HP64000
Logic Development

System

Model 64810A
Pascal/64000
Compiler Supplement
8085

[/ caciaro

CERTIFICATION
Hewlett-Packard Company certifies that this product met its published specifications at the
time of shipment from the factory. Hewlett-Packard further certifies that its calibration
measurements are traceable to the United States National Bureau of Standards, to the extent
allowed by the Bureau’s calibration facility, and to the calibration facilities of other
International Standards Organization members.

WARRANTY

This Hewlett-Packard system product is warranted against defects in materials and
workmanship for a period of 90 days from date of installation. During the warranty period, HP
will, at its options, either repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer’s facility at no charge within HP
service travel areas. Outside HP service travel areas, warranty service will be performed at
Buyer’s facility only upon HP’s prior agreement and Buyer shall pay HP’s round trip travel
expenses. In all other cases, products must be returned to a service facility designated by HP.

For products returned to HP for warranty service. Buyer shall prepay shipping charges to HP
and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all
shipping charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with an instrument will
execute its programming instructions when properly installed on thatinstrument. HP does not

warrant that the operation of the instrument, or software, or firmware will be uninterrupted or
error free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate
maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or
misuse, operation outside of the environmental specifications for the product, orimproper site
preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

EXCLUSIVE REMEDIES
THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP

SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR

CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, ORANY OTHER
LEGAL THEORY.

ASSISTANCE
Product maintenance agreements and other customer assistance agreements are available for

Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

CW&A 2/81

343H Q104

0 P]

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 1303 COLORADO SPRINGS, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

HEWLETT-PACKARD

Attn: Logic Publications Dept.
Centennial Annex - D2

P.O. Box 617

Colorado Springs, Colorado 80901-0617

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

FOLD HERE

Your cooperation in completing and returning this form
will be greatly appreciated. Thank you.

READER COMMENT SHEET

Part Number: 64810-90905

Your comments are important to us. Please answer this questionaire and return it to us. Circle the number that best
describes your answer in questions 1 through 7. Thank you.

1. The information in this book is complete:

Doesn’t cover enough 1 2 3 4 5 Covers everything
(what more do you need?)

2. The information in this book is accurate:
Too many errors 1 2 3 4 5 Exactly right
3. The information in this book is easy to find:
| can't find things | need 1 2 3 4 5 I can find info quickly
4. The Index and Table of Contents are usefut:
Helpful 1t 2 3 4 5 Missing or inadequate
5. What about the “how-to” procedures and examples:
No help 1 2 3 4 5 Very helpful
Too many now 1 2 3 4 5 I'd like more
6. What about the writing style:
Confusing 1 2 3 4 5 Clear
7. What about organization of the book:
Poor order 1 2 3 4 5 Good order
8. What about the size of the book:
too big/small 1 2 3 4 5 Right size

Comments:

Particular pages with errors?

Name (optional):
Job title:
Company:
Address:
Note: If mailed outside U.S.A., place card in envelope. Use address shown on other side of this card.

Pascal/64000
Compiler Supplement
8085

© COPYRIGHT HEWLETT-PACKARD COMPANY 1980, 1983

LOGIC SYSTEMS DIVISION
COLORADO SPRINGS, COLORADO, US.A.

ALL RIGHTS RESERVED

Printing History

Each new edition of this manual incorporates all material updated since
the previous edition. Manual change sheets are issued between editions,
allowing you to correct or insert information in the current edition.

The part number on the back cover changes only when each new edition is
published. Minor corrections or additions may be made as the manual is
reprinted between editions. Vertical bars in a page margin indicate the
location of reprint corrections.

First Printing July 1980 (Part Number 64810-90902)
Reprinted December 1980
Second Edition October 1983 (Part Number 64810-90905)

ii

Compiler Supplement
8085

Table of Contents

Chapter 1: Pascal/ 64000 Compiler 8085

Introduction T R |
Pascal Program Designccievivieeeinneecnnnes bt 1-1
How to Implement a Program et ettt ceeees 1-2
The Source Fileviiiiiiieiirinertieeinnrosneroeenesnssnssosnnsss 1-2
Linking ettt ettt e 1-4
Emulation of Pascal Programsc.e.. e eteeeeeaaea cee.. 1-Y4
Debugging with DLIB8085:HP Library B R)
Chapter 2: Pascal/64000 Programming
Programming Considerations0.. e ettt eseneeraees 2-1
Introductionciiiivinenennn Ceee e e ceeees ceee 2-1
Stack Pointer Initializationcceiveiieiiininnernnsnnneennns 2-1
Multiple Module Programsceeveeeoseesnccasoacnss e 2-4
Dynamic Allocation Heap Initializationccivvivunn.n. 2-5
Interrupt Vector Handlingccecveeuenn. et eeeee e 2-6
Register Save onto Stackcci0vviiiennn Ceverreecsenes 2-7
Register Restoration from Stack -
Parameter Passing Restrictions Ceveeae Ceeer e e 2-7
Routine Internal Structureccieieeeeeeoneeens ceeeiseeeaa.. 2-8
Compiler Internal Label Conventions N 2-9
Data Variable Allocationciiivuinnennennnennn cesseseess. 2715
Optional Code Generation Cereeetieaees Ceetecetieareaaae.. 2-16
$ASM FILE$ et eceraet e heeeeeaee.. 2-16
Option 1 - $RECURSIVE ON OPTIMIZE OFF DEBUG OFF$ et 2-17
Option 2 - $RECURSIVE ON, OPTIMIZE ON, DEBUG OFF$ 2-19
Option 3 - $RECURSIVE OFF, OPTIMIZE OFF, DEBUG OFF$ 2-20
Option 4 - $RECURSIVE OFF, OPTIMIZE OFF, DEBUG ON$ ceee. 2-21
Chapter 3: Run-time Library Specifications

General Cete e St e s ec ettt sen e St te e st e s ettt 3-1
Array Reference Routinesc.iiiiiinernnrnennas Cetee e 3-3
ARRAY e e e e 3-3
ARRAYN ettt ettt et taeees e 3-4
Generalized Array Dope Vectorscvvvvvunn et e ettt 3-4
COMPAREST et ettt ettt ettt e et 3-7
Multi-byte Record Compares and MOVESivvirinnnnnnnnnnnnnnns 3-8
EQUMB_ and EQUMW_ et Ceeeeaa e 3-8
MOVEB_ and MOVEW_ Ceeresere s et st tanetssann s 3-9
Dynamic Memory Allocation e et ceeeesesss 3-9
INITHEAP (Start_address, Length in bytes : INTEGER)ccvunv.n 3-9
NEW (Pointer : P01nter_to_type) ettt ettt e 3-9
DISPOSE (Pointer : Pointer_to_type) ettt ettt 3-9
MARK (Pointer : Pointer_to _type) et 3-10
RELEASE (Pointer : Pointer to_type)c.ceiiuivunann.. 3-10

iii

Compiler Supplement

Table of Contents (Cont’d)

Recursive Entry and Exit ...

RENTRY ceree e

REXIT N
Parameter Passing

PARAM and RPARAM cesesenn

Standard Integer Routines ..
Unary Integer Ops
Binary Integer Ops
Integer Comparisons

Standard Byte Routines
Unary Byte Ops
Binary Byte Ops
Byte Comparison
Byte to Integer

Byte and Word Shifts
SHIFTcvveenns et
SHIFTC et

Set Operations Ceeeeee
Zbtoset8 Routine
Zbinset8 Routine
Zbtosetl6 Routine
Zbinsetl6 Routine
Zwtoset8 Routine
Zwinset8 Routine cen
Zwtosetl6 Routine
Zwinsetl6 Routine
Zsetlbgeq Routine
Zsetl6leq Routine

Zsetl6uni Routine
Zsetl6int Routine

Zsetl6dif Routine

Appendix A:

Run-time Error Descriptions ...

oooooooooooooooo

iv

se e e v e Y e s e e
......... cees e e e o0 e
......... I
.o et s e s e e s e e e e e e
D oo e

e e D A R R R
se e s e .o D A AN IR
e e e e s e s e s e s e .
s e e e . oo 0 0. .
.o D R R
DR A I I I R AT AR) e e e e
cee e e e R A I I

.o oo s e e e s e ..
........ . s e o0 0. .
........ s es s s e .
s e e e o s DRI A A A)
e e oo . R A AR IR
ce s e e s e D A I IR .

.o DI I A R A A A) .
e s s e e s e e e oo .o
R A A A R A A R A Y
e s e e e ses s s s s 00 e e

s e e s e s e oo e D)
B A) B A A I
R R A A R A A IR I IR AR NP
e v s e e e s e e 0 e e DAY
se e e s e oo oo o0
D I I R IR AR SR AR SRR S AP RPN
D I I I R
........ D A A A Y
D I I I I N A R R A A
P) s e e 0 e DR AR

8085

: 3-25

3-25
3-25
3-26
3-26

. 3-27

3-28
3-28

A-1

Compiler Supplement

8085

Figure
Figure
Figure
Figure
Figure
Figure

List of lllustrations

Internal Structure Source Listingcc0vven.. ... 2-10
Internal Structure Expanded Listing cereeee.s 2711
OPT1 Listing Example et teeeeereeeaeaaae.. 2-18
OPT2 Listing Example ettt 2-19
OPT3 Listing Examplecccviiteernnenernorossnonnns 2-20
. OPTY Listing EXamPleeeeeereneneenenneneenennenens 2-21

List of Tables

. PROCEDURE Assign Data Area Description Summary 2-15
. FUNCTION SAME function Data Area Description Summary ... 2-16
. PROGRAM PF_sample Data Area Description Summary 2-16
. Optional Code Generation Illustration Summary 2-17
Pascal Library Routines (Standard) et 3-1
Pascal Library Routines (for 8085) et 3-2

vi

Compiler Supplement
8085

Compiler Supplement
8085

Chapter 1

Pascal/64000 Compiler
8085

Introduction

This supplement contains a description of the processor dependent com-
piler features for the 8085 microprocessor. Description of various fea-
tures and their use are also supplied. In addition, a discussion cover-
ing emulation of 8085 Pascal programs is provided.

This supplement is intended to be an extension of the Pascal/64000
Compiler Reference Manual.

NOTE

It is extremely important that the user reads
and becomes familiar with the contents of
Chapter 2, especially those paragraphs covering
programming considerations.

Pascal Program Design

Pascal programs should be designed to be as processor and implementation
independent as possible, yet certain concessions must be made when the
processor has unique characteristics. Programs written to run on a
large mainframe computer with megabytes of virtual memory may not run on
an 8085 with a maximum of 6Lk-bytes of random access memory. Most large
mainframe computer implementations have enough memory to allocate a
stack area and a heap for dynamic memory allocation with no prompting by
the user. In a limited memory system these factors must be communicated
to the compiler in some manner. For the 8085, the user must specify the
location of the stack and, if needed, the location of a memory pool for
the dynamic allocation routines. The following sections describe sub-
jects related to programming and compiling Pascal/64000 for the 8085
processor.

1-1

Compiler Supplement
8085

How to Implement a Program

The usual process of software generation is as follows:
a. Create a source program file using the editor.
b. Compile the source program.
c. Link the relocatable files.
d. Emulate the absolute file.

e. Debug as necessary.
This chapter will provide insight into each of these processes.

The Source File

The Pascal/64000 compiler takes as input a program source file created
with the editor. The basic form of a source file is:

ll8085!'
PROGRAM Name;
. {comments}

CONST

“-e

.
oo ey

ceel
PROCEDURE Procedure name (Parameterl : Type);

BEGIN

END;
BEGIN

{main program code}

END.

1-2

Compiler Supplement
8085

After completing the source program, it is ready for compilation.
Notice in the example form that the first line of the source program
specifies the 8085 processor. This first line must be the special com-
piler directive indicating the processor for which the program was writ-
ten. The compiler only recognizes upper-case keywords, but identifiers
may be upper or lower case.

A sample compiler command would appear as follows:
compile <FILE name> listfile <FILE list> options xref

The compiler may produce up to four files as output: a relocatable file,
a listing file (if specified), an assembly file (if specified), and an
assembler symbol file (if specified). Descriptions of these files are
as follows:

Assembly file: If an assembly file is specified by the op-
tion $ASM FILE$ anywhere in the source file,
an assembly file, ASM8085, will be created in
the current userid. This file will contain
the assembly language source equivalent of
the Pascal program being compiled with the
Pascal language source intermixed as com-
ments. This file may be assembled by the
assembler.

Assembler symbol file: If no errors were detected in the source
file, an assembler symbol file (called
<FILE name>:asmb_sym) will be created. This
file contains the symbolic information useful
for program debugging during emulation.

Relocatable file: If no errors were detected in the source file
(called <FILE_name>:source), a relocatable
file (called <FILE name>:reloc) will be
created. This file will be used by the linker
to create an executable absolute file.

Listing file: If a listfile is specified when the compiler
is evoked, a <f{ile <FILE list> containing
source lines with line numbers, program
counter, level numbers, errors and expanded
code (if specified) will be generated.

1-3

Compiler Supplement
8085

Linking

After program modules have been compiled (assembled), the modules may be
linked to form an executable absolute file. The compiler generates
calls to a set of library routines for commonly used operations such as
multiply, divide, comparisons, array referencing, etc. These routines
must be linked with the program modules. There are two libraries which
may be linked. The first is a debug library file called DLIB8085:HP.

This library of relocatables contains some extra code to detect errors
such as division by 0, or underflow and overflow on multiplication.

The second library is called LIB8085:HP. This library, which has only a
limited set of error-detection code, should execute slightly faster and
take up less space in memory. This library may be linked in place of
the debug library after reasonable assurance that the code is error
free.

The linker is evoked and the questions asked should be answered as
follows:

link ...
Object files: SETSTACK ,MODULE1l,MODULE2

Library files: DLIB8085:HP

Absolute file name: PROGRAM

In the link listfile, the library routines that are referenced by the
compiled code are linked at the end of the last user relocatable PROG
and/or DATA areas. This fact must be considered for the proper choice of
the stack pointer location, and PROG and DATA link addresses.

Only the necessary routines are linked from the 1library. Careful
programming may sometimes eliminate the necessity of loading some of the
library routines.

Emulation of Pascal Programs

After all modules have been compiled (assembled) and linked, the ab-
solute file may be executed using the emulation facilities of the Model
64000. The emulator is initialized with the memory mapped in keeping
with the target system and the stack pointer initialization in the code.

A program which is designed to run in read only memory (ROM) should have

been compiled with the $SEPARATE$ option. The memory should be mapped
to have ROM and RAM as illustrated in the following diagram:

1-4

Compiler Supplement
8085

ROM
prog

RAM
END DATA data area

heap

?
STACK : stack 1

For a program that is designed to run completely in random access memory
(RAM), the memory mapping should look like the following:

RAM
prog and data
END DATA_
heap
?
STACK : stack 1

The transfer address will have been set by the linker so that simply
loading the absolute file, and stepping or running the program is all
that is required. Note that program execution does not start at address
OOOOH if the program contains local procedures or functions. However,
the program NAME identifier in the program heading is a global symbol
and the label of the program transfer address. This program may be ex-
ecuted within emulation by the command:

run from NAME
Debugging with DLIB8085:HP Library
When initializing the emulator, it is a good idea to answer yes to the

question: "Stop processor on illegal opcodes?", since execution errors
may result in a jump into the error handling file, Derrors:HP.

1-5

Compiler Supplement
8085

If, while watching the execution of the code, the status line should
indicate "Illegal opcode executed at address XXXXH", note the address
and enter the command:

display local symbols_in Derrors:HP

The list will roll off the screen; do not stop it with the reset key
since the information which rolls off is not important. When the list
has stopped, scan the upper portion of the list for the address at which
the illegal opcode occurred. The error type will be listed at the left
of this address. A detailed description of the run time errors is given
in Appendix A of this manual. When using the library LIB8085:HP, the
same list will be obtained by entering the command:

display local symbols_in Zerrors:HP

The display will appear as follows:

NOTE
The addresses will change, depending on the
link.

Label Address Data
Z_END_PROGRAM 1242H C3H]
Z ERR_1FUTURE 1270H 22H Scan this portion for the ad-
Z ERR_CASE 1258H 08H dress where the illegal op-
Z_ERR DIV BY O 124AH 08H p code occurred. The data field
Z ERR_HEAP 1268H 08H in this portion is not sig-
Z _ERR_OVERFLOW 123CH 08H nificant.
Z ERR_SET_CONV 1251H 08H
Z ERR_UNDERFLOW 1243H 08H |
Z_PSW_FLAGS 1296H 89H)
Z REG A 129TH 8FH
Z REG_B 1299H F6H
Z REG_C 1298H FS5H The data field in this por-
Z REG D 129BH FOH tion may contain useful in-
Z REG E 129AH 55H p formation. The addresses in
Z REG H 129DH EDH this portion are not sig-
Z REG_L 129CH E1H nificant.
Z_ZCALLER H 1295H 69H
Z_ZCALLER_L 1294H AOH |

1-6

Compiler Supplement
8085

Some of the errors will 1load 1locations with register
information.

NOTE

It is important to remember that during emula-
tion of Pascal/6L4000 programs, a Pascal program
may be debugged symbolically (using global sym-
bols in the source program) or by source program
line numbers of the form: #1. This is a feature
that provides a powerful tool for emulation.

and

stack

1-8

Compiler Supplement
8085

Compiler Supplement

8085
Chapter 2
Pascal/64000 Programming
Programming Considerations
Introduction

This chapter covers some important requirements of the run time environ-
ment for 8085 Pascal/64000 programs. Although some requirements may not
be necessary for every program, the programmer should become familiar
with the information supplied in order to use it when the structure of a
8085 program requires it. The specific areas to be discussed are stack
pointer initialization, multiple module programs, heap initialization
for use with dynamic memory routines (NEW, DISPOSE, MARK, and RELEASE),
interrupt processing with Pascal programs, routine internal structure,
and optional code generation.

Stack Pointer Initialization

The stack pointer is a hardware register maintained by the processor.
However, prior to use, it must be initialized by the user. A program
that has a main code section must generate the following stack in-
itialization statements in the relocatable file:

EXT STACK _
LXI SP, STACK_

Since the EXT statement implies that the label STACK_ has been declared
global (GLB) by another program module, the compiler will build a
relocatable file, leaving assignment of the STACK_ value for the linker.

2-1

Compiler Supplement
8085

If the label STACK_has not been declared global by any program module,
the linker will search the applicable library for a default value.
Depending upon which library has been selected by the user, one of the
following default values will be selected:

a. If the DLIB8085:HP library is linked, the stack will be assigned
128 bytes in the program (PROG) area of the linked modules.

b. If the LIB8085:HP library is linked, the stack will be assigned
128 bytes in the data (DATA) area of the linked modules.

NOTE

Whenever the LIB8085:HP 1library is 1linked, a
DATA area location must be specified.

The user should allocate a larger stack when necessary. In particular,
recursive programming will generally require a much larger stack than
normal to run properly.

Another approach to stack pointer initialization is to define a global
variable called STACK_ as shown in the following example:

(file MODULELl:source)

VAR
ool
$GLOBVAR ON$
$ORG 3FB80H$
STACK_AREA : ARRAY[1..128] of BYTE;
STACK_ : BYTE;
END_ORG
$GLOBVAR OFF$

BEGIN

. . .
we we we

END.

2-2

Compiler Supplement
8085

The compiler will generate relocatable code which sets the stack pointer
to the address of STACK (UOOOH in this example), and equate an area of

128 bytes (3F80H..3FFFH) for the stack.

An approach when linking assembly language files is to include the ini-
tial stack pointer value or a stack area in an assembly file such as:

ll8085ll
GLB STACK-

STACK _ EQU 2000H sputs initial stack
. 3 pointer at 2000H

or:
ll8085II

GLB STACK-
DATA

STACKBOT DS <stacksize> ;puts stack
; storage in the
STACK : ; DATA area of
. ; the program

This file may then be linked with the other program modules generated by
the compiler as follows:

Object files: ASMFILE1,MODULE1 ,MODULEZ2....

2-3

Compiler Supplement
8085

Multiple Module Programs

Only one module in an absolute program file should contain a Pascal
program with a main code section. All other modules should contain
procedures and functions only, with a period at the end of the procedure
declarations to indicate an empty program block.

Example:

(file MODULE1l:source)
PROGRAM MODULE1l; {this is the main module}

CONST

-e

TYPE

LI IEY

VAR

“we

.
*

PROCEDURE X(Parameter : Type);EXTERNAL;
PROCEDURE Y;EXTERNAL;

BEGIN
e
e {main code}
e
END. {period signals end of program, main code
exists so stack initialization code is
generated})
NOTE

The transfer address is set to cause execution
to begin in the main code section of the program
module.

2-4

Compiler Supplement
8085
(file MODULE2:source)

PROGRAM MODULE2; {this module contains the procedures and
functions used in MODULEl}

$GLOBPROC ON$
PROCEDURE X(Parameter : Type);

BEGIN
.3
ceed
END;
PROCEDURE Y3
BEGIN
ceed
END;
. {The period signals the compiler that the

program has ended. Since no main code
exists, the compiler does not generate any
stack initialization code or linker
transfer address)

Dynamic Allocation Heap Initialization

Before the use of the standard procedures NEW and MARK, the block of
memory that the user wishes to have managed as a dynamic memory alloca-
tion pool must be initialized by calling the external library procedure:

INITHEAP(Start_address,Length_in bytes : INTEGER)

The procedure must be declared EXTERNAL in the declaration section. The
start address should be the smallest address of the memory block to be
used. For example if the block to be used is located from LOOOH to
SFFFH the initialization should look like:

PROGRAM Test;

CONST

TYPE

VAR

PROCEDURE

INITHEAP(Start_address,Length_in bytes:INTEGER) ; EXTERNAL;

BEGIN {main program block}
INITHEAP (4000H,2000H) ;

END.

2-5

Compiler Supplement
8085

If the desired location of the heap is at the end of the DATA area, the
address of the external library variable END DATA may be used as the
start address and as part of an expression to give a length.

Example:

BEGIN
INITHEAP (ADDR (END_DATA), (ADDR(STACK) -ADDR(END_DATA)-40));

END.

This example would reserve 40 bytes for the stack and the remainder of
the memory from the end of the DATA area to the bottom of the stack
(SP-40) for the dynamic allocation routines. This implies that the
stack is in a contiguous block with the DATA area.

Six bytes are used to initialize the heap and also each time the heap is
marked. When an item of four bytes or less is to be allocated, four
bytes will be removed from the free list even if less is needed.
Likewise, when an item of four or less bytes in size is deallocated,
four bytes will be returned to the free list.

Interrupt Vector Handling

An interrupt to the 8085 by way of the INTR, TRAP, RST5.5, RST6.5, or
RST7.5 line may direct the processor to begin execution of Pascal
procedures designed to handle the interrupts. A typical example would
be to use the RST 7 instruction on interrupt. Placing a call to the
global PROCEDURE Interrupt, in address location 38H, would handle the
interrupt and then return to location 3BH which could be a RET to the
Pascal code that was interrupted. The following is an example of this
type of operating environment:

Assembly code file:
l'8085l|

EXT Interrupt sinterrupt vector to PROCEDURE
3 interrupt

ORG 38H saddress of RST 7
CALL Interrupt ;handle interrupt
RET ;g0 back to what you were doing

2-6

Compiler Supplement
8085

Register Save onto Stack. The following routine will put the current register
information onto the stack to be retrieved later by RES REG. Only
A,B,C,D,E,H, and L are saved (all that needs to be saved if the inter-
rupt handler is a Pascal procedure).

GLB SAVE_REG

SAVE REG XTHL sput HL on stack for return to caller
- PUSH D ;save DE
PUSH B ysave BC
PUSH PSW ;save status and accumulator
PCHL sreturn to caller

Register Restoration from Stack. The following routine gets the register in-
formation off the stack that was current at the time of call to
SAVE_REG:

GLB RES_REG
RES_REG POP H sget return to caller to HL
POP PSW ;restore status and accumulator
POP B sjrestore BC
POP D srestore DE
XTHL sput return to caller on stack, restore HL
RET sreturn to caller

The Pascal module might look like the following:
PROGRAM INTERRUPT HANDLER;
PROCEDURE SAVE REG;EXTERNAL;
PROCEDURE RES_REG;EXTERNAL;

$GLOBPROC ON$
PROCEDURE Interrupt;

BEGIN
SAVE_REG; {save registers}
{code to handle interrupt goes here}
RES_REG; {restore registers)
END; {go back to what was happening before

interrupt}

$GLOBPROC OFF$

Parameter Passing Restrictions

Parameter passing for the Pascal/64000 run time environment in the 8085
processor is done by address reference. Thus the calling routine indi-
cates the location of the actual parameters as a list of addresses fol-
lowing the procedure or function call. In order to permit certain
special cases (such as VAR parameters of one procedure being passed as

2-7

Compiler Supplement
8085

parameters to another routine and certain variable address expressions)
where the address in the parameter list represents a pointer to the
actual parameter, the parameter passing routines (PARAM_ and RPARAM)
interpret the address 00O0OH as being an indirection indicator and will
look at the next parameter address as a pointer to the actual parameter
address. As a result of this interpretation for the address 00OOH, it is
not possible to pass a variable located at address OOOOH as an actual
parameter in a procedure or function call. The user is warned not to al-
locate any variable at absolute address OOOOH (all other addresses
present no problem). Programs which attempt to pass a parameter variable
located at absolute 0000H will not work correctly. Further information
about the details of parameter passing and the procedures PARAM and

RPARAM is provided in the Run-time Library discussion in Chapter 3.

Routine Internal Structure

Programs, procedures, and functions are the basic blocks of Pascal
program structure. Each of these routine types has a similar structure
in the 8085 code generator. A routine is generally composed of a code
area (including the entry point, code and an exit point), a data area
and two constant areas. The 8085 compiler allocates each of these areas
as relocatable blocks of data normally assigned to the PROG relocation
area. If the $SEPARATE$ option is in effect, the data area is assigned
to the DATA relocation area and the code and constant blocks are assign-
ed to the PROG relocation area.

The code area contains the entry point defined by a local or global
label, followed by the code required to perform the routine’s function.
In Pascal a routine can have only one entry point and it will always
return from one exit point.

The data area is the memory block where the routine’s local variables
and parameters are allocated. A function also needs to allocate room in
the data area for the temporary copy of the function result. Finally
the data area contains space for temporary values needed by the code
generator to evaluate expressions which can not be computed in registers
alone.

The two constant areas are memory blocks where constants unique to a
routine are specified. The F constant area contains the dope vectors
required for routines with parameters or compiled with the $RECURSIVE
ON$ option and creating calls to the run time routines: PARAM , RPARAM ,
RENTRY _ and REXIT .

The C constant area, labeled Cproc, will contain the dope vectors for
any array references requiring the run time library routines ARRAY and
ARRAYN . Constants being passed as value parameters will be defined in
the Cprog area.

2-8

Compiler Supplement
8085

Compiler Internal Label Conventions

The construction of internal labels within the compiler generated code
is discussed in Appendix C of the Pascal/64000 Compiler Manual. For the
8085 code generator, every procedure has associated with it each of the
labels described in the preceding paragraphs (i.e. the entry 1label,
return label, data area label, and an end label). In addition, a 8085
procedure can have the two constant area labels marking the areas needed
for local constants and dope vectors.

In summary, for a procedure named "test', the 8085 compiler would create
the labels: test, Rtest, Ctest, Ftest, Dtest, and Etest. For the sample
program listed in figure 2-1, the compiler generated 1labels are sum-
marized as follows:

Compiler

Generated Program Label

Label Counter Description
Assign 000OH Procedure entry
RAssign 0033H Return label
CAssign 003LH Constant area C
FAssign 0036H Constant area F
DAssign OOLYH Data area
EAssign 0056H End of procedure
SAME function 005TH Procedure entry
RSAME function 0098H Return label
CSAME function 0099H Constant area C
FSAME function 0099H Constant area F
DSAME function OOATH Data area

ESAME function 00BAH End of procedure
PF_sample OOBBH Program entry
PF_samp00_1 OODFH Compiler generated label
RPF_sample OODFH Return label
CPF_sample OCE2H Constant area C
FPF_sample 00ECH Constant area F
DPF_sample 0OECH Data area
EPF_sample OOF6H End of procedure

2-9

Compiler Supplement
8085

Figure 2-1 shows a source 1listing for a simple program. Figure 2-2
shows the expanded source listing for this program, indicating the use
of internal compiler labels.

FILE: PF_sample:T8085 HP 64000 - Pascal "8085" Code Generator
10000 1 "8085"
2 0000 1 PROGRAM P _sample;
3 0000 1 $EXTENSIONSS
4 0000 1 TYPE BIG_type= ARRAY [0..1,0..3] OF BYTE;
5 0000 1 VAR
6 0000 1 Byte :BYTE;
7 0001 1 Integer :INTEGER,
8 0003 1 Big_one :BIG_type;
9 0000 1
10 0000 1 PROCEDURE EXTproc(l:INTEGER); EXTERNAL;
11 0000 1
12 0000 1 PROCEDURE Assign(B1:BYTE; VAR B2:BYTE;
13 0003 2 I1:INTEGER; VAR 12:INTEGER;
14 0007 2 X1:BIG_type; VAR X2:BIG_type);
15 0011 2 VAR DUMMY_local var:INTEGER;
16 0009 2 BEGIN
17 0009 2 DUMMY_local_var:=0;
18 000F 2 EXTproc(1234H) ;
19 0014 2 B2:= Bi;
20 001B 2 I2:= I1;
21 0026 2 X2:= X1;
22 0033 2 END;
23 0000 1
24 0000 1 FUNCTION SAME function (B1:BYTE; VAR B2:BYTE;
25 0003 2 I1:INTEGER; VAR I2:INTEGER;
26 0007 2 X1:BIG_type; VAR X2:BIG_type) :BOOLEAN;
27 0012 2 VAR DUMMY_local var :INTEGER;
28 0060 2 BEGIN
29 0060 2 DUMMY_local_var:=1;
30 0066 2 SAME_function:= (B2=B1) AND (I2=I1) AND (X2=X1);
31 0097 2 END;
32 00BB 1
33 00BB 1 BEGIN ({Main program: PF_sample}
34 00BE 1 IF NOT SAME_function (Byte,Byte,Integer,Integer,Big_one,Big_one)
35 00D0 1 THEN Assign(Byte,Byte,Integer,Integer,Big one,Big one);
36 0ODF 1 END.

End of compilation, number of errors= 0

Figure 2-1. Internal Structure Source Listing

2-10

Compiler Supplement
8085

FILE: PF_sample:T8085

[

O 0N ;s W

11
12

13
14
15

16
17

18

19

20

0000
0000

0000
0000
0000
0000
0001
0003
0000
0000

0000

0000

0003
0007
0011

0008
0003

000F

0014

001B

1
1

[i T R R R S =

N

2
2

HP 64000 - Pascal

"8085"
PROGRAM PF_sample;
0000 NAME

$EXTENSIONS$
TYPE BIG_type= ARRAY [0..1,0..
VAR

Byte :BYTE;

Integer :INTEGER;

Big_one :BIG_type;

PROCEDURE EXTproc(I:INTEGER);
0000 EXT

PROCEDURE Assign(B1:BYTE;

11: INTEGER;
X1:BIG_type;
VAR DUMMY_local var:INTEGER;
0000 Assign:
0000 01 72?22 LXI
0003 11 2?77 LXI
0006 CD 2?72 CALL
BEGIN
DUMMY local_var:=0;
0009 21 0000 LXI
000C 22 2777 SHLD

EXTproc(1234H) ;

000F CD 7?2777 CALL
0012 7N Dy
B2:= B1;

0014 3A 7777 LDA
0017 2A 7?2777 LHLD
001a 77 MOV
12:= I1;

001B 2A 7?2777 LHLD
001E EB KCHG
001F 2A 2?72 LHLD
0022 EB XCHG
0023 73 MOV
0024 23 INX
0025 72 MOV

Expanded 8085 listing

"PF_sample Pascal"

3] OF BYTE;

EXTERNAL;
EXTproc

VAR B2:BYTE;
VAR 12:INTEGER;

VAR X2:BIG_type);

B,FAssign
D,DAssign
PARAM

H,0
DAssign+17

EXTproc
Cassign

Dassign
DAsgign+1
M,A

DaAssign+5
DAssign+3
M,E

H
M,D

Figure 2-2. Internal Structure Expanded Listing

2-11

FILE: PF_sample:T8085

21 0026 2

22 0033 2

23
24

25

26
27

28
29

30

0000
0000

0003

0007
0012

0060
0060

0066

2-12

1
1

2
2
2

2
2

X2:=
0026
0029
002C
002D
0030

END;
0033
0033
0034
0034
0036
0036
0038
003A
003C
003E
0040
0042
0044
0044

X1;
2A
11
EB
01
CD

cs

777

2777

0800

7

3412

0600
0100
FEFF
0200
FEFF
0800
FEFF

HP 64000 - Pascal Expanded 8085 listing

IHLD DAssign+15
LXI D,DAssign+7

XCHG

LXI B,8

CALL MOVEB_
RAssign:

RET
CAssign:

DU 4660
FAssign:

DU 6

DY 1

DU -2

DY 2

DU -2

w8

Dy -2
DAssign:

DS 19
EAssign EQU $-1

FUNCTION SAME_function (B1:BYTE; VAR B2:BYTE;

I1:INTEGER; VAR I2:INTEGER;
X1:BIG_type; VAR X2:BIG_type) :BOOLEAN;

VAR DUMMY_local var :INTEGER;

0057
0057
005A
005D

BEGIN

01
11
CD

7N
77

777

SAME_function:
LXI B,FSAME_function
LXI D,DSAME_function
CALL PARAM

DUMMY_local var:=1;
0060 21 0100
0063 22 7777

LXI H,1
SHLD DSAME_function+18

SAME_function:= (B2=B1) AND (I2=I1) AND (X2=X1);

0066
0069
006A
006B

2A
5E
23
56

777

LHLD DSAME_function+5

MOV E,M
INN H
MOV DM

Compiler Supplement
8085

Figure 2-2. Internal Structure Expanded Listing (Cont’d)

Compiler Supplement
8085

FILE: PF_sanmple:T8085 HP 64000 - Pascal

006C 2A 72?27 LHLD
006F CD 2?27?72 CALL
0072 2A 7?2 LHLD
0075 47 MOV
0076 3A 77?22 LDA
0079 BE ClfP
0074 C2 8200 JINZ
007D AF XRA
007E 3C INR
007F C3 8300 JMP
0082 AF XRA
0083 A0 ANA
0084 2A 7722 LHLD
0087 11 22?77 LXI
008A EB XCHG
008B F5 PUSH
008C 01 0800 LXI
008F CD 27?7 CALL
0092 E1 POP
0093 A4 ANA
0094 32 77?77 STA

31 0097 2 END;

Expanded 8085 listing

DSAME_function+3
Zintequ
DSAME_function+1
B,A
DSAME_function

M

$+8

DSAME_function+15
D,DSAME_function+7

PSU
B,8
EQUMB_
H

H

DSAME_function+17

0097 B7 ORA A
0098 RSAME_function:
0098 C9 RET

0099 CSAME_function:
0099 FSAME_function:
0099 0600 Dy 6
003B 0100 DU 1
009D FEFF DU -2
009F 0200 Dy 2
00A1 FEFF DU -2
00A3 0800 Dy 8
00A5 FEFF DU -2
00A7 DSAME_function:
00A7 DS 20

ESAME_function EQU $-1

00BB PF_sample:

32 00BB 1

33 00BB 1 BEGIN {Main program: PF_sanmple}

00BB 31 7?7772 LXI

SP,STACK_

Figure 2~2. Internal Structure Expanded Listing (Cont’d)

2-13

FILE: PF_sample:T8085

34 00BE 1 IF NOT SAME_ function (Byte,Byte,Integer,Integer Big one,Big_one)

00BE CD 7?7?77 CALL SAME function
00C1 7 DU DPF_sample
00C3 777 Dy DPF_sample
00C5 7 Dy DPF_sample+1l
00C7 7 DU DPF_sanple+1
00C9 7777 DU DPF_sample+3
00CB 7N DU DPF_sample+3
00CD C2 7722 JNZ PF_samp00_1
35 00D0 1 THEN Assign(Byte,Byte,Integer,Integer,Big_one,Big_one);
00D0 CD 1?2?7772 CALL Assign
00D3 nn DU DPF_sanmple
00D5 e DU DPF_sanple
00D7 N DU DPF_sample+1
00D9 777 DU DPF_sample+1
00DB 2777 Dy DPF_sample+3
00DD MmN Du DPF_sample+3
00DF PF_samp00_1:
36 0ODF 1 END.
00DF RPF_sample:
00DF C3 72?227 JMP Z_END PROGRAM
00E2 CPF_sample:
00E2 0200 DU 2
00E4 0000 DU 0
00E6 0400 DU 4
00E8 0100 DY 1
O0EA 0000 DU 0
00EC FPF_sample:
00EC DPF_sample:
00EC DS 11
EPF_sample EQU $-1

00F7 GLB PF_sample
00F7 GLB RPF_sample
00F7 GLB EPF_sample
00F7 EXT Zintequ
00F7 EXT PARAM_
00F7 EXT MOVEB_
00F7 EXT STACK_
00F7 EXT EQUMB_
00F7 EXT Z_END_PROGRAM
00F7 END PF_sample

End of compilation, number of errors= 0

2-14

HP 64000 - Pascal

Expanded 8085 listing

Compiler Supplement
8085

Figure 2-2. Internal Structure Expanded Listing (Cont’d)

Compiler Supplement
8085

Data Variable Allocation

The allocation of variables to the data area of a routine is always in
the order: parameters followed by function result (if required), fol-
lowed by local variables, followed by temporary storage.

Data_area_label {Low memory address)

[Dprocedure]
Parameters {Declared Parameters}
Function result {Only for functions}
Local variables {Declared variables}
Temporary values {Compiler Temporaries)

{High memory address)

Procedures and functions pass parameters in the same way using the
generalized parameter passing method using dope vectors described in
detail in Chapter 3.

The expanded compiler listing in figure 2-2 is intended to show the
memory allocation of data areas and the parameter passing method for
procedures and functions. A descriptive summary of the data area for
PROCEDURE Assign, FUNCTION SAME function and main PROGRAM PF_sample is
provided to help interpret the listing.

Table 2-1. PROCEDURE Assign Data Area Description Summary

DAssign DS 19 3y 19 bytes

Program Data area Name

Counter Offset Size Identifier Description
{HEX} {HEX) {Bytes}

ooul 0000 1 Bl Byte parameter

0045 0001 2 B2 VAR byte parameter
ooyt 0003 2 I1 Integer parameter
0049 0005 2 12 VAR integer parameter
00LB 0007 8 X1 BIG_type parameter
0053 O0O0F 2 X2 VAR BIG_type parameter
0055 0011 2 DUMMY local var Integer variable

2-15

Compiler Supplement

8085
Table 2-2. FUNCTION SAME__function Data Area Description Summary
DSAME function DS 20 3 20 bytes
Program Data_area Name
Counter Offset Size Identifier Description
{HEX} {HEX) {Bytes}
O0CAT 0000 1 Bl Byte parameter
00A8 0001 2 B2 VAR byte parameter
00AA 0003 2 I1 Integer parameter
00AC 0005 2 I2 VAR integer parameter
00AE 0007 8 X1 BIG_type parameter
00B6 OOOF 2 X2 VAR BIG_type parameter
00B8 0011 1 SAME function Boolean function
return value
00B9 0012 2 DUMMY local var Integer variable

Table 2-3. PROGRAM PF__sample Data Area Description Summary

DPF_sample DS 11 3y 11 bytes

Program Data_area Name

Counter Offset Size Identifier Description
{HEX} {HEX} {Bytes}
00EC 0000 1 Byte Byte variable
OOED 0001 2 Integer Integer variable
OOEF 0003 8 Big one BIG_type variable

Optional Code Generation

$ASM__FILES

The compiler option $ASM FILE$ will produce a source file of the 8085
assembler code equivalent to the original program. This assembler source
file will be created in filename:

ASM8085 [:current userid]

The remainder of this section briefly describes the effects of three
compiler options on the code produced by the compiler. None of the other
compiler options result in a significantly different code sequence.
Table 2-4 summarizes the illustrations, example names, and the options
for each compilation example.

2-16

Compiler Supplement

8085
Table 2-4. Optional Code Generation Illustration Summary
Figure Name Option
Figure 2-3 OPT1 RECURSIVE ON OPTIMIZE OFF DEBUG OFF
Figure 2-4 OPT2 RECURSIVE ON OPTIMIZE ON DEBUG OFF
Figure 2-5 OPT3 RECURSIVE OFF OPTIMIZE OFF DEBUG OFF
Figure 2-6 OPT4 RECURSIVE OFF OPTIMIZE OFF DEBUG ON

Option 1 - SRECURSIVE ON, OPTIMIZE OFF, DEBUG OFF$

The $RECURSIVE$ option permits the programmer to specify recursive or
static procedures and functions. Since local variables in procedures and
functions are always allocated into a fixed relocatable memory area,
special entry and exit codes are required to permit recursive calls.
Figure 2-3 shows the code produced for a simple procedure with two para-
meters. Because of the additional time required to save the existing lo-
cal variables and parameters, the compiler generates extra code to test
for the first call to PROCA. If it is the first call there is no need to
save the current (undefined) data in PROCA.

The example listing for OPT1 shows the expanded assembly listing of
PROCA with $RECURSIVE ON, OPTIMIZE OFF$. Note the additional code at the
entry and exit of PROCA to check for the first calling of the procedure.
Since the total time required for the routine RENTRY_ and REXIT is ap-
proximately equivalent to that for the parameter passing, the program
will execute somewhat faster and use less stack area when compiled in
this manner.

2-17

FILE: OPT1:T8085

HP 64000 - Pascal

Compiler Supplement

RECURSIVE ON,OPTIMIZE OFF,DEBUG OFF

7 0000 1 {Initialized options} $RECURSIVE ON,OPTIMIZE OFF,DEBUG OFF$

8 0000 1
9 0000 1

10 0024 2
11 0024 2

12 002C 2

2-18

PROCEDURE PROCA (VAR I: BYTE; VALUEP: BYTE);

0000
0000
0003
0004
0005
0008
000B
000E
0011
0014
0015
0018
001B
001E
0021

BEGIN

2A
7D
B4
CA
01
11
CD
24
23
22
01
11
21
CD

7N

1100
7N
7N
777

7

iraritd
2222
277?
2272
0300
2222

PROCA:
LHLD
MOV
ORA
Jz
LXI
LX1
CALL
LHLD
INX
SHLD
LXI
LXI
LXI
CALL

1:= VALUEP+VALUEP;

0024
0027
0028
002B

END;
002C
002F
0030
0033
0034
0035
0038
003B
003E
0041
0041
0042
0042
0044
0044
0046
0048
004A
004A
004D

3A
87
2A
77

s

7777
7272

7N

”n

4100

7N

77

7777

0500

0200

FEFF
0100

0000

LDA
ADD
LHLD
MOV

LHLD
DCX
SHLD
MOV
ORA
JZ
LXI
LXI
CALL
RPROCA:
RET
CPROCA:
DU
FPROCA:
DU
DU
DU
DPROCA:
DS
DU

DPROCA+3
AL

H

$+12
B,CPROCA
D,DPROCA
RENTRY _
DPROCA+3
H
DPROCA+3
B, FPROCA
D,DPROCA
H,3
RPARAM

DPROCA+2
A

DPROCA
M,A

DPROCA+3
H
DPROCA+3
AL

H

$+12
B,CPROCA
D, DPROCA
REXIT_

3
0

EPROCA EQU $-1

*CALL_COUNT test code:

* Test for first call

* IF CALL_COUNT<>0 THEN

* optional call to RENTRY_

RENTRY_call

* #= % *

*Increment CALL_COUNT

*

&

& RPARAM_ call

& for parameter passing
&

*

*Decrement CALL_COUNT

*

* Test for first call

* If CALL_COUNT<>0 then

* optional call to REXIT_
%

% REXIT_ call

%

Figure 2-3. OPT1 Listing Example

8085

Compiler Supplement

8085

Option 2 - SRECURSIVE ON, OPTIMIZE ON, DEBUG OFF$

Figure 2-4 shows the same procedure used in Figure 2-3 but compiled with
options $RECURSIVE ON, OPTIMIZE ON$. In this mode the compiler does not
generate the CALL_COUNT code for the detection of the first procedure

call; however,

it does generate the calls to RENTRY and REXIT

in all

cases. This saves 27 bytes of code within the recursive procedufé PROCA,
but adds the additional execution time to copy and restore the local
variables in each call and will also utilize more stack memory than the
example in Figure 2-3.

FILE: OPT2:T8085

7 0000 1
8 0000 1

9 0000 1 PROCEDURE PROCA(VAR I: BYTE; VALUEP: BYIE);

0000
0000
0003
0006
0009
000C
000F
0012

10 0015 2 BEGIN
11 0015 2
0015
0018
0019
001C

12 001D 2 END;
001D
0020
0023
0026
0026
0027
0027
0029
0029
002B
002D
002F
002F

HP 64000 - Pascal

01
11
CD
01
11
21
CD

3A
87
24
77

11
CD

C9

7
N
7
7
7
0300

7N

77

7

mN7
77

7

0300

0200
FEFF
0100

$RECURSIVE ON,OPTIMIZE ON ,DEBUG OFF$

PROCA:
LXI
LXI
CALL
LXI
LXI
LXI
CALL

I:= VALUEP+VALUEP;

LDA
ADD
LHLD
MOV

LXI
LXI
CALL
RPROCA:
RET
CPROCA:
DU
FPROCA:
Du
by
Dy
DPROCA:
DS

RECURSIVE ON,OPTIMIZE ON ,DEBUG OFF

B,CPROCA
D, DPROCA
RENTRY _
B, FPROCA
D,DPROCA
H,3

RPARAM

DPROCA+2
a

DPROCA
M,A

B,CPROCA
D, DPROCA
REXIT

3

EPROCA EQU $-1

Figure 2-4. OPT2 Listing Example

2-19

Compiler Supplement
8085

Option 3 - SRECURSIVE OFF, OPTIMIZE OFF, DEBUG OFF$§

Figure 2-5 shows the same procedure PROCA compiled with $RECURSIVE OFF$
option. This procedure is 23 bytes shorter than the example in Figure
2-4 and 50 bytes shorter than the example in Figure 2-3. Since the
routines RENTRY and REXIT are not called and the static parameter
passer PARAM (rather than RPARAM) is called, the execution time over-
head for a call to PROCA in Figure 2-5 is about one-half that of Figure
2-3 and about one-quarter of Figure 2-U4.

FILE: OPT3:T8085 HP 64000 - Pascal RECURSIVE OFF,OPTIMIZE OFF,DEBUG OFF
7 0000 1 $RECURSIVE OFF,OPTIMIZE OFF,DEBUG OFF$
8 0000 1
9 0000 1 PROCEDURE PROCA(VAR I: BYTE; VALUEP: BYTE);
0000 PROCA:
0000 01 7?7222 LXI B,FPROCA
0003 11 2?2772 LXI D,DPROCA
0006 CD 2?72 CALL PARAM

10 0009 2 BEGIN
11 0009 2 I:= VALUEP+VALUEP;

0009 3A 7?72 LDA DPROCA+2
000C 87 ADD A

000D 24 7?2722 LHLD DPROCA
0010 77 MOV M,A

12 0011 2 END;

0011 RPROCA:

0011 C9 RET

0012 CPROCA:

0012 FPROCA:

0012 0200 DU 2
0014 FEFF DU -2
0016 0100 DU 1
0018 DPROCA:

0018 DS 3

EPROCA EQU &-1

Figure 2-5. OPT3 Listing Example

2-20

Compiler Supplement

8085

Option 4 - SRECURSIVE OFF, OPTIMIZE OFF, DEBUG ON$

Figure 2-6 illustrates the additional library call for the byte add
operation which is generated with option $DEBUG ON$. This option, used
with the debug library DLIB8085:HP, will allow the programmer to detect
add operations which cause overflow.

FILE: OPT4:T8085

7 0000
8 0000
9 0000

10 0009
11 0009

12 0014

1
1
1

HP 64000 - Pascal

PROCA (VAR I: BYTE; VALUEP: BYIE);

$RECURSIVE OFF,OPTIMIZE OFF,DEBUG ON §

PROCEDURE
0000 PROCA:
0000 01 27222 LXI
0003 11 272?22 LXI
0006 CD 722727 CALL
BEGIN

I:= VALUEP+VALUEP;
0009 3a 7772 LDA
000C 6F MOV
000D CD 7272727 CALL
0010 2A 7?2?72 LHLD
0013 77 MOV
END;
0014 RPROCA:
0014 C9 RET
0015 CPROCA:
0015 FPROCA:
0015 0200 DU
0017 FEFF DU
0019 0100 DU
001B DPROCA:
001B DS

RECURSIVE OFF,OPTIMIZE OFF,DEBUG ON

B, FPROCA
D,DPROCA
PARAM_

DPROCA+2
L,A
Zbyteadd
DPROCA
M,A

3

EPROCA EQU $-1

Figure 2-6. OPT4 Listing Example

2-21

Compiler Supplement
8085

2-22

Compiler Supplement
8085

Chapter 3

Run-time Library Specifications
General

This chapter describes the run-time library needed tc execute Pascal
programs compiled by the Pascal/64000 compiler for the 8085
microprocessor.

The library is logically divided into two groups of routines. One group
contains the standard library procedures and functions available to all
Pascal/6L000 programs, independent of the actual processor. The second
group supplies the elementary routines that supplement the standard 8085
instruction set. Tables 3-1 and 3-2 list the standard and supplemental
routines for the 8085 microprocessor.

Table 3-1. Pascal Library Routines (Standard)

Ref
Name Purpose Page
ARRAY Compute address of array element 3-3
ARRAYN Compute address of array vector 3-4
COMPAREST Compare string variables 3-7
EQUMB_ Compare multi-byte records for equality 3-8
EQUMW _ Compare multi-word records for equality 3-8
NEQMB_ Compare multi-byte records for inequality 3-8
NEQMW_ Compare multi-word records for inequality 3-8
MOVEB_ Move multi-byte record 3-9
MOVEW_ Move multi-word record 3-9
INITHEAP Declares block of memory as memory pool 3-9
NEW Dynamic memory allocation 3-9
DISPOSE Dynamic memory deallocation 3-9
MARK Save current status of dynamic memory heap 3-10
RELEASE Restore prior status of dynamic memory heap 3-10
RENTRY _ Recursive procedure entry 3-10
REXIT Recursive procedure exit 3-10
PARAM Pass parameters to procedures 3-13
RPARAM Pass parameters to recursive routines 3-13

3-1

Compiler Supplement

Table 3-2. Pascal Library Routines (for 8085)

8085

Ref

Name Purpose Page
Zbyteabs Byte absolute value 3-18
Zbyteneg Byte negation 3-18
Zbytesqr Byte square 3-18
Zbyteadd Byte addition 3-18
Zbytesub Byte subtraction 3-18
Zbytemul Byte multiplication 3-18
Zbytediv Byte division 3-18
Zbytemod Byte modulus (remainder of byte 3-18

division)
Zbyteleq Byte less than or equal 3-19
Zbyteles Byte less than 3-19
Zbytegeq Byte greater than or equal 3-19
Zbytegtr Byte greater than 3-19
Zbshift Byte shift logical with zero fill 3-21
Zbshiftc Byte shift circular 3-21
Zintabs Integer absolute value 3-15
Zintneg Integer negation 3-15
Zintsqr Integer square 3-15
Zintadd Integer addition 3-15
Zintsub Integer subtraction 3-15
Zintmul Integer multiplication 3-15
Zintdiv Integer division 3-15
Zintmod Integer modulus (remainder of 3-15
integer division)

Zintequ Integer equal 3-16
Zintneq Integer not equal 3-16
Zintleq Integer less than or equal 3-16
Zintles Integer less than 3-16
Zintgeq Integer greater than or equal 3-16
Zintgtr Integer greater than 3-16
Zwshift Logical word shift with zero fill 3-21
Zwshiftc Circular word shift 3-21
Zbtoint Byte to integer 3-20
Zbinset8 Byte in 8-bit set 3-23
Zbinsetl6 Byte in 16-bit set 3-24
Zbtoset8 Byte to 8-bit set 3-22
Zbtosetlb Byte to 16-bit set 3-23
Zwinset8 Word in 8-bit set 3-25
Zwinset16 Word in 16-bit set 3-25
Zwtoset8 Word to 8-bit set 3-24
Zwtosetl6 Word to 16-bit set 3-25
Zsetl6int Intersection of 16-bit set 3-28
Zsetl6buni Union of 16-bit set 3-27
Zsetlbgeq 16-bit set greater than or equal 3-26
Zsetlbleq 16-bit set less than or equal 3-26
Zsetl6dif Set difference of 16-bit set 3-28

Compiler Supplement
8085

Array Reference Routines

The Pascal/64000 compiler supports generalized array references with up
to 10 indices. The array reference routines used as parameters are:

DOPE_VECTOR - address of a record describing the array.

BASE ADDRESS - address of the first element of the
array. (May be indirected like a VAR
parameter).

Index_ list - addresses of the actual index expressions

(one for each formal index).

The array reference routines return the computed memory address to the
HL register pair.

ARRAY__

The ARRAY routine returns the memory address of an n-dimensional array
reference expression. An alternate form of array reference, ARRAYN , is
used if the array reference variable expression specifies less than the
defined number of indices. In this case, the call is similar, but the
number of actual index parameters is passed in register A of the 8085.

The array reference call for the 3-index array variable expression:

A(1,3,7)
would be:
CALL ARRAY_
DW DOPE_VECTOR s;for array A
DW BASE_ADDRESS sof array A
DW I ;address of first index expression
DW J ;address of second index expression
DW ADDR_CONST 7 saddress of the third index expression

To illustrate the use of indirection required for the base address, con-
sider variable B defined as a pointer to an array of the same type as A
in the above example. A reference to an element of B” with the variable
array expression:

B~ (6+Y,J,7)

would generate a call to ARRAY in the form:

3-3

Compiler Supplement

8085
CALL ARRAY
DW DOPE_VECTOR ;for array of same type as A
DW 0 sIndirect address indicator
DW B saddress of B which points to array
DW D_TEMP ;address where temp value (6+Y) stored
DW J ;address of second index expression
DW ADDR_CONST 7 saddress of the third index expression

NOTE

The first parameter is the address of the array
DOPE_VECTOR and will always be interpreted as
the dope_vector address even if it is equal to
zero. The BASE_ADDRESS parameter may be the ac-
tual base address, or if it is zero, it implies
that the next word is a pointer to the actual
base address. All of the index parameters will
be the address of a 16-bit word containing a
signed integer VALUE of the index expression.

ARRAYN__

The routine ARRAYN is used to compute the address of an array “row"
which has been referenced by an array variable expression with less than
the defined number of formal indices. The actual number of indices is
passed in register A of the 8085.

An ARRAYN call for a two-index array variable expression for the array
A (used in the previous example), but with the expression:

A(1,J)
would be:
MVI A2
CALL ARRAYN
DW DOPE_VECTOR ;for array A
DW BASE_ADDRESS ;of array A
DW I saddress of first index expression
DW J saddress of second index expression

Generalized Array Dope Vectors

For the general Pascal array defined by the declaration:

(1]

A : ARRAY [I1L..I1H,I2L..I2H,..., InMINUS1L..InMINUS1H,InL..InH] of
any_type;

the address of the array element defined by the variable expression
A[I1,12,...,InMINUS1,In] is computed by the expression:

3-U

Compiler Supplement

8085
element address := base address [2]
+(I1-I1L)*(D2*D3 ... *Dn*BPE)
+(I2-I2L)*(D3* ... *Dn*BPE)
+(InMINUS1-InMINUS1L)*(Dn*BPE)
+(In-InL)*(BPE)
where:
In - Actual index expression for index n
InL - Formal index lower bound for index n

InH Formal index upper bound for index n

Dn - "Row" size := (InH-InL+l) for index n

BPE Bytes Per Element of array element
(size of data type any type)

The constant terms representing the product of the index lower
bounds (InL) and the "row" widths of the form:

PRODi := (DiPLUS1* ... *DnMINUS1*Dn*BPE)

may be combined into one constant called the OFFSET CONSTANT. This con-
stant is defined as:

OFFSET_CONSTANT := I1L*PROD1 (3]
+ I2L*PROD2

+ InMINUS1L*PRODnMINUS1
+ InL*PRODn

The resulting combined formula can now be written as:

ADDRESS := BASE ADDRESS + (OFFSET CONSTANT) [4]
+ I1*PROD1+I2*PROD2 + ... + In*PRODn

Pascal defines the ARRAY type recursively as a single-dimensioned array
of any declarable Pascal type. Thus, multi-dimensioned arrays are simply
defined as ARRAYS of arrays. An array may be referred to in its en-
tirety, a so called ENTIRE variable, by referriang to the array by its
name using no parameters. An array reference expression allows the user
to refer to any ARRAY of N dimensions with from 1 to N index
expressions.

3-5

Compiler Supplement
8085

For the array defined as in [1], an array variable expression with N-1
expressions will access one element of the type:

ARRAY [InL..InH] OF any_type.

An individual element of this ROW type may be accessed by the address
expression:

(5]
row_address nMINUS1 := BASE ADDRESS
+(I1-I1L)*(D2*D3*...*Dn*BPE)
+(I2-I2L)*(D3*...*Dn*BPE)

+(InMINUS_1-InMINUS 1L)
* (DnMINUS_1*Dn*BPE)

When we compute a row address, we will compute the address as defined in
[4], but omitting the unnecessary product terms. However, this expres-
sion has already incorporated the term:

ROWNMINUS 1 OFFSET := InL*PRODn

in the OFFSET CONSTANT, so it must now be added back to the ADDRESS as
defined in [5]. Thus, the computational expression used to compute the
array row reference, using N-1 index expressions, is:

(6]
row_address:=BASE_ADDRESS+(-OFFSET_CONSTANT)+I1*PROD1+I2*PROD_2
+InMINUS_1*PRODnMINUS_1+ROWnMINUS 1 OFFSET

For each additional missing index expression there is one less multi-
plication but one more addition for the OFFSET CONSTANT correction.

The form of the general array reference DOPE_VECTOR is equivalent to:

DOPE_VECTOR DwW N snumber of dimensions
DW - (OFFSET_CONSTANT) shegative of constant
DW PROD 1
DW PROD 2
DW PROD N

DW ROW1 OFFSET
DW ROW2_OFFSET

DW ROWnMINUS 1 OFFSET

Compiler Supplement

8085

COMPAREST

The routine COMPAREST is used to compare two-byte strings.

NOTE

Users who write assembly language programs that
define and use multi-dimension arrays to be used
with the ARRAY and ARRAYN routines need to en-
sure that their use is consistent with the
Pascal compiler. In order to accomplish this,
it is recommended that the user write a simple
Pascal program defining and using the arrays.
The user can then use the expanded listing file
or the $ASM FILE$ option to determine how the
Pascal compiler accesses these arrays and
defines the array dope vectors. It is important
that the user’s array dope vector be identical
to that produced by the compiler.

The byte

strings are defined by the Pascal run time system to be of the type:

BYTESTRING = RECORD

LENGTH : byte;
STRING : ARRAY([1..LENGTH] OF BYTE;
END;

The LENGTH is of the special type:

byte = 0..255

rather than the standard type:

BYTE = -128..127.

A variable of the type BYTESTRING can have a length of zero.

In this

case, no elements of the record subfield, STRING, will be accessed by
any standard subroutine.

This routine will evaluate the dictionary style collating sequence based
on the ASCII character codes.

The COMPAREST routine computes

comparison:

where:

Xop¥Y

the boolean result of the

integer

the address of string X is loaded in the DE register pair
of the 8085, and the address of string Y is loaded in the
HL register pair.

3-7

Compiler Supplement
8085

Registers B and C are not destroyed by this routine. In addition, the
status bits reflect the result of the string comparison according to the
following table:

Result Z Flag CY Flag
X=X SET RESET
X <Y RESET SET
X>7 RESET RESET

Multi-byte Record Compares and Moves
EQUMB__ and EQUMW__

The routine EQUMB_ is used by the compiler to test multi-byte records of
the same type for equality. The records might be defined in the source
program by:

TYPE
PERSON = RECORD
NAME : ARRAY[1..LENGTH] OF CHAR
ADDRESS : ARRAY[1..LENGTH] OF CHAR
END;
VAR
SALESPERSON,TOP_SALESPERSON : PERSON;

In use of the variables, one might question equality as follows:

IF SALESPERSON = TOP_SALESPERSON THEN
The routine EQUMB_ or EQUMW_ would be given the address of one record in
the HL register pair, the other record in the DE register pair, and the

length of the record type in the BC register pair.

The result of the comparison will be available in register A as a
boolean value and the Z flag will be set accordingly.

Results Register A Z Flag
Equality true 1 Reset
Equality false 0 Set

The B,C,D,E,H,L registers are restored to the input parameter values.

The routines NEQMB_ and NEQMW_ may be used to check for inequality. The
result of the comparison will be available in register A as a boolean
value and the Z flag will be set accordingly.

Results Register A Z Flag
Inequality true 1 Reset
Inequality false 0 Set

Compiler Supplement
8085

MOVEB__ and MOVEW__

The routines MOVEB_ and MOVEW_ are used for moving multi-byte records,
such as in an a351gnment of a complete record type or array type to
another of the same type.

The Pascal statements:

VAR X,Y : ARRAY[O..LENGTH] OF BYTE;
BEGIN

X :=7Y;

would place the address of array X into register pair DE; the address of
array Y into register pair HL; the length of the array (in bytes) into
register pair BC, and subsequently call MOVEB_ for byte and char arrays
or mixed type records or MOVEW_ for homogeneous integer records and in-
teger arrays. All input registers will be altered.

Dynamic Memory Allocation

Pascal/6L4000 supports dynamic allocation and deallocation of storage
space through the procedures NEW, DISPOSE, MARK, RELEASE, and INITHEAP.

INITHEAP (Start__address, Length__in__bytes : INTEGER)

The user declares a block of memory to be used as the memory pool or
heap by calling INITHEAP (Start_address, Length_in bytes : INTEGER).
The procedure, INITHEAP, must be declared EXTERNAL in the declaration
block of a program. The resultant heap will be six bytes smaller than
length_in bytes.

NEW (Pointer : Pointer__to__type)

The procedure NEW (Pointer : Pointer to_type) is used to allocate space.
The procedure, NEW, searches for available space in a free-list of as-
cending size blocks. When a block is found that is the proper size or
larger, it is allocated and any space left over is returned to the free-
list in a new place corresponding to the size of the left over block. If
the referenced block is four or less bytes in size, four bytes will be
allocated.

DISPOSE (Pointer : Pointer__to__type)
The procedure DISPOSE is exactly the reverse of the procedure NEW. It

indicates that storage referenced by the indicated variable is no longer
required.

3-9

Compiler Supplement
8085

MARK (Pointer : Pointer__to__type)

This procedure marks the state of the heap in the designated variable
that may be of any pointer type. The variable must not be subsequently
altered by assignment.

RELEASE (Pointer : Pointer__to__type)

The procedure RELEASE restores the state of the heap to the value in the
indicated variable. This will have the effect of disposing all heap ob-
jects created by the NEW procedure since the variable was marked. The
variable must contain a value returned by a previous call to MARK; this
value may not have been passed previously as a parameter to RELEASE.

Recursive Entry and Exit

The Pascal/6L4000 supports recursive and reentrant calling sequences by
requiring a routine compiled in the $RECURSIVE$ mode to copy the current
values of all of the local data area into a safe place (for the 8085
this is done using the 8085 stack itself) before executing any local
code. In particular, the local storage must be saved before calling the
RPARAM routine to copy any parameters.

RENTRY__

RENTRY _is evoked if a procedure has been declared recursive ($RECURSIVE
ON$). It must copy all of a procedure’s local variables onto the stack
and adjust the stack accordingly. Its calling sequence:

LXI B,DATA_LENGTH_ADDRESS ;Address of data area size in bytes
LXI D,DATA_ADDRESS ;Starting address of data
CALL RENTRY_

Note that the return address for the caller of X must be left on top of
the stack after the call to RENTRY in order to permit RPARAM_ to work in
the normal way.

This routine is called upon entry to a recursive Pascal procedure or
function and RENTRY may destroy any or all registers.

REXIT__

After saving a procedure’s data on the stack using RENTRY , the proce-
dure will need to restore its data prior to exit using the complementary
routine REXIT . 1Its calling sequence is:

LXI B,DATA LENGTH ADDRESS ;Address of data area size in bytes

LXI D,DATA ADDRESS ;Starting address of data
CALL REXIT

3-10

Compiler Supplement
8085

This routine is called prior to exit from a recursive Pascal procedure
or function. Since the calling function has no way to preserve any local
storage, REXIT preserves the values in the A and HL registers. All
other registers and status bits may be modified as required.

Example

Consider the non-static procedure X, as defined in the following inter-
mixed listing:

PROCEDURE X (A : INTEGER);
VAR B : BYTE;

BEGIN
X: 3sX ENTRY POINT
3:
LXI B,CX
LXI D,DX
CALL RENTRY _
.
LXI B,FX ;DOPE_VECTOR
LXI D,DX
LXI H,2 sTOTAL # OF BYTES FOR PARAMETERS
CALL RPARAM sRECURSIVE PARAMETER PASSER
5:
vee sBEGINNING OF LOCAL CODE FOR X
6:
LXI B,CX
LXI D,DX
CALL REXIT _
END;
T:
RET

If the procedure were called at label 1, with the code:

1: X(15)
2:

The stack would look like the following at label 1:

previous stack info

SP —

At label 3 the stack will have the address of the first parameter or the
return address (the address of label 2) on top of the stack.

3-11

Compiler Supplement
8085

previous stack info

ADDRESS of label 2
or first parameter

SP —

The routine, RENTRY will pop the stacked address, copy the designated
number of bytes from the caller’s data area onto the stack, and then
push the previously popped address so that RPARAM will have the address
it expects on the stack.

At label L the stack will have the copy of the local data as well as
another copy of the address of label 2 or the first parameter. This is
so that RPARAM can work properly.

previous stack info

current X data

ADDRESS of label 2
or first parameter

SP —

When RPARAM is called, the stack is modified as the parameters are
copied. This will continue until the actual return address (label 2) is
left on top of the stack, after return from PARAMat label 5.

If there are no parameters, then RPARAM is not called and the stack
will already have label 2 on it.

Thus the stack at label 5 looks like:

previous stack info

current X data

ADDRESS of label 2

SP —

Since the local code of X must leave the stack unchanged upon its exit,
the stack is again the same at label 6. A call must be made to REXIT to
restore the previous set of current X data. After returning from REXIT-
at label 7, the stack has been restored to its initial state (as upon
entry at label 3). The return address has been updated as necessary to
pass parameters and is now the address of label 2.

3-12

Compiler Supplement
8085

Parameter Passing

PARAM__ and RPARAM _

PARAM is the routine evoked to transfer parameters from the calling
routine to the called routine.

LXI B,DOPE_VECTOR s;Description of parameter formats
LXI D,DATA ADDRESS sAddress of DATA storage area
CALL PARAM

The parameter DOPE_VECTOR is an integer array describing the parameters.
It has the form:

Number of parameters
Description of first parameter

Description of last parameter

The parameter description is the number of bytes for a value parameter.
If the descriptor has the value -2, it is a parameter passed by an ad-
dress (a Pascal VAR parameter).

The calling routine lists the parameters in order with a "DW address"
for each parameter immediately following the call. The called routine
will return to the instruction immediately following the last parameter.
The calling routine may indicate that one level of indirect address is
required by inserting a =zero word before the actual parameter. This
tells PARAM that the indicated parameter is the address of a variable
pointing to the actual parameter.

CALL PROCWITH2PARAMS

DW FIRST ;Address of first parameter
DW O ;Indirect parameter flag
DW SECOND ;Contains a pointer to actual param

;Next instruction after call

RPARAM_ (a special version of PARAM) is required if the procedure or
function is compiled in the $RECURSIVE ON$ mode. The calling sequence
is similar to that used for PARAM , with an additional instruction to
load the HL register with the total number of bytes for parameters.

Example:
LXI B,DOPE_VECTOR
LXI D,DATA ADDRESS
LXI H,# of Bytes for parameters
CALL RPARAM

3-13

Compiler Supplement
8085

The special parameter passing routine is needed to ensure proper
execution of recursive calling sequences.

NOTE

Users who write assembly language programs that
define and use procedures and functions, par-
ticularly with parameters, need to ensure that
their use is consistent with the Pascal com-
piler. In order to accomplish this, it is recom-
mended that the user write a simple Pascal
program defining the procedure or function with
the desired parameter 1list and an empty BEGIN
END block for code. The user can then use the
expanded listing file or the $ASM FILE$ option
to determine how the Pascal compiler enters and
exits the equivalent do- nothing procedures and
how the parameter dope vector is defined. It is
important that the wuser’s assembly language
routines follow the same entry, parameter pass-
ing, and exit code produced by the compiler. In
particular, it is important that the parameter
dope vector be identical to that produced by the
compiler, and that recursive or static mode dec-
laration (and use) be consistent.

Standard Integer Routines

Each group of routines in the Run-time Library has a standard method of
passing parameters. In the case of the integer operations, the parameter
values are passed in the DE and HL register pairs. They are re-entrant,
non-recursive and safely callable from interrupted and interruptable
processes. A "safe" interrupt routine saves all of the 8085 registers
and restores them before returning control to the interrupted program.

The operands are 16-bit signed integers. The typical binary operation is
of the form:

XopY

where:
X is loaded in register pair DE
Y is loaded in register pair HL

The Library routine is called after loading the operands, X and Y, into
the proper registers. Integer results are returned to register pair HL.
The A register and the Z flag are also used to return boolean results
for integer comparison operations.

There are three groups of integer operations: the unary ops, the binary

arithmetic ops, and the binary comparison ops. Each group will be
described separately.

3-14

Compiler Supplement
8085

Unary Integer Ops

Zintabs : Integer Absolute Value
Zintneg Integer Two’s Complement
Zintsqr : Integer Square

ee oo

The unary operation is of the form:
op Y
where:
Y is loaded in register pair HL

The library routine is called after loading Y into the HL register pair.
The result is returned in register pair HL.

Register Allocation Summary :: UNARY INTOPS

INPUT: HL contains parameter
OUTPUT: HL contains result
REGISTERS:

Modified:

L
B

H,
Unchanged: A,B,C,D,E

Binary Integer Ops

Zintadd : Integer Addition
Zintsub : Integer Subtraction
Zintmul : Integer Multiplication

Zintdiv : Integer Divide
Zintmod : Integer Modulus

The binary arithmetic routines compute the integer result of the opera-
tion in the form:

Xop¥Y
where :

X is loaded in register pair DE
Y is loaded in register pair HL

The library routine is called after loading the operands, X and Y, into

the DE and HL register pairs, respectively. The result is returned in
the register pair HL.

3-15

Compiler Supplement
8085

Register Allocation Summary :: BINARY INTOPS

INPUT: DE contains X, HL contains Y
OUTPUT: HL contains result

Modified: D,E,H,L
Unchanged: A,B,C

REGISTERS: (for Zintadd and Zintsub)
Modified: H,L
Unchanged: A,B,C,D,E

REGISTERS: (for Zintmul, Zintdiv, and Zintmod)

NOTE

In specific instances, register-pair DE will

contain useful information, namely:

for Zintmul - DE contains the high-order 16
bits of the 32-bit result.
for Zintdiv - DE contains the remainder

value.
for Zintmod - DE contains the quotient
value.
Integer Comparisons

Zintequ : Integer equality

Zintneq : Integer inequality

Zintleq : Integer less than or equal

Zintles : Integer less than

Zintgtr : Integer greater than

Zintgeq : Integer greater than or equal

The integer comparison routines compute the boolean result of the com-

parison operation:
Xop¥Y
where:

X is loaded in register pair DE
Y is loaded in register pair HL

3-16

Compiler Supplement
8085

The library routine is called after loading the operands, X and Y, into
the DE and HL register pairs, respectively. The boolean result is
returned in register A and the Z flag. The Z flag is set as if the
operation ORA A has just been performed on the boolean result of the
comparison. If the result is false, register A will be zero and the 2
flag will be set.

These routines change only register A and the status flags. The con-
tents of registers B and C, as well as the input parameters, are either
unchanged or restored by the Run-time Library routines.

Register Allocation Summary :: COMPARISON INTOPS

INPUT: DE contains X, HL contains Y
OUTPUT: A set to 0, and Z flag set if result false
A set to 1, and Z flag reset if result true

REGISTERS:
Modified: A,PSW
Unchanged: B,C,D,E,H,L

Standard Byte Routines

For standard byte routines, parameter values are passed using registers
A and L. The operands are 8-bit signed bytes. A typical binary expres-
sion is of the form:

XopY
where:

X is loaded in register A
Y is loaded in register L

The library routine is called after loading operands, X and Y, into the
proper registers. Byte results are returned to register A. Register A
and the Z flag are also used to return boolean results for byte com-
parison operations.

There are three groups of byte operations: the unary ops, the binary

arithmetic ops, and the binary comparison ops. Each group will be
described separately.

3-17

Unary Byte Ops

Compiler Supplement

Zbyteabs : Byte Absolute Value
Zbyteneg : Byte Two’s Complement
Zbytesqr : Byte Square

8085

The byte operation is of the form:
op Y
where:
Y is loaded in register A

The 1library routine is called after loading Y into register A. The
result is returned to register A.

Register Allocation Summary :: UNARY BYTEOPS

INPUT: A register contains parameter
OUTPUT: A register contains result

REGISTERS:
Modified: A
Unchanged: B,C,D,E,H,L

Binary Byte Ops

Zbyteadd : Byte Addition
Zbytesub : Byte Subtraction
Zbytemul : Byte Multiplication
Zbytediv : Byte Divide
Zbytemod : Byte Modulus

For the byte arithmetic routines, the parameter values are passed in
registers A and L. The binary arithmetic operations compute the byte
result in the form:

XopY

where:

X is loaded in register A
Y is loaded in register L

The library routine is called after loading the operands, X and Y, into
the A and L registers. The result is returned to register A.

3-18

Compiler Supplement
8085

Register Allocation Summary :: BINARY BYTEOPS

INPUT: register A contains X, register L contains Y
OUTPUT: register A contains the result

REGISTERS: (for Zbytemul, Zbytediv, and Zbytemod)
Modified: A,L
Unchanged: B,C,D,E,H

REGISTERS: (for Zbyteadd and Zbytesub)
Modified: A
Unchanged: B,C,D,E,H,L

NOTE

In specific instances, register L will contain
useful information, namely:

for Zbytemul - L contains the high-order byte
of the 16-bit result.

for Zbytediv - L contains the remainder value.

for Zbytemod - L contains the quotient value.

Byte Comparison

Zbyteleq : Byte less than or equal
Zbyteles : Byte less than

Zbytegeq : Byte greater than or equal
Zbytegtr : Byte greater than

The byte comparison routines compute the boolean result of the operation
in the form:

Xop¥Y
where:

X is loaded in register A
Y is loaded in register L

The library routine is called after loading the operands, X and Y, into
registers A and L. The boolean result is returned to register A and the
Z flag. The Z flag is set as if the operation ORA A has just been per-
formed on the boolean result of the comparison. If the result is false,
register A would be zero and the Z flag would be set.

3-19

Compiler Supplement
8085

These routines change only register A and the status flags. The contents
of all other registers are either unchanged or restored by the Run-time
library routines.

Register Allocation Summary :: COMPARISON BYTEOPS

INPUT: A contains X, L contains Y
OUTPUT: A set to 0, and Z flag set if result false
A set to 1, and Z flag reset if result true

REGISTERS:
Modified: A,PSW
Unchanged: B,C,D,E,H,L

Byte to Integer

The routine Zbtoint converts a signed byte into a signed integer.

Register Allocation Summary :: Zbtoint

INPUT: A contains byte value to be converted
OUTPUT: HL contains the converted integer result

REGISTERS:
Modified: H,L
Unchanged: A,B,C,D,E

Byte and Word Shifts

Pascal/64000 supports logical and circular shifts of both byte and in-
teger quantities using the functions SHIFT and SHIFTC. The DIV operator
is used to do arithmetic right shifting: X DIV 2 would shift right with
sign extension. A description of the shift functions is given in the
following paragraphs.

3-20

Compiler Supplement
8085

SHIFT

Logical shifting with zero fill will shift the quantity left or right
placing a zero in the most (right shift) or least (left shift) sig-
nificant bit for each shift. The function is called with two para-
meters: the quantity to be shifted, and the number of bit positions to
shift. The function call is of the form:

Variable := SHIFT(expression,n);
where, expression represents any constant or variable
quantity, and n is the number of positions to
to be shifted as follows:
n>0 results in a shift left
n<0 results in a shift right

SHIFTC

Circular shifting rotates the quantity and fills the vacated bit posi-
tion with the bit shifted out. The function call is of the form:

Variable := SHIFTC(expression,n):

Pascal/64000 determines the size (1 or 2 bytes) of the data being shift-
ed by the type of the first parameter (expression) given. The 8085
library implementation of byte or word shifts are performed by the fol-
lowing routines:

Zbshift - logical shift of byte
Zwshift - logical shift of word
Zbshiftec - circular shift of byte
Zwshifte - circular shift of word

The registers involved in word shifts (Zwshift and Zwshiftc) are as
follows:

INPUT: HL = word to be shifted

A = number of positions to shift word
OUTPUT: HL = shifted word

A modified

The registers involved in byte shifts (Zbshift and Zbshiftc) are as
follows:

INPUT: = byte to be shifted
number of positions to shift byte
OUTPUT: shifted byte

unshifted byte
unchanged

ool it 3 o
nonon

3-21

Compiler Supplement
8085

Set Operations

Pascal/64000 supports 8- and 16-bit sets and are called byteset and
wordset, respectively. For these sets all standard set operations are
available. Sets of bytes or integers are assumed to be SET OF 0..15 and
are wordsets. In the following descriptions of the set routines assume
that some scalar and set types and data variables have been defined as
follows:

TYPE
BIT 8 = (BIT 0,BIT 1,BIT 2,BIT 3,BIT 4,BIT 5,BIT 6,BIT T7);
SET 8 = SET OF BIT 8;

BIT 16 = (BITO,BIT1,BIT2,BIT3,BITY4,BITS,BIT6,BITT,BITS,
BIT9,BIT10,BIT11,BIT12,BIT13,BIT1k4,BIT15);
SET 16 = SET OF BIT 16;

VAR

SET8 : SET 8;
SET16 : SET 16;
Q,R : BIT 8;
V,W : BIT 16;
X,Y : SET 16;

Zbtoset8 Routine

This routine converts a byte into an 8-bit set. The only valid input
values are 0 through 7. Out of range values are detected in debug
library DLIB8085:HP, but may produce invalid results when using library
LIB8085:HP. The Pascal statements:

Q :
SET8 :

BIT 0;
[Ql;

will assign to SET8 a byte with the least significant bit set and all
others reset.

Register Allocation Summary :: Zbtoset8

INPUT: A contains byte value to be converted
OUTPUT: A contains the byteset result

REGISTERS:
Modified: A
Unchanged: B,C,D,E,H,L

3-22

Compiler Supplement
8085

Zbinset8 Routine

This routine is used to test the membership of a byte value in a
specified byte set. For example, the Pascal/64000 expression

R in SET8

is a boolean expression whose value is TRUE if bit R of SET8 is set and
FALSE if bit R of SET8 is reset.

Register Allocation Summary :: Zbinset8

INPUT: A contains byte value to be tested
L contains the byteset being compared
OUTPUT: A set to 0, Z flag set if value not in set
A set to 1, Z flag reset if value in set

REGISTERS:
Modified: A,PSW
Unchanged: B,C,D,E,H,L

NOTE

The Z flag is set or reset according to the
result stored in register A.

Zbtoset16 Routine

This routine converts a byte into a 16-bit set. The only valid input
values are 0 through 15. Out of range values are detected in the debug
library DLIB8085:HP, but may produce invalid results when using library
LIB8085:HP. The pascal statements:

vV :

:= BIT15;
SET16 :

(vl

will assign to SET16 a word with the most significant bit set and all
others reset.

3-23

Compiler Supplement
8085

Register Allocation Summary :: Zbtosetl6

INPUT: A contains byte value to be converted
OUTPUT: HL contains the wordset result

REGISTERS:
Modified: H,L
Unchanged: A,B,C,D,E

Zbinset16 Routine

This routine is used to test the membership of a byte value in a
specified byte set. For example, the Pascal/6L000 expression

V in SET16

is a boolean expression whose value is TRUE if bit V of SET16 is set and
FALSE if bit V of SET16 is reset.

Register Allocation Summary :: Zbinsetl6

INPUT: A contains byte value to be tested
HL contains the wordset being compared
OUTPUT: A set to 0, Z flag set if value not in set
A set to 1, Z flag reset if value in set

REGISTERS:
Modified: A,PSW
Unchanged: B,C,D,E,H,L

Zwtoset8 Routine

This routine converts a word into an 8-bit set. The only valid input
values are 0 through 7. Out of range values are detected in debug

library DLIB8085:HP, but may produce invalid results when using library
LIB8085:HP.

Register Allocation Summary :: Zwtoset8

INPUT: HL contains word value to be converted
OUTPUT: A contains the byteset result

REGISTERS:
Modified: A
Unchanged: B,C,D,E,H,L

3-24

Compiler Supplement
8085

Zwinset8 Routine

This routine is used to test the membership of a word value in a
specified byte set. For example, Pascal/6L000 expression

W in SET8

is a boolean expression whose value is TRUE if bit W of SET8 is set and
FALSE if bit W of SET8 is reset.

Register Allocation Summary :: Zwinset8

INPUT: DE contains word value to be tested
L contains the byteset being compared
OUTPUT: A set to 0, Z flag set if value not in set
A set to 1, Z flag reset if value in set

REGISTERS:
Modified: A,PSW
Unchanged: B,C,D,E,H,L

Zwtosetl16 Routine

This routine converts a word into a 16-bit set. The only valid input
values are 0 through 15. Out of range values are detected in the debug
library DLIB8085:HP, but may produce invalid results when using library
LIB8085:HP.

Register Allocation Summary :: Zwtosetl6

INPUT: HL contains word value to be converted
OUTPUT: HL contains the wordset result

REGISTERS:
Modified: H,L
Unchanged: A,B,C,D,E

Zwinset16 Routine

This routine is used to test the membership of a word value in a
specified word set. For example, the Pascal/64000 expression

W in SET16

is a boolean expression whose value is TRUE if bit W of SET16 is set and
FALSE if bit W of SET16 is reset.

3-25

Compiler Supplement
8085

Register Allocation Summary :: Zwinsetl6

INPUT: DE contains word value to be tested
HL contains the wordset being compared
OUTPUT: A set to 0, Z flag set if value not in set
A set to 1, Z flag reset if value in set

REGISTERS:
Modified: A,PSW
Unchanged: B,C,D,E,H,L

Zset16geq Routine

This routine is used to test the set inclusion of word sets. For ex-
ample, the Pascal/6L4000 expression

SET16 >= SET_16[BITO,BIT1,BITT]
is a boolean expression whose value is TRUE if bits 0, 1, and 7 of SET16
are all set; otherwise, the value is FALSE. This is equivalent to asking
if the set with bits 0, 1, and 7 set is a subset of SET16.
For expressions in the form:

X>=Y

the boolean result indicates whether Y is a proper subset of X.

Register Allocation Summary :: Zsetlbgeq

INPUT: DE contains the wordset of the superset X
HL contains the wordset of the subset Y
OUTPUT: A set to 1, Z flag reset if Y is subset of X
A set to 0, Z flag set otherwise

REGISTERS:
Modified: A,PSW
Unchanged: B,C,D,E,H,L

Zset16leq Routine

This routine is used to test the set inclusion of word sets. For ex-
ample, the Pascal/64000 expression

SET 16 [BIT0,BIT1,BIT7] <= SET16

3-26

Compiler Supplement
8085

is a boolean expression whose value is TRUE if bits 0, 1, and 7 of SET16
are all set; otherwise, the value is FALSE. This is equivalent to asking
if the set with bits 0, 1, and 7 set is a subset of SET16.

For expressions in the form:

X <=YX

the boolean result indicates whether X is a proper subset of Y.

Register Allocation Summary :: Zsetlfleq

INPUT: DE contains the wordset of the subset X
HL contains the wordset of the superset Y
OUTPUT: A set to 1, Z flag reset if X is subset of Y
A set to 0, Z flag set otherwise

REGISTERS:
Modified: A,PSW
Unchanged: B,C,D,E,H,L

Zset16uni Routine
This routine is used to compute the set union of two word sets.
For expressions in the form:

X+Y

the set union is a wordset containing all the elements in both wordset X
and wordset Y.

Register Allocation Summary :: Zsetl6buni

INPUT: DE contains the wordset X
HL contains the wordset Y
OUTPUT: HL contains the wordset result

REGISTERS:
Modified: H,L
Unchanged: A,B,C,D,E

3-27

Compiler Supplement
8085

Zset16int Routine
This routine is used to compute the set intersection of two word sets.
For expressions in the form:

X*y

the set intersection is the wordset containing only the elements con-
tained in both wordset X and wordset Y.

Register Allocation Summary :: Zsetléint

INPUT: DE contains the wordset X
HL contains the wordset Y
OUTPUT: HL contains the wordset result

REGISTERS:
Modified: H,L
Unchanged: A,B,C,D,E

Zset16dif Routine
This routine is used to compute the set difference of two word sets.
For expressions in the form:

X-Y

the set difference is a set containing all the elements of wordset X
which are not contained in wordset Y.

Register Allocation Summary :: Zsetl6dif

INPUT: DE contains the wordset X
HL contains the wordset Y
OUTPUT: HL contains the wordset result

REGISTERS:
Modified: H,L
Unchanged: A,B,C,D,E

3-28

Compiler Supplement
8085

Appendix A
Run-time Error Descriptions

This appendix contains a description of the run-time errors that may
occur.

Error Message Indication

Z_ERR_CASE: a jump to this error will occur when the test vari-
able of a CASE statement is out of range and no
OTHERWISE label exists. The following locations have
valid information in them:

Z ZCALLER_ H - contains the high byte of the ad-
dress of the case statement.

Z ZCALLER L - contains the low byte of the ad-
dress of the case statement.

Z REG H - contains the high byte of an in-
teger test variable.

Z REG_ L - contains the low byte of an integer
test variable.

Z REG A - contains the value of a byte test
variable.

Z ERR DIV BY O: a Jjump to this error will occur when the user at-
tempts to divide a number by zero. The following
locations have valid information:

Z_ZCALLER H contains the high byte of the address

of the statement which called the
division routine.

Z ZCALLER L - contains the low byte of the address
of the statement which called the

division routine.

Z REG D - contains the high byte of an integer
dividend.

Z REG E - contains the low byte of an integer
dividend.

Z REG_A - contains a byte dividend.

A-1

7 ERR_HEAP:

Compiler Supplement
8085

a jump to this error will occur when some misuse of
the dynamic allocation keywords NEW, DISPOSE, MARK,
or RELEASE has occurred. The following locations may
have valid information:

Z REG A - contains the error type, see
below.

Z ZCALLER H - may contain the high byte of the
statement which called one of the
dynamic allocation keyword
procedures.

Z ZCALLER L - may contain the low byte of the
statement which called one of the
dynamic allocation keyword
procedures.

Since these routines sometimes call one another, if
the caller’s address is the file HEAPSA, or HEAPS2A
displaying the location (STACK -10) will give the
last ten subroutine calls and may lead to a call from
the users modules.

Heap error types:
0 - heap length too small (call INITHEAP with

larger number for size of heap).

1 - heap has not been initialized, call INITHEAP
before first use of NEW or MARK.

2 - no free space in current mark. Space may
exist in previous marks but is not available

to the keyword NEW.

3 - no block large enough to allocate, but
smaller blocks exist.

4 - pointer variable points outside of heap.
5 - no free space in heap.
6 - unable to mark, no block large enough.

T - attempted to release mark that does not
exist.

Compiler Supplement
8085

Z_ERR_OVERFLOW:

Z ERR_SET:

Z_END_PROGRAM:

overflow may occur by multiplying or adding two
numbers which result in a product of greater than
32,767 for an integer variable or 127 for a byte
variable; by dividing -32,768 by -1; by squaring an
integer greater than 181; by squaring a byte greater
than 11; or by taking the absolute value of the mini-
mum byte or integer.

If the called routine was a byte unary operation,
then:

Z REG_A contains the operand.

If the called routine was a byte binary operation,
then:

Z REG A contains the operand X in the rela-
tion X op Y.

Z REG B contains Y.

If the called routine was an integer unary operation,
then:

Z REG H contains the high byte of the
operand.

Z REG_ L contains the 1low byte of the
operand.

If the called routine was an integer binary opera-
tion, then:

Z REG D contains the high byte of X in the
relation X op Y.

Z REG E contains the low byte of X.

Z REG_H contains the high byte of Y.

Z REG_L contains the low byte of Y.
operand is not a legal ordinal value for a set of
the base type and:

Z REG_A contains the operand.

a jump to this address occurs when the program com-
pletes execution of the main body code.

A4

Compiler Supplement
8085

64810-90905, OCTOBER 1983 (F]

TT
Replaces: 64810-90902, December 1980 PACKARD PRINTED IN U.S.A.

	Front
	cover
	inside

	Comment Sheet
	comment-1
	comment-2

	Contents
	title
	ii
	iii
	iv
	v
	vi

	Chapter 1
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8

	Chapter 2
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22

	Chapter 3
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28

	Appendix A
	A-1
	A-2
	A-3
	A-4

	Back
	cover

