HP64000
Logic Development
System

Pascal/64000
Reference Manual

K crdicaro

CERTIFICATION

Hewlett-Packard Company certifies that this product met its published specifications at the time of
shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are
traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's
calibration facility, and to the calibration facilities of other International Standards Organization
members.

WARRANTY

This Hewlett-Packard system product is warranted against defects in materials
and workmanship for a period of 90 days from date of installation. During the
warranty period, HP will, at its option, either repair or replace products
which prove to be defective.

Warranty service of this product will be performed at Buyer’s facility at no
charge within HP service travel areas. Outside HP service travel areas,
warranty service will be performed at Buyer’s facility only upon HP’s prior
agreement and Buyer shall pay HP’s round trip travel expenses. In all other
cases, products must be returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping
charges to HP and HP shall pay shipping charges to return the product to
Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for
products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with an
instrument will execute its programming instructions when properly installed
on that instrument. HP does not warrant that the operation of the instrument,
or software, or firmware will be uninterrupted or error free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,
unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER’S SOLE AND EXCLUSIVE REMEDIES. HP
SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL
THEORY.

ASSISTANCE

Product maintenance agreements and other customer assistance agreements are available for
Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

SOFTWARE NOTICE

NOTICE

Attached to this software notice is a summary of problems and solutions
for the Pascal Compiler Reference Manual that you may or may not en-
counter. Use this summary with the manual you received with the
product. In the one-line description at the top of each problem and solu-
tion, there is a software topic or manual chapter reference.

5958-6070, R2606 JUNE 1986

Page: 1
KPR #: D200000638 Product: PASCAL REF M64800~90909 01.01
Keywords: SET

One-line description:
Negation of SET type will not produce error msg. (See Ch 2, pg 2-15)

Problem:

The statement A := INTEGER(-SETTYPE(X1l)): will produce incorrect code
and not produce an error. An error should result due to the attempt to
negate a SET type designation.

Solution:
Be careful. PASCAL does not provide for the negation of a SET.

KPR #: D200001958 Product: PASCAL REF M64800-90909 01.01
Keywords: SETS

One-line description:
Error #407 for valid set exp with set const on left. (See Ch 4, pg 4-9)

Problem:
The compiler incorrectly performs the set constructlon for expressions.
Error 407 in Pass One of the compiler for expressions of the form
[A] = B;
where B is a set of scalar type and A is an element of scalar type.
Error 407 also can appear for expressions such as:
WHILE [SWO] >= [SWO,SW1l] DO

Solution:

Rewrite expression putting the set construction on the right hand side
of the expression as 1n
(A]7

KPR #: D200014514 Product: PASCAL REF M64800-90909 01.01
Keywords: Y48

One-line description:
Module with many externals may cause system to reboot.(See Ch 1, pg 1-3)

Problem:

A module with many externals <>100) and an IF statement with 4 external
arrays used may cause the system to reboot.

Solution:

Page: 2

Change the number of external references by adding one or two dummy
references. Subtracting one or two unnecessary references can also
cause the problem to disappear.

KPR #: D200033944 Product: PASCAL REF M64800-90909 01.01
Keywords: TYPE CONVERSION

One-line description:)
Constants of type BYTE lose their "BYTENESS" when added.

Problem:
SEXTENSIONS ;RANGES
CONST C1 BYTE(80H); (*-128%)

C2 = BYTE (1H); (* + 1%)
VAR Bl : BYTE;

BEGIN

Bl := C1l + C2;

{IF SRANGES IS ON, THIS CAUSES A CALL TO A WORD-SIZED, BOUNDS-CHECKING
ROUTINE PASSING 0081H AND THE VALUE IN QUESTION. THIS PASSED VALUE IS
WRONG BECAUSE IT IS NOT SIGN-EXTENDED AND THE UPPER-BOUNDS IS OO7FH.}

Solution:
1. SRANGE OFF$ around the code; or better yet use:

Bl := BYTE(C1l+C2); {This calls the byte-sized bounds checker.}

KPR #: D200015842 Product: PASCAL REF M64800-90909 01.01
Keywords: MANUAL

One-line description:
I/0 cannot be performed at absolute address 0000. (See Ch 6, pg 6-12)

Problem:

The 6800 supplement states that the PARAM routine cannot be passed a
variable at absolute address zero (due to interpretation as an
indirection flag), but the user must infer that the Pascal I/O routines
use PARAM (it's not stated in the Pascal Manual.)

Solution:

Under subparagraph "Implementation Dependent Features" (page 6-12),
add the following:

"Pascal I/O cannot be performed to variables at address 0000."

Page: 3
KPR #: D200035048 Product: PASCAL REF M64800-90909 01.01
Keywords: MANUAL

One-line description:
Better documentation concerning the use of UNSIGNED and SIGNED numbers.

Problem:

HP 64000 Pascal manuals need better descriptions of the use and
constraints of UNSIGNED and SIGNED numbers. Included in these
descriptions should be:

(1) When does the compiler "automatically" convert from one type
to the other. When does the user have to force the type
conversion.

(2) What are some of the SIGNED to UNSIGNED considerations with
respect to the sign-bit of a number. What are some of the
potential pitfalls when converting a SIGNED number into an
UNSIGNED value.

(3) What are some potential pitfalls when converting REAL numbers
into SIGNED or UNSIGNED values.

Solution:

In reference to the above questions, the following additional inform-
ation should be entered into the manual on pages indicated.

Reference to question (1) above: Enter on page 2-9 in the manual, the
following:

NOTE

The compiler never "automatically" converts
from one type to the other. The user must
force the type conversion.

Reference to questions (2) and (3) above, enter the following inform-
ation on pages 2-9 and 2-10 in the manual:

When converting types, the following occurs:

from SIGNED X
to

a longer SIGNED Y : the result is sign extended, value preserved.

from S%GNED_X
o
a shorter SIGNED Y : result is truncated; if original value does
not fit into smaller type, then value is
changed.

Page:

from UNSIGNED X
longer UNSIGNED Y : result is zero extended; value preserved.

from UNSIGNED_ X
to
shorter UNSIGNED Y : result is truncated.

from SIGNED X
to
same size UNSIGNED X : bits remain unchanged; interpretation may
change value.

from UNSIGNED X
to
same size SIGNED X : bits remain unchanged; interpretation may
change value.
from SIGNED X

to
longer UNSIGNED Y : result is sign extended; 1f original SIGNED_
was positive, then value is preserved; if
original SIGNED_ was negative, then the
resulting value is wrong.

from UNSIGNED X
to
longer SIGNED Y : result is zero extended; value preserved.

from any SIGNED X
to
REAL or LONGREAL : result is sign conversion; however, it is
possible to lose some significance.

from %ONGREAL or REAL
o
any SIGNED X : pos51b1e that original value will not fit into
receiving type resulting in truncation.

from ENSIGNED_ types (except longest)
o
REAL or LONGREAL : sign conversion.

from 1oggest UNSIGNED
o

REAL or LONGREAL: s1gn conver51on, wrong answer if most signif-
icant bit is set.

from gEAL or LONGREAL
o)

any UNSIGNED_ type : 51gn conver51on, possible value will not fit
into receiving_ type - truncated result;
if original value negative, then result is
wrong.

4

Page: 5
KPR #: 2700005132 Product: PASCAL REF M64800-90909 01.01
Keywords: PASS 1

One-line description:
BYTE to UNSIGNED 16 assignments may not work. (See Chap 3, pg 3-16)

Problem:

Additional information needed when making BYTE to UNSIGNED_16
assignments.

Solution:

The following information modifies paragraph 3 on page 4-4 in the
Pascal reference manual:

When converting a signed operand to a physically larger
signed or unsigned operand, the smaller signed operand
will be sign extended by the compiler. When converting
an unsigned operand to a physically larger signed or un-=
si Eed operand, the smaller unsigned operand 1s extended
wi zeroes.

The following information should be added to page 2-5 in the Pascal
reference manual:

All signed and unsigned integer CONSTant declarations are 32 bits
long. The type of the constant is derived from its value. Type
changes set basic types (i.e. signed, unsigned, CHARacter, set,
enumerated type):; however, the size of the type is derived from
the value. Several examples:

A = 85; (* SIGNED 8 *)

A = BYTE (80H); (* SIGNED 16 value is 128 *)
A = BYTE(300); (* SIGNED 16 *)

A =

UNSIGNED 8(255); (* UNSIGNED 8 *)

Page: 6
KPR #: D200007161 Product: PASCAL REF M64800-90909 0l1.01
Keywords: PASS 1

One-line description:
COMP_SYM file not automatically purged. (See Chap 9, pg 9-4)

Problem:

If COMP_SYM option is not selected when compiling, previously created
COMP_SYM file is not purged. This file is used by the 6433x high level
software analyzers. Since the COMP SYM file is not automatically purged
it is possible that an old COM _SYM file that does not apply to the code
being executed and analyzed might be used giving incorrect results
during analysis.

Solution:
Purge the COMP_SYM file before compiling.

KPR #: D200045583 Product: PASCAL REF M64800-90909 01.01
Keywords: MANUAL

One-line description:
$LIST_OBJS$ inop without S$LIST CODE$ or expand opt. (See Ch 8, pg 8-5)

Problem:
"6800"
{ PascBug27: Directive LIST OBJ has no effect unless LIST_CODE
specified.
The Pascal manual states that the LIST_OBJ directive " ... causes
the listing to contain the relocatable object code generated by the
third pass of the compiler." However, specifying LIST OBJ will not

produce the object code unless LIST CODE or "options expand" is
also specified.

To observe the problem, try:
"compile PascBug27 listfile display" }

PROGRAM PascBug27;
$ LIST OBJ ON $
BEGIN

END.

Solution:
In manual, use the following description for S$LIST OBJS:

LIST OBJ [ON]
[OFF]

Page: 7
Initialized Value: OFF
Description:

ON causes the listing to contain the relocatable object code
generated by the third pass of the compiler. In order for

this directive to be effective, the LIST CODE directive or the
compile option 'expand' must be ON. This directive is not
implemented in the 8080/8085 and the Z80 compilers.

KPR #: D200047225 Product: PASCAL REF M64800-90909 01.01
Keywords: MANUAL

One-line description:
SEMIT CODE OFF$ has no effect. (See Chap 8, pg 8-3)

Problem:

The Pascal manual states that the EMIT CODE directive can be used to
specify whether or not executable code is emitted to the relocatable
file. However, EMIT CODE directives are ignored, and the code is
always produced.

The alternative method of suspending code emission, that of commenting
out the area, may not be possible if the code contains comments, as
Pascal comment indicators do not nest.

Solution:

Add the following sentence to the end of the description of the compiler
option 'EMIT CODE':

"The last value of this option in a source file
determines if code is generated for the entire
file."

343H Q104

D

HEWLETT | " " |
PACKARD

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 1303 COLORADO SPRINGS, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

HEWLETT-PACKARD

Logic Product Support Dept.
Attn: Technical Publications Manager

Centennial Annex - D2
P.O. Box 617
Colorado Springs, Colorado 80901-0617

NO POSTAGE
NECESSARY
1F MAILED
IN THE
UNITED STATES

FOLD HERE

Your cooperation in completing and returning this form
will be greatly appreciated. Thank you.

READER COMMENT SHEET

Operating Manual
Pacal/64000 Reference Manual
64800-90909, January 1984

Your comments are important to us. Please answer this questionaire and return it to us. Circle the number that best
describes your answer in questions 1 through 7. Thank you.

1. The information in this book is complete:

Doesn't cover enough 1 2 3 4 5 Covers everything
(what more do you need?)

2. The information in this book is accurate:
Too many errors 1 2 3 4 5 Exactly right
3. The information in this book is easy to find:
I can't find things | need 1 2 3 4 5 I can find info quickly
4. The Index and Table of Contents are useful:
Helpful 1 2 3 4 5 Missing or inadequate
5. What about the “how-to” procedures and examples:
No help 1 2 3 4 5 Very helpful
Too many now 1 2 3 4 5 I'd like more
6. What about the writing style:
Confusing 1 2 3 4 5 Clear
7. What about organization of the book:
Poor order 1 2 3 4 5 Good order
8. What about the size of the book:
too big/small 1 2 3 4 5 Right size

Comments:

Particular pages with errors?

Name (optional):
Job title:
Company:
Address:
Note: If mailed outside U.S.A., place card in envelope. Use address shown on other side of this card.

343H 4104

A

HEWLETT | " || |
PACKARD

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 1303 COLORADO SPRINGS, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

HEWLETT-PACKARD

Logic Product Support Dept.
Attn: Technical Publications Manager

Centennial Annex - D2
P.O. Box 617
Colorado Springs, Colorado 80901-0617

NO POSTAGE
NECESSARY
{F MAILED
IN THE
UNITED STATES

FOLD HERE

Your cooperation in completing and returning this form
will be greatly appreciated. Thank you.

READER COMMENT SHEET

Operating Manual
Pascal/64000 Reference Manual
64800-90909, January 1984

Your comments are important to us. Please answer this questionaire and return it to us. Circle the number that best
describes your answer in questions 1 through 7. Thank you.

1. The information in this book is complete:

Doesn't cover enough 1 2 3 4 5 Covers everything
(what more do you need?)

2. The information in this book is accurate:
Too many errors 1 2 3 4 5 Exactly right
3. The information in this book is easy to find:
| can't find things | need 1 2 3 4 5 I can find info quickly
4. The Index and Table of Contents are useful:
Helpful 1 2 3 4 5 Missing or inadequate
5. What about the "how-to"” procedures and examples:
No help 1 2 3 4 5 Very helpful
Too many now 1 2 3 4 5 I'd like more
6. What about the writing style:
Confusing 1 2 3 4 5 Clear
7. What about organization of the book:
Poor order 1 2 3 4 5 Good order
8. What about the size of the book:
too big/small 1 2 3 4 5 Right size

Comments:

Particular pages with errors?

Name (optional):
Job title:
Company:
Address:
Note: If mailed outside U.S.A., place card in envelope. Use address shown on other side of this card.

(dﬁ HEWLETT

PACKARD

OPERATING MANUAL

PASCAL/64000
REFERENCE MANUAL

© COPYRIGHT HEWLETT-PACKARD COMPANY 1980, 1981, 1982, 1984
LOGIC SYSTEMS DIVISION
COLORADO SPRINGS, COLORADO, U.S.A.

ALL RIGHTS RESERVED

Manual Part No. 64800-90809 PRINTED: JANUARY 1984
CHANGED: OCTOBER 1985

Pascal/ 64000
Compiler

Printing History

Each new edition of this manual incorporates all material updated since the previous edition.
Manual change sheets are issued between editions, allowing you to correct or insert informa-
tion in the current edition.

The part number changes only when each new edition is published. Minor corrections or addi-
tions may be made as the manual is reprinted between editions. Vertical bars in a page margin
indicates the location of reprint corrections.

First Printing July 1880 (Part Number 64800-30904)
Reprinted November 1980

Second Edition May 1981 (Part Number 64800-90806)

Third Edition June 1982 (Part Number 64800-90908)
Fourth Edition January 1984 (Part Number 64800-90909)

Change U1085ccceeeeee October 1985

Pascal/64000
Compiler

Table of Contents

Chapter 1. GENERAL INFORMATION

INT RO DU C T ION oottt ettt et et e e e et et ettt e e e e e e e eeaaeaenaaens 1-1
PASCAL/B4000 COMPILERottt et et et e e e e eeene 1-1
SUBSE T LIMIT AT ION S it e et ettt e et e s e raene s 1-1
PASCAL/BA000 EXTENSIONS ..o e 1-2
The CASE Statement ..o e e 1-2
CONST, TYPE, and VAR Declarationsccoooviiiiiiiiiiiiii e, 122
e ToY o 1= -SRI 1-2
NEW and DISPOSE ProCeAUIeSc.oviiiiiiiiiiiii ettt ettt e e 1-3
External and Global Declarations ... e 1-3
Separate Relocatable Area AsSsSignments ... 1-3
Absolute Memory ASSigNmeNnt e 1-3
Constant—value EXPresSSiONS .o 1-3
FUNCHional Type CONVEISION ..o e ettt e e aeeees 1-4
AD D R FUNCH ON . e e e et 1-4
SHIFT and ROTATE FUNCHIONS ... e 1-4
Predefined Data T YD .o e e 1-4
SUSER_DEFINEDS OPtionoooiiiiiiiiiiiiiii 1-4
PASCAL/B4000 ENVIRONMENT .o e e e e aeaes 1-5
CHAR A CTER SET i e et 1-§6
DA T A T Y PE S o e e e e e e e e e 1-5
MANUAL ORGANIZATION .ot ettt e e e e e e eeanaens 1-7

Chapter 2: GENERAL FORM OF A PASCAL PROGRAM

INT R O DU C T ON Lo e e e et 2-1
PROGRAM HEADING ..o et e e ae s 2-1
PROGRAM BLO CK o e 2-2
PASCAL PROGRAM DECLARATIONS ..o e e 2-2
General INformation ... e 2-2
DECLARATION SECTION .o e e 2-4
Label DeClaration ..o s 2-4
CONSTaNt DeClaration . ..o 2-5
CONSt ANt EXPre S SIONS o 2-5
T PE DEFINITIONS i e e e e 2-6
TY PE DECLARATION L e e 2-6
SIMPILE T Y PE S .o e e e 2-8
(0] e 112 T IV <X -1 USROS 2-8
Predefined Ordinal Ty P @S ..o e e 2-8
USER DEFINED ORDINAL TYPES ..o e 2-11

Pascal/ 64000

Compiler
Table of Contents (Cont’d)

ENUMErated Ty P oot e e e e et 2-11
Y] o] - Yo Te [N I/ o 1 Y PO PP PPTURPPPY 2-11
RE AL T PE S oottt e ettt e e e e e e e et e 2-12
STRUCTURED T Y PES oottt e ettt et et e a e aaanes 2-13
) 4 - LY 2 PSP 2-13

Y (g Lo o N € T 1Y/ < 1T PP PR PTPIN 2-14
T3 S PPN e 2-15

{2 Y=Y eTo] &« H PSP 2-15
Bl oottt e e 2-17
POINT ER T Y PES oottt et ettt e e e e e e anens 2-17
VA R oo e 2-18
VARIGbIE DECLARATION L. e e 2-18
ROUTINE DECLARATIONS . ottt e e 2-19
Procedure Declarationt 2-19
FUunction Declaration ... 2-20
PARAME TER LIS T S it e e 2-21
Formal Parameter List . ..o e 2-21
NV alUE Param el Or .o e 2-22
Variable Parameter ... 2-22
DECLARATIONS WITHIN ROUTINESo 2~-22
ROULINE BOAY ..o 2-23
DIV S Lo s 2-23
ReCUrsSiVe ROUINES ... e e 2-24

S OPE ..oeitiii i e 2-24

Chapter 3: STATEMENTS

GENERAL INFORMATION ..o e e 3-1
COMPOUND STATEMENT ..o e, RTT 3-2
EMP T Y ST AT EMENT e e, 3-3
ASSIGNMENT ST ATEMENT L. e e 3-3
PROCEDURE ST AT EMENT e e 3-4
GO T O ST ATEMENT e e e e 3-5
I S T AT EMENT e e s 3-6
CASE ST AT EMENT L e 3-6
WHILE ST AT EMENT e e 3-7
REPEAT ST ATEMENT i e 3-8
FOR ST AT EMENT .o e e 3-8
WM H ST AT EMEN T e e e e 3-9

Pascal/ 64000
Compiler

Table of Contents (Cont’d)

Chapter 4. EXPRESSIONS

GENERAL INFORMATION .ttt et e a et e et e e eaens 4-1
O P E R AT OR S it e et et e e et 4-3
ArINMEtiC OPOratOrS o e 4-4
BOOIeaAN O POt O S oottt e 4-6
oY= 0 o T-T - § o] o~ TN 4-6
RELATIONAL OPER AT OR S .ottt ettt e e e e neaans 4-7
Ordinal RelatioNals ..ot e e 4-7
R LT T Fe] 11 o F- T £-Y o] « IO PP PEUPPUPTOIN 4-8
L (g Lo T OF 1111 o X-Y 4 =T o] 4 H PPN 4-8
Pointer Relationals e 4-8
Set Relationals ..o e 4-8
Array and ReCord CoOmMPariSON ...ttt e e et e e e e eaaaneaenens 4-9
OP E R AND S .o e 4-9
SE T CONST RUCT OR ittt e ettt e et e e e e e e e e et e eaeneaees 4-9
FUNGCTION C AL oottt et e et e e e e aas 4-10
SE L E C T OR S oo e 4-11
Array SUDSCIIPES o 4-11
RECOId Sl C O . i e e e e e 4-12
Pointer Derefer N CINgG .. i e e 4-12
File BUffer SeleCtion ..o e e 4-12
Functional Type Changeot e e e e ans 4-12

Chapter 5: PROGRAMMING WITH PASCAL/64000

INT R O DU C T ON o e e e e e e aaans 5-1
DN T I E R S .ottt e et et e e et e e e et 5-1
PREDEFINED IDENTIFIERS ..ottt e e e 5-2
Predefined ProCeAUIreS ...t e e, 5-2
Predefined FUNCHIONSo e e 5-2
Predefined Files ..o e 5-3
Predefined Ty P e S (oo e e 5-3
Predefined Constants ... s 5-3
(0] =Tl (1Y 7 -1 S PPN 5-8
CHAR A CTER SE T .o e e et 5-83
Alphabetic CharacCters ..o e 5-3
N [0] 41 T-Y g Lol 04 4 -1 - Vol {-1 o - S O 5-4
SpeCial CRaraC OIS Lo 5-4
RESERVED WOR DS .o ettt e 5-5
NUMBE R S Lo e e e e e 5-6
L= =T o S PPN 5-7
REal NUM D OIS . i e 5-8
Floating Point NUMD eI S .o e e 5-9
ST RING LITERALS .o et aas 5-10
COMMEN T S i e e e 5-11
SEP AR A T OR S o 5-11

Pascal/ 64000

Compiler
Table of Contents (Cont’d)
Chapter 6: 1/0

OV E R VI EW o e et ettt ettt e et e 6-1
Relationship of Pascal/64000 Programs and Librariescocooiiiiiiniiiinnnn.. 6-1
PASCAL/ZBADOOD 1/ 0 ittt et e et et e e 6-6
Logical Files and PhySiCal FIl€So e e 6-6
Logical File States ..o e e 6-7

Logical Records, Physical Records, and
Variable Length ReCOIdS ...ttt eeas 6-8
The BUffer Variable ... e e e 6-8
Textfiles and Non—=teXt Filest e 6-9
"Deferred Get” Implementation of I/0 6-10
17O Error HaNAliNg ..o e et e et 6-10
Deviations From Standard PascCal e 6-11
Implementation Dependent Features ..o 6-12
Standard Procedures and Functions for 170 ... 6-13
APPEND ... e et eane 6-13
GO E o e 6-14
B O F o 6-15
E O LN i e 6-15
GE T o e e 6-16
LINE P O S i 6-16
M A X P O S L 6-17
O PN .o 6-17
OV E R P RINT L e e e 6-18
P A GE ..o i e 6-19
PO S T ON oo e 6-19
PR OMP T oo e e e et aaans 6-20
PU T e e e 6-20
RE AD .o e 6-20
RE A D DI oo e 6-24
RE A D LN L e e e 6-25
RE S E T oot s 6-26
REW RITE oo e e e e 6-27
3] = 1 PPN 6-28
ST RRE AD e 6-28
ST RWERITE .o e e 6-29
L 2 L = PP 6-30
W R T E D R ot e e e 6-33
W R T E LN L e e e e e 6-34
THE PASCAL 170 LIBRARY oottt ettt et 6-35
Global Variable Definitions ... 6-35
Description of the Pascal I/0 Library Routinesocoiiiiiiiiiiiiiiiiin 6-37
Library Routines Called by the Pascal/64000 Compilerccccoeovviiiiiiiniinnn.. 6-38
SIMULATED 170 LIBRA R Y o e 6-45
Description of Simulated I/0 Files and Devicescceiiiiiiiiiiiiii, 6-46

Vi

Pascal/64000

Compiler
Table of Contents (Cont’d)

Random Access ResStriCtions 6-55
DefiNiNg CA BUT OIS Lo ettt 6-55
Error Reporting ..o I U 6-56
Description of Simulated |70 Library Routinescoooviiiiiiiiiiiiiiiii, 6-57
INIT _SIMIO __LIB oo 6-57

o] (o XY - PPN 6-58

(o] €7 G PN 6-58

Lo o 1= 1 PPN 6-59
(o321 o1 o 11} PP PPN 6-60

o7 Yo 1= PP 6-60

o] o] 111 o) S OO PPPPN 6-61
=T 1 H PP 6-61
SEEK__TBC oottt e 6-62
NN e e e e e 6-63

Y 4) (- PP RPS 6-63
USER I/0 ROUTINE S ...ttt e e e e e e 6-64

Chapter 7: STANDARD PROCEDURES AND FUNCTIONS

DYNAMIC ALLOCATION/DE-ALLOCATION PROCEDURES ...t 7-1
General INformation 7-1
NE W D) i e e e e 7-1
D S P O S E (D) oottt e e 7-2
M A RK D) oottt e e e e e e e 7-2
RE L E A SE (D) oo iinii ittt e 7-2

ARITHME T TIC FUNCTIONS i e e e et 7-2
A B S 7-2
SR T i e 7-2
E X P o 7-3
LN 7-3
SIN, GO o 7-3
AR C T AN i 7-3

P RE DI C AT ES . e e 7-3
DD i s 7-3

TRANSFER FUNCTIONS Lo e 7-3
T RUNC o e e e, 7-3
ROUND Lo e e e 7-4

ORDINAL FUNCTIONS e e, 7-4
O R DD o 7-4
CHR 7-4
SU C C 7-5
PRE DD o 7-5

ADDR FUN C T ON Lo e e, 7-5

SHIFT AND ROTATE FUNCTIONS ... 7-6

vii

Pascal/ 64000

Compiler
Table of Contents (Cont’d)
Chapter 8. COMPILER OPTIONS

INT RODUC T ION .ot et e et e et e e e e e et et e e e e e aaaaananananns 8-1
AMNESIA [ON] [OFF] ittt 8-1
ANSI[ON] [OFF] oo 8-2
ASM __FILE .o 8-2
ASMB_SYM [ON] [OFF] ittt 8-3
DEBUG [ON] [OFF] oottt et ettt e e e et e eeeaes 8-3
EMIT __CODE [ON] [OFF] .ot e 8-3
END _ ORG oottt et e eaans 8-3
EXTENSIONS [ON] [OFF] ittt ettt 8-3
EXTVAR [ON] [OFF] oottt ettt e e e aeana s 8-4
FULL __LIST [ON] [OFF] .ottt 8-4
GLOBPROC [ON] [OFF] .ottt et 8-4
GLOBVAR [ON] [OFF] ittt ittt ettt ettt e e e e 8-4
(0T 0 2 | = o] . QN OO STt 8-4
LINE__NUMBERS [ON] [OFF] .ottt 8-5
o o1} [0] 1 = PP ST 8-5
LIST __CODE [ON] [OFF] .ottt et 8-5
LIST_OBJ [ON][OFF] ., e 8-6
OPTIMIZE [ON] [OFF] oottt ettt e e e 8-5
(0 21 10T 411 o - PPN 8-6

P A GE e 8-6
RANGE [ON] [OFF] .oiniiiiiiiiie et e e et e e et e e e e e e e et e e e e e e e e easaaeerarnnn e 8-6
RECURSIVE [ON] [OFF] ittt et eeeeeanns 8-6
SEPARATE [ON] [OFF] ittt ettt e et e e e e eeenas 8-6
LI I8 = < {14 T« PP 8-7
USER _DEFINED ..ottt et e e e e e e e e eenas 8-7
WARN [ON] [OFF] ittt ettt e e e et e e e e e eaees 8-8
2410 I I 0T 4] o X1 O 8-8
THE PREPROCESSOR PASS .o 8-8
GBI Al SY N X i 8-8
INCLUDE FILE S .. ot e 8-9
M A C R O S o 8-9
Conditional Compilationot 8-10
COMPIlEr DI C IV S .ot e 8-11
COMPILER GENERATED SYMBOLS ... e 8-12
Compiler Generated Labels ... e 8-12
DUPLIC ATE SYMBOLL S .ot e e e aeaan 8-12

viii

Pascal/ 64000
Compiler

Table of Contents (Cont’d)

Chapter 9. HOW TO COMPILE A PROGRAM

GEIN E R AL oottt e e e ettt 9-1
COMMAND SY N T A X ottt ettt et et ettt ettt e e ae e e e et e aea et eeeaenens 9-1

COMPIIE S YN X i e e et 9-2
HOW TO COMPILE A PROGRAM ..o e ettt e 9-5
THE SOURCE FILE ..ot ettt e e e e et e e e . 9-5
COMPILING .o e e e e e 9-6
OUT PUT LISTING S oottt e e e e ettt et e e e e e e e e e e e e aneenanns 9-7

Chapter 10. LINKER INSTRUCTIONS

INTRODUCTION .o e e e e et et et e et e e e et e et ae e aaraaneeas 10-1
LINKER REQUIREMENT S L. ittt r e e e e e e s e v e e e e et e e e aenenas 10-1
LINKE R SY N T A X it e e e et e e et e e e e e et et et e e e et aanenenaanans 10-2

HOW TO USE THE LINKER ... e e 10-5
Simple Calling Method ... 10-5
Interactive Calling Methodo s 10-6

1L = = S T = i P 10-9

LISt (LOAA MaD) oo e e 10-10
Cross-reference Table ... 10-11

NO =L O AD FILE S .o e e e 10-12
LINKER SYMBOL FILES ..o et ettt et et e te et e et e rae e aaeans 10-12
LIBRARY FILES oo e e e 10-12
ERROR MESSAGES ... i e e e aa e 10-13

Fatal Error MESSageS ..ottt ettt et et e e e 10-13
NONTatal ErTOr MeSSageS oot es 10-14
Appendix A: Compile Time ErTOrS ..o e A-1
LT o T O PPN -1

Pascal/64000

Compiler
List of Tables
4-1. Pascal/B4000 Operatorscooiiiiiiiiiiii s 4-5
List of lllustrations

2=, Program Sy N X .o e 2-1
2-2. Heading SYNtaX ..o e 2-2
2-3. Declaration SyNtax ... 2-3
2-4. LABEL Declaration Syntaxcoooiiiiiiiiiiiiire e 2-4
2-5. CONSTant Declaration SyntaX ..o e 2-5
2-68. CoNnstant SYNtaX ... e 2-5
2-7. TYPE Declaration SYNtax ... 2-6
2=8. T Y PE SYNtaX ..ottt e 2-7
2-9. Enumerated TypPe SyNtaX ..o 2-11
2-10. Subrange TypPe SYNtaX ..o e 2-12
2= 1 1. AITAY SYNEAX i e 2-14
2-12. St TYPE SYNEaAX i e 2-15
2-13. Record Type SyNtaX .o e 2-16
2-14. Field List SyntaX ..o e 2-16
2-15. File TYPe SYNEaX (i ettt ae e 2-17
2-16. Pointer TypPe SyNTaX ..o e 2-18
2-17. VARiable Declaration Syntax ..o 2-18
2-18. Routine Declaration Syntax ... 2-18
2-19. PROCEDURE Heading SyntaX ..o 2-20
2-20. FUNCTION Heading SYNtaxXco.oiiiiiiiiiiiiir e et e 2-20
2-21. Formal Parameter List Syntax ... 2-21
2-22. Actual Parameter List SyntaX ... 2-22
S-1. Statement Syntax ... e 3-2
3-2. Compound Statement Syntax ... 3-3
3-3. Assignment Statement Syntax ... 3-4
3-4. Procedure Statement Syntax ... 3-4
3-5. GOTO Statement Syntax ..o s 3-5
3-6. IF Statement SyntaX ... e 3-6
3-7. CASE Statement SyntaX ... 3-7
3-8. WHILE Statement Syntax ..o 3-8
3-9. REPEAT Statement SyntaX ... 3-8
3-10. FOR Statement Syntax ... 3-9
3-11. WITH Statement Syntax ... e 3-10

Pascal/ 64000

Compiler

roRisEise
NoOahODd =

»
|
-

(J‘l("ﬂ(ﬂ(ﬂ
BN

List of lllustrations (Cont’d)

EXPreSSION SY M aX (it eaes 4-1
Simple EXPression SYNtaX ..o e 4-1
JBrM SN A X i e et 4-2
FaCtOr Sy N aX (oo 4-2
Set CoNstrUCtOr SYNtaX ... e 4-9
FUNCion Call SYNtaX ... e 4-10
Array SeleCtor SYNtaX ... e 4-11
Identifier SYNtaX ... 5-1
INEEGEr SYNIAX oo e 5-7
REaAl SYNEAX L. e e 5-8
String Literal SyntaX ... 5-11
Block Diagram of Pascal/64000 and /O Librariesc.oooiiiiiiiiiiinn, 6-2
Compiler Options SYNtaX ..o 8-2

Xi

Pascal/64000
Compiler

NOTES

Xii

Chapter 1
GENERAL INFORMATION
INTRODUCTION

This manual provides a description of the Pascal/64000 compiler and its operation on the HP
Model 64000 Logic Development System. A description of the compiler options and their use
is also included. Microprocessor dependent features of the compiler are documented in
processor-dependent supplements.

NOTE

Refer to the Installation and Configuration Reference Manual
for BOOT-UP operations and SOFTWARE UPDATING
PROCEDURES when updating the system from a flexible
disc.

PASCAL/64000 COMPILER

The Pascal/64000 compiler is an application program that translates Pascal/ 64000 source
programs into relocatable object files, and, optionally, generates a listing file.

Pascal/ 64000 is an implementation of a subset of the Pascal programming language "stan-
dard”, defined by Jensen and Wirth in PASCAL User Manual and Report (second edition)
published by Springer & Verlag, 1976. The language has been enhanced to improve its utility
as a tool for microprocessor system programming.

The Pascal/64000 compiler uses a three-pass compilation process to translate source
programs directly into relocatable code for the target microprocessor. Relocatable files for
a particular microprocessor may be linked together to produce an absolute program file.
Then, by using the emulator, the absolute file can be loaded into emulation memory and ex-
ecuted in the proper microprocessor environment.

An additional special preprocessor pass is available which gives the user the ability to have
INCLUDE files, conditional compilation, and macros.

SUBSET LIMITATIONS

Since Pascal/64000 is a subset of Jensen and Wirth "standard” Pascal, there are some
limitations. Pascal/ 64000 is compatible with the "standard” except for the subset limitations
listed in the following subparagraphs:

Pascal/64000
Compiler

e Strings in Pascal/64000 are defined differently than in standard Pascal. A
Pascal/64000 string has a maximum length of 255 characters. In addition, it's length
is dynamic (as opposed to fixed in standard Pascal) and can change during program
execution.

¢ Packing of data is not carried below the byte level;, the key word, PACKED, is ig-
nored by the compiler, except when defining a string, and the standard procedures
PACK and UNPACK are not implemented. Bit packing may be achieved in 8-, 16-,
or 32-bit data items by using the SET construct "*” (AND), "+" (OR), and "-" (set
difference), predefined SHIFT function, and functional type change operations.

* Sets are limited to 256 elements or less of any ordinal type. Set expressions
with integer elements will be interpreted as being members of the SET OF 0..255 un-
less specifically qualified. Subsets are allowed, but the value of the maximum ele-
ment of the SET may not exceed 255 (i.e., SET OF 240..255).

¢ Procedures and functions are not allowed as parameters at this time.

* Integers are 16-bit signhed numbers in the range -32768..32767. 32-bit signed in-
tegers are implemented for the selected microprocessors. Refer to the processor-
dependent manual supplements for specific information.

+ Set subranges are not implemented.

o The standard function SQR is not implemented.

PASCAL/64000 EXTENSIONS

Pascal/64000 contains enhancements that provide more versatility for microprocessor
programming. Since these enhancements are not part of standard Pascal, they are explained
in the following paragraphs.

The CASE Statement

The CASE statement may contain an optional OTHERWISE clause to specify action to be
taken if the value of the CASE expression is not equal to any of the constant values in the
CASE statement.

CONST, TYPE, and VAR Declarations

The LABEL declaration, if used, must be placed ahead of the other declarations in the block
of the program. The CONST, TYPE, and VAR declaration sections may follow in any order
and may be repeated as often as required. The repetition of CONST, TYPE, and VAR
declarations (in any order) is a Pascal/64000 extension to the standard Pascal.

Identifiers

In standard Pascal, only the first eight characters of two identifiers are compared to see if
they are the same. In Pascal/ 64000, the first 15 characters are compared.

1-2

Pascal/ 64000
Compiler

Letter cases in Pascal/64000 are significant while they are ignored in standard Pascal. In
Pascal/ 64000, the identifier TEMP and Temp are different.

NEW and DISPOSE Procedures

In standard Pascal, procedures NEW and DISPOSE are used to control the area of memory
required for dynamic storage. This area of memory is commonly referred to as the heap. It is
sometimes extremely difficult to keep track of all the dynamic variables in a program merely
to dispose of them when they are no longer required. Pascal/ 64000 provides two additional
procedures, MARK and RELEASE, which simplify heap management in many situations.
When it is known in advance that a group of dynamic variables may be needed on a short-
term basis, the state of the heap, before the short-term variables are allocated, can be
recorded by using the procedure MARK. MARK(p) is a predefined procedure having one pa-
rameter, a pointer variable, that records the heap state at the time MARK is executed. Calling
MARKI(p) causes assignment of the first free address in the heap to (p). Any execution of
the procedure NEW will build new data structures, starting at the address held in (p).

When the short-term variables are no longer required, the heap can be returned to its original
condition by using the procedure RELEASE. RELEASE is a predefined procedure having one
parameter, a pointer variable, that restores the heap to the state present at the time of
MARK(p). All dynamic variables created after MARK was called, are effectively destroyed
and the memory space occupied by those variables is available for allocation to new dynamic
variables. The procedure RELEASE may return a large section of memory containing many
dynamic variables. Theretfore, it may have the effect of many calls to DISPOSE.

External and Global Declarations

Pascal/ 64000 allows separate compilation of modules which permit procedures and variables
to be declared EXTERNAL or GLOBAL in a Pascal module so they may be defined or ac-
cessed in other Pascal, C, or assembly language modules.

Separate Relocatable Area Assignments

Pascal/ 64000 allows program code and constants to be compiled to a separate relocatable
area from data and variables, permitting the design of ROM and RAM memory systems.
Absolute Memory Assignment

In addition to external linking, variables may be assigned to absolute memory locations per-
mitting easy access to memory-mapped I/0 addresses.

Constant-value Expressions

Wherever standard Pascal allows a constant, Pascal/ 64000 allows a constant expression. A

constant expression is an expression containing operators and standard functions, con-
stants which have already been defined, and literals.

Pascal/64000
Compiler

Functional Type Conversion

Expressions or variables are permitted to have their implicit type changed by being included
as the parameters of a "function” call of any named TYPE. Standard Pascal allows this by the
use of variant type records, but the explicit functional type change greatly improves the
readability of the source program.

Example:

VAR

avgmph, time : INTEGER,; travel: CHAR;

then when the statement:
avgmph = time * INTEGER(travel);

is executed, the CHAR variable, travel, is converted to INTEGER and multiplied by the
INTEGER variable, time.

ADDR Function

The built-in function ADDR returns a value compatible with any pointer type. Standard
Pascal never allows the user access to address information.

With the use of the ADDR function, pointers may point to any variable. Standard Pascal only
allows pointers to dynamically allocate memory space.
SHIFT and ROTATE Functions

The built-in functions, SHIFT and ROTATE, provide for logical and circular shifting of data.

Predefined Data Type

The predefined data types BYTE, (or SIGNED__8), SIGNED__16, and SIGNED__32 represent
8-bit, 16-bit, and 32-bit signed integers respectively.

The predefined data types UNSIGNED__8, UNSIGNED__16, and UNSIGNED__32 represent
8-bit, 16-bit, and 32-bit unsigned integers respectively.

$USER__DEFINEDS$ Option

With the SUSER__DEFINEDS option, the user may selectively redefine the meaning to the

arithmetic operators (+ -, * /, DIV, =, <>, <, >, <=, and >=). For example, (¥) may be
redefined to do matrix multiplication when its operands are two~-dimensional matrices.

1-4

Pascal/ 64000
Compiler

PASCAL/64000 ENVIRONMENT

The Pascal/64000 compiler will run on any HP 64000 system that has memory expansion.
The compiled code may be run using the proper emulation subsystem for the target micro-
processor or on any independent system which uses the same target microprocessor. The
following paragraphs list the Pascal/ 64000 character set and data types.

CHARACTER SET

Alphabetic characters - All upper and lower case characters (A through Z
and a through z).

Numeric characters - Digits O through 9 for decimal numbers, including
A through F for hexadecimal numbers.

Special characters - Blank, dollar sign, apostrophe, left and right
parentheses, comma, plus, minus, equals, less than,
greater than, decimal point, slash, colon, semi-
colon, left and right brackets, left and right braces,
caret, asterisk, and underscore (__).

DATA TYPES
Intrinsic Scalar Data Types

BOOLEAN - An 8-bit value representing the value TRUE (1) or FALSE (0).

BYTE - An 8-bit signed integer in the range -128 to +127.

CHAR - An 8-bit value in the set of characters defined by the 8-bit ASCII
character set.

INTEGER - A 16-bit or 32-bit signed number (depending on the micro-
processor used).

LONGREAL - A 64-bit binary value representing a floating-point number in IEEE
double precision format.

REAL - A 32-bit binary value representing a floating-point number in IEEE
single precision format.

SIGNED__8 - An 8-bit signed interger in the range -128 to +127.

SIGNED__ 16 - A 16-bit signed integer in the range -32768 to +32767.

SIGNED__ 32
STRING
UNSIGNED _8

UNSIGNED__ 16

UNSIGNED__ 32

ARRAY TYPE

POINTER TYPE

RECORD TYPE

SCALAR TYPE

SET TYPE

Pascal/ 64000
Compiler

Intrinsic Scalar Data Types (Cont’d)

- A 32-bit signed integer in the range from -2,147,483,648 to
+2,147,483,647. (Not defined for the 6800 and 6809
microprocessors.)

- A 256-byte array equivalent to PACKED ARRAY [0..255] of
CHAR. Byte O contains the run-time string length.

- An 8-bit unsigned integer in the range O to 25S5.
- A 16-bit unsigned integer in the range O to 65535.

- A 32-bit unsigned integer in the range O to 4,294,967,295. (Not
defined for the 6800 and 6809 microprocessors.)

User-definable Data Types

- A structure consisting of a fixed number of components which
are all of the same type (called the component type), in which
the components (elements of the array) are accessed by index
expressions. The array type definition specifies the component
type and the index type. The component type may be of any
type, allowing "ARRAY OF ARRAY (OF ARRAY..)” to represent
multi-dimensioned arrays with an arbitrary number of indices. The
index type must be a simple type such as a scalar or subrange

type.

- A type representing a storage address for the target
microprocessor.

- A structure consisting of a fixed number of components, called
fields, each of which can be of any type. For each field, the
record definition specifies a field name identifier and the field

type.

- A type that defines an ordered set of values by enumerating the
identifiers which denote these values.

- A structure defining the set of values that is the power set of
its base type, (i.e., the set of all subsets of values of the base
type). The base type must be a scalar or subrange type.

Pascal/ 64000

Compiler
User-definable Data Types (Cont’d)

STRING TYPE - A special class of arrays defined as PACKED ARRAY [O..n] of
CHAR (where n <= 255).

SUBRANGE TYPE - A type that is identified as a subrange of a previously defined or-
dinal type (char, byte, integer, or scalar) in which the smallest and
largest values are user defined.

TEXT TYPE - The type text is provided for doing common types of character-

and line-oriented input and output. Variables of type TEXT are
termed textfiles. Each component of a textfile is of the type CHAR,
but the sequence of characters in a textfile is divided into lines. All
operations applicable to a FILE OF CHAR can be performed on
textfiles.
NOTE

Keywords must be all upper-case letters. Predefined

identitiers such as INTEGER, BYTE, ADDR, and SHIFT

must be all uppercase letters. User defined identitiers may

be any combination of upper- or lower-case letters. Only
the first 15 characters of an identifier are significant.

MANUAL ORGANIZATION
This manual fully documents the specific Pascal/64000 implementation of Jensen and Wirth

Pascal. The reader wishing to learn Pascal should refer to an introductory text.

Chapters 2 thru 4 of this manual discuss the features of Pascal/64000in a top-down fashion,
starting with programs and ending with expressions.

Chapter 5 discusses the Pascal/64000 programming features that must be considered when
writing source programs.

Chapter 6 discusses Input/Output characteristics.

Chapter 7 presents standard procedures and functions supported by Pascal/64000.
Chapter 8 discusses the Pascal/ 64000 compiler options.

Chapter 9 explains how to compile a Pascal/64000 program.

Chapter 10 explains how to link program modules compiled with the Pascal/64000.

Appendix A lists the Pascal/ 64000 compile-time and run-time errors.

1-7

NOTES

Pascal/ 64000
Compiler

1-8

Chapter 2

GENERAL FORM OF A PASCAL PROGRAM

INTRODUCTION

Every Pascal/64000 program consists of a main program module and may contain as many
procedure and function routines as necessary to properly execute the program. A program
contains a heading, a declaration section, an optional compound statement, and concludes
with a period (.) as indicated in figure 2-1.

Pascal/64000 allows a number of Pascal programs and assembly language modules to be
linked together to form an executable program. If the compound statement is included in the
program, an entry point is defined for the executable program. Execution begins at the begin-
ning of this compound statement. If the compound statement is omitted, no entry point is
defined. In this instance, the program is a collection of variables and routines that may be cal-
led and used by other programs. The omission of the program compound statement is an HP
extension of Standard Pascal.

PROGRAM

PROGRAM ~———»{ HEADING - DECLARATION >O
COMPOUND

STATEMENT

Figure 2-1. Program Syntax

PROGRAM HEADING

The word PROGRAM is a reserved word and is always the first word of a Pascal/64000
program heading. The program identifier (program name) follows the reserved word
PROGRAM as shown in figure 2-2.

Pascal/64000 does not allow a program parameter list. The existence of program para-
meters implies the existence of an operating system which calls or executes the Pascal
program. Such an operating system may not exist in a microprocessor environment.

Pascal/64000
Compiler

Example:

PROGRAM NEWRS232;

HEADING PROGRAM IDENTIFER —>©—>

Figure 2-2. Heading Syntax

PROGRAM BLOCK

The program block contains declarations and statements (optional). The deciaration section
consists of definitions of labels, constants and types, declarations of variables, procedures
and functions. ldentitiers and labels declared in the main program block are known as global
identifiers and labels. The statement part is made up of a compound statement which may be
empty or may contain several simple or structured statements.

PASCAL PROGRAM DECLARATIONS

General Information

Every program consists of a heading and a block. The heading has been discussed previous-—
ly. The block consists of a declaration section, and a statement section (optional) that
specifies the action to be executed. Items identified in the program declaration are con-
sidered to be global in scope.

A complete block contains the following parts:

a. <LABEL declaration>

b. <CONSTant declarations>

c. <TYPE definitions>

d. <VARiable declarations>

e. <PROCEDURE and FUNCTION declarations>
f. <statements> (optional)

The declaration syntax is shown in figure 2-3.

Pascal/ 64000
Compiler

DECLARATION INTEGER

LABEL

TYPE IDENTIFIER —.@-——’ TYPE

—

CONSTANT

oy

VAR | IDENTIFIER : TYPE

FUNCTION
HEADING

{ 3

BLOCK

PROCEDURE

HEADING DIRECTIVE

Figure 2-3. Declaration Syntax

The LABEL declaration, if used, must precede the other declarations in the block. The
CONSTant, TYPE, and VARiable parts may follow in any order and may be repeated as often
as required. The repetition of CONST, TYPE, and VAR declarations is an HP extension to
standard Pascal. The PROCEDURE and FUNCTION parts then follow in any order and may
also be repeated as often as required.

Each part of the declaration section is discussed in detail in the following paragraphs. The
statement section is discussed in Chapter 3.

Pascal/64000
Compiler

DECLARATION SECTION

Label Declaration

Any statement in a program body may be identified by a label. Prior to use, however, the
label must be identified in the LABEL declaration section of the block. When used, the
LABEL declaration section must be placed before the other declaration sections in the block.
Figure 2-4 shows the LABEL declaration syntax.

A label is an unsigned integer, no more than four digits long (1 through 9999) where leading
zeros are not significant. Every label declared in the LABEL declaration section must sub-
sequently be defined in the body of the block where the label is declared.

The function of the label is to identify a statement. Once identified, program control may be
transferred to that statement by using a GOTO <label> statement. The following example il-
lustrates both the LABEL declaration and label use.

PROGRAM showlabel;

LABEL
1234;
VAR
a,biinteger,
BEGIN

IFa>b

THEN
GOTO 1234

ELSE

1234 WRITELINE
END. {showlabel}

UNSIGNED INTEGER
IN THE RANGE
1...9999

LABEL
DECLARATION

Figure 2-4. LABEL Declaration Syntax

Pascal/64000
Compiler

CONSTant Declaration

The reserved word CONST precedes one or more constant definitions. A constant definition con-
sists of an identifier, the equals sign (=), and a constant value.

A CONSTant definition introduces an identifier as a synonym for a constant value. A constant may
denote the value for an ordinal type, a real type, a pointer type, a set type, or a string type.
CONSTants may not denote values for an array type, a record type, or a file type.

NOTE

Constants are assumed to be signed entities. Their magnitude deter-
mines whether they are considered to be signed 8, signed 16, or
signed_32.

The syntax diagram for a CONSTant declaration is given in figure 2-5, and the syntax diagram for a
constant is expanded in figure 2-6.

CONSTANT CONST | IDENTIFIER CONSTANT
DECLARATION

Figure 2-5. CONSTant Declaration Syntax

CONSTANT EXPRESSION |—>

Figure 2-6. Constant Syntax

Constant Expressions

A constant can take the form of a set constructor, the keyword NIL, a functional type change, a
string literal, a previously defined constant identifier, an integer, a real (optionally preceded by + or
-), or an expression of an ordinal type i.e., INTEGER, BOOLEAN, CHARacter, subrange, or
enumerated type. The use of ordinal expressions as constants is an HP extension.

Example:

CONST
pagesize = 55;
maxpages = 99;
pi = 3.14159;
pagenum = maxpages - pagecount;
heading a = 'List is now on.’;

2-5

Pascal/64000
Compiler

set_const = ['A",’B’,’C’];
unsigned_const = UNSIGNED_16 (1),

Constant expressions are constructed according to the rules defined for general expressions (refer
to Chapter 4). The operands in an expression must be either literals or constants that have already
been defined. In addition, the operands must be ordinal types. No real or set operations are al-
lowed in expressions. The operators allowed are +, -, *, DIV, MOD, and the predefined functions
ORD, CHR, PRED, ABS, and SUCC.

TYPE DEFINITIONS

Types defined in this chapter are the Predefined Types and Structured Types.

Data items can be characterized by their type. The TYPE determines a set of attributes as follows:
a. The set of permissable operations that may be performed on an object of that type.
b. The set of values that may be assumed by an object of that type.
c. The amount of storage required by objects of that type.

Certain types are predefined. Other types can be defined by the user.

TYPE DECLARATION

In the type declaration section, an identifier can be associated with a type definition. The reserved
word TYPE precedes one or more type definitions. A type definition consists of an identifier, the
equals (=) sign, and a data type.

The TYPE declaration syntax is shown in figure 2-7.

TYPE TYPE IDENTIFIER | TYPE
DECLARATION

Figure 2-7. TYPE Declaration Syntax

2-6

Pascal/ 64000
Compiler

The following paragraphs explain the permissible values and operations for the various data

types.

The three most general catagories of data type are simple, structured, and pointer.

Simple data types are the types ordinal, real, or longreal. Ordinal types include the standard
types INTEGER, BYTE, SIGNED__8, SIGNED__ 16, SIGNED__ 32, UNSIGNED__ 8, UNSIGNED_ 16,
UNSIGNED __ 32, CHAR, and BOOLEAN, as well as enumerated and subrange types defined by

the user.

Structured data types are the types array, record, set, or file. The standard type TEXT is a

variant of the file type.

Pointer data types define pointer variables which point to dynamically allocated variables on

the heap.

The TYPE syntax is shown in figure 2-8.

TYPE __T_—>

TYPE IDENTIFIER

P—

ENUMERATED
TYPE

.

SUBRANGE TYPE |

——

POINTER TYPE

—

STRING TYPE

—

Gy

—

|

ARRAY TYPE

I

N

RECORD TYPE

I

N——]

SET TYPE

—A

\—>‘

FILE TYPE

Figure 2-8. TYPE Syntax

2-7

Pascal/64000
Compiler

SIMPLE TYPES

All simple types define an ordered set of values. Simple types are the types ordinal, real, or
longreal.

Ordinal Types

Ordinal types are the predefined ordinal types: BOOLEAN, CHAR, INTEGER, BYTE,
SIGNED__8, SIGNED__16, SIGNED__32, UNSIGNED__8, UNSIGNED__16, and UNSIGNED__32;
the user defined ordinal types, enumerated and subrange; and type identifiers that have been
equated to another ordinal type.

Predefined Ordinal Types

BOOLEAN. The type Boolean is an ordinal type having two elements, BOOLEAN =
(FALSE,TRUE) and occupies one byte of memory. Implicit is the concept that false < true.
The operators applicable to Boolean operands are NOT, AND, OR. NOT takes precedence
over AND; AND takes precedence over OR., The relational operators always yield Boolean
values. The permissible operators are as follows:

assignment =
boolean NOT, AND, OR
relational <, <=, =<> >= >IN

CHAR. The type CHAR comprises the ASCIl 8-bit character set. Variables of type CHAR
occupy one byte ot memory. The operators defined for CHAR operands and the predefined
functions that result in CHAR values are summarized as follows:

Assignment Operator

Relational Operators <, <=, =, <> >= >IN

Predetined Functions CHR, PRED, SUCC

INTEGER. The INTEGER type is predefined as a subrange of the negative and positive in-
tegers. For the 6800 and 6809 microprocessors, INTEGER variables occupy one 16-bit word
while for all other processors, INTEGER variables occupy two 16-bit words.

MININT and MAXINT are predefined constants which are the values of the minimum and
maximum integers for a particular processor.

For the 6800 and 6809 microprocessors, MININT, MAXINT, and INTEGER are defined as
follows:

Pascal/ 64000
Compiler

CONST
MININT = -32768;
MAXINT = 32767,

TYPE
INTEGER = MININT..MAXINT;

For all other microprocessors, MININT, MAXINT, and INTEGER are defined as follows:
CONST
MININT = -2147483648;
MAXINT = 2147483647,

TYPE
INTEGER = MININT..MAXINT,;

The operators defined for integer operands and functions returning INTEGER values are as
follows:

Assignment Operator =

Relational Operators < <=, =,<>,>=, >IN
Arithmetic Operators + -, ¥ DIV, MOD
Predefined Functions ABS, LINEPOS, MAXPOS, ORD, POSITION,

PRED, ROUND, SUCC, TRUNC

BYTE, SIGNED__8, SIGNED__16, and SIGNED__32. These predefined types are subranges of
negative and positive integers. All operations that may be performed on INTEGER types may
be performed on these types.

BYTE and SIGNED__8 variables occupy one byte of memory and are defined as follows:

TYPE
BYTE = -128..127,
SIGNED__8= -128..127;

SIGNED__ 16 variables occupy two bytes of memory and are defined as follows:

TYPE
SIGNED__16 = -32768..32767,

Pascal/ 64000
Compiler

SIGNED__32 variables occupy four bytes of memory. SIGNED__32 is not defined for the
6800 and 6809 microprocessors.

TYPE
SIGNED__32 = -2147483648..2147483647,

UNSIGNED__8, UNSIGNED__16, and UNSIGNED 32. These types are defined as a subrange
of positive integers. Unsigned types are not compatible with signed types.

Assume for the following definitions, the following type definition:
TYPE
UNSIGNED = {largest unsigned type for processor};

UNSIGNED__ 8 variables occupy one byte of memory and may contain values in the range O
through 255.

TYPE
UNSIGNED_ 8 = UNSIGNED(0)..UNSIGNED(OFFH);

UNSIGNED__ 16 variables occupy two bytes of memory and may contain values in the range O
through 65535.

TYPE
UNSIGNED__ 16 = UNSIGNED(0)..UNSIGNED(OFFFFH);

UNSIGNED__ 32 variables occupy four bytes of memory and may contain values in the range O
through 4,294,967,285. UNSIGNED__32 is not defined for the 6800 and 6809
microprocessors.

TYPE
UNSIGNED__ 32 = UNSIGNED(0)..UNSIGNED(OFFFFFFFFH);

The operators defined for unsigned operands and predefined functions that result in unsigned
values are as follows:

Assignment Operator

Relational Operators <, <=, =<> >= >IN
Arithmetic Operators +, -, ¥ DIV, MOD
Predetfined Functions PRED, SUCC

Pascal/64000
Compiler

USER DEFINED ORDINAL TYPES

The user defined types discussed in the following paragraphs are the enumerated type and
subrange type.

Enumerated Type

Enumeration defines an ordered set of values by listing the identifiers of the ordered values.
The identifiers are constants that have ordinal values beginning with O for the first identifier,
1 for the second identifier, and so torth. Enumerated type variables occupy one byte of
memory. The syntax diagram tor the enumerated type is shown in figure 2-9.

ENUMERATED IDENTIFIER
TYPE

Figure 2-9. Enumerated Type Syntax

Examples:
color = (black, brown, red, orange);
day = (sunday, monday, tuesday);
The ordinal value of black is 0. The ordinal value of orange is 3. The ordinal value of mon-~
day is 1.
The operators defined for enumerated type operands and the operations that result in
enumerated type values are as follows:
Assignment Operator =
Relational Operators <, <=, =,<>, >= >IN

Predefined Functions ORD, PRED, SUCC

Subrange Type

A subrange type is a sequential subset of an ordinal base type. A subrange type consists of
a lower bound, the special symbol (..), and an upper bound. The upper and lower bounds must

Pascal/64000
Compiler

be constant values of the same ordinal type. The lower bound cannot be greater than the
upper bound.

The amount of memory occupied by subrange variables depends on the values of the upper
and lower bounds. In general, the amount of memory will be the smallest that can contain all
the values in the subrange. For example:

TYPE
S1=-128..127; {occupies one byte}
S$2 = -129..128; {occupies two bytes}

A variable of a subrange type possesses all of the attributes of the base type except that its
values are restricted to the specified closed range. The syntax for the subrange type is
shown in figure 2-10.

SUBRAT’i'GDE > CONSTANT l—.@—> CONSTANT |—»

Figure 2-10. Subrange Type Syntax

Examples:
TYPE
Dip = 1..99;
Alpha ="'A’.’K’;

REAL TYPES

Real types are the predefined types REAL, LONGREAL, and identifiers that have been
equated to real types.

REAL. The set of Real numbers is a subset of whole nhumbers and is not an ordinal type.
The Real number range includes values between +/-1038% with six significant decimal digits.
Each real number occupies two words in memory. The operators defined for REAL operands
and the operations that result in REAL values are as follows:

Pascal/ 64000
Compiler

Assignment Operator

Relational Operators <, <=, =, <>, >=, >
Arithmetic Operators + - %/
Predefined Functions ABS, ARCTAN, COS, EXP, LN, SIN, SQRT

LONGREAL. The set of Longreal numbers is a subset of real numbers. Each longreal num-
ber occupies four words in memory. The precision of Longreal is greater than that of Real.
The values of the Longreal range are between +/-103%98 with 15 significant decimal digits.
Any of the set of operators applicable to Real numbers are also applicable to Longreal
numbers.

STRUCTURED TYPES

The structured types Array, Record, Set, and File are characterized by component type and
by the structuring method. A structured type definition may contain an indication of the
preferred data representation by use of the term PACKED. The term PACKED is an indication
to the compiler that data storage is to be economized.

Array

An array is made up of a fixed number of components, each of which can be directly ac-
cessed. Each array has an index by which a component is selected from the array. The in—-
dex must be an ordinal type, e.g., [1..6]. The number of elements in the array is specified by
the index. The components can be any type; but all components are of the same type, called
the base type. Itis illegal to use the form [INTEGER] as an index, even though INTEGER is an
ordinal type. The syntax of the Array is shown in figure 2-11.

Examples:
TYPE
Root = ARRAY ['1'..'6'] OF REAL;
Freq = PACKED ARRAY ['1'..’6'] OF REAL;

Multi-dimensioned arrays, i.e., arrays of arrays, are possible by use of the following format:

TYPE
row = ARRAY [1..5] OF REAL;
matrix = ARRAY [1..10] OF row;
or shortened to the equivalent form:

TYPE
matrix = ARRAY [1..5] OF ARRAY [1..10] OF REAL;

or reduced further to the form:

TYPE
matrix = ARRAY [1..5, 1..10] OF REAL;

Pascal/64000
Compiler

ARRAY

] OF TYPE —
TYPE ARRAY [TYPE

Figure 2-11. Array Syntax

String Data Types

Strings are a family of standard data types that are similar to packed arrays of character,
but have special properties. String data types are an HP extension to standard Pascal.

The type STRING is predefined as follows:

TYPE
STRING = PACKED ARRAY[0..225] OF CHAR,;

Shorter string data types may also be defined. The lower bound of the packed array index
type must be zero (0) and the upper bound must be less than or equal to 255. For example:

TYPE
STRING__ 10 = PACKED ARRAY[0..10] OF CHAR;

String data types have a dynamic length. The length is contained in the zero byte position of
the packed array. The length may be any value from zero to the maximum declared length of
the string variable. For example:

VAR
S: STRING;
I INTEGER;
BEGIN
S :='ABC’; {Sets S[0] := CHR(3);}
| := ORD (S[0)]); {| now contains 3}

String data types ot any length are compatible with one another. In addition, string data types
are compatible with string literals. The individual characters of a string may be accessed like
the elements of any other array.

The operators that may be used with string operands are the following:

Pascal/ 64000
Compiler
Assignment Operator =

Relational Operators <, <=, =, <>, >=,>

Set

A set is the powerset (set of all subsets) of an ordinal type called the base type. The base
type may be any ordinal type containing 256 or fewer elements. The syntax of a SET type is
shown in figure 2-12.

SET
OF TYPE >

Figure 2-12. Set Type Syntax

The set base type must be an ordinal type. In the case of a subrange of integers, the low
bound must be >= to 0 and the high bound must be <= 2585.

Relational operators for sets include =, >=, <=, and <>. These operators can be used be-
tween sets with results that are Boolean. The symbol IN may be used between an ordinal
expression and a simple set expression.

Examples:

CHARSET = SET OF CHAR,;

FRUIT = (apple, banana, cherry, peach, pear, pineapple);
FRUITSET = SET OF FRUIT;

SOMEFRUIT = SET OF apple..cherry;

Sets can be manipulated by set union (4), set difference (-), and set intersection (¥) to
detfine new element groups. The maximum number of elements in a set is limited to 256.

Record

RECORD is a Pascal reserved word signifying a structured data type having a fixed number
of elements. These elements, called fields, can be of different types. The fields are
enumerated and their types defined in the record TYPE declaration. Different records may
have fields of the same name, but fields within a record must have distinct names. The field
list follows each RECORD identifier. Each RECORD declaration is completed by END;.

A RECORD type definition may contain a "variant” part. This enables variables of type
RECORD, although of identical type, to exhibit structures that ditfer in the number and type
of their component parts. The "variant” part may contain an optional "tag” field. The value of
the tag field indicates which of the variants is currently valid. If a tag field is not specified,
then determination of which variant is currently valid is left to the programmer.

Pascal/64000
Compiler

Each label in the variant CASE declaration must be of the same type as the tag type. Fields
of type FILE or types which contain files are not permitted in the variant part of a RECORD.
The label OTHERWISE is not allowed in the variant CASE declaration. The syntax for a
record type is shown in figure 2-13, and the syntax for a field list is shown in figure 2-14.

RECORD FIELD
TYPE E—— RECORD 1 LIST —— END

Figure 2-13. Record Type Syntax

FIELD

LIST N /\ (
r ~-
EE=niNe
TYPE

(CASE / > IDENTIFIER
IDENTIFIER

)
U)

CONSTANT : (| FIELD ‘) -~/
LIST

Figure 2-14. Field List Syntax

Pascal/ 64000
Compiler

File

A file type definition specifies a data structure consisting of a sequence of components
which are all of the same type. Only one component of a file is accessible at a time. Files are
usually associated with peripheral storage devices and their length is not specitied in the
program. See figure 2-15 for a diagram of the File Type syntax.

FILE

Figure 2-15. File Type Syntax

The component type of a FILE can be any type except FILE or a type which contains a file.

A part of every file variable is the buffer variable. Given the following definition:

VAR F . FILE OF T;

then the buffer variable, F”, is an ordinary variable of type T. The buffer variable is used to
hold the currently accessible component of a file when reading or writing to the file.

POINTER TYPES

Variables that are declared in a program are accessible by their identifiers. These variables
exist during the entire execution of the level of program to which they are local, and are
therefore called static variables.

Dynamic variables can be generated without any correlation to program structure by using
the standard procedure NEW(p). New memory space is allocated for the new dynamic vari-
able, and the pointer variable (p) holds the address of the new dynamic variable. Thus a
pointer variable may "point” to a dynamic variable. See figure 2-16 for the pointer type syn-
tax diagram.

A pointer may only refer to dynamic variables of a single type called the "base type”. The
base type is specified in the pointer definition. A pointer variable may be assigned the value
NIL. NIL points to no location in memory. NIL is a reserved word that may be used in a
pointer at the end of a linked data structure to indicate the end of the data structure.

Pascal/64000
Compiler

The base type identifier is an exception to the rule that all identifiers must be declared before
they are used.

Examples:

father, mother, child, sibling: “person;
carbon, film, wirewound: “resistor;

POINTER . () . TYPE >
TYPE | IDENTIFIER

Figure 2-16. Pointer Type Syntax

VARiable

VARiables are locations in memory that are identified by name, and exist during the entire
execution of the level of program to which they are local. Variables that have been declared

are called static variables.

Dynamic variables, on the other hand, can be generated without any correlation to program
structure. Variables contain values that can be changed during the execution of the program.
The VARiable declaration syntax is shown in figure 2-17.

VARIABLE
DECLARATION

TYPE

IDENTIFER

Figure 2-17. VARiable Declaration Syntax

VARiable DECLARATION

A variable declaration associates an identifier with a type. The identifier may then appear as
a variable in statements.

Pascal/64000
Compiler

The reserved word VAR precedes one or more variable declarations. A variable declaration
consists of an identifier, a colon (:), and a type. The user may list any number of identifiers
separated by commas. The identifiers will then be variables of the same type.

Examples:
VAR

aset : char;

bset, dset, flop . INTEGER,;

freq : PACKED ARRAY [1..15] of REAL;
root : ARRAY [(alpha, beta)] of COLOR;
cset : FILE OF CHAR,;

nset : SET OF noun;

p1,p2: “person;

The value of a variable is undefined at the time of declaration.

ROUTINE DECLARATIONS

PROCEDURE and FUNCTION declarations may take place in the declaration portion of the
main program, or within other procedures or functions. Routines must be declared before
they are used. Each routine, whether procedure or function, is declared in a similar fashion.
The routine heading is followed by either the directives FORWARD or EXTERNAL or by a
block that contains the declarations and statements comprising the routine. The routine dec-
laration syntax is shown in figure 2-18.

PROCEDURE
HEADING BLOCK
ROUTINE
DECLARATION
FUNCTION S
HEADING ECTIVE

Figure 2-18. Routine Declaration Syntax

Procedure Declaration

Procedures perform specific tasks or algorithms by execution of the statements within the
procedure. Each procedure must be declared before its use. The procedure heading syntax
is shown in figure 2-19.

Pascal/64000
Compiler

FORMAL
PROCEDURE PROCEDURE | IDENTIFIER »| PARAMETER |—
HEADING LIST

Figure 2-19. PROCEDURE Heading Syntax

Example:

PROGRAM REG21;
VAR IN :INTEGER,;
X,Y :REAL;
PROCEDURE SWAP (VAR P,Q :REAL);
VAR TEMP : REAL;
BEGIN
TEMP :=P;
P =Q;
Q =TEMP
END;
BEGIN

END.

Function Declaration

The function declaration consists of a heading and a main block. The function heading con-
sists of the function identifier, a formal parameter list, and the type of function result. The
type of the function result can be any type except a file, or a type containing a file. Within
the function main block at least one statement must assign a value to the function identitier.
See figure 2-20 for the FUNCTION heading syntax.

FORMAL
FUNCTION FUNCTION | IDENTIFIER | PARAMETER |
HEADING
LIsT
TYPE
IDENTIFIER

Figure 2-20. FUNCTION Heading Syntax

Pascal/ 64000
Compiler

Functions perform specific tasks or algorithms by execution of statements within the
FUNCTION. The function is further identified by a type; and the value generated by the func-

tion must be of that type, and assignable to the function identifier.
Example;

{tunction declaration}

FUNCTION Sqrt (x:REAL):REAL;

CONST eps = 1E-S5;

VAR X0, X 1:REAL;

BEGIN X 1:=X; {X >1, Newton's method}
REPEAT X0 := X1, X1:=(X / X0 +X0) * 0.5
UNTIL abs (X1-X0) < eps * X {;

Sqgrt .= X0

END;

{function call}

BEGIN {start of program}

y ;= sqrt (3.5);

END. {end of program}

PARAMETER LISTS

Formal Parameter List

The formal parameters for both functions and procedures can be value parameters or vari-
able parameters. The syntax diagram of the formal parameter list is shown in figure 2-21.

FORMAL
PARAMETER

LIST

(- IDENTIFIER

TYPE
IDENTIFIER

Figure 2-21. Formal Parameter List Syntax

2-21

Pascal/ 64000
Compiler

Actual parameters are the values used in the execution of procedures and functions. The
syntax diagram of the actual parameter list is shown in figure 2-22.

ACTUAL
PARAMETER -
LIST

EXPRESSION

Figure 2-22. Actual Parameter List Syntax

Value Parameter

The actual parameter must be an expression, i.e., something found on the right side of an as-
signment statement. The corresponding formal parameter represents a local variable in the
called routine, and the current value of the expression is initially assigned to this variable.
Actual value parameters must be assignment compatible with the type of the corresponding
formal parameter.

Variable Parameter

The actual parameter must be a variable, and the corresponding formal parameter represents
the actual variable during the entire execution of the routine.

An actual variable parameter must have the same type as the corresponding formal
parameter.

DECLARATIONS WITHIN ROUTINES

The declaration part of a procedure or function contains the declarations of constants,
types, labels, variables, and other routines. These declarations are local to the routine in
which they are declared. Declarations within routines take the same form as the program
declaration.

Pascal/64000
Compiler

Routine Body

The body of a routine is a compound statement that describes the execution of the routine
toward an end result. The result of a FUNCTION is a value. The result of a PROCEDURE is
an action. The syntax for the routine block is the same as that of a main program block.

Directives

All routines must be declared before they are called. If the routine’'s block does not im-
mediately follow the routine heading, then a FORWARD directive must be used to inform the
compiler of the location of the block. A FORWARD declaration is composed of the routine
heading, including the parameter list if used, the function result type it applicable, followed by
the directive. The routine must be fully declared before the end of the current scope. The
parameter list, and result type for a FUNCTION, may not be respecified.

Example:

FUNCTION exclusive__or (x,y:boolean) : boolean;
FORWARD;

FUNCTION exclusive__or;
BEGIN
exclusive__or ;= (x and not y) or (not x and y)
END;

The directive EXTERNAL indicates that a procedure or function is not defined in the current
program. Rather, the routine exists in another Pascal program or assembly language module.
The module containing the actual definition of the external routine must be linked to the
present program before the present program can be executed.
Example:

PROGRAM A;

VAR | . INTEGER,;

FUNCTION MIN(AB : INTEGER): INTEGER; EXTERNAL;

BEGIN

| := MIN (5,10);
END.

2-23

Pascal/64000
Compiler

PROGRAM B;

SEXTENSIONS ON$

$GLOBPROC ON$

FUNCTION MIN(A B : INTEGER).INTEGER,;

BEGIN
IF A<=B THEN
MIN = A
ELSE
MIN = B;
END;

Recursive Routines

A routine that calls itself is a recursive routine. Use of the routine identifier within the routine
body indicates recursive execution of the routine. If a FUNCTION identifier appears on the
left of an assignment statement, however, only the assignment is executed. it is also pos-
sible for a first routine to call a second routine in which the first routine is called. That action
is an indirect recursion.

SCOPE

Certain objects in PASCAL/64000 programming have a related scope of utility. Those ob-
jects are:

labels

constants

types

variables

formal parameters
routines

0O Q00N

The scope of an object pertains to the level of the program in which the object is declared or
defined. Within a routine declaration, the declaration part specifies local labels, constants,
types, variables, and routines. Execution of the routine may access labels, variables, con-
stants, types, and parameters declared at the same or outer levels of declaration. No outer
level program execution, however, can access an inner level identifier. In the case of two
identifiers having different scopes but having the same spelling, the outer identifier will be in-
accessible to the inner identifier. No two identitiers having the same scope can have the
same spelling.

2-24

Chapter 3

STATEMENTS

GENERAL INFORMATION

A statement is a sequence of special symbols, reserved words, and expressions that either
performs a specific set of actions on data or controls program flow. A list of the statement
types along with a brief description of each follows (refer to figure 3-1 for statement
syntax):

STATEMENT TYPE PURPOSE

compound group statements

empty do nothing

assignment assign a value to a variable
procedure activate a procedure

GOTO transfer control unconditionally
IF, CASE conditional selection

WHILE, REPEAT, FOR repeat a group of statements
WITH manipulate record fields

Empty, assignment, procedure, and GOTO statements are simple statements. IF, CASE,
WHILE, REPEAT, FOR, and WITH statements are structured statements because they may
contain other statements.

A statement label may be associated with any statement in a program body. The label must
be assigned in the declaration section of the block and is used by the GOTO statement for
branching purposes.

The following paragraphs describe each type of statement.

Pascal/64000
Compiler

STATEMENT 7

INTEGER —PM

ASSIGNMENT
STATEMENT

PROCEDURE
STATEMENT

L

IF
STATEMENT

L

CASE
STATEMENT

WHILE
STATEMENT

REPEAT
STATEMENT

FOR
STATEMENT

WITH
STATEMENT

GOTO
STATEMENT

f € ¢ & ¢ £ & §& ¢ 1

COMPOUND
STATEMENT

i N

Figure 3-1. Statement Syntax

COMPOUND STATEMENT

The compound statement is used as a means of treating a group of statements as a single
statement. The compound statement is delimited by the reserved words BEGIN and END.
The statements enclosed by BEGIN and END are executed in the order written. The com-
pound statement has two primary uses:

a. As the body of a procedure, function, or program;

Pascal/ 64000
Compiler

b. As a structured statement that may contain other statements. Usually where a
substatement is allowed, the default is only one statement. The compound state-
ment is useful if more than one statement is to be executed.

Compound statements may be used as part of IF, CASE, WHILE, REPEAT, FOR, and WITH
statements. Delimiters are required with each of the compound statements. The
BEGIN/END pair is used in all cases except REPEAT and CASE statements.

REPEAT/UNTIL delimit the REPEAT statement, and CASE/END delimit the CASE state-
ment. The compound statement syntax is shown in figure 3-2.

COMPOUND
STATEMENT

STATEMENT |

Figure 3-2. Compound Statement Syntax

EMPTY STATEMENT

The empty statement is denoted by no symbol and performs no action. |t is used to indicate
that no action is to be taken as the resuit of a condition evaluation.

Example;

IFa<b

THEN

ELSE
GOTO 1027

THEN has no action statement associated with it, therefore an empty statement exists.

ASSIGNMENT STATEMENT

The assignment statement is used to change the value of a variable. The variable can be of
any type except a file type, or a structure containing a file. The type of the variable and the
type of the expression must be assignment compatible; e.g., a variable of type INTEGER
cannot be assigned a value of type CHAR. The identifier on the left side of the assignment
symbol may be either a variable identifier, a field identifier, or a function identifier. If the iden-
titier is a FUNCTION identifier, the assignment statement must be made within the block of
the FUNCTION. The assignment statement syntax is shown in figure 3-3.

Pascal/ 64000
Compiler

VARIABLE

Y

STATEMENT IDENTIFIER

SELECTOR ——»@——> EXPRESSION [—»

IDENTIFIER .
ASSIGNMENT FUNCTION
FIELD J
IDENTIFIER

Figure 3-3. Assignment Statement Syntax

Example:

fctr == 31.25;
tlop := flim * fctr;

PROCEDURE STATEMENT

The procedure statement transfers program execution to a procedure. Upon completion of
the procedure, program execution is transferred to the statement that follows the procedure
statement. The procedure identifier must be the name of either a predefined procedure or a
procedure declared previously in a procedure declaration. If the formal declaration of the
procedure includes a parameter list, the procedure statement must have the actual para-
meters. The actual parameter list must agree in number, order, and type with the formal pa-
rameter list. The procedure statement is illustrated in the following examples, and the syntax
is shown in figure 3-4.

PROCEDURE
STATEMENT

Y

—{ |IDENTIFIER

EXPRESSION

Figure 3-4. Procedure Statement Syntax

3-4

Pascal/ 64000
Compiler

Example:

PROCEDURE freqgen (VAR fctr,rctriinteger); {procedure declaration}

BEGIN

END; {procedure declaration}

BEGIN {program}
freqgen (apron,ramp);
END. {program}

GOTO STATEMENT

The GOTO statement is used in conjunction with a label. The label must be an integer in the
range of 1..9999. Program execution is transferred to the statement named by the label.
The label in a GOTO statement must be defined in the same body as the GOTO statement.
The GOTO statement syntax is illustrated in figure 3-5.

GOTO
STATEMENT GOTO INTEGER [—#

Figure 3-5. GOTO Statement Syntax

In Pascal/ 64000 the GOTO statement should not direct program execution into the middle of
any FOR or WITH statement because results may be undefined.

Pascal/64000
Compiler

IF STATEMENT

The IF statement chooses one of two possible responses, based on a given condition. The
two responses possible are THEN and ELSE. The expression that follows IF must be a
boolean type. When the IF statement is executed, the expression is evaluated to be either
TRUE or FALSE. If the value is true, the action following THEN is performed. If the value is
false, the action following ELSE is performed. If the value is tfalse and no ELSE action is
specified, no action is taken. By implication, however, the remainder of the program becomes
the ELSE action. ELSE parts that appear to belong to more than one IF statement are al-
ways associated with the nearest IF statement. Note that a semicolon may not separate a
THEN statement from the related ELSE statement. The IF statement syntax is illustrated in
figure 3-6.

IF
N |
STATEMENT_> EXPRESSIO THEN STATEMENT
ELSE | STATEMENT

Figure 3-6. IF Statement Syntax

CASE STATEMENT

The CASE statement, like the IF statement, is used to select a certain action based upon the
value of an expression. The CASE statement, however, can select from more than two cour-
ses of action. If none of those courses of action are selected an OTHERWISE statement is
executed. The OTHERWISE portion of the CASE statement is an HP extension of standard
Pascal. CASE statement syntax is illustrated in figure 3-7. The CASE expression may be any
ordinal type, including boolean, integer, character, and user-defined enumeration and sub-
range types. The expression, called the selector, is used to choose which statement is to be
executed. Each constant expression in the list of labels must be compatible with the type of
the selector. A label may only appear in one list. The statement associated with the label
list containing the value matching the selector is executed. The statement associated with
the OTHERWISE part is executed if the selector does not match any of the labels.
Specifically, when a CASE statement is executed:

a. The selector expression is evaluated.

b. If the value appears in a label list within the CASE statement, the statement as-
sociated with that list is executed and main program execution continues with the
statement following the CASE statement.

c. If the value does not appear in any label list the statements appearing between
OTHERWISE and END are executed, and program execution resumes with the
statement following the CASE statement.

Pascal/64000
Compiler

d. If the value does not appear in any label list and no OTHERWISE clause exists, the result
will be a run time-error.

CASE statement values are restricted to those that can % expressed in the range of 2" (-32768)
through +2 "-1 (+32767) for signed types; or O through 2

CASE statements may be nested to any level.

CASE CASE EXPRESSION OF
STATEMENT J J
L—ﬂ CONSTANT STATEMENT ~ ——]
)
| ©; |
J
P
OTHERWISE STATEMENT J
o—

]

Figure 3-7. CASE Statement Syntax

WHILE STATEMENT

-1 (+65535) for unsigned types.

END

The WHILE statement is a repeating statement used to execute an action so long as a given ex-
pression is true. The expression is evaluated before execution, in contrast to the REPEAT state-
ment which is evaluated after execution. The expression must be of the boolean type. Each time
the evaluation is true the WHILE statement is executed. When the evaluation becomes false the
statement following the WHILE statement is executed and program action is continued.

It is necessary that execution of a WHILE statement causes a change in data such that the evalua-
tion result becomes false. Otherwise, the WHILE statement is never exited, an endless loop exists
and execution of the program is never concluded. The WHILE expression syntax is illustrated in

figure 3-8.

3-7

Pascal/64000
Compiler

WHILE EXPRESSION STATEMENT |—>
STATEMENT

Figure 3-8. WHILE Statement Syntax

REPEAT STATEMENT

The REPEAT statement is executed so long as the UNTIL Boolean expression is false. The ex-
pression is evaluated after execution of the statement enclosed by the REPEAT/UNTIL delimiters,
in contrast to the WHILE expression which is evaluated before execution. The expression must be
of the boolean type.

Each time the evaluation returns false the REPEAT statement is executed. When the evaluation
returns true the statement following the REPEAT is executed and program action is continued. It
is necessary that execution of a REPEAT statement causes a change in data such that evaluation
results in a true value. Otherwise the REPEAT statement is never exited, an endless loop exists
and execution of the program is never concluded. The REPEAT statement syntax is illustrated in
figure 3-9.

BOOLEAN
EXPRESSION

REPEAT
STATEMENT

REPEAT STATEMENT

Figure 3-9. REPEAT Statement Syntax

FOR STATEMENT

The FOR statement executes a statement once for each value in a range specified by initial and
final expressions. A variable, called the control variable, is assigned each value of the range before
the corresponding iteration of the statement. The control variable must be a local or global vari-
able, and it also must be an entire variable. In addition, the control variable may be a local formal
value parameter, but may not be a formal variable parameter.

The range of values assumed by the control variable is specified, typically:

FOR n:=1TO 10 DO

3-8

Pascal/ 64000
Compiler

The range specifiedis 1 TO 10. The FOR statement is not executed, and the control variable
is not changed if the initial expression is greater than the final expression with the FOR.TO
statement (or less than the final expression with the FOR.DOWNTO statement). The range
expressions must be assignment compatible with the type of the control variable. These ex-
pressions are evaluated only once, before any assignment is made to the control variable.
The FOR statement syntax is illustrated in figure 3-10.

DOWNTO
(* EXPRESSION STATEMENT p—8

Figure 3-10. FOR Statement Syntax

FOR
STATEMENT

—_— FOR | IDENTIFIER = EXPRESSION

WITH STATEMENT

The WITH statement allows access to record fields without naming the record variable.
Within the WITH statement any field of any record in the list may be accessed by using only
its field name (instead of the normal field selection notation using the period between the
record and the field name).

Example:

TYPE
R = RECORD
aalNTEGER,;
b,c:REAL;
END;
VAR
V:R;
BEGIN
WITH V DO
aa = Q,

WITH statement syntax is illustrated in figure 3-11.

Pascal/64000
Compiler

WITH

STATEMENT STATEMENT 9

VARIABLE

Figure 3-11. WITH Statement Syntax

Chapter 4

EXPRESSIONS
GENERAL INFORMATION

An expression is a construct composed of operators and operands, and is used to compute a
value of some type. An operator defines an action to be performed on its operands.
Operands denote the objects that operators will use in obtaining a value. An operand may be
a literal, a constant identifier, a variable, or it may be a reference to a function. The syntax

diagram for expressions is shown in figure 4-1, and is expanded into greater detail in figures
4-2 thru 4-4.

EXPRESSION ———] _ SIMPLE -

EXPRESSION

Figure 4-1. Expression Syntax

SIMPLE
EXPRESSION TERM

TERM -+

Figure 4-2. Simple Expression Syntax

TERM ————

FACTOR

Pascal/64000

Compiler

FACTOR —~—{ f—

N

NIL

NOT

FACTOR

00098

Figure 4-3.

Term Syntax

EXPRESSION

0

FACTOR

INTEGER

REAL

STRING
LITERAL

f § f f

VARIABLE
IDENTIFIER

1

FIELD
IDENTIFIER

SELECTOR

CONSTANT
IDENTIFIER

r

FUNCTION

IDENTIFIER

ACTUAL
&1 PARAMETER
LIST

SET

CONSTRUCTOR

TYPE
IDENTIFIER

_.@__,

EXPRESSION

Figure 4-4. Factor Syntax

Pascal/ 64000
Compiler

An expression’'s type is known when it is written, and never changes. An expression’s value,
however, may not be known until the expression is evaluated and may be different for each
evaluation.

Word, integer, and byte variables may be mixed within expressions. If both operands of a bi-
nary operation are of type byte, the compiler performs a byte operation. If one is byte and
the other is integer, the compiler first converts the byte value into integer then performs an
integer operation. The only time the compiler will automatically truncate an integer to a byte
is if the left hand side of an assignment statement is of type byte and the right hand side is of
type integer. The integer expression is evaluted and the 16- or 32-bit result is truncated to
an 8-bit result before assigning the byte value.

The compiler does not perform run-time checks to ensure that assignments to scalar or sub-
range variables are in the user defined subrange unless the compiler directive SRANGE ONS$
is in effect.

OPERATORS

Operators are used within expressions to specify certain actions on one or more operands,
and to create a new value. The value is determined by the operator, its operands, and the
definition of the etfect of the operator. With each operator is associated the following:

a. number, order, and type of operands
b. result type
¢c. precedence

Operator precedence is used to determine the order of element evaluation in an expression.
The higher precedence operators are evaluated first. Grouping of operators can alter the
precedence value of the group; however, precedence within the group still follows the rules
of precedence. The following list shows operators with their order of precedence, from
highest to lowest.

NOT

* /, DIV, MOD, AND

+ -, OR

<, <=,<>, =>= >IN

Operators may either be predefined or user-defined. Predefined operators are the arith-
metic, boolean, set, string, and relational operators, and the predefined functions.
User-defined operators are references to user-written functions, routines that compute and
return a value. The value resulting from any operation may in turn be used as an operand for
another operator.

Table 4-1 contains the predefined operators and their meaning.

Pascal/64000
Compiler

Arithmetic Operators

Arithmetic operators take numeric operands and produce a numeric result. A numeric type is
the type REAL, LONGREAL, INTEGER, BYTE, SIGNED__ 8, SIGNED__16, SIGNED__32,
UNSIGNED_8, UNSIGNED__16, UNSIGNED__32, or subranges of signed and unsigned
types. Operands of different types may be mixed in an arithmetic operation. In general, the
compiler converts the smaller type to the larger type before the operation is performed. The
type of the result is the type of the larger type.

Operands for both DIV and MOD must be signed or unsigned integers.

Signed and unsigned arithmetic is supported by all Pascal/64000 compilers. Signed and un-
signed arithmetic may not be mixed in the same expression without the use of the functional
type change, i.e., for a binary operator, the left operand and the right operand must be signed
operands or they must both be unsigned operands. Arithmetic constants appearing in the
source text are treated as signed values unless the user specifies that they be treated as
unsigned by surrounding them with functional type change operations.

When converting a signed operand to a physically larger signed operand, the smaller signed
operand will be sign extended by the compiler. When converting an unsigned operand to a
physically larger unsigned operand, the smaller unsigned operand is extended with zeroes.
Integer division (DIV) calculates the truncated quotient of two integers. The sign of the
result is positive if both operands have the same sign, and negative if the operands have op-
posite signs.
A div B is equivalent to trunc (A/B).
The MOD operation produces the remainder of a divide operation.

AMODB=A -((ADIVB) *B)

The operators +, -, * and / permit operands with different numeric types. Each numeric type
has a conversion ranking as follows:

Type Rank
LONGREAL 4 (highest)
REAL 3
INTEGER, SIGNED__32, 2
UNSIGNED__ 32
SIGNED__ 16, 1
UNSIGNED _ 16
BYTE, SIGNED__8, (0]
UNSIGNED _8

Pascal/64000

Compiler
Table 4-1. Pascal/64000 Operators

Operator Meaning

+ Numeric UNARY PLUS and ADDITION; set UNION

- Numeric UNARY MINUS and SUBTRACTION; set
DIFFERENCE

* Numeric MULTIPLICATION; set INTERSECTION

/ REAL DIVISION

DIV integer DIVISION

MOD integer MODULUS

AND Logical AND

OR Logical INCLUSIVE OR

NOT Logical NEGATION

< Numeric, string, enumeration LESS THAN

<= Numeric, string, enumeration LESS THAN OR EQUAL,; set
SUBSET

= Numeric, string, enumeration, set, pointer EQUALITY

<> Numeric, string, enumeration, set, pointer INEQUALITY

>= Numeric, string, enumeration GREATER THAN OR
EQUAL; set SUPERSET

> Numeric, string, enumeration GREATER THAN

IN Set MEMBERSHIP

If two operands associated with an operator are not the same rank, the compiler converts
the lower to the higher prior to the operation. The result value will be of the same type as
the higher ranked operand. To summarize:

Pascal/64000
Compiler

One Operand Type Other Operand Type Result Type
INTEGER REAL REAL
INTEGER LONGREAL LONGREAL
REAL LONGREAL LONGREAL
SIGNED__8 SIGNED__ 16 SIGNED__16
UNSIGNED__8 UNSIGNED__ 16 UNSIGNED__ 16

Boolean Operators

The Boolean operators perform logical functions on Boolean operands. The Boolean
operators are: NOT, AND, OR.

NOT. The NOT operator takes one Boolean operand and produces a Boolean result equal to
the inverse of the operand.

AND. The AND operator yields a Boolean result of true only if all operands are true.

OR. The OR operator yields a Boolean result of true if any one of the operands is true; or
yields a Boolean result of false only if all of the operands are false.

The AND (OR) operator is used to perform the logical AND (inclusive OR) operation on two
Boolean operands. The resuilt is a Boolean value defined in the truth table that follows.

a b NOT a a AND b a OR b
T T F T T
T F F F T
F T T F T
F F T F F

Relational operators with Boolean operands are always fully evaluated. NOT, AND, OR can-
not be used on operands of non-Boolean types.

Set Operators

Three set operators are detfined which manipulate two expressions having compatible set
types and result in a third set. The set operators are: set union (+), set difference (-), and
set intersection (¥).

SET UNION. The union operator creates a set whose members are all of those elements
present in the left set plus those in the right set. Simply, the combining together of two sets
into one set.

Pascal/ 64000
Compiler

SET DIFFERENCE. The difference operator creates a set whose members are those ele-
ments that are members of the left set but are not members of the right set.

SET INTERSECTION. The intersection operator creates a set whose members are all ot
those members present in both sets.

The two operands of a set operator must be compatible. Two sets are compatible if they
both have the same base type and if their lower and upper bounds are equal. The compiler
does not permit operations on sets of different sizes even if the two sets have the same

base type.

RELATIONAL OPERATORS

Relational operators are used to compare two operands and return a boolean result. The
operands may be ordinal types, reals, sets, pointers, strings, arrays, or records. Relational
operators appear between two expressions, that must be compatible, and always result in a
value of type boolean. The relational operators are:

< (less than)

<= (less than or equal)

= (equal)

<> (not equal)

>= (greater than or equal)
> (greater than)

IN (set membership)

Ordinal Relationals

The relationals that can be used with operands of ordinal or subrange type are: <, >, <=, =,
<>, and >=. These operators carry the normal definition of ordering for numeric types, and
CHAR relationals are defined by the ASCIl collating sequence. The order of enumerated con-
stants is defined by the order in which the constant identifiers are listed in the TYPE defini-
tion. The predefinition of boolean is: BOOLEAN = (FALSE, TRUE) and means FALSE < TRUE.
An expression having an ordinal type may also appear as the first operand of the IN
operator. Some boolean functions may be performed using the relational operators with
boolean operands, as shown in the following truth table:

a b a<b a<=b a=b a<>b a>=b a>b
T T F T T F T F
T F F F F T T T
F T T T F T F F
F F F T T F T F

Pascal/64000

Compiler
<= is the implication operator, = is the equivalence operator, and <> is an exclusive OR
operator.

Real Comparison
REAL and LONGREAL operands may be compared using the relationals <, >, <=, >=, =, and

<>. REAL operands may also be compared to signed and unsigned integer types. The com-
piler converts smaller data types to larger data types before the comparison is performed.

String Comparison

Strings may be compared using the operators =, <>, <, <=, >, or >=. The types of operands
that may be compared are STRING, PACKED ARRAY [0..n] OF CHAR, or string literals.

A string expression can be compared to any other string expression, including string literals.
Strings are compared character by character until a pair of unequal characters are found or
until all the characters in the shorter string are used. If two characters are unequal, the or-
dering of the string is determined by the ASCII collating sequence. If all the characters in two
strings are equal up to the length of the shorter string, then the longer string is greater than
the shorter string. Two strings are equal only if they have the same length and all charac-
ters contained in that length are equal.

Pointer Relationals

Pointers can only be compared using the relationals = and <>. Two pointers are equal if
they point to exactly the same object, and are not equal otherwise. Pointers of any type
may be compared to the constant NIL. Pointers can only be compared to other pointers, and
their two pointer types must be identical.

Set Relationals

Two sets can be compared for equality with = and <>. In addition, the <= operator is used
to denote the subset operation, and >= denotes the superset operation. One set is a subset
of a second set if every element in the first set is also a member of the second set. Also, the
second set is said to be a superset of the first set. The < and > operators are not allowed
on sets.

The IN operator is used to determine whether or not an element is a member of a set. The
right operand has the type SET OF T, and the left operand has an ordinal type compatible
with T. To test the negative of the IN operator, the following form is used: NOT (element IN
set).

Pascal/ 64000
Compiler

Array and Record Comparison

Arrays and records can be compared for equality using the relationals = and <>. Two arrays
or records are equal if every byte in one structure is equal to every byte in the other struc-
ture. Comparison of arrays and records is a Pascal/64000 extension of standard Pascal.

For some microprocessors, the compiler forces certain data types to be aligned on word
boundaries. When this is done with a structured data type, there are "holes” or unused data
bytes within the structure. The compiler produces warning number 508 in this case.
Comparison of these structures may not work because these unused bytes may contain ran-
dom values.

OPERANDS

An operand can be a literal, a variable, a declared constant, a set constructor, a function call,
a dereferenced pointer, or the value of another expression that may be acted upon by an
operator to produce a value.

SET CONSTRUCTOR

The set constructor designates one or more values as members of a set whose type may or
may not have been previously declared. A set constructor consists of an optional set type
identifier and one or more ordinal expressions in square brackets ([..]). See figure 4-5 for
the Set Constructor Syntax diagram.

TYPE
IDENTIFIER

SET ‘m ‘®_>
CONSTRUCTOR] (= >

EXPRESSION

Figure 4-5. Set Constructor Syntax

4-9

Pascal/64000
Compiler

If no type identifier is used, one of three possible results will occur depending on the type T
of the elements in the set:

a. If T is an integer, then the set created is of type SET OF 0..255. Compile-time
checks are performed to ensure that constant set elements are in this range.
Thus the set [25,0,255] is legal, but the set [-10, 256] is not legal.

b. If T is any other ordinal type, the set created is a set whose base type is the en-
tire ordinal type. The set ['A’’T’] has the type SET OF CHARacter.

c. If the empty set ([]) is specified, the type of the set will be determined from
context.

The TYPE identifier is needed to construct integer sets other than the range 0..255. But itis
also desirable to specify the type for sets over other subrange types for efficiency reasons.
The set UPPER__CASE ['A’..’T’] requires much less storage than the set ['A’..’T’], and has a
corresponding savings in run time.

FUNCTION CALL

A tunction call activates the block of a standard or declared function. The function returns a
value to the calling point of the program. A call to a function, therefore, can be thought of as
an operator whose operands are the actual parameters passed to the function; or as an
operand whose value is determined by the process in the function.

A function call consists of a function identitfier and an optional list of actual parameters in
parentheses. See figure 4-6 for a syntactical diagram of a function call.

FUNCTION
IDENTIFIER

EXPRESSION

Figure 4-6. Function Call Syntax

Pascal/ 64000
Compiler

The result, whose type is defined in the function heading, is treated identically to the result of
any other operator, and may be used inside an expression. Actual parameters must match
the function’s formal parameters in number, order, and type. If the function’s type is struc-
tured, then the value returned by the function must be put into a variable before elements of
the structure may be accessed.

Functions may be recursive.

SELECTORS

Array Subscripts

Array and string components are selected using subscripts, denoted by square ([]) brackets,
and an expression. The subscript, or index, type must be compatible with the expression
type appearing in the array type definition. The values of constants and non-constants are
checked at run time to make sure those values lie in the range specified in the index type, un-
less the RANGE compiler option is turned OFF. The array selector appearing before the
brackets may itself be a selected variable. See figure 4-7 for a diagram of the selector
syntax.

SELECTOR — >
EXPRESSION
| FIELD
IDENTIFIER Y
% N
_ y,

Figure 4-7. Selector Syntax

Array index computations are always performed with 16- or 32-bit index expressions. If a
BYTE variable or expression is used as an Index expression, the compiler generates run-
time code to convert the byte value to a 16-bit value before computing the array element
address.

H
[

11

Pascal/64000
Compiler

Record Selector

A field of a record is selected by following the record identitier with a period (.) and the name
of the field. The record name appearing before the period may itself be a selected variable.
The WITH statement may be used to "open the scope” of the record, making it unnecessary
to mention the record when accessing its fields.

Pointer Dereferencing

A pointer points to, or "references” a variable in the heap. To access that variable, the
pointer is followed by the caret (*). No run-time checks are performed to make sure the
pointer is not NIL. The pointer may itself be a selected variable.

Examples:

-

p” r.q” rafi].g” rafi].g"p"

File Buffer Selection

Every file in a program has implicitly associated with it a "butffer variable”. This is the vari-
able through which data is passed to or from a file. The file component at the current posi-
tion of the tile can be read into the buffer variable or the next item to be written to the file
may be assigned to the variable and then written. The buffer variable, which is of the same
type as the file base type, is denoted by following the file identifier with a caret (*). The file
identifier appearing before the caret may itself be a selected variable.

Examples:

fI” 1117

Functional Type Change

A function type change causes an expression of one type to be treated as an expression of
a different type. A functional type change consists of the type identifier of the resuit type, a
left parenthesis, an expression, and a right parenthesis. Functional type changing is a
Pascal/64000 extension of standard Pascal.

Pascal/ 64000
Compiler

Examples:

SEXTENSIONS ON$
VAR U : UNSIGNED__§;

I 1 INTEGER,;

A : ARRAY[0..9] OF INTEGER,
BEGIN

I := INTEGER (U);

1:= INTEGER (A);

U := UNSIGNED__8(l + 4),

Functional type changing defeats the strong type checking inherent in the Pascal language
and is therefore a potentially dangerous feature. Because there is a large number of com-
binations of input and output types, it is impossible to document all of the possible effects of
functional type changing. There are two general cases (described below) which are handled
differently by the compiler:

The first case occurs if both the source type and the result type are in the following list:

INTEGER, BYTE, SIGNED__8, SIGNED__16. SIGNED _ 32, UNSIGNED__8,
UNSIGNED__ 16, UNSIGNED__ 32, CHAR, user-defined enumerated types, subranges ot
the preceding types, REAL, or LONGREAL.

In this case, the compiler may generate instructions to convert the source type to
the result type. The intent of the conversion is to transiate the numeric value of the
source expression into the equivalent numeric value of the result type. For example,
an ordinal expression may be converted to a real value.

If either the source type or the result type is not in the list above, then no conversion in-
structions are generated. The compiler simply treats the source expression as if it were
an expression of the result type.

In either situation, the programmer should inspect the instructions generated by the
compiler to insure that unexpected results fo not occur.

NOTES

Pascal/64000
Compiler

Chapter 5

PROGRAMMING WITH PASCAL/64000

INTRODUCTION

The Pascal/64000 compiler will run on any HP 64000 system that has expanded host
memory capability. The compiler accepts as input a sequence of statements from one or
more source code files for conversion into a quasi-machine code which is stored in the
64000 for future use. This chapter discusses programming features that must be considered
when writing a source program.

IDENTIFIERS

Identifiers are setected by the programmer to denote constants, types, variables,
procedures, functions, and programs. An identifier consists of a letter followed by any com-
bination of upper-case or lower-case letters, digits, or underscore (__). The syntactical
construction of an identifier is shown in figure 5-1.

IDENTIFIER ——»| LETTER e W -
N{ LETTER
DIGIT —
_ Y

Figure 5-1. Identifier Syntax

Pascal/64000
Compiler

When constructing identifiers, the following rules should be observed:
a. The first character of an identifier must be a letter.

b. Identifiers may contain any number of characters up to a source line in length;
however only the first 15 characters are significant.

c. Areserved word cannot be used as an identifier.
d. Upper and lower case letters are differentiated within identifiers.

e. Each identifier must be unique within its scope (i.e., with a procedure or function in
which they are defined).

f. All identifiers must be defined before they are used, except that a pointer type iden-
tifier may refer to a type that is defined later in the same declaration section.

PREDEFINED IDENTIFIERS

There are certain predefined identifiers that will be recognized by the Pascal/ 64000 compiler
without being defined in the program. These predefined identifiers are listed in the following
paragraphs.

Predefined Procedures

The following list of predefined procedures will be recognized by the compiler without further
definition (refer to Chapter 6 for an explanation of each procedure):

APPEND CLOSE DISPOSE GET

MARK NEW OPEN OVERPRINT
PAGE PROMPT PUT READ
READDIR READLN RELEASE RESET
REWRITE SEEK STRREAD STRWRITE
WRITE WRITEDIR WRITELN

Predefined Functions

The following list of predefined functions will be recognized by the compiler without further
definition (refer to Chapter 7 for an explanation of each function):

ABS ADDR ARCTAN CHR coSs
EOF EOLN EXP LINEPOS LN
MAXPOS oDD ORD POSITION PRED
ROTATE ROUND SHIFT SIN SQRT
sSuccC TRUNC

Pascal/ 64000
Compiler

Predefined Files
The following predefined tiles will be recognized by the compiler without further definition.

INPUT OUTPUT

Predefined Types

The following list of predefined types will be recognized by the compiler without further
definition (refer to Chapter 1 for an explanation of each type):

BOOLEAN BYTE CHAR INTEGER
LONGREAL REAL SIGNED__8 SIGNED__ 16
SIGNED__ 32 STRING TEXT UNSIGNED__8
UNSIGNED__ 16 UNSIGNED__32

Predefined Constants

The following list of predetined constants will be recognized by the compiler without further
definition (refer to Chapter 2 for an explanation of each constant):

FALSE MAXINT MININT TRUE

Directives

A directive introduces a procedure or function declaration for which there is no block
specitied.

FORWARD Indicates to the compiler that a block ftor the routine appears
later in the program.

EXTERNAL Indicates to the compiler that the routine is defined in some other
module.

CHARACTER SET

Alphabetic Characters

The alphabetic characters include all upper and lower case characters (A’ thru 'Z’ and 'a’ thru
‘2.

Pascal/64000
Compiler

Numeric Characters

The numeric characters include the digits O thru 9 for decimal numbers, mcludmg A through F
for hexadecimal numbers.

Special Characters

The special character (symbols) set and their use in Pascal programming are described as
follows:

Character Description Use
(Symbol)
’ Apostrophe String Literal Delimiter.
* Asterisk Arithmetic operator - multiply; set
intersection.
(*..%) Asterisk pair Comment delimiters.
{..} Braces Comment delimiters.
[-.] Brackets Set constructor; array index delimiters.
Colon Case constant list delimiter; statement
label delimiter; field width delimiter; iden-
tifier list delimiter.
. Comma Argument list separator; enumerated
type list separator.
$ Dollar sign Compiler option (directive) delimiter.
= Equal sign Equality (relational operator).
- Minus sign Arithmetic operator - subtract/negate;
set difference.
(.) Parentheses Delimits a parameter list or an expres-
sion group; delimits an enumerated type.
Period End of program; decimal point; field
selector.
+ Plus sign Arithmetic operator - add; string con-
catenation; set union.
) Semicolon Parameter separator; statement
separator.

Pascal/ 64000

Compiler

/ Slant bar

_ Underscore

- Caret

= Symbol

> Symbol

>= Symbol

< Symbol

<= Symbol

<> Symbol
Symbol

Arithmetic operator - real divide.
Allowed in identifiers but no as first
character.

Indicates file buffer accessing; indicates
pointer dereferencing.

Assignment indicator.
Greater than (relational operator).

Greater than or equal to (relational
operator); superset of.

Less than (relational operator).

Less than or equal to (relational
operator); subset of.

Not equal (relational operator).

Subrange.

RESERVED WORDS

The following words are reserved. They have special meaning to the Pascal/64000 compiler
and cannot be used as identifiers or user-defined symbols.

Reserved Word(s)

AND

ARRAY

BEGIN, END

CASE, OF, OTHERWISE
CONST

Div

FILE

FOR, TO, DOWNTO, DO

Description

Boolean conjunction operator.

A structured type.

Delimit a compound statement.

A conditional statement.

Indicates constant definition section.
Integer division operator.

A structured type.

A repetitive statement.

FUNCTION
GOTO

IF, THEN, ELSE
IN

LABEL

MOD

NIL

NOT

OR
PROCEDURE
PROGRAM
RECORD

REPEAT, UNTIL

SET

TYPE

VAR
WHILE, DO
WITH, DO

Pascal/64000
Compiler
Indicates a function declaration.
Control transfer statement.
A conditional statement.
Set inclusion operator.
Indicates label definition section.
Integer modulus operator.
Special pointer value.
Boolean negation operator.
Boolean disjunction operator.
Indicates a procedure declaration.
Program heading.
A structured type.
A repetitive statement.
A structured type.
Indicates a type definition section.
Indicates a variable declaration section.
A repetitive statement.

Opens record scope(s).

NUMBERS

PASCAL/64000 recognizes integers and real numbers. An integer is entered in binary,
decimal, octal, or hexadecimal form. A real number can be specified as single or double perci-
sion. The paragraphs following describe the format and acceptable range of values for in-

tegers and real numbers.

Pascal/ 64000
Compiler

Integers

Integers are positive and negative whole numbers ranging from -231 to 231 - {1 This range
contains numbers from -2,147,483,648 (MININT) through 2,147,483,647 (MAXINT). A minus
sign (-) must precede a negative integer. A plus sign (+) may precede a positive integer, but
it is not required. No commas or decimal points are allowed.

In addition to decimal integers, Pascal/ 64000 allows integers to be specified in binary, octal,
and hexadecimal notation (see figure 5-2 for the integer syntax). To specify a binary in-
teger, end the integer with the letter B. To specify an octal integer, end the integer with
either the letter O or the letter Q. To specify a hexadecimal integer, end the integer with the
letter H. When specifying an integer as binary, octal, or hexadecimal, the designated letter (B,
H, O, or Q) must be upper-case. When no suffix is assigned, the decimal value is assumed.

NOTE

It is necessary to start a hexadecimal term with a decimal
digit since the compiler will identify a term that starts with an
alphabetic character as a label or an expression.

INTEGER ————- DIGIT S r

DIGIT

A THROUGH
F

-~
RO
Figure 5-2. Integer Syntax

For microprocessors that do not allow 32-bit integers, the number 32768 (8000H) can only
be interpreted as a negative value since its sign bit is set. The expression -32768 is a legal
value, but it is scanned as being the negation of the positive value 32768. As a result, the
compiler first detects it as the "out of range” positive value and gives the user an appropriate
warning message:

"506: Warning: +32768 is treated as -32768 by the compiler”

Pascal/64000
Compiler

NOTE

The warning is not printed if the microprocessor allows
32-bit integers.

As long as the user really wants the value -32768, the warning message may be ignored.
The user will be able to suppress this message entirely if the SEXTENSIONSS option was en-
abled and 8000H was used to express the value -32768. The user could also express this
constant as the constant expression <-MAXINT-1>, where MAXINT is a predefined con-
stant with the value 32767 (7FFFH).

Real Numbers

In a Pascal program, real numbers are written in decimal or scientific notation. The following
numbers are in decimal notation:

5.1

903.21345
-0.01

6.0

Note that in decimal notation, at least one digit must appear on each side of the decimal point.
For example, a zero must always precede the decimal point of a number between 1 and -1
and a zero must follow the decimal point of a whole number quantity (see figure 5-3 for real
number syntax).

W O

r
N >

() (O

Figure 5-3. Real Syntax

Pascal/64000 also provides scientific (or exponential) notation as another way of writing
real numbers. In scientific notation, the numbers are positive or negative values followed by
an exponent. Use of the letter E after the value indicates the value is to be muitiplied by a
power of 10. The integer following the letter E indicates which power of 10is positive or
negative.

Pascal/ 64000
Compiler

Examples:

1.2345E2
0.001122E6
3315E-1

The scientific notation is referred to as a floating-point format because the position of the
decimal point "floats” depending on the exponent following the letter E. At least one digit must
appear on each side of the decimal point. In addition Pascal/64000 provides single and
double precision for real numbers (refer to the paragraphs that follow for a detailed descrip-
tion of single and double precision real numbers). To indicate a double-precision real number,
the user must use the floating—-point notation, replacing the letter E with an uppercase letter
L. The integer following the letter L is an exponent, as in single-precision (E) floating-point
numbers.

Floating Point Numbers

IEEE format floating point humbers are supported for all processors. All arithmetic and rela-
tional operations are supported as well as the functions SIN, COS, ARCTAN, EXP, LN, SQRT,
ROUND, and TRUNC.

Two packed formats (single precision and double precision) are supported as follows:

Single Precision Format - A single precision floating point number is a 32-bit binary
value packed as shown below:

s is the sign bit.
e is the exponent.
f is the 23-bit fraction.

The value v of a single precision floating point number x can be computed as follows:

(a) It e=255 and 1<>0, then v = not a number.
(b)lite=255andf=0,thenv=(-1)s+/~
(c) It 0< e < 255, then v = (—1)s 2¢=127 (1 f),
(d) If e = 0and f<>0, then v = (-1)s 2=126 (0).
(e)lfe=0and f =0, thenv =(-1)8 0 (zero).

Pascal/64000
Compiler

Double Precision Format - A double precision floating point number is a 64-bit binary
value packed as shown below:

s is the sign bit.
e is the exponent.
t is the 52-bit fraction.

The value v of a double precision floating point number x can be computed as foliows:

(a) If e = 2047 and 1<>0, then v = not a number.
(b)Ife=2047 and f = 0, then v = (=1)5 +/~ o .
(c)If 0< e < 2047, thenv = (~1)8 2e~1023 (1 t),
(d) If e = 0 and 1<>0, then v = (-1)s 2-1022 (o t),
(e)lfe=0and f =0, thenv = (-1)s 0 (zero).

STRING LITERALS

A string literal is a sequence of ASCIl characters enclosed by single or double quote marks
(see figure 5-4 for String Literal syntax). String literals are constants of the string type.
String literals containing a single character may also be of the predefined type CHAR.

a. If a string literal is to contain a single quote mark, it should be delimited by double
quote marks and vice versa.

b. String literals must be contained on a single line.

Additional information on string literals and character constants may be found in Chapter 4.

Pascal/ 64000
Compiler

STRING
LITERAL

(—/ CHARACTER 47
CHARACTER j I
Figure 5-4. String Literal Syntax

COMMENTS

Words and messages contained in braces {...}, or parentheses/asterisks (*...¥), are com-
ments used to document the program. Comments are ignored by the compiler. A comment has
the form:

{character string} or (*character string*)

Conventions to be observed when using comments are listed below:

a. Since a comment is equivalent to a blank, it may be placed anywhere in the program
that a blank is permitted.

b. A comment beginning with a lett brace ({) must terminate with a right brace (}). A

comment beginning with the compound symbol (¥ must terminate with the compound
symbol ¥).

SEPARATORS

A separator is a blank, an end-of-line marker, a comment, or a compiler option.

At least one separator must appear between any pair of consecutive identitiers, numbers, or
reserved words. When one or both elements are special symbols, the separator is optional.

NOTES

Pascal/ 64000
Compiler

Chapter 6

170
OVERVIEW

Pascal/64000 I/0 characteristics are divided into two classes. The first class of behavior
is that defined by the Pascal language as expressed in the HP Pascal Language Standard
document. The second class is defined by the hardware and software 1/0 facilities available
to the target microprocessor at run-time. The first class of behavior is independent of the
target environment. It is implemented by the Pascal/64000 compiler and the Pascal 170
Library. The second class of behavior is dependent on the target environment. It is imple-
mented for the 64000's emulation environment by the Simulated I/O Library. (See figure
6-1.)

Relationship of Pascal/64000 Program and Libraries.

There are two libraries that are used with Pascal/64000 programs to provide |/O
capabilities. These are the Pascal I/0O Library and the Simulated I/0O Library. Library charac-
teristics are listed below.

Pascal I/0 Library Characteristics:

¢ Independent of target system I/O hardware or software interface.

* Called directly by Pascal/64000 program. For instance, calling RESET in the Pascal
program causes the compiler to generate a call to "Preset” in the Pascal [/O library.

* Routines do not perform /0O directly but rather call "primitive” routines that exist in
another library. For example, the routine Preset calls the primitive routine "open”.
Simulated I/0 Library Characteristics:

¢ Totally dependent on the 64000's emulation environment and the simulated 170
facilities that are a part of that environment.

o Not called directly by the Pascal/64000 but called by the Pascal I/0 library routines.
The Simulated I/0 Library implements the "primitive” routines described above for the
emulation environment.

Performs I/0 directly by manipulating the simulated I/0 interface.

The Pascal/64000 I/0 facilities were designed to achieve three primary objectives. These
objectives are:

Pascal/64000
Compiler

a. To provide Standard Pascal I/0 constructs that operate uniformly for all target mic-
roprocessors and target system |I/O implementations. A Pascal program using I/0
should behave the same it it is compiled for the 6800, 68000, or any of the supported
target processors. A Pascal program using I/0 should behave the same when it is
running in the emulation environment using simulated I/O or in the customer’'s target
environment using the target system’'s |/0 facilities.

b. To provide a quick and easy means of using the 64000’s simulated I/0O facilities in the
emulation environment. A Pascal program should be able to access the 64000's
keyboard, display, printer, rs232 port and disc files with a minimum of work. It should
be unnecessary for the user to have any knowledge of the simulated |I/0O interface.

¢. To provide an easy migration path from the emulation environment to the customer’s
target environment. When moving out of the emulation environment, the user should
only have to rewrite the ten or so routines that are contained in the simulated 1/0
library. These "primitive” routines are the only ones that should have any dependency
on the I/0 environment.

(Independent of target (Dependent on target
environment) environment)
Simulated
I/0 Library |+«—Simulated
routines I/0
Pascal/6L000 Pascal |-— facilities
programs —| I/O0 Lib.
using I/0 routines Emulation environment

Customer’s target environment

—_— Customer Target

Supplied I/0 |+—Sys.
library routines I/0
facil.

(Independent of target environment)

(Depend. on target environ.)

Figure 6-1. Block Diagram of Pascal/64G00 and 170 Libraries

Pascal/64000
Compiler

The following example is written for the Motorola 68000 microprocessor. One can
recompile it for any of the other microprocessors supported by the 64000.

"68000"

{3 RRAK K AOK A KK AR A KKK K AR KKK KK KK A AR K AR K AR KK A KK K KK AR KKK KA KA KK KK KKK KKK }

(
{

-~

L T T T T T T T T T NP N

The following program can copy any 64000 file to any other 64000

file.

COPY accepts the name of the source and destination files from
the 64000 keyboard and writes error and status messages to the
64000 display. The program terminates if it detects end-of-file

(i.e. an empty line) while reading either the source or destination

file names.

This program illustrates the use of variable length record mode.
It is dependent on the Simulated I/0 environment for two reasons:
a. Simulated I/0 defines physical records.
b. Simulated I/0 physical records have a maximum length of
256 bytes.

AOKKAAOK A KK AR AR KA KK AR KA KK HOKAK KK AR KA KKK KKK AR AR KK A KKK A NOK KKK KA KK KK

PROGRAM COPY; (NOTE: Program parameters are not implemented in

{ Pascal/64000 because program parameters imply
{ the existence of an "operating system" which
{ may not exist in the target environment. One
{ may use the predefined variables INPUT and
{ OUTPUT without mentioning them in the program
{ parameter list.
TYPE
REC_TYPE = ARRAY[O0..255] OF CHAR; {Simulated I/0 record
FILE_TYPE = FILE OF REC_TYPE; {Non-text file
{ The following types are needed for the Simulated I/O interface.
{ The CA_BUFFER is defined here to be 258 bytes long. CA buffers
{ for some devices may actually be shorter. The display requires
{ 257 bytes, the printer requires 242 bytes, the rs232 requires 240
{ bytes, the keyboard 243 bytes, and only disc files require 258.
CA_PTR = ~CA_BUFFER; {Pointer to CA_BUFFER.
CA_BUFFER = ARRAY[O0..257] OF CHAR; {Simulated I/O CA buffer
VAR
BUFFER : REC_TYPE; {Buffer for data to be copied
DONE : BOOLEAN; {TRUE if end-of-file detected
SOURCE_OPEN : BOOLEAN; {TRUE if source file opened
DESTINATION_OPEN : BOOLEAN; {TRUE if destination file opened
SOURCE : FILE_TYPE; {Source file variable
DESTINATION : FILE_TYPE; ({Destination file variable
SOURCE_NAME : STRING; {Source file name
DESTINATION_NAME : STRING; {Destination file name

}
}
}
}
}
}
)
)
}
}
}
}
}
}
}
}
)

- St Nt Nt gt Nt Nt Nt

-~

' Nt St gt g

St Nt Nt gt gt Nt Nt g

Pascal/64000
Compiler

SEXTVAR ONS$ (Following variables are defined in the Pascal I/0 Lib. }
READ_REC_LEN : SIGNED_16; ({Contains no. of bytes transferred}
{to buffer variable during last }
{input operation.
WRITE_REC_LEN : SIGNED_16; ({Set to contain the no. of bytes
{to be written in next °'VARIABLE’
{mode output operation.

Nt Nt gt

SEXTVAR OFF$

{ The following variables are the CA buffers needed by Simulated }
{ I/0. They are ORGed at specific addresses because their addresses }
{ need to be known during emulation configuration and it is }
{ convenient if the CA buffers do not move if the program is changed.}

$ORG 7000HS

DISPLAY_CA : CA_BUFFER; ({CA buffer for display }
$O0RG 7102HS$
PRINTER_CA : CA_BUFFER; ({CA buffer for printer }
$ORG 7204HS
RS232_CA : CA_BUFFER; {CA buffer for rs232 }
$ORG 7306HS
KEYBOARD_CA : CA_BUFFER; ({CA buffer for keyboard }
$ORG 7408HS
DISC_1_CA : CA_BUFFER; {CA buffer for disc file #1 }
$O0RG 750AHS
DISC_2_CA : CA_BUFFER; {CA buffer for disc file #2 }
$END_ORGS
PROCEDURE Pinit_pascal_io; EXTERNAL; {Pascal I/0 Library routine }
{to initialize its data }
{structures. }
PROCEDURE Pshutdown_pascal_io; EXTERNAL; {Pascal I/O0 Library routine }
{to close all open file }
{variables. }
FUNCTION IORESULT:BYTE; EXTERNAL; {Pascal I/0 Library routine }
{returns result code for }
{most recent I/0 operation. }

{ Simulated I/0 Library routine to initialize its data structures. }
{Its parameters are the addresses of the CA buffers required for the }

{simulated I/0 interface. NIL indicates that no CA is allocated. }
PROCEDURE INIT_SIMIO_LIB(DISPLAY_CA, ({display CA buffer address}
PRINTER_CA, ({printer CA buffer address)
RS232_CA, {rs232 CA buffer address}
KEYBOARD_CA, {keyboard CA buffer address}

DISC_1_CA, {disc file #1 CA buffer address}

DISC_2_CA, {disc file #2 CA buffer address}

DISC_3_CA, {disc file #3 CA buffer address}

DISC_4_cA, {disc file #4 CA buffer address}

DISC_S5_CA, {disc file #5 CA buffer address}

DISC_6_CA {disc file #6 CA buffer address}
CA_PTR); EXTERNAL;

Pascal/ 64000
Compiler

BEGIN {COPY}

Pinit_pascal_io; {Initialize Pascal I/0 Library data. }
INIT_SIMIO_LIB({Initialize Simulated I/O0 Library data. }
ADDR (DISPLAY_CA), {Ptr to display CA buff }
ADDR (PRINTER_CA), {Ptr to printer CA buff }
ADDR (RS232_CA), {Ptr to rs232 CA buff }
ADDR (KEYBOARD_CA), {Ptr to keyboard CA buff }
ADDR (DISC_1_cCA), {Ptr to disc file #1 CA buff }
ADDR (DISC_2_cCA), {Ptr to disc file #2 CA buff }
NIL, {disc file # 3 not needed }
NIL, {disc file # 4 not needed }
NIL, {disc file # S not needed }
NIL); {disc file # 6 not needed }
RESET(INPUT, 'keyboard'); {NOTE: One must explicitly open INPUT. }

REWRITE(OUTPUT, 'display’); {NOTE: One must explicitly open OUTPUT. }
DONE := FALSE;

WHILE NOT DONE DO
BEGIN {NOT DONE}

{Accept and open source file}
SOURCE_OPEN := FALSE;
WHILE NOT (DONE OR SOURCE_OPEN) DO
BEGIN {OPEN SOURCE FILE}
WRITELN('Type in source file name: (Empty line terminates program)’');

IF EOF THEN {Check EOF before reading. }
DONE := TRUE

ELSE
BEGIN {NOT EOF}
READLN (SOURCE_NAME) ; {Read source file name. }
$I0CHECK OFFsS {Turn off I/0 error checking }
RESET(SOURCE,SOURCE_NAME, 'VARIABLE’); {Attempt to open source file.}
$IOCHECK ONS {Turn on I/0 error checking. }

IF IORESULT = 0 THEN
BEGIN {RESET SUCCESSFUL}
SOURCE_OPEN := TRUE;
WRITELN('File "' ,SOURCE_NAME,'" opened for input.’);
END {RESET SUCCESSFUL}
ELSE
WRITELN('Unable to open file "' ,SOURCE_NAME,'" for input.’');
END; {NOT EOF}
END; {OPEN SOURCE FILE}

{Accept and open destination file}
DESTINATION_OPEN := FALSE;
WHILE NOT (DONE OR DESTINATION_OPEN) DO
BEGIN {OPEN DESTINATION FILE}
WRITELN('Type in destination file name: (Empty line terminates program)’);
IF EOF THEN {Check EOF before reading. }
DONE := TRUE

Pascal/64000
Compiler

ELSE
BEGIN {NOT EOF}
READLN(DESTINATION_NAME) ; {Read destination file name. }
$I0OCHECK OFF$ {Turn off I/0 error checking }
REWRITE (DESTINATION,DESTINATION_NAME, 'VARIABLE'); {Attempt to }
{open destination file. }
$IOCHECK ONS$ {Turn on I/0 error checking. }
IF IORESULT = 0 THEN
BEGIN {RESET SUCCESSFUL}
DESTINATION_OPEN := TRUE;
WRITELN('File "' ,DESTINATION_NAME,'" opened for output.’);
END {RESET SUCCESSFUL}
ELSE
WRITELN('Unable to open file "' ,DESTINATION_NAME,'" for output.’);
END; ({NOT EOF}
END; {OPEN DESTINATION FILE}

{Copy source file to destination file}
IF SOURCE_OPEN AND DESTINATION_OPEN THEN
BEGIN {COPY FILES}
WHILE NOT EOF (SOURCE) DO
BEGIN {NOT EOF(SOURCE)}

READ (SOURCE ,BUFFER) ; {Read record into buffer }
WRITE_REC_LEN := READ_REC_LEN; {Output record same size as input)
WRITE(DESTINATION,BUFFER); {Write record from buffer }
END; {NOT EOF(SOURCE)}

CLOSE (SOURCE) ;

CLOSE (DESTINATION) ;

WRITELN(’'"’,SOURCE_NAME,'" copied to "’ ,DESTINATION_NAME,6'"'});
END; {COPY FILES}
END; {NOT DONE}

Pshutdown_pascal_io; {Close all file variables. }

END. (COPY}

PASCAL/64000 I/0.

The following section defines terms and introduces some concepts that will be used
throughout the I/0 chapter.

Logical Files and Physical Files

The word "file” has several meanings in the context of a Pascal program. Therefore,
definitions of the terms "logical file” and "physical file” are in order so that the following
discussion will be more precise.

A logical file is a variable that exists within a Pascal/64000 program. The
characteristics of a logical file are defined by the Pascal Language and are independent

Pascal/ 64000
Compiler

of any Pascal environment. Logical files are referenced by identifiers just like any other
Pascal variable. A synonym for logical file is "file variable.” An example of a logical file
definition is the following.

TYPE T = INTEGER; {Can be any type not containing a FILE};
VAR F:FILEOF T; ({Fis alogical file}

A physical file exists independently of Pascal or any other program. Its characteristics
are defined by a particular computer system and are independent of any program or lan-
guage which accesses it. A physical file is identified by a "file name” which is a string of
characters that can uniquely identify a file within a particular environment. Examples of
file names on the 64000 system are the following.

COPY:IODOC:O:source
printer

At run-time, a logical file is "associated” with a physical file using the opening
procedures RESET, REWRITE, APPEND, or OPEN. When a logical file is open, it can read
and write data to a physical file. This association lasts until the file is closed.

Logical File States

A logical file (i.e. a file variable) always has one of four states in a Pascal program:
closed, read-only, write-only, or read-write.

closed - A closed file variable is not associated with any physical file.
An error will result if any input or output operation is executed
on that tile.

read-only - A read-only file variable is open (i.e. associated with a physical

file). Only input operations are allowed. The procedure RESET
opens a file in the read-only state.

write-only - A write-only file variable is open (i.e. associated with a physical
file). Only output operations are aliowed. The procedures
REWRITE or APPEND open a file in the write-only state.

read-write - A read~write file variable is open (i.e. associate with a physical
file). Both input and output operations are allowed. In addition,
the routines SEEK, READDIR, WRITEDIR, and MAXPOS may be
performed on read-write file. The procedure OPEN opens a file
in the read-write state. Note that textfiles (defined later) may
not be opened in the read-write state.

Pascal/64000
Compiler

Logical Records, Physical Records, and Variable Length Records

A logical file consists of a sequence of components all of the same type. The com-
ponents are numbered beginning with component number 1. Sometimes the term "logical
record” is used as a synonym for file component. Only one component of a file, the cur-
rent component, is accessible at a time. Given a variable "F: FILE OF T,” where T is
some type, then all the components of the file are of type T. The length of each com-
ponent in bytes is the length of T. If T is a record with variants, then the length of T is
the length of the largest variant of T.

A particular 170 implementation may or may not divide the data in physical files into
"physical records”. Some file systems do not define physical records at all but consider
a tile to be just a sequence of data bytes. The 64000 file system used by the simulated
170 library, defines physical records. For 64000 disc files, a physical tile consists of a
number of variable length physical records, each record containing from 2 to 256 bytes
of data.

The Pascal language does not recognize physical records. It treats files as a stream of
data bytes. Alllogical records have a fixed length defined by the Pascal program. When
reading a logical record, Pascal reads as many physical records as necessary to fill the
logical record. When writing a logical record, Pascal writes physical records as neces-
sary to output the data. In Pascal, therefore, the logical record definition in the program
overrides any implementation of physical records in the 170 system.

Sometimes it is important to the programmer to understand and deal with physical
records. This is particularly true when physical files have been produced by other lan-
guage systems or when a physical file is written using one Pascal file variable and read
using a variable with a ditferent length component. Pascal/64000 has non-standard
features which allow the programmer to deal with physical records.

A logical file may be opened in "variable Ieng'th record mode” using the procedures
RESET, REWRITE, APPEND, or OPEN. For example,

RESET(F, 'FILENAME''VARIABLE");

In variable length record mode, the physical record definition, if it exists, overrides the
logical record definition. When reading a component, data bytes are input until the logi-
cal record is full or until the end of a physical record is encountered, whichever comes
first. When writing a component, the programmer specifies the length of the component
and writes a physical record of that length.

The details of reading and writing files in variable length record mode are discussed
later in this chapter.
The Buffer Variable

The "buffer variable” is a part of every file variable. Given the following definition of a
file variable:

Pascal/64000
Compiler

VAR F: FILE OF T,

then the buffer variable is an ordinary variable of type T and is referenced by way of
the construction F°. When reading a file, each file component is read into the buffer
variable. When writing, the data for each component is assigned to the buffer variable
before being written.

In Pascal/64000, because of the "deferred GET” implementation described later, a
reference to the buffer variable F* may cause an input operation to occur.

Textfiles and Non-text Files

The type identifier TEXT is predefined by the Pascal/64000 compiler as follows:

TYPE TEXT = FILE OF CHAR,;

File variables of type TEXT are called "textfiles”. All other files are called "non-text
files”. Note the following definitions.

VAR F: TEXT;
G: FILE OF CHAR,;

F is a textfile. Gis a non-text file whose components happen to be of type CHAR. Only
those variables defined in terms of the identitier TEXT are textfiles.

Textfiles have special properties. The components of a textfile, of type CHAR, are fur-
ther structured into "lines” separated by "line markers”. Line markers are written to a
textfile using the predefined procedure WRITELN. Line markers are detected (when
reading) by using the predefined function EOLN. If, when reading, the textfile F is posi-
tioned at a line marker, then the buffer variable F* will contain the ASCIl space
character.

The actual implementation of line markers is not defined by the Pascal language. Various
170 environments may implement line markers differently. The Pascal 170 Library, dis-
cussed later in this chapter, contains provisions for dealing with different
implementations.

Although the components of textfiles are of type CHAR, one may use the procedures
READ and WRITE to transfer values of other types, INTEGER, UNSIGNED __ xx, REAL,
LONGREAL, and STRING, to and from textfiles. In this case, Pascal performs an implicit
data conversion. When reading, a sequence of characters is converted to the ap-
propriate internal representation for, for example, an INTEGER. When writing, the value
of a REAL expression, for example, is converted to a sequence of characters.

Pascal/64000
Compiler

"Deferred GET” Implementation of I/0
Jensen and Wirth in the "Pascal User Manual” define the procedure GET(F) as follows:

GET(F) advances the file window to the next component; i.e. assigns the value of this
component to the buffer variable F~.

This deftinition has unfortunate consequences for interactive devices such as terminal
keyboards. For example, the procedure call READ(F,V) can be rewritten as follows:

V:i=F"
GET(F);

Using the above definition for GET, in order to read the "present” character from the
keyboard, one must additionally type in the "next” character before READ will return to the
calling program. Coding around this problem leads to unnatural looking programs.

HP Standard Pascal addresses this problem with a "deferred GET” implementation. The fol-
lowing "deferred GET"” definition postpones the input operation associated with the GET until
the data from the physical file is actually needed.

GET(F) cause a subsequent reference to the buffer variable or subsequent calls to the
functions EOF(F) or EOLN(F) to actually move the current file component into the buffer
variable and advance to the next component. If the current component does not exist,
F~ will be undefined and EOF(F) will return TRUE. An error will occur if F is not open for
reading or if EOF(F) was TRUE prior to the call.

This definition results in the following sequence of events when reading a file:

a. The program executes a call to GET. A flag is set within the file variable to remember
this event. No input operation is performed.

b. The program executes one of the following operations: a reference to the buffer
variable, a call to EOF, or a call to EOLN. Since the GET flag is set, an input operation
is performed which advances the file position and transfers this file component to the
buffer variable. The GET flag is reset.

c. Subsequent references to the buffer variable or calls to EOF or EOLN do not perform
input operations since the GET flag is reset and the present component is already in
the puffer variable. In order to advance to the next component, it is necessary to call
GET again.

I/0 Error Handling

The Pascal Language does not define any features for dealing with errors of any kind includ-
ing 170 errors. A practical language system must, however, be able to deal with I/0 errors
within the program. The compiler option $IOCHECKS$ allows the programmer to select be-
tween two methods of handling I/0 errors. One may mix these two methods within the same
program as needed by setting IOCHECK ON or OFF.

Pascal/ 64000
Compiler

With $IOCHECK ONS$, the default case, it a Pascal I/0 library routine detects an error, the
program terminates. The exact method of termination depends on the particular target mic-
roprocessor and its environment. For example, for the Motorola 68000 in the 64000 emula-
tion environment, the error handling routines builds an error message, "I/O error NN at
XXXXXXXX” and calls a routine in the emulation monitor. Other processors use different
methods, but, in general, I/0 errors will be handled just like any other run-time library error
for that processor.

If a Pascal I/0 library routine detects an error with $IOCHECK OFF$, the routine sets a global
variable to a result code and returns. The programmer should then call the function
IORESULT, defined in the Pascal I/0 library, to obtain the result code for the most recent I/0
operation. For example,

VAR F.G: TEXT,;

FUNCTION IORESULT:SIGNED__8; EXTERNAL;

BEGIN

RESET(F'NAME1'); {Error detected in this call terminates program}
$IOCHECK OFF $ {Turn off IOCHECK option}

RESET(G,’NAMEZ2'); {This call just sets a result code}
IF IORESULT <> O THEN {Check result of last 170 operation}
BEGIN {Handle 1/0 error} END;

The value returned by IORESULT has the following meanings:

0 - Operation successful, no errors detected.

1 - Error in I/0O primitive routine. A primitive routine, called by a Pascal I/0 library
routine detected an error. The nature of this error is defined by the I/0 environ-
ment and the library routines that manipulate that environment. For example, the
Simulated 1/0 library defines a global variable "errno” which contains the result
code for the last simulated |/0 operation.

2-n - Pascal I/0 Library error. These errors are defined by the Pascal language for all
170 environments. An example is IORESULT = 2, an I/0 operation was performed
on a closed tile.

Deviations From Standard Pascal

The following features of Pascal/ 64000 are different from those for HP Standard Pascal.

PROGRAM PARAMETERS NOT IMPLEMENTED. Pascal/64000 does not allow a list of
program parameters to be specified after the program name. For example:

PROGRAM P(INPUT,OUTPUT); {Produces error number 450}

(o))
!

11

Pascal/64000
Compiler

The existence of program parameters implies that there is an "operating system” which ex-
ecutes the Pascal program and passes values to the Pascal program. In a microprocessor
environment, however, such an operating system may not exist. Therefore Pascal/64000
disallows program parameters. The predetfined file variables INPUT and OUTPUT may still be
used without being declared in the program and without being mentioned in the program pa-
rameter list.

STANDARD FILES INPUT AND OUTPUT MUST BE OPENED EXPLICITLY. The
Pascal/64000 compiler does not automatically generate calls to RESET(INPUT) and
REWRITE(OUTPUT) at the beginning of the main program block. The programmer must ex-
plicitly open the files INPUT and OUTPUT before using them.

PROGRAM LEVEL FILES AND DYNAMIC FILES MUST BE CLOSED EXPLICITLY.
Pascal/64000 does not automatically close program level file variables upon leaving the body
of the main program. The programmer must write explicit code to accomplish this. This is
because Pascal/ 64000 allows separately compiled program modules to be linked together to
form a complete program. The Pascal/ 64000 compiler, when compiling the main module, does
not have knowledge of program level file variables in other program modules.

There are two methods of closing these files. The programmer may write explicit calls to
CLOSE for each program level file variable. Also, the Pascal I/0 Library defines the proce-
dure Pshutdown__pascal__io which closes all files.

Pascal/64000 does not automatically close dynamically allocated file variables when the
dynamic variable is disposed. If one allocates a file variable with the procedure NEW, then
one must explicitly call CLOSE for that file variable before calling DISPOSE.

The Pascal/64000 compiler automatically generates code to close files that are local to a
procedure or function at the end of the procedure or function body.

INPUT AND OUTPUT OF ENUMERATED TYPES TO TEXTFILES NOT IMPLEMENTED. HP
Standard Pascal allows enumerated types to be used as parameters to READ and WRITE to
texttiles. Pascal/64000 does not impleinent this feature.

Implementation Dependent Features

Although Pascal/ 64000 attempts to implement 1/0 in an implementation independent manner,
this objective has not been achieved completely. The following features of the Pascal I/0
library are dependent on the I/0O environment.

a. Maximum number of tile variables open at one time.

b. Maximum number of logical records in a non-text file.

c. Maximum number of characters in a textfile line.

d. Detinition of a line marker for textfiles.

e. Padding of odd-length logical records.

t. Variable length records; determining and specifying their length.

Pascal/ 64000
Compiler

In some cases, the behavior of implementation dependent features is controlled by global
variables defined in the Pascal I/0 Library. The globals are set to their default values by the
routine Pinit__pascal__io in the Pascal I/0 Library. The default values are selected to be
compatible with the Simulated 1/0 environment. The programmer may, after calling
Pinit__pascal__io, set the globals to different values to select different behavior. Refer to
the Pascal I/0 Libraries section in this chapter for more information.

Standard Procedures and Functions for I/0

APPEND

Usage:
APPEND(F)
APPEND(F,S)
APPEND(F,S,T)

Parameters:
F must be a file variable.
S must be a string expression. The contents of S should be the name of a physical

tile that will be associated with F. The rules for physical file names and their
meanings are not specified by Pascal. The interpretation of physical file names is
done in the I/O environment library. Only the first 49 characters of S are
significant.

T must be a string expression. The contents of T specifies I/0O implementation
dependent information about the file F. The Pascal I/0 library recognizes one
value for T that specifies variable length record mode as opposed to fixed length
records.

'VARIABLE’ - specifies that physical records in the physical file will override the
logical record description of the file variable. (Refer to the previous dis-
cussion on Logical/Physical/Variable Length Records.)

Other values for T will be ignored. The Pascal I/0 library ignores leading and trail-
ing blanks in T and considers upper and lower case letters equivalent.

Description:

The procedure APPEND(F) opens the file F in the write-only state and places the current file
position immediately after the last existing component. If the physical file associated with F
does not exist, then the physical file is created (if possible). EOF(F) now returns TRUE and
the contents of the buffer variable F” is undefined.

Pascal/64000
Compiler

If the file F is already open when APPEND is called, then F is first closed.

If the parameter S is specified and it is not the null string or all spaces, then the content of S
is used as the physical file name to be associated with F. If S is not specified or if S is the
null string or all spaces, then the name of the physical file previously associated with F, it F
was open, is used. If F was not open and S is not specified, then the null string (i.e.) is used
as the physical file name.

Simulated I/0 Note: The null string is not a legal file name for simulated I/O and
causes an error.

APPEND is an HP Standard Pascal extension of ANSI Pascal.

CLOSE
Usage:
CLOSE(F)
CLOSE(F,S)
Parameters:
F must be a file variable.
S must be a string expression. The contents of S specify the disposition of any
physical file associated with F. The Pascal I/O Library recognizes one value.
PURGE - specifies that the physical file associated with F will be deleted from
the file system.
Other values for S will be ignored. The Pascal I/0 library ignores leading and
trailing blanks in S and considers upper and lower case letters equivalent.
Description:

The procedure CLOSE(F) closes the file F and breaks any association between F and a
physical file. After CLOSE, EOF(F) returns TRUE and the contents of the buffer variable F” is
undefined. If F was closed when CLOSE was called, no action is taken. If F was open and
the contents of S was 'PURGE’, then APPEND attempts to delete from the file system the
physical file associated with F.

CLOSE is an HP Standard Pascal extension of ANSI Pascal.

Pascal/64000
Compiler

EOF

Usage:
EOF(F)
EOF

Parameters:

F must be a file variable. If F is omitted, the predefined variable INPUT is used.

Description:

The BOOLEAN function EOF(F) returns TRUE if the file F is closed or open in the write-only
state. EOF(F) returns TRUE if F is open in the read-only or read-write states and the cur-
rent file position is past the last existing component in the physical file associated with F.
Otherwise, EOF(F) returns FALSE.

EOF references to the buffer variable F* during its operation could possibly cause an input
operation to occur.

EOLN

Usage:
EOLNC(F)
EOLN

Parameters:

F must be a textfile variable open in the read-only state. If F is omitted, the
predefined variable INPUT is used.

Description:

The BOOLEAN function EOLN(F) returns TRUE if the current position of textfile F is at a line
marker. Otherwise, EOLN(F) returns FALSE.

EOLN references to the buffer variable F~ during its operation could possibly cause an input
operation to occur.

Pascal/ 64000
Compiler

GET

Usage:
GET(F)

Parameters:

F must be a file variable open in the read-only or read-write states.

Description:

The procedure GET(F) causes a subsequent reference to the buffer variable F* or sub-
sequent calls to the functions EOF(F) or EOLN(F) to perform an input operation which moves
the current component into the buffer variable and advances to the next component. If the
current component does not exist, the buffer variable F*~ will be undefined and EOF(F) will
return TRUE. An error will occur if F is not in the read-only or read-write states or if
EOF(F) was TRUE prior to the call.

LINEPOS

Usage:
LINEPOS(F)

Parameters:
F must be a textfile variable open in the read-only or write-only state.
Description:
The SIGNED__ 16 function LINEPOS(F) returns the number of characters read from or written
to the textfile F since the last line marker. This does not include the character in the buffer

variable F*. LINEPOS returns zero after reading a line marker or after a call to READLN or
WRITELN.

LINEPOS is an HP Standard Pascal extension of ANSI Pascal.

Pascal/ 64000
Compiler

MAXPOS

Usage:
MAXPOS(F)
Parameters:

F must be a non-text file variable open in the read-write mode.

Description:

The SIGNED__ 16 function MAXPOS(F) returns the number of the last component of F which
may ever be accessed. Note that is not the number of components actually written in the
physical file associated with F. It is the maximum number that may ever be written.

The value returned by MAXPOS is implementation dependent. Refer to the decription of the
routine Pmaxpos presented later in this chapter tor further details.

MAXPOS is an HP Standard Pascal extension of ANSI Pascal.

OPEN

Usage:
OPEN(F)
OPEN(F,S)
OPEN(F,S,T)

Parameters:

F must be a non-text file variable.

S must be a string expression. The contents of S should be the name of a physical
file that will be associated with IF. The rules for physical file names and their
meanings are not specified by Pascal. The interpretation of physical file names
is done in the I/0O environment library. Only the first 49 characters of S are
signiticant.

T must be a string expression. The contents of T specifies I/0 implementation

dependent information about the file F. The Pascal I/0 library recognizes one
value for T that specifies variable length record mode as opposed to fixed
length records.

'VARIABLE' - specifies that physical records in the physical file will override the
logical record description of the file variable {refer to description given
previously).

Pascal/64000
Compiler

Other values for T will be ignored. The Pascal I/0 library ignores leading and
trailing blanks in T and considers upper and lower case letters equivalent.

Description:

The procedure OPEN(F) opens the file F in the read-write state and places the current file
position at the first component of the file. If the physical tile associated with F does not ex-
ist, then the physical file is created (if possible). EOF(F) now returns FALSE, unless F is
empty, and the contents of the buffer variable F” is undefined.

If the file F is already open when OPEN is called, then F is first closed.

If the parameter S is specified and it is not the null string or all spaces, then the content of S
is used as the physical file name to be associated with F. If S is not specified or if S is the
null string or all spaces, then the name of the physical file previously associated with F, it F
was open, is used. If F was not open and S is not specitied, then the null string (i.e. ") is used
as the physical file name.

Simulated I/0 Note: The null string is not a legal file name for simulated I/0 and
causes an error.

The Simulated I/0 Library does not fully implement read-
write (i.e. random access) files. Refer to the Simulated

I/0 Libraries section in this chapter for important restric-
tions regarding positioning and writing on read-write files.

OPEN is an HP Standard Pascal extension of ANSI Pascal.

OVERPRINT

Usage:
OVERPRINT(F)
OVERPRINT

Parameters:

F must be a textfile variable open in the write-only mode. If F is omitted, the
predetined variable QUTPUT is used.

Description:

The procedure OVERPRINT(F) writes a special line marker o the textfile F. When the physi-
cal file is printed, this line marker causes the next line to be printed on top of the line just
printed.

Pascal/ 64000
Compiler

Simulated 1/0 Note: The Simulated 170 Library does not implement OVERPRINT
as described above. With simulated I/0, OVERPRINT is
the equivalent of WRITELN.

OVERPRINT is an HP Standard Pascal extension of ANSI Pascal.

PAGE
Usage:

PAGE(F)

PAGE
Parameters:

F must be a textfile variable open in the write-only mode. If F is omitted, the
predefined variable OUTPUT is used.

Description:

The procedure PAGE(F) writes a special line marker to the textfile F. When the physical file
is printed, this line marker causes the printer to skip to the top of the form.

POSITION

Usage:
POSITION(F)

Parameters:

F must be a non-text file variable which is not closed.

Description:

The SIGNED__ 16 function POSITION(F) will be the current file position (i.e. component num-
ber) of F. The first component of a file is number 1.

POSITION is an HP Standard Pascal extension of ANS| Pascal.

Pascal/64000
Compiler

PROMPT

Usage:
PROMPT(F)
PROMPT

Parameters:

F must be a textfile variable open in the write-only mode. If F is omitted, the
predefined variable OUTPUT is used.

Description:

The procedure PROMPT(F) causes the system to write any buftered data for textfile F to the
physical file. A line marker is not written and the file position is not advanced.

Simulated I/0 Note: The Simulated 170 Library does not implement PROMPT
as described above. With simulated I/0, PROMPT is the
equivalent of WRITELN.

PROMPT is an HP Standard Pascal extension of ANSI Pascal.

PUT

Usage:
PUT(F)

Parameters:
F must be a file variable open in the write-only or read-write state.
Description:

The procedure PUT(F) writes the contents of the buffer variable F* to the current component
of the file and advances the file position to the next component.

Simulated 1/0 Note: The Simulated I/0 Library does not fully implement read-
write (i.e. random access) files. Refer to the section on
Simulated 170 Library for important restrictions regard-
ing positioning and writing on read-write files.

READ

Usage:
READ(F,V)
READ(F,V1, ... ,Vn)
READ(V)
READ(V1, ... ,Vn)

6-20

Pascal/ 64000

Compiler
Parameters:
F must be a file variable open in the read-only or read-write state. If the first pa-
rameter to READ is not a file, then the predefined variable INPUT is used.
\Y must be a variable. The type of V depends on whether F is a textfile. If Fis a
non-text file, the component type of F must be compatible with the type ot V. If
F is a textfile, the type of V must be compatible with CHAR, INTEGER,
UNSIGNED__nn, REAL, LONGREAL, or STRING. V may be a component of a
packed structure. Any number of suitable variables may be specified.
Description:

The procedure READ(F,V) assigns the value of the current component of F to the variable V
and advances to the next component. A subsequent reference to the buffer variable F~ will
cause the next component to load the new current component into the buffer variable.

READ(F,V1,v2, ... ,Vn) is equivalent to READ(F,Vl1);
READ(F,V2);
READ (F ,Vn);

READ(V) is equivalent to READ(INPUT,V)

READ(V1,vV2, ... ,Vn) is equivalent to READ(INPUT,V1);

READ (INPUT,V2);

READ (INPUT,Vn);

It F is a non-text file, the following equivalence describes the operation of READ.

READ(F,V) is equivalent to V := F~;
GET(F);

It F is a texttile, its components are of type CHAR. The variable V, however, may be of a
type compatible with CHAR, INTEGER, UNSIGNED__nn, REAL, LONGREAL, or STRING. An im-
plicit data conversion is performed from the characters of the textfile to the internal
representation ot the variable V. The rules of the conversion depend on the type of V.

After completion, F~ will contain the character following the last character used by READ. An
error will occur it EOF(F) is TRUE before READ is called or it EOF(F) becomes true before
finishing the read operation.

[}
[

21

Type of V

CHAR
subrange of CHAR

INTEGER, BYTE,
SIGNED__8,
SIGNED__186,
SIGNED__32,0r a
subrange of these

types

UNSIGNED__8,
UNSIGNED__ 186,
UNSIGNED__ 32, or
subrange of these
types

Pascal/64000

Conversion Rules

The current component of F (of type CHAR)
is assigned to V and the file position is ad-
vanced. No conversion is performed.

READ skips preceding blanks and line
markers and reads a sequence of characters
described by the diagram below. The signed
decimal value of these characters is stored
in the variable V.

An error occurs if the sequence described
below is not satisfied. An error occurs if the
value found is outside the range of INTEGER.

READ

Compiler

INTEGER plarm j

READ skips preceding blanks and line
markers and reads a sequence of characters
described by the diagram below. The unsign-
ed decimal value of these characters is
stored in the variable V.

An error occurs if the sequence described
below is not satisfied. An error occurs if the
value found is outside the range of
UNSIGNED__32 (or UNSIGNED__16 for the
6800 and 6809).

R
FAD 2 L > DIGIT

UNSIGNED (')

6-22

Pascal/ 64000
Compiler

Type of V

REAL or
LONGREAL

READ REAL

Conversion Rules

READ skips preceding blanks and line
markers and reads a sequence of characters
described by the diagram below. The signed
real value of these characters is stored in
the variable V.

An error occurs if the sequence described
below is not satisfied. If the value is outside
the range of REAL or LONGREAL, variable V
will contain the value infinity.

UNSIGNED
INTEGER

STRING or

OR ~ > >
LONGREAL | : I l

’ Y
UNSIGNED

INTEGER N
UNSIGNED
INTEGER

~

SnOal

UNSIGNED
INTEGER

Wou,

PACKED ARRAY[0..n]

OF CHAR

READ will fill V with characters from F while
either EOLN(F) is FALSE or until V is full. It
then sets the dynamic length of V (i.e. V[O])
to the number of characters read.

Pascal/64000
Compiler

READDIR

Usage:
READDIR(F,I,V)
READDIR(F,,V1, ... ,Vn)

Parameters:

F must be a non-text file variable open in the read-write mode.

i must be an expression compatible with SIGNED__ 16. It specifies the component
number that will be read.

Y must be a variable. The component type of F must be compatible with the type of
V. Any number of suitable variables may be specified.

Description:

The procedure READDIR(F,I,V) moves the current position of file F to component number I. It
then assigns the value of that component to the variable V and advances the file position to
the next component. An error occurs if the value of | is less than one or greater than
MAXPOS(F).

READDIR(F,I,V) is equivalent to SEEK(F,I);
GET(F);
V := F*,
GET(F);

READDIR(F,I,V1,V2, ... ,Vn) is equivalent to READDIR(F,I,V1);
READ(F,V2);

READ(F,Vn);

Simulated I/0 Note: The Simulated I/0 Library does not fully implement read-
write (i.e. random access) files. Refer to the section on
Simulated I/0 Library for important restrictions regard-
ing positioning and writing on read-write ftiles.

READDIR is an HP Standard Pascal extension of ANS| Pascal.

Pascal/ 64000
Compiler

READLN

Usage:
READLNC(F)
READLNC(F,V)

READLN(F,V1, ..., Vn)

READLN(V)

READLN(V1, ... ,Vn)

READLN

Parameters:

must be a textfile variable open in the read-only mode. If F is omitted or if the
first parameter is not a file, the predefined variable INPUT is used.

must be a variable. The type of V must be compatible with CHAR, INTEGER,
UNSIGNED__nn, REAL, LONGREAL, or STRING. V may be a component of a
packed structure. Any number of suitable variables may be specified.

Description:

READLN(F)

READLN(F,V)

READLN(F,V1,v2,

READLN(V)

READLN(V1,V2,

READLN

,Vn)

,Vn)

is

is

is

is

is

is

equivalent to

equivalent to

equivalent to

equivalent to

equivalent to

equivalent to

The procedure READLN(F) advances the current position of the texttfile F to the beginning of
the next line (i.e. to the first character following the next line marker). The procedure
READLNC(F,V) first reads characters from F and assigns their value to V before advancing to
the next line. The rules assigning values to the variable V are the same as for READ(F,V).

WHILE NOT EOLN(F) DO
GET(F);
GET(F);

READ(F,V);
READLN(F);

READ(F,V1,v2,
READLN(F);

,vn);
READ (INPUT,V);
READLN(INPUT);

READ (INPUT,V1,V2,
READLN(INPUT);

,Vn);

READLN(INPUT);

6-25

Pascal/64000

Compiler
RESET
Usage:
RESET(F)
RESET(F,S)
RESET(F,S,T)
Parameters:

F must be a file variable.

S must be a string expression. The contents of S should be the name of a physical
file that will be associated with F. The rules for physical file names and their
meanings are not specified by Pascal. The interpretation of physical file names
is done in the I/O environment library. Only the first 49 characters of S are
significant.

T must be a string expression. The contents of T specifies I/0 implementation
dependent information about the file F. The Pascal I/0 library recognizes one
value for T that specifies variable length record mode as opposed to fixed
length records.

"VARIABLE' - specifies that physical records in the physical file will override the
logical record description of the file variable.
Other values for T will be ignored. The Pascal I/0 library ignores leading and
trailing blanks in T and considers upper and lower case letters equivalent.
Description:

The procedure RESET(F) opens the file F in the read-only state and places the current file
position at the tirst component of the tile. If the physical file associated with F does not ex-
ist, an error occurs. If the physical file is not empty, EOF(F) will return FALSE and a sub-
sequent reference to F” will actually load the buffer variable with the first component.

If the file F is already open when RESET is called, then F is first closed.

If the parameter S is specified and it is not the null string or all spaces, then the content of S
is used as the physical file name to be associated with F. It S is not specified or if S is the
null string or all spaces, then the name of the physical file previously associated with F, if F
was open, is used. If F was not open and S is not specified, then the null string (i.e. ") is used
as the physical file name.

Simulated 1/0 Note: The null string is not a legal file name for simulated I/0
and causes an error.

6-26

Pascal/ 64000
Compiler

REWRITE

Usage:
REWRITE(F)
REWRITE(F,S)
REWRITE(F,S,T)

Parameters:
F must be a file variable.

S must be a string expression. The contents of S should be the name of a physical
file that will be associated with F. The rules for physical file names and their
meanings are not specified by Pascal. The interpretation of physical file names
is done in the 1I/0 environment library. Only the first 49 characters of S are
significant.

T must be a string expression. The contents of T specifies I/0 implementation
dependent information about the file F. The Pascal I/0 library recognizes one
value for T that specifies variable length record mode as opposed to fixed
length records.

'VARIABLE' - specifies that physical records in the physical file will override the
logical record description of the file variable.

Other values for T will be ignored. The Pascal I/0 library ignores leading and
trailing blanks in T and considers upper and lower case letters equivalent.

Description:

The procedure REWRITE(F) opens the file F in the write-only state and places the current
file position at the tirst component of the file. If the physical file associated with F exists, it
is deleted from the file system. Then the physical file is created. EOF(F) now returns TRUE
and the contents of the buffer variable F” is undefined.

If the tile F is already open when REWRITE is called, then F is first closed.

If the parameter S is specified and it is not the null string or all spaces, then the content of S
is used as the physical tfile name to be associated with F. If S is not specified or if S is the
null string or all spaces, then the name of the physical file previously associated with F, if F
was open, is used. If F was not open and S is not specified, then the null string (i.e. ”) is used
as the physical file name.

Simulated I/O Note: The null string is not a legal file name for simulated I/0
and causes an error.

6-27

Pascal/64000
Compiler

SEEK
Usage:
SEEK(F,D)

Parameters:

F must be a non-text file variable open in the read-write state.

| must be an expression compatible with SIGNED__ 16. It specifies the component

number which will be the new file position.

Description:

The procedure SEEK(F,) will place the current file position at component number |. If | is
greater than the highest numbered component ever written to F, then EOF(F) will return
TRUE. Otherwise EOF(F) will return FALSE. The buffer variable F” is undefined. In order to
load component | into the buffer variable F*, GET(F) must first be performed. An error will
occur if | is less than one or greater than MAXPOS(F).

Simulated I/0 Note: The Simulated I/0 Library does not fully implement read-
write (i.e. random access) files. Refer to the section on
Simulated 170 Library for important restrictions regard-
ing positioning and writing on read-write files.

SEEK is an HP Standard Pascal extension of ANSI Pascal.

STRREAD

Usage:
STRREAD(S,P,T.V)
STRREAD(S,P,T,V1, ... Vn)

Parameters:
S must be a string expression.
P must be an expression compatible with SIGNED_ 16.
T must be a SIGNED__ 16 variable.
\ must be a variable compatible with CHAR, INTEGER, UNSIGNED__nn, REAL,

LONGREAL, or STRING. Any number of suitable variables may be specified.

Pascal/ 64000
Compiler
Description:
The procedure STRREAD(S,P,T,V) reads characters from string S, starting with the character
S[P], and converts the characters into a value stored in V. After this operation, the variable
T will contain the index into S, one greater than the last character that was read.
The rules for converting the characters in S to the value in V are the same as for READ(F,V)
where F is a textfile. S is treated as a single line of a textfile. That is, an implicit line marker
follows the last character in S.
An error occurs if an attempt is made to index beyond the current length of S (i.e.
ORD(S[O])).

STRREAD(S,P,T,V1,V2, ... Vn) is equivalent to STRREAD(S,P,T,Vl1);

STRREAD(S,T,T,V2);

STRREAD(S,T,T,Vn);

STRREAD is an HP Standard Pascal extension of ANSI Pascal.

STRWRITE

Usage:
STRWRITE(S,P,T,E);
STRWRITE(S,P,T,E1,En)

Parameters:
S must be a string variable.
P must be an expression compatible with SIGNED__ 16.
T must be a SIGNED__ 16 variable.
E must be an expression. The type ot E may be compatible with CHAR, INTEGER,

UNSIGNED__nn, REAL, LONGREAL, or STRING. In addition, formatting informa-
tion for the expression E may be specified using one of the three following
forms:

E {Specifies default formatting}

EW {Wis SIGNED__16 compatible expression specitying field width}

E:W:N {Only valid it E is type REAL or LONGREAL. W and N are}
{SIGNED__16 compatible expressions. W specifies the field}

{width and N specifies the number ot digits written after}
{the decimal point.}

6-29

Pascal/64000
Compiler

Description:

The procedure STRWRITE(S,P,T,E) converts the value of expression E to a string of charac-
ters and writes those characters to string variable S starting with the character S[P]. After
the operation, the variable T contains the index into S, one greater than the last character
written. If, after the operation, the new length of S is greater than the previous length of S,
then the length of S (i.e. ORD(S[0])) is updated to the new length.

The rules for converting the expression E are the same as for WRITE(F.E) where F is a
textfile. An error occurs if an attempt is made to write beyond the maximum declared length
of S. An error occurs if P is less than 1 or greater than ORD(S[O]) + 1.

STRWRITE(S,P,T,E1,E2, ... ,En) is equivalent to STRWRITE(S,P,T,El);
STRWRITE(S,T,T,E2);

STRWRITE(S,T,T,En);

STRWRITE is an HP Standard Pascal extension of ANSI Pascal.

WRITE

Usage:
WRITE(F,E)
WRITE(FE1,En)
WRITE(E)
WRITE(ET,En)

Parameters:
F must be a file variable open in the write-only or read-write state. If the first
parameter to WRITE is not a file, the predefined variable OUTPUT is used.
E must be an expression. The type of E depends on whether F is a textfile.

It F is a non-text file, the type of E must be compatible with the component type
of F.

It F is a textfile, the type of E may be compatible with CHAR, INTEGER,
UNSIGNED__nn, REAL, LONGREAL, or STRING. In addition, formatting informa-
tion for the expression E may be specified using one of the three following
forms:

E {Specifies default formatting}

E:W {W is SIGNED__ 16 compatible expression specifying field width}

6-30

Pascal/ 64000

Compiler
E:W:N {Only valid if E is type REAL or LONGREAL. W and N are}
{SIGNED__ 16 compatible expressions. W specifies the field}
{width and N specifies the number of digits written after}
{the decimal point.}
Description:

The procedure WRITE(F,E) writes the value of E to the current file component and advances
the file position to the next component. The buffer variable F” is undefined after WRITE.

WRITE(F,E1,E2, ... ,En) is equivalent to WRITE(F,E1l);
WRITE(F,E2);

WRITE(F,En);
WRITE(E) is equivalent to WRITE(OUTPUT,E);

WRITE(EL1,E2, ... ,En) is equivalent to WRITE(OUTPUT,E1);
WRITE(OUTPUT ,E2);

WRITE(OUTPUT ,En);

If F is a non-text file, the following eguivalence describes the operation of WRITE.

WRITE (F ,E) is equivalent to F~ := E;
PUT(F);

If F is a textfile, its components are of type CHAR. The expression E, however, may be of a
type compatible with CHAR, INTEGER, UNSIGNED__nn, REAL, LONGREAL, or STRING. Anim-
plicit data conversion is performed from the internal represention of E to a character
representation in the textfile F. The rules for the conversion depend on the type of E.

If the form of the expressionis E:W or E:W:N, then the expression W specifies the total num-
ber of characters that will be written to textfile F in most cases. If W is not specified, then
the width will default to the value given in the table below for the type of E. If W is greater
than the number of characters needed to express E, then E will be preceded by spaces so
that the total width is W. If W is less than the number needed to express E, then, for CHAR
and STRING expressions, E will be truncated so that only the first W characters are written.
For numeric expressions, W will be ignored so that the full significance of E will be written.
An error will occur is the value of W or N is negative.

Before writing a tield, WRITE checks if the field will fit on the present line (i.e. if W +
LINEPOS(F) <= LINESIZE). If the field will not fit on the present line and the field will fit on a
new line, then an automatic WRITELN is performed.

Type of E Default
Width
CHAR or 1

subrange of CHAR

INTEGER, BYTE, 12
SIGNED__8,

SIGNED__ 186,

SIGNED__32,

UNSIGNED__8

UNSIGNED__ 186,

UNSIGNED__ 32,

or subrange of

above types

REAL 12
LONGREAL 20
STRING or current
PACKED ARRAY length of
[0..N] OF CHAR string

Pascal/64000
Compiler

Conversion Rules

The value of CHAR expression E is
written. No conversion is performed. If
the value of W is zero, there is no out-
put to the texttfile.

A string ot decimal digits, possibly
preceded by a minus sign, representing
the value of E is written to the textfile.
If the value of W is less than the number
of digits required to represent E, then W
is ignored so that no significance is
lost.

For REAL or LONGREAL expressions,
the programmer may specify N as well
as W.If N is specitied, WRITE writes E
in a fixed-point format with N digits af-
ter the decimal point. If N is zero, the
decimal point and subsequent digits are
omitted. If N is not specified, WRITE
writes E in a floating-point format con-
sisting of a coefficient and a scale fac-
tor. In no case is it possible to write
more significant digits than are con-
tained in the internal representation of
E. This implies that WRITE may change
a fixed-point representation into a
floating—-point representation for some
value of E.

If N (equal to ORD(E[O])) is the current
length of string expression E, than N
characters from E will be written to the
texttile. If W is less than N, only the first
W character will be written. If W is zero,
there will be no output to the textfile.

Pascal/ 64000
Compiler

WRITEDIR

Usage:
WRITEDIR(F,LE)
WRITEDIR(F,LE1,En)

Parameters:

F must be a non-text file variable open in the read-write mode.

| must be an expression compatible with SIGNED__ 16. It specifies the component
number that will be written.

E must be an expression. The component type of F must be compatible with the
type of E. Any number of suitable expressions may be specified.

Description:

The procedure WRITEDIR(F,LE) moves the current position of file F to component number |. It
then assigns the value of expression E to that component and advances the file position to
the next component. An error occurs if the value of | is less than one or greater than
MAXPOS(F).

WRITEDIR(F,I ,E) is equivalent to SEEK(F,I);
F~ := E;
PUT(F);
WRITEDIR(F,I,E1,E2, ... ,En) is equivalent to WRITEDIR(F,I,El);
WRITE(F,E2);

WRITE(F,En);

Simulated 1/0 Note: The Simulated I/0 Library does not fully implement read-
write (i.e. random access) files. Refer to the section on
Simulated 1/0 Library for important restrictions regard-
ing positioning and writing on read-write files.

WRITEDIR is an HP Standard Pascal extension of ANS| Pascal.

6-33

WRITELN

Usage:
WRITELN(F)
WRITELN(F,E)
WRITELN(FE1, ... [En)
WRITELN(E)
WRITELN(E1,En)
WRITELN

Parameters:

Pascal/64000
Compiler

F must be a texttile variable open in the write-only mode. If F is omitted or if the
first parameter is not a ftile, the predefined variable OUTPUT is used.

E must be an expression. The type of E may be compatible with CHAR, INTEGER,
UNSIGNED__nn, REAL, LONGREAL, or STRING. In addition, formatting information
for the expression E may be specified using one of the three following forms:

E {Specifies default formatting}

EW {Wis SIGNED__16 compatible expression specifying field width}

E:W:N {Only valid if E is type REAL or LONGREAL. W and N are}
{SIGNED__ 16 compatible expressions. W specifies the field}
{width and N specifies the number of digits written after}
{the decimal point.}

Description:

The procedure WRITELN(F) writes a line marker to textfile F. The procedure WRITELN(F,E)
first converts the expression E to textfile format and writes those characters to F before
writing a line marker. The rules for the conversion of E are the same as for WRITE(F,E) for

texttiles.
WRITELN(F ,E) is
WRITELN(F,E1,E2, ... ,En) is
WRITELN(E) is
WRITELN(E1l,E2, ... ,En) is
WRITELN is

6-34

equivalent

equivalent

equivalent

equivalent

equivalent

to

to

to

to

WRITE(F ,E);
WRITELN(F);

WRITE(F,E1,E2,
WRITELN(F);

WRITE (OUTPUT,E);
WRITELN(OUTPUT);

WRITE {OUTPUT EL E2,
WRITELN(OUTPUT);

WRITELN(OUTPUT);

JEn);

JEn);

Pascal/ 64000
Compiler

THE PASCAL 1/0 LIBRARY

The Pascal I/0 Library is supplied in relocatable form with the Pascal/ 64000 compiler. Refer
to your processor supplement manual for the specific file name of the library file or files.

Global Variable Definitions

The Pascal I/0 Library defines the following global variables which may be useful to the
programmer. In some cases they specify the behavior of features that are dependent on the
170 environment. Their default values are set by the procedure Pinit__pascal__io described
below.

Global Variable Definition Default Value Explanation

INPUT:TEXT; closed The predefined file INPUT is sup-
plied by the Pascal I/0 Library if it
is used in the program.

OUTPUT.TEXT,; closed The predefined file OUTPUT s
supplied by the Pascal I/0 Library
it it is used in the program.

Pbound: 32767 The maximum number of logical
SIGNED__16; records that may be written in a
non-text file. This is the value
returned by the function MAXPOS.
An error occurs if an attempt is
made to write or position to a
record whose index is greater than

Pbound.
LINESIZE: 256 The maximum number of charac-
SIGNED__ 16; ters that may be written to a line

of a texttile. If the program at-
tempts to write more than
LINESIZE characters without call-
ing for writing a line marker, an au-
tomatic WRITELN is performed.

LINE__ MARKER__MODE REC This variable describes the im-

:(REC.,NL__CHAR); plementation of a line marker in a
textfile. REC specifies that a
physical record boundary con-
stitutes a line marker. NL__CHAR
specifies that a particular charac-
ter, contained in the variable
LINE__MARKER__CHAR, consti-
tutes a line marker.

Pascal/64000

Compiler

LINE__MARKER__CHAR CHR(10) iIf LINE__MARKER__MODE equals
:CHAR; ASCIl NL__CHAR, then the value of
linefeed LINE__MARKER__CHAR is the
character that constitutes a line

marker.
PAD__ODD__RECORDS: TRUE For non-text file variables, TRUE
BOOLEAN,; specifies that, for files whose

components are an odd number of
bytes, the component length will be
adjusted upward to an even num-
ber of bytes. When writing, an ex-
tra space character will be added
to the logical record.

This feature allows consistant
operation in the Simulated 1/0 en-
vironment where physical disc
records must contain an even num-
ber of bytes.

READ__REC__LEN: none Whenever an input operation is
SIGNED__ 16; performed, READ__REC_ LEN is
set to contain the number of data
bytes transterred from the physi-
cal file to the buffer variable. In
variable length record mode, this is
either the length of the physical
record or the length of the file

component.
WRITE_REC__LEN: 0 For files in variable length record
SIGNED___16; mode, WRITE__REC__LEN, if non-

zero, specifies the number of data
bytes to transfer from the buffer
variable to the file on the next out-
put operation. If
WRITE__REC__LEN equals zero or
it the file is not in 'VARIABLE’ mode
then the number of bytes transfer
red is equal to the length of the file
component type.

After all output operations,
WRITE__REC__LEN is set to zero.

Piocheck:BOOLEAN,; none Every call to a routine in the Pascal
I/0 Library generated by the
Pascal/64000 compiler contains a
BOOLEAN parameter which
specifies the value of $IOCHECKS
compiler option. This parameter is
transterred to Piocheck for every

Pascal/ 64000

Compiler
170 operation for use by the error
handling routine, Perror.
Preturn__addr: none Outer level routines in the Pascal
“BYTE; I/0 Library save the return ad-
dress of their caller in
Preturn__addr. it may be used by
the error handling routine, Perror.
IOR:SIGNED__ 8; none IOR contains the result code ot the

most recent I/O operation. It is
referenced by the function
IORESULT.

Description of the Pascal I/0 Library Routines

The programmer may call the following routines explicitly from the Pascal program. They are
not predefined. They must be declared EXTERNAL in the program.

PROCEDURE Pinit__pascal__io;

This routine must be called by the programmer before any I/O operations are performed. It
initializes the data used by the other Pascal I/0 Library routines to a known state.
PROCEDURE Pshutdown__pascal__io;

This routine may be called by the programmer at the end of a Pascal program to close any
files that remain open.

FUNCTION IORESULT: SIGNED__S;

This function may be called by the programmer to obtain a result code for the most recent
1/0 operation. The result code is interpreted as follows:

(o} - No error, previous operation was successful.

1 - The 1I/0 environment library detected an error. See the 1I/0 environment
documentation for further information.

2 - File is closed.
3 - File is not open in proper mode. That is, input operation on write-only file,

output operation on read-only file, or direct access operation on read-only or
write-only file.

Pascal/64000

Compiler

4 - Input operation done when end-of-file is TRUE

5 - When reading a number from a textfile, the characters did not form a proper
number of the desired type.

6 - When reading a number from a textfile, a number was found but its value was
outside the range of internal representation.

7 - A textfile width parameter (e.g. E:WIDTH) had a value less than zero.

8 - Too many records in the file. The maximum number of records is in the global
variable Pbound.

9 - During a STRWRITE or STRREAD, the starting string index was less than 1,
greater than the present length of the string + 1, or greater than the maximum
length of the string.

10 - During a SEEK, READDIR, or WRITEDIR operation the desired record could not

be found. Either the record number was less than 1 or the record did not exist.

PROCEDURE Perror(ERRCODESSIGNED__8);

Perror is not normally called by the programmer. It is the error handling routine called by the
Pascal I/0 Library. ERRCODE is a value interpreted as shown for IORESULT above. If the
global variable Piocheck is TRUE, then Perror produces a run-time error in a processor
dependent manner. When moving out of the emulation environment, the programmer may want
to provide his own version of Perror.

Library Routines Called by the Pascal/64000 Compiler

The following routines are called by the Pascal/64000 compiler to implement the various
Pascal I/0 features.

Most of these routines make reference to a file variable. The descriptions below use the
record type FIB (for File Information Block) to describe a file variable. Every file variable
contains a buffer variable. For a variable F: FILE OF T, the buffer variable is of type T and
can be of any length. To implement this, the last field of the FIB record, BUFVAR, is the buffer
variable. Although BUFVAR is declared as a long array, this is merely a definition of con~
venience. The Pascal/64000 compiler only allocates enough memory to accomodate a buffer
variable of type T, whatever size that may be.

FIB = RECORD

{VARIOUS FIELDS USED BY PASCAL I/0 LIBRARY}

{The last field implements the buffer variable. 1In practice,}
{the compiler does not allocate 32k bytes for this field but }

Pascal/ 64000
Compiler

{only enough to hold the files component type. }
BUFVAR:ARRAY[0..32767] OF BYTE;
END;

PROCEDURE Pappend(VAR F:FIB; VAR NAME,INFO:STRING; SIZE:SIGNED_16;
ISTEXT,IOCHECK:BOOLEAN);

Pappend implements APPEND. Parameters:

F - File variable.

NAME - Physical file name. If parameter omitted in source,
compiler generates null string (i.e. '’').

INFO - I/0 environment information. If parameter omitted in
source, compiler generates null string (i.e. '');

SIZE - Size, in bytes, of file component.

ISTEXT - TRUE if textfile.

IOCHECK - Value of $IOCHECKS compiler option.

FUNCTION Pbufvar(VAR F:FIB; CONTINUED,IOCHECK:BOOLEAN): ~BYTE;

Pbufvar implements references to the buffer variable F~. It returns
the address of the file's buffer variable. Under certain circumstances,
Pbufvar performs an input operation. Parameters:

F - File variable.

CONTINUED - TRUE indicates that this call is the continuation of
a sequence of calls that comprise a single operation.
If TRUE and a previous call in the sequence detected
an error, then no operation is performed.

IOCHECK - Value of the $IOCHECKS compiler optiun.

PROCEDURE Pclose(VAR F:FIB; VAR INFO:STRING; IOCHECK:BOOLEAN);
Pclose implements CLOSE. Parameters:
F - File variable.
INFO - Information regarding file disposition. If parameter
omitted in source, compiler generates null string
(i.e. ("')).
IOCHECK - Value of $IOCHECKS compiler option.

FUNCTION Peof (VAR F:FIB; IOCHECK:BOOLEAN): BOOLEAN;

Peof implements EOF. Under certain circumstances Peof performs
an input operation. Parameters:

F - File variable.
IOCHECK - Value of $SIOCHECKS compiler option.

6-39

Pascal/64000
Compiler

FUNCTION Peoln(VAR F:FIB; IOCHECK:BOOLEAN): BOOLEAN;

Peoln implements EOLN. Under certain circumstances Peoln performs
an input operation. Parameters:

F - File variable.
IOCHECK - Value of S$IOCHECKS compiler option.
PROCEDURE Pget (VAR F:FIB; CONTINUED, IOCHECK:BOOLEAN);

Pget implements GET. Under certain circumstances Pget performs an
input operation. Parameters:

F - File variable.
CONTINUED - TRUE indicates that this call is the continuation of
a sequence of calls that comprise a single operation.
If TRUE and a previous call in the sequence detected
an error, then no operation is performed.
IOCHECK - Value of the S$IOCHECKS compiler option.
FUNCTION Plinepos(VAR F:FIB; IOCHECK:BOOLEAN): SIGNED_16;
Plinepos implements LINEPOS. Parameters:
F - File variable.
IOCHECK - Value of SIOCHECKS compiler option.
FUNCTION Pmaxpos (VAR F:FIB; IOCHECK:BOOLEAN): SIGNED_16;
Pmaxpos implements MAXPOS. Parameters:
F - File variable.
IOCHECK - Value of $IOCHECKS compiler option.
PROCEDURE Popen(VAR F:FIB; VAR NAME,6INFO:STRING; SIZE:SIGNED_16;

ISTEXT,IOCHECK:BOOLEAN);

Popen implements OPEN. Parameters:

F - File variable.

NAME - Physical file name. If parameter omitted in source,
compiler generates null string (i.e. '’).

INFO - I/0 environment information. 1If parameter omitted in
source, compiler generates null string (i.e. '’);

SIZE - Size, in bytes, of file component.

ISTEXT - TRUE if textfile.

IOCHECK - Value of $IOCHECKS compiler option.

Pascal/ 64000
Compiler

PROCEDURE Poverprint (VAR F:FIB; IOCHECK:BOOLEAN);
Poverprint implements OVERPRINT. Parameters:
F - File variable.
IOCHECK - Value of $IOCHECKS compiler option.
PROCEDURE Ppage (VAR F:FIB; IOCHECK:BOOLEAN);
Ppage implements PAGE. Parameters:
F - File variable.
IOCHECK - Value of $IOCHECKS compiler option.
FUNCTION Pposition(VAR F:FIB; IOCHECK:BOOLEAN): SIGNED_16;
Pposition implements POSITION. Parameters:
F - File variable.
IOCHECK - Value of $IOCHECKS compiler option.
PROCEDURE Pprompt (VAR F:FIB; IOCHECK:BOOLEAN);
Pprompt implements PROMPT. Parameters:
F - File variable.
IOCHECK - Value of $IOCHECKS compiler option.
PROCEDURE Pput (VAR F:FIB; CONTINUED,IOCHECK:BOOLEAN);
Pput implement PUT. Parameters:
F - File variable.
CONTINUED - TRUE indicates that this call is the continuation of
a sequence of calls that comprise a single operation.
If TRUE and a previous call in the sequence detected
an error, then no operation is performed.
IOCHECK - Value of the SIOCHECKS compiler option.

FUNCTION Pread_char(VAR F:FIB; IOCHECK:BOOLEAN): CHAR;

Pread_char implements READ(F,V) where F is a textfile and V is
compatible with CHAR. Parameters:

F - File variable.
IOCHECK - Value of S$IOCHECKS compiler option.

6-41

Pascal/64000
Compiler
FUNCTION Pread_integer(VAR F:FIB; IOCHECK:BOOLEAN): INTEGER;

Pread_integer implements READ(F,V) where F is a textfile and V is
compatible with INTEGER. Parameters:

F - File variable.
IOCHECK - Value of S$SIOCHECKS compiler option.
PROCEDURE Pread_longreal (VAR F:FIB; VAR L:LONGREAL; IOCHECK:BOOLEAN);

Pread_longreal implements READ(F,V) where F is a textfile and V is
type LONGREAL. Parameters:

F - File variable.
L - LONGREAL variable.
IOCHECK - Value of $IOCHECKS compiler option.

PROCEDURE Pread_real (VAR F:FIB; VAR R:REAL; IOCHECK:BOOLEAN);

Pread_real implements READ(F,V) where F is a textfile and V is
type REAL. Parameters:

F - File variable.
R - REAL variable.
IOCHECK - Value of S$IOCHECKS compiler option.

PROCEDURE Pread_string(VAR F:FIB; VAR S:STRING; MAXLEN:SIGNED_16;
IOCHECK :BOOLEAN) ;

Pread_string implements READ(F,V) where F is a textfile and V is
compatible with STRING. Parameters:

F - File variable.

S - STRING variable.

MAXLEN - Maximum declared length of string variable.
IOCHECK - Value of S$IOCHECKS compiler option.

FUNCTION Pread_unsigned(VAR F:FIB; IOCHECK:BOOLEAN): UNSIGNED_nn;
Pread_unsigned implements READ(F,V) where F is a textfile and V is

compatible with UNSIGNED_nn. UNSIGNED_nn is defined to be UNSIGNED_16

for the 6800 and 6809 processors and UNSIGNED_32 for other processors.

F - File variable.
IOCHECK - Value of $IOCHECKS compiler option.

6-42

Pascal/64000
Compiler

PROCEDURE Preadln(VAR F:FIB; IOCHECK:BOOLEAN);
Preadln implements READLN. Parameters:
F - File variable.
IOCHECK - Value of $IOCHECKS compiler option.
PROCEDURE Preset (VAR F:FIB; VAR NAME,INFO:STRING; SIZE:SIGNED_16;

ISTEXT,IOCHECK:BOOLEAN) ;

Preset implements RESET. Parameters:

F - File variable.

NAME - Physical file name. 1If parameter omitted in source,
compiler generates null string (i.e. '’).

INFO - I/0 environment information. If parameter omitted in
source, compiler generates null string (i.e. ’');

SIZE - Size, in bytes, of file component.

ISTEXT - TRUE if textfile.

IOCHECK - Value of $IOCHECKS$ compiler option.

PROCEDURE Prewrite (VAR F:FIB; VAR NAME,INFO:STRING; SIZE:SIGNED_16;
ISTEXT,IOCHECK:BOOLEAN);

Prewrite implements REWRITE. Parameters:

F - File variable.

NAME - Physical file name. 1If parameter omitted in source,
compiler generates null string (i.e. '’).

INFO - I/0 environment information. If parameter omitted in
source, compiler generates null string (i.e. '');

SIZE - Size, in bytes, of file component.

ISTEXT - TRUE if textfile.

IOCHECK

Value of $IOCHECKS compiler option.

PROCEDURE Pseek (VAR F:FIB; N:SIGNED_16; IOCHECK:BOOLEAN);

Pseek implements SEEK. Parameters:

F - File variable.
N - Desired component number.
IOCHECK - Value of S$IOCHECKS compiler option.

PROCEDURE Pstringopen(VAR S:STRING; MAXLEN,P: SIGNED_16;
VAR T:SIGNED_16; IOCHECK:BOOLEAN);

Pstringopen implements STRREAD(S,P,T, ...) and STRWRITE(S,P,T, ...).
It initializes an internal textfile variable, STRfile, with information
that directs input and output to that file variable to a string instead
of a physical file. Subsequent calls to I/0 routines refer to STRfile.
Parameters:

6-43

S
MAXLEN
p

T
IOCHECK

Pascal/ 64000
Compiler

STRING expression.

Maximum declared length of S.
Starting index value.

Variable holding ending index value.
Value of $IOCHECKS$ compiler option.

PROCEDURE Pwriteln(VAR F:FIB; IOCHECK:BOOLEAN);

Pwriteln implements WRITELN. Parameters:

F
IOCHECK

File variable.
Value of S$IOCHECKS compiler option.

PROCEDURE Pwrite_char(VAR F:FIB; C:CHAR; WIDTH:SIGNED_16; IOCHECK:BOOLEAN]);

Pwrite_char implements WRITE(F,E) where F is a textfile and E is

compatible with

F
c
WIDTH

IOCHECK

CHAR. Parameters:

File variable.

CHAR expression.

Total width of field. If omitted in source, the
compiler generates the value 1.

Value of $IOCHECKS compiler option.

PROCEDURE Pwrite_integer (VAR F:FIB; I:INTEGER; WIDTH:SIGNED_16;
IOCHECK:BOOLEAN) ;

Pwrite_integer implements WRITE(F,E) where F is a textfile and E is
compatible with INTEGER. Parameters:

F
I
WIDTH

IOCHECK

-

File variable.

INTEGER expression.

Total width of field. If omitted in source, the
compiler generates the value 12.

Value of $IOCHECKS compiler option.

PROCEDURE Pwrite_longreal (VAR F:FIB; L:LONGREAL; WIDTH,N:SIGNED_16;
IOCHECK:BOOLEAN) ;

Pwrite_longreal implements WRITE(F,E) where F is a textfile and E is
Parameters:

type LONGREAL.

6-44

F
L
WIDTH
N

IOCHECK

File variable.

LONGREAL expression.

Total width of field. If omitted in source, the
compiler generates the value 20.

Number digits after decimal point. If omitted in
source, the compiler generates the value 9999.
Value of $IOCHECKS compiler option.

Pascal/ 64000
Compiler

PROCEDURE Pwrite_real (VAR F:FIB; R:REAL; WIDTH,N:SIGNED_16; IOCHECK:BOOLEAN);

Pwrite_real implements WRITE(F,E) where F is a textfile and E is

type REAL. Parameters:

F - File variable.

R - REAL expression.

WIDTH - Total width of field. If omitted in source, the
compiler generates the value 12.

N - Number digits after decimal point. If omitted in
source, the compiler generates the value 9999.

IOCHECK - Value of $IOCHECKS compiler option.

PROCEDURE Pwrite_string(VAR F:FIB; VAR S:STRING; WIDTH:SIGNED_16;
IOCHECK:BOOLEAN) ;

Pwrite_string implements WRITE(F,E) where F is a textfile and E is

compatible with STRING. Parameters:
F - File variable.
I - STRING expression.
WIDTH - Total width of field. If omitted in source, the

compiler generates the value -9999.

IOCHECK

Value of $IOCHECKS compiler option.

PROCEDURE Pwrite_unsigned(VAR F:FIB; U:UNSIGNED_nn; WIDTH:SIGNED_16;
IOCHECK :BOOLEAN) ;

Pwrite_unsigned implements WRITE(F,E) where F is a textfile and E is

compatible with UNSIGNED_nn. UNSIGNED_nn is defined to be UNSIGNED_16
for the 6800 and 6809 processor and UNSIGNED_32 for other processors.

F - File variable.

I - INTEGER expression.

WIDTH - Total width of field. If omitted in source, the
compiler generates the value 12.

IOCHECK - Value of $IOCHECKS compiler option.

SIMULATED 1/0 LIBRARY

The Simulated I/0 Library is supplied in relocatable form with the Pascal/64000. Refer to
the processor supplement manual for the names of the library file or files.

Pascal/64000
Compiler

Description of Simulated I/0 Files and Devices

The Simulated I/0 Library allows a program running in the emulation environment to access a
number of physical files simultaneously. The maximum number of physical files that may be
open at one time is limited by the amount of buffer memory available in the HP 64000 host
processor. The amount of buffer memory available is a function of the number of measure-
ment system options that are installed in the HP 64000 card cage. The amount of buffer
memory that is available is as follows:

One meas__sys module 768 words
Two meas__sys modules 512 words
Three meas__sys modules 256 words
Four meas__sys modules 0O words

The amount of buffer space required for each physical file depends on the device type and is
as follows:

Printer 145 words

display 145 words

rs232 128 words plus an additional 128 words if
the rs232 is open for reading.

keyboard O words

disc file 145 words

If, when opening a file, the host processor cannot allocate a buffer of the required size, an er-
ror message will occur and the global variable errno will be set to 9.

A description of the physical files is given in the following paragraphs.
PRINTER. The 64000 printer is identified with the physical file name ’printer’. It may only be
opened in write-only mode. The printer has a maximum line width of 132 characters. If long-

er lines are written, the data beyond 132 characters will be lost.

It is possible for several logical files to open the printer simultaneously. In this case, the data
written from the several files will be mixed on the page.

Pascal/ 64000
Compiler

DISPLAY. The 64000 display is identified with the physical file name 'display’. It may only be
opened in the write-only mode. The display consists of 18 lines of 80 characters.

There are two modes of writing to the display. In the default mode, the display is rolled up
and new data is written to the 18th line. If there are more than 80 characters in the line, data
beyond the 80th character is lost. Alternatively, the programmer may select a starting line
and column and write up to 255 characters beginning at that line and column. In this mode,
data beyond the 80th column is written on the next line.

Two global variables, defined in the Simulated 170 Library, control the display mode.

DSP_LINE: 1..18; {(Beginning line number for next write}
DSP_COLUMN: 1..80; {(Beginning column number for next write}

The routine INIT__SIMIO__LIB performs initialization as follows:

DSP_LINE := 18;
DSP_COLUMN := 1;

If DSP__LINE equals 18 and DSP__COLUMN equals 1, then the roll up mode is selected. It
these variables have any other value, then the random access mode is selected.

NOTE : Setting the display line and column is not the equivalent of performing a WRITELN.
The Pascal I/0 Library performs a WRITELN every 256 characters if one was
not executed by the Pascal program. Programmers using random access display
modes and no WRITELNs obtain surprising results.

It is possible for several logical files to open the display simultaneously. In this case, the
data written from the several files will be mixed on the screen.

KEYBOARD. The 64000 keyboard is identified with the physical file name 'keyboard’. It may
only be opened in the read—-only mode. A maximum of 240 characters may be entered into
the command line area at the bottom of the 64000 display. An end-of-file condition is
produced by entering a zero length line.

The keyboard operates in two modes. In the default mode, only the (RETURN) key ter-
minates keyboard input and causes data to be returned to the caller. Alternatively, the
programmer may select a mode where there are a number of terminating conditions. For in-
stance, the (TAB) key, (ROLL UP) key, a full line, or others described below cause data to
be returned to the caller.

The following global variables, defined in the Simulated I/0 Library, control the operation of
the keyboard.

Pascal/64000
Compiler

KBD_ALL_TERMS: BOOLEAN; {FALSE==>only RETURN key works,}

{TRUE ==> all terminators work}
KBD_CMND_CODE: -2..-1; ({-2==>clear line on 1lst key, -l==>retain former line}
KBD_LINE_LEN: 1..240; ({Specifies maximum keyboard read length}
KBD_TERM_CODE: 8..24; {Returns terminator code from last keyboard read)
KBD_LOST_CHAR: CHAR; {Returns “"lost" char for certain}

{terminating conditions}

The routine INIT__SIMIO__LIB performs initialization as follows:

KBD_ALL_TERMS FALSE;
KBD_CMND_CODE := -2;
KBD_LINE_LEN 240;

KBD__TERM__CODE is always set after a keyboard read to indicate the condition which
terminated the read. KBD__LOST__CHAR may be set after certain terminating conditions.
The values of KBD__TERM__CODE have the following meanings. Note that if
KBD__ALL__TERMS is FALSE, KBD__ TERM__CODE will only contain the value 13.

8 - While in INSERT CHAR mode, a character was typed into a full
line. KBD_LOST_CHAR contains the character that was "lost"
from the right of the line.

9 - The TAB key was pressed.

10 - The DOWN ARROW key was pressed.

11 - The UP ARROW key was pressed.

12 - The NEXT PAGE key was pressed.

13 - The RETURN key was pressed.

14 - An attempt was made to move the cursor right, past the end of
the line.

15 - An attempt was made to move the cursor left, past the beginning
of the line.

16 - The DELETE CHAR key was pressed deleting a character from a
previously full line.

17 - The shifted TAB key was pressed.

18 - The PREV PAGE key was pressed.

19 - The ROLL DOWN key was pressed.

20 - The ROLL UP key was pressed.

21 - The shifted RIGHT ARROW key was pressed.

22 - The shifted LEFT ARROW key was pressed.

23 - The CLR LINE key was pressed.

24 - While in INSERT CHAR mode, a character was typed when the
cursor was positioned at the end of the line. KBD_LOST_CHAR
contains the character that was typed.

6-48

Pascal/ 64000
Compiler

It is possible for several logical files to open the keyboard simultaneously. In this case, the
several files will obtain data from the keyboard sequentially in the order of their respective
reads.

RS232. The HP 64000 RS232 port is identified with the physical file name 'rs232'. it may be
opened in the read-only, write-only, or read-write state. It can send and receive data in the
asynchronous mode only.

The following characteristics of the rs232 port are selected by switches on the HP 64000
170 board. Refer to the HP 64000 System Software Reference Manual for a more detailed
description on the following:

RS232 or current loop interface
20 mA or 60 mA, current loop
Asynchronous baud rate
Internal or external clock input

The following characteristics of the rs232 may be specified by the user’'s program at
run-time:

Number of data bits per character (5, 6, 7, or 8)
Character parity (none, odd, or even)
Number of stop bits (1, 1.5, or 2)

The following global variable, defined by the simulated I/0 Library, is used to specify charac-
teristics listed above:

RS§232___ MODE__BYTE: BYTE;

The routine INIT__SIMIO__LIB pertorms initialization as follows:

RS232_MODE_BYTE := 01111010B; {Select 1 stop bit, even parity, }
{7 data bits, 1/16 times Tx clock }

After calling INIT__SIMIO__LIB and before opening the rs232 device, the user may change the
value of RS232__MODE__BYTE. The bits of RS232__ MODE__BYTE have the following
meaning:

6-49

Pascal/64000
Compiler

1 1 I I I I 1
bit 7 6 5 Y 3 2 1 0
L Il 1 1 1 1 1
I 1 1 | 1 I 1
identifier S2 s1 EP PE L2 L1 B2 Bl
1 1 1 1 1 1 1
where:
Ss2 S1 transmitted stop bits
0 0 invalid
0 1 1
1 0 1.5
1 1 2

EP(even parity), 1 ==> even parity, 0 ==> odd parity

PE(parity enable), 1 ==> parity bit enable, 0 ==> no parity bit

L2 L1 data bits (excluding parity)
0 0 5

0 1 6

1 0 T

1 1 8

Pascal/ 64000
Compiler

B2 Bl clock mode

0 0 synchronous mode (not supported)

0 1 baud rate = 1 times clock rate

1 0 baud rate = 1/16 times clock rate (normal setting)
1 1 baud rate = 1/64 times clock rate (not supported)

It is useful to think of the rs232 port as two devices, a transmitter and a receiver, that share
the same hardware resource but operate independently. Both the transmitter and receiver
use buffers that are a part of the 240-byte rs232 CA buffer. There is a 100-byte butfer
space used by the transmitter and a 100-byte buffer space used by the receiver.

The rs232 device is transparent to all character sets and protocols. The Simulated 1/0
Library does not detect or automatically generate any control characters. Detection and
generation of control characters must be accomplished by the user’s program.

The end-of-tile (eof) condition is undefined for the rs232 device. The function read, when
applied to the rs 232 device, will never return an end-of-file indication.

The Simulated I/0 Library does not detect character parity errors, character overrun errors,
character framing errors, or buffer overflow errors. In order to ensure correct reception of
data, the user must employ some method of error detection (e.g. check sums).

When applied to the rs232 device, the Simulated 1I/O Library function write operates as
follows:

(Assume execution of the following statement)
| ;= write(FD,BUFFER,N,REC_BOUND);

then:

a. write begins to transfer N data bytes from the location specitied by BUFFER to the
100-byte rs 232 transmitter buffer.

b. If the 100-byte transmitter buffer becomes full, a command is issued to initiate the
transmission of the data in the 100-byte buffer. When this is complete, the buffer
is considered to be empty. The transfer of data from the user’s buffer to the
transmitter buffer resumes.

c. After N bytes of data have been transferred to the transmitter buffer, write
checks the value of REC__BOUND. If REC__BOUND is zero, write simply returns.
Any data in the transmitter buffer is stored until a subsequent call to write. If
REC__BOUND is non-zero, a command is issued to initiate the transmission of any
data in the transmitter buffer. When this is done, the bufter is considered empty.

6-51

Pascal/64000
Compiler

When applied to the rs232 device, the function read operates as follows (assume execution
of the following statement):

| := read(FD,BUFFER,NREC__BOUND)
then:

a. read checks the number of data characters in the 100-byte receiver buffer. If
there are any data characters, skip to subparagraph ¢ below. If there is no data
available, proceed to subparagraph b.

b. read issues a command to transfer data from the HP 64000 read buffer to the
100-byte receiver buffer. This will include all data received by the rs232 device
since the last read command. It is possible that no data will be transferred if none
was received during this interval.

It is also possible that more than 100 bytes of data were received since the last
update command was issued. In this case, some of the received data will be lost
and no indication of the loss will be given. The user must ensure that input opera-
tions are done frequently enough so that all data is received.

c. read decides how many bytes to transfer to BUFFER. If N is less than the number
of bytes in the 100-byte receiver buffer, then N characters will be transtferred. If N
is greater than or equal to the available data, then all the available data will be
transferred and REC__BOUND will be set to TRUE. The proper number of bytes,
which may be zero, are transferred to BUFFER and the count of data bytes avail-
able in the receiver buffer is reduced.

When programming in Pascal/ 64000, the user does not call the Simulated I/0 Library routines
read and write directly. These routines are called by the Pascal I/0 Library routines. The be-
havior of Pascal programs using rs232 is described in the following paragraphs.

In Pascal/ 64000, the user may open a textfile to the rs232 transmitter for writing and open
another textfile to the rs232 receiver for reading. In this instance, the Pascal I/0O Library
global, LINE__MARKER__MODE, should be REC, the default case, specifing that physical
record boundaries constitute line markers. When this is done, line markers and physical
records are the same and the following programming methods may be used.

When transmitting, the procedure WRITELN specifies that a physical record boundary (i.e.
line marker) be written and this initiates transmission of any data stored in the 100-byte
transmitter buffer. For example:

VAR TRANSMITTER: TEXT;

BEGIN

{Initialization of libraries not shown}

REWRITE (TRANSMITTER, 'rs232’);

WRITE(TRANSMITTER, 'Some data’); {'Some data’ is stored in transmitter buffer}

WRITELN(TRANSMITTER); {This statement initiates transmission of }
{data in the transmitter buffer. }

When receiving, the function EOLN is used to determine it any received data is available.
When no data is available, EOLN returns TRUE. This is because the Simulated I/0 function

Pascal/64000
Compiler

read detects a physical record boundary when data is unavailable and physical record
boundaries are the same as line markers. For example:

VAR RECEIVER: TEXT; C:CHAR;
BEGIN
{Initialization of libraries not shown}
RESET(RECEIVER, 'rs232');
WHILE TRUE DO
IF EOLN(RECEIVER) THEN
READLN(RECEIVER) {Data is temporarily unavailable. Skip to line marker}
ELSE
BEGIN
READ (RECEIVER,C); ({Get a character from the rs232 device }
{Process the character}
END;

Another method of using the rs232 device employs non-text files in variable length record
mode. The Pascal I/0 Library global variables WRITE__REC__LEN and READ__REC__LEN are
used to specify and determine the length of physical records which are the same as actual
transmissions and receptions. For example:

TYPE

RS232_REC = ARRAY[1..100] OF CHAR;
VAR

RECEIVER :FILE OF RS232_REC;

TRANSMITTER :FILE OF RS232_REC;
RECV DATA :RS232 REC;
SEND_DATA :PACKED ARRAY[0..100] OF CHAR; {(Data to transmit}
1 :SIGNED_16
ETX :BOOLEAN; {TRUE indicates end of received data}
SEXTVAR ONS
READ_REC_LEN :SIGNED_16; {No. of bytes in last reception}
WRITE_REC_LEN :SIGNED_16; {No. of bytes in next transmission}
SEXTVAR OFFS

BEGIN
{Initialization of libraries not shown}
RESET(RECEIVER, 'rs232’', 'VARIABLE');
REWRITE (TRANSMITTER, 'rs232’, 'VARIABLE');
SEND_DATA := 'Here is some data’; {Get some data to send}
WRITE_REC_LEN := ORD(SEND_DATA[O]); {Set length of transmission}
FOR I := 1 TO WRITE_REC_LEN DO ({Transfer data to buffer variable}

TRANSMITTERA[I] := SEND_DATAI[I];
PUT(TRANSMITTER) ; {Initiate transmission}
ETX := FALSE;
WHILE NOT ETX DO

READ (RECEIVER,RECV_DATA); {Read rs232 data)

FOR I := 1 TO READ_REC_LEN DO ({If READ_REC_LEN = 0, do nothing}

IF RECV_DATA[I] = CHR(3) THEN
ETX := TRUE {Terminator found}
ELSE
{Process received data};
END ; {Receive loop}

6-53

Pascal/64000
Compiler

DISC FILES. A maximum of six 64000 disc files may be open simultaneously. These files
may be opened in read-only, write-only, or read-write mode. The physical file name of a
disc file has the following syntax.

<NAME> [:<USERID>] [:<DISC>] [< TYPE>]

where:

<NAME>

<USERID>

<DISC>

<TYPE>

is an identifier beginning with an upper case letter. The subsequent
characters may be upper or lower case letters, digits, or the under-
score character. Only the first nine characters are significant.

is an identitier beginning with an upper case letter. The subsequent
characters may be upper or lower case letters, digits, or the under-
score character. Only the first six characters are significant. Note,
simulated I/0 does not accept the blank userid.

is a number in the range O through 7.

is one of the following:

source
reloc
absolute
listing
emul__com
link_com
trace

prom

data
asmb__db
asmb__sym
link__sym
comp__sym
comp__db

Disc tiles are composed of variable length physical records. A file may contain from O to
32767 physical records. Each physical record may contain 2 to 256 bytes of data and al-
ways consists of an even number of bytes.

NOTE:

If several logical files open the same disc file simultaneously, the Simulated
170 Library may produce unexpected results. Generally, it is alright it
several tiles access the same disc file for input only. However, the user is
warned that tile data will be corrupted if several files open the same disc
file for output.

Pascal/ 64000
Compiler

Random Access Restrictions

The 64000 file system is inherently sequential. It does not allow truly random access to
records. More important, it does not allow a record in the middie of a file to be rewritten.
The programmer using read-write files should be aware of the following points:

a. All record accesses are sequential. In order to access a particular record, simulated
1/0 positions to the beginning of the file and starts reading until the desired record is
found. This implies very slow performance for seek operations.

b. After every write operation to a disc file, the end-of-file mark is always written. If
one rewrites a record in the middle of a disc file, all the records which follow will be
irretrievably lost.

In the default mode, the Simulated |I/0 Library disallows write operations to disc files
open in the read-write mode. This is so that a programmer will not inadvertantly lose
file data. Writes to read-write files may be enabled using the following global vari-
able defined in the Simulated I/0 Library.

RW__WRITE__ENABLE: BOOLEAN; {FALSE causes writes to read-write files
to produce an error}

The routine INIT__SIMIO__LIB performs initialization as follows:
RW__WRITE_ENABLE := FALSE;

The programmer may enable writes in read-write mode using the variable above. In
practice, this only makes sense if he or she intends to add records to the end of a
file.

¢. The Simulated I/0 Library will not place the tile position beyond the end-of-tile mark.
Programmers using random access are accustomed to writing records in a random or-
der. This is impossible with simulated I/0. An error will occur if an attempt is to posi-
tion to a record beyond the end-of-file mark which exists after the last existing
record in the file.

Defining CA Buffers

The 64000 Simulated 1/0 facility uses buffers, called CA buffers, to communicate between
the emulation and host environments. The programmer must reserve memory for whatever
CA buffers his program will use. In addition, the addresses of the CA buffers must be given
to the Simulated I/0 Library routine, INIT__SIMIO__LIB. The same addresses must be given
during emulation configuration to the Simulated I/0 Configuration.

Pascal/64000
Compiler

The length of the CA buffers for various devices is given below. If the program will not use a
particular device, then no CA buffer need be defined for that device.

display - 257 bytes
printer - 242 bytes
rs232 - 240 bytes

keyboard - 243 bytes

disc file - 258 bytes. Up to six disc file CA buffers may be
defined. The number of disc file CA buffers that need
to be defined equals the maximum number of disc
files that will be open at one time.

The programmer will find it convenient to "ORG” the CA buffers at an absolute memory ad-
dress. This is because the absolute address of the buffers must be specified during emula-
tion configuration. Using the ORG option prevents the CA buffers from moving in memory
when the program is changed and eliminates the need to change the emulation configuration.

Error Reporting

All the routines in the Simulated I/0 Library are functions returning SIGNED__ 16 values. The
value -1 (and other values for some functions) indicates that an error has occured. When an
error occurs, the global variable errno is set to indicate the nature of the error and the func-
tion returns a value indicating an error.

The Simulated |/0 Library defines errno and its values as follows: In the list below, the com-
ment "Simio” indicates an error code returned from an actual simulated I/0 command. The
comment "Soft” indicates an error detected by the Simulated I/0 Library software.

errno: SIGNED_16;

- Simio - No error. Operation was successful.

- Simio - End of file. This is not an error condition.

- Simio - Invalid disc number.

- Simio - File not found.

- Simio - File already exists.

Simio - Insufficient disc space.

- Simio - Directory full.

- Simio - Corrupt file linkage.

- Simio - Error reading or writing CA buffer.

- Simio - Simio request not allowed. Possibilities include opening a CA
which is already open, doing operation on CA which is not
open, invalid command code for device type, or insufficient
memory in the host processor to open the file.

10 - Simio - Bad file type value.

© o0 NOOUEHEWN=O
]

6-56

Pascal/ 64000

Compiler

11 - Simio
12 - Simio
13 - Simio
14 - Simio
15 - Simio
16 - Soft
17 - Soft
18 - Soft
18 - Soft
20 - Soft
21 - Soft

Invalid row/column value for display.

Invalid record length for device.

Bad character in data for display (>= OFOH)

Simulated I/0 shutdown by operator using the SIMIO softkey.
Bad file name in rename command.

The characters in the file name string did not form a
valid file name.

Maximum number of files (i.e. 20) exceeded.

Invalid FD(i.e. File Descriptor Number). Out of range or FD
doesn’'t indicate an open CA buffer.

Either CA buffer for device not defined or no more disc
CA buffers are available.

Attempt to "open"” the printer or display for reading or
read-write.

Attempt to "open” the keyboard for writing or read-write.
Attempt to “"creat” the keyboard.

Attempt to "read” or "write" a file that was not opened
in the proper mode.

Attempt to “write" in read-write mode and RW_WRITE_ENABLE
is FALSE.

An attempt to read or write more than MAX_RECS (32767)
records in a disc file.

Descriptions of Simulated 1/0 Library Routines

The following definitions are used in defining the routines which follow.

TYPE

CA_BUFFER

CA_PTR

CSTRING

BYTEPTR

ARRAY[0..257] OF CHAR; {Maximum size CA buffer}
= ~CA_BUFFER; {Pointer to CA buffer }

= ARRAY[0..49] OF CHAR; ({String to contain file name}
{Data begins in Oth char. }
{and is terminated by first }
{ASCII NUL character. CHR(0)}

~BYTE; {Pointer to read or write buffer}

INIT__SIMIO__LIB

PROCEDURE INIT_SIMIO_LIB(DISPLAY_CA, ({display CA buffer address}
PRINTER_CA, ({printer CA buffer address}
RS232_CA, {rs232 CA buffer address}
KEYBOARD_CA, {keyboard CA buffer address)

DISC_1_CA, {disc file #1 CA buffer address}
DISC_2_CA, {disc file #2 CA buffer address}

6-57

Pascal/64000
Compiler

DISC_3_CA, {disc file #3 CA buffer address}
DISC_4_CA, {disc file #4 CA buffer address}
DISC_5_CA, {disc file #5 CA buffer address}
DISC_6_CA {disc file #6 CA buffer address}

: CA_PTR);

The programmer must explicitly call the procedure INIT__SIMIO__LIB before doing any simu-
lated I/O operations. INIT__SIMIO__LIB initializes the data structures used by the Simulated
170 Library. The parameters are pointers to CA buffers, defined by the programmer, which
are the interface to 64000 simulated I/0 facility. The programmer must define a CA butfer
tor each device that will be used and for the maximum number of disc files that will be open at
one time. If a CA buffer is not defined, then NIL should be the value for the corresponding pa-
rameter to INIT__SIMIO__LIB.

close

FUNCTION close(FD: SIGNED__16): SIGNED__16;

Parameters:

FD - must be the file descriptor number of an open file.
Return Value:
-1 - error detected.
o - close successful.
The function close closes the tile specified by the file descriptor FD. Any unwritten data in
the CA buffer is first written. If other files are open to the same device, their operation is

uneffected. After closing, no more operations may be performed using the specified file
descriptor.

creat

FUNCTION creat(VAR NAME:CSTRING; PMODE:SIGNED__16): SIGNED__ 16;

Parameters:

NAME - The name of the file to be created. Data characters in this array are
terminated by the first ASCII NUL character (i.e. CHR(0)).

6-58

Pascal/ 64000
Compiler

PMODE - This parameter would contain a file protection mode in an I/0 environment
that supported them. It is ignored by the Simulated I/0 Library.

Return Value:
-1 - error detected.

0O through 19 - creat successful. The returned value is a file descriptor num-
ber used for all subsequent references to the file.

The function creat creates a new file and opens it for writing. NAME contains the physical
file name. For devices, this is the same as opening the file in write-only mode. For disc files,
if the file already exists, it is deleted using the function unlink. A new empty disc file is then
created. The function verifies the contents of NAME to insure that it contains a proper
device or disc file name. Upon successful creation, the returned value is a file descriptor
number which is used to identity the file for all subsequent operations.

open

FUNCTION open(VAR NAME:STRING; MODE,PMODE:SIGNED__ 16): SIGNED__16;

Parameters:

NAME - The name of the file to be opened. Data characters in this array are ter-
minated by the first ASCIl NUL character (i.e. CHR(0)).

MODE - This value specifies the desired read-write mode. Zero specifies read-
only, one specifies write-only, and two specifies read-write.

PMODE - This parameter would contain a file protection mode in an I/0 environment

that supported them. It is ignored by the Simulated I/0 Library.
Return Value:
-1 - error detected.

O through 18 - open successful. The returned value is a file descriptor num-
ber used for all subsequent references to the file.

The function open opens an existing file in read-only, write-only, or read-write mode. NAME
contains the physical file name. |f the specified tile does not exist, an error occurs. The
function verities the contents of NAME to insure that it contains a proper device or disc file
name. Upon successful creation, the returned value is a file descriptor number which is used
to identify the file for all subsequent operations.

6-59

Pascal/64000

Compiler
overprint
FUNCTION overprint(FD:SIGNED__16): SIGNED__16;
Parameters:
FD - must be the file descriptor number for a file open in the write-only or

read-write mode.
Return Value:
-1 - error detected.
0] - overprint successful.
The function overprint is supposed to write a special control sequence to the file specified by
FD. The control sequence would cause the next physical record to overstrike the present
physical record when the file was printed on a line printer. The 64000 Simulated 1/0 facility

does not support this capability. Instead, overprint simply writes a physical record boundary
including any data already in the CA bufter.

page

FUNCTION page(FD:SIGNED__16): SIGNED__16;

Parameters:

FD - must be the file descriptor number for a file open in the write-only or
read-write mode.
Return Value:

-1 - error detected.

0 - page successful.
The function page writes a special control sequence to the file specified by FD. The control
sequence causes a form feed operation when the file is printed on a line printer. If a CA buff-
er contains unwritten data, page writes a physical record boundary after the data in the CA.

Then page writes a record containing an ASCIl FORM FEED character (i.e. CHR(12)) followed
by a SPACE character.

6-60

Pascal/ 64000
Compiler

prompt

FUNCTION prompt(FD:SIGNED__16): SIGNED__16;

Parameters:

FD - must be the ftile descriptor number for a file open in the write-only or
read-write mode.

Return Value:
-1 - error detected.
0] - prompt successful.
The function prompt is supposed to write a special control sequence to the file specified by
FD. The control sequence would cause any data in the CA buffer to be written to the file
without writing a line marker (i.e record boundary). The 64000 Simulated |I/0 facility does
not support this capability since writing data and writing a record boundary are inseparable

operations. Instead, prompt simply writes a physical record boundary including any data in
the CA buffer.

read

FUNCTION read(FD:SIGNED__16; PTR:.BYTEPTR; N:SIGNED__16;
VAR REC__BOUND:BOOLEAN): SIGNED__ 186;

Parameters:

FD - must be the file descriptor number of a file open in the read-only or
read-write mode.

PTR - must be a pointer to the first byte of a buffer where data from the
file will be placed.

N - must be a value greater than Oindicating the maximum number of
bytes to be transferred. The buffer specified by PTR must be at
least N bytes long.

REC__BOUND - refers to a BOOLEAN variable that may be changed by read.

REC__BOUND will be set to TRUE if read encounters the end of a
physical record while transferring data. Otherwise, the value of
REC__BOUND will be unchanged.

6-61

Pascal/64000

Compiler
Return Value:
-1 - error encountered.
0 - |f REC_BOUND is FALSE, then end-of-file detected. If

REC__BOUND is TRUE, then a zero length record was encoun-
tered. In either case, no data was transferred.

1 through N - number of bytes transferred from file to buffer.
The function read transfers data from the file specified by FD to a buffer whose 1st byte is
specified by PTR. read will transfer data until N bytes are transferred or until the end of a

physical record is encountered, whichever comes first. If a record boundary is encountered,
REC__BOUND will be set to TRUE. Otherwise, REC__BOUND will be unchanged.

seek__rec

FUNCTION seek__rec(FD, RECNUM, RECSIZE, VARIABLE: SIGNED__16): SIGNED__ 16;

Parameters:

FD - must be the file descriptor number of an open file.

RECNUM - is a value indicating the desired record number. {f RECNUM is less than
or equal to zero, then the file will be positioned after the last existing
record at the end-of-file mark. If RECNUM is greater than zero, it indi-
cates the desired record number.

RECSIZE - must be a number greater than O indicating the size, in bytes, of
records in this file.

VARIABLE - is a value indicating whether the records are fixed length or variable

length. It VARIABLE is zero, then records are defined to fixed length
with a length indicated by RECSIZE. It VARIABLE is non-zero, then
records are defined to be variable length with a maximum length of

RECSIZE.
Return Value:
-1 ~- error detected.
1 through RECNUM - new file position where the first record in a file is number

1.

The function seek__rec positions the file specified by FD to either the end-of-file or to a
specific record number. If a record number is specified and the file contains fewer records,
then seek__rec positions to the end-of-file. If FD refers to the printer, keyboard, display, or
rs232 devices, seek__rec does nothing and returns 1.

6-62

Pascal/ 64000
Compiler

VARIABLE indicates whether records for this file are fixed length or variable length. If
VARIABLE is zero, records are taken to be a fixed number of bytes specified by RECSIZE. It
VARIABLE is non-zero, records are considered to be variable length with a maximum length
specified by RECSIZE. That is, a record will consist of a physical record or RECSIZE bytes
whichever is shorter. In either case, seek__rec, stops when it reaches the desired record (if
specified) or end-of-file, whichever comes first.

NOTE: True random access is impossible with simulated 1/0. All seeks are per-
formed by first positioning the file to its beginning and then reading until the
desired record is found. This implies very slow performance for seek__rec.

unlink

FUNCTION unlink(VAR NAME:CSTRING): SIGNED__16;

Parameters:

NAME - The name of the file to be purged. Data characters in this array are ter-
minated by the first ASCIl NUL character (i.e. CHR(O)).

Return Value:
-1 - error detected.
0 - unlink successful.
The function unlink purges a file, whose physical file name is contained in NAME, from the
64000 file system. If NAME contains printer, display, keyboard, or rs232, no operation is
performed and unlink returns zero. Otherwise, unlink attempts to purge a disc file. If the file

does not exist, an error occurs. Otherwise the disc file is purged and put into the recover-
able list.

write

FUNCTION write(FD:SIGNED__16; PTR:.BYTEPTR; N, REC__BOUND: SIGNED__ 16):

SIGNED__ 16;
Parameters:
FD - must be the file descriptor number of a file opened in the write-only or
read-write mode.
PTR - must be the address of the first byte of a buffer where the data to be
written is found. If Nis zero, PTR may be NiL.
N - must be a value greater than or equal to zero indicating the number ot

bytes to be written.

Pascal/64000
Compiler

REC__BOUND - is a value indicating whether a physical record boundary should be
written after the last data is transferred to the CA buffer. |if
REC__BOUND is zero, no physical record is written after the last byte
of data is transferred to the CA buffer. It REC__BOUND is non-zero,
then a physical record is written after the transfer.

Return Value:
-1 - error detected.

O through N - number of bytes tranferred from the buffer to the file. If the
returned value is less than N, then an error occured.

The function write transfers data from a buffer whose first byte is specified by PTR to the
file specified by FD. Data is first transferred from the buffer to the CA buffer. It the CA
buffer is full and more data needs to be transferred, then a physical record is written to
empty the CA buffer. After N bytes have been transferred, write checks REC__BOUND. If
REC__BOUND is non-zero, a physical record is written containing all the data in the CA
buffer.

NOTE: The end-of-file mark will always be written after any data written to a file.
If seek__rec has been used to position to any place other than end-of-file,
then performing a write operation will cause all data following that position
to be irretrievably lost. Thus, true updating of records is impossible using
simulated 1/0.

In order to prevent this from happening accidently, the global variable
RW__WRITE__ENABLE is given the default value FALSE. If one performs a
write on a file in read-write mode and RW__WRITE__ENABLE is FALSE, an
error will occur.

USER 170 ROUTINES

There are two sets of 1I/0 routines: the standard procedures and functions for the
Pascal/64000 170, and the simulated 170 routines which perform the Pascal/640001/0 func-
tions on the Software Development System. All Pascal/64000 I/0 routines except Perror are
microprocessor and target environment independent.

The simulated 170 routines run only on the 64000 emulation environment. Users are required
to supply their own I/0 routines for different running environments. The user’s 1/0 routines
should accept the same parameters and perform identically to the simulated I/0 routines
defined previously in this chapter. The following listing shows what simulated I/0 routine(s)
are called by a Pascal/64000 I/0 function.

Pascal
Functions

F/\

APPEND

CLOSE

EOF
EOLN
GET
LINEPOS
MAXPOS

OPEN

OVERPRINT
PAGE
POSITION
PROMPT
PUT

READ

1/0 Compiler generates calls to
Pascal I/O Routines

Pbufvar

Pappend

Pclose

Peof
Peoln
Pget
Plinepos
Pmaxpos

Popen

Poverprint
Ppage
Pposition
Pprompt
Pput

Pbufvar

Pget

Pread char
Pread integer
Pread_longreal
Pread_real
Pread_string
Pread_unsigned

Pascal/64000
Compiler

Simulated 1/0 Routines cal-
led by the Pascal I/O Routines

read

open
creat
seek rec
close

close
unlink
write

read
read

read

open
creat
close

overprint

page

prompt
write

read
read
read
read
read
read
read
read

6-65

Pascal/64000
Compiler

Pascal
Functions

READDIR

READLN

RESET

REWRITE

SEEK

STRREAD

STRWRITE

WRITE

WRITEDIR

WRITELN

6-66

1/0

Compiler generates calls to
Pascal 1/O (PIOLIB)

Pseek
Pbufvar
Pget

Preadin

Preset

Prewrite

Pseek

Pstringopen
Pbufvar

Pget
Pread_char
Pread_integer
Pread_longreal
Pread_real
Pread_ string
Pread_unsigned

Pstringopen
Pbufvar

Pput
Pwrite_char
Pwrite_integer
Pwrite__longreal
Pwrite_real
Pwrite_string
Pwrite_unsigned

Pbufvar

Pput
Pwrite_char
Pwrite_integer
Pwrite_longreal
Pwrite_real
Pwrite_string
Pwrite_unsigned

Pseek
Pbufvar
Pput

Pwriteln

Simulated 1/O Routines cal-
led by the Pascal /O Routines

seek_rec
read
read

read

open
close

creat
close

seek_rec

read
read
read
read
read
read
read
read

read
write
write
write
write
write
write
write

read
write
write
write
write
write
write
write

seek_rec
read
write

write

Pascal/64000
Compiler

A file can be accessed only if it is open, and it should be closed by the user explicity.
Therefore, the I/O routines open, creat, and close are essential and must be supplied by the
user before any 1/O can be called. In addition to these basic routines, the routine read is
needed if a call to GET, EOF, EOLN, READ, or READLN is called in the user’'s Pascal program.
For unwanted 1/O functions, such as OVERPRINT, users can implement a dummy function
which always returns -1 to the calling routine. Any call to this function will result in an /O error
or warning, depending on the implementation of Perror.

The Pascal |/O routine Perror is microprocessor and environment dependent since it ter-
minates program execution. Users are required to supply their own Perror routine to handle
1/O errors for their specific target environment.

The compiler option $IOCHECKS$ allows the user to select whether I/O errors are handled by
the "system" or the user’s program. All I/O errors cause Perror to be called. If IOCHECK is OFF,
then Perror simply stores the parameter ERRCODE into the global variable IOR and returns. If
IOCHECK is ON, then Perror performs an error handling procedure which is appropriate for the
target environment. For emulation, this is termination of the program.

Perror functions as follows:

PROCEDURE Perror(ERRCODE : SIGNED 8)

BEGIN
IOR := ERRCODE;
IF Piocheck THEN ({Piocheck has the value of the compiler »
BEGIN {directive IOCHECK.)
{ run-time error }
{ handler 2}
END;
END; { Perror)}

6-67

Pascal/64000
Compiler

NOTES

6-68

Chapter 7

STANDARD PROCEDURES AND FUNCTIONS

DYNAMIC ALLOCATION/DE-ALLOCATION PROCEDURES

General Information

Pascal/64000 allows variables to be created during program execution. The space, called the
"heap”, allocated to dynamic variables can then be de-allocated and later re-allocated to another
variable. Dynamic allocation and de-allocalion are useful when variables are needed only tem-
porarily, and when a program contains data structures whose maximum size may vary each time
the program is run. Examples are temporary buffer areas and dynamic structures such as linked
lists or trees. Dynamic variables are not explicitly declared and cannot be referred to directly by
identifiers.

The standard procedure NEW is used to create variables. The standard procedure DISPOSE is
used to deallocate variables.

When it is known in advance that a group of dynamic variables may be needed on a short term
basis, the state of the heap, before the short term variables are allocated, can be recorded by using
the predefined procedure MARK. When the short term variables are no longer needed, the heap
can be returned to the original condition by using the predefined procedure RELEASE. All vari-
ables allocated after the procedure MARK are removed.

An attempt to allocate variables that require more space than available in the heap will cause an er-
ror message and aborting of the program.

The following paragraphs describe in greater detail the procedures NEW, DISPOSE, MARK, and
RELEASE.

NOTE

The routines NEW, DISPOSE, MARK, RELEASE, and INTIHEAP are state
and should be defined with $RECURSIVE OFF$. INITHEAP is described
in the compiler supplement for your processor, when applicable.

NEW(p)

The procedure NEW is used to allocate memory space for a dynamic variable. (p) is a variable of
type POINTER. (p) can only point to a variable of a particular type T, and therefore is said to be
bound to 7.

When the procedure NEW(p) is called, a section of the heap large enough for a variable of type T
is allocated and the address of that space is held in pointer (p).

7-1

Pascal/64000
Compiler

If T is a record with variants, then the amount of space allocated is the amount required by the
fixed part of the record, plus the amount required by the largest variant.

DISPOSE(p)

DISPOSE(p) indicates that the dynamic variable p~ is no longer needed. The value of the pointer p
is set to NIL. The space occupied by p* is returned to the heap.

MARK(p)

MARK(p) is a predefined procedure having one parameter, a pointer variable, that records the
HEAP state at the time MARK is executed. Calling MARK(p) causes assignment of the first free
address in the HEAP to (p). The value of (p) may not change between MARK and RELEASE. Any
execution of the procedure NEW will build new data structures, starting with the address held in

(P)-

RELEASE(p)

RELEASE is a predefined procedure having one parameter, a pointer variable, that restores the
HEAP to the state present at the time of MARK(p). The value of (p) may not change between
MARK and RELEASE. All dynamic variables created after MARK are effectively destroyed, and the
memory space occupied by those variables is available for allocation to new dynamic variables. Be
sure that no pointer variables point to dynamic structures created after the MARK procedure.

ARITHMETIC FUNCTIONS

There are seven predefined arithmetic functions in Pascal/64000. Each of these functions is
passed in an arithmetic expression as a parameter and relurns a numeric value.

The type returned depends on the type of parameter passed. ABS returns an INTEGER if an
INTEGER value is passed. The other functions return REAL if an INTEGER is passed. All the func-
tions return REAL if REAL is passed and return LONGREAL if LONGREAL is passed.

To compute the values of the functions, Pascal/64000 uses system routines and compiler-defined
algorithms as follows:

ABS
ABS(X) - computes absolute value of X.
need 4
SQRT
SQRT(X) - Computes the square root of X. If X < 0 then a run-time error occurs.

Pascal/ 64000

Compiler
EXP
EXP(X) - Computes e (base of the natural logarithms) to the
power of X.
LN
LN(X) - Computes the natural logarithm of X. If X < Othen a
run-time error occurs.
SIN, COS
SIN(X), COS(X) - Computes the sine and cosine of X, where X is in
radians.
ARCTAN
ARCTAN(X) - Computes the arctangent of X in radians.
PREDICATES

The tollowing procedure returns a Boolean result.

ODD
OoDD(X) - The procedure ODD returns TRUE if the value of the
integer expression X is odd, FALSE otherwise.
TRANSFER FUNCTIONS
TRUNC

TRUNC(X) - The function TRUNC returns an integer result that is the integral part
of the real or longreal expression X. The absolute value of the result is not
greater than the absolute value of X. An error will occur if the result is not
within the integer range.

Examples: TRUNC(5.61) returns 5

TRUNC(-3.38) returns -3
TRUNC(18.999) returns 18

7-3

Pascal/64000
Compiler

ROUND

ROUND(X) - The function ROUND returns the integer value of the real or longreal
expression X rounded to the nearest integer. If X is positive or zero, then
ROUND(X) is equivalent to TRUNC(X + 0.5); otherwise ROUND(X) is
equivalent to TRUNC(X - 0.5). An error will occur if the result is not in the
integer range.

Examples: ROUND(3.1) returns 3
ROUND(-6.4) returns -6
ROUND(-4.6) returns -5

ORDINAL FUNCTIONS

The ordinal functions are: ORD, CHR, SUCC, and PRED.

ORD

ORD(X) - where X is an expression of ordinal type. The function ORD returns
the ordinal number associated with the value of X. The type of the result is
INTEGER. If the parameter is compatible with INTEGER, then the parameter
value is returned as the result. If X is of type CHAR, then the result is an
integer value between 0 and 255, determined by the ASCIl ordering. If X is
of any other ordinal type (i.e., a predefined or user-defined enumeration
type), then the result is the ordinal number determined by mapping the
values of the type onto consecutive non-negative integers starting at zero.

The ORD value of -1is -1; the ORD value of 1000 is 1000. The ORD value
of 'a’ is 97, the ORD value of 'A’ is 65.

The predefined type BOOLEAN, for example, is defined:

TYPE BOOLEAN = (FALSE, TRUE) and therefore ORD(FALSE) returns O,
and ORD(TRUE) returns 1.

The same method is used to detertmine the ordinality of an element in a
user-defined enumeration type. For example, given the declaration:

TYPE color = (red, blue, yellow); the ORD(red) returns O, ORD(blue)
returns 1, and ORD(yellow) returns 2.

CHR

CHR(X) - where X is an integer expression. The function CHR returns the
character value whose ordinal number is equal to the value of the integer
expression X. If X is greater than 255, then only the least significant 8 bits
of X is used to form the character. For any character ch, the following is
true: CHR(ORD (ch)) = ch.

Pascal/ 64000
Compiler

Examples:

The value of 63 returns the CHR '?’, the value 100 returns the CHR
'd’, the value 13 returns the CHR ’carriage return’, the value 75
returns the CHR 'K'.

SUCC

SUCC(X) - where X is an expression of ordinal type. The function SUCC returns
a result having an ordinal one greater than the expression X. The result is
of a type identical to that of X. If no such value exists, no error is reported
at the function call, but a run-time error will occur if the value is assigned
to a variable of the ordinal type. Given the declaration: TYPE color = (red,
biue, yellow); SUCC(red) returns biue, and SUCC(yellow) returns a value
that is not of type COLOR. If X is 1, then SUCC(X) is 2. If X is -5, then
SUCC(X) is -4. If X is 'a’, then SUCC(X) is 'b’. It X is FALSE, then SUCC(X)
is TRUE.

PRED

PRED(X) - where X is an expression of ordinal type. The function PRED returns
a value having an ordinal value one less than X. If no such value exists, no
error is reported at the function call, but a run-time error will occur if the
value is assigned to a variable of the ordinal type. Given the declaration:

TYPE day = (monday, tuesday, wednesday); the following is true: PRED(tuesday) =
monday, and PRED(monday) returns a value that is not of type day.

Examples:
The PRED(1) is O, the PRED(-5) is -6, the PRED(’b’) is 'a’, the
PRED(TRUE) is FALSE.
ADDR FUNCTION
ADDR

ADDR(V) - returns the address of any variable V. The result is a pointer that is
compatible with any pointer type.

Example:

VAR A : ARRAY[1..10] OF INTEGER;
P : “INTEGER;

BEGIN

P := ADDR(A[5]);

Pascal/64000

Compiler
SHIFT AND ROTATE FUNCTIONS
SHIFT
SHIFT (EN) - E is an expression of an ordinal type and N is an expression that is
compatible with INTEGER. If N is positive then the binary value of E is
shifted left N times. If N is negative then the binary value of E is shifted
right N times. The type returned is identical to the type of E.
Example:
VAR I. INTEGER,;
BEGIN |:= 4
I:= SHIFT(l,1); {l now contains 8}
ROTATE

ROTATE(E,N) - E is an expression of an ordinal type and N is an expression com-
patible with INTEGER. If N is positive, then the binary value of E is rotated
to the left N times. If N is negative then the binary value of E is rotated to
the right N times. The type returned is identical to the type of E.

Example:

VAR | : SIGNED__ 16;
BEGIN | := 8000H;
I := ROTATE(,1); {l now contains 1}

Chapter 8
COMPILER OPTIONS
INTRODUCTION

The compiler interprets the following construct as a compiler directive:
$<compiler__options>$

Compiler options may be inserted between any two tokens (identifiers, numbers, string
literals, and special symbols). They are used to inform the compiler about changing needs
within the program. A compiler option is a separator (as is a space or a comment) in the
Pascal program. Compiler options must begin with a dollar sign and close with a dollar sign.
A compiler error will result if no closing dollar sign appears on the line. A compiler option
must exist entirely on one line.

The compiler option specification may include an option value. If no option value is specified,
then, for options that require an ON - OFF value, ON is assumed. Otherwise, for options that
require an integer or string literal value, the option is set to its default value.

TRUE and plus sign (+) are equivalent to ON. FALSE and minus sign (-) are equivalent to
OFF.

The compiler option syntax is defined here, and the syntax diagram is shown in figure 8-1.

<compiler options> ::= <option> {<separator> <option>}

<separator> L

<option> ::= <identifier> <option value> | <empty>
<option value> ::= ON | OFF | <signed integer> | <string literal>| <empty> |
::= + | = | TRUE | FALSE

All directives, prior to use in a source program, will assume their initial value when the com-
piler is called.

AMNESIA [ON] [OFF]

Initialized Value: OFF

Description:

ON causes the compiler to forget the contents of registers after the registers are used in an

operation. This directive may be used to ensure that variables representing memory mapped
1/0 ports are reloaded everytime they are needed.

Pascal/ 64000
Compiler

COMPILER [
OPTION $

~ (» -»<:E:)——i>
IDENTIFIER p—~ [e]

TRUE

0

OFF

FALSE

I

SIGNED
INTEGER

STRING
LITERAL

4

Figure 8-1. Compiler Options Syntax

ANSI [ON] [OFF]

Initialized Value: OFF

Description:

ON causes a warning message to be issued for any feature of Pascal/64000 which is not

part of "standard” Pascal. This feature is useful for identifying areas that must be considered
for program transportability.

ASM_ FILE
Initialized Value: OFF
Description:

The source file is created into a file whose name consists of the letters "ASM” followed by
the microprocessor designator (e.g. ASM8085, ASMZ80). This assembler source will be ac-
cepted by the assembler as a source file for the selected microprocessor. If the
LIST__CODE directive is also ON when ASM__FILE is ON, the assembler source file will also
contain intermixed Pascal source lines as assembler comments.

Pascal/ 64000

Compiler

ASMB__SYM [ON] [OFF]
Initialized Value: ON

Description:

ON causes the compiler to generate an asmb__sym file for use during emulation. OFF sup-
presses the generation of the file.

DEBUG [ON] [OFF]

Initialized Value: OFF

Description:

ON causes all arithmetic operations to be checked for overflow, underflow, or divide by zero

operation. (See specific Pascal/ 64000 microprocessor-dependent supplement for run-time
error descriptions.)

EMIT__CODE [ON] [OFF]
Initialized Value: ON
Description:

ON specifies that executable code is to be emitted to the relocatable code file.

END__ORG

Description:

Used to change variable address assignment from absolute to relocatable mode.

EXTENSIONS [ON] [OFF]

Initialized Value: OFF

Description:

ON allows the programmer to use the microprocessor oriented extensions to the Pascal lan-
guage. OFF disallows the use of these language extensions. The extensions include function-
al type changing, the address functions, the BYTE data type, built-in functions, SHIFT and

ROTATE, and non-decimal constant representations.

EXTENSIONS ON turns RECURSIVE OFF and EXTENSIONS OFF turns RECURSIVE ON.

Pascal/64000
Compiler

EXTVAR [ON] [OFF]
Initialized Value: OFF
Description:

ON causes all variables defined to be declared EXTERNAL until a subsequent EXTVAR OFF is
encountered. No local storage is allocated in this module for such variables. Symbols used in
one program module but defined in another, must be declared as external variables. Externals
must have been declared to be global in another program.

FULL__LIST [ON] [OFF]
Initialized Value: OFF
Description:

ON causes INCLUDE files to be listed and MACROS to be expanded in the listfile. Lines with
errors will be shown whether this directive is ON or OFF.

GLOBPROC [ON] [OFF]
Initialized Value: OFF
Description:

ON causes all main block procedures defined to be declared global until a subsequent
GLOBPROC OFF is encountered. This allows access by other modules. Global procedures
can be called from outside the program. When called from outside the program, they must be
declared external in the calling module.

GLOBVAR [ON] [OFF]
Initialized Value: OFF
Description:

ON causes all main block variables detined to be declared global until a subsequent GLOBVAR
OFF is encountered. This allows access to these variables by other modules where the vari-
ables have been declared to be external.

IOCHECK [ON] [OFF]
initialized Value: ON
Description:

ON causes all input/output procedures and functions to terminate program execution when
an 1/0 error is detected. OFF causes input/output procedures and functions, when an 1/0 er-
ror is detected, to store an error code in a global variable and return. In this mode, a program
canrecover from /0 errors.

Pascal/ 64000

Compiler

LINE__NUMBERS [ON] [OFF]

Initialized Value: ON

Description:

ON causes the compiler to generate symbols for the Pascal/64000 source line numbers.
These symbols are found in the asmb__sym file after the compilation. They may be used
during emulation to trace the execution of a Pascal/64000 program by source line number.
The symbols are constructed by placing a pound sign (#) in front of the line number. Line
number symbols are created only for lines that cause executable code to be generated (i.e.

line number symbols will not be created for lines in the TYPE and VAR sections of the
program).

LIST [ON] [OFF]
Initialized Value: ON
Description:

ON causes the source file to be copied to the listfile. OFF suppresses the listing except for
lines that contain errors.

LIST__CODE [ON] [OFF]
Initialized Value: OFF
Description:

ON specifies that the program listfile will contain the symbolic form (assembly language) of
the code produced, intermixed with the source lines.

LIST__OBJ [ON] [OFF]
Initialized Value: OFF
Description:

ON causes the listing to contain the relocatable object code generated by the third pass of
the compiler.

OPTIMIZE [ON] [OFF]
Initialized Value: OFF
Description:

ON may cause certain run-time checks to be ignored, such as pre~checking the range values
of a CASE statment. This mode is typically susceptible to bad out-of-range data at run time.
The directive should only be used for well-structured programs that have been thoroughly
debugged. Refer to the specific microprocessor-dependent supplement for additional
information.

Pascal/64000
Compiler

ORG number

Description:

All variables declared until END__ORG is encountered will be allocated sequential absolute
addresses starting from “number”. "number” may be represented with a hexadecimal
constant.

The use of this compiler directive to assign variables to absolute memory locations does not
allocate any absolute memory space. The reference to these variables are explicit absolute
addresses in the relocatable file. The linker will not detect or report a memory overlap if the
user’'s absolute addresses interfere with other defined memory areas.

PAGE

Initialized Value: null

Description:

This option causes a form feed to be output to the listfile.

RANGE [ON] [OFF]

Initialized Value: OFF

Description:

ON causes the compiler to generate code to check array indices, value parameters, variable
set elements, and subrange assignments for legal values.

RECURSIVE [ON] [OFF]

Initialized Value: ON

Description:

ON causes all procedures, declared to be compiled, to allow recursive or reentrant calling

sequences until a subsequent RECURSIVE OFF is encounterd. OFF causes procedures to be
compiled in a static mode which does not allow for recursive or reentrant calling sequences.

SEPARATE [ON] [OFF]

Initialized Value: OFF

Description:

ON enables the separation of program and constants and data such that program code and
constants are put in the PROG relocatable area and data in the DATA relocatable area. OFF

puts program code, constants, and data into the PROG relocatable area. Refer to the specific
microprocessor-dependent supplement for additional information.

Pascal/64000
Compiler

TITLE ’string”
Initialized Value: null

Description:

The first 50 characters of the string are moved into the header line printed at the top of each

subsequent page or the listfile.
USER_ DEFINED
Initialized Value: null

Description:

Pascal/ 64000 allows the user to redefine the semantics of certain operators in the language.
User defined operators are created by using the option SUSER__DEFINED$ during the decla-
ration of a type in the TYPE section. For user defined operators, the compiler will not
generate in-line code to perform the operations, but the compiler will generate calls to user
provided run-time routines. The run-time routine name will be a composite of the user’s type
name and the operation being performed, TYPENAME_ OPERATION. The first eleven charac-
ters of the user’'s type name are concatenated with an underscore and three characters
identifying the operation. Following is a list of the operators that can be user defined and the
run-time routine names that the compiler will create when the operations are used.

Operation

1) Add

2) Negate

3) Subtract

4) Multiply

5) Divide

6) Modulus

7) Equal Comparison

8) Not Equal Comparison

9) Less Than or Equal
to Comparison

10) Greater Than or Equal
to Comparison

11) Less Than Comparison

12) Greater Than Comparison

Symbol

+

/ or DIV

MOD

Run-time Routine
<typename>__ADD
<typename>__NEG
<typename>__SUB
<typename>__MUL
<typename>_ DIV
<typename>__MOD
<typename>__EQU
<typename>__NEQ

<typename>_ LEQ

<typename>__GEQ

<typename>_ LES

<typename>__GTR

Pascal/64000
Compiler

Refer to the specified microprocessor-dependent supplement for additional information on
this directive.

WARN [ON] [OFF]

Intialized Value: ON
Description:

Specifies that warning messages be written to the listing file. When this directive is OFF,
only error messages will be displayed and listed.

WIDTH number
Initialized Value: 240
Description:

The number specifies the number of significant characters (width) in the source file to be
compiled. Additional characters are ignored and if WARN is ON, a warning message will be
generated.

THE PREPROCESSOR PASS

A special preprocessor pass is available with the Pascal/ 64000 compiler. This preproces-
sor allows the user to use include files, macros, and conditional compilation. To make use of
the preprocessor, a special compiler directive must be used on the first line ot the source
program. In addition to the processor name, the word PREPROCESS must be present as
follows:

"Z8001" PREPROCESS
The word PREPROCESS must follow immediately after the processor name. Anything other
than PREPROCESS will be ignored and the preprocessor will not be invoked.

General Syntax

All preprocessor instructions must have a pound sign (3#) in column 1 of the line. This should
be followed by the appropriate instruction. The preprocessor is line oriented. Preprocessor
instructions may appear anywhere in the source file and do not affect the general syntax of
the program. Preprocessor instructions are not affected by comments.

8-8

Pascal/ 64000
Compiler

INCLUDE FILES

#INCLUDE <FILE>
or
#INCLUDE "<FILE>"

This instruction causes the appropriate file to be included into the source. Anything on the
line after the file name will be ignored. Both forms of the instruction are equivalent.

Examples:

#INCLUDE MYFILE
#INCLUDE "MYFILE:MYUSER”
#INCLUDE MYFILE:MYUSER:3

MACROS

#DEFINE <MACRO__NAME> <TEXT>

This instruction will cause all subsequent occurrences of <MACRO__NAME> to be replaced
by <TEXT>. <MACRO__NAME> may be any upper-case or lower-case identifier. <TEXT>
may be any text.

#DEFINE <MACRO_NAME> (<FORMAL_PARAMETER>, ..., <FORMAL_PARAMETER>) <TEXT>

There must not be any spaces between the macro name and the (.

This form of the instruction is similar to the previous form except that parameters may be
passed. Each occurrence of the formal parameters in the text is replaced by the parameters
being passed. To refer to a macro of this form, the macro name should be used, followed by
the parameters separated by commas and within parentheses. Parameters may themselves
contain parentheses, and commas within inner parentheses do not separate parameters.
Parentheses and commas within strings will be ignored.

Both of the above forms of macros will not be expanded within strings. They will be ex-
panded within comments. Normally a macro declaration is limited to one line. However, it may
be expanded to the next line by ending a line with a backslash (\). The backslash will not be
part of the expanded text. Macros may refer to other macros, and are independent of normal
scoping. A macro may be redefined by declaring it again. If this is done, a warning will be
given.

Pascal/64000
Compiler
Example:
In a statistics program, one might write:
#DEFINE SIGMA(X) SUM := SUM + X;\
SUMSQUARES = SUMSQUARES + (X) * (X);\
NUMBER = NUMBER + 1;
Later in the code the statement SIGMA(VALUE) will be replaced by:
SUM := SUM + VALUE;
SUMSQUARES = SUMSQUARES + (VALUE) * (VALUE);
NUMBER = NUMBER + 1;

Note the parentheses around the X's in the second line. If this was not done, SIGMA(A+B)
would cause the second line to be:

SUMSQUARES := SUMSQUARES := SUMSQUARES + A+B * A+B;
#UNDEF <MACRO__NAME>

This instruction will undefine the previously defined macro.

Conditional Compilation
#IF <EXPRESSION>

This instruction will cause the following code to be compiled only if <EXPRESSION>
evaluates to TRUE. <EXPRESSION> may be any expression involving:

a. Integers.
b. Integer operators + -, ¥ DIV, and MOD.
c. Boolean operators AND, OR, and NOT.
d. Relational operators =, <>, <, >, <=, and >=.
The result of the expression must be a Boolean value. The conditional compilation will con-
tinue until
#ENDIF
is encountered. The instruction:
#ELSE

will turn ON compilation if it is off, or turn it OFF if it is on.

Pascal/ 64000
Compiler
#IFs may be nested. Within a #IF FALSE, nested #IFs will not have any effect on compilation.
Since the preprocessor is not affected by normal compiler syntax, constants defined in the
CONST section of the program can not be used in the #IF instruction. However, it is possible
to define a macro which will be usable in the #IF statement. For example, if the user has two
systems he may write:

#DEFINE SYSTEM__1 TRUE

#IF SYSTEM__1

#ELSE

#ENDIF
When compiling for SYSTEM 2, change define SYSTEM__ 1 as being FALSE.
For three or more systems the following may be used:

#DEFINE SYSTEM 1

#IF SYSTEM = 1

#ELSE

IF SYSTEM =2

ELSE

ENDIF

#ENDIF
Two other forms of the #IF instructions are available:

#IFDEF <MACRO__NAME>
will be true if the macro is defined.

#IFNDEF <MACRO__NAME>

will be true if the macro is not defined.

Compiler Directives

Normally, compiler directives are treated like any other text by the preprocessor and do not
affect operation of the preprocessor. If itis desired for a directive to atfect the preproces-
sor, a pound sign (#) must appear in column one and should be followed by the dollar sign ($)
to indicate the directive. The directive will affect both the preprocessor and pass 1. The
line containing the directive will not be expanded. Although any valid directive may appear on
this line, only WIDTH, WARN and ANSI, will affect the preprocessor.

11

®
[

Pascal/ 64000
Compiler

Examples:

#$SWIDTH = 80%
SWARN ON, ANSI OFF $

COMPILER GENERATED SYMBOLS

Compiler Generated Labels

Whenever the symbol "proc” appears it refers to the name of the enclosing procedure (or
main program) truncated if necessary so that the total label will fit into 15 characters.

PROCEDURE ENTRY. The procedure entry has the label proc, i.e., the procedure name itself.
This label will be declared global it the procedure is global. (The main program is always
global.)

END LABEL. The end of a procedure is indicated by the label Eproc. This label marks the end
of the PROG section associated with the procedure. This includes any data associated with
the procedure which is in the PROG section (due to the value of the SEPARATE option). The
end label will be declared global if the procedure is global. This label may be used in a trace
as in trace only address range proc thru Eproc.

RETURN LABEL. The return instruction from a procedure is always labelled Rproc. This label
will be declared global if the procedure is global.

DATA LABEL.If a procedure has an associated data area in memory, the data area will be
marked Dproc. The data label is never global. It may be used in tracing local data as in trace
address Dproc+N where N may be calculated from the relocation information in the listing.

USER LABELS. When a numbered label is used in Pascal the generated label is of the form
LABEL__NN where NN is the number of the label. These labels are always local.

JUMP LABELS. These are labels generated by the compiler jumps from statements such as
IF, FOR, WHILE, CASE, REPEAT, etc. The labels are of the form procLNN__XXXX where proc
is truncated to seven characters, NN is a unique number based on the procedure and XXXX is
a unique number for the labels. Jump labels are always local and will normally be unique within
a program.

Certain processors may make use of other types of labels. See specific processor supple-
ment manuals for details.

DUPLICATE SYMBOLS

Although labels aid in program tracing, they generate a potential for duplicate symbols. If
these symbols are local, they will not cause a problem unless the ASM__ FILE is assembled, or
an attempt is made to trace on one of these variables. If the symbols are global, an error will
occur at link time. The following can cause duplicate symbols.

Pascal/ 64000
Compiler

If the first 14 characters of two procedure names match, the D, E, and R labels will be
duplicated. If the procedure proc exists, as well as a user symbol such as Eproc (any proce-
dure or global variable), a duplicate symbol will occur. Using the same procedure name twice,
although legal due to nesting, will cause local duplicate symbols.

Similarly, using the same LABEL number in two procedures will cause duplicate local symbols.
Using a reserved assembler symbol (such as a register name) may cause duplicate symbol
errors in the ASM__FILE.

In the following example, note the following:

e The variables A, B, and C can be accessed as DTEST, DTEST+4, and DTEST+8.

e The procedure HAS__A_LONG__NAME was trucated to form the other labels.
However, emulation also truncates identifiers to 15 characters (i.e.
DHAS__A_LONG__NAME and DHAS__A__LONG__NAM are equivalent).

* The variable X can be accessed as DHAS__A_LONG__NAM.

e The use of two LABEL 5 statements, although valid in this sample Pascal program, will

cause the symbol, LABEL__5, to be generated twice. This will result in a duplicate
symbol error if the ASM__FILE is assembled, and one of the symbols cannot be traced.

Example;

1 0000 1 “Z8002"

2 0000 1 SRECURSIVE OFFs$

3 0000 1 PROGRAM TEST;

4 0000 1 LABEL §5;

5 0000 1 VAR

6 0000 1 A:INTEGER;

7 0004 1 B:INTEGER;

8§ 0008 1 C:INTEGER;

9 000C 1

10 000C 1 PROCEDURE HAS_A_LONG_NAME ;

11 0000 2 LABEL §5;

12 0000 2 VAR X:INTEGER;

13 0004 2 BEGIN
0000 HAS_A_LONG_NAME

14 0000 2 IF A=B THEN X := 5
0000 Lot RR12 ,DTEST
0004 CPL RR12 ,DTEST+00004H
0008 JP NE,HAS_A_LO1_1

15 000C 2 ELSE X := 3;
000C LDL RR12,%#000000005H
0012 LDL DHAS_A_LONG_NAM,RR12
0016 JP ,HAS_A_LO1_1
001A HAS_A_LO1 0
001A LDL RR12,#000000003H
0020 LOL DHAS_A_LONG_NAM,RR12
0024 HAS_A_LO1 1

16 0024 2 5:

17 0024 2 END;

Pascal/ 64000
Compiler

0024 LABEL_ 5
0024 RHAS_A_LONG_NAM
0024 RET
0026 DHAS_A_LONG_NAM
0026 RMB 00004H
18 0000 1
19 0000 1 BEGIN
002A EHAS_A_LONG_NAM EQU $-1
002A TEST
002A LDA R15,STACK-

20 002E 1 5:
21 002E 1 END.

002E LABEL_S

002E RTEST

002E GLOBAL RTEST

002E JpP ,Zendprogram
0032 DTEST

0032 RMB 0000CH

0032 ETEST EQU $-1
0032

0032 GLOBAL ETEST

0032

GLOBAL TEST
EXTERNAL STACK_ EXTERNAL Zendprogram
END TEST

®
|

14

Chapter 9

HOW TO COMPILE A PROGRAM

GENERAL

Pascal/64000 uses a three-pass compilation process. The first pass, which is machine indepen-
dent, reads the Pascal source, checks for lexical, syntax, and semantic errors, and produces an in-
termediate language file on disc. The second pass reads the intermediate language file and
generates code for the chosen microprocessor by producing a tokenized assembler file on disc.
The third pass reads the tokenized assembler file, generates a relocatable object file if there were
no errors in the first two passes, and generates a list file if requested.

The optional list file may contain source lines only or source lines mixed with the generated as-
sembly language code if requested.

COMMAND SYNTAX

The following pages provide the formal syntax definition for the compile command.

9-1

Pascal/64000

Compiler
compile
SYNTAX
<FILE>
display
compile <FILE> listfile { i
printer
null J
Tist
options [expand][nocode][xref][comp sym]
nolist
! .J
Default Values
listfile The default is to the predefined listfile. If there is no predefined list file, a null list
file is the default.
options If no entry is made for any of the options, the default values will be:
list/nolist LIST directives in the source file will be obeyed.
expand LIST CODE and FULL_LIST directives in the source file
will be obeyed.
nocode EMIT_CODE directives in the source file will be obeyed.
xref Default OFF - no symbol cross-reference listing generated.

comp_sym Default OFF - no symbol file created.

9-2

Pascal/64000
Compiler

compile contq)

FUNCTION
The compile command tells the compiler to translate a Pascal source program (file) into
relocatable object code for a microprocessor.
Command Parameters:
<FILE> A variable representing the source file name, userid, and disc number. The

syntax for <FILE> is:

<FILE> => <FILE NAME> [:<USERID>][:<DISC#>]

where:
<FILE NAME> - Up to nine alphanumeric characters, beginning
with an upper-case alphabetic character.
<USERID> - Up to six alphanumeric characters, beginning
with an upper-case alphabetic character.
<DISC#> - Represents the logical unit number of the system

disc on which the source file is located. Allowable
entries are decimal numbers representing the
desired disc number.

The file type must be a source file; no other file type can be specified with the
compile command. The first line of the source file must be the name of the target
processor, enclosed in quotation marks (e.g. - "8085").

listfile A key word which specifies a listing file for compiler output. When listfile is
specified, one of the following must be specified also:

<FILE> display printer null

Pascal/64000
Compiler

compile (contq)

options A key word which allows specification of options for the compile process.
When "options" is specified, one or more of the following may be specified:

list

nolist
expand
nocode
xref
comp_sym

where:

list or nolist - allows specification of the source program list with error mes-
sages or no source listing except for error messages. All LIST directives in the
source file are ignored.

expand - specifies a list of all source lines with an expansion of the assembly
language. Also shows INCLUDE files and expanded MACROS if used. All
LIST _CODE and FULL_LIST directives in the source file are ignored.

nocode - specifies the suppression of object code generation. Only the source
code will be listed in pass 2.

xref - specifies a symbol cross-reference listing for the source file.
comp_sym - this file is created by the compiler when requested and contains

the entire compiler symbol table for use in creating comp_db by the linker
(refer to chapter 10 for a description of comp_db).

9-4

Pascal/64000
Compiler

HOW TO COMPILE A PROGRAM

The usual process of software generation with the compiler is as follows:

a. Create source program files with editor.

o

. Compile source program files.
c. Link relocatable tiles.
d. Emulate absolute files.
e. Debug.
The following sections of this manual will provide insight into the structure of the source file,

compiling the source file, and linking relocatable files. Refer to the appropriate
microprocessor-dependent supplement for information on emulating and debugging.

THE SOURCE FILE

The Pascal/ 64000 compiler takes as input a program source file created with the editor. The
basic form of a source file is:

"8085"
PROGRAM Name;
{comments}

CoﬁST

Tvee
VR

PébééDURE Procedure_name (Parameterl : Type});
éEGIN

ENI.);
BEGIN

{main program code}

END.

Pascal/64000
Compiler

The tirst line of the source file must be the special compiler directive which indicates the
processor for which the file will be compiled. In the example form given above, the 8085 mic-
roprocessor is specified.

All key words in the source program must be upper-case, but identifiers may be lower case.
When use of the 64200 emulator is planned, the global identifiers must begin with an upper-
case letter if the user wishes to access these names symbolically during emulation. (In
emulation, only emulation command keywords may start with a lower case letter. All user
symbols must start with an upper case letter.)

COMPILING

When your program is complete, it is ready for compiling. To compile a program, press the

———

—_—— e —— e e e e o —————

[gFI[ES‘l ') |

LCEEZ L N e omam o~ S mme wmmm . SES S wmm. S . R S SEmS. -\ SIS SEES. SR . SCMEA. SENR. WS - . SIS WM.

Next, enter the source file you want to compile. When the file has been entered, the softkey
configuration will change to:

e e ey —— e e =, = e et e = . e e

At this point, choose the listing file you want as indicated by the softkeys. If you do not
choose a listfile, the compiler will default to the predefined listfile that was chosen when the
userid was set. (Refer to the System Software manual for setting the userid.)

You may now select the appropriate compile options.

If you do not want to specify any options, press the (RETURN) key to compile your source
tile.

PP ——

R

pear on the command line and the softkey configuration will change to:

9-6

Pascal/64000
Compiler

Press the softkey of the option or options you want to specity; then press the (RETURN)
key to compile your source file.

OUTPUT LISTINGS

The compiler will output relocatable code and make listings according to the options
specified or their default value. The following examples show typical output listings that the
compiler will produce.

The following listing is an example of an 8085 output listing to the printer with a cross
reference (xref) table.

FILE: ERROR:P HP Pascal/64000[A.1]
1 0000 1 "8085"
2 0000 1 PROGRAM FACTORIAL;
3 0000 1 VAR
4 0000 1 I: INTEGER; {Loop control variable}
S 0002 1 N: INTEGER;
6 0004 1 FACT: INTEGER;
7 0006 1 BEGIN
8 0000 1 FACT:= 1;
9 0000 1 FOR I:= 1 TO X DO ({Deliberate error}
%Xxxkx ERROR 7? ~104~103
10 0000 1 FACT:= FACTXI;
11 0000 1 END.

103: IDENTIFIER IS NOT APPROPRIATE CLASS
104: IDENTIFIER NOT DECLARED

End of compilation, number of errors= 2

FILE: ERROR:P HP Pascal/64000[A.1] Cross Ref Table
First occurence Identifier References

6 FACT 8,10,10

2 FACTORIAL

4 1 4,9,10

5 N 5

9 X 9

Number of CASE's and BEGIN's = 1
Number of END's = 1

End of cross reference, number of symbols = S

Pascal/64000
Compiler

The listing which follows is an example of an 8085 compiler listing to the printer with the ex-
pand option. Compiler listings differ slightly from this format depending on the setting of the

compiler directive $LIST__OBJS$.

FILE: SAMPLE:P

[

0000
0000

N

0000
0000
0002
0004
0006

NOoO Ve W

8 0000

9 0009

10 001C

11 0034

1

—

1

1

“8085

HP Pascal/64000[A.1] Expanded listing

PROGRAM FACTORIAL;

0000 NAME "FACTORIAL Pascal"”
VAR
I: INTEGER; {Loop control variable}
N: INTEGER;
FACT: INTERGER;
BEGIN
0000 FACTORIAL:
FACT:= 1;
0000 31 ??7? LXI SP,STACK-
0003 21 0100 LXI H,1
0006 22 177? SHLD FACTORIAL_D+4
FOR I:= 1 TO N DO
0009 2A 77?7 LHLD FACTORIAL_D+2
000C 22 ??17? SHLD FACTORIAL_D+6
000F 11 0100 LXI D,1
0012 cb ?77?? CALL Zintleq
0015 CA ?77? Jz FACTORIAL_L1
0018 EB XCHG
0019 FACTORIAL_L2:
FACT:= FACTXI;
001C EB XCHG
001D 2A 7?2777 LHLD FACTORIAL_D+4
0020 ch 1?7?77 CALL Zintmul
0023 22 777 SHLD FACTORIAL_D+4
0026 2A ?77? LHLD FACTORIAL_D+6
0029 cbO 7777 CALL Zintneq
002C CA 1?2777 JZ FACTORIAL_L1
002F EB XCHG
0030 23 INX H
0031 C3 17?77 JMP FACTORIAL_L2
0034 FACTORIAL_L1:
END.
0034 Cc3 177?7? JIMP Z_END_PROGRAM
0037 FACTORIAL_C:

Pascal/ 64000
Compiler

0037
0037
0037
0037
003F
003F
003F
003F
003F
003F

FACTORI

FACTORI
DS
GLB
EXT
EXT
EXT
EXT
EXT
END

End of compilation, number of errorss=

AL_E:

AL_D:
8
FACTORIAL
Zintmul
Zintnegq
Zintleq
STACK-
Z_END_PROGRAM
FACTORIAL

0

FILE: SAMPLE:P HP Pascal/64000[A.1]) Cross reference table

First occurence
6

2
4
5

Identifier
FACT
FACTORIAL
I
N

Number of CASE’'s and BEGIN's = 1

Number of END’s

= 1

End of cross reference, number of symb

References
8,10,10

4,9,10
5

9
9

ols = 4

NOTES

Pascal/64000
Compiler

Chapter 10

LINKER INSTRUCTIONS

INTRODUCTION

A system application program, referred to as the linker (link), combines relocatable object
modules into one file, producing an absolute image that is stored by the Model 64000 for ex-
ecution in an emulation system or for programming PROMS. Interaction between the user and
the linker remains basically the same regardless of which microprocessor assembler or com-
piler is being supported.

To prepare object code modules for the Model 64000 load program, the linker performs two
functions:

a. Relocation: allocates memory space for each relocatable module of the program and
relocates operand addresses to correspond to the relocated code.

b. Linking: symbolically links relocatable modules.

You may optionally select an output listing of the program load map and a cross-reference
(xref) table. The linker also generates a listing that contains all errors that were noted.
These error messages will contain a description of the error along with the file name and
relocation/address information when applicable.

In addition to the above output lisiings, the linker constructs a global symbol file (link__sym
type) and stores this file under the same file name assigned the absolute image/command
file. This global file may be used for symbolic referencing during emulation. The link__sym file

also contains the relocation address for all programs. This information is used to relocate
asmb__sym type during emulation.

LINKER REQUIREMENTS

The following information is required by the linker:
a. File names of all object files to be loaded.
b. File names of libraries to be searched to resolve any unsatisfied externals.

c. Relocation information (load addresses for all relocatable areas).

10-1

Pascal/64000
Compiler

d. Listing and debugging options as follows:

1) List (Load Map): file/program name, relocatable load addresses, and absolute
load addresses.

2) Xref: symbols, value, relocation, and defining and referencing modules.
e. File name for command/absolute image file.
Since the linking operation will usually be required each time there is a software change and
the information in items a through e remain constant for any given application, the linking con-

trol information is automatically saved in a command file with the same name as the absolute
image file. The command file is distinguished from the absolute image file by file type.

LINKER SYNTAX

The command line in which Model 64000 commands are entered is accessed by way of the
development station keyboard. Each system application function (edit, compile, assemble,
link, emulate, etc.) can be called using keyboard softkeys. A syntax description of the link
command follows.

10-2

Pascal/ 64000
Compiler

link

SYNTAX

link [<FILE>]

options [edit][nolist][xref][no_overlap check][comp db]

[listfile <list destination>]

Default Values

<FILE>

<list destination>

options

Examples;

link

link PROGABS

link PROGABS
options edit

If no linker command file is specified, the default allows
creation of a new file of type link_com.

Defaults to user specified listfile default. See userid
command.

If "options” is not entered, listing defaults to options
specified in the linker command file.

If options is specified, followed by nothing, a load map
listing with no cross-reference is performed.

Requests the linker to create a new linker command file. Listing
output will go to the listfile default.

Links absolute file PROGABS containing files in linker command file
PROGABS. Listing output will go to listfile default and options in
PROGABS type link__com are in effect.

Request the linker for purpose of viewing or modifying
PROGABS:link__com. Listing output will go to listfile default.

Pascal/64000
Compiler

link (cont'd)

FUNCTION

The linker combines and relocates specified relocatable files creating an absolute file with
the same name as that of the link__com file which can be used to program a PROM (with
prom programmer option) or to load emulation RAM to be executed and analyzed with the
emulator.

Parameters:

<FILE> A file of type link_com to be used to direct the linker as
to relocatable and relocation addresses.

<list destination> File or device to which listing output is sent.

options Allows user to override options specified in the linker
command file.

nolist Overrides the list option specified in the linker command
tile and suppresses output of a load map.

xref Overrides no xref option specified in the linker command
file and forces output of a global symbol cross-
reference table.

edit Allows user to edit existing link_com file specitied.

no__overlap__check Overrides overlap__check option specified in the linker
command file and suppresses errors caused by memory
overlaps. Default condition for linker overlap__check is
ON.

comp__db This file is created by the linker when requested and is a
data base containing information from all of the com-
p__sym files associated with relocatables in an absolute
file.

DESCRIPTION

The linker may be called by one of two methods: simple calling or interactive calling.

The simple calling method is used when interaction with an established command file is not
required. That is, the current information in the command file is valid and no changes are
required.

The interactive calling method is used when building a new linker command file or when the in-
formation in the current command file needs revision.

10-4

Pascal/ 64000
Compiler

HOW TO USE THE LINKER

Simple Calling Method

a. Ensure that the following softkey prompts are displayed on the system CRT:

(edit] [compile (assemble (link 1 Cemulate {prom_ prog’ {runi {=--ETC--=]

~——=

c. The next prompt is <CMDFILE>. Type in the name of the established command file to
be linked. The softkey configuration will change to:

———— N ,— e ——— e (———— p— e e ——

i {listtile s Coptions ™ i

I [||
~ - — — T . SR W S S M.\ SEEL S W - S S— —

N e—— N —— | —— e ——

===

2

messages will be disolayed on the system CRT.

t. If the FILE option is desired in step e, type in the file name under which the listing is to
be stored. You can then review your output listing on the system CRT using the edit
function and your assigned file name.

g. The softkey configuration will change to:

——————— e — — ——pi——— N e —— e | e | e (|, ——— e ————

10-5

Pascal/64000
Compiler

h. Refer to the "options” default description in the LINK SYNTAX definition block.

gy ——

[N il il i)

the command file and to noedit. To override the command file list options (for this link
only), press the [options] softkey. The softkey configuration will change to:

e — e — | ——— | — [— e ——_——

,F——pi———

RS

of these defaults may be changed by pressing the appropriate softkey.

j. After accomplishing step i, press the (RETURN) key. The linker will link the
relocatable modules and produce the desired. output listing.

Interactive Calling Method

The interactive calling method allows the user to create a new linker command file or edit an
existing linker command file.

a. Ensure that the following softkey prompts are displayed on the system CRT:

(edit] (compile Cassemble’ (link i Cemulate Cprom__prog™ (rund (===ETC=-==]

i ——

N ,—— e e e ———

(<CMDFICE> (listtile Coptions > 3 (___ 73 (LGNNI | QR § R '

c. The user may start creating a new linker command file by not specifying any com-
mand file. An existing command file may be modified by specifying the command file
name and the edit option.

NOTE

In the following paragraphes, the procedures are written for
establishing a new command file. If an existing command file
is being edited, just type in the changes required after each
query. If no changes are required for a particular query,
proceed to the next query. In all instances, to proceed to the

next query, press the (RETURN)key.

d. The command query displayed in the command line of the system CRT is:

Object files? file1file2,... filen

10-6

Pascal/ 64000
Compiler

The query asks for the names of the files to be linked and relocated. Type in the
names of the files and then proceed to the next query.

NOTE

The softkey configuration "prompts” will change with each
query from the linker. The softkey "prompts” indicate the
type of information that is required.

Object files that are listed after the "Object files?” query may contain relocatable object
modules, no-load files, and previously linked linker-symbol files (for global symbol
references).

No-load files are differentiated from normal relocatable files by enclosing the no-load files in
parentheses. Linker symbol files are specified by including the tile type "link__sym’ in the file
name.

Example:

FILE1,(FILE2FILE3),FILE4link__sym

NOTE

Refer to the paragraphs in this chapter that discuss no-load
and link_sym files for additional information.

e. The next command query displayed in the command line on the system CRT is:
Library files? lib1,lib2,...libn

Interrogation for library files is the same as for object files. After all object files have
been linked, the linker determines if any external symbols remain undefined. The linker
then searches the library files for object modules that define these symbols. The
linker relocates and links only those relocatable modules that satisfy external
references. Since a library file may contain more than one object module, all of its
relocatable modules may not be linked. Refer to the paragraph in this chapter that dis-
cusses libraries and their construction.

NOTE

No-load files or linker symbol files, used for global referenc-
ing, must not be listed after this query. The no-load and
link__sym files can only be referenced during the "Object
files?” query.

After typing in the list of reference library files (or if library files are not referenced in
the program), proceed to the next query.

10-7

Pascal/64000
Compiler

. The next command query displayed in the command line on the system CRT is:

Load addresses:PROG,DATA,COMN=addr,addr,addr

This query allows selection of separate, relocatable memory areas for the different
modules of the program. For example, if you type in the foliowing addresses:

Load addressessPROG,DATA,COMN=1000H,2000H, 3000H

the linker will relocate the PROG file module to memory location starting at address
1000H, the DATA module will be relocated to memory location starting at address
2000H, and the COMN module will be relocated to memory location starting at address
3000H.

NOTE

Load addresses may be entered using any number base (bi-
nary, octal, decimal, or hexadecimal); however, the address -
es listed in the load map are give in hexadecimal only.

The default addresses are zeros. After entering the load addresses or if the default
addresses are acceptable, proceed to the next query.

g. The next command query displayed in the command line on the system CRT is:

More files? no

The linker asks if more files are to be linked. If the response is yes, the linker begins
interrogation again, allowing additional object and library files to be specified with new
load addresses. When specifying new relocatable areas, the user may continue with
the previously relocatable area by typing "CONT” in the appropriate field (or using the

[B Y

Example:

Load addresses:PROG,DATA,COMN=0BCCH,CONT,3FFCH

The default condition to the "more tiles?” query is no. Proceed to the next query.

h. The next command query displayed in the command line on the system CRT concerns

10-8

output listing options. It has the following syntax:

List,xref,overlap__check=on off on

Pascal/ 64000
Compiler

The linker asks you to specify what output listings are required and if memory overlap

,————

should be checked. Using the _ _on_ or [_off softkey select in the sequence

~—_Z ~—Z o

indicated in the syntax statement (list, xref, overlap__check), the desired output listing
and memory check condition. After inserting the requirements, proceed to the next
query.
NOTE
The output listings indicated after the listxref,over-

lap__check= query are the command file values that will be
used during this and future link operations. They can be

PR —

[l ol e)

call.

The default condition for this query is on off on.

i. The next command query displayed in the command line on the system CRT is:

Absolute file name=name

This final query from the linker allows you to assign a name to the new command/ab-
solute image file that you are about to link. The absolute image file that is created by
the linker is always associated with a link command file of the same name. A global
symbol file is also established under the name of the command/absolute image file
name. The global symbol file contains all global symbols and their relocation values.

After entering the absolute file name, press the (RETURN) key.

The linker will link, relocate the files, and save the linking information in the command
tile.

LINKER OUTPUT

The linker listings may be output to the system display, line printer, or any file. The following
information may be included in the linker output listing:

a. List (Load Map)
b. Cross-retference table

c. Error messages

10-9

Pascal/64000
Compiler

NOTE

Certain error messages contain more than 80 characters and
will not be completely displayed on the system CRT.
However, complete error messages will be printed when
using the line printer or a list file for listings.

List (Load Map)

A load map is a listing of the memory areas allocated to each relocatable file. The listing
begins with the first file linked and proceeds to list all other linked files with their allocated
memory locations. An example of a load map listing that will be printed on the system printer
is as follows:

FILE/PROG NAME PROGRAM DATA COMMON ABSOLUTE DATE TIME COMMENTS
KYBD : SAVE 0000 Thu,5 Jun 1980, 11:37
EXCT:SAVE 0B00-0B34 Thu,5 Jun 1980, 10:38
DSPL:SAVE Al100 Thu,5 Jun 1980, 11:38
next address 0021 Al21

REG1 :SAVE B00O Thu,5 Jun 1980, 11:52
REG2:SAVE B103 Thu,5 Jun 1980, 11:53
REG3:SAVE B206 Thu,5 Jun 1980, 11:58
next address B30C

Libraries

PARAMETER : SAVE 0021 Thu,5 Jun 1980, 11:43
MULTEQUAT : SAVE 0221 Thu,5 Jun 1980, 11:45
next address 0421 Al21

XFER address=0B00 Defined by EXCT

No. of passes through libraries= 1
absolute & link_com file name=SETAG1:SAVE
Total# of bytes loaded= 0782

A brief description of each column in the listing is as follows:
a. FILE/PROG NAME - this column will contain the name ot the files that are linked. In the
event library files are referenced, not only will the master library tile be listed, but its

subsections will be indented to indicate that they are part of the main library file.
No-load files will be displayed in parentheses (...).

10-10

Pascal/64000
Compiler

b. PROGRAM - this column will indicate the first address (hexadecimal) of a memory
block that contains the PROG relocatable code in the file listed in the FILE/PROG
NAME column.

c. DATA - this column will indicate the first address (hexadecimal) of a memory block
that conatins the DATA relocatable code in the file listed in the FILE/PROG NAME
column.

d. COMMON - this column will indicate the first address (hexadecimal) of a memory
block that contains the COMN relocatable code in the file listed in the FILE/PROG
NAME column.

e. ABSOLUTE - this column will indicate the hexadecimal addresses of a memory block
that contains the absolute code assigned by the file listed in the FILE/PROG NAME
column.

NOTE

The "next address” statement in the load map listing indi-
cates the next available hexadecimal address in the PROG,
DATA, or COMN memory areas. It may also be used to
determine the number or bytes (words for 16-bit proces-
sors) that are contained in each area (next address - start-
ing address = total bytes).

f. DATE - this column will indicate the date that the file listed in the FILE/PROG NAME
column was assembled (assuming the system date/time clock was current).

g. TIME - this column will indicate the time that the file listed in the FILE/PROG NAME
column was assembled (assuming the system date/time clock was current).

h. COMMENTS - this column will contain user comments entered during assembly by the
assembler pseudo NAME instruction.

Cross-reference Table

The cross-reference table lists all global symbols, the relocatable object modules that define
them, and the relocatable modules that reference them. An example of a cross-reference list-
ing that will be listed on the system printer is as follows:

SYMBOL R VALUE DEF BY REFERENCES
DSPL6 P 0034 PGM68D PGM68E
KYBD6 P 0001 PGM68K PGM68E

A brief description of each column in the cross-reference listing is as follows:

10-11

Pascal/64000
Compiler

a. SYMBOL - all global symbols will be listed in this column.

b. R (Relocation) - in this column a letter will identify the type of program module. The
letters that are available and their definitions are:

A = Absolute

C = Common (COMN)
D = Data (DATA)

P = Program (PROG)
U = Undefined

¢. VALUE -relocated address of the symbol.
d. DEF BY - this column will contain the file name that defines the global symbol.

e. REFERENCES - this column will list the file names that reference the global symbol.

"NO-LOAD" FILES

Files that are enclosed in parentheses in the "Object files?” query indicates to the linker that
no code is to be generated for the file. Relocation and linking occurs in the same manner as if
the file was a load file; however, the absolute image file generated by the linker does not con-
tain the object code for the no-load file. No-load files may be useful in linking to existing
ROM code or in the design of software systems requiring memory overlays.

LINKER SYMBOL FILE

The linker creates a global symbol file for every link operation. The global file name is the
same as the assigned command/ absolute image file name assigned to the link. The user may
find that linking to a common piece of code (global) is simplified by referring to that code by
its linker-symbol file. This is accomplished by referencing the correct linker-symbol! file
name during the "Object files?” query by the linker. The linker-symbol file name referenced at
the time of the query must be specified by the type "link_sym’.

Object files? PGM68k,Pgm68D:link_sym

LIBRARY FILES

Libraries are a collection of relocatable modules that are stored on the system disc and may
be referenced by the linker.

If a library file name is given as a response to the "Object files?” query, all the relocatable
modules in the library file will be relocated and linked. If a library file name is given as a
response to the library files?” query, only those relocatable modules that define the
unsatisfied externals will be relocated and linked. The remaining relocatable modules in the
library ftile are ignored.

10-12

Pascal/ 64000
Compiler

it is possible to combine relocatables into a library by using the system library command.
Refer to the System Software Reference Manual for a detailed description of the library
command.

ERROR MESSAGES

When an error is detected during the link process, the linker will determine if the error is fatal
or nontfatal. If the error is classified as fatal, the linker will abort the linking process. If the er-
ror is nonfatal, the linker will continue the linking process, but will generate error messages
that will be listed in the output listing. A description of each error message is given in the fol-
lowing paragraphs.

Fatal Error Messages

Upon encountering a fatal error the linker will display one of the following messages on the
system CRT STATUS line. The linker will abort the link process and return control of the sys-
tem to the monitor.

a. Out of Memory in Pass 1.

The linker will issue this message to indicate that there is insufficient memory to ac-
commodate the current operation. To correct this situation, reduce the number of
files, global symbols, and/or external symbols used during the current link.

NOTE

As a general rule, the available memory space can handle
programs containing apporoximately 3000 symbols.
However, if cross-reference symbol tables are required, the
symbol handling capability is reduced to approximately 1500
symbols.

b. Out of Memory in Pass 2,

The linker will issue this message to indicate that there is insufficient memory to ac-
comodate the current operation. To correct this situration, reduce the number of files,
global symbols, and/or external symbols used during the current link.

¢. Out of Memory in Xref.

The linker will issue this message to indicate that there is insufficient memory to ac-
commodate the building of a cross-reference table. This error does not affect the ab-
solute file since it is created and stored prior to the linker attempting to build the
cross-reference file. To correct this situation, reduce the number of files, global
symbols, and/or external symbols used during the current link.

10-13

d.

g.

Pascal/64000
Compiler

Target Processors Disagree.

The linker will issue this message if the relocatable modules to be linked are designed
for different processors. Ensure that all relocatable modules assigned for linking are
written for the same type microprocessor.

. Checksum Error.

The linker will issue this message if it is unable to read a relocatable file due to a
checksum error or other irregularities in the file. To correct this situration, reassemble
the relocatable file, then, re-link.

. Linker System Error.

The linker will issue this message if it detects a hardware or software failure in the
Model 64000. To correct this situation re-link the relocatable modules or run the
hardware performance verification program.

File Manager Errors.

The linker will issue certain messages if the system file manager is unable to perform
the specified file operation as requested by the linker. Refer to the System Software
Reference Manual (Appendix A) for a list of File Manager Errors.

Nonfatal Error Messages

Upon encountering nonfatal errors, the linker will continue the link operation and print the er-
ror messages (except initialization errors) in the output listing. An error message that is list-

ed will contain a description of the error and the name of the file where the error occurred. If
the null list file is in effect, the linker will direct the error messages to the data area of the
system CRT.
a. Illegal entry: re-enter.
During initialization the linker will indicate in the STATUS line on the system CRT that
the user has made an illegal response to an interrogation. To correct this situation,
re-enter the proper response.
b. Duplicate symbol.

10-14

During pass 1 of the link process, the linker detects that the same symbol has been
declared global by more than one relocatable module. The first definition holds true.
The relocatable module that first defines the symbol may be found in the cross-
reference table. To correct this error, remove the extra global declarations.

Pascal/64000
Compiler

c. Load address out of range.

The linker'has tried to relocate code beyond the addressing range of the specified
microprocessor. To correct this situation, reassign the relocatable addresses.

d. Multiple transfer address.

During pass 1, the linker finds that the transfer address has been detfined by more than
one relocatable module. The tirst definition holds true. The relocatable module that
first defined the transfer address will be given at the conclusion of the linking. To cor-
rect this situation, remove the extra transfer address. Reassemble the amended
relocatable module; then, re-link. If a xfer address is defined by both a no-load
program and a load program, no error will be given. The load program xfer address
takes precedence.

e. Undefined symbol.

During pass 2, the linker finds that a symbol has been declared external but not
defined by a global definition. To correct this situation, define the symbol.

f. Out of memory in xref.

Unlike the fatal error (Out of Memory in Xref), this error occurs when memory space
is available for a complete symbol table but only a portion of the cross-reference
table. The linker will complete the xref operation, listing only that portion of the
cross-reference table for which memory space was available. To correct this situa-
tion, reduce the number of files, global symbols, and/or external symbols used during
the current link.

d. Memory overlap.
Relocatable program areas have been overlapped in memory. The error message will
list the program names and the overlapping areas.

h. Address out of range.

The operand address is not within a valid addressing range for the specific micro-
processor involved.

10-15

Pascal/ 64000
Compiler

NOTES

10-186

Appendix A

Compile Time Errors

The following errors are detected by the first pass of the compiler. Errors are also detected
by the second pass of the compiler. These errors are microprocessor dependent and are

listed in the microprocessor-dependent supplements.

When errors appear in groups, usually only the first message is meaningful. This is so be-
cause some of the following error messages appear as a result of the first error. In par-
ticular, any time the WARNING message (number O) is indicated, the compiler will attempt to
resume compilation at the next logical token. In some instances, correctly. In these situations,
the user should use the editor function to correct the first error.

LIST OF ERROR MESSAGES

WARNING: attempted syntax error recovery here

Error in simple type

Identifier expected

PROGRAM expected

') expected

=" expected

lllegal symbol

Error in parameter list

OF expected

(" expected

. Error in type

: [expected

. '] expected

- END expected

. ' expected

. Integer expected

. '=" expected

. BEGIN expected

. Error in declaration part

. Error in field list

. . expected

. ¥ expected

. LABEL expected

. CONST, TYPE, VAR, BEGIN, FUNCTION, or PROCEDURE
expected

24: EOF expected

25. Statement BEGIN symbol expected

[LC T O T G T N Y N i Qi S G G G G D Gy
WON 200N AON 20PN WON—=0O

26:
27.
28
29
30:
31
32

50:
51:
52
53
54
55
56:
57.
58
59

101:
102:
103:
104:
108:
106:
107:
108:
109:

110:
111
112
113
114
1185
116:
117:
118:
119

LIST OF ERROR MESSAGES (Cont'd)

PROCEDURE or FUNCTION expected
', or OTHERWISE expected

(" or '[’ expected

String expected

Type name expected

.. expected

Error in variant label

Error in constant

" expected

THEN expected

UNTIL expected

DO expected
TO/DOWNTO expected
IF expected

FILE expected

Error in factor

Error in variable

ldentifier declared twice

Low bound exceeds high bound
Identifier is not of appropriate class
Identitier not declared

Sign not allowed

Number expected

Incompatibie subrange types

File not allowed here

Type must not be REAL

Tag field type must be scalar or subrange
Incompatible with tag field type

Index type must not be REAL

Index type must be scalar or subrange

Base type must not be REAL

Base type must be scalar or subrange

Error in type of standard procedure parameter
Unsatisfied forward reference

Forward reference type identifier in variable declaration
Forward declared: repetition of parameter list not allowed

Pascal/64000
Compiler

Pascal/ 64000
Compiler

120:
121:
122:

123
124
125
126:
127:
128:

129
130:
131:
132
138
134
138S:
136:
137:
138
139
140:
141:
142
143
144;
145:
146:
147:
148:
149
150:
151;
152
1583
154
155
156:
157:
158:
159
160:
161:
162
163
164

LIST OF ERROR MESSAGES (Cont'd)

Function result type must be scalar, subrange, or pointer
File value parameter not allowed

Forward declared function; repetition of result type not
allowed

Missing result type in function declaration

F-tormat for REAL only

Error in type of standard function parameter

Number of parameters does not agree with declaration
lllegal parameter substitution

Result type of parameter function does not agree with
declaration

Type conflict of operands

Expression is not of set type

Tests on equality allowed only

Strict inclusion not allowed

File comparison not allowed

lllegal type of operand(s)

Type of operand must be boolean

Set element type must be scalar or subrange

Set element types not compatible

Type of variable is not array

Index type is not compatible with declaration

Type of variable is not record

Type of variable must be file or pointer

lllegal parameter substitution

lllegal type of loop control variable

lllegal type of expression

Type conflict

Assignment of files not allowed

Label type incompatible with selecting expression
Subrange bounds must be scalar

Index type must not be integer

Assignment to standard function is not allowed
Assignment to formal function is not allowed

No such field in this record

Type error inread

Actual parameter must be a variable

Control variable must not be declared on intermediate level
Multidefined case label

Too many cases in case statement

Missing corresponding variant declaration

Real or string tag fields not allowed

Previous declaration was not forward

Again forward declared

Parameter size must be constant

Missing variant in declaration

Substitution of standard proc/func not allowed

Pascal/64000
Compiler

LIST OF ERROR MESSAGES (Cont'd)

165 Multidefined label

166 Multideclared label

167. Undeclared label

168:. Undefined label

169. Error in base set

170. Value parameter expected

171. Standard file was redeclared

172 Undeclared external file

175. Missing file INPUT in program heading

176:. Missing file OUTPUT in program heading

177. Assignment to function identifier not allowed here

178. Multidefined record variant

180: Control variable must not be formal

182 For parameter of form E1.E2EES3, E2 and E3 must be INTEGER compatible
183. Parameter of form E1.E2 or E1.E2.E3 not allowed here
184: Parameter of form E1.E2.E3 not allowed here

185: lllegal to dereference function result

186: lllegal to select element of function result

188:. Variant may not contain files

201:. Errorinreal constant: digit expected

202: String constant must not exceed source line
203: Integer constant exceeds range

204:. 8 or 9in octal number

205: Zero string not allowed

206: Integer part of real constant exceeds range

250. Too many nested scopes of identifiers

251: Too many nested procedures and/or functions
252. Too many forward references or procedure entries
254: Too many long constants in this procedure

255. Too many errors on this source line

256. Too many external references

257. Too many externais

258. Too many local files

259. Expression too complicated

260. Too many exit labels

270. # notin column 1 or PREPROCESS not specified. Remainder of line ighored

280 Preprocessor syntax error

281: Unimplemented preprocessor instruction

282: Number of parameters does not agree with macro declaration
283: Identifier not #DEFINED

284 Macro may not have more than 20 parameters

LIST OF ERROR MESSAGES (Cont’'d)

Pascal/64000
Compiler

285:
286:
287:
288:
289:

300:
301:
302:
303:
304:
305:
398:
399:

400:
401;
402:
403:
404
405:
406:
407:
408:
409:

410:
411:
412:
413:
414
415;
416:

450:
451:
452:
453:
454;
455:
456:
457:

#IF without #ENDIF

#IF instruction may not contain multiline macro

#ELSE or #ENDIF without #IF

Preprocessor stack overflow. Simplify constant expression
Error in constant expression

Division by zero

No case provided for this value

Index expression out of bounds

Value to be assigned is out of bounds

Element expression out of range

Implementation restricts case constants to 16 bit values
Implementation restriction

Variable dimension arrays not implemented

State stack overflow; break program into modules

Previous error has resulted in unrecoverable parser error

End of source before end of compilation

Symbol table overflow; beware of scalar types with many scalars
Semantic stack overflow; break program into modules

End of source before end of comment

Out of expression tree storage; simplify expression

Pop of empty semantic stack; probably caused by previous error
lllegal entry on semantic stack; caused by previous error

Label may not have more than four digits

Too many indirect; simplify expression

Constant expression expected

More than 20 syntax errors; parse aborted

Assignment to constant

More than 255 subroutines; break program into modules
Files not implemented

More than 255 large constants

Feature not implemented

Structured constants not implemented

Sets bigger than 16 elements not implemented

Sets subranges not implemented

lLabel subranges not implemented

Language extensions used in extensions off mode
Too many user defined operation types

This option allowed in program level type section only

A-5

Pascal/64000
Compiler

LIST OF ERROR MESSAGES (Cont’d)

500:
501:
502;

503:
504:
505:
506:

509:
512:

513:

A-6

WARNING: illegal compiler option; option ignored

WARNING: packing not implemented

WARNING: smallest set element < 0; 0 assumed
(8080/8085 amd 280 compilers only)

WARNING: largest set element > 15; 15 assumed
(8080/8085 and Z80 compilers only)

WARNING: non-standard feature used

WARNING: type change changes physical size

WARNING: +32768 is treated as -32768 by the compiler
(8080/8085 and Z80 compilers only)

WARNING: compiled as O...(upper bound)

WARNING: expanded line larger than 240 characters; multiple
lines created

WARNING: duplicate macro name; New definition holds

Index

The following index lists important terms and concepts of this manual along with the

location(s) in which they can be found. The numbers to the right of the listings indicate the
following manual areas:

e Chapters - references to chapters appear as "Chapter X", where "X" represents the
chapter number.

e Appendices - references to appendices appear as "Appendix Y”", where "Y”
represents the letter designator ot the appendix.

* Figures - references to figures are represented by the capital letter "F” followed by
the section figure number.

* Other entries in the Index - references to other entries in the index are preceded by
the word "See” followed by the reference entry.

Pascal/64000

a
ABS fUNCHiON ..o 7-2
Absolute Memory Assignment ... 1i-3
ADDR function 1-4,7-6
Alphabetic Characterscociiiiiiiiiic e 1-5,5-3
AMNESIA Option ..o 8-1
AND OPerator o e 4-6
ANST OPtioN Lo 8-2
APPEND ProcCedureooiiiiiiiiiii et 6-13
ARCTAN fUNCLION ..o 7-3
Arithmetic Operators ..o 4-4,9-10
Array CompPariSiON . ..o 4-9
Array index computation ... 9-10
Array sUbSCripts ..o 4-11
ATray SYNTAX oo F2-11
ARR AY By DO oo 1-6
ASM__FILE Option ..ot 8-2
ASMB __SYM OPtion ..o 8-3
Assignment statement ... 3-3
b
BOOLEAN L. 1-52-8
BOOLEAN Operatorscooviiiii e, 4-6
Buffer variables ... 4-12,6-8
BY TE oo s 1-52-9
C
CASE statement ... 3-6
CHAR s 1-5,2-8
Character SetPascal/64000ciiiiiiiiiiiiiiien, 1-5,5-3
CHR fUNCHION L. e 7-4
close fUNCHION ... 6-57
CLOSE procCedurec.cooiiiiiiiiii e 6-14
CloSING fHleS Lo e 6-12
COMMENES e 5-11
Compile SYNtaX ... 9-2
Compiler Commandooiiiiiii e 9-1
Compiler directives ... Chapter 8, 8-11
Compiler parameterscooiiiiiiii 9-3
Compiler generated symbolsccooiiiiiiiiiiii 8-12
Compile time errors ... Appendix A
Compilingasource file ... 9-6
Compound statement ... 3-2

Compiler

Pascal/ 64000

Compiler

c (Cont’d)
Conditional Compilationcooiiiiiiii 8-10
CONST declaration ... s 1-2F2-§
Constant eXPresSSiONcoovvviiiiiiieee 1-3,2-5
COPY program eXamplecoooiiiiiiiiiiiiiii e 6-3
COS fUNCHON . e 7-3
creat fUNCHION ... e 6-58
Cross-reference table, linker ..., 10-11
d
DA T A Y P S i e e e e e aas 1-5
DEBUG OPtion ..o e 8-3
Declaration SyntaXccooiviiiiiiiiiii e F2-3
Deferred GET implementation ..o 6-10
#DEFINE Instruction ... 8-9
DProc label ... e 8-12
Defining CA bUfers ... 6-54
Description, compilercooiiiiiii Chapter 9
Deviations from Standard Pascalc.cooiiiiiiiiiinenn, 6-11
directives, compilercoooiiiiiiii Chapter 8
Disc Files, Simulated 1/0 ... 6-54
DISPLAY File, Simulated 1/0 ... 6-47
DISPOSE ProCeaureccviuiiiiiiiiiiiie e eeeneeas 1-3,7-2
Duplicate symbols ..., 8-12
Dynamic variables ... 2-17
e

HELSE INStruction ... 8-10
EMPTY statement ..., 3-3
HENDIF Instruction ... 8-10
EMIT_CODE OpPtion ..ottt 8-3
END__ORG OPtionoiimiiiiiiiiiiiiii et 8-3
Enumerator type ..o F2-9
Environment, Pascal/64000cccooiiiiiiiiiiiiecee 1-§
EOF fUNCHON ..o 6-15
EOLN fUNCioN ... e 6-15
Eproclabel ... 8-12
Errors:

compile time ... Appendix A

K BT o 10-13
EXP fUNCHION L. 7-3
eXPand OPtioN ... e 9-2

Pascal/64000

e (Cont’d)

Expressions, description ..o 4-1
EXPression syntax ... F4-1
Extensions, Pascal/84000ccoeiiiiiiiiiiiiiiiccceee e 1-2
EXTENSIONS Option ..o 8-3
EXTERNAL declarationcooiiiiiiiiiiicircer e 1-3
EXTVAR OPtiON .o e 8-4

f
Factor syntax ..o F4-4
Field designators ... 2-15
Field list syntax ... F2-14
Field selectiono s 4-12
File buffer selection ... 4-12
File type sYNtaX ... F2-15
Floating point numbers ... 5-9
FOR statement ... 3-8
FORWARD declaration ... 2-23
FULL _LIST Option ..cooiiiiiiii e 8-4
Function call syntax ... F4-6
FUNCTION declarationcccooiiiiiiiiiiiiiiiiciicee e 2-20
FUNCTION heading syntaxcooooiiiiiiiiiiiicee e F2-20
Functional type Changecooiviriiiii e 4-12

g
General Information ... Chapter 1
GET Procedurecooiniiiiii e 6-16
GLOBAL declarationcooiiiiiiiiiicc 1-3
Global Variable definition ..ot 635
GLOBPROC Option ..o 8-4
GLOBVAR Option ... 8-4
GOTO statement ... 2-4,3-5

h
Heading syntaX ... F2-2
How to compile a programcoooiiiiiiiiiii Chapter 9
How to use the linker ..., 10-5

Compiler

Pascal/ 64000

Compiler

i
IdentifierS o e 1-2,5-1
ldentifier syntax ... F5-1
BIF InStruction ... 8-10
IF statement ... e 3-6
Implementation features ... 6-12
Implicit type conversion ...t 1-4
IN O I OT i e 4-8
INClude fIleS ... i 8-9
HINCLUDE Instruction ... 8-9
INIT__SIMIO__LIB procedurec.oooiiiiiiiiiiiiiic, 6-57
INPUT IS oo e 6-10
INPUT Variable definition ... 6-35
Instructions, linker ... Chapter 10
INTEGER ... e 1-5
Integer SyntaX ... F5-2
Integer type .o 2-8,4-3,5-7
Intrinsic scalar datatype ..o 1-§
Introduction:
COMPI BT o e s 9-1
K BT o e s 10-1
170 Characteristics ..o, Chapter 6
170 dependency featurescooviiiiiiiiiiiiiiiie e 6-12
170 error handling ..o 6-10
I/0 Library Routinesooiiiiiii e 6-37
IOCHECK OPltioN ..o 8-4
IOR Variable definitioncocoiiiii 6-37
IORESULT:SIGNED__8 functioncooooiiiii 6-37
k
KEYBOARD File, Simulated I/0 ... 6-47
|
LABEL declaration ... F2-4
Library files, HNKer ..o, 10-12
Limitations, subset ... 1-1
Linker:
BIT Ol MEBSSATES .ottt ittt et e et aaee e araneerenaan 10-13
HOW tO USE ..o e 10-5
INtroduction s 10-1
Library files ... 10-12
NO-load filles ... 10-12
OULPUL L 10-9
FeQUIrEMENTS 10-1
symbol file ... 10-12
SYNEAX L 10-2

Pascal/64000

I (Cont’d)

LINE__MARKER__CHAR Variable definition 6-36
LINE__MARKER__MODE Variable definition 6-35
LINE__NUMBERS Optioncooooiiiiiiiie, 8-5
LINEPOS funCtion ... e 6-16
LINESIZE Variable definitionccooiiiiiiiiiee 6-35
listfile, compiler ... 9-2
L ST OPtiON e 8-5
LIST__CODE Optioncccooiniiiiiiiiiiiii 8-5
LIST__OBJ Option ...t 8-5
LN fUNCHION e 7-3
Load map, liNKEI ... e 10-10
Logical fil@s ..o 6-6
Logical file states ... 6-7
LOogical reCOrdS ..o 6-8
LONGREAL tyPe ..ot 2-13,4-3

m
MG O it e 8-9
Manual organization ..o 1-7
MARK ProCedureccooiiiiiiiiiiiiiieee et 1-3,7-2
MAXPOS function ... 6-17
MININT/MAXINT Y PeS oo 2-8

n
NEW ProCeAUIec.oviniiiiiii e et e 1-3,7-1
NIL constant, pointer ... 4-12
NOCOAdE OPHION ..o e 9-2
NOLISt OPYION L. 9-2
No-load files,linker ..o s 10-12
Non=teXt files ... 6-9
NOT OPEratOr o e 4-6
NUM DD BT S L 5-6
Numeric Characters ... 1-5,5-4

(o]
ODD ProCEAUIE ...ttt e e e ae e aaas 7-3
OPEN TUNCHION L. 6-59
OPEN Procedure s 6-17
Opening files ... i 6-12
Operands, definition ... 4-9
Operators, description ...t 4-3

Compiler

Pascal/64000

Compiler

o (Cont’'d)
OPTIMIZE OPtion ..oooviriiiie e 8-5
options (directives),compilerccoiiiiiiiiii Chapter 8
OR OPratOr ..o 4-6
ORD fUNCHON L 7-4
Ordinal Relationals ... 4-7
OrdiNal LY PSS i 2-8
ORG OPtioN .o e 8-5,9-10
OTHERWISE statement ..o 3-6
OULPUL, KB o e 10-9
OUT PUT IS oottt et e s 6-10
OUTPUT Variable detfinition ... 6-35
overprint fuUNCLIoN ... 6-60
OVERPRINT procedurecoooiriiiiiiiiiiic e 6-18
P

PACK ProCeAUIre ...t e e e 1-2
PAD__ODD__RECORDS Variable definition 6-36
Page fUNCHION ..o 6-60
PAGE OpPtion ..o 8-6
PAGE ProCedUreccciiiiiiiiiii et e 6-19
Pappend proCedUrecoooviniiiiii e 6-39
Parameter lists ... 2-21
Parameter list syntax ... F2-21F2-22
Pascal I/0 Library ..o 6-35
Pascal 170 Library characteristicscocoiiiiiiiiiiiin, 6-1
Pbound Variable definitioncocoiiiiiiii e 6-35
Pbufvar funCtion 6-39
PClOSE ProCEAUIE ..ot 6-39
Peot fUNCHION ... 6-39
Peoln funCtion ... 6-40
Perror procedureccooiiiiiiiiii e 6-38,6-66
Pget procedure 6-40
Physical flles ..o 6-8
Physical files, Simulated I/0

DISC FILES ..o e 6-54

DI S P LAY 6-47

KEYBOARD ..o 6-47

PRINTER ..o 6-46

RS 28 i 6-49
Pinit__pascal__io procedureccooiiiiiiiiiiii 6-37
Plinepos funCtion ... 6-40
Pmaxpos function ... 6-40

Pascal/64000

p (Cont’d)
Pointer dereferencingcooooviiiiiiiiiii i, 4-12
Pointer Relationalscooiiiiiiii 4-9
POINTER type .o 1-6,2-17
Pointer type syntax ..o F2-16
Popen proCedurecco.vviiiiiiiiiii e 6-40
POSITION funCtioncooviiiiiiii e, 6-19
Poverprint procedurec.ocoiiiiiiiiii 6-41
Ppage proCedureco.ooiiiiiiiie 6-41
Pposition function ..., 6-41
Pprompt procedure ..o 6-41
Pput procedureoocoiiiiii 6-41
Pread__char functioncoo 6-41
Pread__integer function ..., 6-42
Pread__longreal procedurec..ccoeeiiiiiiiiiiiiiiiiiiienee e, 6-42
Pread__real procedureoccoviiiiiiiiniiiniiinii e 6-42
Pread__string procedurecoooiiiiiiiiiiniiiie . 6-42
Pread__unsigned function ... 6-42
Preadin proCcedurecooiviiiiiii e 6-43
PRED fUNCHION .. .o 7-5
Predefined:
CoNStaANtS Lo 5-3
Data tyPesS .o 1-4,2-6
DIrECtIVES oo 5-3
il o 5-3
FUNCHIONS . o, 5-2
Ordinal tYPeS .o 2-9
Procedures ...t 5-2
B Y <L TP 2-6,5-3
PreprOCESSOr PASS .ottt 8-8
Preset procedure ... 6-43
Preturn__addr Variable definitioncooco, 6-37
Prewrite procedureoooiiiiiiiiiiiii 6-43
PRINTER file, Simulated 170, 6-46
Procedure statement ... 3-4
PROCEDURE SYNtaXcoooiiiiiiiiiii e F2-19
Proc label ... 8-12
Program declarations ... 2-2
Program syntax ... F2-1
prompt fUNCHION .. 6-61
PROMPT procedurecoiiiiiiiiiiiiiie e, 6-20
Pseek procedure ..ot 6-43
Pshutdown__pascal__io procedureccooooiiiiiiinnnnnn, 6-37

Compiler

Pascal/ 64000

Compiler

P (Cont’'d)
Pstringopen procedurecoiiniiiiiiii e 6-43
PUT ProCeAUIe ..o 6-20
PWriteln procedurecooiniiiiiiiiii e 6-44
Pwrite__char procedurecooooiiiiiiiiiiniin 6-44
Pwrite__integer procedureoco 6-44
Pwrite__longreal procedurecco.cooiiiiii 6-44
Pwrite__real procedurecoooooiiiiiii 6-45
Pwrite__stringprocedureooiiiiiiinni 6-45
Pwrite__unsigned procedurecooiiii, 6-45
r
Random access restrictions ... 6-55
RANGE OpPtion ..o e 8-6
read fUNCHION ... 6-61
READ ProCEAUIEovitiiiiiiiie e e e e e e anenees 6-20
READDIR ProCedUre ..ot e 6-24
READLN ProCedurecooviiniiiieie e 6-25
READ__REC_LEN Variable definitiono.ool 6-36
ReEal COMPATiSON L. i e a s 4-8
REAL NUMD IS ..o e 5-8
Real SYNtaAX oo e F5-3
REAL By P o 2-12,4-4
RECORD COMPATiSON .. .ottt 4-9
Record seleCtor ... 4-12
RECORD tYPe ..ot 1-6
Record type syntax ... F2-13
RECURSIVE OPtion . .ooooiiiiiiieee e 8-6
Recursive routines ... 2-22
Relational operators ... 4-7
RELEASE procedureooiiiiiiiiiiiiii i 1-3,7-2
REPEAT statement ... 3-8
Requirements, iNKero s 10-1
Reserved Words ... e 5-5
RESET ProCeaUIeottt e e eeae e e 6-26
REWRITE pProCcedurecoooiiiiiiiiiii i e 6-27
ROTATE fuNCHION ..o e 1-4
ROUND fuNCtiono e 7-4
Routine declarations ..ot 2-19
Rproc label ... 8-12
RS232 file, Simulated 170o 6-49

Pascal/64000

S
SCALAR YD oo e 1-6
Scope of ULIlitY ..o 2-24
SEEK ProCedUreo e e 6-28
seek__recfunction ... 6-62
SEPARATE Oplion oo 8-6
Separator description ..o 5-11
SET constructor syntax ... F4-5
SET desCription ..o 2-15
SET ImMitations ... 1-2
SET 0perators .o s 4-6
SET Relationals ... 4-8
SET SUDIange ..o 1-2
SE T Y P it e 1-6
Set type syNtaX ..o F2-12
SHIFT FUNCLION ..o 1-4
SIGNED __8 i 1-5,2-9
SIGNED__ 16 ..o 1-5,2-9
SIGNED __ 32 ..o 1-6,2-10
Simple expression syntaxXc.coiiiiiiiiii F4-2
SIMPIE LY P o 2-8
Simulated 1/0 . Chapter 6
Simulated I/0O error reportingcocoiiiiiiiiii 6-56
Simulated 170 Library ... 6-45
Simulated I/0 Library characteristicsc.cooiiiiii 6-1
Simulated I/0 Physical files ... 6-46
SIN fUNCHION . 7-3
SQRT roUtine ..., 7-2
Special Characterscoiiiiiiiiii 1-5,5-4
Standard Procedures and Functions for IOoonl. 6-13
Statement label 3-1
Statement syntax ... F3-1
SHriNg COMPaANISON Lo 4-8
String data types ... 2-14
String literals ..o 5-10
String operators ... 4-8
STRING By P i, 1-7
STRREAD procedure ..o, 6-28
Structured typPesS ..o 2-13
STRWRITE procedureooiiiiiiiiii e 6-29

Compiler

Pascal/ 64000

Compiler

s (Cont’d)
SUBRANGE type ..o s 1-7
Subrange type syntax ... F2-10
Subset limitations ... 1-1
SUCC fUNCHION ..o e s 7-5
Symbol file, iInKer ... 10-12
Syntax:
(o2] 111 1 -1 P 9-2
K BT o 10-2
t
Term SYNEaAX .o F4-3
T XS i 6-9
TITLE OPtiON Lo e 8-7
TRUNC fuNCtioNn ..o e e 7-3
Types:
AR R AY o e 1-6
BOOLEAN L e 1-5
BY TE oo s 1-§
CH AR e 1-5
INTEGER ... e 1-5
LONGREAL ..o e 1-5
POINTER e 1-6
RE AL o e 1-56
RECORD ..o 1-6
SC AL AR 1-6
S T i e 1-6
SIGNED 8 i e 1-5
SIGNED __ 16 .ot 1-5
SIGNED 82 i 1-6
ST RING e 1-6
SUBRANGE ..ot 1-7
UNSIGNED __ 8 ..o e 1-6
UNSIGNED __ 16 ..o 1-6
UNSIGNED __ 82 .. 1-6
TYPE declaration ... 1-2F2-7
TYPE SYNtaX .o F2-8

11

Pascal/ 64000

u
H#UNDEF Instructiono 8-10
UNlNK fUNCHION ... 6-63
UNPACK ProCeAUIe ...ttt et e e e ere e aaaas 1-2
UNSIGNED __ 8 ..ottt 1-6,2-10
UNSIGNED__ 16 ..o 1-6,2-10
UNSIGNED __32 ..o 1-6,2-10
User—-definable data typecooiiiiiiiiii e 1-6
USER_DEFINED Optionccooiiiiiiiiiiiiicicic 1-4,8-7
User I/0 RoUtiNeS ... e 6-64
User labels ... e 8-12
v
Value parameter 2-22
VAR declaration ... 1-2F2-17
Variables, byte and integer ... 8-10
Variables, definition ... 2-18
Variable parameter ..o 2-22
w
WARN OPtion ..o 8-8
WHILE statement ... 3-8
WIDTH Option o e 8-8
WITH statement ... 3-9
Write fUNCION ... 6-63
WRITE ProCedurecoooiiiiiiiii e 6-30
WRITEDIR procedurecooiiiiiiiiiiiiiice e eeaeaes 6-33
WRITELN Procedureoooiiiiiiiiiiiiiee e 6-34
WRITE__REC__LEN Variable definitionl. 6-36
X
Xref OpPtioN ..o 9-2,10—4‘

64800-90909, JANUARY 1984 gvg UPDATED: OCTOBER 1985
Replaces: 64800-90908, June 1982 PACKARD PRINTED IN U.S.A.

	Front
	cover
	inside

	Software Notice
	notice-1/notice-2
	notice-3
	notice-4
	notice-5
	notice-6
	notice-7
	notice-8
	notice-9/notice-10

	Comment Sheet
	comment-1
	comment-2
	comment-3
	comment-4

	Contents
	title
	ii
	iii
	iv
	v
	vi
	vii
	viii
	ix
	x
	xi
	xii

	Chapter 1
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8

	Chapter 2
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24

	Chapter 3
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10

	Chapter 4
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14

	Chapter 5
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12

	Chapter 6
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	6-61
	6-62
	6-63
	6-64
	6-65
	6-66
	6-67
	6-68

	Chapter 7
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6

	Chapter 8
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14

	Chapter 9
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10

	Chapter 10
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	10-9
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16

	Appendix A
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6

	Index
	index-1
	index-2
	index-3
	index-4
	index-5
	index-6
	index-7
	index-8
	index-9
	index-10
	index-11
	index-12

	Back
	cover

