HP64000
Logic Development
System

Emulator/
Internal Analysis
8-Bit Reference Manual

[6'” HEWLETT

PACKARD

CERTIFICATION

Hewlett-Packard Company certifies that this product met its published specifications at the
time of shipment from the factory. Hewlett-Packard further certifies that its calibration
measurements are traceable to the United States National Bureau of Standards, to the extent
allowed by the Bureau’s calibration facility, and to the calibration facilities of other
International Standards Organization members.

WARRANTY

This Hewlett-Packard system product is warranted against defects in materials and
workmanship for a period of 90 days from date of installation. During the warranty period, HP
will, at its option, either repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer’s facility at no charge within HP
service travel areas. Outside HP service travel areas, warranty service will be performed at
Buyer’s facility only upon HP’s prior agreement and Buyer shall pay HP’s round trip travel
expenses. In all other cases, products must be returned to a service facility designated by HP.

For products returned to HP for warranty service. Buyer shall prepay shipping charges to HP
and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all
shipping charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with an instrument will
execute its programming instructions when properly installed on that instrument. HP does not
warrant that the operation of the instrument, or software, or firmware will be uninterrupted or
error free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate
maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or
misuse, operation outside of the environmental specifications for the product, orimproper site
preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVEREMEDIES. HP
SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR

CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, ORANY OTHER
LEGAL THEORY.

ASSISTANCE

Product maintenance agreements and other customer assistance agreements are available for
Hewlett-Packard products. '

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

CW&A 9/79

Model 64000 Reference Manuals

The following block diagram shows the documentation scheme for the HP Model 64000
Logic Development System. The interconnecting arrows show the recommended

progression through the manuals as a way of gaining familiarity with the system.

Manual Map
Recommended Installation
Start - and
Configuration
Manual
System Overview
. Y Manual PROM
Service And o Programmer
Manual -
nuals System Software R’(\e/lferen?e
Reference Manual anua
! Tape Drive
— Reference
Editor Manual Manual
Flexible Disc
- Drive
T Reference
— o cm—
r Individual Manual
Microprocessor
or
Microprocessor
Family - HP 64000
l— — e— ——— —I I Host Pascal
64000
Compiler Reference
Manual Logic State/
Microprocessor-Dependent —> Softv;z:r:nnca;yzer
Supplement
PP Manual
Y o
; Logic Timing
User-Definable Assembler Linker Analyzer
Assembler Reference Manual - Reference
Microprocessor-Dependent Manual
Supplement
Measurement
— System
- Reference
Emulation Emulator/Analyzer Manual
Terminal Reference Manual
Microprocessor-Dependent
Supplement

Printing History

Each new edition of this manual incorporates all material updated since the previous edition.

Manual change sheets are issued between editions, allowing you to correct or insert
information in the current edition.

The part number on the back cover changes only when each new edition is published. Minor
corrections or additions may be made as the manual is reprinted between editions.

First Printing....... October 1980 (Part Number 64980-90991)
Reprinted February 1981
Second Edition .. September 1981 (Part Number 64980-90996)

Manual Conventions

The manual conventions and syntax conventions used in this book are presented below. For
a full understanding of information in this manual, review the following conventions.

underlining Where it is necessary to distinguish user input from computer output,
the input is underlined.

Q h Dashed line key symbols indicate a soft key on the keyboard. The
-------- physical labels for the soft keys appear on the CRT display. In text, the
soft key label will appear within the symbol.

¢ Solid outlined key symbols are used in text to represent labeled keys
B on the keyboard.

[] Parameters enclosed in square brackets are optional. Several parame-
ters stacked inside a set of brackets indicate an either/or situation. You
may select any one or none of the parameters.

The use of square brackets implies that a default value exists.
Example:
(&)
B
This indicates A or B may be selected.

{ } Braces specify that the parameter enclosed is required information.
When several parameters are stacked within a set of braces, you must
select one and only one of the parameters.

Example:
A
B
C

This example says one and only one of A, B, or C must be
selected.

Choice of one and only one when several elements are enclosed.

Manual Conventions (Cont’d)

[] Stacked square brackets indicate that enclosed parameters are
[] optional and may be selected in any single occurrence, any com-
bination, or may be omitted.

Example:
[A]
[B]
[C]
A and/or B and/or C may be selected, or this option may be
omitted.
< > Angle brackets denote a syntactical variable. A syntactical variableis a

defined parameter that you supply.
Example:
< FILE >

This example says FILE is a variable that is input by the user.

lower-case Key words (soft key commands) are lower-case on the Model 64000.
bold type These key words will always be represented in text with lower-
case bold type.

Example:

edit <FILE>

= Arrow indicates “is defined as.”

An ellipses indicates a previous bracketed element can be repeated.

Manual Conventions (Cont’d)

UPPER-CASE Literal information which are parameters of a command, are repre-

PARAMETERS sented in text with upper-case type. Literal information parameters are
information that you enter as shown in text. An exception to this is any
parameter enclosed with angle brackets <>, (e.g. <FILE> is a syntacti-
cal variable, not literal information).

Syntax symbols Indicates symbols are used for definition purposes and do not
in color appear on the CRT display.

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

Vi

Emulator/Internal Analysis
8-Bit Reference Manual

© COPYRIGHT HEWLETT-PACKARD COMPANY/COLORADO SPRINGS DIVISION 1980
1900 GARDEN OF THE GODS ROAD, COLORADO SPRINGS, COLORADO, U.S.A.

ALL RIGHTS RESERVED

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

Table of Contents

Chapter 1: Introduction

The Impact of the MiCrOpPrOCESSOr ...ttt et ettt et iiae e 1-1
NeW Design RUIESt e e et et et e e 1-1
New Development Systems ... i e i e e e 1-2
Disadvantages of Previous Development Systemso, 1-3

Enter the Model 64000ttt et et et 1-3

General Orientation of the Emulation and Analysis Manual 1-4

Chapter 2: Theory of Operation

INtr oAU ON o . e e e 2-1

Hardware Configurationot e e e 2-4

Microprocessor Loading and Driving Capabilities.............. oo i, 2-5

SYStEmM O PeratioN ..t e e 2-6
PUIDOSE . ittt e e e 2-6
BUS S rUCIUIES . oo e e 2-7

Loading Absolute Code i e e e 2-8

Running and Stepping the ProCessorot i 2-9

The Analysis MoOQUIE i i i e et e e et e e 2-11

Chapter 3: Installation

INstallation ProCedUIes it e e ettt et e 3-1

Hardware Configuration PP 3-1
Installing the Emulation Control Board

and Emulation Probe e 3-2
Installing the Analysis Boardt e e et et eieeeaaes 3-3
Installing the Memory Control Board it 3-3
Installing the Memory Boardsuuu ittt et 3-5
Installing the BUs JUMPEIS . ..ottt e ettt it 3-6

Emulation Probe Installation i 3-7

Grounding CoNSiderationsttt i e e e 3-9

Radio Frequency InterferencCe ...t et et et 3-9

Chapter 4: Setting Up Emulation

Emulation Software Requirements i i i i et 4-1
Soft Keys and Directed Syntaxouiuniiiiiie e it 4-2

Emulation Initiation e 4-2

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Table of Contents (Cont’d)

Emulation Configuration Question-Answer SEqUENCE.iiiiiiiiinnnnnnn 4-3
Emulation Control Board and Memory
Control Board SeleCtionttt 4-4
CloCK SelECHiON oot e 4-5
Clock Speed SeleCtiont e e 4-5
Real Time SeleCtion e et ettt e 4-6
Memory Configuration o i e 4-6
SIMUIAte 1O o 4-10
Command File Designationoiiiiiiii i e 4-13
Loading Absolute Codeot 4-14
Emulation Configuration Question-Answer
SEQUENCE SUMMIAIY Lottt ittt ittt et et et ettt 4-15
Edit Emulation Configuration. i e 4-17
MU Lo e e 4-19
o= o 4-22
Chapter 5: Operational Commands
INErOdUCH ON . .o e e 5-1
Operational Command SyNtaXx.uuiiiiii ittt et ettt ettt nns 5-1
L0707 o) VP 5-2
=T 1) 9] o | o P A 5-3
=T o PN 5-3
1S PPN 5-4
2T To 1 12 P 5-5
MOAITY MM O Y . ettt et e e e e e e 5-5
MOAify FEgIS OIS . o e e e 5-7
S - L 5-8
U PP 5-8
] (=] o TP 5-10
L= 10 o P 5-11

Chapter 6: Display Commands

Display Command Capabilitiesuuutii i e e 6-1
Memory and Register Data
Trace and Run Specifications
Absolute/Relative CoUNtSt i et et e 6-4
Global and Local Symbols

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

Table of Contents (Cont’d)

Display Command SyntaXouettti ettt ittt e 6-5
Lo 117 o] - Y PSP 6-6
o 117 o1 = YA oo 10 | o | (PSP 6-7
display global e e e 6-8
AISPlay 0Cal. . ot e e e 6-9
Lo 11S] o1 = VAN ¢ 01=T 1 1T Y oY/ P 6-10
o L1S] o] F- YA =T 113 (= AP 6-12
Lo 11T o] F= A ¥ T o 1= o PPN 6-14
AiSPlay traCe ..ottt e 6-15
AiSPlay trC SPEC . ittt e et 6-17

Chapter 7: Analysis Commands

I OdUCH ON o e e e e e 7-1
The ANalysis BOardttt i it et et et ettt i e 7-1
Real-Time ANalYSis ..ottt et e e e e ettt e 7-1
ANAlYSIS COMMaANAS ...ttt it e it ittt et et e e 7-2

Trace CoOmMMaANd. ..ottt e et et et it e e e e e e 7-2
Trace Command Capabilitiescciuiiiii i i et et et et 7-2
Trace Command DesCriptionst e et 7-3
Trace [CONtINUE]ot e ettt et 7-7
Trace only <TERM=>[or <TERM=>]..[continue]t 7-7

Trace (trigger) <POSITION><TERM>[or <TERM>]...

[trace only <TERM> [or <TERM=>]]...[continue]........ ... iiiiiiiiniianenn... 7-7
Trace in_sequence...Restart_ON...ttt i it e e 7-7
TraCE DS PlaY oottt it e e e e e i 7-8

Count ComMMaNd ..ot i e e e e e 7-9
Count Time ADSOIULE it et et ettt e 7-10
Count Time Relative e et et 7-10
Relative/Absolute Time Counts Comparedccoiiiiiiriiiiinennnnnnnnn. 7-10
CoUNt ST AT ES> Lottt e e ettt e e e 7-10

Real-time/Nonreal-time Analysis Guidelines. ...ttt iiiiiiennnn. 7-11
Real-time ANaly SIS ..ottt e e e e 7-11
Nonreal-time ANalysSiS ...t e e e e e e 7-11

Using Analysis ComMmMandSottt ittt ettt 7-12

Trace/Count Command SYyNtaXouuuinttii it i ettt et et 7-12
LT T U o PN 7-13
L= T N 7-14

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Table of Contents (Cont’d)

Chapter 8: Simulated 1/O0

04 Yo 11 T3 4 o o TR PP 8-1
[177= T V- PN 8-2
Common AttribULES ... e e e e 8-2
Printer 1/0 Interfacet i i e 8-3
Display /O Interface.oooi i e e et 8-3
Keyboard I/0 Interfacettt it it ettt ettt 8-3
DisC Files 1/0 INterfaceuuuir ittt ettt et eaaaees 8-4
RS-232 1/0 INterfaCe . o ottt e e e e e e e e 8-5
Printer 1/0 Interfacet i i i i e e e e 8-9
OPEN Printer (BOH) ..ottt e e e e e 8-9
Write t0 Printer (82H) ..ottt e e e e e 8-10
Close Printer File (BTH)ottt e e et ettt 8-11
Display I/0 Interface.o i e e et e e 8-11
Open Display File (B0H)ooiiiii it 8-13
Roll To/Write Line 18 (B2H)ottt ettt 8-13
Select Starting Line/Column (83H)t 8-14
Write from Starting Line/Column (84)ttt iiieaees 8-14
Close Display File (B1H) ...ttt e e e et et eie e 8-15
Keyboard 1/0 Interfacet it it e et et e e 8-15
User Program Requests Keyboard Read (80H)...........cciiiiiiiiiiinnnnnnnnn.. 8-19
64000 Response to Keyboard Read Request.coiiiiiiiiii i, 8-20
64000 Detects Positive KB-Output-Command Word.............ccoiiiiiiiieenn... 8-20
User's Program Detects 00 in CA it ittt et iieianee 8-21
DisC File 1/0 INterfacecoutiiii i i e ettt et ii e 8-21
1= I8 o= AP PR 8-27
Creating New Filettt iaanas 8-28
Accessing Existing Files ... i e 8-29
Deleting Files ...t i e e e e e e 8-32
Changing File Name Assigned to a Particular CA........ ...t iiennnn.. 8-32
RS-232 1/0 INterfaceot e e et e 8-39
Open RS-232 File (BOH)v ettt ettt ettt et enns 8-39
INItIalize 8251 (B2H)ttt ittt e et e e 8-40
Command t0 8251 (B3H) ... ovii it 8-42
Status from 8251 (B4H)ttt e 8-42
Wit 10 8251 oottt e e e 8-42
Read from 8251 ... i e e 8-44
Updating Read/Write Buffers (8DH)coiviiiiii e e 8-46
Simulated 1/O Error Codes ..ottt it e e e 8-67
Simulated 1/0 Sample Programs.uuuuu et e ettt eiei it eeiiaiaeaanns 8-68

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

Table of Contents (Cont’d)

64000 File FOrmato i et ettt et e i e 8-78
Assembler Symbols File (File Type 12)ot it inns 8-78
User Buffer/Assembler Symbols File Packing Formats 8-80
Linker Symbols File (File TYPe 18) ...t ittt ettt e ettt et et 8-80
User Buffer/Linker Symbols File Packing Formatso iiiiieenn... 8-85
SoUICe File (File TY P 2) ottt ittt e e ettt et et et ettt et ettt ettt 8-85
Listing File (File TyYP@ 5) . vvut ittt e ettt ettt e et et et e e e et ean e eeenes 8-85
Absolute File (File TYPe 4) ..ottt i i e ettt ettt eeaes 8-85
PROM Absolute File (File TYPe O) . oiiriitit it ittt ettt aeanens 8-86
Relocatable File (File Type 3) ..ottt e e et ettt eens 8-86
User Buffer/Relocatable File Packing Formats............ ittt 8-92

Appendix A:

Syntactical Variable Definitions. oo e e A-1
CAB S LE> L e e e e A-1
<ADDRESS> (OF SAD D R™) 1 ittt ittt e A-1
SOM D FILE > . ottt e e e e e A-1
CEVEN T > o e e e e e A-1
B 1 PP A-3
PO S T ION > Lt et e e e e e A-4
SQUALIFIER™ oot e s et e e e A-4
SO T AT E S Lo e e e e e A-4
T ERM > L e e e e e e e e e s A-5
SV AU Lo e e A-6

Appendix B:

Emulation Command DescCriptions.ttt e it B-1
LT 0] o AP B-2
(70 T 3 | PP B-3
o 1] o - 3V B-4
=T) 9] o o PP B-5
BMUIAE . L. e e e e B-6
1= 3 o PP B-7
=3 AU PP B-8
o= Vo PN B-9
0T o T /S B-10
=1 € L AP B-11
U At B-12

Xii

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Table of Contents (Cont’d)

5] = o 1S B-13
5] o] o J B-14
14> Lo - B-15
Appendix C:
Example System Hardware/Software.ttt C-1
The EXample System ... it i e e e e e e C-1
Example System Design ...ttt et C-1
Where to get Information i i e C-2
Appendix D:
Emulator Electrical Propertiesot i e et e it e s D-1

List of Illustrations

2-1. Board Installation it e e 2-4
2-2. BUS Orientationo e e e 2-7
2-3. RUN/StEp Diagramttt i e 2-10
3-1. Card Slot Configuration i e e e 3-2
3-2. Memory Control Boardottt it e e e 3-4
3-3. Address Range Selection SOCKetSottt et 3-6
3-4. Memory and Emulation Bus Cablingcoiiiiiiiiiiiiien i 3-7
3-5. Installing the Emulation Probe i 3-9

4-1. Emulation Configuration Display

Board SIot ASSigNMENtS ...t i e e 4-2
4-2. Emulation Configuration Display

- Memory ASSIGNMENTttt e e AT
4-3. Simulate Display Control Address Assignment...............c.ovviiiienaan... 4-12
4-4. Simulated Disc Files/File Name Assignmentccoiviiiiiiinnnenn... 4-13
4-5. Command File Name Assignmentottt iiiiiieaennn. 4-14
6-1. Display Memory 800H DynamiCcviitinitiitiietiie e eenareaacennenns 6-2
6-2. Display Memory 810H MNemoniC.ttt it e iie e eaeeenns 6-3
B-3. Display RegiStersttt i e e e e e e 6-4

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

List of Illustrations (Cont’d)

7-1. Trace Command Flow Diagramciiiiiiiiiiiniiiineennennn.
7-2. Display Trace Formatttt i it ettty
7-3. Display Trace Absolute Format......... ... ittt iiinnennnnn.
7-4. Display Trace Unpacked Format,
7-5. Format for Display Trace Offset by 009AH,

8-1. Simulated Printer 1/0 Interface Diagram.............cciiiinvennn.n.
8-2. Simulated Display 1/0O Interface Diagramccciiiiiiinnann..
8-3. Simulated Keyboard 1/O Interface Diagramccovvvunn.n..
8-4. Simulated Disc File I/0 Interface Diagram..............ccoiviiinnn.
8-5. Simulated RS-232 I/O Interface Diagramcccivinnn.
8-6. Display TeChNIQUESiii i i it ettt e i i
8-7. Keyboard I/0 Interface Sequenceccoiiiiiiiiniininnnnnn.
8-8. 8251 Initialization Formats ...ttt
8-9. Command Mode Instruction Formatccoiviiieeennn...
8-10. Asynchronous Mode Instruction Format
8-11. Synchronous Mode Instruction Format
8-12. 8251 Status Word Format ittt
8-13. Writing RS-232 Record - Phase |.........ccoiiiiiiiiii s,
8-14. Writing RS-232 Record - Phase Il
8-15. Writing RS-232 Record - Phase Ilo i i,
8-16. Writing RS-232 Record - Phase IV i,
8-17. Reading RS-232 Record - Phase |..........ciiiiiiiiiiiinennnenn.
8-18. Reading RS-232 Record - Phase Il,
8-19. Reading RS-232 Record - Phase Il iiiiiiinioa...
8-20. Reading RS-232 Record - Phase IVttt
8-21. Simulated Display I/O - Sample Program A
8-22. Simulated Display I/0O - Sample Program B

8-23. Simulated Keyboard, Display,

and One Disc File I/O - Sample Program................cccvv....

8-24. Simulated Keyboard, Display,

and Two Disc Files I/0 - Sample Program................ccouv...
8-25. Assembler Symbol File Overall Structureccovvet..
8-26. Assembler Symbol Record Structurecciiiiiiiiiiii...
8-27. Assembler Symbol Record/User Buffer Format Details..............

8-28. Assembler Symbol Record/Symbol

Definition Block Examples........cooviiiiiiniii it iiiinennnn.
8-29. Linker Symbol File Overall Structurec.ciiiiiiiin..
8-30. Microprocessor Configuration Record Structure
8-31. Global Symbol Record Structure ...,

MODEL 64000

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

List of Illustrations (Cont’d)

8-32. Global Symbol Definition Structure it 8-100
8-33. Program Name Record Structure...........ccoiiiiiiiiiiiiiiiiiiiineenn, 8-101
8-34. Program Name and Address Definition Block Format...................... 8-102
8-35. Source and Listing Files - Overall Structuret 8-103
8-36. Source and Listing File Format i 8-103
8-37. Absolute and PROM Absolute

File - Overall Structureottt i et i cee i eeae e 8-104
8-38. Absolute and PROM Absolute File Formats..............coiiiiiiinin... 8-105
8-39. Relocatable File - Overall Format i, 8-107
8-40. Relocatable File Program Description

Definition BloCKo i i i e et e e 8-108
8-41. Relocatable File Data Definition Blocko, 8-109
8-42. Relocatable File External Symbols

Definition BlOCK. ...t i e i e 8-110
8-43. Relocatable File End Definition Blockc. it 8-111

List of Tables

4-1. Memory Types Read/Write Protected ...ttt 4-8
4-2. Emulation Configuration Question-Answer

SEUENCE SUMMIAIY .« ottt ittt ettt ettt ettt ettt ettt ettt iaeennns 4-15
8-1. Printer 1/0 CodeS. ..ottt e e e i e s 8-12
8-2. Display 1/0 CodeS .. vii ittt e e e e e e e 8-16
8-3. Keyboard 1/0 Interface Codesiiiiiniiii ettt 8-22
8-4. Command WOord CoOdesuuiiniiiiiiit ittt iiiiaaeaanns 8-24
8-5. Disc File Type Numbers and Namesiiiiriniiiniiiniinennnnn. 8-33
8-6. DiSC File I/O COdeS ..ottt e et et et e e 8-34
8-7. RS-232 /0 CO0ES .ttt tit ettt ettt ettt et e e e s 8-47
8-8. Simulated 1/0O Error Codes - General Definitionst 8-67

XV

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

XVi

Chapter 1

Introduction

The Impact of the Microprocessor

The impact of the microprocessor on the electronics industry, and on our society, can not be
estimated. Not many years ago the electronics designer of digital equipment had to work at
the gate level to incorporate many small scale integration packages to satisfy the
requirements of his design. Today the designer’s time is spent in an entirely different manner.
Large scale integration, which has generated the microprocessor, now allows a designer to
spend more time generating the function he wishes to create. Consequently, the digital
designer is more of a systems engineer than ever before. The designer still has to worry about
electrical interfacing and a minimized design, but the majority of time is spend analyzing
ways to accomplish the function through the use of complex large scale integrated packages.

New Design Rules

Because of large scale integration, the development of new design has taken a different
direction. Whereas, years ago, hardware was the only way to accomplish any particular
function, today hardware really supports the sophisticated software package, which effects
the desired result. Designs of today enjoy a higher cost to performance ratio than ever
before. This is because the new design practices have resulted in a shift in the cost emphasis
of development projects. In the past the major cost impact of development projects was
primarily, if not totally, in the development of the hardware used to implement the function.
Today, the costs have shifted from hardware to software. A rule of thumb often used is: the
costs of software development usually exceeds the cost of hardware development by a factor
of two. The consequence of this shift in cost is that a manager minimizes development costs
by putting the money that was previously allocated to hardware development tools
(oscilloscopes, logic analyzers, etc.) into the purchase of software development tools
(microprocessor development systems). Now the designer is confronted with a new set of
development tools for electronic equipment. The new tools are called assemblers, compilers,
editors, and in-circuit emulators. Indeed, separation between the software designer and the
hardware designer is becoming minimal.

1-1

EMULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

1-2

It has become readily apparent to the manufacturers of microprocessors that new tool are
needed to adequately utilize their products in new electronic designs. These manufacturers
have introduced new development tools called microprocessor development systems. The
original development systems were little more than software development aids. The
proliferation of digital bus systems, prompted by the microprocessor, has generated the logic
analyzer. One such logic analyzer was the HP5000A. Logic analyzers have allowed the digital
designer to look at digital transactions on buses in complete byte time sequences. Because
of the logic analyzer, digital design has become easier to cope with and the development
cycle has been shortened.

New Development Systems

Microprocessor manufacturers have introduced a second generation of tools to support their
microprocessor products. This generation of tools, the one we enjoy today, consists of
development tools for both software and hardware. The software development tools allow the
user to write text in machine language and edit text while resident on the computer. The user
can take a file generated by the editor utility program and assemble the text into machine
object code. When several software modules are to be combined in an operating system, a
relocating linker attaches them together and automatically assigns addressing to each
module. These operations are transparent to the user. Because the software developer needs
to test software, even through the prototype hardware is not yet complete, the development
system manufacturers have provided emulation systems. These emulation systems allow the
user to run software without the target hardware. They also allow the hardware designer to
run developed hardware under control of a device that will allow access to every memory or
I/0 transaction. Essentially, the emulation capability, with the added features of tracing,
program single-stepping, or running, is the equivalent of a logic analyzer and a development
system in one box.

Instrument manufacturers, and even small garage type shops, have begun to produce
microprocessor development systems. The prices range from a few hundred dollars to
several thousand dollars. In addition, well established instrument companies, such as
Hewlett-Packard, have realized that the microprocessor revolution has brought new
requirements in measurement and development tools. It has been also apparent that users of
microprocessors wish to be free to develop products using more than one of the
microprocessor architectures that are available on the market. This requires a development
system that is universal; that is, able to support the development of more than one
microprocessor. Clearly, microprocessor manufacturers are not inclined to encourage
competition by supplying universal development systems. Consequently, the instrument
companies have begun to build microprocessor development systems that are universal in
nature and capable of handling more than one processor.

MODEL 64000

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Disadvantages of Previous Development Systems

Previous microprocessor development systems, both universal and dedicated, have suffered
disadvantages. Because the microprocessor development cycle was new and not completely
understood, many functional implementations in the early development systems were
difficult to use. In many ways they were reminiscent of computer technology ten to fifteen
years ago. Many microprocessor developement systems, particularly those universal in
nature, did not support processors as well as the manufacturer’s systems. Development
systems dedicated to a particular microprocessor supported that processor well; but
universal systems have never supported any processor as well as the dedicated system built
by its manufacturer. In many early development systems, if there was any emulation
capability at all, it was usually scant. Companies developing electronic equipment have been
inclined to buy one development system for the use of both hardware and software
engineers. Often this has meant inadequate resources for everybody in the development lab.
The develdpment system has become a scheduled and time-shared resource resulting in
inefficient development of microprocessor design and has caused both schedule and cost
impacts to the development of new products. Until recently only machine or assembly level
languages were available in development systems. For many applications, programming in
machine language is inefficient and, consequently, wasteful of time and money. There was a
time when no high level language such as Fortran or Pascal was available to the software
designer. Consequently, programming in assembly level or machine level language caused
software overruns and wasted time in software development.

Enter the Model 64000

With the Model 64000, Hewlett-Packard responded to these major disadvantages of
microprocessor development systems. The result is a new development system that is easy to
use and comprehensive in its capabilities. The 64000 enjoys the experience of a major logic
analyzer manufacturer. Hewlett-Packard has been involved in the development of
microprocessor-controlled instruments for several years and the 64000 was built by HP
design engineers to satisfy HP requirements and to improve features found unsatisfactory on
other development systems.

The Model 64000 is easy to use. Extensive use is made of the “soft key” concept. The soft
keys allow easy access to the menu of commands and alternatives available at each step of

that controls the 64000 is a highly capable microprocessor built by Hewlett-Packard. As a
result, the 64000 is capable of suporting most of the current 8- or 16-bit microprocessors with

1-3

EMULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

minimal change of hardware and software. The Model 64000 also has programming
capability in Pascal. Pascal is a high level language that is gaining wide spread acceptance as
a significant tool in the development of microprocessor software and firmware. The Model
64000 is also a multi-terminal system. A single disc system can be shared by up to six
stations, thus minimizing utilization conflicts among software and hardware designers.
Finally, Hewlett-Packard has used its experience as a logic analyzer manufacturer to develop
an emulation and analysis capability previously unavailable. You will find that many of the
emulation analysis features on the 64000 are similar to those available on the HP Logic
Analyzers. The emulation and analyzer capabilities are easy to use in the Model 64000 and
the system is capable of supporting a variety of emulators.

General Orientation of the Emulation

and Analysis Manual

Chapter 2 of this manual briefly describes the the operation of the 64000. Chapter 3 covers
the installation procedures of the emulation and analysis equipment. For information
regarding installation of other pieces of equipment in the Model 64000, refer to the system
manual. Chapter 4 covers emulator set up. Chapters 5 through 8 discuss emulation, analysis
and simulated I/0 commands.

MODEL 64000

Chapter 2
Theory of Operation

NOTE

Emulation and analysis equipment in the 64000 are optional. If
the emulation and analysis options were ordered and not
received, please contact the local Hewlett-Packard repre-
sentative.

Introduction

This section briefly describes, the hardware and software that make up the emulation and
analysis capabilities of 64000 Logic Development System.

What is emulation and analysis? Emulation is described as the “striving to be equal or to
excel.” In the case of microprocessor systems, to emulate means that the microprocessor
and/or memory in a target system is replaced by another device which strives to look exactly
like the original device being replaced. Advantage can be gained by building the tools
necessary to control the execution of the replacement processor into the emulator. In
controlling the operation of the microprocessor, the designer of microprocessor systems can
effectively debug software or hardware problem areas.

Emulation is accomplished in the 64000 by a two-processor system. One processor is used
by the 64000 operating system while the other one is used to emulate the desired
microprocessor. Since the emulation processor and emulation memory are not shared with
the operating system, the 64000 easily adapts to support different processors by changing
the processor used for emulation. The same microprocessor which controls the operating
system of the 64000 controls any processor module that is used for emulation.

2-1

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

An emulation and analysis module consists of four to five boards in a standard option
package. Two levels of support are provided. The first level of support (called level one
support), consists of four to five boards which are as follows:

e Emulation Control Board, Emulation Probe and Microprocessor Replacement Pod
e Analysis Board

e Memory Control Board

e Memory Board

e Memory Boards (Optional)

The emulation control board starts, stops and single-steps the emulating microprocessor. It
controls the interaction between the 64000 operating system software and the emulation
hardware. The control board is the major interface between the emulation pod and emulation
bus. The emulation control board also allows the development system to interface to
registers internal to the microprocessor chip.

The memory control board monitors the address and data buses to determine the type of
memory that is to be accessed, (i.e., emulation memory or user memory). The memory
control board is the major interface point from emulation memory to the 64000 operating
system. In addition, the memory control board signals the analysis equipment and halts
emulation if an access is attempted to PROM memory.

Each Memory Board contains enough sockets for 16K words (16 bits/word) of random access
memory (RAM). A maximum of two Memory Boards may be used with 8-bit processors; up to
four boards may be used with 16-bit processors. Options to these memory boards are
available in which only a fourth of the board is loaded. It is possibie, then, to buy emulation
memory in units of 8K bytes. In an emulation system with the maximum emulation memory,
there are two memory boards, each containing 32K bytes (16K words) of memory. The RAM
in these boards can be configured as either random-access memory or read-only memory.

The analysis board in the Model 64000 is the equivalent of a logic analyzer. The analysis
board accepts trigger specifications from the 64000 operating system software and then
monitors the emulation bus to determine if the specified state has occurred. When the state
occurs, the analysis board makes a trace of 256 contiguous events of program execution and
stores them in a memory called trace memory or trace buffer, located on the analysis card.
The trace data is available to the 64000 through the operating system and is displayed on the
development station CRT.

2-2

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

An important point is that the emulation and analysis function is, in a sense, separate and
independent from the rest of the 64000 system. That is, once the emulation and analysis
equipment has been configured and set into operation, it can continue to operate without
interference from the operating system until established conditions are met. In addition, the
system software required to run the emulation and analysis capability does not take up any of
the emulation RAM address space. Emulation memory may be configured to exist at any
location in the address space of emulation processors.

You can use the CRT, keyboard, and printer as input and output devices for the emulated
program. The input and output addresses of these devices are definable by the user. Note,
however, that the actual interface to these devices is handled by the operating system of the
64000. Data ports, with assignable addresses, are available to the emulation processor as
interfaces to the 1/0 devices. The actual transfer of data from these ports to the I/0 devices is
made under control of the the 64000 operating system software and is transparent to the
emulation program.

When a linked and relocated file in the 64000 is loaded into the emulation system, a symbol
table is generated with the object code. This symbol table allows you to specify addresses by
specifying labels from the symbol table. For instance, it is possible to say "run from START"
instead of "run from 0BOOH". Symbols can be used to specify particular program memory
locations but the mnemonics of memory contents will not include symbols from the symbol
table in the disassembly.

Finally, it is important to note that the program code to be run under control of emulation and

analysis must be object code that has been linked and relocated. Emulation and analysis will
not execute source code or object code that has not been relocated.

2-3

EMULATOR/INTERNAL ANALYSIS MODEL 64000

8-BIT REFERENCE MANUAL

Hardware Configuration

Emulation and analysis circuit boards are normally installed to the rear of the station
cabinet. This is done to maximize the usable cable length to the emulation pod.

In general, the order of board insertion, from back to the front, is:

Emulation board
Analysis Board

Memory Control Board
Memory Board

Memory Board (Optional)

\\\\\\\\\\\\\‘q\-\‘

Figure 2-1. Board Installation

The emulation pod and socket normally extend from the emulation board. Refer to figure 2-1
for an illustration of the installed boards. For more information refer to Chapter 3 for the

installation procedures.

2-4

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Microprocessor Loading and Driving Capabilities

When installed in a target system, the emulation equipment will respond very nearly to the
microprocessor it emulates. It is important you understand the output driving and input
loading characteristics the emulation equipment presents to the target system.

For the address, data, and control signals of the emulation processor at the pins of the
processor probe, the input and output characteristics are identical to low power Schottky
transistor-transistor logic (LS TTL). Reference may be made to the specifications of any LS
TTL manufacturer for the parameters of input loading current, output driving current, and
three-state loading characteristics.

The capacitive loading of the probe is the sum of the capacitive loading of LS TTL gates and
the capacitance of the probe cable (which is approximately 20 pF).

C = C + C
TOTAL LS GATE CABLE

The clocks supplied to microprocessor chips generally come in one of three forms. Clocks
are supplied at MOS levels as high as 15 volts, at TTL levels, or as direct inputs from a lead of
a crystal. The emulation processor of the 64000 allows all of these methods for driving the
emulation clock rates. It is possible to slow down the emulation processor to a desired speed
by using a slow user clock, if within the specifications of the processor manufacturer. If the
internal clock is selected, the emulation processor will operate at full rated speed. A table of
loading values and specifications for the clock options are as follows:

CLOCK, High-level

Levels: as specified by processor
C = C spec + C cable

CLOCK, TTL

Levels: TTL as specified by processor
C = C spec + C cable

CLOCK, Crystal Inputs

Accepts frequency determining elements as specified by the processor manufacturer
unless otherwise noted.

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

2-6

MODEL 64000

The timing of processor signals at the probe plug is designed to emulate exactly the timing of
signals of a microprocessor chip normally inserted in the same plug. Specifically, the setup
time, hold time, propagation delay time , and clock period will satisfy the published processor
specification when referenced to any signal applied to the processor at a processor probe

pin.

When emulating processors such as the Z80, which have an internal dynamic RAM refresh or
DMA capability, the emulator pod will continue to execute these functions when emulation is
not in process.

The emulation capability of the 64000 will support processors with a maximum clock cycle
speed of 160 nanoseconds.

Purpose

NOTE

The emulation probe presents greater drive capability and
slightly greater capacitive loading to the target system than
the processor being replaced. Consequently, it is conceivable
that a user’s system, which operates under emulation, may
not operate properly when driven by a microprocessor IC.
Noise margins and signal levels in marginally overloaded
designs may not cause problems when driven by emulation
but may be fatal to system operation under normal
microprocessor drive conditions. Be sure that your design
allows for the added drive and loading specifications of the
Model 64000 emulation probe.

System Operation

This section presents an overview of emulation and analysis in the 64000 system.
Understanding this material will make it easier to understand the following chapters. Please
note the following material is conceptual and is not a complete description of the design of

the 64000.

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Bus Structures
The 64000 contains four basic bus structures:

SYSTEM bus
EMULATION bus
MEMORY bus

10D bus (input/output data bus)

TAPE
DRIVE

:: 1/0
CONTROL SYSTEM BUS >

[2]
o
[ea]
i i
=
KEYBOARD DISC PRINTER
HOST
PROCESSOR

HOST PROCESSOR BUS

||
1 Tl

SYSTEM
RAM SYSTEM EMULATION ANALYSIS MEMORY EMULATION
DISPLAY ROM CONTROL CONTROL RAM
CONTROL
AY @
%Igr\}'En L EMULATION BUS]
CRT
EMULATION | [USER USER USER | !
POD ' | RAM ROM I/0 :

Figure 2-2. Bus Orientation

2-7

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

The last three buses in the list are visible in the system chassis as ribbon cables extending
across the top of the circuit cards.

The SYSTEM Bus is the address, data and control buses of the 64000 system control
processor. This bus carries the majority of the control signals, commands, and data to and
from the system elements.

The EMULATION bus is the address, data, and control buses of the emulation processor.
This bus is extended on the processor probe and is used to drive the microprocessor bus
systems of the target system.

The MEMORY bus is the major artery through which both the system and emulator have
access to emulation memory.

The 10D bus is dedicated to input and output devices of the 64000 system. It handles data to
and from the minicartridge tape drive, the keyboard, the disc drive, the printer, and the
system processor.

All data transfers in the system occur on these buses. For example, to display user RAM
memory, a command is transmitted on the system bus from the system processor to the
memory control circuit board. When memory is available, data is accessed from the memory
boards and routed on the emulation bus to the memory control board. The memory control
board transmits data to the system processor on the system bus and from there the data is
passed via the |OD bus to the display controller for display on the CRT. To display emulation
memory, data is accessed in the same manner except that data is transmitted from emulation
memory to the memory control card through the memory bus. From that point on, data is
transferred in the same sequence as above.

Loading Absolute Code

Program code to be emulated must be absolute code, that is, relocated and linked to form a
single module. The entire object code module is loaded as a whole into memory from the
system discs or tape. The only exception is the case in which user equipment contains
program code in ROM'’s that are used by the emulated program.

The first step in emulation is to map the memory space. Mapping is done by specifying
emulator or user RAM or ROM space and illegal memory.The resulting mapping information
is loaded through the system bus to the memory controller. Mapping sets up address
boundaries in the memory control hardware. The memory control board then determines the
memory source or destination of data by monitoring the address bus of the emulator
processor. If an address falls within the space specified by user RAM, the memory control

2-8

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

allows the buffer surrounding the emulator processor to access the target system memory.
Otherwise, the memory control directs access to the emulator RAM. If an attempt is made to
access illegal memory or to write to read only memory, the memory control board sends a
signal to the emulation control. This signal halts execution to allow inspection of the
processor state that caused the illegal access. These functions happen automatically and do
not require interaction with the user.

The input/output space must also be mapped. The 64000 allows access to the cathode ray
tube (CRT), tape, disk, keyboard, and printer. Interface to these items are simulated as data
ports whose addresses are assigned by the user before emulation run time. These interfaces
are handled by the system controller and are not exact duplicates like interfaces that would
be experienced outside the emulation system. Therefore, the user interface is, simple, but itis
not, necessarily, exactly like the interface that you will finally see in your target system.

Once the memory and the 1/O space is mapped, the emulation memory can be loaded.
Loading is accomplished by reading an object code disc file and writing the code to the
emulation or user memory. The portion of code specified as user RAM gets loaded into the
target system. The portion of the code for emulation RAM goes directly to the emulation
memory. The memory control board specifies the destination of the code loaded from disc.
The operator does not have to give loading instructions to the system because this is
automatically accomplished in the hardware. The data loaded will divert destination in
accordance with the memory map that is previously entered by the user.

Running and Stepping the Processor

There are major differences in the method of emulation between stepping and running the
same processor.

Once program code has been loaded into the emulation memory and a system command has
directed the emulation microprocessor to begin execution, it continues to run in real time or
as fast as the emulation processor clock source will operate. The emulation processor runs
independently of the operating system. This means, consequently, that the operating system
may be used to do other things (such as tracing events or displaying portions of memory)
while the emulator is running. It also means, however, that when running in real time, the
analysis function on the analysis board is the only method to monitor execution of the
emulation processor. Satisfying a trace sequence in the analysis board will stop the
processor so that the internal registers may be examined.

When stepping, the emulation processor executes one instruction at a time. Each step occurs
with consecutive strokes of the return key after having entered the step mode. After each
step, the condition of the registers and any memory transactions (if there were any) are
reported on the step display.

2-9

EMULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

2-10

The following occurs in the emulation system during the step mode. A small memory, called
Background Memory, has been loaded with the previous register contents of the emulation
microprocessor. (See figure 2-3.) The emulation processor is directed, by the operating
system, to execute a series of instructions which restore the registers from the
background memory. The next program instruction to be executed is loaded into the
background memory followed by an instruction added by the operating system which causes
a jump back to the stepping program. The controller forces the processor to execute the next
instruction (in background memory). As the program counter increments and the next
instructions are executed, the processor will return immediately to the operating system,
having executed only one program instruction. The system program causes the emulation
processor to execute instructions that store its register contents in background memory. The
stored contents are then displayed. The emulator acontroller will then wait for a new

command from the operating system. The procedure will restart and recycle every time the
return is pressed.

PROCESSOR IN USER
OR EMULATION MEMORY PROCESSOR IN BACKGROUND MEMORY

RESTORE REGISTERS
SET PROGRAM

BUS POINTS TO USER

COUNTER
RUN JUMP TO PROGRAM
MEMORY
BUS POINTS TO BACKGROUND
ILLEGAL
OPCODE

DUMP REGISTERS

Crned

SET COUNTER

DUMP REGISTERS

<>

Figure 2-3. Run/Step Diagram

MODEL 64000

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

The Analysis Module

There are two lines of thought concerning the design philosophy of logic analyzers. One
theory suggests that the power of a logic analyzer instrument is directly proportional to its
memory capacity; that is, instrument usefulness is related to the number of executed states
that can be remembered by the analyzer instrument. The other philosophy suggests that the
power of a digital analyzer lies in its triggering and capturing capabilities. Hewlett-Packard
has adopted the latter point of view and has made the analysis capabilities of the 64000 easily
adaptable and versatile. Because of the wide range of triggering capabilities, the 64000 is an
extremely efficient tool, in the process of debugging microprocessor hardware and software.

The analysis board may be viewed as a logic analyzer which uses the system CRT as its
display. In many respects it is similar to the Hewlett-Packard HP Model 1611 Microprocessor
Analyzer.

Once atrace has been requested by the operating system, the analysis module begins to look
for “states” that satisfies the trace specification until stopped by a command from the
operating system or until the trace specification is met. Trace specifications are entered into
the operating system by the user. The entered specifications are loaded into the analysis
board trigger hardware by the operating system via the system bus. The analysis board
continually monitors the transactions between elements on the emulation bus. When the
required trigger occurs on the emulation bus, the analysis board stores the previous or
consecutive bus states in a dedicated analysis memory. When the display trace command is
initiated from the console, the operating system accesses the analysis memory via the system
bus. The content of trace memory is retrieved, formatted, and displayed on the CRT screen. If
desired, the operating system will disassemble the code found in the trace memory into
mnemonics of the processor being emulated.

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

2-12

MODEL 64000

Chapter 3

Installation

Installation Procedures

Before installing the emulation equipment, refer to the Model 64000 Overview Manual for
instructions concerning the installation of the system work stations, disc, and printer. When
the system has been installed and is fully operational, install the emulator hardware as
described on the following pages.

CAUTION

Before installing any of the emulator boards into the work
station ensure that the station power switch is set to “OFF”.

Hardware Configuration

The emulation and analysis circuit boards can be installed in any card slot of the station
chassis. See figure 3-1 for a typical card grouping. Installation of the Emulation Control board
in the rear most slot of the board grouping maximizes the free cable length outside the work
station chassis. In addition, by installing the Analysis, Memory Control, and Memory boardsin
the positions specified, the length of the emulation and memory bus connector cables is
minimized.

The emulator pod and user socket will extend from the Emulation Control board when
installation is complete.

EMULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

3-2

B R N N R N N N N N N N

Figure 3-1. Card Slot Configuration

Installing the Emulation Control Board and Emulation Probe
The first step in the installation of the Emulation Control Board and the Emulation Probe is to
connect the Emulation Probe to the Emulation Control Board. Two multi-colored ribbon
cables are used to connect the control board to the probe. Each cable is terminated with a
different type connector. Pin 1 on the cable connectors is indicated by a triangle molded into
each connector. Mating male connectors are located on the top left of the control board (as
you face the component side with the wide male edge connector at the bottom). Pin 1 on the
board is indicated by “Pin 1” silk-screened on the board surface. Being careful to align pin 1
of the male and female connectors, connect the probe to the control board.

Install the Emulation Control board into the station chassis by aligning the board in the
circuit card guides, with the component side of the board facing the front of the chassis, and
applying a gentle downward pressure until the board is seated in the mother board
connector. Be sure the ejector handles are in their full horizontal position when the board has
reached its full downward travel.

MODEL 64000

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Installing the Analysis Board

The Analysis Board must be installed in the next slot toward the front of the 64000 from the
Emulation Control board. For example, if the Emulator Control board was installed in slot 9,
the Analysis board should be installed in slot 8. Install the board in the station using the
procedure described for the Emulation Control Board. As with the control board, assure that
the ejector handles are in their full horizontal position when the board is seated in the chassis
connector.

Installing the Memory Control Board
Set the “DATA BITS” switch to the proper data bus width of the emulation processor: 8 bits
wide or 16 bits wide. Facing the component side of the Memory Control board, the “DATA
BITS” switch is located just below the space between the connectors located on the top edge
of the circuit board (see figure 3-2). Set the switch to the far right for 8-bit emulation. Be sure
that the switch has traveled as far right as possible.

Set the “ADDRESS BUS WIDTH” jumper cable to the proper address bus width of the
emulation processor. The jumper cable, which is located in the center of the component side
of the board, has two connectors. The lower connector is soldered to the board and is not
removable. The upper connector is movable and mates with a male connector block soldered
permanently to the circuit board. Beside the male connector block is a series of horizontal
bars labeled as “BIT 14", “BIT 15", etc., up to “BIT 20”. The address bus size of the emulation
microprocessor is selected by moving the jumper cable connector vertically on the male
connector block until the desired bus size is indicated on the bit number scale. For example,
if the emulation processor has a 16-bit address bus, the jumper cable connector is positioned
so that “BIT 16” mark is not covered by the connector but “BIT 17” mark is. Likewise, for a 20-
bit address bus, all marks are uncovered. In figure 3-2, the “ADDRESS BUS WIDTH” jumper
is set for a 16-bit address bus.

The Memory Control board is installed in the next vacant slot forward of the Analysis board.
If no Analysis board is used, the Memory Control board can be installed in the slot next to the
Emulation Control board or in a slot two positions forward of the Emulation Control board,
leaving a slot vacant where the Analysis board would normally go. Install the Memory Control
board using the procedure described for the Emulation Control board and assure that the
board is firmly seated in the chassis connector.

MODEL 64000

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

 YETWTE
<] "

i
L .

oy
x . X
oo -

L O ot r U oew RS L

grezanr E L ’...!nthn ErrEFces
1 | ¥

e
»*
ot

LE | L ¢ i)
| u.fl . »
awa‘nlln‘! 1.!!ll1ll| '-t-.:-l

v
[LI F YT 3d 4 v [FTXT YN X Y] gyrecer "

.
¥
ot

1 T#nl ¢ﬂ,~|r~ - L - ,'nvqn.r.u
: L | - .- ‘.ca.‘ .«
: i] cetrote ’...

 ww i u L,

Figure 3-2. Memory Control Board

3-4

MODEL 64000

EMULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

Installing the Memory Boards

Each Memory board may contain from 8K to 32K bytes (4K to 16K words) of Random Access
Memory (RAM) in units of 8K bytes. The address space of each card must be specified by
installing an 8-pin jumper plug in address select socket U11. Facing the component side of
the memory board with J1 at the bottom, U11 is located on the upper right corner. Label
boxes indicating the address range options in words are silkscreened on the board below
U11 (see figure 3-2). An address range is selected by installing the 8-pin jumper plug into the
half of the socket associated with the address range label being selected. For example, in
figure 3-2, address range 0 to 16K (words) is selected because the jumper plug is in the four
left most pin positions of U11.

The address range specification does not limit the address ranges which may be emulated.
For instance, if there is one fully loaded emulation memory card, it may be used to emulate
any combination of up to 32 1K address blocks. The address range specification is used only
by the emulation system to distinguish one memory board from another. It does not establish
addresses for emulation.

The address range specification rules are listed below:

a. One board with at least 8K bytes of memory must be specified as address range 0 to
16K.

b. If two memory boards are installed, one must be specified as the 0 to 16K range while
the other is specified as 16K to 32K.

c. Only the two positions of U11 may be used for address range selection. The full
address range of 0 to 64K bytes (0 to 32K words) is available from these two selection
positions. U10 must remain open for 8-bit emulation.

d. Only one jumper plug can be inserted into socket U11 on each board.
Install the Memory board(s) in slot(s) adjacent to the Memory Control board with the

component side of the board facing the front of the work station. Assure that the board(s) are
firmly seated in the chassis connector(s).

3-5

EMULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

3-6

Figure 3-3. Address Range Selection Sockets

Installing the Bus Jumpers

After all the emulation and analysis circuit boards have been installed in the work station card
cage, the emulation and memory bus jumpers must be installed across the top of the board
set. The emulation bus connects together the Emulation Control board, the Analysis board,
and the Memory Control board and consists of two jumper cables each of which contains
three female connecters. Connect one of the cables to the edge connecters in the center and
the other to the connecters on the right side of the top edge of each board as viewed from the
front of the station (figure 3-4). Be sure that the key on the edge connectors of the circuit
boards aligns with the key on the cable connector blocks.

The memory bus connects the Memory Control board to the Memory board(s) and consists
of one cable with either two or three female connectors. Connect the Memory bus jumper to
the connecters along the left side of the top edge of the Memory Control and Memory boards
assuring that pin “1” on the board edge connector aligns with pin “1” of the connector block
(figure 3-4). v

MODEL 64000

MODEL 64000 EMULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

EMULATOR
POD

EMULATION BUS

MEMORY BUS

Figure 3-4. Memory and Emulation Bus Cabling

Emulation Probe Installation

When the emulator is used with a target system, the user socket extending from the the
Emulator Probe should be installed into the target system as follows:

a. Switch the target system power supply off.

b. Remove the processor chip to be emulated from its socket in the target system.

CAUTION

The emulator pod contains devices which are susceptible to
damage by static discharge. Therefore, operators should take
precautionary measures before handling the user socket to
avoid damage to the emulator.

3-7

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

c. Insert at least one of the pin extenders, which have been provided, onto the user
socket. If the socket is to be installed on a densely populated circuit board, there may
not be enough room to accommodate the plastic shoulders of the socket and
additional extenders may need to be inserted.

CAUTION

The 40-pin extenders protect the socket from damage while it
is being inserted and removed from the microprocessor
socket. DO NOT use the socket without at least one 40-pin
extender installed.

d. Install the user socket into the microprocessor socket using light downward pressure.
The red-edged side of the cable must align with the end of the socket corresponding to
pin one of the processor as shown in figure 3-5.

CAUTION

Do not install the emulation probe socket into the processor
socket with power applied to the target system. The probe can
be damaged if power is not removed before installation.

In addition, be sure the socket is inserted into the processor
socket so that the red edge of the cable aligns with the pin 1
end of the processor socket. Damage to the emulator can
result if the socket is installed in reverse.

3-8

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

é RED
— CABLE
STRIPE
RED STRIPE AND
PIN 1 MUST BE - EMULATION
IN ALIGNMENT. PROBE
40 PIN EXTENDER «— AT LEAST ONE IS REQUIRED
TTTITTTVTVRTerT Y
PIN1 — | PROCESSOR SOCKET | «— |POWER TO PROCESSOR
SOCKET MUST BE OFF!

\ (target system)

Figure 3-5. Installing the Emulation Probe

Grounding Considerations

Within the work station, the electronic and chassis grounds are tied together. If problems
occur within the target system as a result of induced noise from the power distribution lines,
refer to the section entitled “Grounding Considerations” in Chapter 9 of the Overview
Manual.

Radio Frequency Interference

With an emulation system installed in the Model 64000, several methods of operation
(physical setup) may result in an increased emission of radio frequency noise. To reduce the
rf noise level, any of the following techniques may be used:

a. When the emulator is used infrequently, disconnect the Emulator Pod and cables from
both the host system and target system.

b. For systems that use the emulator intermittently, select “external clock” and
disconnect the user socket from the target system when not in use.

c. Consistent with design needs, minimize the time that the emulator is used without
being connected to a target system.

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

d. All 64000 system covers should be in place and properly attached to the mainframe (all
housing screws tight).

NOTE

Running the emulator while connected to a target system
produces little additional rf noise above that generated by the
target system itself.

3-10

Chapter 4
Setting Up Emulation

Emulation Software Requirements

The emulation processor executes absolute code, which is supplied in one of four ways:
a. from ROMs contained in the target system,
b. by assembling source code and linking the resulting relocatable code,
c. by compiling a high level language and linking the resulting relocatable code, or
d. by using a combination of the above three methods.

Methods b and ¢ have certain definite advantages in system debugging. The assembler and
the compiler generate local symbol files (asmb_sym) for the relocatable code. Local symbols
are those symbols declared in each source file program module. In assembly language
programs, symbols are defined in the label field of a source statement or the label field of an
EQU pseudo instruction.

The linker creates a global symbol file (link_sym) and stores the file under the same file name
as the assigned absolute image file name. Global symbols are those symbols declared as
global with the GLB pseudo instruction in assembly language programs and/or with the
GLOBPROC and GLOBVAR directives in Pascal programs. The global symbol file, and the
asmb_sym file from each program module are passed to the 64000 development station when
the absolute code generated by the linker is loaded into emulation memory or target system
memory. These symbols are used for symbolic referencing during emulation. Symbolic
referencing allows use of a symbol where an address location would normally be specified.

If absolute code is generated and programmed directly into user ROMs external to the 64000,
local and global symbol files will never be passed to the 64000. Although the emulation
processor will execute code resident in user ROMs, symbolic addressing will not be available
since no symbol tables exist.

EMULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

4-2

Soft Keys and Directed Syntax

One of the most notable features of the 64000 is the implementation of soft keys and directed
syntax. As with the other system soft keys, the emulation soft keys are identified by displayed
command labels. When a soft key is pressed to initiate a particular command, the soft key
label moves to the command line and the soft key labels change to a list from which the next
entry can be selected. This process continues until an entire command has been entered.

If a soft key is in capital letters and is surrounded by an angle bracket (e.g., <FILE>), a
message will be displayed on the status line when the key is pressed. The message briefly
describes the expected entry.

Emulation Initiation

Emulation is initiated by pressing the::emulale \: key followed by . Although the

zoc<mx

emulate command has many additional options, only the simplest form of the command,

- N

. emulate , is discussed here. Additional emulate command options are explained in

the emulate command syntax section of this chapter.

Configuring 18080 processor in slot & 8. Memory slot # 7. Analysis slot ¢ 9.

CARD SLOT ¢ MODULE
7 Emulation memory controller
8 18080
9 Emulation analysis

STATUS: Emulation processor assignment 0:14

Processor clock : internal _

iatecnal exterpnal

Figure 4-1. Emulation Configuration Display Board Slot Assignments

MODEL 64000

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Once the the emulate command has been entered, the display will change to that shown in
figure 4-1. At the top of the display, the physical configuration of the emulation circuit boards
are stated. In the center of the display, the physical configuration is listed in tabular form.
That is, the emulation analysis board, emulation memory controller, etc, and their
corresponding 64000 slots are listed. This information allows the user to answer the
configuration questions displayed if more than one memory controller is installed in the
64000.

Emulation Configuration
Question-Answer Sequence

Emulation configuration consists of a question and answer sequence which prepares the
emulator for a particular application. Once the questions have been answered for the
particular application, the answers can be stored on disc so that the question and answer
sequence need not be repeated for each emulation session. If changes to an emulation

______ A

command file are desired, the file can be edited using the f:edit_conf 1 key. This allows

changing only specified answers. At the end of the edit_conf sequence, a new file name can
be assigned to the edited configuration, or the old file can be written over with the new
information.

Throughout this discussion, the available soft key entries for each question are listed
following the question. If an emulation command file is being edited to reconfigure the
emulator, the default responses provided are the responses that were entered when the
command file was originated or last edited.

The questions are divided into the six sections listed below.

a. Emulation Control Board and Memory Control Board Selection
b. Clock Selection
c. Real Time Selection
d. Memory Configuration
e. Simulated 1/0
f. Command File Designation
These sections are discussed on the following pages. The questions discussed in the first

section are only presented when more than one type of emulation control board and/or more
than one memory control board is installed in the 64000.

4-3

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

Emulation Control Board and Memory
Control Board Selection

The questions presented in this section determine which emulation control board and
memory control board are to be used for the current emulation session only when more than
one type of emulation control board and/or more than one memory control board is installed
in the 64000.

Emulation processor type?
The response to this question determines which type of emulator is to be used for this

session. The soft keys will display the types of emulation processor controllers installed in
the 64000. The emulator type is selected by pressing the appropriate soft key and

the key.

Emulator card slot?

zpc4m>

This question is presented when two or more emulator control boards of the selected type
are installed in the 64000. The soft keys will display the numbers of those slots containing the
control boards. The emulation control board to be used for the current session is selected by

pressing the appropriate soft key and the key.

Memory Controller slot?

This question is presented if more than one memory control board is installed in the 64000.
The selection is similar to that for the emulation control board siot selection described above.

NOTE

If one memory control board is installed, the system assumes
that it is connected to the selected emulation control board
and/or vice versa. If the selected memory and emulation
control boards are not connected, an error will occur when
memory access is attempted and the emulator will not
function.

When all slot and processor type selections have been made, the system updates the
configuration statement at the top of the display.

4-4

MODEL 64000

EMULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

Clock Selection

The emulation processor can be driven by the clock contained in the emulator pod (internal
clock) or by a clock which is supplied by the user (external clock). The response to the
following question determines which of the clocks will be used.

Processor clock? internal external

The internal clock is normally used when the emulator is to be run out-of-circuit; i.e., with no
target system. The internal clock is provided by the emulator for use in development of the
target system software when the target system hardware is not available.

An external clock is used when the emulator is connected to a user target system. The
external clock is part of the target system hardware and should be used to provide timing to
the target system during in-circuit emulation applications. In the case of processors which do
not have on-board oscillators, use of the external clock is mandatory during target system
exercises.

Clock Speed Selection
As discussed above, the emulator provides a choice of an internal clock or an external clock
for the target processor. If “external” is selected, the following question is presented.

Is clock speed greater than X MHz? yes no
(where “X” is dependent on the processor being emulated)

If the answer is “yes”, one or two “wait” states are added for each access to emulation
memory.

“No” can be selected even though the target system clock is greater than the speed specified
in the question. This will force the emulator to not add “wait” states for emulation memory
accesses. Because worst case conditions are used in determining the maximum clock speed
specification, the typical system may operate satisfactorily without “wait” states. This is
acceptable, but the user must be aware that this operation is beyond specification and is not
guaranteed.

4-5

EMULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

4-6

Real Time Selection

Restrict to real-time runs? no yes

This question provides an opportunity to restrict the emulator to real-time program
execution.

Some of the emulation features can not be executed in real time. Therefore, the limitations
which are imposed when runs are restricted to real time should be understood.

If runs are not restricted to real time, then all of the emulation features can be used. The
implications of nonreal-time program execution to operation of the user system must be
understood, however. Some real time control systems may malfunction or not run at all if the
program is halted or if the monitor is entered during code execution.

If operation is restricted to real-time runs, emulation features which require the host
processor to access emulation memory can not be implemented because emulation memory
can not be accessed during a user program run without interfering with real-time program
execution.

Stop processor on illegal opcodes? yes no

This option helps find unexpected executions in absolute code. If yes is selected, the
processor will stop emulation if an invalid opcode is fetched. If no is selected, the emulation
processor will attempt to execute the opcode in the same manner as the microprocessor unit
being emulated.

Memory Configuration

During the memory configuration question and answer session, the display changes to the
memory matrix shown in figure 4-3. The configuration statement is displayed at the top of the
screen and below it the memory matrix is displayed. The STATUS line indicates that the
system is expecting memory assignments, the results of which will be displayed in the matrix.

MODEL 64000

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Conf iguring 18085 processor in siot # 9. Memory slot # 7. Analysis slot ¢ 8.

Emulation and JEERE Memory Resignment
-008 -400 -BRO¢ -(00 -390 -400 -80¢ -Céo
@ g---
R Gomm
2--- [s
Femm B
G o
S -
fm-e -
P Fome
STATUS: Memory sssignment 11:91
Emulation RAM address range?_

LBRDRESS:

Figure 4-2. Emulation Configuration Display - Memory Assignment

The displayed memory matrix is divided into two, 4-column by 8-row matrices. Each of the 64
row-column intersections correspond to a 1024-byte memory section. The column headings
are the low order addresses and the row headings are the high order addresses used to
assign the corresponding byte section (or sections). The sections may be assigned as either
emulation RAM, emulation ROM, user RAM, user ROM, or illegal memory address range.

“Emulation Memory” is memory physically located in the 64000 system. “User Memory” is
memory physically located in the target system. Memory can be assigned entirely to user,
entirely to emulation, or to a combination of the two intermixed.

The memory control board determines the memory source or destination of data by
monitoring the address bus of the emulator processor. If an address falls within the space
specified as user memory, the memory controller allows the buffer surrounding the emulator
processor to access the target system memory. Otherwise, the memory controller directs
access to the emulation memory.

The RAM, ROM, or illegal memory assignment determines how memory is protected, as
shown in table 4-1. If an attempt is made to access illegal memory or to write to memory
mapped as ROM, the memory control board sends a signal to the emulation controller. This

signal halts execution to allow inspection of the processor state that caused the illegal
access.

4-7

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

Table 4-1. Memory Types Read/Write Protected

Memory Type Write Protected Read Protected
RAM NO NO
ROM YES NO
ILLEGAL YES YES

Memory protection is provided to help detect programming bugs. For example, if a memory
location is specified as ROM memory, it is write protected. Any attempt to write to a ROM
location will cause emulation to be halted. A warning message will be written on the STATUS
line indicating the reason for the halted emulation. Similarly, any read or write to memory
labeled “lllegal memory” will halt emulation and display the appropriate message.

Memory assignments are made by answering the following questions, which are presented
one at a time.

Emulation RAM address range? <ADDRESS>
Emulation ROM address range? <ADDRESS>
User RAM address range? <ADDRESS>
User ROM address range? <ADDRESS>
lllegal memory address range? <ADDRESS>

The soft key displayed is <ADDRESS>. If the soft key is pressed, the following prompt is
displayed:

STATUS: Valid memory address

The prompt indicates that an address is expected by the system. An address may be
expressed as a decimal, hex, octal, or binary number.

When the first address of the range is entered, the soft key display changes to thru, which
indicates that the last address in the range must be entered. To enter the last address, press

the :: thru) key, enter the address, and press . The address assignment is displayed

in the memory matrix (see figure 4-2). At this point, another address range may be assigned
or the current assignment may be terminated, and the next assignments initiated.

4-8

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

To assign the next block of memory in the current memory assignment, repeat the above
procedure.

To terminate the current memory assignment, and initiate the next assignment,

press with no address range specified.

Guidelines for answering the memory mapping questions are listed below.

e Memory assigned as emulation memory is indicated by RAM or ROM being displayed
in normal video.

e Memory assigned as user memory is indicated by RAM or ROM being displayed in
inverse video.

e Memory must be assigned as a range of addresses; i.e., address through address.
However, the address range may be within one 1024-byte section.

e |f an address range includes any location in a section, the entire section is assigned as
the current memory type.

e Memory sections may be mapped in separate, disconnected sections. After the entry
of each address range, the prompting question will return to request another address
range. Memory types may be mixed in adjacent sections throughout the matrix.

znCc-4m>

e Each type memory question is terminated by pressing , with no entry specified. If

no memory is to be allocated to a particular function, no entries are made in response

znc+mx

to <ADDRESS>. The key is pressed to continue to the next question (i.e., if no user

R
E

RAM memory is to be mapped, the | { | key is pressed when the question “User RAM

address range?” is asked. The “User ROM address range?” question will then be
asked).

e |[f there is insufficient emulation memory to support an attempted memory assignment,
only the available memory within the specified address range is assigned to the
current memory type and a status message to that effect is displayed. All other
memory remains illegal unless defined as user memory.

e All unassigned memory defaults to illegal memory.

4-9

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

Simulated 1/0

NOTE

Chapter 8 of this manual covers simulated I/O exclusively. It
should be read, studied, and understood before attempting to
use the simulated /O feature.

The simulated 1/0 feature of the 64000 allows the user to develop programs for, but without
actually using, the target system’s I/0 hardware. To accomplish this, the I/O hardware in the
64000 is used to “simulate” the hardware of the target system. To use this feature, the
question and answer session described below is performed.

NOTE

During program emulation, all simulated 1/O files must be
opened by the user program. However, during the time that
either the simulated 1/O display or keyboard file is opened, the
standard 64000 keyboard has no control over the display. To
regain control over the display and/or keyboard before the
user’'s program closes the file, press the soft key labeled

- .
| simulate |
L .

-

Simulate 1/0?

If simulated I/0 is not to be used during an emulation session, press the no \; key and

proceed to the Command File Designation paragraph following this simulate 1/0 question
and answer session.

4-10

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

If simulated 1/0 is to be used, press the ./ yes | key. The questions listed below will be
asked, in the sequence given. o

Simulate display?
Simulate printer?
Simulate rs232?
Simulate keyboard?

Simulate disc files?

then the key as each question arises. Proceed with the next question.

zpc-m>

If the 64000 is to be used to simulate a display, printer, rs232, or keyboard 1/O for the users

program, press the {: yes :: key when the particular question arises. Then enter the

control address in response to the “Control address?” prompt (see figure 4-3).

NOTE

The control address is the location to which all 1/0
handshaking codes are sent by both the user and the 64000
programs. This address must first be defined in the user’s
program. Then, the control address is entered into the 64000
in answer to the “control address?” question. Refer to Chapter
8 for a complete description of the control address.

If the 64000 is to be used to simulate disc files, the entries are similar to the previous entries
except multiple disc files may be set up. Also, each file must first be given a file name before
assigning a control address. The file name may be either a name of an existing file or it may
be a pseudo name that may later be changed by the user program (refer to Chapter 8, Disc
File I/0 Interface, Changing File Name Command).

4-11

EMULATOR/INTERNAL ANALYSIS

MODEL 64000
8-BIT REFERENCE MANUAL

Once the(yes \I key has been pressed, the following two questions are displayed, in

sequence.
File name? (See figure 4-4.)
Control address? (See figure 4-3.)

These questions are repeated so that multiple files may be set up. To terminate file

assignments, press the key without entering a file name.

znc+m>)

Configuring 18080 processor in slot # 8. Memory slot # 7. Analysis slot ¢ 9.

Simulated [/0 Assignment

Device Cantrol
display
printer
rs232
keyboard

Disc Files Control

STATUS: Simulated 1/0 Assignment

Control address? _Q1EQ0H

SADDRESS>

Figure 4-3. Simulate Display Control Address Assignment

4-12

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Configuring 18080 processor in slot ¢ B. Memory slot ¢ 7. Analysis slot ¢ 9.

Simulated [/0 Assignment

Device Control

display 1E00

printer

rs232 1D00

keyboard

Disc Files Control

STATUS: Simulated 1/0 Assignment 0:37
File name?_ DISC1:PRIME_

~SFILE>

Figure 4-4. Simulated Disc Files/File Name Assignment

Command File Designation

The emulation configuration is now complete. Information concerning the configuration
questions answered during the above question and answer session is now ready for use
during an emulation session. Rather than making it necessary to go through the question and
answer session each time an emulation session is performed, the answers to emulation
configuration questions can be stored on disc and called up during any future emulation
session. Further, if it is desired to change some of the answers, the disc file can be edited
instead of going through the complete question and answer session again.

At the end of the question and answer session, the following question is asked:

Command file name?

If it is desired to create a disc file of the emulation configuration, enter a file name from the

keyboard and press . . (See figure 4-5 for an illustration of the display.)

znc-m

znc-4m>

If no disc file is to be created, press without entering a file name.

EMULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

Configuring 18080 processor in slot # 8. Memory slot # 7. Analysis slot ¢ 9.

Simulated [/0 Assignment

Device Control

display 1E00

printer

rs232 1D00

keyboard

usc Files Control

DISC1:PRIME_ 1C00

STATUS: Command file assignment 0:39
Command fi1le name?_ PR1:PRIME_

—FlE>

Figure 4-5. Command File Name Assighnment

Loading Absolute Code

Once emulation configuration is complete, the program code to be emulated must be loaded
into user or emulation memory. Program code must be absolute code; that is, it must be
relocated and linked to form a single module. The entire object code module is loaded as a
single unit into memory from the system disc or tape. The only exception is the case in which
the user system contains program code in ROM’s that will be used by the emulated program.

Program code can be loaded into memory by using the load command described at the end
of this chapter. The code will automatically be loaded following emulation configuration if
the “load” option of the emulate command is selected. The portion of code in the address
range specified as user memory is loaded into the target system, while the portion specified
as emulation memory goes directly into emulation memory. The memory control board
specifies the destination of the code by diverting the data in accordance with the memory
map that was previously entered by the user. No specific loading instructions for the system
are necessary because loading is automatically accomplished by the hardware.

MODEL 64000

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Emulation Configuration
Question-Answer Sequence Summary

The question-answer sequence required to define a new emulation configuration file is
summarized in table 4-2.

The complete, detailed quetion-answer sequence is described in the preceding section
entitled “Emulation Configuration Question-Answer Sequence”.

Table 4-2. Emulation Configuration Question-Answer Sequence Summary

The following sub-questions are asked only if more than one type of emulation control
board and/or more than one memory control board are installed in the 64000.

Emulation processor type?

Display indicates type(s) of emulation control board(s) installed in the system. Press
the appropriate soft key.

Emulator card slot?

Display indicates the card slot(s) of the emulation control board(s) installed in the
system. Press the appropriate soft key.

Memory controller slot?

Display indicates the card slot(s) of the memory control board(s) installed in the
system. Press the appropriate soft key.

r N\
If | external | : Is clock speed greater than x MHz?
rFoOTTTTTTS T TTTTTS N
\ yes | Or, no |
R 7 N e =
. . FoTTTT TS N FOTTTTTTT N
c. Restrict processor to real time runs? | yes |or| no |
Y N FoTTTTTT S N
d. Stop processor on illegal op codes? | yes |or | no |

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

MODEL 64000

Table 4-2. Emulation Configuration Question-Answer Sequence Summary (Cont'd)

NOTE

and f are not asked.

For 64000 systems without emulation memory, questions e

e. Emulation RAM address range?

f. Emulation ROM address range?

g. User RAM address range?

h. User ROM address range?

i. lllegal memory address range?

j. Simulate 1/0? | yes | or {\ no |
________ N
Ifi vyes |
Simulate display? { yes or{ no |
If i yes i: control address?
. P N roT T T T T T N
Simulate printer? | yes jor | no

<ADDRESS> thru
<ADDRESS> thru

<ADDRESS> thru

¥

<ADDRESS> thru

<ADDRESS> thru

\

<ADDRESS> thru
<ADDRESS> thru
<ADDF?ESS> thru
<ADDRESS> thru

¥

<ADDRESS> thru

<ADDRESS>

<ADDRESS>

<ADDRESS>
<ADDRESS>

<ADDRESS>

\

<ADDRESS>

<ADDRESS>

\

<ADDRESS>

<ADDRESS>

\

<ADDRESS>

<ADDRESS>

¥

<ADDRESS>

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Table 4-2. Emulation Configuration Question-Answer Sequence Summary (Cont'd)

Simulate rs232? yes jor { no |

It {_yes | : control address? <ADDRESS>
simuste Keysoaraz 5 or {00

It {_yes | : control address? <ADDRESS>
Simulate disc files? l:";;s_”:: or {’"_;1;"—:7

It | yes }:file name? <FILE>
i control address? <ADDRESS>

file name? <FILE>
control address? <ADDRESS>

k. Command file name? <FILE>

. STATUS=xxxx ---- Ready or Program loaded

Edit Emulation Configuration

An existing emulation configuration command file can be edited during an emulation session

sequence defining the current command file.

NOTE

If the emulation configuration command file is changed
during the command file review, the absolute code should be
reloaded into memory before proceeding with emulation. (See
load syntax at the end of this chapter.)

The edit configuration is initiated by pressing the ',_e_d—it—_;:;—f;:‘. key, then . The 64000

|
R

responds with a display similar to that shown in figure 4-1. However, the questions are shown
with the answers selected during the original question-answer session or a subsequent edit
configuration session. Each answer may be left as it is or changed.

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

To leave an answer as it is, simply press without making an entry in answer to the current
question.

znc<m>

To change an existing answer, either press the appropriate soft key or make a new keyboard
entry as required by the current question.

When the review/edit session is completed, the following question is displayed: <CMDFILE>

If the existing file is not deleted, the changed version just created must be renamed. In this

case, press .

When the filename question reappears, type in the name for the revised command file and

znc-m>

press ' . Both command files (the old as well as the new) are now on disc and either can be

znc-m

called up for an emulation session.

If the old command file is no longer of any value and is to be deleted, press

remains the same as before.

Reload the absolute file if any changes were made to the emulation configuration. Refer to
the load syntax at the end of this chapter for a description of the load options.

The system is now ready to start, or resume, emulation. The emulate and load command
syntax is given on the following pages.

4-18

MODEL 64000

EMULATOR/INTERNAL ANALYSIS NN € Mulate

8-BIT REFERENCE MANUAL

SYNTAX

4 D)

<CMDFILE> [load <ABSFILE>] [options {ednt |]]
continue

emulate
load <ABSFILE>

_ Y

Default Values

none

Examples:
emulate
emulate TEMP
emulate TEMP load EXPL options continue
emulate load EXPL
emulate TEMP options edit
FUNCTION
The emulate command initiates an emulation session using either an existing emulation

command file or the emulation configuration question-answer sequence. It can also initiate
the loading of an absolute file into either emulation or user memory.

4-19

MODEL 64000

emUIate N =\ ULATOR/INTERNAL ANALYSIS

(Cont'd) 8-BIT REFERENCE MANUAL
Parameters
<CMDFILE> <CMDFILE> is the file identifier (equivalent to <FILE>) of an

existing emulation configuration command file. (An emulation
configuration command file is a record of a previous emulation
configuration question-answer session.)

<ABSFILE> <ABSFILE> is file identifier (<FILE>) of an assembled (or compiled)
and linked absolute file.

load load is a key word which causes the specified <ABSFILE> to be
loaded into emulation or user memory as specified by the
emulation command file.

options Pressing options causes the continue and edit soft keys to be
displayed.
edit The edit option allows a review and edit of the question-answer

sequence of the specified <CMDFILE>. The answers can either be
left as they were previously entered or changes can be entered for
the current emulation session.

continue The continue option allows reentry into an emulation session in
which a user program is running. The execution of the user
program is not affected by the reentry procedure.

DESCRIPTION

The emulate command is used to enter an emulation session and may be used to load an
absolute file. When the command consists of only the word “emulate”, the question-answer
sequence which defines a new emulation configuration file is initiated. (Refer to the
“Emulation Configuration” section of this chapter for more information.) After the question-
answer sequence is completed, the record (i.e. copy) of this sequence is assigned a file
identifier (<CMDFILE>).

When a previously defined <CMDFILE> is specified as a parameter for the emulate
command, the command file having that name is used by the 64000 to automatically set up
the current emulation configuration. This configuration can then either be used unchanged
or it can be reviewed and edited, if required, using the edit option which is described later.

4-20

MODEL 64000
EMULATOR/INTERNAL ANALYS!s I € MU

late

8-BIT REFERENCE MANUAL (Cont'd)

If load <ABSFILE> is entered, the absolute file identified by <ABSFILE> is loaded into
emulation or user memory upon execution of the emulate command. The exact destination of
the file is determined by the memory map which was set up during the question-answer
session. If a <CMDFILE> is specfied prior to a load <ABSFILE> entry, the absolute file is
loaded after the 64000 has been configured for emulation by the command file. When the
specified <CMDFILE> is reviewed using “options edit” or when no <CMDFILE> is specified
as a part of the emulate command, the loading occurs immediately following the current

emulation configuration question-answer session.

Selecting options edit provides an opportunity to review and edit the specified <CMDFILE>
before it is used to configure the development station for emulation. The review-edit

procedure is described in the “Edit Emulation Configuration” section of this chapter.

A user program which is running during an emulation session will continue to run
undisturbed if the session is terminated. Options continue allows an emulation session in
which a user program is running to be reentered without disturbing the execution of the user
program. If a “load <ABSFILE>" specification is included as part of the emulate command,
only the load filename is logged, so that reference can be made to the symbol file. Memory is

not disturbed.

4-21

MODEL 64000

EMULATOR/INTERNAL ANALYSIS | IOad

8-BIT REFERENCE MANUAL

SYNTAX

4)

load <FILE>

\— _J

Default Values

o N

| none

Example:
load_memory JR8085
FUNCTION

The load command transfers absolute code from the 64000 system memory into user RAM or
emulation memory. The destination of the absolute code is determined by the memory
configuration map which was set up during emulation configuration.

For example, if user RAM is mapped from 0000H through 2000H and if the absolute code in
<FILE> occupies locations 0000H through 1500H, then the load_memory <FILE> command
will load all of the absolute code into user RAM.
Parameters

<FILE> <FILE> is the identifier of the absolute file to be loaded from the

64000 system memory into user RAM or emulation memory. The
syntax requirements for <FILE> are discussed in Appendix A.

4-22

Chapter 5
Operational Commands

Introduction

The operational commands allow the user to control emulation. These commands consist of
the following groups:

e Program control group: edit_cnfg, end, restart, run, step, and stop
e Display group: refer to chapter 6
e Analysis (trace and count) group: refer to chapter 7
® Memory management group: modify
e Record request group: copy and list
The syntax for each command in the groups listed above is described in this chapter except

for the display and analysis groups. The commands for those groups are described in
chapters 6 and 7, respectively.

Operational Command Syntax

The syntax listings on the following pages are intended to acquaint the user with the different
operational commands. The syntactical variables used in this discussion are described in
detail in appendix A.

MODEL 64000
CcoO py I I ULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

SYNTAX

copy <ADDRESS>[thru <ADDRESS>] to <FILE>

Default Value

. N\
N~—- /

Examples:
copy 10A0H to TEMP1

copy 800H thru 20FFH to TEMP2
copy EXEC thru DONE to TEMP3

FUNCTION

The copy command is used to store the contents of specific memory locations in an absolute
file on a disc without altering the contents of memory. Either a single memory location
(<ADDRESS>) or a series of locations (<ADDRESS> thru <ADDRESS>) can be specified for
transfer.

<FILE> determines the name under which the absolute file is to be stored. The copy
command creates a new file having the specified name as long as there is no absolute file
presently on the disc with that name. In the cases where a file represented by the <FILE>
variable already exists, the system asks whether the old file is to be deleted. If the response is
yes, the new file replaces the old one. If the response is no, then the copy command is
cancelled and no copy is made.

Parameters

<ADDRESS> <ADDRESS> determines the memory locations from which data is
to be copied into the specified absolute file. The syntax
requirements for <ADDRESS> are equivalent to those for
<VALUE> as described in appendix A.

<FILE> <FILE> is the identifier for the absolute file in which the data is to
be stored. The syntax requirements for <FILE> are described in
appendix A.

MODEL 64000

EMULATOR/INTERNAL ANALYSIS IEIEEE—— © (lit_C N fg

8-BIT REFERENCE MANUAL

SYNTAX

edit_cnfg

Default Value

Example:

edit_configuration

FUNCTION

The edit_configuration command allows the question-answer sequence of the current
emulation configuration to be reviewed and edited. Each of the configuration questions is
presented with the response previously entered. The prior response can be entered as

displayed by pressing , or modified as necessary and then entered by pressing . .

T
u
R
N

C

Default Value

Example:
end_emulation
FUNCTION

The end_emulation command teminates the current emulation session and returns the 64000
operating system to the monitor mode.

Execution of program code by the emulation processor is unaffected by the end command.

5-3

MODEL 64000

IiSt I =\IULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

SYNTAX

(7

Default Value

none I

Examples:

list_display_to printer

list_display_to TEMP1
FUNCTION
The list command produces a copy of the information currently displayed on the CRT. The
copy can be either a listing file stored in the 64000 memory or a hardcopy produced by the
printer. If the displayed page is written to an existing listing file, the old file is overwritten by

the new information.

list appears on the display as “list_display_to”.

Parameters
printer printer causes a hardcopy of the single page currently displayed to
be printed.
<FILE> <FILE> causes the single page currently displayed to be copied to

either a new or an existing file identified by <FILE>. The syntax for
<FILE> is discussed in appendix A.

MODEL 64000

EMULATOR/INTERNAL ANALYSIS | mOdify

8-BIT REFERENCE MANUAL

SYNTAX

memory <ADDRESS> to <VALUE>[,<VALUE>]...
modify <ADDRESS> thru <ADDRESS> to <VALUE>
register (X) to <VALUE>[(X) to <VALUE>]...

FUNCTION

The modify command is used to modify either the contents of memory or the contents of the
processor registers. For the purpose of this discussion, the modify command options (modify
memory and modify registers) are treated as separate commands and are described as such
on the following pages.

modify memory

SYNTAX

<ADDRESS> to <VALUE>[,<VALUE>]...

modify memor -
y <ADDRESS> thru <ADDRESS> to <VALUE>

Default Value

Examples:

modify memory 800H to 10H

modify memory 910H to 0CH,56H,36H

modify memory 0A10H thru OAFFH to 00

MODEL 64000

Modify Memory s— c\/ULATOR/INTERNAL ANALYSIS
(Cont'd) 8-BIT REFERENCE MANUAL

FUNCTION

The modify memory command can modify the contents of each memory location in a series
to an individual value or the contents of all of the locations in a memory block to the same
value.

A series of memory locations is modified by specifying the address of the first location in the
series to be modified (<ADDRESS>) and the list of the <VALUE>s to which the contents of
that location and the succeeding locations are to be changed. The first <VALUE> listed
replaces the contents of the specified memory location, the second <VALUE> replaces the
contents of the next location in the series, and so on until the list has been exhausted. If only
one number or symbol is specified, only the single address indicated is modified. When more
than one <VALUE> is listed, the <VALUE> representations must be separated by commas.

An entire block of memory can be modified such that the contents of each location in the
block is changed to the single specified <VALUE>. This type of memory modification is
achieved by entering the limits of the memory block to be modified (<ADDRESS> thru
<ADDRESS>) and the <VALUE> to which the contents of all locations in the block are to be
changed.

Parameters
<ADDRESS> <ADDRESS> determines which memory location or series of
locations are to be modified. The syntax for <ADDRESS> is
equivalent to that for <VALUE> as described in appendix A.
<VALUE> <VALUE> is the number which is to be loaded into the specified

memory location or locations. The syntax for <VALUE> is
described in appendix A.

MODEL 64000

EMULATOR/INTERNAL ANALYS'S mummmeeeeeeenmnn MO dify registers
8-BIT REFERENCE MANUAL

SYNTAX

modify register (X) to <VALUE>[(X) to <VALUE>]...

Default Value

| none |

Examples:

modify register a to 39H

modify register h to OAH | to 50H a to 18H

FUNCTION

The modify register command is used to modify the contents of one or more of the
microprocessor’s internal registers. The entry for (X) determines which register is modified;
the entry for <VALUE> is the number to which the contents of that register are changed.

Parameters
<VALUE> <VALUE> is the number which is to be loaded into the specified
processor register. The syntax for <VALUE> is described in
appendix A.
(X) (X) represents the name of one of the registers to be modified. The
possible entries for (X) are listed as soft keys after register has been
pressed.

MODEL 64000

F© S T2 1T 1000000000 =11ULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

SYNTAX

C restart

Default Value

e
S

Example:

restart_processor
FUNCTION
The restart command causes the emulation processor to go through a processor-dependent

power_up sequence. The restart command does not modify any of the processor registers
and does not restart a program run.

SYNTAX

trc_cmplt
run [from <ADDRESS>][until <ADDRESS>]

<TERM>[or <TERM>]...

Y

Default Values

from <ADDRESS> If the from <ADDRESS> option is omitted, the emulator will begin
program execution at the current address specified by the
processor’s next program counter.

If the until option is omitted, the processor will continually execute
program instructions until halted by a stop run command.

l/__

@
©

MODEL 64000

EMULATOR/INTERNAL ANALYSIS s U N

(Cont'd)

8-BIT REFERENCE MANUAL

Examples:
run

run from 810H

run from 810H until address = 84AH data = 60H

FUNCTION

The run command controls the execution of the emulation program. The program can either
be run from a specified <ADDRESS> or from the address currently stored in the processor’s
next program counter. In addition, if the until option is selected, the run can be signaled to
terminate when a trace is completed, a particular <ADDRESS> is reached, or a specified state
or series of states appears on the emulation buses.

Parameters

<ADDRESS>

from

<TERM>

trc_cmplt

until

<ADDRESS> represents a state on the address bus which can be
used to start or stop a program run. The syntax requirements for
<ADDRESSS> are equivalent to those for <VALUE> as defined in
appendix A.

from is used to specify the address from which the emulation
processor will start program execution.

<TERM> specifies a state or series of states which cause
termination of the program run when they appear on the emulation
buses. The syntax for <TERM> is described in appendix A.

trace_complete causes the emulation program run to be
terminated when the trace specification is satisfied and “trace
complete” is displayed.

until is used to specify the state or status on the emulation bus
which will terminate the program run.

5-9

MODEL 64000

Step I CULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

SYNTAX

step [<# STEPS>][from <ADDRESS>]

Default Values

——_—————————— -

| <# STEPS> If no value is entered for number of times, only one instruction |s

| executed each time the key is pressed. However, multiple

from <ADDRESS> If the from <ADDRESS> option is omitted, stepping begins at the
K next program counter address. j

instructions can be executed by holding down key.

znc-+m>)

Examples:
step
step from 810H
step 20 from 0A40H

FUNCTION

The step command allows program instructions to be sequentially analyzed by causing the
emulation processor to execute a specified number of instructions. The contents of the
processor registers are displayed after each instruction is executed and the contents of
memory can be displayed upon completion of the step command.

Parameters
<# STEPS> <# STEPS> determines how many instuctions will be executed by
the step command.
from The from parameter is used to specify the address from which the
emulation processor will step.
<ADDRESS> <ADDRESS> represents the address from which stepping will start.

The syntax for <ADDRESS> is equivalent to the syntax for
<VALUE> as described in appendix A.

MODEL 64000

EMULATOR/INTERNAL ANALYSIS I S tO P

8-BIT REFERENCE MANUAL

SYNTAX

run
trace

stop

Default Value

none

Examples:
stop run
stop trace

FUNCTION

The stop command terminates either the current program run or trace command.

Parameters
run The run parameter stops the execution of a run command.
trace The trace parameter stops the execution of the trace command.

That is, the system stops searching for trigger and trace states.

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

5-12

MODEL 64000

Chapter 6

Display Commands

Display Command Capabilities

There are four basic types of information which may be viewed by using the display
commands. These are:

e Memory and register data.
e Trace and run specifications previously entered by the operator.
e Absolute or relative counts based upon the trace specifications.
¢ Global and local symbols.

Memory and Register Data

Data may be accessed and displayed from memory, microprocessor registers, or the trace
buffer. Previously entered trace and run specifications and program symbols can also be
displayed.

Memory Data. For data taken from memory, the starting address in memory may be specified.
Whether the data comes from emulation or user memory depends upon the memory map
assignments made during the configuration of the emulation command file. Unless otherwise
specified by the user, memory data is displayed statically. (The static display shows the
memory contents existing when the display command is executed.) The data is displayed in
hexadecimal form with the corresponding ASCII characters as shown in figure 6-1.

The user may modify the display command so that the memory data is displayed using one,
two, or all three of the following techniques:

a. Data may be viewed dynamically which causes the display to be continuously
updated. This is useful if the data in the memory is continually changing. However, the
display is not updated in real time.

6-1

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

b. Data may be viewed in mnemonic form rather than in hexadecimal form as shown in
figure 6-2. However, it is advisable to use a form consistent with the data being
displayed. For instance, it makes sense to display memory containing program code in

mnemonic form, but mnemonic form does not make sense for viewing memory
locations containing arithmetic values.

c. Memory addresses may be displayed “offset” from the actual value. The address offset
allows the actual addresses to be offset by a value specified by the user. If the value is
correctly chosen*, the address space displayed will start at location 0000H and will
correspond to the listing generated by the assembler program. (*When absolute files
are linked by the relocating linker program, program modules are combined and may
be relocated to produce a program. If a module, orginating at address X is linked with
other modules, it may be assigned a new starting address X+Y where Y is a value that
depends on the number and size of the other modules being linked. Offset, therefore,

allows the user to subtract “Y” so that the addresses appear the same as in the
assembly listing.)

MEMORY ___DYNAMIC
Adr -——-——--] Data(hex)—==--=- -(ASCI1) -

9800 F? F7 F7 F7 F7 F7 FF 69 wwww wwki
0808 30 19 09 D2 02 95 71 FD OL4R %1q)
9810 31 00 OC 21 05 08 3E F7 1%%! 8w
9818 77 2D F2 18 @8 CD 00 09 w-rB SMY%
0820 D2 2B @8 AF 2F 32 06 08 R4y /208
9828 (3 43 08 21 06 08 BE CA CCY! 48]
0830 43 08 77 FS 21 05 08 11 Chuwu !%%%
0838 04 08 1A 77 1D 2D C2 3A “8%w §-B:
0840 08 F1 77 CD @0 OR C3 1D SquM %4CS
0848 08 78 S4 F9 49 EB 61 F2 SxTy Ikar
0850 91 D4 58 BS 90 9B 8E 72 8TXS R%%r
0858 24 F4 38 DS 98 58 82 D1 $t8U Bx%Q
0860 80 S0 0A D1 00 6B BO SA WPYQ ¥kOZ
0868 30 8D 90 FF 00 99 SA DE 0%%% Wh§”
0870 BB A2 0A D8 34 32 81 BB ;X 42%;
0878 19 38 98 77 4@ F9 80 B2 188y ey¥2

STATUS: 8085----Program loaded — 20:01

_display memory B80OH dynamic

__run __step _ trace _display _madify . stop _ end ==<fIC--c

Figure 6-1. Display Memory 800H Dynamic

6-2

MODEL 64000 EMULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

2810H LXI SP, OCODH
98134 LXI H, 0BeSH
QB16H MV A, F7TH
BB18H MOV MR
2BI9H DCR L

281AH JP 0818H
8B1DH CALL 9300H
QB20H INC 082BH
8230 XRA A

eB24H OB

QBASH STR 0B0GH
0828H JMP 0B43M
28ZBH LX1 H, 9806H
QB2EH (MP M

8B2FH J2 0843
BE3ZH MOV M,R

STATUS: BOES~--~Program loaded e 14128

display wemory BiOH mnemonic

M e BERG _ ALBCRE. AIAGLIAY.. BOAILY o e AIOR D 2RO

Figure 6-2. Display Memory 810H Mnemonic

Register Data. Unless otherwise specified by the user, register data is displayed statically as
shown in figure 6-3. Register data may also be displayed dynamically and the program
counter (PC) value can be offset by a value specified by the user. The dynamic display and
offset are done for the same reason as described above for memory data. The display of

register data is processor dependent and defaults to the mnemonic form. An example of a
register data display is shown in figure 6-3.

6-3

EMULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

6-4

REGISTER (Hex)

9810 31 LXI SP, @COoH FF 00 02 OB FF OB FF @010 10

9810 31 LXI SP, @CQ®oH FF 00 02 @08 FF Q@B FF 010 10

0810 31 LXI SP, QCOQH FF 00 02 OB FF OBFF 010 10 0C00 0813

9813 21 LXI H, 9BQSH FF 9092 0B FF 0805 010 10 oCe0 0816

0816 3t MVI A, F7H F7 0002 OB FF 0805 010 10 0C00 0818

STATUS: B8085----Stopped Trace complete - 19:55
_step

—Luo _step _ trace _display . madify _ stop __end ==—fTC---

Figure 6-3. Display Registers

Trace Data. The trace data stored in the trace buffer as a result of a trace command may also
be displayed using the display command. Refer to Chapter 7 for a description of the trace
display. The trace data is normally displayed in mnemonic form with the operators and
operands packed onto a single line and with the actual absolute addresses shown.

Trace and Run Specifications
The trace and run specifications are stored by the system each time they are entered. This
display command may be used to recall the last run or trace command. In the event that no

run or trace specification has been made, the display command will show a blank display
area.

Absolute/Relative Counts

Counts are displayed only if the 64000 system is equipped with the optional analysis board.
The absolute counts (time or state) are normally displayed with the trace data. The absolute
count may be changed to relative count by the display command. Refer to Chapter 7 for a
complete description of relative and absolute, time and state counts.

MODEL 64000

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Global and Local Symbols

Global and local symbols can be veiwed on the display. Local symbols are symbols defined in
the source file for a single program module. Global symbols are those declared to be global
in the source file. They are defined using the assembler psuedo instruction, GBL, or by the
Pascal GLOBVAR directive. When the display command is used to examine either of these
symbol types, the display will contain the symbol name and its present value.

Display Command Syntax

The display command syntactical composition is summarized on the following pages. The
commands are listed in the same order as displayed by the 64000 system soft keys.

6-5

. MODEL 64000
dlsplay I =M UL ATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

SYNTAX

4)

absolute
relative

count {

global

local <FILE>

~

display { memory[<ADDRESS>][dynamic][mnemonic] [offset_by<ADDRESS>]
registers [dynamic][offset_by <ADDRESS>]

run_spec

trace [absolute][unpacked][offset_by <ADDRESS>]

trc_spec

FUNCTION

The display command initiates the display of the time or state counts, local or global
symbols, the contents of registers or memory, the current run or trace specification, or the
contents of the trace buffer. For the purpose of this discussion, the display command options
(display count, display global_symbols, display memory, ...etc.) are treated as separate
commands and are described as such on the following pages.

6-6

MODEL 64000

EMULATOR/INTERNAL ANALYsIS IR dISplay count

8-BIT REFERENCE MANUAL

SYNTAX

-

absolute
relative

display count [

\—

Default Value

i none

Examples:
display count absolute

display count relative
FUNCTION

The display count command is used after a trace has been obtained to change the current
display of time or state counts to one in which the counts are displayed either relative to the
previous event or as an absolute count measured from the trigger event. If time counts are
currently displayed, the display count command causes an absolute or relative time count to
be displayed. If the current display contains state counts, a relative or absolute state count

results.
Parameters
absolute absolute causes the state or time count for each event of the trace
to be displayed as the total count measured from the trigger event.
relative relative causes the state or time count for each event of the trace to

be displayed as the count measured relative to the previous event.

6-7

MODEL 64000

dlSpIay gIObal I =\1ULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

SYNTAX

- A

display global

N\ J

Default Value

o h

| none |

| |
~_o - _ _

Example:

display global_symbols
FUNCTION

The display global_symbols command displays the global symbols defined for the current
absolute file and the present values of those symbols as listed in the global symbol table.

Parameter
global global represents the symbols and labels defined as global in the

source program from which the current absolute file was
generated. global appears on the screen as “global_symbols”.

6-8

MODEL 64000 .
EMULATOR/INTERNAL ANALYSIS I (] ISplay local

8-BIT REFERENCE MANUAL

SYNTAX

a)

display local <FILE>

_ | Y,

Default Value

none I

Example:
display local_symbols_in TEMP1

FUNCTION

The display local_symbols command displays the local symbols and their current values as
defined in the source file identified by the syntactical variable <FILE>.

Parameters
local local refers to the symbols and labels in the source file identified by
<FILE>. local appears on the screen as “local_symbols_in".
<FILE> <FILE> represents the source file name that contains the local

symbols to be displayed. Refer to Appendix A for the syntax
requirements of <FILE>.

. MODEL 64000
dlsplay memory I = \1ULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

SYNTAX

()

display memory[<ADDRESS>][dynamic][mnemonic][offset_by <ADDRESS>]

x y,

Default Values

dynamic - If dynamic is omitted, the display is static and is not updated as the
contents of memory change.

mnemonic - If mnemonic is omitted, the memory contents are displayed in

(<ADDRESS> The default value for <ADDRESS> is 0000. \
I hexadecimal form.

offset_by

<

Examples:

1
=
o
=
(%4
D
~
len

<
)
o
3
—
—
o]
Q
—
oy
@
oV}
O
—
o
=3
3
D
3
o
=
<
Q
Q
Q
=
[0}
(2]
[
4]
(2
Q
=
(0]
Q
[}
°
QO
<
[0
Q

display memory 800H mnemonic
display memory dynamic mnemonic
display memory 810H dynamic offset_by 810H

FUNCTION

The display memory command displays the contents of the specified memory location or
series of locations. The memory contents can be viewed either statically or dynamically and
either in mnemonic or hexadecimal form. In addition, the memory addresses can be
displayed offset by a value which allows the information to be easily compared to the
absolute file listing.

6-10

MODEL 64000 .
EMULATOR/INTERNAL ANALYS!S I dlsplay memory

8-BIT REFERENCE MANUAL (Cont'd)
Parameters
<ADDRESS> <ADDRESS> as it is first listed in the syntax represents the address

at which the memory display begins. In the second occurrence, it is
the address by which displayed memory addresses are offset from
the actual address values. The syntax requirements for <ADDRESS>
are equivalent to those for <VALUE> as described in Appendix A.

dynamic dynamic causes the display to be periodically updated with the
current contents of memory. The program may be interrupted in
order to fetch the memory data and update the display. Therefore,
“pseudo run” is displayed on the STATUS line of the display to
indicate that this is a nonreal-time operation.

mnemonic mnemonic causes the mnemonics for the opcodes stored in the
specified memory locations to be displayed.

offset_by offset_by causes the system to subtract the specified <ADDRESS>
from each of the actual absolute addresses before the addresses
and the corresponding memory contents are displayed. The value
of <ADDRESS> can be selected such that each module in a
program appears to start at address 0000. The display of the
memory contents will then appear similar to the assembly listing.

MODEL 64000

display regiSterS IR Bl EMULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

SYNTAX

a)

display registers [dynamic][offset_by <ADDRESS>]

\ J

Default Values

o T N
|

dynamic - If dynamic is omitted, the display is static and is not updated as the
contents of the registers change.

displayed.

l offset_by - If offset_by is omitted, the actual values of the program counter are

N~ _ - /

Examples:

display registers

display registers offset_by 810H

display registers dynamic offset_by 0A10H
FUNCTION
The display registers command displays the current contents of the program counter, the
mnemonic of the opcode presently being executed, and the current contents of the
processor’s registers. This process does not occur in real time; therefore, if the registers are

to be displayed while the processor is running, the system must be configured to allow
nonreal-time operations.

6-12

MODEL 64000

EMULATOR/INTERNAL ANALYsIS NN

8-BIT REFERENCE MANUAL

(Cont'd)

The registers can be displayed either statically or dynamically. In addition, the displayed
value of the program counter can be offset from the actual value by a number which allows
the register information to be easily compared with the absolute file listing.

Parameters

dynamic

offset_by

<ADDRESS>

dynamic causes the display of the register data to be continuously
updated. The register data is sampled periodically and the last 16
states to be sampled are displayed on the screen. The displayed
states are not necessarily the last 16 states executed by the
processor. The term “pseudo run” is displayed on the command
line to indicate that this is a nonreal-time operation.

offset_by causes the system to subtract the specified <ADDRESS>
from the current value of the program counter to arrive at the value
which is displayed on the screen. The actual value of the program
counter remains unchanged.

<ADDRESS> represents the value by which the displayed program
counter address is offset from the actual program counter address.
The syntax for <ADDRESS> is equivalent to the syntax for
<VALUE> as described in Appendix A.

display registers

MODEL 64000

display FrUN_SPEC mum . c\ULATOR/INTERNAL ANALYSIS

SYNTAX

8-BIT REFERENCE MANUAL

-

N

display run_spec

Default Value

———

none

Example:

display run_specification

FUNCTION

The display run_specification displays the last active run command. Run command
specifications are described in Chapter 5.

MODEL 64000

EMULATOR/INTERNAL ANALYS'S e display trace

8-BIT REFERENCE MANUAL

SYNTAX

4)

display trace [absolute][unpacked][offset_by <ADDRESS>]

\— _J

Default Values

r absolute - If absolute is omitted, the data is displayed in opcode mnemonic\

| form. I

| unpacked - If unpacked is omitted, the operators and operands are displayed l
together on a single line. For example, STA 8200H would be

! displayed as: |

| STA 8200H I

\ offset_by - If offset_by is omitted, the actual addresses are displayed. /l

Examples:
display trace
display trace absolute

display trace unpacked offset_by 900H

FUNCTION

The display trace command displays the contents of the trace buffer. The information can be
presented as absolute hexadecimal code or in mnemonic form and can follow either a packed
or unpacked format. If the unpacked format is selected, the trace data can only be displayed

in single column form.

6-15

MODEL 64000

display trace m—— L ATOR/INTERNAL ANALYSIS
(Cont'd) 8-BIT REFERENCE MANUAL

The offset_by option causes the system to subtract the specified <ADDRESS> from the
addresses of the executed instructions before the trace is displayed. With an appropriate
entry for <ADDRESS>, each instruction in the displayed trace will appear as it does in the
assembled program listing.

Parameters

absolute absolute directs the system to display the trace information in
absolute hexadecimal format rather than in mnemonic format.

unpacked unpacked specifies a format in which the operators and operands
are displayed on consecutive lines and in absolute hexadecimal
code. For example, the command STA 8200H would appear as:

32H (opcode for STA)
00H
82H

offset_by offset_by causes the system to subtract the specified <ADDRESS>
from each of the actual absolute addresses before the trace data is
displayed.

<ADDRESS> <ADDRESS> represents the number by which the address
displayed for an executed instruction is offset from the actual
address of the instruction. The syntax for <ADDRESS> is
equivalent to the syntax for <VALUE> as described in Appendix A.

MODEL 64000 .
EMULATOR/INTERNAL ANALYSIS I dlsplay trC_SpeC

8-BIT REFERENCE MANUAL

SYNTAX

-

display trc_spec

N\

Default Value

none |

N

Example:

display trace_specification

FUNCTION

The display trace_specification displays the last active trace command. Trace specifications
are described in Chapter 7.

6-17

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

6-18

Chapter 7
Analysis Commands

Introduction

The Analysis Board

The 64000 system has an optional Analysis board for real-time analysis of the emulation
processor. The Analysis board is a logic state analyzer which uses the system CRT as its
display. Trace specifications are entered into the emulation system software by the user and
are loaded into the Analysis board trigger hardware by the emulation system via the host
processor bus. Once a trace has been requested by the emulation system, the analyzer
begins to look for “states” that satisfy the trace specification until stopped by a command
from the user or until the trace specification is met.

The analyzer contains a trace buffer (memory) that stores 256 events of the trace. The
analyzer monitors the address, data, and status and control lines of the emulation bus and
stores the states indicated by the trace specification in a dedicated analysis memory. When
the required trigger occurs on the emulation bus and all of the specified states have been
gathered, the emulation system accesses the analysis memory via the host processor bus
and the contents of trace memory are retrieved, formatted, and displayed on the CRT screen.
If desired, the emulation system will disassemble the code found in the trace memory into the
mnemonics of the processor being emulated.

Real-time Analysis

Although the analyzer operates in conjunction with the emulator, it is a separate function that
is optional to the emulation system. It is the analyzer that allows for real-time analysis of
emulation bus activity.

Real-time analysis is the ability to monitor address, data, and status and control lines of the
target processor for proper execution with software and hardware. As in the case of real-time
emulation, real-time means full speed operation in the range of the target processor.

If the Analysis board is absent from the emulator configuration, the emulator can still monitor
the emulation bus, but not in real time. This can increase analysis time substantially because
the analysis functions are not passive when there is no Analysis board in the system.

7-1

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

Certain logic analyzer operations require intervention on processor operation. As an
example, most processors do not allow external access of register contents. Therefore, the
ability to interrogate the processor registers requires gaining control or stopping the
processor and causing the processor to output its register contents. Real-time processor
operation may have to be suspended in other trace operations in order to obtain register
information. Memory read operations in real time are not allowed by some processors due to
timing implementation of processor operation. in these cases the processor must have “wait”
states inserted in order to allow a memory read operation by the emulator analyzer.

Analysis Commands

There are two commands used in analysis. They are the trace command (real-time and
nonreal-time analysis) and the count command (real-time analysis only). The trace command
allows the user to specify a particular part of a program where execution is to be traced and
displayed. The count command can be used in combination with the trace command to count
time or states of the program trace.

Trace Command

The trace command allows the user to specify the particular part of a program that is to be
measured and displayed. The trace measurements may be made once and displayed
statically, or the same measurements may be made repetitively and the results continuously
updated.

In general, the trace command causes 256 states to be measured and stored in the trace
buffer. However, the number of lines displayed may be less than 256 since one line may be
made up of several states. The sequential states are displayed in a time progression order.
(Note: The “PREV PAGE” or “NEXT PAGE” keys can be used to view all measured states a
page at a time, or, if desired, the “ROLL UP” or “ROLL DOWN?” keys can be used to view the
measured states a line at a time.)

Trace Command Capabilities

The trace command allows the user to specify any one, all, or none of the following. (If none
are specified; i.e., trace entered alone, then the default conditions described in the following
steps are automatically used.)

a. The type of “states” to be placed into the trace buffer may be specified. This is done
with the “trace only <TERM>[or <TERM>]...".

7-2

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

If a “trace only <TERM>[or <TERM>]...” is not specified, the sequential program states
on the emulation bus (address, data, status) that are routinely executed are placed into
the trace buffer. The qualified states (or all states if not qualified by trace only) are
continuously placed into the trace buffer until the trigger occurs. When the trigger
occurs, the 64000 determines whether the trace measurement is or is not complete
depending upon the trigger <POSITION> as described in subparagraph b, below.

b. The program “states” that trigger the saving of the trace buffer contents and the time
relationship of the trace buffer contents with respect to the trigger may also be
specified. This is specified as: “Trigger <POSITION><TERM>[or <TERM>]...".

The trigger <POSITION> is used to save the states that occur either “before”, “after”,
or “about” the trigger.

The trigger <TERM>[or <TERM>]... is used to specify the states in the program which
cause the 64000 to determine if the trace measurements are or are not complete
(depending upon the trigger <POSITION>).

If the trigger <POSITION><TERM=>[or <TERM=>]... is not specified , the states that
occur immediately following the initiation of the trace command are saved in the trace
buffer. Thus, for the default case, the trigger <POSITION> is “after” and the trigger
<TERM=> [or <TERM=>]... is “don’t care”.

c. A pretrigger sequence that must precede the trigger may also be specified.
Additionally, those <TERM>s that must not precede the trigger in the pretrigger
sequence may also be specified.

The pretrigger sequence is specified as “trace in sequence <TERM>[or <TERM>]...
then <TERM>[or <TERM=>]...”, etc. The states that must not occur in the pretrigger
sequence are specified as “restart on <TERM>[or <TERM>]...”. The “restart” can only
be specified as part of the “trace in sequence” series. If a “restart <TERM>" is
encountered, the 64000 restarts the “trace in sequence” series from the very
beginning.

d. The trace measurements may be made repetitively and the results continually
updated. This is specified as “continue”.

Trace Command Descriptions

From the user’s point of view, the trace command has four basic forms which are summarized
in the following paragraphs. The descriptions progress from the simplest form of trace to the
most complex form and should be read in the order presented. (See figure 7-1 for trace
command flow diagram.)

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

NOTE: IF A PRETRIGGER TRACE IN SEQUENCE IS NOT SPECIFIED,
| OPERATION DEFAULTS TO POINT A. J

ST

64000 DOES ANALYSIS TO FIND EACH SEQUENTIAL TRACE IN
SEQUENCE <TERM>[<QUALIFIER>] OR CORRESPONDING RESTART ON
<TERM>[<QUALIFIER>].

>

IS THE
CURRENT TRACE IN
SEQUENCE <TERM>
[<QUALIFIER>]
DETECTED YET
?

YES

CONTINUE ANALYSIS
FOR CURRENT
<TERM>[<QUALIFIER>]

[

IS A
RESTART ON <TERM>
[<QUALIFIER>]
DETECTED
?

REGARDLESS OF WHERE

THE RESTART IS IS
DETECTED, THE 64000 PRETRIGGER TRACE
GOES TO VERY BEGINNING Nes IN SEQUENCE
OF PRETRIGGER TRACE IN CO%EIT'EJED

SEQUENCE AND RESTARTS
ANALYSIS AGAIN!

CA) CONTINUE ANALYSIS
TO FIND NEXT
<TERM>[<QUALIFIER>]

Figure 7-1. Trace Command Flow Diagram

7-4

MODEL 64000

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

DATA, STATUS, AND REGISTER STATE.

64000 DOES ANALYSIS IN PARALLEL FOR BOTH TRIGGER <TERM> [<QUALIFIER>]
AND TRACE ONLY <QUALIFIER>. ANALYSIS IS PERFORMED FOR EVERY ADDRESS, |

SEE NOTE 1.

IS
TRACE ONLY
<QUALIFIER> MET
FOR THIS CYCLE
?

STORE ADDRESS, DATA,
STATUS, AND REG.
TRANSACTIONS FOR
THIS STATE INTO
TRACE BUFFER.

SEE NOTE 2.

HAS
TRIGGER <TERM>
[<QUALIFIER>]
ALREADY BEEN
DETECTED?

YES

HAS
TRIGGER <TERM>
[<QUALIFIER>]
ALREADY BEEN
DETECTED ?

IS

TRIGGER <TERM>

[<QUALIFIER>] MET

FOR THIS STATE
?

SET FLAG TO INDICATE THAT
TRIGGER <TERM> HAS BEEN
DETECTED.

'

<POSITION> REQUIREMENTS.

FOR THIS CYCLE, 64000 CHECKS IF TRACE BUFFER CONTENTS MEET TRIGGER

NO

ARE
TRIGGER <POSITION>

REQUIREMENTS MET
?

SEE NOTE 3.

Figure 7-1. Trace Command Flow Diagram (Cont’'d)

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

DISPLAY TRACE BUFFER CONTENTS e

IS

CONTINUE SPECIFIED
?

NO

TRACE COMMAND IS REPETITIVELY EXECUTED

Notes:
1. If trace only <QUALIFIER> is not specified, operation defaults to the “yes” path.

2. If trigger <TERM>[<QUALIFIER>] is not specified, operation defaults to the “yes” path.

3. If trigger <POSITION=> is not specified, <POSITION> defaults to “after”.

Figure 7-1. Trace Command Flow Diagram (Cont'd)

7-6

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Trace [continue]

This is the simplest form of the trace command. When trace is specified alone, the following
occurs. Since there is neither a pretrigger “trace-in sequence” nor a “trigger <TERM> [or
<TERM=>]...” specified, the storing of states in the trace buffer begins at whatever address
happens to be in the program counter when trace is initiated. Also, because there is no
“trigger <POSITION> <TERM>[or <TERM=>]...” specified, the sequential program states on
the emulation bus (address, data, status) that are routinely executed after trace is initiated are
saved in the trace buffer.

The “trace [continue]” command causes the trace to be repetitively executed and the
displayed results to be continuously updated. The trace continues until it is manually
stopped by the stop-trace soft keys. However, because there are no parameters specified in
this form of trace, the trigger will probably vary for each repetitive sequence.

Trace only <TERM>[or <TERM]...[continue]

This form of trace is similar to “trace [continue] in that neither the pretrigger “trace in
sequence” nor a “trigger <POSITION><TERM>[or <TERM>]...” is specified by the user.
Thus, the trigger position defaults to “after” and the collection of the qualified trace states
begin at whatever address exists in the program counter when the trace command is
initiated. However, the difference is that only those states that meet the “trace only
<TERM>[or <TERM>]...” conditions are placed into the trace buffer.

Trace (trigger) <POSITION><TERM>[or <TERM>]...
[trace only <TERM> [or <TERM>]]...[continue]

This form of trace is similar to “trace only <TERM=>[or <TERM>]...[continue]” in that the user
specifies what states are to be stored in the trace buffer. The difference is that the “trigger
<POSITION><TERM=>[or <TERM>]... is also specified by the user.

The <TERM>[or <TERM>]... defines the state or states at which the trigger occurs. (When the
trigger states are detected, the 64000 determines whetner the trace measurements are or are
not complete depending upon trigger <POSITION>))

Trace in_sequence...Restart_on...

This prefix is used to define the sequential states that must precede, and those that must not
precede the trace trigger...and trace only...parameters. This is a useful tool for checking
program branches, loops, etc.

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

Trace Display
The trace data stored in the trace buffer as a result of a “trace” command can be displayed
with the “display trace” command. The default condition for the display trace command is the
mnemonic form with the operators and operands packed onto a single line along with the
absolute addresses.

The “display” command may be used to specify one or more of the following: data displayed
in absolute (hexadecimal) format; data displayed in mnemonic form; data with operators and
operands unpacked and on separate lines ; and addresses displayed with an offset value. See
figures 7-2 through 7-5 for examples of the display trace formats.

TRACE COUNT TIME ABSOLUTE
ADDRESS, DATA, STATUS

AFTER 009AH CALL O00C4H =p-1 1083H (sp-1,sp-2) 009DH + 0. us

+001 O00UC4H CALL 01594 sp~1 1081H (sp-1,sp~-2) GOC?H + 5, us

+002 0159H PUSH PSUW sp-1 107FH a 03H flag 04H + 11, us

+003 0:5aH DCX H + 15, us

+004 015BH MYI A, FSH « 17, us

+005 O01SDH MOY A,H + 19, us

Figure 7-2. Display Trace Format

TRACE COUNT TIME ABSOLUTE
ADDRESS, DATA, STATUS

AFTER 00%AH CDH 07H + 0, us

+001 OUSBH C4H 06H + 1, us

+002 GO9CH OOH 06H + 2, us

+003 1US3H O0H 1S5H + 3, us

+004 1082H 9DH 15H + 4, us

+005 00C4H CDH 07H + 5, us

Figure 7-3. Display Trace Absolute Unpacked Format

TRACE COUNT TIME ABSOLUTE
ADDRESS, DATA, STATUS

AFTER 009AH CDH 07H 009BH C4H 06H 009CH 00H 06H 1083H 00H 15H + 0, us

1082H 9DH 15H
+00f 0O0C4H COH 07H OOCSH S9H 06H OOCEH 0iH 06H 1081H 0OH 15H + 5, us
1680H C7H 15H
4002 0159H FSH 07H 107FH 03H iSH 107EH 04H 15H + 11, us

+003 015AH 2BH 07H + 15, uUs

Figure 7-4. Display Trace Packed Format

7-8

MODEL 64000

TRACE
ADDRESS, DATA, STATUS
AFTER 0000H CALL 002AH
+001 002AH CalLL 0O0BFH
+002 00BFH PUSH FSU
+003 00COH DCX H
+004 GOC1H MY1 A, FSH
+005 00C3H MOV ALH

ADDRESSES OFFSET BY 009AH
sp—1 OFE9H (sp-1,sp-2> 0003H
sp-1 OFE7H (sp-1,sp-2> 002DH
sp-1 107FH 2 03H flag 04H

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

COUNT TIME

PO

Figure 7-5. Format for Display Trace Offset by 009AH

ABSOLUTE

In some trace displays and memory displays, a string of asterisks (****) will be present in a
display list. When displaying a trace, the emulator does not test for read or write operations,
but simply looks for the beginning of a cycle (the occurrence of an opcode or an interrupt).
After detecting a beginning of a cycle in mnemonic display mode, the emulator then searches
for the next beginning of cycle in the trace list. If the next beginning of cycle is not detected

within a specified number of states (processor dependent),

ok Kk ok ok,

is displayed, indicating

that the emulator was unable to interpret the operand of the current opcode. This condition
can be caused by an error in software execution or by qualifying a trace. In memory displays,
asterisks are displayed when an attempt is made to display unmapped memory locations.

Count Command

The count command may be used to count any of the following parameters:

e count time absolute

e count time relative

e count <STATES> absolute

e count <STATES> relative

Each of the above parameters are described in the following paragraphs.

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

Count Time Absolute
Absolute time counts are automatically displayed after a trace command is issued and when
the states stored in the trace buffer are displayed.

The absolute time count is the total elapsed time between the trigger and a measured state. If
a minus time is shown, then the states in the line occurred before the trigger and the elapsed
time is measured from the beginning of the state until trigger detection.

Count Time Relative

Absolute time counts may be replaced with relative time counts by pressing the “display
count relative” soft keys. Once relative time counts are selected, they are displayed until
“display count absolute” is selected.

The relative time measures the interval from the beginning of the previous state (line) to the
beginning of the currently displayed line. The relative time count does not use the trigger as a
reference point. This time count can be used to determine how often a state or states occur
within a trace specification.

Relative/Absolute Time Counts Compared

For equivilent measurements, absolute time shown for any single line will approximate the
total of the relative times shown for all preceding lines. However, the two values will not
usually equate exactly. This is because the 64000 may require up to 640 nanoseconds to
measure the states in any line. This measuring time is included in the absolute time but it is
not included in the relative time.

Count <STATES>

This command may be used to determine either: (1) whether a specific <STATE> did or did
not occur within the overall trace specification (relative count) or (2) how many times a
specific <STATE> occurred within the overall trace specification (absolute count).

A count <STATE> is similar to an <EVENT> except register <STATES> can not be counted
and the not equal (< >) relationship can not be used.

The count <STATE> may be specified as any one of the following:
a. Count address = <ADDRESS>[data = <VALUE>][<STATUS>]

b. Count data = <VALUE> [<STATUS>]

7-10

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

c. Count <STATUS>
where:

<STATUS>, <VALUE>, and <ADDRESS> are the same as previously defined for
<EVENT>.

Real-time/Nonreal-time Analysis Guidelines

Real-time Analysis
In general, real-time analysis is done with hardware and nonreal-time analysis is done with
software techniques. The real-time analysis hardware is contained on the analysis board.

In general, real-time analysis can be performed for trace specifications consisting of address,
data, and status states, provided:

a. no address, data, or status states are connected by an “OR”.

b. the data and status states are specified as “=" to a value and not specified as “<>"to a
value.

c. the complexity of the trace specification does not exceed the real-time processing
capability of the hardware.

Real-time analysis is indicated on the display by the message “XXXX----running”, where
XXXX is the microprocessor type number.

Nonreal-time Analysis
The following trace specifications can not be done in real-time:

a. real-time analysis can not be performed for a trace specification which includes a
register state. This is because the microprocessor program must be interrupted to
sample internal register data.

b. real-time analysis can not be performed for a trace specification containing two or
more events connected by an “OR”.

c. real-time analysis can not be performed for any trace specification containing a data
or status state specified as “< >” to a value.

Nonreal-time analysis is indicated on the display by the message “single cycling” or “pseudo

”

run-.

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

Using Analysis Commands

The source modules, written by the user, must be assembled into relocatable object modules
and then linked into an absolute file or program. The absolute program must then be loaded
into either the 64000 emulation memory or the target system memory. In some instances, the
program may be loaded entirely into, and run from emulation memory. In other instances, it
may be desirable to run code resident in the user’s target system. In still other instances, a
combination of both user memory and emulation memory may be used. Before loading
memory, be sure the user/emulation memory and simulated I/O devices have been mapped
to the configuration required to emulate the target system.

Analysis may be performed either by first initiating the program run and then specifying the
trace parameters or by specifying the trace parameters first and then initiating the program
run. In either case, once a trace command is initiated, the analysis module or software
monitors the system buses of the emulation processor to detect the state sequence specified
in the trace command. When the trace specification has been satisfied, a message will appear
on the station display stating “trace complete”. At that time the contents of the trace buffer
are displayed. If the trace buffer content exceeds the page size of the display, the “NEXT
PAGE”, “PREV PAGE”, “ROLL UP”, or “ROLL DOWN" keys may be used to display all the
trace buffer contents.

After the user examines the contents of the trace buffer, minor problems may be corrected by
changing or inserting new absolute code into emulation memory. Such modifications can be
made with the modify command. After the changes have been made, the processor and
object code can be run again and the results examined. This cycle is continued until the
software and hardware “play” together as expected. When the software is functioning
correctly, it may be corrected in the source file, reassembled, relinked and reloaded into the
target system.

After the software is debugged, the emulation cable may be removed from the target system,
and the processor chip re-installed. The debugged software should operate as it did under
emulation.

Trace/Count Command Syntax

The syntax listing on the following pages are intended primarily to acquaint the user with the
different operational commands. The commands are listed alphabetically to facilitate quick
referencing.

MODEL 64000
EMULATOR/INTERNAL ANALYSIS IR C O U Nt

8-BIT REFERENCE MANUAL

SYNTAX

count time
<STATES>

Default Value

If neither time nor a set of conditions for <STATES> is entered, the 64000 defaults to
| counting time. ’

Examples:

count time

count 810H,,30H

count address = 900H data = 74H
FUNCTION

The count command is used to measure the elapsed time between the states of a trace or to
determine the number of times a specified <STATE> occurs within a trace.

A count time command measures both absolute and relative time. The absolute time count
displayed for a traced state is the total elapsed time measured between the trigger event and
the traced state. The relative time count for a particular state is the measurement of the time
interval between that state and the previously traced state.

A count <STATES> command determines if a specific <STATE> occurs during a trace and
the number of times that that <STATE> occurs. A display of absolute state counts indicates
both the points at which the state occurred in the trace and the number of times the state had
occurred up to that point. For example, if the count corresponding to a traced state is “0”, the
specified state had not occurred up to that point. The first time that the displayed count is a
“1” is the first time that the specified <STATE> appears in the trace. Likewise, the first
occurrence of a count of “2” indicates the second occurrence of the <STATE> and so on.

7-13

MODEL 64000

count N, =\1ULATOR/INTERNAL ANALYSIS
(Cont'd) 8-BIT REFERENCE MANUAL

The display count command determines whether absolute or relative counts are displayed.
Absolute time or <STATE> counts are displayed by default if no display count command is
entered. Absolute counts can be exchanged for relative counts by pressing the display count
relative soft keys. Once relative counts have been selected, displays of either time or
<STATE> counts are in the relative format until display count absolute is reselected or
emulation is ended.

Parameters

time time specifies that the time between events (relative) and the time
elapsed since the trigger event will be measured and displayed.

<STATES> <STATES> specifies the particular state or states which are to be
counted when they occur simultaneously on the emulation bus.
The syntax for <STATES> is described in Appendix A.

trace

SYNTAX

ftrace [[sequence <TERM>[{or} <TERM>]...
{then}
[restart_on <TERM> [or <TERM>]...]

[then <TERM>{ {or} <TERM=>]..[restart_on <TERM>
{then}

[or <TERM>]..]]..] (trigger) <POSITION><TERM>

[or <TERM>]..J[(trc_)only <EVENT>[or <EVENT>]..]

[continue]

MODEL 64000

EMULATOR/INTERNAL ANALYSIS I trace

8-BIT REFERENCE MANUAL (Cont'd)

Default Value

If the pretrigger and trigger specifications are omitted, the trigger <POSITION> defaults to |
after and the trigger <TERM> defaults to “don’t cares”.

_ _ o

Examples:
trace
trace continuous
trace only 810H or 900H,10H
trace after address = 54H continuous

trace in_sequence ,21H occurs 5 then 800H or 801H restart on
data = 25H trigger about 10A0H

trace in_sequence 610H or 654H occurs 3 then 680H trigger after
685H trace_only data = OFFH

FUNCTION

The trace command is used to analyze and display a particular portion of a program run.
Each state of the program run is examined and if that state helps fulfill the requirements of
the trace specification, it is stored in a trace buffer which can store up to 256 states. When the
trace specification is satisfied, the contents of the trace buffer is displayed on the CRT.

Parameters
continue continue instructs the 64000 to constantly collect and display the
data indicated by the trigger specification. The specified pretrigger
sequence, if any, must be satisfied prior to the collection of any
data, but it need be satisfied only once.
<EVENT> The <EVENT> variable specifies a particular state or set of states

on the emulation bus and/or the contents of the internal registers
of the emulation processor. The syntax requirements for <EVENT>
are described in Appendix A.

MODEL 64000

£ QC 0SSN :\/ULATOR/INTERNAL ANALYSIS
(Contd) 8-BIT REFERENCE MANUAL

or or represents the logical OR condition. When used in a pretrigger
sequence to separate the <TERM>s of a series, the occurrence of
any one of the <TERM=>s will satisfy that portion of the pretrigger
sequence in which the series appears.

<POSITION> <POSITION> determines whether the displayed trace states are
those which occurred before, after, or about (both before and after)
the specified trigger <TERM>.

restart_on restart_on is used to specify <TERM>s which are not to occur
during the search for the pretrigger condition. If any of the
<TERM>s listed immediately following restart_on are detected
before the current condition is satisfied, the search for the
pretrigger sequence starts again from the beginning.

sequence in_sequence indicates the beginning of a pretrigger sequence.

<TERM> The <TERM> variable represents an <EVENT> which must occur a
specified number of times. Refer to the definitions for <TERM>and
<EVENT> which appear in Appendix A.

then then is used in the pretrigger sequence to specify that the given
conditions must occur in the order listed before the pretrigger
sequence will be satisfied.

trc_only trace_only is used to select the <EVENT>s or types of <EVENT>s
(io_reads, opcodes, etc.) that are to be saved in the trace buffer for
display when the trace is complete. The trc_only soft key appears
as “only” if no pretrigger sequence is entered.

trigger trigger is used with <POSITION> to determine whether the
displayed trace states are to be those which occurred before, after,
or about the trigger <TERM>. trigger only appears as a softkey
when a pretrigger sequence is selected. In all other cases “trigger”
is implied when a <POSITION> is specified.

DESCRIPTION

The trace command consists of an optional pretrigger sequence and a trigger specification.
The pretrigger sequence is used to pinpoint the exact <EVENT> about which the analyzed
states are to be saved. The trigger specification determines which particular states occurring
before and after the trigger <EVENT> are to be saved in the trace buffer.

7-16

MODEL 64000

EMULATOR/INTERNAL ANALYSIS I trace

8-BIT REFERENCE MANUAL (Cont'd)

The pretrigger sequence begins with “in_sequence” and includes a series of conditions
connected by “then” which must be satisfied in the order listed before the search for the
trigger <EVENT> will begin. A condition consists of a list of one or more <TERM>s
connected by the logical OR. If any one of the specified <TERM>s is detected, the current
condition will be satisfied and the 64000 will begin searching for the states required to satisfy
the next condition. The <TERM> which satisfies the condition is stored in the trace buffer and
displayed on the CRT to indicate that the particular condition has been satisfied.

A condition can also include a list of <TERM>s which are not to occur before the current
condition is satisfied. This list is an optional entry which is specified using the restart_on
parameter. If any one of the restart <TERM>s occurs before the condition requirements are
fulfilled, the 64000 will restart its search for the pretrigger sequence beginning with the states
required to satify the first condition.

For example, suppose that the pretrigger sequence consists of the following two conditions:
trace in_sequence 800H or 835H then ,45H restart_on 838H ...

The first condition consists of “800H or 835H” and is satisfied when either an address of 800H
or an address of 835H is detected. Once that requirement has been fulfilled, the 64000 begins
to search for a state which will satisfy the second condition. The second condition consists of
“,45H restart_on 838H". If the data = 45H appears before, or at the same time as, an address
equal to 838H is detected, the search for the trigger <EVENT> will begin. However, if 838H
appears on the address bus before 45H appears on the data bus, the trace buffer is cieared
and the search for the state which satisfies the first condition of the pretrigger sequence
begins again.

NOTE

If a specification condition and a “restart_on” condition occur
simultaneously, the specification condition takes precedence.

The trigger specification determines which of the traced states will be stored in the trace
buffer for display upon completion of the trace. The trace buffer can be filled by those states
which occur immediately before or immediately after the specified trigger <EVENT>, or half
of the buffer can be filled by states which precede the trigger and half by those which follow
the trigger <EVENT>. The storage option used is determined by the entry made for the
<POSITION> parameter.

MODEL 64000

£ QC 10000 E\ULATOR/INTERNAL ANALYSIS
(Cont'd) 8-BIT REFERENCE MANUAL

7-18

<EVENT=>s can be selectively saved by pressing trc_only (or only) and entering the specific
<EVENT>s to be saved. When this option is used, only the indicated states occurring in the
specified <POSITION> relative to the trigger <TERM> are stored in the trace buffer.

Entry of the continuous parameter causes a continuous update of the display of the trace
buffer contents (also continuously updated) once the pre-trigger sequence has been
satisfied. If no pre-trigger sequence is entered, the continuous display of the trace buffer
contents starts immediately after the trace begins. The trace will continue until the run is
complete or until either a stop trace or stop run command is issued.

Chapter 8
Simulated 1/O

Introduction

The “Simulated 1/0” feature of the 64000 System allows the user to develop programs for, but
without actually using, the target systems I/O hardware. To do this, the 64000 systems 1/0
hardware is used to “simulate” the target systems |I/O hardware. This provides a double
benefit. First, programs may be developed concurrently with hardware development, and
second, if the target systems hardware exists but is not available to the programmer, program
development can continue uninterrupted.

The following 64000 system hardware may be used to “simulate” the target system hardware
during user-program development. (The 64000 hardware is listed in the order of description.)

e Printer

e Display

e Keyboard
e Disc

e RS-232 Communications Channel

Simulated 1/0 is described in this section as follows. First an overview is presented. The
overview describes the common attributes of the five simulated I/O interfaces, and then
briefly, the interfaces themselves. The intent of the overview is to acquaint the reader with the
simulated 1/0 features.

Following the overview, each interface is described in detail. The intent of the detail
descriptions is to provide sufficient information to allow a user to write the programs that will
interface with the 64000 1/O devices. Following the detailed descriptions is a list of error
codes, sample programs and file formats.

8-1

EMULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

8-2

After the user has written, assembled (or compiled) and linked his/her I/O programs, they
may be incorporated into an emulation configuration, executed, and tested.

Emulation configuration is described in Chapter 4 of this manual. Running and testing the
programs is done with the commands described in sections 5 through 7 of this manual.

Overview

A general description of each of the simulated I/O interfaces is described in the following
paragraphs. However, all of the interfaces have common attributes. These are described first.

Common Attributes

Each simulated 1/O interface requires a unique memory location to which all 1/0
handshaking codes are sent by both the user and the 64000 programs. The address for this
location is generically referred to as the control address, or CA. The 64000 samples these
addresses periodically looking for commands. Location CA must be initially defined in the
users program and in the emulation configuration. If more than one simulated I/0O interface is
to be implemented, then the user must make sure that each I/O program assigns a unique
address for the CA. Additionally, the user program must allow for contiguous buffer spaces
following the CA. The exact amount of, and use of this buffer space, is determined by the
type of 1/O interface. These requirements are specified in the detail descriptions of the
interfaces.

The addresses for the different CA locations are entered into the 64000 program during
emulation configuration. The user must NOT restrict the processor to real time runs when
using simulated 1/0. The CA locations must be located in memory space assigned as either
user or emulator RAM. It is recommended that the CA locations be in emulation RAM since
this will allow the user programs to run faster. Mapping the CA locations to user RAM will
cause the emulator to single cycle while polling the CA locations for commands and or data.
In the latter mode, if a “display registers” command is issued while simulated I/0 is enabled
(in the emulation configuration), the display will appear to be the same as from “display
registers dynamic” command. This is normal and is a result of the pseudo run forced by the
64000 simulated I/O programs.

Certain of the I/0 codes sent to location CA must also include supplemental information.
This supplemental information is contained in the locations following CA, i.e., CA+1 through
CA+n. The supplemental information must be placed in locations CA+1 through CA+n
BEFORE the corresponding control code is placed in CA. If this is not done, the 64000 may
respond to the control code in CA before the supplemental data is set into locations CA+1
through CA+n.

MODEL 64000

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

The user program must initiate the request to open the simulated 1/0 interface. To do this,
after setting up the supplemental information in locations CA+1 through CA+n, the user
program places the appropriate code into location CA. (Code 80H opens all interfaces except
the disc file where it creates a file.) If the 64000 program successfully executes the request, it
returns the appropriate code to location CA. (Usually a 00 is returned, but not always.) If the
64000 program cannot execute the request, an error code is returned to location CA. A group
of predefined error codes is used. Within this group only a portion of the codes apply to each
interface. These error codes are defined in general terms in table 8-8 which is located toward
the end of this chapter. For those interfaces where the error codes also have specific
meanings, the meanings are defined in the detailed descriptions of the interface. When the
user is finished with the system resources, he should “close” the appropriate interfaces with
the proper commands. All devices will automatically be closed by an “end simulation”
command or by execution of a reset-reset.

Printer 1/0O Interface (see figure 8-1)

This is the simplest of the five I/0 interfaces. Only three user-control codes are used to
interface with the printer. These are: (1) open printer file, (2) write to the printer, and (3) close
printer file.

A buffer space contiguous to location CA contains a value indicating the number of bytes
(characters) to be printed followed by the characters themselves.

Display 1/0 Interface (see figure 8-2)

This is somewhat more complex than the printer 1/0O interface since it requires five user
control codes. These codes are used to: (1) open the display file, (2) roll to and write line 18
(this is used to scroll lines up on the display), (3) select a starting line and column, (4) write
from the selected line and column, and (5) close the display.

Depending upon the control code issued, a buffer space contiguous to location CA is
required to hold one of the following parameter groups: (1) line length in bytes followed by
the bytes to be displayed, (2) line and column number at which record display is to begin, or
(3) record length in bytes followed by the record bytes to be displayed. The open and close
codes use no additional buffer space other than location CA.

Keyboard 1/0O Interface (see figure 8-3)
The keyboard interface uses two user control codes and two keyboard input command word
codes. Additionally, the 64000 returns one of 24 keyboard output command word codes.

The user control codes are used to open or close the keyboard interface file. The two
keyboard input command codes are used to either: (1) clear the currently displayed line upon
receipt of a keyboard character, or (2) append the character to the existing line.

EMULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

8-4

When the keyboard file is opened, a buffer space contiguous to location CA is required to
hold the keyboard input command word and the maximum record length specification. This
specification defines the maximum record length that will be accepted from the keyboard.
Thus, the buffer must be large enough to accept the keyboard output parameters and the
maximum record length specified.

The keyboard output command word defines the manner in which the input line was
terminated or the status of the keyboard output record. The output record consists of ASCII

coded character bytes.

Disc Files 1/0 Interface (see figure 8-4)

CAUTION

The disc file simulated I/O control codes can be used to
access critical system files. Extreme care should be used if
any of the following types of files are accessed:

Emulation Command Files (Type 6)

Linker Command Files (Type 7)

Linker Configuration Files (Type 8)

Assembler Configuration Files (Type 10)

Incorrectly accessing these files may destroy them and cause
serious system problems!

The simulated disc file interface uses ten user control codes. These codes allow the user
program to: (1) create, open, close, or delete a file; (2) advance to, backup to, or randomly
select a record position within a file; (3) automatically select record postion 1 in the file; and
(4) read from, or write into any selected record postion in the file. The user may also assign a
different file name to be associated with an already existing CA.

Depending upon the control code issued, a buffer space contiguous to location CA is
required to hold one of the following parameter groups: (1) file type number, (2) disc number,
(8) record number, (4) maximum number of words to read or write, or (5) the actual number of
words read or written, followed by the words themselves.

MODEL 64000

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

No buffer space is required following the control codes used to close the file and to
automatically select record position 1 in a file.

RS-232 1/0 Interface (see figure 8-5)

This is the most complex of the five I/O interfaces. To use this interface, the following distinct
events MUST be implemented between the user and 64000 programs: (1) the RS-232
interface must be opened; (2) the 8251 Universal Synchronous/Asynchronous, Receiver/
Transmitter, or USART, is initialized; (3) using the appropriate command word, an 8251
operating mode is selected; (4) data may be written to, or read from, the 8251; and (5) when
data transfer is complete, the RS-232 file may be closed.

To implement the interface, the user program must allow for control space contiguous to
location CA as shown in figure 8-5. During 8251 initialization, locations CA+1 through CA+5
hold the command and status words used to initialize and select the operation of the 8251.

The user program may read or write single bytes or multiple-byte records. When reading or
writing single bytes, the single byte is passed through location CA+1. If multiple byte records
are to be handled, the user program must set up read and write buffers as shown in figure
8-5.

When writing multiple byte records, locations CA+6 through CA+14 hold the write buffer
pointers and the actual number of bytes sent by the 8251. This data is used interactively
between the user and 64000 programs to transfer write data from the users program, via the
users and 64000 write buffers, to the 8251.

When reading multiple-byte records, location CA+15 through CA+23 hold the read buffer
pointers and the actual number of bytes received by the 8251. This data is used interactively
between the user and 64000 programs to transfer read data from the 8251, via the 64000 and
users read buffers, to the user program.

The read and write buffers may be updated individually or together by the user program.

EMULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

8-6

CONTROL CONTROL
CODES CODES
- cA
CA+1
SSFNRTER 64000 64000
ROUTINE PROGRAM PRINTER
PRINT PRINTER
DATA DATA
240 CA+n
BYTES
MAX USERS PRINTER 1/0
CONTROL/DATA BUFFER
Figure 8-1. Simulated Printer 1/0 Interface Diagram
CONTROL CONTROL
CODES CODES
CA
CA+1
LDJISSEF’RLAS\Y 64000 64000
ROUTINE PROGRAM DISPLAY
DISPLAY DISPLAY
DATA DATA
256 CA+n
BYTES .
MAX USER'S DISPLAY 1/0

Figure 8-2. Simulated Display 1/0 Interface Diagram

CONTROL/DATA BUFFER

MODEL 64000

MODEL 64000

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

CONTROL CONTROL
CODES oA CODES —] COMMAND WORDS
COMMAND COMMAND r
WORDS At WORDS]
. CA+2 64000
USER'S 64000
ke KB DATA PROGRAM NEVBOARD
BYTES
ROUTINE 240 MAX. KBDATA | KB DATA
CA+n
USERS KB 1/0
CONTROL/DATA BUFFER
Figure 8-3. Simulated Keyboard 1/0 Interface Diagram
CONTROL CONTROL
CODES CODE
oA ODES
‘ CA+1
B,SSE(? S READ/WRITE
DATA 64000 DATA 64000
FILE 1/O PROGRAM DISC
ROUTINE READ/WRITE
& FILES FILE OR
RECORD ID
- OR —
R/W DATA
WORDS. CA+n
128 WORDS USERS DISC 170
256 BYTES
(MAx) CONTROL DATA BUFFER

Figure 8-4. Simulated Disc File I/O Interface Diagram

8-7

EMULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

8-8

USER'S
PROGRAM

MODEL 64000

XMIT
DATA

8251
USART"

64000
RIT WRITE
USER'S EVYTEE WRITE BYTES
WRITE BUFFER"*
WRITE BUFFER'" (256 BYTES
BYTES MAX)
1 64000 CONTROL
CONTROL
CODES CA (CNTRL
ADDR)
CA+1
INITIALIZATION
& STATUS 8251
INITIALIZATION
BUFFER
CA+5
A+
WRITE CAte 64000 PROG
WRITE &
CONTROL CONTROL READ/WRITE CNTRL
BUFFER INTERRUPT
ROUTINES
CA+14
CA+15
READ
CONTROL READ
CONTROL
BUFFER
CA+23
USER'S RS-232
CONTROL BUFFER
64000 CONTROL
READ READ
BYTES BYTES
USER'S 64000
READ READ
BUFFER"" BUFFER"*

*USART = Universal Synchronous/Asynchronous Receiver/Transmitter.
**Buffers are required only if records are to be read or written. Single bytes do not require these buffers.

Figure 8-5. Simulated RS-232 1/0 Interface Diagram

REC
DATA

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Printer 1/0 Interface

The following paragraphs describe the events which must be implemented between the user
and the 64000 program for printer 1/0 to occur. The events are:

e Open Printer File
e Write to Printer
e Close Printer File
The above events, the corresponding control codes, and parameters, where applicable, are

summarized in table 8-1.

NOTE

During the time that a simulated I/O printer file is open, no
other user can access the printer. Thus, be sure to close the
file when finished.

Open Printer (80H)

Before using a “write to printer” code, the user program must request that the printer
interface be opened. This is done by placing code 80H into location CA.

8-9

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

NOTE

CA represents the memory location to which all printer I/0
“handshaking” codes are sent by both the user and the 64000
program. The actual address for the printer is defined in the
user program and entered into the 64000 program during the
configuration of the emulation CMDFILE. Each I/0O interface -
printer, RS-232, display, etc. - requires its own unique CA
address.

Certain of the 1/O codes sent to location CA must also include
supplemental information. This supplemental information is
generally contained in the locations following CA, i.e., CA+1
through CA+n. The supplemental information must be placed
into locations CA+1 through CA+n BEFORE the correspond-
ing control code is placed in CA. If this is not done, the 64000
may respond to the control code in CA before the
supplemental data is set into locations CA+1 through CA+n.

The 64000 program responds by opening the printer file and returning a 00 to location CA. If
the file cannot be opened, error codes are returned as shown in table 8-1.

After the file is opened, the user program may issue a write-to-printer code as described in
the next paragraph.

Write to Printer (82H)

To send a write record to the printer, the user program places the following parameters into
locations CA+1 through CA+n and then after setting up locations CA+1 through CA+n,
places code 82H into location CA.

The record length in bytes is entered into location CA+1. The record length must be a
minimum of two bytes and may be a maximum of 240 bytes in two byte increments. That is -
the record must always contain an even number of bytes. Odd bytes should be padded with a
space (20H).

Locations CA+2 through (CA+2)+n contain the ASCII codes of the character to be printed.

8-10

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

The 64000 responds by supplying the write record to the printer and returning a 00 to
location CA. The 64000 automatically sends a carriage return/linefeed to the printer
following the user data. If the write-to-printer record is not accepted, an error code is
returned as listed in table 8-1.

Close Printer File (81H)

The user program closes the printer file by placing code 81H into location CA. The 64000
responds by closing the file and returning code 00 to location CA. The 64000 will perform a
form feed automatically.

If the close file is not accepted, an error code is returned to location CA as shown in table 8-1.

Display 1/0 Interface

The following paragraphs describe the events which must be implemented between the user
and the 64000 programs for display I/0O to occur. The events are:

e Open Display File
e Roll To / Write line 18 (scroll and write)
e Select line and column
e Write from selected line/column
e Close Display File
The above events, the corresponding control codes and parameters, where applicable, are

summarized in table 8-2. Display techniques are shown in figure 8-6.

NOTE

During the time that the simulated I/0 display file is open, the
standard 64000 keyboard has no control over the display. To

file. If the keyboard file is also open, it too is closed when the
soft key is pressed.

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

Table 8-1. Printer I/0 Codes

Request User Program 64000 Response To:
Name Request
Valid User Request Invalid Request
Address Contents Address Contents Error Code
OPEN CA 80H CA 00 01 thru 08
PRINTER
FILE 09: file is
already open.
10-14;: NA
CLOSE CA 81H CA 00 01 thru 08
PRINTER
FILE 09: file is
already closed.
10-14: NA
WRITE CA 82H CA 00 01 thru 08
TO
PRINTER CA+1 Record The 64000 09: file is
Length accepts not open.
in bytes the record
(240 max.) and causes 10, 11, 13
it to be & 14: NA
printed.
CA+2 Record 12: Record
byte 1* length ex-
| | ceeded 240
bytes.
(CA+2) Record
+n byte n*

*All display characters must be formatted in ASCII code. A code greater than OFOH will not be
accepted by the 64000 program.

NA= Not Applicable.
See table 8-8 for complete error code listing.

8-12

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Open Display File (80H)
Before any writing can be done on the display, the user program must request that the
display file be opened. This is done by placing code 80H into location CA.

NOTE

CA represents the memory location to which all display 1/0
“handshaking” codes are sent by both the user and the 64000
program. The actual address for the display 1/0 CA is defined
in the user program and entered into the 64000 program
during the configuration of the emulation CMDFILE. Each I/0
interface - display, RS-232, printer, etc. -requires its own
unique CA address.

Certain of the 1/0 codes sent to location CA must also include
supplemental information. This supplemental information is
generally contained in the locations following CA, i.e., CA+1
through CA+n. The supplemental information must be placed
into locations CA+1 through CA+n BEFORE the correspond-
ing control code is placed in CA. If this is not done, the 64000
may respond to the control code in CA before the
supplemental data is set into locations CA+1 through CA+n.

The 64000 program responds by opening the display file, and returning a 00 to location CA. If
the file cannot be opened, error codes are returned as shown in table 8-2.

After the file is opened, the user program may write on the display as described in the
following paragraphs.

Roll To/Write Line 18 (82H)

This command allows writing to be initiated at the bottom of the display. Sequential Roll
Up/Write Line 18 commands cause the previously written line 18 to roll to line 17, etc. Thus,
writing is always done on the bottom line and the previously written lines are shifted up as
each new line 18 is written.

To cause the display to roll up and begin writing on line 18, the user program places the
following parameters into location CA+1 through CA+n, and after setting up locations CA+1
through CA+n, then places code 82H into CA.

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

The line length in bytes is entered into location CA+1. The line length must be a minimum of
two bytes and may be a maximum of 80 bytes, in two byte increments. That is, the line must
always contain an even number of bytes. If the user writes an odd number of bytes, the 64000
will pad the line with a null.

Locations CA+2 through (CA+2)+n contain the ASCII codes of the characters to be written
on line 18. The 64000 responds by storing this data in a display buffer and returning a 00 to
location CA. A delay may occur before the program rolls up and writes to line 18. Thus, a
program wait may be required. If writing cannot be done, especially if write roll/column is
used (roll/column does not use delay), an error code is returned as listed in table 8-2.

After initially rolling up and writing on line 18, subsequent Roll Up/Write Line 18 commands
cause the previously written line 18 to roll up to line 17, line 17 to roll to line 16, etc. Although
the 64000 responds almost immediately with a 00 in CA, the actual scrolling of a line can take
up to 200 msec. The 64000 will accept other commands during this time. Future scrolls are
buffered and performed in sequence. Row/Column writes will be performed immediately and
may be scrolled if a previous scroll has not been completed.

Select Starting Line/Column (83H)

The user programs may specify the line number and column number at which writing, when
indicated, will start. To do this, the user program places the line number (1 through 18) into
location CA+1, the column number (1 through 80) into location CA+2, and then places code
83H into location CA.

The 64000 responds by storing the line and column number and returning code 00 to location
CA. The line and column numbers are stored until either writing is initiated (code 84H) or the
display file is closed.

If the line and column numbers are not accepted by the 64000 program, an error code is
returned to location CA as listed in table 8-2.

Figure 8-6 shows the display techniques.

Write From Starting Line/Column (84H)
Before writing can be initiated, a starting line number and column number must be specified
by the user program. After this is done, writing may be initiated as follows: the user program
initiates writing by placing the record length (i.e., number of characters to be displayed) into
location CA+1, the actual display characters (ASCIl codes) into locations CA+2 through
(CA+2)+n, and then places code 84H into location CA.

The maximum record length is 255 bytes. The display characters must be formatted in ASCII
codes. The 64000 program will not accept a display code greater than OFOH.

8-14

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

The 64000 responds by displaying the record beginning at the starting line and column
specified by code 83H. If the record exceeds the length of the starting line, writing continues
at column one of the next line, etc.

If the 64000 cannot initiate writing as requested, an error code is returned to location CA as
shown in table 8-2.

Close Display File (81H)
The user program closes the display file by placing code 81H into location CA. The 64000

responds by closing the file and returning code 00 to location CA.

If the close file is not accepted, an error code is returned to location CA as shown in table 8-2.

close the display. Closing the display also closes the keyboard.

Keyboard 1/0 Interface

The operation of the keyboard I/O interface is described in the following four phases:
e User Program Requests Keyboard Read
e 64000 Response to Keyboard Read Request
e 64000 Detects Positive KB Output Command Word
e User's Program Detects 00 in CA

Each of the above phases corresponds to a significant interaction which must be
implemented between the user program and the 64000 program for keyboard 1/0O to occur.

The keyboard 1/0 interface events are summarized in figure 8-7 and table 8-3.

NOTE

To automatically close the simulated 1/O keyboard file and
return the keyboard to standard operation, press the

FTTT T T N\
\
]

{SIMULAT

AN

, soft key. If the display file is also open, it too is

closed when the soft key is pressed.

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

MODEL 64000

Table 8-2. Display I/0 Codes

64000 Response To:
Request User Program
Name Request Valid User Request Invalid Request
Address Contents Address Contents Error Code
OPEN CA 80H CA 00 01 thru 08 & 14
DISPLAY
FILE The 64000 program 09 code >84H
opens the file and or file is open
clears the display
10 thru 13: NA
CLOSE CA 81H CA 00 01 thru 08 & 14
DISPLAY
FILE 09: file is
already closed.
10 thru 13: NA
ROLL CA 82H CA 00 01 thru 08 & 14
TO/
WRITE CA+1 Line The 64000 program 09: file is not
LINE length stores this data open
18 in bytes in a display
(80 max) buffer. A delay
may occur before 10, 11, & 13: NA
rolling to and
writing on line 18
actually occurs.
CA+2 Line A program wait 12: Invalid
byte 1* may be required. record length
If successive
line 18’s are
written, then
the preceeding line
18 is rolled to
line 17, 17 to 16,
etc.
(CA+2) Line
+n byte n*

8-16

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Table 8-2. Display 1/0 Codes (Cont’d)

64000 Response To:
Request User Program
Name Request Valid User Request Invalid Request
Address Contents Address Contents Error Code
SELECT CA 83H CA 00 01 thru 08 & 14
STARTING
LINE/ CA+1 Line # The 64000 program 09: File is not
COLUMN (1-18) stores the line open
and column numbers
CA+2 Column until a write
Number line/column re- 10, 12 & 13: NA
(1-80) quest is issued
or the file is 11: Invalid line or
closed. column number.
WRITE CA 84H CA 00 01 thru 08, 13
FROM & 14
STARTING CA+1 Record The 64000 program 09: file not
LINE/ length displays the record open.
in bytes starting at line/
(255 Max) column selected by 10 & 12: NA
code 83H. If record
exceeds one 11: line/column
line, writing con- not specified
tinues at column by 83H.
CA+2 Record 1 of next line,etc.
| byte#1 See figure 8-6.
|
(CA+2) Record
+n byte n*

*All display characters must be formatted in ASCII code. A code greater than OFOH will
not be accepted by the 64000 program.

NA= Not Applicable.

See table 8-8 for complete error code listing.

EMULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

COLUMN #'s

LINE #'s

B/C

4 C— etc

64000 DISPLAY

DISPLAY
LETTER MEANING
A Code 82H automatically causes the display to roll to line 18. Up to 80 characters, in two

B/C

8-18

byte increments, may be written on the line. Sequential Roll To / Write Line 18
commands cause the previous line 18 to roll to line 17, line 17 to roll to line 16, etc.

B is the point (line 2, column 5) defined by code 83H at which writing will begin. C is
the statement which is defined by code 84H and begins at point B. There is no limit on
the record length defined by 84H. If the record exceeds the length of line 2, it is
continued on line 3 at column 1, etc.

Figure 8-6. Display Techniques

MODEL 64000

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

User Program Requests Keyboard Read (80H)

Before any other keyboard operation can be initiated, the user program must request that the
KB 1/0 interface be opened. This is done by first placing the KB-input-command word and
the maximum record length specification into the KB 1/0 buffer as shown in Phase | of figure
8-7. Then, after setting up locations CA+1 through CA+n, code 80H is placed into location
CA of the buffer.

NOTE

CA represents the memory location to which all KB I/0O codes
are sent by both the user program and the 64000 program.
The actual address of CA is defined in the user program and
entered into the 64000 program during the configuration of
the emulation CMDFILE. Each 1/0O interface - keyboard, RS-
232, printer, etc. -requires its own unique interface.

Certain 1/0 codes sent to location CA must also include
supplemental information. This supplemental information is
contained in the locations following CA, i.e., CA+1 through
CA+n. The supplemental information must be placed into
locations CA+1 through CA+n BEFORE the corresponding
control code is placed into CA. If this is not done, the 64000
may respond to the control code in CA before the
supplemental data is set into locations CA+1 through CA+n.

The KB-input-command word is placed in buffer location CA+1. This word contains either a
“—1" or “-2” code. A “—1” code causes the current line not to be cleared on the first character
(i.e., the current keyboard characters are appended to any characters already displayed on
the same line). A “—2" code causes the current line to be cleared on the first character (i.e.,
previously displayed characters are erased from the line and only the current keyboard
characters are displayed).

The maximum record length specification is placed in buffer location CA+2. This is the
maximum record length (i.e., number of keyboard characters) that the user program will
accept from the keyboard. The record length specification may specify up to 240 characters
(8 lines on the 64000 display). However, the keyboard may transmit more or less characters
than this specification. If the number of characters transmitted exceeds the record length
specification, the user program is informed of this by an applicable code in the KB-output-
command word as described below.

8-19

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

64000 Response to Keyboard Read Request

The 64000 program responds to the KB read request by storing the KB-input-command word
and record length specification, and by placing code 82H into location CA as shown in figure
8-7.

The 64000 program sets the KB-output-command word to the same code specified in the KB-
input-command word (-1 or —2).

The 64000 then begins monitoring the keyboard until it detects an output command word.
The result of this detection is described in the following paragraphs.

64000 Detects Positive KB-Output-Command Word

The keyboard may send either a KB-output-command word by itself or a command word
followed by one or more keyboard characters. In either case, when a KB-output-command
word is detected, the 64000 program places the word, and if applicable, other data into the
KB 1/0 buffer as shown in figure 8-7 (Phase Ill). The KB output word, which is always sent, is
placed in buffer location CA+1.

The 64000 program places a 00 in location CA to indicate to the user program that either a KB
command and/or data is now available.

If keyboard characters are also sent and if a “lost character” was generated then the “lost
character” is placed into location CA+2. (How a “lost character” is generated is described
later.) Also, when keyboard characters are sent, the actual number of characters in the string
(i.e., actual record length) is placed into location CA+3. The keyboard characters themselves
(ASCII coded bytes) are placed into locations CA+4 through (CA+4)+n.

The KB output command in location CA+1 may be any one of the codes shown in table 8-4.
Two of these codes, 8 and 24, will occur only if the actual record length from the keyboard
exceeds the maximum record length specification. If either of these codes is generated, then
location CA+2 contains the ASCII code of the surplus or lost character that exceeded the
specified record length. A lost character may be generated in either of two ways:

a. When characters are entered as a continuous string and the string exceeds the
specified record length. For this case, the first character to exceed the specified record
length is placed in “lost character” location CA+2. If typing continues, each individual
surplus character is placed into the “lost character” location CA+2 replacing the
previous character. Thus, the last “lost character” entered remains in location CA+2.

b. When a character is inserted into a full record. For this case, the character at the end of
the already full record is placed into “lost character” location CA+2. If additional
characters are inserted, each succeeding end character is placed into CA+2, replacing
the previous character.

8-20

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

User's Program Detects 00 in CA

After detecting a 00 in location CA, the user program takes the data from the KB I/O buffer
and places either 80H or 81H into location CA. The results of each of these response codes
are as follows:

a. 80H Response Code - Read Keyboard I/0

If the user program responds with code 80H, the KB-input-command word and record
length specifications must be supplied by the user program as shown in figure 8-7.

The 64000 program responds by again reading the keyboard.
b. 81H Response Code - Close KB I/0

If the user program responds with code 81H, the 64000 program closes the KB 1/0
interface. This command will also close the display file if it was open.

Disc File I/0 Interface

CAUTION

The disc file simulated I/0 control codes can be used to
access critical system files. Extreme care should be used if
any of the following types of files are accessed:

Emulation Command Files (Type 6)

Linker Command Files (Type 7)

Linker Configuration Files (Type 8)

Assembler Configuration Files (Type 10)

Incorrectly accessing these files may destroy them and cause
serious system problems!

8-21

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

MODEL 64000

Table 8-3. Keyboard 1/0 Interface Codes

Request User Program
Name
Address
OPEN CA
KB
INTER
FACE CA+1
CA+2
READ
IN
PROCESS

OUTPUT
AVAILABLE

Request

Contents

80H

KB Input
Command
Word

Max.
Record
Length
Specifi-
cation

(up to

240 bytes)

Initiated
by 64000
program

in response
to 80H above

Initiated

by 64000
after

82H, above

Valid User Request Invalid Request

Address

CA

64000 stores KB-
input-command
word & max. record
length spec. It then
monitors KB-
output-command
word until positive
word is detected
and then responds

as follows:

CA 00

CA+1 KB out-put
command
word

64000 Response To:

Contents Error Code

See 82H, 08, 12, or 14
below

Other codes
do not apply

82H

8-22

MODEL 64000

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Table 8-3. Keyboard I/0O Interface Codes (Cont'd)

Request User Program Request
Name

Address Contents

User pro-
gram may
then re-
spond to
00 with
80H or
81H as
shown
below.

CLOSE CA 81H
KB
I/0

64000 Response To:

Valid User Request Invalid Request

Address Contents Error Code
CA+2 Reserved
for Lost
Character
CA+3 Actual
record
length
(#of KB
bytes)
CA1+4 KB Byte O
|
(CA+4) KB Byte n
+n
CA 00 08 or 14
Other
codes
do not
apply.

See table 8-8 for complete error code listing.

8-23

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

Table 8-4. Command Word Codes

Part A. KB - Input - Command Word
Code Meaning
—1 Current line not cleared. Characters appended to previously displayed
characters.
-2 Current line cleared. Previously displayed characters erased.
Part B. KB - Output - Command Word
Code Meaning
8 Insert character in full line (lost character placed in CA+2)
9 Tab Key
10 Down arrow key
11 Up arrow key
12 Display next page
13 Carriage return
14 Attempting to move cursor right past last allowed screen location
15 Attempting to move cursor left past first allowed screen location
16 Delete character from full line
17 Shift key
18 Display previous page
19 Roll display down
20 Roll display up
21 Shift right arrow key
22 Shift left arrow key
23 Clear line key
24 Actual record length exceeded record length specification (lost character

placed in CA+2)

8-24

MODEL 64000 EMULATOR/INTERNAL ANALYSIS

Phase | - User Requests Interface Opening

LOCATION CONTENTS (From User Program)

CA* 80H (OPEN KB 1/0)

CA+1 KB INPUT COMMAND WORD

MAX. RECORD LENGTH

CA+2 SPECIFICATION (UP TO 240)

KB | O BUFFER

*The actual address for location “CA" is
defined by the user during configuration
of the emulation “CMDFILE".

Phase Il - 64000 Response to Open-Interface Request

LOCATION CONTENTS (From 64000)
CA 82H (READ IN PROCESS)
SEPARATE KB INPUT COMMAND WORD
TR SET uP MAX_RECORD LENGTH
SPECIFICATION

64000 BUFFER

Figure 8-7. Keyboard 1/0 Interface Sequence

8-BIT REFERENCE MANUAL

8-25

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

Phase Il - 64000 Detects Positive KB Output Command Code

ADDRESS CONTENTS
CA 0 KB OUTPUT AVAILABLE |-e—— SET BY 64000 PROGRAM
CA+1 KB OUTPUT COMMAND WORD |-=
KB OUTPUT
RESERVED FOR LOST COMMAND
CAt2 CHARACTER WORD"
CA+3 ACTUAL RECORD LENGTH KB DATA
(# OF KEYBOARD BYTES) -+ KEYBOARD
CA+4 KB BYTE 0
(CA+4) *When word goes positive,
+n KB BYTE N the 64000 transfers data
to 1/0 buffer.

KB 1/0 BUFFER

Phase IV - The user program may respond with either an 80H code as shown for phase | or an
81H code which closes the simulated keyboard 1/0 interface.

Figure 8-7. Keyboard I/0O Interface Sequence (Cont'd)

The following paragraphs describe the type of files and the events which must be
implemented between the user and the 64000 program to either: (1) create a new disc file, or
(2) read from, write into, delete, or change the name of an existing file. The file types are
described first. Then, the program events are described in the following order:
a. Creating New File

1) Creating File (80H)

2) Writing First Record (89H)

3) Writing Additional Records (89H)

4) Closing Created File (82H)

8-26

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL
b. Accessing Existing File
1) Opening File (81H)
2) Selecting Record
(a) Automatic selection of records 1, 2, 3, ... etc.
(b) Advance “N” records (84H)
(c) Backup “N” records (85H)
(d) Position to record “N” (86H)
(e) Rewind to record one (88H)
3) Reading Record (87H)
4) Writing Record (89H)
5) Closing Open File (82H)
c. Deleting File (83H)
d. Changing File Name Associated with a CA (8AH)
The predefined file types are listed in table 8-5.

Table 8-6 summarizes the user program requests, the corresponding control codes, and,
where applicable, corresponding parameters.

File Types

There are 12 predefined types of files identified by numbers 2 through 13 which may be
created by the user program. The names and type numbers of these files are listed in table
8-5. File formats for these files are shown at the end of this chapter.

File type numbers 14 through 255 may be assigned to files defined by the user program, as
required. It should be noted, however, that HP may require some unassigned numbers for
future use. It is, therefore, recommended that the user leave space for this possibility, starting
with number 14.

8-27

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

NOTE

Once created, file types 14 through 255 can only be deleted by
using the simulated 1/0 delete command.

MODEL 64000

The overall file name is assigned during emulation configuration. Under any one file name,
only one each of a file type may be created. For example, a file named USA may only have
one each of file types 2 through 255. It cannot have two type 3 files, etc.

Creating New File
Creating File. To create a new file, the user program places the file type number into location

NOTE

CA represents the memory location to which all disc file 1/0
“handshaking” codes are sent by both the user program and
the 64000 program. The actual address for the disc files CA is
defined in the user program and entered into the 64000 during
the configuration of the emulation CMDFILE. Each 1/0
interface - disc files, display, keyboard, etc. - requires its own
unique CA address.

Certain 1/0 codes sent to location CA must also include
supplemental information. This supplemental information is
contained in the locations following CA, i.e., CA+1 through
CA+n. The supplemental information must be placed into
locations CA+1 through CA+n BEFORE the corresponding
control code is placed into CA. If this is not done, the 64000
may respond to the control code in CA before the
supplemental data is set into locations CA+1 through CA+n.

CA+1, the disc number into location CA+2, and then places code 80H into location CA.(The
disc number is the disc upon which the file will reside.)

The 64000 responds by creating the file type requested and returning a 00 to location CA
which indicates the file has been created.

(General definitions for the error codes are listed in table 8-8.)

8-28

If the file cannot be created, an error code as shown in table 8-6 is returned to location CA.

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

After the file is created, the user program may either write records immediately into it, or
close it, and then reopen it and write records into it later.

Writing First Record. After a file is created the first record is written into it as follows. The user
program places parameters, as described below, into locations CA+1 through CA+n, and
then places code 89H into location CA.

The number of words in the write record is placed into location CA+1. A write record may
contain up to a maximum of 128 words (256 bytes). Thus, an even number of bytes (whole
words) must always be written. An unused byte in the last word must contain and ASCII
blank.

Locations CA+2 through (CA+2)+n contain the words of the write record.

The 64000 responds by automatically writing the records into the file as record number 1.
After the record is successfully written, the 64000 returns a 00 to location CA. If the record
cannot be written, an error code, as listed in table 8-6, is returned to location CA.

Additional records are written into the file as described in the next paragraph.

Writing Additional Records. If the newly created file is still open (i.e., has never been closed),
additional records are written into the file as described for record one with the following
difference. Each succeeding record is automatically written with the next corresponding
record number. Thus, the second record written becomes record number 2, the third record
written becomes record number 3, etc.

Closing Created File. To close the newly created file, the user program places code 82H into
location CA. The 64000 responds by closing the file and returning a 00 to location CA. If the
file cannot be closed, an error code, as listed in table 8-6, is returned to location CA.

Accessing Existing Files
Opening File. To open an existing file, the user program places the file type number into

location CA+1, the disc number into location CA+2, and then places code 81H into location
CA.

The 64000 responds by opening the file and returning a 00 to location CA which indicates the
file is open. If the file cannot be opened, an error code, as shown in table 8-6, is returned to
location CA.

8-29

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

*CAUTION

When a record is written into a file, it always becomes the last
record in the file. Thus, writing a record into any location
other than at the end of the file effectively erases all the
following records in the file. When accomplishing the
following paragraph choose record positions with care!

After the file is opened, the user program may either: (1) immediately read/write™ record 1,
(2) select any record for reading, or (3) select a position within the file to begin writing*.

Selecting Record. Records are selected in any of the following ways:

a. Automatic selection of records 1, 2, 3, ..., etc. When the file is opened, record 1 is
automatically selected. Thus, it may be immediately written into, or read from, without
first selecting it with and “advance”, “position”, or “rewind” code. After reading or
writing record 1, record 2 is automatically selected and may be read from, or written

into. This process can be continued for records 3, 4, 5, ..., etc.

NOTE

Remember, that when a record is written into a file, it becomes
the end of the file.

b. Advance “N” Records. Records located ahead of the currently selected record (i.e.,
those records with higher numbers) may be selected as follows. The user program
places the number of records into locations CA+1 and CA+2, and then places code
84H into location CA. The number of records is selected with a 15-bit word. The eight
least significant bits are located in CA+1. The seven most significant bits are located in
CA+2. The most significant bit in CA+2 is not used.

The 64000 responds by advancing the specified number and returning a 00 to location
CA. If the record cannot be selected, an error code, as shown in table 8-6, is returned

to location CA.

After the record is selected, the user program may then either read from or write into it.

8-30

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

c. Backup “N” Records. Records located behind the currently selected record (i.e., those
records with smaller numbers then the current record) are selected in a way very
similar to “advance “N” records”. The only difference is that backup code 85H is
placed into location CA. Locations CA+1 and CA+2 contain the number of records as
defined in subparagraph b above. The 64000 also responds as described above.

d. Position to Record “N”. Any record within the file may also be selected without
knowing its location relative to the current record. This method is also similar to the
“advance” or “backup” methods. The difference is that position code 86H is placed
into location CA. Location CA+1 and CA+2 contain the record number as defined in
subparagraph b above. The 64000 responds as described above.

e. Rewind to Record One. This is a fast way to select record 1. This method differs from
the previous selection method in several ways. First, only record 1 can be selected
using this method. Second, the user program places code 88H into location CA. Third,
there are no entries required in locations CA+1 and CA+2. The 64000 program
responds as described in subparagraph b above.

Reading Record. Once a record has been selected by one of the methods described above, it
may be read as follows. The user program places the maximum number of 16-bit words it will
accept from the record into location CA+1. Up to 128 words may be accepted. (The
recommended technique is always set CA+1 to 128. Then, after reading is complete, throw
away those words not wanted, if any.) After specifying location CA+1, code 87H is placed
into location CA.

If the record is read successfully, the 64000 responds as follows: code 00 is returned to
location CA. The actual number of 16-bit words read from the buffer is placed in location
CA+1. Location CA+2 through (CA+2)+n contains bytes 0 through n.

If the record cannot be read, an error code, as shown in table 8-6, is returned to location CA.

Writing Record. A new record may be written into an existing file in either one of two ways. It
may be added to the end of the file or it may be written over an existing record in the file.
However, if an existing record is written over, then the newly written record becomes the last
record in the file.

To add a record to the end of the file, the record selected must be one greater than the last
record in the file. For example, if a file contains five records, then record 6 must be selected
before writing is initiated. (If record 5 is selected, it will be written over by the new record.)
After writing record 6, record 7 may be written by issuing another write code, etc.

8-31

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

To write over an existing record, first select the record and then initiate writing. Again,
remember that all following records in the file are erased. For example, if a file contains 10
records, and record three is written over, then records four through ten are erased.

Closing Open File. An open file is closed in the same way as described for a newly created
file. That is, the user program places code 82H into location CA. The 64000 responds by
closing the file and returning a 00 to location CA. If the file cannot be closed, an error code,
as listed in table 8-6, is returned to location CA.

Deleting Files

To delete a file, the user program places the file type into location CA+1, the disc number into
location CA+2, and then places code 83H into location CA. The 64000 responds by deleting
the file. If the file cannot be deleted, an error code is returned to location CA as shown in
table 8-6. This delete is similar to a “purge” command in the general operating system. The
purged file does go into the recoverable file list.

Changing File Name Assigned to a Particular CA

The file name associated with a given CA location may be changed. This does not rename
any files on the disc, but simply changes the name in the emulation command file associated
with a given CA. To do this the user must first make sure that the present file associated with
the CA of interest is closed.

To change the file name in the emulation configuration file, the user program places the new
name record into locations CA+1 through CA+16, and then places code 8AH into location
CA. The name record is a fixed length record consisting of eight, 16-bit words. This record
contains the record name, USERID, and specifies the length of both of these items.

The name must contain at least one character and may be up to nine characters long. The ID
may be up to six characters long. However, the name and ID lengths are specified in a unique
way. Also, the words containing these characters must be packed in the name record.
Specifying name and character lengths and packing the words are done in the same way as
described for the “microprocessor Configuration Record” in the Linker Symbols File
description. This discription is located toward the end of this chapter.

To actually change the name of an existing file, the user must copy the contents of the file
under the old file name into the file with the new file name. Either one or both of these files
names may be specified by the user program at run time and accessed after “change file
name” has been issued to the appropriate CA locations.

8-32

MODEL 64000

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Table 8-5. Disc File Type Numbers and Names*

File Type Number

File Name
Source
Relocatable
Absolute
Listing

Emulation Command

Linker Command

Trace

PROM Absolute

Reserved for System Expansion
Compiler

Assembler Symbols

Linker Symbol

Types are defined
and numbers assigned
by user program.

* Formats for selected files are described at the end of this chapter.
* % . . .
HP may require some unassigned numbers for future use. It is, therefore,
recommended that the user leave space for this possibility, starting with number 14.

CAUTION

The disc file simulated I/0 codes can be used to access
critical system files. Extreme care should be used if any of the
following types of files are accessed:

Emulation Command Files (Type 6)

Linker Command Files (Type 7)

Linker Configuration Files (Type 8)

Assembler Configuration Files (Type 10)

Incorrectly accessing these files may destroy them and cause

serious system problems!

8-33

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

Table 8-6. Disc File I/0 Codes

Request User Program 64000 Response To:
Name Request :
Valid User Request Invalid Request
Address Contents Address Contents Error Code
CREATE CA 80H CA 00 01 thru 08, 10
FILE
CA+1 File Type
Number 09: file is
not open
CA+2 Disc # 11 thru 14: NA
OPEN CA 81H CA 00 01 thru 08, 10
FILE
CA+1 File Type
Number 09: File is
already
open
CA+2 Disc #

11 thru 14: NA

CLOSE CA 82H CA 00 01 thru 08
FILE

09: File is

already

closed

10 thru 14: NA

DELETE CA 83H CA 00 01 thru 08,10
FILE
CA+1 File Type 09: File not
Number open

8-34

MODEL 64000

EMULATOR/INTERNAL ANALYSIS

Table 8-6. Disc File I/O Codes (Cont'd)

8-BIT REFERENCE MANUAL

Request
Name

ADVANCE
“N"
RECORDS

BACKUP
thY’
RECORDS

POSITION
TO
RECORD
NE

READ
RECORD

User Program

Address

CA+2

CA

CA+1

CA+2

CA

CA+1

CA+2

CA

CA+1

CA+2

CA

CA+1

Contents

Disc #

84H

LSB 15-bit*

record
MSB number
(*bit 16 not
used)

85H

LSB 15-bit*

record
MSB number
(*bit 16 not
used)

86H

LSB 15-bit*

record
MSB number
(*bit 16 not
used)

87H

Max.

number

of words

user can
accept.

(128 words/
256 bytes max.)

64000 Response To:

Valid User Request

Address

CA

CA

CA

CA

CA+1

Contents

00

00

00

00

Actual #
of words
read
from
buffer.

Invalid Request
Error Code

11 thru 14:NA

01 thru 08

09: File not
open

10 thru 14: NA

01 thru 08

09: File not
open.

10 thru 14: NA

01 thru 08

09: File not
open

10 thru 14: NA
01 thru 08
09: File is

not open

12

8-35

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Table 8-6. Disc File /O Codes (Cont'd)

MODEL 64000

Request
Name

REWIND
TO
RECORD
ONE

WRITE
RECORD

User Program

Request
Address Contents
CA 88H
CA 89H
CA+1 Number of
words to be
written.
(128 words/
256 bytes
maximum.)
CA+2 Write byte 1
| l
(CA+2) Write byte n
+n

64000 Response To:

Valid User Request

Address
CA+2
!

(CA+2)
+n

(*256 bytes/
128 words
is max.
record
length.)

CA

CA

Contents

Read
Byte 1

!

Read
Byte
n *

00

00

Invalid Request
Error Code

10, 11, 13, 14:NA

01 thru 08
09: File is

not open
10 thru 14: NA

01 thru 08, 12

09: file is
not open.

10, 11, 13,14: NA

8-36

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Table 8-6. Disc File I/0 Codes (Cont’'d)

Request User Program 64000 Response To:
Name Request
Valid User Request Invalid Request

Address Contents Address Contents Error Code

CHANGE CA 8AH CA 00 01 thru 08
FILE 12 & 15
NAME

SEE Bits 7-5 09: File
NOTE specify not open
BELOW length of

file name

in 16-bit 10, 11, 13,

words-1. 14: NA

Bits 4 & 3

specify

ID length

in 16-bit

words.

Bits 2-0

contain

all zeros.

(See note

below.)

CA+2 First
character
of file
name.
Limited to
capital
letters
A thru Z.

CA+3 Second
and
following
file name
characters
may be
small or
capital
letters,

8-37

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

Table 8-6. Disc File I/0 Codes (Cont'd)

Request User Program 64000 Response To:
Name Request
‘ Valid User Request Invalid Request
Address Contents Address Contents Error Code
numerals
0 thru 9,
underlines,
and
only if
required
one blank
may be used
to fill in
last character
in last word
of name.
CA+4 Up to 9
thru name
CA+n. characters
Where may be used.
n 10
CA+ First USERID
(n+1) character.
CA+ Up to 6
(n+2) USERID
| characters
thrlu may be used.
CA+16 See note
below.

Note: The name and USERID characters must be packed into a fixed length record. This
record consists of 8, 16-bit words. Thus, the name record will always require a user buffer
consisting of 17 bytes (byte CA through byte CA+16). All unused 16-bit words must be at the
end of the record. No intervening unused words or bytes are allowed. If the last byte in the
last name and ID word is not required to define the name, then it must contain an ASCII
blank. The byte in buffer location CA+1 must be formatted the same as described for the
most significant byte of word 16 in the name and user ID word block of the microprocessor
configuration record. Refer to the “microprocessor Configuration Record” in the Linker
Symbols description for more information.

8-38

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

RS-232 1/0O Interface

The following paragraphs describe the events which must be implemented between the user
and the 64000 programs for RS-232 1/0O to occur.

These events are:

e Open RS-232 File

* |nitialize 8251

e Command To 8251

e Status From 8251

e Write To 8251
Write Single Byte
Write Record

e Read From 8251
Read Single Byte

Read Record

Updating Read/Write Buffers

The above events, corresponding control codes, and parameters, where applicable, are
summarized in table 8-7.

Open RS-232 File (80H)

Before any other RS-232 operation can be initiated, the user program must request that the
RS-232 File be opened. This is done by placing code 80H into location CA.

8-39

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

NOTE

CA represents the location to which all RS-232 1/O
“handshaking” codes are sent by both the user and the 64000
programs. The actual address for the RS-232 CA is defined in
the users program and entered into the 64000 program during
the configuration of the emulation CMDFILE. Each 1/0
interface - RS-232, display, printer, etc.- requires its own
unique CA address.

Certain of the I/0 codes sent to location CA must also include
supplemental information. This supplemental information is
contained in the locations following CA, i.e., CA+1 through
CA+n. The supplemental information must be placed into
locations CA+1 through CA+n BEFORE the corresponding
control code is placed in CA. If this is not done, the 64000 may
respond to the control code in CA before the supplemental
data is set into locations CA+1 through CA+n.

The 64000 responds by opening the RS-232 file and returning a 00 to location CA to indicate
that the file is open. If the file cannot be opened, error code 08 or 09 is returned to location
CA.

After the file is opened, the 8251 must be initialized as described in the next paragraph.

Initialize 8251 (82H)

In general, 8251 initialization consists of resetting the 8251 and then selecting one of the
following three operating modes: (1) asynchronous, (2) synchronous with one sync
character, or (3) synchronous with two sync characters. (See figure 8-8.)

For each of the three modes, the user program requests initialization by first setting up buffer
locations CA+1 through CA+5 and then placing code 82H into location CA. A command
instruction with Internal Reset (IR) bit D6 set is placed into location CA+1. (See figure 8-9.)
The contents placed into locations CA+2 through CA+5 depend upon the operating mode
selected as described in the following paragraphs.

Asynchronous Mode - For this mode, the asynchronous mode instruction is placed into

location CA+2 and a sync option word specifying 0 must be placed into location CA+3.
Locations CA+4 and CA+5 contain no meaningful data.

8-40

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

The asynchronous mode instruction is used to select the baud rate*, the character length,
the parity parameters, and the number of stop bits. (See figure 8-10.) (*The only baud rates
which may be used with the 64000 are the transmitter clock frequency (I X Txc) or 1/16 X Txc.
The baud rate factor of 1/64 X Txc cannot be used with the 64000. The basic frequency of Txc
is selected by switches on the modem 1/O card. Thus, the basic frequency (Txc) may be
changed by the I/0 card switches.) The user must format this instruction so that the
appropriate parameters are specified. 1/16 X Txc must be programmed if the baud rate is to
match the baud rate table in the System Overview manual.

The sync option specifies 0 since there are no sync characters for the asynchronous mode.

Synchronous Mode/Single Sync Character - For this mode, the synchronous mode
instruction is placed into location CA+2, the sync option word specifying “1” is placed into
location CA+3, and the sync character is placed into location CA+4. Location CA+5 contains
no meaningful data. (See figure 8-8.)

The synchronous mode instruction is used to select the character length, and the parity and
synchronization parameters. (See figure 8-11.) Bit D7 (SCS) of this word must specify a single
sync character. The user must format this instruction so that the other appropriate
parameters are specified.

The sync option word specifies “1” for a single sync character.

The format of the sync character must be defined by the user.

Synchronous Mode/Double Sync Character - For this mode, the synchronous mode
instruction is placed into location CA+2, the sync option word specifying “2” is placed into
location CA+3 and sync characters 1 and 2 are placed into locations CA+4 and CA+5,
respectively. (See figure 8-8.)

The synchronous mode instruction is used to select the character length, and the parity and
synchronization parameters. (See figure 8-11.) Bit D7 (SCS) of this word must specify a
double sync character. The user must format this instruction so that the other appropriate
parameters are specified.

The sync option word specifies “2” for double sync characters.

The format of both sync characters must be defined by the user.

After the 8251 is initialized, the 64000 returns a 00 to location CA. If it cannot be initialized,
error code 08 or 09 is returned as shown in table 8-7.

8-41

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

Command to 8251 (83H)

After the 8251 is initialized (i.e., reset and asynchronous or synchronous operation selected),
it must be placed in the appropriate mode - transmit, receive, or combination
transmit/receive, etc. To do this, the user program first places the appropriately formatted
command word into location CA+1 and then places code 83H into location CA. (The user
must format the command word to select the applicable operation as shown in figure 8-9.)

The 64000 responds by supplying the command word to the 8251 and returning a 00 to
location CA. If this cannot be done, code 08 or 09 is returned to location CA. (See table 8-7.)

Status from 8251 (84H)

The user may check the status of the 8251 at any time. To do this, code 84H is placed into
location CA. The 64000 responds to this status request by returning a 00 to location CA and
placing the 8251 status word in location CA+1.

The status word format is shown in figure 8-12.

The status bits DO, D1, and D2 may be cleared or set by the 64000 program when operating in
any of the buffered modes. If the user wishes to use these bits to control operation, it is
necessary to close the appropriate Tx or Rx buffers before relying on them.

Write to 8251

The user program may write to the 8251 in either of two ways. It may write a byte at a time, or
it may set up a write buffer and write data continuously. Both methods are described. (Note:
Before attempting to write data, the 8251 must be initialized and the command word, in the
appropriate format, sent to the 8251 as described in the previous paragraphs.)

Write Single Byte (86H) - To write a single byte to the 8251, the user program first places the
write byte into location CA+1 and then places code 86H into location CA. (See table 8-7.) The
64000 responds by supplying the byte to the 8251 and returning a 00 to location CA. If writing
cannot be done, error code 08 or 09 is returned to CA. (See table 8-7.) If more data is to be
sent, it is recommended that the user poll the 8251 status to determine if it is ready to receive
more transmit data.

Write Record (87H), Update Write Buffer (89H) (see also Update Read/Write Buffer (8DH)) -
To write a record to the 8251, the user program must first set up a write buffer and identify the
beginning and ending locations in the buffer. (The corresponding 64000 write buffer holds a
maximum of 256 bytes.) (See figure 8-13.) It then writes a record into the buffer and identifies
the buffer locations into which the first and last bytes of the record are written.

8-42

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

The user program must then request that the record be transferred to the 8251. (See figure
8-14.) This is done by first placing the user write buffers beginning/ending and first/last byte
address pointers into locations CA+7 through CA+14 and then placing code 87H into
location CA.

The 64000 responds by transferring data from the users write buffer into a 64000 write buffer.
(See figure 8-15.) For each byte transferred to the 64000 buffer, the first byte address pointer
(in locations CA+11 and CA+12) is incremented by one. Data transfer continues until either
all data in the users write buffer is transferred or the 64000 write buffer becomes full. (The
64000 write buffer holds a maximum of 256 bytes, or 128 words.) After a write buffer is set up
and if update code 8DH or 89H is used, then the number of bytes actually transmitted by the
8251 is also entered into location CA+6 by the 64000 program. The number of bytes
transmitted refers to the number of bytes transmitted from the 64000 buffer.

The user program should periodically examine the first and last address byte pointers (and if
using update code 8DH or 89H, the number of bytes transmitted by the 8251 may also be
examined) to determine the status of the buffer. (If the first and last byte pointers are equal,
all data was transferred to the 64000 buffer.)

If all data was transferred, the user program may either supply another write record, or close
the write buffer. If all data was not transferred, the user program may either wait until the
remaining data is transferred, add more data to the buffer and update the last byte pointer, or
close the write buffer. Each of these options is described in the following paragraphs.

Additional data may be added to, or a new record written into the buffer and the last byte
address pointer updated as follows: If the first and last byte address pointers are pointing to
the same location, the first new byte goes into the location pointed to by both pointers. If the
first and last byte address pointers are not pointing to the same location, then the first new
byte goes into the location just ahead of the one pointed to by the last byte address pointer
(i.e., last byte address pointer + 1). Then the following bytes are entered into succeeding
locations. (See figure 8-15.)

After entering data into the buffer,the user program requests write data transfer. This is done
by first placing the updated last byte address pointer into locations CA+13 and CA+14 and
then placing code 89H into location CA. (See figure 8-16.)

The 64000 responds by transferring data from the users write buffer to the 64000 write buffer,

increments the first byte address pointer for each byte transferred, and if update code 8DH or
89H is being used, the number of bytes sent by the 8251 is also updated.

8-43

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

Once the user program has placed code 8DH or 89H (update buffer) into location CA, the
64000 routinely monitors the last byte address pointer to determine if more data has been
loaded into the users write buffer. If the 64000 detects that the last byte address pointer has
been incremented, it transfers the data and increments the first byte address pointer to
indicate the number of bytes written. It also updates the number of bytes sent by the 8251.

To write another record, the user program updates the last address pointer. The 64000
responds as described above.

To close the buffer, the user program places code 88H in location CA. The 64000 closes the
write buffer and returns a 00 to location CA.

Data may be stored in the users write buffer using a “wrap around” method. That is, once the
last location in the buffer is filled, the next byte is placed into the first location of the buffer.
Thus, it is possible for the last byte address pointer to be pointing to an address that is less
than (i.e., ahead of) the first byte address.

If any of the write buffer requests cannot be done, the 64000 returns the appropriate error
code to location CA as shown in table 8-7.

Read from 8251

Reading data from the 8251 is similar to writing data to the 8251. The user program may read
data in either of two ways. It may read a byte at a time or it may set up a read buffer and read a
record at a time. Both methods are described. Note: Before attempting to read data, the 8251
must have been initialized and the command word, in the applicable format, sent to the 8251
as described in the previous paragraphs.

Read Single Byte (85H) - To read a single byte from the 8251, the user program places code
85H into location CA. (See table 8-7.)

The 64000 responds by returning a 00 to location CA and the read byte to location CA+1. If
reading cannot be done, error code 08 or 09 is returned to CA.

The 64000 will return whatever character is in the Rx buffer of the 8251. It is recommended
that the user check the status of the 8251 to see if Rx RDY is true before performing the single
byte read. Any read operation will clear Rx RDY, indicating that the character in the buffer
has been read.

Read Record (8AH), Update Read Buffer (8CH) (see also Update Read/Write Buffer (8DH)) -

To read a record from the 8251, the user program must first set up a read buffer and identify
the beginning and ending locations in the buffer. (See figure 8-17.)

8-44

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

This is done by first placing the address pointers into locations CA+16 through CA+23 and
then placing code 8AH into location CA. Locations CA+16 through CA+19 contain the
address pointers for the beginning and ending locations of the users read buffer. Locations
CA+20 through CA+23 contain the address pointers for the first and last bytes written into
the buffer. These pointers are both initially set to point to the first location in the users read
buffer. This indicates that the buffer is empty. (The 64000 will force the first data pointer to
always point to the beginning of the buffer.)

The 64000 responds by continuously transferring read data from the 8251 to the 64000 read
buffer. (See figure 8-19.) The user program must then issue an 8CH or 8DH to transfer the
data to the users buffer. For each byte transferred into the users read buffer, the last byte
address pointer is incremented by one (see figure 8-18). In addition, when update code 8DH
or 8CH is being used, the number of bytes received by the 8251 and transferred into the
64000 is entered into location CA+15.

To determine when and how much read data is available, the user program must monitor the
last byte address pointer and the number of bytes received. When it detects that read data is
in the buffer, the user program should process the data. If all data expected was received, the
user program may then close the read buffer.

Once the user program has placed code 8CH of 8DH into location CA, the 64000 periodically
monitors the output of the 8251, transfers data into the user read buffer, and updates the last
byte address as required. The user program in turn monitors the last byte address pointer to
determine if more data is available. This process continues until the user program closes the
read buffer.

8-45

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

If code 8CH or 8DH is being used, and the user issues an 8AH again, the buffer is frozen for
the user, yet the 64000 continues to receive data into its buffer.

To close the read buffer, the user program places code 8BH into location CA. The 64000
closes the buffer and returns a 00 to location CA.

Data may be stored in the user’s read buffer using a “wrap around” method. That is, once the
last location in the buffer is filled, the next byte is placed into the first location of the buffer.
Thus, it is possible for the last byte address pointer to be pointing to an address that is less
than (i.e., ahead of) the first byte address.

If any of the read buffer requests cannot be done, the 64000 returns the appropriate error
code to location CA as shown in table 8-7.

Updating Read/Write Buffers (8DH)

Once the read and write buffers have been set up and opened as described in preceding
paragraphs “Write to 8251” and “Read from 8251”, the buffers may both be updated by using
one code. To do this, the user program places the updated first and last byte address pointers
for both the read and write buffers into the corresponding locations in the RS-232 I/0 control
buffer and then places code 8DH into location CA.

The 64000 responds to the update request as described in the “Write to 8251” and “Read from
8251” paragraphs. However, in addition to setting, monitoring, and updating the first and last
byte address pointers, the humber of bytes received and transmitted by the 8251 is also set,
updated, and monitored. This provides an additional indication of how much data has been
sent and received.

8-46

MODEL 64000

EMULATOR/INTERNAL ANALYSIS

Table 8-7. RS-232 1/0 Codes

8-BIT REFERENCE MANUAL

Request
Name

OPEN
RS-232
FILE

CLOSE
RS-232
FILE

INITI-
ALIZE
8251

User Program

Address

CA

CA

CA

CA+1

CA+2

CA+3

CA+4

CA+5

Request

Contents

80H

81H

82H

Command
Instruction

Mode In-

struction

Sync Op-
tion word

Sync Char-
acter,one

Sync Char-

acter,two

64000 Response To:

Valid User Request

Address Contents
CA 00
CA 00
CA 00

Invalid Request

Error Code

01-07: NA
08

09: File already
open.

10-14: NA

01-07: NA
08

09: File not
open.

10-14: NA

Same as 81H,
above

8-47

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

MODEL 64000

Table 8-7. RS-232 1/0 Codes (Cont'd)

Request User Program
Name Request
Address Contents
COMMAND CA 83H
TO
8251 CA-+1 Command
Word
STATUS CA 84H
FROM
8251
READ CA 85H
SINGLE
BYTE
FROM
8251
WRITE CA 86H
SINGLE
BYTE CA+1 Write
TO Byte
8251
OPEN CA 87H
WRITE
BUFFER CA+1 Reserved
for Ini-
| tialization
buffer
CA+5

64000 Response To:

Valid User Request Invalid Request

Address Contents Error Code
CA 00 Same as 81H,
above
CA 00 Same as 81H,
above
CA+1 Status
Word
CA 00 Same as 81H,
above
CA+1 Byte
Read
CA 00 Same as 81H,
above
CA 87H

The 64000 trans-
fers write data
from the users
buffer to the
64000 buffer.

8-48

MODEL 64000

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Table 8-7. RS-232 1/0 Codes (Cont'd)

Request
Name

User Program

Request
Address Contents
CA+6 #Bytes
sent by
8251.
Cleared
by open
(87H).
CA+7 Updated by
(Isb) 64000 when
update code
CA+8 89H or 8DH
(msb) is used.
Buffer
Begin
CA+9 Address
(Isb) pointer
Buffer
CA+10 End
(msb) Address
pointer
CA+11 First
(Isb) Byte
Address
CA+12 pointer
(msb)
CA+13 Last
(Isb) Byte
Address
CA+14 Pointer
(msb)

64000 Response To:

Valid User Request Invalid Request

Address Contents Error Code

For each byte
transferred

to the 64000
buffer, first
byte address
pointer is
incremented by
one.

8-49

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

MODEL 64000

Table 8-7. RS-232 1/0 Codes (Cont’'d)

Request
Name

CLOSE
WRITE
BUFFER

UPDATE
WRITE
BUFFER

User Program

Request
Address Contents
CA 88H
CA 89H
CA+1 Reserved

for Ini-
tialization
CA+5 Buffer
CA+6 # Bytes sent
by 8251.
CA+7 Not changed
by user.
CA+10
CA+11 First
(Isb) Byte
Address
CA+12 Pointer
(msb)
CA+13 Updated
(Isb) last byte
Address
CA+14 Pointer
(msb)

64000 Response To:

Valid User Request Invalid Request

Address Contents Error Code
CA 00 Same as
81H, above.
CA 89H Same as
81H, above.

The user up-
dates the last
byte address
Pointer to
indicate how
much new write
data is in the
buffer. The
64000 processes
the write data,
increments the
first byte addr.
pointer, and
updates # bytes
sent by 8251

as required.

8-50

MODEL 64000

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Table 8-7. RS-232 1/0 Codes (Cont'd)

Request
Name

OPEN
READ
BUFFER

User Program

Request
Address Contents
CA 8AH
CA+1 Reserved for
Initialization
| and write
buffers.
CA+14 # Bytes
received by
CA+15 8251. Cleared
by open
CA+16 (8AH).
(Isb)
Updated
CA+17 by 64000
(msb) when update
code 8CH or
CA+18 8DH is used.
(Isb) Buffer
Begin
CA+19 Address
(msb) Pointer.
CA+20 Buffer
(Isb) End
Address
CA+21 Pointer
(msb)
CA+22 ot
| yie
(Isb) Address
CA+23 Pointer
(msb)
Last
Byte
Address
Pointer

64000 Response To:

Valid User Request Invalid Request

Address Contents Error Code
CA 8AH Same as
81H, above

The user sets
first and last
address pointers
to point to buf-
fer beginning
address. The
64000 will

transfer data
from the 8251
to the 64000
buffer.

The user

must use the
commands 8CH
or 8DH to
transfer the data
to the users
buffer.

8-51

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

MODEL 64000

Table 8-7. RS-232 1/0 Codes (Cont’d)

Request User Program
Name Request
Address Contents
CLOSE CA 8BH
READ
BUFFER
UPDATE CA 8CH
READ
BUFFER CA+1 Reserved for
Initializa-
1 tion and
write
CA+14 buffers.
*CA+15 #Bytes
received by
8251.
CA+16 Not changed
by user.
CA+19
CA+20
(Isb) First
Byte
CA+21 Address
(msb) Pointer.
CA+22 Last Byte
(Isb) Address
Pointer.
CA+23
(msb)

64000 Response To:

Valid User Request

Address Contents Error Code
CA 00 Same as
81H
above
CA 80H Same as
81H
The 64000 con-

tinues to trans-
fer data,incre-
ments last byte
address pointer,
(updates #Bytes
received by
8251)

as required.
User program
monitors these
parameters to
determine how
much data is
received. (64000
forces first
byte address
pointer to
always point
to the begin-
ning of the
buffers.)

Invalid Request

8-52

MODEL 64000

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Table 8-7. RS-232 1/0 Codes (Cont'd)

Request
Name

UPDATE
WRITE/
READ
BUFFERS

User Program 64000 Response To:
Request
Valid User Request Invalid Request
Address Contents Address Contents Error Code
CA 8DH CA 8DH Same as 81H
above

CA+1 Reserved for

Initialization
CA+5 Buffer

Write and read
buffers are
both updated

CA+6 Same as as described
shown for above.
| update
Write
Buffer,
CA+14 above.
CA+15 Same as
shown for
| update
Read
Buffer,
CA+23 above.

8-53

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

8-54

ADDRESS

CA

CA+5

CA+6

CA+14

CA+15

CA+23

ASYNCHRONOUS
MODE - INITIALIZATION
FORMAT

SYNCHRONOUS MODE -
SINGLE SYNC CHARACTER
INITIALIZATION FORMAT

SYNCHRONOUS MODE -

DOUBLE SYNC CHARACTER

INITIALIZATION FORMAT

MODEL 64000

ADDRESS

82H - INITIALIZE 8251

82H - INITIALIZE 8251

82H - INITIALIZE 8251

CA

COMMAND INSTRUCTION
(Internal Reset 8251)

COMMAND INSTRUCTION
(Internal Reset 8251)

COMMAND INSTRUCTION
(Internal Reset 8251)

ASYNCHRONOUS
MODE INSTRUCTION

SYNCHRONOUS
MODE INSTRUCTION

SYNCHRONOUS
MODE INSTRUCTION

SYNC OPTION WORD
@ = No sync characters

SYNC OPTION WORD
1 =1 sync character

SYNC OPTION WORD
2 = 2 sync characters

Not Used.

SYNC CHARACTER 1

SYNC CHARACTER 1

Not Used.

Not Used.

SYNC CHARACTER 2

RESERVED FOR
WRITE CONTROL

RESERVED FOR
WRITE CONTROL

RESERVED FOR
WRITE CONTROL

RESERVED FOR
READ CONTROL

RESERVED FOR
READ CONTROL

RESERVED FOR
READ CONTROL

Figure 8-8. 8251 Initialization Formats

MODEL 64000

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

EH

IR RTS ER SBRK RxE DTR TxEn —

Transmit Enable/Disable
1=Enables normal operation
at Transmit Data (TxD)

output pin providing

clear To Send Not (CTS)

input pin is low
0=Disables TxD output pin

after all data in 8251

is sent

1=Forces Data Terminal Ready Not
(DTR) pin to zero. (Normally used
for modem control.)

Receiver Enable/Disable

1=Enables normal receiver operation

0=Holds receiver ready (RxRDY)
output line in reset state

Send Break Character
1=Forces Transmit Data (TxD) output pin low.
O=Allows normal transmit data output

Error Reset
1=Resets: Parity (PE), Overrun (OE). and Framing (FE)
error flags

Request To Send
1=Forces RTS output pin to zero. (Normally used
for modem control.)

Internal Reset
1=Places 8251 in "Idle” mode. Stays in “ldle" until
initialized by mode instruction

Enter Hunt Mode
1=Enables search for Sync Characters. Has no affect in Async mode.

Figure 8-9. Command Mode Instruction Format

8-55

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

D7 Ds Ds D4 D3 Do D1 Do
Sp S EP PEN L2 (] B2 B
g —— ————
| -
NUMBER OF BAUD RATE Bz | B1
S2 | Sy STOP BITS SYNCHRONOUS MODE 0 0
0 0 INVALID CODE 1XTXe* = 0 1
0 4 1 BIT 1/16 X TXc* = 1 0
NOT ALLOWED WITH 64000 = 1 1
1 0 11/2 BITS -
’ 1 2 BITS TXc = TRANSMITTER CLOCK FREQUENCY

CHARACTER

———————— LENGTH L2 | Ly
5 BITS = ol o

6 BITS = ol 1

7 BITS = 110

8 BITS = 1 1

PARITY ENABLED = 1
PARITY DISABLED =0

EVEN PARITY =1
ODD PARITY =0

Figure 8-10. Asynchronous Mode Instruction Format

8-56

MODEL 64000

D7

De

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Ds Da D3 D2 D1 Do

SCs

ESD

EP | PEN Lo Ls 0 0

N—
I INDICATES SYNCHRONOUS

MODE INSTRUCTION

CHARACTER LENGTH el
58ITS = 0 | 0
6BITS = 0 | 1
7BITS = 1 | 0
8BITS = 1 | 1

PARITY DISABLED

{ PARITY ENABLED = 1
=0

1

EVEN PARITY =
ODD PARITY = 0

1=SYNC DETECT IS AN INPUT

EXTERNAL SYNC DETECT
0=SYNC DETECT IS AN OUTPUT

1=SINGLE SYNC CHARACTER

SINGLE CHARACTER SYNC
0=DOUBLE SYNC CHARACTER

Figure 8-11. Synchronous Mode Instruction Format

8-57

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

8-58

D7 Ds Ds D4 D3 D2 D, Do
SYN Tx Rx Tx
DSR DET FE OF PE EMPTY RDY RDY

Logic 1 = 8251 ready to
accept a write character
for transmission

Logic 1 ~ 8251 contains a
recewved character ready for
reading

Logic 1 = Previous character has
been transmitted - 8251A has
no characters to transmit

Logic 1 = Parity error Does not inhibit
8251 operation Reset by ER Bit of
Command Mode Instruction

Logic 1 = Overrun Error Incoming character overran
another character before it was read. Does

not inhibit 8251 operation Reset by ER bit in
Command Mode Instruction

Logic 1 = Framing Error. (Asynchronous mode only). Set
when a valid stop bit is not detected Does not

inhibit 8251 operation Reset by ER bit in

Command Mode Instruction

Synchronous mode-
High =Sync character detected in internal sync mode
Start assembling characters in external sync mode
Async mode (Break Detect)
High =Rx Data remained low during two consecutive stop bit sequences

Data Set Ready - Logic 1 indicates DSR input 1s low

Figure 8-12. 8251 Status Word Format

MODEL 64000

Phase | - User Sets Up Write Buffer

User sets up write buffer as follows:
1. Assigns buffer beginning and ending addresses: WBUFBEG and WBUFEND.

2. Writes block of characters into buffer shown as first byte through last byte.

ADDRESS CONTENTS

WBUFBEG FIRST BYTE

ADDRESS

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

CONTENTS

CA-

LAST BYTE
WBUFEND
USERS WRITE
BUFFER

*The actual address for
location “CA” is defined
by the user during
configuration of the
emulation “CMDFILE".

CA+1

CA+23

BUFFER RESERVED
FOR RS-232 110
PARAMETERS SENT
WITH CONTROL
CODES

RS-232 1/0 CONTROL BUFFER

Figure 8-13. Writing RS-232 Record - Phase |

8-59

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

Phase Il - User Requests Write Data Transfer

User initiates RS-232 Write Data Transfer via 64000 by supplying pointers to user write buffer
as shown below and then placing code 87H into location CA.

ADDRESS CONTENTS

r WBUFBEG FIRST BYTE

l

LAST BYTE |-

ADDRESS | CONTENTS (FROM USER PROG.)

| wauFEND cA 87H (OPEN WRITE BUFFER)
CA+1
USERS WRITE BUFFER RESERVED FOR 8251
‘ INITIALIZATION BUFFER 255
CA+5 64000 WRITE
BUFFER
CA+6 # BYTES TRANSMITTED BY , INITIALLY (128 WORDS)
8251 SINGE BUFFER OPENED || SET TO 0

CA+7 L.O. BYTE WBUFBEG
CA+8 H.O. BYTE ADDR. POINTER

CA+9 L.O. BYTE WBUFEND

e
CA+10 H.O. BYTE ADDR. POINTER
CA+11 L.O. BYTE FIRST BYTE

S e
CA+12 H.O. BYTE ADDR. POINTER
CA+13 L.O. BYTE LAST BYTE

el = = e - - - -
CA+14 H.O. BYTE ADDR. POINTER

CONTROL BUFFER

Figure 8-14. Writing RS-232 Record - Phase Ii

8-60

MODEL 64000

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Phase Ill - 64000 Response To Write Data Request

64000 transfers data from user to 64000 buffer. For each byte transferred, the “FIRST BYTE”
address pointer is incremented by one. The user program monitors the first byte address
pointer and # bytes transmitted to determine when and how much data is transferred. If all
data was transferred, the “FIRST BYTE” and “LAST BYTE” address pointers are equal. If not
equal, the difference is the number of bytes yet to be transferred. The user program may
either update (see Phase V) or close the buffer.

ADDRESS

CONTENTS

WBUFBEG

FIRST BYTE

LAST BYTE

[~

)

WBUFEND

USERS WRITE
BUFFER

_:F

0 [FIRST BYTE
ALL BYTES TRANSFERRED WRITE 8251
| DATA | USART | _ _ . TRANSMITTED
DATA
LAST BYTE :
CONTROL
ADDRESS| CONTENTS (FROM 64000) CONTROL |
] —— —
CA 87H (OPEN WRITE BUFFER) 255 N
CA+1 64000 WRITE-
SAME AS SHOWN 64000 T0O-8251
FOR PHASE II WRITE BUFFER ROUTINE
CA+5 (256 BYTES/128 WORDS) | WRITING DONE
ON INTERRUPT
CA+6 | #BYTES TRANSMITTED BY BASIS.
8251 SINCE BUFFER OPENED.
#BYTES TRANSMITTED
CA+7
SAME AS SHOWN
FOR PHASE Il
CA+10
ca+11 | LO. BYTE FIRST BYTE
b = b — — -
CA+12 | H.O.BYTE ADDR. POINTER
CA+13 | L.O.BYTE LAST BYTE
CA+14 |H.O.BYTE ADDR. POINTER

CONTROL BUFFER

Figure 8-15. Writing RS-232 Record - Phase IlI

8-61

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

Phase IV - User Updates Write Buffer

The user program places more data into the write buffer and updates the last byte address
pointer. User then requests more write data transfer by placing code 89H into CA. The 64000
response is similar to Phase Ill. Once 89H is in CA, the 64000 periodically monitors last byte
address pointer to detect if more data has been placed into buffer by user. The 64000
transfers data and increments first byte address pointer and number of bytes sent by 8251 as
required. Process continues until user program closes buffer.

ADDRESS | CONTENTS ADDRESS CONTENTS
WBUFBEG CcA 89H
CAT
SAME AS SHOWN
FOR PHASE II.
CA+S 0| FIRST BYTE
FIRST BYTE | <— # BYTES TRANSMITTED BY ‘
CA*6 | 8251 SINCE BUFFER OPENED | ™
CA+7
‘ SAME AS SHOWN FOR
PHASE I
cAMo LAST BYTE
WBUFEND | LAST BYTE
CA+11 | L.O. BYTE FIRST BYTE
USERS WRITE BUFFER _ir-1--- ~-—
CA+12 | H.O. BYTE ADDR. POINTER 255
CA+13 | L.O. BYTE LAST BYTE 64000 WRITE
L - - - = BUFFER
CA+14 | HO. BYTE ADDR. POINTER (256 BYTES/128 WORDS)
CONTROL BUFFER

~——

UPDATED BY 64000

Figure 8-16. Writing RS-232 Record - Phase IV

8-62

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Phase | - User Sets Up Read Buffer

User sets up read buffer and assigns beginning and ending addresses:
RBUFBEG and RBUFEND.

ADDRESS CONTENTS
RBUFBEG
ADDRESS CONTENTS
RBUFEND CA*
USERS READ CA+1
BUFFER
BUFFER RESERVED
FOR RS-232
1/0 PARAMETERS
*The actual address for SENT WITH
location “CA" is defined CONTROL CODES
by the user during
configuration of the
emulation “CMDFILE".
\
CA+23

CONTROL BUFFER

Figure 8-17. Reading RS-232 Record - Phase |

8-63

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

Phase |l - User Requests Read Data Transfer
User enables RS-232 read data transfer via 64000 by:

(1) Supplying pointers to user’s read buffer as shown below. (First and last pointers point
to same location to indicate buffer is empty.)

(2) Then placing code 8AH into location CA. The 64000 will begin receiving data into it's
buffer. The user must do an 8CH or 8DH command to view the received data.

ADDRESS CONTENTS
BYTE 0
- RBUFBEG - -
ADDRESS | CONTENTS (FROM USER PROG.)
| RBUFEND CA 8AH (OPEN READ BUFFER)
CA+1 RESERVED FOR 8251
INITIALIZATION BUFFER BYTE N
CA114 & WRITE CONTROL BUFFER 52000 READ
BUFFER
CA+5 # BYTES RECEIVED FROM INITIALLY
8251 SINCE BUFFER OPENED [SET TO 0
R cA+16 | Lo.BYTE RBUFBEG
CcA+17 | H.O. BYTE ADDR. POINTER
ca+18 | LO. BYTE RBUFEND
- —— o - - - - —
cA+19 | H.O. BYTE ADDR. POINTER
cA+20 | L.O.BYTE FIRST BYTE
L - - 4 - - -
cA+21 | HO BYTE ADDR. POINTER
ca+22 | Lo BYTE LAST BYTE
CA+23 | H.O.BYTE ADDR. POINTER
CONTROL BUFFER

Figure 8-18. Reading RS-232 Record - Phase Il

8-64

MODEL 64000

EMULATOR/INTERNAL ANALYSIS

Phase IlI - 64000 Response to Read Data Request

8-BIT RE

FERENCE MANUAL

The 64000 program transfers data from 8251 into user’s read buffer via the 64000 read buffer.

ADDRESS |CONTENTS
RBUFBEG |FIRST BYTE|<t— 0 |FIRsT BYTE]
o |
'« — — — USART - __RECEIVED
DATA
T
LAST BYTE | LAST BYTE :
ADDRESS CONTENTS I CONTROL
e« — — —
RBUFEND CcA 8AH (OPEN READ BUFFER) N Ty
USERS READ CA+1 64000 READ
BUFFER SAME AS SHOWN BUFFER 64000
FOR PHASE I READ 8251
CA+14 ROUTINE
CA+15 | # BYTES RECEIVED BY
8251 SINCE BUFF. OPENED
CA+16
SAME AS SHOWN
FOR PHASE II
CA+19
CA+20 | L.O.BYTE FIRST BYTE
L L e -
CA+21 | HO.BYTE ADDR. POINTER
CA+22 | L0 BYTE LAST BYTE
L e e e - 64000 SETS POINTER TO
CA+23 | HO.BYTE ADDR. POINTER (] LAST BYTE

CONTROL BUFFER

Figure 8-19. Reading RS-232 Record - Phase Ili

8-65

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Phase IV - User Updates Read Buffer

MODEL 64000

The user requests more read data by updating first byte address pointer and by placing code
8CH or 8DH into CA. The 64000 response is similar to that shown for Phase Ill. Once 8CH or
8DH is in CA, the 64000 periodically transfers data from 8251 into user’s read buffer, updates
last byte address pointer and # bytes received by 8251 as required. When user program has
received all data expected, it may close read buffer by placing 8BH in CA. The 64000 forces
first byte address pointer to always point to the beginning of the user buffer.

8-66

ADDRESS CONTENTS
RBUFBEG

LAST BYTE
RBUFEND

USER READ BUFFER

Figure 8-20. Reading RS-232 Record - Phase IV

—

CA 8CH
CA+1
‘ SAME AS SHOWN
FOR PHASE Il
CA+14
CA+15 | # BYTES RECEIVED BY 8251
SINCE BUFFER OPENED
CA+16
SAME AS SHOWN
‘ FOR PHASE II
CA+19
CA+20 | L.O. BYTE FIRST BYTE
— - - - = -
CA+21 | HO. BYTE ADDR. POINTER
CA+22 | L.O. BYTE LAST BYTE
CA+23 | HO. BYTE ADDR. POINTER

CONTROL BUFFER

FIRST BYTE

l

LAST BYTE

64000 READ
BUFFER

UPDATED BY 64000
PROGRAM

MODEL 64000

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Simulated 1/0 Error Codes

The general definitions for the simulated 1/0 error codes are listed in table 8-8. Where
applicable, more specialized definitions of these error codes are listed in individual I/0 code
tables, 8-1, 8-2, etc.

When a request by the user program cannot be executed, the applicable error code is
returned by the 64000 program to location CA.

Table 8-8. Simulated 1/0 Error Codes-General Definitions

Decimal
Code #

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14

15

(Hex)

(F)

Meaning

No error - successful operation

End of file

Invalid disc

File not found

File already exists

No disc space available

No directory space available

File is Corrupt (bad linkage)

Cannot read/write assigned memory
Request not allowed

Invalid file type

Invalid row or column no.

Invalid record length

Invalid display character >OFOH

While in simulated display I/O or simulated
keyboard I/0, the 64000 “simulate” soft key
was pressed to exit simulate 1/0. All open
files are closed.

Error in new disc file name when
attempting to change a disc file name.
First character in file name limited to
capital letters A through Z. Second and
following characters may contain capital
and lower case letters, numerals 0
through 9, underlines, and only if required
to fill in the last byte of the last word,

a blank is used.

8-67

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

Simulated I/0 Sample Programs

The following figures show the listing for source programs which actually use simulated I/O
facilities. The programs are real and do work.

Figure # Sample Program Type
8-21 Simulated Display I/0 - Sample Program A
8-22 Simulated Display I/0O - Sample Program B
8-23 Simulated Keyboard, Display, and One Disc

File 1/0 - Sample Program

8-24 Simulated Keyboard, Display, and Two Disc
Files 1/0O - Sample Program

“8080”

*This 8080 program uses the simulated display /0O interface.
*The display is opened, and two messages are written; one to
* row/column 2,40 and one to row/column 18,20.
*Control address for display is 0000H.

*Program execution should start at 0200H.

ORG 200H
USR_ADR EQU 0
START LXI SP,100H
*OPEN DISPLAY
MVI A,80H
STA USR_ADR
CALL WAIT
SET ROW/COLUMN 2/40
MVI A2
STA USR_ADR+1
MVI A,40
STA USR_ADR+2
MVI A,83H
STA USR_ADR
CALL WAIT

Figure 8-21. Simulated Display I/0 - Sample Program A

8-68

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

*WRITE MESSAGE 1
LXI H,MESSAGE_1
CALL XFR_MSG
CALL WAIT
*SET ROW/COLUMN 18/20
MVI A,18
STA USR_ADR+1
MVI A,20
STA USR_ADR+2
MVI A,83H
STA USR_ADR
CALL WAIT
*WRITE MESSAGE 2
LXI H,MESSAGE_2
CALL XFR_MSG
CALL WAIT
*LOOP HERE, LEAVE DISPLAY OPEN
JMP §

*WAIT FOR USR_ADR=0 ... |0 REQUEST COMPLETED
WAIT

LDA USR_ADR

CPI O

JM WAIT

RET
*TRANSFER MESSAGE FROM C(DE) TO USR_ADR+1

*C(DE(0))=#BYTES
* C(DE(1))=BYTE 1

*

*

* C(DE(N))=BYTE N
*USR_ADR=84H ... REQUEST TO WRITE ROW/COLUMN

Figure 8-21. Simulated Display 1/0 - Sample Program A (Cont'd)

8-69

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

8-70

XFR-MSG

XFR_LOOP

*MESSAGE 1

MESSAGE_1

*MESSAGE 2

MESSAGE_2

Figure 8-21. Simulated Display I/0 - Sample Program A (Cont'd)

XCHG

LDAX D

MOV B,A

INX D

LXI H,USR_ADR+1
INX H

MOV M,A

INX H

LDAX D

MOV M,A

INX D

INX H

DCR B

MOV AB

CPI O

JNZ XFR_LOOP
MVI A,84H
STA USR_ADR
RET

DB 12
ASC “Display test”

DB 8
ASC “End test”
END START

;B=#BYTES

;HL=USR_ADR+1

;GET DATA BYTE

MODEL 64000

;AND STORE IN USR_ADR BUFFER

;AND CHECK FOR COMPLETION

;SET REQ FOR WRITE ROW/COLUMN

#BYTES

#BYTES

MODEL 64000

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

This program scrolls ASCII characters onto the 64000 Display.

“8080"
DISP EQU

START LXI
LXI
CALL
MVI

LOOP INX
MVI

INX

MVI
INX
INR

MOV
INX
MVI
INX
MVI
LXI
MVI
CALL
MVI
CMP
JNZ
MVI
JMP
CHECK LDA
CPI
RZ
JMP
END

0DOOH ;CONTROL ADDRESS FOR

; SIMULATED DISPLAY 10
SP,1000H ;STACK DOWN FROM OFFFH
H,DISP ;LOAD H WITH CA
CHECK ;WAIT FOR SERVICE

B,0 ;INITIALIZE COUNTER
H ;SET M TO DISP+1
M,4 ;SET BYTE COUNT TO FOUR
; CHARACTERS/LINE
H ;SET M TO DISP+2
;THEN EACH LINE IS:
M,32 ;ASCIl BLANK (1ST CHAR)
H
B
;THEN:
M,B ;2ND CHAR
H ;THEN
M,32 :ANOTHER BLANK (3RD CHAR)
H
M,0 ;AND A “NULL” (4TH CHAR)
H,DISP

M,82H ;REQ “SCROLL” 1 LINE

CHECK ;WAIT FOR SERVICE

A127 ;AVOID SPECIAL CHARACTERS
B ;IFB>127RESETBTOO

LOOP

B,0

LOOP

DISP

0 WAIT UNTIL CA=0

CHECK
START

Figure 8-22. Simulated Display I/0O - Sample Program B

8-71

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

“8080”
ORG 0
* THIS PROGRAM OPENS KEYBOARD AND DISPLAY FILE. THEN, UPON
* CARRIAGE RETURN IT COPIES KEYBOARD DATA TO DISPLAY AND FILE
* FIO.

* OPEN DISPLAY AND KEYBOARD
START
LXI SP,400H
MVI A,80H ;OPEN DISPLAY
STA DSP_BUF
STA KEY_BUF
MVI A,02H ;DELETE FILE
STA FILE_BUF+1 ;TYPE 2(SCR)
MVI A0 ;DISC#0
STA FILE_BUF+2
MVI A,83H
STA FILE_BUF
WAIT_FILE_D sWAIT FR FILE DELETE
LDA FILE_BUF
CPI O
JM WAIT_FILE_D
MVI A,80H ;CREATE FILE
STA FILE_BUF
WAIT_FILE_C sWAIT FOR FILE CREATE
LDA FILE_BUF
CPI O
JM WAIT_FILE_C
NEXT_KEY_DATA
MVI A-2 ;NOW SETUP KEYBOARD FOR CMD=-2
STA KEY_BUF+1
MVI A,240 ;AND MAX # CHARS
STA KEY_BUF+2
LDA K_CMD ;AND OPEN/READ KEYBOARD
STA KEY_BUF
* WAIT FOR CR(CMD>=0)
WAIT_FOR_CR
LDA KEY_BUF
CPI O

Figure 8-23. Simulated Keyboard, Display, and One Disc File I/O - Sample Program

8-72

MODEL 64000

JM WAIT_FOR_CR
LXI D,DSP_BUF+1
CALL XFR_DATA

* WRITE TO DISPLAY

MVI A,82H
STA DSP_BUF

WAIT_FOR_DSP

LDA DSP_BUF
CPI O
JM WAIT_FOR_DSP

* WRITE TO FILE FIO

LXI D,FILE_BUF+1
CALL XFR_DATA
LDA KEY_BUF+3
INR A

STC

CMC

RAR

STA FILE2BUF+1
MVI A 89H

STA FILE_BUF

WAIT_FILE.W

*

LDA FILE_BUF
CPI O
JM WAIT_FILE_W

JMP NEXT_KEY_DATA

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

;SET # WORDS

;WAIT FOR FILE WRITE

* TRANSFER KEY BOARD DATA TO DISPLAY
XFR_DATA

LXI H,KEY_BUF+3
MOV B,.M

MOV AB

STAX D

INX D

INX H

JGET # BYTES

Figure 8-23. Simulated Keyboard, Display, and One Disc File I/O - Sample Program (Cont’d)

8-73

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

8-74

XFR_LOOP

MOV A M

STAX D

INX D

INX H

DCR B

JNZ XFR_LOOP

MVI A0

STAX D

RET
K_CMD DB 80H
* DISPLAY BUFFER
DSP_BUF EQU 100H
* KEYBOARD BUFFER
KEY_BUF EQU 200H
FILE_.BUF EQU 300H

ORG 100H

DB 0

ORG 200H

DB 0

ORG 300H

DB 0

END START

Figure 8-23. Simulated Keyboard, Display, and One Disc File I/0 - Sample Program (Cont’d)

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

“8080”

ORG 0
* THIS PROGRAM OPENS KEYBOARD, DISPLAY AND 2 FILES. THEN UPON
* CARRIAGE RETURN IT COPIES KEYBOARD DATA TO DISPLAY AND TO
* FILES F1 AND F2.

* OPEN DISPLAY AND KEYBOARD
START
LX!1 SP,400H ;STACK 03FFH AND BELOW
MVI A,80H ;OPEN DISPLAY
STA DSP_BUF
STA K_CMD
MVI A2
STA FB1+1 ;TYPE 2(SOURCE)
MVI A0 ;DISC#0
STA FB1+2 ;BOTH FILES ON DISC 0
STA FB2+2
MVI A,83H
STA FB1
WAIT_FILE_D1 ;WAIT FOR FILE DELETE
LDA FB1
CPI O
JM WAIT_FILE_D1
MVI A,80H ;CREATE FILE
STA FB1
WAIT_FILE_C1 ;WAIT FOR FILE CREATE
LDA FB1
CPI O
JM WAIT_FILE_CA
MVI A2
STA FB2+1 ;TYPE 2(SCR)
MVI A,83H
STA FB2
WAIT_FILE_D2 ;WAIT FOR FILE DELETE
LDA FB2
CPI O
JM WAIT_FILE_D2

Figure 8-24. Simulated Keyboard, Display, and Two Disc Files /0 Sample Program

8-75

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

MVI A,80H ;CREATE FILE
STA FB2
WAIT_FILE_C2 sWAIT FOR FILE CREATE
LDA FB2
CPI O

JM WAIT_FILE_C2
NEXT_KEY_DATA
MVI A -2 :NOW SETUP KEYBOARD FOR CMD=-2
STA KEY_BUF+1 ‘
MVI A,240 :AND MAX # CHARS
STA KEY_BUF+2
LDA K_CMD :AND OPEN/READ KEYBOARD
STA KEY_BUF
* WAIT FOR CR(CMD>=0)
WAIT_FOR_CR
LDA KEY_BUF
CPI 0
JM WAIT_FOR_CR
LXI D,DSP_BUF+1
CALL XFR_DATA
* WRITE TO DISPLAY
MVI A,82H
STA DSP_BUF
WAIT_FOR_DSP
LDA DSP_BUF
CPI 0
JM WAIT_FOR_DSP
* WRITE TO FILE F1
LX! D,FB1+1
CALL XFR_DATA
LDA KEY_BUF+3
INR A
sSTC
CMC
RAR
STA FB1+1 'SET # WORDS
MVI A 89H
STA FB1

Figure 8-24. Simulated Keyboard, Display, and Two Disc Files /0 Sample Program (Cont'd)

8-76

MODEL 64000

WAIT_FILE_W1

LDA FB1

CPI O

JM WAIT_FILE_WA1
* WRITE TO FILE F2

LXI D,FB2+1

CALL XFR_DATA

LDA KEY_BUF+3

INR A

STC

CcMC

RAR

STA FB2+1

MVI A,89H

STA FB2
WAIT_FILE_W2

LDA FB2

CPI O

JM WAIT_FILE_W2

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

;WAIT FOR FILE WRITE

;SET # WORDS

;WAIT FOR FILE WRITE

JMP NEXT_KEY_DATA

*

* TRANSFER KEY BOARD DATA TO DISPLAY

XFR_DATA
LXI H,KEY_BUF+3
MOV B,M
MOV A,B
STAX D
INX D
INX H

XFR_LOOP
MOV A M
STAX D
INX D
INX H
DCR B

;GET # BYTES

Figure 8-24. Simulated Keyboard, Display, and Two Disc Files I/0 Sample Program (Cont’d)

8-77

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

JNZ XFR_LOOP

MVI A0

STAX D

RET
K_CMD DB 80H

ORG 100H ;CONTROL ADDRESS FOR DISPLAY
DSP_BUF DB 0

ORG 200H ;CONTROL ADDRESS FOR KEYBOARD
KEY_BUF DB O

ORG 300H ;CONTROL ADDRESS FOR FILE 1
FB1 DB 0

ORG 400H ;CONTROL ADDRESS FOR FILE 2
FB2 DB 0
END START

Figure 8-24. Simulated Keyboard, Display, and Two Disc Files I/0 Sample Program (Cont’'d)

64000 File Formats

The 64000 file accessable to the user through the simulated disc file I/O interface are
described in the following paragraphs.

Assembler Symbols File (File Type 12)

This file contains the symbols and their corresponding values assigned by the assembler. It
also indicates the symbol type. Symbols may be either ABS (absolute), or relocatable to the
PROG, DATA, or COMN areas. (These terms are all defined in the 64000 Assembler/Linker
Reference Manual.)

The assembler symbols file is generated each time a source program containing symbols is
assembled into an object file. The file consists of a group of records with each record in turn
consisting of up to 128 sixteen-bit words (0-127). Each record must be structured as follows:
(See figures 8-25 and 26.)

® Record ldentification (ID) Word

e Symbol Definition Blocks (Length variable from two to ten words.)

e Checksum Word

8-78

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Each of the three items is described in the following paragraphs.

Record ID word - The ID word is always the first word in each record and contains the
number “6”. (The “6” is used internally and is not to be confused with the file type number
which is 12))

Symbol definition blocks - A symbol definition block consists of the symbol word(s) and the
value word(s). (See figure 8-27.)

Symbol word(s) - The ASCII character, or characters, are contained in this word (or words).
From one to fifteen ASCII characters may be defined. To specify a single-character symbol,
only one symbol word is required. To specify either 14 or 15 ASCII characters, the maximum
of eight words is required. (Symbols longer than 15 characters are truncated to 15
characters.)

First symbol word - The first word in each symbol definition block is structured the same. The
least significant eight bits (7 thru 0) contain the first ASCII character in the symbol. The most
significant eight bits (15 thru 8) always contain the following information:

e Symbol Length (SL) - Bits 15, 14, and 13 specify the number of symbol words -1 in this
block. (See figure 8-28, Example A.) For example, if the symbol consists of two ASCI|
characters, which require two symbol words, SL is equal to 1. Examples of symbols
made up of one to five characters, which require one and three words respectively, are
shown in figure 8-28, examples B and C.

® Reserved Bits - Bits 12, 11, and 10 contain 000 and are reserved for use by other
program modules.

e Memory Relocation (Relo) - Bits 9 and 8 specify how the symbol may be relocated as

follows:
Bit 9 Bit 8 Storage Type
0 0 ABS (Absolute)
0 1 PROG area
1 0 DATA area
1 1 COMN area

Additional symbol words - The second through the eighth symbol words may each contain
up to two ASCII characters. However, if in the last symbol word, only one byte is required to
define the last symbol character, then the least significant byte in that word must contain an
ASCII blank (Code 20H). That is, the two bytes in each symbol word must contain meaningful
data, even in the last word.

8-79

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

The symbol words must be packed. Only the words actually required to specify the symbols
are to be used. Thus, if five symbol words are required to define a symbol, then only five
symbol words must be used.

Value word(s) - Immediately following the last symbol word may be either one or two value
words, depending upon the size of the target processors addressable memory. This word ,or
words, specifies the value assigned to the symbol by the assembler. If the value can be
contained in one 16-bit word, then only one word is to be used. Two 16-bit words are used
only if they are both required. When two words are used, the first word contains the least
significant 16-bits and the second word contains the most significant 16 bits.

All symbol definition blocks within the assembler symbol file must be structured as defined
above.

Checksum Word - The checksum word must be the last word in the assembler symbols file. If
the file is completely full, then the checksum word will be the 128th word (word #127).

The checksum word contains the arithmetic sum of the binary values of the preceding words
in the file.

User Buffer/Assembler Symbols File Packing Formats
The format relationship between the user buffer when reading from, or writing into, a 64000
Assembler Symbols File is shown in figure 8-27.

Linker Symbols File (File Type 13)
The Linker Symbols File is generated any time program modules are linked together. It
consists of the following three types of records (see figure 8-29):

e Microprocessor Configuration Record (one per file)
e Globol Symbols Records
® Program Names Records
Each of these items is described below.
Microprocessor Configuration Record (see figure 8-30) - The microprocessor configuration

record is the first record in the Linker Symbols File and only one is allowed per file. This
record identifies the microprocessor for which the program modules were configured.

8-80

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

This is a fixed length record and consists of 25 words configured as follows:

e One Record ldentification (ID) Word

15 Pad Words (contain all zeros)

Eight Words Allocated To:
Microprocessor Name (9 characters, maximum)
Microprocessor ID (6 characters, maximum)

One Checksum Word

Each of these items is described below.

Record identification (ID) word - The record ID word is always the first word in the record. In
this case, it is also the first word in the Linker Symbols File and contains the number “1”. This
number identifies the record as the microprocessor configuration record. (The “1” is used
internally and should not be confused with the file type number which is “13".)

Pad words 1 through 15 - These words are inserted so that word positions 16 through 23 in
this name record contain the same data as do the corresponding word positions in the name
records of the relocatable files.

Name and user ID word block - An eight word block (words 16 through 23) is allocated to
contain the name and user ID words. This is the same ID entered into the 64000 in response
to the user ID prompt. This block is always eight words long even if all words are not required
to define the microprocessor name and user ID. These eight words are structured as follows:

a. Word 16 - This is the first word and user ID word. The least significant eight bits (7-0) in
this word contain the first ASCII character of the microprocessor name. The most
significant eight bits (15-8) always contain the following information:

e Microprocessor Name Length (MNL) - Bits 15, 14, and 13 specify the number of
16-bit words -1 used in a name. The minimum number of characters that may be
used in the name is one that requires one word. Thus, the minimum value for MNL
is 0. The maximum number of characters that may be used in the name is nine
which requires five words. Thus, the maximum value for MNL is four. (See “Words
17 through 23" below.)

8-81

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

e User ID Length (IDL) - Bits 12 and 11 specify the actual number of 16-bit words
required for the user ID. (Note that IDL differs from MNL in that IDL specifies the
actual number of words and MNL specifies the number of words -1.) The
maximum number of characters that may be used in the user ID is six, which
requires three words. Thus, the maximum value for IDL is 3.

e Bits 10-8 contain all zeros.

b. Words 17 through 23 - These words are used for the remaining name and user ID
characters. The name characters are specified first, followed by the user ID characters.
However, name and ID characters cannot be mixed within the same word. An unused
least significant byte in either a name or ID word must contain an ASCII blank (code
20H). The name and ID words must be packed. That is, the ID words must follow the
name words with no intervening unused words. Unused words must be at the end of
the block.

Checksum word 24 - The checksum word contains the arithmetic sum of the binary values of
the preceeding 24 words in this record.

Global Symbols Records (see figure 8-31) - The Linker Symbols File may contain multiple
Global Symbols Records. The first Global Symbol Record follows the microprocessor
Configuration Record and all succeeding Global Symbol Records are contiguous.
A Global Symbols Record contains the global symbols and the relocated address values
(symbol values) generated when the program modules are linked. Each record may consist of *
up to 128 sixteen-bit words (words 0-127) structured as follows:

® One Record ldentification (ID) Word

e Multiple Global Symbol Definition Blocks

e One Checksum Word
Each of these items is described in the following paragraphs.
Record identification (ID) word - The ID word is always the first word in each record and
contains the number “2”. (The “2” is used internally and is not to be confused with the file

type number which is 13.)

Global symbol definition blocks - A global symbol definition block consists of the symbol
word(s) and the value word(s). (See figure 8-31.)

8-82

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Symbol word(s) - The ASCII character, or characters, are contained in this word (or words).
From one to fifteen ASCII characters may be defined. To specify a single-character symbol,
only one symbol word is required. To specify either 14 or 15 ASCII characters, the maximum
of eight words is required. (Symbols longer than 15 characters are truncated to 15 characters.

First symbol word - The first word in every symbol definition block is structured the same.
The least significant eight bits (7 thru 0) contain the first ASCII character in the symbol. The
most significant eight bits (15 thru 8) always contain the following information. (See figure 8-
32)

e Global Symbol Length (GSL) - Bits 15, 14, and 13 specify the number of symbol words
-1 in this block. For example, if the global symbol consists of two ASCII characters,
which require two symbol words, GSL is equal to 1. (The second byte in the second
word, will contain an ASCII blank, i.e. code 20H.)

e Reserved Bits - Bits 12, 11, and 10 contain 000 and are reserved for use by other
program modules.

e Memory Relocation (Relo) - Bits 9 and 8 specify how the symbol may be relocated as

follows:
Bit 9 Bit 8 Storage Type
0 0 ABS (Absolute)
0 1 PROG area
1 0 DATA area
1 1 COMN area

Additional symbol words - The second through the eighth symbol words may each contain
up to two ASCII characters. However, if in the last symbol word, only one byte is required to
define the last symbol character, then the least significant byte in that word must contain an
ASCII blank (code 20H). That is the two bytes in each symbol word must contain meaningful
data, even in the last word.

The symbol words must be packed. Only the words actually required to specify the symbols
are to be used. Thus, if five symbol words are required to define a symbol, then only five
symbol words must be used.

8-83

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

Symbol value words(s) - Immediately following the last symbol word may be either one or
two value words depending upon the size of the target processors addressable memory. This
word (or words) specifies the value assigned to the symbol by either the assembler (if ABS -
absolute) or by the linker. If the value can be contained in one 16-bit word, then only one
word is to be used. Two 16-bit words are used only if they are both required. When two words
are used, the first word contains the least significant 16-bits and the second word contains
the most significant bits.

All global symbol definition blocks within the Linker Symbols File must be structured as
defined above.

Checksum word - The checksum word must be the last word in each record. If the record is
completely full, then the checksum word will be the 128th word (word #127).

The checksum word contains the arithmetic sum of the binary values of the preceding words
in the record.

Program Names Records (see figure 8-33) - The Linker Symbol File may contain multiple
Program Names Records. The first Program Names Record follows the last Global Symbols
Record. All succeeding Program Names Records are contiguous.

A Program Names Record contains the names of the programs, the corresponding user ID’s
and the load addresses generated when the program modules are linked. Each record may

consist of up to 128 sixteen-bit words (words 0-127) structured as follows:

¢ One Record ldentification (ID) Word

e Multiple Program Name and Addresses Definition Blocks (Fixed length blocks of 14
words each)

e One checksum word
Each of these items are described in the following paragraphs.
Record identification (ID) word - The ID word is always the first word in each record and
contains the number “3”. (The “3” is used internally and is not to be confused with the file

type number which is 13.)

Program name and addresses definition block - This is a fixed length block consisting of 14
sixteen-bit words allocated as follows:

® Eight words reserved for the program name and users |D

e Six words reserved for the linker load addresses (see figure 8-34)

8-84

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Program name and user ID words - The formatting and packing of these words are done in
the same way as described above for the “Microprocessor Configuration Record, Name and
ID Word Block”.

Load address words - These words contain the load addresses assigned by the linker. If an
address is not assigned to a particular area, the address words contain zeros (0000H). The
MS 16-bit address word will be used only if required by the target microprocessors
addressable memory space.

Checksum word - The checksum word must be the last word in each record. If the record is
completely full, then the checksum word will be the 128th word (word #127).

The checksum word contains the arithmetic sum of the binary values of the preceding words
in the record.

User Buffer/Linker Symbols File Packing Formats
The format relationship between the user buffer when reading or writing into a 64000 Linker
Symbols File is the same as shown for the Assembler Symbols File in figure 8-27.

Source File (File Type 2)

The source file is generated by the programmer from the applicable microprocessor opcodes
and assembler pseudo instructions. It consists of a series of ASCII records. (See figures 8-35
and 8-36.)

Each ASCII source record in the file is structured the same. An ASCII source record is of
variable length and may contain up to 128 sixteen-bit words. Each 16-bit word contains two
8-bit ASCII bytes. If the last byte in the last word of a record is not used, it must contain an
ASCII blank (20H).

The format relationship between the user buffer when reading from or writing into a 64000
source file is also shown in figure 8-36.

Listing File (File Type 5)

The listing file is a copy of a source file. It may be produced when listing to a printer, a
display, etc. The format is identical to that described above, and shown in figures 8-35 and
8-36 for the source file.

Absolute File (File Type 4)

Absolute file is generated when the linker produces an absolute image of an object file or
files. The absolute file contains two types of records; the first record and the additional
records which follow the first record. (See figures 8-37 and 8-38.)

8-85

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

First record - The first record has a fixed length of four 16-bit words. The first word (word 0)
specifies the processors data bus width (8, 16, etc.). The second word (word 1) specifies the
data width base of the target microprocessor. The data width base is the minimum
addressable entity (i.e. group of bits) used by the microprocessor. Normally this will be 8-bits,
but not always.

The last two words specify the transfer address value loaded into the target microprocessors
program counter. The most significant transfer address word (bits 31 thru 16) is used only if
required. If not used it will contain 0000H.

Additional records - All records following record one are formatted the same. Each is a
variable length record consisting of up to 128 sixteen-bit words (0-127).

The first word in the record (word 0) specifies the number of data bytes in the record (2
bytes/word). The following two words (words 1 and 2) specify the load address for this
record. (The load address is the beginning location for storing this record.) The most
significant load address word (bits 31 thru 16) will be used only if required. If not used, bits 31
thru 16 will contain 0000H.

The remaining words in the record (3 thru n) contain the data bytes. If the last byte in the last
word of a record is not used for data, it must contain an ASCII blank (code 20H).

The format relationship between the user buffer when reading from or writing into a 64000
absolute file is also shown in figure 8-38.

PROM Absolute File (File Type 9)

The PROM absolute format is similar to that described above and shown in figures 8-37 and
8-38 for the absolute file. The only difference is that in PROM absolute files, the transfer
address words in the first record always contain zeros.

Relocatable File (File Type 3)

The relocatable file is produced by the assembler or compiler. It contains information
required by the linker to construct an absolute file. This file consists of the following six types
of records (see figure 8-39):

e Program Description Record (one per file)

e Global Symbols Record

e Data Record

e External Symbols Record

8-86

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL
e Local Symbols Record (optional)
e End Record (one per file)
Each type of record is defined in the following paragraphs.
Program Description Record (see figure 8-40) - The program description record is the first
record in the Relocatable File and only one is allowed per file. This record identifies the
source program, number of externals, microprocessor, comments, and absolute code
definitions.
This is a variable length record (up to 128 words) and is configured as follows:
e One Record Identification (ID) Word
e 14 words allocated to:
Source Program Name (9 characters, maximum)
Source Program ID (6 characters, maximum)
PROG Area Length (2 words, maximum)
DATA Area Length (2 words, maximum)

COMN Area Length (2 words, maximum)

® One word allocated to definition of the number of external variables and procedures
defined in the module.

e Eight words allocated to:
Microprocessor Name (9 characters, maximum)
Microprocessor ID (6 characters, maximum)
e Two words allocated to:
Date (one word, maximum)
Time (one word, maximum)

¢ 11 words allocated to comments

8-87

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

e Up to 88 words allocated to absolute code segment description.
e One checksum word
Each of these items is described as follows:

Record identification (ID) word - The record ID word is always the first word in the record. In
this case, it is also the first word in the Relocatable File and contains the number “1”. This
number identifies the record as the source program description record. (The “1” is used
internally and should not be confused with the file type number which is “3".)

Source program name and user ID word block - An eight word block (words 1 thru 8) is
allocated to contain the source program name and user ID words. This is the same ID entered
into the 64000 in response to the user ID prompt. This block is always eight words long even
if all words are not required to define the source program name and user ID. These eight
words are constructed as follows:

a. Word 1 - This is the first word and user ID word. The least significant eight bits (7-0) in
this word contain the first ASCII character of the source program name. The most
significant eight bits (15-8) always contain the following information:

e Source Program Name Length (PNL) - Bits 15, 14, and 13 specify the number of
16-bit words —1 used for the name. The minimum number of characters that may
be used in the name is one, which requires one word. Thus, the minimum value
for PNL is zero. The maximum number of characters that may be used in the
name is nine, which requires five words. Thus, the maximum value for PNL is
four. (See “Words 2 through 8”, below.)

e User ID Length (IDL) - Bits 12 and 11 specify the actual number of 16-bit words
required for the user ID. (Note that IDL differs from PNL in that IDL specifies the
actual number of words and PNL specifies the number of words —1) The
maximum number of characters that may be used in the user ID is six, which
requires three words. Thus, the maximum value for IDL is 3.

e Bits 10-8 contain the number of the disc which holds the record.

8-88

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

b. Words 2 through 8 - These words are used for the remaining name and user 1D
characters. The name characters are specified first, followed by the user ID characters.
However, name and ID characters can not be mixed within the same word. An unused
least significant byte in either a name or ID word must contain an ASCII blank (code
20H). The name and ID words must be packed. That is - the ID words must follow the
name words with no intervening unused words. Unused words must be at the end of
the block.

Length word block - A six word block (words 9 thru 14) is allocated to contain the word
lengths of code produced by the assembler or compiler in each of the three relocatable
sections; PROG, DATA, and COMN.

Number of externals word - One word (word 15) is allocated to contain the number of
external variables and procedures defined in the module. This number can be from 0 to 511.

Microprocessor name and user ID word block - This word block is the same as described for
the Linker Symbols File under the “Microprocessor Configuration Record, Name and User ID
Word Block”.

Date and time word block - Two words (words 24 and 25) are allocated to contain the date
and time that the program was assembled or compiled.

Comments word block - A block of eleven words (words 26 thru 36) is allocated for
comments. The block contains up to 22 ASCII characters defined by the NAME psuedo in the
assembler or compiler. All unused characters must contain ASCII blanks (code 20H).

Absolute code segment word block - A variable length block which contains from 0 to 22
entries of four 16-bit words is allocated for absolute code segments. Each four-word entry
defines an absolute code segment declared in the assembler or compiler.

Checksum word - The checksum word must be the last word in each record. If the record is
completely full, then the checksum word will be the 128th word. (Word #127.)

The checksum word contains the arithmetic sum of the binary values of the preceding words
in the record.

Global Symbols Records (see figures 8-31 and 8-32) - The global symbols record formatting
and packing for the Relocatable File is the same as described for the Linker Symbols File

under the “Global Symbols Records”.

Data Records (see figure 8-41) - The data records contains the relocation area and address of
the program as assigned by the linker. It also defines how the absolute codes are produced.

8-89

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

Record identification (ID) word - The ID word is always the first word in each record and
contains the number “3”. (The “3” is used internally and is not to be confused with the file
type number, which is also “3”.

Relocation address words - These words contain the relocation address assigned by the
linker to this program. The most-significant word is used only when the ID offset equals 3.

Relocation word - The relocation word identifies the relocation destination code as follows:
00=ABS, 01=PROG, 10=DATA, and 11=COMN.

Event selection word - This word contains codes 00,01, 10, and 11 in bit locations T1 thru T8.
Any one of the codes may be contained in any of the locations. As T1 through T8 are read,
the event selected by the specific code will be executed. Codes are defined as follows:

Tn=00 - Produce one byte of absolute code, which is found in the low order byte of
the corresponding word.

Tn=01 - Produce two bytes of absolute code, which is found in the corresponding
word.

Tn=10- Relocate the address to be found in the second (and optionally, the third)
word based on the relocation code in the first word. Then produce an
absolute code based on the processor dependent format number in the first
word and skeleton, if used.

Tn=11 - Look up the external symbol whose number is in the first word (which has
been previously defined in a type 4 record). Add the displacement and then
produce an absolute code based on the format number and skeleton, if used.

Checksum word - The checksum word must be the last word in each record. If the record is
completely full, then the checksum will be the 128th word (word #127).

The checksum word contains the arithmetic sum of the binary values of the preceding words
in the record.

External Symbols Records (see figure 8-42) - The Relocatable File may contain multiple
External Symbols Records.

An External Symbols Record contains the external symbols and the external ID number
assigned by the assembler or compiler. Each record may consist of up to 128, sixteen-bit
words (words 0-127) structured as follows:

e One Record Identification (ID) Word

8-90

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

e Multiple External Symbol Definition Blocks
e One Checksum Word
Each of these items is described as follows:

Record identification (ID) word - The ID word is always the first word in each record and
contains the number “4”. (The “4” is used internally and is not to be confused with the file
number, which is “3”.)

External symbol definition blocks - An external symbol definition block consists of the
symbol word(s) and the external ID number. (See figure 8-42.)

Symbol words - The ASCII character, or characters, are contained in this word, or words.
From one to fifteen ASCII characters may be defined. To specify a single-character symbol,
only one symbol word is required. To specify either 14 or 15 ASCII characters, the maximum
of eight words is required. (Symbols longer than 15 characters are truncated to 15
characters.)

First symbol word - The first word in every symbol definition block is structured the same.
The least significant 8 bits (7-0) contain the first ASCII character in the symbol. The most
significant eight bits (15-8) always contain the following information:

e External Symbol Length (ESL) - Bits 15, 14, and 13 specify the number of symbol
words —1 in this block. For example, if the external symbol consists of two ASCII
characters, which requires two symbol words, then ESL is equal to 1. (The second byte
in the second word will contain an ASCII blank - i.e. code 20H.)

e Reserved Bits - Bits 12, 11, 10, 9, and 8 always contain 00100.

Additional symbol words - The second through the eighth symbol words may each contain
up to two ASCII characters. However, if in the last symbol word, only one byte is required to
define the last symbol character, then the least significant byte in that word must contain an
ASCII blank (code 20H). That is, the two bytes in each symbol word must contain meaningful
data, even in the last word.

The symbol words must be packed. Only the words actually required to specify the symbols
are to be used. Thus, if five symbol words are required to define a symbol, then only five

words are to be used.

External ID number word - The external ID number is assigned by the assembler or compiler.
The number can be from 0 to 511.

8-91

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

Checksum word - The checksum word must be the last word in each record. If the record is
completely full, then the checksum will be the 128th word (word #127).

The checksum word contains the arithmetic sum of the binary values of the preceding words
in the record.

Local Symbols Records (see figures 8-31 and 8-32) - The local symbols records formatting
and packing for the Relocatable File is the same as described for the Linker Symboils File
under the “Global Symbols Records”, except the ID word contains the number “6”.
End Record (see figure 8-43) - The end record is the last record in the Relocatable File and
only one is allowed per file. The end record contains the relocation code and transfer
address. Each record consists of five, 16-bit words structured as follows:

e One Record ldentification (ID) Word

¢ One Relocation Word

e Two Transfer Address Words

e One Checksum Word
Each of these items are described as follows:
Record identification (ID) word - The ID word is always the first word in each record and
contains the number “5”. (The “5” is used internally and is not to be confused with the file

number, which is “3".)

Relocation word - The relocation word identifies the relocation destination code, as follows:
00=ABS, 01=PROG, 10=DATA, and 11=COMN.

Transfer address words - The transfer address words contain the address where control will
be transferred to when the program is run.

Checksum word - The checksum word must be the last word in each record. The checksum
word contains the arithmetic sum of the binary values of the preceding words in the record.

User Buffer/Relocatable File Packing Formats

The format relationship between the user buffer when reading from, or writing into, a 64000
Relocatable File is the same as shown for the Assembler Symbols File in figure 8-27.

8-92

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Record
Word # Contents
7 "] Record ID Word = 6

First Symbol Definition Block
(Variable length: 2 to 10 words)

Record __
no.1 |

Last Symbol Definition Block
(Variable length: 2 to 10 words)

n
(n=127) Checksum word for record 1.

[4] Record ID word =6

First Symbol Definition Block
(Variable length: 2 to 10 words)

Record __| \—

no. 2

Last Symbol Definition Block
(Variable length: 2 to 10 words)

(n<127) Checksum word for record 2

Record ID word =6

t

etc.

~ ~ ~

Figure 8-25. Assembler Symbol File Overall Structure

8-93

EMULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

Record
Type

First
Symbol
Definition
Block
Variable
length
block.”
(2 words min./
10 words max.)

Second
Symbol
Definition
Block*®

etc

Notes

N\

N/

MODEL 64000

ASSEMBLER SYMBOL RECORD STRUCTURE

Word
#
Identifies record as an
0 ID Word =6 Assembler Symbol Record.
Symbol word or words Symbol words and value words
Identifies symbol characters and must be packed. If only one symbol
the part of memory in which they worq and one value word are
L are defined, i.e. ABS, Prog, Data, or | required, then only two words are
Common. used in the definition block
(L1 =1 to 8 words)
—!L-——————————-‘-——
LS 16-bit
Symbol value™* Word
L2 —-—
MS 16-bit MS Word is
(L2 =1 or 2 words) Word used only if
required to
specify symbol
value.
Symbol Word(s)
Symbol Value**
\
n Checksum Word Contains the arithmetic
(n=127) sum of the binary

values of words
0 through n—1

*For block structure details, see “Assembler-Symbol Record/User Buffer Format Details”.

**Symbol value as assigned by assembler. If a relocatable value it will be relocated by the linker.

Figure 8-26. Assembler Symbol Record Structure

8-94

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

MODEL 64000

ASSEMBLER SYMBOL FILE
USERS BUFFER

DEFINITION BLOCK FORMATS CONTENTS ADDR
(} R/W Code cA
Word
15 8,7 0 #Words CA-1
T 1 T T
[} I(Zl (ID WORD = 6) 011 :11”—>C15 8 | CA-2
;
1 ’ 7 0| CA3
S 15 13,12 10,9 8,7 0
Y
M I SL o 0 0| R ASCIl 1 j—><_—: 15 8| ca-4
8 [
o 7 0| CA-5
L
15 8,7 0
r ASCII 2 ASCII 3 15 8| CA-6
L 7 0| ca-7
L1
First X e . .
Sym . o . M
Def 15 8, 7 0
Blk. -
210 l ASCII 14 ASCII 15 is 8 | cAr
10 [
words) 7 0 | CA+
5 b s 8,7 0
Y T
M I Sym. Value N (LS 16 sets) 15 8 | CA-
B. T T
7 0| ca+
v
A L2 15 8 7 0
T
L [Sym Value , (MS 16 bits - if used) }—><: 15 8 | ca~
T
L 7 0| ca-
s 15 13,12 10,9 8, 7 0
M l st |0 60| R ASCII 1 jsc 15 8 | ca-
B
o L 7 0| ca:
L
15 8, 7 0
r ASCII 2 ASCII 3 15 8 | CA+
I
sec 7 0| ca+
Sym. s
Def. |y 15 8+7)
Blk M r Sym 2 Value . (LS 16 bits) 15 8 | CA+
B. T
[7 0| CA+
v
A 15 8= 7 0
L | Sym. 2 Value ; (MS 16 bits - if used) —Ix 15 8 | CA+
L 1
7 [} CA+
’ .) L]
. L] .
. . .
etc. | 15 8} 7 0
n Checksum 15 8| CA~
(n= 127) I + '
7 CA+n1
(n1-257)

Figure 8-27. Assembler Symbol

Record/User Buffer Format Details

8-95

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

EXAMPLE A. SYMBOL = HP

/ 15 13 12 10 98 7 0 Definitions
SL=Number of 16-bit words - 1
0 0 110 0 0]Relo ASCH H required to define a symbol. In
N— N — example A, SL=2-1. or 1
SL =1 Reserved
Two
Symbol
Words
15 8,7 [} “Reserved” indicates that these
bits are reserved for use by
ASClI P ASCII blank other program modules
\ —
Must specify a blank.
15 8 7 0 - -
One N Relo™~Memory type
Symbol T relocated to:
Y Symbol value 00=ABS
Value 1
Wolrjd ! 91=PROG
, 10=DATA
Only one 16-bit word is required to 11=COMN
contain the value assigned by the
assembler. Thus, only one is used.
EXAMPLE B. SYMBOL = S
15 13 12 10 9 8,7 0 Same as
One st defined for
Symbol 00 0|0 0 0|Relo ASCII S \I “Reserved” °
Word “Relo” example A.
— — above
SL-0 Reserved
One 15 8 7 0
Symbol L Symbol value |
Value 3
Word I

Again, only one 16-bit word is required to contain the symbol value.
Thus, only one is used.

Figure 8-28. Assembler Symbol Record/Symbol Definition Block Examples

8-96

MODEL 64000 EMULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

Record
Word # Contents
7 "] Record Type ID Word = 1
First Record 1
Microprocessor Microprocessor Name and ID Definition
Configuration. — Block
(Fixed length,
25 words.) 23
- - —
24 Checksum for this record.
(1] Record type ID word = 2
Global Symbols
First Record __] Global Symbols Definitions
(Variable length,
128 words, max.)
n .
X(”g‘”) Checksum for this record.
7 Record type ID word = 2
Global Symbols
Last Record __| Global Symbols Definitions
(variable length,
125 words, max.)
n
(nggl Checksum for this record.

Program Names
First Record

(Variable length 1

128 words, max.)

\

Program Names
Last Record
(Variable length,
128 words. max.)

n
\, (n<127)

Record type ID word = 3

Program Name Definitions

Checksum for this record.

Record type ID word = 3

Program Name Definitions

Checksum for this record.

Figure 8-29. Linker Symbol File Overall Structure

8-97

EMULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

Microprocessor
Name and
ID Definition
Block.
(Fixed length:
8 words)

Notes
Words 1 through 15 are added so that word positions 16-23 in this name record contain the same data as do the
corresponding word positions in the name records of the relocatable files.

1.

8-98

Record
Word #
Record 1D Word = 1 ("]
1
P Words 1 through 15 contain all zeros.
A
D
15 13 12 11 10 8 15
MNL IDL 000 ASCII 1 16
N
A
M Name < 9 characters. ID < 6 characters. Name
E and ID words must be packed within this block.
All unused words must be at the end of this
& block. Unused last (LS) bytes must contain
ASCII blanks (Code 20H).
|
b 23
ASCIl 14 ASCII 15
Checksum for this record. 24

MODEL 64000

MNL = Number of 16-bit words—1 required to define the microprocessor name. At least one character in the “ASCI|
1”7 byte is required. Thus, with a one character name, MNL = 0. If all nine characters are used (5 words), MNL =4.

IDL = Actual number of 16-bit words required to define the user ID. If one word is used, IDL = 1. If all three words

are used, IDL = 3.

Bits 19, 9, and 8 always contain 000.

ASCII bytes 1-15 contain the name and ID characters. These words must be packed. That is the ID words must
follow the name words. Unused words must be at the end of the block. An unused byte in either a name or ID word
must contain an ASCII blank (Code 20H).

The checksum contains the arithmetic sum of the binary values of words @ through 23.

Figure 8-30. Microprocessor Configuration Record Structure

MODEL 64000

GLOBAL SYMBOLS RECORD

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Word # Contents
/
_ Identifies Global Symbol
Record Type — 0 1D Word =2 Record in Linker Sym. File
. Symbol and value words
Symbol word or words. Identifies must be packed. If
L1 2¥g‘2?'og:t2'§°ters and where they only one of each is required,
) . then only two are used in
First Symbol (L1=1to 8 words) the definition block.
Definition Block.*
Variable length
from 2 words
min. to 10
words max. Symbol value** LS 16-bit
word
L2 — —_—
_ MS 16-bit — MS word is
l (L2 =1 or 2 words) word used only if
N\ required to
/ specify symbol
value.
Second Symbol
Definition — Symbol and value words
Block*
AN
etc. \
' Contains the
arithmetic sum of
- ”27 Checksum for this record. the binary values
(=127) of words @
through n-1.

Notes

*For block structure details see “Global Symbols Definition Block Diagram.”

**Symbol value assigned by assembler. If relocatable value (not ABS), it will be relocated by the linker.

Figure 8-31. Global Symbol Record Structure

8-99

EMULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

MODEL 64000

15 13 12 10,9 8
/ s GSL [0 o o] Relo ASCII 1 1 (min.)
M ASCII 2 ASCII 3
: ASCII 4 ASCII 5
L ASCII 6 ASCIH 7 Variable
Length
Symbol ASCII 8 ASCIl 9 9
Definition
Block. ASCIl 10 ASCH 11
Length
variable ASCII 12 ASCII 13
from 2
to 10 L ASCII 14 ASCII 15 8 (max.)
words. —_—— — —
Symbol Value assigned by linker (LS 16 bits) 1 (min.)
\ val. (L2) Value assigned by linker (MS 16 bits — if used) 2 (max.)

Notes

1. GSL = Number of 16-bit words -1 required to define a global symbol. At least one character is required in the
“ASCII 1" byte. Thus, with a one character name, NL = @. If all 15 characters are used (8 words), NL = 7.

2. Bits 12, 11, 10 are reserved for use by other program modules and always contain 000.
3. "Relo” contains the binary code for area relocated to as follows: #0 = ABS, 91 = PROG, 10 = DATA,and 11=COMN.

4. The bytes labeled ASCII 1-15 are the maximum number of bytes available to define the symbol. Only the actual
number of 16-bit words required to define the symbol will exist. However, if the first byte (MSB) is used, then the
second byte (LSB) must contain an ASCII blank (code 20 H).

5. The symbol value is assigned by the assembler. If a relocatable value it will be relocated by the linker.

Figure 8-32. Global Symbol Definition Block

8-100

MODEL 64000

First —
Program Name
and Addresses

Definition

Block.”

Second —
Program Name
and Addresses

Definition

Block.*

etc.

PROGRAM NAME RECORD

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Identifies Program Name
Record in Linker Sym. File

Fixed Length Block.
14 Words.
Words not required

— will contain
meaningless information
and must be at the
end of the block.

| _ Fixed length block.
14 words

Word
Contents
[} ID Word =3
i N
Program Name and ID. Name < 9
characters. ID < 6 characters.
Name and ID words must be packed.
Unused words must be at the end of this
block.
8
9
PROG, DATA, and COMN load
addresses. (Addresses not used will
’ contain all @s.)
N M ya
4 15 \W
Program Name
- — — —_— —_— —_— —_—— — =4
Program ID
|] PROG, DATA, and COMN load
29 addresses.
AN /
|
(n<'1‘27) Checksum for this record.
Notes

*For block structure details, see figure 8-34.

Contains the arithmetic
sum of the binary
values of words

4 through n-1.

Figure 8-33. Program Name Record Structure

8-101

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

Block
Word #
15 13 12 1,108 7 /]
4 PNL IDL Disc ASCII 1 1 \
N
A
M Name < 9 characters. ID < 6 characters. Name .
E and ID words must be packed within this block. Fixed
All unused words must be at the end of this Length
& block. Unused last (LS) bytes must contain Block
Program ASCII blanks (code 20H).
Name and |
Addresses D ‘}
Definition _}
Block. ASCII 14 N ASCII 15 8)
Length
14Fx:rdds PROG area 15 LS PROG address word ol o
load address | 5, g PROG address word 16| 10
DATA area 15 LS DATA address word 0 1
load address | 5, g DATA address word 1] 12
COMN area 15 LS COMN address word "] 13
Y load address | 59 g COMN address word 16| 14

Notes
1. PNL =Number of 16-bit words—1 required to define the program name. At least one character in the “ASCII 1" byte
is required. Thus, with a one character name, PNL = 0. If all nine characters are used (5 words), PNL = 4.

2. IDL = Actual number of 16-bit words required to define the user ID. If one word is used, IDL = 1. If all three words
are used, IDL = 3.

3. DISC = The identifying number of the disc upon which the program resides.

4. ASCII bytes 1-15 contain the name and ID characters. These words must be packed. That is - the ID words must
follow the name words. Unused words must be at the end of the block. An unused byte in either aname or ID word
must contain an ASCII blank (Code 20H).

5. Load Address Words - The load address words contain the load address assigned by the linker to this program.
Unused address words contain all zeros.

Figure 8-34. Program Name and Address Definition Block Format

8-102

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

15 File Structure (]
0
First Record
Variable length
t— 128 words
Contains up to 128 16-bit] max.
words with 2 ASCII bytes/word.
n
(n=127)
(1]
Second Record
Variable length.
— 128 words
Same as first record. / max
n
(n=127)
/
etc.

Figure 8-35. Source and Listing Files - Overall Structure

SOURCE FILE FORMAT USERS BUFFER
‘ + CONTENTS ADDR—*
WORD # WORD DATA FORMAT R/W Code CA

15 8 7 0 # Words CA+1
Il
T

(] Two ASCII ASCII 1 ASCII 2 15 (ASC 1) 8 CA+2
Bytes T }

7 (ASC 2) 0 CA+3

15 8. 7 0

T

1 Two ASCII | ASCII 3 ASCII 4 15 (ASC 3) 8 CA+4
Bytes T }

7 (ASC 4)0 CA+5

©

Y J 15 l7

2
+
n Two ASCII [ASCII x ASCIl y 15 (ASC x) 8
(n=127) Bytes T + '
7 (ASCy)0 CA+n

(n<257)

Figure 8-36. Source and Listing File Format

8-103

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

Record
15 File Structure 0 | Word #
PR
First Record
| Fixed length,
Specifies data width base and 4 words.
transfer address.
S/
0\

Second Record

Variable length
™ 128 words. max.
Specifies # of data bytes in
this record, and load address
for record followed by data words. {

(n<127)
0
Third Record
|_ Variable length,
128 words. max
Same as second record. |
n
(n=127)
—~ etc. —~

Figure 8-37. Absolute and PROM Absolute File - Overall Structure

8-104

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

ILLUSTRATION A.
RECORD 1 FORMAT ONLY.
(Format for all Other Records Shown on lllustration B)

USER BUFFER

ABSOLUTE FILE RECORD 1 FORMAT"
{ ‘ ‘ CONTENTS ADDR *
Word # Word Data FORMAT R/W Code CA
Words CA+1
}
T
0 Data Bus**** |15 87 0 15 8| cA+2
Width T }
7 0| CA+3
}
1 Data Width L15 87 0 15 8| CA+4
Base™* I }
7 9| CA+5
}
2 Xfer Address [15 87 0 15 8] CA+6
LS Word*"* —
L 7 0] CA+7
32-BIT
\ ADDRESS
3 Xfer Address ls1 2423 16 31 24| CA+8 ALL ZEROS
MS Word*** } FOR PROM-
L 23 16 CA+9 ABSOLUTE
FILES
Notes

*Record 1 must precede all other records in an absolute file and it must always be formatted as shown.
(Always four words.)

**The Data Width Base is the minimum addressable entity (i.e., group of bits) used by the microprocessor.
Normally this will be 8 bits but not always.

***The transfer address is the value loaded into the microprocessor program counter.
This value is all zeros for PROM Absolute files.

****Width of processor data bus (i.e., 8, 16 etc.)

t Total number of words in record excluding checksum and number of words, (i.e. n-2), always equal to 4 for
record 1.

tt The checksum is the module 256 sum of bytes CA+2 through CA+9.

Figure 8-38. Absolute and PROM Absolute File Formats

8-105

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

ILLUSTRATION B.
FORMAT FOR ALL RECORDS EXCEPT RECORD 1
(See lllustration A for Record 1 Format)

USER BUFFER

ABSOLUTE FILE RECORD FORMAT
‘ FOR ALL RECORDS EXCEPT #1 ‘ ‘ 128 Words Max *
7 [1]
Word # Word Data Format R/W Code CA
Words CA+1

}
v
® #Data I 15 8,7 0 15 81 CA+2
Btes L ' 7 0| ca+s
1 Load Addr [15 8 7 0 15 8| CA+4
LS Word* T
| 7 0| CA+s

+

-+

32 BIT
. ADDRESS
L]
2 Load Addr l31 24 23 16 31 24| ca+e
MS Word T {
23 16| ca+7
15 8, 7)
Rl
3 Data Word 1 E BYTE1 BYTE?2 15 (BYT 1) 8| ca+s
T
L 7 (BYT2) o cA+9
15 8 7 0

L
3+m Data Word m l BYTE x , BYTEy™]‘X 15 (BYT x) 8
— T CA+n
L 7O (BYTy) @ (ne2s7)

Note
*The load address is the address of the first location into which this record is stored.

**This last byte will be a pad byte if the record contains an odd number of bytes. This is required to fill up the
word boundary.

***The checksum is the module 256 sum of bytes CA+2 through N-1.

Figure 8-38. Absolute and PROM Absolute File Formats (Cont’'d)

8-106

MODEL 64000

First Record
Program
Description
(Variable length,
128 words, max.)

Global Symbols

First Record
(Variable length,
128 words, max.)

Global Symbols

Last Record
(Variable length,
128 words, max.)

Data Block

First Record
(Variable length,
128 words, max.)

Data Block
Last Record
(Variable length,
128 words, max.)

External Symbols
First Record

(Variable length,
128 words, max.)
External Symbols

Last Record

(Variable length,
128 words, max.)

Local Symbols
First Record
(Optonal)
(Variable length,
128 words, max.)

Local Symbols
Last Record
(Optional)
(Variable length,
128 words, max.)

~

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Contents

Record ID word = 1

Program Description Block

Checksum for this record

Record 1D word = 2

Global Symbols Definitions

Checksum for this record

_—/

Record 1D word =2

Global Symbols Definitions

Checksum for this record

Record ID word =3

Data Block

Checksum for this record

A
i
- D
n
I3

\—/

Record ID word = 3

Data Block

Checksum for this record

T
|

>
‘_/\.:14——&|

-
|
B
'w
=
|

Record ID word = 4

External Symbols Definitions

Checksum for this record

_—/

N> — =

I
3
S

Iv

)

Record 1D word = 4

External Symbols Definitions

These records can
be in any order,

| but external symbols
must come before
they are referenced
in data records.

Checksum for this record

5 «— s

-
I

r
)
Iz
|
=
]

Record 1D word = 6

Local Symbols Definitions
(Optional)

Checksum for this record

\—_—/

End

Record
(Fixed length,
5 words)

Record ID word = 6

Local Symbols Definitions
(Optional)

Checksum for this record

Record ID word =5

End Block

5

Checksum for this record

Figure 8-39. Relocatable File Overall Format

8-107

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

Identifies Program 15 8,7 [
Deseription Record in{ -
Relocatable File Record 1D word =1 4
pne | ou | oisc] ASCII 1)
x SOURCE PROGRAM
M Name <9 characters. ID <6 characters. Name
s E and ID words must be packed within this block.
b ource All unused words must be at the end of this
N rograrg & block. Unused last (LS) bytes must contain
ame an ASCII blanks (Code 20H).
Length == |
Definition D
ASCII 14 ASCII 15
Block Scil T 1 S 8
L(ra;pgtg PROG area | 15 LSW PROG length '] 9
1xe: length 10
14 Words g 31 MSW PROG length 16
DATA area | 15 Lsw DATA length o1 1
length 37— iow DATA longth 6] 2
COMNarea)] 15 Lsw COMN length 0] 13
N tength [37 wow COMN length 16] 14
Number of Externals 0= No. =512 | 15 No. of Externals 7] 15
Definition Block
- MNL | oL | eee | Asciis 16
Microprocessor N MICROPROCESSOR
Narr‘\eva‘nd A Name <9 characters. ID <6 Characters. Name
1D Definition _| M and 1D must be packed within this block.
Block E All unused words must be at the end of this
Length Fixed & block. Unused last (LS) bytes must contain
8 Words ASCI!I blanks (Code 20H).
|
D ASCII 14 ASCII 15
N \ 23
Date and Time
Block _E Date 24
Length Fixed Ti 25
2 Words e
ASCII 1 ! Ascn2 | 26
COMMENTS BLOCK 27
Comments Comments <22 characters. Must be 28
Definition | packed within this block. All
Block unused words must be at the end
Length Fixed of this block. Unused last (LS) bytes
11 Words must contain ASCI! blanks (Code 20H).
N ASCII 21 1 ASCIl 22 36
~ 15 LSW Start Org [] 37
31 MSW Start Org 16 | 38
Absolute Code 15 Lsw End Org o | 30
Segment 31 MSW End Org 6 | 49
Description Block _| 41
Length Variable
@ - 88 Words
Contains the
Arithmetic Sum of the N
Binary Values of T n
f;
Words @ through n-1. { Checksum for this record <127)

NOTES:

1. PNL and MNL = Number of 16-bit words-1 required to define program or microprocessor name. At least one character in the
“ASCII 1" byte is required. Thus, with a one character name, PNL or MNL = @. If all nine characters are used (5 words) PNL or
MNL = 4.

IDL = Actual number of 16-bit words required to define the user ID. If one word is used, IDL = 1. If all three words are used IDL

=3.

Disc (in program name segment) - The identifying number of the disc upon which the program resides.

Bits 10, 9, and 8 in microprocessor name segment always contain 0@@.

ASCII bytes 1-15 contain the name and ID characters. These words must be packed. That is; the ID words must follow the

name words. Unused words must be at the end of the block. An unused byte in either a name or |D word must contain an ASCI|

blank (Code 20H).

6. Length bytes or words - Contains the number of bytes or words (processor dependent) of code produced by the assembler or

compiler in each of the three relocatable sections; PROG, DATA, COMN.

Number of externals - Contains the number of external variables and procedures defined in the module.

Comments - Contains up to 22 ASCII characters defined by the NAME psuedo in the assembler or compiler. All unused

characters must contain ASCI| blanks (Code 20H).

9. Absolute code segment description - Contains @ to 22 entries of four 16-bit words. Each four word entry defines an absolute
code segment declared in the assembler or compiler.

[

9Ok w

® N

Figure 8-40. Relocatable File Program Description Definition Block

8-108

MODEL 64000

. 15 8 7 [/]
Identifies Data
Record in —E Record ID word = 3 0
Relocatable File -
Defines Relocation Relocation | 15 LSW Relocation Address 1
Address address area | 15 MSW Relocation Address (if used) o] 2
Identifies File Type _E X
Destination of Relocation Relocation 3
Identifies Events _{™ Event selectionarea | T1 [T2 [ta [ta [ts [te [17 [18 | 4
to Follow
NOTE
Event and order of the
following events are selected by event
selection, above (see notes).
15 8 7]
o Tn =00 I Don't Care l Low Byte J .
15 8 7 [}
Tn =01 | High Byte I Low Byte j
15 8 7 6 0
Words or Word | ReIoJ Format No.
Groups Selected
by Word 4 for — Tn =10 LSW Unrelocated Address
Events to MSW Unrelocated Address (Optional)
Follow Word 4
Optional Skeleton
15 7 6]
External ID No. I Format No.
Tn =11 LSW Signed Displacement
MSwW Signed Displacement (Optional)
\ Optional Skeleton
Contains the
Arithmetic
Sum of the - n
Checksum for thi
Binary Values E | s record) <127)
of Words

0 through n-1

NOTES: -

1. Relocation Address Words - The relocation address words contain the relocation address assigned by the
linker to this program. The MSW is used only when the ID offset = 3.

2. Relocation contains the binary code for area relocated to as follows: 30 =ABS, 81 =PROG, 10=DATA, and 11
= COMN.

3. Event Selection Area - Selects events to follow. T1through T8 may contain any one of codes 8@, @1, 10, or 11.
Codes are defined as follows: @@ = one byte absolute with no modifications, @1 =two bytes absolute with no
modifications, 10 = relocatable reference, and 11 = external reference. As T1 through T8 are read, the event
selected by the specific code will be executed.

4. Tn=00 - Produce one byte of absolute code, which is found in the low order byte of the corresponding word.

5. Tn =01 - Produce two bytes of absolute code, which is found in the corresponding word.

6. Tn =10 - relocate the address to be found in the second word (and optionally, the third word) based on the
relocation code in the first word. Then produce an absolute code based on the processor dependent format
number in the first word and skeleton, if present.

7. Tn=11-look uptheexternal symbol whose number is in the first word (which has been previously definedin a

type 4 record). Add the displacement and then produce an absolute code based on format number and
optional skeleton.

Figure 8-41. Relocatable File Data Definition Block

8-109

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

Identifies External _C
Symbols Record

in Relocatable File -~

First

Symbol Definition
Block, Length
Variable From

2 to 9 Words

Last emd

Symbol Definition
Block, Length
Variable From

2 to 9 Words

Contains the _E
Arithmetic Sum
of the Binary

Values of Words
@ through n-1.

NOTES:

15 8 7

Record ID word = 4

roOws<w

est | o100 | Ascii

Symbol <15 characters. ASCII 1
must contain character. For all
others, unused last (LS) byte must
contain ASCII blank (Code 20H).

ASCII 14 1 ASCII 15

External ID Number

rOmZ<w

est | o100 | Aascii

Symbol <15 characters. ASCII 1
must contain character. For all
others, unused last (LS) byte must
contain ASCII blank (Code 20H).

ASCII 14 1 ASCII 15

External ID Number

Checksum for this record

MODEL 64000

T © o

Y

n
(=127)

1. ESL =Number of 16-bit words required to define an external symbol. At least one character inthe ASCII 1 byte
is required. Thus, with a one character definition, ESL = 0. If all 15 characters are used (8 words) ESL =7.

2. Bits 8 through 12 always contain 00100.

3. The bytes labeled ASCII 1-15 are the maximum number of bytes available to define the symbol. Only the actual
number of 16-bit words required to define the symbol will exist. However, if the first byte (MSB) is used, then
the second byte (LSB) must contain an ASCII blank (Code 20H).

4. External ID Number is assigned by the assemnbler or compiler. ID number is <511.

Figure 8-42. Relocatable File External Symbols Definition Block

8-110

MODEL 64000

Identifies End
Record in Relocatable
File

Defines
Transfer Address

Identifies Relocation
Destination

Contains the Arithmetic
Sum of the Binary
Values of Words

@ through 4

Notes:

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

15 e
Record ID Word=5 0
Relocation 1
Transfer LSW Transfer Address 2
address area MSW Transfer Address 3
Checksum for this record 4

1. Relocation-contains the binary code for area relocated to as follows: @0=ABS, §1=PROG, 10=DATA,
11=COMN, 100=No transfer address.

2. Transfer Address Words-Contains the address where control will be transferred to when the program is run.
Only one module in a program may have a transfer address, and it is defined in the END label psuedo in the
assembler or the presence of the main program block in a PASCAL module.

Figure 8-43. Relocatable File End Definition Block

8-111

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

8-112

Appendix A
Syntactical Variable Definitions

The syntactical variables used throughout this manual are described in this appendix.

<ABSFILE>
The <ABSFILE> variable is the file identifier of a absolute file. It has the same format
requirements as the <FILE> variable which is described later in this appendix.

<ADDRESS> (or <ADDR>)

The <ADDRESS> variable defines a bit pattern of up to 16 bits which specifies a particular
location in mapped memory. That bit pattern can be represented by a binary, octal,
hexadecimal, or decimal number; a local or global symbol; or a mathematical combination of
any two numbers or symbols. <ADDRESS> has the same format requirements as the
<VALUE> variable which is described later in this appendix.

<CMDFILE>

The <CMDFILE> variable is the file identifier for an existing emulation configuration
command file. This type of command file contains the answers entered in response to an
emulation configuration question sequence and can be used to initialize the 64000 for an
emulation session. <CMDFILE> has the same format requirements as the <FILE> variable
which is described later in this appendix.

<EVENT>

The <EVENT> variable specifies a particular state or set of states on the emulation buses
and/or the contents of the internal registers of the emulation processor.

An event can consist of any single state specified alone or one of the states logically
“AND”ed with one or all of the other optional states shown in brackets, ([]). Within a series,
any one or more of the bracketed states can be omitted but when specified they must be in
the order shown. Note that the address can be specified as a range (SADDR> thru <ADDR>)
and that more than one register state can be specified. Register states are the only states
which can be specified in multiple in the same event.

A-1

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

The <EVENT=> variable consists of the following parameters:

< >
< >
[address [= } <ADDRESS> J[data { _ }<ADDRESS>]

range = <ADDR> thru <ADDR>

l[register (X) = <VALUE>]

ows | < 7 /<OPERATION>\K
[status *<VALUE>

[register (X) = <VALUE>]...etc.
where:

<ADDRESS> are entered as described earlier in this appendix.
and
<ADDR>

<OPERATION> refers to any of the operations performed by the microprocessor
being emulated. A typical operation might be a memory read or
write, an 1/O read or write, or the execution of any opcode. The
operations available for the emulated processor are listed as

softkeys.

<VALUE> specifies a state on the emulation bus or the contents of a register.
The format requirements for <VALUE> are described later in this
appendix.

address is a key word which is used to identify a state or set of states on the

emulation address bus.

data is a key word which is used to specify a state on the emulation data
bus. The range of valid data values depends upon the word size of
the emulation microprocessor.

status is a key word which is used to specify an operation on the
emulation buses.

register (X) is a key word which is used to specify the contents of one of the
registers of the emulated processor. The names of the internal
registers are represented by (X) and are displayed as softkeys.

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

A shorthand syntax may be used when specifying an <EVENT=>. The words “address”, “data”,
and “status” can be omitted as long as commas are used to separate the fields which
determine the <EVENT>. For example, “address = 810H data = OFFH status = write” could be
entered as follows: 810H,0FFH,write. Likewise, “address = 900H status = read” could be
entered as “900H,,read”. Notice that when a particular field has no entry, commas must still
be used to distinguish the fields. The first comma specifies the end of the address field and
the second comma specifies the end of the data entry.

There is no shorthand syntax which replaces “register (X) = <VALUE>"; therefore, the
longhand format must be used to specify the contents of a register.

<FILE>

The <FILE> variable is used to identify files generated or accessed by the development
system commands. <FILE> consists of the following parameters:

<FILE NAME>[:<USERID>][:<DISC#>]
where:

<FILE NAME> is the identifier given to a particular file. <FILE NAME> must begin
with an upper case alphabetic character and can have a total length
of nine characters. After the first character, any upper or lower
case alphanumeric character or an underscore can be used. If
more than nine characters are specified, the name is truncated to
the first nine characters.

<USERID> is the identifier assumed by a particular system user. <USERID>
must begin with an upper case alphabetic character and can have a
total length of six characters. The characters following the first
character can be any upper or lower case alphanumeric
characters, including the underscore. If more than six characters
are specified, the userid is truncated to the first six characters. If a
userid is not entered, the current userid is used as the default.

<DISC#> specifies the memory disc on which the file is stored. <DISC#> can
be any digit from 0 to 9, but it must correspond to the HP-IB Unit
Address assigned to one of the discs installed in the system. The
default is disc 0.

EMULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

A-4

<POSITION>

<POSITION=> is used as part of the trace command to determine whether the “states” placed
in the trace buffer occur “before”, “after”, or “about” the specified trigger. <POSITION> can

<QUALIFIER>

The <QUALIFIER> variable is a series of <TERM>s connected by logical OR’s which is used
to specify the conditions for terminating a run or for triggering or terminating a trace. A
<QUALIFIER> is entered according to the following syntax:

<TERM>[or <TERM>][or <TERM>]...etc.

where:
<TERM> represents an <EVENT> which must occur a specified number of
times. Refer to the definitions for <TERM> and <EVENT> which are
included in this appendix.
or is the logical OR condition.
<STATES>

The <STATES> variable specifies a particular state or set of states on the emulation buses.
<STATES> can consist of any single state specified alone or one of the states logically
“AND”ed with one or all of the other optional states shown in brackets, ([1). Within a series,
any one or more of the bracketed states can be omitted but when specified, they must be in
the order shown. Notc that the address can be specified as a range (<ADDR> thru <ADDR>).
<STATES> are entered according to the following syntax:

< >
{ _ <ADDRESS> < >
[address = N J[data _ <VALUE>]

<
range { _ l <ADDR> thru <ADDR>

status | < | [<OPERATION=
u = <VALUE>]

MODEL 64000

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

where:

<ADDRESS> are entered as described earlier in this appendix.
and
<ADDR>

<OPERATION> refers to any of the operations performed by the microprocessor
being emulated. A typical operation might be a memory read or
write, an 1/O read or write, or the execution of any opcode. The
operations available for the emulated processor are listed as

softkeys.

<VALUE> specifies a state on the emulation bus or the contents of a register.
The format requirements for <VALUE> are described later in this
appendix.

address is a key word which is used to identify a state or set of states on the

emulation address bus.

data is a key word which is used to specify a state on the emulation data
bus. The range of valid data values depends upon the word size of
the emulation microprocessor.

status is a key word which is used to specify an operation on the
emulation buses.

A shorthand syntax may be used when entering the information required by the <STATES>
variable. The words “address”, “data”, and “status” can be omitted as long as commas are
used to separate the fields which contain the entries for each state. For example, “address =
810H data = OFFH status = write” could be entered as follows: 810H,0FFH,write. Likewise,
“address = 900H status = read” could be entered as “900H,,read” using the shorthand syntax.
Notice that when a particular field has no entry, commas must still be used to distinguish the
fields. The first comma specifies the end of the address field and the second comma specifies
the end of the data entry.

<TERM>

The <TERM=> variable represents a particular state or set of states on the emulation buses
and/or the contents of the internal registers of the emulation processor. The state or states
must occur the specified number of times before the requirements of the run or trace
command in which the <TERM> appears are fulfilled.

A-5

EMULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

<TERM=> consists of the following parameters:

MODEL 64000

<EVENT>[occurs <#TIMES>]

where:
<EVENT> represents a particular state or set of states on the emulation buses
and/or the contents of the internal registers of the emulation
processor. For more information, refer to the description of
<EVENT> which is included in this appendix.
<#TIMES> represents a decimal integer in the range of 1 to 65535.
<VALUE>

<VALUE=> is a syntactical variable that allows specification of symbols (labels), numbers, and
math operators (+, -, /, *). A <VALUE> is specified using to the following syntax:

<NUMBER> + <NUMBER>

<LOCAL SYMBOL>[:<FILE>] - <LOCAL SYMBOL>[:<FILE>]

<GLOBAL SYMBOL>[:<FILE>] / <GLOBAL SYMBOL>[:<FILE>]
*

where:

<NUMBER>

is an alphanumeric representation of a 16 bit pattern of ones, zeros,
and don’t cares (X's). The bit pattern can be represented in binary,
octal, hexadecimal, or decimal where binary is indicated by a “B”,
octal by a “Q”, hex by an “H”, and decimal by a “D”. Decimal is the
default value.

Examples:

10101011 XXXXXXXB
145XXXQ

2563

START + 5

MODEL 64000 EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

<LOCAL SYMBOL> The <LOCAL SYMBOL> variable represents the name of a symbol
and which can only be used by the program module in which it is
<GLOBAL SYMBOL> defined. The <GLOBAL SYMBOL> variable represents the name of
a symbol which can be called by program modules other than the
one in which it is defined. The global symbol must be declared as

such by a GLB statement in the source file.

<LOCAL SYMBOL> and <GLOBAL SYMBOL> can consist of up to
15 upper or lower case alphanumeric characters including the
underline symbol. In each case, however, the first character must
be an upper case alphabetic character.

<FILE> specifies the file in which the local or global symbol is defined. If no
<FILE> is specified, the global symbol table associated with the
absolute program file loaded by the emulator is searched for the
<LOCAL SYMBOL> name. If the symbol name is not found in the
global symbol table, a search is made of the last referenced local
symbol table. If the symbol name is not found in the local symbol
table, an error message is displayed on the status line. For more
information, refer to the description of <FILE> which is included in
this appendix.

A-7

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

A-8

Appendix B

Emulation Command Descriptions

The commands available in the emulation mode are described in this appendix. For more
information on a particular command, refer to its description in the appropriate chapter.

B-1

MODEL 64000

CODPY N =MULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

SYNTAX
()

copy <ADDRESS>[thru<ADDRESS>] to <FILE>

_ Y,
Default Value

o S N

none

Examples:
copy 10A0H to TEMP1
copy 800H thru 20FFH to TEMP2
copy EXEC thru DONE to TEMP3

FUNCTION

The copy command is used to store the contents of specific memory locations in an absolute
file on a disc without altering the contents of memory. Either a single memory location
(<ADDRESS>) or a series of locations (<ADDRESS> thru <ADDRESS>) can be specified for

transfer.

B-2

MODEL 64000

EMULATOR/INTERNAL ANALYSIS IR C O U N t
8-BIT REFERENCE MANUAL

SYNTAX

e)

time
count | _oTaTES>

N J

Default Value

e W

If neither time nor a set of conditions for <STATES> is entered, the 64000 defaults to
| counting time. |

| |
-~ - -

Examples:

count time
count 810H,,30H register h = 14H
count address = 900H data = 74H

FUNCTION

The count command is used to measure the elapsed time between the states of a trace or to
determine the number of times a specified <STATE> occurs within a trace.

MODEL 64000

dlsplay I =\ ULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

SYNTAX

4 1)
¢ absolute

coun relative

global

local <FILE>

displ J memory[<ADDRESS=>][dynamic][mnemonic][offset_by<ADDRESS>]
isplay

registers [dynamic][offset_by <ADDRESS>]
run_spec

trace [absolute][unpacked][offset_ by <ADDRESS>]

trc_spec

e /

Default Values

(dynamic - If dynamic is omitted, the display is static and is not updated as the\
contents of the registers change except when registers are
modified using the modify command.

offset_by - If offset_by is omitted, the actual program counter values of
addresses are displayed.

form.

unpacked - If unpacked is omitted, the operators and operands are displayed
together on a single line. For example, STA 8200H would be
displayed as:

absolute - If absolute is omitted, the data is displayed in opcode mnemonic |

N~ STAeoM

MODEL 64000

EMULATOR/INTERNAL ANALYSIS IEEEEEEGG————— (liSplay

8-BIT REFERENCE MANUAL (Cont'd)

Examples:
display count relative
display local_symbols_in TEMP1
display memory 800H
display memory dynamic mnemonic
display registers dynamic offset_by 0A10H
display trace unpacked offset_by 900H

display trace_specification

FUNCTION

The display command initiates the display of the time or state counts, local or global
symbols, the contents of registers or memory, the current run or trace specification, or the
contents of the trace buffer.

edit_cnfg

SYNTAX

edit_cnfg

Default Value

Example:

edit_configuration

FUNCTION

The edit_configuration command allows the question_answer sequence of the current
emulation configuration to be reviewed and edited.

MODEL 64000

emu I ate I = \ULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

SYNTAX
()

<CMDFILE>[load <ABSFILE>][options { edit }
load <ABSFILE> continue

emulate

\— J

Default Value

T T - N\

emulation configuration question-answer sequence and a new

I <CMDFILE> - If no command file is specified, the system will run through the |
l command file may be created. |

[— _

Examples:
emulate
emulate CMDF1
emulate CMDF1 options edit
emulate load JR8085
FUNCTION
The emulate command intiates an emulation session using either an existing emulation

command file or the emulation configuration question-answer sequence. It can also initiate
the loading of an absolute file into either emulation or user memory.

MOD

EMULATOR/INTERNAL ANALYsIS [

EL 64000

8-BIT REFERENCE MANUAL

SYNTAX

end

-

\—

end

Default Value

none

Example:
end_emulation
FUNCTION

The end_emulation command teminates the current emulation session and returns the 64000
operating system to the monitior mode.

Execution of program code by the emulation processor and the execution of a trace
command are unaffected by the end command.

B-7

MODEL 64000

“st I VULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

SYNTAX

4)

list Prlnter
file

. J

Default Value

| none l

Examples:
list_display_to printer
list_display_to TEMP1
FUNCTION
The list command produces a copy of the information currently displayed on the CRT. The

copy can be either a listing file stored in the 64000 memory or a hardcopy produced by the
printer.

B-8

MODEL 64000

EMULATOR/INTERNAL ANALYSIS s |02 d
8-BIT REFERENCE MANUAL

SYNTAX
4 |)

load <FILE>

\— J

Default Value

o S N

none |

Example:
load_memory JR8085
FUNCTION
The load command transfers absolute code from the 64000 system memory into user RAM or

emulation memory. The destination of the the absolute code is determined by the memory
configuration map which was set up during emulation configuration.

B-9

MODEL 64000

MOdify e ———————— 1ULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

SYNTAX

4)

memory <ADDRESS> to <VALUE>[,<VALUE>]...
modify <ADDRESS> thru <ADDRESS> to <VALUE>
register (X) to <VALUE>[(X) to <VALUE>]...

\— J

Default Value

none '

Examples:
modify memory 800H to 10H
modify memory 910H to OCH,56H,36H
modify memory 0A10H thru OAFFH to 00
modify register a to 39H
modify register h to 0AH | to 50H a to 18H
FUNCTION

The modify command is used to modify either the contents of memory or the contents of the
processor registers.

MODEL 64000
EMULATOR/INTERNAL ANALYSIS NI 0 Start

8-BIT REFERENCE MANUAL

SYNTAX

(")

restart

= _J

Default Value

' none l

Example:

restart_processor

FUNCTION

The restart command causes the emulation processor to go through a processor dependent
power_up sequence.

MODEL 64000

I UL 1 = /UL ATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

SYNTAX

g B

trc_cmplt

run [from <ADDRESS>][until { <ADDRESS> 1
<TERM>[or <TERM>]...

\ _J

Default Values

40 N

from <ADDRESS> - If the from <ADDRESS> option is omitted, the emulator will begin
program execution at the current address specified by the
processor's next program counter.

l until - If the until option is omitted, the processor will continually execute
l program instructions.

~ -

Examples:

run

run from 810H

run from 810H until address = 84AH data = 60H
FUNCTION

The run command controls the execution of the emulation program.

MODEL 64000
EMULATOR/INTERNAL ANALYSIS I Step
8-BIT REFERENCE MANUAL

SYNTAX

s)

step [<# STEPS>][from <ADDRESS>]

_ y,

Default Values

<# STEPS> - If no value is entered for number of times, only one instruction is

executed each time the key is pressed. However, multiple

instructions can be executed by holding down the

ﬂ

key.

from <ADDRESS> - If the from <ADDRESS> option is omitted, stepping begins at the
next program counter address.

)
|
|
|
|
|
|

- _ _

Examples:
step
step from 810H
step 20 from 0A40H

FUNCTION

The step command allows program instructions to be sequentially analyzed by causing the
emulation processor to execute a specified number of instructions. The contents of the
processor registers may be displayed after each instruction is executed and the contents of
memory can be displayed upon completion of the step command.

MODEL 64000

Stop I C\/ULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

SYNTAX

(N

_ J

Default Value

none |

Examples:
stop run
stop trace

FUNCTION

The stop command terminates either the current program run or trace command.

MODEL 64000
EMULATOR/INTERNAL ANALYs!S [trace
8-BIT REFERENCE MANUAL

SYNTAX

4 | N

or
trace [[sequence <TERM>[{ then} <TERM=>]...

[restart_on <TERM> [or <TERM>]...]
[then <TERM>[[tﬁ;n} <TERM>]...[restart_on <TERM>

[or <TERM>]...]]...] (trigger) <POSITION><TERM>

[or <TERM>]...J[(trc_)only <EVENT>[or <EVENT>]...]

[continue]
N J

Default Value

o - h

| If the pretrigger and trigger specifications are omitted, the trigger <POSITION> defaults to I
after and the trigger <TERM> defaults to “don’t cares”.

N /

Examples:
trace
trace continuous
trace only 810H or 900H,10H
trace after address = 54H continuous

trace in_sequence ,21H occurs 5 then 800H or 801H
restart on data = 25H trigger about 10A0H

MODEL 64000

2 C© m—————SSRSSSNENNRE UL ATOR/INTERNAL ANALYSIS

(Cont'd) 8-BIT REFERENCE MANUAL

trace in_sequence 610H or 654H occurs 3 then 680H
trigger after 685H trace_only data = OFFH

FUNCTION

The trace command is used to analyze and display a particular portion of a program run.
Each state of the program run is examined and if that state helps fulfill the requirements of
the trace specificaton, it is stored in a trace buffer which can store up to 256 states. When the
trace specification is satisfied, the contents of the trace buffer is displayed on the CRT.

Appendix C
Example System Hardware/Software

The Example System

Most of the examples in this manual have been taken from a system of hardware and software
that can be obtained and exercised by the user of the Model 64000 development system. The
hardware is the HP Model 5036A Microprocessor Laboratory in which an optional zero
insertion force socket has replaced the normal microprocessor socket. This socket allows
ready access to the system by the processor probe of the Model 64000 emulation and
analysis system. The software is a collection of three software modules which are entitled
“EXEC”, “DISP”, and “KYBRD”. “DISP” and “KYBRD” service the seven segment display and
the keyboard of the 5036A, respectively. The “EXEC” routine controls the interface between
the service routines.

Example System Design

The example system is designed to be easily understood and to provide a continuity in the
examples of this manual. The examples will help you learn quickly the capabilities of the
Model 64000 emulation and analysis system. The system is also useful in learning other
aspects of the 64000. For example, the three program modules may be entered in the editor,
assembled and linked, and emulated in the emulation and analysis system. The programs
may then be relocated and programmed into 12716 EPROMs. Then the EPROMs may be used
to replace the operating system EPROM in the microprocessor lab and the program can be
executed without the use of the emulation equipment.

C-1

EMULATOR/INTERNAL ANALYSIS

8-BIT REFERENCE MANUAL

C-2

Where to get Information

Information concerning the HP Model 5036A Microprocessor Lab may be found in any 1979
or later Hewlett-Packard catalog. Contact your local Hewlett-Packard representative for
further information.

The software is simple in concept and function. The EXEC routine presets a bufferin RAM to
six digit positions of an underline character. It then “calls” the keyboard service routine
(called “KYBRD”) to scan the hex keypad of the Model 5036A for any input characters. When
a valid character is found, it is put into the buffer and all the previous entries are shifted to
higher positions. The EXEC routine next calls the “DISP” routine to display a single scan of
the buffer contents. When the display scan is completed, the scan keyboard, scan display
cycle continues until the processor is halted.

Commented listings of these program modules are included in this appendix and may be
manually entered into the Model 64000 using the editor. When entered and executed in a
Model 5036A with an 18085 emulation and analysis system, you will be able to duplicate the
examples of this manual with your own system.

MODEL 64000

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

MODEL 64000

‘8080 °

khkhkhkkkhkkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkdrhkkhhkhkhkhkhkhkhkhkhhkhhhkhhhhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkkkhk
*

THIS PROGRAM IS THE "EXECUTIVE" DRIVE FOR THE HP64000
DEMONSTRATION TARGET SYSTEM SOFTWARE. THIS ALGORITHM

READS NUMERIC HEX INPUT FROM THE KEYBOARD AND DISPLAYS

THE DATA IN THE SEVEN SEGMENT DISPLAY. ALL CONTROL KEYS
EXCEPT RESET ARE IGNORED. AS NEW DATA IS ENTERED, THE DIS-
PLAY SHIFTS LEFT AND THE NEW ENTRY IS DISPLAYED IN THE LEAST
SIGNIFICANT DIGIT POSITION.

TWO EXTERNAL PROGRAMS ARE REQUIRED FOR OPERATION.
(1) KYBRD......A ROUTINE THAT SERVICES THE KEYBOARD
(2) DISP.......A ROUTINE THAT SERVICES THE SEVEN
SEGMENT DISPLAY.

THIS PROGRAM PERFORMS THE FOLLOWING FUNCTIONS:

(1) INITIALIZE THE STACK POINTER

(2) CALL THE KEYBOARD SERVICE ROUTINE

(3) CHECKS FOR NON CHARACTER BETWEEN VALID INPUT
CHARACTERS

(4) SHIFT DISPLAY BUFFER (0800H TO 805H)

(5) CALL THE DISPLAY SERVICE ROUTINE TO DISPLAY
CONTENTS OF THE DISPLAY BUFFER

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* (6) REPEATS STEPS 1 THROUGH 5 ABOVE
*

*

*

*

khkhkkkhkhkkkkhkhkhkhkkhkhkhkhkhkhhhkhkhkhhkhkkhhkhkhhkhhhkkhhkhkhkhhkhkhhkhhkhhkhkhrhkkhkhkkkhkkkk

ORG 0810H

EXT KYBRD,DISP
EXEC LXI SP,0CO0H LOAD THE STACK POINTER TO COOH

LXI H,805H INITIALIZE THE H,L REGISTERS

MVI A,OQOF7H INITIALIZE UNDERLINE DISPLAY FOR BUFFERS
LP1 MOV M,A GET DATA

DCR L DECREMENT BUFFER POINTER

Jp LP1 POINTER AT END OF BUFFER? NO, RETURN TO LP1
LP2 CALL KYBRD YES, CALL KEYBOARD ROUTINE

JNC XX DATA INPUT? YES, GO TO XX

XRA A NO, CLEAR THE ACCUM

CMA COMPLEMENT THE ACCUM

STA 0806H STORE FFH IN LAST FOUND DATA LOCATION

JMP LIGHT GO TO LIGHT TO CALL DISPLAY ROUTINE
XX LXI H,0806H LOAD H,L WITH LAST FOUND DATA ADDRESS

CMP M COMPARE THIS INPUT WITH LAST

JZ LIGHT SAME? YES, IGNORE INPUT, GO TO LIGHT

MOV M, A NO, STORE CURRENT DATA IN LAST FOUND DATA

PUSH PSW STORE CURRENT INPUT DATA

LXI H,0805H
LXI D,0804H

INITIALIZE REGISTERS FOR BUFFER SHIFT

GOl LDAX D SHIFT BUFFER TO THE LEFT, GET DATA FROM MEM
MOV M, A STORE IN THE NEXT HIGHER ADDRESS LOCATION
DCR E DECREMENT THE BUFFER POINTERS
DCR L
JNZ GOl DONE? NO, RETURN TO GOl
POP PSW YES, RESTORE INPUT DATA TO ACCUM AND
MOV M,A STORE IN LOWEST BUFFER LOCATION
LIGHT CALL DISP CALL THE DISPLAY SERVICE ROUTINE
JMP LP2 GO TO THE BEGINNING, LP2
END

C-3

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

khkaxkkhkkkhkhkhkkhkhkhkhkhhkhhkhkhkhkhhhkhkhkhkhhkhhkhhkhkhkhhhkhhdhhhkhkhkhhkhhhkhhkhkhkhhhkhhkk

THIS IS A SUBROUTINE THAT IS CALLED BY THE EXEC DRIVE OF THE
HP64000 TARGET SYSTEM SOFTWARE. "KYBRD" SERVICES THE KEYBOARD
AND RETURNS TO THE EXECUTIVE ROUTINE WITH THE INPUT DATA (IN HEX)
IN THE ACCUMULATOR. 1IN THE EVENT THAT NO KEY HAS BEEN PRESSED
DURING KEYBOARD SCAN, THE ROUTINE RETURNS TO "EXEC" WITH THE
CARRY BIT SET.

*
*
*
*
*
*
*
*
*
* THIS ROUTINE PERFORMS THE FOLLOWING FUNCTIONS

* (1) LOAD THE SCAN REGISTER

* (2) READ THE KEYBOARD INPUT REGISTER

* (3) TEST FOR AN ACTIVE KEY

* (4) 1IF A KEY IS ACTIVATED, DEBOUNCE THE KEY BY REOUIRING

* THE SAME KEY TO BE READ 128 TIMES IN SUCCESSION WITHOUT
* MISSING ONE TIME

* (5) IF DEBOUNCE IS SUCCESSFUL, CONVERT THE INPUT DATA TO A

* HEX CHARACTER

* (6) RETURN TO THE EXECUTIVE WITH HEX DATA IN THE ACCUMULATOR
* AND THE CARRY BIT RESET

* IF THE DEBOUNCE IS NOT SUCCESSFUL, CONTINUE THE SCAN

* (7) IF NO KEY STROKE IS FOUND, RETURN TO "EXEC" WITH THE

* CARRY BIT SET

*

*

*

*

kkhkkhkhkhkkhhkhkhkkhkhhkkhhkkhhkhhkhkhkhkhkhkhkhkkhkhhkhkkhkhkhkkhkhkkhkhkkhkhkkhkhkhkhkhkhkkhkkkkkkkkk

ORG 900H
GLB KYBRD
KYBRD PUSH H SAVE REGISTERS
PUSH D
PUSH B
LXI B,00FEH INITIALIZE B,C TO SCAN BYTES
READ MOV A,C LOAD SCAN REGISTER
STA 2800H
LDA 1800H READ KEYBOARD REGISTER
CPI OFFH IS A KEY ACTIVE? YES, CALL DEBOUNCE ROUTINF
CNZ DBNC
JC FOUND DEBOUNCE SUCCESSFUL? YES, GO FOUND
CONT INR B NO, OR NO INPUT, INCREMENT SCAN COUNTER
MOV A,C ROTATE SCAN BYTE
RLC
MOV C,A RESTORE SCAN BYTE
JC READ SCAN DONE? NO, RETURN TO READ
STC SET CARRY BIT
JMP QUIT JUMP TO OUIT
FOUND CPI OF7H CHARACTER FOUND = F7H? YES, CONTINUE SCAN
JZ CONT AT CONT
CMA NO, COMPLEMENT THE ACCUMULATOR
CPI 4H ACCUM=4H? NO, SKIP NEXT INSTRUCTION
JNZ FNDA
DCR A DECREMENT THE ACCUMULATOR 4=>3
FNDA MOV D,A STORE DATA IN D
MOV A,B GET SCAN COUNT
ADD B COMPUTE 3 TIMES SCAN COUNT
ADD B
ADD D ADD INPUT DATA

C-4

MODEL 64000

ZERO

HEX

QUIT

DBNC

DBLP

DDN

BAD

CPI OAH
JP HEX
CPI 7H
JZ ZERO
JMP CONT
XRA A
ANA A
JMP QUIT
SUI 9H
ANA A
JMP QUIT
POP B
POP D
POP H
RET

PUSH D
MOV D,A
MVI E, 80H
LDA 1800H
CMP D

JNZ BAD
DCR E
JNZ DBLP
STC

POP D
RET

ANA A
JMP DDN
END

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

IS RESULT GREATER THAN AH? YES, GO TO HEX
NO, CONTINUE

IS RESULT = OH? YES, GO TO ZERO

NO CONTINUE

DATA IS NOT VALID, CONTINUE SCAN AT CONT
DATA IS ZERO, CLEAR ACCUMULATOR

CLEAR CARRY FLAG

GO TO QUIT

DATA IS HEX, SUBTRACT 9H TO CONVERT
CLEAR CARRY FLAG

GO TO QUIT

PREPARE TO RETURN TO CALLING ROUTINE
RESTORE REGISTERS

RETURN

DEBOUNCE ROUTINE, SAVE THE D REGISTER PAIR
STORE KEY FOUND IN D

INITIALIZE E TO 80H

READ INPUT REGISTER

IS IT THE SAME AS D (PREVIOUS DATA)
NO, GO TO BAD

YES, DECREMENT ITERATION COUNTER
COUNTER=0H? NO, RETURN TO DBLP
YES, SET CARRY FLAG

RESTORE D,E REGISTER

RETURN TO DISP ROUTINE

DATA IS NOT THE SAME, KEY BOUNCED,
CLEAR CARRY FLAG, RETURN TO DDN

C-5

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

“8080°

khkhkhkhkhkkhhkhkhkhkhkdhhhhhhhhkhkhdhhkhhhhkkhkhkhkhkhkhkhhkhhkhkhhhkhhkhkhkhkhhhkhhkhhkhkhkhhk kk
*

THIS PROGRAM SERVICES THE SEVEN SEGMENT DISPLAY FOR A SINGLE SCAN.
IT IS CALLED BY THE 64000S TARGET SYSTEM SOFTWARE "EXECUTIVE"
ROUTINE. SINCE THIS ROUTINE SCANS ONE TIME. IT MUST BE CALLED
CONTINGALLY WHEN DATA IS TO BE DISPLAYED. DATA CONTAINED IN

THE DISPLAY BUFFER (800H TO 805H) IN HEX, IS CONVERTED TO SEVEN
SEGMENT DATA AND LOADED INTO THE DISPLAY REGISTER. IF THE DATA
IN THE DISPLAY BUFFER IS GREATER THAN AH, NO CONVERSION IS MADE,
AND THE DATA IS DISPLAYED AS FOUND IN THE BUFFER.

(1) READ THE DISPLAY BUFFER

(2) CONVERT THE DATA TO SEVEN SEGMENT
(3) LOAD THE SCAN REGISTER

(4) LOAD THE DISPLAY REGISTER

(5) WAIT DURING EACH SEGMENT

(6) DO THE ABOVE FOR SIX DIGITS

*

*

*

*

*

*

*

*

*

*

*

* THIS PROGRAM PERFORMS THE FOLLOWING FUNCTIONS:

*

*

*

*

*

*

* (7) CONVERSION FROM HEX TO SEVEN SEGMENT IS DONE BY TABLE LOOK UP
*
*
*
*

Khkhkhk kR hhh Ak kA KA AR AR KRR A AR AR AR Ak Ak k kA A A A Ak hkhkhk kA hk kA kkkkk %

ORG OAO0O0H
GLB DISP
DISP PUSH H SAVE REGISTERS
PUSH B
PUSH D
LXI H,800H INITIALIZE BUFFER POINTER
MVI C,1H INITIALIZE SCAN BUFFER
LP1 MOV A,M GET DATA
CALL CNVT CONVERT DATA TO SEVEN SEGMENT
STA 3800H LOAD DISPLAY BUFFER
MOV A,C
STA 2800H LOAD SCAN REGISTER
MVI A,0FFH WAIT DECREMENT FROM 256
al DCR A
JNZ Al
INX H INCREMENT BUFFER POINTER
MOV A,C
RLC ROTATE SCAN BYTE LEFT
MOV C,A
JNC LP1 SCAN COMPLETE? NO, GO TO LP1
XRA A YES, CLEAR ACCUMULATOR
CMA COMPLEMENT ACCUMULATOR
STA 3800H LOAD FF INTO DISPLAY REGISTER TO TURN OFF DISPLAY
POP D RESTORE REGISTERS
POP B
POP H
RET RETURN TO CALLING SUBROUTINE
CNVT PUSH H CONVERSION ROUTINE, SAVE H,L
LXI H,CONV LOAD H,L WITH ADDRESS OF CONVERSION TABLE
CPI 10H IS ACCUMULATOR GREATER THAN AH?
JNC X YES, GO TO X
ADD L NO, ADD REGISTER L TO ACCUMULATOR

C-6

MODEL 64000

CONV

MOV L,A
1Mov A,M
POP H
RET

DB 0COH
DB OF9H
DB 0A4H
DB 0BOH
DB 099H
DB 092H
DB 082H
DB OF8H
DB 080H
DB 098H
DB 088H
DB 083H
DB 0C6H
DB OAlH
DB 086H
DB 08EH
END

RETURN THE SUM TO L
GET CONVERSION BYTE
RESTORE H, L

RETURN TO DISP PROGRAM
CONVERSION TABLE FOR 0

MEOOQOWD»WOW®OIOU D WN

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

C-7

EMULATOR/INTERNAL ANALYSIS
8-BIT REFERENCE MANUAL

C-8

MODEL 64000

Appendix D
Emulator Electrical Properties

The emulation equipment, when connected to a target system, will respond similarly to the
microprocessor it emulates. The timing of the processor signals at the probe closely
approximates the timing of the microprocessor normally inserted in the same plug. Voltage
and current requirements for the drive and receive circuitry of the emulator are generally
equivalent to LS TTL specifications. The capacitive loading of the emulation probe is
equivalent to the LS TTL gate capacitance plus the capacitance of the probe cable, which is
approximately 20 pF.

The clocks supplied to microprocessor chips generally come in one of three forms. Clocks
are supplied at MOS levels as high as 15 volts, at TTL levels, or are generated by an on-board
oscillator in conjunction with an external crystal. The emulator processors of the 64000 allow
all of these methods for driving the emulator clock. Any external clock or crystal frequency
within the range specified for a specific emulator may be used. The frequency of the external
clock is fixed and varies with the oscillator type.

The loading values and specifications for the clock options are as follows:
CLOCK, High-level
Levels: as specified by processor

C =Cgpec t Ccable

CLOCK, TTL
Levels: TTL as specified by processor

c=cC +C

TTLS gate cable

CLOCK, Crystal Inputs

The emulator processor accepts frequency determining elements
as specified by the processor manufacturer unless otherwise
noted.

D-1

EMULATOR/INTERNAL ANALYSIS MODEL 64000
8-BIT REFERENCE MANUAL

Generally, an additional delay of one TTLS gate is associated with each input and output of
the emulator, with respect to the corresponding delay specification of the actual processor. It
should be noted that because of reduced capacitive loading on the internal emulator
processor, and because the fastest available processors, are used, the emulator may actually
be faster than the standard and midrange versions of the actual processor.

When emulating processors that have an internal dynamic RAM refresh or DMA capability,
the emulator pod will continue to execute these functions when emulation is not in process.

Some critical emulator signals may exhibit characteristics different than explained above.
The operating manual supplement for your emulator should be referenced for details on

these signals.

NOTE

The emulation pod presents greater drive capability and
slightly greater capacitive loading to the target system than
the processor being replaced. Consequently, it is conceivable
that a user’s system, which operates under emulation, may
not operate properly when driven by a microprocessor IC (or
vice-versa). Noise margins and signal levels in marginally
overloaded designs may not cause problems when driven by
emulation but may be fatal to system operation under normal
microprocessor drive conditions. Be sure that your design
does not exceed the loading specification for the actual
processor, and that it can provide sufficient drive for the
emulator inputs.

64980-90996 :Eg;f;g PRINTED IN U.S.A.

	Front
	cover
	inside

	Contents
	i
	ii
	iii
	iv
	v
	vi
	title
	viii
	ix
	x
	xi
	xii
	xiii
	xiv
	xv
	xvi

	Chapter 1
	1-1
	1-2
	1-3
	1-4

	Chapter 2
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12

	Chapter 3
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10

	Chapter 4
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22

	Chapter 5
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12

	Chapter 6
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18

	Chapter 7
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18

	Chapter 8
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	8-38
	8-39
	8-40
	8-41
	8-42
	8-43
	8-44
	8-45
	8-46
	8-47
	8-48
	8-49
	8-50
	8-51
	8-52
	8-53
	8-54
	8-55
	8-56
	8-57
	8-58
	8-59
	8-60
	8-61
	8-62
	8-63
	8-64
	8-65
	8-66
	8-67
	8-68
	8-69
	8-70
	8-71
	8-72
	8-73
	8-74
	8-75
	8-76
	8-77
	8-78
	8-79
	8-80
	8-81
	8-82
	8-83
	8-84
	8-85
	8-86
	8-87
	8-88
	8-89
	8-90
	8-91
	8-92
	8-93
	8-94
	8-95
	8-96
	8-97
	8-98
	8-99
	8-100
	8-101
	8-102
	8-103
	8-104
	8-105
	8-106
	8-107
	8-108
	8-109
	8-110
	8-111
	8-112

	Appendix A
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8

	Appendix B
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	B-9
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16

	Appendix C
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	C-7
	C-8

	Appendix D
	D-1
	D-2

	Back
	cover

