HP64000
Logic Development
System

Model 64841A
Assembler Supplement
6800/6801/6802/
6803/8861/6301

(6/’ HEWLETT

PACKARD

CERTIFICATION

Hewlett-Packard Company certifies that this product met its published specifications at the time of
shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are
traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau’s
calibration facility, and to the calibration facilities of other International Standards Organization
members.

WARRANTY

This Hewlett-Packard system product is warranted against defects in materials and
workmanship for a period of S0 days from date of installation. During the warranty period, HP
will, at its option, either repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer’'s facility at no charge within HP
service travel areas. Outside HP service travel areas, warranty service will be performed at
Buyer’'s facility only upon HP's prior agreement and Buyer shall pay HP’s round trip travel
expenses. In all other cases, products must be returned to a service facility designated by
HP.

For products returned to HP for warranty service, Buyer shall prepay shipping charges to HP
and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay
all shipping charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with an instrument will
execute its programming instructions when properly installed on that instrument. HP does not
warrant that the operation of the instrument, or software, or firmware will be uninterrupted or
error free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to detfects resulting from improper or inadequate
maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or
misuse, operation outside of the environment specifications for the product, or improper site
preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP
SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER
LEGAL THEORY.

ASSISTANCE

Product maintenance agreements and other customer assistance agreements are available for
Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

343H 4104

L

HEWLETT
PACKARD

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 1303 COLORADO SPRINGS, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

HEWLETT-PACKARD

Logic Product Support Dept.
Attn: Technical Publications Manager

Centennial Annex - D2
P.O. Box 617
Colorado Springs, Colorado 80901-0617

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

FOLD HERE

Your cooperation in completing and returning this form
will be greatly appreciated. Thank you.

READER COMMENT SHEET

Operating Manual, Model 64841A
Assembler Supplement 6800/6801/6802/6803/8861/6301
64841-90905, August 1984

Your comments are important to us. Please answer this questionaire and return it to us. Circle the number that best
describes your answer in questions 1 through 7. Thank you.

1. The information in this book is complete:

Doesn’t cover enough 1 2 3 4 5 Covers everything
(what more do you need?)

2. The information in this book is accurate:
Too many errors 1 2 3 4 5 Exactly right
3. The information in this book is easy to find:
I can’t find things | need 1 2 3 4 5 I can find info quickly
4. The Index and Table of Contents are useful:
Helpful 1 2 3 4 5 Missing or inadequate
5. What about the "how-to” procedures and examples:
No help 1 2 3 4 5 Very helpful
Too many now 1 2 3 4 5 I'd like more
6. What about the writing style:
Confusing 1t 2 3 4 5 Clear
7. What about organization of the book:
Poor order 1 2 3 4 5 Good order
8. What about the size of the book:
too big/small 1 2 3 4 5 Right size

Comments:

Particular pages with errors?

Name (optional):
Job title:
Company:
Address:

Note: If mailed outside U.S.A., place card in envelope. Use address shown on other side of this card.

343H a104

A

HEWLETT
PACKARD

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 1303 COLORADO SPRINGS, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

HEWLETT-PACKARD

Logic Product Support Dept.
Attn: Technical Publications Manager

Centennial Annex - D2
P.O. Box 617
Colorado Springs, Colorado 80901-0617

NO POSTAGE
NECESSARY
{F MAILED
IN THE
UNITED STATES

FOLD HERE

Your cooperation in completing and returning this form
will be greatly appreciated. Thank you.

READER COMMENT SHEET

Operating Manual, Model 64841A
Assembler Supplement 6800/6801/6802/6803/8861/6301
64841-90905, August 1984

Your comments are important to us. Please answer this questionaire and return it to us. Circle the number that best
describes your answer in questions 1 through 7. Thank you.

1. The information in this book is complete:

Doesn’t cover enough 1 2 3 4 5 Covers everything
(what more do you need?)

2. The information in this book is accurate:
Too many errors 1 2 3 4 5 Exactly right
3. The information in this book is easy to find:
| can't find things | need 1 2 3 4 5 I can find info quickly
4. The Index and Table of Contents are useful:
Helpful 1 2 3 4 5 Missing or inadequate
5. What about the “how-to” procedures and examples:
No help 1 2 3 4 5 Very helpful
Too many now 1 2 3 4 5 I'd like more
6. What about the writing style:
Confusing 1 2 3 4 5 Clear
7. What about organization of the book:
Poor order 1 2 3 4 5 Good order
8. What about the size of the book:
too big/small 1 2 3 4 5 Right size

Comments:

Particular pages with errors?

Name (optional):
Job title:
Company:
Address:
Note: If mailed outside U.S.A,, place card in envelope. Use address shown on other side of this card.

(ﬁp HEWLETT

PACKARD

OPERATOR/REFERENCE MANUAL

ASSEMBLER SUPPLEMENT
6800/6801/6802/6803/8861/6301

© COPYRIGHT HEWLETT -PACKARD COMPANY 1980, 1984
LOGIC SYSTEMS DIVISION
COLORADO SPRINGS, COLORADO, U.S.A.

ALL RIGHTS RESERVED

Manual Part No. 64841-90905 PRINTED: AUGUST 1984

PRINTING HISTORY

Each new edition of this manual incorporates all material updated since the previous edition.
Each new or revised page is indicated by a revision (rev) date. Manual change sheets are
issued between editions, allowing you to correct or insert information in the current edition.

The date on the back cover changes only when each new edition is published. Minor
corrections or additions may be made as the manual is reprinted between editions.

First Printing January 1980 (Part Number 64841-90902)
Second Printing November 1980 (Part Number 64841-903801)
Third Edition ... August 1984 (Part Number 64841-90905)

Assembler Supplement 6800/6801/6802/6803/8861/6301

TABLE OF CONTENTS

Chapter 1. GENERAL INFORMATION

INT RO DU C T ION e e 1-1
PROGRAMMING CONSIDERATIONS 1-1
MiCroprocessor ArChiteCtUre ... o 1-2
AccUMUIAtiNg ReGIS OIS .o 1-2
Program Counter RegiSter ... 1-2
INdEeX RIS T oo 1-2
Stack Pointer RegiSter .o 1-2
RIS Ol D Lo 1-2
Condition Code RegiSters ..o 1-2
MODES OF ADDRESSING ... e 1-3
AdAressing QP raNd S ... 1-3
Dual Operands OpPeration ..o 1-3
Single Operand Operation 1-3
InhEr et AdAr e S SING Lo 1-3
Immediate AdAre S SING ..o 1-4
Direct and Extended AddressSing 1-4
Relative AdAre S SiNg ... 1-4
INAEXEd AdAr e S SING o 1-5
CONDITION CODES . 1-6
Carry/Borrow (C) Register oo 1-6
Overflow (V) RegiSter o 1-6
Zero (Z) REQISTEI L. 1-6
Negative (N) RegiSter .o 1-~7
Interrupt Mask (1) Register oo 1-7
Half Carry (H) Register ..o 1-7

Chapter 2: OPERAND RULES AND CONVENTIONS

GENERAL INFORMATION .o e e 2-1
ADDITIONAL OPERAND INFORMATION ..o 2-2
Immediate AdAressing INAICatOr ... 2-2
Indexed Addressing Indicator ... e 2-3
Direct-Extended Addressing
Mode DefaUlt 2~-3
LOCATION COUNTER INDIC AT OR .o 2-4
OPERAND EXPRESSIONS . 2-4

Assembler Supplement 6800/6801/6802/6803/8861/6301

TABLE OF CONTENTS (Cont'd)

Chapter 3: SPECIAL PSEUDO INSTRUCTIONS

INTRODUCTION 3-1
BASE__SEG, BASE__END InStruction ... 3-2
BEX T INS UG ON 3-3
B S Z NS UG I ON L 3-4
DIRE C T INS UG ON 3-4
EXTEND INStruCtiON o 3-5
F OB INS UG I ON L 3-5
F O C INS rUCH ON 3-6
FOB INS UG ON 3-6
RMB NS rUC I ON 3-7
SE T INS rUCHION 3-8

Chapter 4: ASSEMBLER OUTPUT LISTING

GENE R A L o 4-1
INPUT ZOU T PUT FILES . 4-1
SOUrCe INPUL FilE 4-1
Assembler OULPUL Files 4-2
OUTPUT LISTING EXAMPLES . 4-2

Chapter 5: INSTRUCTION SET SUMMARY

GENE R AL o 5-1
PREDEFINED SYMB O L S L i 5-3

Appendix A
8861 MICROP RO CE S SO R o A-1
Appendix B

8301 MICROPROCESSOR ... e B-1

Assembler Supplement 6800/6801/6802/6803/8861/6301

LIST OF TABLES

. Instruction Addressing Modes ... 1-7
. Source Program Format EXample 4-3
. Assembler Output Listing ... 4-4
CAssembler Qutput With Brrors .o 4-6
CANStruCtion Set SUMMaAIY o 5-4

Assembler Supplement 6800/6801/6802/6803/8861/6301

Vi

Chapter 1

GENERAL INFORMATION
(6800/6801/6802/6803/8861/6301)

INTRODUCTION

NOTE

Use the microprocessor number for the assembler directive; i.e., "6800", "6801",
"6802", "6803", "8861”, or "6301".

This chapter contains general information about the 6800/6801/6802/6803
microprocessors. It briefly discusses the microprocessors architecture, addressing modes,
and condition codes. Information on the 8861 and 6301 microprocessors is included in
Appendix A, and Appendix B respectively. For the detailed description of a particular
microprocessor, refer to the manufacturer's User’s Manual.

NOTE
If you are unfamiliar with assembly language or assemblers, read Chapter 6in the

Assembler/Linker Manual. That chapter reviews, briefly, assemblers, assembly
language, and the numbering systems.

PROGRAMMING CONSIDERATIONS

NOTE

The 'Programming Considerations’ section that follows applies primarily to the
6800 microprocessor. Differences between the 6800, 6801, 6802, and 6803 will
be noted; otherwise, the descriptions apply to all four microprocessors.

Microprocessor Architecture
There are six registers available in the microprocessor for control of external memory and

peripheral devices that may be associated with the target system. These registers are
discussed briefly in the following paragraphs.

Assembler Supplement 6800/6801/6802/6803/8861/6301
General Information

Accumulating Registers
The microprocessor has two registers that function primarily as accumulators. They are
referred to as register A (ACCA) and register B (ACCB). Each register has its own group of
instructions and the mnemonic of the source statement specifies which register is to be used.
For example:

ROLA - Rotate content of register A to the left.

ROLB - Rotate content of register B to the left.

CLRA - Clear register A.

CLRB - Clear register B.

Program Counter Register

The 16-bit program counter register may specify 65536 addresses. The lowest address is
OOOOH and the highest address is FFFFH.

Index Register

The index register is a special-purpose 16-bit register that allows the microprocesssor to
move data in two-byte groups into or out of memory. The register is also used for the
indexed addressing mode of operation which is explained later in this chapter.

Stack Pointer Register

The stack pointer register is another special-purpose 16-bit register that 2allows the
microprocessor to use a section in random access memory (RAM) as a last in, first out (LIFO)
tile. This is very valuable when using subroutines or when processing interrupts. The register
can be loaded from memory, stored in memory, decremented, and incremented.

Register D

The 6801/6803 microprocessors have the ability to concatenate register A and register B to
form a 16-bit register D. When used in a register D configuration, all previous information that
was held in register A and register B will be destroyed.

Condition Code Registers

The microprocessor has six condition codes that make up bits 0 through 5 of an 8-bit

register. Bits 6 and 7 are not used and are always set to 1. The six condition codes and their
use are discussed later in this chapter.

1-2

Assembler Supplement 6800/6801/6802/6803/8861/6301
General Information

MODES OF ADDRESSING

Addressing Operands

Instructions for a microprocessor may be divided into a number of categories, but their most
common attribute is their modes of addressing. An addressing mode refers to the method by
which an instruction addresses its operand.

Dual Operands Operation

There are 15 instructions that require two operands for addressing purposes. These
instructions are indicatead in table 1-1 under the column labeled 'Dual Operand’. The first
operand (which is part of the opcode mnemonic) is always an A or a B, designating the
required register. The second operand addresses the memory location that is associated with
the operation. The format of the second operand must be in accordance with the rules
governing immediate, direct, indexed, or extended addressing modes.

Singie Operand Operation

There are 3instructions that require only one operand for addressing either register A or B.
These instructions are indicated in table 1-1 under the column labeled "ACCX’.

For PSH and PUL instructions, the single operand mode of operation (sometimes referred to
as the register mode of addressing) is the only valid mode of addressing.

The remaining single operand instrucitons may be used with indexed or extended addressing.

Inherent Addressing

In a number of instances, the mnemonic instruciton specifies one or more registers that
contain operands, or where results are to be stored. For example, the ABA opcode requires
the two operands that are contained in register A and register B. The opcode also specifies
that the result of the operation will be stored in register A.

For some instructions, all information required for addressing is contained in the opcode and

no operand field is required. There are 31 such instructions and they are indicated in table
1-1 under the column labeled "Inherent”.

1-3

Assembler Supplement 6800/6801/6802/6803/8861/6301
General Information

Immediate Addressing

In this mode of addressing, the operand of the instruction contains the value to be used in the
operation or computation. The only instructions permitted for this mode of addressing are
indicated in table 1-1 under the column labeled "Immediate”.

To select this mode of addressing, the corresponding operand must be immediately preceded
by the pound (#) character. The operand data may be in the form of an ASCil character, a
number, a label, or an expression. The data selected for the operand has the following
limitations:

#Number, #Symbol, #Expression, #”ASCIl Character”. For any immediate addressing mode
instruction (except CPX, LDS, or LDX), the numeric value must be an integer from
Oto 255. For opcodes CPX, LDS, or LDX, the value range is from O to 65,535.

Direct and Extended Addressing

In direct addressing, an instruction requires two bytes of memory. The first byte is the
opcode of the instruction and the second byte is the absolute numerical address where the
operand is located. Direct addressing allows the user to address memory locations O through
2565.

In extended addressing, the instruciton uses three bytes of memory with the first byte
containing the opcode of the instruction, the second byte containing the highest 8 bits of the
absolute numerical address, and the third byte containing the lowest 8 bits of the absolute
numerical address.

For those instructions that use the direct mode of addressing as well as the extended mode
of addressing, default is to extended for externals, relocatables, and forward references. The
direct mode is used when addresses are in the Oto FFH range. The default function can be
overridden by using the DIRECT pseudo instruction. Once the direct pseudo is inserted in a
source program, the direct mode of addressing will be in effect until canceled by an EXTEND
pseudo. Refer to Chapter 2 for i:xamples using the direct and extend pseudos.

Relative Addressing
Branch instructions are somewhat different from other instructions in that their associated
addresses do not indicate the location of data. Instead, the address indicates the location of

the next instruction that is to be executed. This location is acquired by adding the operand of
the instruction and the lowest 8 bits of the program counter plus 2.

1-4

Assembler Supplement 6800/6801/6802/6803/8861/6301
General Information

For the relative addressing mode to be valid, the distance of the branch must fall in the value
range of -125 to +129. This relationship between the relative address and the absolute
address of the destination of the branch may be expressed by:

DA=(PC+2)+R
where:
DA = address of the destination of the branch instruction.
PC = content of the lowest 8 bits of the program counter.

R = the 8-bit, two's complement, binary number stored in the second byte of the
instruction.

When it becomes necessary to branch beyond the valid range of a branch instruction use the
JMP (unconditional jump) or JSR (jump to subroutine) instruction. These instructions do not
use the relative mode of addressing. See table 1-1 for a list of those instructions that use the
relative mode of addressing only.

Indexed Addressing

The microprocessor has a 16-bit index register and there are several instructions associated
with this register. These instructions store the register content in memory or permit loading
the register from memory. In addition, the index register may be incremented or decremented.
its content may also be compared with two consecutive bytes of memory. With these
capabilities, the index register makes an excellent address pointer.

Every instruction that involves an operand in memory may use the indexed addressing mode.
These instruction are indicated in table 1-1.

When using indexed addressing, the operand of an instruciton is determined by the offset
address and the number in the index register. Specifically, the 8-bit offset address is added
to the lowest 8 bits in the index register. The sum of this addition becomes the address of the
operand.

If a symbol or expression is used, rather than a number, the assembler will compute a
numerical value for the symbol or expressison. Only values from OH to OFFH are valid.

1-5

Assembler Supplement 6800/6801/6802/6803/8861/6301
General Information

CONDITION CODES

The condition-code register contains codes that are relevant to the execution of instructions.
The register is actually a group of one-bit registers that contain the following information:

CONDITION
BIT NO. CODE DEFINITION
0 Cc carry-borrow
1 \ overflow
2 z zero
3 N negative
4 I interrupt mask
5 H half-carry

The effect of each instruction on the condition codes is indicated in table 5-1, Chapter 5 A
brief description of each condition code is given in the following paragraphs.

Carry/Borrow (C) Register

The carry-borrow register operates like an extension of the A or B register. In an arithmétic
addition operation, the final sum may be 9 bits. If this occurs, the carry-borrow code is set
(C=1) to indicate a carry. If there was no carry, the C register will be reset (C=0). For the
arithmetic subtraction operation, the carry-borrow code represents a borrow condition. The
condition code, when set (C=1), indicates that a borrow condition occurred; when reset
(C=0), it indicates that there was no borrow.

Overfiow (V) Register

The overflow condition code register will be set (V=1) when a two’s complement overflow
occurs from an arithmetic operation. If no overflow occurs, the register will be reset (V=0).
Zero (Z) Register

The zero register monitors the particular register (A or B) involved in a specific operation.
Immediately after the operation, the zero-detect circuit will look at the resulting number. If all

zeros are detected, the zero register will be set (Z-1); otherwise, the zero register will be
reset (Z=0).

1-6

Assembler Supplement 6800/6801/6802/6803/8861/6301
General Information

Negative (N) Register

Negative numbers are expressed in the two’'s complement form with bit 7 indicating the
negative quality. Bit 7 will be a 1if the two's complement was negative. Immediately after an
operation that involves the register (A or B), the negative register will look at bit 7 to
determine if the result was negative. If so, the condition code (N) will be set (N=1). The
condition code will be reset (N=0) if bit 7 was zero, indicating that the two’'s complement
number represented by the result was zero or positive.

Interrupt Mask (1) Register

The interrupt mask code is set (I=1) to prevent the microprocessor from servicing additional
external interrupt requests. Interrupt requests from any peripheral device will be ignored by
the microprocessor until the interrupt mask code is reset (I=0).

Half Carry (H) Register

The half carry code will be set (H=1) during execution of an ABA, ADC, or ADD instruction if

there was a carry from bit position 3 to bit position 4. The half carry code will be reset (H=0)
during these instructions if there was no carry from bit position 3.

Table 1-1. Instruction Addressing Modes

D D
Iu IU
N A N A
S L I S L I
T M E IR T M E IR
R O M X I NE R O M X INE
uPp EDTNHL upe EDTNHL
CE DIEDEA CE DIEDEHA
TRAIRNERT TRAIRNERT
IACAEDXETI IACAEDXETI
ONCTCEENYV ONCTCEENYVY
NDXETDDTE NDXETDDTE
ABA X INS X
XABX X INX X
ADC X X X XX JMP X X
ADD X XX X X JSR X X X
XADDD X XX X X LDA X X X XX
AND X X X X X XLDD X X X X X
ASL X X X LDS X X XX

1-7

Assembler Supplement 6800/6801/6802/6803/8861/6301
General Information

Table 1-1. Instruction Addressing Modes (Cont’d)

D D
I U Iu
N A N A
S L I S L I
T M E IR T M E IR
R O M X INE R O M XINE
ure EDTNHL upe EDTNHL
CE DIEDEA CE DIEDEA
TRAIRNERT TRAIRNERT
IACAEDXETI IACAEDXETI
ONCTCEENYV ONCTCEENYV
NDXETDDTE NDXETDDTE
XASLD X LDX X X XX
ASR X X X LSR X X X
BCC X XLSRD X
BCS X XMUL X
BEA X NEG X X X
BGE X NOP X
BGT X ORA X X X XX
BHI X PSH X
XBHS X XPSHX X
BIT X X X X X PUL X
BLE X XPULX X
XBLO X ROL X X X
BLS X ROR X X X
BLT X RTI X
BMI X RTS X
BNE X SBA X
BPL X SBC X XX XX
BRA X SEC X
XBRN X SEI X
BSR X SEV X
BvVC X STA X X X X
BVS X XSTD X X X X
CBA X STS X X X
CLC X STX X XX
CLI X SuB X X X X
CLR X X X XSUBD X X X X
CLv X SWI X
CMP X X X X X TAB X
CoM X X X TAP X
CPX XX XX TBA X

1-8

(%)

Z20mM 4 0O0CXAW0NZ2H
OZ» MV O
x O O >

DAA
DEC
DES
DEX
EOR
INC

Indicates instruction is only applicable to the
6801 and the 6803 microprocessors.

—r»c O

Table 1-1. Instruction

m -4 >HOMI X

~ OmMmMm = - O

OmoOzZzm™m 4 X m
O m>xmoOZ +

~ Z2 MV M I Z

M= -4 > mM>

Assembler Supplement 6800/6801/6802/6803/8861/6301

Z20H 41 0C® AWV ZH

—
o
>

TST
TSX
TXS
WAT

Addressing Modes (Cont'd)

— > CcCc O

OZ>»®mMmoVOoO
< OO >

m o4 > T MI X+

- Om>>» ~+ O

OmoOzZzm-AXxm
Omx>xmoOZ +H

~ Z m > M I Z
MK - 4> m>

>

General Information

1-9

Assembler Supplement 6800/6801/6802/6803/8861/6301
General Information

Chapter2
OPERAND RULES AND CONVENTIONS

GENERAL INFORMATION

The type of information that is placed in the operand field depends on the mnemonic
instruction. There are four types of data that may be used in the operand field:

a.

Register Information - operands may reference directly data contained in the
processor registers such as the stack, register A and B, or the index register.

Example:

STAA SAM ;MOVE CONTENTS OF
;REGISTER A TO SAM

Index Register Information - operands may reference directly data contained in
the index register.

Example:

LDX 0100H ; LOAD INDEX REGISTER
;FROM MEMORY AS FOLLOWS:

;IXH <--M 0100H DATA

;IXL <--M 0101H DATA

Assembler Supplement 6800/6801/6802/6803/8861/6301
Operand Rules and Conventions

Immediate Data - operands may contain immediate data. The required value is
inserted directly into the operand field. The value may be in the form of numbers, an
expression to be evaluated at assembly time, a symbol, or an ASCIl constant enclosed
in quotation marks.

Examples:
LDAA #OFFH ;LOAD "FF" HEX INTO
REGISTER A
LDAB A’ ;LOAD VALUE OF ASCII
;CONSTANT A (0100000)
;INTO REGISTER B
16-bit Memory Address - operands may reference a 6-bit absolute memory

address within the range of O to 65,535 that contains the operand data.
Example:

LDX 5FFFH

ADDITIONAL OPERAND INFORMATION

Immediate Addressing Indicator

To select the immediate addressing mode, the corresponding operand must be preceded by
the pound (#) character. The data following the (&) sign will be assigned one or two bytes of
memory, depending on the instruction.

2-2

Assembler Supplement 6800/6801/6802/6803/8861/6301
Operand Rules and Conventions

Indexed Addressing Indicator

In this addressing mode, the numerical address will be variable and dependent on the content
of the index register. The address will be obtained during program execution, rather than
being predetermined by the assembler. The operand field of the source statement contains a
numerical value which, when added to the content of the index register, furnishes the
numerical address. Also, the operand field may contain a symbol or an expression that the
assembler replaced with a value that is added to the content of the index register.

The single character 'X’ informs the assembler that the indexed addressing mode is to be
used. The value of a number, symbol, or expression used for indexed addressing must fall in
the range OH to FFH to be valid. Indexed addressing is called by using the following format:

X
X
number X
symbol X
expression, X
Examples:
ADCA 0AH, X
or
ADCA SAM X
or
ADCA X

The format 'X’, when used alone, indicates that the address of the operand is the same as the
content of the index register.

Direct - Extended Addressing Mode Default ((SEC))

For those instructions that can use both direct and extended modes, the assembler defaults
to extended for externals, relocatables, and forward references. The direct mode is used
when addresses are in the Oto FFH range. The default function can be overridden by using
the DIRECT pseudo instruction. Once the direct pseudo is inserted in a source program, the
direct mode of addressing will be in effect until canceled by an EXTEND pseudo instruction.

Assembler Supplement 6800/6801/6802/6803/8861/6301
Operand Rules and Conventions

While in the direct mode of addressing, individual source program statements may be assigned
in the extended mode of addressing by appending the letter "E” to the operand.

Example:
CLR OF10H,E

While in the extended mode of addressing (EXTEND pseudo in effect), individual source
program statements may be assigned the direct mode of addressing by appending the letter
"D” to the operand.

Example:

ADD OFH,D

Location Counter Indicator

The program counter contains the address of the current instruction or data statement thatis
being assembled and the dollar symbol ($) refers to that location.

Example:

JUMP JMP $+3 ;JUMP TO ADDRESS
;3 BYTES BEYOND
;FIRST BYTE OF THIS
; INSTRUCTION

Operand Expressions

The operand field may contain an expression consisting of one or more terms acted on by the
expression operators listed in Chapter 2 of the Assembler/Linker Manual. A term may be
either a symbol a string constant, a numeric constant, or an expression. The assembler
reduces the entire expression to a single value.

Assembler Supplement 6800/6801/6802/6803/8861/6301
Operand Rules and Conventions
Terms within expressions may be connected by the following arithmetic operators:
a. The plus operator (+) produces the arithmetic sum of its operands.

b. The minus operator (-) produces the arithmetic difference of its operands or the
arithmetic negative of its operand when used alone.

c. The asterisk operator (*) produces the arithmetic product of the operands.
d. The slant operator (/) produces the quotient of its operands, discarding any remainder.
e. Aninstruction enclosed in parentheses is a legal expression in the operand field.

Care should be taken when using the arithmetic operators since their operational results may
affect the condition codes in the condition code registers.

Assembler Supplement 6800/6801/6802/6803/8861/6301
Operand Rules and Conventions

Chapter 3
SPECIAL PSEUDO INSTRUCTIONS
INTRODUCTION

This chapter supplements Chapter 3in the HP Model 64000 Assembler/ Linker Manual. It lists
and defines in detail those assembler instructions that are applicable to the
6800/6801/6802/6803 microprocessors only.

Assembler Supplement 6800/6801/6802/6803/886./6301
Special Pseudo Instructions

BASE__SEG, BASE__END
Declare Symbols Relocatable and on Base Page

SYNTAX
LABEL OPERATION OPERAND COMMENT
BASE_SEG BASE_END
The BASE__SEG and BASE__END pseudo instructions alert the assembler for symbols that
will be on base page although they are relocatable.

BASE__SEG only affects labels defined by pseudo instructions FCB, FDB, and RMB.

Example:
LABEL OPERATION OPERAND COMMENT
DATA
BASE_SEG
JULY FCB 0 ; JULY is DATA
;relocatable and
;flagged as base page.
JUNE RMB 12
BASE_END ;Turns off base
;page flag.
PROG
LDAA JULY ;Generates base page
LDAA JUNE ;reference. Linker
;checks for errors.
;Labels must be
;defined before using
;or they will not be
;flagged as base page.
LDAA AUGUST ;This will not be on
;base page, since it
;1s defined out of the
;BASE_SEG range.
AUGUST FCB 0

3-2

Assembler Supplement 6800/6801/6802/6803/8861/6301
Special Pseudo Instructions

BEXT

Declare Symbols External and on Base Page

SYNTAX
LABEL OPERATION OPERAND COMMENT
[Name] BEXT operand[,operand, .. .]

The BEXT pseudo instruction declares expression as external and on base page. The linker
checks for range errors.

Example:

BEXT SAM ;SAM is external and
;on base page.

EXT CHARLIE ;Charlie is external

LDAA SAM ;Generates base page
;reference.

LDAA CHARLIE ;Assembler generates

;extended addressing
;unless told to put
;on base page.

3-3

Assembler Supplement 6800/6801/6802/6803/8861/6301
Special Pseudo Instructions

BSZ

Block Stoarge of Zeros

SYNTAX
LABEL OPERATION OPERAND COMMENT
[Name] BSZ expression

The BSZ pseudo instruction allocates a block of bytes. Each byte has an initial value of zero.
Expression determines the number of bytes allocated.

An error will be generated if Expression has a value of zero or contains symbols that are
undefined, external references, or forward references.

Example:
LABEL OPERATION OPERAND COMMENT
BSZ 10 ;Generates 10 bytes
;of zeros.

Assembler Supplement 6800/6801/6802/6803/8861/6301
Special Pseudo Instructions

DIRECT

Direct Addressing Mode

SYNTAX
LABEL OPERATION OPERAND COMMENT

DIRECT

Some microprocessor instructions can use either the direct or the extended mode of
addressing. Unless otherwise instructed, the assembler defauits to extended addressing. To
cancel this default condition, insert the DIRECT pseudo instruction into the source program.

EXTEND

Extended Addressing Mode

SYNTAX
LABEL OPERATION OPERAND COMMENT
EXTEND

The EXTEND pseudo instruction selects the extended mode of addressing. To cancel the
EXTEND instruction, insert the DIRECT pseudo instruction into the source program.

Assembler Supplement 6800/6801/6802/6803/8861/6301
Special Pseudo Instructions

FCB

Form Constant Byte

SYNTAX
LABEL OPERATION OPERAND COMMENT
[Name] FCB expression

The FCB pseudo instruction will store data in consecutive memory locations starting with the
current setting of the program counter. The operand field may contain symbols or
expressions that evaluate to one byte (8 bits) numbers in the range 0 through 255.

The label name is optional. If the label name is present, it is assigned the starting value of the
program counter, and will reference the byte stored by the FCB instruction.

Example:
LABEL OPERATION OPERAND COMMENT
SAM FCB CHARLIE+0S5H

Assembler Supplement 6800/6801/6802/6803/8861/6301
Special Pseudo Instructions

FCC

Form Constant Character String

SYNTAX:
LABEL OPERATION OPERAND COMMENT
[Name] FCC number, string expression
or
[Name] FCC string expression

The FCC pseudo instruction stores ASCIl strings into consecutive bytes of memory. Any
printable ASCIlI character can be included in the string. This pseudo has two formats. In the
first format, Number is a decimal constant, which specifies the number of characters
contained in string expression. If Number exceeds the characters in String Expression,
spaces will be inserted to fill the remainder of the string.

In the second format, FCC specifies the string, which can be any printable ASCIl character,
within quotation marks (”...”), apostrophe marks (’...’), or carets (*...7).

Example:
LABEL OPERATION OPERAND COMMENT
FCC 10, “"TEXT" ;Generates TEXT in
;ASCII followed by
;6 blanks.
FCC "TEXT" ;0nly generates TEXT.

Assembler Supplement 6800/6801/6802/6803/8861/6301
Special Pseudo Instructions

FDB

Form Double Byte

SYNTAX
LABEL OPERATION OPERAND COMMENT
[Name] FDB expression list

The FDB pseudo instruction will store each 16-bit value from the expression list as an
address. The values are stored in memory starting at the current setting ot the program
counter.

Expressions evaluate to one-word (16 bits) numbers, typically addresses. If an expression
evaluates to a single byte, it is assumed to be the low order byte of a 16-bit word where the
high order byte is all zeros.

If the label name is present, it is assigned the starting address of the program counter, and
thus will reference the first byte stored by the FDB instruction.

Example:
LABEL OPERATION OPERAND COMMENT
SAM FDB 0B123H

Assembler Supplement 6800/6801/6802/6803/8861/6301
Special Pseudo Instructions

RMB

Reserve Memory Byte

SYNTAX:
LABEL OPERATION OPERAND COMMENT
[Name] RMB expression list

The RMB pseudo instruction may be used to define a block of memory space. The value of the
expression in the operand field specifies the number of bytes to be reserved.

Any symbol appearing in the operand field must be predefined. If the value of the operand
expression is zero, no memory is reserved; however, if the optional label name is present, it
will be assigned the current value of the program counter.

The RMB instruction reserves space in memory by incrementing the program counter by the
value in the operand expression.

Example:
LABEL OPERATION OPERAND COMMENT
[Name] RMB expression list

The RMB pseudo instruction may be used to define a block of memory space. The value of the
expression in the operand field specifies the number of bytes to be reserved.

Any symbol appearing in the operand field must be predefined. If the value of the operand
expression is zero, no memory is reserved,; however, if the optional label name is present, it
will be assigned the current value of the program counter.

The RMB instruction reserves space in memory by incrementing the program counter by the
value in the operand expression.

Example:
LABEL OPERATION OPERAND COMMENT
SAM RMB 15 ;RESERVE 15
;BYTES FOR SAM
;ROUTINE

Assembler Supplement 6800/6801/6802/6803/8861/6301
Special Pseudo Instructions

SET

Set Symbol To A Value

SYNTAX
LABEL OPERATION OPERAND COMMENT
Nanie SET expression

The SET pseudo instruction assigns the value of Expression to Name. The value of Name can
be changed later in the program with another SET instruction.

Example:
LABEL OPERATION OPERAND COMMENT

SAM SET 15 ;SAM has a value of ;15.

Chapter 4
ASSEMBLER OUTPUT LISTING
GENERAL

The assembler processes source program modules and produces an output that consists of a
source program listing, a relocatable object file, and a symbol cross-reference list. Errors
detected by the assembler will be noted in the output listing as error messages. Refer to
Appendix D in the Assembler/Linker Manual for a listing of all error codes and their definitions.

INPUT/OUTPUT FILES

Source Input File

Input to the assembler is a source file that is created through the editor. It consists of the
following:

EXAMPLE DESCRIPTION
"6800" - Assembler directive
Source Code - Source statements consisting of:

Assembler Pseudos - refer to
Chapter 3 (Assembler/
Linker Manual)

Assembler Instructions - refer
to Chapter 5, this
Supplement

Assembler Supplement 6800/6801/6802/6803/8861/6301
Assembler Output Listing

Assembler Output Files

The assembler produces relocatable object modules that are stored under the same name as
the source file but in a format that can be processed by the linker. If an object file does not
exist at assembly time, the assembler will create one. If an object file does exist, the
assembler will replace it.

List File. The list file is a formatted file that is output to a line printer. It can also be stored in
a file or applied to the system CRT display. The list may include:

a. Source statements with object code.

b. Error messages.

¢. Summary of errors with a description list.
d. Symbol cross-~reference list.

Symbol Cross-Reference List. All symbols are cross-referenced except local macro labels
and parameters. A cross-reference listing contains:

a. Alphabetical list of program sympols.
b. Line numbers where symbols are defined.

c. Allreferences (by line numbers) to symbols in the program.

OUTPUT LISTING EXAMPLES

An example of an assembler output listing is given in table 4-2, using the source program
example listed in table 4-1. To illustrate an assembler output listing that contains error
messages refer to table 4-3.

NOTE

The source program example was not written as a specific program. It merely
lists a group of mnemonics to present a formatted example.

Assembler Supplement 6800/6801/6802/6803/8861/6301
Assembler Output Listing

Table 4-1. Source Program Format Example

"6800" LIST XREF

EXT DSPL6,KYBD6
ORG 0BOOH
EXEC6 LDS #0COOH
LDAA #03H
LP1 STAA 08H
DES
BGT LP1
LDAB #06H
LP2 JSR KYBD6
BCS LIGHT
TPA
PSHA
DECB
BPL LP2
LDAB #-01H
GO LDX 08H,X
STAA #03H
DECB
DEX
BGT GO
PULA
STAA #08H
DECB
LIGHT JSR DSPL6
BRA LP1
END

Assembler Supplement 6800/6801/6802/6803/8861/6301
Assembler Output Listing

Table 4-2. Assembler Output Listing

FILE: PGM6SE: HEWLETT PACKARD: MOTOROLA 6800 ASSEMBLER
LINE LocC CODE ADDR SOURCE STATEMENT
1 "6800" LIST XREF
2 EXT DSPL6,KYBD6
3 0B0O ORG 0BOOH
4 0B0O 8E 0Co00 EXECS6 LDS #0COOH
5 0B03 86 03 LDAA #03H
6 0B0OS 97 08 LP1 STAA 08H
7 0B07 34 DES
8 0B0O8 2E FB BGT LP1
9 0BOA Cé 08 LDAB #06H
10 0BOC BD 0000 LP2 JSR KYBD6
11 0BOF 25 13 BCS LIGHT
12 0B11 07 TPA
13 0B12 36 PSHA
14 0B13 5A DECB
15 0B14 2A F6 BPL LP2
16 0B16 Cé6 FF LDAB #-01H
17 0B18 EE 08 GO LDX 08H,X
18 0B1A 87 03 STAA #03H
19 0B1C 5A DECB
20 0B1D 09 DEX
21 0B1E 2E F8 BGT GO
22 0B20 32 PULA
23 0B21 87 03 STAA #03H
24 0B23 5A DECB
25 0B24 BD 0000 LIGHT JSR DSPL6
26 0B27 20 DC BRA LP1
27 END

Errors = 0

Assembler Supplement 6800/6801/6802/6803/8861/6301

Assembler Output Listing

Table 4-2. Assembler Output Listing (Cont'd)

FILE: PGM68E: CROSS REFERENCE TABLE
LINE# SYMBOL TYPE
2 DSPL6 E
4 EXEC6 A
17 GO A
2 KYBD6 E
25 LIGHT A
6 LPL A
10 LP2 A
XKk X u

PAGE 2

REFERENCES

25

10

17

NOTE: In the cross-reference table, the letter listed under the TYPE column has the following

definition:

C® v XmMOO >

Absolute

Common (COMN)
Data (DATA)

External

Multiple Defined
Program (PROG)
Predefined Register

Undefined

Assembler Supplement 6800/6801/6802/6803/8861/6301
Assembler Output Listing

Table 4-3. Assembler Output with Errors

FILE: PGM6SE: HEWLETT-PACKARD: MOTOROLA 6800 ASSEMBLER
LINE LOC CODE ADDR SOURCE STATEMENT
1
2 EXT DSPL6 ,KYBD6
3 0BOO ORG 0BOOH
4 0B0O 8E 0CO00 EXEC6 LDS #0COOH
5 0B03 86 03 LDAA #0803H
ERROR-LR ~
6 0B0S 97 08 LP1L STAA 08H
7 0B07 34 DES
8 0BO8 2E FB BBB LP1
ERROR-UQ, see line 5 ~
9 0BOA c6 06 LDAB #06H
10 0BOC BD 0000 LP2 JSR KYBD6
11 0BOF 25 13 BCS LIGHT
12 0B11 07 TPA
13 0B12 36 PSHA
14 0B13 SA DEC C
ERROR-US, see line 8 ~
15 0B14 2A Fé BPL LP2
16 0B16 C6 FF LDAB ##-01H
17 0B18 EE 08 GO LDX 08H,X
18 0B1A 87 03 STAA #03H
19 0B1C SA DECB
20 0B1D 09 DEX
21 0BLE 2E F8 BGT GO
22 0B20 32 PULA
23 0B21 87 03 STAA #08H
24 0B23 5A DECP
25 0B24 BD 0000 LIGHT JSR DSPL®6
26 0B27 20 DC BRA LP1L
27 END

Errors = 3, previous error at line 14

US - Undefined Symbol, The indicated symbol is not defined
LR - Legal Range, Address, or displacement is out of range
U0 - Unidentified Opcode, Opcode encountered is not defined

Assembler Supplement 6800/6801/6802/6803/8861/6301
Assembler Output Listing

Table 4-3. Assembler Output with Errors (Cont’d)

FILE: PGMG68E: CROSS REFERENCE TABLE PAGE 2
LINE# SYMBOL TYPE REFERENCES
2 DSPL6 E 25
4 EXEC6 A
17 GO A
2 KYBD6 E 10
25 LIGHT A
6 LP1 A
10 LP2 A
AKX X U 17
NOTE: Error messages are inserted immediately following the statement where the error

occurs. All error messages (after the first error message) will contain a statement
that points to the line number where the previous error occurred. At the end of the
source program listing, an error summary statement will be printed. The summary will
contain a statement indicating the total number of errors noted, along with a line
reference to the previous error. It will also define all error codes listed in the source
program listing.

The primary purpose of the error statement that points to the line number where the
previous error occurred is to facilitate location of errors. Since some programs may
be many pages in length, this feature helps the programmer locate errors quickly (as
opposed to thumbing through each page of the program).

4-7

Assembler Supplement 6800/6801/6802/6803/8861/6301
Assembler Output Listing

Chapter 5

INSTRUCTION SET SUMMARY
(6800/6801/6802/6803)

GENERAL

All mnemonic instructions are summarized in table 5-1. The table is arranged in alphabetical
order.

Each instruction consists of a mnemonic symbol, an object code for each addressing mode,
the boolean operation performed, and condition codes affected. The descriptive symbols used
in table 5-1 to represent items in the mnemonic definitions are as follows:

SYMBOL DESCRIPTION
A Register A
B Register B
CcC Carry condition flag
CCR Condition Code Register
D Register D (Reg A and Reg B)
Dir Direct addressing mode
Ext Extended addressing mode
I Interrupt mask register
Imm Immediate addressing mode
Ind Indexed addressing mode

Assembler Supplement 6800/6801/6802/6803/8861/6301
Instruction Set Summary

5-2

SYMBOL

Inh

M

M+1

op

PC

PCH

PCL

Rel

SP

-=> or <--

DESCRIPTION

Inherent addressing mode

A memory location

The byte of memory location
at 0001 plus the address of
the memory loction indicated
by 'M’

Not affected by the operation.
Negative condition code
Operation Code (Hexadecimal)
Program Counter

Program Counter High Byte
Program Counter Low Byte
Relative Address

Stack Pointer

Condition code unknown
Overflow condition code
Affected by the operation
Index Register - 16 bits

Zero condition code

Bit

L]
(=4

Bit

"
—

Boolean AND

Transfer into

Arithmetic addition

Arithmetic subtraction

Assembler Supplement 6800/6801/6802/6803/8861/6301
Instruction Set Summary

SYMBOL DEFINITION
X Multiply
= Equality
() Refers to contents of

address or register
® Exclusive OR

@ Inclusive OR

PREDEFINED SYMBOLS

The following symbols are reserved. They have special meaning to the assembler and cannot
appear as user-defined symbols.

SYMBOL DEFINITION
A Register A
B Register B
D Register D (Reg A and Reg B)
X Index Register
SP Stack Pointer
$ Program Counter content

Assembler Supplement 6800/6801/6802/6803/8861/6301
Instruction Set Summary

MNEMONIC

ABA

XABX

ADCA

ADCB

ADDA

ADDB

XADDD

ANDA

ANDB

ASL

OBJECT
CODE

1B

3A

89
99
BS
AS

Cc9
D9
F9
EQ

8B
9B
BB
AB

cB
DB
FB
EB

C3
D3
F3
E3

84
94
B4
A4

c4
D4
Fa
E4

78
68

Table 5-1. Instruction Set Summary

ADDR FLAG H
MODE OPERATION BITS 5

Inh A

(A) + (B) X

Inh X = (X) + (B) n

Imm A = (A) + (M) + (C) X
Dir
Ext
Ind

Imm B = (B) + (M) + (C) X
Dir
Ext
Ind

Imm A= (A) + (M) X
Dir
Ext
Ind

Imm B = (B) + (M) X
Dir
Ext
Ind

Imm D = (D) + (M) n
Dir
Ext
Ind

Imm A = (A) e (M) n
Dir
Ext
Ind

Imm B = (B) o (M) n
Dir
Ext
Ind

Ext CC<--7<--0<¢--0 n
Ind (M)

Assembler Supplement 6800/6801/6802/6803/8861/6301
Instruction Set Summary

Table 5-1. Instruction Set Summary (Cont'd)

0OBJECT ADDR FLAGHINZVC
MNEMONIC CODE MODE OPERATION BITS S 43 210
ASLA 43 Inh CC<--7<--0<--0 nnxx X x
(A)
ASLB 58 Inh CC<--7<--0<--0 nnixxx x
(B)
XASLD 05 Inh CC<--7¢=-=-0<--7<--0<--0 nnixxx X
(A) (B)
ASR 77 Ext CC =7 6-->0] nnxxXx X
67 Ind (M)
ASRA 47 Inh cC E:] 6-->0 — nnixxx X
(A)
ASRB 57 Inh CcC E:J 6-->0] nnxx X X
(B)
BCC 24 - " Rel Test for CC = 0 nnnnnn
BCS 25 Rel Test for CC = 1 nnnnnn
BEQ 27 Rel Test for Z = 1 nnnnnn
BGE 2C Rel Test for N(:)V =0 nnnannnn
BGT 2E Rel Test for Z(® [N V]=0 nnnnnn
BHI 22 Rel Test for CC(®Z = 0 nnnnnn
XBHS 24 Rel Test for CC = 0 nnnnnn
BITA 85 Imm (A) o (M) nnxxO0n
95 Dir
BS Ext
AS Ind
RITB C5 Imm (B) o (M) nnxxO0n
DS dir
FS Ext
ES Ind

Assembler Supplement 6800/6801/6802/6803/8861/6301
Instruction Set Summary

Table 5-1. Instruction Set Summary (Cont’'d)

OBJECT ADDR FLAG H I N
MNEMONIC CODE MODE OPERATION BITS 5 4 3
BLE 2F Rel Test for Z (& [N (D V]=1 nnon
XBLO 25 Rel Test for CC=1 nnn
BLS 23 Rel Test for CC (e Z=1 nnon
BLT 2D Rel Test for NP v=1 nnn
BMI 2B Rel Test for N=1 nnon
BNE 26 Rel Test for Z=0 nnn
BPL 2A Rel Test for N=0 nnan
BRA 20 Rel Branch Always nnn
XBRN 21 Rel Branch Never nnn
BSR 8D Rel Branch Subroutine nnn
BvVC 28 Rel Test for V=0 nnon
BVS 29 Rel Test for V=1 nnn
CBA 11 Inh (A)-(B) nonx
cLC 0C Inh CC=0 nnn
CLI 0OE Inh I=0 no0n
CLR 7F Ext (M)=0 nno

6F Ind
CLRA 4F Inh (A)=0 nno
CLRB S5F Inh (B)=0 nno
CLv 0A Inh V=0 nnn
CMPA 81 Imm Compare (A), (M) nnx

91 Dir

Bl Ext

Al Ind

N

Assembler Supplement 6800/6801/6802/6803/8861/6301
Instruction Set Summary

Table 5-1. Instruction Set Summary (Cont’'d)

OBJECT ADDR FLAGHINZVC
MNEMONIC CODE MODE OPERATION BITS 543210
CMPB Cl1 Imm Compare (B), (M) nnixxXx X
D1 Dir
F1 Ext
El Ind
COM 73 Ext Complement (M) nnxxO01
63 Ind
COMA 43 Inh Complement (A) nnxx 01
COMB 53 Inh Complement (B) nnxxO0l
CPX 8C Imm Compare (X), (M) nnxxxn
9C Dir
BC Ext
AC Ind
DAA 19 Inh Converts Reg (A) into nnxxxX
packed BCD
DEC 7A Ext (M)=(M)-1 nnxxun
6A Ind
DECA aA Inh (A)=(A)-1 nnxXxXun
DECB 5A Inh (B)=(B)-1 nnxxun
DES 34 Inh (SP)=(SP)-1 nnnnnn
DEX 09 Inh (X)=(X)-1 nnnxnn
EORA 88 Imm (A)=(A) C)(M) nnxxO0n
98 Dir
B8 Ext
A8 Ind
EORB cs8 Imm (B)=(B) (p (M) nnxxo0n
D8 Dir
F8 Ext
ES Ind
INC 7C Ext (M)=(M)+1 nnxxuwun
6C Ind

Assembler Supplement 6800/6801/6802/6803/8861/6301
Instruction Set Summary

Table 5-1. Instruction Set Summary (Cont'd)

OBJECT ADDR FLAG HIN

MNEMONIC CODE MODE OPERATION BITS 5 4 3

INCA 4C Inh (A)=(A)+1 nn x

INCB 5C Inh (B)=(B)+1 nn X

INS 31 Inh (SP)=(SP)+1 nnn

INX 08 Inh (X)=(X)+1 nnn

JMP 7E Ext PC<--EA nnn

6E Ind

JSR BD Ext (SP)=(SP)-1, nnn
AD Ind (SP)<--PCL;
(SP)=(SP)-1,

(SP)<--PCH; PC<--EA

LDAA 86 Imm (A)<--(M) nnx
96 Dir
B6 Ext
A6 Ind
LDAB (o1} Imm (B)<--(M) nnx
D6 Dir
Fé Ext
E6 Ind
XLDD cC Imm (D) <--(M) nnx
DC Dir
FC Ext
EC Ind
LDS 8E Imm (S)<--(M) nnx
9E Dir
BE Ext
AE Ind
LDX CE Imm (X)<--(M) nnx
DE Dir
FE Ext
EE Ind
LSR 74 Ext 0-->7-->0-->CC nno
64 Ind (M)

MNEMONIC

LSRA

LSRB

LSRD

XMUL

NEG

NEGA

NEGB

NOP

ORAA

ORAB

PSHA

PSHB

XPSHX

PULA

OBJECT
CODE

44

54

04

3D

70
60

40
50
01
8A
9A
BA
AA
CA
DA
FA
EA
36

37

3C

32

Assembler Supplement 6800/6801/6802/6803/8861/6301

Instruction Set Summary

Table 5-1. Instruction Set Summary (Cont'd)

ADDR
MODE

Inh

Inh

Inh

Inh

Ext
Ind

Inh
Inh
Inh
Imm
Dir
Ext
Ind
Imm
Dir
Ext
Ind
Inh

Inh

Inh

Inh

OPERATION

0-->7-->0-->CC
(A)

0-->7-->0-->CC
(B)

0-->7-->0-->7-->0-->CC
(A) (B)

(D)<--(A}X(B)

Two's Complement (M)

Two’s Complement (A)
Two’s Complement (B)

No operation
(PC)=(PC)+1

(A)<--(A) (® (M)

(B)<--(B) (® (M)

Push Reg onto stack
Push Reg onto stack

Push Index Reg onto
stack

Pull Reg from stack

FLAG H
BITS 5

R]

Assembler Supplement 6800/6801/6802/6803/8861/6301
Instruction Set Summary

Table 5-1. Instruction Set Summary (Cont’'d)

OBJECT ADDR FLAG H I N
MNEMONIC CODE MODE OPERATION BITS 5 4 3
PULB 33 Inh Pull Reg from stack nnn
XPULX 38 Inh Pull Index Reg from nnn
stack
ROL 79 Ext CC<~-7<—-0;:] nonx
69 Ind (M)
'
ROLA 49 Inh CC<--7<-—0<_-:-—-| nn x
(A)

| l
ROLB 59 Inh CC<--7<--0 nnx

(B)

ROR 76 Ext |::j>7—->0-->CC nnx

66 Ind (M)
RORA 46 Inh l:r>7-->0—->CC nn x
(A)
RORB 56 Inh [:;7-->0-->CC nn x
(B)
RTI 3B Inh Return from Interrupt uuu
RTS 39 Inh Return from Subroutine nnn
SBA 10 Inh (A)=(A)-(B) nnx
SBCA 82 Imm (A)<--(A)-(M)-(CC) nnx
92 Dir
B2 Ext
A2 Ind
SBCB c2 Imm (B)<--(B)-(M)-(CC) nonx
D2 Dir
F2 Ext
E2 Ind
SEC oD Inh CC=1 nnrn
SEI OF Inh I=1 nln

5-10

Assembler Supplement 6800/6801/6802/6803/8861/6301
Instruction Set Summary

Table 5-1. Instruction Set Summary (Cont’'d)

OBJECT ADDR FLAGHINZVC
MNEMONIC CODE MODE OPERATION BITS 5 4 3 210
SEV 0B Inh V=1 nnnnln
STAA 97 Dir (M)<--(A) nnxxO0n
B7 Ext
A7 Ind
STAB D7 Dir (M)<--(B) nnxxO0n
F7 Ext
E7 Ind
XSTD DD Dir (M)<--(D) nnxxO0n
FD Ext
ED Ind
STS 9F Dir (M)<--(S) nnxxO0n
BF Ext
AF Ind
STX DF Dir (M) <--(X) nnxxOn
FF Ext
EF Ind
SUBA 80 Imm (A)<--(A)-(M) nnixxXx X
90 Dir
BO Ext
A0 Ind
SUBB co Imm (B)<--(B)-(M) nnixzxx X
DO Dir
FO Ext
EO Ind
XSUBD 83 Imm (D)<--(D)-(M) nnxzxxXx
93 Dir
B3 Ext
A3 Ind
SWI 3F Inh Software Interrupt nnnnnn
TAB 16 Inh (B)<--(A) nnxxO0n
TAP 06 Inh (CCR)<--(A) X X X X X X

n
|

11

Assembler Supplement 6800/6801/6802/6803/8861/6301
Instruction Set Summary

Table 5-1. Instruction Set Summary (Cont'd)

GBJECT ADDR FLAG H IN

MNEMONIC CODE MODE OPERATION BITS 5 4 3
TBA 17 Inh (A)<--(B) nn x
TPA 07 Inh (A)<--(CCR) nnn
TST 7D Ext Test (M)-0 nnx

6D Ind

TSTA 4D Inh Test (A)-0 nonx
TSTB SD Inh Test (B)-0 nonx
TSX 30 Inh (X)<--(SP)+1 nnn
TXS 35 Inh (SP)<--(X)-1 nnn
WAI 3E Inh Wait for interrupt nxn

(%) Indicates instruction is applicable to the 6801 and the 6803
microprocessors only.

- <

Appendix A

8861 MICROPROCESSOR

The instructions on the following pages are only applicable to the 8861 microprocessor.

Appendix A 6800/6801/6802/6803/8861/6301
8861 Microprocessor

ADX

Add Index Register

SYNTAX
OBJECT
LABEL OPERATION OPERAND CODE (HEX)
ADX #data 0EC
ADX address OFC

Adds the contents of the index register and the contents of memory at the address specified
by the program and places the results in the index register. This is a two~byte instruction
with immediate addressing (OECH) or a three-byte instruction with extended addressing
(OFC).

Examples:

ADX #57
ADX ADDR

Appendix A 6800/6801/6802/6803/8861/6301
8861 Microprocessor

NIM

AND Immediate with Memory

SYNTAX

OBJECT
LABEL OPERATION OPERAND CODE (HEX)

NIM data address X 71

Performs a logical AND between the contents of the second byte of the instruction and the
contents of the memory location specified by the program, and stores the result in the
memory location. This is a three-byte instruction using the indexed addressing mode.
Example:

NIM 5FH ADDR, X

Appendix A 6800/6801/6802/6803/8861/6301
8861 Microprocessor

OIM

OR Immediate with Memory

SYNTAX

OBJECT
LABEL OPERATION OPERAND CODE (HEX)

0IM data address, X 72

Performs a logical OR between the contents of the second byte of the instruction and the
contents of the memory location specified by the program, and stores the result in the
memory location. This is a three-byte instruction using the indexed addressing mode.
Example:

0IM 5FH ADDR, X

Appendix A 6800/6801/6802/6803/8861/6301
8861 Microprocessor

TMM

Test Under Mask

SYNTAX
OBJECT
LABEL OPERATION OPERAND CODE (HEX)
TMM data address X 7B

The state of the operand bits selected by a mask is used to set the condition code. The
second byte of the instruction is used as an eight-bit mask. The bits of the mask are made to
correspond one for one with the bits of the character in memory specified by the index
register. A mask bit of one indicates that the memory bit is to be tested. When the mask bit is
zero, the memory bit is ignored. This is a three-byte instruction using the indexed addressing
mode.

Example:

T™MM 5FH ADDR,X

Appendix A 6800/6801/6802/6803/8861/6301
8861 Microprocessor

XM

Exclusive OR Immediate with Memory

SYNTAX

OBJECT
LABEL OPERATION OPERAND CODE (HEX)

XIM data address X 75

Performs a logical exclusive OR between the contents of the second byte of the instruction
and the contents of memory location specified by the program, and stores the result in the
memory location. This is a three-byte instruction using the indexed addressing mode.

Example:

XIM SFH ADDR,X

Appendix B

6301 PROCESSOR
INTRODUCTION

The 6301 processor is UPWARD source and object code compatible with the 6801
processor. The assembler directive is "6301”. In addition to the standard 6801 instructions,
six additional instructions are available with the 6301. Four of the instructions use direct
(base page) or indexed (X register) addressing, perform logical operations on immediate data,
and place the result in memory. These instructions are AIM, OIM, EIM, and TIM. The remaining
two instructions XGDX and SLP, are special instructions, which will be explained in the next
section.

In the following sections, the instructions, operand rules and conventions, and types of errors
are explained.

INSTRUCTIONS

In this section, there is a description of each instruction, followed by a table with the
mnemonic symbol, object code, addressing mode, Boolean operation, and the condition code
register. The following symbols are used in the descriptions.

X Boolean AND
+ Arithmetic addition
+ Exclusive OR
-=> Transfer
<==> Exchange
R Bit = 0
n Not affected by operation
a Affected by operation
Dir Direct addressing mode
Ind Indexed addressing mode
Immediate Data
H Half-carry from bit 3
I Interrupt mask
N Negative (sign bit)
Z Zero (byte)
\% Overflow, 2’'s complement
C Carry from bit 7

Assembler Supplement 6800/6801/6802/6803/8861/6301
6301 Processor
Descriptions

And Immediate (AIM)- Evaluates the AND of the immediate data and the contents of memory,
and places the result in memory.

Or Immediate (OIM)- Evaluates the OR of the immediate data and the contents of memory, and
places the result in memory.

Exclusive Or Immediate (EIM)- Evaluates the EOR of the immediate data and the contents of
memory, and places the result in memory.

Test Immediate (TIM)- Evaluates the AND of the immediate data and the contents of memory,
and changes the flag of the associated condition code register.

Each of these instructions has three bytes. The first byte is the opcode, the second byte is
immediate data, and the third byte is an address or offset and the address modifier.

The two remaining instructions are special instructions. The XGDX instruction exchanges the
contents of the accumulator and the index register: (ACCD) <--> (IX). The SLP instruction

puts the 6301 in a sleep mode with the contents of the registers secure and the peripherals of
the MPU operational.

Table B-1. 6301 Instruction Summary

CONDITION CODES

OBJECT ADDR HINZVC

MNEMONIC CODE MODE OPERATION 543210

AIM 71 Dir (M) X (IMM) --> (M) nnaaRhn
61 Inx

0IM 72 Dir (M) + (IMM) --> (M) nnaaRn
62 Inx

EIM 75 Dir (M) + (IMM) --> (M) nnaaRn
65 Inx

TIM 7B Dir (M) x (IMM) nnaaRn
6B Inx

Assembler Supplement 6800/6801/6802/6803/8861/6301
6301 Processor
Operand Rules and Conventions

The AIM, OIM, EIM, and TIM instructions must use the following format.

BYTE 1 BYTE 2 BYTE 3

Opcode Operandl Operand2[,Address modifier]

There must be one or more spaces between each byte.

Operand1. The first operand must be immediate data; therefore, the assembler will allow
values and labels with or without the immediate data symbol (#). A list of acceptable formats
and examples follows.

Assembler Supplement 6800/6801/6802/6803/8861/6301
6301 Processor

FORMAT

Value

Label

Immediate Value

Immediate Label
Expression Excluded Label
Expression Included Label

Immediate Expression
Excluded Label

Immediate Expression
Included Label

Label Declared As External
or Expression Included Label
Declared As External

EXAMPLE

10H

VALL

#10H

#VALL

10H+0AH

VALL1+0AH,VAL1+VAL2

#10H+0AH

#VALL1+10H, #VALL+VAL2

EXT VAL1

EIM #VAL1 10H,X
EIM #VAL1+10H 10H,X

NOTE

The error free legal range for values and values of labels is -7FH to OFFH.

Operand2. The second operand is an 8-bit address in the direct addressing mode or an offset
value to the index register in the index addressing mode. A list of acceptable formats and
examples follows.

FORMAT

Value

Label

Expression Excluded Label
Expression Included Label
Label Declared As External

or Expression Included Label
Declared As External

EXAMPLE

10H

O0SFT1

10H+0AH

OFST1+0AH,0FST1+0FST2

EXT OFST1
EIM 10H OFSTL X
EIM 10H OFSTL1+10H,X

Assembler Supplement 6800/6801/6802/6803/8861/6301
6301 Processor

NOTE
The error free legal range for values and values of labels is O0OH to OFFH.
Address Modifier. The address modifier is optional, it defines the addressing mode (either
direct or indexed for AIM, OIM, EIM, and TIM). If there is no address modifier, the default is the

direct addressing mode. In indexed addressing, if the offset to the index register is zero, the
second operand can be omitted. The formats and an example of each follows.

DIRECT FORMAT EXAMPLE
<value or label or expression>,D OIM 10H 10,D
INDEXED FORMAT EXAMPLES
<value or label or expression>, kX 0IM 10H X
Offset to index register is 0 0IM 10H X
OIM 10H X

TYPES OF ERRORS

The three types of errors are described in this section. Each type is explained and then an
example is given.

Invalid Operand Error

The assembler will generate this error for any illegal format in the statement. |f the second
operand is one of the register symbols (A, B, or D) or one of the address modifiers D or E (X
is allowed), this error will be generated. When this error occurs, no object code is generated
(no located space is generated).

Example:

0IM 10H A

Assembler Supplement 6800/6801/6802/6803/8861/6301
6301 Processor
iegal Range Error

It an operand is out of the legal range, the assembler will generate this error. The object code
generated will assume the operand value is zero.

Example:

0IM 131H 10H

Expression Type Error

If the first operand is one of the register symbols A, B, or D, or any of the address modifiers
D, E, or X, the assembler will generate this error. If the tirst and/or second operand has more
than two labels declared as external, this error will be generated. The object code generated
will assume the operand value is zero.

Example:

0IM A 10H,X

64841-90905, AUGUST 1984 [ﬁ

Replaces: 64841-90904, November 1980 DACKARD PRINTED IN U.S.A.

	Front
	cover
	inside

	Comment Sheet
	comment-1
	comment-2
	comment-3
	comment-4

	Contents
	title
	ii
	iii
	iv
	v
	vi

	Chapter 1
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10

	Chapter 2
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6

	Chapter 3
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10

	Chapter 4
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8

	Chapter 5
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12

	Appendix A
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6

	Appendix B
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6

	Back
	cover

