol character, then the least significant byte in that word must contain an ASCII
blank (Code 20H). That is, the two bytes in each symbol word must contain meaningful data,
even in the last word.

EMULATOR/ANALYZER 6800/6802 8-79

The symbol words must be packed. Only the words actually required to specify the symbols
are to be used. Thus, if five symbol words are required to define a symbol, then only five
symbol words must be used.

Value word(s) - Immediately following the last symbol word may be either one or two value
words, depending upon the size of the target processors addressable memory. This word, or
words, specifies the value assigned to the symbol by the assembler. If the value can be
contained in one 16-bit word, then only one word is to be used. Two 16-bit words are used
only if they are both required. When two words are used, the first word contains the least
significant 16-bits and the second word contains the most significant 16 bits.

All symbol definition blocks within the assembler symbol file must be structured as defined
above.

Checksum word
The checksum word must be the last word in the assembler symbols file. If the file is

completely full, then the checksum word will be the 128th word (word #127).

The checksum word contains the arithmetic sum of the binary values of the preceding words
in the file.

User Buffer/Assembler Symbols File Packing Formats

The format relationship between the user buffer when reading from, or writing into, a 64000
Assembler Symbols File is shown in Figure 8-27.

Linker Symbol File (File Type 13)
The Linker Symbol File is generated anytime program modules are linked together. It
consists of the following four types of records (see figure 8-29):

e TYPE 1 RECORD - Microprocessor Configuration Record (one per file).

e TYPE 2 RECORD - Global Symbols Records.

e TYPE 3 RECORD - Program Names Records.

e TYPE 4 RECORD - Memory Space Allocation (RANGE).

Each of the above listed records is described below.

8-80 EMULATOR/ANALYZER 6800/6802

TYPE 1 RECORD (see figure 8-30). The first record in the Linker Symbol File is always a
TYPE 1 record. It is similar to the NAME record in relocatable files and is required for the
linker to configure itself for the correct microprocessor. The record is only used when a
link_sym file is the first file given as a response to the linker question “Object files?”. Thisis a
fixed-length record containing 26 words and is configured as follows:

a. Record identification (ID) word - The record ID word is always the first word in the
record. It is also the first word in the Linker Symbol File and contains the number “1”.
This number identifies the record as the microprocessor configuration record. (The
“1” is used internally and should not be confused with the file type number which is
“13".

b. Pad words 1 through 15 - These words are inserted so that word positions 16 through
23 in this name record contains the same information as do corresponding word
positions in the name records of the relocatable files.

c. Name and user ID word block - A fixed length 8-word block (words 16 through 23) that
contains the microprocessor configuration file name in standard file name format, i.e.,
168000:HP. The MSB of word 16 contains the following information:

bits 15-13: indicates the number of 16-bit words-1 in the file name.
bits 12-11. indicates the number of 16-bit words in the userid.
bits 10-8 : ‘“don’t care” conditions.

d. Address size - This word (word 24) is required for emulation and state analysis. It
defines the number of 16-bit words required to specify an address for the target
processor. The LSB of this word indicates the address size (1 = one word addresses
(16 bits); 2 = two-word addresses (32 bits)). The MSB of this word, hishift (see figure 8-
30), is used to convert 32-bit logical addresses (segment, offset) to physical addresses.
This is accomplished by putting the segment in the MS 16 bits of a 32-bit register, shift
right the number of bits indicated in hishift, then do a 32-bit add to offset.

e. Checksum - The checksum word (word 25) contains the arithmetic sum of the binary
values of the preceding 25 words in this record.

TYPE 2 RECORD (see figure 8-31). The Linker Symbol File may contain multiple Global
Symbol Records (TYPE 2). The first Global Symbol Record follows the Microprocessor
Configuration Record and all subsequent Global Symbol Records are contiguous. These
records are copied from the linker's symbol table at the conclusion of pass 1.

EMULATOR/ANALYZER 6800/6802 8-81

8-82

A Global Symbols Record contains the global symbols and the relocated address values
(symbol values) generated when the program modules are linked. Each record may consist of
up to 128 16-bit words (0-127 words) structured as follows (see figure 8-32):

a.

Record identification (ID) word - The record ID is always the first word in each record
and contains the number “2”. (The “2” is used internally and is not to be confused with
the file type number which is “13".)

Global symbol definition blocks - A global symbol definition block consists of the
symbol word(s) and the value word(s) which are described in more detail in this
paragraph.

Checksum word - The checksum word must be the last word in each record. If the
record is completely full, then the checksum word will be the 128th word (word #127).

Symbol word(s) - The ASCII character, or characters, are contained in this word (or words).
From one to fifteen ASCII characters may be defined. To specify a single-character symbol,
only one symbol word is required. To specify either 14 or 15 ASCII characters, the maximum
of eight words is required. (Symbols longer than 15 characters are truncated as 15
characters.)

First symbol word - The first word in every symbol definition block is structured the same.
The least significant eight bits (7 through 0) contain the first ASCII character in the symbol.
The most significant eight bits (15 through 8) always contains the following information (see
figure 8-32):

a.

Global Symbol Length (GSL) - Bits 15, 14, and 13 specify the number of symbol words-
1 in this block. For example, if the global symbol consists of two ASCII characters,
which require two symbol words, GSL is equal to 1. (The second byte in the second
word will contain an ASCII blank, i.e., code 20H.)

Bits 12, 11, and 10 - “don’t care” conditions.

Memory Relocation (Relo) - Bits 9 and 8 specify how the symbol may be relocated as
follows:

Bit 9 Bit 8 Storage Type
0 0 ABS (Absolute)
0 1 PROG area
1 0 DATA area
1 1 COMN area

EMULATOR/ANALYZER 6800/6802

Additional symbol words - The second through the eighth symbol words may each contain
up to two ASCII characters. However, if in the last symbol word, only one byte is required to
define the last symbol character, then the least significant byte in that word must contain an
ASCII blank (code 20H). That is the two bytes in each symbol word must contain meaningful
data, even in the last word.

The symbol words must be packed. Only the words actually required to specify the symbols
are to be used. Thus, if five symbol words required to define a symbol, then only five symbol
words must be used.

Symbol value word(s) - Immediately following the last symbol word may be either one or two
value words, depending upon the size of the target processor addressable memory. This
word (or words) specifies the address assigned to the symbol by either the assembler (if ABS-
absolute) or by the linker. If the address can be contained in one 16-bit word, then only one
word is to be used. Two 16-bit words are used only if they are both required. When two words
are used, the first word contains the least significant 16 bits and the second word contains
the most significant bits of the symbol address.

All global symbol definition blocks within the Linker Symbol File must be structured as
defined above.

TYPE 3 RECORDS (see figure 8-33). The Linker Symbol File may contain multiple Program
Names Records. The first Program Names Record follows the last Global Symbols Record.
All succeeding Program Names Records are contiguous.

The names of type 3 records are not maintained in any internal structure. Program names
have an implicit ordinal number value from 0 to N. It should be noted that if a link_sym file is
given as an input to the linker, the resulting link_sym file does not contain the program
names from the inputed link_sym file.

Type 3 records contain all source program names and their relocation addresses. The
primary purpose of these records is to provide relocation addresses for the symbols in
asm_sym files.

Program names are not the same as file names. The most common example of this is with
libraries. Program names come from the Program Description Records within Relocatable
Files (File Type 3 - see figure 8-39). The name in the relocatable record (see figure 8-40) is the
name of the source file that produced the relocatable file. The program name will be the same
as the relocatable file name as long as the relocatable file has not been renamed or copied to
a library.

For example, if two separate source file programs are assembled/compiled, the result will be
two separate relocatable files with each having the file name of the source program as
follows:

EMULATOR/ANALYZER 6800/6802 8-83

Source File Relocatable

Programs Files
Name: | Assembler/ - PROG1:reloc
PROG1:source T Compiler
R1
Name: | Assembler/ - PROG2:reloc
PROG2:source o Compiler g
R2

If the two relocatable files are linked together to form a library, for example, a new relocatable
file would be built under a new file name as follows:

New Relocatable

Relocatable File
Files PROG _LIB:reloc
PROG11:reloc PROG11:reloc
R1 R1
T -
LINKER PROG2:reloc
PROG2:reloc R2
R2

The linker output listing for the above would be:
PROG_LIB:ID

PROG1:ID
PROG2:ID

Note the two original source file names are indented, indicating multiple relocatables in
PROG_LIB:ID file.

Using the 64000 system “rename” command will also result in a relocatable file having a
different name than the source file program as follows:

8-84A EMULATOR/ANALYZER 6800/6802

Source File Relocatable
File File
Assembler/ PROGH1:reloc
PROG1:source > Compiler
R1

Y

Rename
Command

New Relocatable
File Name:
CMDFiIL:reloc

The linker output listing for the above would be:

CMDFIL:ID
PROG1:ID

A Program Names Record contains the names of the source file programs, the corresponding
user ID’s and the load addresses generated when the program modules are linked. Each
record may consist of up to 128 sixteen-bit words (words 0-127) structured as follows:

a. One Record ldentification (ID) Word.

b. Multiple Program Name and Addresses Definition Blocks (fixed length blocks of 14

words each).

c. One checksum word.

Record identification (ID) word - The ID word is always the first word in each record and
contains the number “3”. (The “3” is used internally and is not to be confused with the file

type number which is “13".)

PROG1:reloc

R1

EMULATOR/ANALYZER 6800/6802

8-84B

Program name and addresses definition block - This is a fixed length block consisting of 14
sixteen-bit words allocated as follows (see figure 8-34):

a. Eight words reserved for the program name and users ID.
b. Six words reserved for the linker load addresses.

Program name and user ID words - The formatting and packing of these words are done in
the same way as described for the Microprocessor Configuration Record (TYPE 1), Name
and ID word Block.

Load address words - These words contain the load addresses assigned by the linker. If an
address is not assigned to a particular area, the address words contain zeros (0000H). The
MS 16-bit address word will be used only if required by the target microprocessor’s
addressable memory space.

Checksum word - The checksum word must be the last word in each record. If the record is
completely full, the the checksum word will be in the 128th word (word #127).

The checksum word contains the arithmetic sum of the binary values of the preceding words
in the record.

TYPE 4 RECORDS (see figure 8-34A). Type 4 records follow type 3 records and contain a list
of memory spaces used by the relocatable files. Each block contains file, program name, and
relocation information plus the lower and upper bounds of the piece of memory used. Blocks
are sorted on lower bound from smallest to largest.

Records contain from 1 to 9 fixed length blocks with each block containing 14 words. A biock
may not cross a record boundary.

8-84C EMULATOR/ANALYZER 6800/6802

User Buffer/Linker Symbols File Packing Formats
The format relationship between the user buffer when reading or writing into a 64000 Linker
Symbols File is the same as shown for the Assembler Symbols File in Figure 8-27.

Source File (File Type 2)

The source file is generated by the programmer from the applicable microprocessor opcodes
and assembler pseudo instructions. It consists of a series of ASCII records. (See Figures 8-35
and 8-36.)

Each ASCII source record in the file is structured the same. An ASCII source record is of
variable length and may contain up to 128 sixteen-bit words. Each 16-bit word contains two
8-bit ASCII bytes. If the last byte in the last word of a record is not used, it must contain an
ASCII blank (20H).

The format relationship between the user buffer when reading from or writing into a 64000
source file is also shown in Figure 8-36.

Listing File (File Type 5)

The listing file is a copy of a source file. It may be produced when listing to a printer, a
display, etc. The format is identical to that described above, and shown in Figures 8-35
and 8-36 for the source file.

Absolute File (File Type 4)

Absolute file is generated when the linker produces an absolute image of an object file or
files. The absolute file contains two types of records; the first record and the additional
records which follow the first record. (See Figures 8-37 and 8-38.)

EMULATOR/ANALYZER 6800/6802 8-85

First record

The first record has a fixed length of four 16-bit words. The first word (word 0) specifies the
processors data bus width (8, 16, etc.). The second word (word 1) specifies the data width
base of the target microprocessor. The data width base is the minimum addressable entity
(i.e. group of bits) used by the microprocessor. Normally this will be eight bits, but not
always.

The last two words specify the transfer address value loaded into the target microprocessor’s
program counter. The most significant transfer address word (bits 31 thru 16) is used only if
required. If not used it will contain 0000H.

Additional records

All records following record one are formatted the same. Each is a variable length record
consisting of up to 128 sixteen-bit words (0-127).

The first word in the record (word 0) specifies the number of data bytes in the record (2
bytes/word). The following two words (words 1 and 2) specify the load address for this
record. (The load address is the beginning location for storing this record.) The most
significant load address word (bits 31 thru 16) will be used only if required. If not used, bits 31
thru 16 will contain 0000H.

The remaining words in the record (3 thru n) contain the data bytes. If the last byte in the last
word of a record is not used for data, it must contain an ASCII blank (code 20H).

The format relationship between the user buffer when reading from or writing into a 64000
absolute file is also shown in Figure 8-38.

Relocatable File (File Type 3)
The relocatable file is produced by the assembler or compiler. It contains information
required by the linker to construct an absolute file. This file consists of the following six types
of records (see Figure 8-39):

o Program Description Record (one per file)

o Global Symbols Record

o Data Record

o External Symbols Record

o Local Symbols Record (optional)

o End Record (one per file)

8-86 EMULATOR/ANALYZER 6800/6802

Each type of record is defined in the following paragraphs.
Program Description Record
(See Figure 8-40) - The program description record is the first record in the Relocatable File
and only one is allowed per file. This record identifies the source program, number of
externals, microprocessor, comments, and absolute code definitions.
This is a variable length record (up to 128 words) and is configured as follows:
o One Record ldentification (ID) Word
o 14 words allocated to:
Source Program Name (9 characters, maximum)
Source Program ID (6 characters, maximum)
PROG Area Length (2 words, maximum)
DATA Area Length (2 words, maximum)

COMN Area Length (2 words, maximum)

o One word allocated to definition of the number of external variables and procedures
defined in the module.

o Eight words allocated to:
Microprocessor Name (9 characters, maximum)
Microprocessor ID (6 characters, maximum)
o Two words allocated to:
Date (one word, maximum)
Time (one word, maximum)
o 11 words allocated to comments
o0 Up to 88 words allocated to absolute code segment description.

o One checksum word

EMULATOR/ANALYZER 6800/6802 8-87

Each of these items is described as follows:

Record identification (ID) word - The record ID word is always the first word in the record. In
this case, it is also the first word in the Relocatable File and contains the number “1". This
number identifies the record as the source program description record. (The “1” is used
internally and should not be confused with the file type number which is “3".)

Source program name and user ID word block - An eight word block (words 1 thru 8) is
allocated to contain the source program name and user ID words. This is the same ID entered
into the 64000 in response to the user ID prompt. This block is always eight words long even
if all words are not required to define the source program name and user ID. These eight
words are constructed as follows:

a. Word 1 - This is the first word and user ID word. The least significant eight bits (7-0) in
this word contain the first ASCII character of the source program name. The most
significant eight bits (15-8) always contain the following information:

o Source Program Name Length (PNL) - Bits 15, 14, and 13 specify the number of 16-
bit words —1 used for the name. The minimum number of characters that may be
used in the name is one, which requires one word. Thus, the minimum value for
PNL is zero. The maximum number of characters that may be used in the name is
nine, which requires five words. Thus, the maximum value for PNL is four. (See
“Words 2 thru 8”, below.)

o User ID Length (IDL) - Bits 12 and 11 specify the actual number of 16-bit words
required for the user ID. (Note that IDL differs from PNL in that IDL specifies the
actual number of words and PNL specifies the number of words —1.) The maximum
number of characters that may be used in the user ID is six, which requires three
words. Thus, the maximum value for IDL is 3.

o Bits 10-8 contain the number of the disc which holds the record.

b. Words 2 thru 8 - These words are used for the remaining name and user ID characters.
The name characters are specified first, followed by the user ID characters. However,
name and ID characters can not be mixed within the same word. An unused least
significant byte in either a name or ID word must contain an ASCII blank (Code 20H).
The name and ID words must be packed. That is - the ID words, must follow the name
words with no intervening unused words. Unused words must be at the end of the
block.

Length word block - A six word block (words 9 thru 14) is allocated to contain the word

lengths of code produced by the assembler or compiler in each of the three relocatable
sections; PROG, DATA, and COMN.

8-88 EMULATOR/ANALYZER 6800/6802

Number of externals word - One word (word 15) is allocated to contain the number of
external variables and procedures defined in the module. This number can be from 0 to 511.

Microprocessor name and user ID word block - This word block is the same as described for
the Linker Symbols File under the “Microprocessor Configuration Record, Name and User ID
Word Block”.

Date and time word block - Two words (words 24 and 25) are allocated to contain the date
and time that the program was assembled or compiled.

Comments word block - A block of eleven words (words 26 thru 36) is allocated for
comments. The block contains up to 22 ASCII characters defined by the NAME psuedo in the
assembler or compiler. All unused characters must contain ASCII blanks (code 20H).

Absolute code segment word block - A variable length block which contains from 0 to 22
entries of four 16-bit words is allocated for absolute code segments. Each four-word entry
defines an absolute code segment declared in the assembler or compiler.

Checksum word - The checksum word must be the last word in each record. If the record is
completely full, then the checksum word will be the 128th word. (Word #127.)

The checksum word contains the arithmetic sum of the binary values of the preceding words
in the record.

Global Symbols Records

(See Figures 8-31 and 8-32.) - The global symbols record formatting and packing for the
Relocatable File is the same as described for the Linker Symbols File under the “Global
Symbols Records”.

Data Records
(See Figure 8-41.) - The data records contains the relocation area and address of the program
as assigned by the linker. It also defines how the absolute codes are produced.

Record identification (ID) word - The ID word is always the first word in each record and
contains the number “3”. (The “3” is used internally and is not to be confused with the file

type number, which is also “3".

Relocation address words - These words contain the relocation address assigned by the
linker to this program. The most-significant word is used only when the ID offset equals 3.

Relocation word - The relocation word identifies the relocation destination code as follows:
00=ABS, 01=PROG, 10=DATA, and 11=COMN.

EMULATOR/ANALYZER 6800/6802 8-89

Event selection word - This word contains codes 00, 01, 10, and 11 in bit locations T1 thru T8.
Any one of the codes may be contained in any of the locations. As T1 thru T8 are read, the
event selected by the specific code will be executed. Codes are defined as follows:

Tn=00 Produce one byte of absolute code, which is found in the low order byte of the
corresponding word.

Tn=01 Produce two bytes of absolute code, which is found in the corresponding
word.

Tn=10 Relocate the address to be found in the second (and optionally, the third) word
based on the relocation code in the first word. Then produce an absolute code
based on the processor dependent format number in the first word and

skeleton, if used.

Tn=11 Look up the external symbol whose number is in the first word (which has been
previously defined in a type 4 record). Add the displacement and then produce
an absolute code based on the format number and skeleton, if used.

Checksum word - The checksum word must be the last word in each record. If the record is
completely full, then the checksum will be the 128th word (word #127).

The checksum word contains the arithmetic sum of the binary values of the preceding words
in the record.

External Symbols Records
(See Figure 8-42.) - The Relocatable File may contain multiple External Symbols Records.

An External Symbols Record contains the external symbols and the external ID number
assigned by the assembler or compiler. Each record may consist of up to 128, sixteen-bit
words (words 0-127) structured as follows:

o One Record ldentification (ID) Word

o Multiple External Symbol Definition Blocks

o One Checksum Word
Each of these items is described as follows:
Record identification (ID) word - The ID word is always the first word in each record and
contains the number “4”. (The “4” is used internally and is not to be confused with the file

number, which is “3".)

8-90 EMULATOR/ANALYZER 6800/6802

External symbol definition blocks - An external symbol definition block consists of the
symbol word(s) and the external ID number. (See Figure 8-42.)

Symbol words - The ASCII character, or characters, are contained in this word, or words.
From one to fifteen ASCII characters may be defined. To specify a single-character symbol,
only one symbol word is required. To specify either 14 or 15 ASCII characters, the maximum
of eight words is required. (Symbols longer than 15 characters are truncated to 15
characters.)

First symbol word - The first word in every symbol definition block is structured the same.
The least significant 8 bits (7-0) contain the first ASCII character in the symbol. The most
significant eight bits (15-8) always contain the following information:

o External Symbol Length (ESL) - Bits 15, 14, and 13 specify the number of symbol
words —1 in this block. For example, if the external symbol consists of two ASCII
characters, which requires two symbol words, then ESL is equal to 1. (The second byte
in the second word will contain an ASCII blank - i.e. code 20H)

o Reserved Bits - Bits 12, 11, 10, 9, and 8 always contain 00100.

Additional symbol words - The second thru the eighth symbol words may each contain up to
two ASCII characters. However, if in the last symbol word, only one byte is required to define
the last symbol character, then the least significant byte in that word must contain an ASCII
blank (code 20H). That is, the two bytes in each symbol word must contain meaningful data,
even in the last word.

The symbol words must be packed. Only the words actually required to specify the symbols
are to be used. Thus, if five symbol words are required to define a symbol, then only five
words are to be used.

External ID number word - The external ID number is assigned by the assembler or compiler.
The number can be from 0 to 511.

Checksum word - The checksum word must be the last word in each record. If the record is
completely full, then the checksum will be the 128th word (word #127).

The checksum word contains the arithmetic sum of the binary values of the preceding words
in the record.

Local Symbols Records

(See Figures 8-31 and 8-32.) - The local symbols records formatting and packing for the
Relocatable File is the same as described for the Linker Symbols File under the “Global
Symbols Records”, except the ID word contains the number “6”.

EMULATOR/ANALYZER 6800/6802 8-91

End Record
(See Figure 8-43.) - The end record is the last record in the Relocatable File and only one is
allowed per file. The end record contains the relocation code and transfer address. Each
record consists of five, 16-bit words structured as follows:

o One Record ldentification (ID) Word

o One Relocation Word

o Two Transfer Address Words

o One Checksum Word
Each of these items are described as follows:
Record identification (ID) word - The ID word is always the first word in each record and
contains the number “5”. (The “5” is used internally and is not to be confused with the file

number, which is “3”.)

Relocation word - The relocation word identifies the relocation destination code, as follows:
00=ABS, 01=PROG, 10=DATA, and 11=COMN.

Transfer address words - The transfer address words contain the address where control will
be transferred to when the program is run.

Checksum word - The checksum word must be the last word in each record. The checksum
word contains the arithmetic sum of the binary values of the preceding words in the record.

User Buffer/Relocatable File Packing Formats

The format relationship between the user buffer when reading from, or writing into, a 64000
Relocatable File is the same as shown for the Assembler Symbols File in Figure 8-27.

8-92 EMULATOR/ANALYZER 6800/6802

Record _ |

no. 1

Record __|

no. 2

etc

Figure 8-25. Assembler Symbol File Overall Structure

Record
Word #

e

n
(n=127)

[}

n
(n<127)

Contents

Record ID Word = 6

First Symbol Definition Block
(Variable length: 2 to 10 words)

—

Last Symbol Definition Block
(Variable length: 2 to 10 words)

Checksum word for record 1

Record ID word =6

First Symbol Definition Block
(Variable length: 2 to 10 words)

\

Last Symbol Definition Block
(Variable length: 2 to 10 words)

Checksum word for record 2

Record ID word =6

'

etc

EMULATOR/ANALYZER 6800/6802

8-93

8-94

Record
Type

First
Symbol
Definition
Block
Variable
length
block *

(2 words min
10 words max |

Second
Symbol
Defimition
Block®

etc

Notes

A

N/

ASSEMBLER SYMBOL RECORD STRUCTURE

Identifies record as an
Assembler Symbol Record

Word
&
0 ID Word = 6
Symbol word or words
Identifies symbol characters and
X the part of memory in which they

are defined. 1. e. ABS. Prog. Data. or
Common

(L1 =110 8 words)

Symbol words and value words
must be packed If only one symbol
word and one value word are
required. then only two words are
used in the definition block

LS 16-bit
Symbol value Word
L2 -
MS 16-bit MS Word 1s
=1
(L2 or 2 words) Word used only if
required to
specify symbol
value
Symbol Word(s)
Symbol Value™*
|
n Checksum Word Contains the arithmetic
(n 127) sum of the binary

values of words
@ through n—

“For block structure details, see “Assembler-Symbol Record/User Buffer Format Details”.

“*Symbol value as assigned by assembler. If a relocatable value it will be relocated by the linker.

Figure 8-26. Assembler Symbol Record Structure

EMULATOR/ANALYZER 6800/6802

ASSEMBLER SYMBOL FILE

USERS BUFFER

DEFINITION BLOCK FORMATS CONTENTS ADDR
‘ } R W Code CA
Word
4 15 8,7 0 #Words CA -1
T T 7T
0 |(D (ID WORD = 6) 0 l 1 : 1 : Q]X 15 CA-2
.
I) 7 CA-3
S 15 13,12 10,9 8,7 0
Y
M rSL o 0 0| R ASCII 1 15 CA-4
B T 7 CA'5
0]
L
15 8 7 0
I ASCII 2 ASCII 3 15 CA-6
L 7 CA 7
L1
First e : : .
Sym . . .
Def 15 8,7 0
Blk =
(2to I ASCIl 14 ASCII 15 15 CA-
10 T
words) 7 CA-
S 15 8,7 0
Y T
M [Sym. Value (LS 16 sets) 15 CA -
4
B T T
7 CA-
"
A L2 15 8 N 7 0
T
L I Sym Value R (MS 16 bits - if used) —I—>C 15 CA -
T
L 7 CA-
$ 15 13,12 10,9 8, 7 0
M l SL 0 00 R ASCIl 1 15 CA -
B l
o 7 CA-
L
15 8,7 (%)
l ASCII 2 ASCII 3 15 CA-
L 7 CA -
Sec
Sym s
Def |y 15 8% 7 0
Blk M ! Sym 2 Value \ (LS 16 bits) }—><: 15 CA -
B T
L 7 CA-
)
A 5 3% 7 0
L I Sym. 2 Value (MS 16 bits - f used)—bc 15 CA-
4
]
L 7 CA-
. . .
. . Ld
. . .
otc \ 15 8 ' 7 0
n L Checksum P—>C 15 CA-
i
n- o127)
{ ! L . 7 CA-n1
(n1-257)

Figure 8-27. Assembler Symbol Record/User Buffer Format Details

EMULATOR/ANALYZER 6800/6802

8-95

8-96

EXAMPLE A. SYMBOL = HP

15 13 12 0 98 7 0 Definitions
SL=Number of 16-bit words - 1
170 0 1[0 0 0]Relo ASCIIH required to define a symbol In
N — example A. SL=2-1 or 1
SL =1 Reserved
Two
Symbol
Words
15 8,7 0 Reserved indicates that these
bits are reserved for use by
I ASCII P ASCII blank other program modules
Must specify a blank
15 8 7 (4] —f
One | Reio' =Memory type
Symbol T relocated to
ymbo Symbol value 00=ABS
4
e 1 01=PROG
10=DATA
Only one 16-bit word 1s required to 11=COMN
contain the value assigned by the
assembler Thus. only one is used
EXAMPLE B. SYMBOL = S
15 13 12 0 9 8 7 [4] Same as
One f st detined
Symbol 00o0|looo I Relo ASCH S Reserved ef;mi)le i’
Relo
Word N — S — above
SL-0 Reserved
One 15 8{ 7 Q
Symbol | Symbol value]
Value }
Word I

Again, only one 16-bit word is required to contain the symbol value.
Thus, only one is used.

Figure 8-28. Assembler Symbol Record/Symbol Definition Block
Examples

EMULATOR/ANALYZER 6800/6802

Word #
N’
- = -
First Record
Microprocessor
Configuration.
(Fixed length,
26 words) _ _23 _
24
25
]
Global Symbols
First Record _{
(Variable length.
128 words, max.)
n
> (n=127)
7 (]

Global Symbols
Last Record
(Variable length, -
128 words max.)

n
__.___><'E‘27L

[}

Program Names
First Record
(Variable length —

128 words max.)
n
& (n<127)

Contents

Record type = 1

Microprocessor Name and ID Definition
Block

Address Size

Checksum for this record

Record type = 2

Global Symbols Definitions

Checksum for this record

Record type = 2

Global Symbols Definitions

Checksum for this record.

Record type = 3

Program Name Definitions

Checksum for this record.

s

Record type = 3

Program Name Definitions

Checksum for this record

Record type = 4

Relocatable File
Memory Allocation

Program Names
Last Record
(Variable length.
128 words. max)
)
X (n=127)
)
n

l (n€127)

Checksum for this record

Figure 8-29. Linker Symbol File Overall Structure

EMULATOR/ANALYZER 6800/6802

8-97

Record

Word #
Record type = 1 0
4 :
P Words 1 through 15 contain all zeros
A
D
15 13,12 11,10 8, 7 [} 15
Microprocessor
Name and MNL IDL | Xxx ASCH 1 16
ID Definition N
Block. _1 A
(Fixed length M Name < 9 characters. ID < 6 characters. Name
8 words) E and ID words must be packed within this block
All unused words must be at the end of this
& block. Unused last (LS) bytes must contain
ASCII blanks (Code 20H).
|
© 3
ASCII 14 \ ASCII 15 2
ADDR ishi address size
SIZE hishift 24
Checksum for this record. 25

Notes

1.

8-98

Words 1 through 15 are added so that word positions 16-23 in this name record contain the same data as do the
corresponding word positions in the name records of the relocatable files.

MNL =Number of 16-bit words —1 required to define the microprocessor name. At least one character in the
“ASCII 1” byte is required. Thus, with a one character name, MNL =0. If all nine characters are used (5 words),
MNL=4.

IDL=Actual number of 16-bit words required to define the user ID. If one word is used, IDL=1. If all three
words are used, IDL=3.

Bits 19, 9, and 8 - “don't care” condition.

ASCII bytes 1-15 contain the name and ID characters. These words must be packed. That is the ID words must
follow the name words. Unused words must be at the end of the block. An unused byte in either a name or ID
word must contain an ASCII biank (Code 20H).

Word 24 indicates address size where “address size” = 1 indicates one-word addresses (16 bits) and “address
size” = 2 indicates two-word addresses (32 bits). “hishift” used when converting logical addresses (segment,
offset) to physical addresses.

The checksum contains the arithmetic sum of the binary values of words @ through 24.

Figure 8-30. Microprocessor Configuration Record Structure

EMULATOR/ANALYZER 6800/6802

GLOBAL SYMBOLS RECORD

Word # Contents
_ Identifies Global Symbol
Record Type — 0 Record type = 2 Record in Linker Sym. File
" Symbol and value words
Symbol word or words. Identifies must be packed. If
u symbol characters and where they only one of each is required,
are relocated. then only two are used in
First Symbol (L1 =1to 8 words) the definition block. (See
Definition Block.* figure 8-23)
Variable length
from 2 words
min. to 10
words max. Symbol value** t{%:de—blt
L2 — ——
_ MS 16-bit — MS word is
(L2=1or 2 words) word used only if
\ required to
/ specify symbol
value.
Second Symbol
Definition — Symbol and value words
Block*
etc. \
| Contains the
arithmetic sum of
- n ; Checksum for this record. the binary values
(=127) of words @
through n-1.

Notes

“For block structure details see “Global Symbols Definition Block Diagram.”

“*Symbol value assigned by assembler. If relocatable value (not ABS), it will be relocated by the linker.

EMULATOR/ANALYZER 6800/6802

Figure 8-31. Global Symbol Record Structure

8-99

15 13 12 10,9 8 7 0

s GSL X X X | Relo ASClI 1 1 (min.)
. ASCII 2 ASCII 3 |
s ASCII 4 ASCII 5
L ASCIl 6 ASCII 7 Variable
ASCII 8 ASCII 9 Lenoth
ASCII 10 ASCII 11
ASCII 12 ASCII 13 ’
(L ASCII 14 ASCII 15 8 (max.)
Symbol Value assigned by linker (LS 16 bits) 1 (min.)
Val. (L2 value assigned by linker (MS 16 bits — if used) 2 (max.)

Notes

1.

8-100

GSL = Number of 16-bit words —1 required to define a global symbol. At least one character is required in the
“ASCII 1” byte. Thus, with a one character name, name length = @. If all 15 characters are used (8 words), name
length = 7.

Bits 12, 11, 1@ - “don’t care” conditions.

“Relo” contains the binary code for area relocated to as follows: §@ = ABS, 81 = PROG, 10 = DATA, and
11 = COMN.

The bytes labeled ASCII 1-15 are the maximum number of bytes available to define the symbol. Only the actual
number of 16-bit words required to define the symbol will exist. However, if the first byte (MSB) is used, then the
second byte (LSB) must contain an ASCII blank (Code 20H).

The symbol value is assigned by the assembler. If a relocatable value it will be relocated by the linker. The 8086
microprocessor symbol values are in segment, offset form where LS = offset and MS = segment.

Figure 8-32. Global Symbol Definition Block

EMULATOR/ANALYZER 6800/6802

PROGRAM NAME RECORD

Word
Contents
0 Record type = 3 Identifies Program Name

Record in Linker Sym. File

())

Program Name and ID. Name < 9
characters. ID < 6 characters.

Name and ID words must be packed.
Unused words must be at the end of this Fixed Length Block.
block. 14 Words

Words not required

— will contain
meaningless information
and must be at the

end of the block

First —
Program Name
and Addresses —f

Definition

Block."

PROG, DATA, and COMN load
addresses. (Addresses not used will
contain all @'s.)

- © | v ———

N M £
4 15
Program Name
Second — - — —_———_— —_— — = = =4
Program Name .
and Addresses = — Program 1D | Fixed length block
Definition 14 words
Block.* b e e — —_— —_— —_— - —
| PROG, DATA, and COMN load
29 addresses
AN /
etc) .
} Contains the arithmetic

n sum of the binary
(n=127) Checksum for this record. values of words

4 through n-1

Notes
*For block structure details, see figure 8-34.

Figure 8-33. Program Name Record Structure

EMULATOR/ANALYZER 6800/6802

8-101

Program
Name and
Addresses
Definition

Block
Length
Fixed
14 Words.

Notes

1.

8-102A

PNL =Number of 16-bit words —1 required to define the program name. At least one character in the “ASCI| 1"
byte is required. Thus, with a one character name, PNL=@. If all nine characters are used (5 words), PNL=4.

IDL = Actual number of 16-bit words required to define the user ID. If one word is used, IDL=1. If all three words
are used, IDL=

DISC=The indentifying number of the disc upon which the program resides.

ASCII bytes 1-15 contain the name and ID characters. These words must be packed. That is - the ID words must
follow the name words. Unused words must be at the end of the block. An unused byte in either a name or ID

—

Block

3.

Word #
15 13,12 11,108 7
PNL iDL Disc ASCIl 1 1 \
N
A
M Name < 9 characters. ID < 6 characters. Name
E and ID words must be packed within this block. Fixed
All unused words must be at the end of this - Length
& block. Unused last (LS) bytes must contain Block
ASCII blanks (code 20H).
|
D
ASCII 14 N ASCII 15 8 /
PROG area 15 LS PROG address word ("] 9
load address | 5, s PROG address word 6] 10
DATA area 15 LS DATA address word "] 1"
load address | 5, g DATA address word 18] 12
COMN area 15 LS COMN address word 0 13
load address | 37 mg COMN address word 6] 14

word must contain and ASCIl blank (Code 20H).

Load Address Words - The load address words contain the load address assigned by the linker to this program.
Unused address words contain all zeros. Load addresses for the 8086 microprocessor are in segment, offset

form where LS = offset and MS = segment.

Figure 8-34. Program Name and Address Definition Block Format

EMULATOR/ANALYZER 6800/6802

] Record type = 4
1 15 LSW low bound]
| 1
2 MSW low bound
3 LSW high bound
4 MSW high bound
s Program ordinal number P r
;|
6 FNL DL x | m]| n ASCII 1
| | |
L]
. fixed length 8-word file
. name with user ID in
. standard file name format
. (note: file names are not the
. same as program names).
13
14 x d d d x X b3 X x X X X ("] (/] 0]
1 1 | 1 1 Il | 1 | 1 1 ;
L]
Y Y
. The above block may be
. repealed until the record
. is full.

Checksum for this record

n
(n=127)

Figure 8-34A. RANGE Definition Block Format

EMULATOR/ANALYZER 6800/6802 8-102B

Notes (for Figure 8-34A)
1.

8-102C

Words 1 through 4 list the memory space used by the relocatable files. Blocks are sorted on lower bound from
smallest to largest. For the 8086 microprocessor, bounds are in offset, segment form where LSW = offset and
MSW = segment.

Word 5 - a Program name for TYPE 3 records has an implicit ordinal number value which is indicated in word 5.
The two bits, rr, indicate program type as follows:

rr = 00——absolute
rr = 01— PROG relocatable
rr = 10—DATA relocatable
rr = 11——COMN relocatable
Word 6 - FNL = number of 16-bit words-1 required to define the file name.
IDL - actual number of 16-bit words required to define user ID. If one word is used, IDL = 1.

x - indicates “don’t care” condition.

m - as described under TYPE 3 RECORDS, a file may contain multiple relocatables or a program name different
from the file name. If this occurs, m = 1. If m = 0, the file name and program name are the same.

n - If n = 1, the indicated file was a “no-load” file, i.e., the file was linked and relocated but no code was
generated.

Word 14 - ddd indicates the disc where the file resides. x = “don’t care” conditions.

EMULATOR/ANALYZER 6800/6802

File Structure

First Record

Contains up to 128 16-bit
words with 2 ASCII bytes/word

max

--—

n
(n-127)

Second Record

Same as first record

etc

SOURCE FILE FORMAT

Variable length
— 128 words

0
Variable length.
— 128 words
max
n
1

Figure 8-35. Source and Listing Files - Overall Structure

USERS BUFFER

WORD #

‘

n
(n 127,

+ { CONTENTS
WORD DATA FORMAT R/W Code
15 8 7 0 # Words
4
}
Two ASCIHI | ASCII 1 ASCII 2 15 (ASC 1) 8
Bytes T +
7 (ASC 210
15 8l 7 [}
T
Two ASCII l ASCII 3 ASCII 4 15 (ASC 3) 8
Bytes T 4
7 (ASC 410
\ 15 8 7 [}
Two ASCII ASCII x ASCll y 15 (ASC x1 8
Bytes T +
7 ASCyl 0

Figure 8-36. Source and Listing File Format

ADDR *
CA

CA-1
CA-2

CA-3

CA-4

CA-5

CA-n
(n=257)

EMULATOR/ANALYZER 6800/6802

8-103

8-104

15 File Structure

Record
Word #

°)

First Record
Specifies data width base and
transfer address Y
3
[}
Second Record
Specifies # of data bytes in
this record. and load address
for record followed by data words ‘
n
(N 127y
0

Third Record

Same as second record

n

| Fixed iength.
4 words

Variable length

[~ 128 words. max

Variable length
128 words. max

n127))

etc

Figure 8-37. Absolute File - Overall Structure

EMULATOR/ANALYZER 6800/6802

ILLUSTRATION A.
RECORD 1 FORMAT ONLY.
(Format for all Other Records Shown on lllustration B)

USER BUFFER

ABSOLUTE FILE RECORD 1 FORMAT"
{ 1 r CONTENTS ADDR }

Word # Word Data FORMAT R/W Code CA
Words + CA -1
}
+
[Data Bus™""* [15 87 0 15 8] CA-2
Width T }
7 @] CA-3
}
1 Data Width I:S 8 7 (ﬂ——>C 15 8| CA-4
Base"* +
L 7 2| CA:5
+
2 Xfer Address |15 8 7 [} 15 8| CA+6
LS Word""* }
T T
7 0| CA-7
32-BIT
l ADDRESS
T
3 Xfer Address tn 24 23 16 31 24| cA-8 ALL ZEROS
MS Word""* + FOR PROM-
L 23 16| CA-9 ABSOLUTE
FILES

Checksum tt

Notes
“Record 1 must precede all other records in an absolute file and it must always be formatted as shown.
(Always four words.)

“*The Data Width Base is the minimum addressable entity (i.e., group of bits) used by the microprocessor.
Normally this will be 8 bits but not always.

***The transfer address is the value loaded into the microprocessor program counter.
This value is all zeros for PROM Absolute files.

“***Width of processor data bus (i.e., 8, 16 etc.)

t Total number of words in record excluding checksum and number of words, (i.e. n-2), always equal to 4 for
record 1.

tt The checksum is the module 256 sum of bytes CA+2 through CA+9.

Figure 8-38. Absolute File Formats

EMULATOR/ANALYZER 6800/6802 8-105

8-106

ILLUSTRATION B.
FORMAT FOR ALL RECORDS EXCEPT RECORD 1
(See lllustration A for Record 1 Format)

USER BUFFER

ABSOLUTE FILE RECORD FORMAT
{ FOR ALL RECORDS EXCEPT #1 } { 128 Words Max ‘
7 0
Word # Word Data Format R/W Code CA
Words CA+1
—+-
I 15 8| ca+2
[g?:;a 15 841 0
Y [7 0| ca-3
+
1 Load Addr l 15 8 7 0 15 8 CA+4
LS Word* T +
7 0| CA+5
32 BIT
N ADDRESS
T
2 Load Addr I 31 24 23 16 31 24 CA+6
MS Word $
L 23 16 CA+7
15 8 7 [}
3 Data Word 1 r BYTE 1 . BYTE2 15 (BYT 1) 8 CA+8
I LS
7 (BYT2) © CA+9
15 8 7 0
T
3+m Data Word m L BYTE x \ BYTE y** jx 15 (BYT x) 8
T CA+n
L 7 (BYTy) 0| ooan

Note
“The load address is the address of the first location into which this record is stored.

**This last byte will be a pad byte if the record contains an odd number of bytes. This is required to fill up the
word boundary.

***The checksum is the module 256 sum of bytes CA+2 through N-1.

Figure 8-38. Absolute File Formats (Cont'd)

EMULATOR/ANALYZER 6800/6802

—————,—— ey — = ———

First Record
Program
Description
(Variable length,
128 words, max.)

__._._.._____>__

Global Symbols

First Record
(Variable length,
128 words, max.)

Global Symbols

Last Record
(Variable length,
128 words, max.)

Data Block

First Record
(Variable length,
128 words, max.)

Data Block
Last Record
(Variable length,
128 words, max.)

External Symbols

First Record
(Variable length,
128 words, max.)

External Symbols

Last Record
(Variable length,
128 words, max.)

<127)
—_———,——— _JT%._._

— |

Local Symbols
First Record
(Optonal)
(Variable length,
128 words, max.)

-

Word
#

0

Contents

Record 1D word ~ 1

7

(

[a— Sl"%:A——‘

G

o —— — e -

— |

n
_(n§127)
- ="

S

n
_dogen

Program Description Block

Checksum for this record

Record ID word = 2

Global Symbols Definitions

Checksum for this record

\\\\\‘\\55—_——-__—__——_”’,,/’

Record 1D word = 2

Global Symbols Definitions

Checksum for this record

Record 1D word = 3

Data Block

Checksum for this record

_/

y-—————

Record ID word = 3

Data Block

Checksum for this record

(nN=127)
- L~
n
[_ e

Record ID word = 4

External Symbols Definitions

Checksum for this record

\/

Record ID word = 4

External Symbols Definitions

These records can
be in any order,

L but external symbols
must come before
they are referenced
in data records.

Checksum for this record

Record ID word = 6

Local Symbols Definitions
(Optional)

Checksum for this record

S~

e
"]
Local Symbols
Last Record
(Optional) e
(Variable length,
128 words, max.) n
n<127)

End

Record
(Fixed length,
5 words)

Record ID word = 6

Local Symbols Definitions
(Optional)

Checksum for this record

Record ID word =5

End Block

o

Checksum for this record

Figure 8-39. Relocatable File Overall Format

EMULATOR/ANALYZER 6800/6802

8-107

Identifies Program 15 8,7 o
Deseription Record m{ Record ID word = 1 0
Relocatable File
pnc | ou | oise | ASCII 1 ;
N SOURCE PROGRAM
M Name <9 characters. ID <6 characters. Name
E and ID words must be packed within this block.
Source All unused words must be at the end of this
Prograrg & block. Unused last (LS) bytes must contain
Name an ASCII blanks (Code 20H).
Length = |
Definition D
ASCII 14 ASCII 15
Block sc 1 8
Length PROG area | 15 LSW PROG length o] o
Fixed length 10
14 Words g 31 MSW PROG length 16
DATA area| 15 LSW DATA length 21 1
length 59— Msw DATA length 6] 2
COMN area | 15 LSW COMN length 21 13
N length [731 Msw COMN length 16] 14
Number of Externals
Definition Block O=No.=5121 19 Lo offrergs 21
MNL | oL | eee | Asciid 16
Microprocessor N MICROPROCESSOR
Narr‘-e‘a‘nd A Name =9 characters. ID <6 Characters. Name
ID Definition M and ID must be packed within this block.
Block E All unused words must be at the end of this
Length Fixed & block. Unused last (LS) bytes must contain
8 Words ASCII blanks (Code 20H).
|
D ASCII 14 ASCII 15 23
Date and Time 1
Block Date 24
Length Fixed Time 25
2 Words
ASCII 1 ! Asciz2 |26
e
COMMENTS BLOCK 27
Comments Comments <22 characters. Must be o8
Definition ithi i
— packed within this block. All
B!OCk unused words must be at the end
Length Fixed of this block. Unused last (LS) bytes
11 Words must contain ASCII blanks (Code 20H).
" ASCII 21 1 ASCII 22 36
/ 15 LSW Start Org 0] 37
31 MSW Start Org 16] 38
Absolute Code 15 Lsw End Org 0} 39
Segment 31 MSW End Org 6 | 49
Description Block 41
Length Variable
0 - 88 Words
Contains the
Arithmetic Sum of the .
Binary Values of H n
f h d
Words 0 through n-1. - Checksum for this recor (=127)

NOTES:

1.

o bW

8-108

PNL and MNL = Number of 16-bit words-1 required to define program or microprocessor name. At least one character in the
"ASCII 1" byte is required. Thus, with a one character name, PNL or MNL = @. If all nine characters are used (5 words) PNL or
MNL = 4.

IDL = Actual number of 16-bit words required to define the user ID. If one word is used, IDL = 1. If all three words are used IDL
= 3.

Disc (in program name segment) - The identifying number of the disc upon which the program resides.

Bits 10, 9, and 8 in microprocessor name segment always contain 900.

ASCII bytes 1-15 contain the name and ID characters. These words must be packed. That is; the ID words must follow the
name words. Unused words must be at the end of the block. An unused byte in either a name or ID word must containan ASCI|
blank (Code 20H).

Length bytes or words - Contains the number of bytes or words (processor dependent) of code produced by the assembler or
compiler in each of the three relocatable sections; PROG, DATA, COMN.

Number cf externals - Contains the number of external variables and procedures defined in the module.

Comments - Contains up to 22 ASCII characters defined by the NAME psuedo in the assembler or compiler. All unused
characters must contain ASCII blanks (Code 20H).

Absolute code segment description - Contains @ to 22 entries of four 16-bit words. Each four word entry defines an absolute
code segment declared in the assembler or compiler.

Figure 8-40. Relocatable File Program Description Definition Block

EMULATOR/ANALYZER 6800/6802

15 8 7 2

Identifies Data
Record in —E Record ID word = 3 9
Relocatable File -
Defines Relocation Relocation | 15 LSW Relocation Address 1
Address address area | 15 MSW Relocation Address (if used) o) 2
Identifies File Type _C
Destination of Relocation Relocation 3
Identifies Events —E Event selection area | T1 I T2 I T3 I T4 | T5 l T6 r T7 I T8 | 4
to Follow
NOTE
Event and order of the
following events are selected by event
selection, above (see notes).
15 8 7 [
~ Tn =00 I Don't Care I Low Byte J
15 8 7 0
Tn=01 | High Byte I Low Byte I
15 8 7 6 4
Words or Word I Relo I Format No.
Groups Selected
by Word 4 for = Tn- 10 LSW Unrelocated Address
Events to MSW Unrelocated Address (Optional)
Follow Word 4
Optional Skeleton
15 7 6 []
External 1D No. l Format No.
Tn = 11 LSW Signed Displacement
MSW Signed Displacement (Optional)
Y Optional Skeleton
Contains the
Arithmetic
Sum of the - n
'—‘ Checks for th)
Binary Values J ecksum is record I (<127)
of Words
@ through n-1

NOTES:
1. Relocation Address Words - The relocation address words contain the relocation address assigned by the
linker to this program. The MSW is used only when the ID offset = 3.

2. Relocation contains the binary code for area relocated to as follows: 89 =ABS, 1 =PROG, 10 =DATA,and 11
= COMN.

3. EventSelection Area - Selects events to follow. T1through T8 may contain any one of codes 99, @1, 10, or 11.
Codes are defined as follows: 8@ = one byte absolute with no modifications, @1 = two bytes absolute with no
modifications, 10 = relocatable reference, and 11 = external reference. As T1 through T8 are read, the event
selected by the specific code will be executed.

4. Tn=00- Produce one byte of absolute code, which is found in the low order byte of the corresponding word.

5. Tn =01 - Produce two bytes of absolute code, which is found in the corresponding word.

6. Tn =10 - relocate the address to be found in the second word (and optionally, the third word) based on the
relocation code in the first word. Then produce an absolute code based on the processor dependent format
number in the first word and skeleton, if present.

7. Tn=11-look upthe external symbol whose number is in the first word (which has been previously definedina

type 4 record). Add the displacement and then produce an absolute code based on format number and
optional skeleton.

Figure 8-41. Relocatable File Data Definition Block

EMULATOR/ANALYZER 6800/6802 8-109

15 8 7

Record ID word = 4

Identifies External {
Symbols Record

in Relocatable File ¢~ esL | eo106 | Ascus
S Symbol <15 characters. ASCII 1
'\; must contain character. For all
First —— 8 others, unused last (LS) byte must
Symbol Definition o contain ASCII blank (Code 20H).
Block, Length L
Variable From
2 to 9 Words
ASCII 14 L ASCII 15
External ID Number
~~
d est | ee100 | ascu
S Symbol <15 characters. ASCII 1
Last e Y must contain character. For all
Symbol Definition "g others, unused last (LS) byte must
Block, Length 0 contain ASCII blank (Code 20H).
Variable From L
20 9 Words ASClI 14 , ASCII 15
. External ID Number

Contains the _{
Arithmetic Sum

Checksum for this record

of the Binary
Values of Words
@ through n-1.

NOTES:
ESL = Number of 16-bit words required to define an external symbol. At least one character inthe ASCII 1 byte
is required. Thus, with a one character definition, ESL = 0. If all 15 characters are used (8 words) ESL =7.

8-110

1.

Bits 8 through 12 always contain 00100.

Y

n
(=127)

The bytes labeled ASCII 1-15 are the maximum number of bytes available to define the symbol. Only the actual
number of 16-bit words required to define the symbol will exist. However, if the first byte (MSB) is used, then
the second byte (LSB) must contain an ASCII blank (Code 20H).

External ID Number is assigned by the assembler or compiler. ID number is <511.

Figure 8-42. Relocatable File External Symbols Definition Block

EMULATOR/ANALYZER 6800/6802

Identifies End
Record in Relocatable
File

Defines
Transfer Address

Identifies Relocation
Destination

Contains the Arithmetic
Sum of the Binary
Values of Words

@ through 4

Notes:

15 2
Record 1D Word=5 4
Relocation 1
Transfer LSW Transfer Address 2
address area MSW Transfer Address 3
Checksum for this record 4

1. Relocation-contains the binary code for area relocated to as follows: @@=ABS, @1=PROG, 10=DATA,
11=COMN, 100=No transfer address.

2. Transfer Address Words-Contains the address where control will be transferred to when the program is run.
Only one module in a program may have a transfer address, and it is defined in the END label psuedo in the
assembler or the presence of the main program block in a PASCAL module.

Figure 8-43. Relocatable File End Definition Block

EMULATOR/ANALYZER 6800/6802

8-111/(8-112 blank)

Appendix A

Syntactical Variable Definitions

The syntactical variables used throughout this manual are described in this appendix.

<ABSFILE>

The <ABSFILE=> is the file identifier of an absolute file that contains the emulation program.
The emulation program is placed into the file by assembling and linking to the file before
application to the target microprocessor. <ABSFILE> has the same format requirements as
the <FILE> variable which is described later in this appendix.

<ADDRESS>

The <ADDRESS> variable defines a bit pattern of up to 16 bits which specifies a particular
location in mapped memory. That bit pattern can be represented by a binary, octal,
hexadecimal, or decimal number; a local or global symbol; or a mathematical combination of
numbers or symbols. <ADDRESS> has the same format requirements as the <VALUE>
variable which is described later in this appendix.

<ADR_LST>

The variable <ADR_LST> contains a list of addresses, separated by commas, where the
addresses are within the address space defined by the processor.

<CMDFILE>

The <CMDFILE> variable is the file identifier for an existing emulation configuration file. This
command file contains the organizational commands for the processor to be emulated. The
command file can be retained or modified for further use. <CMDFILE> has the same
requirements as the <FILE> variable which is described later in this appendix.

<FILE>

The <FILE> variable is used to identify files generated or accessed by the development
system commands. <FILE> consists of the following parameters:

<FILE NAME>[:<USERID>][:<DISC#>]

EMULATOR/ANALYZER 6800/6802 A-1

A-2

where:

<FILE NAME>

<USERID>

<DISC#>

<REAL_VAL>

is the identifier given to a particular file. <FILE NAME> must begin
with an upper case alphabetic character and can have a total length
of nine characters. After the first character, any upper or lower
case alphanumeric character or an underscore can be used. If
more than nine characters are specified, the name is truncated to
the first nine characters.

is the identifier assumed by a particular system user. <USERID>
must begin with an upper case alphabetic character and can have a
total length of six characters. The characters following the first
character can be any upper or lower case alphanumeric
characters, including the underscore. If more than six characters
are specified, the userid is truncated to the first six characters. If a
userid is not entered, the current userid is used as the default.

specifies the disc on which the file is stored. <DISC#> can be any
digit from 0 thru 7, but it must correspond to the Logic Unit number
assigned to one of the discs at system power up. The default is to
search the discs for the file specified, or to create the file on disc
zero.

The <REAL_VAL> variable is an alphanumeric representation of a real number value. The

syntax is:

{ [+] | <integer>

I CH IS
E ’ [f] } <integer>

Where <integer> is an unsigned decimal integer.

<STATE>

The <STATE> variable specifies a particular state on the emulation bus. The <STATE>
expression consists of an address, a data, and a status specification.

<VALUE>

<VALUE> is a syntactical variable that allows specification of symbols (labels), numbers,
parentheses, and math operators (+, —, /, (), *) following standard algebraic rules to produce a
value. Legal operands are defined in the following paragraphs.

EMULATOR/ANALYZER 6800/6802

<NUMBER> is an alphanumeric representation of a 16 bit pattern of ones, zeros,
and don’t cares (X's). The bit pattern can be represented in binary,
octal, hexadecimal, or decimal where binary is indicated by a “B”,
octal by a “Q”, hexadecimal by an “H”, and decimal by a “D”.
Decimal is the default value and the use of “D” is optional.

Examples:

(A+B)*C

10101011 XXXXXXXB
145XXXQ

2563

The <LOCAL SYMBOL> variable represents the name of a symbol which can only be
used by the program module in which it is defined. The <GLOBAL SYMBOL> variable
represents the name of a symbol which can be called by program modules other than
the one in which it is defined. The global symbol must be declared as such by a GLB
statement in the source file.

<LOCAL SYMBOL> is specified as: SYMBOL_NAME [:<MODULE=>] or: #<LINE #>
[:<MODULE>] where <MODULE> is the same as <FILE>. For
PASCAL programs, lines which generate object code produce
local line # symbols corresponding to the source line.

<GLOBAL SYMBOL> is specified as <SYMBOL_NAME> or @:<MODULE> which
produces the starting address of the specified <MODULE>.

<MODULE> specifies the file in which the local symbol is defined. If no
<MODULE> is specified, the global symbol table associated with
the absolute program file loaded by the emulator is searched for
the <SYMBOL_NAME>. If the symbol name is not found in the
global symbol table, a search is made of the last referenced local
symbol table. If the symbol name is not found in the local symbol
table, an error message is displayed on the status line. For more
information, refer to the description of <FILE> which isincluded in
this appendix.

<STRING> is an ASCII string delimited by ', ”, A. and produces a 16 bit code.
Examples:
‘A’ 0041H
“AB” 4142H

ABCA 4243H

EMULATOR/ANALYZER 6800/6802 A-3/(A-4 blank)

Appendix B
6800/6802 Status and Error Messages

Status Messages

Access to guarded memory, address OXXXXH
Guarded memory is accessed by the 64000 station through display memory or modify
memory commands. OXXXXH is the address in guarded memory.

Break in background
A break has occurred and the emulator processor is executing in the background
program. See Chapter 2 for details on “break”.

Break unknown state
Control of the emulator processor is lost. A reset command should be issued to
recover the processor.

halt
The halt line is pulled low by the target system (*HALT = 0).

No memory cycles
The processor has not done a valid memory cycle during the last 500ms.

Reset in background
A reset command has been issued by the 64000. The emulator processor is in
background.

Reset unknown state
Control of the emulator processor is lost. A reset command should be issued to

recover the processor.

User reset
The reset line is pulled low by the target system (*RESET = 0).

EMULATOR/ANALYZER 6800/6802 B-1

B-2

Running
The emulator processor is running in foreground. See Chapter 2 for details on

“foreground”.

Step complete
Single-stepping was successfully completed.

Step in process
The emulator is single-stepping through target program.

Three state control
The hardware signal TSC is active. (Applies only to the 6800 microprocessor.)

wait
WA instruction was executed, the emulator’s processor is waiting for an interrupt
(*BA = 1).

Error Messages

Command causes break, runs restricted to real-time
If the emulator is running and ‘restrict to real-time only’ was specified in the
configuration, commands that will cause the emulator to alternate between target
program and background program are not allowed, i.e., display registers, modify
memory, etc. See Chapter 4 for details on real-time restrictions.

Command not allowed, processor not in background
The command requires the emulator processor to be in background. An attempt has
been made to break the processor, but was not successful. The emulator will recover
to a “Break in background” state once the break has succeeded.

Illegal memory access PC=0XXXXH
An illegal memory access by the emulator processor has occurred during execution of
user code (write to ROM or access to guarded memory). PC=0XXXXH is the address of
the last opcode to be executed by the emulator processor before the illegal memory
access. This type of error detection is possible only when a memory control board is
part of the emulation subsystem.

lllegal opcode OXXH at OXXXXH

An illegal opcode was executed by the emulator processor. The opcode and the
opcode address are displayed in the message.

EMULATOR/ANALYZER 6800/6802

Appendix C

Radio Frequency Interference

With an emulation system installed in the Model 64000, several methods of operation
(physical setup) may result in an increased emission of radio frequency noise. To reduce the
r.f. noise level, any of the following techniques may be used:

a. When the emulator is used infrequently, disconnect the emulator pod and cables from
both the host system and target system.

b. For systems that use the emulator intermittently, select “external clock” and
disconnect the pod cable from the target system when not in use.

c. Consistent with design needs, minimize the time that the emulator is used without
being connected to a target system.

d. All 64000 system covers should be in place and properly attached to the mainframe (all
housing screws tight).

e. Emulator performance verification is a service tool. Minimize its usage consistent with
performance assurance.

NOTE

Running the emulator while connected to a target system
should produce little additional r.f. noise above that generated
by the target system itself.

EMULATOR/ANALYZER 6800/6802 C-1/(C-2 blank)

Appendix D

Emulator Electrical Properties

The emulation equipment, when connected to a target system, will respond similarly to the
microprocessor it emulates. The timing of the processor signals at the probe closely
approximates the timing of the microprocessor normally inserted in the same plug. Voltage
and current requirements for the drive and receive circuitry of the emulator are generally
equivalent to LS TTL specifications. The capacitive loading of the emulation probe is
equivalent to the LS TTL gate capacitance plus the capacitance of the probe cable, which is
approximately 20 pF.

NOTE

The emulation pod presents greater drive capability and
slightly greater capacitive loading to the target system than
the’prbcessor being replaced. Consequently, it is conceivable
that a user’s system, which operates under emulation, may
not operate properly when driven by a microprocessor IC.
Noise margins and signal levels in marginally overloaded
designs may not cause problems when driven by emulation
but may be fatal to system operation under normal
microprocessor drive conditions. Be sure that your design
allows for the added drive and loading specifications of the
64000 emulation pod.

EMULATOR/ANALYZER 6800/6802 D-1/(D-2 blank)

Index

<ABSFILE> A-1
Absolute count oL 2-13,7-5
Absolute file................... 4-2,5-19,6-8
Absolute file format................... 8-85
Accessing existing disc files 8-28
<ADDRESS>. A-1
Address ... 7-3
Address bus width selection 1-5
Address range selection 1-7
<ADR_LST> A-1
Again ... 7-2
Analysis board................... ... 1-2,1-5
Analysis board installation 1-5
Analysis commands..................... 7-1
Analyzer characteristics 2-12
Analyzer status 2-13
And function ol 7-3
Asmb_sym file 6-9
Assembler symbols file format 8-78
b
Background memory............ 2-5,4-8,4-9
Background operation 2-4
Background state oL 2-7
BNC ports.......ooviiiiiiii . 7-1,7-6
Break i, 5-2,5-14
Break to background memory........... 2-5
Break conditions................ 2-6
Bus cable installation 1-8

Card selection ..., 4-7
Changing a disc file name 8-30
Clock selectionooii.. 4-8
Close display file 8-13

Close printer file.......... 8-9
<CMDFILE> A-1
Command delays 5-21
Command file, 4-4.4-5
Command file designation 4-15
Command line comment delimiter....... 5-1
Command word codes 8-22
Command word to 8251 8-40
COMN ... 4-2,6-5,8-87
Condition code register 3-1,3-4
Configuration................o oo 4-2
Configuration questions................. 4-6
Continuecoiiiiiiii. 4-3,4-5
Control address 4-13,8-2
<COUNT> ... i 7-2,7-5
Creating new disc file 8-26
d
DATA .. 4-2,6-5,8-87
Data. ... 7-3
Data bits switch 1-5
Data jamming oo, 2-6
Deleting disc files 8-30
Direct memory access 3-1
Disc file /O codes 8-33
Disc file 1/0 interface 8-4,8-25
Disc file simulated 1/O 4-12
Disc file types ..., 8-31
<DISCH> .o A-2
Display address. ...t 6-3
Display commands................. 2-13,6-1
Display I/O codes 8-14
Display I/0O interface............... 8-3,8-11
Display simulated /O 4-12
Display techniques.................... 8-16
Display/list command syntax 6-6,6-7
Display/list count 6-13
Display/list global_symbols 6-7,6-8
Display/list local_symbols........... 6-7,6-9

EMULATOR/ANALYZER 6800/6802 I-1

Index (Cont’d)

Display/list memory 6-7,6-10
Display/list memory data................ 6-1
Display/list registers 6-7,6-12
Display/list trace................... 6-7,6-13
Dontcare........... ... o 7-3,7-4

Edit e 4-5
Electrical transparency 2-5
Emulate i 4-2,4-5
Emulation and configuration 4-1
Emulation bus 1-8,2-1
Emulation command file access 8-25
Emulation configuration............... 2-12
Emulation control board 1-2,1-3
Emulation control board installation 1-3
Emulation controller

functional description 2-4
Emulation memory.......... 2-11
Emulation memory

functional description 2-9
Emulation pod installation 1-3
Emulation pod, 6800 3-3
Emulation pod, 6802 3-3
Emulation probe installation............. 1-3
Emulation probe pin protector 1-4
Emulation processor control 2-6
Emulation RAM 4-10
Emulation ROM....................... 4-10
Emulation system data transfers......... 2-2
Emulator clock specification, 6800 3-6
Emulator clock specification, 6802 3-7
Emulator electrical properties D-1
Emulator operating modes 2-10
Emulator status 3-5
Emul_com.........l 4-2
Em6800_S............. .. 4-3,4-4
End ... 5-3

I-2 EMULATOR/ANALYZER 6800/6802

End record format 8-92
Ending the mapping session 4-12
Error messages ..., B-2
Execute i i 5-4,7-4
Exit background 2-7,2-8
External clock 2-11
External emulation................. ... 2-10
External symbols record format 8-90

<FILE> ... A-1
File, assembly 4-1
File formats, 64000 8-78
File, linking.......... 4-1
<FILE NAME> A-2
Foreground......................... 2-4,2-7
Functional transparency................. 2-5

<GLOBAL SYMBOL> A-3
Global symbol addresses 4-2
Global symbols 6-5
Global symbols file format 8-82
GLOBVART .. 6-5
Guarded memory, 4-10

Halt ... 5-4,5-5
Hardware configuration 1-1
Host processor bus................. 2-1,2-3
HP-IBbus.............coiviiii.t. 2-1,2-3

Index (Cont'd)

Idle background 2-7,2-8
lllegal opcode detection 4-9
Illlegal opcodes 2-11
IMB Master enable...................... 7-7
Index register....... 3-1,3-4
Initialization formats, 8251 8-56
Initialize 8251.........., 8-39
Installation, 1-1
Interactive commands................... 7-1
Interactive measurement

configuration 4-14
Interactive measurement selection....... 7-5
Interactive measurement

specification oL 4-14
Intermodule bus 1-9,2-2,2-3,7-5
Internal analysis board.................. 7-5
Internal emulation 2-10
Internal emulation clock 2-10
Interrupt vector L. 3-2
/O bUS. .ot 2-2,2-3

1]

Jam background.................... 2-7,2-8

Keyboard 1/O interface............. 8-3,8-17
Keyboard I/O interface codes 8-20
Keyboard output command word...... 8-18
Keyboard read request................ 8-17
Keyboard read response 8-18

Link_com file............ 4-2
Link_sym file....................... 4-2,6-8
Linker command file access........... 8-25
Linker configuration file access 8-25
Linker symbols file format 8-80
List commands 6-1,6-7
Listing file format..................... 8-85
Load command 4-5,4-10,5-6
<LOCAL SYMBOL>.................... A-3
Local symbols 2-12,6-7,6-9

Measurement_system 4-2,4-3
Memory accesses ..., 4-8
Memory board 1-2,1-7
Memory board installation 1-7
Memory bus............ ... i L 1-9
Memory configuration................... 4-9
Memory control board 1-2,1-5,2-9
Memory control board installation....... 1-5
Memory mapping 4-9,4-10
Memory overlay 4-11
Memory size........... . i 1-6
Microprocessor registers 3-1,3-4
Microprocessor, 6800 3-1
Microprocessor, 6802 3-1
Mnemonic display/list................... 6-3
Modify ... 5-7
Modify configuration................ 4-6,5-7
Modify memory 5-7,5-10
Modify memory command 4-10
Modify register 5-7,6-12
<MODULE>o A-3
Multi-module system
architecture....................... 1-2,2-3

EMULATOR/ANALYZER 6800/6802 [-3

Index (Cont’'d)

Nonreal-time....................... 2-9,2-10
<NUMBER>ot A-3
Numeric format....................... 2-13
Numeric status specification 3-5

(0

Offset

addresses 6-4,6-10,6-11,6-12,6-13,6-14
Open display file 8-11
Open printer file............ ...t 8-8
Open RS-232 filecovvviian. .. 8-38
Operating fundamentals................. 3-1
Operating modes, 8251 8-40
Operational command syntax 5-1

p
Printer 1/O codes 8-10
Printer 1/0O interface 8-3,8-8
Printer simulated I/O 4-13
Processor architecture 3-1
PROG ... 4-2,6-5,8-87
Program counter.................... 3-1,3-4
Program name file format............. 8-84
r

Radio frequency interference........... C-1
Read from 8251 8-43
Real-time 2-9,2-10,2-11,6-5
Real-time emulation................... 2-11
Real-time mode selection 2-11,4-8
<REAL_VAL>....... ... i, A-2
Register accesses................ ... 4-8
Register, display/list 6-4

I-4 EMULATOR/ANALYZER 6800/6802

Relative count 2-13,7-5
Relocatable file format................ 8-86
Repetitive display 6-2
Repetitively ...t 6-10,6-11,7-2
Reset......cooiiiiiii i 5-13
Roll to/write line 18................... 8-12
RS-232 1/O codes.....covvvieennnnn.. 8-45
RS-232 I/O interface 8-5,8-38
RS-232 simulated /O 4-12
Run command................ 4-6,5-14,5-16
Running the program 4-6

Select starting line/column............ 8-13
Simulated I/O o 8-1
Simulated 1I/0 configuration........... 4-12
Simulated /O error codes 8-67
Simulated I/0O interfaces,

common attributes......... ... oL 8-2
Simulated I/0 memory allocation...... 4-12
Simulated I/0 memory

deallocationo 4-13
Simulated I/0O sample programs....... 8-68
Simulated 1/0, introduction 8-1
Simulated 1I/0, overview................. 8-2
Single module systems 1-2
Softkey status specification 3-6
Software interrupt 2-5
Source file format 8-85
Special considerations, 6802 3-2
Specify v 5-16
Stack pointerol 3-1,3-4
<STATE> A-2
Static discharge protection.............. 1-3
Status ... 3-5,3-6,7-3
Status from 8251 8-41
Status messages........... ... B-1
Status softkeys 2-13,3-5,3-6
Status specification 3-5

Index (Cont’'d)

Status word format, 8251 8-60
SteP it 5-17
Stop_trace ..., 5-18
Storage qualifications 7-4
StOre .o 5-19
<STRING>. A-3
Subsystem functional description........ 2-4
Subsystem interfaces 2-4
Symbol accesses ..., 4-8
Symbols in emulator commands 2-12
Syntax shorthand 7-3
System bus................. oL 2-1,2-3
System bus structures 2-1
System command files................ 5-20

Target systemot 2-4
Target system memory................ 2-11
Theory of operation 2-1
Trace......cooviiiiiiiii.. 5-16,7-2,7-5
Trace againccovivvnn.n.. 5-4,7-2
Trace command 2-13,7-2
Trace display/list 6-5,6-7
Trace memory 2-13,5-19,7-1
Trap 100p o oo 2-7
Trigger vt 7-1
<TRIGGER>cciiii.t, 7-2,7-4

Updating RS-232

read/write buffers................... 8-44
User buffer/assembler symbols

file packing format.................. 8-80
User buffer/linker symbol

file packing format.................. 8-85
User buffer/relocatable

file packing format.................. 8-92
User program

control address = 00................ 8-19
User RAM 4-9,4-10,4-11
User ROM 4-9,4-10,4-11
<USERID>. o A-2
Using analysis commands............... 7-4

Vv
<VALUE>.... A-2
Variables ... i 2-12
W

Wait. ... 5-21
Write from starting line/column 8-13
Write to printer 8-9
Write to 8251 8-41

EMULATOR /ANALYZER 6800/6802

I-5 (1-6 blank)

64210-90906, DECEMBER 1982 HEWLETT UPDATED: FEBRUARY 1983

Replaces: 64210-90905, October 1982 PACKARD PRINTED IN U.S.A.

	Front
	cover
	inside

	Contents
	i
	ii
	iii
	iv
	title
	vi
	vii
	viii
	ix
	x
	xi
	xii
	xiii/xiv

	Chapter 1
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9/1-10

	Chapter 2
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13/2-14

	Chapter 3
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7/3-8

	Chapter 4
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15/4-16

	Chapter 5
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22

	Chapter 6
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14

	Chapter 7
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8

	Chapter 8
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	8-38
	8-39
	8-40
	8-41
	8-42
	8-43
	8-44
	8-45
	8-46
	8-47
	8-48
	8-49
	8-50
	8-51
	8-52
	8-53
	8-54
	8-55
	8-56
	8-57
	8-58
	8-59
	8-60
	8-61
	8-62
	8-63
	8-64
	8-65
	8-66
	8-67
	8-68
	8-69
	8-70
	8-71
	8-72
	8-73
	8-74
	8-75
	8-76
	8-77
	8-78
	8-79
	8-80
	8-81
	8-82
	8-83
	8-84A
	8-84B
	8-84C
	8-85
	8-86
	8-87
	8-88
	8-89
	8-90
	8-91
	8-92
	8-93
	8-94
	8-95
	8-96
	8-97
	8-98
	8-99
	8-100
	8-101
	8-102A
	8-102B
	8-102C
	8-103
	8-104
	8-105
	8-106
	8-107
	8-108
	8-109
	8-110
	8-111/8-112

	Appendix A
	A-1
	A-2
	A-3/A-4

	Appendix B
	B-1
	B-2

	Appendix C
	C-1/C-2

	Appendix D
	D-1/D-2

	Index
	index-1
	index-2
	index-3
	index-4
	index-5

	Back
	cover

