HP 64000
Logic Development
System

Model 64822AF/AT
C/64000

Compiler Supplement
6809 Family

(A cackare

CERTIFICATION

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment
from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United
States National Bureau of Standards, to the extent allowed by the Bureau’s calibration facility, and to the calibra-
tion facilities of other International Standards Organization members.

WARRANTY

This Hewlett-Packard system product is warranted against defects in materials and workmanship
for a period of 90 days from date of installation. During the warranty period, HP will, at its option,
either repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer’s facility at no charge within HP service
travel areas. Outside HP service travel areas, warranty service will be performed at Buyer’s facility
only upon HP’s prior agreement and Buyer shall pay HP’s round trip travel expenses. In all other
cases, products must be returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping charges to HP and
HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all ship-
ping charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with an instrument will ex-
ecute its programming instructions when properly installed on that instrument. HP does not war-
rant that the operation of the instrument, or software, or firmware will be uninterrupted or error
free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate main-
tenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse,
operation outside of the environment specifications for the product, or improper site preparation or
maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP
SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL
THEORY.

ASSISTANCE

Product maintenance agreements and other cuStomer assistance agreements are available for Hewlett-Packard
products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

343H 4104

K

HEWLETT | |
PACKARD

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 1303 COLORADO SPRINGS, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

HEWLETT-PACKARD

Logic Product Support Dept.
Attn: Technical Publications Manager

Centennial Annex - D2
P.O. Box 617
Colorado Springs, Colorado 80901-0617

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

FOLD HERE

Your cooperation in completing and returning this form
will be greatly appreciated. Thank you.

READER COMMENT SHEET

Operating Manual, Model 64822AF/AT
C/64000 Compiler Supplement for 6809/6809E
64822-90901, May 1985

Your comments are important to us. Please answer this questionaire and return it to us. Circle the number that best
describes your answer in questions 1 through 7. Thank you.

1. The information in this book is complete:

Doesn’t cover enough 1 2 3 4 5 Covers everything
(what more do you need?)

2. The information in this book is accurate:
Too many errors 1 2 3 4 5 Exactly right
3. The information in this book is easy to find:
I can't find things | need 1 2 3 4 5 I can find info quickly
4. The Index and Table of Contents are useful:
Helpful 1 2 3 4 5 Missing or inadequate
5. What about the "how-to" procedures and examples:
No help 1 2 3 4 5 Very helpful
Too many now 1 2 3 4 5 I'd like more
6. What about the writing style:
Confusing 1 2 3 4 5 Clear
7. What about organization of the book:
Poor order 1 2 3 4 5 Good order
8. What about the size of the book:
too big/small 1 2 3 4 5 Right size

Comments:

Particular pages with errors?

Name (optional):
Job title:
Company:
Address:
Note: If mailed outside U.S.A., place card in envelope. Use address shown on other side of this card.

HEWLETT
(ﬁﬂ] PACKARD

OPERATING MANUAL

MODEL 64822AF /AT
C/64000 COMPILER SUPPLEMENT
FOR 6809/6809E

© COPYRIGHT HEWLETT-PACKARD COMPANY 1983, 1985
LOGIC SYSTEMS DIVISION
COLORADO SPRINGS, COLORADO, U.S.A

ALL RIGHTS RESERVED

Manual Part No. 64822-90901 PRINTED: MAY 1985

Printing History

Each new edition of this manual incorporates all material updated since the previous edition.
Manual change sheets are issued between editions, allowing you to correct or insert information in
the current edition.

The part number on the back cover changes only when each new edition is published. Minor cor-
rections or additions may be made as the manual is reprinted between editions. Vertical bars in a

page margin indicate the location of reprint corrections.

First Printing March 1983 (P/N 64822-90901)
Second Printing........ May 1985 (P/N 64822-90901)

Software Version Number

Your HP 64000 software is identified with a version number in the form XX.YY. The version num-
ber is printed on a label attached to the software media or media envelope. This manual applies to
the following:

Model HP 64822AF Version 1.YY

Within the software version number, the digit to the left of the decimal point indicates the product
feature set. This manual supports all software versions identified with this same digit.

The digits to the right of the decimal point indicate feature subsets. These feature subsets normal-
ly have no affect on the manual. However, if you subscribe to the "Software Material Subscription”
(SMS), these subset items are covered in the "Software Response Bulletin" (SRB).

Software Materials Subscription

Hewlett-Packard offers a Software Materials Subscription (SMS) to provide you with the most time-
ly and comprehensive information concerning your HP 64000 Logic Development System. This
service can maximize the productivity of your HP system by ensuring that you have the latest
product enhancements, software revisions, and software reference manuals.

For a more detailed description of the SMS, refer to chapter 1.
Duplicating Software

Before using the flexible disc(s) provided with this product, make a work copy. Retain the original
disc(s) as the master copy and use the work copy for daily use.

Specific rights to use one copy of the software product(s) are granted for use on a single, stand-
alone development station or a cluster of development stations which boot from a single mass
storage device.

Should your master copy become lost or damaged, replacement discs are available through your
Hewlett-Packard sales and service office.

ii

Table of Contents

Chapter 1: C/64000 Compiler 6809

INtrodUCtioN e 1-1
C Program DeSigN 11
How to Implement a Program e 1-2
The Source File 1-2
LiNKING oo 1-4
Linking with Real Numbers 1-4
Emulation of C Programso 1-5
Debugging with DLIB 6809:C6809 Library 1-7
Chapter 2: C/64000 Programming 6809
Programming Consideralions e 2-1
Introduction 2-1
Direct Addressing Mode 2-1
Program Initialization and Exit 2-2
Stack Pointer Initialization 2-3
Stack Format During Program Execution 2-5
Recursive Routines - Calling and Returning Sequences, 2-8
Interrupt Vector Handlingo o 2-10
User Defined Operators 2-11
GENEIAl .« . e 2-11
OPEralioNS . . . e 2-12
ParamI e erS . e 2-13
OPtiONS . . 2-16
OPTIMIZE . 2-16
DEBUG . o 2-16
FIXED PARAMETERS .. . e e 2-17
Position Independent Code e 2-17
Pass 2 and Pass 3 ErTOrS 2-18

Chapter 3: Run-time Library Specifications

GENEraAl .. 3-1
Array Reference ROULINES 3-6
ARBRAY e e 3-6
Generalized Array DOPE VECTOR e 3-8
Dynamic Memory Allocation 3-9
INITHE AP e 3-9
NEW e 3-9
DISP OSE . e 3-9
M AR K e e e 3-9
RELEASE . .o 3-9
ReCUISIVE ENlry . . o e e 3-10
RENT RY oo e e e 3-10
VRENT RY L 3-12
Parameter Passer (PARAM) ... e 3-13
VP AR AM e e 3-15
Standard Byte Routines e 3-17
Unary Byte Operations e 3-17
Binary Byte Operations e e 3-17

C/64000 Compiler Supplement 6809
Table of Contents

Table of Contents (Cont’d)

Chapter 3: Run-time Library Specifications (Cont’d)

Standard Integer Routines e 3-19
Unary Integer Operations e 3-19
Binary Integer Operations e e 3-19

Byte and Word Shifts 3-21
SHIFT 3-21
ROTATE 3-21
Byte Shifts e 3-22
Word Shifts 3-22

Byte and Word Set Operations e e 3-23
Byte Set Operations 3-23
Word Set Operations e 3-24

Multi-byte Operations 3-25
MBMOVE . .. e e e 3-26
Multi-byte CompariSONs e 3-26

Multi-byte Set Operations e 3-27
Multi-byte Set Routines e 3-27

Byte and Integer Comparison and Bounds Checking Routines 3-30
Byte and Word CompariSONSsttt e 3-30
Byte Bounds Checking 3-32
Word Bounds ChecCKing o e e e 3-32

Strings and Characters 3-33
STMOVE L oot e 3-34

Chapter 4: Run-time Library Specifications for Real Numbers

Real Number Libraries e 4-1

C Real Number Library Routines ($FIXED PARAMETERS OFF$) 4-3

C Real Number Library Routines (SFIXED PARAMETERS ON$) 4-3
Floating Point BINARY Operations i 4-4
Floating Point UNARY Operations e 4-5
Floating Point Comparison Operations i 4-6
Floating Point Conversion Operations e 4-7
Floating Point Error Detection 4-8

Appendix A: Run-Time Error Descriptions

Run-time Error DescCription e A-1
Error UtiIlities A-1
DT OIS .t i it e e A-1
7= (0] £ A-5
INAEX . . e e I-1

iv

C/64000 Compiler Supplement 6809
Table of Contents

List of Tables

2-1. 6809 Pass 2 And Pass 3 ErmOrSt e e 2-19
3-1. Library Routines (Standard) e 3-1
3-2. Library Routines (for 6809) e 3-2
4-1. C Real Number Library Routines

($FIXED_PARAMETERS OFFS) i 4-1
4-2. C Real Number Library Routines

(SFIXED_PARAMETERS ONS) . o\ttt ittt e e e et 4-2

C/64000 Compiler Supplement 6809
Table of Contents

NOTES

Vi

Chapter 1

C/64000 COMPILER 6809

INTRODUCTION

This compiler supplement is an extension of the C/64000 Compiler Reference Manual. It contains
all the processor-dependent compiler information for use with the 6809 microprocessor.

Descriptions of compiler features, options, and their use are supplied. A detailed discussion of the
run-time libraries required by the 6809 code generator is included. In addition, a brief discussion
of the features, capabilities, and limitations of C program development using the emulator is
provided.

C PROGRAM DESIGN

C programs should be designed to be as processor and implementation independent as possible,
yet certain concessions must be made when the processor has unique characteristics. Programs
written to run on a large mainframe computer with megabytes of virtual memory may not run on a
6809 with a maximum of 64k-bytes of addressable memory. Most large mainframe computer im-
plementations have enough memory to allocate a stack area and a heap for dynamic memory al-
location with no prompting by the user. In a limited memory system these factors must be com-
municated to the compiler in some manner. For the 6809, the user must specify the location of
the stack and, if needed, the location of a memory pool for dynamic allocation routines. The fol-
lowing sections describe subjects related to programming and compiling C/64000 for the 6809
processor.

1-1

C/64000 Compiler Supplement 6809
C/64000 Compiler 6809

HOW TO IMPLEMENT A PROGRAM

The usual process of software generation is as follows:
a. Create a source program file using the editor.
b. Compile the source program.
c. Link the relocatable files.

d. Emulate the absolute file.

[0}

. Debug as necessary.

This chapter will provide insight into each of these processes.

The Source File

The C/64000 compiler takes as input a program source file created with the editor. The basic form
of a source file is:

IICII
Il6809n
/* C functions */

function name (argument list, if any)
argument declarations, if any
{

declarations

statements

/*C PROGRAM */
main (argument list, if any)
main argument declarations, if any
(
main declarations
main statements

1-2

C/64000 Compiler Supplement 6809
C/64000 Compiler 6809

When source file editing is complete, it is ready for compilation. Notice that the first line of source
code contains the special compiler directive "C". This informs the compiler to use the C language
subsystem. The second line contains the special compiler directive "6809". This directive informs
the compiler to generate relocatable code for the 6809 microprocessor.

The C/64000 compiler can use either all upper-case characters for keywords or all lower-case
characters for keywords. The option SUPPER_KEYS OFF$ (default condition) allows lower-case

keywords to be recognized.

The compiler may produce up to four files as output: a relocatable file, a listing file (if specified), an
assembily file (if specified), and an assembly symbol file (if specified). Descriptions of these files are

as follows:

Relocatable file:

Listing file:

Assembly file:

Assembler symbol file:

If no errors were detected in the source file (called
FILENAME:source), a relocatable file (called FILENAME:reloc)
will be created. This file will be used by the linker to create an
executable absolute file.

If a listfile is specified when the compiler is evoked, a file con-
taining source lines with line numbers, program counter, level
numbers, errors and expanded code (if specified) will be
generated.

If assembly file is specified by the option ASM_FILE anywhere
in the source file, an assembly file, ASM6809, will be created in
the current userid. This file will contain the assembly language
source equivalent of the C program being compiled with the C
language source intermixed as comments. This file may be as-
sembled by the assembler.

This file is created unless the option $ASMB_SYMS$ is disabled
within the source program. An assembler symbol file (called
<FILE_name>:asmb sym) contains the symbolic information
useful for program debugging during emulation.

C/64000 Compiler Supplement 6809
C/64000 Compiler 6809

Linking

After all program modules have been compiled (or assembled), the modules may be linked to form
an executable absolute file. The compiler generates calls to a set of library routines for commonly
used operations such as multiply, divide, comparisons, array referencing, etc. These routines must
be linked with the program modules. There are three standard libraries which may be used to
supply these operations. in addition, if real number arithmetic is used, one of the two real number
libraries must also be linked.

The first is a debug library file called DLIB _6809:C6809. This library of relocatable procedures con-
tains some extra code to detect errors such as division by 0, or overflow on multiplication.

The second library is called LIB 6809:C6809. This library, which has only a limited set of error-
detection code, should execute slightly faster and take up less space in memory. This library may
be linked in place of the debug library after reasonable assurance that the code is error free.

Linking with Real Numbers

When using real numbers for the 6809, the user must link with the real number support library.
RealL1B:C6809.

The library, ReallIB:C6809, supports the C/64000 implementation of the IEEE real number stan-
dard for both long and short floating point numbers (C data types "double” and "float"). To allow
for mixed "float" and "double" expressions, all internal real operations are performed using an up-
acked real number format using a 64-bit mantissa (fraction), a separate sign bit, and a 16-bit sign-
ed exponent.

Both real number libraries will load subroutines in the PROG relocatable area. These libraries use
the DATA relocatable area only for two reasons: a default stack area and a message buffer for error
detection.

If the user does not supply his/her own versions of the real error reporting routines, INVALID and
OVERFLOW, the real library will supply them and a DATA relocatable buffer area for reporting the
error condition. See the section on real number libraries in Chapter 4 for more information on real
number error detection.

1-4

C/64000 Compiler Supplement 6809
C/64000 Compiler 6809

The linker is evoked and the questions asked should be answered as follows:
link ...

Obiject files: MODULE1,MODULEZ2

Library files: DLIB_6809:C6809

Absolute file name: PROGRAM

In the link listfile, the library routines that are referenced by the compiled code are linked at the
end of the last user relocatable PROG and/or DATA areas. This fact must be considered for the
proper choice of the stack pointer location, and PROG and DATA link addresses.

Emulation of C Programs

After all modules have been compiled (or assembled) and linked, the absolute file may be executed
using the emulation facilities of the Model 64000. The emulator is initialized with the memory
mapped in keeping with the target system and the stack pointer initialization in the code.

A program which is designed to run in read-only memory (ROM) should have been compiled with
the $SEPARATES$ option. The memory should be mapped to have ROM and RAM as illustrated
below.

ROM
prog

RAM
data area
END DATA
heap

stack
STACK

C/64000 Compiler Supplement 6809
C/64000 Compiler 6809

For a program that is designed to run completely in random access memory (RAM), the memory
mapping should look like the following:

RAM
prog and data
END DATA
heap
stack
STACK

If a transfer address was defined in the linking process, the emulation subsystem will remember
the transfer address from the absolute file. The emulator will start execution of the program with

the simple command:

run
or
step
If the program absolute file does not contain a transfer address these commands will start execu-

tion at address O0O00H. The user must initialize the stack pointer register to his stack area before
any program using subroutine calls is executed.

For C programs, stack initialization is done by the library routine "entry" or "ENTRY". (See Chapter
2 for additional run-time stack information). If the options $ENTRY ON, UPPER_KEYS OFF$ are
used in the module defining the C function "main", the library will supply the routine "entry" which
will initialize the stack and call the user routine "main”. In this case, program execution in emula-
tion should be performed using the command:

run from Entry

1-6

C/64000 Compiler Supplement 6809
C/64000 Compiler 6809

If the options SENTRY ON, UPPER_KEYS ONS$ are used in the module defining the C function
"MAIN", the library will supply the routine "ENTRY" which will initialize the stack and call the user
routine "MAIN". In this case, program execution in emulation should be performed using the

command:
run from ENTRY
If the program runs to completion, the 6809 will remain in a loop at Z _END_PROGRAM:
Z END_PROGRAM BRA Z END PROGRAM
NOTE
It is important to remember that during emulation of C/64000 programs,
a C compiler program may be debugged symbolically (using global sym-

bols in the source program) or by source program line numbers of the
form: #1. This is a feature that provides a powerful tool for emulation.

Debugging with DLIB_6809:C6809 Library

When initializing the emulator, it is a good idea to answer yes to the "stop processor on illegal op-
code?" question since execution errors may result in a jump into the error handler file,
Derrors:C6809.

If, while watching the execution of the code, the status line should indicate "illegal opcode ex-
ecuted at address XXXXH", note the address and enter the command:

display local symbols _in Derrors:C6809

1-7

C/64000 Compiler Supplement 6809
C/64000 Compiler 6809

The list will roll off the screen; do not stop it with the reset key, since the information which rolls
off is not important. When the list has stopped, scan the upper portion of the list for the address at
which the illegal opcode occurred. The error type will be listed at the left of this address.
(Descriptions of run time errors are given in Appendix A.) The list will also be generated when
using library LIB_6809:C6809 by entering the following command:

display local symbols in Zerrors:C6809

The display will now appear as follows:

NOTE

The addresses will change depending upon the link.

Label Address Data
Z END PROGRAM 1242H C3H
Z ERR _RANGE 1270H 22H Scan this portion for
Z ERR CASE 1258H 08H where the illegal
Z ERR DIV BY 0 124AH 08H opcode occurred. The
Z ERR HEAP 1268H 08H data field in this
Z ERR OVERFLOW 123CH 08H portion is not
Z ERR SET CONV 1251H 08H significant.
Z ERR UNDERFLOW 1243H 08H
Z ERR STRING 1235H 00H)
Z CC FLAGS 1296H 89H
Z ACC A 1297H 8FH The data field in
Z ACC B 1299H FéH portion may contain
Z REG X 1298H FS5H ¢ information. The
Z REG U 129BH FOH addresses in this
L CALLER H 1295H 69H portion are not
Z CALLER L 1294H AOH J significant.

Some of the errors will load locations with register and stack information.

NOTE

This compiler can generate duplicate symbols in the assembler symbol file for legal C
programs. These symbols can be generated by function names that conflict with
labels generated by the compiler, i.e. E, R, C, and D function labels. Refer to the C
Compiler Reference Manual for a description of these labels.

These duplicate symbols can cause ambiguities with some HP 64000 logic analyzer

measurements since a reference to a duplicated label may produce an incorrect
result.

1-8

C/64000 Compiler Supplement 6809
C/64000 Compiler 6809

The compiler produces a warning message whenever it generates a duplicate label to
warn the user that the use of that symbol in an analysis product may result in an
incorrect address being traced. This potential problem can be solved by changing
one of the duplicate function names, or by moving one of the functions to another file.

Example Warnings:

*HEXFWARNING ?? - Symbol: Y, is duplicated in the asmb sym file.
FRIKXWARNING 2?2 - Symbol: RY, is duplicated in the asmb sym file.

1-9

C/64000 Compiler Supplement 6809
C/64000 Compiler 6809

NOTES

Chapter 2
C/64000 PROGRAMMING
6809

PROGRAMMING CONSIDERATIONS

Introduction

This chapter covers some important requirements of the run-time
environment for 6809 C/64000 programs. Although some
requirements may not be necessary for every program, the
programmer should become familiar with the information supplied
in order to use it when the structure of a 6809 program requires

it.
Direct Addressing Mode

The 6809 direct page register (DP) is concatenated with any 6809
direct access address to generate the complete run-time address
of an object. For example, if the instruction

LDA <25H

is generated as a direct addressing instruction, the object that will be loaded into register A will be
found at address 25H if the direct page register contents equal OOH. If the direct page register con-
tents equal OFEH, for example, then the object that will be loaded into register A will be found at

address OFE25H.

The DP register will be initialized to OOH by a 6809 Restart Interrupt. It will never be modified by
the 6809 compiler.

The 6809 compiler will generate direct addressing instructions for any object known by the com-
piler to be located within the address range OOH and OFFH. For the following C variable

declaration:

$ORG = 20H$

int FLAG;

int INFORMATION;
END_ORG

the 6809 compiler will generate direct addressing instructions to access variables FLAG and
INFORMATION, since their addresses are known by the compiler to be between 00H and OFFH.

2-1

Program Initialization and Exit

The routine "entry”, which gets loaded if the $SENTRY$ directive is ON and the function "main” is

declared, appears as follows:

2-2

"6809M"
EXTERNAL MAIN
ENTRY
LDS #STACK
LDX #0
PSHS X
LBSR MAIN
LBSR 2 END PROGRAM
EENTRY EQU $-1

GLOBAL EENTRY

GLOBAL ENTRY

EXTERNAL Z END PROGRAM
EXTERNAL STACK

END ENTRY

6809
EXTERNAL main
Entry
LDS #STACK -
LDX #0
PSHS X
LBSR main

LBSR Z END PROGRAM
entry EQU Entry00 D+00000H

Entry00 D
RMB 00002H
EEntry EQU $-1

GLOBAL EEntry
GLOBAL Entry
GLOBAL entry
EXTERNAL E_END PROGRAM
EXTERNAL STACK

END Entry

NOTE

If the SUPPER_KEYS$ directive was ON, the routine ENTRY will call

MAIN.

C/64000 Compiler Supplement 6809
C/64000 Programming 6809

Stack Pointer Initialization

The stack pointer is a hardware register maintained by the processor. Prior to use, however, it
must be initialized by the user. A program that has a main code section must generate the follow-
ing stack initialization statements in the relocatable file:

EXT STACK
LDS #STACK

Since the EXT statement implies that the label STACK has been declared global (GLB) by another

program module, the compiler will build a relocatable file, leaving assignment of the STACK _ value

for the linker.

If the label STACK has not been declared global by any program module, the linker will search
the applicable library for a default value. Depending upon which library has been selected by the
user, one of the following default values will be selected:

a. If the DLIB_6809:C6809 library is linked, the stack will
be assigned 512 bytes in the program (PROG) area of the
linked modules.

b. If the LIB_6809:C6809 library is linked, the stack will

be assigned 512 bytes in the data (DATA) area of the
linked modules.

NOTE
Whenever the LIB_ 6809:C6809 library is linked, a DATA area location
must be specified.
The user should allocate a larger stack when necessary. In particular, recursive programming will
generally require a much larger stack than static programming to run properly.
Another approach to stack pointer initialization is to define a global variable called STACK as

shown in the following exampie:

(file MODULE1:source)

$ORG 3FBOH%

Short STACK AREA [1271;
short STACK ;

$END_ORGS

2-3

C/64000 Compiler Supplement 6809
C/64000 Programming 6809

The compiler will generate relocatable code which sets the stack pointer to the address of STACK-
(4000H in this example), and use an area of 128 bytes (3F80H..4000H) for the stack.

The use of an absolute address for the stack as in the above example has the user convenience of
assigning a fixed block of memory for the stack. It may be better, however, to allow the compiler
to actually preserve a relocatable data area for the stack by leaving out the ORG and
$END ORGS$ options. This will help prevent accidental reuse of the assigned stack area by
another module.

An approach when linking assembly language files is to include the initial stack pointer value or a
stack area in an assembly file such as:

nggoon
GLB STACK .
STACK EQU 2000H ;puts initial stack
; pointer at 2000H
or:
"e8oon
GLB STACK .
DATA

STACKBOT RMB <stacksize> ;puts stack
; storage in the

STACK_: RMB 1 ; DATA area of
; the program

Note that the address of STACK _ will receive the first data byte being pushed. This file may then
be linked with the other program modules generated by the compiler as follows:

Object files: ASMFILE1,MODULE1T,MODULE2. ...
After stack initialization the routine "main” is called. On return, a jump to Z END_PROGRAM is

done.

If the SENTRYS$ directive was turned OFF, the user is responsible for initialization.

2-4

C/64000 Compiler Supplement 6809
C/64000 Programming 6809

Stack Format During Program Execution

Integer values are pushed on the stack: low_byte,high byte, and popped: high_byte,low_byte.

Execution of PSHS X:

Stack before execution:

< (S)
Stack after execution:
Low byte of (X)
High byte of (X) < (S)
Execution of PULS X:
Stack before execution:
Low byte of (X)
High byte of (X) < (S)
Stack after execution:
< (s)

When any recursive routine is entered in the 6809 compiler, the library routine RENTRY _ or
VRENTRY _ (variable number of parameters) is called. RENTRY_ or VRENTRY__ will allocate the
routine’s data area and will copy and arrange the parameters. In addition, it will create the neces-
sary static links.

C/64000 Compiler Supplement 6809
C/64000 Programming 6809

The following sample program illustrates some principles of stack organization:

1 nen

2 6809

3 $RECURSIVE OFF$ /*NOTE: RECURSIVE IS ON BY DEFAULT*/
4

5 static_func(p?l)

6 <

7 int p1l;

8

9 pt = 1;

10 2

"

12 $RECURSIVE ON$

13

14 recursive func(pl)

15 <

16 int p1;

17

18 pl = 1;

19 >

20

21 Llittle_func(p1)

22 (

23 return p1l;

24)

25

26 struct big type (

27 int i1,12,i3;

28)bt1,bt2;

29

30 struct big type big func(p1)
31 struct big type p1;
32 (

33 return p1;

34 3

35
36 int i,j;

37

38 main ()
39 «(

40 static_func(i);

41 recursive func(i);
42 i = Little func(j);
43 bt1 = big func(bt2);
44)

2-6

C/64009 Compiler Supplement 6809
C/64000 Programming 6809

When executing line 9, the stack appears as follows:

Return address to main <---Stack Pointer

NOTE
There is no data area on the stack because static func is a static
procedure.

When executing line 18, the stack appears as follows:

return address to main
recursive_func’s Parameters
No. of parameter bytes

recursive_func’s Data <---Stack Pointer
When executing line 23, the stack appears as follows:

Return address to main
big-func’s Parameters

No. of parameter bytes <---Stack Pointer

When executing line 33, the stack appears as follows:
Return address to main
big func’s Parameters
Address of btt
No. of parameter bytes <---Stack Painter

Note that for big func, the address of the result (bt1) is passed since it is greater than two bytes.
For little_func, the address of the result (i) is not passed as the size is only two bytes and the result

is returned to a register.

2-7

C/64000 Compiler Supplement 6809
C/64000 Programming 6809
Recursive Routines - Calling and Returning Sequences

Fixed Number of Parameters. The calling sequence for a recursive routine with a fixed number of
parameters is as follows:

If the parameters are passed in the registers (see PARAM),
the calling sequence will be:

LDr1 par#l
LDr2 par#2
LDrn par#n
LBSR receiving routine

and the receiving routine will push the parameters when it
is entered, and then call RENTRY .

If the parameters are not passed in registers, the calling
sequence is as follows:

LDr1 par#1

LDr2 par#2

LDrX par#x

PSHS r1,r2,r3,...rX,PC
LDr1 par#x+1

LDr2 par#x+2

Lérx par#n
PSHS r1,r2,r3,...rX
LBSR receiving routine
and the receiving routine will only call RENTRY .
When returning from RENTRY _, the stack format at exit will be as follows:
RA(calling routine)
Par.’s
Var.'s
Static Links
< (S)
The returning sequence is as follows:

LEAS var area_size+par_area_size+level*2,S
RTS

2-8

C/64000 Compiler Supplement 6809
C/64000 Programming 6809

Variable Number of Parameters. The parameters are never passed in registers for a variable num-
ber of parameters call. The calling sequence is:

LDr1 par#1
Lbr2 par#2

LDrx par#x

PSHS r1,r2,...,rx
Lbr1 par#x+1

Lbr2 par#x+2

LDrx-1 par#n
LDrx #no of par bytes

PSHS rl,r2,...,rx
LBSR receiving routine
LEAS no_of par bytes+2,S

The receiving routine will only call VRENTRY . When returning from VRENTRY_, the stack ap-
pears as follows:

Parameters
No. of parameter bytes

Variables
<----(S)

Interrupt Vector Handling

The run-time programming environment of C/64000 programs on the 6809 processor has been
designed to impose a minimum amount of constraints on the user. As a result the code produced
by the compiler is safely interruptable as long as the interrupt driven process restores the registers
(which have been automatically pushed onto the stack when the 6809 recognized the interrupt)
with a return from interrupt (RTI) instruction.

The 6809 processor supports four types of interrupts: a reset (or powerup) interrupt, a non-
maskable interrupt, a maskable interrupt, and a software interrupt. The first three of these are en-
abled by external control signals to the processor, while the last one is enabled by software
program control. When the processor detects one of these interrupts it saves the current status of
the processor and jumps to the address in the interrupt vector for that type of interrupt. These
vectors are in the last 13 bytes of memory.

2-9

C/64000 Compiler Supplement 6809
C/64000 Programming 6809

For the rest of this discussion assume that the following assembly module defines the interrupt
vectors.

FILE: IRQ:C6809 HEWLETT-PACKARD: 6809 Assembler

LOCATION OBJECT CODE LINE SOURCE LINE

"6809"
NAME "Interrupt Vector Definition"

1
2
3
4 EXT SOFT_INT_3, SOFT_INT_2, SOFT_INT_1

5 EXT FIRQ_INT, IRQ_INT, NMI_INT, RESTART_INT
6

7

8

ORG OFFF2H

FFF2 0000 9 FDB SOFT INT_3
10

FFF&4 0000 11 FDB SOFT INT 2
12

FFF6 0000 13 FDB FIRQ_INT
14

FFF8 0000 15 FDB IRQ_INT
16

FFFA 0000 17 FDB SOFT _INT_1
18

FFFC 0000 19 FDB NMI_INT
20

FFFE 0000 21 FDB RESTART INT

Errors= 0

The C/64000 ENTRY program may logically be used as the RESTART INT to be called on
RESTART interrupt. A main program initializes the run time environment for C program execution
and ends with the jump to a tight loop at Z END PROGRAM (generated by the compiler), thus fit-
ting all the requirements of the RESTART _INT routine.

C/64000 allows the user to define procedures as routines to be called in the interrupt vector by
using the SINTERRUPT ONS$ option. The $SINTERRUPTS$ option is only recognized for procedures
defined at the outer block of a program. An interrupt procedure needs to be declared global so its
address can be available at link time to load the proper interrupt vector. Nothing special is done
upon entry to the $INTERRUPT$ procedure. At the end of the procedure the compiler generates a
return from interrupt (RTI) instruction instead of a return from subroutine instruction (RTS). An
SINTERRUPTS$ procedure may not be called like a normal C/64000 procedure because of the RTI
return instruction.

2-10

C/64000 Compiler Supplement 6809
C/64000 Programming 6809

The interrupt procedure can have no parameters but it may be compiled in either the $RECURSIVE
ON$ or SRECURSIVE OFF$ modes. The $RECURSIVE ON$ mode is required if it is possible to be
processing multiple interrupts at the same time.

Any special treatment of interrupts would require some assembly language modules since instruc-
tions associated with interrupts are not available in C (SYNC, CWAI, ORCC, ANDCC).

With the previously defined interrupt vector definition the user should compile procedures
IRQ _INT, NMI INT, and SOFT INT with the $INTERRUPT ON$ option enabled. Care must be
taken to turn off this option explicitly.

USER DEFINED OPERATORS

General

C/64000 allows the user to define his own special operators (user defined operators). User defined
operators are created by using the option: SUSER_DEFINED$ during the declaration of a user
type. The option will apply to the declaration of one user type.

For user defined operators, the compiler will not generate in-line code to perform the operations,
instead, it will generate calls to user provided run-time routines. The run-time routine names will be
a composite of the user's type name and the operation being performed:
TYPENAME OPERATION. The first eleven characters of the user’s type name are concatenated
with an underscore and three characters identifying the operation.

C/64000 Compiler Supplement 6809
C/64000 Programming 6809

Operations

The following is a list of operators that can be user defined and the run-time routine names that
the compiler will create when the operations are used on a user type:

Operation Symbol Run-time Routine

1. Add + <typename> ADD
2. Negate - <typename> NEG
3. Subtract - <typename> SUB
4. Multiply * <typename> MUL
5. Divide / <typename> DIV
6. Modulus % <typename> MOD
7. Equal Comparison == <typename> EQU
8. Not Equal Comparison = <typename> NEQ
9. Less Than or Equal <= <typename> LEQ

to Comparison
10. Greater Than or Equal >= <typename> GEQ

to Comparison
11. Less Than Comparison < <typename> LES
12. Greater Than Comparison > <typename> GTR

The compiler will provide the user with a Store routine. The 6809 compiler will use the multi-byte
move routine (MBmove).

2-12

C/64000 Compiler Supplement 6809
C/64000 Programming 6809

Parameters
The parameters are passed to a routine by reference, i.e., the addresses of the parameters are
passed. For the 6809, the parameters are passed in the following registers:
Input: D contains the address of the first parameter
X contains the address of the second parameter
Y contains the address of the third parameter

Output: The result should be assigned through register Y

Register Y will not be defined for relational operations. The result should be assigned to register B,
and the Z flag in register CC should be set according to the following:

TRUE - B setto 1, Z flag is set
FALSE - B set to 0, Z flag is reset
Register U will not be defined for the unary operation Negate; register X will contain the result.

The routines for 6809 user-defined operators can be written in C; routines can be either static or
recursive.

To use C procedures with user defined operators, the option $FIXED PARAMETERSS$ should be
used.

Example:

$FIXED PARAMETERS ON$

USER_MUL (OPERAND1, OPERAND2, RESULT)

USER *OPERAND1, *OPERAND2, *RESULT;

$FIXED PARAMETERS OFF$
The routines for binary operators can be defined in two ways: (1) a procedure with 3 VAR para-
meters: argument1, argument2, and result, or (2) as a function with 2 parameters (defined as the

first two parameters in case 1) and the result being the function result. Argumenti always cor-
responds to the left-hand side operand and argument2 to the right-hand side operand as follows:

result = argumentt OPERATOR argument2

2-13

C/64000 Compiler Supplement 6809
C/64000 Programming 6809

The unary operator Negate routine can be defined as a procedure with two VAR parameters, or as
a function with one parameter. The first parameter is the argument and the result is either the
second parameter or the function result.

Finally, the routines for relational operators should be defined as functions with two VAR para-
meters: argumenti and argument2 and a result of type boolean. Care should be taken to assure
that the Z flag is set to the correct value. This may be accomplished by making certain that the last
thing the function does is to assign the function result.

Example:

The following program defines and uses the user type "MATRIX"

1 0000 O nen
EXTERNAL mat?
EXTERNAL mat2
EXTERNAL mat3
EXTERNAL flag
EXTERNAL entry

2 0000 O n6809"
3 0000 O $RECURSIVE OFF$
4 0000 O #define MAXSIZE 5
5 0000 O $USER DEFINEDS$
6 0000 O struct (
7 0000 1 int mat [MAXSIZE] [MAXSIZE]; /*maximum size*/
+ 0000 1 int mat[51[53;
8 0000 1 short nrows,ncolumns; /*actual size*/
9 0000 1 } typedef MATRIX; /*user defined MATRIX*/
10 0000 O
11 0000 O extern MATRIX matl1,mat2,mat3; /*extern causes names
12 0000 O to appear in listing*/
13 0000 O extern int flag;
14 0000 O
15 0000 O main()
16 0000 O {
0000 main

2-14

17 0000 1
0000
0003
0007
000A
000D
0010
0014
0017
18 001A 1
001A
001D
0020
0023
0027
002A
002D
0030
19 0033 1
0033
0033
0036
0039
003C
003D
20 0040 1
0040
0041
0041
0041
0041
0041
0041

= mat2 + mat3 * mat1;

LDX #mat1
LDY #main01 D
LDD #mat3
LBSR MATRIX MUL
LDX #main01 D
LDY #mat1
LDD #mat2
LBSR MATRIX_ADD
if (mat1 == mat2) matl = mat2;
LDX #mat?2
LDD #mat1
LBSR MATRIX EQU
LBEQ@ main01 L1
LDX #mat2
Lbu #mat1
LDD #00034H
LBSR MBmove
= matl 1= mat2;
main01_L1
LDX #mat2
LDD #mat1
LBSR MATRIX NEQ
CLRA
STD flag
RTS
main01 D
RMB 00034H
Emain EQU $-1
GLOBAL Emain

EXTERNAL MATRIX ADD
EXTERNAL MATRIX MUL
EXTERNAL MATRIX EQU
EXTERNAL MATRIX NEQ

GLOBAL

main

EXTERNAL MBmove

C/64000 Compiler Supplement 6809
C/64000 Programming 6809

2-15

C/64000 Compiler Supplement 6809
C/64000 Programming 6809

OPTIONS

OPTIMIZE
Default OFF.

Forward Branches - The 6809 has short branch instructions that can be used when the loeation to
be branched to is within 128 bytes from the branch location. The compiler optimizes all backward
branches since it knows the distance to be branched to at compile time. Forward branches, on
the other hand, are always assumed to be long (the distance to be branched to is not known).
Since most forward branches have been found to be short, an optimization has been added to the
6809 compiler such that when the option $SOPTIMIZES$ is ON, the compiler assumes that all for-
ward branches are short. This will cause a compiler error (Pass 3 ERROR-- 1200) if the branch
happens to be out of range; if this occurs, $OPTIMIZE$ should be turned OFF around the branch
where the error occurs. The error reads: Long range error, turn off OPTIMIZE for this line.

Recursive Parameter Addressing - The 6809 has three different stack offset sizes: 5 bits, 8 bits,
and 16 bits. The parameters on a recursive routine are always allocated on the stack and their
stack offsets will depend on the number and size of the variables and temporaries used in the
routine. Since the stack offset size for the parameters is not known until the end of the routine, all
stack offsets for recursive parameters are assumed to be 16 bits long. When the option
$OPTIMIZES$ is ON, however, the compiler makes an "educated guess" on the size of the parame-
ter stack offset. This can cause a compiler error if the actual offset size does not match the com-
pilers guess, and the compiler program counter will differ from the actual program counter. The
error will appear on the next label following the statement where the parameter is accessed. When
this error occurs, turn OPTIMIZE OFF at least for the statement where the parameter is accessed.
The error has a rippling effect, so it is recommended that SOPTIMIZES$ be turned OFF for the entire
routine. The error reads: Program counters do not agree.

DEBUG
Default OFF.

The DEBUG option is used to check for arithmetic errors on arithmetic operations for the standard
types. Owerations which may normally be performed with in-line code (such as a BYTE add), will
be performed using a subroutine call if the $SDEBUGS$ option is ON. The library routines in the
debug library have checks to detect arithmetic errors. The routines of the same name in the non-
debug libraries perform the same arithmetic operation but do not detect any error conditions.

2-16

C/64000 Compiler Supplement 6809
C/64000 Programming 6809

FIXED PARAMETERS
Default OFF.

This option allows the user to define a routine with a fixed number of parameters. This definition is
necessary when interacting with Pascal programs. With variable number of parameters, the para-
meters are never passed in registers and an extra parameter, indicating the number of parameter
bytes, is required. There is an extra overhead for clearing the parameters from the stack at the call-
ing end instead of at the receiving end.

POSITION INDEPENDENT CODE

Parts of the 6809 compiler are not position independent.
Switch-statements have position-dependent code (absolute jump). This can be avoided by writing
if-statements instead of switch-statements.

Addressing of Constants

Some addresses and dope vectors are allocated in a constant data area with the label
"CONST prog". Possible cases that require constants are: the use of the "&" function, multi-
dimensional or integer element array references, pointers, user-defined constants, etc. Compile
your program with options expand and check the assembly code for the label "CONST prog" to
verify that the compiler has used the constant area. The constant area is always allocated at the
end of the main program.

Addressing of Static Variables and Temporaries
A program with no static variables and all procedures being recursive will not have this problem.
External Procedures

Any external procedure requires an address (determined by the linker); this includes the run-time
routines.

C/64000 Compiler Supplement 6809
C/64000 Programming 6809

PASS 2 AND PASS 3 ERRORS

Pass 2 and 3 errors will be displayed on the screen with the message:

LINE # <line number>--PASS2 ERROR # <error number>
or LINE # <line number>--PASS3 ERROR # <error number>

In addition, if a listing file has been indicated for the compilation it will indicate pass 2 and 3 errors
where they occurred. It will also give you a listing of the meaning of each error.

Pass 2 and 3 error numbers will always be >=1000. Errors with numbers between 1000 and 1099
are fatal errors. Errors with numbers >=1100 are non-fatal errors.

Pass 2 and 3 will stop generating code after a fatal pass 2 or 3 error. If a listing file has been indi-
cated for the compilation, pass 3 will give you a listing with errors. Non-fatal errors are output to
the display and to the listing file (if one exists), but compilation continues after appropriate action
has been taken to correct the error. A list of pass 2 and 3 errors is given in Table 2-1.

Table 2-1. 6809 Pass 2 And Pass 3 Errors

1000 - "Out of memory"
The 6809 code generator has run out of memory, break up your
program and recompile.

1001 - "Size not implemented"”
An integer larger than 16 bits has been detected.

1002 - "Size error”
A size larger than the maximum size allowed for a type has
been detected.

1003 - "Type not implemented"”
A real or other unimplemented type has been detected.

1004 - "Type error"
An operation with an incorrect type of operands has been
detected; for example, a negation of an unsigned value.

1005 - "Unimplemented feature”
An attempt has been made at using a feature not implemented
on the 6809 code generator.

1006 - "Compiler error. Contact Hewlett-Packard"

This is a compiler level error. Please report this error to
Hewlett-Packard as soon as possible.

2-18

C/64000 Compiler Supplement 6809
C/64000 Programming 6809

Table 2-1. 6809 Pass 2 And Pass 3 Errors (Cont’d)

1007 - "Expression too complicated"
The compiler can not handle the level of complexity of this
expression, simplify your expression.

1008 - "Register needed but not available"
The compiler can not generate more code without additional
registers; add temporary results for your operations.

1010 - "Too many constants”
More than 256 constant values required during code
generation. Eliminate duplicate real constants or break
up module and recompile.

1103 - "Interrupt procedure must not have parameters”
An interrupt procedure can not have parameters. The compiler
will ignore the parameters and continue to generate code.

1104 - "Interrupt procedure call not allowed"
An interrupt routine can only be accessed through an interrupt
vector, since it will return with an RTI instead of an RTS.
The compiler will ignore calls to interrupt routines.

1106 - "Program counter overflow"
The program will wrap around OFFFFH. Other errors may occur
if this is not corrected.

1107 - "Data counter overflow"
The data counter will wrap around OFFFFH.

1110 - "Defined a static routine within a recursive one"
Static routines can not be defined within recursive routines
because of the difference in addressing. The compiler makes
the routine recursive and continues to generate code.

1111 - "Interrupt routines must be at level one"
All interrupt routines must be at level one. For routines
defined at levels greater than 1 with SINTERRUPT ONS$, the
compiler will ignore the option, i.e. it will generate a
non-interrupt routine.

1113 - "Program counters do not agree”
The program counter for a label generated by Pass 2 does not
agree with the program counter for that label in Pass 3.
Please report the error to Hewlett-Packard as soon as
possible. This error is detected in Pass 3.

1200 - "Lonq range error; turn off OPTIMIZE for this line”
The option $OPTIMIZES$ causes the code generator to use 2-byte
branch instructions for forward branches. This error occurs when
the label is too far away. Turning $OPTIMIZE OFF$ for this line
of code will produce a long jump which will always work.

2-19

C/64000 Compiler Supplement 6809
C/64000 Programming 6809

NOTES

2-20

Chapter 3
RUN-TIME LIBRARY SPECIFICATIONS

General

This chapter describes the run-time library routines available in the C/64000 compiler library for the
6809 microprocessor. Each routine description includes the purpose, input requirements, and
output results.

The library is logically divided into two groups of routines. One group contains the standard library
procedures and functions. The second group supplies the elementary routines that supplement

the standard 6809 instruction set. Tables 3-1 and 3-2 list the standard and supplemental routines
for the 6809 microprocessor.

NOTE

Some of the libraries listed in the tables will never be accessed by the "C"
compiler but are available in the run-time library for the user.

Table 3-1. Library Routines (Standard)

Ref

Name Purpose Page
ARRAY Compute address of array element 3-6

PARAM Pass parameters to procedures 3-14
VPARAM Pass variable parameters to procedures 3-16
RENTRY Recursive procedure entry 3-11
VRENTRY Recursive procedure entry 3-13
INITHEAP Declares block of memory as memory pool 3-10
NEW Dynamic memory allocation 3-10
DISPOSE Dynamic memory deallocation 3-10
MARK Save current status of dynamic memory heap 3-10
RELEASE Restore prior status of dynamic memory heap 3-10

3-1

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

Table 3-2. Library Routines (for 6809)

8-bit Arithmetic Group

Ref
Name Purpose Page
Zbyteabs Byte absolute value 3-18
Zbyteneg Byte negation 3-18
Zbyteadd Byte addition 3-18
Zubyteadd Unsigned byte addition 3-19
Zbytesub Byte subtraction 3-19
Zubytesub Unsigned byte subtraction 3-19
Zbytemul Byte multiplication 3-19
Zbytediv Byte division 3-18
Zubytediv Unsigned byte division 3-19

16-Bit Arithmetic Group

Ref
Name Purpose Page
Zintadd Integer addition 3-20
Zuintadd Unsigned integer addition 3-21
Zintsub Integer subtraction 3-21
Zuintsub Unsigned integer subtraction 3-22
Zintmul Integer multiplication 3-21
Zuintmul Unsigned integer multiplication 3-22
Zintdiv Integer division 3-21
Zuintdiv Unsigned integer division 3-21

Byte and Word Shifts

Ref
Name Purpose Page
Zbshift Byte shift logical with zero fill 3-23
/brotate Byte shift circular 3-23
Iwshift Word shift logical with zero fill 3-23
Iwrotate Word shift circular 3-23

3-2

Table 3-2. Library Routines (for 6809)(Cont’d)

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

Byte and Word Set Operations

Ref
Name Purpose Page
Z/binset8 Byte in 8-bit set 3-24
Zbinsetl6 Byte in 16-bit set 3-25
Zbtoset8 Byte to 8-bit set 3-24
Zbtosetl6 Byte to 16-bit set 3-25
Iwinsetl6 Word in 16-bit set 3-26
Iwtosetl6 Word to 16-bit set 3-26
Multi-byte Operations
Ref
Name Purpose Page
MBmove Multi-byte assignment 3-27
MBequ Multi-byte equality test 3-27
MBneq Multi-byte inequality test 3-27
MBgeq Multi-byte greater than or 3-27
equal test
MBgtr Multi-byte greater than test 3-27
MBleq Multi-byte less than or equal 3-27
test
MBles Multi-byte less than test 3-27
Multi-byte Set Operations
Ref
Name Purpose Page
INSETmb Multi-byte set inclusion 3-29
TOSETmb Multi-byte set formation 3-29
SETmbINT Multi-byte set intersection 3-29
SETmbUNI Multi-byte set union 3-29
SETmbDIF Multi-byte set difference 3-30
or equal
SETmbLEQ Multi-byte set less than 3-30
or equal

3-3

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

Table 3-2. Library Routines (6809)(Cont’d)

Byte and Integer Comparison and

Bounds Checking Routines

3-4

Ref

Name Purpose Page

/cc Carry cleared test 3-32

Zequ Byte and integer equality test 3-32

Ineq Byte and integer inequality test 3-32

7geq Byte and integer greater than 3-32
or equal test

Zgtr Byte and integer greater 3-32
than test

Zleq Byte and integer less than 3-32
or equal test

/les Byte and integer less than test 3-32

Zugeq Unsigned byte and integer greater 3-32
than or equal test

Zugtr Unsigned byte and integer greater 3-32
than test

Zuleq Unsigned byte and integer less 3-32
than or equal test

Zules Unsigned byte and integer less 3-32
than test

Zbbounds Byte bounds checking 3-33

Zubbounds Unsigned byte bounds checking 3-33

/wbounds Integer bounds checking 3-33

Zuwbounds Unsigned integer bounds checking 3-33

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

Table 3-2. Library Routines (for 6809)(Cont’d)

String Operations

Ref
Name Purpose Page
STmove String assignment 3-36
STequ String equality test 3-34
STneq String inequality test 3-34
STgeq String greater than or 3-34
equal test
STgtr String greater than test 3-34
STleq String less than or equal test 3-34
STles String less than test 3-34
CHequ String-char equality test 3-34
CHneq String-char inequality test 3-34
CHgeq String-char greater than or 3-34
equal test
CHgtr String-char greater than test 3-34
CHleq String-char less than or 3-34
equal test
CHles String-char less than test 3-34
Miscellaneous
Name Purpose
END DATA Label at the end of the library that can

Z END_PROGRAM
EMPTY SET_
STACK

COMPB_

TRUE

FALSE

MASTER

be used to allocate the HEAP area.

Label called at the end of the main program.

The largest possible empty set for the 6809.

Label for stack

Compares bytes, called by the comparison

routines.

Returns a true result (1) in register (B) and

resets the Z flag.
routines.

Called by the comparison

Returns a false result (0) in register (B) and

sets the Z flag.
routines.

Memory allocation global

Called by the comparison

3-5

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

ARRAY REFERENCE ROUTINES

The C/64000 compiler supports generalized array references with up to 10 indices. The array
reference routine is called with the parameters:

DOPE VECTOR - address of a record describing the array.

BASE ADDRESS - address of the first element of the
array. (May be indirected 1ike a VAR
parameter.)

Index 1ist - addresses of the actual index expressions
(one for each formal index expression).

The array reference routine return the computed memory address to the X register.

ARRAY _

The ARRAY _ routine returns the memory address of an n-dimensional array reference expression.
The array reference call for the 3-index array variable expression:

A7

would be:
LDU base address ; base address of array A
LDy 1
LDX J
PSHS U,Y,X
LDU #0007H
PSHS U
LDA #3 ; number of indices passed
LDX dope vector address ; for array A
LBSR ARRAY

To illustrate the use of indirection required for the base address, consider variable B defined as a
pointer to an array of the same type as A in the above example. A reference to an element of B
with the variable array expression:

*BI6+Y][J][7]

would generate a call to ARRAY__in the form:

3-6

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

LDD Y

ADDD #0006H

LDU [B] ; base address of array A
TFR D,Y

LDX J

PSHS U,Y,X

LDU #0007H

PSHS U

LDA #3 ; number of indices passed
LDX dope vector address ; for array A

LBSR ARRAY

Multi-dimensioned arrays are simply defined as array of arrays. An array may be referred to in its
entirety (a so-called ENTIRE variable) by referring to the array by its name using no parameters. A
variable expression allows the user to refer to an INDEXED element type by allowing from 1 to N
index expressions to be used in an array reference. C arrays are stored such that the rightmost
subscript changes faster.

The ARRAY_ call for a two-indexed array variable expression with a 3-dimensional array A is as
follows:

AllY]

For example:
LDU base address ; base address of array A
LDY I
LDX J
PSHS U,Y,X
LDA #2 ; number of indices passed
LDA dope vector address ; for array A
LBSR ARRAY

The formulae for computing array element addresses are as follows:
a. The formula used to compute the array element address is:
ADDRESS: BASE ADDRESS + (-OFFSET_CONSTANT) +
(1 * PROD 1)+ (12 * PROD_2) +...+

(IN* PROD_N)

b. The (-OFFSET_CONSTANT) term is the product of the index
lower bounds and the row widths, i.e.,

(1L * PROD_1) + (I2L * PROD_2) +...+
(INL * PROD N)

3-7

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

c. The expression used to compute the array row reference
using N-1 index expression is:

row address := BASE ADDRESS + (-OFFSET CONSTANT)
+ (11 * PROD_1) +...+
(INMINUS_ 1 * InMINUS_1) + ROWNnMINUS_1

NOTE

The addition of ROWNMINUS 1 takes you to ROWn.

Generalized Array DOPE_VECTOR

The form of the general array reference dope vector is equivalent to:

DOPE_VECTOR FDB N ;number of
; dimensions

FDB (-OFFSET CONSTANT) j;negative of
; constant

FDB PROD 1

FDB PROD 2

FDB PROD N

FDB ROWI

FDB ROW2

FDB ROWNMINUS 1

About the Routine:

At termination, this routine returns the stack pointer to the location it held at the beginning of the
program.

The array reference routines return the computed memory address in the X register.
NOTE

Users who write assembly language programs that define and use multi-
dimension arrays to be used with the ARRAY _ routine need to ensure
that their use is consistent with the C compiler. In order to accomplish
this, it is recommended that the user write a simple C program defining
and using the arrays. The user can then use the expanded listing file or
the ASM_FILE option to determine how the C compiler accesses these
arrays and defines the array dope vectors. It is important that the user’s
array dope vector be identical to that produced by the compiler.

3-8

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

DYNAMIC MEMORY ALLOCATION

C/64000 supports dynamic allocation and deallocation of storage space through the procedures
NEW, DISPOSE, MARK, RELEASE, and INITHEAP. These routines must be declared external in

the C program.
NOTE

These routines; NEW, DISPOSE, MARK, RELEASE, and INITHEAP, are static and should be
defined with $RECURSIVE OFFS$.

INITHEAP

The user declares a block of memory to be used as the memory pool or heap by calling:
INITHEAP (Start address, Length in_bytes). The resultant heap will be six bytes smaller than
length _in bytes.

NEW

The procedure NEW (Pointer) is used to allocate space. The procedure, NEW, searches for avail-
able space in a free-list of ascending size blocks. When a block is found that is the proper size or
larger, it is allocated and any space left over is returned to the free-list in a new place correspond-
ing to the size of the leftover block. If the referenced block is four or less bytes in size, four bytes
will be allocated.

DISPOSE

The procedure DISPOSE is exactly the reverse of the procedure NEW. It indicates that storage oc-
cuppied by the indicated variable is no longer required.

MARK

This procedure marks the state of the heap in the designated variable that may be of any pointer
type. The variable must not be subsequently altered by assignment.

RELEASE

The procedure RELEASE restores the state of the heap to the value in the indicated variable. This
will have the effect of disposing all heap objects created by the NEW procedure since the variable
was marked. The variable must contain a value returned by a previous call to MARK; this value
may not have been passed previously as a parameter to RELEASE.

3-9

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

RECURSIVE ENTRY

C/64000 supports recursive and reentrant calling sequences for procedures compiled for the 6809
by additional run-time entry code. This code causes the local data area of a procedure to be allo-
cated onto the stack before entry to the procedure and to be deallocated from the stack upon exit
from the procedure. These functions are performed by the procedures RENTRY_ /VRENTRY .

RENTRY

RENTRY is called at the entry point of a procedure or function which has been declared with the
option SRECURSIVE ON$. RENTRY . will copy the parameters, set the static links, and allocate
the variable size area.

RENTRY s called upon entry to a recursive C procedure or function. The calling sequence is:

LDU var area size

LDA #level ;always <=16
LDB #register parameters flag ; true (1) or
; false (0)

LDX par area size

The stack format at entry to RENTRY is one of the following:
With no parameters:
RA (calling routine)

RA from RENTRY
< (S)

With parameters passed in the registers:

RA (calling routine)

Par. #n

Par. #1

RA from RENTRY
< (S)

C/64000 Compiler Supplement 6809

With parameters passed on the stack:

Garbage

Par. #n

Par. #1
RA(calling routine)

RA from RENTRY _
< (S)

Procedure:

a. Copy the calling routine’s RA to "Garbage" if necessary.

b. Allocate variables area.

c. Store the static links.

The stack format at exit from RENTRY _is as follows:

RA(calling routine)

Par.’s

Var.'s

Static Links

< (S)

All registers but CC are modified.

Run-Time Library Specifications

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

VRENTRY _

VRENTRY is called at the entry point of a recursive procedure or function with variable number of
parameters (i.e. FIXED PARAMETERS not ON). VRENTRY_ will allocate the variable size area.

VRENTRY _is called upon entry to a recursive C procedure or function. The calling sequence is:
LDD var area size
LBSR VRENTRY _
The stack format at entry to RENTRY __is one of the following:
With no parameters:

RA (calling routine)

RA from RENTRY
< (S)

With parameters:

Par. #n

Par. #1
No. of parameter bytes
RA(calling routine)
RA from RENTRY _
< (S)
The stack format at exit from RENTRY is as follows:
Par.’s
RA (calling routine)

Var.’s
< (S)

All registers but CC are modified.

3-12

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

Parameter Passer (PARAM)

The parameter passer is called from a static routine receiving parameters where the parameters are
not passed in registers. PARAM _ transfers the parameters from the stack to the called routine’s

static data area.

If the total par-area-size in a static routine is less or equal to eight bytes and there are not more
than two parameters of size equal to one byte, then the parameters will be passed in registers (in-
stead of on the stack), else all the parameters will be pushed on the stack.

A receiving routine where parameters are passed in the registers has to store or push (for recursive
routines) every parameter in the receiving routine’s data area.

Calling sequence (from the routine passing the parameters, to the routine receiving the parameters)
for parameters not passed in registers:

a. Calling a recursive routine:

LDr1 par#1
LDr2 par#2

LDrX par#x

PSHS r1,r2,r3,...rX,PC
LDr1 par#x+1

LDr2 par#x+2

LDrX par#n
PSHS r1,r2,r3,...,rX
LBSR receiving_routine

3-13

C/64000 Compiler Supplement 6809
Run-Time Library Specifications
b. Calling a static routine:

LDr1 par#1
LDr2 par#2

LDrX par#x

PSHS r1,r2,r3,...,rxX
LDr1 par#x+1
LDr2 par#x+2

LDrX par#n
PSHS r1,r2,r3,...,rx
LBSR receiving_routine

Calling sequence (from a static routine receiving the parameters, to PARAM):

LDX to_address
LDD par_area_ size
LBSR PARAM

Stack format at entry to PARAM_:

Par. #n

Par. #1
RA (calling routine)
RA (receiving routine)
< (S)

Stack format at exit from PARAM_:

RA (calling routine)

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

NOTE

Users who write assembly language programs that define and use
procedures and functions, particularly with parameters, need to ensure
that their use is consistent with the C compiler. In order to accomplish
this, it is recommended that the user write a simple C program defining
the procedure or function with the desired parameter list and an empty
program block for code. The user can then use the expanded listing file
or the ASM_FILES option to determine how the C compiler enters and
exists the equivalent do-nothing procedure and how the parameters are
passed. It is important that the user’s assembly language routines follow
the same entry, parameter passing, and exit code produced by the com-
piler. In particular, it is important that recursive or static mode declara-
tions (and use) be consistent.

VPARAM _

The variable parameter passer is the same as PARAM __ except that it includes an extra parameter
that indicates the number of parameter bytes passed.

Calling a recursive routine:

LDr1 par#1
LDr2 par#2

LDrX par#x

PSHS r1,r2,r3,...,rX
LDr1 par#x+1
LDr2 par#x+2

LDrx-1 par#n

LDrx #no of par bytes
PSHS r1,r2,r3,...,rx
LBSR receiving routine

3-15

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

The calling sequence (from a static routine ... VPARAM)

LDX to address
LBSR VPARAM

The stack format at entry to VPARAM _is as follows:

Par #n

Par #1

No. of Parameter bytes
RA (calling)
RA (receiving)

< (9)

The stack format at exit from VPARAM _is as follows:

Par #n

Par #1
No. of parameter bytes

RA (calling routine)
< (S)

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

STANDARD BYTE ROUTINES

For standard byte routines, parameter values are passed using specific registers. The operands are
8-bit signed or unsigned bytes. There are two groups of byte operations: the unary byte operation,
and the binary byte operation. These operations are discussed in the following paragraphs.

Unary Byte Operations

Zbyteabs Byte absolute value
Zbyteneg Byte negation

Register Allocation Summary :: Unary byte operations
Input: B contains value to be operated on

Output: B contains the result byte

Registers:

Modified: B
Unchanged: A X,Y,U,S,CC

Binary Byte Operations

Zbyteadd Byte addition

Zubyteadd Unsigned byte addition
Zbytesub Byte subtraction
Zubytesub Unsigned byte subtraction
Zbytemul Byte multiplication
/bytediv Byte division

Zubytediv Unsigned byte division

a. Zbyteadd performs the addition of two bytes.
b. Zbytediv performs the division of two bytes using the following algorithm:
(1) Shift divisor left to its highest possible value.

(2) Subtract divisor from dividend.

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

(3) If result is positive, put 1 in rightmost digit of quotient. If negative, add divisor back into
dividend and put O in quotient.

(4) Shift divisor right and repeat steps 2 and 3 until divisor returns to its original value. The
result of the division is available in register B upon completion. The remainder is also
available in register A (used for MODULUS).

¢. Zbytemul performs the multiplication of two bytes. The actual multiplication works on posi-
tive values and produces a positive dummy result. The routine handles negative operands by
counting and complementing the negative operands using a counter which is set to -1. If one
negative operand exists, the counter equals zero and causes the negation of the dummy
result to obtain the correct result. If both operands are positive or negative, the positive
dummy result is the actual result. The eight LSB of the result of the multiplication are avail-
able in register B upon completion of the routine and the eight MSB are in register A.

d. Zbytesub performs the subtraction of two bytes.

e. Zubyteadd performs the addition of two unsigned bytes.

f. Zubytediv performs the division of two unsigned bytes. The binary division algorithm is as
that of b above. The result of the division is available in register B upon completion. The
remainder is also available in register A (used for MODULUS).

g. Zubytesub performs the subtraction of two unsigned bytes.

Register Allocation Summary :: Binary 8BIT ops.
Input: B contains the first operand A contains the second operand

Output: B contains the result A contains the MSB of result - MUL contains the remainder
- DIV

Registers: Modified: A,B Unchanged: X,Y,U,S,CC

3-18

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

STANDARD INTEGER ROUTINES

The integer operations require 16-bit operands. The two 8-bit accumulators are normally used as a
16-bit register (called D) for these routines. As a register pair, the high-order byte is always stored
in register A and the low-order byte is stored in register B. Register X is a 16-bit register and is
used for binary operations and for returning some results. There are two groups of integer opera-
tions: the unary integer operation and the binary integer operation. These operations are discussed
in the following paragraphs.

Unary Integer Operations

Zintabs Integer absolute value
Zintneg Integer negation

Register Allocation Summary :: Unary integer operations
Input: D contains integer value to be operated on
Output: D contains integer RESULT

Registers:

Modified: D
Unchanged: X,Y,U,S,CC

Binary Integer Operations

Zintadd Integer addition

Zuintadd Unsigned integer addition
Zintsub Integer subtraction

Zuintsub Unsigned integer subtraction
Zintmul Integer multiplication

Zuintmul Unsigned integer multiplication
Zintdiv Integer division

Zuintdiv Unsigned integer division

a. Zintadd performs the addition of two integers.

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

3-20

b. Zintdiv performs the division of two integers. The actual division works on positive

values and produces a positive dummy result. The routine handles negative operands
by counting and complementing the negative operands using a counter which is set to
-1. If one negative operand exists, the counter equals zero and causes the negation of
the dummy result. If both operands are positive or negative, the dummy result is the
correct answer. The division algorithm is as follows:

(1) Shift divisor left to its highest possible value.
(2) Subtract divisor from dividend.

(3) If result is positive, put 1 in rightmost digit of quotient. If negative, recover
divisor before subtraction and put O in quotient.

(4) Shift divisor right and repeat steps b and ¢ until divisor returns to its original
value.

The result of the division is available in register D upon completion. The remainder is
available in register X (used for MODULUS).

. Zintmul performs the multiplication of two integers. The actual multiplication works on

positive values and produces a positive dummy result. The routine handles negative
operands by counting and complementing the negative operands using a counter
which is set to -1. If one negative operand exists, the counter equals zero and causes
the negation of the dummy result. If both operands are positive or negative, the posi-
tive dummy result is the correct result. The multiplication occurs as follows:

(A:B) * (C:D) = BDH : BDL + BCH: BCL + ADH: ADL + ACH:
ACL

The lower 16 bits of the result are placed into the D register and the 16 most significant
bits of the result are placed in register X upon completion of the library routine.

d. Zintsub performs the subtraction of two integers.
e. Zuintadd performs the addition of two unsigned integers.

f. Zuintdiv performs the division of two unsigned integers. The binary division algorithm

is as that in b above. The result of the division is available in register D upon comple-
tion. The remainder is available in register X (for MOD).

g. Zuintmul performs the multiplication of two unsigned integers. The actual multiplica-

tion occurs as explained in ¢ above. The lower 16 bits of the result are placed into
register D and the 16 most significant bits of the result are placed in register X upon
completion of the library routine.

h. Zuintsub performs the subtraction of two unsigned integers.

Register Allocation Summary :: Binary 16BIT ops.

Input: X contains the first operand D contains the second operand Output:
D contains the result X contains the MSW of result - MUL contains
the remainder - DIV

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

Registers: Modified: D,X Unchanged: Y,U,S,CC
BYTE AND WORD SHIFTS

C/64000 supports logical shifting. Circular shifting may be accomplished by calling the run-time
library ROTATE. The DIV operator using powers of 2 may be used to accomplish an arithmetic
right shift (i.e., with sign extension). For example, X DIV 2 is equivalent to a one bit right shift with

sign extension.
SHIFT

Logical shifting with zero fill will shift the quantity left or right placing a zero in the most (right shift)
or least (left shift) significant bit for each shift. The function is called with two parameters: the
quantity to be shifted and the number of bit positions to shift.

ROTATE

Circular shifting rotates the quantity left or right and fills the vacated position with the bit shifted
out of the other end. The function is called with two parameters: the quantity to be shifted and the
number of bit positions to shift.

The type of result returned by the function SHIFT or ROTATE is the same type as the type of the
first parameter expression.

3-21

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

Byte Shifts

Zbshift Byte shift logical with zero fill
Zbrotate Byte shift circular

The byte shift operations compute the byte result of shift expressions.

Register Allocation Summary :: Byte shift operations

Input: A contains byte to be shifted, B1
B contains number of positions to shift, B2

Output: B contains the result byte
Registers:

Modified: B,CC
Unchanged: AX,Y,U,S,DP

Word Shifts

Iwshift Word shift logical with zero fill
Iwrotate Word shift circular

Register Allocation Summary :: Integer shift operations

Input: X contains word to be shifted, I1
B contains the number of positions to shift, 12

Output: D contains the result word
Registers:

Modified: D
Unchanged: X,Y,U,S,DP

3-22

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

BYTE AND WORD SET OPERATIONS

Byte Set Operations

/binset8 Byte in 8-bit set
/btoset8 Byte to 8-bit set
Zbinset8. This routine is used to test the set membership of a byte value in a specified byte set.
Register Allocation Summary :: Zbinset8

Input: B contains the byte set being compared
A contains byte value to be tested

Output: B set to 0, Z flag set if value not in set
B set to 1, Z flag reset if value in set

Registers:

Modified: B,CC
Unchanged: A,X,Y,U,S5,DP

At termination, register A will contain the byteset which
was compared.

Zbtoset8. This routine converts a byte into an 8-bit set. The only valid input values are 0 through
7. Out of range values are detected in the debug library, DLIB_6809:C6809, but are not detected
in LIB_6809:C6809 and may produce out of range results.

Register Allocation Summary :: Zbtoset8

Input: B contains byte value to be converted

Output: B contains the byteset result

Registers:

Modified: B
Unchanged: A,X,Y,U,S,CC

3-23

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

Word Set Operations

/binsetlé Byte in 16-bit set
/btosetl6 Byte to 16-bit set
Iwinsetl6 Word in 16-bit set
Iwtosetl6b Word to 16-bit set

Zbinset16. This routine is used to test the set membership of a byte value in a specified word set.

Register Allocation Summary :: Zbinset16

Input: B contains byte value to be tested
X contains the word set being compared

Output: B set to 0, Z flag set if value not in set
B setto 1, Z flag reset if value in set

Registers:

Modified: B,CC
Unchanged: AX,Y,U,S,DP

At termination, register X will contain the word set
compared.

Zbtoset16. This routine converts a byte into a 16-bit set. The only valid input values are 0 through
15. Out of range values are detected in the debug library, DLIB_6809:C6809, but are not detected
in LIB_6809:C6809 and may produce out of range results.
Register Allocation Summary :: Zbtoset16
Input: B contains byte value to be converted
Output: D contains the wordset result
Registers:

Modified: D
Unchanged: X,Y,U,S,CC

3-24

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

Zwinset16. This routine is used to test the set membership of a word value in a specified word set.

Register Allocation Summary :: Zwinset16

Input: D contains word value to be tested
X contains the word set being compared

Output: B set to 0, Z flag set if value not in set
B set to 1, Z flag reset if value in set

Registers:

Modified: D,CC
Unchanged: X,Y,U,S,DP

Zwtoset16. This routine converts a word into a 16-bit set. The only valid input values are O
through 15. Out of range values are detected in the debug library, DLIB_6809:C6809, but are not
detected in LIB_ 6809:C6809 and may produce out of range results.
Register Allocation Summary :: Zwtoset16
Input: D contains word value to be converted
Output: D contains the wordset result
Registers:

Modified: D
Unchanged: X,Y,U,S,CC

MULTI-BYTE OPERATIONS

The multi-byte routines are used by the compiler to operate on multi-byte records (or arrays) of the
same type.

3-25

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

MBmove

The routine MBmove is used for moving multi_byte records such as in an assignment of a com-
plete record type or an array type to another of the same type.

Register Allocation Summary :: MBmove

Input: X contains the first record’s addr.
U contains the second records’s addr.
D contains the number of bytes in
the records.

Registers:

Modified : D
Unchanged: X,Y,U,S,CC

Multi-byte Comparisons

MBequ Multi-byte equality test

MBneq Multi-byte inequality test

MBgeq Multi-byte greater than or equal test
MBgtr Multi-byte greater than test

MBleq Multi-byte less than or equal test
MBles Multi-byte less than test

MBequ. This routine is used by the compiler to test multi-byte records of the same type for
equality.

MBneqg. This routine is used by the compiler to test multi-byte records of the same type for
inequality.

MBgeq. This routine is used by the compiler to test if one set of records is greater than or equal to
another set of records of the same type. The test is unsigned.

MBgtr. This routine is used by the compiler to test if one set of multi-byte records is greater than
another set of the same type. The test is unsigned.

MBleq. This routine is used by the compiler to test if one set of records is less than or equal to
another set of records of the same type. The test is unsigned.

MBIles. This routine is used by the compiler to test if one set of records is less than another set of
records of the same type. The test is unsigned.

3-26

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

A compare routine is called to compare the bytes and upon re-entry to this program, a branch is
taken to either a "true" or "false" routine.

Register Allocation Summary :: Multi-bytes

Input: X contains the first record’s addr.
U contains the second records’s addr.
D contains the number of bytes in
the records.

Registers:

Modified : D
Unchanged: X,Y,U,S,CC

Output:

test results B register . flag
~ true 1 R reset
false 0 set

Additionally, register A will contain the byte within the first set of bytes which caused the equality
comparison to fail or was the last equal byte to be compared.

MULTI-BYTE SET OPERATIONS
Sets requiring three or more bytes, are referred to as multi-byte sets.

Multi-byte Set Routines

INSETmb Multi-byte set inclusion
TOSETmb Multi-byte set formation
SETmbINT Multi-byte set intersection
SETmbUNI Multi-byte set union

SETmbDIF Multi-byte set difference
SETmbLEQ Multi-byte subset inclusion

3-27

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

INSETmb. This routine is used to test the set membership of an integer value in a multi-byte set.

Register Allocation Summary :: INSETmb

Input : X contains address of the multi-byte
set
D contains the integer value V

Output: IF V is contained in set
THEN
B set to 1 (TRUE), Z flag reset
ELSE
B set to O (FALSE), Z flag set

Registers:

Modified : D,CC
Unchanged: X,Y,U,S,DP

TOSETmb. This routine is used to convert a value into a multi-byte set.

Register Allocation Summary :: TOSETmb
Input: X contains byte value to be converted
U contains the addr. of the result set
D contains the number of bytes in the
set
Registers:

Modified: D
Unchanged: X,Y,U,S,CC

SETmbINT. This routine is used to compute the set intersection of two multi-byte sets.

SETmbUNI. This routine is used to compute the set union of two multi-byte sets.

3-28

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

SETmbDIF. This routine is used to compute the set difference of two multi-byte sets. The set dif-
ference is a set containing all the elements of the multi-byte set in (X) which are not contained in
the multi-byte set in (U).

Register Allocation Summary :: Big sets

Input : X contains the first set’s adr.
U contains the second set’s adr.
Y contains the result set’s adr.
D contains the number of bytes

Registers:
Modified : D
Unchanged: X,Y,U,S,CC

SETmbLEQ. This routine is used to compute the set inclusion of two multi-byte sets.
Register Allocation Summary :: SETmbLEQ

Input : X contains address of S1
U contains address of S2
D contains the number of bytes

Output: IF S2 is a subset of S1
THEN
B set to 1 (TRUE), Z flag reset
ELSE
B set to O (FALSE), Z flag set

Registers:

Modified : D,CC
Unchanged: X,Y,U,S

To accomplish the "proper subset" operation, the 6809 compiler will invert the operands and
proceed to call SETmbLEQ.

3-29

C/64000 Compiler Supplement 6809

Run-Time Library Specifications

The comparison (=,<>,>=,>,<=,<) of byte and integer variables produces a Boolean result (FALSE or
TRUE) based on the signed or unsigned sequences of byte or word scalar types. In many cases
where the comparison is being used as the condition for an IF, REPEAT, or WHILE statement, a
branch is taken based on the result of the comparison. However, if the Boolean result is being as-
signed to a variable or if the expression has multiple comparisons (using AND and OR) an actual
Boolean result is required. The byte and word comparison subroutines are used specifically in

BYTE AND INTEGER COMPARISON AND BOUNDS

Checking Routines

these situations were the Boolean result is necessary for further computations.

Byte and Word Comparisons

Icc
Zequ
Zneq
/geq
Zgtr
lleq
Zles
Zugeq

Zugtr
Zuleq

Zules

3-30

Carry clear test

Byte
Byte
Byte
Byte
Byte
Byte

and integer equality test

and integer inequality test

and integer greater than or equal test
and integer greater than test

and integer less than or equal test
and integer less than test

Unsigned byte and integer greater than or

equal test

Unsigned byte and integer greater than test
Unsigned byte and integer less than or equal

test

Unsigned byte and integer less than test

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

Library subroutines are called when the Boolean result is required of a comparison expression of
the following form: 11 .op. 12

Zcc is called to test if the carry bit is cleared.

Zequ is called to test for equality between 11 and 12 by testing if the Z flag of the condition
codes is set.

Zneq is called to test for inequality between I1 and |12 by testing if the Z bit of the condition
codes is set.

Zgeq is called to test if 11 is greater than or equal to 12 by testing if either, but not both, of the N
or V bits of the condition codes is set.

Zgtr is called to test if 11 is greater than 12 by testing if the "EXCLUSIVE OR " of the N and V
bits is 1 or Z=1.

Zleq is called to test if I1 is less than or equal to 12 by testing if the "EXCLUSIVE OR" of the N
and V bits is 1 or Z=1.

Zles is called to test if either, but not both, of the N or V bits is set.
Zugeq is called to test if I1 is less than 12 by testing if the C flag of the condition codes is set.

Zugtr is called to test if I1 is greater than 12 by testing if the previous operation caused either a
carry or a zero result.

Zuleq is called to test if 11 is less than or equal to 12 by testing if the previous operation caused
either a carry or a zero result.

Zules is called to test if the C bit is set or not.

Output:
test results B register Z flag
true 1 reset
false 0 set

3-31

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

Byte Bounds Checking

Zbbounds Byte bounds checking
Zubbounds Unsigned byte bounds checking

The bounds checking for!signed and unsigned byte variables use the same calling sequence and
return the same results. The value being checked is loaded into register X. The upper limit is
loaded into register A and the lower limit is loaded into register B. Upon return, register B contains
the Boolean result (FALSE or TRUE) of the bounds check and the Z flag will be set according to
the Boolean value in B. [f B=FALSE (0) then Z is set. If B=TRUE (1) then Z is reset.

Register Allocation Summary :: Byte bounds check

Input: B contains the value V
MSB of X contains the Tower limit (LL)
LSB of X contains the upper limit (UL)

Qutput: B set to 0, Z flag set if value not in range
B set to 1, 7Z flag reset if value in range

Registers:
Modified: B,CC
Unchanged: X,Y,U,S

Word Bounds Checking

Zwbounds Integer bounds checking
Zuwbounds Unsigned integer bounds checking

The bounds checking for signed and unsigned word variables use the same calling sequence and
return the same results. The value being checked is loaded into register X. The upper limit is
loaded into register D and the lower limit is loaded into register U. Upon return, register B contains
the Boolean results (FALSE or TRUE) of the bounds check and the Z flag will be set according to
the Boolean value of register B. If B=FALSE then Z is set. If B=TRUE than Z is reset.

3-32

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

The logic of the routine is:

IF UL <=V <= LL THEN true result
ELSE false result

Register Allocation Summary :: Word bounds check
Input: D contains the upper limit (UL)
U contains the Tower Timit (LL)
X contains the value V
Output: B set to 0, Z flag set if value not in range
B set to 1, Z flag reset if value in range
Registers:

Modified: B,CC
Unchanged: X,Y,U,S

STRINGS AND CHARACTERS

The routines STequ, STneq, STgeq, STgtr, STleq, STles are used by the compiler to test strings
equality or inequality.

The routines CHequ, CHneq, CHgeq, CHgtr, CHleq, CHles are used by the compiler to test strings
.vs. characters equality or inequality. The character is always the first argument (the compiler will
invert the relational operand if necessary, i.e. ST <= CH becomes CH > ST). This routines will set
up their arguments and then call the string routines.

A compare routine is called to compare the bytes and upon re-entry to this program, a branch is
taken to either a "true" or "false" routine.

String equality and inequality in the C compiler are determined by the following rules:
a. Two strings are equal IF their lengths are equal and they are equal character by character.

b. The inequality of two strings is determined by the first character by which they differ and if all
characters are equal then the longest string is the largest.

3-33

C/64000 Compiler Supplement 6809
Run-Time Library Specifications

Register Allocation Summary: String routines

Input : X contains the first string’s addr.
U contains the second string’s addr.
D contains the number of bytes in
the string’s type

Registers:
Modified : D
Unchanged: X,Y,U,S5,CC

Register Allocation Summary: Character routines

Input : B contains the character (first operand)
U contains the string’s address
D contains the number of bytes in the
string’s type

Registers:
Modified : D
Unchanged: X,Y,U,5,CC

Output:
test results B register . flag
true 1 B reset
false 0 set

Additionally, register A will contain the byte within the first set of bytes which caused the equality
comparison to fail or was the last equal byte to be compared.

STmove
The routine STmove is used to copy a string from one location to another.
Register Allocation Summary :: STmove
Input: X contains the first string’s addr.
U contains the second string’s addr.
D contains the number of bytes in the
first string’s type (n1+1)
Registers:

Modified : D
Unchanged: X,Y,U,S,CC

3-34

Chapter 4
RUN-TIME LIBRARY
SPECIFICATIONS FOR REAL NUMBERS

REAL NUMBER LIBRARIES

The C/64000 implementation of the IEEE floating point standard for the 6809 microprocessor is
supported by the real library: RealLIB:C6809 (for C data types: "double" and "float"). Table 4-1
summarizes the standard C floating point routines. These routines use the parameter passing
conventions described for normal C static functions with the option $FIXED_PARAMETERS OFF$

($FIXED PARAMETERS OFF$ is the default; see Chapter 2 "Options").

Table 4-1. C Real Number Library Routines
(SFIXED _PARAMETERS OFFS$)

Ref
Name Purpose Page
ABS Double absolute value 4-3
SQRT Double square root 4-3
EXP Double exponentiation(e to the X) 4-3
LN Double natural logarithm 4-3
SIN Double sine 4-3
C0S Double cosine 4-3
ARCTAN Double arctangent 4-3

Table 4-2 summarizes the rest of the floating point routines supported by the C/64000 real number
library. These routines use the parameter passing method obtained with the compiler option
SFIXED PARAMETERS ONS.

The parameter passing for these routines is that described in "User Defined Operators" (see
Chapter 2). Each library routine has an external interface using a global symbol in the form:
REAL_op or LONGREAL op, where op is the mnemonic for one of the supported operations.
Since the compiler performs some automatic type conversions there are some additional opera-
tions to convert between "int", "float" and "double" data types. Each of the library routines is
defined by the equivalent C procedure heading for its declaration.

4-1

C/64000 Compiler Supplement 6809
Run-Time Library Specifications for Real Numbers

Table 4-2. C Real Number Library Routines
($FIXED_PARAMETERS ONS)

Ref
Name Purpose Page
REAL ADD Real addition 4-4
REAL SUB Real subtraction 4-4
REAL MUL Real multiplication 4-4
REAL DIV Real division 4-4
REAL ABS Real absolute value 4-5
REAL NEG Real negation 4-5
REAL SQRT Real square root 4-5
REAL EXP Real exponentiation(e to the X) 4-5
REAL LN Real natural Togarithm 4-5
REAL SIN Real sine 4-5
REAL COS Real cosine 4-5
REAL ATAN Real arctangent 4-5
REAL EQU Real equality test 4-6
REAL NEQ Real inequality test 4-6
REAL LES Real less than test 4-6
REAL GTR Real greater than test 4-6
REAL LEQ Real less than or equal test 4-6
REAL GEQ Real greater than or equal test 4-6
REAL FLOAT Integer to real conversion 4-7
REAL ROUND Real to integer conversion with rounding 4-7
REAL TRUNC Real to integer conversion with truncation 4-7

LONGREAL ADD Longreal addition

LONGREAL SUB Longreal subtraction

LONGREAL MUL Longreal multiplication

LONGREAL DIV Longreal division

LONGREAL ABS Longreal absolute value

LONGREAL NEG Longreal negation

LONGREAL SQRT Longreal square root

LONGREAL EXP Longreal exponentiation(e to the X)
LONGREAL LN Longreal natural logarithm

LONGREAL SIN Longreal sine

LONGREAL COS Longreal cosine

LONGREAL ATAN Longreal arctangent

LONGREAL EQU Longreal equality test

LONGREAL NEQ Longreal inequality test

LONGREAL LES Longreal less than test

LONGREAL GTR Longreal greater than test

LONGREAL LEQ Longreal less than or equal test
LONGREAL GEQ Longreal greater than or equal test
LONGREAL FLOAT Integer to longreal conversion
LONGREAL ROUND Longreal to integer conversion with rounding
LONGREAL TRUNC Longreal to integer conversion with trucation
REAL CONTRACT Longreal to real conversion

REAL EXTEND Real to longreal conversion

4-2

N N
1 1 1 1 1 1 1 1 1 1

1
B Ne e e NerWe) We WS, WO NS W, NS NS, IS IS TN N O NN

Rl e i i T N S S S N SN S O S SO SO
|

C/64000 Compiler Supplement 6809
Run-Time Library Specifications for Real Numbers

C REAL NUMBER LIBRARY ROUTINES
(SFIXED _PARAMETERS OFF$)
NOTE

The routines in this section, use the parameter passing method that is
generated with the default option $FIXED PARAMETERS OFFS$.

The wunary functions using the standard C compatible method for passing parameters
(SFIXED _PARAMETERS OFF$) supported in the library, RealLIB:C6809, are as follows:

double ABS (ARGUMENT) /* double absolute value */
double ARGUMENT;

double NEG (ARGUMENT) /* double negation */
double ARGUMENT;

double SQRT (ARGUMENT) /* double square root */
double ARGUMENT;

double EXP (ARGUMENT) /* double exponentiation */
double ARGUMENT;

double LN (ARGUMENT) /* double natural Togarithm */
double ARGUMENT;

doubTe SIN (ARGUMENT) /* double sine(radians) */
double ARGUMENT;

double COS (ARGUMENT) /* double cosine(radians) */
double ARGUMENT;

double ARCTAN (ARGUMENT) /* double arctangent */
double ARGUMENT;

C REAL NUMBER LIBRARY ROUTINES
($FIXED_PARAMETERS ONS$)

NOTE

The routines in this section use the parameter passing method generated
with the option $FIXED PARAMETERS ONS.

4.3

C/64000 Compiler Supplement 6809
Run-Time Library Specifications for Real Numbers

FLOATING POINT BINARY OPERATIONS

For binary floating point operations of the form:
RESULT = LEFT <op> RIGHT;
the equivalent C procedure heading is in the form:

REAL <op> (LEFT,RIGHT,RESULT) float *LEFT,"RIGHT,"RESULT; or LONGREAL_<op> (
LEFT,RIGHT,RESULT) double *LEFT,"RIGHT,*RESULT;

The binary operations supported in RealLIB:C6809 are as follows:

REAL ADD (LEFT,RIGHT,RESULT) /* float addition */
float *LEFT,*RIGHT,*RESULT;

REAL SUB (LEFT,RIGHT,RESULT) /* float subtraction */
float *LEFT,*RIGHT,*RESULT;

REAL MUL (LEFT,RIGHT,RESULT) /* float multiplication

*

float *LEFT,*RIGHT,*RESULT;

REAL DIV (LEFT,RIGHT,RESULT) /* float division */
float *LEFT,*RIGHT,*RESULT;

LONGREAL ADD (LEFT,RIGHT,RESULT)/* double addition */
double *LEFT,*RIGHT,*RESULT;

LONGREAL SUB (LEFT,RIGHT,RESULT)/* double subtraction */
doubTe *LEFT,*RIGHT,*RESULT;

LONGREAL MUL (LEFT,RIGHT,RESULT)/* double multiplication

*

double *LEFT,*RIGHT,*RESULT;

LONGREAL DIV (LEFT,RIGHT,RESULT)/* double division */
double *LEFT,*RIGHT,*RESULT;

4-4

C/64000 Compiler Supplement 6809
Run-Time Library Specifications for Real Numbers

FLOATING POINT UNARY OPERATIONS

For unary floating point operations of the form:
RESULT = <op> RIGHT;
the equivalent C procedure heading is in the form:

REAL <op> (RIGHT,RESULT) float *RIGHT,"RESULT; or LONGREAL <op> (RIGHT,RESULT
) double *RIGHT,”"RESULT;

The unary operations supported in RealLIB:C6809 are as follows:

REAL ABS (RIGHT,RESULT) /* float absolute value
*
float *RIGHT,*RESULT;
REAL NEG (RIGHT,RESULT) /* float negation */
float *RIGHT,*RESULT;
REAL SQRT (RIGHT,RESULT) /* float square root */
float *RIGHT,*RESULT;
REAL EXP (RIGHT,RESULT) /* float exponentiation
*
float *RIGHT,*RESULT;
REAL LN (RIGHT,RESULT) /* float natural
logarithm*/
float *RIGHT,*RESULT;
REAL SIN (RIGHT,RESULT) /* float sine */
float *RIGHT,*RESULT;
REAL COS (RIGHT,RESULT) /* float cosine */
float *RIGHT,*RESULT;
REAL ATAN (RIGHT,RESULT) /* float arctangent */

float *RIGHT,*RESULT;
LONGREAL ABS (RIGHT,RESULT) /* double absolute value
*
/
double *RIGHT,*RESULT;
LONGREAL NEG (RIGHT,RESULT) /* double negation */
double *RIGHT,*RESULT;
LONGREAL SQRT (RIGHT,RESULT) /* double square root */
double *RIGHT,*RESULT;
LONGREAL EXP (RIGHT,RESULT) /* double exponentiation
*
double *RIGHT,*RESULT;
LONGREAL LN (RIGHT,RESULT) /* double natural
logarithm */
double *RIGHT,*RESULT;
LONGREAL SIN (RIGHT,RESULT) /* double sine */
double *RIGHT,*RESULT;
LONGREAL COS (RIGHT,RESULT) /* double cosine */
double *RIGHT,*RESULT;
LONGREAL ATAN (RIGHT,RESULT) /* double arctangent */
double *RIGHT,*RESULT;

4.5

C/64000 Compiler Supplement 6809
Run-Time Library Specifications for Real Numbers

FLOATING POINT COMPARISON OPERATIONS

For floating point comparison operations of the form:
BOOLEAN = LEFT <op> RIGHT;
the equivalent C procedure heading is in the form:
short REAL <op> (LEFT,RIGHT) float *LEFT,*RIGHT; or short LONGREAL <op> (

LEFT,RIGHT) double *LEFT,"RIGHT,;

The comparison operations supported in RealLIB:C6809 are as follows:

short REAL EQU (LEFT,RIGHT) /* float equality test */
float *LEFT,*RIGHT;
short REAL NEQ (LEFT,RIGHT) /* float inequality test
*
float *LEFT,*RIGHT;
short REAL LES (LEFT,RIGHT) /* float less than test
*
float *LEFT,*RIGHT;
short REAL GTR (LEFT,RIGHT) /* float greater than
test */
float *LEFT,*RIGHT;
short REAL LEQ (LEFT,RIGHT) /* float less than or

equal test */

float *LEFT,*RIGHT;
short REAL GEQ (LEFT,RIGHT) /* float greater than or
equal test */

float *LEFT,*RIGHT;
short LONGREAL EQU (LEFT,RIGHT) /* double equality test
*

double *LEFT,*RIGHT;
short LONGREAL NEQ (LEFT,RIGHT) /* double inequality test
*

doubTe *LEFT,*RIGHT;
short LONGREAL LES (LEFT,RIGHT) /* double less than test
*

double *LEFT,*RIGHT;
short LONGREAL GTR (LEFT,RIGHT) /* double greater than
test */

double *LEFT,*RIGHT;
short LONGREAL LEQ (LEFT,RIGHT) /* double less than or
equal test */

double *LEFT,*RIGHT;
short LONGREAL GEQ (LEFT,RIGHT) /* double greater than or
equal test */

double *LEFT,*RIGHT;

4-6

C/64000 Compiler Supplement 6809
Run-Time Library Specifications for Real Numbers

FLOATING POINT CONVERSION OPERATIONS

For floating point conversion operations of the form:
RESULT = <op> RIGHT;
the equivalent C procedure heading is in the form:
REAL <op> (RIGHT, RESULT) RIGHTtype *RIGHT; RESULTtype *RESULT;
LONGREAL <op> (RIGHT, RESULT) RIGHTtype *RIGHT; RESULTtype *RESULT;

The conversion operations supported in RealLIB:C6809 are as follows:

REAL FLOAT (RIGHT, RESULT) /* convert int to float
*
int *RIGHT;float *RESULT;
REAL ROUND (RIGHT, RESULT) /* convert float to int
*/
float *RIGHT; int *RESULT; /* with rounding */
REAL TRUNC (RIGHT, RESULT) /* convert float to int
*/
float *RIGHT; int *RESULT; /* with trunctation
*/

LONGREAL FLOAT (RIGHT, RESULT) /* convert int to double
*

int *RIGHT; double *RESULT;
LONGREAL ROUND (RIGHT, RESULT) /* convert double to int
*

double *RIGHT; int *RESULT; /* with rounding */
LONGREAL TRUNC (RIGHT, RESULT) /* convert double to int
*
double *RIGHT; int *RESULT; /* with truncation */
REAL CONTRACT (RIGHT, RESULT) /* convert double to
float */

double *RIGHT; float *RESULT;
REAL EXTEND (RIGHT, RESULT) /* convert float to
double */
float *RIGHT; double *RESULT;

or

4-7

C/64000 Compiler Supplement 6809
Run-Time Library Specifications for Real Numbers

FLOATING POINT ERROR DETECTION

The floating point libraries have two error conditions which when detected cause the execution of
one of two global routines. These routine names are OVERFLOW and INVALID. OVERFLOW is
called when an operation would produce an invalid number. INVALID is called when an invalid
floating point number is passed as a parameter to one of the floating point routines.

The user may replace either of these routines with an error recovery routine of his own. In par-
ticular defining either of these routines as a simple return from subroutine instruction (RTS) will
cause the program to continue with an invalid number returned as a result. If OVERFLOW or
INVALID are to be defined in a C program, they must have no parameters with the option
$FIXED PARAMETERS ONS$.

If the user does not supply his or her own version of these routines, the libraries will supply one
which will display a message on the buffer ERROR MESSAGE, and then return to the library

routine.
If either of the illegal opcodes is detected by the emulator, the user can get information describing
the error by entering the emulation command:

display memory ERROR_MESSAGE blocked word

which will produce a memory display indicating the error condition.

If no error has occurred, the display will appear as follows:

Memory :words :blocked :repetitively
address data thex rascii

9003-12 4LEG6F 2065 7272 6F72 2020 2020 2020 2020 No error
9013-22 2020 2020 2020 2020 2020 2020 2020 2020
9023-32 2020 2020 2020 2020 2020 2020 2020 2020
9033-42 2020 2020 2020 2020 2020 2020 2020 2020
9043-52 2020 2020 2020 2020 2020 2020 2020 2020
9053-62 2020 2020 2020 2020 2020 2020 2020 2020
9063-72 2020 2020 2020 2020 2020 2020 2020 2020
9073-82 2020 2020 2020 2020 2020 2020 2020 2020
9083-92 2020 2020 2020 2020 2020 2020 2020 2020
9093-A2 2020 2020 2020 2020 2020 2020 2020 2020
90A3-B2 2020 2020 2020 2020 2020 2020 2020 2020
90B3-C2 2020 2020 2020 2020 2020 2020 2020 2020
90C3-D2 2020 2020 2020 2020 2020 2020 2020 2020
90D3-E2 2020 2020 2020 2020 2020 2020 2020 2020
9O0E3-F2 2020 2020 2020 2020 2020 2020 2020 2020
90F3-02 2020 2020 2020 2020 2020 2020 2020 2020

4-8

C/64000 Compiler Supplement 6809

Run-Time Library Specifications for Real Numbers

Memory :words :blocked :repetitively

address data thex rascii
9003-12 5265 616C 2020 2020 6572 726F 7220 2020 Real error
9013-22 L9LE 5641 4C49 4420 2020 2020 2020 2020 INVALID
9023-32 5245 414C 5F41 4444 2020 2020 2020 2020 REAL ADD
9033-42 T26F 7574 696E 6520 6361 6C6C 6564 2020 routine called
9043-52 6279 2020 2020 2020 7573 0572 2020 2020 by user
9053-62 6672 6F6D 2020 2020 6164 6472 6573 7320 from address
9063-72 3143 3137 482E 2020 2020 2020 2020 2020 1C17H.

9073-82 2020 2020 2020 2020 2020 2020 2020 2020

9083-92 2020 2020 2020 2020 2020 2020 2020 2020

9093-A2 2020 2020 2020 2020 2020 2020 2020 2020

90A3-B2 2020 2020 2020 2020 2020 2020 2020 2020

90B3-C2 2020 2020 2020 2020 2020 2020 2020 2020

90C3-D2 2020 2020 2020 2020 2020 2020 2020 2020

90D3-E2 2020 2020 2020 2020 2020 2020 2020 2020

Q0E3-F2 2020 2020 2020 2020 2020 2020 2020 2020

90F3-02 2020 2020 2020 2020 2020 2020 2020 2020

Memory :words :blocked :repetitively

address data chex rascii
9003-12 5265 616C 2020 2020 6572 726F 7220 2020 Real error
9013-22 4F56 4552 464C 4F57 2020 2020 2020 2020 OVERFLOW
9023-32 4C4F 4E4T 5245 414C 5F41 4444 2020 2020 LONGREAL ADD
9033-42 T26F 7574 696E 6520 6361 6C6C 6564 2020 routine called
9043-52 6279 2020 2020 2020 7573 6572 2020 2020 by user
9063-72 3144 3535 482E 2020 2020 2020 2020 2020 from address
9073-82 2020 2020 2020 2020 2020 2020 2020 2020 1D55H.

9083-92 2020 2020 2020 2020 2020 2020 2020 2020

9093-A2 2020 2020 2020 2020 2020 2020 2020 2020

90A3-B2 2020 2020 2020 2020 2020 2020 2020 2020

90B3-C2 2020 2020 2020 2020 2020 2020 2020 2020

90C3-D2 2020 2020 2020 2020 2020 2020 2020 2020

90D3-E2 2020 2020 2020 2020 2020 2020 2020 2020

QO0E3-F2 2020 2020 2020 2020 2020 2020 2020 2020

90F3-02 2020 2020 2020 2020 2020 2020 2020 2020

From this display the user can tell what type error has been detected, which floating point library
was called, and where the floating point library detected the error.

4-9

C/64000 Compiler Supplement 6809
Run-Time Library Specifications for Real Numbers

NOTES

4-10

Appendix A
RUN-TIME ERROR DESCRIPTIONS

This appendix contains descriptions of run-time errors that may occur.

ERROR UTILITIES

Name Purpose

Derrors Debugging library error handler

Zerrors Normal library error handler
Derrors

Derrors contains the run-time routines which store user information at the time an error occurs
during debugging. The following errors may occur in the indicated library routines:

Error Routines
Underflow Zbytemul,Zintmul,Zuintmul
Zbyteadd, Zubyteadd, Zintadd,
Zuintadd
Zbytesub, Zubytesub, Zintsub,
Zuintsub
Overflow Zbytemul, Zintmul, Zuintmul
Zbytediv, Zubytediv, Zintdiv,
Zuintdiv
/byteadd, Zubyteadd, Zintadd,
Zuintadd
Zbytesub, Zubytesub, Zintsub,
Zuintsub

Lbyteneg, Zintneg
/byteabs, Zintabs

C/64000 Compiler Supplement 6809
Run-Time Error Descriptions

Div by Zero Zbytediv, Zubytediv,
Zintdiv, Zuintdiv

Case error User programs

Range error COMPB_ .

Heap error INITHEAP, NEW, DISPOSE, MARK,
RELEASE

Set conversion ervror
Ibtoset8, Zwtoset8
Zbtosetl6, Zwtosetl6

String error MOVEST .

When an error is detected, a jump to Derrors is generated and valid register information is saved.
The labels for the stored information are described below:

Label Description
Z CALLER H Contain the high byte (CALLER H)
Z CALLER L and the low byte (CALLER L) of

the address of the statement which
called the routine where the
actual error occurred.

Z CC FLAGS Contain the contents of the
registers at the time the error

L ACC A occurred. Only registers with
information relevant to the error

Z ACC B are saved - the indicated contents
of the other registers is garbage.

Z REG X

Z REG U

NOTE

The CC register which is displayed is that which was present when the
error occurred in the Debug Library routine. The CC register which was
present when the Debug routine was called is not retrievable.

C/64000 Compiler Supplement 6809
Run-Time Error Descriptions

The following is a description of the errors that may occur and the information that is accessible
when they do occur.

Error Msg. Description Information
Available

Z ERR _OVERFLOW Jump to error . CALLER H
occurs when Z CALLER L
results of Z CC FLAGS
multiplication, Z ACC A
addition, Z ACC B
subtraction, Z REG X
negation, or the Z REG U
absolute value
is too positive
(i.e.

INTEGERS:

result > 32767
BYTES:

result > 127)

Z ERR UNDERFLOW Jump to error . CALLER H
occurs if results Z CALLER L
of addition, Z CC FLAGS
subtraction, or Z ACC A
multiplication Z ACC B
were too negative L REG X
(i.e. Z REG U

INTEGERS

result < -32768
BYTES

result < -128)

Z ERR DIV BY O Jump to error Z CALLER H
occurs if division Z CALLER L
by zero is attempted Z CC FLAGS
by byte or integer L REG X
division routines. Z REG U

Z ERR SET CONV Jump to error . CALLER H
occurs if operand Z CALLER L
is not legal L CC FLAGS
ordinal value for Z ACC A
a set of the base Z ACC B
type. Z REG X

A-3

Z ERR RANGE

Z ERR HEAP

Z ERR CASE

Z ERR STRING

Z _END PROGRAM

C/64000 Compiler Supplement 6809
Run-Time Error Descriptions

Jump to error
occurs if a range
declaration has
been violated
(i.e.: a variable
does not fall
within its
assigned range)

Jump to error
occurs when some
misuse of the
dynamic allocation
keywords NEW,
DISPOSE,MARK, or

RELEASE takes place.

Jump to error
occurs when the
test variable of
CASE statement is
out of range and
no OTHERWISE Tabel
exists.

Jump to error
occurs on a string
assingment, when
the run-time size

of the string being

assigned is larger
than that of which
is it is being
assigned to.

Z CALLER H
Z CALLER L
7 CC_FLAGS
7 ACT A
Z ACC B
Z REG U

Z CALLER H

Z CALLER L

7 CC_FLAGS
?

Z CALLER H
Z CALLERL
Z ACC_A
Z ACCB

Z CALLER H
Z CALLER L

Jump to message occurs when the
program completes execution of the

main body code.

C/64000 Compiler Supplement 6809
Run-Time Error Descriptions

The illegal opcodes associated with the various errors are as follows:

Opcode Error
01 Overflow
02 Div by 0
05 Case error
14 Range error
15 Recursive error
18 Heap error
38 Set conversion error
41 Underflow
42 String size assignment error

Zerrors

Zerrors contains the run-time routines which store user information at the time an error occurs
during execution in the non-debug library. The following errors may occur in the indicated library
routines:

Error Routines
Case error User programs
Range error COMPB_ .
Heap error INITHEAP, NEW, DISPOSE, MARK,
RELEASE
String error MOVEST .

When an error is detected, a jump to Zerrors is generated and valid register information is saved.
The stored information, the routines and the illegal opcodes for this errors are as described in
Derrars.

Z_END_PROGRAM is also called.

A-5

C/64000 Compiler Supplement 6809
Run-Time Error Descriptions

NOTES

A-6

Index

The following index lists important terms and concepts of this manual along with the location(s)
where they can be found. The numbers to the right of the listings indicate the following manual
areas:

o Chapters - References to chapters appear as "Chapter X", where "X" represents the
chapter number.

o0 Appendices - References to appendices appear as "Appendix Y"' where "Y"
represents the letter designator of the appendix.

o Figures/Tables - References to figures or tables are represented by the capital letter
"F" or "T" followed by the appropriate number.

o Other entries in the index - Other entries in the index have their location indicated
by page number.

C/64000 Compiler Supplement 6809

Index
a
Add operator e 2-12
Addressing
CONStANtS . . . 2-17
Static vVariables 2-17
Arithmetic routines - 8-bit 3-2
Arithmetic routines - 16-bit 3-2
ARRAY roUtine e 3-6
Assembler Symbol file e 1-3
Assembly file 1-3
b
Bounds checking routines e 3-32
Byte Set routines 3-3
Byte Shift routines 3-2
Cc
N AIrECtIVE . .. 1-3
Comparison roUtingsS e 3-4
d
SDEBUGS OptioN 2-16
DEbUggING . . oot e e 1-7
Derrors Utilityo Appendix A
Direct addressing Mode e 2-1
DISPOSE roUting . ..o e 3-9
DIVIdE OPEratOr e 2-12
DLIB 6809:C6809 library 1-7

C/64000 Compiler Supplement 6809

Index
e
EmMUIation e 1-5
SENTRYS direCtive 1-6 , 2-2
Equal comparison operator e 2-12
ErTOr MESSAGES « « ¢ vttt ettt e e e et e Appendix A
External proCeduUres i e 2-17
f
Fixed parameters e 2-8, 4-2
SFIXED _PARAMETERSS option 2-17
Floating point routines 4-4
Greater than comparison operator 2-12
Greater than or equal to comparison operator i 2-12
i
INITHEAP routine e e e e e e e 3-9
Interrupt Vector handling e 2-9
|
Less than comparison operator 2-12
Less than or equal to comparison operator 2-12
Libraries
DLIB_6809:C6809ttt e 1-4,2-3
LIB 8809:C6800o e 1-4,2-3
RealliB:CCB800 1-4
Library Routines - Standard e e 3-1
Library Routines - 6809 e 3-2
LiINKING .o e e i 1-4
Listing file 1-3

C/64000 Compiler Supplement 6809

Index
m
MAIN fUNCHION . . o e e e e 2-2
MARK roUting . .. e 3-9
MoOdUIUS OPEralOr . . . e e 2-12
Multibyte routines 3-3
Multibyte set routines e 3-3
MUItIplY Operalor e 2-12
n
Negate operator 2-12
NEW roUtinge 3-9
Not equal comparison operator 2-12
o
SOPTIMIZES Option . .. 2-16
OPtIONS . . e 2-16
Parameter passing 2-13
PARAM _routine 3-13
Pass 2/3 @ITOIS . . .o e 2-18

C/64000 Compiler Supplement 6809

Index
r
Real Number routines e 4-1
RealLIB:CB809 library o 1-4
Recursive roUlineS 2-5
RELEASE roUting e 3-9
Relocatable file 1-3
RENTRY routine e 3-10
RUN-IME €ITOrS . . . o o e Appendix A
S
SoUrCe fille . .. 1-2
Stack format e 2-5
Stack pointer initialization 2-3
StHNG roUtiNESo o 3-34
Subtract operator e 2-12
Switch statements e 2-17
u
User-defined operators i e 2-11
\'4
Variable parameters 2-8
VPARAM _routine 3-15
VRENTRY routine e e 3-12
w
Word set routines 3-3
Word shift routines 3-2

C/64000 Compiler Supplement 6809
Index

Zerrors Uity . ..o Appendix A

NOTES

64822-90901, MAY 1985 (ﬁﬁl

Replaces: 64822-90901, March 1983 PACKARD PRINTED IN U.S.A.

	Front
	cover
	inside

	Comment Sheet
	comment-1
	comment-2

	Contents
	title
	ii
	iii
	iv
	v
	vi

	Chapter 1
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10

	Chapter 2
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20

	Chapter 3
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34

	Chapter 4
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10

	Appendix A
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6

	Index
	index-1
	index-2
	index-3
	index-4
	index-5
	index-6

	Back
	inside
	cover

