
• 64000 Pi
LOGIC L-

•

•

DEVELOPMENT
SYSTEM

ASSEMBLER/LINKER
REFERENCE MANUAL

CERTIFICATION
Hewlett-Packard Company certifies that this product met its published specifications at the
time of shipment from the factory. Hewlett-Packard further certifies that its calibration
measurements are traceable to the United States National Bureau of Standards, to the extent
allowed by the Bureau's calibration facility, and to the calibration facilities of other
International Standards Organization members.

WARRANTY
This Hewlett-Packard system product is warranted against defects in materials and workman­
ship for a period of 90 days from date of installation. During the warranty period, HP will, at its
options, either repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer's facility at no charge within HP
service travel areas. Outside HP service travel areas, warranty service will be performed at
Buyer's facility only upon HP's prior agreement and Buyer shall pay HP's round trip travel
expenses. In all other cases, products must be returned to a service facility deSignated by HP.

For products returned to HP for warranty service. Buyer shall prepay shipping charges to HP
and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all
shipping charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware deSignated by HP for use with an instrument will
execute its programming instructions when properly installed on that instrument. HP does not
warrant that the operation of the instrument, or software, or firmware will be uninterrupted or
error free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate
maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or
misuse, operation outside of the environmental specifications for the product, or improper site
preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP
SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER
LEGAL THEORY.

ASSISTANCE
Product maintenance agreements and other customer assistance agreements are available for
Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

CW&A 9/79

Tab Index

Manual Map .. .

Chapter 1: How to (]se the HP Assembler · · . · . · · · · · · · · · · · · · · . · · . · . · · · · . [I

Chapter 2: HP M.odel 64000 Assembler Rules and Conventions. · · · · · · · . · · a
Chapter 3: Assembler Pseudo and Control Instructions G:
Chapter 4: Macros... ~

Chapter 5: Linker Instructions .. [[

Chapter 6: Introduction to Assemblers · · . · · · · .. · · · · .. · · · · . · · · · · · · ... · ., [E

Appendix A: GlossalY.. [A:

Appendix B: ASCII Conversion Table [E

Appendix C: Assembler Pseudo Instructions SummalY [S

Appendix D: List of Assembler Error M.essages ~

Index ... [!J

Model 64000 Reference Manuals

The following block diagram shows the documentation scheme for the HP Model 64000 Logic
Development System. The interconnecting arrows show the recommended progression

through the manuals as a way of gaining familiarity with the system.

For a detailed map showing specific manuals and their part numbers, refer to the Manual Map

in the System Overview Manual.

Service - -Manuals -- -

Manual Map

Recommended

Start

1
System Overview

Manual'
HP Part No 64980-90903

'Includes
Site Selection and Installation Manual
Tape DrIVe Reference Manual
PROM Programmer Reference Manual

+
Editor Manual

r -lndl~du;I--~
: Microprocessor I

I
or

I
I Microprocessor

I L __ F!-m~y ___ ...J

PASCAl!64000
Complier Reference ---Manual

Microprocessor-Dependent
Supplement

+
Assemblertllnker -Reference Manual -

Microprocessor-Dependent
Supplement

t
Emulator Analyzer
Reference Manual

Microprocessor-Dependent
Supplement

ii

Site Selection

and - -- - Installation
Manual

1-

Printing History
Each new edition of this manual incorporates all material updated since the previous edition.

Each new or revised page is indicated by a revision (rev) date. Manual change sheets are issued
bet'lv'een editions, allovving you to correct or insert information in the current edition.

The part number on the back cover changes only when each new edition is published- Minor
corrections or additions may be made as the manual is reprinted between editions.

First Printing January 1980 (Part Number 64980-90990)

Second Edition June 1980 (Part Number 64980-90992)
Third Edition November 1980 (Part Number 64980-90994)

iii

iv

Assembler /Linker
Reference Manual

HP Model 64000 logic Development System

© COPYRIGHT HEWLETT·PACKARD COMPANY/COLORADO SPRINGS DMSION 1980
1900 GARDEN OF THE GODS ROAD, COLORADO SPRINGS, COLORADO, U.S.A.

ALL RIGHTS RESERVED

ASSEMBLER/LINKER
REFERENCE MANUAL

Table of Contents

Chapter 1: How to Use the HP Assembler

MODEL 64000

General .. 1-1

Input/Output Files .. 1-1
Source Input File ... 1-1

Assembler Output Files ... 1-2

Entering a Source Program ... 1-2
Assembling the Program ... 1-3

Assemble Syntax ... 1-5

How to Use the Assembler .. 1-7
Program Assembly ... 1-7

Output Listing " .. 1-9

Chapter 2: HP Model 64000 Assembler Rules and Conventions
Introduction ... 2-1

Source Statement Format Rules ... 2-1

Statement Length .. 2-2

Label Field ... 2-2

Operation Field .. 2-3
Operand Field ... 2-4

Comment Field .. 2-4

Delimiters ... 2-5
Symbolic Terms .. 2-5

Program Counter ($)•............................. 2-5

Numeric Terms .. 2-6

String Constants ... 2-6

Expression Operators .. 2-7

Relocatable Expressions .. 2-9

Chapter 3: Assembler Psuedo and Control Instructions
Introduction ... 3-1

8-bit Microprocessors .. , 3-3

16-bit Microprocessors ... 3-3
Pseudo I nstruction Syntax .. 3-3

ASC ... 3-4

BIN ... 3-5
COMN,DATA,PROG .. 3-6

DECI MAL .. 3-8

END ... 3-9
EQU ... 3-10

EXPAND .. " 3-11

EXT " " 3-11

GLB ... 3-12

HEX ... 3-12
LiST ... 3-13

vi

MODEL 64000

Table of Contents (Cont'd)

ASSEMBLER/LINKER
REFERENCE MANUAL

MASK ... 3-14
NAME ... 3-15
NOLIST ... 3-15
OCT ... 3-16
ORG .. 3-17
REPT .. 3-18
SKiP .. 3-18
SPC ... 3-19
TITLE ... 3-19

Chapter 4: Macros
Introduction ... 4-1
Advantages of Using Macros4-1
Disadvantages of Using Macros ... 4-2

Macros vs Subroutines ... 4-2
Macro Format .. 4-2
Optional Parameters ... 4-4

UniquE~ Label Generation ... 4-5
Conditional Assembly .. 4-6

.SET Instruction .. 4-6

.IF Instruction .. 4-7

.GOTO Instruction ... 4-8

.NOP Instruction ... 4-8
Checking Parameters ... 4-10

Indexing Parameters ... 4-11

Chapter 5: Linker Instructions
Introduction ... 5-1
Linker Requirements ... 5-2

Using the Linker ... 5-2

Link Syntax .. 5-3
How to Use the Linker .. 5-5

Simple Calling Method ... 5-5
Interactive Calling Method .. 5-6

Linker Output .. 5-10
List (Load Map) .. 5-10
Cross-reference Table " " .. " , 5-11

"No Load" Files .. 5-12

Linker Symbol File ... 5-12
Library Files ... 5-13

Error Messages .. 5-13
Fatal Error Messages ... 5-13
Nonfatal Error Messages 5-15

vii

ASSEMBLER/LINKER
REFERENCE MANUAL

Table of Contents (Cont'd)
Chapter 6: Introduction to Assemblers

MODEL 64000

General .. 6-1

Assembly Language .. 6-1
Assemblers .. 6-1

Assembler Operation , 6-2

Source Program Format .. 6-3
HP Model 64000 Assembler ... 6-5

Numbering Systems " .. 6-6

Binary Numbering System .. 6-6
Octal Numbering System ... 6-6

Hexadecimal Numbering System , .. 6-7

Complement of Numbers ... 6-8
1's Complement .. 6-9

2's Complement .. 6-9

Appendix A:
Glossary .. A-1

Appendix B:
ASCII Conversion Table ... B-1

Appendix C:
Assembler Pseudo Instructions Summary ... C-1

Appendix D:
List of Assembler Error Messages .. 0-1

... 1-1

List of Tables
1-1. Source Program Example " , 1-9
1-2. Assem bier 0 utput Listi ng .. 1-10

1-3. Assembler Output Listing with Errors ... 1-12

1-4. Syntax Conventions 0 ••••••••••••••••••••••••••••••••••••••• 1-14
3-1. Pseudo Instruction Index., . .,.,.,.,.,.,., . .,.,.,.,.,.,.,.,.,.,.,.,.,.,., . ., .,3-1

6-1. Typical Assembler Listing ... 6-3

List of Illustrations

6-1. Assembly Flow Diagram .. 6-2

viii

Chapter 1
How to Use

the HP Assembler

General
The assembler processes the source program modules and produces an output that consists
of a source program listing, a relocatable object file, and a symbol cross-reference list. Errors
detected by the assembler will be noted in the output listing as error messages. Refer to
Appendix D for a listing of all error codes and their definitions.

NOTE

Refer to Chapter 2 in the Overview Manual for BOOT-UP

operations and SOFTWARE UPDATING PROCEDURE from a
tape cartridge.

Input/Output Files
Source Input File
Input to the assembler is a source file that is created through the editor. It consists of the
following:

Example

"8080"

Source Code

Description

- Assembler directive.

- Source statements consisting of:

Assembler Pseudos - refer to
Chapter 3

Microprocessor Instructions -
refer to the Assembler
Supplement Manual

1-1

ASSEMBLER/LINKER
REFERENCE MANUAL

MODEL 64000

1-2

Assembler Output Files
The assembler produces relocatable object modules that are stored under the same name as

the source file but in a format that can be processed by the linker. If an object file does not

exist at assembly time, the assembler will create one. If an object file does exist, the assembler

will replace it.

List File. The list file is a formatted file that is output to a line printer. It can also be stored in

another file or applied to the system CRT display. The list can include:

a. Source statements with object code.

b. Error messages.

c. Summary of errors with a description list.

d. Symbol cross-reference list.

Symbol Cross-reference List. All symbols are cross-referenced except local macro labels and

parameters. A cross-reference listing contains:

a. Alphabetical list of program symbols.

b. Line numbers where symbols are defined.

c. All references (by line numbers) to symbols in the program.

Entering a Source Program
Once a source program has been developed, it can be entered into the HP Model 64000 by

way of the system editor. The first line of the source program must be the assembler directive

statement since it tells the assembler what type of assembly source follows in the file. This

first line of the source program is also used to set options that control the assembler output

listing. The assembler directive format is:

"processor" options

Example:

"8080" XREF EXPAND

NOTE

Options may be listed in either upper or lower case characters.

MODEL 64000 ASSEMBLER/LINKER
REFERENCE MANUAL

The list options that may be selected in the assembler directive statement are list/nolist,
expand, nocode, and xref. A brief description of each option follows:

nolist -

list -

expand -

nocode -

xref -

no listing, except for error messages. All LIST pseudo instructions
in the source program are ignored.

listing of source program with no macro or data expansions. All
NOLIST pseudo instructions in the source program are ignored.

listing of all source and macro generated codes. All LIST pseudo
instructions in the source program are ignored.

the nocode option suppresses the generation of object code.

the xref option activates the symbol cross-reference feature of the
assembler.

NOTE

If an invalid option is assigned, the assembler will indicate the
error within the directive statement as follows:

"8080" REFX<-invalid EXPAND

This type of directive error is not counted with the source

program errors detected by the assembler.

Pseudo instructions LIST, NOLlST, and EXPAND may be assigned in the body of the source
program (refer to Chapter 3). However, if the assembler directive statement specifies any list
option, that option will override all embedded list instructions.

Assembling the Program
Once a source program module has been entered into the system by way of the editor, it can
be assembled using the assemble function of the system. A syntax description follows for
assembler activation.

NOTE

Refer to table 1-4 for syntax conventions.

1-3

ASSEMBLER/LINKER
REFERENCE MANUAL

1-4

MODEL 64000

ASSEMBLER/LINKER
REFERENCE MANUAL
MODEL 64000

- - --- - - -- -- ------------- - --- assembie

r
SYNTAX

assemble <source FILE> listfile display I
<list FILE> I

where:

printer
null

options [list J
nolist

[expand] [nocode] [xref]

<source FILE> - name of the file containing the source program.

listfile - soft key used to specify a destination for output listing other than the

system default list file.

<list FILE> - name of the file where the assembler output listing will be stored. If the
file does not exist, a new file will be created using the name assigned.

display - designates the system CRT as the output listing destination.

pri nter - designates the system line printer as the output listing destination.

null - specifies that no listing is to be generated.

options - soft key used to specify type of output listing.

1

1-5

ASSEMBLER/LINKER

~~~~~~I~~~~~~~~~~~~~~~~~~~ REFERENCE MANUAL 
! Cont'd I MODEL 64000 

DEFAULT VALUES 
~----------~-----------------~ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
\ 

listfile: 

options: 

Assembler output listing defaults to the device specified by the userid 
statement. If the userid statement does not specify an output location, 
the assembler defaults to the null listing function. 

If no entry is made following the options soft key prompt, the output 
listing default will be as follows: 

a. Output listing of source program with object codes and error 
messages. 

b. There will be no expansion of macros and multiple-byte pseudo 
instructions. 

c. There will be no listing of the symbol cross-reference list. 

____________________________ J 

EXAMPLES: 

a. assemble SAM 

Assembles source file SAM; output listing to listfile default. 

b. assemble SAM listfile CHARLEY 

Assembles source file SAM; output listing to file name CHARLEY. 

c. assemble SAM listfile display options nolist nocode 

Assembles source file SAM; only error codes will be listed on the CRT display; no 
object code will be generated. 

FUNCTION 

The assembler translates source program inputs into relocatable object modules that may be 
linked and loaded into the system. Absolute addresses are assigned by the linker. 



~ .... 10DEL 64000 .A.SSEMBLER/LINKER 
REFERENCE MANUAL 

How to Use the Assembler 

NOTE 

In the following paragraphs, the soft key prompts are indicated 
as follows: 

,..--------, 
: name I 
\._------_./ 

The name listed in the soft key symbol indicates the soft key 
prompt or the soft key that is to be pressed. 

Program Assembly 
To assemble a source program and list the assembler output to a disc file or some other 

device, proceed as follows: 

a. Ensure that the following soft key prompts are displayed on the system CRT: 

b. Press (~;;;;;'bl;'l soft key. The soft key configuration will change to: 
,-------_./ 

,.---------'" "..--------" "..--------" "..--------'" r--------"" "..--------"'\ "..-------, "..--------""\ 
: <FILE> I: : : I : : : I : I : I : I 
, ________ ./ , ________ ./ , ________ ./ , ________ ./ \. ________ ./ , ________ ./ ,_______ ~ , ______ J 

c. Your next prompt is FILE. Type in the name of the source program to be assembled. 

d. The soft key configuration will change to: 

(--------': (-lis~iil;--': (-~~ti~~;-l (--------': r--------: r--------': (-------': (--------: 
,-------_./ ,-------_/ ,-------_/ ,-------_./ ,-------_./ ,-------_./ ,-------_/ ,-------_/ 

e. The user now has the opportunity to select an output listing device or the listfile 
default device (see SYNTAX description block). If the listfile default device is se-

lected, press the rn key and proceed to step k. 

1-7 



ASSEMBLER/LINKER 
REFERENCE MANUAL 

MODEL 64000 

1-8 

NOTE 

If the required output listing device is the device specified by 

the listfile default but the output listing options need revised, 
press the (-~~ti~~;-'\: soft key and preceed to step i. '-________ .1 

If another output listing device is desired, press the (--lis~fil~--'\: soft key. The soft key 
'--------_.1 

configuration will change to: 

(-- ~ (--------~ 

l ________ J l ________ J 

f. Route the assembler output listing to the desired location by pressing the :"'-di~~la~--": 
soft key, or the r-~;i~t~--": soft key. '--------j 

'--------_.1 
NOTE 

Pressi ng the (--~~I'---l soft key resu Its in no output listing. 
'--------_.1 

Error messages will be displayed on the system CRT. 

g. If the output listing is to be stored in another file, type in the name of the file to 

accomplish step f. 

h. The soft key configuration will change to: 

1,.---------"'\ r--------" r--------'" r--------, ,...--------, ,...--------, "..-------, r--------'" 
1 : : : : options I : : : : I : : : : : 
'- / '- ________ .1 '--------_.1 '- ________ .1 '-________ .1 '-________ .1 '- ________ .1 '- ________ .1 

i. The user now has the opportunity to select new list options or the option default 
condition (see SYNTAX description block). If the option default condition is selected, 

press the rn key and proceed to step k. If the output listing options are to be changed, 

press the (-~pti~~;-l soft key. The soft key configuration will change to: 
'--------_.1 

j. Press any of the soft keys to change the output listing for this assembly run (more than 

one soft key may be pressed starting with the left-most key). 

k. After accomplishing step j, press the rn key to assemble and list the source program. 



MODEL 64000 ASSEMBLER/LINKER 
REFERENCE MANUAL 

Output Listing 
An example of an assembler output listing is given in table 1-2, using the source program ex­

ample listed in table 1-1. To illustrate an assembler output listing that contains error messages 

refer to table 1-3. 

NOTE 

Tables 1-1, 1-2, and 1-3 use the target system program for their 

examples. The file names have been changed slightly to pre­

vent program duplication. 

Table 1-1. Source Program Example 

'8080' list xref 

EXEC 

LP1 

LP2 

GO 

LIGHT 

EXT 
ORG 
LXI 
SPHL 
LXI 
MVI 
MOV 
OCR 
JNZ 
MVI 
CALL 
JC 
PUSH 
OCR 
JP 
MVI 
LXI 
LXI 
LDAX 
MOV 
OCR 
OCR 
JNZ 
POP 
MOV 
JMP 
POP 
MOV 
OCR 
CALL 
JMP 
END 

DSPL,KYBD 
0B00H 
H,0C00H 

H,0805H 
A,03H 
M,A 
L 
LP1 
B,06H 
KYBD 
LIGHT 
PSW 
B 
LP2 
B,-01 H 
H,0805H 
D,0804H 
o 
M,A 
L 
E 
GO 
PSW 
M,A 
LIGHT 
PSW 
M,A 
L 
DSPL 
LP1 

1-9 



J] 

ASSEMBLER/LINKER 
REFERENCE MANUAL 

FILE: EXCT: 

LINE LOC 

2 

3 0B00 
4 0B00 
5 0B03 
6 0B04 
7 0B07 

8 0B09 
9 0B0A 

10 0B0B 
11 0B0E 
12 0B10 
13 0B13 
14 0B16 
15 0B17 
16 0B18 
17 0B1B 

18 0B1D 
19 0B20 
20 0B23 
21 0B24 
22 0B25 
23 0B26 
24 0B27 
25 0B2A 
26 0B2B 
27 0B2C 
28 0B26 
29 0B30 
30 0B31 

31 0B32 
32 0B35 
33 

Errors= 

1-10 

MODEL 64000 

Table 1-2. Assembler Output Listing 

HEWLETT -PACKARD: 

INTEL 8080 ASSEMBLER 

CODE ADDR SOURCE STATEMENT 

'8080' list xref 
EXT DSPL,KYBD 

ORG 0B00H 
21 0C00 EXEC LXI H,0C00H 
F9 SPHL 
21 0805 LXI M,A 
3E 03 MVI A,03H 
77 LP1 MOV M,A 
20 OCR L 
C2 0B09 JNZ LPI 
06 06 MVI B,06H 
CD 0000 LP2 CALL KYBD 
DA OB32 JC LIGHT 
F5 PUSH PSW 
05 OCR B 
F2 0B10 JP LP2 
06 FF MVI B,-01 H 

21 0805 LXI H,0805H 
11 0804 LXI D,0804H 
1A GO LDAX 0 
77 MOV M,A 
20 OCR L 
10 OCR E 
C2 0B23 JNZ GO 
F1 POP PSW 
77 MOV M,A 
C3 0B32 JMP LIGHT 
F1 POP PSW 
77 MOV M,A 
20 OCR L 
CD 0000 LIGHT CALL DSPL 
C3 0B09 JMP LP1 

END 

0 



~v~ODEL 64000 

FILE: 

LlNE# 

2 

4 

20 

2 

31 

8 
12 

NOTE: 

Table 1-2. Assembler Output Listing (Cont'd) 

EXCT: CROSS REFERENCE TABLE 

SYMBOL TYPE REFERENCES 

A A 7,8,21,26,29 
B A 11,15,17 
D A 19,20 
DSPL E 31 
E A 23 
EXEC A 
GO A 24 
H A 4,6,18 
KYBD E 12 
L A 9,22,30 
LIGHT A 13,27 
LP1 A 10,32 
LP2 A 16 
M A 8,21,26,29 
PSW A 14,25,28 

I n the cross-reference table, the letter listed under 
the TYPE column has the following definition: 

A = Absolute 

C = Common (COMN) 
D = Data (DATA) 

E = External 
M = Multiple Defined 
P = Program (PROG) 

R = Predefined Register 
U = Undefined 

ASSE~v1 BLER/L I r'~ KER 
REFERENCE MANUAL 

[1 

1-11 



]] 

ASSEMBLER/LINKER 
REFERENCE MANUAL 

MODEL 64000 

Table 1-3. Assembler Output Listing with Errors 

FILE: EXCT: HEWLETT -PACKARD: 

INTEL 8080 ASSEMBLER 

LINE LOC CODE ADDR SOURCE STATEMENT 

1 '8080' list xref 
2 EXT DSPL,KYBD 
3 0B00 ORG 0B00H 
4 0B00 21 0C00 EXEC LXI H,0C00H 
5 0B03 F9 SPHL 
6 0B04 21 0805 LXI M,A 
7 MVU A,03H 
ERROR-UO 1\ 

8 0B07 77 LP1 MOV M,A 
9 0B08 2D DCR L 
10 0B09 C2 0B07 JNZ LPI 
11 0B0C 06 06 MVI B,06H 
12 0B0E CD 0000 LP2 CALL KYBD 
13 0B11 DA 0B2F JC LIGHT 
14 0B14 F5 PUSH PSW 
15 0B15 05 DCR 8 
16 0B16 F2 0B0E JP LP2 
17 0B19 06 FF MVI 8,-01 H 
18 0B1B 21 0805 LXI H,0805H 
19 0B1E 11 0804 LXI D,0804H 
20 OB21 1A GO LDAX D 
21 0B22 77 MOV M,A 
22 0B23 2D DCR L 
23 0B24 1D DCR E 
24 0B25 C2 0B21 JNZ GO 
25 POO PSW 
ERROR-UO, see line 7 1\ 

26 0B28 77 MOV M,A 
27 0B29 C3 0B2F JMP LIGHT 
28 0B2C F1 POP PSW 
29 0B2D 77 MOV M,A 
30 0B2E 2D DCR L 
31 0B2F CD 0000 LIGHT CALL DSPL 
32 0B32 C3 0B07 JMP LP1 
33 END 
Errors=2, previous error at line 25 

UO-Unidentified Opcode, Opcode encountered is not defined for this microprocessor 

1-12 



MODEL 64000 

FILE: 

LlNE# 

2 

4 

20 

2 

31 

8 

12 

NOTE: 

ASSEMBLER/L!f\JKER 
REFERENCE MANUAL 

Table 1-3. Assembler Output Listing with Errors (Cont'd) 

EXCT: CROSS REFERENCE TABLE 

SYMBOL TYPE REFERENCES 

A A 8,21,26,29 

B A 11,15,17 

0 A 19,20 
DSPL E 31 
E A 23 
EXEC A 

GO A 24 

H A 4,6,18 

KYBD E 12 

L A 9,22,30 

LIGHT A 13,27 
LP1 A 10,32 

LP2 A 16 
M A 8,21,26,29 

PSW A 14,28 

Error messages are inserted immediately following the statement 

where the error occurs. All error messages (after the first error 

message) will contain a pointer to the statement where the last 

error occurred. At the end of the source program listing, an error 

summary statement will be printed. The summary will contain a 

statement as to the total number of errors noted, along with a line 

reference to the previous error. It will also define all error codes 

listed in the source program listing. 

Refer to Appendix 0 for a listing of all error codes. 

1-13 

IT 



ASSEMBLER/LINKER 
REFERENCE MANUAL 

[ ] 

< > 

1-14 

MODEL 64000 

Table 1-4. Syntax Conventions 

Parameters enclosed in square brackets are optional. Several parameters 
stacked inside a set of brackets indicate an either/or situation. You may 
select anyone or none of the parameters. 

The use of square brackets implies that a default value exists. 

Example: 

This indicates A or B may be selected. 

Angle brackets denote a syntactical variable. A syntactical variable is a 
defined parameter that you supply. 

Example: 

< FILE> 

This example says FILE is a variable that is supplied by you. 

Braces specify that the parameter enclosed is required information. When 
several parameters are stacked within a set of braces, you must select one 
and only one of the parameters. 

Example: 

This example says one and only one of A, B, or C must be selected. 



~Ar'\nLI CAnnn 
IVI\JL..JLL U'""tUUU 

[ 

[ 

=> 

] 

] 

lower-case 
bold type 

UPPER-CASE 

PARAMETERS 

Symbols in 

color 

ASSEMBLER/LINKER 
REFERENCE MANUAL 

Table 1-4. Syntax Conventions (Cont'd) 

Stacked square brackets indicate that enclosed parameters are optional and 
may be selected in any single occurrence, any combination, or may be 

omitted. 

Example: 

[ A ] 

[ B ] 
[ C ] 

A and/or Band/or C may be selected, or this option may be omitted. 

Arrow indicates - "is defined as" 

An ellipsis indicates a previous bracketed element can be repeated. 

Key words \commands) are always lower-case on the System 64000. These 

key words will always be represented in text with lower-case bold type. 

Example: 

edit <FILE> 

Literal information which are parameters of a command are represented in 

text with upper-case type. Literal information parameters are information 

that you enter as shown in text. An exception to this is any parameter 
enclosed with angle brackets, < >, (e.g. <FILE> is a syntactical variable, not 

literal information. 

Syntax symbols that are in color indicate that they are used for definition 

purposes and do not appear on the CRT display. 

1-15 



ASSEMBLER/LINKER 
REFERENCE MANUAL 

1-16 

MODEL 64000 



Chapter 2 
HP Model 64000 Assembler 

Rules and Conventions 

Introduction 
The HP Model 64000 Assembler recognizes three types of source statements: 
microprocessor instructions, assembler pseudo opcodes, and macro definitions and calls. 
This chapter describes the coding rules and conventions that must be followed when using 
the assembler. 

Source Statement Format Rules 
Each microprocessor instruction, assembler pseudo opcode, or macro call is divided into 
four fields: the label field, the operation field, the operand field, and the comment field. The 

format rules to be followed when constructing a line of source program are: 

a. Field sequence cannot be changed. The correct order of field sequence is: 

Example: 

Label Operation 

SAVE EQU 

NOTE 

Operand 

SAM 

Comment 

;SAVE EQUATES 
;TO SAM 

It is recommended that each field in the source statement start 
at a fixed position (column) in the source line. This type of 

format may be constructed using the tab setting capabilities of 

the system editor to define each field's starting position. The 
presentation of the program listing in a fixed format improves 
readability. 

2-1 



ASSEMBLER/LINKER 
REFERENCE MANUAL 

MODEL 64000 

b. One or more spaces (blanks) must separate the fields in a source statement. 

c. A label field, if used, must begin in column 1 of the source statement. If column 1 is 
blank, the assembler assumes that the label field is omitted. 

Additional rules and conventions governing the source statement fields are given in the 

following paragraphs. 

2-2 

Statement Length 
A source statement may contain up to 110 characters (including spaces), and is terminated 

by a rn . A statement co ntai n i n 9 more than 110 characters will be tru ncated to 110 

characters. 

Blank lines will not affect the object modules and may be used to improve readability of the 

source program listing. 

Label Field 
Labels may be used in all microprocessor instructions, some assembler pseudo opcodes, 

and macro calls. Since the label assigned identifies that particular statement, and since this 
label may be used as a reference point by other statements in the program, every label must be 
unique within each source program. 

NOTE 

Specific symbols are predefined and cannot be used as labels. 
The symbols that are predefined will depend upon the 
microprocessor being supported. Refer to the Assembler 

Supplement Manual for a list of predefined symbols. 

The label field starts in column 1 of the source statement and must be terminated by a space or 

a colon (:). 

NOTE 

A colon (: I cannot be used to terminate a macro label. Referto 

Chapter 4 for construction of Macros. 



MODEL 64000 ASSEMBLER/LINKER 
REFERENCE MANUAL 

A label may contain any number of characters. The first character must be an upper case 
alphabetic character. The remaining characters may be either alphabetic or numeric. The 
alphanumeric character set includes the letters of the alphabet (upper and lower case), 

underline symbol (_), and the numeric digits 0 through 9. 

Valid Symbols: 

Invalid Symbols: 

Ab_cd 
AB_CD 

A5rHi 

ab.cd? 

$BCDEF 
4UVWXY 

If more than fifteen characters are entered in the label field, the assembler will print all 
characters in the output listing; however, it will use the first 15 characters only for label 

identification. Therefore, the assembler will recognize: 

STATEMENTLABELA1 

and 

STATEMENTLABELA2 

as being identical and will issue a duplicate-symbol error message. 

The only statements requiring labels are macro definitions and EQU pseudo instructions. For 
all other statements, assignment of a label is optional. 

Operation Field 
The operation field contains a mnemonic code for a microprocessor instruction, an 
assembler pseudo opcode (see Chapter 3), or a macro call (see Chapter 41. The opcode 
specifies the operation or function to be performed. The operation field follows the label field 
and is separated from it by at least one space, a tab, or colon (:). If there is no label, the 

opcode may begin in any column position after column 1. 

The operation field is terminated by one or more spaces, by a tab, by a carriage return, or by a 

semicolon (;) indicating the start of the comment field. 

2-3 



~ 

ASSEMBLER/LINKER 
REFERENCE MANUAL 

MODEL 64000 

2-4 

Assembler pseudo and control statements provide the following capabilities: 

a. Assembler control 

b. Object program linkage 

c. Address and Symbol definitions 

d. Constant definition 

e. Assembly listing control 

f. Storage allocation 

If a label is specified and the operation field does not contain a microprocessor instruction, 
an assembler pseudo opcode, or a macro call, the label will be assigned to the current 
program counter location. 

Operand Field 
The operand field specifies values or locations required by the microprocessor instruction, 
assembler pseudo opcode, or macro call. The microprocessor uses various modes of 
addressing for obtaining the operands and saving the results of the execution. 

The addressing mode will be determined by the mnemonic instruction and the information in 
the operand field. The operand field, if present, follows the operation field and must be 

separated from it by at least one space. 

An operand may contain an expression consisting of a single symbolic term, a single numeric 
term, or a combination of symbolic terms and numeric terms, enclosed in parentheses, and 
joined by the expression operators +, -, *, and I. 

The types of information that are permitted in the operand field are summarized in 

Assembler Supplement Manual. Each instruction determines the operand type and 
their proper sequence. 

Comment Field 
The optional comment field may contain any information that the user deems necessary to 
identify portions of the program. The delimiter for the comment field is the semicolon (;), a 

tab, or a space following the operand field. A semicolon in any column of the source 
statement will starts the comment field (except when used in an ASCII string). In situations 

where more than one line of programming is needed for the comment field, an asterisk (*) in 
column 1 of a source statement indicates that the information following is part of a comment 
field and should not be acted on as if it were part of the program. 



MODEL 64000 ASSEMBLER/LINKER 
REFERENCE MANUAL 

Delimiters 
Certain characters are used to indicate the end of fields or labels, and the beginning of 
others. These characters, referred to as delimiters, should not be used as ordinary 
characters. For example, a space cannot be used as part of a label name. A list of delimiters 
follows: 

Delimiter 

space 

Use 

Separates fields or operands; 
ends a label 

Separates fields; ends a label 
Indicates start of comment field 

tab 
Semicolon (;) 

Asterisk (*) When used in column 1 of source statement, 

Colon (:) 

Parentheses (\ ... )) 
Apostrophes (' ... ') 

Quotation Marks (" ... ") 
Ampersand (&) 

Double Am persand (&&) 

Symbolic Terms 

indicates that comment field follows 
Indicates end of label field 
Used in expression for precedence 
Indicates a character string 
Indicates a character string 
Indicates macro parameters 
I ndex macro parameters 

A symbol used in the operand field must be a symbol that has been defined in the program, 
such as a symbol in the label field, a machine instruction, or a symbol in the label field of an 
EQU pseudo instruction (must be defined prior to referencing). 

A symbol may be either absolute or relocatable and depends on the type of assembly 
selected. The assembler will assign a value to a symbol when it is encountered in a label field 
of a source statement. If the program is to be loaded in absolute form, the values assigned by 
the assembler remain fixed. If the program is to be relocated, the actual value of a symbol will 
be established by the Ii nker (refer to Chapter 5). 

A symbolic term may be preceded by a plus (+) or minus (-) sign. If preceded by a plus (+) 

sign or no sign, the symbol refers to its associated value. If preceded by a minus (-) sign, the 

symbol refers to the 2's complement of its associated binary value. 

Program Counter ($) 
The program counter symbol ($) is a symbollic term used to indicate the current value of the 
program counter. 

2-5 



ASSEMBLER/LINKER 

RE=FERENCE= MANUAL 

MODEL 64000 

2-6 

Numeric Terms 
A numeric term may be binary, octal, decimal, or hexadecimal. A binary term must have the 
suffix "B" (for example: 101101 B). Octal values must have either an "0" or a "Q" suffix (for 

example: 260, 26Q). A hexadecimal term must have the suffix "H" (for example: 0BBH, 2CDH, 

36H). When no suffix is assigned, the decimal value is assumed. 

NOTE 

It is necessary to start a hexadecimal term with a decimal digit 
since the assembler will identify a term that starts with an 
alphabetic character as a label or an expression. 

String Constants 
Besides numeric and symbolic constants, an operation may contain string constants. String 
constants are produced by using ASCII (American Standard Code for Information 
Interchange) characters. String constants, combined with other symbols and constants, are 
written by enclosing ASCII characters within quotation marks (" ..... ") or apostrophe marks 
(' ..... '). 

The numeric value of a string is defined as follows: 

a. A null string (" ") or (' ') has a numerical value of zero. 

b. A 16-bit value of a one-character string is one whose high-order nine bits are zeros and 
whose low-order seven bits contain the ASCII code for the character (refer to 
Appendix B for ASCII character conversion table): 

Example: 

00000000B = 00H= High order byte 
fC' == "C" == 

01000011 B = 43H= Low order byte 

c. A 16-bit val ue of a two-character string is the 16-bit value where the ASCII code for the 
first character is the high-order byte and the ASCII code for the second character is 
the low-order byte. 

Example: 

A = 01000001B = 41H= High order byte 
'AB' = "AB" = 

B = 01000010B = 42H= Low order byte 



MODEL 64000 ASSEMBLER/LINKER 
REFERENCE MANUAL 

NOTE 

The MASK pseudo instruction allows the user to alter ASCI i 

strings. Refer to the MASK pseudo description given in 

Chapter 3. 

d. For a string longer than two characters, the value of the string will be the last two 

characters. 

Example: 

D= 010001008 = 44H= High order byte 

'A8CDE' = "A8CDE" = 
E= 010001018 = 45H= Low order byte 

Expression Operators 
The assembler contains two groups of operators that permit the following operations: 

arithmetic and relational comparison. 

Arithmetic Operators. The arithmetic operators are: 

Operator Interpretation 

+ Addition 

Subtraction 

Multiplication 

/ Division 

Examples: 

The following expressions generate the bit pattern for ASCII character W 

(010101118): 

1+28*2 

1+(-28*-2) 

1+(84/3)*2 

2-7 



ASSEMBLER/LINKER 
REFERENCE MANUAL 

MODEL 64000 

2-8 

Logical Operators. Logical operators are used to form logical expressions and a logical 
expression may be used any place that an expression can legally be used. The logical 

operators are as follows: 

Operator Interpretation 

.AN. Logical AND 

.NT. Logical one's complement 

.OR. Logical OR 

.SL. Shift left 

.SR. Shift right 

Examples: 

SAM.SL.1 

.NT.CHAR 

SAM.OR.CHARLIE 

Relational Comparison (Macros Only). When the assembler processes an ".IF" instruction, 
the logical expression in the operand field is evaluated. The relational operators are: 

Operator I nterp retation 

.EO. equal 

.NE. not equal 

.L T. less than 

.GT. greater than 



MODEL 64000 ASSEMBLER/LINKER 
REFERENCE MANUAL 

Relocatable Expressions 
Three program counters are provided for identifying areas of relocatable code. The three 

areas are identified as data (DATA), program (PROG), and common (COMN) and can be 

changed from one relocatable area to another by using these assembler pseudo codes (refer 
to Chapter 3 for more detail). Some rules governing relocatable expressions are given in the 
following paragraphs. 

The value of a relocatable term will be assigned during the linking process. The assigned 
value will depend upon: 

a. The relocatable areas (PROG, DATA, or COMN) to which it is assigned, 

and 

b. Where the area is located in memory during the link operation. 

It should be remembered that expressions may be formed from absolute and relocatable 
terms using arithmetic operators and parentheses. The expression resulting from this type of 

operation must be either absolute or one of the three relocatable types. 

An absolute term is an expression whose value is not dependent upon the location of the 

program module in memory. The following rules apply to the formation of absolute 
expressions: 

a. Each absolute term or constant is an absolute expression. 

b. If AD and SO are relocatable symbols in the same relocatable area, then (AD-SO) is 
an absol ute expression. This is so because the difference between AD and SO remains 

constant regardless of the relocation factor of the program. That is, if the program is 

relocated, the values of AD and SO are offset by the same amount. 

c. If A2 and S2 are absolute symbols, then: 

(A2+S2) 
(A2*S2) 

(A2-S2) 

and (A2/S2) 

are absolute expressions. 

A relocatable term is an expression whose value is undefined at link time. The following rules 

apply to the formation of relocatable expressions: 

2-9 



ASSEMBLER/LINKER 
REFERENCE MANUAL 

MODEL 64000 

a. Any relocatable term is a relocatable expression. 

b. If DA is an absolute expression and DR is a relocatable expression, then: 

(DA+DR) 

(DR+DA) 

and (DR-DA) 

are relocatable expressions and are the only relationship permitted. That is, an 

absolute expression may be subtracted from a relocatable expression but not vice 

versa. 

Certain relocatable terms are invalid and will generate error messages. A few examples of 

invalid relocatable terms are as follows: 

2-10 

a. Two relocatable symbols - same area (PROG, DATA, or COMN). If DA and DB are two 

relocatable symbols, then: 

(DA+DB) 

(DA*DB) 

and (DA/DB) 

are invalid expressions because the assembler does not know where these symbols 

are stored in memory. 

b. Two relocatable symbols - different areas (PROG, DATA, or COMN). If DA and DB are 

two relocatable symbols, then: 

(DA+DB) 

{DA-DB) 

and (DA*DB) 

are invalid expressions because, again, the assembler does not know where these 

symbols are stored in memory. 

c. Relocatable symbols in different areas (PROG, DATA, or COMN) can be combined if 

the expression results in one relocatable type. For example, if relocatable symbols DA 

and DB are PROG type and relocatable symbol DC is DATA type, the expression: 

(DA+DC-DB) 

is valid since (DA-DB) is an absolute offset to DC. 



Chapter 3 
Assembler Pseudo 

and Control Instructions 

Introduction 
This chapter describes the HP Model 64000 assembler pseudo instructions. The pseudo 
instructions are used for listing control, program counter, linkage control, and constant 

definitions. 

An assembler pseudo may be either an instruction to the assembler or a request for some 

special service. Most pseudos require no memory space because, unlike microprocessor 
instructions, they produce no object code. 

Table 3-1 is supplied to help you quickly locate the description of a specific pseudo 

instruction. 

Table 3-1. Pseudo Instruction Index 

LISTING FORMAT CONTROL INSTRUCTIONS 

Pseudo Page 
Instructions Number 

EXPAND 3-11 

LIST 3-13 

NOLIST 3-15 

SKIP 3-18 

SPC 3-19 

TITLE 3-19 

3-1 



ASSEMBLER/LINKER 
REFERENCE MANUAL 

3-2 

Table 3-1. Pseudo Instruction Index (Cont'd) 

LOCATION COUNTER CONTROL INSTRUCTION 

ORG 

COMN 
DATA 
EXT 
GLB 

PROG 

EQU 

MASK 
NAME 
REPT 

END 

3-17 

RELOCATABLE SECTION INSTRUCTIONS 

3-6 
3-6 

3-11 
3-12 

3-6 

SYMBOL DEFINITION INSTRUCTION 

FUNCTIONAL INSTRUCTIONS 

3-10 

3-14 
3-15 
3-18 

MODULE TERMINATION INSTRUCTION 

3-9 

NUMERICAL CONSTANT INSTRUCTIONS 

ASC or ASCII 3-4 

BIN or BINARY 3-5 
DEC or DECIMAL 3-8 
HEX 3-12 
OCT or OCTAL 3-16 

MODEL 64000 



MODEL 64000 ASSEMBLER/LINKER 
REFERENCE MANUAL 

8-Bit Microprocessors 
The label field of each numerical constant instruction listed above is the address of the first 
byte of data. The value of the constant is an 8-bit number for the binary, decimal, 
hexadecimal, and octal instructions. For the ASCII instruction, each character in the string 
expression represents one byte of data. 

16-Bit Microprocessors 
The label field of each numerical constant instruction listed above is the address of the first 
word (two bytes) of data. The value of the constant is a 16-bit number for binary, decimal, 

hexadecimal, and octal instructions. For the ASCII instruction, two characters will be put into 
each 16-bit word (high and low bytes). If an odd number of characters exist in the string then 

the assembler will pad the last word with ASCII spaces. 

Pseudo Instruction Syntax 
The following paragraphs list and define each assembler and control instruction in detail. 

They are listed alphabetically. Once familiar with the instructions, use Appendix C, 
'Assembler Pseudo Instructions Summary', as a quick-reference guide when constructing 
program modules. 

3-3 



AS C 
ASSEMBLER/LINKER 

.................................................... REFERENCEMANUAL 
MODEL 64000 

3-4 

The ASC pseudo instruction allows the user to store ASCII text in memory using quotation 
marks or apostrophes as delimiters. The first delimiter must be used as the terminating 
delimiter. 

The ASCII character(s) specified in the operand field may be in the form of a string 
expression. 

Example: 

Label Operation Operand Comment 

a. ASC "XYZ" 

b. ASCII "THE EAGLE'S BEAK" 

or 

c. ASCII 'G. H. "BABE" RUTH' 



ASSEMBLER/LINKER 
Rtf-tHENCt MANUA.L 
MODEL 64000 

( SYNTAX: 

Label 

[symbol] 

[symbol] 

Operation 

BIN 

BINARY 

--- ----- --- .... 
!:SIN 

Binary Constant 

Operand Comment 

binary number 

or 

binary number 

The BIN pseudo instruction allows the user to store data in binary format in memory. 

The number(s) specified in the operand field is (are) written in binary format. If more than 

one operand is specified, each one must be separated from the other by a comma. 

Example: 

Label Operation Operand Comment 

a. BIN 101 

b. BINARY 101,10110100 

c. SAM BIN 101,1011,10110100 

3-5 



COMN 
DATA 
PROG 

Designated Memory Storage Area 

3-6 

SYNTAX: 

Label Operation Operand Comment 

COMN 

or 

DATA 

or 

PROG 

Three program counters are used to identify areas of relocatable code. The areas are 
designated as data (DATA), program (PROG), and common (COMN). You can change from 
one relocatable area to another by the use of these pseudo instructions. 

The PROG and DATA instructions function identically and are merely two names that 
identify two separate, relocatable memory areas. Common (COMN) allows construction of a 

common block of data that is used by different program modules. The default area is PROG. 

Example: 

Operation Operand 

DATA 

PROG 

DATA 



ASSEMBLER/LINKER 
COMN 

REFERENCE MANUAL 11 .......... 111111 ................................ ", ~A"A 1.1"'.'" MODEL 64000 

PROG 
iCont'dl 

Normally, the default memory area (PROG) will be used when constructing a source 
program. The DATA memory area might occupy another part of memory and can be used for 
storing data, tables, instructions, etc. 

The COMN pseudo can be used to group information that is common to a number of 
program modules. Assigning these type of items to a specific area in memory facilitates 

modification and referencing. 

NOTE 

All information assigned to the COMN area in memory must be 

grouped in one program file. If two or more files assign 

information to the COMN area, the linker will overlay the first 
data stored with the second block of data assigned, thereby 

erasing the first block of data. 

Refer to Chapter 2 for rules and conventions covering construction of relocatable 

expressions. Refer to Chapter 5 for more details concerning relocatable areas in memory. 

3-7 



ASSEMBLER/LINKER 
~~~I~~L~~~~~~~~~~~~~~~~REFERENCEMANUAL 

MODEL 64000

Decimal Constant

3-8

SYNTAX:

Label Operation Operand Comment

[symbol] DECIMAL decimal number

The DECIMAL pseudo instruction allows the user to store data in decimal format in memory.

The number(s) specified in the operand field is (are) written in decimal format. If more than
one operand is specified, each one must be separated from the other by a comma.

Example:

Label

a.

b.

c. SAM

Operation Operand Comment

DECIMAL 153

DECIMAL 10,20,30

DECIMAL 1000

NOTE

The DECIMAL pseudo instruction may be replaced with the
DEC pseudo if it does not conflict with the microprocessor's

mnemonic instruction set.

ASSEMBLER/LINKER
REFERENCE MANUAL
MODEL 64000

----------- --------- -- - - ---- - --------- - - -----.
t:NU

Program Module Termination

SYNTAX:

Label Operation Operand Comment

END [expression]

The END instruction terminates the logical end of a program module. It is optional. If it is
omitted, the program will be automatically terminated after the last statement in the program
module being edited.

The optional expression in the operand field represents the starting address in memory for
program execution. This address is referred to during emulation.

Example:

Operation Operand

END

or

END 1000H

or

END (symbol)

3-9

ASSEMBLER/LINKER
~~~~~~~~~~~~~~~~~~~~~~~~~~.REFERENCEMANUAL 

MODEL 64000 

Equate 

SYNTAX: 

Label Operation Operand Comment 

symbol EQU expression 

The EQU instruction is used to establish a relationship between a symbol and an expression. 

The symbol in the label field acquires the same value as the expression in the operand field. 
Redefinition of the symbol is not permitted. 

If the operand field of an EQU instruction contains another symbol, it must be defined 
previously in the source program. 

Example: 

Label Operation Operand 

SAM EQU 3 

This statement assigns an absolute decimal value of 3 to symbol SAM. 

The EQU instruction may also be used to equate sym bois of certain relocatable types and 
add an offset to an extern al. 

Example: 

Label 

INDEX 

3-10 

Operation 

EXT 
EQU 

Operand 

TABLE 
TABLE+4 



ASSEMBLER/LINKER 
REFERENCE MANUAL 

MODEL 64000 

... ,,~ A ......... 

I: At' A 1'1 U 

( 
Listing of Macro Expansions 

SYNTAX: 

Label Operation Operand Comment 

EXPAND 

The EXPAND instruction can be used in the assembler directive statement or embedded in 

the source program. If embedded in the source program, it will generate, within the output 
listing, all macro and data expansions that follow it. 

You may exit the EXPAND output listing mode by em bedding the LIST directive in the proper 
location within the source program. 

1 

EXT 

External 

SYNTAX: 

Label Operation Operand Comment 

EXT SYMBOL 1 ,SYMBOL2 

Symbols used in one program module, but defined in another program module, must be 

declared external with an EXT statement. After assembling the source program, the linker will 

connect identical symbols. 

3-11 



GLB 

Global 

SYNTAX: 

Label Operation Operand 

GLB SYMBOL 1 ,SYMBOL2 

ASSEMBLER/LINKER 
REFERENCE MANUAL 

MODEL 64000 

Comment 

Symbols that are defined in one program module and referenced by other program modules 

must be declared global in the program module where they are defined. 

]] HEX 

Hexadecimal Constant 
, 

SYNTAX: 

Label Operation Operand Comment 

[symbol] HEX hexadecimal num ber 

The HEX pseudo instrucFon allows the user to store data in hexadecimal format in memory. 

The numberr s I specified in the operand field is (are) written in hexadecimal format. If more 

than one operand is specified, each one must be separated from the other by a comma. 

Example: 

Label Operation Operand Comment 

a. HEX FF 

b. HEX A,FE,05 

c. SAM HEX B,5F,7,81 

3-12 



ASSEMBLER/LINKER 
REFERENCEMANUAL~~~~~~~~~~~~~~~~~~~~~~~LiS~ 
MODEL 64000 

List 

SYNTAX: 

Label Operation Operand Comment 

LIST 

The LIST instruction can be used in the assembler directive statement or embedded in the 

source program. If embedded in the source program, it will generate one line of output for 

each line of source code that follows it. 

NOTE 

All LIST instructions embedded in the source program will be 

overridden if any list option is specified in the assembler 

directive statement (refer to Chapter 1 for assembler directive 

statement definition). 

3-13 



ASSEMBLER/LINKER 
~~S~~~~~~~~~~~~~~~~~~~~~REFERENCEMANUAL 

MODEL 64000 

Set Mask 

3-14 

SYNTAX: 

Label Operation Operand Comment 

MASK IANDI,IORI 

The MASK instruction permits masking of ASCII strings. The instruction affects ASCII 

strings only and will produce a logical 'AN 0' operation with each ASCII character followed 
by a logical 'OR' operation. (The OR operand is optional.) 

Example: 

Operation Operand 

MASK 77H, 101 B 

or 

MASK 77H 

The default condition of a MASK directive is: 

AND = FFH 

OR = 0 



ASSEMBLER/LINKER I~~~~~~~~~~~~~~~~~~~~~~~~~~ ••• •• ~ REFERENCE MANUAL N AM t: 
MODEL 64000 

Name 

SYNTAX: 

Label Operation Operand Comment 

NAME "SALPHA" ;character string 

The NAME instruction is used to add comments to the object module for reference on the 

load map listing. The name string may contain any combination of characters, numbers, or 
special characters but is limited to a maximum of 22 characters. 

_-------------NOLIST 
, 

No Output Listing 

SYNTAX: 

Label Operation Operand Comment 

NOLIST 

The NOLIST instruction can be used in the assem bier directive statement or em bedded in the 

source program. If embedded in the source program, it will suppress the output listing of all 

source statements following it. If used in the assembler directive statement, it will suppress 
all output listings except error messages. 

3-15 



O CT 
ASSEMBLER/LINKER 

..................................................... REFERENCEMANUAL 
MODEL 64000 

Octal Constant 

3-16 

SYNTAX: 

Label Operation Operand Comment 

[symbol] OCT octal number 

or 

[symbol] OCTAL octal num ber 

The OCT pseudo instruction allows the user to store data in octal format in memory. 

The number(s) specified in the operand field is (are) written in octal format. If more than one 
operand is specified, each one must be separated from the other by a comma. 

Example: 

Label Operation Operand Comment 

a. OCT 37 

b. OCTAL 37,24,71 

c. SAM OCT 77 



ASSEMBLER/LINKER 
REFERENCE MANUAL iiililili 
MODEL 64000 ------ORG-
( 

Origin 

SYNTAX: 

Label Operation Operand Comment 

ORG address 

The ORG instruction is used for absolute programming. It sets the contents of the location 
counter to the address entered in the operand field. The next statement, following the ORG 
instruction, will be located at the address specified. 

Example: 

NOTE 

The ORG instruction cannot be used to alter the relocatable 

area counters associated with the DATA, PROG, and COMN 
instructions. The relocatable area instructions do not contain 

operands and their associated counters start at zero and are 
initialized at linking time. 

Operation Operand 

ORG 0B111 H 

The object code of the source statement following the ORG instruction will begin at location 
B111 H. When using the ORG directive care should be taken to ensure that the assigned 
memory location will not result in memory overlap during the link operation. 

A label symbol is generally not used in the operand field of this instruction; however, if a 

symbol is entered it must be defined in a label field of a prior statement in the source program 
and must be an absolute expression. 

3-17 



ASSEMBLER/LINKER 
~~~~~~~~~~~~~~~~~~~~~~~~REFERENCEMANUAL 

MODEL 64000

Repeat
,

SYNTAX:

Label Operation Operand Comment

REPT number

The REPT instru ction is used to repeat the next source statement any given number of times.

Example:

Operation Operand

REPT 5

will repeat the next source statement five times.

SKI~""""""""""""""_

Skip

3-18

SYNTAX:

Label Operation Operand Comment

SKIP

The line of output listing that follows a SKIP instruction will be placed at the top of the next
page, following the page heading.

The SKIP instruction is not printed in the program listing.

ASSEMBLER/LINKER
REFERENCE MANUAL
MODEL 64000

- - - - - - -- -- SPC-

Line Space

SYNTAX:

Label Operation Operand Comment

SPC [number]

Whenever a SPC instruction is encountered in the source program, the assembler will space
downward (line feed) a specified number of lines.

The number of line feeds required is indicated in the operand field. If the operand field is left
blank, the assembler will generate one blank line.

The SPC instruction is printed in the output listing only if an error exists in the operand field.

1

TITLE

Title

SYNTAX:

Label Operation Operand Comment

TITLE "Name"

The TITLE instruction will initiate a page eject and create a "Name" line at the top of each page

listing for the source program that follows. The title may be 70 characters in length and may be

changed any number of times during the program.

Example:

Operation Operand

TITLE "This is the Title"

3-19

ASSEMBLER/LINKER
~I~L~~~~~~~~~~~~~~~~~~~~~·REFERENCEMANUAL

MODEL 64000
Cont'd

This statement, if inserted as the second statement in the source program (directly after the
assembler directive), will cause the title to be printed on the first page listing of the source
program and on the top of each page thereafter. Alternatively, if the TITLE instruction is
inserted in the program at some place other than the second statement of the source

program, the instruction will initiate a page eject and the new title will be printed at the top of
the new page and each page thereafter.

3-20

Chapter 4
Macros

Introduction

This chapter discusses the use of macro directives and their construction. Using macro
definitions eliminates the repetitious writing of the same sequence of instruction during

source program construction.

Any legitimate sequence of instructions may be incorporated into a macro. This process is

called "macro definition." Once defined, a single macro call may be used at any point in the

source program to insert the sequence of instructions that was defined by the macro

definition. The insertion of the sequence of instruction is referred to as "macro expansion."

Advantages of Using Macros

A macro definition provides a means of producing, at program assembly time, a commonly

used sequ ence of assem bier statements as many ti mes as needed. The sequence of

statements is specified just once; then, at any point in the program where these statements

are to be produced, a single macro call will cause the sequence to be generated. Using
macros wisely will serve to:

a. Simplify the coding of programs.

b. Significantly reduce the number of programming errors caused by rewriting similar

instructions throughout the program.

c. Ensu re that common functions are performed by standard routines.

d. Improve program readability.

e. Reduce duplication of effort among the several programmers assigned to the project.

4-1

ASSEMBLER/LINKER
REFERENCE MANUAL

MODEL 64000

4-2

Disadvantages of Using Macros
One problem with macros is that variables used in a macro are only known within it - they are

local rather than global. This can create confusion without any benefits in return. Other

disadvantages of macros are:

a. Repetition of the same macro may create many instructions.

b. Possible effects on registers and flags that may not be clearly stated.

Macros vs Subroutines
In some situations, a subroutine, rather than multiple in-line macro statements, can reduce

overall program size. However, subroutines require branching, then returning, from another

part of the program. This usually increases the program execution time. In addition, the

variables in a subroutine are evaluated only during program execution while macro

parameters are evaluated at assembly time.

Macro Format
A macro definition consists of three parts that must appear in the order given below:

a. Header statement

b. Source statement body

c. Trailer statement

The header statement specifies both the name of the new macro instruction and the formal

arguments I parameters, that will be used in the macro instruction. The general macro header

syntax is as follows:

Name MACRO [option al parameters]

The name of the macro definition is written in the label field of the source statement and must

not be terminated by a colon I: I. To avoid multiple-label conflicts, the assembler treats labels

within macros as local labels, applying only to that particular macro. MACRO is written in the

operation field of the source statement. The optional parameters follow in the operand field

of the source statement.

MODEL 64000 ASSEMBLER/LINKER
REFERENCE MANUAL

The body of a macro definition defines the action of the macro instruction. There is no Ii mit to

the number of instructions that may appear. The fields within the macro body are the same as

those of an assembler instruction, and the rules for forming a macro statement are about the

same as the rules for forming an assembler instruction.

The trailer statement consists of a single line. The operation field of the line contains the

word MEN D (macro end).

An example of a macro instruction is as follows:

Label

SAVE

Operation Operand Comment

MACRO

OPC CHARLEY

OPC SAVEA

OPC SAM

OPC SAVES

MEND

NOTE

The opcode symbol (OPC) listed in the operation field above

will take the form of a mnemonic instruction for the specific

microprocessor being programmed.

To call the SAVE macro, insert the macro name in the operation field of the source statement

and the code in the body of the macro will be generated in the program as if it had been typed

there. The generated instructions will be printed in the listing of the program (only if the

expand list option is specified).

Example:

SAVE

OPC

OPC

OPC

OPC

CHARLEY

SAVEA

SAM

SAVES

4-3

ASSEMBLER/LINKER
REFERENCE MANUAL

MODEL 64000

4-4

Optional Parameters
The formal parameters of a macro definition are often referred to as symbolic variables.

Macro symbolic parameters (as distinguished from ordinary labels or symbols 1 are those

symbols that may be assigned different values by the programmer. When assembler

instructions are generated according to the macro definition, the dummy parameters are

replaced by the values that have been assigned to them. The three simple rules that must be

followed when forming dummy parameters are:

a. The first character of the parameter must be an ampersand \ & I.

b. The secon d character of the parameter must be an alphabetic letter. All remaining

characters, if any, can be either letters of the alphabet or num bers.

c. Any number or length of parameter may be entered in the operand field of a macro

definition as long as the entire line does not exceed 110 characters (not including a

carriage return). In add it ion , after arguments are su bstituted for parameters in a macro

call, the lines resulting from the macro expansion must not exceed 110 characters.

Otherwise, an error message is issued.

Symbolic parameters are used in the macro definition and are assigned values by the

programmer in each macro call which references that particular macro. An example of the

general syntax for optional parameters is as follows:

Label Operation Operand

ADDS MACRO &SUBNAM,&PARAM

JMP &SUBNAM

DEF &PARAM

MEND

The programmer assigns parameters to his ADDS macro to develop:

ADDS ADD,SUM-t-27

JMP ADD

DEF SUM+27

A macro instruction may also be used for text replacement and concatenation of a parameter

to generate a new word. For example consider the following macro instruction:

Label

SAVE

Operation

MACRO

LD®

ST®

MEND

Operand

®,&PARM1,&PARM2

&PARM1

&PARM2

MODEL 64000 ASSEMBLER/LINKER
REFERENCE MANUAL

You may now call this simple macro instruction, assign your own parameters, and produce

the following insert into your program:

SAVE
LDA
STA

A,SAM,FRED
SAM
FRED

Note the substitution of the actual parameters of the call A, SAM, FRED - for the dummy

parameters in the macro heading (®, &PARM1, and &PARM2). Note further that the

sequence of the call parameters interchange directly with the sequence of the dummy

parameters.

It is important to remember that a macro does not necessarily produce the same source code

each time it is called. Changing the parameters in a macro call will change the source code

that the macro generates.

Unique Label Generation
The macro assembler can generate unique labels each time a macro is called by using four
ampersand characters in a label i &&&& I. When the macro is called. &&&& is replaced by four

decimal digits. This four-digit constant is incremented every time the macro is called.

Example:

1 "8080"
2
3 TEXT MACRO &STRING
4
5 L 1_&&&& DB L2-&&&&-L 1_&&&&-1 ;Length of string.
6 ASC &STRING
7 L2_&&&&
8
9 MEND

10
11 TEXT "STRING # 1"
+
+ L 1_0001 DB L2-0001-L 1_0001-1 ;Length of string.
+ ASC "STRING # 1"
+ L2_0001
+

12
13 TEXT "STRING # 2"
+
+ L 1_0002 DB L2-0002-L 1_0002-1 ;Length of string.
+ ASC "STRING # 2"
+ L2_0002
+

4-5

ASSEMBLER/LINKER
REFERENCE MANUAL

MODEL 64000

4-6

Conditional Assembly
There are four conditional assembly instructions available for use with the HP Model 64000
Assembler. When inserted among the statements in the body of a macro definition, they

provide the means for instructing the assembler to branch and loop among the statements of

the executable program. These conditional assembly instructions will not be printed in the

listing of the program (unless they contain an error I. Only their effects can be seen in the

generated object code. The four conditional instructions are:

.SET

.IF

.GOTO

.NOP

.SET Instruction
The .SET instruction provides a way to assign or modify an expression value of a macro local.

The instruction assigns the value of the operand field to the name specified in the label field.

When the label is encountered su bsequently in the macro program, the assembler su bstitutes
its new value. This value remains unchanged until altered by a su bsequent .SET instruction.

The general format of a .SET instruction is as follows:

Label Operation Operand

name .SET expression

An example of a .SET instruction is as follows:

GENTABLE MACRO &COUNT
LOOP_COUNT .SET &COUNT

LOOP_TOP .NOP

DEF 1

DEF 2

DEF 3

LOOP_COUNT .SET LOOP _COUNT-1

.IF LOOP_COUNT .GT. 0 LOOP_TOP

MEND

MODEL 64000 ASSEMBLER/LINKER
REFERENCE MANUAL

Call expansion:

GENTABLE 3

DEF 1

DEF 2

DEF 3
DEF 1

DEF 2

DEF 3
DEF 1

DEF 2

DEF 3

.1 F 1 nstruction
The .1 F instruction is the conditional-branch instruction and uses fou r relational operators.

These operators are:

EQ. ===> equal

.NE. ===> not equal

.LT. ===> less than

.GT. ===> greater than

An .IF instruction has the following format:

Operation Operand

.IF Exp .(Relational Operator). Exp Label

The .IF instruction directs the assembler to relation ally compare two expressions. If the value

of this comparison is true, a branch is taken to the statement named by the label symbol in

the operand field. Otherwise, the statement immediately following the .IF instruction is

processed by the assembler.

4-7

ASSEMBLER/LINKER
REFERENCE MANUAL

MODEL 64000

4-8

.GOTO Instruction
The .GOTO statement is the unconditional-branch instruction. It has the following format:

Operation Operand

.GOTO Label

The .GOTO instruction directs the assembler to branch, unconditionally, to the statement
named by the label symbol in the operand field .

. NOP Instruction
A .NOP instruction is a no-operation instruction. This instruction is useful with .IF and

.GOTO instructions when branching is required to sections of the program that are not

labelled. The .NOP instruction format is as follows:

Label Operation

LABEL .NOP

When a branch is taken to a .NOP instruction, the effect is the same as if a branch were taken

to the statement immediately following it.

NOTE

It is important to remember that conditional assembly in­

structions generate no source code and the sole function of

the .SET, .IF, .GOTO, and .NOP instructions are to con­

ditionally alter the sequence in which the assembler processes

the source program or macro definition instructions.

~Y10DEL 64000 ASSEMBLER/LINKER
REFERENCE MANUAL

An example using the .IF, .GOTO, and .NOP instructions is as follows:

CONDITION MACRO &P1,&P2,&P3

.IF &P1 .EO. 1 LOAD

.IF &P1 .EO. 2 STaR E

.GOTO DONE

LOAD .NOP

OPC &P2

OPC &P3

.GOTO DONE

STORE .NOP

OPC &P3

OPC &P2

DONE .NOP

MEND

G:
Some call expansion examples are as follows:

a. CONDITION 1,SAM,BLUE

OPC SAM

OPC BLUE

b. CONDITION 2,SAM,BLUE
ope BLUE

OPC SAM

c. CONDITION 0

<NO CODE>

4-9

ASSEMBLER/LINKER
REFERENCE MANUAL

MODEL 6400C:

Checking Parameters
When using macro calls, you may want to omit specific parameters defined in the macro

definition. This is accomplished by using the null symbol ("") or a comma (,). For example:

Macro definition:

SAM MACRO &P1,&P2,&P3,&P4

Macro call:

SAM ,FRED, "",0FCH

In the above example, &P2 is assigned a value of FRED and &P4 is assigned a value of FCH.

The &P1 and &P3 parameters are omitted.

An example of a macro expansion is as follows:

CALLSUB MACRO &SU B,&P1 ,&P2,&P3

JMP &SUB

.IF &P1 .EQ. "" DONE
DEF &P1

.IF &P2 .EQ. "" DONE
DEF &P2
.IF &P3 .EQ. "" DONE
DEF &P3

DONE .NOP

MEND

Some expansion call examples are as follows:

a.

b.

4-10

CALLSUB

JMP

DEF

CALLSUB

JMP

ADD,PARAM

ADD

PARAM

ADD

ADD

MODEL 64000 ASSEMBLER/LINKER
REFERENCE MANUAL

c. CALLSUB ADD,IN,OUT,RESULT

JMP ADD
DEF IN

DEF OUT

DEF RESULT

Indexing Parameters
The assembler has the ability, when instructed, to index through a parameter list to

determine if all or certain parameters are present. This is accomplished by using a macro

local symbol prefaced with two ampersands (&&). The following macro directive is presented

as an example:

Label Operation Operand Comment

1 . CALLSUB MACRO &P1,&P2,&P3,&P4

2. JMP &P1

3. PARAM .SET 2
4. PARAM_LOOP. .NOP

5. .IF &&PARAM .EO. " JUMP-OUT

6. DEF &&PARAM

7. PARAM .SET PARAM+1

B. .GOTO PARAM_LOOP

9. JUMP_OUT .NOP

10. MEND

A line-by-line explanation of the above macro definition is as follows:

Line 1.

Line 2.

Line 3.

Line 4.

Line 5.

Defines the macro directive named CALLSU B with its dummy parameters

&P1,&P2,&P3,&P4.

A su broutine deSignated by parameter &P1 is accomplished.

Name PARAM is set to a value of 2.

A .NOP statement is assigned the name PARAM_LOOP.

Since the PARAM label has been assigned the value 2 (see line 3), the .IF

statement checks to see if the secon d parameter of the macro call statement

has been omitted. If it has, the .IF statement causes the program to branch

to the JUMP_OUT statement. 4-11

[!

ASSEMBLER/LINKER
REFERENCE MANUAL

Line 6.

Line 7.

Line 8.

Line 9.

Line 10.

NOTE

During each iteration of the PARAM_LOOP, the value of

PARAM is increased by 1 I see line 7!. The iterations continue

until the .IF statement is satisfied.

Updates the value of PARAM to the current value assigned.

Adds 1 to the current value of PARAM.

Loops to PARAM_LOOP.

A .NOP statement used to exit the PARAM_LOOP iteration.

Macro end.

Some macro expansions of the previous macro example are as follows:

a.

b.

c.

4-12

CALLSUB

JMP

CALLSUB

JMP

DEF

DEF

CALLSUB

JMP

DEF

DEF

DEF

ADD

ADD

ADD,LOC1,LOC2

ADD

LOC1

LOC2

ADD,P1,P2,P3

ADD

P1

P2

P3

MODEL 64000

Chapter 5
Linker Instructions

Introduction
A system application program, referred to as the linker (link), combines relocatable object
modules into one file, producing an absolute image that is stored by the Model 64000 for

execution in an emulation system or for programming PROMS. I nteraction between the user
and the linker remains basically the same regardless of which microprocessor assembler is

being supported.

To prepare object code modules for the Model 64000 load program, the linker performs two
functions:

a. Relocation: allocates memory space for each relocatable module of the program and

relocates operand addresses to correspond to the relocated code.

b. Linking: symbolically links relocatable modules.

The user may optionally select an output listing of the program load map and a cross­
reference (xref) table. The linker also generates a listing that contains all errors that were

noted. These error messages will contain a description of the error along with the file name

and relocation/address information when applicable.

In addition to the above output listings, the linker constructs a global symbol file (Iink_sym

type) and stores this file under the same file name assigned the absolute image/command

file. This global file may be used for symbolic referencing during emulation. The link_sym file
also contains the relocation addresses for all programs. This information is used to relocate

asm_sym types during emulation. The assembler translates source program inputs into
relocatable object modules that may be linked and loaded into the system. Absolute
addresses are assigned by the linker.

5-1

ASSEMBLER/LINKER
REFERENCE MANUAL

MODEL 64000

5-2

Linker Requirements
The following information is required by the linker:

a. File names of all object files to be loaded.

b. File names of libraries to be searched to resolve any unsatisfied externals.

c. Relocation information (load addresses for all relocatable areas).

d. Listing and debugging options as follows:

1) List (Load Map): file/program name, relocatable load addresses, and absolute load
addresses.

2) Xref: symbols, value, relocation, and defining and referencing modules.

e. File name for command/absolute image file.

Since the linking operation will usually be required each time there is a software change and
the information in items a through e remain constant for any given application, the linking
control information is automatically saved in a command file with the same name as the
absolute image file. The command file is distinguished from the absolute image file by file
type.

Using the Linker
The command line in which Model 64000 commands are entered is accessed by way of the
development station keyboard. Each system application function (edit, compile, assemble,
link, emu.late, or prom_prog) can be called using keyboard soft keys. A syntax description
follows.

ASSEMBLER/LINKER
REFERENCE MANUAL
MODEL 64000

SYNTAX

link

where:

<CMDFILE> -

listfile -

<list FILE> -

display -

printer -

null -

options -

----------- --- iink

[<CMDFILE>] [iStflle \ <list FILE> I]
display

1 printer
null

[[OPtions] [edit] [nolist] [xret)]

name of an established command/absolute image file.

soft key used to specify a desti nation for output listi ng other than

the system default list file.

name of the file where the linker output listing will be stored. If the

assigned file name does not exist, a new list file is created.

designates the system CRT as the output listing destination.

designates the system line printer as the output listing destination.

specifies that no listing is to be generated. Error messages,
however, will be routed to the display area of the system CRT.

soft key used to specify linker options. The following options are

available:

edit or noedit - specifies if an existing command file is to be edited.
list or nolist - specifies if a load map listing is to be generated.

xref or noxref - specifies ifaxref listing is to be generated.

5-3

link
ASSEMBLER/LINKER

REFERENCE MANUAL
MODEL 64000 Cont'd:

DEFAULT VALUES
,--~-------------------------,

<CMDFILE>:

listfile:

options:

If a file name is not given, the linker will begin building a new

command file.

Linker output listing defaults to the device specified by the userid

listfile default statement. If the listfile default statement does not
specify an output device, the linker defaults to the null listing
function.

If the C~~~~i~~~~:: soft key is not used, the linker will default to the
list options specified in the command file and to noedit. If
the :,..-~~ti~~;- ... : soft key is used, the linker will default to list, noxref,

.... ________ ..1

and noedit.

~---------------------------~

5-4

FUNCTION

The linker combines and relocates all object files into one absolute image file that can be
loaded into the HP Model 64000.

DESCRIPTION

The linker may be called by one of two methods: simple calling or interactive calling.

The simple calling method is used when interaction with an established command file is

not required. That is, the current information in the command file is valid and no
changes are required.

The interactive calling method is used when building a new command file or when the
information in a current command file needs revision.

NOTE

In the following paragraphs, soft keys are indicated as follows:

,..--------,
: name l
.... _------_..1

The name listed in the soft key symbol indicates the soft key
prompt or the soft key that is to be pressed.

MODEL 64000 ASSEMBLER/LINKER
rlrr-r-nr ,.....r Pt "'1111\1
nC'CnCI'Ij\.Jc IVIMI'ljUML

How to Use the Linker

Simple Calling Method
a. Ensure that the following soft key prompts are displayed on the system CRT:

b. Press the (--li~k---': soft key. The soft key configuration will be:
'--------_/

,..--------"'\ ,--------, ,..--------, r--------, ,..--------'" r--------, r--------"\ r--------,
\ <CMDFILE> I \ listfile I I options I I : I : \ : Ii: :
'--------_/ ,-------_/ ,-------_/ ,-------_/ ,-------_/ ,-------_./ ,-------_./ ,-------_./

c. The next prompt is CMDFILE. Type in the name of the established command file to be

linked. The soft key configuration will change to:

(--------': (-listfil~--: (-~~ti~~;-'i (--------': (--------: (--------': (-------': (--------j
'--------_./ ,-------_/ ,-------_./ ,-------_/ '--- _./ ,---_ .. _.--./ , ./ ,)

r--------'"
d. If it is necessary to change the output listing destination, press the: Iistfile : soft key.

\.._-------..;'
The soft key configuration will change to:

r--------'" r--------, ,..--------, r--------, r--------, r--------, r--------, r--------,
\ <FILE> I I display I I printer I \ null : \ : \ : \ : \ :
'--------_/ ,-------_/ ,-------_./ ,-------_/ ,-------_/ ,-------_./ ,-------_./ , ./

e. Route the linker output listing to the desired location by selecting the FILE option, or
by pressing the (-dls-pl;y--: soft key, the :"'-~~int;;-': soft key, or the r---n~II---'i soft

'--------_/ ,-------_./ ,-------_./
key.

NOTE

-,
Pressing the: null I soft key results in no output listing.

\.._------_../

Error messages will be displayed on the system CRT.

f. If the FILE option is desired in step e, type in the file name under which the listing is to
be stored. You can then review your output listing on the system CRT using the edit
function and your assigned file name.

g. The soft key configuration will change to:

('--------"', ,;"--------"1 ,..--------, r---------, ,,---------'" r--------, ".--------, r--------"
I I I I : options I : : I : I : : : : :
'--------_./ ,-------_/ ,-------_./ ,-------_/ ,-------_./ ,-------_./ , ./ ,-------_./

5-5

ASSEMBLER/LINKER
REFERENCE MANUAL

MODEL 64000

h. Refer to the "options" default description in the LINK SYNTAX definition block.

i. If the :-~~ti~~;-"i soft key is not used, the linker defaults to the list options specified in

the co;;man-dfile and to noedit. To override the command file list options (for this link

only), press the :-~~ti~~~-: soft key. The soft key configuration will change to:
'--------_/

r--------'" r--------'" ,--------,
: edit I: nolist :: xref i
'--------_/ '--------_/ '--------_/

(----- - --"I (----- - --"I (--------"1
1 I 1 I I I
,-------_/ ,-------_/ ,-------_/

(-- ~ (--------~

l ________ J l ________ J

If only the C~~~~~~] soft key is used, the linker defaults to list, noxref, and noedit. Any
of these defaults may be changed by pressing the appropriate soft key.

j. After accomplishing step i, press the rn key.

The linker will link the relocatable modules and produce the desired output listing.

I nteractive Calling Method
The interactive calling method allows the user to create a new linker command file or edit an
existing linker command file.

5-6

a. Ensure that the following soft key prompts are displayed on the system CRT:

b. Press the: link ": soft key. The soft key configuration will change to:

'--------_.1

"..--------"\ "..--------, r--------, r--------, r--------, r--------, ,--------, r--------,
: <CMDFILE-> i: listfile i: options I : i : : : : : : : : ,--------.1 , ________ .1 '- ________ .1 , ________ .1 , ________ .1 , ________ .1 '- ________ .1 '- ________ .1

c. The user may start creating a new linker command file by not specifing any command

file. An existing command file may be modified by specifying the command file name

and the edit option.

NOTE

In the following paragraphs, the procedures are written for
establishing a new command file. If an existing command file is

being edited, just type in the changes required after each
query. If no changes are required for a particular query,

proceed to the next query. In all instances, to proceed to the

next query, press the rn key.

MODEL 64000 ASSEMBLER/LINKER
REFERE~~CE ~v1A~~UAL

d. The command query displayed in the command line on the system CRT is:
/.; (Q
-.."". -

Object files? file1,file2, ,filen

This query asks for the names of the files to be linked and relocated. Type in the names
of the files and then proceed to the next query.

NOTE

The soft key configuration 'prompts' will change with each

query from the linker. The soft key 'prompts' indicate the type

of information that is required.

Object files that are listed after the "Object files?" query may contain relocatable object

modules, no-load files, and previously linked linker symbol files (for global symbol

references) .

No-load files are differentiated from normal relocatable files by enclosing the no-load files in

parentheses. Linker symbol files are specified by including the file type ·:Iink-sym' in the file
name.

Example:

FILE1, (FILE2,FILE3 l,FILE4:link-sym

NOTE

Refer to the paragraphs in this chapter that discuss no-load
and link-sym files for additional information.

e. The next command query displayed in the command line on the system CRT is:

Library files? lib1,lib2, ,lib3

Interrogation for library files is the same as for object files. After all object files have
been linked, the linker determines if any external symbols remain undefined. The
linker then searches the library files for object modules that define these symbols. The
linker relocates and links only those relocatable modules that satisfy external

references. Since a library file may contain more than one object module, all of its
relocatable modules may not be linked. Refer to the paragraph in this chapter that

discusses libraries and their construction.

5-7

ASSEMBLER/LINKER
REFERENCE MANUAL

MODEL 64000

5-8

NOTE

No-load files or linker symbol files, used for global referenc­

ing, must not be listed after this query. The no-load and link­

sym files can only be referenced during the "Object files?"
query.

After typing in the list of reference library files (or if library files are not referenced in the
program), proceed to the next query.

f. The next command query displayed in the command line on the system CRT is:

Load addresses:PROG,DATA,COMN= addr,addr,addr

This query allows selection of separate, relocatable memory areas for the different

modules of the program. For example, if you type in the following addresses:

Load addresses:PROG,DATA,COMN= 1000H,2000H,3000H

the linker will relocate the PROG file module to memory location starting at address

1000H, the DATA module will be relocated to memory location starting at address
2000H, and the COMN module will be relocated to memory location starting at address

3000H.
NOTE

Load addresses may be entered using any number base
I binary, octal, decimal, or hexadecimal I; however, the ad­

dresses listed in the load map are given in hexadecimal only.

The default addresses are zeros. After entering the load addresses or if the default
addresses are acceptable, proceed to the next query.

g. The next command query displayed in the command line on the system CRT is:

More files? no

The linker asks if more files are to be linked. If the response is yes, the linker begins

interrogation again, allowing additional object and library files to be specified with

new load addresses. When specifying new relocatable areas, the user may

continue with the pr_~~i.?_~~~ relocatable area by typing "CONT" in the appropriate
field (or using the: CO NT '\: soft key). The relocatable area is treated as if no new

\..._------_./

address was assigned.

MODEL 64000 ASSEMBLER/LINKER

Example:

Load addresses:PROG,DATA,COMN=OBCCH,CONT,3FFCH

The default condition to the "more files?" query is no. Proceed to the next query.

h. The next command query displayed in the command line on the system CRT concerns
output listing options. It has the following syntax:

List,xref= on off

r-------~

TQ~_UD!<_e! asks you to specify what output listings are required. Using the t.. on) or
C __ ~f~ ___) soft key, select, in the sequence indicated in the synta;-statement

(Iist,xref), the desired output listings. After inserting the requirements, proceed to

the next query.

NOTE

The output listings indicated after the list,xn=f=query are the

command file values that will be used during ~~~s_~_~~_~uture
operations. They can be overridden by using the : options : soft

,-------_./
key during the linker call.

The default condition for this query is on, off.

i. The next command query displayed in the command line on the system CRT is:

Absolute file name=name

This final query from the linker allows you to assign a name to the new command/
absolute image file that you are about to link. The absolute image file that is created by

the linker is always associated with a link command file of the same name. A global

symbol file is also established under the name of the command/absolute image file

name. The global symbol file contains all global symbols and their relocation values.

After entering the absolute file name, press the GJ key.

The linker will link, relocate the files, and save the linking information in the command

file.

5-9

~

ASSEMBLER/LINKER
REFERENCE MANUAL

Linker Output

MODEL 64000

The linker listings may be output to the system display, line printer, or any file. The following

information may be included in the linker output listing:

a. List (Load Map)

b. Cross-reference table

c. Error messages
NOTE

Certain error messages contain more than 80 characters and

will not be completely displayed on the system CRT. However,

complete error messages will be printed when using the line

printer or a list file for listings.

List (Load Map)
A load map is a listing of the memory areas allocated to each relocatable file. The listing
begins with the first file linked and proceeds to list all other linked files with their allocated

memory locations. An example of a load map listing that will be printed on the system printer

is as follows:

FILE/PROG NAMEPROGRAM DATA
KYBD:SAVE 0000
EXCT:SAVE
DSPL:SAVE A100
next address 0021 A121

REG1 :SAVE BOOO
REG2:SAVE B103
REG3:SAVE B206
next address B30C

Libraries
PARAMETER:SAVE 0021
MULTEQUAT:SAVE 0221
next address 0421 A121

XFER address=OBOODefined by EXCT
No, of passes through libraries=1

COMMON

absolute & linLcom file name=SETAG1:SAVE
Total# of bytes loaded=0782

ABSOLUTE

OBOO-OB34

DATE
Thu, 5 Jun 1980
Thu, 5 Jun 1980
Thu, 5 Jun 1980

Thu, 5 Jun 1980
Thu,5 Jun 1980
Thr, 5 Jun 1980

Thu, 5 Jun 1980
Thu, 5 Jun 1980

A brief description of each column in the listing is as follows:

TIME
11 :37
10:38
11 :38

11 :52
1153
11 :58

1143
1145

COMMENTS

a. FILE/PROG NAME - this column will contain the name of the files that are linked. In
the event library files are referenced, not only will the master library file be listed, but

its subsections that are referenced will also be listed beneath the library file name. The

subsections will be indented to indicate that they are part of the main library file, No­
load files will be displayed in parentheses (...).

5-10

MODEL 64000 ASSEMBLER/LINKER
REFERENCE MANUAL

b. PROGRAM - this column will indicate the first address (hexadecimal) of a memory block

that contains the PROG relocatable code in the file listed in the FILE/PROG NAME
column.

c. DATA - this column will indicate the first address (hexadecimal) of a memory block that

contains the DATA relocatable code in the file listed in the FILE/PROG NAME column.

d. COMMON - this column will indicate the first address (hexadecimal) of a memory block
that contains the COMN relocatable code in the file listed in the FILE/PROG NAME

column.

e. ABSOLUTE - this column will indicate the hexadecimal addresses of a memory block

that contains the absolute code assigned by the file listed in the FILE/PROG NAME

column.

NOTE

The "next address" statement in the load map listing indicates

the next available hexadecimal address in the PROG, DATA,

or COMN memory areas. It may also be used to determine the

number of bytes (words for 16-bit processors) that are

contained in each area (next address-starting address=total

bytes).

f. DATE - this column will indicate the date that the file listed in the FILE/PROG NAME

column was assembled (assuming the system date/time clock was current).

g. TIME - this column will indicate the time that the file listed in the FILE/PROG NAME

column was assembled (assuming the system date/time clock was current).

h. COMMENTS - this column will contain user comments entered during assembly by

the assembler pseudo NAME instruction.

Cross -reference Table
The cross-reference table lists all global symbols, the relocatable object modules that define

them, and the relocatable modules that reference them. An example of a cross-reference

listing that will be listed on the system printer is as follows:

SYMBOL R VALUE

DSPL6 P 0034
KYBD6 P 0001

DEF BY

PGM68D
PGM68K

REFERENCES

PGM68E
PGM68E

5-11

ASSEMBLER/LINKER
REFERENCE MANUAL

MODEL 64000

A brief description of each column in the cross-reference listing is as follows:

a. SYMBOL - all global symbols will be listed in this column.

b. R (Relocation) - in this column a letter will identify the type of program module. The
letters that are available and their definitions are:

A = Absolute
C = Common (COMN)
D = Data (DATA)
P = Program (PROG)
U = Undefined

c. VALUE - relocated address of the symbol.

d. DEF BY - this column will contain the file name that defines the global symbol.

e. REFERENCES - this column will list the file names that reference the global symbol.

"No-Load" Files
Files that are enclosed in parentheses in the "Object files?" query indicates to the linker that
no code is to be generated for the file. Relocation and linking occurs in the same manner as if
the file was a load file; however, the absolute image file generated by the linker does not
contain the object code for the no-load file. No-load files may be useful in linking to existing
ROM code or in the design of software systems requiring memory overlays.

Linker Symbol File
The linker creates a global symbol file for every link operation. The global file name is the
same as the assigned command/absolute image file name assigned to the link. The user may

find that linking to a common piece of code (global) is simplifie-d by referring to that code by
its linker symbol file. This is accomplished by referencing the correct linker symbol file name

during the "Object files?" query by the linker. The linker symbol file name referenced at the
time of the query must be specified by type ':Iink-sym'.

Object files? PGM68K,PGM68D:link-sym

5-12

MODEL 64000

Library Files

ASSEMBLER/LINKER
REFERENCE MANUAL

Libraries are a collection of relocatable modules that are stored on the system disc and may be

referenced by the linker.

If a library file name is given as a response to the "Object files?" query, all the relocatable
modules in the library file will be relocated and linked. If a library file name is given as a

response to the "library files?" query, only those relocatable modules that define the
unsatisfied externals will be relocated and linked. The remaining relocatable modules in the
library file are ignored.

It is possible to combine relocatables into a library by using the system library command.

Refer to the System Overview Manual for a detailed description of the library command.

Error Messages
When an error is detected during the link process, the linker will determine if the error is fatal
or nonfatal. If the error is classified as fatal, the linker will abort the linking process. If the
error is nonfatal the linker will continue the linking process, but will generate error messages

that will be listed in the output listing. A description of each error message is given in the

following paragraphs.

Fatal Error Messages
Upon encountering a fatal error the linker will display one of the following messages on the
system CRT STATUS line. The linker will abort the link process and return control of the
system to the monitor.

a. Out of Memory in Pass 1.

The linker will issue this message to indicate that there is insufficient memory to
accommodate the current operation. To correct this situation, reduce the number of
files, global symbols, and/or external symbols used during the current link.

NOTE

As a general rule, the available memory space can handle

programs containing approximately 3000 symbols. However,
if cross-reference symbol tables are required, the symbol
handling capability is reduced to approximately 1500 symbols.

5-13

ASSEMBLER/LINKER
REFERENCE MANUAL

MODEL 64000

5-14

b. Out of Memory in Pass 2.

The linker will issue this message to indicate that there is insufficient memory to
accommodate the current operation. To correct this situation, reduce the number of

files, global symbols, and/or external symbols used during the current link.

c. Out of Memory in Xref.

The linker will issue this message to indicate that there is insufficient memory to
accommodate the building of a cross-reference table. This error does not affect the
absolute file since it is created and stored prior to the linker attempting to build the
cross-reference file. To correct this situation, reduce the number of files, global
symbols, and/or external symbols used during the current link.

d. Target Processors Disagree.

The linker will issue this message if the relocatable modules to be linked are designed

for different processors. Ensure that all relocatable modules assigned for linking are

written for the same type microprocessor.

e. Checksum Error.

The linker will issue this message if it is unable to read a relocatable file due to a
checksum error or other irregularities in the file. To correct this situation, reassemble

the relocatable file; then, relink.

f. Linker System Error.

The linker will issue this message if it detects a hardware or software failure in the Model

64000. To correct this situation relink the relocatable modules or run the hardware

performance verification program.

g. File Manager Errors.

Th~ linker will issue certain messages if the system file manager is unable to perform

the specified file operation as requested by the linker. Refer to the System Overview
Manual for a list of File Manager Errors.

MODEL 64000

Nonfatal Error Messages

ASSEMBLER/LINKER
REFERENCE MANUAL

Upon encountering nonfatal errors, the linker will continue the link operation and print the

error messages (except initialization errors) in the output listing. An error message that is

listed will contain a description of the error and the name of the file where the error occurred. If

the null list file is in effect, the linker will direct the error messages to the data area on the

system CRT.

a. Illegal entry: re-enter.

During initialization the linker will indicate in the STA'l US line on the system CRT that

the user has made an illegal response to an interrogation. To correct this situation, re­

enter the proper response.

b. Duplicate symbol.

During pass 1 of the link process, the linker detects that the same symbol has been

declared global by more than one relocatable module. The first definition holds true.

The relocatable module that first defines the symbol may be found in the cross­

reference table. To correct this error, remove the extra global declarations.

c. Load address out of range.

The linker has tried to relocate code beyond the addressing range of the specified

microprocessor. To correct this situation, reassign the relocatable addresses.

d. Multiple transfer address.

During pass 1, the linker finds that the transfer address has been defined by more than

one relocatable module. The first definition holds true. The relocatable module that

first defined the transfer address will be given at the conclusion of the linking. To

correct this situation, remove the extra transfer address. Reassemble the amended

relocatable module; then, relink. If a xfer address is defined by both a noload program

and a load program, no error will be given. The load program xfer address takes

precedence.

e. Undefined symbol.

During pass 2, the linker finds that a symbol has been declared external but not

defined by a global definition. To correct this situation, define the symbol.

5-15

ASSEMBLER/LINKER
REFERENCE MANUAL

MODEL 64000

5-16

f. Out of memory in xref.

Unlike the fatal error (Out of Memory in Xref), this error occurs when memory space is

available for a complete symbol table but only a portion of the cross-reference table.

The linker will complete the xref operation, listing only that portion of the cross­

reference table for which memory space was available. To correct this situation,

reduce the number of files, global symbols, and/or external symbols used during the

current link.

g. Memory overlap.

Relocatable program areas have been overlapped in memory. The error message will

list the program names and the overlapping areas.

h. Address out of range.

The operand address is not within a valid addressing range for the specific
microprocessor involved.

Chapter 6
Introduction to Assemblers

General

The information in this chapter is designed for those who are not familiar with assemblers or

their operation. The topics are of a general nature and do not go into great detail. Some basic

computer terminology is defined in Appendix A.

Assembly Language

Since a computer recognizes only strings of "1"s and "0"s (referred to as machine language),

a second-level language (assembly language) was developed for programming ease.

Assembly-language programming is the most fundamental form of program development. It
consists of learning a particular microprocessor's mnemonics and composing a program in
accordance with the operations that they perform. The assembler converts these mnemonic

codes into binary format that the computer recognizes on a one-to-one basis.

Assemblers

An assembler is a stored program (stored in memory) that translates the data from a source

program into relocatable object codes. The assembler allows you to represent numeric
machine instructions by character strings called mnemonics. These mnemonic operation

codes (opcodes) are easy to remember (for example, MOV for a move instruction, SHL for a

shift-left instruction) and represent a valid machine instruction.

An assembler provides you with three programming tools: it allows you to specify

instructions by name, to specify addresses by name, and to specify data in several forms

other than binary. Instead of writing down a list of binary numbers for instructions,
addresses, and data words, you list mnemonics for instructions words, symbols for the
address words, and you specify data constants in more convenient decimal, octal, or
hexadecimal data formats. The assembler then processes this list to create a corresponding
list of binary codes.

In addition to freeing you from remembering all the machine codes, the assembler also keeps

track of storage locations. Labels can be used for symbolic addressing and the assembler will
assign a memory location to each label when that label is defined. Each time the program is

changed, the assembler reassigns all the address labels and symbols. Symbols can also be

used to define data constants.

6-1

ASSEMBLER/LINKER
REFERENCE MANUAL

MODEL 64000

6-2

While an assembler produces one machine code for every mnemonic in the source program,
a macro-assembler expands that capability so that a single symbol can represent a group of

machine instructions. For example, you may find that you are generating routines repeatedly,
routines that are identical except for certain parameters. By symbolically identifying these
routines at the beginning of the program, you can insert them anywhere in the program,
along with the specific parameters needed, just by referring to their symbolic names. Such
routines are called macros. Macro definitions are discussed in detail in Chapter 4.

NOTE

It should be noted that when you develop a macro definition
you assign a "symbolic" name to identify that macro. Once

assigned, the assembler treats the symbolic name as a

mnemonic.

Assembler Operation

Assemblers normally make two passes through a source program to develop the machine
coding required by the microprocessor. On pass-1 the assembler looks for user-created

symbols and stores them in memory in a label table. On pass-2 the assembler recognizes the

microprocessor instruction mnemonics and looks up their machine-code equivalents. In

addition, it converts the operand fields in the program to machine code equivalents, using the

label table to translate the user created symbols. (See figure 6-1.)

SOURCE -PROGRJ\M ~

ASSEMBLER

- PJ\SS 1 -", .,...,...

\11
LJ\BEL
TJ\BLE

PJ\SS 2

\11
OBJECT
FILE
LISTING

~ XREF

\V
XREF
LISTING

Figure 6-1. Assembly Flow Diagram

OBJECT - - CODE .,...,... ~

MODULE

MODEL 64000 ASSEMBLER/LINKER
REFERENCE MANUAL

Source Program Format

As a rule, a single statement generates a single command. Each statement in the program
contains "fields" which are designated as follows:

a. Label/Name (optional except for macro definitions and EQU statements)

b. Operation (Opcode)

c. Operand

d. Comments (optional)

The comment and label fields are optional. It should be remembered, however, that a symbol

is required in the label field for a macro definition. Although the assembler will accept the

macro that has no symbol assigned, you will never be able to call it. Refer to table 6-1 for a

sample assembler listing. The table shows only two lines of instruction; however, the purpose

of the table is to identify each field and its content only.

Table 6-1. Typical Assembler Listing

Machine Assembly English
Language Language Language

1 2 3 4 5 6

Object Label
Location Code (user-assg) Opcode Operand Comments

0000 ORG 1000H

1000 E7 BUMP ADD A,CHAR ;ADD CHAR

;TO ACCUM

6-3

ASSEMBLER LINKER
REFERENCE MANUAL

MODEL 64000

6-4

Column: 1. Location: Memory location

2. Object Code: Basic machine language or object code that the

microprocessor can understand

3. Label: User-created name for instruction

4. Opcode: Microprocessor operational code

5. Operand: Identifies register/data to be operated on

6. Comments: User comments for reference

NOTE

Columns 1 and 2 are created by the assembler. Columns 3, 4, 5,
and 6 are generated by your source program.

In the label column of the program worksheet, you assign names or symbols for the various

parts of the program. These symbols are defined when they appear in the label field or in the

name field of an EQU statement or a macro definition.

In the opcode column, you must use the mnemonic instruction (codes assigned by the

manufacturer of the microprocessor!. You cannot assign your own names because the

instructions for the microprocessor opcodes have been permanently written in the assembler
program. Also, in this column, you will use macro instruction mnemonics that you developed
for your program.

NOTE

Throughout this manual the term "symbol" refers to a user­
assigned label that occupies the label field in a source

statement. The term "mnemonic" refers to manufacturer

assigned codes and are used only in the opcode field of the
source statement.

MODEL 64000 ASSEMBLER/LINKER
REFERENCE MANUAL

In the operand column, you provide the data required by the opcode instruction. The values
assigned to the data may be expressed numerically or symbolically. The symbols assigned to
operands can be selected so as to suggest their purpose, making them as mnemonic as the

opcodes.

In the comment field, you can write anything you want. The only restriction is that you must

be sure that the proper delimiter character is entered before the comments so that the
assembler will recognize the statements as comments and ignore them.

Normally, you will develop your source program using a program worksheet and pen or
pencil. If a program is extremely long, you may sectionalize your program, breaking the long

program into modules and writing each module separately. While developing your program

you must follow certain rules and conventions that apply to the Model 64000 assembler.
These rules and conventions are discussed in Chapter 2.

HP Model 64000 Assembler
The HP Model 64000 Assembler, using a specific program, converts a user's source program
into executable machine language. The source program must be written using manufacturer's

mnemonic codes. The program can be maintained by the Editor program (refer to HP Model

64000 Text Editor manual for further information i.

The source program applied to the assembler will usually include assembler instructions

(pseudo-codes) and control instructions. However, only the source program instructions are

converted into executable object codes. The pseudo-codes and control instructions initiate
various functions that direct and assist the assembler in its translation operation. The
assembler outputs consist of the object file, program listings, and other information. The
object file contains binary instructions and data constants that were coded from the source
program. The entire object file must be linked and then loaded into program memory so that
it can be executed on the Emulator Processor.

Program listings provide a permanent record of both the source program and the object

codes developed. These listings, produced by the assembler, are composed of line numbers,

the developed object codes, and the source codes. The assembler also provides error

messages whenever errors are detected.

Following the source code listing, a symbol cross-reference table (optional) is produced.
This table lists all program symbols alphabetically with their line numbers defined, plus the

line number where the symbol was referenced. Following the cross-reference table (if

generated) will be a statement indicating the number of errors noted, plus a reference to the

last error. Following the error statement will be a listing of the error codes noted during the
running of the program, plus their description.

6-5

ASSEMBLER/LINKER
REFERENCE MANUAL

MODEL 64000

6-6

Numbering Systems
In normal everyday use, a number means a decimal number. However, in digital electronics,

all data in a computer are stored in binary form. A decimal I base 101 number will appear in the

computer as a binary (base 21 number because the computer will convert the decimal number

to its binary equivalent. Other numbering systems, such as octal! base 8! or hexadecimal

(base 16) are also used in computers depending on the byte and word structure of the

particular computer. The following paragraphs describe the several computer numbering

systems.

Binary Numbering System
The binary numbering system is based on two states, 0 and 1. Where the decimal system uses

ten digits (0 through 9), thus having a base of 10, the binary numbering system has two digits,

o and 1, and has a base of 2. I n the binary system, to represent numbers greater than 1 we

must use more than one digit. Each digit in a binary string is weighted and its value depends

on its location in the binary string. The sum of the weighted values of the digits produce the

decimal equivalent.

Example:

Weight: 64 32 16 8 4 2

Binary String: o o o o

>Decimal Equivalent = 73

Octal Numbering System
The octal numbering system is a system with a base of 8. Its numbers are commonly

expressed either with decimal or binary digits. The use of the octal numbering system is

common in computer systems because it allows the conversion of large binary numbers to a

simpler form. Every octal digit represents exactly three binary digits. Converting binary

numbers into their octal equivalent is very straight forward; you simply partition the binary

string into groups of three digits and replace each group of digits with its octal digit

equivalent. This can be illustrated with the binary string used in the previous binary example:

Binary String: 1001001

Partitioned Elements: 0 0 o 0 1 0 0 1

Octal Equivalent:

Therefore, the octal equivalent 111 equates with the decimal number 73 and the binary string

1001001.

MODEL 64000 ASSEMBLER/LINKER
REFERENCE MANUAL

Hexadecimal Numbering System
The hexadecimal numbering system is a system with a base of 16. Its numbers are expressed
with decimal digits and characters of the alphabet (A through Fl. Hexadecimal numbers can
be converted to decimal numbers in the same manner that octal numbers are converted.

Instead of breaking the binary string into groups of three bits as you did to convert to the

octal equivalent, you simply partition the binary string into groups of four binary digits and

replace each group of digits with its hexadecimal equivalent. Again using the binary string

from the previous example:

Binary String: 1001001

Partitioned Elements: 0 1 0 0 1 0 0 1

Hexadecimal Equivalent: 4 9

Therefore, the hexadecimal equivalent 49 equates with the octal number 111, decimal

number 73, and binary string 1001001. To illustrate the letter values of a hexadecimal number

the following examples are given:

Binary Hexadecimal

1 0 1 0 <-------------- A

1 1 0 0 <-------------- C

o 1 0 0 1 1 1 1 <-------------- 4F

1 0 0 1 1 1 1 0 <-------------- 9E

1 0 0 1 1 0 0 0 <-------------- 98

6-7

ASSEMBLER/LINKER
REFERENCE MANUAL

MODEL 64000

Complement of Numbers
The complement of a number is the difference between the base of the complementation and
the number being complemented. For example:

Base of Number Being

comPlem\tation Com p'Jmented

The 10's complement of 2 is 8 (base 10-2)

The 9's complement of 3 is 6 (base 9-3)

The 2's complement of 1 is (base 2-1)

The 1's complement of 1 is 0 (base 1-1)

From the examples given it can be seen that a complement of any arbitrary base and any

number can be obtained. However, the complements most useful in the binary number
systems are the 1's and 2's complements listed above. There are two main reasons for using

complements:

6-8

1. They can be used to represent negative numbers.

2. They can be used to perform subtraction operations by means of an "addition"
operation.

MODEL 64000 ASSEMBLER/LINKER
REFERENCE MANUAL

1's Complement
Because the binary system has only two states, the 1's complement of a binary number can

be obtained by writing every bit in its opposite state, that is, every 0 bit is changed to a 1, and
every 1 bit is changed to a 0. For example:

Binary Number: 0 1 0 1 0 1

Complement: 1 0 1 0 1 0

Optionally, complementing can be performed by subtracting from all 1 bits as follows:

111111

- 0 1 0 1 0 1 <----- Binary Number

1 0 1 0 1 0 <----- Complement

2'5 Complement
The easiest method of finding a 2's complement of any binary number is to first obtain its 1's
complement, then add 1 as follows:

o 1 0 1 0 1 <----Number

o 1 0 1 0 <----1's Complement

+ 1 <----Add 1

o 1 0 1 1 <----2's Complement

Optionally, a 2's complement can be found by subtracting from a 1 followed by 0's as follows:

000 0 0 0
o 1 0 1 0 1 <----Number

1 0 1 0 1 1 <----2's Complement

6-9

ASSEMBLER/LINKER
REFERENCE MANUAL

6-10

MODEL 64000

ASCII

Absolute Address

Accumulator

Address

Addressing Modes

Analysis

Array

Assembler

Assembly Language

Asynch ronous

Appendix A
Glossary

a
American Standard Code for Information Interchange. A
seven bit character code.

A number used to refer directly to a specific memory location.

A register used to accumulate the results of operations.

To specify a memory location, or the specific location of data
in memory.

The various means of accessing memory (see direct, indirect,

relative, indexed, etc.).

As applied to microprocessor development systems, analysis

consists of breaking down the operation of a microprocessor
system into time and state sequence of bus transactions. The

system can then be studied by investigating the state
sequences.

An indexed set of variables. In mathematics, arrays are often
operated upon as units by applying special arithmetic rules.

The program which performs the transformation from

assembly language to object code.

The language defined for a particular processor; composed of

mnemonic opcodes and operands which allow use of the

processor's machi ne instructions.

Not describable in terms of fixed units of time; occurring at
various time intervals.

A-1

ASSEMBLER. LINKER
REFERENCE MANUAL

A-2

BCD

Batch (processing)

Baud

Benchmark

Bidi rectional

Block (PASCAL)

Branch

Breakpoint

Byte

CPU

(Central Processing
Unit)

Call

Command (key word)

MODEL 64000

b
Binary coded decimal. A system of representing decimal
numbers.

Processing a number of commands or programs without user

interaction. (See Command Files)

A measure of data flow. The number of signal elements per

second based on duration of the shortest element.

A frequently used routine or program selected for the purpose
of comparison.

A term applied to a port or bus line that can be used to transfer
data in either direction.

In a programming language, a bracketed segment of program

text containing declarations of variables and a sequence of

statements.

To depart from the normal sequence of executing instructions.

A hardware or software condition (bit pattern) that stops

program execution - e.g., specific addresses or control

signals.

Eight binary digits (bits).

c
Computer unit which controls the processing routines and

performs arithmetic functions.

The branching or transfer of control to a specified subroutine.

A reserved word for the operating system which cannot be

used for data names, file names, or program names. Key words

can only be used as defined by the subsystem.

MODEL 64000

Command File

Comment

Compiler

Control Bus

Cursor

DMA (Direct Memory
Access)

Data Bus

Debug

Declaration (PASCAL)

Default Value

Delimiter

Direct Addressing

ASSEMBLER/LINKER
REFERENCE MANUAL

A source file which contains system commands intended to be

executed in sequential order optionally with parameter text

substitution.

Annotation within the text of a program, that is not interpreted

by the computer as part of the program.

A program which translates source text in a high level

language (e.g., PASCAL, FORTRAN) into low level object

code for some processor.

A group of parallel signal paths that transfer electrical signals

to regulate computer system operations. In particular, the

control bus drives system functions such as timing, data

transfer, and initialization/termination of program execution.

The blinking underline prompt function that usually

corresponds to many assembly language instructions.

d

Control of address and data bus without CPU.

A bi-directional signal path that transfers data to and from the

CPU, memory storage, and peripheral devices.

To locate and correct any errors in a computer program or in

hardware.

One or more instructions which specify the type,

characteristics, or amount of data associated with identifiers.

The value assumed by a parameter when no other value is

assigned to it.

A character used to separate fields in a command.

An addressing mode characterized by the ability to reach

memory storage directly.
A-3

ASSEMBLER/LINKER
REFERENCE MANUAL

Edit

Editor

Emulation

Event

Execution Time

Expression

Extended Addressing

External Reference

Fetch

Fields

File

A-4

MODEL 64000

e
To alter a source file in any fashion (including creation).

The program which allows editing of a source file.

A hardware model of the target microprocessor used by the
MDS to check-out the target system. This can be either the
same microprocessor model as used in a target system, or bit­
slice architecture that mimics the function of the target
microprocessor. Using the target microprocessor is called

substitutional emulation, or in-circuit emulation.

Describes a system at a given point in time in terms of the

current address, data and status information available.

The time necessary for a CPU to carry out a process.

In the text of a program, a string of identifiers and operator

symbols describing an evaluation.

An addressing mode that allows access to any place in
memory. (This is machine dependent, e.g., 6800.)

A reference to a location (Variable Label) not defined by the

program making the reference but by another program linked

to it which declared the name to be global.

f

That portion of a computer cycle during which the location of
the data or the next instruction is determined, the instruction is

taken from memory and processed.

Describes items or areas within an instruction which are
expected to contain specific information.

A data record referenced by a name, a user identification, a

disc number, and a file type.

MODEL 64000

File Manager

Firmware

Floating Point

Flow Chart (Diagram)

Global Reference

ASSEMBLER/LINKER
REFERENCE MANUAL

A memory management system that controls the organization

and access of files in the memory system.

Software instructions stored in ROM.

Floating point is a notation convention used to represent a
wide range of real numbers in the computer. Each number is
considered to consist of a mantissa, M, and an exponent, E.

(The exponent is sometimes called the characteristic.) Any
number N in radix (base) R can be represented as the produce
of the mantissa multiplied by the radix taken the exponent
power:

The number 123456 in base 10 can be represented in foating

point notation as any of the following:

123456 * 100

12.3456 * 104

.123456 * 106

A graphical representation of a sequence of operations using
symbols to represent the operations (e.g., compute,
substitute, compare, jump, copy, read, write).

9

1) A reference to a location given a name by a program

declaring it GLB (global), which may be accessed by other
programs linked to it by their declaring it EXT (external).

2) (PASCAl) A reference to a location given a name by a main

program, which may be accessed by the main program and a"

of its subroutines.
A-5

ASSEMBLER/LINKER
REFERENCE MANUAL

HP-IB

Handshaking

Hexadecimal

High-level Language

Immediate Addressing

Indexed Addressing

A-6

MODEL 64000

h
Hewlett-Packard implementation of the IEEE-488 bus

specification.

A synchronization process by which communication is

established between receiving and transmitting circuits.

Handshaking refers to interaction between the CPU and

peripheral devices. For instance, the CPU outputs a word to a

printer. The printer will then tell the CPU when it has finished

printing and is ready for a new character. I n more

sophisticated systems, the CPU can determine (and act upon)

several status conditions of both input and output devices.

A base 16 number system.

A procedure (or problem) oriented language which allows you

to describe tasks that are problem oriented rather than

computer oriented. Each statement in a high-level language

performs a recognizable function that usually corresponds to

many assembly language instructions .

•
I

An addressing mode in which the operand contains the value

to be operated on with no further address reference required.

A computer instruction which uses indexed addressing refers

to the contents of a memory location whose address is

computed by adding a displacement included with the in­

struction to the contents of an index register. For example, in

the Motorola 6800, the instruction sequence:

LOX # 100
LOA A 10,X

MODEL 64000

I ndex Register

I ndirect Addressing

I nstruction Set

Interface

I nternal Variable
(also Local Variable)

Interrupt

I nverse Video

ASSEMBLER/LINKER
REFERENCE MANUAL

will load the A accumulator with the contents of the location

specified by adding the displacement of 10 to the 100 in the

index register. Indexed addressing is a very convenient way to

handle manipulations of data in tables. The index register is

initialized to the start of the area containing the data. The data
can then be sequentially accessed by modifying the index

register contents.

IN D E X r---------,
REG IS T E R '----__ 1.,...0_0 __ -.J

105 +--------l
106 +--------l
107 +--------l
108 +--------l
109t====~ ________ ~ 110
111 +-----4
11 2 +-----4
113 +-----4 11 4 '----__ --I

DISPLACEMENT

CPU register whose contents can be used to form an indexed
address. In most computers the index registers can also be
used for temporary data storage and other program
operations.

An addressing mode which addresses a memory location that

contains the address of the data rather than the data itself.

The group of instructions which can be executed by a given
microprocessor.

A common boundary between adjacent components, circuits,

or systems that enables devices to yield and/or acquire
information from one another.

A variable that pertains only to the procedure of a program
in which it is declared.

The suspension of the normal programming routine of a

microprocessor in order to handle a request for service.

A display enhancement mode in which normal white on black

background characters appear as black and white
background.

A-7

ASSEMBLER/LINKER
REFERENCE MANUAL

I/O

Key Words

Label

Library

Link

Li nker

Logic Analyzer

A-8

MODEL 64000

Abbreviation for Input-Output. This refers to data transfers to
and from the CPU. These designations should be used relative

to the processor to avoid confusion. For instance, output data
from the computer is input data for a TTY and output data from
a keyboard is input data to the CPU. In this case, the TTY is an
output device and the keyboard is an input device.

k

A set of reserved words for an operating system which cannot

be used for data names, file names, or program names. Key
words can only be used as defined by the subsystem.

I
An identifier which corresponds to a memory location in the
programmable system. Once labeled, the specific address
may be referred to by the label name.

One or more relocatable files appended one behind another in

a single file. (See Linker Manual for use.)

The process of combining one or more object code files into a
single absolute file.

The program which takes assembler or compiler generated

object code files and locates them in specified addresses
generating a single absolute file. The linker modifies program
object modules so they can properly reference each other.

Equipment that displays program timing and response signals.

The trigger is normally a match with a specified bit pattern, or
a signal that fills the logic analyzer's buffer. Individual
probes that can be attached to any desired signal line greatly

enhance the power of the analyzer.

MODEL 64000

MDS

Machine Code

Machine Instruction

Machine Language

Macro Com mand

Mapping (Memory)

Memory

Microprocessor

Mnemonic Code

Modular Programming

Monitor

Nesting

Nibble

ASSEMBLER/LINKER
REFERENCE MANUAL

m
Microprocessor Development System.

Collective term for machine instructions, represented by a hex
code or octal code.

A single command to a microprocessor directing it to take
some action it is capable of performing.

A system of binary digits for a computer by which information

or data can be read directly, and used without further

processi ng.

A program entity formed by a string of commands which are

put into effect by means of a single command.

A mode of operation in a computer that provides dynamically
relocatability for programs.

An organization of storage units, primarily for retrieval of

information and data. Memory types include disk,

semiconductor, magnetic tape, etc.

A central processing unit fabricated on one or several ICs.

Identifiers assigned to machine language instructions that

suggest the definition of the instructions.

A block oriented program structuring.

The specific program to schedule and control the operation of
a system (Executive).

n
Including a routine or block of data within a larger routine or

block of data. A series of looping instructions may be nested

within each other.

Four binary digits.

A-9

ASSEMBLER/LINKER
REFERENCE MANUAL

A-10

Object Code

Operand

Operation Code

(Opcode)

Overlay

PDS

PROM

Packed (PASCAl)

Port

Post Trigger

Pre Trigger

Procedure (PASCAL i

MODEL 64000

o
The code output by the assembler or compiler which is

comprehensive to the linker (see relocatable).

A part of a computer instruction which may be an argument, a

result, a parameter, or an indication of the location of the next
instruction.

A combination of bits specifying an absolute machine­

language operator, or the symbolic representation of the

machine-language operator.

A memory management technique of repeatedly using the
same blocks of storage during different stages of a program;
e.g., when one routine is no longer needed in storage, another

routine can replace all or part.

p
Processor Development System.

Programmable read-only memory.

An array that is stored in the minimum amount of memory
possible.

The point of a computer at which the I/O is in contact with the

outside world and allows the CPU to perform I/O.

An analysis technique that acquires data after a delay from a
trigger point.

An analysis technique in which data is acquired before a
trigger point.

Program statements which are combined to form named

paragraphs. Paragraphs may be combined to form sections.

Paragraph and section names are assigned by the
programmer so control may be transferred from one section or
paragraph to another.

MODEL 64000 ASSEMBLER/LINKER
REFERENCE MANUAL

Program Loop (PASCAL) A sequence of instructions that is repeated until a terminal
condition prevails.

Pseudo Op

RAM

Real-time Emulation

Real Time Operation

Real Time Trace

Reentrant

Reentrant Code

In assembly language, a Pseudo Opcode is an opcode which
generates no machine instructions but instructs the
assembler.

r
Random-Access Memory.

This term indicates that the emulator (see definition) works at
the speed of the target system - otherwise timing problems may

not show. This is especially important when the clock is linked

with 1/0 decoding or when used for noise reduction.

Operation at full speed with no artificial interruption of
execution.

Program monitoring at the full operating speed of the system.

The property of a program that enables it to be interrupted at
any point; reentered and executed under interrupt; and then

resumed from the point of interruption without loss of
integrity.

This is a program or portion of a program which can be used
simultaneously by different routines. It may call itself

repeatedly or may call a routine which in turn calls the

reentrant coded program again. This type of code cannot store

data in absolute addresses, store data in temporary CPU
registers, or modify any portion of itself. Storage information

must be done through stack operations or in other orderly
sequential storage so that the program can return from the
sequential call statements properly. An example of a simple

flow between a main program and a reentrant coded
subroutine is shown below.

MIN
PROGRAM

:AL

--

~

SUBROUTINE
WRITTEN IN
REENTRANT COOE

"'""-

J
:IILl

ROUTINE CALLS ITSELF
.........

\ FIRST RETURN IS WITHIN
THE SUBRQUTINE A-11

ASSEMBLER/LINKER
REFERENCE MANUAL

Recursive (Pascal)

Refresh

Register

Relative Addressing

Relocatable

ROM

RS-232C

Scalar (PASCAL)

Simulator

Soft Key

Software

Source

Statement

Status Word Register

A-12

MODEL 64000

A procedure that calls itself directly or indirectly.

The process of systematically and periodically accessing
dynamic memory for the purpose of recharging capacity

storage elements.

A memory unit usually one word long, contained within the

.CPU for use in performing operations.

An addressing mode in which the desired address is described
relative to another base address.

Descriptive of object files which can be modified to be

executed in any memory location.

Read-Only Memory.

An IEEE standard for serial data communication.

s
A data type that is an ordered set of identifiers.

A special program that simulates logical operation of a
microprocessor or 1/0 or procedure.

A key whose label appears on the CRT display and thus may be
relabeled to perform different functions over time.

Written programs or data for computer applications.

Information coded in other than machine language that must

be translated into machine language before use.

An imperative sentence in a programming language

interpreted as one or a sequence of instructions by a

computer.

A register which holds binary data representing the state of
various parameters in the microprocessor. Typical parameters

may include zero flag, carry flag, parity flag, accumulator

content, and sign bit.

MODEL 64000

String

Subroutine

Symbolic Addressing

Synchronous

Syntax

Target System

Trace

Transparent

Trigger Point

Two's Complement

Numbers

ASSEMBLER/LINKER
REFERENCE MANUAL

A sequence of characters delimited by , , or A.

Part of a master program or routine which may be used at will

in a variety of master routines. The object of a branch or call

command.

Referencing addresses given symbolic names by a program
(see LOCAL, GLOBAL, EXTERNAL references).

Clocked operation.

A set of rules for specifying the sentence structure and
statement structure of a language.

t
The microprocessor based system under development; the
prototype,

A software diagnostic technique used to follow program
execution step by step to determine where an error is

occurring. A running trace usually displays the contents of
CPU registers as each instruction is executed, thereby

enabling the user to determine where values are not changing
as predicted.

A property of hardware or software which need not be

understood by a user in order to operate a system. Generally,

this hardware or software is never seen by the user and is

therefore "transparent."

A defined event that initiates or precipitates a reaction (e.g.,
a specific data transfer which initiates data acquisition).

A representation of positive and negative binary numbers

which is distinguished by having one representation for the
value of zero (0). Positive numbers are identically represented
in one's complement and two's complement numbers.

Negative numbers are not identical. The two's complement of

a positive binary number is formed by complementing the
magnitude of the positive number and adding the last

significant digit.
A-13

ASSEMBLER/LINKER
REFERENCE MANUAL

Example: 42.5H1 = 0 101010.1

Complement magnitude (42.5) = 0 010101.0
add 1 to LSB 1

2's complement of 42.5H1 = -42.510 1 010101.1

MODEL 64000

Check 42.510 +(-42.510) should equal zero

User 10

Variable

Vectored Interrupt

Word

A-14

Total = 0

u

o 101010.1

1 010101.1

1 0000000.0

1\
I

carry ignored

An identifier used in the System 64000 to differentiate between

users of the system. A user id may be up to six alphanumeric
characters but must begin with an upper case alphabetic

character.

v
A named object that can hold a value from a designated data

type, and can receive new values by assignment.

An interrupt system which employs a table of pointers
(vectors) indicating the location of interrupt service routines.

w
A sequence of binary digits treated as a unit.

"

ROW
(HEX)

0

1

2

3

4

5

6

7

8

9

A

B

C

0

E

F

Appendix B
ASCII Conversion Table

u.s Standard Code for Information Interchange (ASCII)

COLUMN 0 1 2 3 4 5 6 7
(HEX)

BITS
7,6,5-> 000 001 010 011 100 101 110 111
4,3,2,1

!

0000 NUL OLE SP 0 @ P ,
P

0001 SOH OC1 I 1 A 0 a q

0010 STX OC2 2 B R b

0011 ETX OC3 # 3 C S c s

0100 EOT OC4 $ 4 0 T d t

0101 ENO NAK % 5 E U e u

0110 ACK SYN & 6 F V f v

0111 BEL ETB , 7 G W 9 w

1000 BS CAN (8 H X h x

1001 HT EM) 9 I Y i Y

1010 LF SUB * J Z j z

1011 VT ESC + K [k I , I

1100 FF FS < L \ I I , I

1101 CR GS - = M] m I
I

1110 SO RS > N A n ~

1111 SI US / ? 0 - 0 DEL

B-1

ASSEMBLER/LI N K ER
REFERENCE MANUAL

8-2

bits

7 1

l l
Example: Code for 8 = 100 0010 (Hex = 42)

CodeforZ= 1011010(Hex=5A:
Code for n = 110 1110 (Hex = 6E)

MODEL 64000

Appendix c
Assembler

Pseudo Instructions
Summary

General
Assembler instructions can be specified during the assembly operation, or can be embedded

in the source program.

Macro definitions and calls are not listed in this summary_ Refer to Chapter 4 for macro

information.

Operation
Code

ASC

BIN

COMN

DATA

DEC

END

EQU

Summary

Function

Stores data in memory in ASCII format.

Stores data in memory in binary format.

Assigns common block of data or code to a specific location in memory.

Assigns data to a specific location in memory.

Stores data in memory in decimal format.

Terminates the logical end of a program module. Operand field can be

used to indicate starting address in memory for program execution.

Defines label field symbol with operand field value. Symbol cannot be

redefined.

C-1

ASSEMBLERiLiNKER
REFERENCE MANUAL

C-2

Operation
Code

EXPAND

EXT

GLB

HEX

LIST

MASK

NAME

NOLIST

ORG

PROG

REPT

SKIP

SPC

TITLE

MODEL 64000

Function

Causes an output listing of all source and macro generated codes.

Indicates symbol defined in another program module.

Defines symbol that is used glob~lIy I referenced by other program

modulesl.

Stores data in memory in hexadecimal format.

Used to modify output listing of program.

Performs AND/OR logical operations on designated ASCII string.

Permits user to add comments for reference in the load map.

Suppresses output listings (except error messages).

Sets program counter to specific memory address for absolute

programming.

Assigns source statements to a specific location in memory. Assembler

default condition is PROG storage area.

Enables user to repeat a source statement any given number of times.

Enables user to skip to a new page to continue program listing.

Enables user to generate blank lines within program listing.

Enables user to create a text line at the top of each page listing for the

source program.

Appendix D
List of Assembler

Error Messages

Detection and Listing
The assembler detects and lists all errors noted in a source program module. The program

errors are indicated in the source program listing by a two-letter code following each source

statement that contains an error.

NOTE

If multiple errors occur in the same source statement, only the

fi rst error noted wi II be reported (i n most cases).

Each error message contains an error code, a cursor (1\) that pOints to the error location in

the source statement, and a statement that indicates the line number of the previous source

statement that was in error (facilitates error tracing).

A summary of the number of errors within the program, along with a brief description of all

error codes noted, is given at the end of the program listing.

The error message format is as follows:

Error

Code

ERROR-(code), see line XX 1\

/\
Line No. Cursor

of Previous Pointing to

Error Sou rce Statement

Error

0-1

ASSEMBLER/LINKER
REFERENCE MANUAL

MODEL 64000

0-2

Error Codes
The list of error codes (in alphabetical order) along with a description of their meaning is as

follows:

Code

AS

Error

Definition

ASCII STRING - The length of ASCII string was not valid or the

string was not terminated properly.

CL CONDITIONAL LABEL - Syntax of a conditional macro source

statement requires a conditional label that is missing.

DE DEFINITION ERROR - Indicated symbol must be defined prior to

it being referenced. Symbol may be defined later in program

sequence.

OS DUPLICATE SYMBOL - Indicates that the defined symbol noted

has been previously defined in the program assembly sequence.

This occurs when the same symbol is equated to two values (using

EQU directive) or when the same symbol labels two instructions.

DZ DIVISION BY ZERO - Invalid mathematical operation resulting
in the assembler trying to divide by zero.

EG EXTERNAL GLOBAL - Externals cannot be defined as globals.

EO EXTERNAL OVERFLOW - Program module has too many

external declarations (512 externals maximum).

ES EXPANDED SOURCE - I ndicates insufficient input buffer area to

perform macro expansion. It could be the result of too many

arguments being specified for a parameter su bstitution, or too

many symbols being entered in the macro definition.

ET EXPRESSION TYPE - The resulting type of expression is invalid.

Absolute expression was expected and not found or expression

contains an illegal combination of relocatable types (refer to

Chapter 2 for rules and conventions).

MODEL 64000 ASSEMBLER/LINKER
REFERENCE MANUAL

Code
Error

Definition

IC ILL EGAL CONST ANT - I ndicates that the assembler encountered

a constant that is not valid.

For Example:

109B (9 is invalid)

97Q (9 is invalid)

IE ILLEGAL EXPRESSION - Specified expression is either incom­

plete or an invalid term was found within the expression.

10 INVALID OPERAND - Specified operand is either incomplete or

inaccurately used for this operation. This occurs when an unexpected

operand is encountered or the operand is missing. If the required

operand is an expression; the error indicates that the first item in the

operand field is illegal.

IP ILLEGAL PARAMETER - Illegal parameters in macro header.

IS ILLEGAL SYMBOL - Syntax expected an identifier and

encountered an illegal character or token.

LR LEGAL RANGE - Address or displacement causes the location

counter to exceed the maximum memory location of the

instruction's addressing capability.

MC MACRO CONDITION - Relational (conditional) operator in

macro is invalid.

MD MACRO DEFI NITION - Macro is called before being defined in

the source file. Macro definition must precede call.

ML MACRO LABEL - Label not found within the macro body.

MM MISSING MEND - I ndicates that a macro definition with a missing

MEND directive was included in the program.

MO MISSING OPERATOR - An arithmetic operator was expected but

was not found.

MP MISMATCHED PARENTHESIS - Missing right or left parenthesis.
0-3

ASSEMBLER/LINKER MODEL 64000
REFERENCE MANUAL

0-4

Error
Code Definition

MS MACRO SYMBOL - A local symbol within a macro body was
required but was not found.

PC PARAMETER CALL - I nvalid parameter in macro header.

PE PARAMETER ERROR - An error has been detected in the macro

parameter listed in the source statement.

RC REPEAT CALL - Repeat cannot precede a macro call.

RM REPEAT MACRO - The repeat pseudo-operation code cannot

precede a macro definition.

SE STACK ERROR - I ndicates that a statement or expression does

not conform to the required syntax.

TR TEXT REPLACEMENT - Indicates that the specified text
replacement string is invalid.

UC UNDEFINED CONDITIONAL - Conditional operation code
invalid.

UO UNDEFINED OPERATION CODE - Operation code encountered

is not defined for the microprocessor, or the assembler disallows

the operation to be processed in its current context. This occurs

when the operation code is misspelled or an invalid delimiter

follows the label field.

UP UNDEFINED PARAMETER - The parameter found in a macro

body was not included in the macro header.

US UNDEFINED SYMBOL - The indicated symbol is not defined as a

label or declared an external.

Subject Index

a Error messages (I i n ker)

Fatal errors 5-13
Absolute expression 2-8 Nonfatal errors 5-15
Arithmetic operators 2-7
:-;s~;~~~-": soft key 1-7
'--------_/
ASC or ASCII pseudo 3-4

EXPAND pseudo 1-3,3-11

expand list option 1-3
:--e~;~~d--": soft key 1-8
'--------_/

ASCII character set Appendix B Expression operators 2-7

Assembler: Expressions
directive statement 1-2 Absolute 2-8

general 6-1 Relocatable 2-8

HP 1-1, 6-5 EXT pseudo 3-11
pseudo definition , ... 3-1

operation 6-2

syntax 1-5 f
Assembling source program 1-7

Files

b Assembler 1-1

List 1-2
BIN or BINARY pseudo 3-5 No-load 5-12

Binary numbers 6-6 Output listing 1-1
Source input 1-1

c Symbol cross-reference 1-2
r--------"
: <FILE> : soft key 1-7, 1-8, 5-5
'--------_/

Comment field 2-4, 6-5

COMN program module 2-8
COMN pseudo 3-6 9

d GLB pseudo 3-12

Glossary of terms Appendix A

DATA program module 2-8 .GOTO instruction (Macro) 4-8

DATA pseudo 3-6 .GT. relational operator 2-8

DECI MAL pseudo 3-8

Delimiters 2-5
r--------'"
: display : soft key 1-8, 5-5
'--------_/

h

e HEX pseudo 3-12
Hexadecimal numbers 6-7

r--------'"
: edit I soft key 5-6
'--------_/

END pseudo 3-9 i
. EO. relational operator 2-8

EOU pseudo 3-10 .IF instruction (Macro) 4-7
Error codes (assembler) Appendix D Invalid option , 1-3

1-1

ASSEMBLER/LI NKER
REFERENCE MANUAL

I

Label field 2-1, 2-2, 6-4

Library files 5-13
Link syntax 5-3
r--~~n~---'I soft key 5-5, 5-6
'--------_/
Linker

Calling 5-5, 5-6

Cross-reference table , 5-11

Description 5-1
How to use 5-5

Load map listing 5-10

Output 5-10

Queries 5-6

Requirements 5-2

Linker symbol file 5-12

Listi ng options 1-3

list option 1-3
LIST pseudo 1-3, 3-13

listfile prompt. " 1-5
,..-------,
i listfile i soft key. 1-7, 5-5
'--------_/

Logical operators 2-8

.AN. operator 2-8

.NT. operator 2-8

.OR. operator 2-8

.SL. operator 2-8

.SA. operator 2-8

m

Macros

Advantages 4-1
Checking parameters 4-10

Conditional assembly 4-6

Disadvantages 4-2
Format " 4-2

Indexing parameters 4-11

Optional parameters 4-4
Relational comparison 2-8

.EQ. operator 2-8

. GT. operator 2-8

. L T. operator 2-8

1-2

MODEL 64000

.NE. operator , 2-8

Versus subroutines 4-2

MASK pseudo 3-14

Microprocessors
8-bit 3-3

16-bit 3-3

n

NAME pseudo 3-15
.NE. relational operator 2-8

nocode list option 1-3
(--------,
1,- __ n~:~~~J soft key 1-8
NOLIST pseudo 1-3,3-15

nolist list option 1-3
r--~~~~--': soft key.. 1-8, 5-6
'--------_/
No-load files 5-12

.NOP instruction (Macro)4-8
null list option 1-5
(--------j
I null I soft key 1-8, 5-5
'--------_/

Null string 2-6
Numbering systems 6-6

1's complement 6-9

2's complement 6-9
Numeric terms 2-6

o
OCT or OCTAL pseudo 3-16

Octal numbers 6-6

Operand field 2-4, 6-5

Operation field 2-3, 6-4
: -~~~r~~~-'l soft key. 1-8, 5-5
'--------_/

ORG pseudo 3-17

p
:--;r~n~;r--': soft key. 1-8, 5-5
'--------_/

PROG program module 2-8

PROG pseudo 3-6

MODEL 64000

r

Relocatable expressions 2-9

REPT pseudo 3-;8
Rules and conventions 2-1

Comment field 2-4

Label field 2-2
Operand field 2-4
Operation field 2-3

Sou rce statement 2-1

Statement length 2-2

5

.SET instruction (Macro) 4-6

SKIP pseudo 3-18
Source program 6-3

ASSEMBLER/LINKER
REFERENCE MANUAL

SPC pseudo. .. 3-19

String constants 2-6
Symbolic terms 2-5

Syntax conventions 1-9

t

TITLE pseudo 3-19

u

userid statement 1-6

x
xref list option 1-3
:,.----x-r~f---: soft key 1-8, 5-6
'--------_/

1-3

ASSEMBLER/LINKER
REFERENCE MANUAL

1-4

MODEL 64000

•

~

IttJ •

•

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	I-01
	I-02
	I-03
	I-04
	xBack

