HP64000
Logic Development
System

Pascal/64000
Compiler Supplement
6809

[cadicaro

CERTIFICATION

Hewlett-Packard Company certifies that this product met its published specifications at the
time of shipment from the factory. Hewlett-Packard further certifies that its calibration
measurements are traceable to the United States National Bureau of Standards, to the extent
allowed by the Bureau’s calibration facility, and to the calibration facilities of other
International Standards Organization members.

WARRANTY

This Hewlett-Packard system product is warranted against defects in materials and
workmanship for a period of 90 days from date of installation. During the warranty period, HP
will, at its option, either repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer's facility at no charge within HP
service travel areas. Outside HP service travel areas, warranty service will be performed at
Buyer’s facility only upon HP’s prior agreement and Buyer shall pay HP’s round trip travel
expenses. In all other cases, products must be returned to a service facility designated by HP.

For products returned to HP for warranty service. Buyer shall prepay shipping charges to HP
and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all
shipping charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with an instrument will
execute its programming instructions when properly installed on that instrument. HP does not
warrant that the operation of the instrument, or software, or firmware will be uninterrupted or
error free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate
maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or
misuse, operation outside of the environmental specifications for the product, orimproper site
preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

EXCLUSIVE REMEDIES
THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP
SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR

CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, ORANY OTHER
LEGAL THEORY.

ASSISTANCE

Product maintenance agreements and other customer assistance agreements are available for
Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

CW&A 9/79

343H 4104

A

HEWLETT | |
PACKARD

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 1303 COLORADO SPRINGS, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

HEWLETT-PACKARD

Attn: Logic Publications Dept.

Centennial Annex - D2

P.O. Box 617

Colorado Springs, Colorado 80901-0617

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

FOLD HERE

Your cooperation in completing and returning this form
will be greatly appreciated. Thank you.

READER COMMENT SHEET

Part Number: 64813-90903

Your comments are important to us. Please answer this questionaire and return it to us. Circle the number that best
describes your answer in questions 1 through 7. Thank you.

1. The information in this book is complete:

Doesn’t cover enough 1 2 3 4 5 Covers everything
(what more do you need?)

2. The information in this book is accurate:
Too many errors 1 2 3 4 5 Exactly right
3. The information in this book is easy to find:
I can't find things | need 1 2 3 4 5 I can find info quickly
4. The Index and Table of Contents are useful:
Helpful 1 2 3 4 5 Missing or inadequate
5. What about the “how-to” procedures and examples:
No help 1 2 3 4 5 Very helpful
Too many now 1 2 3 4 5 I'd like more
6. What about the writing style:
Confusing 1 2 3 4 5 Clear
7. What about organization of the book:
Poor order 1.2 3 4 5 Good order
8. What about the size of the book:
too big/small 1 2 3 4 5 Right size

Comments:

Particular pages with errors?

Name (optional):
Job title:
Company:
Address:
Note: If mailed outside U.S.A., place card in envelope. Use address shown on other side of this card.

Pascal/64000
Compiler Supplement
6809

© COPYRIGHT HEWLETT-PACKARD COMPANY 1981, 1983
LOGIC SYSTEMS DIVISION
COLORADO SPRINGS, COLORADO, U.S.A.

ALL RIGHTS RESERVED

Printing History

Each new edition of this manual incorporates all material updated since the previous edition.
Manual change sheets are issued between editions, allowing you to correct or insert
information in the current edition.

The part number on the back cover changes only when each new edition is published. Minor
corrections or additions may be made as the manual is reprinted between editions.

First Printing........... May 1981 (Part Number 64813-90903)
Second EditionFebruary 1983 (Part Number 64813-90903)
Change1............... March 1984

PASCAL COMPILER
SUPPLEMENT-6809

Table of Contents

Chapter 1. Pascal/64000 Compiler 6809

Introductioniiiiiiiiii it ittt nnnenns 1-1
L =S Y= o T 1-1
Pascal Program Designciiiiiiiiiiniiierinernneneenans 1-1
How to Implement a Programceiieiniiinnunenneneenns 1-2
The Source File ittt it ennneans 1-2
Linkingc0ceiiiviennn, S 1-3
Emulation of Pascal Programsc.oviiuvuniennneenons 1-k4
Debugging with DLIB_6809:C6809 Library 1-6
Linking with Real Numbersoititiiunennnnn. 1-7

Chapter 2: Pascal/64000 Programming 6809

Programming Considerationsc0iviiiiiiiiiiiinneennn, 2-1
Introductionttt i i e 2-1
Direct Addressing Mode0ttt ieiineennns 2-1
Stack Pointer Initializationo, 2-2
Stack Format During Program Execution 2-5
Recursive Routines - Calling and Returning Sequences 2-9
Multiple Module Programsuoeiiiuineencneeenennns 2-10
Dynamic Allocation Heap Initialization 2-12
Interrupt Vector Handlingcciiiiiiiiiiinnnennn, 2-13
Set Space Allocationiiiiiiiiiiiiiiiinninnrnnns 2-15

User Defined Operatorseuveeennreennneoonnnnonenneens 2-16
(0] o =5 o= 7 o o V- T PP 2-16
Parametersttt e i e e e e e e 2-17

(03537 e ¢ X 2-19
OPTIMIZE .ttt it ittt ettt ittt enneesnnnoeeanesennssens 2-19
DEBUG &« vttt ittt it i it i e i e e 2-19

Position Independent Codecuiiuiiiiinneeneinnnnnenns 2-20

Pass2 Errors e e e e et e i e e 2-20

Chapter 3: Run-time Library Specifications

(€= o U= ot - 0 3-1
Array Reference Routinesc.viiieinineeennnenennnnnnns 3-6
ARRAY e e e e 3-6
Generalized Array DOPE VECTORccviinnnen.n, 3-9
Dynamic Memory Allocation et e 3-10
INITHEAP ottt ittt ettt ettt onsntteneassanesnnas 3-10
NEW i it i i i e et et e e 3-10
DISPOSE ittt it i e e i e e e 3-10
MARK i i e e i et et e 3-10
RELEASE . i ittt ittt itteeeeoseenasoonseeonennnnns 3-10
Recursive Entry ...ttt ittt e e ennennens 3-11
RENTRY .o i i ittt i e e 3-11
Parameter Passingttt ieneerennnnnnns 3-13
(0= o L= o 0 3-13
Parameter Passer (PARAM)coiiiniiininnninenn.. 3-14

iii

PASCAL COMPILER

SUPPLEMENT-6809
Table of Contents (Cont’'d)

Standard Byte RoUtinesc.oeeieemeennernneoeeennnnns 3-16
Unary Byte Operationsceeeeuieemuernnenneeneennn 3-16
Binary Byte Operationscciiiiiiiieiieenernnennn. 3-17

Standard Integer Routinescevvennononennenenanns 3-18
Unary Integer Operationsc.civiiiuinnnnnnnnnnn.. 3-18
Binary Integer Operationscoeiieiuierneennennnn 3-19

Byte and Word Shifts iiiiiinennn., 3-21
0 5 0110 2 3-21
ROTATE ... it it it ittt ennosooenoesossnsssoesossscnssnanas 3-21
Byte Shifts ...t i i i it it 3-22
Word Shifts . .v i it it ittt it iteeneesoososssonosseoessas 3-23

Byte and Word Set Operationsceveeeuueenennsonns 3-24
Byte Set Operationseeeeuereenoeenonnneennneeenns 3-24
Word Set Operationsc.ouiiiiiiiieiieinenninneeneens 3-25

Multi-byte Operationsoevueieeeeeomennannncneennns 3-28
M BIIOVE v vt et ot e et ot et et e et e e e 3-28
Multi-byte Comparisonscoveiieunieinennenneenonns 3-29

Multi-byte Set Operationsciiiiiiieiineen.. Le.. 3-31
Multi-byte Set Routines e, 3-31

Byte and Integer Comparison and Bounds Checking Routines .. 3-34
Byte and Word COmMPariSONsevueeennneerenneennenn 3-34
Byte Bounds CheCKingciuvveuioeueenennnenneenneonan 3-36
Word Bounds Checkingc.iiiiiiniiiienenneeneneenn 3-37

Strings and Charactersccieeivrrnonesronsooenonnns 3-38
SOV & e e v vt et es s ee aonossoneseonnessonneeeaensannneenas 3-40

Chapter 4: Real Number Library

TNtrodUCtIOn vttt ittt ittt e e e e e 4-1
Floating Point BINARY Operationsevveevuuunnn. 4-3
Floating Point UNARY Operationsceeeeeuueeneeennns 4-3
Floating Point Comparison Operations 4-Y
Floating Point Conversion Operations 4-5
Floating Point Error Detectioncevvvuuunnnunnnn.. 4-5
Floating Point Number Internal Format Y-7

Appendix A:

Run-time Error Descriptionsietiiiiiiininrnenennns A-1

e L I-1

List of Tables

2-1. 6809 PasSS2 EITOTS vt tvreeruneeernneenenenennneenens 2-21

3-1. Pascal Library Routines (Standard).................... 3-1

3-2. Pascal Library Routines (for 6809) 3-2

4-1. Pascal Real Number Library Routines 4-2

iv

PASCAL COMPILER
SUPPLEMENT-6809

Chapter 1

Pascal/64000 Compiler 6809

Introduction
General

This compiler supplement is an extension of the Pascal/64000 Compiler
Reference Manual. It contains all the processor-dependent compiler in-
formation for use with the 6809 microprocessor.

Descriptions of compiler features, options, and their use are supplied.
A detailed discussion of the run-time libraries required by the 6809
code generator is included. 1In addition, a brief discussion of the fea-
tures, capabilities, and limitations of Pascal program development using
the emulation is provided.

Pascal Program Design

Pascal programs should be designed to be as processor and implementation
independent as possible, yet certain concessions must be made when the
processor has unique characteristics. Programs written to run on a
large mainframe computer with megabytes of virtual memory may not run on
a 6809 with a maximum of 6Lk-bytes of addressable memory. Most large
mainframe computer implementations have enough memory to allocate a
stack area and a heap for dynamic memory allocation with no prompting by
the user. In a limited memory system these factors must be communicated
to the compiler in some manner. For the 6809, the user must specify the
location of the stack and, if needed, the location of a memory pool for
dynamic allocation routines. The following sections describe subjects
related to programming and compiling Pascal/64000 for the 6809
processor.

How to Implement a Program

The usual process of software generation is as follows:

a. Create a source program file using the editor.

b. Compile the source program.
¢c. Link the relocatable files.
d. Emulate the absolute file.

e. Debug as necessary.

PASCAL COMPILER
SUPPLEMENT-6809

This chapter will provide insight into each of these processes.

The Source File

The Pascal/64000 compiler takes as input a program source file created

with the editor. The basic form of a source file is:

“6809"
PROGRAM Name;
. {comments}

CONST

TYPE

VAR

.
*

vee}
PROCEDURE Procedure_name(Parameterl :

BEGIN

END;
BEGIN

{main program code}

END.

Type);

PASCAL COMPILER
SUPPLEMENT-6809

When source file editing is complete, it is ready for compilation.
Notice in the example form that the first line of the source program
specifies the 6809 processor. This first line must be the special com-
piler directive indicating the processor for which the program was
written.

Within a Pascal source program, the compiler only recognizes upper-case
keywords, but identifiers may be lower case. When using a 64200
emulator, the global identifiers must begin with an upper-case letter if
the user wishes to access these names symbolically during emulation.
(During emulation, only emulation command keywords may start with a
lower-case letter.)

The compiler output may be in two forms, a relocatable file and a list-
ing file (if specified). Descriptions of these files are as follows:

Relocatable file: If no errors were detected in the
source file (called FILENAME:source), a
relocatable file (called FILENAME:reloc)
will be created. This file will be used
by the linker to create an executable
absolute file.

Listing file: If a listfile is specified when the
compiler is evoked, a file containing
source lines with line numbers, program
counter, level numbers, errors and
expanded code (if specified) will be
generated.

Linking

After all program modules have been compiled (or assembled), the modules
may be linked to form an executable absolute file. The compiler
generates calls to a set of 1library routines for commonly used opera-
tions such as multiply, divide, comparisons, array referencing, etc.
These routines must be linked with the program modules. There are two
libraries which may be linked.

The first is a debug library file called DLIB 6809:C6809. This library

of relocatable procedures contains some extra code to detect errors such
as division by 0, or overflow on multiplication.

1-3

PASCAL COMPILER
SUPPLEMENT-6809

The second library is called LIB 6809:C6809. This library, which has
only a limited set of error-detection code, should execute slightly
faster and take up less space in memory. This library may be linked in
place of the debug library after reasonable assurance that the code is
error free.

The linker is evoked and the questions asked should be answered as
follows:

link ..
Object files: SETSTACK_ ,MODULE1l,MODULE2

Library files: DLIB 6809:C6809

Absolute file name: PROGRAM

In the link listfile, the library routines that are referenced by the
compiled code are linked at the end of the last user relocatable PROG
and/or DATA areas. This fact must be considered for the proper choice
of the stack pointer location, and PROG and DATA link addresses.

Emulation of Pascal Programs

After all modules have been compiled (or assembled) and linked, the ab-
solute file may be executed using the emulation facilities of the Model
64000. The emulator is initialized with the memory mapped in keeping
with the target system and the stack pointer initialization in the code.

A program which is designed to run in read-only memory (ROM) should have

been compiled with the $SEPARATE$ option. The memory chould be mapped
to have ROM and RAM as illustrated below.

1-4

PASCAL COMPILER
SUPPLEMENT-6809

Linking with Real Numbers

When using real numbers for the 6809, the user must link with the real num-
ber support library: RealLIB:C6809. This library supports the Model 64000
Pascal implementation of the IEEE real number standard for both long and
short floating point numbers (Pascal data types REAL and LONGREAL). To allow
mixed REAL and LONGREAL expressions, all internal real operations are per-
formed using an unpacked real number format with a 64-bit mantissa (frac-
tion), a separate sign bit, and a 16-bit signed exponent.

RealLIB:C6809 will load subroutines in the PROG relocatable area and use the
DATA relocatable area for: local data, a default stack area, and a message
buffer for error detection.

Since the use of floating point numbers will require additional stack space
for temporary computations, this library has a module, BIGSTACK, which will
supply a default stack size of 1024 bytes (much larger than that supplied by
the default stack in DLIB_6809:C6809 and LIB_6809:C6809. If you have not
defined your own stack area and you want to use the default stack, you
should load the real library before loading the standard library of your
choice.

If you do not supply your own versions of the real error reporting routines,
INVALID and REAL OVERFLOW, the real library will supply them plus a DATA
relocatable buffer area for reporting the error condition. See the section
on real number libraries in Chapter U4 for more information on real number
error detection.

Linking with Pascal File I/0

When using the Pascal File I/0 features with the 6809, the user must link
with the Pascal File I/0 support library: PIOLIB:C6809.

If the simulated I/0 feature of the emulation subsystem is used, the user
should also link the simulated I/0 support library: SIMLIB:C6809.

The Pascal/64000 Reference Manual contains a complete machine independent
description of the routines in these libraries.

Both libraries are compiled with the options $SEPARATE ON,RECURSIVE OFF$.
They will load subroutines in the PROG relocatable area and use the DATA
relocatable area for local data and a message buffer for error detection.

See the section on Pascal File I/0 in Chapter 5 for more information about
the I/0 support libraries.

1-ka

PASCAL COMPILER
SUPPLEMENT-6809

ROM
prog

RAM
data area

heap

A

stack |

For a program that is designed to run completely in random access memory
(RAM), the memory mapping should look like the following:

l |

I RAM |

| prog and data |

I |

END DATA | |
I I

| |

| heap |

| |

| l

| ” l

| | |

| stack | |

STACK : | |

The transfer address will have been set by the linker so that simply
loading the absolute file, and stepping or running the program is all
that is required. Note that program execution does not start at address
OO00H if the program contains local procedures or functions. However,
the <program name> identifier in the program heading is a global symbol
and the label of the program transfer address. This program may be ex-
ecuted within emulations by the command:

run from <program name>

1-5

PASCAL COMPILER
SUPPLEMENT-6809

Debugging with DLIB__6809:C6809 Library

When initializing the emulator, it is a good idea to answer yes to the
"stop processor on illegal opcode?” question since execution errors may
result in a jump into the error handler file, Derrors:C6809.

If, while watching the execution of the code, the status line should in-
dicate "illegal opcode executed at address XXXXH', note the address and
enter the command:

display local symbols_in Derrors:C6809

The list will roll off the screen; do not stop it with the reset key,
since the information which rolls off is not important. When the 1list
has stopped, scan the upper portion of the list for the address at which
the illegal opcode occurred. The error type will be listed at the left
of this address. (Descriptions of run time errors are given in Appendix
A.) The list will also be generated when using library LIB 6809:C6809
by entering the following command:

display local symbols_in Zerrors:C6809
The display will now appear as follows:

NOTE

The addresses will change
depending upon the link.

1-6

PASCAL COMPILER
SUPPLEMENT-6809

Label Address Data
Z END_PROGRAM 1242H C3H Scan this portion
Z_ERR_RANGE 1270H 22H for the address
Z ERR CASE 1258H 08H where the illegal
Z_ERR DIV BY 0 124AH 08H opcode occurred. The
Z ERR HEAP 1268H 08H data field in this
Z ERR OVERFLOW 123CH 08H portion is not
Z ERR SET CONV 1251H 08H significant.
Z ERR UNDERFLOW 1243H 08H
Z_ERR_STRING 1235H 00H
Z _CC_FLAGS 1296H 89H The data field in
Z ACC_A 1297H 8FH this portion may
Z ACC B 1299H F6H contain useful
7 _REG_X 1298H FSH information. The
Z REG U 129BH FOH addresses in this
Z_CALLER_H 1295H 69H portion are not
Z CALLER L 129}4H AOH significant.

Some of the errors will load locations with register and stack informa-
tion.

NOTE

It is important to remember that during emulation
of Pascal/6L000 programs, a Pascal program may be
debugged symbolically (using global symbols in the
source program) or by source program line numbers
of the form: #1. This is a feature that provides
a powerful tool for emulation.

Linking with Real Numbers

When using real numbers for the 6809, the user must linkwith the real
number support library RealLIB:C6809.

The library, RealLIB:C6809, supports the Pascal/6L4000 implementation of
the IEEE real number standard for both long and short floating point
numbers (Pascal data types LONGREAL and REAL). To allow mixed REAL and
LONGREAL expressions, all internal real operations are performed using
an unpacked real number format with a 64-bit mantissa (fraction), a
separate sign bit and a 16-bit signed exponent.

1-7

PASCAL COMPILER
SUPPLEMENT -6809

NOTE

This compiler can generate duplicate symbols in the assembler symbol file for
legal Pascal programs. These symbols can be generated by nested procedures
with identical names or by procedure or function names that conflict with labels
generated by the compiler, i.e., E, R, C, and D procedures labels. Refer to the
Pascal Compiler Reference Manual for a description of these labels.

These duplicate symbols can cause ambiguities with some HP 64000 logic
analyzer measurements since a reference to a duplicated label may produce an
incorrect resuit.

The compiler produces a warning message whenever it generates a duplicate
label to warn the user that use of that symbol in an analysis product may result in
an incorrect address being traced. This potential problem can be solved by
changing one of the duplicate function names, or by moving one of the functions to
another file.

Example Warnings:
XXKkKKWARNING ?? - Symbol: Y, is duplicated in the asmb_sym file.
XXKKXWARNING ?? - Symbol: RY, is duplicated in the asmb_sym file.

1-8
Change 1

PASCAL COMPILER
SUPPLEMENT-6809

Chapter 2

Pascal/64000 Programming
6809

Programming Considerations

Introduction

This chapter covers some important requirements of the run-time environ-
ment for 6809 Pascal/64000 programs. Although some requirements may not
be necessary for every program, the programmer should become familiar
with the information supplied in order to use it when the structure of a
6809 program requires it. The specific areas to be discussed are stack
pointer initialization, multiple module programs, heap initialization
for use with dynamic memory routines (NEW, DISPOSE, MARK, and RELEASE),
interrupt processing with Pascal programs, and optional code generation.

Direct Addressing Mode

The 6809 direct page register (DP) is concatenated with any 6809 direct
access address to generate the complete run-time address of an object.
For example, if the instruction

LDA <25H

is generated as a direct addressing instruction, the object that will be
loaded into register A will be found at address 25H if the direct page
register contents equal OOH. If the direct page register contents equal
OFEH, for example, then the object that will be loaded into register A
will be found at address OFE25H.

The DP register will be initialized to 00H by a 6809 Restart Interrupt.
It will never be modified by the 6809 compiler.

The 6809 compiler will generate direct addressing instructions for any
object known by the compiler to be located within the address range OOH
and OFFH. For the following Pascal variable declaration:

VAR
$ORG = 20H$
FLAG: BOOLEAN;
INFORMATION: INTEGER;
$END ORG$

the 6809 compiler will generate direct addressing instructions to access

variables FLAG and INFORMATION, since their addresses are known by the
compiler to be between O00H and OFFH.

2-1

PASCAL COMPILER
SUPPLEMENT-6809

Stack Pointer Initialization

The stack pointer is a hardware register maintained by the processor.
Prior to use, however, it must be initialized by the user. A program
that has a main code section must generate the following stack in-
itialization statements in the relocatable file:

EXT STACK
LDS #STACK_

Since the EXT statement implies that the label STACK_ has been declared
global (GLB) by another program module, the compiler will build a
relocatable file, leaving assignment of the STACK_ value for the linker.

If the label STACK_ has not been declared global by any program module,
the linker will search the applicable 1library for a default value.
Depending upon which library has been selected by the user, one of the
following default values will be selected:

a. If the DLIB 6809:C6809 library is linked, the stack will be as-
signed 512 bytes in the program (PROG) area of the linked
modules.

b. If the LIB 6809:C6809 library is linked, the stack will be as-
signed 512 bytes in the data (DATA) area of the linked modules.

NOTE
Whenever the LIB 6809:C6809

library is linked, a DATA area
location must be specified.

The user should allocate a larger stack when necessary. In particular,
recursive programming will generally require a much larger stack than
normal to run properly.

2-2

PASCAL COMPILER
SUPPLEMENT-6809

Another approach to stack pointer initialization is to define a global
variable called STACK as shown in the following example:

(file MODULE1l:source)

VAR
$GLOBVAR ON$
$ORG 3F80H
STACK_AREA : ARRAY[1..128] of BYTE;
STACK_ : BYTE;
END_ORG
$GLOBVAR OFF$

BEGIN
)

END.

The compiler will generate relocatable code which sets the stack pointer
to the address of STACK (LOOOH in this example), and use an area of 129
bytes (3F80H..LOOOH) for the stack.

This technique will produce both a GLOBAL and an EXTERNAL reference for
the symbol STACK . The relocatable file will produce the proper results
when linked. However, if the $ASM FILE$ option is in effect, the
ASM6809:source file will produce an EG (external/global) error. The
user should edit the ASM6809 file and delete the EXT STACK_ line before
assembling the file.

The use of an absolute address for the stack as in the above example has
the user convenience of assigning a fixed block of memory for the stack.
It may be better, however, to allow the compiler to actually preserve a
relocatable data area for the stack by leaving out the ORG and
END_ORG options. This will help prevent accidental reuse of the as-
signed stack area by another module.

2-3

PASCAL COMPILER
SUPPLEMENT -6809

An approach when 1linking assembly language files is to include the
initial stack pointer value or a stack area in an assembly file such as:

"6809"
GLB STACK _

STACK _ EQU 2000H sputs initial stack
. ;3 pointer at 2000H

or:
"6809"

GLB STACK
DATA

STACKBOT RMB <stacksize> ;puts stack
; storage in the
STACK : RMB 1 ; DATA area of
. ; the program

Note that the address of STACK will receive the first data byte being
pushed. This file may then be linked with the other program modules
generated by the compiler as follows:

Object files: ASMFILE1l ,MODULE1l,MODULEZ2....

2-}

PASCAL COMPILER
SUPPLEMENT-6809

Stack Format During Program Execution

Integer values are pushed on the stack: low byte,high byte, and popped:

high byte,low byte.
Execution of PSHS X:

Stack before execution:

Stack after execution:

(X)

|
|
l
| Low_byte of
|
| High byte of
l

(X)

Execution of PULS X:

Stack before execution:

(X)

|

|

| :

| Low_byte of
|

| High byte of
l

(X)

Stack after execution:

2-5

PASCAL COMPILER
SUPPLEMENT-6809

Static Links. At execution time of any routine X, the compiler needs to
have access to routine X’s data and parameters; also, it must have ac-
cess to data of other routines to which routine X is accessible. The
data area addresses of non-recursive routines are known at compile time;
however, for recursive routines these addresses are pointers to the
stack and are determined at execution time. These pointers are called
static links.

When any recursive routine is entered in the 6809 compiler, the library
routine RENTRY is called. RENTRY will allocate the routine’s data
area. It will copy and arrange the parameters. In addition, it will cre-
ate the necessary static links.

In the following sample program:

0. "6809"
1. PROGRAM TEST;

2. VAR I1,12,1I3: INTEGER;

3.

4. {the $RECURSIVE$ option is on by default}
5.

6. PROCEDURE P1(II: INTEGER);

7. VAR II1,II2: INTEGER;

8.

9. PROCEDURE P2_A(III: INTEGER);
10. VAR III1: INTEGER;

11,

12, PROCEDURE P3(IIII: INTEGER);
13. VAR IIII1: INTEGER;

14, BEGIN { P3 }

15. III1:=10;

16. END;

17.

18, BEGIN { P2_A }

19. III1:=10;
20. P3(III1);
21. END;
22.
23. PROCEDURE P2 B(III: INTEGER);
24 VAR III1: INTEGER;

25. BEGIN { P2 B }
26. P2_A(III1);
27. END;
28.
29. BEGIN { P1 }

30. P2_B(II1);
31. II11:=0;
32. END;
33.

34, BEGIN { Program TEST }

35. P1(I1);

36. END.

2-6

PASCAL COMPILER
SUPPLEMENT-6809

The stack format at line #19 of the execution of TEST is:

FFFF
FFFE
FFFD

,<--<-

Sed>==>

? e —

->-=>

RA

Pl’s data and
parameters.
(level #1)

—_———

Static Link #1

RA

P2 B’s data and
parameters.
(level #2)

—_—

Static Link #2

Static Link #1

RA

P2 A’s data and
parameters.
(level #2)

—_———

Static Link #2

Static Link #1

2-7

The stack format at line #16 of the execution of TEST is:

2-8

FFFF
FFFE
FFFD

,<—-<-

Ta>a=>

<--<-

) o —

->-=>

<--<-

) ——

<--<-

) e ——

->-=>

RA

P1’s data and
parameters.
(level #1)

Static Link #1

RA

P2 B’s data and
parameters.
(level #2)

—_——

Static Link #2

Static Link #1

RA

P2 A’s data and
parameters.
(level #2)

—_———

Static Link #2

Static Link #1

RA

P3’s data and
parameters.
(level #3)

Static Link #3

Static Link #2

Static Link #1

PASCAL COMPILER
SUPPLEMENT-6809

PASCAL COMPILER
SUPPLEMENT-6809

The stack format at line #31 of the execution of TEST is:

FFFF | i

FFFE | RA l

FFFD | |

: | ~

| P1’s data and | |

| parameters. | |

| (level #1) | |

| |

,<-=<~ | Static Link #1 |
S>> | <mmmmm e (Ss)

Recursive Routines - Calling and Returning Sequences

An example of a portion of a program that would be used for calling a
recursive routine with no parameters is as follows:

LBSR receiving routine

An example of a portion of a program that would be used for calling a
recursive routine with parameters is as follows:

LDrl par#l

LDrx par#x

PSHS rl,...,rx,PC

LDrl par#x+1

LDrx par#n

PSHS rl,...,rx

LBSR receiving routine

2-9

PASCAL COMPILER
SUPPLEMENT -6809

When returning from a RENTRY routine, the stack format at exit will be
as follows:

Static Links

The returning sequence is as follows:

LEAS var area size +par area_size +level*2 ,S
RTS

Multiple Module Programs

Only one module in an absolute program file should contain a Pascal
program with a main code section. All other modules should contain
procedures and functions only, with a period at the end of the procedure
declarations to indicate an empty program block.

2-10

PASCAL COMPILER

SUPPLEMENT-6809

Example:

(file MODULE1l:source)
PROGRAM MODULE1l; {this is the main module}
CONST
TYPE..

VAR

.
9

PROCEDURE X(Parameter : Type) ;EXTERNAL;
PROCEDURE Y ;EXTERNAL;

BEGIN
e
.3 {main code}
e
END. {period signals end of program, main code
exists so stack initialization code is
generated)
NOTE

The transfer address is set to cause
execution to begin in the main code
section of the program module.

(file MODULE2:source)

PROGRAM MODULE2; {this module contains the procedures and
functions used in MODULE1l)}

$GLOBPROC ON$
PROCEDURE X(Parameter : Type);
BEGIN
.3
ces
END;
PROCEDURE Y;
BEGIN
<3
ce}
END%)

s {The period signals the compiler that the
program has ended. Since no main code
exists, the compiler does not generate any
stack initialization code or linker
transfer address)

2-11

PASCAL COMPILER
SUPPLEMENT-6809

Dynamic Allocation Heap Initialization
Before using standard procedures NEW and MARK, the block of memory that

you wish to have managed as a dynamic memory allocation pool must be in-
itialized by calling the external library procedure:

INITHEAP (INTEGER (ADDR (END DATA)),
INTER(ADDR(STACK_))-INTEGER(ADDR(END_DATA_))-MOH);

The procedure must be declared EXTERNAL in the declaration section. The
start address should be the smallest address of the memory block to be
used. For example, if the block to be used is located from 4OOOH to
SFFFH, the initialization should appear as follcws:

PROGRAM Test;

CONST

TYPE

VAR

PROCEDURE

INITHEAP(Start_address,Length_in_bytes:INTEGER);EXTERNAL;

BEGIN {main program block}
INITHEAP (4000H,2000H) ;

END.

If the desired location of the heap is at the end of the DATA area, the
address of the external library variable END DATA may be used as the
start address and as part of an expression to give a length.

Example:

BEGIN
INITHEAP (ADDR (END_DATA), (ADDR(STACK)-ADDR(END DATA)-40H));

END.

2-12

PASCAL COMPILER
SUPPLEMENT-6809

This example would reserve U4l hex (or 65 decimal) bytes for the stack
and the remainder of the memory from the end of the DATA area to the
initial stack pointer -U4lH for the dynamic allocation routines. This
implies that the stack is in a contiguous block with the DATA area. For
example, if END DATA is address 1000H and STACK_ is address 2000H,
then ADDR(STACK) - ADDR(END DATA) -4OH is equal to OFCOH. The heap
will be from address 1000H through 1FBFH (OFOOH bytes), and the STACK
will be from address 1FCOH through 2000H (see below).

prog and data

I l
| I
| I
END DATA | |
(1000H) | | Begin heap
| heap |
I |
| | End_heap (1FBFH)
| | End stack
| stack |
STACK | | Start_stack
(2000H)

Six bytes are used each time the heap is initialized or marked. When an
item of four bytes or less is to be allocated, four bytes will be
removed from the free list even if less is needed. Likewise, when an
item of four or less bytes in size is deallocated, four bytes will be
returned to the free list.

Interrupt Vector Handling

The run-time programming environment of Pascal/64000 programs on the
6809 processor has been designed to impose a minimum amount of con-
straints on the user. As a result the code produced by the compiler is
safely interruptable as long as the interrupt driven process restores
the registers (which have been automatically pushed onto the stack when
the 6809 recognized the interrupt) with a return from interrupt (RTI)
instruction.

The 6809 processor supports four types of interrupts: a reset (or
powerup) interrupt, a non-maskable interrupt, a maskable interrupt, and
a software interrupt. The first three of these are enabled by external
control signals to the processor, while the last one is enabled by soft-
ware program control. When the processor detects one of these inter-
rupts it saves the current status of the processor and jumps to the ad-
dress in the interrupt vector for that type of interrupt. These vectors
are in the last 1) bytes of memory.

PASCAL COMPILER
SUPPLEMENT-6809

For the rest of this discussion assume that the following assembly
module defines the interrupt vectors.

FILE: IRQ:C6809 HEWLETT-PACKAKD: 6809 Assembler
LOCATION OBJECT CODE LINE SOURCE LINE
1 "68039"
2 NAME "Interrupt Vector Definition"
3
4 EXT SOFT_INT_3, SOFT_INT_2, SOFT_INT_1
5 EXT FIRQ_INT, IRQ_INT, NMI_INT,
RESTART _INT
6
7 ORG OFFF2H
8
FFF2 0000 9 FDB SOFT_INT_3
10
FFF4 0000 11 FDB SOFT_INT_2
12
FFF6 0000 13 FDB FIRQ_INT
14
FFF8 0000 15 FDB IRQ_INT
16
FFFA 0000 17 FDB SOFT_INT_ 1
18
FFFC 0000 19 FDB NMI_INT
20
FFFE 0000 21 FDB RESTART_INT
Errors= 0

A Pascal/64000 main program may logically be used as the RESTART INT to
be called on RESTART interrupt. A main program initializes the run time
environment for Pascal program cxecution and ends with the jump to a
tight loop at Z END PROGRAM (generated by the compiler), thus fitting
all the requirements of the RESTART INT routine.

Pascal/64000 allows the user to define procedures as routines to be cal-
led in the interrupt vector by using the $INTERRUPT ON$ option. The
$INTERRUPT$ option is only recognized for procedures defined at the out-
er block of a program. An interrupt procedure needs to be declared
global so its address can be available at link time to load the proper
interrupt vector. Nothing special is done upon entry to the $INTERRUPT$
procedure. At the end of the procedure the compiler generates a return
from interrupt (RTI) instruction instead of a return from subroutine in-
struction (RTS). An $INTERRUPT$ procedure may not be called like a nor-
mal Pascal/64000 procedure because of the RTI return instruction.

2-14

PASCAL COMPILER
SUPPLEMENT-6809

The interrupt procedure can have no parameters but it may be compiled in
either the $RECURSIVE ON$ or $RECURSIVE OFF$ modes. The $RECURSIVE ON$
mode is required if it is possible to be processing multiple interrupts
at the same time.

Any special treatment of interrupts would require some assembly language
modules since instructions associated with interrupts are not available
in Pascal (SYNC, CWAI, ORCC, ANDCC).

With the previously defined interrupt vector definition the user should
compile procedures IRQ INT, NMI _INT, and SOFT_INT with the $INTERRUPT
ON$ option enabled. Care must be taken to turn off this option ex-
plicitly. The RESTART INT should be compiled as a main program, i.e.
PROGRAM RESTART INT.

Set Space Allocation

The 6809 compiler allocates sets by bytes. The Pascal statements:

PROGRAM TEST;
VAR S1: SET OF 0..31;

will allocate four bytes of data to the set S1. The bits in the set will
be numbered as follows:
7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
I I |

S1_addr| Byte #0 | Byte #1 |
| I |

23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24

| Byte #2 I Byte #3 I

2-15

PASCAL COMPILER
SUPPLEMENT-6809

User Defined Operators

Pascal/64000 allows the user to define his own special operators (user
defined operators). User defined operators are created by using the op-
tion: $USER_DEFINED$ during the declaration of a user type. The option
will apply to the declaration of one user type.

For user defined operators, the compiler will not generate in-line code
to perform the operations, instead, it will generate calls to user
provided run-time routines. The run-time routine names will be a com-
posite of the user’s type name and the operation being performed:
TYPENAME OPERATION. The first eleven characters of the user’s type name
are concatenated with an underscore and three characters identifying the
operation.

Operations

The following is a list of operators that can be user defined and the
run-time routine names that the compiler will create when the operations
are used on a user type:

Operation Symbol Run-time Routine

1. Add + <typename>_ ADD

2. Negate - <typename> NEG

3. Subtract - <typename>_ SUB

4. Multiply * <typename> MUL

5. Divide / or DIV <typename> DIV

6. Modulus MOD <typename>_ MOD

7. Equal Comparison = <typename>_ EQU

8. Not Equal Comparison <> <typename> NEQ

9. Less Than or Equal <= <typename> LEQ
to Comparison

10. Greater Than or Equal >= <typename> GEQ
to Comparison

11. Less Than Comparison < <typename> LES

12. Greater Than Comparison > <typename>_ GTR

The compiler will provide the user with a Store routine. The 6809 com-
piler will use the multi-byte move routine (MBmove).

2-16

PASCAL COMPILER
SUPPLEMENT-6809

Parameters

The parameters are passed to this routine by reference, i.e., the ad-
dresses of the parameters are passed. For the 6809, the parameters are
passed in the following registers:

Input: D contains the address of the first parameter
X contains the address of the second parameter
Y contains the address of the third parameter

Output: The result should be assigned through register Y

Register Y will not be defined for relational operations. The result
should be assigned to register B and the Z flag in register CC should be
set according to the following:

TRUE - B set to 1, Z flag is set

FALSE - B set to 0, Z flag is reset

Register Y will not be defined for the unary operation Negate; register
X will contain the result.

The routines for 6809 user-defined operators can be written in PASCAL;
routines can be either static or recursive.

The routines for binary operators should be defined as procedures with
three VAR parameters: argumentl, argument2, and result. Argumentl al-
ways corresponds to the left hand side operand and argument2 to the
right hand side operand, as follows:

result := argumentl OPERATOR argument2

The unary operator Negate routine should be defined as a procedure with
two VAR parameters: argument and result.

Finally, the routines for relational operators should be defined as
functions with two VAR parameters: argumentl and argument2 and a result
of type boolean. Care should be taken to assure that the Z flag is set
to the correct value. This may be accomplished by making certain that
the last thing the function does is to assign the function result.

NOTE

User operator routines may be defined
either as procedures or as functions
where the result of the operation is
the function result.

2-17

PASCAL COMPILER
SUPPLEMENT-6809

Example:
The following program defines and uses the user type "REAL":

"6809"
PROGRAM USER_TYPE;
TYPE
$USER__DEF INED$
REAL = RECORD
MANTISSA: ARRAY([O0..2] OF BYTE;
EXPONENT: BYTE;
END;

VAR
R1,R2,R3: REAL;
SEMAPHORE: BOOLEAN;

BEGIN

Rl := R2 - R3 * RI;

{ Compiler generated code for this statement: }
{ LDD #R1 ;address of Rl }
{ LDX #R2 ;address of R2 }
{ LDU #compiler_temporary;address of result }
{ LBSR REAL_MUL }
{ LDD #R2 }
{ TFR Y,X ;result of previous multiplication}
{ LDU #Rl }
{ LBSR REAL_ADD }
{ }
IF -R1<R2 THEN R1 := R2;

{ Compiler generated code for this statement: }
{ LDD #R1 }
{ LDX #compiler_temporary }
{ LBSR REAL_NEG }
{ TFR Y,D ;result of negation }
{ LDU #R2 }
{ LBSR REAL_LES }
{ LBEQ else_label ;Z flag should be 0 if false}
{ LDD #R! }
{ LDX #R2 }
{ LU #4 ;number bytes in type REAL }
{ LBSR MBmove }
{ else_label }
{ }

SEMAPHORE := R1 <= R2;

{ Compiler generated code for this statement: }
{ LDD #Rl }
{ LDX #R2 }
{ LBSR REAL_LE }
{ STB SEMAPHORE ;B should be set accordingly}
{ }

2-18

PASCAL COMPILER
SUPPLEMENT-6809

Options

OPTIMIZE
Default OFF.

Forward Branches - The 6809 has short branch instructions that can be used
when the location to be branched to is within 128 bytes from the branch
location. The compiler optimizes all backward branches since it knows
the distance to be branched to at compile time. Forward branches, on
the other hand, are always assumed to be long (the distance to be
branched to is not known). Since most forward branches have been found
to be short, an optimization has been added to the 6809 compiler such
that when the option $OPTIMIZE$ is ON, the compiler assumes that all
forward branches are short. This will cause a compiler error (Pass 3
ERROR-- 1200) if the branch happens to be out of range; if this occurs,
$OPTIMIZE$ should be turned OFF around the branch where the error oc-
curs. The error reads: Long range error, turn off OPTIMIZE for this
line.

Recursive Parameter Addressing = The 6809 has three different stack offset
sizes: 5 bits, 8 bits, and 16 bits. The parameters on a recursive
routine are always allocated on the stack and their stack offsets will
depend on the number and size of the variables and temporaries used in
the routine. Since the stack offset size for the parameters is not
known until the end of the routine, all stack offsets for recursive
parameters are assumed to be 16 bits long. When the option $OPTIMIZES$
is ON, however, the compiler makes an "educated guess” on the size of
the parameter stack offset. This can cause a compiler error if the ac-
tual offset size does not match the compilers guess, and the compiler
program counter will differ from the actual program counter. The error
will appear on the next label following the statement where the parame-
ter is accessed. When this error occurs, turn OPTIMIZE OFF at least for
the statement where the parameter is accessed. The error has a rippling
effect, so it is recommended that $OPTIMIZE$ be turned OFF for the en-
tire routine. The error reads: Program counters do not agree.

DEBUG
Default OFF.

The DEBUG option is used to check for arithmetic errors on arithmetic
operations for the standard types. Operations which may normally be
performed with in-line code (such as a BYTE add), will be performed
using a subroutine call if the $DEBUG$ option is ON. The library
routines in the debug library have checks to detect arithmetic errors.
The routines of the same name in the nondebug libraries perform the same
arithmetic operation but do not detect any error conditions.

2-19

PASCAL COMPILER
SUPPLEMENT-6809

Position Independent Code

Parts of the 6809 compiler are not position independent.

Case-statements have position-dependent code (absolute jump). This can
be avoided by writing if-statements instead of case-statements.

Addressing of constants, Some addresses and dope vectors are allocated in a
constant data area with the label "CONST prog"”. Possible cases that
require constants are: the use of the "IN' function, multi-dimensional
or integer element array references, pointers, user-defined constants,
etc. Compile your program with options expand and check the assembly
code for the label "CONST prog" to verify that the compiler has used the
constant area. The constant area is always allocated at the end of the
main program.

Addressing of static variables and temporaries. A program with no static vari-
ables and all procedures being recursive will not have this problem.

External procedures. Any external procedure requires an address (deter-
mined by the linker); this includes the run-time routines.

Pass2 Errors

Pass2 will be displayed on the screen with the message:
LINE # <line number>--PASS2 ERROR # <error number>

In addition, if a listing file has been indicated for the compilation it
will indicate pass2 errors where they occurred. It will also give you a
listing of the meaning of each error.

Pass2 error numbers will always be >=1000. Errors with numbers between
1000 and 1099 are fatal errors. Errors with numbers >=1100 are non-fatal

errors.

Pass?2 will stop generating code after a fatal pass 2 error. If a list-
ing file has been indicated for the compilation, pass 3 will give you a
listing with errors. Non-fatal errors are output to the display and to
the listing file (if one exists), but compilation continues after ap-
propriate action has been taken to correct the error. A list of pass 2
errors is given in Table 2-1.

2-20

PASCAL COMPILER
SUPPLEMENT-6809

Table 2-1, 6809 Pass2 Errors

1000 - "Out of memory"
The 6809 code generator has run out of memory, break up your
program and recompile.

1001 - "Size not implemented”
An integer larger than 16 bits has been detected.

1002 - "Size error"
A size larger than the maximum size allowed for a type has
been detected.

1003 - "Type not implemented"
A real or other unimplemented type has been detected.

1004 - "Type error”
An operation with an incorrect type of operands has been
detected; for example, a negation of an unsigned value.

1005 - "Unimplemented feature'
An attempt has been made at using a feature not implemented on
the 6809 code generator.

1006 - "Compiler error. Contact Hewlett-Packard"
This is a compiler level error. Please report this error to
Hewlett-Packard as soon as possible.

1007 - "Expression too complicated"
The compiler can not handle the level of complexity of this
expression, simplify your expression.

1008 - "Register needed but not available"
The compiler can not generate more code without additional
registers; add temporary results for your operations.

1010 - "Too many constants”
More than 256 constant values required during code generation.
Eliminate duplicate real constants or break up module and
recompile.

2-21

PASCAL COMPILER
SUPPLEMENT-6809

Table 2-1. 6809 Pass2 Errors (Cont’d)

1103 - "Interrupt procedure must not have parameters”
An interrupt procedure can not have parameters. The compiler
will ignore the parameters and continue to generate code.

1104 - "Interrupt procedure call not allowed"
An interrupt routine can only be accessed through an interrupt
vector, since it will return with an RTI instead of an RTS.
The compiler will ignore calls to interrupt routines.

1106 - "Program counter overflow"
The program will wrap around OFFFFH. Other errors may occur
if this is not corrected.

1107 - "Data counter overflow"
The data counter will wrap around OFFFFH.

1110 - "Defined a static routine within a recursive one"
Static routines can not be defined within recursive routines
because of the difference in addressing. The compiler makes
the routine recursive and continues to generate code.

1111 - "Interrupt routines must be at level one"
All interrupt routines must be at level one. For routines
defined at levels greater than 1 with $INTERRUPT ON$, the
compiler will ignore the option, i.e. it will generate a
non-interrupt routine.

1113 - "Program counters do not agree'
The program counter for a label generated by Pass 2 does not
agree with the program counter for that label in Pass 3.
Please report the error to Hewlett-Packard as soon as
possible. This error is detected in Pass 3.

1200 - "Long range error; turn off OPTIMIZE for this line"
The option $OPTIMIZE$ causes the code generator to use 2-byte
branch instructions for forward branches. This error occurs
when the label is too far away. Turning $OPTIMIZE OFF$ for
this line of code will produce a long jump which will always
work.

2-22

PASCAL COMPILER
SUPPLEMENT-6809

Chapter 3

Run-time Library Specifications

General

This chapter describes the run-time library routines needed to execute
Pascal programs compiled by the Pascal/64000 compiler for the 6809 mic-
roprocessor. Each routine description includes the purpose, input
requirements, and output results.

The library is logically divided into two groups of routines. One group
contains the standard library procedures and functions. The second
group supplies the elementary routines that supplement the standard 6809
instruction set. Tables 3-1 and 3-2 list the standard and supplemental
routines for the 6809 microprocessor.

Table 3-1. Pascal Library Routines (Standard)

Ref

Name Purpose Page
ARRAY _ Compute address of array element 3-6

PARAM Pass parameters to procedures 3-1}4
RENTRY _ Recursive procedure entry 3-11
INITHEAP Declares block of memory as memory pool 3-10
NEW Dynamic memory allocation 3-10
DISPOSE Dynamic memory deallocation 3-10
MARK Save current status of dynamic memory heap 3-10
RELEASE Restore prior status of dynamic memory heap 3-10

3-1

Name

Zbyteabs
Zbyteneg
Zbyteadd
Zubyteadd
Zbytesub
Zubytesub
Zbytemul
Zubytemul
Zbytediv
Zubytediv

Name

Zintabs
zintneg
Zintadd
Zuintadd
Zintsub
Zuintsub
Zintmul
Zuintmul
Zintdiv
Zuintdiv

Table 3-2. Pascal Library Routines (for 6809)

8-bit Arithmetic Group

Purpose

Byte absolute value

Byte negation

Byte addition

Unsigned byte addition

Byte subtraction

Unsigned byte subtraction
Byte multiplication
Unsigned byte multiplication
Byte division

Unsigned byte division

16-Bit Arithmetic Group

Purpose

Integer absolute value

Integer negation

Integer addition

Unsigned integer addition
Integer subtraction

Unsigned integer subtraction
Integer multiplication
Unsigned integer multiplication
Integer division

Unsigned integer division

Ref
Page

3-16
3-16
3-17
3-17
3-17
3-17
3-17
3-17
3-17
3-17

Ref
Page

3-18
3-18
3-19
3-20
3-20
3-20
3-20
3-20
3-19
3-20

PASCAL COMPILER
SUPPLEMENT-6809

PASCAL COMPILER
SUPPLEMENT-6809

Table 3-2. Pascal Library Routines (for 6809)(Cont’d)

Byte and Word Shifts

Ref
Name Purpose Page
Zbshift Byte shift logical with zero fill 3-22
Zbrotate Byte shift circular 3-22
Zushift Word shift logical with zero fill 3-23
Zwrotate Word shift circular 3-23

Byte and Word Set Operations

Ref
Name Purpose Page
Zbinset8 Byte in 8-bit set 3-24
Zbinsetl6 Byte in 16-bit set 3-25
Zbtoset8 Byte to 8-bit set 3-25
Zbtosetl6 Byte to 16-bit set 3-26
Zwinsetl6 Word in 16-bit set 3-27
Zwtosetl6 Word to 16-bit set 3-27

Multi-byte Operations

Ref
Name Purpose Page
MBmove Multi-byte assignment 3-28
MBequ Multi-byte equality test 3-29
MBnegq Multi-byte inequality test 3-29
MBgeq Multi-byte greater than or 3-29

equal test
MBgtr Multi-byte greater than test 3-29
MBleq Multi-byte less than or equal 3-29
test

MBles Multi-byte less than test 3-29

3-4

Name

INSETmb
TOSETmb
SETmbINT
SETmbUNI
SETmbDIF

SETmbLEQ

Name
Zcce

Zequ
Zneq
Zgeq

Zgtr
Zleq

Zles
Zugeq

Zugtr
Zuleq
Zules
Zbbounds
Zubbounds

Zwbounds
Zuwbounds

Table 3-2. Pascal Library Routines (6809)(Cont’d)

Multi-byte Set Operations

Purpose

Multi-byte set inclusion

Multi-byte set formation

Multi-byte set intersection

Multi-byte set union

Multi-byte set difference
or equal

Multi-byte set less than
or equal

Byte and Integer Comparison and
Bounds Checking Routines

Purpose

Carry cleared test
Byte and integer equality test
Byte and integer inequality test
Byte and integer greater than
or equal test
Byte and integer greater
than test
Byte and integer less than
or equal test
Byte and integer less than test
Unsigned byte and integer greater
than or equal test
Unsigned byte and integer greater
than test
Unsigned byte and integer less
than or equal test
Unsigned byte and integer less
than test
Byte bounds checking
Unsigned byte bounds checking
Integer bounds checking
Unsigned integer bounds checking

Ref
Page

3-31
3-32
3-32
3-32
3-32

3-33

Ref
Page

3-35
3-35
3-35
3-35
3-35
3-35

3-35
3-35

3-35
3-35
3-35
3-36
3-36

3-37
3-37

PASCAL COMPILER
SUPPLEMENT -6809

PASCAL COMPILER
SUPPLEMENT-6809

Table 3-2. Pascal Library Routines (for 6809)(Cont’d)

String Operations

Ref
Name Purpose Page
STmove String assignment 3-kLo
STequ String equality test 3-38
STneq String inequality test 3-38
STgeq String greater than or 3-38
equal test
STgtr String greater than test 3-38
STleq String less than or equal test 3-38
STles String less than test 3-38
CHequ String-char equality test 3-38
CHneq String-char inequality test 3-38
CHgeq String-char greater than or 3-38
equal test
CHgtr String-char greater than test 3-38
CHleq String-char less than or 3-38
equal test
CHles String-char less than test 3-38
Miscellaneous
Name Purpose
END DATA Label at the end of the library that can

be used to allocate the HEAP area.
Z END PROGRAM Label called at the end of the main program.
EMPTY SET _ The largest possible empty set for the 6809.
STACK _ Label for stack.

CASE_ERROR Label for case error.

PASCAL COMPILER
SUPPLEMENT-6809

Array Reference Routines

The Pascal/64000 compiler supports generalized array references with up
to 10 indices. The array reference routines are called with the
parameters:

DOPE_VECTOR - address of a record describing the array.

BASE ADDRESS - address of the first element of the array.
(May be indirected like a VAR parameter.)

Index list - addresses of the actual index expressions
(one for each formal index expression).

The array reference routines return the computed memory address to the X
register.

ARRAY__ .

The ARRAY routine returns the memory address of an n-dimensional array

reference expression. The array reference call for the 3-index array
variable expression:

A(1,J,7)
would be:
LDU BASE_ADDRESS ; base address of array A
LDY I
LDX J
PSHS X,U,Y
LDU #000T7H
PSHS U
LDA #3 ; number of indices passed
LDX DOPE_VECTOR_ADDRESS ; for array A
LBSR ARRAY .

3-6

PASCAL COMPILER
SUPPLEMENT-6809

To illustrate the use of indirection required for the base address,
consider variable B defined as a pointer to an array of the same type as
A in the above example. A reference to an element of B" with the vari-
able array expression:

R~ (6+T,J,7)

would generate a call to ARRAY in the form:

LDD T

ADDD #0006H

LDU [R] ; base address of array A
TFR D,Y

LDX J

PSHS X,U,Y

LDU #000TH

PSHS U

LDA #3 ; number of indices passed
LDX DOPE _VECTOR_ADDRESS ; for array A

LBSR ARRAY .

Pascal defines the ARRAY type recursively as a single dimensioned array
of any declarable Pascal type. Thus multi-dimensioned arrays are simply
defined as array of arrays. An array may be referred to in its entirety
(a2 so-called ENTIRE variable) by referring to the array by its name
using no parameters. A variable expression allows the user to refer to
an INDEXED element type by allowing from 1 to N index expressions to be
used in an array reference. Pascal arrays are stored such that the
rightmost subscript changes faster.

The ARRAY call for a two-indexed array variable expression with a
3-dimensional array A is as follows:

A(I,J)
For example:
LDU BASE ADDRESS ; base address of array A
LDY I
LDX J
PSHS U,Y.X
LDA #2 ; number of indices passed
LDA DOPE VECTOR_ADDRESS ; for array A
LBSR ARRAY .

3-7

PASCAL COMPILER
SUPPLEMENT-6809

The formulae for computing array element addresses are as
follows:

a. The formula used to compute the array element address is:
ADDRESS: BASE ADDRESS + (-OFFSET CONSTANT) +
(I1L * PROD 1) + (I2 * PROD_2) +...+
(IN * PROD N)

b. The (-OFFSET_CONSTANT) term is the product of the index
lower bounds and the row widths, i.e.,

(I1L * PROD 1) + (I2L * PROD 2) +...+
(INL * PROD N)

c. The expression used to compute the array row reference
using N-1 index expression is:

row_address := BASE ADDRESS + (-OFFSET_CONSTANT)
+ (I1 * PROD 1) +...+
(InMINUS_l * InMINUS_l) + ROWnMINUS 1
NOTE

The addition of ROWnMINUS 1 takes you to ROWn.

3-8

PASCAL COMPILER
SUPPLEMENT-6809

Generalized Array DOPE__ VECTOR
The form of the general array reference dope vector is equivalent to:

DOPE_VECTOR FDB N ;number of

; dimensions

FDB (-OFFSET CONSTANT) ;negative of
; constant

FDB PROD 1

FDB PROD 2

FDB PROD N

FDB ROW1

FDB ROW2

FDB ROWNMINUS 1
About the Routine:

At termination, this routine returns the stack pointer to the location
it held at the beginning of the program.

ARRAY jumps to an entrance point in subroutine ARR_ where the address
of those formal indices which are given is computed and then it returns
to ARRAY to add in the ROWn value(s).

The array reference routines return the computed memory address in the X
register.

NOTE

Users who write assembly language programs that
define and use multi-dimension arrays to be used
with the ARRAY routine need to ensure that their
use is consistent with the Pascal compiler. In
order to accomplish this, it is recommended that
the user write a simple Pascal program defining
and using the arrays. The user can then use the
expanded listing file or the $ASM FILE$ option to
determine how the Pascal compiler accesses these
arrays and defines the array dope vectors. It is
important that the user’s array dope vector be
identical to that produced by the compiler.

3-9

PASCAL COMPILER
SUPPLEMENT-6809

Dynamic Memory Allocation

Pascal/64000 supports dynamic allocation and deallocation of storage
space through the procedures NEW, DISPOSE, MARK, RELEASE, and INITHEAP.

INITHEAP

The user declares a block of memory to be used as the memory pool or
heap by calling: INITHEAP (Start_address, Length_in bytes : INTEGER).
The procedure, INITHEAP, must be declared EXTERNAL in the declaration
block of a program. The resultant heap will be six bytes smaller than
length_in bytes.

NEW

The procedure NEW (Pointer : Pointer_to_type) is used to allocate space.

The procedure, NEW, searches for available space in a free-list of as-
cending size blocks. When a block is found that is the proper size or
larger, it is allocated and any space left over is returned to the free-
list in a new place corresponding to the size of the leftover block. If
the referenced block is four or less bytes in size, four bytes will be
allocated.

DISPOSE

The procedure DISPOSE is exactly the reverse of the procedure NEW. It
indicates that storage occuppied by the indicated variable is no longer
required.

MARK

This procedure marks the state of the heap in the designated variable
that may be of any pointer type. The variable must not be subsequently
altered by assignment.

RELEASE

The procedure RELEASE restores the state of the heap to the value in the
indicated variable. This will have the effect of disposing all heap ob-
Jjects created by the NEW procedure since the variable was marked. The
variable must contain a value returned by a previous call to MARK; this
value may not have been passed previously as a parameter to RELEASE.

3-10

PASCAL COMPILER
SUPPLEMENT - 6809

Recursive Entry

Pascal/64000 supports recursive and reentrant calling sequences for
procedures compiled for the 6809 with the $RECURSIVE ON$ option by addi-
tional run-time entry code. This code causes the local data area of a
procedure to be allocated onto the stack before entry to the procedure
and to be deallocated from the stack upon exit from the procedure.
These functions are performed by the procedure RENTRY .

RENTRY__ .
RENTRY is called at the entry point of a procedure or function which
has been declared with the option $RECURSIVE ON§. RENTRY _will copy the

parameters, set the static links, and allocate the variable size area.

RENTRY is called upon entry to a recursive Pascal procedure or func-
tion. The calling sequence is:

LDU var_area_ size

LDA #level ;always <=16

LDX par_area_size s;could be zero

LDB #register par flag ; true (1) or
; false (0)

The stack format at entry to RENTRY :

NOTE
The stack entry at entry to RENTRY will

vary slightly according to how the para-
meters are passed.

3-11

PASCAL COMPILER
SUPPLEMENT-6809

Garbage
Par. #1
Par. #n

RA (calling routine)

RA from RENTRY

Procedure:
a. Copy the parameters from register S to (Y).

b. Copy the calling routine’s RA to "Garbage'.

c. Allocate var_size area.

The stack format at exit from RENTRY is as follows:

RA (calling routine)

Par.’s

Var.’s |

Static Links

All registers but CC are modified.

3-12

PASCAL COMPILER
SUPPLEMENT-6809

Parameter Passing

General

The procedure head is extended by a parameter list in which the formal
parameters are declared. The VAR in the parameter list indicates that
the values of the parameters may be changed within the body of the pro-
cedure. An example of a program used for parameter passing is as
follows:

PROCEDURE PROCA (VAR I: BYTE; VALUEP: BYTE);
BEGIN
I := I+VALUEP;
END;

The 6809 compiler knows whether it has to pass the address or the value
of the parameters; thus, no dope vector is necessary. It is recommended
that, unless otherwise necessary, pass by reference parameters are used
for parameters of a structured type. For example:

PROGRAM TEST;

TYPE ARRITO010: ARRAY[1..10] OF INTEGER;
VAR AA: ARRITOL10

PROCEDURE ONE(VAR A: ARR1TO010); ({pass by refer-}
{ence parameter}
BEGIN
END;
PROCEDURE TWO(A: ARKITO10) {pass by value }
{parameter }
BEGIN
END;
BEGIN
ONE(AA); {this call will pass two bytes of }
{parameter data, i.e., the address of AA}
TWO(AA); {this call will pass 20 bytes of }
{parameter data, i.e., the 10 values of }
{AA }

END.

3-13

PASCAL COMPILER
SUPPLEMENT-6809

Parameter Passer (PARAM_)

The parameter passer is called from a static routine receiving para-
meters where the parameters are not passed in registers. PARAM trans-
fers the parameters from the stack to the called routine’s static data
area.

If the total par-area-size in a static routine is less or equal to eight
bytes and there are not more than two parameters of size equal to one
byte, then the parameters will be passed in registers (instead of on the
stack), else all the parameters will be pushed on the stack.

A receiving routine where parameters are passed in the registers has to
store or push (for recursive routines) every parameter in the receiving
routine’s data area.

Calling sequence (from the routine passing the parameters, to the
routine receiving the parameters) for parameters not passed in
registers:

a. Calling a recursive routine:

LDrl par#l

LDrX par#x
PSHS r1,...,rx,PC
LDrl par#x+1l

LDrx par#n
PSHS rl,...,rx
LBSR receiving routine

b. Calling a static routine:

LDrl par#l

LDrx par#x
PSHS rl,...,rx
LDrl par#x+l

LDrx par#n
PSHS rl,...,rx
LBSR receiving routine

3-1)

PASCAL COMPILER
SUPPLEMENT-6809

Calling sequence (from a static routine receiving the parameters, to

PARAM):

LDX to_address
LDD par_area_size
LBSR PARAM_ .

Stack format at entry to PARAM :

Par. #1

Par. #n

RA (calling routine)

RA (receiving routine)

Stack format at exit from PARAM :

I l
| RA (calling routine) |

| | <mmmmmoeee (s)

NOTE

If you write assembly language programs that define
and use procedures and functions, particularly with
parameters, be sure their use is consistent with
the Pascal compiler. HP recommends writing a
simple Pascal program defining the procedure or
function with the desired parameter list and an
empty BEGIN END block for code. Then use the
expanded listing file or $ASM FILE$ option to
determine how the Pascal compiler enters and

exits the equivalent do-nothing procedure and how
the parameters are passed. Your assembly language
routines must follow the same entry, parameter
passing, and exit code produced by the compiler.

It is important that recursive or static mode
declarations (and use) be consistent.

3-15

PASCAL COMPILER
SUPPLEMENT-6809

Standard Byte Routines

For standard byte routines, parameter values are passed using specific
registers. The operands are 8-bit signed or unsigned bytes. There are
two groups of byte operations: the unary byte operation, and the binary
byte operation. These operations are discussed in the following
paragraphs.

Unary Byte Operations

Zbyteabs Byte absolute value
Zbyteneg Byte negation

The unary byte operation is of the form:
RESULT := op Bl

where:
Bl is loaded in register B

The library routine is called after loading Bl into the B register. The
byte RESULT is returned in the B register.

Register Allocation Summary :: Unary byte operations

Input: B contains value to be operated on
Output: B contains byte RESULT
Registers:

Modified: B
Unchanged: A,X,Y,U,S,CC

3-16

PASCAL COMPILER
SUPPLEMENT-6809

Binary Byte Operations

Zbyteadd Byte addition

Z.ubyteadd Unsigned byte addition
Zbytesub Byte subtraction

Zubytesub Unsigned byte subtraction
Zbytemul Byte multiplication
Zubytemul Unsigned byte multiplication
Zbytediv Byte division

Zubytediv Unsigned byte division

a. Zbyteadd performs the addition of two bytes.

b. Zbytediv performs the division of two bytes using the following

C.

algorithm:
(1) Shift divisor left to its highest possible value.
(2) Subtract divisor from dividend.

(3) If result is positive, put 1 in rightmost digit of
quotient. If negative, add divisor back into dividend and
put O in quotient.

(4) Shift divisor right and repeat steps 2 and 3 until divisor
returns to its original value. The result of the division
is available in register B upon completion. The remainder
is also available in register A (used for MODULUS).

Zbytemul performs the multiplication of two bytes. The actual
multiplication works on positive values and produces a positive
dummy result. The routine handles negative operands by counting
and complementing the negative operands using a counter which is
set to -1. If one negative operand exists, the counter equals
zero and causes the negation of the dummy result to obtain the
correct result. If both operands are positive or negative, the
positive dummy result is the actual result. The eight LSB of
the result of the multiplication are available in register B
upon completion of the routine and the eight MSB are in register
A.

. Zbytesub performs the subtraction of two bytes.

. Zubyteadd performs the addition of two unsigned bytes.

Zubytediv performs the division of two unsigned bytes. The bi-
nary division algorithm is as that of b above. The result of
the division is available in register B upon completion. The
remainder is also available in register A (used for MODULUS).

. Zubytemul performs the multiplication of two unsigned bytes.

3-17

PASCAL COMPILER
SUPPLEMENT-6809

h. Zubytesub performs the subtraction of two unsigned bytes.

Modified: A,B

Unchanged: X,Y,U,S,CC

|

| Register Allocation Summary :: Binary 8BIT ops.
|

|

| Input: B contains the first operand

| A contains the second operand

|

| Output: B contains the result

| A contains the MSB of result - MUL
| contains the remainder - DIV
|

| Registers:

|

|

I

Standard Integer Routines

The integer operations require 16-bit operands. The
cumulators are normally used as a 16-bit register (called D) for these
routines. As a register pair, the high-order byte is always stored in
register A and the low-order byte is stored in register B. Register X is
a 16-bit register and is used for binary operations and for returning
some results. There are two groups of integer operations: the unary in-
teger operation and the binary integer operation. These operations are
discussed in the following paragraphs.

Unary Integer Operations

Zintabs Integer absolute wvalue
Zintneg Integer negaticn

The unary integer operation is of the form:

RESULT := op I1

where:

I1 is loaded in register pair D.

two 8-bit ac-

The library routine is called after loading Il into register D. The in-
teger RESULT is returned in register D.

3-18

PASCAL COMPILER
SUPPLEMENT-6809

Register Allocation Summary :: Unary integer operations

Input: D contains integer value to be operated on
Output: D contains integer RESULT
Registers:

Modified: D
Unchanged: X,Y,U,S,CC

Binary Integer Operations

Zintadd Integer addition

Zuintadd Unsigned integer addition
Zintsub Integer subtraction

Zuintsub Unsigned integer subtraction
Zintmul Integer multiplication

Zuintmul Unsigned integer multiplication
Zintdiv Integer division

Zuintdiv Unsigned integer division

Zintadd performs the addition of two integers.

Zintdiv performs the division of two integers. The actual
division works on positive values and produces a positive
dummy result. The routine handles negative operands by
counting and complementing the negative operands using a
counter which is set to -1. If one negative operand
exists, the counter equals zero and causes the negation of
the dummy result. If both operands are positive or
negative, the dummy result is the correct answer. The
division algorithm is as follows:

(1) Shift divisor left to its highest possible value.

(2) Subtract divisor from dividend.

(3) If result is positive, put 1 in rightmost digit of
quotient. If negative, recover divisor before

subtraction and put 0 in quotient.

(4) shift divisor right and repeat steps b and ¢ until
divisor returns to its original value.

3-19

3-20

PASCAL COMPILER
SUPPLEMENT-6809

The result of the division is available in register D upon
completion. The remainder is available in register X
(used for MODULUS).

. Zintmul performs the multiplication of two integers.

The actual multiplication works on positive values and
produces a positive dummy result. The routine handles
negative operands by counting and complementing the
negative operands using a counter which is set to -1. If
one negative operand exists, the counter equals zero and
causes the negation of the dummy result. If both operands
are positive or negative, the positive dummy result is the
correct result. The multiplication occurs as follows:

(A:B) * (C:D) = BDH : BDL
+ BCH: BCL
+ ADH: ADL
+ ACH: ACL

The lower 16 bits of the result are placed into the D register
and the 16 most significant bits of the result are placed in
register X upon completion of the library routine.

. Zintsub performs the subtraction of two integers.

. Zuintadd performs the addition of two unsigned integers.

Zuintdiv performs the division of two unsigned integers. The bi-
nary division algorithm is as that in b above. The result of the
division is available in register D wupon completion. The
remainder is available in register X (for MOD).

Zuintmul performs the multiplication of two unsigned integers.
The actual multiplication occurs as explained in ¢ above. The
lower 16 bits of the result are placed into register D and the 16
most significant bits of the result are placed in register X upon
completion of the library routine.

. Zuintsub performs the subtraction of two unsigned integers.

Register Allocation Summary :: Binary 16BIT ops.

Input: X contains the first operand
D contains the second operand
Output: D contains the result
X contains the MSW of result - MUL
contains the remainder - DIV
Registers:

Modified: D,X
Unchanged: Y,U,S,CC

PASCAL COMPILER
SUPPLEMENT-6809

Byte and Word Shifts

Pascal/64000 supports logical and circular shifting of both byte (8-bit)
and word (16-bit) quantities using the predefined functions SHIFT and
ROTATE. These functions are available when compiling with the
$EXTENSIONS ON$ option of the compiler. The DIV operator using powers
of 2 may be used to accomplish an arithmetic right shift (i.e., with
sign extension). For example, X DIV 2 is equivalent to a one bit right
shift with sign extension.

SHIFT

Logical shifting with zero fill will shift the quantity left or right
placing a zero in the most (right shift) or least (left shift) sig-
nificant bit for each shift. The function is called with two para-
meters: the quantity to be shifted and the number of bit positions to
shift. The function call in Pascal is of the form:

variable := SHIFT(expression,n);
where:
expression is any expression, variable or constant
n is the number of bits to be shifted
where:
n>0 results in a left shift
n<0 results in a right shift

ROTATE

Circular shifting rotates the quantity left or right and fills the va-
cated position with the bit shifted out of the other end. The function
is called with two parameters: the quantity to be shifted and the number
of bit positions to shift. The function call in Pascal is of the form:

variable := ROTATE(expression,n);
where:
expression is any expression, variable or constant
n is the number of bits to be shifted
where:
n>0 results in a left circular shift
n<0 results in a right circular shift

3-21

PASCAL COMPILER
SUPPLEMENT-6809

Pascal/64000 determines the size (1 or 2 bytes) of the data being shift-
ed by the type of the first parameter expression. The type of result
returned by the function SHIFT or ROTATE is the same type as the type of
the first parameter expression.

Byte Shifts

Zbshift Byte shift logical with zero fill
Zbrotate Byte shift circular

The byte shift operations compute the byte result of shift expressions
of the form:

RESULT := SHIFT(B1,B2);

or

RESULT :

ROTATE (B1,B2);

where:
Bl is loaded in register A
B2 is loaded in register B

The library routine is called after loading Bl into register A and B2
into register B. The byte RESULT is returned in register B.

Register Allocation Summary :: Byte shift operations

Input: A contains byte to be shifted, Bl
B contains number of positions to shift, B2

Output: B contains byte RESULT
Registers:

Modified: B,CC
Unchanged: A.X,Y,U,S,DP

3-22

PASCAL COMPILER
SUPPLEMENT-6809

Word Shifts
Zwshift Word shift logical with zero fill
Zwrotate Word shift circular
The word shift operations compute the word result of shift expressions

of the form:

RESULT :

SHIFT(I1,I2);

or

RESULT := ROTATE(I1,I2);
where:
I1 is loaded in register X
I2 is loaded in register B

The library routine is called after loading Il into register X and I2
into register B. The word RESULT is returned in register D.

Register Allocation Summary :: Integer shift operations

Input: X contains word to be shifted, Il
B contains the number of positions to shift, I2

Output: D contains word RESULT
Registers:

Modified: D
Unchanged: X,Y,U,S,DP

3-23

PASCAL COMPILER
SUPPLEMENT-6809

Byte and Word Set Operations

Byte Set Operations

Zbinset8 Byte in 8-bit set
Zbtoset8 Byte to 8-bit set

Zbinset8. This routine is used to test the set membership of a byte
value in a specified byte set. For example, the Pascal/6L4000
expression:

R IN SET8

is a Boolean expression whose value is TRUE if bit R of SET8 is set and
FALSE if bit R of SET8 is reset.

Register Allocation Summary :: Zbinset8

Input: B contains the byte set being compared
A contains byte value to be tested

Output: B set to 0, Z flag set if value not in set
B set to 1, Z flag reset if value in set

Registers:
Modified: B,CC
Unchanged: A,X,Y,U,S,DP

At termination, register A will contain the byteset
which was compared.

3-24

PASCAL COMPILER
SUPPLEMENT-6809

Zbtoset8. This routine converts a byte into an 8-bit set. The only
valid input values are 0 through 7. Out of range values are detected in
the debug 1library, DLIB 6809:C6809, but are not detected in
LIB 6809:C6809 and may produce out of range results. The Pascal
statements:

Q :
SET8 :

BIT 0;
[Q]

will assign to SET8 a byte with the least significant bit set and all
the others reset.

Register Allocation Summary :: Zbtoset8

Input: B contains byte value to be converted
Output: B contains the byteset result
Registers:

Modified: B
Unchanged: A,X,Y,U,S,CC

Word Set Operations

Zbinset16 Byte in 16-bit set
Zbtoset16 Byte to 16-bit set
Zwinset16 Word in 16-bit set
Zwtoset16 Word to 16-bit set

Zbinsetl6. This routine is used to test the set membership of a byte
value in a specified word set. For example, the Pascal/64000
expression:

V IN SET16

is a Boolean expression whose value is TRUE if bit V of SET16 is set and
FALSE if bit V of SET16 is reset.

3-25

PASCAL COMPILER
SUPPLEMENT -6809

Register Allocation Summary :: Zbinsetl6

Input: B contains byte value to be tested
X contains the word set being compared

Output: B set to 0, Z flag set if value not in set
B set to 1, Z flag reset if value in set

Registers:
Modified: B,CC
Unchanged: A,X,Y,U,S,DP

At termination, register X will contain the word
set compared.

Zbtosetl6. This routine converts a byte into a 16-bit set. The only
valid input values are 0 through 15. Out of range values are detected
in the debug 1library, DLIB 6809:C6809, but are not detected in
LIB_6809:C6809 and may produce out of range results. The Pascal
statements:

V := BIT_15;
SET16 (vl;

will assign to SET16 a word with the most significant bit of the second
byte of SET16 set and all the others reset.

Register Allocation Summary :: Zbtosetl6

Input: B contains byte value to be converted
Output: D contains the wordset result
Registers:

Modified: D
Unchanged: X,Y,U,S,CC

3-26

PASCAL COMPILER
SUPPLEMENT-6809

Zwinset16. This routine is used to test the set membership of a word
value in a specified word set. For example, the Pascal/64000
expression:

W IN SET16

is a Boolean expression whose value is TRUE if bit W of SET16 is set and
FALSE if bit W of SET16 is reset.

Register Allocation Summary :: Zwinsetl6

Input: D contains word value to be tested
X contains the word set being compared

Output: B set to 0, Z flag set if value not in set
B set to 1, Z flag reset if value in set

Registers:
Modified: D,CC
Unchanged: X,Y,U,S,DP

Zwtosetl6. This routine converts a word into a 16-bit set. The only
valid input values are 0 through 15. Out of range values are detected
in the debug library, DLIB 6809:C6809, but are not detected in
LIB 6809:C6809 and may produce out of range results.

Register Allocation Summary :: 2Zwtosetl6é

Input: D contains word value to be converted
Output: D contains the wordset result

Registers:
Modified: D
Unchanged: X,Y,U,S,CC

3-27

PASCAL COMPILER
SUPPLEMENT-6809

Multi-byte Operations

The multi-byte routines are used by the compiler to operate on multi-
byte records (or arrays) of the same type.

MBmove

The routine MBmove is used for moving multi byte records such as in an
assignment of a complete record type or an array type to another of the
same type. The Pascal statements:

VAR A1,A2:ARRAY[0..LENGTH] OF BYTE;
BEGIN

Al:=A2;

Will cause a call to MBmove.

Register Allocation Summary :: MBmove

|
l
|
|
| Input: X contains the first record’s addr.

| U contains the second records’s addr.
| D contains the number of bytes in

| the records.

|

|

|

|

|

Registers:
Modified : D
Unchanged: X,Y,U,S,CC

3-28

PASCAL COMPILER
SUPPLEMENT-6809

Multi-byte Comparisons

MBequ Multi-byte equality test

MBneq Multi-byte inequality test

MBgeq Multi-byte greater than or
equal test

MBgtr Multi-byte greater than test

MBleq Multi-byte less than or equal
test

MBles Multi-byte less than test

MBequ. This routine is used by the compiler to test multi-byte records
of the same type for equality.

MBneq. This routine is used by the compiler to test multi-byte records
of the same type for inequality.

MBgeq. This routine is used by the compiler to test if one set of
records is greater than or equal to another set of records of the same
type. The test is unsigned.

MBgtr. This routine is used by the compiler to test if one set of multi-
byte records is greater than another set of the same type. The test is
unsigned.

MBleq. This routine is used by the compiler to test if one set of
records 1is less than or equal to another set of records of the same
type. The test is unsigned.

MBles. This routine is wused by the compiler to test if one set of
records is less than another set of records of the same type. The test
is unsigned.

The records might be defined in the PASCAL source program by:

TYPE
PERSON=RECORD
NAME : ARRAY([1..LENGTH] OF CHAR
ADDRESS : ARRAY([1..LENGTH] OF CHAR
END;
VAR
SALESPERSON,TOP_SALESPERSON : PERSON;;

3-29

PASCAL COMPILER
SUPPLEMENT-6809

In use of the variables, one might question equality such as: In use of
the variables, one might question equality such as:

(MBequ) IF SALESPERSON = TOP SALESPERSON THEN...
(MBneq) IF SALESPERSON <> TOP_SALESPERSON THEN...

A compare routine is called to compare the bytes and upon re-entry to
this program, a branch is taken to either a 'true" or "false" routine.

PASCAL/64000 does not accept <=, <, >= or > comparisons for arrays or
records, therefore the 6809 code generator will never generate calls to
MBleq, MBles, MBgeq and MBgtr. These routines have been included in the
library for consistency and are available to the user.

Register Allocation Summary :: Multi-bytes

Input: X contains the first record’s addr.
U contains the second records’s addr.
D contains the number of bytes in
the records.

Registers:
Modified : D
Unchanged: X,Y,U,S,CC

Output:
test results B register Z flag
true 1 reset

false 0 set

Additionally, register A will contain the byte within the first set of
bytes which caused the equality comparison to fail or was the last
equal byte to be compared.

3-30

PASCAL COMPILER
SUPPLEMENT-6809
Multi-byte Set Operations

Pascal/64000 supports 8-bit and 16-bit sets as well as larger sets with
up to 256 elements. These larger sets, requiring three or more bytes,
are referred to as multi-byte sets.

Multi-byte Set Routines

INSETmb Multi-byte set inclusion
TOSETmb Multi-byte set formation
SETmbINT Multi-byte set intersection
SETmbUNI Multi-byte set union
SETmbDIF Multi-byte set difference
SETmbLEQ Multi-byte subset inclusion

INSETmb., This routine is used to test the set membership of an integer
value in a multi-byte set. For example, the Pascal/64000 expression:

V IN SETmb

is a boolean expression whose value is TRUE if bit V of SETmb is set and
FALSE if bit V of SETmb is reset.

Register Allocation Summary :: INSETmb

Input : X contains address of the multi-byte
set
D contains the integer value V

Output: IF V is contained in set
THEN
B set to 1 (TRUE), Z flag reset
ELSE
B set to O (FALSE), Z flag set

Registers:
Modified : D,CC
Unchanged: X,Y,U,S,DP

3-31

PASCAL COMPILER
SUPPLEMENT-6809

TOSETmb. This routine is used to convert a value into a multi-byte
set. For example, the Pascal/64000 statements:

Q :
SETmb :

BIT O;
(Ql;

will assign to SETmb a set with the least significant bit set and all
others off.

Register Allocation Summary :: TOSETmb

Input: X contains byte value to be converted
U contains the addr. of the result set
D contains the number of bytes in the
set

Registers:
Modified: D
Unchanged: X,Y,U,S,CC

SETmbINT. This routine is used to compute the set intersection of two
multi-byte sets.

SETmbUNI This routine is used to compute the set union of two multi-
byte sets.

SETmbDIF. This routine is used to compute the set difference of two
multi-byte sets. The set difference is a set containing all the ele-
ments of the multi-byte set in (X) which are not contained in the multi-
byte set in (U).

3-32

PASCAL COMPILER
SUPPLEMENT-6809

Register Allocation Summary :: Big sets

Input : X contains the first set’s adr.
U contains the second set’s adr.
Y contains the result set’s adr.
D contains the number of bytes
Registers:

Modified : D
Unchanged: X,Y,U,S,CC

SETmbLEQ. This routine is used to compute the set inclusion of two
multi-byte sets. For example, the Pascal/64000 expression:

LARGE_SET[O,7,63] <= S1
is a boolean expression whose value is TRUE if bits 0, 7, and 63 of S1
are all set; otherwise the value is FALSE. This is equivalent to asking
if the set with bits 0, 7, and 63 set is a subset of S1.
For expressions of the form:

S1 >= 82

the boolean result indicates whether S2 is a proper subset of S1.

Register Allocation Summary :: SETmbLEQ

Input : X contains address of S1
U contains address of S2
D contains the number of bytes

Output: IF S2 is a subset of S1
THEN
B set to 1 (TRUE), Z flag reset
ELSE
B set to 0 (FALSE), Z flag set

Registers:
Modified : D,CC
Unchanged: X,Y,U,S

3-33

PASCAL COMPILER
SUPPLEMENT-6809

The Pascal/64000 expression:
S1 >= LARGE SET[0,7,63]

is a boolean expression whose value is TRUE if bits 0, 7, 63 of S1 are
all set; otherwise, the value is FALSE. This is equivalent to asking if
the set with bits 0,7,63 set is a subset of Sl.

For expressions of the form: S1 >= 82
the boolean result indicates whether S2 is a proper subset of S1.

To accomplish this operation, the 6809 compiler will invert the operands
and proceed to call SETmbLEQ.

Byte and Integer Comparison and

Bounds Checking Routines

The comparison (=,<>,>=,>,<=,<) of byte and integer variables produces a
Boolean result (FALSE or TRUE) based on the signed or unsigned sequences
of byte or word scalar types. In many cases where the comparison is
being used as the condition for an IF, REPEAT, or WHILE statement, a
branch is taken based on the result of the comparison. However, if the
Boolean result is being assigned to a variable or if the expression has
multiple comparisons (using AND and OR) an actual Boolean result is
required. The byte and word comparison subroutines are used specifical-
ly in these situations were the Boolean result is necessary for further
computations.

When the $RANGE ON$ option is enabled, all assignment statements and pa-
rameter passing of byte and word variables are checked to assure that
they are within the bounds of the declared type. The range checking
routines for byte and word variables are also described in this section.

Byte and Word Comparisons

Zcc Carry clear test

Zequ Byte and integer equality test

Zneq Byte and integer inequality test

78eq Byte and integer greacer than or equal test

Zgtr Byte and integer greater than test

Zleq Byte and integer less than or equal test

Zles Byte and integer less than test

Zugeq Unsigned byte and integer greater than or
equal test

Zugtr Unsigned byte and integer greater than test

Zuleq Unsigned byte and integer less than or equal
test

Zules Unsigned byte and integer less than test

3-34

PASCAL COMPILER
SUPPLEMENT-6809

Library subroutines are called when the Boolean result is required of a
comparison expression of the form:

I1 .op. I2

Zce is called to test if the carry bit is cleared.

Zequ is called to test for equality between I1 and I2 by testing if
the Z flag of the condition codes is set.

Zneq is called to test for inequality between I1 and I2 by testing
if the Z bit of the condition codes is set.

Zgeq is called to test if Il is greater than or equal to I2 by test-
ing if either, but not both, of the N or V bits of the condition
codes is set.

Zgtr is called to test if Il is greater than I2 by testing if the
"EXCLUSIVE OR " of the N and V bits is 1 or Z=1.

Zleq is called to test if I1 is less than or equal to I2 by testing
if the "EXCLUSIVE OR" of the N and V bits is 1 or 2Z=1.

Zles is called to test if either, but not both, of the N or V bits
is set.

Zugeq 1is called to test if Il is less than I2 by testing if the C
flag of the condition codes is set.

Zugtr is called to test if Il is greater than I2 by testing if the
previous operation caused either a carry or a zero result.

Zuleq is called to test if I1 is less than or equal to I2 by testing
if the previous operation caused either a carry or a zero result.

Zules is called to test if the C bit is set or not.

Output:
test results B register Z flag
true 1 reset
false 0 set

3-35

PASCAL COMPILER
SUPPLEMENT-6809

Byte Bounds Checking

Zbbounds Byte bounds checking
Zubbounds Unsigned byte bounds checking

The bounds checking for signed and unsigned byte variables use the same
calling sequence and return the same results. The value being checked is
loaded into register X. The upper limit is loaded into register A and
the lower limit is loaded into register B. Upon return, register B con-
tains the Boolean result (FALSE or TRUE) of the bounds check and the Z
flag will be set according to the Boolean value in B. If B=FALSE (O)
then Z is set. If B=TRUE (1) then Z is reset.

The logic of the routine is:

IF UL <= V <= LL THEN true_result
ELSE false result

Register Allocation Summary :: Byte bounds check

Input: B contains the value V
MSB of X contains the lower limit (LL)
LSB of X contains the upper limit (UL)

Output: B set to 0, Z flag set if value not in range
B set to 1, Z flag reset if value in range

Registers:
Modified: B,CC
Unchanged: X,Y,U,S

3-36

PASCAL COMPILER
SUPPLEMENT-6809

Word Bounds Checking

Zwbounds Integer bounds checking
Zuwbounds Unsigned integer bounds checking

The bounds checking for signed and unsigned word variables use the same
calling sequence and return the same results. The value being checked is
loaded into register X. The upper 1limit is loaded into register D and
the lower limit is loaded into register U. Upon return, register B con-
tains the Boolean results (FALSE or TRUE) of the bounds check and the Z
flag will be set according to the Boolean value of register B. If
B=FALSE then Z is set. If B=TRUE than Z is reset.

The logic of the routine is:

IF UL <=V <= LL THEN true result
ELSE false result

Register Allocation Summary :: Word bounds check

D contains the upper limit (UL)
U contains the lower limit (LL)
X contains the value V

Input:

Output: B set to 0, Z flag set if value not in range
B set to 1, Z flag reset if value in range

Registers:
Modified: B,CC
Unchanged: X,Y,U,S

3-37

PASCAL COMPILER
SUPPLEMENT -6809

Strings and Characters

The routines STequ, STneq, STgeq, STgtr, STleq, STles are used by the compiler
to test strings equality or inequality.

The routines CHequ, CHneq, CHgeq, CHgtr, CHleq, CHles are used by the compiler
to test strings .vs. characters equality or inequality. The character
is always the first argument (the compiler will invert the relational
operand if necessary, i.e. ST <= CH becomes CH > ST). This routines will
set up their arguments and then call the string routines.

A compare routine is called to compare the bytes and upon re-entry to
this program, a branch is taken to either a 'true" or "false" routine.

String equality and inequality in the PASCAL compiler are determined by
the following rules:

a. Two strings are equal IF their lengths are equal and they are
equal character by character.

b. The inequality of two strings is determined by the first character

by which they differ and if all characters are equal then the
longest string is the largest.

3-38

PASCAL COMPILER
SUPPLEMENT-6809

Register Allocation Summary: String routines

Input : X contains the first string’s addr.
U contains the second string’s addr.
D contains the number of bytes in
the string’s type

Registers:
Modified : D
Unchanged: X,Y,U,S,CC

Register Allocation Summary: Character routines

Input : B contains the character (first operand)
U contains the string’s address
D contains the number of bytes in the
string’s type

Registers:
Modified : D
Unchanged: X,Y,U,S,CC

Output:
test results B register Z flag
true 1 reset
false 0 set

Additionally, register A will contain the byte within the first set of
bytes which caused the equality comparison to fail or was the last equal
byte to be compared.

3-39

PASCAL COMPILER
SUPPLEMENT-6809

STmove

The routine STmove is used to copy a string from one 1location to
another. The Pascal statements:

VAR ST1: PACKED ARRAY[1..nl] OF CHAR;
{ ST1[0] contains the run-time length of ST1 }
ST2: PACKED ARRAY[1..n2] OF CHAR;

{ ST2[0] contains the run-time length of ST2)}
BEGIN

ST1:=ST2;

Will cause a call to STmove.
The string assignment is determined by the following rules:
if S8T2[0] > nl then run-time-error;

if ST2[0] <= nl then assign ST2[0]+1 bytes into ST1,
starting at ST2[0];

Register Allocation Summary :: STmove

Input: X contains the first string’s addr.
U contains the second string’s addr.
D contains the number of bytes in the
first string’s type (nl+l)

Registers:
Modified : D
Unchanged: X,Y,U,S,CC

3-k4o0

PASCAL COMPILER
SUPPLEMENT-6809

Chapter 4

Real Number Library

Introduction

The Pascal/64000 implementation of the IEEE floating point standard for
the 6809 microprocessor is supported by real library RealLIB:C6809 (for
Pascal data types: LONGREAL and REAL).

The user interface to these libraries is similar to that described for
"User Defined Operators” (see Chapter 2). Each library routine name is
a global symbol composed of the symbol REAL or LONGREAL followed by the
operation mnemonic (such as REAL ADD or LONGREAL MUL). where op is the
mnemonic for one of the supported operations. Since the compiler per-
forms some automatic type conversions, there are some additional opera-
tions to convert between INTEGER, REAL and LONGREAL data types. Each of
the library routines is defined by the equivalent Pascal procedure head-
ing for its declaration.

Table Y4-1 summarizes the floating point routines supported by the
Pascal/6L000 real number libraries. The text describes in more detail
the external calling sequence used by the 6809 code generator to invoke
these routines. For each routine the Pascal procedure or function head-
ing is given which describes the logical interface for passing para-
meters and receiving results.

4-1

y-2

PASCAL COMPILER
SUPPLEMENT-6809

Table 4-1. Pascal Real Number Library Routines

Name Purpose
REAL ADD Real addition
REAL SUB Real subtraction
REAL_MUL Real multiplication
REAL DIV Real division
REAL_ABS Real absolute value
REAL_NEG Real negation
REAL_SQRT Real square root
REAL EXP Real exponentiation(e to the X)
REAL LN Real natural logarithm
REAL_SIN Real sine
REAL_COS Real cosine
REAL ATAN Real arctangent
REAL _EQU Real equality test
REAL NEQ Real inequality test
REAL LES Real less than test
REAL_GTR Real greater than test
REAL LEQ Real less than or equal test
REAL GEQ Real greater than or equal test
REAL_FLOAT Integer to real conversion
REAL_ROUND Real to integer conversion with rounding
REAL_TRUNC Real to integer conversion with truncation
LONGREAL_ADD Longreal addition
LONGREAL_SUB Longreal subtraction
LONGREAL MUL Longreal multiplication
LONGREAL DIV Longreal division
LONGREAL_ABS Longreal absolute value
LONGREAL NEG Longreal negation
LONGREAL SQRT Longreal square root
LONGREAL _EXP Longreal exponentiation(e to the X)
LONGREAL LN Longreal natural logarithm
LONGREAL_SIN Longreal sine
LONGREAL_COS Longreal cosine
LONGREAL_ATAN Longreal arctangent
LONGREAL_EQU Longreal equality test
LONGREAL NEQ Longreal inequality test
LONGREAL LES Longreal less than test
LONGREAL_GTR Longreal greater than test
LONGREAL LEQ Longreal less than or equal test
LONGREAL GEQ Longreal greater than or equal test

LONGREAL_FLOAT
LONGREAL_ROUND
LONGREAL_TRUNC

REAL_CONTRACT
REAL_EXTEND

Integer to longreal conversion

Longreal
Longreal
Longreal

to integer conversion with rounding
to intgr conversion with truncation
to real conversion

Real to longreal conversion

PASCAL COMPILER
SUPPLEMENT-6809

Floating Point BINARY Operations

For binary floating point operations of the form:
RESULT:= LEFT <op> RIGHT

the equivalent Pascal procedure heading is in the form:

PROCEDURE REAL <op> (VAR LEFT,RIGHT,RESULT:REAL)

or
PROCEDURE LONGREAL <op> (VAR LEFT,RIGHT,RESULT:LONGREAL).

Binary operations supported in RealLIB:C6809 are as follows:

PROCEDURE REAL ADD (VAR LEFT,RIGHT,RESULT:REAL)
PROCEDURE REAL SUB (VAR LEFT,RIGHT,RESULT:REAL)
PROCEDURE REAL MUL (VAR LEFT,RIGHT,RESULT:REAL)
PROCEDURE REAL DIV (VAR LEFT,RIGHT,RESULT:REAL)
PROCEDURE LONGREAL ADD (VAR LEFT,RIGHT,RESULT:LONGREAL)
PROCEDURE LONGREAL _SUB (VAR LEFT,RIGHT,RESULT:LONGREAL)
PROCEDURE LONGREAL MUL (VAR LEFT,RIGHT,RESULT:LONGREAL)
()

PROCEDURE LONGREAL DIV (VAR LEFT,RIGHT,RESULT:LONGREAL

Floating Point UNARY Operations
For unary floating point operations of the form:
RESULT:= <op> RIGHT
the equivalent Pascal procedure heading is in the form:
PROCEDURE REAL <op> (VAR RIGHT,RESULT:REAL)

or
PROCEDURE LONGREAL <op> (VAR RIGHT,RESULT:LONGREAL).

Unary operations supported in

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

REAL_ABS
REAL_NEG
REAL_SQRT
REAL_EXP
REAL_LN
REAL_SIN
REAL_COS
REAL_ATAN

(VAR
(VAR
(VAR
(VAR
(VAR
(VAR
(VAR
(VAR

LONGREAL_ABS
LONGREAL_NEG
LONGREAL_SQRT
LONGREAL_EXP
LONGREAL LN

LONGREAL_SIN
LONGREAL_COS

PASCAL COMPILER
SUPPLEMENT-6809

RealLIB:C6809 are as follows:

RIGHT,RESULT:REAL)
RIGHT,RESULT:REAL)
RIGHT,RESULT:REAL)
RIGHT,RESULT:REAL)
RIGHT,RESULT:REAL)
RIGHT,RESULT:REAL)
RIGHT,RESULT:REAL)
RIGHT,RESULT:REAL)

(VAR RIGHT,RESULT:
(VAR RIGHT,RESULT:
(VAR RIGHT,RESULT:
(VAR RIGHT,RESULT:
(VAR RIGHT,RESULT:
(VAR RIGHT,RESULT:
(VAR RIGHT,RESULT:

LONGREAL)
LONGREAL)
LONGREAL)
LONGREAL)
LONGREAL)
LONGREAL)
LONGREAL)
LONGREAL)

LONGREAL:ATAN (VAR RIGHT,RESULT:

Floating Point Comparison Operations

For floating point comparison operations of the form:
BOOLEAN: = LEFT <op> RIGHT

the equivalent Pascal procedure heading is in the form:

FUNCTION REAL <op> (VAR LEFT,RIGHT:REAL):BOOLEAN;
or
FUNCTION LONGREAL <op> (VAR LEFT,RIGHT:LONGREAL):BOOLEAN;

Comparison operations supported in RealLIB:C6809 are as follows:
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION

REAL EQU (VAR LEFT,RIGHT:REAL) :BOOLEAN
REAL NEQ (VAR LEFT,RIGHT:REAL) :BOOLEAN
REAL LES (VAR LEFT,RIGHT:REAL) :BOOLEAN
REAL GTR (VAR LEFT,RIGHT:REAL) :BOOLEAN
REAL LEQ (VAR LEFT,RIGHT:REAL) :BOOLEAN
REAL GEQ (VAR LEFT,RIGHT:REAL):BOOLEAN
LONGREAL EQU (VAR LEFT,RIGHT:LONGREAL) :BOOLEAN
LONGREAL NEQ (VAR LEFT,RIGHT:LONGREAL):BOOLEAN
LONGREAL LES (VAR LEFT,RIGHT:LONGREAL):BOOLEAN
LONGREAL GTR (VAR LEFT,RIGHT:LONGREAL):BOOLEAN
LONGREAL LEQ (VAR LEFT,RIGHT:LONGREAL):BOOLEAN
LONGREAL GEQ (VAR LEFT,RIGHT:LONGREAL) :BOOLEAN

4-4

PASCAL COMPILER
SUPPLEMENT-6809

Floating Point Conversion Operations

For floating point conversion operations of the form:
RESULT:= <op> RIGHT

the equivalent Pascal procedure heading is in the form:

PROCEDURE REAL <op> (VAR RIGHT:RIGHTtype ;VAR
RESULT:RESULTtype)

or
PROCEDURE LONGREAL <op> (VAR RIGHT:RIGHTtype;VAR
RESULT:RESULTtype)

Conversion operations supported in RealLIB:C6809 are as follows:

PROCEDURE REAL FLOAT (VAR RIGHT:INTEGER;VAR RESULT:REAL)
PROCEDURE REAL ROUND (VAR RIGHT:REAL;VAR RESULT:INTEGER)
PROCEDURE REAL TRUNC (VAR RIGHT:REAL;VAR RESULT:INTEGER)
PROCEDURE LONGREAL FLOAT (VAR RIGHT:INTEGER;VAR

RESULT: LONGREAL)

PROCEDURE LONGREAL ROUND (VAR RIGHT:LONGREAL;VAR

RESULT: INTEGER)

PROCEDURE LONGREAL TRUNC (VAR RIGHT:LONGREAL;VAR

RESULT: INTEGER)

PROCEDURE REAL CONTRACT (VAR RIGHT:LONGREAL;VAR
RESULT:REAL)

PROCEDURE REAL_EXTEND (VAR RIGHT:REAL;VAR

RESULT: LONGREAL)

Floating Point Error Detection

The floating point libraries have two error conditions which, when
detected, cause the execution of one of two global routines: OVERFLOW
and INVALID. OVERFLOW is called when an operation would produce an in-
valid number. INVALID is called when an invalid floating point number
is passed as a parameter to one of the floating point routines.

Users may replace either of these routines with an error recovery
routine of their own. In particular, defining either of these routines
as a simple return from subroutine instruction (RTS) will cause the
program to continue with an invalid number returned as a result.

The routines provided in the library will write a message to the buffer
ERROR MESSAGE indicating the type of error and where it occurred. They
will then return and continue normal operation.

You can get this error information by entering the emulation command:

display memory ERROR MESSAGE blocked word

which will produce a memory display indicating the error condition.

45

PASCAL COMPILER
SUPPLEMENT-6809

If no error has occurred, the display will appear as follows:

Memory :words :blocked :repetitively
address data chex rascii

9003-12 YE6F 2065 7272 6F72 2020 2020 2020 2020 No error
9013-22 2020 2020 2020 2020 2020 2020 2020 2020
9023-32 2020 2020 2020 2020 2020 2020 2020 2020
9033-U42 2020 2020 2020 2020 2020 2020 2020 2020
9043-52 2020 2020 2020 2020 2020 2020 2020 2020
9053-62 2020 2020 2020 2020 2020 2020 2020 2020
9063-T72 2020 2020 2020 2020 2020 2020 2020 2020
9073-82 2020 2020 2020 2020 2020 2020 2020 2020
9083-92 2020 2020 2020 2020 2020 2020 2020 2020
9003-A2 2020 2020 2020 2020 2020 2020 2020 2020
90A3-B2 2020 2020 2020 2020 2020 2020 2020 2020
90B3-C2 2020 2020 2020 2020 2020 2020 2020 2020
90C3-D2 2020 2020 2020 2020 2020 2020 2020 2020
90D3-E2 2020 2020 2020 2020 2020 2020 2020 2020
90E3-F2 2020 2020 2020 2020 2020 2020 2020 2020
90F3-02 2020 2020 2020 2020 2020 2020 2020 2020

Memory :words :blocked :repetitively
address data thex tascii

9003-12 5265 616C 2020 2020 6572 T26F 7220 2020 Real error
9013-22 LOLE 5641 LCL9 U420 2020 2020 2020 2020 INVALID
9023-32 5245 41LC SFL1 LULY 2020 2020 2020 2020 REAL ADD
9033-k2 T26F T5T4 696E 6520 6361 6C6C 6564 2020 routine
90u43-52 6279 2020 2020 2020 7573 6572 2020 2020 called by
9053-62 6672 6F6D 2020 2020 6164 6472 6573 7320 user from
9063-72 3143 3137 L82E 2020 2020 2020 2020 2020 address
9073-82 2020 2020 2020 2020 2020 2020 2020 2020 1C17H.
9083-92 2020 2020 2020 2020 2020 2020 2020 2020

9093-A2 2020 2020 2020 2020 2020 2020 2020 2020

90A3-B2 2020 2020 2020 2020 2020 2020 2020 2020

90B3-C2 2020 2020 2020 2020 2020 2020 2020 2020

90C3-D2 2020 2020 2020 2020 2020 2020 2020 2020

90D3-E2 2020 2020 2020 2020 2020 2020 2020 2020

90E3-F2 2020 2020 2020 2020 2020 2020 2020 2020

90F3-02 2020 2020 2020 2020 2020 2020 2020 2020

PASCAL COMPILER
SUPPLEMENT-6809

Memory
address

9003-12
9013-22
9023-32
9033-42
9043-52
9063-T72
9073-82
9083-92
9093-42
90A3-B2
90B3-C2
90C3-D2
90D3-E2
90E3-F2
90F3-02

data

5265 616C
UF56 4552
LCUF LELT

2020
Lékhc
5245

T26F 7574 696E

6279 2020
3144 3535
2020 2020
2020 2020
2020 2020
2020 2020
2020 2020
2020 2020
2020 2020
2020 2020
2020 2020

2020
L82E
2020
2020
2020
2020
2020
2020
2020
2020
2020

2020
W57
IR
6520
2020
2020
2020
2020
2020
2020
2020
2020
2020
2020
2020

Floating Point Number Internal Format

:words :blocked :repetitively

shex

7220
2020
2020
6564
2020
2020
2020
2020
2020
2020
2020
2020
2020
2020
2020

2020
2020
2020
2020
2020
2020
2020
2020
2020
2020
2020
2020
2020
2020
2020

Real error
OVERFLOW
LONGREAL
_ADD
routine
called by
user from
address
1D55H

The floating point numbers use the IEEE standard for the two packed for-
mats (single precision (REAL) and double precision (LONGREAL)). The two
formats are described in the following paragraphs.

Single Precision Format. The single precision floating point number used for
the type REAL is a 32-bit binary value packed as follows:

where:

s is the sign bit.

e is the exponent.

f is the 23-bit fraction.

B o——

4-7

PASCAL COMPILER
SUPPLEMENT-6809

The value (v) of a single precision floating point number (x) can be
computed as follows:

(a) If e=255 and f#0, then v=not a number.
(b) If e=255 and f=0, then v=(-1)°o,

(c) If 0<e<255, then v=(-1)"2"127(1.1).

(d) If e=0 and 7#0, then v=(-1)212%0.f).
(e) If e=0 and =0, then v=(-1)'0, (zero).

The range of REAL numbers is approximately +/- 1038,

Double Precision Format., A double precision floating point number used for
the type LONGREAL is a 64-bit binary value packed as follows:

0 11 63

s is the sign bit.
e is the exponent.
f is the 52-bit fraction.

The value (v) of a double precision floating point number (x) can be
computed as follows:

(a) If e=2047 and f#0, then v=not a number.
(b) If e=2047 and f=0, then v=(-1)",

(c) If 0<e<2047, then v=(-1)"2""192%1.5).

(d) If e=0 and f#0, then v=(-2 922(0.f).

(e) If e=0 and f=0, then v=(-1)'0, (zero).

The range of LONGREAL numbers is approximately +/-10308,

4-8

PASCAL COMPILER
SUPPLEMENT-6809

Chapter 5

Pascal File I/0 Libraries

Introduction

The Pascal File I/0 features are provided by the Pascal I/0 support library:
PIOLIB:C6809. The simulated I/0O features of the emulation subsystem are
provided by the support library: SIMLIB:C6809.

Chapter 6 of the Pascal/64000 Reference Manual contains a complete machine
independent description of the routines in these libraries.

Both libraries are compiled with the options $SEPARATE ON,RECURSIVE OFFS$.
They will load subroutines in the PROG relocatable area and use the DATA
relocatable area for local data and a message buffer for error detection.

File Error Detection

The Pascal I/O 1libraries support error detection as described in the
Pascal/64000 Reference Manual.

If the file operations are compiled with the option,$IOCHECK OFF$, each file
operation will set a global variable to indicate the result code. The user
should follow each file operation with a call to the function IORESULT,
defined by the Pascal I/O library, to obtain the result code of the most
recent I/0 operation. It is the user’s responsibility to ensure the correct
processing of any I/0 error so that the program continues properly.

If the file operations are compiled with the option ,$IOCHECK ON$ (default
case), any error detected by the I/O libraries will cause an error message
to be written into 6809 memory at the location FILE ERROR. The program will
wait in the library module FMON_6809 in a loop executing the illegal opcode,
1FH. Since this mode of operation cannot assume the correct response to any
arbitrary I/0 error, it effectively stops the operation of the program so no
further errors will occur.

When running programs compiled with option $IOCHECK ON$, in the emulation

subsystem, it is recommended that the user answer the emulation configura-

tion question "Stop processor on illegal opcodes?" in the affirmative. If a

file error is then detected, the emulation status message will display:
"ERROR: 6809--Reset in background Illegal opcode 1FH at XXXXH"

The user can then see the file error number and the location where the file
routine was called by entering the command:

5-1

PASCAL COMPILER
SUPPLEMENT-6809

display memory FILE ERROR blocked word

If no error has occurred, the display will appear as follows:

Memory :words :blocked
address data thex rascii
67C8-D7 4E6F 2065 7272 6F72 2020 2020 2020 2020 No error
67D8-E7 2020 2020 2020 2020 2020 2020 2020 2020
67E8-F7 2020 2020 2020 2020 2020 2020 2020 2020
67F8-07 2020 2020 2020 2020 2020 2020 2020 2020
6808-17 2020 2020 2020 2020 2020 2020 2020 2020
6818-27 2020 2020 2020 2020 2020 2020 2020 2020
6828-37 2020 2020 2020 2020 2020 2020 2020 2020
6838-47 2020 2020 2020 2020 2020 2020 2020 2020
6848-57 2020 2020 2020 2020 2020 2020 2020 2020
6858-67 2020 2020 2020 2020 2020 2020 2020 2020
6868-77 2020 2020 2020 2020 2020 2020 2020 2020
6878-87 2020 2020 2020 2020 2020 2020 2020 2020
6888-97 2020 2020 2020 2020 2020 2020 2020 2020
6898-R7 2020 2020 2020 2020 2020 2020 2020 2020
68R8-B7 2020 2020 2020 2020 2020 2020 2020 2020
68B8-C7 2020 2020 2020 2020 2020 2020 2020 202E

If a file error has been detected the display will appear as follows:

Memory :words :blocked

address data thex sascii
67C8-D7 2020 492F 4F20 2020 2065 7272 6F72 2020 1/0 error
6708-E7 2020 2020 2020 2020 2020 2020 2020 3031 01
67E8-F7 4669 6C6S 2049 4F20 726F 7574 696E 6520 File I0 routine
67F8-07 2063 616C 6C6S 6420 2020 2062 7920 2020 called by
6808-17 2020 7573 6572 2020 2020 6672 6F6D 2020 user from
6818-27 2061 6464 7265 7373 2020 3132 3536 4820 address 1256H

6848-57 2020 2020 2020 2020 2020 2020 2020 2020
6858-67 2020 2020 2020 2020 2020 2020 2020 2020
6868-77 2020 2020 2020 2020 2020 2020 2020 2020
6878-87 2020 2020 2020 2020 2020 2020 2020 2020
6888-97 2020 2020 2020 2020 2020 2020 2020 2020
6898-R7 2020 2020 2020 2020 2020 2020 2020 2020
68A8-B7 2020 2020 2020 2020 2020 2020 2020 2020
6888-C7 2020 2020 2020 2020 2020 2020 2020 202E

With this display, the user can determine the number of the error which has
occurred. The description of the function, IORESULT, in Chapter 6 of the
Pascal/64000 reference manual contains the explanation for each error
number.

5-2

PASCAL COMPILER
SUPPLEMENT-6809

If the error number is 1 and the simulated I/O library, SIMLIB:C6809, is
being used, then the global variable, errno, will contain the simulated I/0
error number. These errors are summarized in the Pascal/64000 Reference
Manual, Chapter 6, in the section describing error reporting for the
Simulated I/0 library.

5-4

PASCAL COMPILER
SUPPLEMENT-6809

PASCAL COMPILER
SUPPLEMENT -6809

Appendix A

Run-time Error Descriptions

This appendix contains descriptions of run-time errors that may occur.

Error Utilities

Name Purpose

Derrors Debugging library error handler

Zerrors Normal library error handler
Derrors

Derrors contains the run-time routines which store user information at
the time an error occurs during debugging. The following errors may oc-
cur in the indicated library routines:

ERROR ROUTINES

Underflow Zbytemul,Zintmul ,Zuintmul
Zbyteadd, Zubyteadd, Zintadd,
Zuintadd
Zbytesub, Zubytesub, Zintsub,
Zuintsub

Overflow Zbytemul, Zintmul, Zuintmul

Zbytediv, Zubytediv, Zintdiv,
Zuintdiv

Zbyteadd, Zubyteadd, Zintadd,
Zuintadd

Zbytesub, Zubytesub, Zintsub,
Zuintsub

Zbyteneg, Zintneg

Zbyteabs, Zintabs

Div_by_Zero Zbytediv, Zubytediv,
Zintdiv, Zuintdiv

Case_error User programs

Range error COMPB_ .

PASCAL COMPILER
SUPPLEMENT-6809

Heap error INITHEAP, NEW, DISPOSE, MARK,
RELEASE

Set_conversion_error
Zbtoset8, Zwtoset8
Zbtosetl6, Zwtosetl6

String error MOVEST _

When an error is detected, a jump to Derrors is generated and
valid register information is saved. The labels for the stored
information are described below:

LABEL DESCRIPTION
Z CALLER H Contain the high byte (CALLER_H)
Z CALLER L and the low byte (CALLER L) of

the address of the statement which
called the routine where the
actual error occurred.

Z_CC_FLAGS Contain the contents of the
registers at the time the error

Z ACC A occurred. Only registers with
information relevant to the error

Z ACC B are saved - the indicated contents
of the other registers is garbage.

Z REG X

Z REG U

NOTE: The CC register which is displayed is that which was
present when the error occurred in the Debug Library routine.
The CC register which was present when the Debug routine was
called is not retrievable.

PASCAL COMPILER
SUPPLEMENT-6809

The following is a description of the errors that may occur
and the information that is accessible when they do occur.

ERROR MSG.
AVAILABLE

7 ERR_OVERFLOW

Z_ERR_UNDERFLOW

Z_ERR DIV BY 0

Z ERR_SET CONV

DESCRIPTION

Jump to error
occurs when
results of
multiplication,
addition,
subtraction,
negation, or the
absolute value
is too positive
(i.e.
INTEGERS:
result > 32767
BYTES:
result > 127)

Jump to error
occurs if results
of addition,
subtraction, or
multiplication
were too negative
(i.e.
INTEGERS
result < -32768
BYTES
result < -128)

Jump to error

occurs if division
by zero is attempted
by byte or integer
division routines.

Jump to error
occurs if operand
is not legal
ordinal value for
a set of the base

type.

INFORMATION

Z CALLER H
7 CALLER L
7_CC_FLAGS
7 _ACC_A
Z_ACC B
7 _REG_X
7 REG_U

7 CALLER H
7 CALLER L
Z_CC_FLAGS
72 _ACC_A
7_ACC B
Z_REG X
Z REG U

Z CALLER H
7 CALLER L
7_CC_FLAGS
7 REG X
Z REG U

7 CALLER H
7 CALLER L
Z_CC_FLAGS
7_ACC A
Z_ACC B
7 _REG X

A-3

A-Y

7 ERR_RANGE

7 ERR_HEAP

7 ERR_CASE

7 ERR_STRING

7 END PROGRAM

PASCAL COMPILER
SUPPLEMENT-6809

Jump to error Z CALLER_H

occurs if a range Z CALLER L

declaration has Z CC_FLAGS

been violated Z ACC_A

(i.e.: a variable Z ACC_B
does not fall Z REG_U

within its
assigned range)

Jump to error Z CALLER H
occurs when some Z CALLER L
misuse of the Z CC_FLAGS
dynamic allocation ?

keywords NEW,
DISPOSE ,MARK, or
RELEASE takes place.

Jump to error Z CALLER H
occurs when the Z CALLER L
test variable of Z ACC_A

CASE statement is Z ACC B
out of range and

no OTHERWISE label

exists.

Jump to error Z CALLER H
occurs on a string Z_CALLER L
assingment, when

the run-time size

of the string being

assigned is larger

than that of which

is it is being

assigned to.

Jump to message occurs when the

program completes execution of the
main body code.

PASCAL COMPILER
SUPPLEMENT-6809

The illegal opcodes associated with the various errors are as
follows:

OPCODE ERROR

01 Overflow

02 Div_by O

05 Case_error

14 Range_error

15 Recursive_error

18 Heap error

38 Set_conversion_error

41 Underflow

42 String size assignment error
Zerrors

Zerrors contains the run-time routines which store user
information at the time an error occurs during execution in the
non-debug library. The following errors may occur in the
indicated library routines:

ERROR ROUTINES
Case_error User programs
Range error COMPB_
Heap error INITHEAP, NEW, DISPOSE, MARK,
RELEASE
String error MOVEST _

When an error is detected, a jump to Zerrors is generated and
valid register information is saved. The stored information, the
routines and the illegal opcodes for this errors are as described
in Derrors.

Z END PROGRAM is also called.

PASCAL COMPILER
SUPPLEMENT-6809

PASCAL COMPILER
SUPPLEMENT-6809

Index

The following index lists important terms and concepts of this manual,
along with the location(s) in which they can be found. The numbers to
the right of the listings indicate the following manual areas:

Chapters - references to chapters appear as
"Chapter X", where "X" represents the chapter
number.

Appendices - references to appendices appear as
"Appendix Y", where "Y" represents the letter
designator of the appendix.

Figures - references to figures are represented
by the capital letter "F" followed by the
section figure number.

Other entries in the Index - references to other
entries in the Index are preceded by the word
"See" followed by the reference entry. Otherwise,
entries are referenced by page number.

I-1

PASCAL COMPILER

SUPPLEMENT-6809
a
Absolute address, stackcc0vun 2-3
Addressing:
Constantsciiiiiiiinnnnnn, 2-20
Static Variableso0vvunn 2-20
ARRAY routineovveveeinnnoenn. 3-6
b
BASE_ADDRESS parameter 3-6
Binary byte operations 3-17
Binary integer operations 3-19
Binary operation, floating point 4-3
Byte bounds checkingcoeevueueen. 3-36
Byte comparison routines 3-3Y4
Byte set operations ceeve... 324
Byte shifts 3-22
C
CASE_ERROR routinec.ci i, 3-5
Case statements, 2-20
Character routinescciievenreenn 3-39
Comparison operation, floating point 4-4
Conversion operation, floating point 4-5
d
DebUZEINg «vvveviieienieeenraneennenns 1-6
DEBUG optioniiiveeiinnnernnnesnnns 2-19
Defining binary operators 2-17
Defining relational operators 2-17
Derrors utilityc.ovveen. Appendix A
Designing a programcoeeuvereannn 1-2
Direct mode addressingco.u.. 2-1
Direct page registero 0., 2-1
DISPOSE procedureceeeeeueuvuens 3-10

DOPE_VECTOR parameter 3-6

PASCAL COMPILER

SUPPLEMENT-6809
e
EMPTY SET _ routinec.ceiiiii i nann 3-5
Emulationc.oieeiionionennecencsnnss 1-4
END DATA routineccovvenvnnnn 3-5
Errors:
Pass 2 ...t i i i i 2-20
Run-time Appendix A
Error detection, floating point 4-5
External Procedures 2-20
f
FALSE routineceiueunenn., 3-38
Floating point number Chapter L
h
Heap, dynamic allocation 2-12
i
Implementing a programceeoeeueoen 1-2
Index list parameter 3-6
INITHEAP procedurececoeevoesocnsns 3-10
Internal format, floating point numbers:
Double precision (LONGREAL).......... 4-8
Single precision (REAL) 4-7
$INTERRUPTS optionevvvvvnneennnnnnn 2-14
Interrupt vector handling 2-13
Introductionciiiiieinnnn Chapter 1
|
Libraries:
DLIB 6809:C6809.....c00vuvuuunn.. 1-3, 2-2
LIB 6809:C6809ovvuvuennn. 1-4, 2-2
Real Numbersc... Chapter 4
Library routinesco.o.n. Chapter 3
Linking programsc.ieviiieennoans 1-3
Linking with real numbers 1-7
Listing file0ttt eneenennn 1-3

LONGREAL numbers formatooeve.. 4-8

PASCAL COMPILER

SUPPLEMENT-6809
m
MARK procedureceeeerieunennenns 3-10
MBmove routineeeveeurennennenns 3-28
Memory mappingiiiiiiieiiiiiiann, 1-5
Multi-byte comparisons routines 3-29
Multi-byte set routines 3-31
Multiple module Programs 2-10
n
NEW procedurecooeevevuennenoens 3-10
(o
Operators, user defined 2-16
OPTIMIZES optiont ittt enrnens 2-19
Optionsc.ceiii it iiiiiiienanns 2-19
P
Parameter passing 0 3-13
PARAM _ routine it i i e e 3-11
Pass 2 Errorsc.ceiiiiniiiieeneenenns 2-21
Programming considerations 2-1
r
Real number libraries Chapter L
REAL numbers formatcuuvveuunnn. -7
Recursive routines, 2-9
RELEASE procedureoeveveeeuenss 3-10
Relocatable filecciiiiiienen.n.. 1-3
Range of:
LONGREAL numbersceveeu.. 4-8
REAL NUMDEIS vo vttt vetie et eteeneenns -7
RENTRY procedure 2-6, 3-11
RESTART interrupteevuvvunnn.. 2-14
ROTATE functioncciiieienrnnn. 3-21

Run time errorscooueeuueun Appendix A

PASCAL COMPILER

SUPPLEMENT-6809
S
Set space allocation 2-15
SHIFT functioncvviiiiiiiinennn. 3-21
Source Filettt inienennnns 1-2
Stack formatciiiiiiiiiitrenrones 2-5
Stack pointer initialization 2-2
STACK _ TOULINe . iv i it i ittt e 3-5
Standard byte routines 3-16
Standard integer routines 3-18
Static Links ...vnvinnr e ninnennennn. 2-6
String routines 00t 3-39
t
TRUE routineccuvvneunnn... 3-38
u
Unary byte operations 3-16
Unary integer operations 3-18
Unary Operations, floating point 4-3
User-defined operatorsccc.. 2-16
\'/
Value of:
double precision floating
point number 4-8
single precision floating
point number -7
w
Word bounds checkingc0vuvvunn. 3-37
Word comparison routines 3-34
Word set operations i, 3-25
Word shifts ..ottt it ii i iiineenn 3-23
Z
Zerrors utility Appendix A

Z END PROGRAM routine 3-5

64813-90903, FEBRUARY 1983 v

Replaces: 64813-90902, May 1981 PACKARD PRINTED IN U.S.A.

	Front
	cover
	inside

	Comment Sheet
	comment-1
	comment-2

	Contents
	title
	ii
	iii
	iv

	Chapter 1
	1-1
	1-2
	1-3
	1-4
	1-4A
	1-5
	1-6
	1-7
	1-8

	Chapter 2
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22

	Chapter 3
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40

	Chapter 4
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8

	Chapter 5
	5-1
	5-2
	5-3
	5-4

	Appendix A
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6

	Index
	index-1
	index-2
	index-3
	index-4
	index-5/index-6

	Back
	cover

