64000

HP64000
Logic Development
System

C/64000
Compiler Reference
Manual

(A cackaro

CERTIFICATION

Hewlett-Packard Company certifies that this product met its published specifications at the time of
shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are
traceable to the United States National Bureau of Standards, to the extent allowed by the Bureai's
calibration facility, and to the calibration facilities of other International Standards Organization
members.

WARRANTY

This Hewlett-Packard system product is warranted against defects in materials and workman-
ship for a period of 90 days from date of installation. During the warranty period, HP will, at its
option, either repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer’s facility at no charge within HP
service travel areas. Outside HP service travel areas, warranty service will be performed at
Buyer’s facility only upon HP’s prior agreement and Buyer shall pay HP’s round trip travel ex-
penses. In all other cases, products must be returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping charges to HP
and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay
all shipping charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with an instrument will
execute its programming instructions when properly installed on that instrument. HP does not
warrant that the operation of the instrument, or software, or firmware will be uninterrupted or
error free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate main-
tenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse,
operation outside of the environment specifications for the product, or improper site prepara-
tion or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

EXCLUSIVE REMEDIES
THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP
SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR

CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER
LEGAL THEORY.

ASSISTANCE

Product maintenance agreements and other customer assistance agreements are available for
Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

CW&A 9/79

343H 4104

A

HEWLETT | || " |
PACKARD

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 1303 COLORADO SPRINGS, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

HEWLETT-PACKARD

Logic Product Support Dept.
Attn: Technical Publications Manager

Centennial Annex - D2
P.O. Box 617
Colorado Springs, Colorado 80901-0617

NO POSTAGE
NECESSARY
{F MAILED
IN THE
UNITED STATES

FOLD HERE

Your cooperation in completing and returning this form
will be greatly appreciated. Thank you.

READER COMMENT SHEET

Operating Manual
C/64000 Compiler Reference Manual
64800-90907, February 1983

Your comments are important to us. Please answer this questionaire and return it to us. Circle the number that best
describes your answer in questions 1 through 7. Thank you.

1. The information in this book is complete:

Doesn’t cover enough 1 2 3 4 5 Covers everything
(what more do you need?)

2. The information in this book is accurate:
Too many errors 1 2 3 4 5 Exactly right
3. The information in this book is easy to find:
I can't find things | need 1 2 3 4 5 I can find info quickly
4. The Index and Table of Contents are useful:
Helpful 1 2 3 4 5 Missing or inadequate
5. What about the "how-to” procedures and examples:
No help 1 2 3 4 5 Very helpful
Too many now 1 2 3 4 5 I'd like more
6. What about the writing style:
Confusing 1 2 3 4 5 Clear
7. What about organization of the book:
Poor order 1 2 3 4 5 Good order
8. What about the size of the book:
too big/small 1 2 3 4 5 Right size

Comments:

Particular pages with errors?

Name (optional):
Job title:
Company:
Address:
Note: If mailed outside U.S.A., place card in envelope. Use address shown on other side of this card.

C Compiler

Reference Manual

© COPYRIGHT HEWLETT-PACKARD COMPANY 1982, 1983
LOGIC SYSTEMS DIVISION
COLORADO SPRINGS, COLORADO, U.S.A.

ALL RIGHTS RESERVED

(] [] (]
Printing History
Each new edition of this manual incorporates all material updated since the previous edition.

Manual change sheets are issued between editions, allowing you to correct or insert
information in the current edition.

The part number on the back cover changes only when each new edition is published. Minor
corrections or additions may be made as the manual is reprinted between editions.

First Printing........... June 1982 (Part Number 64800-90907)
Reprinted February 1983

ii

C COMPILER
REFERENCE MANUAL

Table of Contents

Chapter I1: General Information

Introduction

C/64000 Compilercvveeunuennn e
Implementation Restrictions

C/64000 Extensions
C/64000 Environment

Chapter 2: Compiler Description

Generalcvcuuuen
Command Syntax
Compiler Directives
List of Directives

AMNESIA e
ASM FILE ...ovvvnunnnnn..

ASMB SYM

DEBUG e R
EMIT CODE . .vvvuveennnnns

END ORG ©.eevveennnnn.

ENTRY e

EXTENSIONS
FIXED PARAMETERS
FULL LIST +vevvvvvnnnn.
INIT ZEROES
LINE NUMBERS

.
.
.
.
.
.

LIST ...t

LISTCODEcvovnnnn

LIST OBJ e

LONG NAMES
OPTIMIZE cees
ORG e
PAGEcccviiunnn.
RECURSIVE
SEPARATE ce
SHORT ARITH

STANDARD e
TITLE e ...

UPPER KEYS

USER_DEFINED e

WARNc00vunn.
WIDTH e

..... DR
s e e e e .
e e e o .
e e e e s e e
s e e e 00 0.
A

¢ e .

e s s e e e e
e e e s e e
RN Y .
oo e e e .
e e 6 0 00 o

I A A N R R AT
. o e 0 s e e 0 00 0
. L A A
s e e e s o0 0 e 0 0o
o 00 00 .. .o

¢ e s e s e o s e s e
.. D A A A
¢ o e e 0 s e e DECET R
DECER Y oo RS
DR I I IR B AT
.............. .
DR AP oo e o0 e .
R) o e
D A I I R I Y
. .o e 00 00
e e o s e e 0. . ..
o s e 0 e oo e
..... e 0 e 000 .
D ..
..... . o0 e s 0 00
oo 00 e o .o ..
¢ o 0 e s e .. e
.. e s 00 0 0
oo 0 0 0 s .
D I I BT ..
R I I I oo
¢ e 00 0 0 e e 0 000
...... s s e 0 00 e e
. PR A A Y
D I I I A A A AR
...... e e s e 0 00 e
D A A I I LY
D I N SR R AP
L o e

. R I I

i

o s 0 s o0 .o
.
. . oo o0
D .

oo e LR
DA R AR .
..... oo o 0.

. oo o 0 e
D I I
e s e s 00 e 0
.. .. .
s e e 0 s e e ..
o6 s 0 00 0 s e
DA oo 0 0.
D .o
......... .
e e LR

e e e s 00 0 0 .
Y .o e .
EE R IR
D I I IR R

..........

D A N I I I
D A A)
..... oo o 00
e e 0 s 0 .
R A I IR N
D .
R
R A

1
OVCOVVOVO OO\ R

Table of Contents

Additional Information

16-bit Integers

Use of ORG Option
Real Number Function

Chapter 3: How tfo Compile a Program

General et

The Source File

Compilingccvvn.
Output Listings

Chapter 4: Linker Instructions

Introduction

Linker Requirements
Linker Syntax
How to Use the Linker

Simple Calling Method
Interactive Calling Method

.

.

.

.

.

Linker Output

List (Load Map)

Cross-reference Table ...

"No-Load" Files

Linker Symbol File

Library Files

Error Messages
Fatal Error Messages

Non-fatal Error Messages
Appendix A:
Compile Time Errors

Appendix B:
ENUM <ENUMERATION> TYPES .

Appendix C:
Compiler Generated Symbols

Index .« .veueieieneeinennenns

.

.

......

......

......

iv

(Cont’d)

.........

C COMPILER

REFERENCE MANUAL

......

......

2-15

- 1

DRI TR
. D
. . . .

e 0 0 0 e . .

D A)
D A A)
TS . .
e e e e e e
..... Py

oooooo

......

o e 00 e s

e s 00 0 0.

e e e e 00

A IR

2-16

g g
1

A-1

Cc-1

I-1

C COMPILER
REFERENCE MANUAL

Chapter 1

General Information
Introduction

This manual provides a description of the C/64000 compiler and its
operation on the HP Model 64000 Logic Development System. A description
of the compiler options and their use is also included. Microprocessor
dependent features of the compiler are documented in processor-dependent
supplements.

NOTE

Refer to Chapter 5 in the System Software
Manual for SOFTWARE UPDATING PROCEDURES
when updating the system from a tape
cartridge or flexible disc.

C/64000 Compiler

The C/64000 compiler is an application program that translates C/64000
source programs into relocatable object files, and optionally generates
a listing file.

C/6L4000 is an implementation of the C programming language 'standard”,
defined by Kernighan and Ritchie in "The C Programming Language"
published by Prentice-Hall, 1978. The language has been enhanced to im-
prove its utility as a tool for microprocessor system programming.

This manual assumes the user has knowledge of the C language as
defined by Kernighan and Richie and other reference books on standard
C. The emphasis in this manual is to document the specific C/64000 in-
plementation restrictions and extensions to Kernighan and Richie.

The C/64000 compiler uses a four-pass compilation process, plus an op-
tional preprocessor, to translate source programs directly into
relocatable code for the target microprocessor. Relocatable files for a
particular microprocessor may be linked together to produce an absolute
program file. Then, by using the emulator, the absolute file can be
loaded into emulation memory and executed in the proper microprocessor
environment.

1-1

C COMPILER
REFERENCE MANUAL

Impiementation Restrictions

Restrictions

The following items are unspecified by the standard and may impose im-
plementation restrictions.

. The #line preprocessor instruction is not imple-
mented.

The standard library functions (printf, getchar,
etc...) are not included.

Register variables are treated as auto and are not
specially optimized.

#include <FILE> is not available since there are no
"standard places'; however, #include "FILE" is avail-
able.

Strings may not extend to multiple lines and, there-
fore, are limited to 238 characters.

Dependencies

The following items are unspecified by the standard and may cause im-
plementation dependencies.

Pointers and integers (type int) are not necess-
arily the same size. Care must be taken when mixing
them.

Fields within records are assigned left to right.
All shifts are logical, not arithmetic.

The order of parameter passing may be from left to
right or right to left depending on the specific
code generator used.

The preprocessor instructions, ’#include FILE’ and
*#include "FILE"’, are treated identically. FILE may
optionally contain a userid and disc #. If they are
not present, the defaults are used.

C COMPILER
REFERENCE MANUAL

C/64000 Extensions

C/64000 contains enhancements that provide more versatility for micro-
processor programming.

. Program code and constants may be compiled to a separate
relocatable area from data and variables allowing the
design of ROM and RAM memory systems.

. Variables may be assigned to absolute memory locations
permitting easy access to memory I/0 addresses.

. The first fifteen characters of an identifier are
significant, although a truncation to eight characters
may be forced for compatibility with other C systems.

. Arthmetic may be done with short variables without
conversion to type int, or with float variables without
converting to type double.

. The keywords may be defined to be upper case instead of
the standard lower case.

. Standard 64000 constants ending in the letters B, D, H,
0, and Q may be used to indicate binary, decimal,
hexadecimal, and octal constants in addition to the
standard C forms by use of the EXTENSIONS option.

. Structures may be assigned, compared for equality and
inequality, passed as parameters, or returned from
functions.

. The enumeration type defined in the November 15, 1978
supplement to "The C Programming Language” reference
manual may be used. This type is describe in appendix B.

. A shift by a negative value is equivalent to a shift in
the opposite direction by a positive value. Thus, a>>b
and a<<-b are equivalent.

. Large constants (i.e. strings, real numbers, etc...) are
optimized. Those constants which match in full or in part
will be in the same locations in memory. (Exception:
variables which are initialized to constants do not go
in the constant section. Variables which are initialized
to point to constants do point into the constant section.)

1-3

C COMPILER
REFERENCE MANUAL

. With the $USER_DEFINED$ option, the user may selectively

redefine the meaning of the arithmetic operators +, -,

* /s %, ==, !=, <, >, <=, and >=. For example, (¥*) may be
redefined to do matrix multiplication when its operands
are two-dimensional matrices.

. The functions ABS, SQRT, SIN, COS, ARCTAN, LN and EXP

are available in real number libraries.

C/64000 Environment

The C/64000 compiler will run on any HP 64000 system that includes ex-
panded host memory capability. The compiled code may be run using the
proper emulation subsystem for the target microprocessor or on any in-
dependent system which uses the same target microprocessor. The follow-
ing paragraphs list the C/64000 character set and the representation of
intrinsic data types.

CHARACTER SET

1-4

Alphabetic characters - All upper and lower case characters

(A through Z and a through z).

Numeric characters - Digits 0 through 9 for decimal

numbers, including A through F (and
a thru f) hexadecimal numbers.

Special characters - Blank, dollar sign, apostrophe, left

and right parentheses, comma, plus,
minus, equals, less than, greater
than, decimal point, slash, colon,
semi-colon, left and right brackets,
left and right braces, caret,
asterisk, underscore (_), ampersand,
exclamation point, quotation marks,
pound sign, percent sign, tilde,
backslash, and question mark.

C COMPILER
REFERENCE MANUAL

DATA TYPES

short

unsigned short

int

unsigned [int]

long

unsigned long

char

float

double

Intrinsic Data Types

An 8-bit signed integer in the range -128
to +127.

An 8-bit unsigned integer in the range
0 to 255.

A 16-bit signed integer in the range
-32768 to +32767.

A 16-bit unsigned integer in the range
0 to 65535.

For processors which support 32-bit
arithmetic, a 32-bit signed integer in
the range -2,147,483,648 to
+2,147,483,6L47.

For processors which do not support
32-bit arithmetic, equivalent to int.

For processors which support 32-bit
arithmetic, a 32-bit unsigned integer
in the range 0 to 4,294,967,295.

For processors which do not support
32-bit arithmetic, equivalent to unsigned
int.

An 8-bit value defined by the ASCII
character set. Equivalent to an unsigned
short.

A 32-bit real number in the single IEEE
format.

A 64-bit real number in the double IEEE
format.

1-5

C COMPILER
REFERENCE MANUAL

DATA TYPES (Cont’d)

1-6

Derived Data Types

The derived data types have a representation that is dependent on
the specified microprocessor. They may contain holes (unused bytes)
due to memory alignment requirements. For statically allocated
variables, these holes will be filled with zeroes, if INIT ZEROES
is ON. A list of the derived data types is as follows:

pointers

arrays

structures (struct)
unions (union)
enumerated (enum)
user (typedef)

C COMPILER
REFERENCE MANUAL

Chapter 2

Compiler Description

General

C/64000 uses a four-pass compilation process plus an optional preproces-
sor. The preprocessor, which may be disabled by the NOPREPROCESS direc-
tive, handles macros, include files, and conditional compilation as
defined in "The C Programming Language' by Kernighan and Ritchie.

The four passes are referred to as pass 1, pass la, pass 2, and pass 3.
Pass 1, which is machine independent, reads the C source, checks for
lexical, syntax, and semantic errors, and produces an intermediate lan-
guage file on disc. Pass la, adds additional information (information
that was not available when the file was originally produced) to the in-
termediate language file. This pass is also machine independent. Pass 2,
reads the intermediate language file and generates code for the chosen
microprocessor by producing a tokenized assembler file on disc. Pass 3,
reads the tokenized assembler file and generates a relocatable object
file if there were no errors in the first three passes. It also
generates a list file if requested.

The optional list file may contain source lines only or source lines
mixed with the generated assembly language code if requested.

Only the preprocessor and pass 1 actually pass through the source file.
Pass 3 will also use the source file if a listing file is requested.

Command Syntax

The following pages provide the formal syntax definition for the compile
command .

2-1

C COMPILER
REFERENCE MANUAL

compile

SYNTAX

compile <FILE>

Default Values

listfile

options

FUNCTION

<FILE>
display
listfile
printer
null

list
[expand] [noco
de][xref]

options

nolist

The default is to the predefined
listfile.

If there is no predefined list file, a

null list file is the default.

If no entry is made for any of the
options, the default values will be:

list - LIST directives in the source

nolist file will be obeyed.

expand - LIST CODE and FULL_LIST
directives in the source
source file will be obeyed.

nocode - EMIT CODE directives in the

source file will be obeyed.
xref - XREF directives in the source

file will be obeyed.

The compile command tells the compiler to translate a C
source program (file) into relocatable object code for a

microprocessor.

C COMPILER
REFERENCE MANUAL

compile (Cont’d)

Command Parameters:

<FILE>

listfile

A variable representing the source file name,
userid, and disc number. The syntax for
<FILE> is:

<FILE> => <FILE NAME> [:<USERID>][:<DISC#>]
where:

<FILE NAME> - Up to nine alphanumeric characters,
beginning with an upper case alph-
abetic character.

<USERID> - Up to six alphanumeric characters,
beginning with an upper case alph-
abetic character.

<DISC#> - Represents the logical unit number
of the system disc on which the
source file is located. Allowable
entries are decimal numbers rep-
resenting the desired disc number.

The file type must be a source file; no other
file type can be specified with the compile
command. The first line is the "C" indicator
and the second line must be the name of the
target processor, enclosed in quotation marks

(e.g. - "8086").

A key word which specifies a listing file for
compiler output. When listfile is specified,
one of the following must be specified also:

<FILE>
display
printer
null

2-3

C COMPILER
REFERENCE MANUAL

compile (Cont’d)

options A key word which allows specification of
options for the compile process. When
"options” is specified, one or more of the
following may be specified:

list
nolist
expand
nocode
xref

where:

list or nolist - allows specification of the
source program list with error messages or no
source listing except for error messages. All
LIST directives in the source file are
ignored.

expand - specifies a list of all source lines
with an expansion of the assembly language.
Also shows include files and expanded macros
if used. All LIST CODE and FULL LIST
directives in the source file are ignored.

nocode - specifies the suppression of object
code generation. Only the source code will be
listed in pass 2.

xref - specifies a symbol cross-reference

listing for the source file. All XREF
directives in the source file are ignored.

2-4

C COMPILER
REFERENCE MANUAL

Compiler Directives

C/64000 allows compiler directives (options) to be treated as if they
were comments. C interprets the following construct as a compiler
directive:

$<compiler__directive>$

where <compiler directive> is any of the directives listed in the fol-
lowing paragraphs. Compiler directives may be inserted between any two
tokens (identifiers, numbers, strings, and special symbols). They are
used to inform the compiler about changing needs within a program. A
compiler directive is a separator (as is a space or comment) in the C
program. Compiler directives must begin with a dollar sign ($). The end
of a directive is also indicated with a dollar sign. The end of the in-
put line also indicates the end of the compiler directive. Therefore, a
directive must exist entirely on one line. Directives which are not syn-
tactically correct are ignored and the directive line is skipped until
the dollar sign or the end of the line is detected. The meaning of the
compiler directives and their default values are given below. The status
of a directive (ON or OFF) is indicated after the directive in the
source file. The values: ON, TRUE, and plus sign (+) are equivalent, as
are the values: OFF, FALSE, and minus sign (-). If a directive is stated
without indicating ON or OFF, the compiler will recognize the directive
is ON. Other microprocessor-dependent compiler directives are described
in the microprocessor-dependent supplement.

Normally, the preprocessor will ignore compiler directives and treat
them like text. To apply a directive to the preprocessor it must be
preceded by a pound (#) sign in column 1, as follows:

#$<compiler__directive>$

Directives, preceded by the pound sign in column 1, will affect both the
preprocessor and the subsequent passes of the compiler. Although any
directive may appear in the above format, only certain directives affect
the preprocessor. The specific directives that affect the preprocessor
are so indicated in the following descriptions of the directives.

List of Directives

All directives, prior to use in a source program, will assume their ini-
tial value when the compiler is called.

2-5

C COMPILER
REFERENCE MANUAL

AMNESIA [ON][OFF]

Initialized Value: OFF

Description:

ON causes the compiler to forget the contents of registers after the
registers are used in an operation. This directive may be used to ensure

that variables representing memory mapped I/0 ports are reloaded
everytime they are needed.

ASM__FILE

Initialized Value: OFF

Description:

The source file is created into a file whose name consists of the let-
ters "ASM" followed by the microprocessor designator (e.g. ASM8086,
ASMZ8001). This assembler source will be accepted by the assembler as a
source file for the selected microprocessor. The assembler source file
will also contain intermixed C language source lines as assembler com-
ments.

ASMB__ SYM [ON] [OFF]

Initialized Value: ON

Description:

ON causes the compiler to generate an asmb_sym file for use during
emulation. OFF suppresses the generation of the file.

DEBUG [ON][OFF]

Initialized Value: OFF

Description:

ON causes all arithmetic operations to be checked for overflow, under-

flow, or divide by zero operation. (See specific C/6L4000 microprocessor-
dependent supplement for run-time error descriptions.)

2-6

C COMPILER
REFERENCE MANUAL

EMIT_CODE [ON][OFF]
Initialized Value: ON
Description:

ON specifies that executable code is to be emitted to the relocatable
code file.

END__ORG
Description:

Used to change variable address assignment from absolute to relocatable
mode.

ENTRY [ON][OFF]
Initialized Value: ON
Description:

ON causes an external reference to the identifier 'entry" to be
generated when the function "main" is declared. The run time libraries
will contain the routine "entry" which contains a transfer address and
initialization code. After initialization, the "entry" routine calls the
"main" function. This routine is described in greater detail in the
microprocessor-dependent supplement manuals. OFF will disable the
generation of an external reference to the "entry” routine.

If the $UPPER KEYS$ directive is ON, the procedure "MAIN" will declare
"ENTRY" external.

2-7

C COMPILER
REFERENCE MANUAL

EXTENSIONS [ON][OFF]

Initialized Value: OFF

NOTE

When properly formatted, this directive
also affects the preprocessor.

Description:

ON allows the programmer to use certain extensions to the C language.
OFF disallows the use of these language extensions. Currently the only
extensions available are those that allow the use of numbers ending in B
(binary), D (decimal), H (hexadecimal), and O or Q (octal) in addition
to standard C constants. The ending characters must be upper-case let-
ters. Hexadecimal numbers declared in this form must use upper case A
through F and, if a hexadecimal number starts with a letter, it must be
preceded by a zero (0). A number ending in B or D is treated as binary
or decimal unless the number is preceded by 0X. In these cases, the
number is treated as a hexadecimal number. Numbers in this form may be
followed by the letter "L", indicating long.

FIXED__ PARAMETERS [ON] [OFF]
Initialized Value: OFF
Description:

ON indicates that all functions declared subsequently will always pass
the same number and types of parameters. OFF indicates that the number
and types may vary between calls.

The value of this directive must be the same at all declarations of the
function (i.e., the definition, external declarations, and implicit
declarations) since the method of parameter passing may vary. Functions
declared with this option ON may generate more efficient code. They are
guaranteed to be compatible with functions and procedures declared in
Pascal/64000. Routines declared with FIXED PARAMETERS ON may not be
passed as parameters or have their address taken, i.e., they must be
followed by a "(".

C COMPILER
REFERENCE MANUAL

FULL__LIST [ON][OFF]
Initialized Value: OFF
Description:

On causes "include” files to be listed and macros to be expanded in the
listfile. Lines with errors will be shown whether this directive is ON
or OFF.

INIT__ZEROES [ON][OFF]

Initialized Value: ON

Description:

ON causes all static and external variables not explicitly initialized
to be initialized to zero. OFF causes them to remain uninitialized.
Turning this option OFF will speed up the compiler and produce shorter

relocatable and absolute files. It may also be useful when working with
a ROM-based system where data cannot be initialized.

LINE__NUMBERS [ON][OFF]

Initialized Value: ON

Description:

ON causes the compiler to generate symbols for the C/6L4000 source line
numbers. These symbols are found in the asmb_sym file after the compila-
tion. They may be used during emulation to trace the execution of a
C/64000 program by source line number. The symbols are constructed by
placing a pound sign (#) in front of the line number. Line number sym-
bols are created only for lines that cause executable code to be

generated (i.e., line number symbols will not be created for lines in
the external declaration sections of the program).

LIST [ON][OFF]
Initialized Value: ON
Description:

ON causes the source file to be copied to the listfile. OFF sup-
presses the listing except for lines that contain errors.

2-9

C COMPILER
REFERENCE MANUAL

LIST__CODE [ON][OFF]

Initialized Value: OFF

Description:

ON specifies that the program listfile will contain the symbolic form
(assembly language) of the code produced, intermixed with the source
lines.

LIST__OBJ [ON][OFF]

Initialized Value: OFF

Description:

ON causes the listing to contain the relocatable object code generated
by the third pass of the compiler. The listing will also contain the
relocatable object code generated by the third pass when the compile
time option "expand” of the compiler directive LIST CODE is specified.
LONG__NAMES [ON] [OFF]

Initialized Value: ON

NOTE

When properly formatted, this directive
also affects the preprocessor.

Description:

ON causes identifiers to be truncated at fifteen characters. OFF
causes identifiers to be truncated at eight characters as defined in
standard C. If the option is OFF care must be taken (when emulating) to
use only the first eight characters since fifteen characters are sig-
nificant in emulation.

2-10

C COMPILER
REFERENCE MANUAL

OPTIMIZE [ON][OFF]

Initialized Value: OFF

Description:

ON may cause certain run-time checks to be ignored, such as pre-
checking the range values of a switch statment. This mode is typically
susceptible to bad out-of-range data at run time. This directive should
only be used for well-structured programs that have been thoroughly
debugged. Refer to the specific microprocessor-dependent supplement for
additional information.

ORG number

Description:

All variables declared auto, register, or without a type until END_ORG
is encountered will be allocated sequential absolute addresses starting
from "number”. "number’" may be represented with a hexadecimal constant.
Parameters, functions, and variables declared external are not affected
by this option. ORGed variables may not be initialized.

PAGE

Initialized Value: null

Description:

This option causes a form feed to be output to the listfile.

RECURSIVE [ON] [OFF]

Initialized Value: ON

Description:

ON causes all compiled procedures to allow recursive or reentrant call-
ing sequences until a subsequent RECURSIVE OFF is encounterd. OFF

causes procedures to be compiled in a static mode which does not allow
for recursive or reentrant calling sequences.

2-11

C COMPILER
REFERENCE MANUAL

SEPARATE [ON][OFF]

Initialized Value: OFF

Description:

ON enables the separation of program and constants and data such that
program code and constants are put in the PROG relocatable area and data
in the DATA relocatable area. OFF puts program code, constants, and
data into the PROG relocatable area. This directive should be set ON
before the first line of code if external data is to be affected. Refer

to the specific microprocessor-dependent supplement for additional in-
formation.

SHORT__ARITH [ON] [OFF]

Initialized Value: OFF

Description:

Among short and char variables, ON causes arithmetic to be accomplished
without conversion to type int and, among float variables, without conver-
sions to type double. OFF will cause conversions unless the result is
guaranteed the same without the conversion. This directive has no af-
fect on parameter passing which always uses type int or double.

STANDARD [ON] [OFF]

Initialized Value: OFF

NOTE
When properly formatted, this directive

also affects the preprocessor.

Description:

ON causes a warning to be issued for any feature of C/64000 which is
not a feature of "standard" C as defined by Kernighan & Ritchie.

2-12

C COMPILER
REFERENCE MANUAL

TITLE ‘"string"
Initialized Value: null
Description:

The first 50 characters of the string are moved into the header line
printed at the top of each subsequent page of the listfile.

UPPER__KEYS [ON][OFF]

Initialized Vatue: OFF

NOTE

When properly formatted, this directive
also affects the preprocessor.

Description:

ON causes the compiler to recognize upper case keywords instead of
lower case.

USER__DEFINED
Initialized Value: null

Description:

C/64000 allows the user to redefine the semantics of certain operators
in the language. User defined operators are created by using the option
$USER_DEFINED$ just prior to a typedef statement.

For user defined operators, the compiler will not generate in-line code
to perform the operations, but the compiler will generate calls to user
provided run-time routines. The run-time routine name will be a com-
posite of the user’s type name and the operation being performed,
TYPENAME OPERATION. The first eleven characters of the user’s type name
are concatenated with an underscore and three characters identifying the
operation. Only one type may be declared in a USER _DEFINED typedef
statement.

2-13

C COMPILER

REFERENCE MANUAL

The following is a list of the operators that can be user defined and
the run-time routine names that the compiler will create when the opera-
tions are used on a user type.

1

1
1

1)
2)
3)
4)
5)
6)
7)
8)
9)

0)

1)
2)

Operation

Add
Negate
Subtract
Multiply
Divide
Modulus

Equal Comparison
Not Equal Comparison
Less Than or Equal

to Comparison

Symbol

+

o S_ R~ *x 1

A
n

Greater Than or Equal >=

to Comparison

Less Than Comparison <
Greater Than Comparison >

Run-time Routine

<typename>_ ADD
<typename>_ NEG
<typename>_SUB
<typename> MUL
<typename> DIV
<typename> MOD
<typename> EQU
<typename> NEQ
<typename> LEQ

<typename>_ GEQ

<typename> LES
<typename>_ GTR

Refer to the specified microprocessor-dependent supplement for addition-
al information on this directive.

WARN [ON] [OFF]

Intialized Value: ON

NOTE

When properly formatted, this directive

also affects the preprocessor.

Description:

Specifies that warning messages be written to the listing file.

this directive
listed.

is OFF,

When

only error messages will be displayed and

C COMPILER
REFERENCE MANUAL

WIDTH number
Initialized Value: 240

NOTE

When properly formatted, this directive
also affects the preprocessor.

Description:

The number specifies the number of significant characters (width) in the
source file to be compiled. Additional characters are ignored and if
WARN is ON, a warning message will be generated.

Additional Information

16-bit Integers

For microprocessors that do not allow 32-bit integers, the number 32768
(0X8000) can only be interpreted as a negative value since its sign bit
is set. The expression -32768 is a legal value, but it is scanned as
being the negation of the positive value 32768. As a result, the com-
piler first detects it as the "out of range” positive value and gives
the user an appropriate warning message:

"506: Warning: +32768 is treated as -32768 by the compiler"”

NOTE

The warning is not printed if the microprocessor
allows 32-bit integers.

As long as the user really wants the value -32768, he may ignore this
warning message. The user will be able to suppress this message entirely
by using 0X8000 to express the value -32768.

2-15

C COMPILER
REFERENCE MANUAL

Use of ORG Option

The use of the compiler directive ORG to assign variables to absolute
memory locations does not allocate any absolute memory space. The
reference to these variables are explicit absolute addresses in the
relocatable file. The linker will not detect or report a memory overlap
if the user’s absolute addresses interfere with other defined memory
areas.

Real Number Function

The functions ABS, SQRT, SIN, COS, ARCTAN, LN, and EXP are available in
the runtime libraries. They have one double parameter and return a
double. They must be declared external to access them.

Example:

double x.,y:
extern double SIN ();

x=SIN(y) ;

For information on linking these functions refer to the appropriate mic-
roprocessor dependent supplement.

2-16

C COMPILER
REFERENCE MANUAL

Chapter 3

How to Compile a Program

General

The usual process of software generation with the compiler is as
follows:

a. Create source program files with editor.

b. Compile source program files.

c. Link relocatable files.

d. Emulate absolute files.

e. Debug.
The following sections of this manual will provide insight into the
structure of the source file, compiling the source file, and linking

relocatable files. Refer to the appropriate microprocessor-dependent
supplement for information on emulating and debugging.

The Source File

The C/6L4000 compiler takes as input a program source file created with
the editor. The basic form of a source file is:

IICII
"z8o01"

/¥C PROGRAM*/

C COMPILER
REFERENCE MANUAL

The first line of the source file must be the special compiler directive
indicating that the C compiler is to be use.

The second line of the source file must be the special compiler direc-
tive which indicates the processor for which the file will be compiled.
In the example form given above, the Z800l microprocessor is specified.

An alternative form of the directive is:

"C" NOPREPROCESS

ll8086ll
This form indicates that the preprocessor is not loaded. This will
result in a small savings in compilation time.

Compiling

When your program is complete, it is ready for compiling. To compile a
program, press the compile soft key. The key word, compile, will appear
on the command line and the soft key configuration will change to:

<FILE>

Next, enter the name of the source file you want to compile. When the
file has been entered, the soft key configuration will change to:

listfile options

If you want a listing file for the compile program, press the listfile
soft key. The key word, listfile, will appear on the command line and
the soft key configuration will change to:

<FILE> display printer null

C COMPILER
REFERENCE MANUAL

At this point, choose the listing file you want as indicated by the soft
keys. If you do not choose a listfile, the compiler will default to the
predefined listfile that was choosen when the userid was set. (Refer to
the System Software Reference manual for setting the userid.)

When you have chosen the listfile, you can choose compile options.

If you do not want to specify any options, press the RETURN key to com-
pile your source file.

If you want to specify options, press the options soft key. The key
word, options, will appear on the command line and the soft key con-
figuration will change to:

list nolist expand nocode xref

Press the soft key of the option or options you want to specify; then
press the RETURN key to compile your source file.

Output Listings

The compiler will output relocatable code and make listings according to
the options specified or their default value. The following examples
show typical output listings that the compiler will produce.

3-3

C COMPILER

REFERENCE MANUAL

The following listing is an example of a Z8002 expanded output listing
to the printer with a cross reference (xref) table.

NESTING
LEVEL NUMBER

DATA/PROGRAM
AREA OFFSET

LINE
NUMBER FILE: PROG!:
1t 0000 o7 non
2 0000 0 "Zggoz"
EXPANDED 2 0000 0 #define DNE 1
LINE 4 0000 0 factarialind
5 0000 0
& 0000 1 int i “%loop control variablex/
7 0000 1 int fact;
8 gaoo0 1
ERROR 3 0000 1 fact = OHE;
INDICATOR + 00900 1 fact = 1;
\\\\\‘\ 10 0000 1 for Ci=1; i<x; i++3 +*Deliberate errors/
#wkk ERROR 7?7 “104,1032
11 ouon 1 fact *= i:
12 0000 1 return Cfactl;
ERROR 13 0000 1}
SUMMARY \\\‘\
1982: Identifier iz not of appropriats class
[134: Identifisr rot declared
End of compilation, number of srrors= 2
FILE: PROG1:C HP 54000 - C Cross reference table
[First occurence Identifier References
3 OHE 9
¥ fact 9,11,12
CROSS 4 factorial
REFERENCE—> 6 i 10,10,10, 11
TABLE 4 n (RY

Humber of

Number of (s

End of cross reference,

1
1

nou

s

rnumber of symbols = S

The listing which follows is an example of an 28002 compiler listing to
the printer with the expand option.

3-4

C COMPILER
REFERENCE MANUAL

DATA/PROGRAM AREA

NESTING

G2 COMFILER CUNSEGHMENTED

R15, #10006H
control wariablex/s

QONOZHIRTIST, #0001 H
++
QO0OOHIRTISTI, #0000Q1TH

R14, 00GOQHIR1S]
R14, 03Q08HIRTIS]
GE, factori0t_1
R1Z, 00Q02HIRIET]
RR1Z,00000HERTS]
UOOOZHIRIST, R12
OUOOOHIRIS], #1
JFactori0l_oQ
Ri4, 0DGNEHIRIS]
QOO004HERIGT , R14

RZ,R14
R15, #e

Rfactorial

gau $-1
Efactorial
factorial

ors= @

Cross reference table

References
9
9,11,12

10,10,10,11

OFFSET LEVEL NUMBER
FILE:\ PROG2:C F 64000 - C 2
LINE 5 9000 o -c»
NUMBER 2 opo0 0 "Zeog”
3 0000 0 #define OHRE 1
4 Q00 0 factorialon
RELATIVE S apo0 0 L
PROGRAM ;>0000 factorial
gooo SUB
COUNTER & Q004 1 int i /*Loop
7 o0no4 int fact;
2 0004 1
ERNE) 1 fact = DOHNE:;
EXPANDED —————9-+ 0004 1 fact = 1;
LINE 0004 LD
106 000A 1 for (i=1; i<n; 1
agoA LD
ag1 o factori@l_o
agi10 LD
0014 [
a01e S
11 001C 1 fact *= i
Go1c Lo
] MULT
0024 Lo
aozs factorigl _2
0azs8 IHC
agz2c JR
QQZE factorigi_1
12 002E 1 return Cfactd;
Q0ZE LD
anzz LD
13 003& 1 *
0038 LD
QO3s IHC
003R Rfactaorial
0a3R GLOBAL
003/
0038 FET
0a3C Dztatic
0030 Efactorial
0030
0403C GLOBRL
Qo3
GLOBRL
End of compilaticn, number of err
FILE: PROG2:C HP 64000 - C
[First occurance Identifier
2 ONE
7 fact
CROSS Z iactor:al
REFERENCE —— 4 n
TABLE 14 X

Number of (’s
Number of s

l_End of cross reference,

1
1

number of

symbols =)

3-5/(3-6 blank)

C COMPILER
REFERENCE MANUAL

Chapter 4

Linker Instructions
Introduction

A system application program, referred to as the linker (link), combines
relocatable object modules into one file, producing an absolute image
that is stored by the Model 64000 for execution in an emulation system
or for programming PROMS. Interaction between the user and the Ilinker
remains basically the same regardless of which microprocessor assembler
or compiler is being supported.

To prepare object code modules for the Model 64000 load program, the
linker performs two functions:

a. Relocation: allocates memory space for each relocatable
module of the program and relocates operand addresses to
correspond to the relocated code.

b. Linking: symbolically links relocatable modules.

You may optionally select an output listing of the program load map and
a cross-reference (xref) table. The linker also generates a listing that
contains all errors that were noted. These error messages will contain a
description of the error along with the file name and relocation/address
information when applicable.

In addition to the above output listings, the linker constructs a global
symbol file (link sym type) and stores this file under the same file
name assigned the absolute image/command file. This global file may be
used for symbolic referencing during emulation. The link sym file also

contains the relocation address for all programs. This information is
used to relocate asmb_sym type during emulation.

Linker Requirements

The following information is required by the linker:
a. File names of all object files to be loaded.

b. File names of libraries to be searched to resolve any
unsatisfied externals.

c. Relocation information (load addresses for all
relocatable areas).

L-1

C COMPILER
REFERENCE MANUAL

d. Listing and debugging options as follows:

1) List (Load Map): file/program name, relocatable
load addresses, and absolute load addresses.

2) Xref: symbols, value, relocation, and defining and
referencing modules.

e. File name for command/absolute image file.

Since the linking operation will usually be required each time there is
a software change and the information in items a through e remain con-
stant for any given application, the linking control information is au-
tomatically saved in a command file with the same name as the absolute
image file. The command file is distinguished from the absolute image
file by file type.

Linker Syntax

The command line in which Model 64000 commands are entered is accessed
by way of the development station keyboard. Each system application
function (edit, compile, assemble, link, emulate, etc.) can be called
using keyboard soft keys. A syntax description of the link command
follows.

4-2

C COMPILER
REFERENCE MANUAL

link

SYNTAX

link

Parameters:

<CMDFILE> -

listfile -

<list FILE> -

display -

printer -

null -

options -

[<CMDFILE>] [listfile <list FILE>]

display
printer
null

[[options] [edit] [nolist] [xref]]

name of an established command/absolute image
file.

soft key used to specify a destination for
output listing other than the system default
list file.

name of the file where the linker output
listing will be stored. If the assigned file
name does not exist, a new list file is
created.

designates the system CRT as the output
listing destination.

designates the system line printer as the
output listing destination.

specifies that no listing is to be generated.
Error messages, however, will be routed to the

display area of the system CRT.

soft key used to specify linker options. The
following options are available:

edit or noedit - specifies if an existing
command file is to be edited.

list or nolist - specifies if a load map
listing is to be generated.

xref or noxref - specifies if a xref listing
is to be generated.

4-3

link (Cont’d)

C COMPILER
REFERENCE MANUAL

Default Values

<CMDFILE>: If a file name is not given, the linker will
begin building a new command file.

listfile: Linker output listing defaults to the device
specified by the userid listfile default
statement. If the listfile default statement
does not specify an output device, the linker
defaults to the null listing function.

options; If the options softkey is not used, the
linker will default to the list options
specified in the command file and to noedit.
If the options softkey is used, the linker
will default to list, noxref, and noedit.

FUNCTION

The linker combines and relocates all object files into one absolute
image file that can be loaded into the HP Model 64000.

DESCRIPTION

4-y

The linker may be called by one of two methods: simple calling or in-
teractive calling.

The simple calling method is used when interaction with an es-
tablished command file is not required. That is, the current informa-
tion in the command file is valid and no changes are required.

The interactive calling method is used when building a new command
file or when the information in a current command file needs
revision.

C COMPILER
REFERENCE MANUAL

How to Use the Linker

Simple Calling Method

a.

Ensure that the following soft key prompts are displayed on the
system CRT:

edit compile assemble link emulate prom__prog run --ETC---

b.

Press the link soft key. The soft key configuration will be:

<CMDFILE> listfile options

The next prompt is CMDFILE. Type in the name of the established
command file to be linked. The soft key configuration will change
to:

____ listfile options

If it is necessary to change the output listing destination, press
the listfile soft key. The soft key configuration will change to:

<FILE> display printer null

. Route the linker output listing to the desired location by select-

ing the FILE option, or by pressing the display soft key, the printer
soft key, or the null soft key.

NOTE
Pressing the null soft key results

in no output listing. Error messages
will be displayed on the system CRT.

4-5

C COMPILER
REFERENCE MANUAL

If the FILE option is desired in step e, type in the file name un-
der which the listing is to be stored. You can then review your
output listing on the system CRT using the edit function and your
assigned file name.

. The soft key configuration will change to:

options

Refer to the "options” default description in the LINK SYNTAX
definition block.

If the options soft key is not used, the linker defaults to the
list options specified in the command file and to noedit. To over-
ride the command file list options (for this link only), press the
options soft key. The soft key configuration will change to:

edit mnolist xref

If only the options soft key is used, the linker defaults to 1list,
noxref, and noedit. Any of these defaults may be changed by press-
ing the appropriate soft key.

After accomplishing step i, press the RETURN key. The linker
will link the relocatable modules and produce the desired output
listing.

Interactive Calling Method

The interactive calling method allows the user to create a new linker
command file or edit an existing linker command file.

Ensure that the following soft key prompts are displayed on the
system CRT:

edit compile assemble link emulate prom__prog run --ETC--

b. Press the link soft key. The soft key configuration will change

4-6

to:

<CMDFILE> listfile options

C COMPILER
REFERENCE MANUAL

c. The user may start creating a new linker command file by not
specifying any command file. An existing command file may be
modified by specifying the command file name and the edit option.

NOTE

In the following paragraphs, the pro-
cedures are written for establishing a
new command file. If an existing command
file is being edited, just type in the
changes required after each query. If

no changes are required for a partic-
ular query, proceed to the next query.
In all instances, to proceed to the

next query, press the RETURN key.

d. The command query displayed in the command line of the system CRT
is:

Object files? filel,file2,...,filen

The query asks for the names of the files to be linked and relo-
cated. Type in the names of the files and then proceed to the next

query.

NOTE

The soft key configuration "prompts"
will change with each query from the
linker. The soft key 'prompts"” indicate
the type of information that is required.

Object files that are listed after the "Object files?" query may contain
relocatable object modules, no-load files, and previously linked linker-
symbol files (for global symbol references).

No-load files are differentiated from normal relocatable files by

enclosing the no-load files in parentheses. Linker symbol files are

specified by including the file type ’:link sym’ in the file name.
Example:

FILEl, (FILE2,FILE3) ,FILEY4: link sym

4-7

4-8

e.

C COMPILER
REFERENCE MANUAL

NOTE

Refer to the paragraphs in this chapter
that discuss no-load and link sym files
for additional information.

The next command query displayed in the command line on the system
CRT is:

Library files? 1ibl,lib2,...,libn

Interrogation for library files is the same as for object files.
After all object files have been linked, the linker determines if
any external symbols remain undefined. The linker then searches
the library files for object modules that define these symbols.
The linker relocates and links only those relocatable modules that
satisfy external references. Since a library file may contain more
than one object module, all of its relocatable modules may not be
linked. Refer to the paragraph in this chapter that discusses
libraries and their construction.

NOTE

No-load files or linker symbol files,
used for global referenceing, must not

be listed after this query. The no-load
and link sym files can only be referenced
during the "Object files?" query.

After typing in the list of reference library files (or if library
files are not referenced in the program), proceed to the next

query.

. The next command query displayed in the command line on the system

CRT is:

Load addresses:PROG,DATA,COMN=addr,addr,addr
This query allows selection of separate, relocatable memory areas
for the different modules of the program. For example, if you
type in the following addresses:

Load addresses:PROG,DATA,COMN=1000H,2000H,3000H

the linker will relocate the PROG file module to memory location
starting at address 1000H, the DATA module will be relocated to

C COMPILER
REFERENCE MANUAL

memory location starting at address 2000H, and the COMN module
will be relocated to memory location starting at address 3000H.

NOTE

Load addresses may be entered using any
number base (binary, octal, decimal, or
hexadecimal); however, the addresses
listed in the load map are give in hexa-
decimal only.

The default addresses are zeros. After entering the load addresses
or if the default addresses are acceptable, proceed to the next

query.

g. The next command query displayed in the command line on the system
CRT is:

More files? no

The linker asks if more files are to be linked. If the response is
yes, the linker begins interrogation again, allowing additional
object and library files to be specified with new load addresses.
When specifying new relocatable areas, the user may continue with
the previously relocatable area by typing '"CONT"' in the ap-
propriate field (or using the CONT soft key). The relocatable
area is treated as if no new address was assigned.

Example:
Load addresses:PROG,DATA,COMN=0BCCH,CONT,3FFCH
The default condition to the '"more files?" query is no. Proceed to
the next query.
h. The next command query displayed in the command line on the system
CRT concerns output listing options. It has the following syntax:
List,xref=on off
The linker asks you to specify what output listings are required.
Using the on or off soft key, select, in the sequence indicated in

the syntax statement (list, xref), the desired output listings.
After inserting the requirements, proceed to the next query.

4-9

C COMPILER
REFERENCE MANUAL

NOTE

The output listings indicated after the
list,xref= query are the command file
values that will be used during this and
future link operations. They can be over-
ridden by using the options soft key
during the linker call.

. The next command query displayed in the command line on the system

CRT is:
Absolute file name=name

This final query from the linker allows you to assign a name to
the new command/absolute image file that you are about to link.
The absolute image file that is created by the linker is always
associated with a link command file of the same name. A global
symbol file is also established under the name of the command/ab-
solute image file name. The global symbol file contains all global
symbols and their relocation values.

After entering the absolute file name, press the RETURN key.

The linker will link, relocate the files, and save the linking in-
formation in the command file.

Linker Output

The linker listings may be output to the system display, line printer,
or any file. The following information may be included in the linker
output listing:

4-10

a. List (Load Map)
b. Cross-reference table

c. Error messages

C COMPILER
REFERENCE MANUAL

NOTE

Certain error messages contain more than
80 characters and will not be completely
displayed on the system CRT. However,
complete error messages will be printed
when using the line printer or a list
file for listings.

List (Load Map)

A load map is a 1listing of the memory areas allocated to each
relocatable file. The listing begins with the first file 1linked and
proceeds to list all other linked files with their allocated memory
Jocations. An example of a load map listing that will be printed on the
system printer is as follows:

FILE/PROG NAME PROGRAM DATA COMMON ABSOLUTE DATE TIME COMMENTS
KYBD:SAVE 0000 Thu. 5 Jun 1980, 11:37
EXCT . SAVE 0B00-0B34 Thu. 5 Jun 1980. 10:38
DSPL:SAVE A100 Thu. 5 Jun 1980. 11:38
next address 0021 A121

REG1:SAVE B0O0O Thu. 5 Jun 1980. 11:52
REG2:SAVE B103 Thu. 5 Jun 1980. 11:53
REG3:SAVE B206 Thu, 5 Jun 1980, 11:58
next address B30C

Libraries

PARAMETER:SAVE 0021 Thu. 5 Jun 1980, 11:43
MULTEQUAT SAVE 0221 Thu. 5 Jun 1980. 1145
next address 0421 A121

XFER address=0B00 Defined by EXCT

No. of passes through libraries= 1

absolute & link_com file name=SETAG1:SAVE
Total# of bytes loaded= 0782

A brief description of each column in the listing is as follows:

a. FILE/PROG NAME - this column will contain the name of the
files that are linked. In the event library files are
referenced, not only will the master library file be
listed, but its subsections will be indented to indicate
that they are part of the main library file. No-load files
will be displayed in parentheses (...).

b. PROGRAM - this column will indicate the first address
(hexadecimal) of a memory block that contains the PROG
relocatable code in the file listed in the FILE/PROG NAME
column,

4-11

C COMPILER
REFERENCE MANUAL

c¢. DATA - this column will indicate the first address
(hexadecimal) of a memory block that contains the DATA
relocatable code in the file listed in the FILE/PROG NAME
column.

d. COMMON - this column will indicate the first address
(hexadecimal) of a memory block that contains the COMN
relocatable code in the file listed in the FILE/PROG NAME
column.

e. ABSOLUTE - this column will indicate the hexadecimal
addresses of a memory block that contains the absolute code
assigned by the file listed in the FILE/PROG NAME column.

NOTE

The "next address' statement in the load
map listing indicates the next available
hexadecimal address in the PROG, DATA, or
COMN memory areas. It may also be used to
determine the number or bytes (words for
16-bit processors) that are contained in
each area (next address - starting
address = total bytes).

f. DATE - this column will indicate the date that the file
listed in the FILE/PROG NAME column was assembled (assuming
the system date/time clock was current).

g. TIME - this column will indicate the time that the file
listed in the FILE/PROG NAME column was assembled (assuming
the system date/time clock was current).

h. COMMENTS - this column will contain user comments entered
during assembly by the assembler pseudo NAME instruction.

Cross-reference Table

The cross-reference table lists all global symbols, the relocatable ob-
ject modules that define them, and the relocatable modules that
reference them. An example of a cross-reference listing that will be
listed on the system printer is as follows:

SYMBOL R VALUE DEF BY REFERENCES
DSPL6 P 0034 PGM68D PGM68E
KYBD6 P 0001 PGM68K PGM68E

4-12

C COMPILER
REFERENCE MANUAL

A brief description of each column in the cross-reference listing is as
follows:

a. SYMBOL - all global symbols will be listed in this column.

b. R (Relocation) - in this column a letter will identify the
type of program module. The letters that are available and
their definitions are:

Absolute
Common (COMN)
Data (DATA)
Program (PROG)
Undefined

i} nn

cououarr
n

c. VALUE - relocated address of the symbol.

d. DEF BY - this column will contain the file name that
defines the global symbol.

e. REFERENCES - this column will list the file names that
reference the global symbol.

"No -Load” Files

Files that are enclosed in parentheses in the "Object files?" query in-
dicates to the linker that no code is to be generated for the file.
Relocation and linking occurs in the same manner as if the file was a
load file; however, the absolute image file generated by the linker does
not contain the object code for the no-load file. No-load files may be
useful in linking to existing ROM code or in the design of software sys-
tems requiring memory overlays.

Linker Symbol File

The linker creates a global symbol file for every link operation. The
global file name is the same as the assigned command/absolute image file
name assigned to the link. The user may find that linking to a common
piece of code (global) is simplified by referring to that code by its
linker-symbol file. This is accomplished by referencing the correct
linker-symbol file name during the "Object files?” query by the linker.
The linker-symbol file name referenced at the time of the query must be
specified by the type ’:link sym’.

Object files? PGM68k,Pgmé8D:1link sym

4-13

C COMPILER
REFERENCE MANUAL

Library Files

Libraries are a collection of relocatable modules that are stored on the
system disc and may be referenced by the linker.

If a library file name is given as a response to the "Object files?”
query, all the relocatable modules in the library file will be relocated
and linked. If a library file name is given as a response to the
"library files?" query, only those relocatable modules that define the
unsatisfied externals will be relocated and linked. The remaining
relocatable modules in the library file are ignored.

It is possible to combine relocatables into a library by using the sys-
tem library command. Refer to the System Software Reference Manual for a
detailed description of the library command.

Error Messages

When an error is detected during the 1link process, the linker will
determine if the error is fatal or nonfatal. If the error is classified
as fatal, the linker will abort the linking process. If the error is
nonfatal, the 1linker will continue the 1linking process, but will
generate error messages that will be listed in the output listing. A de-
scription of each error message is given in the following paragraphs.

Fatal Error Messages

Upon encountering a fatal error the linker will display one of the fol-
lowing messages on the system CRT STATUS line. The linker will abort the
link process and return control of the system to the monitor.

a. Out of Memory in Pass 1,

The linker will issue this message to indicate that there is in-
sufficient memory to accommodate the current operation. To cor-
rect this situation, reduce the number of files, global symbols,
and/or external symbols used during the current link.

NOTE

As a general rule, the available memory
space can handle programs containing
approximately 3000 symbols. However, if
cross-reference symbol tables are required,
the symbol handling capability is reduced
to approximately 1500 symbols.

h-1Y4

C COMPILER
REFERENCE MANUAL

b. Out of Memory in Pass 2.

The linker will issue this message to indicate that there is in-
sufficient memory to accomodate the current operation. To correct
this situration, reduce the number of files, global symbols,
and/or external symbols used during the current link.

c. Out of Memory in Xref.

The linker will issue this message to indicate that there is in-
sufficient memory to accommodate the building of a cross-reference
table. This error does not affect the absolute file since it is
created and stored prior to the linker attempting to build the
cross-refernce file. To correct this situation, reduce the number
of files, global symbols, and/or external symbols used during the
current link.

d. Target Processors Disagree.

The linker will issue this message if the relocatable modules to
be linked are designed for different processors. Ensure that all
relocatable modules assigned for linking are written for the same
type microprocessor.

e. Checksum Error,

The linker will issue this message if it is unable to read a
relocatable file due to a checksum error or other irregularities
in the file. To <correct this situration, reassemble the
relocatable file, then, re-link.

f. Linker System Error.

The linker will issue this message if it detects a hardware or
software failure in the Model 64000. To correct this situation re-
link the relocatable modules or run the hardware performance
verification program.

g. File Manager Errors.
The linker will issue certain messages if the system file manager
is unable to perform the specified file operation as requested by

the 1linker. Refer to the System Software Reference Manual
(Appendix A) for a list of File Manager Errors.

4-15

C COMPILER
REFERENCE MANUAL

Nonfatal Error Messages

Upon encountering nonfatal errors, the linker will continue the 1link
operation and print the error messages (except initialization errors) in
the output listing. An error message that is listed will contain a de-
scription of the error and the name of the file where the error occur-
red. If the null list file is in effect, the linker will direct the er-
ror messages to the data area of the system CRT.

4-16

. Illegal entry: re-enter.

During initialization the linker will indicate in the STATUS line
on the system CRT that the user has made an illegal response to an
interrogation. To correct this situation, re-enter the proper
response.

Duplicate symbol.

During pass 1 of the link process, the linker detects that the
same symbol has been declared global by more than one relocatable
module. The first definition holds true. The relocatable module
that first defines the symbol may be found in the cross-reference
table. To <correct this error, remove the extra global
declarations.

Load address out of range.
The linker has tried to relocate code beyond the addressing range

of the specified microprocessor. To correct this situation, reas-
sign the relocatable addresses.

. Multiple transfer address.

During pass 1, the linker finds that the transfer address has been
defined by more than one relocatable module. The first definition
holds true. The relocatable module that first defined the transfer
address will be given at the conclusion of the linking. To correct
this situation, remove the extra transfer address. Reassemble the
amended relocatable moldule; then, re-link. If a xfer address 1is
defined by both a nonload program and a load program, no error
will be given. The load program xfer address takes precedence.

C COMPILER
REFERENCE MANUAL

e. Undefined symbol.

During pass 2, the linker finds that a symbol has been declared
external but not defined by a global definition. To correct this
situation, define the symbol.

f. Out of memory in xref,

Unlike the fatal error (Out of Memory in Xref), this error occurs
when memory space is available for a complete symbol table but
only a portion of the cross-reference table. The linker will com-
plete the xref operation, listing only that portion of the cross-
reference table for which memory space was available. To correct
this situation, reduce the number of files, global symbols, and/or
external symbols used during the current link.

g. Memory overlap.
Relocatable program areas have been overlapped in memory. The er-
ror message will list the program names and the overlapping areas.
h. Address out of range.

The operand address is not within a valid addressing range for the
specific microprocessor involved.

4-17/(4-18 blank)

C COMPILER
REFERENCE MANUAL

Appendix A

Compile Time Errors

The following errors are detected by the first pass of the compiler.
Errors are also detected by the second pass of the compiler. These er-
rors are microprocessor dependent and are listed in the microprocessor-
dependent supplements.

When errors appear in groups, usually only the first message is meaning-
ful. This is because some of the following error messages appear as a
result of the first error. In particular, any time the WARNING message
(number 0) is indicated, the compiler will attempt to resume compilation
at the next logical token. In some instances, correctly. In these situa-
tions, the user should use the editor function to correct the first
error.

List of Error Messages

0: WARNING: attempted syntax error recovery here
1l: Error in simple type
2: Identifier expected
4: ’) ’ expected
5: ' : ’ expected
6: Illegal symbol
7: Error in parameter list
9: ’ (’ expected
10: Error in type
11: ’ [* expected
12: '] ° expected
1L4: ’ ; ’ expected
15: Integer expected
16: ’ = ’ expected

18: Error in declaration part
19: Error in field list

20:
21:
25:

30:
33:
3k:
35:
36:
37:
38:

Lo:
L1:
L2

Wl
L5

50:
58:
59:

60:
61:
62:

6k
65:
66:

T70:
T1:
T2:

List of Errors (Cont’d)

’ .’ expected
expected

Statement begin symbol expected

s % o

Type name expected

" " expected

expected

expected

expected

expected

Type name or storage class expected

e v e
T Y

RN St

WHILE expected

Illegal storage class

Undeclared parameter

Duplicate definition of parameter
Multiple storage classes

Multiple types

Error in constant
Error in factor
Error in variable

Lvalue expected
Pointers must be same size
ELSE without IF

C COMPILER
REFERENCE MANUAL

Break or continue statement not in FOR, WHILE, DO, or

SWITCH

CASE or default without SWITCH
Duplicate CASE or fault
SWITCH must be type int or enum

Only type int may be field
Field larger than wordsize
Named field may not be size zero

C COMPILER
REFERENCE MANUAL

101:
103:
104

129:

131:
134:

145:
156:

165:
166:
167:
168:

182:
183:
18L:
185:
186:
187:

190:
191:
192:
193:
19Y4:
195:

196:
197:
198:

List of Errors (Cont’d)

Identifier declared twice
Identifier is not of appropriate class
Identifier not declared

Type conflict of operands

Tests on equality allowed only
Illegal type of operand(s)

Type conflict
Multidefined case label

Multidefined label
Multideclared label
Undeclared label
Undefined label

Array of functions not allowed

Function can not return array

Function can not return function

Array dimension may not be negative

Structure member may not be function

Cannot take address of fixed parameter function;
i.e. ’ (’ expected

Structure may not contain instance of itself

Member defined twice

Type of variable may not be intialized

Variable may not be initialized

Missing * { ’ on array or structure initialization

Static or external variable may only be initialized to
constant

Variable declared external or type def may not be
initialized

Only static and external arrays and structures may be
initialized

Too many initializers

A-3

200:
203:
207:
208:

210:

220:

250:
254
255:
256:
257:
259:

270:

280:
281:
282:
283:
28Y:
285:
286:
287:
288:
289:

304:
398:

A-Y

C COMPILER
REFERENCE MANUAL

List of Errors (Cont’d)

Cannot initialize non pointer sized integer to address
Integer constant exceeds range

Overflow in real operation

Error in real operation

Only first dimension of array may be unspecified

Only one type may be declared in $USER DEFINED$ type def
declaration

Too many nested scopes of identifiers

Too many long constants in this procedure
Too many errors on this source line

Too many external references

Too many externals

Expression too complicated

not in column 1 or PREPROCESS not specified. Remainder
of line ignored.

Preprocessor syntax error

Unimplemented preprocessor instruction

Number of parameters does not agree with macro declaration
Identifier not #defined

Macro may not have more than 20 parameters

#if without #endif

#if instruction may not contain multiline macro

#else of #endif without #if

Preprocessor stack overflow. Simplify constant expression
Error in constant expression

Element expression out of range

Implementation restriction

C COMPILER
REFERENCE MANUAL

List of Errors (Cont’d)

400: State stack overflow; break up program; parsing stopped

401: Fatal parser error; previous error; parsing stopped

402: End of source before end of compilation

403: Symbol table overflow; delete symbols; parsing stopped

4oL4: Semantic stack overflow; break up program; parsing stopped

405: End of source before end of comment

406: Out of expression tree storage; simplify expression

407: Pop of empty stack; caused by previous error; parsing
stopped

408: 1Illegal stack entry; missing semicolon?; parsing stopped

410: Too many indirect; simplify expression

411: Constant expression expected

412: More than 20 syntax errors; parsing stopped

41h4: More than 255 subroutines; break program into modules
416: More than 255 large constants

450: Feature not implemented
455: Language extensions used in extensions off mode
456: Too many user defined operation types

500: Warning: illegal compiler option; option ignored
503: Warning: source line exceeds allowed length

504: Warning: non-standard feature used

506: Warning: +32768 is treated as -32768 by the compiler

511: Warning: variable assumed to be function returning
integer

512: Warning: expanded line larger than 240 characters; multiple
lines created

513: Warning: duplicate macro name; New definition holds

514: Warning: function treated as variable parameters, not
fixed

515: Warning: integer not pointer size

A-5/(A-6 blank)

C COMPILER
REFERENCE MANUAL

Appendix B

ENUM <ENUMERATION> TYPES

The enum type is similar to Pascal scalar types. The declaration of an
enum type is similar to that of a struct or union type:

enum OPT_TAG FIELD
{ENUMERATOR , ENUMERATOR, . . . ENUMERATOR} ;

where OPT_TAG FIELD is an optional tag field similar to the tag field or
a structure.

ENUMERATOR is in one of the following forms:

IDENTIFIER

IDENTIFIER = CONSTANT
Normally, the identifiers represent consecutive integers starting at
zero. If the second form is used, the appropriate identifier represents
the constant and all subsequent identifiers are consecutive.
The form:

enum TAG FIELD

is also available. This declares a variable to be of a previously
declared enum type.

Examples:

enum COLOR {black,brown,red,orange,yellow,green,blue,
violet,grey,white} bandl,band2,band3;

This declares three variables bandl, band2, and band3 to
be of type COLOR.

and
enum QUALITY {poor=1,acceptable,good,excellent};
This declares QUALITY to have values poor = 1,
acceptable = 2, good = 3, and excellent = L.
and

enum QUALITY x,y;

B-1

C COMPILER
REFERENCE MANUAL
This declares x and y of type QUALITY.
and

enum {zero,three=3,seven=7,eight,ml=-1,another_zero}
vl,v2;

This declares vl and v2 to be an enumerated type where
zero=0, three=3, seven=7, eight=8, ml=-1, another_ zero=0.
Although enum types are represented internally by integers, they are

not integers and are not compatible with them.

No checking is done to see if a number is valid for a given enum type.
For example:

vl=three; vl++;

will not cause an error even though there is no value whose representa-
tion is L.

B-2

C COMPILER
REFERENCE MANUAL

Appendix C

Compiler Generated Symbols

for C Programs

Compiler Generated Labels

This section discusses compiler generated labels. Whenever the symbol
“"func" appears it refers to the name of the enclosing function trun-
cated, if necessary, so that the total label will fit into 15 charac-
ters. The external declaration section is considered to be a function
by the name of static (STATIC if UPPER KEYS is ON) for purposes of
label generation.

Function Entry

The function entry has the label func, i.e. the function name itself.
This label will be declared global if the function is global.

End Label

The end of a function is indicated by the label Efunc. This label marks
the end of the PROG section associated with the function. This includes
any data associated with the function which is in the PROG section (due
to the wvalue of the SEPARATE option. The end label will be declared
global if the function is global. This label may be used in a trace as
in trace only address range func thru Efunc.

Return Label

The return instruction from a function is always labeled Rfunc. This
label will be declared global if the function is global.

Data Label

If a function has an associated data area in memory, this data area will
be marked Dfunc. The data label is never global. It may be used in

tracing local data as in trace address Dfunc+N where N may be calculated
from the relocation information in the listing.

c-1

C COMPILER
REFERENCE MANUAL

User Labels

A label defined by the user within a function, is given the same name by
the compiler. These labels are always local.

Jump Labels

These are labels generated by compiler jumps from statements such as if,
for, while, switch, do, etc... The labels are of the form funcLNN_ XXXX
where func is truncated to 7 characters, NN is a unique number based on
the function and XXXX is a unique number for the labels. Jump labels
are always local and will normally be unique within a program.

Certain processors may make use of other types of labels. See the
specific processor supplement manual for details.

Duplicate Symbols

Although these labels aid in program tracing, they generate a potential
for duplicate symbols. If these symbols are local, this will not cause
a problem unless the ASM FILE is assembled, or an attempt is made to
trace on one of these variables. If the symbols are global, an error
will occur at link time. The following can cause duplicate symbols.

If the first 14 characters of two function names match, the D, E, and R
labels will be duplicate. If the function func exists, as well as a
user symbol such as Efunc (any function or global variable) a duplicate
symbol will occur. Usging the same label number in two functions will
cause duplicate local symbols. Using a reserved assembler symbol (such
as a register name) may cause duplicate symbol errors in the ASM FILE.

In the following example, note the following:

The variables a, b, and ¢ can be accessed as Dstatic,
Dstatic+4, and Dstatic+8.

The procedure has_a long name was truncated to form the
other labels. However, emulation also truncates
identifiers to fifteen characters (i. e. Dhas_a_long_name
and Dhas_a long nam are equivalent).

The variable x can be accessed as Dhas_a_long_nam.
The use of two labels named my label, although legal in

C, will cause duplicate symbols if the file is assembled,
and cannot be traced.

C COMPILER
REFERENCE MANUAL

Example:

AVoRNe o B e NN N g UVRN \V I

10
11
12

13

1k
15

16
17
18

19

20

0000
0000
0000
0000
0002
0004
0006
0006
0006
0000
0000 1
0000 1
0000 1
0000
oolo2t
0008
000C
0012 1
0012
0016
0016
001C
001C 1
001C
001C 1
001C
001C
001C
001C
001E
001E
0006 0
0006 0
0006 0O
0020
0020
0020
0020
0020 1
0020
0020 1
0020
0020
0022
0022
0022
0022
0024
0026
0028
0028

OO o000 ODOO0OO0

“C”

"78002"

$RECURSIVE OFF$
static int a;
static int by
static int c;

has_a_long name()

{
has_a long name
int x3
if (a==b) x = 5;
LD R1k,Dstatic
CP R14,Dstatic+00002H
JP NE,has_a 101 O
LD Dhas_a_long nam,#00005H
else x = 3;
JP ,has_a 101 1
has_a 101 0
LD Dhas_a_ long nam,#00003H
has a 101 1
my label:;
my_ label
)

Rhas_a long nam
GLOBAL Rhas a long nam

RET
Dhas_a long nam

RMB 00002H

static func_2()

{
Ehas_a_long nam EQU $-1
GLOBAL Ehas_a long nam
func 2
my_label:;
my label
}
Rfunc_2
RET
Dfunc_2
RMB 00000H
Dstatic
WVAL 00000H
WVAL 00000H
WVAL 0O000CH
Efunc_2 EQU $-1
GLOBAL has_a_long name

C-3/(C-4 blank)

C COMPILER
REFERENCE MANUAL

Index

The following index lists important terms and concepts of this manual
along with the location(s) in which they can be found. The numbers to
the right of the listings indicate the following manual areas:

Chapters - references to chapters appear as
“"Chapter X", where "X" represents the chapter number.

Appendices - references to appendices appear as
"Appendix Y", where "Y" represents the letter
designator of the appendix.

Figures - references to figures are represented by the
capital letter "F" followed by the section figure
number.

Other entries in the Index - references to other
entries in the index are preceded by the word "See"
followed by the reference entry.

I-2

C COMPILER
REFERENCE MANUAL

AMNESIA directive O~
ASM FILE directive e et e e e 2
ASMB SYM directive e, et e 2=

Character Set,C/64000............... e e
compile syntax e e e e
Compiler directives veesiesessess. .Chapter 2, 2-5
Compiler descriptionChapter 2
Compile time errorsceceveeeeee.....Appendix A
ComPiling «.veieineinioreneinerioesoeoonseeeensnnseessl
Cross reference table:

COMPILer vttt ittt it ittt ettt naeaeaens..3-6

linker e e Lo.oub-1

N B
[A I g

Data labelc.uun.. e B o
Data types, derivedcciiiiiirerorseeasanss.l"B
Data types, intrinsic e1-)h
DEBUG directiveciievvueennnneoannnns .. 2-6
Dependencies, implementation1-2
Description, compiler veeeesse.. .Chapter 2
directives, compiler vevevses.....Chapter 2
Duplicate symbols B R

C COMPILER
REFERENCE MANUAL

EMIT CODE directivecoiiiviiiniininan..2
End 1abeliiiiiiiinereeeeeaesoesnnsasosssssssssCm
END ORG directivecoiiiiiiiiiiiiinnl2
ENTRY directivevviivivrroivororesseesnsnconncesasl
ENUM typesevevevvereereeennnnenneaesss ... Appendix
Environment, C/6L000ivinrrvnnneerenneeennaal-
Errors:

compile timecciiten.. .. Appendix

BT Y=Y <O 1
@XPANA .+ttt it i e et i e i e s
Extensions, C/6LU000cvvvtieiiruneennnnennnnennnad-
EXTENSIONS directivec.tivinrrrnriorncnonnneseasl

N 3 -)
D N 1) P~ e
FIX PARAMETERS directive000.....2-8
FULL_LIST directivecviiieiiineinnennes...2-9
Function entrycciiiiiiiiiiiiiiiiiiineassa..C-1

General InformationChapter 1

h

How to compile a program Chapter 3
How to use the linkerccvveeenevecnnneeen...b-5

I-Y4

C COMPILER

REFERENCE MANUAL

i
INIT ZEROES directiveciiinivinniinnnnn, 2-9
Integers, 16-bit ...vutrreernneenrrereaneonoseneonns 2-15
Instructions, linkerc.cvevuenuenenennn. Chapter L4
Introduction:
COMPLLer v ittt s e eeroerosrossossocsneaneannss 1-1
linker e e e L-1
J
Jump 1abelsttt ittt ittt e e Cc-2
|
Library files, linkeroveereenrennennnennenns 4-1Y
Linker:
@ITOY MESSALZES « v e e evevreensonnsenoeeneenssnnnnn 4-14
HOW 1O USE titiei e vnennetnnnreeenaeennnneeananns 4-5
InSEruUCtions . .vvtvvrennreneeenrennennennn Chapter 4
Introductionuviierininnrrerteneennonnaannas L4-1
Library files Ceeee e 4-1Y4
No-10ad FileS v vvirnrteeneeenneenseesennnennns 4-13
OULPUL &t vt ittt ieeneitenoeeteanoeeosnesnosenannas 4-10
TEQUITEOMENES .ttt vttt e eeeeeerenneensonnenneenans L-1
SYMBOLl F1le tvvrvrenrennnneeennoreeneeeennneenns 4-13
SYNEAX + v ie et ereenatooanoocaatoseaannsaans .4-2
LINE NUMBERS directiveciveniuuennnnn eee.2-9
LIST directivei.iiiiiiiiiiiiiinienrenennennens 2-10
LIST CODE directive N 2-10
LIST OBJ directivec.ciuiiineinnnnn. cee...2-10
listfileciiivivnenennn ettt es ettt 2-3
Listings, output et eer et 3-4
Load map, linker e 4-11
LONG NAME directiveciutiierinurnnnnnnennnes 2-10

C COMPILER
REFERENCE MANUAL

NOCOAE &ttt it tieiiereosacnosasesoesosossnsossesscoesel=2
o Yo 30 I - A~ R
No-load files,linkereveeeuemrnnnenneeneea...4-13
NOPREPROCESS ...ttt iiiieerensonesosoososnonssssasssesld=2

OFF ittt it ittt iete it ontosnnensssenssoseannnnneal
10 4
10,4 T=3 o T 7o 3 o~
OPTIMIZE directiveciiitiiiii i nrerneenneess?
OPLioNS i ittt i i i e i, 272,
options (directives),compilerceevvevueeonnn
ORG directive ...t iiiieiniionnsoresnoneseesal
Output, 1inKervovieriunrennnerennaneonneneneas b
Output listingscciveveirirnnennnnnennnennaan..3-0

PAGE directiveciiiiiieiimieiiinnnnnnennnss..2-11
PreproCeSSOT ittt eeinessosnssssnssssssssessss2=15

Real number functionsciiiiiiiienrinnnnnns
RECURSIVE directiveiuiiiiiiiernerncnnsnens
Requirements, linkerevevennennenneeea. .l
Restrictions, implementation1-
Return label ittt iiieensennsnnees..C

1-6

C COMPILER
REFERENCE MANUAL

S
SEPARATE directiveivtieereeronrenseonennonanes 2-12
SHORT _ARITH directivecciueninuneniennnn. 2-12
SoUTCE 11 ittt ittt et ettt it ennne et oot 3-1
STANDARD directiveciieireeioeeeeonononncnnnas 2-12
Symbol file, linker e 4-13
Symbols, compiler generatedAppendix C
Syntax:
COMPiler ..ttt it e i i i e e 2-2
S 1 =3 < L4-2
t
TITLE directivettt ininonrooeesnoonoenonnnes 2-13
TRUE & .ttt ittt ieseoeeoanosososososnsaosonnnns N 2-5
u
UPPER_KEYS directive et e e 2-13
Use of ORG OPtion vuvvvniennnreernennonnnnnnennnnns 2-16
USER_DEFINED directive, 2-13
User 1abel ...ttt iotieenteeeneeneoeennennnoenas Cc-2
w
WARN Qirective et ivnnntienee i ineeeeennnnnn. 2-14
WIDTH directiveviiiiiiienineeneneeneerenenennns 2-15
X
D% o= A 2-4

64800-90907, FEBRUARY 1983 (ﬂ]

. HEWLETT
Replaces: 64800-90907, June 1982 PACKARD PRINTED IN U.S.A.

	Front
	cover
	inside

	Comment Sheet
	comment-1
	comment-2

	Contents
	title
	ii
	iii
	iv

	Chapter 1
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6

	Chapter 2
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16

	Chapter 3
	3-1
	3-2
	3-3
	3-4
	3-5/3-6

	Chapter 4
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17/4-18

	Appendix A
	A-1
	A-2
	A-3
	A-4
	A-5/A-6

	Appendix B
	B-1
	B-2

	Appendix C
	C-1
	C-2
	C-3/C-4

	Index
	index-1
	index-2
	index-3
	index-4
	index-5
	index-6

	Back
	cover

