HEWLETT
(ﬁﬁ] PACKARD

HEWLETT-PACKARD COMPANY
LOGIC SYSTEMS DIVISION

HP 64000
Logic Development
System

SYSTEM RELEASE BULLETIN

Part Number: 5958-6019
E0587

Printed: MAY 1987

LR B B IR B BE IE K IR IR K BE I B O o A A A) L L B N B AR B B IR B BE NE NENE BENE N NN RE N U SN N SN Y Sty

khkhkhhhkhbhhhhkrdhdbrrrdhhdrhhhdhdbbbhbhbhbbb bt bbbt dhtbdbbhbhhbbhhtbddddd

HP STARS I

SOFTWARE RELEASE BULLETIN

Issue 87.3

MAY, 1987

This document supersedes all previously dated SSBs.

HEWLETT
PACKARD

‘-Q&*********’*********#****#***********#*#**##‘**#‘#*‘Q

I R R L R R L R R I Yy Y R Y Y S S LR L]

L B B B B R B NE NE R R IR BE B NN RO Y

LA AL AR AR R R A AR RS AR AR XA X RS2 RS2 R R R XXX 2R X i 2 xR R Rt R R
NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not
be liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that
is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are _
reserved. No part of this document may be photocopied, reproduced or translated to another language
without the prior written consent of Hewlett-Packard Company.

* % % % % % N ¥ A NN NN N R K N

LA A AR SRS SRR X S X A X R R X X X R R R R R R R X R R R R R R SRR R SRR EREEE E X Y

Copyright (c) 1983 by HEWLETT-PACKARD Company

READER COMMENT SHEET
STARS II SRB (STARS B)

Issue \ DATE / /

We welcome your evaluation of this bulletin. Your comments and suggestions help us to improve our publications.
Please use additional pages if necessary.

Is this bulletin technically accurate? Yes[INo [] (If no, explain under Comments, below.)
Are the concepts and wording easy to Yes[I1No [] (If no, explain under Comments, below.)
understand?

Is the format of this bulletin convenient in size, Yes[] No [] (If no, explain or suggest improvements under
arrangement and readability? Comments, below.)

Comments:

hhhkhhhhhhhhhbdhhhbhhhrbhhhhhtbhidhhhrrhrdhbbhhhddrhdbhrbrbhbrhhhhbrhbrdbbdd
Date:

FROM:

Name

Company

Address

STARS B
Printed in US.A.

FOLD

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 1303 COLORADO SPRINGS, CO.
EENEENEEENEERENERENERREREREENEENERERERERNREENERNRERER
POSTAGE WILL BE PAID BY ADDRESSEE

STARS Administration

Hewlett-Packard Company

Logic Systems Division

P.0. BOX 617

Colorado Springs, Colorado 80901-0617

FOLD

FOLD

ce cecseecc e et e e e enscce et cr te Te S Em e Fe R c mR AR e ce e e e e = -

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

FOLD

PREFACE

This Software Release Bulletin documents all fixes and enhancements that
are incorporated in the new release identified on the cover page. The
SRB is provided as a benefit of Hewlett-Packard’s Account Management
Support, Response Center Support, and Software Materials Subscription.

Of the five sections contained in the SRB (not including the PREFACE),
only the last section which contains the detailed reports has page num-
bers. These are referenced by the product, report number and keyword
indexes in order to direct the user to a particular area or to an in-
dividual detailed report. The five sections are described below.

SOFTWARE RELEASE CONTENTS

This section lists the product names, numbers and update/fix levels of
all products contained in this release. Products that have changed, or
are new are denoted with an asterisk preceding the product name.

PRODUCT INDEX

Each unique product name/number has an entry listing the page number
where the detailed report for that product begins.

REPORT NUMBER INDEX

This index is a sequential list of the individual report numbers with
the corresponding page number where the report can be found.

KEYWORD INDEX

This index is sorted by product name, keyword, product number (including
the update/fix level) and by report number in that order. In addition
to the sort items, each entry has a brief description (one line) and the
page number where the detailed report can be found. Note that a given
report can be listed more than once in this section if it has more than

one keyword assigned to it.

DETAILED REPORTS

Each report contains all the available information relevant to the
problem being corrected or the enhancement being implemented.

Software release contents

Product name Product number uu.ff

*64000-UX OP-ENV 300 64801so0k 01.50
#6800 C 64821 01.07
*6800 C 300 648215004 01.20
*6800 C 500 648215001 01.60
#6800 C VAX 648215003 01.90
#6800 PASCAL 64811 01.20
#6800 PASCAL 300 64811S004 01.20
#6800 PASCAL 500 648115001 01.50
#6800 PASCAL VAX 648115003 01.70
*68000 ASSEMB 64845 01.12
*68000 ASSEMB 300 648LS5S00L 01.20
*68000 ASSEMB 500 648455001 01.60
*6£8000 ASSEMB VAX 648455003 01.80
*68000 C 64819 01.10
*68000 C 300 648195004 01.20
*68000 C 500 648195001 01.60
*€8000 C VAX 648195003 01.90
*68000 DQ SW ANALYZER 64341G 01.03
*68000 PASCAL 64815 01.12
*68000 PASCAL 300 648155004 01.20
*68000 PASCAL 500 648155001 01.50
#68000 PASCAL VAX 648155003 01.70
*68000 SW ANAL 64331 01.02
*68000 SW ANALYZER 64341B 02.02
*68008 SW ANAL 64337 01.02
*6801/3 EMULATION 300 642565004 01.00
*#68010 DQ SW ANALYZER 643u41I 01.02
#68010 SW ANAL 64334 01.02
*€8010 SW ANALYZER 64341D 02.02
*68020 ASSEMB 300 64870s004 01.00
*£8020 EMUL 300 64416S004 01.00
*6809 C 64822 01.08
*6809 C 300 648225004 01.20
*6809 C 500 648225001 01.k0
*6809 C VAX 648225003 01.60
#6809 PASCAL 64813 01.11
*6809 PASCAL 300 64813s00k4 01.20
*£809 PASCAL 500 648135001 01.30
#6809 PASCAL VAX 648135003 01.40
*#70208 EMUL 64297 01.00
*70216 EMUL 64296 01.00
*#80186 SW ANAL 64335 02.03
*80186 SW ANALYZER 64341E 02.02
*#80188 SW ANAL 64336 02.0Y4
*80188 SW ANALYZER 643U1F 01.02
*#80286 INTERFACE 300 64657S004 01.00
*80286B ASSEMB 64859 01.02
*80286B ASSEMB 300 648595004 01.10
#80286B ASSEMB 500 648595001 01.10
*80286B ASSEMB VAX 648595003 01.10
*8085 B PASCAL 64825 01.04
*8085 B PASCAL 300 648255004 01.20
#8085 B PASCAL 500 648255001 01.50
#8085 B PASCAL VAX 648255003 01.70
*8085 ¢ 64826 01.0L4

Software release contents

Product name

*8085 C
*8085 ¢
*8085 C
*8086 SW ANAL

*8086 SW ANALYZER

*8086/8 ASSEMB
*8086/8 ASSEMB
*#8086/8 ASSEMB
*#8086/8 ASSEMB
*8086/8 C
*8086/8 ¢
*8086/8 C
*8086/8 C
*8086/8 PASCAL
*8086/8 PASCAL
*8086/8 PASCAL
*8086/8 PASCAL

Product number

300 648265004

500 648265001

VAX 648265003
64332
64341A
64853

300 648535004

500 648535001

VAX 648535003
64818

300 64818s004

500 648185001

VAX 648185003
6L81Y4

300 6481L4so0k

500 648145001

VAX 64814S003

%8088 DQ SW ANALYZER 6L4341C

8088 SW ANAL
*8088 DQ EMUL

*HOST SOFTWARE /[
*NETWORK TRANSFER
*NETWORK TRANSFER
*NETWORK TRANSFER
*NETWORK TRANSFER
*NSC800 EMULATION
*OPERATING SYSTEM
*RS-232 TRANSFER
*TIMING ANALYZER
*USER DEF ASSEMB
*USER DEF ASSEMB
*USER DEF ASSEMB
*USER DEF INV ASM

*UTILITIES PKG
*UTILITIES PKG
#7280 EMULATION
*280/NSc800 C
*280/Nsc800 C
*280/Nsc800 C
#780/Nsc800 €

#280/NSC800PASCAL
*Z80/NSC800PASCAL
#280/NSC800PASCAL
#280/NSC800PASCAL

*28000 C
*28000 C
*z8000 C
*28000 C
*Z8000 PASCAL
#Z8000 PASCAL
#8000 PASCAL
#28000 PASCAL
%z8001 EMUL
#28002 EMUL

64333
300 642215004
vax 64882
300 64887sookL
500 64887S001
500 648885001
VAX 648875003
64292
64100
VAX 64886
300 6L4610S004
300 648515004
500 648515001
VAX 648515003
300 648565004
300 648885003
300 64888500k
300 642525004
64824
300 64824s00k
500 6482L4S001
VAX 648245003
64823
300 64823s00k4
500 648235001
VAX 648235003
64820
300 64820S00k4
500 648205001
VAX 648205003
64816
300 64816S004
500 648165001
vAX 648165003
300 642325004
300 64233S004

uu.

01.
ol1.
01.
o1.
ol.
02.
02.
02.
02.
03.
03.
03.
03.
03.
03.
03.
03.
o1.
01.
01.
02.
01.
01.
01.
o1.
01.
oz2.
01.
01.
01.
o1.
.60

01

01.
01.
01.
01.
01.
01.
01.
.90
01.
01.
01.
o1.
01.
01.
01.
01.

01

01

01.
01.
o1.
01.
01.

ff

20
60
90
03
02
02
20
30
Lo
02
20
30
50
02
20
20
30
02
03
00
00
00
00
00
10
03
o7
20
00
20

00
10
00
00
ok
20
60

ok
20
50
70
06
20
60
90

.12

20
50
70
00
00

Product index
Product name

6800 C

6800 C

6800 C

6800 C

6800 PASCAL
68000 ASSEMB
68000 ASSEMB
68000 ASSEMB
68000 ASSEMB
68000 C

68000 C

68000 C

68000 C

6809 C

6809 C

6809 ¢

6809 C

6809 PASCAL
6809 PASCAL
6809 PASCAL
6809 PASCAL
80286B ASSEMB
80286B ASSEMB
80286B ASSEMB
80286B ASSEMB
8085 B PASCAL
8085 B PASCAL
8085 B PASCAL
8085 B PASCAL
8085 ¢

8085 ¢

8085 ¢

8085 ¢

8086/8 ASSEMB
8086/8 ASSEMB
8086/8 ASSEMB
8086/8 ASSEMB
8086/8 ¢
8086/8 ¢
8086/8 ¢
8086/8 ¢
8086/8 PASCAL
8086/8 PASCAL
8086/8 PASCAL
8086/8 PASCAL
HOST SOFTWARE

/

NSC800 EMULATION
OPERATING SYSTEM

USER DEF ASSEMB
USER DEF ASSEMB
USER DEF ASSEMB

Z80/NSC800 C
280/NSC800 C
280/NSC800 C
Z80/NSC800 C

300
500
VAX

300
500
VAX

300
500
VAX

300
500
VAX

300
500
VAX

300
500
VAX

300
500
VAX

300
500
VAX

300
500
VAX

300
500
VAX

300
500
VAX
VAX

300
500
VAX

300
500
VAX

Product number

64821

648215004
648215001
648215003
64811

64845

648455004
648455001
648455003
64819

648195004
648195001
648195003
64822

648225004
648225001
648225003
64813

64813S004
648135001
648135003
64859

648595004
648595001
648595003
64825

648255004
648255001
648255003
64826

648265004
648265001
648265003
64853

648535004
648535001
648535003
64818

64818so0k4
64818s001
648185003
6L481Y

64814s004
648145001
648145003
64882

64292

64100

648515004
648515001
648515003
6482y

648245004
648245001
648245003

168
170
172
1Th
183
187
192

Product index
Product name

Z80/NSC800PASCAL
Z80/NSC800PASCAL 300
280/NSC800PASCAL 500
280/NSC800PASCAL VAX
28000 C

Z8000 C 300
28000 C 500
28000 C VAX

Product number

64823

64823S004
648235001
648235003
64820

64820s004
64820001
64820003

Page

197
205
208
213
218
222
225
228

Report number index

Report #

1650007237
1650017491
1650018804
1650019109
1650019406
1650024349
2700002980
2700003921
2700003939
2700004093
2700005603
5000098343
5000099176
5000105841
5000108969
5000114645
5000124065
5000128959
5000129817
5000135913
5000136093
5000136226
5000136796
5000136986
5000139204
5000141127
5000142331
5000142448
5000143370
5000146381
5000146407
5000149211
5000149773
5000152090
5000152108
5000154245
5000154542
5000157180
5000160770
5000161836
5000161935
5000163626
5000168872
5000175976
5000179028
D200005116
D200007831
D200010108

page

65
Lo
228
45
50
22
14
174
17h
174
17k
61
197
197
130
146
61
146
146
130
123
123
22
203
175
45
25
25
172
15
197

Report #

D200010116
D200010124%
D200010132
D200010140
D200010157
D200011148
D200011221
D200011262
D200011346
D200011379
D200011387
D200011395
D200011403
D200013300
D20001L498
D200015966
D200015974
D200015982
D200016295
D200016303
D200016311
D200020081
D200020099
D200021790
D200022301
D200022624
D200025726
D20002573L
D200025742
D200025759
D200025767
D200025908
D200025916
D200029T7kLk
D200029777
D200029785
D200029793
D200029801
D200029819
D200030775
D200030783
D200030791
D200032029
D20003332h4
D200033530
D200033548
D200033555
D200033563

bage

132
26
218
1
50
175
176
101
101
1
51
132
218
176
219
177
192
187
17
93
88
7
199
162
178
178
187
192
102
112
118
156
159
199
208
213
77
88
93
150
156
159
27
27
40
45
28
125

Report #

D200033597
D200034918
D200036434
D2000364k42
D200036673
D200036681
D200036848
D200036855
D200036863
D200036905
D200037325
D200037333
D2000373k41
D200037358
D200037507
D200037622
D200037697
D200040105
D200040113
D200040121
D200040139
D20004014T
D200040295
D200040303
D200040311
D200040329
D200040337
D200040345
D200040352
D200040360
D200040378
D200040386
D20004039L4
D200040402
D2000k40410
D200040L428
D2000%40436
D20004ok4YLY
D200040451
D200040k69
D200041137
D200042085
D200042093
D200042242
D200042556
D200042564
D200043885
D200045088

page

29

133
142
147

L6
219
225
228

11

51
179
188
193
103
113
118

79
114
119
125
128
129
126
162

Report #

D200045559
D200046102
D2000L47845
D200047951
D200048017
D2000L480k41
D200048140
D200049973
D200050203
D200050245
D200051094
D200051219
D200051458
D200051573
D200051599
D200051607
D200051797
D200051854
D200051862
D200051912
D200051920
D200051938
D200051946
D200051953
D200051961
D200051979
D200052100
D200052423
D200053173
D200054775
D200055012
D200055335
D200055384
D200055400
D200055418
D200055426
D20005543)4
D200055442
D200055459
D200055467
D200055475
D200055483
D200055491
D200055509
D200055517
D200055921
D200056002
D200058677

page

143
162
163
162
162
164
163
136

83
153

164
150
170

T2

70
T2
h
70

Th
70
156
159
153
32
33
ol

Report number index

Report #

D200059U451

D200059477
D200059493
D200059501
D200059659
D200059675
D200059683
D200059691
D200059709
D200059717
D200059725
D200059733
D200059741
D200059758
D200059766
D2000597Th
D200059782
D200059790
D200059808
D200059816
D20005982Y4
D200059832
D2000598L40
D200059857
D200059865
D200059873
D200059881
D200059899
D200059907
D200059915
D200059923
D200059931
D20006024Y4
D200060285
D200060830
D200061531
D200061598
D200061614
D200061697
D200061705
D200061713
D200062190
D200062208
D200062646
D200062653
D200062828
D200062851
D200062976

page

20
20
36
20
95
133

170

172

104
23
200

Report #

D200062984
D200062992
D200063008
D200063016
D200063032
D200063065
D200063206
D200063214
D200063230
D200063248
D200063263
D200063271
D200063289
D200063297
D200063305
D200063313
D200063321
D200063388
D200063396
D200063404
D200063412
D200063420
D200063L38
D200063L446
D200063453
D200063461
D200063479
D200063487
D200063495
D200063503
D200063511
D200063529
D200063537
D200063545
D200063552
D200063560
D200063578
D200063586
D200063594
D200063602
D200063610
D200063628
D200063636
D2000636L4Y
D200063925
D200063990
D2000640T1
D200064089

page

200
201
201
202
181
3
17
202
170
168
189
194
184
105
115
120
109
134
1Lh
148
137
34
42
48
37
220
226
229
223
9
12
6
52
57
59

55
181

190
195
185
105
115
121
110

96
151
157
160

Report #

D200064097
D200064295
D200064303
D200064311
D200064329
D200064337
D200064345
D200064352
D20006439Y
D20006L4402
D200064410
D200064428
D200064436
D20006ukL4Y
D200064k451
D200064469
D20006LLTT
D200064485
D200064493
D200064501
D200064519
D200064527
D200064535
D20006L4543
D200064550
D20006L4568
D200064576
D20006458Y
D200064592
D20006L4618
D200064626
D20006L463L
D20006L48L40
D200064857
D200064865
D200064873
D200064881
D200064899
D200064907
D200064915
D200064923
D200064931
D200064949
D20006L4956
D200064964
D200064972
D200064980
D200065003

bage

154
209
21l
205
79
89
97
85

172

Report #

D200065011
D200065078
D20006514)4
D200065284
D200065292
D200065300
D200065318
D200065326
D200065334
D200065342
D200065359
D200065573
D200065581
D200065599
D200065680
D200065979
D200065987
D200065995
D200066001
D200066019
D200066027
D200066035
D200066043
D200066050
D200066068
D200066076
D20006608Y4
D200066092
D200066100
D200066118
D200066126
D200066134
D2000661k42
D200066159
D20006616T
D200066175
D200066183
D200066191
D200066209
D20006621T
D200066225
D200066233
D200066365
D200066373
D200066381
D200066399
D20006640T
D200066415

page

168
152
34
211
202
216
207
81
91
99
87
17
19
18
163
134
144
148
137
43
48
38
220
226
229

Report number index

Report #

D200066423
D200066431
D200066449
D200066456
D200066464L
D200066472
D200066480
D200066498
D200066506

page

227
224
10
13
7

Report #

D200066514
D200066522
D200066530
D200066548
D200066555
D200066563
D200066589
D200066597
D200066605

page

196
186
117
122
111
18
23
2
21

Report #

D200066T04
D200067017
D200067439
D20006T7L4T
D20006T745Y
D20006T4T0
D200067488
D200067512

page

18
100
im
100
168
165
166
163

Report #

D20006 7546
D200067561
D200067579
D200067595
D200067603
D200067611
D200068650
D200072199

bage

75
68
68
68
68
68
19
167

Keyword index

Keyword
KKKKKKKKN 0 n e KKKKKKKK

PASS 1

Keyword
XKKAKKKKAKN 0 n eXKKKKKKK

Keyword
XkkkAKKAKN 0 n e KkKkkKKKKK

Keyword
XXXKKXKKKAKN 0 e KAkKKKKK

Keyword

PASS 1
RUN-TIME LIBRARY

Keyword
XAKKKKKKHKN 0 n e KKKKKKKK

Product number

Product number

648215004
648215004
648215004
648215004
648215004

Product number

64821S001
648215001
648215001
648215001
64821S001

Product number

648215003
648215003
648215003
648215003
648215003

Product number

64811
64811

Product number

64845
64845
64845
64845
64845
64845

OO0 o
OO s €

oOO0O000 ¢« OO0
b O [

OO0OO0O0O
[y

uu.

00.
00.

[=X-X-X-X-X- 2
[S

Description

Nested switch statements may generate infinite loop

Compiler is not flagging an undefined structure.

C Function returning large (>2bytes) result can’'t be called as procedure
Illegal forward reference flagged for legal
Un51?ned integers treated as signed when su

Func

Description

Nested switch statements may generate infinite loop

Compiler is not flagging an undefined structure.

C Function returning large (>2bytes) result can't be called as procedure
Illegal forward reference flagged for legally defined string.

No error message for unimplemented processor name.

Description

Nested switch statements may generate infinite loop
Compiler is not flagging an undefined structure.

C Function returning large (>2bytes)
Illegal forward reference flagged for legally defined string.
No error message for unimplemented processor name.

Description

Nested switch statements may generate infinite loop

Compiler is not flagging an undefined structure.

C Function returning large (>2bytes) result can’'t be called as procedure
Illegal forward reference flagged for legally defined string.

No error message for unimplemented processor name.

Description

Functional type change for one char generates a null string.
Real library routine INVALID may not be called on invalid real number.

Description

BRA.S Code does not generate properly.

The assembler does not recognize invalid lo
Assembler allowing illegal 1instructions wit
External labels cannot be used in the
MOVEQ instruction doesn’'t flag an error for illegal size appensions.

defined string.
acted from pointers
ions invoked via function pointers may JSR the wrong location.

result can’'t be called as procedure

cal operators.
address reg.
"quick" type instructions.

Report #

D200040378
D200059782
3200063065

Report

D200051
D200059
D200063
D2000661
D2000664

$
946
816
529
18
64

Report #

D200040386
D200059790
D200063503
D200066092
D200066449

Report #

D200040394
D200059808
D200063511
0200066100
D200066456

Report

*
2700002980
D200010108

D20006

Illegal size appension allowed with addr reg indirect mode of addressing D20006

Keyword index

- -8
Keyword Product number uu.ff Description Report # page
XkkkkkkknoneXkkkkkkk 64845 01.11 PC with index register and offset mode of addressing causing linker err. 5000175976 15
64845 01.11 Size appensions do not always generate the appropriate error message. D200065573 17
64845 01.11 The immediate mode of addressing is not sugported as a source operand. D200065598 18
64845 01.11 EXT Rseudo is not supported as stated in the Assembler reference manual. D200066563 18
64845 01.11 LR ERROR FLAGGED WHEN USING EXPRESSION IN PC RELATIVE+IND+OFFSET ADDRing D200066704 18
64845 01.11 Assembler mangles displacement [PC,Xn] instructions D200068650 19
ENHANCEMENT 64845 01.10 Assembler generating external records for symbols which are not used. 0200063206 17
64845 01.11 Include support for the ODD psuedo to align data on an odd boundry. D200065581 19
- -8
Keyword Product number uu.ff Description Report # page
XKXKKKKKNo neXkkkkkkk 648455004 01.00 Link_sym file contains bad data in relocatable name record. D200059451 20
64845S004 01.00 Compiler generates duplicate symbols D200059477 20
648455004 01.00 "-v" option does not work with asm inside pmon D200059501 20
648455004 01.00 External labels cannot be used in the "quick"” type instructions. D200061713 20
648455004 01.10 EXT pseudo is not supported as stated in the Assembler reference manual. D200066605 21
- -8
Keyword Product number uu.ff Description Report # page
AokkXkkKXKn o neXkkkkkkk 648455001 01.40 External labels cannot be used in the "quick" type instructions. D200061697 22
64845S001 01.50 Assembler reports error if file is specified with full path name. 1650024349 22
64845S001 01.50 EXT pseudo is not supported as stated in the Assembler reference manual. D200066589 23
ASSEMBLER 648455001 01.40 LR error flagged for correct offset using PC+INDEX+OFFSET mode of addr. 5000136796 22
LINKER 648455001 01.10 "Garbage" characters appear in load address statement with linker. D200062851 23
- -8
Keyword Product number u.ff Description Report # page
XxxkkkxkKnonekkkkkxkk 648455003 .50 External labels cannot be used in the "quick" type instructions. D200061705 24
648455003 .70 EXT pseudo is not supported as stated in the Assembler reference manual. D200066597 24
- -8
Keyword Product number .ff Description Report # page
XaokkxkxknoneXkkkkkkk 64819 01.07 Defining a constant hex number typecast as a pointer may fail. D200033324 27
64819 01.07 Code generated for return statement inside nested if’'s is incorrect. D200033555 28
64819 01.07 Nested switch statements may generate infinite loop D200036905 29
64819 01.08 Pass three error when an integer is assigned to a float. 5000142331 25
64819 01.08 Compiler is not flagging an undefined structure. 5000142448 25
64819 01.08 Compiler loads return value in two different locatations. 0200052423 31
64819 01.08 Sign extension done when integer type cast to an unsigned long. D200053173 32
64819 01.08 SINIT_ZEROESS may affect the addressin? mode used for accessing var’s. D200056002 33
64819 01.09 Illegal forward reference flagged for legally defined string. 5000161935 26
64819 01.09 C Function returning large (>3bytes) result can’'t be called as procedure D200063420 34
64819 01.09 Compiler aborts with too many errors in pass 1. D200065144 34
CODE GENERATOR 64819 01.07 32 bit value is treated as 64 bit value w/o first extending. D200032029 27
PASS 1 64819 00.56 Unsigned integers treated as signed when subtracted from pointers D200010124 26
64818 01.07 Cannot define a function which returns a pointer to a function. D200033587 29

Keyword index

- -8
Keyword Product number uu.ff Description Report # page
PASS 1 64819 01.07 Wrong value calculated when scientific notation is used. D200037358 30
PASS 3 64819 01.08 Incrementing structure member results in incomplete code generation. D200055821 32
- -8
Keyword Product number uu.ff Description Report # page
KkkkkkkKn o neXxkkkkkkk 648195004 01.00 Defining a constant hex number typecast as a pointer may fail. D200051458 35
64819S004 01.00 Nested switch statements may generate infinite loop D200051920 36
64819S004 01.00 Line # labels emitted for #included files confuse analyzers D200059493 36
64819S004 01.00 Compiler is not flagging an undefined structure. D200059733 37
648195004 01.10 C Function returning large (>2bytes) result can’'t be called as procedure D200063453 37
64819S004 01.10 B{te parameters are pushed onto the stack incorrectly.) D200064634 37
64819S004 01.10 Illegal forward reference flagged for legally defined string. D200066035 38
648195004 01.10 No error message for unimplemented processor name. D200066415 39
- -8
Keyword Product number uu.ff Description Report # page
X¥kkkxkkknonexkkkkkkxkk 64819S001 01.10 Defining a constant hex number typecast as a pointer may fail. D200033530 40
64819S001 01.20 Nested switch statements may generate infinite loop D200040329 41
64819S001 01.40 Compiler is not flagging an undefined structure. D200059717 42
64819S001 01.50 List file contains control characters in a specific case. 1650017491 40
64819S001 01.50 C Function returning large (>2bytes) result can’'t be called as procedure D200063438 42
64819S001 01.50 Byte parameters are pushed onto the stack incorrectly. D200064618 43
64819S001 01.50 Illegal forward reference flagged for legally defined string. D200066019 43
64819S001 01.50 No error message for unimplemented processor name. D200066399 a4
- -8
Keyword Product number uu.ff Description Report #& page
K%Kk ¥okxkKn o nekkxkkkxk 648195003 01.00 Error message are not consistient. 5000141127 45
648185003 01.20 Defining a constant hex number typecast as a pointer may fail. D200033548 45
648195003 01.20 Nested switch statements may generate infinite loop 0200040337 46
64819S003 01.50 Compiler is not flaggin? an undefined structure. D200059725 a7
648195003 01.80 Listing file for submitted programs is incomplete. 1650019109 45
64819S003 01.80 C Function returning large (>2bytes) result can’t be called as procedure D200063446 48
64819S003 01.80 B{te parameters are pushed onto the stack incorrectly. 0200064626 48
64819S003 01.80 Illegal forward reference flagged for legally defined string. D200066027 48
64819S003 01.80 No error message for unimplemented processor name. D200066407 49
- -8
Keyword Product number uu.ff Description Report # page
XKKXKKKKN 0 neXkKKKKKKK 64822 01.05 Nested switch statements may generate infinite loop D200040402 51
64822 01.06 Compiler is not flag?ing an undefined structure. D200059824 52
64822 01.07 Return value of function call is being stored at loc. EMPTYSET. 1650018406 50
64822 01.07 C Function returning large (>2bytes) result can’'t be called as procedure D200063537 52
64822 01.07 Illegal forward reference flagged for legally defined string. D200066126 53
PASS 1 64822 00.06 Unsi?ned integers treated as signed when subtracted from pointers D2000101S57 50
64822 00.56 Functions invoked via function pointers may JSR the wrong location D200011387 51

Keyword index

Keyword

XAKKXKKKKKN 0 neXKKKKKkKK

Keyword

XKKAKKKKK N 0 n @ KKKKKKKK

Keyword

KAAKAKKKN 0 N e KKKKAKKKK

Keyword

RKAKKKKKKAKN 0 N e KKKKKKKK

VARIANT RECORDS

Keyword
VARIANT RECORDS

Keyword
VARIANT RECORDS

Keyword

PASS 3
VARIANT RECORDS

Product number
648225004
648225004
64822S004

648225004
648225004
Product number

4822
4822
4822
4822

(=X X X]

Product number

648225003
648225003
648225003
648225003

Product number

64813
64813

Product number
64813S004

Product number

64813S001

Product number

64813S003
648135003

uu.
01.

uu.

01

ff
00

ff

.00

u.ff

.00
01.

00

Description

Nested switch statements may generate infinite loop
Compiler is not flagging an undefined structure.

C Function returning large (>2bytes) result can’'t be called as procedure

Illegal forward reference flagged for legally defined string.
No error message for unimplemented processor name.

Description

- -8

Compiler is not flagging an undefined structure.

C Function returning large (>2bytes) result can’'t be called as procedure

Illegal forward reference flagged for legally defined string.
No error message for unimplemented processor name.

Description

Compiler is not flagging an undefined structure.

C Function returning large i>2bytes] result can't be called as procedure
Illegal forward reference f

agged for legally defined string.

No error message for unimplemented processor name.

Description

The library routine
Variant records may

Description

Variant records may

Description

Variant records may

Description

- -8

called DISPOSE does not generate correct code
not work.

not work.
- -8

not work.

- -8

Offset to parameters is incorrect in nested procedure.

Variant records may

not work.

Report #

D20005185
D2000598

D20006
D20006

oM

Report #
D2000598840
D200063552

D200066142
D200066480

Report

500012
5000089

#
4065
8343
Report #
D200051573

Report &
D200036434

Report %

1650007237
D200036442

page

61
61

page
63

page
64

page

65
66

Keyword index

Keyword
ENHANCEMENT

LINKER

Keyword

CODE GENERATOR

Keyword

CODE GENERATOR

Keyword

KKKAKKKAKKN 0 n e KAKKKKKKK
CODE GENERATOR

Keyword

XXKKKKKKN 0 n e KKKKKKKK

CODE GENERATOR

IF
PASS 2
POINTERS

Keyword

XkkkkkkKn o n e KkKKKKKXK

Product number

Product number

648595004
648595004
648595004

Product number

648595001
64859S001
648585001

Product number

648595003
648595003
648595003
648595003

Product number
64825
6

oduct number

55004
55004

NN

[=Y<X=)
[

cococo c
[

c
c

OO0 OOOOOOO0O
[e S e

0l.
o1.

COO00OO0O0OOOOO =
e e e e WWWWWWE =&

[y
OO

Description

Seperate linker outputs by adding several blank lines at the start
Change the linker to only accept 80286B link _sym files

File with unsupported processor name should be specified in error msg
Warnxn? message should be generated when aliasing an alias

Error flag not set when file required by link is missing

- -0
Description

0 FSTSW/FNSTSW function incorrectly with two-byte memory operand

FSTENV instruction generates object code without required wait instr
Obj. code generated for arithmetic instr. are incorrect.
- -0
Description
FSTSW/FNSTSW function incorrectly with two-byte memory operand
FSTENV instruction generates object code without required wait instr

Obj. code generated for arithmetic instr. are incorrect.
- =0
Description

Build files generated on the VAX will not work with the 286 linker
FSTSW/FNSTSW function incorrectly with two7b‘te memory operand
FSTENV instruction generates object code without required wait
Obj. code generated for arithmetic instr. are incorrect.

- -0

instr

Description

Compiler does not generate cross reference table.

Error #1009 using byte-sized ORG'ed variables in FOR loops

32-bit unsi?ned divide and modulus may fail

Librarg routine REAL_ROUND may fail.

DEBUG byte division and modulus may incorrectly report division by zero
Set comparisons with the empty set may fail

Assignment of constant string of length 1 to string variable may fail.
Compller generates incorrect code (assignment to record variable).
Incorrect code generated for adding one char to another.

IF Bl <rel-op> B2 THEN B1 := B1 - 1; ({DOESN'T WORK}

REBOOT DURING PASS 2
Variables of type pointer may not be incremented correctly.

- -0
Description

Error #1009 using byte-sized ORG'ed variables in FOR loops
32-bit unsigned divide and modulus may fail

Report #

Report #

D200055400
D200055434
D200055467

Report #

D200067546
D200055418
0200055442
D200055475

Report #

D20002008
D20006432

Report #

D200064352
D200064451

OO
©0 00 00 00 00

NNNNN00000000 NN~
NWDWVONI e OOWON

Keyword index

- -0

Keyword Product number uu.ff Description Report # page

KKk kkXKnonexXkkkkkkk 648255004 01.10 Librarz routine REAL_ROUND may fail. D200064527 86

64825S004 01.10 DEBUG byte division and modulus may incorrectly report division by zero D200064592 86

648255004 01.10 Set comparisons with the empty set may fail D200064980 86

64825S004 01.10 Assignment of constant string of length 1 to string variable may fail. D200065358 87

CODE GENERATOR 64825S004 01.00 Compiler generates incorrect code (assignment to record variable). D200050203 83

64825S004 01.00 Incorrect code generated for adding one char to another. D200051862 84

IF 648255004 01.00 IF Bl <rel-op> B2 THEN Bl := B1 - I; {DOESN'T WORK} D200051607 84

POINTERS 64825S004 01.00 Variables of type pointer may not be incremented correctly. D200051094 83
- -0

Keyword Product number uu.ff Description Report & page

XXXKKkXkknoneXkkkkkkk 648255001 01.40 Error #1009 using byte-sized ORG’ed variables in FOR loops D200064337 89

648255001 01.40 32-bit unsz?ned divide and modulus may fail D200064436 90

648255001 01.40 L1brarz routine REAL_ROUND may fail. D200064501 90

64825S001 01.40 DEBUG byte division and modulus may incorrectly report division by zero D200064576 90

648255001 01.40 Set comparisons with the empty set may fail D200064964 91

64825S001 01.40 Assignment of constant string of length 1 to string variable may fail. D200065334 91

CODE GENERATOR 64825S001 01.10 Compiler generates incorrect code (assignment to record variable). D200016311 88

648255001 01.20 Incorrect code generated for addln one char to another. D200040139 89

IF 64825S001 01.20 IF Bl <rel-op> B2 THEN Bl := Bl ; {DOESN’T WORK} D200036848 88

POINTERS 64825S001 01.10 Variables of type poxnter may not be incremented correctly. D200029801 88
- -0

Keyword Product number uu.ff Description Report # page

XXxkkXXKkKnoneXkkkkkkk 648255003 01.50 Using char and int. in control loop causes incorrect code to be gen ed D200058677 94

648255003 01.50 $Range ON$ causes incorrect code to be generated for a test operation. D2000596589 95

64825S003 01.50 Incorrect data offsets in 11st1ng file. D200060244 95

64825S003 01.60 functional type change of a constant into multi-byte structure gen's err D200063925 86

64825S003 01.60 Error #1009 using byte-sized ORG'ed variables in FOR loops D200064345 87

64825S003 01.60 32-bit unsxgned divide and modulus may fail D200064444 97

64825S003 01.60 Library routine REAL_ROUND may fail. D2000645189 98

648255003 01.60 DEBUG gyte division and modulus may 1ncorrect1y report division by zero D200064584 98

648255003 01.60 Set comparisons with the empty set ma¥ fail D200064972 98

648255003 01.60 Assignment of constant string of length 1 to string variable may fail. 0200065342 99

648255003 01.60 and listing files should reside in directory compile is executed. D200067017 100

64825S003 01.60 Assxgnment of unsigned_8 variables to expression always assigns zero. D200067447 100

CODE GENERATOR 648255003 01.10 Compller generates incorrect code (assignment to record variable). D200016303 93

64825S003 01.20 Incorrect code generated for adding one char to another. © D200040147 94

IF 648255003 01.20 IF Bl <rel-op> B2 THEN Bl := Bl - 1; (DOESN'T WORK} D200036855 93

POINTERS 648255003 01.20 Variables of type pointer may not be incremented correctly. D200029819 93
- -0

Keyword Product number uu.ff Description Report # page

XkkKkKKXKXKnN 0 neXkkkkkkkk 64826 01.01 IF statements involvin? return values and address calculations may fail. D200037622 102

64826 01.01 Nested switch statements may generate infinite loop D200040444 103

64826 01.02 Compiler is not flagging an undefined structure. D200059907 104

gﬁg%g gi.oz Incorrect code generated when function parameter is post incremented. D200062828 104

.03 C Function returning large (>2bytes) result can't be called as procedure D200063610 105

Keyword index

- -0
Keyword Product number uu.ff Description Report # page
KKKKKKKKN O neXkkkkkkk 64826 01.03 Funct calls via pointers with parms cause subsequent stack ref errors D200064881 105
64826 01.03 Illegal forward reference flagged for legally defined string. D200066209 106
CODE GENERATOR 64826 01.01 Assigning a ptr. after its post incr/decr. gives incorrect value. D200025742 102
64826 01.03 Character isn’'t converted to int before calculations use it D200063297 105
PASS 1 64826 01.00 Functions invoked via function pointers may JSR the wrong location. D200011262 101
64826 01.00 Unsigned integers treated as signed when subtracted from pointers. D200011346 101
- -0
Keyword Product number uu.ff Description Report # page
Xkkxkkkkkn o nekkkkkkkk 648265004 01.00 Nested switch statements may generate infinite loop D200051979 108
648265004 01.00 Compiler is not flagging an undefined structure. D200059931 108
648265004 01.10 C Function returning large (>2bytes) result can’'t be called as procedure D200063644 110
648265004 01.10 Funct calls via pointers with parms cause subsequent stack ref errors D200064915 110
648265004 01.10 Illegal forward reference flagged for legally defined string. D200066233 110
64826S004 01.10 No error messa?e for unimplemented processor name. D200066555 111
CODE GENERATOR 648265004 01.10 Character isn't converted to int before calculations use it D200063321 109
- -0
Keyword Product number uu.ff Description Report # page
XxkxkxkxkknonexXkkkkkkk 648265001 01.05 Number of errors listed at bottom of the listing is incorrect. 5000179028 112
64826S001 01.20 Nested switch statements may generate infinite loop D200040451 113
64826S001 01.20 IF statements involving return values and address calculations may fail. D200042085 114
64826S001 01.40 Compiler is not flagging an undefined structure. D200059915 114
64826S001 01.50 C Function returning large (>2bytes) result can’'t be called as procedure D200063628 115
64826S001 01.50 Funct calls via pointers with parms cause subsequent stack ref errors D200064899 116
64826S001 01.50 Illegal forward reference flagged for legally defined string. D200066217 116
64826S001 01.50 No error message for unimplemented processor name. D200066530 117
CODE GENERATOR 648265001 01.10 Assigning a ptr. after its post incr/decr. gives incorrect value. D200025759 112
64826S001 01.50 Character isn’'t converted to int before calculations use it D200063305 115
- -0
Keyword Product number uu.ff Description Report #% page
XkxkkkxkkknoneXkkxxkkkkk 648265003 01.20 Nested switch statements may generate infinite loop D200040469 118
648265003 01.20 IF statements involving return values and address calculations may fail. D200042083 119
648265003 01.60 Compiler is not flagging an undefined structure. D200059923 120
64826S003 01.80 C Function returning large (>2bytes) result can’'t be called as procedure D200063636 121
64826S003 01.80 Funct calls via pointers with parms cause subsequent stack ref errors D200064907 121
64826S003 01.80 Illegal forward reference flagged for legally defined string. D200066225 121
648265003 01.80 No error message for unimplemented processor name. D200066548 122
CODE GENERATOR 64826S003 01.10 Assigning a ptr. after its post incr/decr. gives incorrect value. D200025767 118
648265003 01.80 Character isn't converted to int before calculations use it D200063313 120
- -0
Keyword Product number uu.ff Description Report # page
KKAKKKKKKn o nekkkkkkkk 64853 02.00 Corrupt file generated by assem. when large # of files are link. w/xref 5000136226 123
. 64853 02.00 STACKSEG pseudo op does not allocate space correctly. D200033563 125

Keyword index

Keyword
KKKXKKKKKN 0 N e XKKKKKKKK

CODE GENERATOR
LINKER

Keyword
%kkkkKAKKN 0 n e kkkkkkkk

Keyword
XKKKKKXKKN 0 N e XkKKKKKKK

Keyword

AkkokkAKKKN 0 N e KKKKKKKK

Keyword
KAKAKKKKAKN 0 N e KAKKKAKKKK

CODE GENERATOR

PASS 1

Keyword

XRKKKKKKN 0 n e XKKKKKKK

Product number

Product number
648535004

Product number
648535001

Product number
648535003

Product number

s bt s Bt o et s e
00 00 00 00 00 O 00 00

Product number

648185004
648185004
648185004
648185004
648185004
648185004

QOO0 000
ONNNNNN

uu.

02.

uu.
.00

02

uu.
.00

02

OCOO0O0O0OO0O =

VO OO

00

ff

ff

- =0
Description

Expression type errors occur for legal INC instructions.

Macro called with more parameters than declared generates error.
Assermbler does not flag LR error when short ;ump > +/- 127 bytes
OLD_8087 directive is ignored after the use of DQ pseudo

FMUL ST[3],ST[5] does not flag error
Index addressing in MOV statement creates incorrect code

“Total # of bytes loaded” is incorrect if segment boundary is crossed.

- -0

Description

Expression type errors occur for legal INC instructions.
- -0
Description

Expression type errors occur for legal INC instructions.
- -0
Description

Expression type errors occur for legal INC instructions.
- -0
Description

Dereferencing a structue is not working properli.

Nested switch statements may generate infinite loop

Compiler is not flagging an undefined structure.

C Function returning large (>2bytes) result can’'t be called as procedure
Illegal forward reference flagged for legally defined strin$.

Error #1006 generated when incorrect value returned from a function

AX not loaded with constant prior to using it to calculate expression
The compiler generates incorrect code for floating point constants
Unsi?ned integers treated as signed when subtracted from pointers.
Functions invoked via function pointers may JSR the wrong location.

- -0
Description

With SPOINTER_SIZE 32$ assigning an address + a sizeof in 1 line fails.
Nested switch statements may generate infinite loop

Compiler is not flagging an undefined structure.

C Function returning large (>2bytes) result can’'t be called as procedure
Illegal forward reference flagged for legally defined string.

No error message for unimplemented processor name.

Report #&
0200042242

D200043885
5000153090

Report #
D200052100

Report #
D200042556

Report #
D200042564

Report #

50001089
D2000402

Report #

D200049873
D200051912
D200058709
D200063412
D200066001
D200066381

page

page
128

page
129

o B s ot bt Pt e
W W WwWWww
NNOO &R

Keyword index

- -0
Keyword Product number uu.ff Description Report #
Kkkkkkk¥Kn o neXkkkkkkkk 64818S001 02.01 Nested switch statements may generate infinite loop D200040303
64818S001 02.01 File will not compile on the 8000/500. . . D200045558
64818S001 03.00 Both operands of expression loaded into AX when calculating array index 5000148773
64818S001 03.10 Compiler is not flagging an undefined structure. D200059683
64818S001 03.20 C Function returning large (>2bytes) result can’'t be called as procedure D200063396
648185001 03.20 Illegal forward reference flagged for legally defined string. D200065987
64818S001 03.20 No error message for unimplemented processor name. D200066365
CODE GENERATOR 64818S001 03.00 ES registeris overwritten when loading a ptr. w/ addr.of a structure 5000152108
64818S001 03.00 Compi?er generates MOVSB without init. ES - POINTER -> member = VAR; 5000154245
- -0
Keyword Product number uu.ff Description Report &
XkkkxkkkKnonexkkxkkkk 64818S003 02.00 Data space cannot exceed 32K. 5000114645
648185003 02.00 Nested switch statements may generate infinite loop D200040311
64818S003 03.10 Compiler aborts when incorrectly passing address of array as funct. para 5000129817
648185003 03.10 Compiler is not flagging an undefined structure. 200059691
64818S003 03.40 C Function returning large (>2bytes) result can’'t be called as procedure D200063404
64818S003 03.40 Illegal forward reference flagged for legally defined string. D200065995
64818S003 03.40 No error message for unimplemented processor name. D200066373
CODE GENERATOR 64818S003 02.01 float/double vars. in a subroutine uses MOVESB without init. ES 5000128959
- -0
Keyword Product number uu.ff Description Report #
XAKKAKKXKKN O neXkkkkkkkk 64814 02.00 Incorrect code generated for assignment statement. D200030775
64814 02.01 Program reboots or aborts with too many errors (64000 / host). D200037325
CODE GENERATOR 64814 03.00 S$SSEPARATE_CONST OFF$ USED WITH REAL # CONSTS. GENERATES POP CS/PUSH CS. D200055335
64814 03.01 Record members’ addresses are calcul. incorrectly inside the WITH stmnt D200063380
64814 03.01 SHORT JMP generated instead of NEAR JMP when jumping > 32K D200065078
PASS 3 64814 03.01 SHORT JMP generated instead of NEAR JMP when jumping > 32K D200065078
- -0
Keyword Product number uu.ff Description Report #
XXkXkkkkKnoneXkkkkxkkkk 648145004 03.00 Incorrect code generated for assignment statement. D200051219
648145004 03.00 Program reboots or aborts with too mané errors (64000 / host). D200051797
CODE GENERATOR 648145004 03.00 $SSEPARATE_CONST OFF$ USED WITH REAL # CONSTS. GENERATES POP CS/PUSH CS. D200055517
64814S004 03.10 Record members’' addresses are calcul. incorrectly inside the WITH stmnt D200064097
PASS 2 64814S004 03.00 Too many errors, pass2: 80186 (PROCEDURE, WITH statement). D200050245
- -0
Keyword Product number uu.ff Description Report #
KKKKKKXKKnonexkkkkkkk 64814S001 02.00 Incorrect code generated for assignment statement. D200030783
64814S001 02.00 Program reboots or aborts with too many errors (64000 / host). D200037333
CODE GENERATOR 648145001 03.00 $SEPARATE_CONST OFF$ USED WITH REAL # CONSTS. GENERATES POP CS/PUSH CS. D200055491
64814S001 03.10 Record members’ addresses are calcul. incorrectl¥ inside the WITH stmnt D200064071
PASS 2 64814S001 01.10 Too many errors, pass2: 80186 (PROCEDURE, WITH statement). D200025908

Keyword index

- =0
Keyword Product number uu.ff Description Report # page
kKKK kkKnoneXkKkkkkkk 648145003 02.00 Incorrect code generated for assignment statement. D200030791 159
64814S003 02.00 Program reboots or aborts with too many errors (64000 / host). D200037341 159
CODE GENERATOR 64814S003 03.00 $SSEPARATE_CONST OFF$ USED WITH REAL # CONSTS. GENERATES POP CS/PUSH CS. D200055509 159
648145003 03.20 Record members’' addresses are calcul. incorrectly inside the WITH stmnt D200064089 160
PASS 2 64814S003 01.10 Too many errors, pass 2: 80186 (PROCEDURE, WITH statement). D200025916 159
- -0
Keyword Product number uu.ff Description Report # page
KKKAKKXKAKAKN O neXkkkKkKXkK 64882 01.10 File name conversion (transfer) is inconsistent with COMP and ASM. D200021790 162
64882 01.20 Transfer may not function across VAX-cluster. D200046102 162
64882 01.70 Misspellings in HPINSTALL.COM can cause %F-ERROR. D200065680 163
64882 01.70 HSL will not start with most 64000 printers (introduced in 1.7) D200067512 163
HIGH SPEED LINK 64882 01.20 Initializing the HSL may require more than one shift/reset on the 64000. D200047951 162
64882 01.20 HSLSTOP doesn’'t work if MAPgUS is pending. ! D200048017 162
64882 01.20 IBDRIVER conficts with existinx driver on the system. D200048041 164
MAPBUS 64882 01.60 Define MAPBUS as a verb in HPTABLES.CLD instead of a symbol in HPSETUP. D200055012 164
RCMAIN 64882 01.60 RCMAIN/VERBOSE not described in the HELP file. D200054775 163
TRANSFER 64882 01.20 Insufficient examples in the HELP entry. D200045088 162
64882 01.20 TRANSFER does not timeout. D200047845 163
64882 01.50 CLUSTER-CLUSTER transfers don’'t work. D200048140 163
- -S
Keyword Product number uu.ff Description Report & page
XKAKKKKXKN O neXkkKKKKKK 64292 01.02 Incorrect Inverse Assembl{ with State when restart active D200060285 165
64292 01.02 NSC800 cannot access the last 256 byte block of user memory. D200067470 165
64292 01.02 "modify register PC" immediately after "load <absolute_file>" fails D200067488 166
- =P
Keyword Product number uu.ff Description Report # page
XKKKXKKKKN 0 neXkkKKKKXK 64100 02.06 MAIN Assemb stops table interpretation for expressions delinited by “." D200072199 167
- =S
Keyword Product number uu.ff Description Report # page
Kokkkkxkkn o nexkkkkkkkk 648515004 01.00 Problem with timemark in hosted assemblers. D200061614 168
648515004 01.00 EQU pseudo with OLLH for an operand may halt assembly. D200062653 168
648515004 01.10 Assembler trys to assemble .A files. D200065011 168
64851S004 01.10 Assembler aborts when full path name is specified. D200067454 168
LINKER 648515004 01.10 Linker does not correctly handle "NO LOAD" files. D200063248 168
- =S
Keyword Product number uu.ff Description

Report # page

Xkkk¥okkkn o nekkkkkxkk 648515001 01.30 ASM is unable to assemble a file accessed across lan via a netunam. D200055384 170
64851S001 01.40 Comma at the end of a HEX pseudo statement causes the assembler to hang. 5000149211 170

64851S001 01.40 Problem with timemark in hosted assemblers. D200061598 170

Keyword index

- -S
Keyword Product number uu.ff Description Report & page
XKkkKKKKKn o neXkkkkkkk 648515001 01.50 Assembler trys to assemble .A files. D200064840 171
648515001 01.50 Assembler aborts when full path name is specified. D200067438 171
LINKER 64851S001 01.50 Linker does not correctly handle "NO LOAD" files. D200063230 170
- -S
Keyword Product number uu.ff Description Report # page
XKXKkkkKKkKn o neXkkkkkkkk 648515003 01.50 EQU pseudo with OLLH for an operand may halt assembly. D200062646 172
64851S003 01.50 Assembler trys to assemble .A files. D200065003 172
LINKER 64851S003 01.04 Linker does not correctly handle "NO LOAD" files. 5000143370 172
648515003 01.50 Displacement > 32K error being flagged when it should not be. D200060830 172
- -8
Keyword Product number uu.ff Description Report # page
XxkkxkxkkkXn o nedxkkkkkkk 64824 00.00 Changes to pointers to unions does not work properly in C language. 2700003921 174
64824 00.00 Certain single argument Rvalues will not compile correctly. 2700003939 174
64824 00.00 Library routine REAL_SUB modifies DE re$ister pair. 2700004093 174
64824 01.01 Incorredt or NO listing file produced if fatal pass 2 errors (#10xx) D200034918 178
64824 01.01 DIF AND WRONG CODE PRODUCED IF ARRAY ELEMENT ASSIGNED RESULT OF INDIRECT D200037687 179
64824 01.01 Nested switch statements may generate infinite loop D200040410 179
64824 01.02 Compiler is not flag?ing an undefined structure. D200059865 180
64824 01.03 Funct calls via pointers with Earms cause subsequent stack ref errors D200063032 181
64824 01.03 C Function returning large (>2bytes) result can’'t be called as procedure D200063578 181
64824 01.03 Illegal forward reference flag?ed for legally defined string. D200066167 181
CODE GENERATOR 64824 01.00 Assigning a ptr. after its post incr/decr. gives incorrect value. D200013300 176
64824 01.01 Registers used by Zbshift loaded incorrectly after structure reference. 2700005603 174
64824 01.01 Operating on parm. in function call generates incorrect code. D200022301 178
64824 01.01 Pointer addressing wrong location after it has been updated. D200022624 178
64824 01.03 Character isn't converted to int before calculations use it 5000139204 175
PASS 1 64824 01.00 Functions invoded via function pointers may JSR the wrong location. D200011148 175
64824 01.00 Unsigned integers treated as signed when subtracted from pointers. D200011221 176
PASS 2 64824 01.01 Pass 2 error #1006 in if construct when subtracting a const. from a var. D200015866 177
- -8
Keyword Product number uu.ff Description Report % page
XkkKkKkKnoneXkkkkkkkx 648245004 01.00 Nested switch statements may generate infinite loop D200051961 183
64824S004 01.00 Compiler is not flagging an undefined structure. D200059899 183
648245004 01.10 C Function returning large (>2bytes) result can’t be called as procedure D200063602 185
648245004 01.10 Funct calls via pointers with parms cause subsequent stack ref errors D200064873 185
648245004 01.10 Illegal forward reference flagged for legally defined string. D200066191 185
648245004 01.10 No error messa%e for unimplemented processor name. D200066522 186
CODE GENERATOR 648245004 01.10 Character isn’'t converted to int before calculations use it D200063289 184
- -8
Keyword Product number uu.ff Description Report # page
XKKXKKKKK N 0 n e kkKKKKkKK gﬁg%ﬁgggi 8{.20 Nested switch statements may generate infinite loop D200040428 188

.40 Compiler is not flagging an undefined structure. D200059873 188

Keyword index

- -8

Keyword Product number uu.ff Description Report # page

JokxkkkkkKnoneXkkkkkkxk 648245001 01.50 C Function returning large (>2bytes) result can’t be called as procedure D200063586 190

648245001 01.50 Funct calls via pointers with parms cause subsequent stack ref errors D200064857 190

64824S001 01.50 Illegal forward reference flagged for legally defined string. D200066175 190

64824S001 01.50 No error message for unimplemented processor name. D200066506 191

CODE GENERATOR 64824S001 01.10 Assigning a ptr. after its post incr/decr. gives incorrect value. D200025726 187

64824S001 01.50 Character isn’t converted to int before calculations use it D200063263 189

PASS 2 64824S001 01.00 Pass 2 Error #1006 when subracting a const. from a var. in an if constr. D200015982 187
- -8

Keyword Product number uu.ff Description Report # page

Xkxkkkkknonexkxkkkkk 648245003 01.20 Nested switch statements may generate infinite loop D200040436 193

648245003 01.50 Compiler is not flagging an undefined structure. D200059881 193

64824S003 01.80 C Function returning large (>2bytes) result can’'t be called as procedure D200063594 195

64824S003 01.80 Funct calls via pointers with parms cause subsequent stack ref errors D200064865 195

64824S003 01.80 Illegal forward reference flagged for legally defined string. D200066183 195

648245003 01.80 No error message for unimplemented processor name. D200066514 196

CODE GENERATOR 648245003 01.10 Assigning a ptr. after its post incr/decr. gives incorrect value. D200025734 192

648245003 01.80 Character isn't converted to int before calculations use it . D200063271 194

PASS 2 64824S003 01.00 Pass 2 Error #1006 when subtracting a const. from a var. in an if constr D200015974 192
- -8

Keyword Product number uu.ff Description Report # page

XXKKXKKKNOneXkKKKKXKK 64823 01.01 Compiler does not generate cross reference table. D200020099 199

64823 01.02 Error #1006 when accessing an element of a two-dimensional array. 5000146407 197

64823 01.02 Assignment to multi-dimensional array causes error 1006. 5000157180 198

64823 01.03 Error #1009 using byte-sized ORG'ed variables in FOR loops D200062976 200

64823 01.03 32-bit unsi?ned divide and modulus may fail D200062984 200

64823 01.03 Library routine REAL_ROUND may fail. D200062992 201

64823 01.03 Set comparisons with the empty set may fail D200063008 201

64823 01.03 DEBUG byte division and modulus may incorrectly report division by zero D200063016 202

64823 01.03 Assignment of constant string of length 1 to string variable may fail. D200065292 202

CODE GENERATOR 64823 01.01 Incorrect code generated for adding one char to another. 5000105841 197

ENHANCEMENT 64823 01.01 More accurate error message when wrong Barm t¥pe is passed to STRWRITE. 5000136986 203

IF 64823 01.01 IF Bl <rel-op> B2 THEN Bl := Bl - 1; ({DOESN’'T WORK} 5000099176 197

PASS 2 64823 01.01 REBOOT DURING PASS 2 - related to position of variable declarations. D200037507 200

PASS 3 64823 01.03 Error 1113 ?enerated during pass 3 when 23rd label is encountered. D200063214 202

POINTERS 64823 01.01 Variables ot type pointer may not be incremented correctly. D200029744 199
- -8

Keyword Product number uu.ff Description Report # page

XKkKXKKXKXKnOneXkkkkkkk 648235004 01.10 Error #1009 using byte-sized ORG’ed variables in FOR loops D200064311 205

. 648235004 01.10 32-bit unsi?ned divide and modulus may fail D200064410 206

648235004 01.10 Librarg routine REAL_ROUND may fail. D200064485 206

648235004 01.10 DEBUG byte division and modulus may incorrectly report division by zero D200064550 206

648235004 01.10 Set comparisons with the empty set may fail D200064949 207

64823S004 01.10 Assignment of constant string of length 1 to string variable may fail. D200065318 207

CODE GENERATOR 64823S004 01.00 Incorrect code generated for adding one char to another. D200051854 205

IF 648235004 01.00 IF Bl <rel-op> B2 THEN Bl := Bl - 1; (DOESN'T WORK} D200051599 205

Keyword index
Keyword
KAOKKKKKAKN 0 n e KKKKKKKK
%EDE GENERATOR
POINTERS

Keyword
KKKKKKKNKN 0 N e KKAKKKKKK
%gDE GENERATOR

POINTERS

Keyword
FAKAKKKKKNK N 0 n e KKKKKKKK

PASS 1
Keyword

XAKKKAKKKXKN 0 n e XKKKKKKKK

Keyword

JkkkkkKkKn o n e kKKKKKKK

Product number

248238001
01

001
64823S001
001

0l

1

64823S00
648235001

Product number

248235003

Product number

648205004
648205004
648205004
648205004
648205004

c
c

[[eYoXoXaYeToYoTo o)
c [N e

OOO0ODOOO0OO
[

QOOO0OOOOC ¢«
OO b bs €

NN -

OCOOOO0OO0OO0O0O

Description

Error #1009 using byte-sized ORG'ed variables in FOR loops

32-bit unsi?ned divide and modulus may fail

Librarg routine REAL_ROUND may fail. .

DEBUG byte division and modulus may incorrectly report division by zero
Set comparisons with the empty set may fail

Assignment of constant string of length 1 to string variable may fail.
Incorrect code generated for adding one char to another.

IF Bl <rel-op> B2 THEN Bl := Bl - 1; {DOESN'T WORK}

Variables of type pointer may not be incremented correctly.

- -8
Description

Error #1009 using byte-sized ORG'ed variables in FOR loops

32-bit unsi?ned divide and modulus may fail

Librarg routine REAL_ROUND may fail.

DEBUG byte division and modulus may incorrectly report division by zero
Set comparisons with the empty set may fail

Assignment of constant string of length 1 to string variable may fail.
Incorrect code generated for adding one char to another.

IF Bl <rel-op> B2 THEN Bl := BL - 1; {DOESN’T WORK}

Variables of type pointer may not be incremented correctly.

- -8
Description

RANGE_ON

Nested switch statements may generate infinite loop

Compiler is not flagging an undefined structure.

C Function returning large (>2bytes) result can't be called as procedure
Illegal forward reference flagged for lega11¥ defined string.

Unsigned integers treated as signed when subtracted from pointers
Functions invoked via function pointers may JSR the wrong location.

- -8
Description

Nested switch statements may generate infinite loop

Compiler is not flagging an undefined structure.

C Function returning large (>2bytes) result can’t be called as procedure
Illegal forward reference flagged for legally defined string.

No error message for unimplemented processor name.

- -8
Description

Nested switch statements may generate infinite loop

Compiler is not flagging an undefined structure.

C Function returning large (>2bytes) result can’'t be called as procedure
Illegal forward reference flagged for legally defined string.

Report #

D200064295
D200064394
D200064469
0200064535
0200064923
D200065284
0200040105
D200036673
D200028777

Report #

D200064303
D200064402
D200064477
D200064543
D200064931

Report #

D200014498
D200040345
D200059741
D200063481
D200066043
D200010132
D200011403

Report

D200051
D200059
D200063
0200066
D200066

POHRNO =

page
209

NN
O OO b= = O
C0WI O OW

©
N o
-
s o©

NN NNNN
P T e e e e
WWHoOOUIUI S

Keyword index

Keyword
XKKKKKKXK 10 neXKKKKKKK

Keyword
KAKKAAKKK N 0 N e KKAKKKKKK

Product number
64820S001

Product number

64820S003
648205003
648205003
648205003
648205003

uu.
01.

-X-X-X-X-1
o be ot s e

- -8
Description

No error message for unimplemented processor name.
- -8
Description

Nested switch statements may generate infinite loop

Compiler is not flagging an undefined structure.

No error message for unimplemented processor name.

C Function returning large (>2bytes) result can't be called as procedure
Illegal forward reference flagged for legally defined string.

Report #
D200066423

Report #

D200040360
D200059766
1650018804
D200063487
D200066068

page
227

SRB detail reports as of 04/29/87 Page: 1
Number: D200010140 Product: 6800 C 64821 00.56
Keywords: PASS 1

One-line description:
Unsigned integers treated as signed when subtracted from pointers

Problem:
When an unsigned short or integer is used as an offset to a pointer, the
unsigned will be treated as a signed when doing pointer calculations.
Offsets large enough to set the sign bit will be interpreted as a
negative offset when the offset is subtracted from a pointer. The
following code exibits the problem if offset is greater than 32767 dec.
unsigned offset;
struct { int a,b,c;

*ptr;
unsigned long X;

Tain 0
X = ptr - offset; /* The compiler will generate code negating */
* offset for the "-" operation. */
Temporary solution:
Cast the offset in the expression as the next larger integer.
ie, x = ptr - (unsigned long)offset;

Signed off 04/29/87 in release 101.07

Number: D200011379 Product: 6800 C 64821 00.56
Keywords: PASS 1

One-line description:
Functions invoked via function pointers may JSR the wrong location.

Problem:

When the typedef statement is used to define pointers to functions,
and this pointer type is used in a cast of a variable array to invoke
code stored in that array, program execution may transfer to the wrong
location. For example, in the following code the simple call to
code_array fails while the call and assignment to p works correctly:

typedef int(*PFI)(); /* PFI a pointer to int functions */
int code_array[100]; /* array contains code */

PFI p; /* p a pointer of type PFI */
pfibug()

(*((PFI) code_array))(); /* fails in JSR to code_array */
(*{p=(PFI)code_array) (i; /* assignment and JSR successful */

Temporary solution:
Set up a dummy variable and perform an assignment to it when doing
this type of operation.

SRB detail reports as of 04/28/87 Page: 2
Signed off 04/29/87 in release 101.07
Number: D200040378 Product: 6800 C 64821 01.04

One-line description: .
Nested switch statements may generate infinite loop

Problem: s
If you have nested switch statements and do not terminate ?he inner
switch’s cases with breaks the compiler generates an infinite loop.

we

"68000"

main(){
int ¢
switch(c) {
case 1: break;
default: switch(c){
case 2: break;

}

/* A break is needed here because the break
above for ’case 2’ generates a jump to
this location. If a break is not placed
here it falls into the code for
evaluating ’case 1’ above. */

}

Temporary solution:
Close default statement with a break.

aow
“68000"
main(){
int ¢;
switch(c){
casel: break;
default: switch(c){
case 2: break;
break;
}
}

Signed off 04/29/87 in release 101.07

Number: D200058782 Product: 6800 C 64821 01,085

One-line description: .
Compiler is not flagging an undefined structure.

Problem:

The customer reports that the program listed below causes the
compiler to hang. I could not duplicate this problem, but, the
compiler incorrectly reported no errors,

nee
"processor”

SRB detail reports as of 04/29/87 Page: 3

main() {

int 1i;
struct undefined a(10][20];

}

The compiler should report that the type ’undefined’ is undefined.

Temporary solution:
No temporary solution.

Signed off 04/29/87 in release 101.07

Number: D200063065 Product: 6800 C 64821 01.06

One-line description:
C Function returning large (>2bytes) result can’t be called as procedure

Problem:

Functions returning large (>2byte) result cannot be called as
procedures.

Signed off 04/29/87 in release 101,07

SRB detail reports as of 04/29/87

(. .
int i;

i = sizeof(string);

Signed off 04/29/87 in release 101.07

Page:

4

Number: D200066084 Product: 6800 C 64821 01.06

One-line description:

Illegal forward reference flagged for legally defined string.
Problem:

wo

“processor"
char badstring(] = {"Wont work"};
char string(] = “works fine";
main()
int i;
i = sizeof(string);
i = sizeof(badstring); /* Error 117 flagged. */
Temporary solution:
Eliminate the braces when initializing a string.

wgn
"processor"

char string[] = "do it this way";

main()

SRB detail reports as of 04/29/87 Page: 5

Number: D200051946 Product: 6800 C 300 648215004 01.00
One-line description: .
Nested switch statements may generate infinite loop

Problem:

1f you have nested switch statements and do not terminate the inner
switch’s cases with breaks the compiler generates an infinite loop.
g

"processor name"

switch(c) {
case 1: break;
default: switch(c){
case 2: break;

}

/* A break is needed here because the break
above for ’'case 2’ generates a jump to
this location. If a break is not placed
here it falls into the code for
evaluating ’case 1’ above. */

}

Temporary solution:

Close default statement with a break.
aow

"processor name"

main(){
int ¢c;
switch{e){
casel: break;
default: switch(c){
case 2: break;
break;
}
}

Signed off 04/29/87 in release 401.20

Number: D200059816 Product: 6800 C 300 648215004 01.00

One-line description:
Compiler is not flagging an undefined structure,

Problem:

The customer reports that the program listeq below causes the
compiler to hang. I could not duplicate this problem, but, the
compiler incorrectly reported no errors.

L
“processor”

main() {

SRB detail reports as of 04/29/87 Page: 6
int 1i;

struct undefined al10][20];

}

The compiler should report that the type ’undefined’ is undefined.

Temporary solution;
No temporary solution.

Signed off 04/29/87 in release 401.20

Number: D200063529 Product: 6800 C 300 648215004 01.10

One-line description:
C Function returning large (>2bytes) result can’t be called as procedure

Problem:

Functions returning large (>2byte) result cannot be called as
procedures.

Signed off 04/29/87 in release 401,20

Number: D200066118 Product: 6800 C

300 648215004 01.10

One-line description: .
Illegal forward reference flagged for legally defined string.

Problem:

wee
"processor"

char badstring(] = {"Wont work"};
char string[] = "works fine";
main()
(n .

int i;

i = sizeof(string);

i = sizeof(badstring); /* Error 117 flagged. */

Temporary solution:
Eliminate the braces when initializing a string.

won
“processor”

char string[] = "do it this way";
main()

int i;

SRB detail reports as of 04/29/87 Page: 7
i = sizeof(string);
Signed off 04/28/87 in release 401.20
Number: D200066464 Product: 6800 C 300 648215004 01.10

One-line description:
No error message for unimplemented processor name.

Problem:

Specifying an unimplemented processor name in a C source file
will cause the compiler to go from pass 1 into C Nocode without
an error message. The listing file also does not report the
error.

Signed of f 04/29/87 in release 401.20

SRB detail reports as of 04/29/87 Page: 8
Number: D200040386 Product: 6800 C

One-line Qescription:
Nested switch statements may generate infinite loop

Problem:
If you have nested switch statements and do not terminate the inner
switch’s cases with breaks the compiler generates an infinite loop.

I

"68000"
main(){
int c;
switch(c) {
case 1: break;
default: switch(c){

case 2: break;

}

/* A break is needed here because the break
above for ’case 2’ generates a jump to
this location. If a break is not placed
here it falls into the code for

) evaluating ’case 1’ above. */

Temporary solution: .
Close default statement with a break.
aen

"68000"
main{){
int c;
switch(c){
casel: break;
default: switch(c){
case 2: break;
break;
}
}

Signed off 04/29/87 in release 101.60

500 648215001 01.20

Number: D200058790 Product: 6800 C

One-line description: .
Compiler is not flagging an undefined structure.

Problem:

The customer reports that the program listed below causes the
compiler to hang. I could not duplicate this problem, but, the
compiler incorrectly reported no errors.

woe
“processor"”
main() {

500 64821S001 01.40

SRB detail reports as of 04/29/87 Page: 9

int i;
struct undefined af[10][20];
}

The compiler should report that the type ’undefined’ is undefined.

Temporary solution:
No temporary solution.

Signed off 04/29/87 in release 101.60

Number: D200063503 Product: 6800 C 500 648215001 01.50

One-line description:
C Function returning large (>2bytes) result can’t be called as procedure

Problem:
Functions returning large (>2byte) result cannot be called as
procedures.

Signed off 04/29/87 in release 101.60

Number: D200066092 Product: 6800 C 500 648215001 01.50

One-line description:
Illegal forward reference flagged for legally defined string.

“processor”
char badstring(] = {"Wont work"};
char string[] = "works fine";
Tain()

int i;

i = sizeof(string);

i = sizeof(badstring); /* Error 117 flagged. */

Temporary solution:
Eliminate the braces when initializing a string.

wen
"processor"

char string(] = "do it this way";
main()

int {;

SRB detail reports as of 04/29/87 Page: 10
i = sizeof(string);
Signed off 04/29/87 in release 101.60
Number: D200066449 Product: 6800 C 500 648215001 01.50

One-line description: .
No error message for unimplemented processor name.

Problem:

Specifying an unimplemented processor name in a C source file
will cause the compiler to go from pass 1 into C Nocode without
an error message. The listing file also does not report the
error.

Signed off 04/29/87 in release 101.60

SRB detail reports as of 04/29/87 Page: 11

Number: D200040394 Product: 6800 C VAX 648215003 01.20
One-line description:
Nested switch statements may generate infinite loop

Problem:
If you have nested switch statements and do not terminate the inner
switch’s cases with breaks the compiler generates an infinite loop.

wen

"68000"

main(){
int c;
switch{c) {
case 1: break;
default: switch{c){
case 2: break;

}

/* A break is needed here because the break
above for ’case 2’ generates a jump to
this location. If a break is not placed
here it falls into the code for
evaluating ’case 1' above. */

}

Temporary solution: .
Close default statement with a break.

e
"68000"
main(){
int c;
switch(c){
casel: break;
default: switch(c){
case 2: break;
break;
}
}

Signed off 04/29/87 in release 301.90

Number: D200059808 Product: 6800 C VAX 6482158003 01.50

One-line description: .
Compiler is not flagging an undefined structure.

Problem:

The customer reports that the program listed below causes the
compiler to hang. I could not duplicate this problem, but, the
compiler incorrectly reported no errors.

nge
"processor"

main() {

SRB detail reports as of 04/29/87 Page: 12
int 1i;

struct undefined a(10]([20];

}

The compiler should report that the type ’undefined’ is undefined,.

Temporary solution:
No temporary solution.

Signed off 04/29/87 in release 301.90
Number: D200063511 Product: 6800 C

VAX 648215003 01.80

One-line description:
C Function returning large (>2bytes) result can’t be called as procedure

Problem:

Functions returning large (>2byte) result cannot be called as
procedures.

Signed off 04/29/87 in release 301.90

Number: D200066100 Product: 6800 C VAX 648215003 01.80

One-line description: . .
Illegal forward reference flagged for legally defined string.

Problem:
won
"processor”

char badstring(] = {"Wont work"};
char string[] = "works fine";
Tain()

int i;

i = sizeof(string);

i = sizeof(badstring); /* Error 117 flagged. */

Temporary solution: . . .
Eliminate the braces when initializing a string.

we
“processor"

char string(] = "do it this way";
main()
{

int i;

SRB detail reports as of 04/29/87 Page: 13
i = sizeof(string);
Signed off 04/29/87 in release 301.90
Number: D200066456 Product: 6800 C VAX 648215003 01.80

One-line description:
No error message for unimplemented processor name.

Problem:
Specifying an unimplemented processor name in a C source file
will cause the compiler to go from pass I into C Nocode without

an error message. The listing file also does not report the
error.

Signed off 04/29/87 in release 301.90

SRB detail reports as of 04/29/87 Page: 14
Number: 2700002980 Product: 6800 PASCAL 64811 00.61
Keywords: PASS 1

One-line description:
Functional type change for one char generates a null string.

Signed off 04/29/87 in release 101,20
Number: D200010108 Product: 6800 PASCAL 64811 00.61
Keywords: RUN-TIME LIBRARY

One-line description: . .
Real library routine INVALID may not be called on invalid real number.

Problem:
The real number library routine INVALID may not be called when an

invalid floating point number is passed as a parameter to one of the
floating point routines.

Signed off 04/29/87 in release 101.20

SRB detail reports as of 04/29/87 Page: 15
Number: 5000146381 Product: 68000 ASSEMB 64845 01.10

One-line description: .
Assembler allowing illegal instructions with address reg. indirect.

Problem:
The 68000 assembler allows the PC to be used in apparently all
variations off the address register indirect mode of addressing.

"68000"

MOVE.W Do, -(PC]

;GENS CODE OF DO0,-[A0]
MOVE.L Do, [PC]

Signed off 04/23/87 in release 501.12

Number: 5000163626 Product: 68000 ASSEMB 64845 01.01

One-line description: .
The assembler does not recognize invalid logical operators.

Problem:

If you use incorrecg syntax for logical operators the assembler
aborts the instruction, but, does not flag an error.

"68000"

PROG

MOVE.W #10001B.or.01110B,D2 ;FLAGGED CORRECTLY
VALUE EQU 10001B.or.01110B ;NOT FLAGGED
LABEL EQU 10101010B.AND.OFH.OR. 30 ;NOT FLAGGED
EXAMPLE EQU OFFH. invalid.OAH sNOT FLAGGED

Signed off 04/29/87 in release 501.12

Number: 5000168872 Product: 68000 ASSEMB 64845 01.00

One-line description:
BRA.S Code does not generate properly.

Signed off 04/29/87 in release 501.12

Number: 5000175976 Product: 68000 ASSEMB 64845 01.11

One-line description:
PC with index register and offset mode of addressing causing linker err.

Problem:

Relocatable file generated may be incorrect for certain
instructions.

"68000"

SRB detail reports as of 04/29/87 Page: 16
MOVE.L -16[PC,D2],D1

This code assembles without errors, but, causes a linker error.

ERROR: Displacement > 32k.

Signed off 04/29/87 in release 501.12

Number: D200061531 Product: 68000 ASSEMB 64845 01.10

One-line description:
External labels cannot be used in the "quick" type instructions.

Problem:

You cannot use an external label as data in the “"quick" type instr-
uctions, If you have two files:

file: declare
“68000"

GLB EXTLAB
EXTLAB EQU 4

file: refer

"68000"
EXTERNAL EXTLAB

LABEL EQU 7
MOVEQ.L #EXTLAB,D1 ;10 error is flagged
MOVEQ.L #LABEL,D1 ; WORKS

Temporary solution: A

Do not use external variables in the "quick" type instructions.
You can possibly get around this by * 1nc1ud1ng“ the symbol

(via an include file) rather than declaring it external.

Signed off 04/29/87 in release 501.12

Number: D200062190 Product: 68000 ASSEMB 64845 01.10

One-line description: . . .
MOVEQ instruction doesn’t flag an error for illegal size appensions.

Problem:

Illegal size appension on the MOVEQ instruction are not flagged
with a warning. If you have

“68000"

MOVEQ.W #1,D0
MOVEQ.B #1,D0

The assembler will not flag an error and generates code for a MOVEQ.L.

Signed off 04/29/87 in release 501.12

- -8

SRB detail reports as of 04/29/87 Page: 17
Number: D200062208 Product: 68000 ASSEMB 64845 01,10

One-line description: . .
Illegal size appension allowed with addr reg indirect mode of addressing

Problem:

When using the address register with displacement and index reg.
mode of addressing the assembler does not flag an error for an
illegal size appension on the index reg.

"68000"

MOVE 8[A0,D4.B],D1 ;.B IS ILLEGAL

The assembler executes the instructign assuming a word appension
on D4, but, fails to generate a warning or error message.

Signed of f 04/29/87 in release 501,12

Number: D200063206 Product: 68000 ASSEMB 64845 01.10
Keywords: ENHANCEMENT

One-line description:
Assembler generating external records for symbols which are not used.

Problem:
If an external symbol is declared in a source file and is not
used then the assembler should not generate an external record.
“processor"

EXTERNAL NOTUSED

END
If you do a link, NOTUSED can be found in the XREF.

Signed off 04/29/87 in release S01.12

Number: D200065573 Product: 68000 ASSEMB 64845 01.11

One-line description: .
Size appensions do not always generate the appropriate error message.

Problem:

Some instructions allow illegal size appensions while another
flags an error for a legal appension. You may append the
MOVEQ instruction with any size attribute and no error is
reported. The correct code is generated for illegal appensions
Secondly, the DBcc instruction must always be of word size., If
you try to assemble DBcc.W the assembler flags an error.

Signed off 04/29/87 in release 501.12

SRB detail reports as of 04/23/87 Page: 18
Number: D200065599 Product: 68000 ASSEMB 64845 01.11

One-line description: .
The immediate mode of addressing is not supported as a source operand.

Problem:
The BTST instruction should support the immediate data mode
of addressing for its source operand. It doesn’t.

Signed off 04/29/87 in release 501.12

Number: D200066563 Product: 68000 ASSEMB 64845 01.11

One-line description: .
EXT pseudo is not supported as stated in the Assembler reference manual.

Problem:

The Assembler/Linker Reference Manual states that either EXT
or EXTERNAL may be used when declaring an external label.
The 68000 assembler only accepts EXTERNAL.

Temporary solution:
Always use EXTERNAL.

Signed off 04/29/87 in release 501.12

Number: D200066704 Product: 68000 ASSEMB 64845 01.11

One-line description: .
LR ERROR FLAGGED WHEN USING EXPRESSION IN PC RELATIVE+IND+OFFSET ADDRing

Problem:

A legal range error will be flagged when using the PC relative
mode of addressing with offset and index register, if, the
offset is an expression.

"68000"
ORG 1000H

MOVE LABEL+1[PC,D0],D0
LABEL 1000H

;ORG PAST VECTOR TABLE
;LR ERROR FLAGGED

Temporary solution:
Do not use an‘expression for the offset. You can avoid this
by using the index register for offseting.

"68000"

ORG 1000H

MOVE OFFSET_VALUE, DO ;OFFSET_VALUE IS NOT INTENDED

;TO BE A CONSTANT.
MOVE LABEL[PC,D0],D1 3D0 CONTAINS OFFSET VALUE
Signed off 04/29/87 in release 501.12

- -8

SRB detail reports as of 04/29/87 Page: 19

Number: D200068650 Product: 68000 ASSEMB 64845 01.11

One-line description:
Assembler mangles displacement [PC,Xn] instructions

Problem:

Assembler incorrectly passes the value of absolute displacements

to the Linker for operands of the form: displacement [PC,A0].

This is due to their being passed as relocatable code to the linker,
where they are subseuently mangled.

Signed off 04/28/87 in release 501.12

Number: D200065581 Product: 68000 ASSEMB 64845 01.11
Keywords: ENHANCEMENT

One-line description: .
Include support for the ODD psuedo to align data on an odd boundry.

Problem:

The assembler includes support for the EVEN psuedo which alligns
data on an even address. It should likewise support the 0ODD
psuedo.

Signed off 04/29/87 in release 501.12

SRB detail reports as of 04/29/87 Page: 20
Number: D200059451 Product: 68000 ASSEMB 300 648455004 01.00

One-line description:
Link_sym file contains bad data in relocatable name record.

Signed off 04/29/87 in release 401.20

Number: D200059477 Product: 68000 ASSEMB 300 648455004 01.00
One-line description:
Compiler generates duplicate symbols

Problem:

Given a procedure named "AA" and a symbol named "RAA" (or EAA or DAA)},
the R=label for procedure "AA", "RAA, will collide with the symbol
named "RAA" and (at least in the past) no warning will be produced
unless the procedure and symbol are GLOBAL, in which case the linker
catches the error.

Signed off 04/29/87 in release 401.20
Number: D200059501 Product: 68000 ASSEMB

300 648455004 01.00

One-line description: . L
"-y" option does not work with asm inside pmon

Problem:
Note that the status messages do not increment.

Signed off 04/29/87 in release 401.20

Number: D200061713 Product: 68000 ASSEMB 300 648455004 01.00

One-line description: . . A
External labels cannot be used in the “"quick" type instructions.

Problem: . . .
You cannot use an external label as data in the "quick" type instr-

uctions. If you have two files:
file: declare
“68000"

GLB EXTLAB
EXTLAB EQU 4

file: refer

"68000"
EXTERNAL EXTLAB

LABEL EQU 7
MOVEQ.L #EXTLAB,D1 ;I0 error is flagged
MOVEQ.L #LABEL,D1 s WORKS

Temporary solution:

SRB detail reports as of 04/29/87 Page: 21
Do not use external variables in the "quick" type instructions.

You can possibly get around this by “including" the symbol

(via an include file) rather than declaring it external.

Signed off 04/29/87 in release 401.20

Number: D200066605 Product: 68000 ASSEMB 300 648455004 01.10

One-line de§cription: .
EXT pseudo is not supported as stated in the Assembler reference manual.

Problem:

The Assembler/Linker Reference Manual states that either EXT
or EXTERNAL may be used when declaring an external label.
The 68000 assembler only accepts EXTERNAL.

Temporary solution:
Always use EXTERNAL.

Signed off 04/29/87 in release 401.20

- -8

SRB detail reports as of 04/29/87 Page: 22
Number: 1650024349 Product: 68000 ASSEMB 500 64845S001 01.50

One-line description: .)
Assembler reports error if file is specified with full path name.

Problem:
If you try to assemble a file and you specify the file’s full
path name the assembler reports:
Cannot recover from errors on line 0.
asm /users/dave/file will cause the error.
Temporary solution: X
Work in the same directory as the file is located in. In other
words, assemble the file with its relative path name.

Signed off 04/239/87 in release 101.60

Number: 50001367396 Product: 68000 ASSEMB
Keywords: ASSEMBLER

500 648455001 01.40

One-line description: .
LR error flagged for correct offset using PC+INDEX+OFFSET mode of addr.

Temporary solution:
Temporary solution:

"68000"

ORG OFFH

MOVE TABLE- ($+2) [PC,D0],D1
TABLE DS 1

Signed off 04/29/87 in release 101.60

Number: D200061697 Product: 68000 ASSEMB 500 648455001 01.40

One-line description: . .
External labels cannot be used in the “quick" type instructions.

Problem:

You cannot use an external label as data in the "quick" type instr-
uctions. If you have two files:

file: declare

“68000"

GLB EXTLAB
EXTLAB EQU 4

file: refer

"68000"
EXTERNAL EXTLAB

SRB detail reports as of 04/29/87 Page: 23
LABEL EQU 7

MOVEQ.L #EXTLAB,D1 ;10 error is flagged
MOVEQ.L #LABEL,D1 ;WORKS

Temporary solution:

Do not use external variables in the "quick" type instructions.
You can possibly get around this by "including" the symbol

(via an include file) rather than declaring it external.

Signed off 04/29/87 in release 101.60

Number: D200062851 Product: 68000 ASSEMB
Keywords: LINKER

500 648455001 01.10

One-line description: .
"Garbage" characters appear in load address statement with linker.

Signed off 04/29/87 in release 101.60

Number: D200066583 Product: 68000 ASSEMB 500 64845S001 01.50

One-line description:
EXT pseudo is not supported as stated in the Assembler reference manual.

Problem:

The Assembler/Linker Reference Manual states that either EXT
or EXTERNAL may be used when declaring an external label.
The 68000 assembler only accepts EXTERNAL.

Temporary solution:
Always use EXTERNAL.

Signed off 04/29/87 in release 101.60

SRB detail reports as of 04/29/87 Page: 24

Number: D200061705 Product: 68000 ASSEMB VAX 648455003 01.50

One-line description:
External labels cannot be used in the "quick" type instructions.

Problem:
You cannot use an external label as data in the "quick" type instr-

uctions. If you have two files:
file: declare
"“68000"

GLB EXTLAB
EXTLAB EQU 4

file: refer

“68000"
EXTERNAL EXTLAB

LABEL EQU 7
MOVEQ.L #EXTLAB,D1 ;10 error is flagged
MOVEQ.L #LABEL,D1 ;sWORKS

Temporary solution:

Do not use external variables in the "quick" type instructions.
You can possibly get around this by “including” the symbol

(via an include file) rather than declaring it external.

Signed off 04/29/87 in release 301.80

Number: D200066537 Product: 68000 ASSEMB VAX 648455003 01.70

One-line description: .
EXT pseudo is not supported as stated in the Assembler reference manual.

Problem:

The Assembler/Linker Reference Manual states that either EXT
or EXTERNAL may be used when declaring an external label.
The 68000 assembler only accepts EXTERNAL.

Temporary solution:
Always use EXTERNAL.

Signed off 04/29/87 in release 301.80

SRB detail reports as of 04/29/87 Page:
Number: 5000142331 Product: 68000 C 64819

One-line description:)
Pass three error when an integer is assigned to a float.

Problem:

25
01.08

Compiler generates ERROR 1113 when a condition expression containing

real and integer numbers is used.

nen
“processor"

F() {
float f1,f2,f3;
fi1=10;

f2=20;

)f3- (f1<.5) ? 1 : f2;

This program will also cause problems on the 6800 and 6809 cross-
compilers.

Temporary solution: .
In the terenary expression cast the integer ’'1’ to a float or
use 1.0.

Signed off 04/29/87 in release 901.10

/* This line is flagged with error 1113, */

Number: 5000142448 Product: 68000 C 64813

One-line description:
Compiler is not flagging an undefined structure.

Problem:

The customer reports that the program listeq below causes the
compiler to hang. I could not duplicate this problem, but, the
compiler incorrectly reported no errors.

won
"processor"

main() {

int i;
struct undefined

}

al10][20];

The compiler should report that the type ’undefined’ is undefined.

Temporary solution:
No temporary solution.

Signed of f 04/29/87 in release 901.10

01.08

- -8

SRB detail reports as of 04/29/87 Page: 26
Number: 5000161335 Product: 68000 C 64819 01.09

One-line description: X
Illegal forward reference flagged for legally defined string.

“processor”
char badstring[] = {"Wont work"};
char string[] = "works fine";
Tain(]

int i;

i = sizeof(string);

i = sizeof(badstring); /* Error 117 flagged. */

Temporary solution: L . .
Eliminate the braces when initializing a string.

wee
“processor"

char string[] = "do it this way";
main()
{ 3 s

int i;

i = sizeof(string);

Signed off 04/29/87 in release 301.10

Number: D200010124 Product: 68000 C) 64819 00.56
Keywords: PASS 1

One-line description: . .
Unsigned integers treated as signed when subtracted from pointers

Problem:
When an unsigned short or integer is used as an offset to a pointer, the
unsigned will be treated as a signed when doing pointer calculations.
Offsets large enough to set the sign bit will be interpreted as a
negative offset when the offset is subtracted from a pointer. The
following code exibits the problem if offset is greater than 32767 dec.
unsigned offset;
struct { int a,b,c;

} *ptr;
unsigned long x;

main ()

SRB detail reports as of 04/239/87 Page: 27

{
X = ptr - offset; /* The compiler will generate code negating */
/* offset for the "-" operation. */

Temporary solution: .
Cast the offset in the expression as the next larger integer.
ie. x = ptr - (unsigned longloffset;

Signed off 04/29/87 in release 901.10

Number: D200032029 Product: 68000 C 64819 01.07
Keywords: CODE GENERATOR

One-line description:
32 bit value is treated as 64 bit value w/o first extending.

Problem: A R
In the following C source line the compiler treats the variables as

32 bit values, then in the middle of the compare it treats them as
64 bit values without converting them.

age
"68000"
main()
float temp;
) temp = ((temp >= 0) ? (temp): (-temp));

Temporary solution: .
Use the alternate "if then" conditional expression.

“en
"68000"
?ain()
float temp;
if (temp <0)
temp = -temp;

Signed off 04/29/87 in release 901.10

Number: D200033324 Product: 68000 C 64819 01.07

One-line description: .
Defining a constant hex number typecast as a pointer may fail.

Problem:
The following generates incorrect code:

wen
“68000"

typedef char byte;
struct read {

SRB detail reports as of 04/29/87 Page: 28
byte int_1;
byte int_2;
byte int_3;
struct write {
byte wrt_1;
byte wrt_2;
byte wrt_3;

)

union device {
struct read rd;
struct write wr;

#dgf%?é PNT ((union device *) 0x80000)
main
PNT->wr.wrt_1 = 1i; /*Generates MOVE.B #00001H,00000H instead of
MOVE.B #00001H,080000H*/

This error only occurs when a value is assigned to the first member of
either of the structures. It also occurs 1if PNT is defined as a
pointer to a structure, like this:

#define PNT ((struct read *) 0x80000)

Temporary solution:
There are two possible temporary solutions to this problem. The first

is to pad the structures with a dummy variable in the first field.
struct read {

byte dummy;
byte int_1;
byte int_2;
byte int_3;

»

The second possibility is to use a temporary variable of the appropriate
type. ~
main() {

byte *temp;

temp = PNT;

temp->wr.wrt_1 = 1;

Signed off 04/29/87 in release 901.10

Number: D200033555 Product: 68000 C 64819 01.07

One-line description: . . .
Code generated for return statement inside nested if’s is incorrect.

Problem:

In the example below, zero can never be returned due to the code gener-
ated (it also could not be generated due to logic of the if statements).
In the expanded listing, the code for return zero branches back to the
top of the "for" loop rather than exiting.

ween

“68000"

main()

SRB detail reports as of 04/29/87 Page: 29

int i;
for (i=0; ic<i+1; i++)
if (i>6)
it (i>4)
return(1)
else return(0) /* Code generated causes branch to
} top of for loop rather than exiting

function. */

Temporary solution: .
Enclose the body of the first if statement in braces.
nen

"68000"
Tain()
int i;
for (i=0; i< i+1; i++)
if (i>6) {
if (i>4)
return(i);

else return(0);
}
Signed off 04/29/87 in release 901.10
Number: D200033597 Product: 68000 C 64819 01.07

Keywords: PASS 1

One-line description: . .
Cannot define a function which returns a pointer to a function.

Problem:
Unable to define a function which returns a pointer to another function.

wew
“68000"

{* x()) (); /* Compiler states "Function cannot return a function */
main(){}

Signed off 04/29/87 in release 901.10

Number: D200036905 Product: 68000 C 64819 01.07

One-line description:
Nested switch statements may generate infinite loop

Problem:

If you have nested switch statements and do not terminate the inner
switch’s cases with breaks the compiler generates an infinite loop.

- -8

SRB detail reports as of 04/29/87 Page: 30

wer
"68000"

main(){
int ¢
switch(c) {
case 1: break;
default: switch(c){
case 2: break;

/* A break is needed here because the break
above for ’case 2’ generates a jump to
this location. If a break is not placed
here it falls into the code for

, evaluating ’'case 1’ above. ¥*/

Temporary solution:
Close default statement with a bresk.

*68000"
main(){ |
int ¢;
switch(c){
casel: break;
default: switch(c){
case 2: break;
break;
}
}
Signed off 04/23/87 in release 901.10
Number: D200037358 Product: 68000 C 64819 01.07

Keywords: PASS 1

One-line description: . .
wrong value calculated when scientific notation is used.

Problem:

The compiler is calculating incorrect values when scientific notation
is used.

e

"Any Processor"

main(){
unsigned long num;

num = 50.0E+6;
num = 50000000;

/* Wrong value assigned. */

) /* Correct value assigned */

Temporary solution:

SRB detail reports as of 04/29/87 Page: 31

Use the long hand notation.

e
“Processor"
main(){
unsigned long num;
) num = 50000000;
Signed off 04/29/87 in release 901.10
Number: D200052423 Product: 68000 C 64819 01.08

One-line description: 3 X
Compiler loads return value in two different locatations.

Problem:
The location for the return values in the below program differ.
This problem is unique to the 68000 C compiler on the 64000.

wen
"68000"

int a,b,x[5],y;
main() {
int z;
return(1);
/* Problem statement. Generates code for different return location.*/

if ((a=((x[b]-2))c 0 2 -1:2)8&(3<4))
return(0);

}

Temporary solution:
Reduce the complexity of the ’if’ statement.
won

“68000"
int a,b,x(5],y;
main()

int z;

a=(x[b]-2)<0?-1:0 ;

if(a && (3¢<4))
return(1);

SRB detall reports as of 04/29/87 Page: 32

Signed off 04/29/87 in release 901.10

Number: D200053173 Product: 68000 C 64819 01.08

One-line description:
Sign extension. done when integer type cast to an unsigned long.

Temporary solution: .
You can either typecast the integer to an "unsigned int” or
not typecast it at all.

main() {
int i;
unsigned long ul;
i = 0x8000;
ul = i;
}

Signed off 04/29/87 in release 901.10

Number: D200055921 Product: 68000 C 64819 01.08
Keywords: PASS 3

One-line description: . .
Incrementing structure member results in incomplete code generation.

Problem:
Dereferencing a pointer within a structure and trying to increment
that pointer causes incomplete code to be generated.

wpn
"68000"

main() {
struct {

int *i *j;
Yp;
{(double*) (p->j))++;

J++
((double*) (p->j)) +
(double*) (p->j) = (

}
Temporary solution:

Define a temporary variable, increment the temporary and then
reassign to the original pointer.

/* Incomplete code is generated. The */
1; /* The pointer is not incremented. */
o]

double*) (p->j) + 1;

e

"68000"

SRB detail reports as of 04/29/87 Page: 33

main() {
struct {
int *i %3,
} *p;

double *temp;

temp = (double*)(p-j);

temp++;

(double*) (p->j) = temp;
}

Signed off 04/29/87 in release 3901.10

Number: D200056002 Product: 68000 C 64819 01.08

One-line description:
$INIT_ZEROES$ may affect the addressing mode used for accessing var’s.

Problem:

Turning $INIT_ZEROES OFF$ can change the way variables are
accessed.

wer
“68000"

static int a;
static int c;

$FARS
extern b;
f£()

a=b;

If $INIT _ZEROES OFF$ is inserted above the declaration for variable

‘a’, ’a’ will be accessed with a different address1ng mode. In the
above program 'a’ is accessed with the AS addressxng mode, however,
if $INIT_ZEROES OFF$ is inserted then ’a’ is accessed with the FAR
addressing mode.

Note: There appears to be an interaction between the directive
INIT ZEROES and the keyword ’static’. If the above program is
written as

wge
“68000"

$INIT_ZEROES OFF$
int a;
int ¢;
FAR

SRB detail reports as of 04/29/87 Page: 34

extern int b;
£()

{

a=b;

}
the variable ’a’ is accessed properly.

Temporary solution;
No temporary solution.

Signed off 04/29/87 in release 901.10

Number: D200063420 Product: 68000 C 64819 01.09

One-line description:

C Function returning large (>2bytes) result can’t be called as procedure
Problem:

Functions returning large (>2byte) result cannot be called as

procedures .

Signed off 04/23/87 in release 901.10

Number: D200065144 Product: 68000 C 64819 01.09

One-line description: X
Compiler aborts with too many errors in pass 1.

Problem: .
The following file will abort in Pass 1 and will report that it
cannot recover from errors.

wen
“"processor"

extern ident_p();

char *curr_proc_name(pid_ptr)
unsigned long pid;

{ char *proc_pcb;
long dummy=0;
char status;

if (ident_p(&dummyl,&proc_pcb,&status))
return 0L;

It is the &dummyl which causes the abort. If you do not pass
the parameter as an address and just misspell the name the
correct error message is generated.

Signed off 04/29/87 in release 3901.10

SRB detail reports as of 04/29/87 Page: 35

Number: D200051458 Product: 68000 C 300 648195004 01.00

One-line description:
Defining a constant hex number typecast as a pointer may fail.

Problem: |
The following generates incorrect code:

wen

"68000"
typedef char byte;
struct read {

byte int_1;
byte int_2;
byte int_3;
struct write {
byte wrt_1;
byte wrt_2;
?yte wrt_3;

’
union device {
struct read rd;
struct write wr;

#dgf%?é PNT ((union device *) 0x80000)
main
PNT->wr.wrt_1 = 1; /*Generates MOVE.B #00001H,00000H instead of
MOVE.B #00001H,080000H*/

This error only occurs when a value is assigned to the first member of
either of the structures. It also occurs if PNT is defined as a
pointer to a structure, like this:

#define PNT ((struct read *) 0x80000)

Temporary solution: X .
There are two possible temporary solutions to this problem. The first

is to pad the structures with a dummy variable in the first field.
struct read {

byte dummy;
byte int_1;
byte int_2;
?yte int_3;

The second possibility is to use a temporary variable of the appropriate
type.
main() {

byte *temp;

temp = PNT;

temp-o>wr.wrt_1 = 1;

Signed off 04/29/87 in release 401.20

SRB detail reports as of 04/29/87 Page: 36

Number: D200051920 Product: 68000 C 300 648195004 01.00

One-line description:
Nested switch statements may generate infinite loop

Problem:

If you have nested switch statements and do not terminate the inner
switch’s cases with breaks the compiler generates an infinite loop.

e

"68000"

main(){
int c;
switch(c) {
case 1: break;
default: switch(c){
case 2: break;

/* A break is needed here because the break
above for ’case 2’ generates a jump to
this location. If a break is not placed
here it falls into the code for

) evaluating ’case 1’ above. ¥/

Temporary solution:
Close default statement with a break.

aon
“68000"
main(){
int c;
switch(c){
casel: brgak;
default: switch(c){
case 2: break;
) break;

}
Signed off 04/29/87 in release 401.20

Number: D200059493 Product: 68000 C 300 648195004 01.00
One-line description: . .
Line # labels emitted for #included files confuse analyzers

Problem:

Line # labels emitted for #include files'age ambiguous = there is no
indication to analysis tools what the original source file is, so
source referencing does not work properly.

In addition, duplicate symbols in any file are gebatably errors. As
with most symbolic software, EDBUILD will be confused with this
behavior.

SRB detail reports as of 04/29/87 Page: 37
Signed off 04/29/87 in release 401.20

Number: D200059733 Product: 68000 C 300 648195004 01.00

One-line description:
Compiler is not flagging an undefined structure.

Problem:

The customer reports that the program listed below causes the
compiler to hang. I could not duplicate this problem, but, the
compller incorrectly reported no errors.

wgw
"processor"

main() {

int i
struct undefined a[10][20];

}

The compiler should report that the type ’undefined’ is undefined.

Temporary solution:
No temporary solution.

Signed of f 04/29/87 in release 401.20

Number: D200063453 Product: 68000 C 300 648195004 01.10

One-line description:
C Function returning large (>2bytes) result can’t be called as procedure

Problem:

Functions returning large (>2byte) result cannot be called as
procedures.

Signed of f 04/29/87 in release 401.20

Number: D200064634 Product: 68000 C 300 648195004 01.10
One-line description:
Byte parameters are pushed onto the stack incorrectly.

Problem:

When passing a byte parameter it is not pushed onto the stack as
the manual specifies it will be. The Pascal and C manual specify
that a byte parameter will be pushed in the upper byte of the word
which is pushed on the stack. The C compiler does a Move.W and
pushes the char in the lower byte. The pascal compiler does the
push correctly.

uen
"68000"

SRB detail reports as of 04/29/87 Page:

char called_func();
calling_func() {

char passed_parm;
passed_parm = ’'b’;

called_func(passed_parm);
char called_func(parm)
%har parm;

char local_var;

local_var = parm;

Signed off 04/29/87 in release 401.20

38

Number: D200066035 Product: 68000 C 300 64813S004

One-line description: .
Illegal forward reference flagged for legally defined string.

grgblem:
"grocessor"
char Dbadstring(] = {"Wont work"};
char string[] = "works fine";
main()

int i;

i = sizeof(string);

i = sizeof(badstring); /* Error 117 flagged. */

Temporary solution: . .
Eliminate the braces when initializing a string.

wen
"processor"

char string[] = "do it this way";
main()
int i;

i = sizeof(string);

Signed off 04/239/87 in release 401.20
- -8

01.10

SRB detail reports as of 04/29/87 Page:

39

Number: D200066415 Product: 68000 C 300 6548195004

One-line description: |
No error message for unimplemented processor name,

Problem:
Specifying an unimplemented processor name in a C source file
will cause the compiler to go from pass 1 into C Nocode without

an error message. The listing file also does not report the
error,

Signed off 04/29/87 in release 401.20

01.10

SRB detall reports as of 04/29/87 Page:

Number: 1650017491 500 648135001

Product: 68000 C

One-1line description: L.
List file contains control characters in a specific case.

Problem:

The following program will cause control characters to
be inserted in the listing file. The lines which contain
preprocessor substitutions will be effected.

g
"processor"

#define varone OXFE
#define vartwo OXFF
extern int direct_reg;

write_var()

40
01.50

if (direct_reg == vartwo) /* Add statement and error goes */
/* away. */

if (direct_reg != varone)

}

As noted in the comment above if the syntax error is removed the

problem goes away.

Signed off 04/29/87 in release 101.60

Number: D200033530 Product: 68000 C 500 64819S001 01.10

One-line description: . .
Defining a constant hex number typecast as a pointer may fail.

Problem: .
The following generates incorrect code:

age
“68000"

typedef char byte;
struct read {

byte int_1;
byte int_2;
byte int_3;
struct write {
byte wrt_1;
byte wrt_2;
byte wrt_3;

3 ’ .
union device {
struct read rd;
struct write wr;

SRB detail reports as of 04/29/87 Page: 41

};
#define PNT ((union device *) 0x80000)
main()
PNT->wr.wrt_1 = 1; /*Generates MOVE.B #00001H,00000H instead of
MOVE.B #00001H,080000H*/

This error only occurs when a value is assigned to the first member of
either of the structures. It does not occur if PNT is defined as a
pointer to a structure, like this:

#define PNT ((struct read *) 0x80000)

Temporary solution:
There are two possible temporary solutions to this problem. The first

is to pad the structures with a dummy variable in the first field.
struct read {

byte dummy;
byte int_1;
byte int_2;
byte int_3;

’

The second possibility is to use a temporary variable of the appropriate
type.
main() {

byte *temp;

temp = PNT;

temp->wr.wrt_1 = 1;

Signed off 04/29/87 in release 101.60

Number: D200040329 Product: 68000 C 500 648195001 01.20
One-line description:
Nested switch statements may generate infinite loop

Problem:

If you have nested switch statements and do not terminate the inner
switch’s cases with breaks the compiler generates an infinite loop.
wpn

"68000"

main(){
int ¢ :
switch(c) {
case 1: break;
default: switch(c){
case 2: break;

/* A break is needed here because the break
above for ’case 2’ generates a jump to
this location. If a break is not placed
here it falls into the code for

) evaluating ’case 1’ above. */

Temporary solution:

SRB detail reports as of 04/29/87 Page: 42
Close default statement with a break.
b
"68000"
main(){
int ¢;
switch(c){
casel: break;
default: switch(c){
case 2: break;
) break;

}
Signed off 04/29/87 in release 101.60

Number: D200059717 Product: 68000 C 500 648195001 01.40

One-line description:
Compiler is not flagging an undefined structure.

Problem:

The customer reports that the program listed below causes the
compiler to hang. I could not duplicate this problem, but, the
compiler incorrectly reported no errors.

nen
"processor”

main() {

int i
struct undefined a[10]1[20];

}

The compiler should report that the type ’undefined’ is undefined.

Temporary solution:
No temporary solution.

Signed off 04/29/87 in release 101.60

Number: D200063438 Product: 68000 C 500 648195001 01.50

One-line description:
C Function returning large (>2bytes) result can’t be called as procedure

Problem:

Functions returning large (>2byte) result cannot be called as
procedures.

Signed off 04/29/87 in release 101.60

SRB detail reports as of 04/29/87 Page: 43

Number: D200064618 Product: 68000 C 500 6481395001 01.50

One-line description: .
Byte parameters are pushed onto the stack incorrectly.

Problem:

When passing a byte parameter it is not pushed onto the stack as
the manual specifies it will be. The Pascal and C manual specify
that a byte parameter will be pushed in the upper byte of the word
which is pushed on the stack. The C compiler does a Move.W and
pushes the char in the lower byte. The pascal compiler does the
push correctly.

"68000"
char called_func();
calling_func() {

char passed_parm;
passed_parm = 'b’;

called_func(passed_parm);
char called_func(parm)
char parm;

char local_var;

local_var = parm;

Signed off 04/29/87 in release 101.60

Number: D200066013 Product: 68000 C 500 648195001 01.50

One-line description: .

Illegal forward reference flagged for legally defined string.
Problem:

wen

“processor"
char badstring[] = {"Wont work"};
char string[] = "works fine";
?ain()

int i;

i = sizeof(string);

i = sizeof(badstring); /* Error 117 flagged. */

Temporary solution:

SRB detail reports as of 04/29/87 Page: 44
Eliminate the braces when initializing a string.
e
"processor"
char string[] = "do it this way";
main()
{ int i;
i = sizeof(string);
Signed off 04/29/87 in release 101.60
Number: D2000663939 Product: 68000 C 500 648195001 01.50

One-line description:)
No error message for unimplémented processor name.

Problem:

Specifying an unimplemented processor name in a C source file
will cause the compiler to go from pass i1 into C Nocode without
an error message. The listing file also does not report the
error.

Signed off 04/23/87 in release 101.60

SRB detail reports as of 04/29/87 Page: 45

Number: 1650019109 Product: 68000 C VAX 648195003 01.80

One-line description:
Listing file for submitted programs is incomplete.

Problem:

The listing file for the included files is incomplete. The
output to standard error is more descriptive than the
listing file.

Signed off 04/29/87 in release 301.90

Number: 5000141127 Product: 68000 C VAX 648195003 01.00

One-line description: L
Error message are not consistient.

Problem:

If you have a symbol defined twice (it must be defined in an include
file one of the times) different error messages will be flagged
depending on the compiler options specified.

wee
"processor"”

#define byte char
#define byte int

main() {
int i;

i =5;

}

/*Actually defined in an included file. */
/* Defined right in source file. */

If the above program is compiled using the nocode option you will get

a cannot recover from error message and may (dependlng on the processor)
get warning 513. If nocode is not specified the warning 513 is correct-
ly flagged.

Signed off 04/29/87 in release 301.90

Number: D200033548 Product: 68000 C VAX 6481395003 01.20

One-line description:
Defining a constant hex number typecast as a pointer may fail.

Problem:
The following generates incorrect code:

e
“68000"

typedef char byte;
struct read {

byte int_1;
byte int 2
byte int_3;

SRB detail reports as of 04/29/87 Page: 46

’
struct write {
byte wrt_1;
byte wrt_2;
byte wrt_3;

’
union device {
struct read rd;
struct write wr;

#dgf%?é PNT ((union device *) 0x80000)
main
PNT->wr.wrt_1 = 1; /*Generates MOVE.B #00001H,00000H instead of
MOVE.B #00001H,080000H*/

This error only occurs when a value is assxgned to the first member of
either of the structures. It does not occur if PNT is defined as a
pointer to a structure, like this:

#define PNT ((struct read *) 0x80000)

Temporary solution:

There are two possible temporary solutions to thxs problem. The first
is to pad the structures with a dummy variable in the first field.
struct read {

byte dummy;
byte int_1;
byte int_2;
byte 1nt 3;

’

The second possibility is to use a temporary variable of the appropriate
type.
main{) {

byte *temp;

temp = PNT;

temp->wr.wrt_1 = 1;

Signed off 04/29/87 in release 301.90

Number: D200040337 Product: 68000 C VAX 648195003 01.20
One-line descrlpt1on
Nested switch statements may generate infinite loop

Problem:

If you have nested switch statements and do not terminate the inner
switch’s cases with breaks the compiler generates an infinite loop.
won .

"68000"

main(){
int c;
switch(c) {
case 1: break;
default: switch(c){
case 2: break;

- -8

SRB detail reports as of 04/23/87 Page:

47

}
/* A break is needed here because the break

above for ’case 2’ generates a jump to

this location. If a break is not placed

here it falls into the code for
evaluating ’case 1’ above.

}

Temporary solution:
Close default statement with a break.

“68000"
main(){ |
int ¢c;
switch(c){
casel: break;
default: switch(c){
case 2. break;
break;
}
}

Signed off 04/23/87 in release 301.90

Number: D200059725 Product: 68000 C

One-line description:
Compiler is not flagging an undefined structure.

VAX 648195003

Problem:

The customer reports that the program listed below causes the
compiler to hang. I could not duplicate this problem, but, the
compiler incorrectly reported no errors.

wen

"processor"

main() {

int i
struct undefined a[10][20];

}

The compiler should report that the type ’undefined’ is undefined.

Temporary solution:
No temporary solution.

Signed off 04/29/87 in release 301.90

01.50

SRB detail reports as of 04/29/87 Page: 48
Number: D200063446 Product: 68000 C VAX 64819S003 01.80

One-line description:
C Function returning large (>2bytes) result can’t be called as procedure

Problem:

Functions returning large (>2byte) result cannot be called as
procedures.

Signed off 04/29/87 in release 301.90
Number: D200064626 Product: 68000 C

VAX 648195003 01.80

One-line description: .
Byte parameters are pushed onto the stack incorrectly.

Problem:

When passing a byte parameter it is not pushed onto the stack as
the manual specifies it will be. The Pascal and C manual specify
that a byte parameter will be pushed in the upper byte of the word
which is pushed on the stack. The C compiler does a Move.W and
pushes the char in the lower byte. The pascal compiler does the
push correctly.

wge
“68000"

char called_func();
calling_func() {

char passed_parm;
passed_parm = 'b’;

called_func(passed_parm);
char called_func(parm)
%har parm;
char local_var;
local_var = parm;
Signed off 04/29/87 in release 301.90
Number: D200066027 Product: 68000 C

VAX 648195003 01.80

One-line description:
Illegal forward reference flagged for legally defined string.

Problem:
we
"processor"

char badstring[] = {"Wont work"};

- -8

SRB detail reports as of 04/29/87 Page: 49
char stringl[] = "works fine";
main()
{ int i;
i = sizeof(string);
i = sizeof(badstring); /* Error 117 flagged. */
Temporary solution:
Eliminate the braces when initializing a string.
L .
processor
char string[] = "do it this way";
main()
int i;
i = sizeof(string);
Signed off 04/29/87 in release 301,90
Number: D200066407 Product: 68000 C VAX 648195003 01.80

One-line description:
No error message for unimplemented processor name.

Problem:

Specxfylng an unimplemented processor name in a C source file
will cause the compiler to go from pass 1 into C Nocode without

an error message.
error.

Signed of f 04/29/87 in release 301.90

The listing file also does not report the

SRB detail reports as of 04/29/87 Page: 50
Number: 1650019406 Product: 6809 C 64822 01.07

One-line description:
Return value of function call is being stored at loc. EMPTYSET.

Problem:
Returning from a function the compiler stores the result
to location EMPTY_SET_.

wer
"6809"

$USER_DEFINED$
struct { char value[4]; } typedef lint;
lint funci()
lint x;
return(x);
main()
lint y;

y = funcl;

Return value should be stored at location ’y’. Instead it is

stored at EMPTY_SET_.
Signed off 04/29/87 in release 201.08
Number: D200010157 Product: 6809 C 64822 00.06

Keywords: PASS 1

One-line descrlptlon'
Unsigned integers treated as signed when subtracted from pointers

Problem:
When an unsigned short or integer is used as an offset to a poxnter the
unsigned will be treated as a sxgned when doing pointer calculations.
Offsets large enough to set the 51gn bit will be xnterpreted as a
negatlve offset when the offset is subtracted from a pointer. The
following code exibits the problem if offset is greater than 32767 dec.
unsigned offset;
struct { int a,b,c;

} *ptr;
unsigned long X;

main ()
{

X = ptr - offset; /* The compiler will generate code negating :5

/* offset for the "-" operation.

Temporary solution:

SRB detail reports as of 04/29/87 Page: 51

Cast the offset in the expression as the next larger integer.
ie. x = ptr - (unsigned long)offset;

Signed off 04/29/87 in release 201.08

Number: D200011387 Product: 6809 C 64822 . 00.56
Keywords: PASS 1

One-line description:
Functions invoked via function pointers may JSR the wrong location

Problem:

When the typedef statement is used to define pointers to functions,
and this pointer type is used in a cast of a variable array to invoke
code stored in that array, program execution may transfer to the wrong
location. For example, in the following code the simple call to
code_array fails while the call and assignment to p works correctly:

typedef int(*PFI)(); /* PFI a pointer to int functions */
int code_array{100]; /* array contains code */
PFI p; /* p a pointer of type PFI */

pfibug()
(*((PFI) code_array))(); /* fails in JSR to code_array */
(*(p=(PFI)code_array)) (}; /* assignment and JSR successful */

Temporary solution:

Set up a dummy variable and perform an assignment to it when doing
this type of operation.

Signed off 04/29/87 in release 201.08

Number: D200040402 Product: 6809 C 64822 01.05

One-line description: .
Nested switch statements may generate infinite loop

Problem:

If you have nested switch statements and do not terminate the inner
switch’s cases with breaks the compiler generates an infinite loop.
o

"68000"

main(){
int c;
switch(c) {
case 1: break;
default: switch(c){
case 2: break;

}

/* A break is needed here because the break
above for ’case 2’ generates a jump to
this location. If a break is not placed
here it falls into the code for

- -8

SRB detall reports as of 04/29/87 Page: 52

evaluating ’case 1’ above., */

}

Temporary solution:
Céose default statement with a break.

“68000"
main(){ |
int «¢;
switen(c){
casel: break;
default: switch(c){
case 2: break;
break;
}
}
Signed off 04/29/87 in release 201.08
Number: D200059824 Product: 6809 C 64822 01.06

One-line description: .
Compiler is not flagging an undefined structure.

Problem:

The customer reports that the program listeq below causes the
compiler to hang. I could not duplicate this problem, but, the
compiler incorrectly reported no errors.

“ce
"processor”

main() {

int i;
struct undefined a[10]1[20];

}

The compiler should report that the type ’undefined’ is undefined.

Temporary solution;
No temporary solution.

Signed off 04/29/87 in release 201.08

Number: D200063537 Product: 6809 C 64822 01.07

One-line description:
C Function returning large (>2bytes) result can’t be called as procedure

Problem:
Functions returning large (>2byte) result cannot be called as
procedures.

- -8

SRB detail reports as of 04/29/87

Signed off 04/29/87 in release 201.08

Page:

53

Number: D200066126 Product: 6808 C 64822

One-line description:

Illegal forward reference flagged for legally defined string.

Problem:
“cn
“processor”

char badstring[] = {"Wont work"};
char string[] = "works fine";

main()
{ .

int i;

i = sizeof(string);

i = sizeof(badstring); /* Error 117 flagged. */

Temporary solution:
Eliminate the braces when initializing a string.

age
“processor"

char string(] = "do it this way";

i = sizeof(string);

Signed off 04/29/87 in release 201.08

01.07

SRB detail reports as of 04/29/87 Page: 54

Number: D200051953 Product: 6809 C 300 648225004 01.00
One-line description:
Nested switch statements may generate infinite loop

Problem:

If you have nested switch statements and do not terminate the inner
switch’s cases with breaks the compiler generates an infinite loop.
“ow

“6808"

main(){
int c;
switch(c) {
case 1:

break;
default:

switch(c){
case 2: break;

/* A break is needed here because the break
above for ’case 2' generates a jump to
this location. If a break is not placed
here it falls into the code for
evaluating ’case 1’ above. */

}

Temporary solution: .
Close default statement with a break.

agn
“6809"
main(){
int «¢c;
switch(c){
casel: break;
default: switch(c)(
) case 2: break;
break;
}
}

Signed off 04/29/87 -in release 401.20
Number: D200059857 Product: 68038 C

300 648225004 01.00

One-line description:
Compiler is not flagging an undefined structure.

Problem:

The customer reports that the program listeq below causes the
compiler to hang. I could not duplicate this problem, but, the
compiler incorrectly reported no errors.

wen
"processor"

main() {

SRB detail reports as of 04/29/87 Page: 55

int i,
struct undefined a(10](20];
}

The compiler should report that the type ’undefined’ is undefined.

Temporary solution:
No temporary solution.

Signed off 04/29/87 in release 401.20

Number: D200063560 Product: 6809 C 300 648225004 01.10

One-line description:
C Function returning large (>2bytes) result can’t be called as procedure

Problem:

Functions returning large (>2byte) result cannot be called as
procedures.

Signed off 04/29/87 in release 401.20

Number: D200066159 Product: 6809 C 300 648225004 01.10

One-line description:
Illegal forward reference flagged for legally defined string.

Problem:
woe
“processor”

char badstring[] = {"Wont work"};
char string[) = “"works fine";
main()

int i;

i = sizeof(string);

i = sizeof(badstring);

}

Temporary solution:
Eliminate the braces when initializing a string.

/* Error 117 flagged. */

wen
“processor”

char stringl] = "do it this way";
main()

int i;

SRB detail reports as of 04/29/87 Page: 56
i = sizeof(string);
Signed off 04/28/87 in release 401.20
Number: D200066498 Product: 6809 C 300 648225004 01.10

One-line description:
No error message for unimplemented processor name.

Problem:
Spec1fy1ng an unxmplemented processor name in a C source file
will cause the compiler to go from pass 1 into C Nocode without

an error message. The listing file also does not report the
error.

Signed off 04/29/87 in release 401.20

SRB detail reports as of 04/23/87 Page: 57
Number: D200059832 Product: 6809 C 500 648225001 01.20

One-line description:
Compiler is not flagging an undefined structure.

Problem:

The customer reports that the program listed below causes the
compiler to hang. I could not duplicate this problem, but, the
compiler incorrectly reported no errors.

wen
"processor"”

main() {

int i;
struct undefined a[10][20];

}

The compiler should report that the type ’undefined’ is undefined.

Temporary solution:
No temporary solution.

Signed off 04/29/87 in release 101.40

Number: D200063545 Product: 68039 C 500 648225001 01.30

One-line description:
C Function returning large (>2bytes) result can’t be called as procedure

Problem:
Functions returning large (>2byte) result cannot be called as
procedures.

Signed off 04/29/87 in release 101.40

Number: D200066134 Product: 6809 C 500 648225001 01.30

One-line description: X .
Illegal forward reference flagged for legally defined string.

Problem:
npn
"processor”

char badstring(] = {"Wont work"};
char string(] = "works fine";
main()

int i;

i = sizeof(string);

SRB detail reports as of 04/23/87 Page: 58
i = sizeof(badstring); /* Error 117 flagged. */

Temporary solution:

Eliminate the braces when initializing a string.

. .

processor

char string[] = "do it this way";

main()
int i;
i = sizeof(string);

Signed off 04/29/87 in release 101.40

Number: D200066472 Product: 6809 C 500 648225001 01.30

One-line description: |
No error message for unimplemented processor name.

Problem:

Specifying an unimplemented processor name in a C source file
will cause the compiler to go from pass 1 into C Nocode without
an error message. The listing file also does not report the
error.

Signed off 04/29/87 in release 101.40

SRB detail reports as of 04/29/87 Page: 59
Number: D200059840 Product: 6803 C VAX 648225003 01.20

One-line description:
Compiler is not flagging an undefined structure.

Problem:

The customer reports that the program listed below causes the
compiler to hang. I could not duplicate this problem, but, the
compiler incorrectly reported no errors.

g
“processor"

main() {

int i; .
struct undefined a[10][20];

}

The compiler should report that the type ’undefined’ is undefined.

Temporary solution:
No temporary solution.

Signed off 04/29/87 in release 301.60

Number: D200063552 Product: 68039 C VAX 648225003 01.50

One-line description:
C Function returning large (>2bytes) result can’t be called as procedure

Problem:

Functions returning large (>2byte) result cannot be called as
procedures.

Signed off 04/29/87 in release 301.60

Number: D200066142 Product: 6808 C VAX 648225003 01.50

One-line description: A

Illegal forward reference flagged for legally defined string.
Problem:

wgn

“processor”
char badstring(] = {"Wont work"};
char string[] = "works fine";
Tain()

int i;

i = sizeof(string);

SRB detail reports as of 04/29/87 Page: 60
i = sizeof(badstring); /* Error 117 flagged. */

Temporary solution: . .

Eliminate the braces when initializing a string.

. .

processor

char string[] = "do it this way";

main()
int i;
i = sizeof(string);

Signed off 04/29/87 in release 301.60

Number: D200066480 Product: 6809 C VAX 648225003 01.50

One-line description:
No error message for unimplemented processor name.

Problem:
Spec1fy1ng an unimplemented processor name in a C source file
will cause the compiler to go from pass 1 into C Nocode without

an error message. The listing file also does not report the
error,

Signed off 04/29/87 in release 301.60

SRB detail reports as of 04/29/87 Page: 61
Number: 5000098343 Product: 6809 PASCAL 64813 01.08
Keywords: VARIANT RECORDS

One-line description:
Variant records may not work.

Problem:
TYPE X = RECORD
CASE BOOLEAN OF
TRUE : (I : INTEGER);
FALSE : (A : ARRAY([0..1] OF BYTE)

END;

VAR L : X;

12 : INTEGER;

BEGIN

L.I := 12; {THIS STORE IS MADE VIA THE D-REGISTER}

L.A{0] := 0; {MEMORY IS CLEARED DIRECTLY}

IF L.I = 5 THEN { THIS COMPARE IMMEDIATE IS DONE WITH THE D-REGISTER
NOT RECOGNIZING THE FACT THAT MEMORY CONTENTS AND
THE D-REGISTER ARE DIFFERENT}

Temporary solution:
$AMNESIA ON$ around the code.

Signed off 04/29/87 in release 301.11

Number: 5000124065 Product: 6809 PASCAL 64813 01.08

One-line description:
The library routine called DISPOSE does not generate correct code

Problem:
The library routine, DISPOSE, destroys the contents of the U register
without restoring it. For example:

TYPE X = RECORD A :INTEGER;
B : X,
end;

VAR P : “X;

PROCEDURE TEST (R :X);

BEGIN

R := P*;

NEW(P);

DISPOSE(P);

P := R.B;
END;

In this example address of R is store in the U register. WHen the
program returns from DISPOSE(P), the U register no longer contains
the address of R.

This defect is also reported on the 8086/8 Pascal Compiler (X
SR#5000124313). In this case, the ES register is being overwritten.

- -8

SRB detail reports as of 04/29/87 Page:

Temporary solution:
No known temporary solution.

Signed off 04/29/87 in release 301.11

62

SRB detail reports as of 04/239/87 Page: 63
Number: D200051573 Product: 6809 PASCAL 300 648135004 01.00
Keywords: VARIANT RECORDS

One-line description:
Variant records may not work.

Problem:
TYPE X = RECORD
CASE BOOLEAN OF
TRUE : (I : INTEGER);
FALSE : (A : ARRAY[0..1] OF BYTE)

END;

VAR L : X;

I2 : INTEGER;

BEGIN

L.I := I2; {THIS STORE IS MADE VIA THE D-REGISTER}

L.A[0] := 0; {MEMORY IS CLEARED DIRECTLY}

IF L.I = 5 THEN { THIS COMPARE IMMEDIATE IS DONE WITH THE D-REGISTER
NOT RECOGNIZING THE FACT THAT MEMORY CONTENTS AND
THE D-REGISTER ARE DIFFERENT}

Temporary solution:
$AMNESIA ON$ around the code.

Signed off 04/29/87 in release 401.20

SRB d
Numbe
Keywo

One-1

etail reports as of 04/29/87 Page: 64

r: D200036434 Product: 6809 PASCAL 500 648135001 01.00

rds: VARIANT RECORDS

ine description:

Variant records may not work.

Probl
TYPE

IF L.

Tempo
$AMNE

Signe

em:

X = RECORD

CASE BOOLEAN OF

TRUE : (I : INTEGER);

FALSE : (A : ARRAY[0..1] OF BYTE)
END;

. X,
2 : INTEGER;

:= 12; {THIS STORE IS MADE VIA THE D-REGISTER}

] :=0; {MEMORY IS CLEARED DIRECTLY}
I =5 THEN { THIS COMPARE IMMEDIATE IS DONE WITH THE D-REGISTER

NOT RECOGNIZING THE FACT THAT MEMORY CONTENTS AND
THE D-REGISTER ARE DIFFERENT}

rary solution:
SIA ON$ around the code.

d off 04/29/87 in release 101.30

SRB detail reports as of 04/29/87 Page: 65 SRB detail reports as of 04/29/87 Page: 66
Number: 1650007237 Product: 6809 PASCAL VAX 648135003 00.00
BEGIN
Keywords: PASS 3
Lo SEND_EVENT (PATTERN_EVENT, OS_ADDR, PATTERN_NO, OS_CHAN, X0, X1);
One-line description: LDU 07H,S ;X1
Offset to parameters is incorrect in nested procedure. LDY 0SH, S ; X0
LDX 00H, S ;STATIC LINK
Problem: LDB 06H,X ;05_C
The 6809 Pascal compiler is pushing parameters incorrectly. Speci- LDA 04H,S PATTERN _NO
flcally, if several parameters are pushed the 6809 loads the PSHS B,A,Y,U,PC ;PUSH PARAMETERS
appropxate registers pushes them and begins reloadlng them. The LDY 00H,S 5 COMPILER THINKS IT IS LOADING
problem is after pushing the registers the compxler forgets s STATIC OFFSET. 1IT IS ACTUALLY
the location of the static link and assumes its at Stack+0. ; LOADING THE VALUE OF B.
LDB ODH,Y ; GARBAGE
"6809" PREPROCESS
$EXTENSIONS ON$ END; { SEND PATTERN }
$RECURSIVE ON$
BEGIN
PROGRAM STACKBUILD;
SEND_PATTERN(NO,1,2,P_PTR);
CONST END; { ONE_MINUTE_. SCAN }
PATTERN_EVENT = UNSIGNED_8(138);
NO = UNSIGNED_8(0);
BEGIN
TYPE ONE_MINUTE_SCAN(P_PTR,P_PTR)
STRUCTURE = RECORD
VAR1 : INTEGER; END. { STACKBUILD }
VAR2 . INTEGER;
END; Temporary solution:
No known work around at this time.
CHAN_PTR = STRUCTURE'
Q_PTR SIRUCTURE Signed off 04/29/87 in release 301.40
I0O_PTR ~“STRUCTURE;
Number: D200036442 Product: 6809 PASCAL VAX 648135003 01.00
VAR
P_PTR : Q-PIR; Keywords: VARIANT RECORDS
One-line description:
PROCEDURE SEND EVENT(A B, C D : UNSIGNED_ 8; E,F : INTEGER); EXTERNAL; Variant records may not work.
PROCEDURE LOG_EVENT(A,B D E,F : UNSIGNED 85 EXTERNAL; »
roblem:
PROCEDURE ONE_MINUTE_SCAN(P1 : Q_PTR; P2 : IO_PTR); TYPE X = RECORD
CASE BOOLEAN OF
VAR TRUE : (I : INTEGER);
P3 : CHAN_PTR; FALSE : (A : ARRAY[0..1) OF BYTE)
0S_TYPE . UNSIGNED _8; END;
0S_ADDR : UNSIGNED 8' VAR L : X;
0S_CHAN : UNSIGNED 8; I2 : INTEGER;
T7 : INTEGER; ™ BEGIN
T10 : INTEGER; L.I := I2; {THIS STORE IS MADE VIA THE D-REGISTER}
L.A[0) :=0; ({MEMORY IS CLEARED DIRECTLY}
IF L.I = 5 THEN { THIS COMPARE IMMEDIATE IS DONE WITH THE D-REGISTER
PROCEDURE SEND_PATTERN(PATTERN_NO: UNSIGNED_8; NOT RECOGNIZING THE FACT THAT MEMORY CONTENTS AND
X0,X1 . INTEGER; THE D-REGISTER ARE DIFFERENT)
P1 : CHAN_PTR);
- -8 - -8

SRB detail reports as of 04/29/87

Temporary solution:
$AMNESIA ON$ around the code.

Signed off 04/29/87 in release 301.40

Page:

67

SRB detail reports as of_04/29/87 Page: 68
Number: D200067561 Product: 80286B ASSEMB 64859 01.00
Keywords: LINKER

One-line description:
Error flag not set when file required by link is missing

Problem:

System error flag not set (command doesn’t stop) when a file required
by a link 1s missing.

Signed off 04/29/87 in release 901.02

Number: D200067579 Product: 80286B ASSEMB 64859 01.00
Keywords: ENHANCEMENT

One-line description:
Seperate linker outputs by adding several blank lines at the start

Problem:

The 64100 80286B linker output runs together when displayed. The
beginning of each linker output should have several blank lines added
so that the beginning of the new linker output can be determined.
Another alternativce would be to clear the screen at the beginning of
each linker output.

Signed off 04/29/87 in release 901.02
Number: D200067595 Product: 80286B ASSEMB 64859 01.00

Keywords: ENHANCEMENT

One-line description: X .
Change the linker to only accept 80286B link_sym files

Signed off 04/29/87 in release 901.02
Number: D200067603 Product: 80286B ASSEMB 654859 01.00
Keywords: ENHANCEMENT

One-line description: L. .
File with unsupported processor name should be specified in error msg

Signed off 04/23/87 in release 901.02
Number: D200067611 Product: 802868 ASSEMB 64859 01.00
Keywords: ENHANCEMENT

One-line description: . .
warning message should be generated when aliasing an alias

Problem: . .
Enhancement request to add a warning message when aliasing an alias.

- -0

SRB detail reports as of 04/29/87

Signed off 04/29/87 in release 901,02

Page:

69

SRB detail reports as of 04/29/87 Page: 70
Number: D200055426 Product: 80286B ASSEMB 300 648595004 01.00
Keywords: CODE GENERATOR

One-line description:
FSTSW/ENSTSW function incorrectly with two-byte memory operand

Problem:

gsrsw/FN§Tsw (Store 80287 Status WOrg) instruction incorrectly results
in Invalid Operand Error when used with two-byte memory operand.

This instruction should accept a two-byte memory operand.

Temporary solution: . .
The FSTSW AX or FNSTSW AX versions of the FSTSW/FNSTSW instructions
can be used followed immediately by the MOV mem,AX instruction.

Signed off 04/239/87 in release 401.10

Number: D200055453 Product: 80286B ASSEMB 300 648595004 01,00
Keywords: CODE GENERATOR

One-line description: R . L
FSTENV instruction generates object code without required wait instr

Problem:
The object code for the FSTENV instruction is missing the required wait
instruction. The code generated is D936001A, it should be 9BD936001A.

Temporary solution: .
Precede all FSTENV instructions with the WAIT instruction.

Signed off 04/29/87 in release 401.10

Number: D200055483 Product: 80286B ASSEMB 300 648595004 01.00
Keywords: CODE GENERATOR

One-line description: . L. X
Obj. code generated for arithmetic instr. are incorrect.

Problem:

The object code produced for the arithmetic instructions FADD,FDIV,
FDIVP, FDIVR, FDIVRP, FMUL, FSUB, FSUBP, FSUBR, FSUBRP is not correct.
These problems occur only with the code generated for the 80287
coprocessor. The 8087 processor was changed in Feb. 1984. The opcodes
generated are for 8087 processors manufactured prior to Feb. 1984,

instruction opcode - valid prior to FEB. 1984
FADD DCC1
FDIV DCF1
FDIV ST[3],ST DCF3
FDIVP ST[4],ST DEF4
FDIVR DCF9
FDIVR ST[4],ST DCFC
FDIVRP ST[1],ST DEFS

- -0

SRB detail reports as of 04/29/87 Page: 71

FMUL DCCS
FSUB DCEl
FSUB ST(1],ST DCE2
FSUBP " ST[2],ST DEE2
FSUBR DCES
FSUBR ST[1],ST DCES
FSUBRP ST[1],ST DEES

The pseudo instruction NEW_8087 will cause the correct opcodes to be
generated. This assembler should default to the new opcodes without
the pseudo instruction.

Temporary solution:

The "NEW_8087" pseudo instruction should be included in any program
using the 80287 arithmetic instructions. This pseudo instruction
should precede all 80287 instructions.

ex. “80286B"

NEW_8087

PROG
DEC1 FADD
DEF9 FDIV
DCFB FDIV ST[3],ST
DEFC FDIVP ST[4],ST
DEF1 FDIVR
DCF4 FDIVR ST[4],ST
DEF! FDIVRP ST(1],ST
DEC9 FMUL
DEE9 FSUB
DCES FSUB ST{1],sT
DEEA FSUBP ST[2],ST
DEE1 FSUBR
DCE1 FSUBR ST[1],ST
DEE1 FSUBRP ST([1],ST

Signed off 04/29/87 in release 401.10

SRB detail reports as of 04/23/87 Page: 72
Number: D200055400 Product: 80286B ASSEMB 500 648595001 01.00
Keywords: CODE GENERATOR

One-line description: |
FSTSW/ENSTSW function incorrectly with two-byte memory operand

Problem:

ESTSW/ENSTSW (Store 80287 Status Word) instruction incorrectly results
in Invalid Operand Error when used with two-byte memory operand.

This instruction should accept a two-byte memory operand.

Temporary solution:

The FSTSW AX or FNSTSW AX versions of the FSTSW/FNSTSW instructions

can be used followed immediately by the MOV mem,AX instruction.

Signed off 04/29/87 in release 101.10

Number: D200055434 Product: 802868 ASSEMB 500 648595001 01.00

Keywords: CODE GENERATOR

One-line description: .
FSTENV instruction generates object code without required wait instr

Problem:
The object code for the FSTENV instruction is missing the required wait
instruction. The code generated is D936001A, it should be 9BDS936001A.

Temporary solution:. .
Precede all FSTENV instructions with the WAIT instruction.

Signed off 04/29/87 in release 101.10
Number: D200055467 Product: 80286B ASSEMB 500 64859S001 01,00
Keywords: CODE GENERATOR

One-line description: X L.
Obj. code generated for arithmetic instr. are incorrect.

Problem:

The object code produced for the arithmetic instructions FADD,FDIV,
FDIVP, FDIVR, FDIVRP, FMUL, FSUB, FSUBP, FSUBR, FSUBRP is not correct.
These problems occur only with the code generated for the 80287
coprocessor. The 8087 processor was changed in Feb. 1984, The opcodes
generated are for 8087 processors manufactured prior to Feb. 1984,

instruction opcode - valid prior to FEB. 1984
FADD DCCL
FDIV DCF1
FDIV ST([3],ST DCF3
FDIVP ST[4],ST DEF4
FDIVR DCF9
FDIVR ST[4],ST DCFC
FDIVRP ST(1],ST DEFS

- -0

SRB detail reports as of 04/29/87 Page: 73

FMUL DCCS
FSUB DCE1
FSUB ST[1],ST DCE2
FSUBP ST[2],ST DEE2
FSUBR DCE9
FSUBR ST(1],ST DCE9
FSUBRP ST[1],ST DEE9

The pseudo instruction NEW_8087 will cause the correct opcodes to be
generated. This assembler should default to the new opcodes without
the pseudo instruction.

Temporary solution:

The "NEW_8087" pseudo instruction should be included in any program
using the 80287 arithmetic instructions. This pseudo instruction
should precede all 80287 instructions.

ex. "80286B"

NEW_8087

PROG
DEC1 FADD
DEF9 FDIV
DCFB FDIV ST[3],ST
DEFC FDIVP ST[4],ST
DEF1 FDIVR
DCF4 FDIVR ST[4],ST
DEF1 FDIVRP ST[1],ST
DEC9 FMUL '
DEES FSUB
DCEQ FSUB ST[1],ST
DEEA FSUBP ST[2],ST
DEE! FSUBR
DCE1 FSUBR ST[1],ST
DEE1 FSUBRP ST([1],ST

Signed off 04/29/87 in release 101.10

SRB detail reports as of 04/29/87 Page: 74
Number: D200055418 Product: 80286B ASSEMB VAX 648595003 01.00
Keywords: CODE GENERATOR

One-line description:
FSTSW/FNSTSW function incorrectly with two-byte memory operand

Problem:

FSTSW/FNSTSW (Store 80287 Status Word) instruction incorrectly results
in Invalid Operand Error when used with two-byte memory operand.

This instruction should accept a two-byte memory operand.

Temporary solution:
The FSTSW AX or FNSTSW AX versions of the FSTSW/FNSTSW instructions
can be used followed immediately by the MOV mem,AX instruction.

Signed off 04/239/87 in release 301.10

Number: D200055442 Product: 80286B ASSEMB VAX 648595003 01.00
Keywords: CODE GENERATOR

One-line description: . .
FSTENV instruction generates object code without required wait instr

Problem:
The obJect code for the FSTENV 1nstruct10n is mlsSLng the required waxt
instruction. The code generated is D936001A, it should be 9BDS36001A.

Temporary solution:
Precede all FSTENV instructions with the WAIT instruction.

Signed off 04/29/87 in release 301.10

Number: D200055475 Product: 80286B ASSEMB VAX 6485385003 01.00
Keywords: CODE GENERATOR

One-line description: . L .
Obj. code generated for arithmetic instr. are incorrect.

Problem:

The object code produced for the arithmetic xnstructxons FADD,FDIV,
FDIVP, FDIVR, FDIVRP, FMUL, FSUB, FSUBP, FSUBR, FSUBRP is not correct.
These problems occur only with the code generated for the 80287
coprocessor. The 8087 processor was changed in Feb. 1984. The opcodes
generated are for 8087 processors manufactured prior to Feb. 1984,

instruction opcode - valid prior to FEB. 1984
FADD DCC1
FDIV DCF1
FDIV ST[3],ST DCF3
FDIVP ST[4],ST DEF4
FDIVR DCF9
FDIVR ST(4],ST DCFC
FDIVRP ST[1],ST DEF9

- -0

SRB detail reports as of 04/29/87 Page: 75

FMUL DCCS
FSUB DCE1
FSUB ST(1],ST DCE2
FSUBP ST[2],ST DEE2
FSUBR DCES
FSUBR ST[1],ST DCES
FSUBRP ST[1],ST DEES

The pseudo instruction NEW_8087 will cause the correct opcodes to be
generated. This assembler should default to the new opcodes without
the pseudo instruction.

Temporary solution:

The "NEW_8087" pseudo instruction should be included in any program
using the 80287 arithmetic instructions. This pseudo instruction
should precede all 80287 instructions.

ex. "80286B"

NEW_8087

PROG
DEC1 FADD
DEFS FDIV
DCFB FDIV ST[3],ST
DEFC FDIVP ST[4],ST
DEF1 FDIVR
DCF4 FDIVR ST[4],ST
DEF1 FDIVRP ST[1],ST
DECY FMUL
DEES FSUB
DCE9 FSUB ST(1],ST
DEEA FSUBP ST[2],ST
DEE1 FSUBR
DCE1 FSUBR ST([1),ST
DEE1 FSUBRP ST[1],ST

Signed off 04/29/87 in release 301.10

SRB detail reports as of 04/29/87

Page:

76

Number: D200067546 Product: 80286B ASSEMB VAX 648595003 01.00

One-line description: .
Build files generated on the VAX will not work with the 286 linker

Problem:

The 286 builder does not function correctly when using build files that
were created on the VAX. These files are record format which contains

EOF errors; therefore, all build files generated on the VAX will fail.

The build files generated on the 64100 are uploaded as streamlf format

files and ,therefore, do not contain this problem.

Temporary solution:

Temporary solution: Generate build files on the 64100 and
upload to the VAX.

Signed off 04/29/87 in release 301.10

- -0

SRB detail reports as of 04/29/87 Page: 77
Number: D200016295 Product: 8085 B PASCAL 64825 01.01
Keywords: CODE GENERATOR

One-line description: .
Compiler generates incorrect code (assignment to record variable).

Temporary solution:
Enable the compiler option AMNESIA before the assignment statement.

Signed off 04/29/87 in release 501.04

Number: D200020081 Product: 8085 B PASCAL 64825 01.01

One-line description:
Compiler does not generate cross reference table.

Problem: L. .
When compiling a program using the option ’xref’, no cross

reference table will be generated if the compilation completes without
errors.

Temporary solution:

To generate a cross reference table simply edit the source file and
introduce an error (syntax error will do). The error will cause the
compiler to generate the cross reference table. Once the table has
been generated simply edit the source file and remove the error.

Signed off 04/29/87 in release 501.04

Number: D200029793 Product: 8085 B PASCAL 64825 01.01
Keywords: POINTERS

One-line description:
Variables of type pointer may not be incremented correctly.

Problem:
"PROCESSOR"
TYPE

PTR = "BYTE;
TX = PTR;

VAR
RXOUT: TX;
TEMP1,TEMP2 : BYTE;

BEGIN
TEMP1 := RXOUT":
LD HL, [RxOUT)
LD A, [HL]
LD [TEMP1], A ;HERE, TEMP! IS CORRECTLY LOADED WITH THE BYTE
'THAT RXOUT IS POINTING TO

RXOUT := TX(SIGNED_16(RXOUT)+1); {INCREMENT RXOUT}
LD HL, [RXOUT]

- -0

SRB detail reports as of 04/29/87 Page: 78
INC HL
LD [RXOUT],HL ;RXOUT IS CORRECTLY INCREMENTED

TEMP2 := RXOUT"; {TEMP2 SHOULD GET THE NEXT BYTE}
LD [TEMP2],A ;SINCE A WAS NOT DISTURBED, THE COMPILER DOES
;NOT REALIZE THAT THE POINTER WAS UPDATED.

Temporary solution: . .
Set $AMNESIA ON$ around the pointer referencing code.

Signed off 04/29/87 in release 501.04

Number: D200036863 Product: 8085 B PASCAL 64825 01.01
Keywords: IF

One-line description:
IF Bl <rel-op> B2 THEN Bl := Bl - 1; {DOESN’T WORK}

Problem:
VAR B1, B2 : BYTE;

BEGIN

IF Bl (>f<|=|¢=]>=) B2 THEN

Bl := Bl - 1; {THE REGISTER CONTAINING B1 IS DECREMENTED, THEN
OVERWRITTEN BEFORE IT IS SAVED IN MEMORY}

Temporary solution:

$AMNESIA +$
Signed off 04/29/87 in release 501.04
Number: D200040121 Product: 8085 B PASCAL 64825 01.01

Keywords: CODE GENERATOR

One-line description:
Incorrect code generated for adding one char to another.

Problem:

VAR

SRC, DEST : CHAR;

BEGIN

DEST := DEST + SRC; {GENERATES INCORRECT CODE}

Temporary solution:
None at this time.

Signed off 04/29/87 in release 501.04

SRB detail reports as of 04/29/87 Page: 79
Number: D200041137 Product: 8085 B PASCAL 64825 01.01
Keywords: PASS 2

One-line description:
REBOOT DURING PASS 2

Problem:

The 64000 will reboot during pass 2 when compiling files where

1) The 105th external variable is an array, and

2) An element of the 105th external variable is accessed in the 19th
procedure or function in the file (external and locally defined
procedures count in this total).

Temporary solution: .
Change the order of the external variable declarations, or change the
order of the procedure declarations.

Signed off 04/29/87 in release 501.04

Number: D200064329 Product: 8085 B PASCAL 64825 01.03

One-line description:
Error #1009 using byte-sized ORG’ed variables in FOR loops

Problem: i
Error #1009 is generated when byte sized ORG’ed variables are
used in FOR loops. The following code illustrates the problem.

“processor name"
PROGRAM TEST;
$EXTENSIONS ON$
PROCEDURE ERR;

VAR
$O0RG 5000$
B1,B2,X1: BYTE;

BEGIN

FOR X1 := Bl to B2 DO;
END;

.

(*Pass 2 Error 1009 - No free registers*)

Temporary solution: . 3 i X .
The error does not occur if the FOR loop variable is word sized instead
of byte sized. It will also go away if the ORG statement is removed.

Signed off 04/29/87 in release 501.04

Number: D200064428 Product: 8085 B PASCAL 64825 01.03

One-line description: .
32-bit unsigned divide and modulus may fail

Problem:
The result of an unsigned 32-bit division or modulus operation may
be incorrect if the dividend and the destination are the same

- -0

SRB detail reports as of 04/29/87 Page: 80

location. The problem is in the library routine Zdworddiv. The
following code demonstrates the problem:

"processor name"

PROGRAM TEST;

$SEXTENSIONS ON$

VAR
B1,B2 : UNSIGNED_32;

BEGIN
Bl := UNSIGNED_32(0E00000000);
B2 := UNSIGNED_32(0900000000);
Bl := B1/B2;

END.

Signed off 04/29/87 in release 501.04

Number: D200064493 Product: 8085 B PASCAL 64825 01.03

One-line description:
Library routine REAL_ROUND may fail.

Problem:
The library routine REAL_ROUND may fail, causing floating point
numbers to be incorrectly rounded to integers.

Signed off 04/29/87 in release 501.04

Number: D200064568 Product: 8085 B PASCAL 64825 01.03

One-line description: L.
DEBUG byte division and modulus may incorrectly report division by zero

Problem:

The DEBUG library routines for perform@ng signed and unsigned byte
division and modulus operations may fail and incorrectly report

an attempted division by zero.

The following code fails in this manner:

"processor name"
PROGRAM TEST;
$EXTENSIONS ON$
VAR
B1,B2,B3 : BYTE;
$O0RG 5000H$
BA : ARRAY[1..15] OF BYTE;

BEGIN
BL := 1;
B2 := 1;

B3 := 0;
BA[B3] ‘= B1 DIV B2; (*DIV fails - reports division by zero*)
END.

Signed off 04/29/87 in release 501.04

SRB detail reports as of 04/29/87 Page: 81
Number: D200064956 Product: 8085 B PASCAL 64825 01.03

One-line description:
Set comparisons with the empty set may fail

Problem:

Set comparisons with the empty set may fail. The following code
is an example of this problem:

"processor name"
PROGRAM TEST;
$EXTENSIONS ON$

TYPE
CH = 0..127;
SET1 = SET OF CH;
VAR
S1 : SET1;
PROCEDURE ERROR; EXTERNAL;
BEGIN
S1 := [];

IF S1 <> [] THEN (*In CONST_prog, not enough bytes are
ERROR; defined for the set¥)
END.

Signed off 04/29/87 in release 501.04

Number: D200065326 Product: 8085 B PASCAL 64825 01.03

One-line description: . . X
Assignment of constant string of length 1 to string variable may fail.

Problem:

Assxgnment of a constant string of length 1 to a strxng variable that
is itself a multidimensional array element may fail.

First, the address of the destination string is calculated in HL. Then
the value of the string length resulting from the assignment, i.e. one
(1) is loaded into the position reserved for the length of the string
via a store indirect through HL. Up to this point all is as it should
be; however the value of the 51ng1e character that comprises the
strxng is then also stored HL 1nd1rect, overwriting the length and
fa111ng to correctly load the string value. The HL register should

be incremented before the second store.

The following is an example:

"processor name"

PROGRAM TEST;

TYPE

VA§TRING_15 = PACKED ARRAY[0..15] OF CHAR;

TWO_D_ARR : ARRAY[1..3,
BEGIN

TWO_D_ARR[2,1] := " *;
LD HL,0030H
PUSH HL
LD HL,00002H

1..3] OF STRING_15;

SRB detail reports as of 04/239/87 Page: 82
PUSH HL
LD HL,00010H
PUSH HL
LD HL,00001H
PUSH HL
LD BC,DTEST-00040H
LD A,002H
CALL Zarrayref
LD A,001H
LD [HL] A (*or LD M,A *)
LD A, 020
LD [HL] A (*This is the error - should INC HL first*)

END.
Signed off 04/29/87 in release 501.04

SRB detail reports as of 04/239/87 Page: 83

Number: D200050203 Product: 8085 B PASCAL 300 648255004 01.00

Keywords: CODE GENERATOR

One-line description: .
Compiler generates incorrect code (assignment to record variable).

Problem:

The following program causes incorrect code to be generated
for the second assignment statement.

PROGRAM SCAN;
$EXTENSIONS ON$

TYPE
INTEGER = SIGNED_16;
HEAD_STRUC = RECORD
NUM: INTEGER;
TFPSNO: INTEGER;

TMPSNO: INTEGER;
END;

VAR
HEAD: ARRAY([1..6] OF HEAD_STRUC;

BEGIN
HEAD[L1].NUM:= 1;
HEAD[1].TFPSNO:= 3;
END.

Temporary solution:
Enable the compiler option AMNESIA before the assignment statement.

Signed off 04/23/87 in release 401.20

Number: D200051094 Product: 8085 B PASCAL
Keywords: POINTERS

300 648255004 01.00

One-line description:
Variables of type pointer may not be incremented correctly.

Problem:
"PROCESSOR"
TYPE

PTR = “BYTE;
TX = PIR;

VAR
RXOUT: TX;
TEMP1,TEMP2 : BYTE;

BEGIN

TEMP1 := RXOUT":
LD HL, [RROUT]
LD A, tHL)
LD [TEMP1], A ;HERE, TEMP1 IS CORRECTLY LOADED WITH THE BYTE

- -0

SRB detail reports as of 04/29/87 Page: 84

s THAT RXOUT IS POINTING TO
RXOUT := TX(SIGNED_16(RXOUT)+1); {INCREMENT RXOUT}

LD HL, [RXOUT]
INC HL
LD [RXOUT],HL ;RXOUT IS CORRECTLY INCREMENTED

TEMP2 := RXOUT"; {TEMP2 SHOULD GET THE NEXT BYTE}

LD (TEMP2],A ;SINCE A WAS NOT DISTURBED, THE COMPILER DOES

;NOT REALIZE THAT THE POINTER WAS UPDATED.

Temporary solution:
Set $AMNESIA ON$ around the pointer referencing code.

Signed off 04/29/87 in release 401.20

Number: D200051607 Product: 8085 B- PASCAL 300 648255004

Keywords: IF

One-line description:

IF Bl <rel-op> B2 THEN Bl := B1 - 1; {DOESN’'T WORK}

Problem:
VAR B1, B2 : BYTE;

BEGIN

IF Bl (>]¢|=|<=]>=) B2 THEN

Bl := Bl - 1; {THE REGISTER CONTAINING B1 IS DECREMENTED, THEN
OVERWRITTEN BEFORE IT IS SAVED IN MEMORY}

Temporary solution:
$AMNESIA +$

Signed off 04/29/87 in release 401.20

01.00

Number: D200051862 Product: 8085 B PASCAL
Keywords: CODE GENERATOR

300 648255004

One-line description:
Incorrect code generated for adding one char to another.

Problem:
VAR
SRC, DEST : CHAR;

BEGIN

DEST := DEST + SRC; {GENERATES INCORRECT CODE}

Temporary solution:
None at this time.

Signed off 04/29/87 in release 401.20

01.00

- -0

SRB detail reports as of 04/239/87 Page: 85
Number: D200064352 Product: 8085 B PASCAL 300 648255004 01.10

One-line description:
Error #1009 using byte-sized ORG’ed variables in FOR loops

Problem:
Error #1009 is generated when byte sized ORG’ed variables are
used in FOR loops. The following code illustrates the problem.

"processor name"

PROGRAM TEST;

$EXTENSIONS ON$

PROCEDURE ERR;

VAR

$0RG 5000%
B1,B2,X1: BYTE;

BEGIN

FOR X1 := Bl to B2 DO;

(*Pass 2 Error 1009 - No free registers¥)
END;

Temporary solution:
The error does not occur if the FOR loop variable is word sized instead
of byte sized. It will also go away if the ORG statement is removed.

Signed off 04/29/87 in release 401.20

Number: D200064451 Product: 8085 B PASCAL 300 648255004 01.10

One-line description:
32-bit unsigned divide and modulus may fail

Problem:

The result of an unsigned 32-bit division or modulus operation may
be incorrect if the dividend and the destination are the same
location. The problem is in the library routine Zdworddiv. The
following code demonstrates the problem:

"processor name"

PROGRAM TEST;

$EXTENSIONS ON$

VAR
B1,B2 : UNSIGNED_32;

BEGIN
Bl := UNSIGNED_32(0E00000000);
B2 := UNSIGNED_32(0900000000);
Bl := B1/B2;

END.

Signed off 04/29/87 in release 401.20

SRB detail reports as of 04/29/87 Page: 86
Number: D200064527 Product: 8085 B PASCAL 300 648255004 01.10

One-line description:
Library routine REAL_ROUND may fail.

Problem:
The library routine REAL_ROUND may fail, causing floating point
numbers to be incorrectly rounded to integers.

Signed off 04/239/87 in release 401.20

Number: D2000645392 Product: 8085 B PASCAL 300 648255004 01.10

One-line description: .
DEBUG byte division and modulus may incorrectly report division by zero

Problem:

The DEBUG library routines for performing signed and unsigned byte
division and modulus operations may fail and incorrectly report

an attempted division by zero.

The following code fails in this manner:

"processor name"
PROGRAM TEST;
$EXTENSIONS ON$
VAR
B1,B2,B3 : BYTE;
$ORG SO00H$
BA : ARRAY[1..15] OF BYTE;

BEGIN

Bl := 1;

B2 := 1,

B3 := 0;

BA[B3) := B1 DIV B2; (*DIV fails - reports division by zero*)
END.

Signed off 04/29/87 in release 401.20

Number: D200064980 Product: 8085 B PASCAL 300 648255004 01.10

One-line description: .
Set comparisons with the empty set may fail

Problem: . . X
Set comparisons with the empty set may fail. The following code
is an example of this problem:

"processor name"
PROGRAM TEST;
$EXTENSIONS ON$
TYPE

CH = 0..127;

SET1 = SET OF CH;
VAR

S1 : SET!;

SRB detail reports as of 04/29/87 Page: 87

PROCEDURE ERROR; EXTERNAL;
BEGIN
S1 := []
IF S1 < [] THEN (*In CONST_prog, not enough bytes are

ERROR; defined for the set¥*)
END.

Signed off 04/29/87 in release 401.20

Number: D200065359 Product: 8085 B PASCAL 300 648255004 01.10
One-line description:
Assignment of constant string of length 1 to string variable may fail.

Problem:

Assignment of a constant string of length 1 to a string variable that
is itself a multidimensional array element may fail.

First, the address of the destination string is calculated in HL. Then
the value of the string length resulting from the assignment, i.e. one
(1), is loaded into the position reserved for the length of the string
via a store indirect through HL. Up to this point all is as it should
be; however, the value of the s1ng1e character that comprises the
strlng is then also stored HL indirect, overwriting the length and
failing to correctly load the string value The HL register should

be incremented before the second store.

The following is an example:

"processor name"
PROGRAM TEST;
TYPE
STRING_1S = PACKED ARRAY[0..15] OF CHAR;

VAR
TWO_D_ARR : ARRAY([1..3,1..3] OF STRING_15;
BEGIN
TWO_D_ARR[2,1] := " *;
LD HL,0030H
PUSH HL
LD HL,00002H

PUSH HL
LD HL,00010H
HL

L HL,00001H

PUSH HL

LD BC,DTEST-00040H
LD A,002H
CALL Zarrayref
LD A,001H
LD [AL],A

LD A, 020H
LD [HL],A

(*or LD M,A *)

(*This is the error - should INC HL first¥*)
END.

Signed off 04/29/87 in release 401.20

SRB detail reports as of 04/29/87 Page:
Number: D200016311 Product: 8085 B PASCAL 500 64825S001
Keywords: CODE GENERATOR

One-line description: .
Compiler generates incorrect code (assignment to record variable).

Temporary solution:

Enable the compiler option AMNESIA before the assignment statement.

Signed off 04/23/87 in release 101.50

88
01.10

Number: D200029801 Product: 8085 B PASCAL
Keywords: POINTERS

500 648255001

One-line description; .
Variables of type pointer may not be incremented correctly.

Problem:
"PROCESSOR"
TYP

PTR = “BYTE;
TX = PTR;

VAR
RXOUT: TX;
TEMP1,TEMP2 : BYTE;

BEGIN
TEMPL := RXOUT";
LD HL, [RXOUT]
LD A, [HL]
LD [TEMP1], A ;HERE, TEMP1 IS CORRECTLY LOADED WITH THE
“THAT RXOUT IS POINTING TO

RXOUT := TX(SIGNED_16(RXOUT)+1); {INCREMENT RXOUT}
LD HL [RXOUT]

LD [RXOUT],HL ;RXOUT IS CORRECTLY INCREMENTED
TEMP2 := RXOUT”; {TEMP2 SHOULD GET THE NEXT BYTE}

LD [TEMP2],A
:NOT REALIZE THAT THE POINTER WAS UPDATED.

Temporary solution:
Set $AMNESIA ON$ around the pointer referencing code.

Signed off 04/29/87 in release 101.50

01.10

BYTE

;SINCE A WAS NOT DISTURBED, THE COMPILER DOES

Number: D200036848 Product: 8085 B PASCAL 500 648255001
Keywords: IF

One-line description:

IF Bl <rel-op> B2 THEN Bl := B1 - 1; {DOESN'T WORK}

- -0

01.20

SRB detail reports as of 04/29/87 Page: 89

Problem:
VAR B1, B2 : BYTE;

BEGIN

IF B1 (>l<|=|¢=]|>=) B2 THEN

Bl := Bl - 1; {THE REGISTER CONTAINING B1 IS DECREMENTED, THEN
OVERWRITTEN BEFORE IT IS SAVED IN MEMORY}

Temporary solution:
$AMNESIA +$

Signed off 04/29/87 in release 101.50

Number: D200040139 Product: 8085 B PASCAL 500 648255001 01.20
Keywords: CODE GENERATOR

One-line description:
Incorrect code generated for adding one char to another.

Problem:
VAR
SRC, DEST : CHAR;

BEGIN
DEST := DEST + SRC; {GENERATES INCORRECT CODE}

Temporary solution:
None at this time.

Signed off 04/29/87 in release 101.50
Number: D200064337 Product: 8085 B PASCAL 500 648255001 01.40

One-line description: A
Error #1009 using byte-sized ORG’ed variables in FOR loops

Problem:
Error #1009 is generated when byte sized ORG’ed variables are
used in FOR loops. The following code illustrates the problem.

"processor name"

PROGRAM TEST,

$EXTENSIONS ON$

PROCEDURE ERR;

VAR

$O0RG 5000%
B1,B2,X1: BYTE;

BEGIN

FOR X! := Bl to B2 DO;

. (*Pass 2 Error 1008 - No free registers*)
ND;

Temporary solution:

SRB detail reports as of 04/239/87 Page: 90

The error does not occur if the FOR loop variable is word sized instead
of byte sized. It will also go away if the ORG statement is removed.

Signed off 04/29/87 in release 101.50
Number: D200064436 Product: 8085 ASCAL 500 648255001 01.4

One-line description:
32-bit unsigned divide and modulus may fail

Problem:

The result of an unsigned 32-bit division or modulus operation may
be incorrect if the dividend and the destination are the same
location. The problem is in the library routine Zdworddiv. The
following code demonstrates the problem:

“processor name"
PROGRAM TEST;
$EXTENSIONS ON$

VAR
B1,B2 : UNSIGNED_32;
BEGIN
Bl := UNSIGNED_32(0E00000000);
B2 := UNSIGNED_32(0900000000);
Bl := B1/B2;
END.
Signed off 04/29/87 in release 101.50
Number: D200064501 Product: 8085 B PASCAL 500 648255001 01.40

One-line description:
Library routine REAL_ROUND may fail.

Problem:
The library routine REAL_ROUND may fail, causing floating point
numbers to be incorrectly rounded to integers.

Signed off 04/29/87 in release 101.50

Number: D200064576 Product: 8085 B PASCAL 500 648255001 01.40

One-line description: L.
DEBUG byte division and modulus may incorrectly report division by zero

Problem:

The DEBUG library routines for performing signed and unsigned byte
division and modulus operations may fail and incorrectly report

an attempted division by zero.

The following code fails in this manner:

"processor name"
PROGRAM TEST;
$EXTENSIONS ON$
VAR

B1,B2,B3 : BYTE;

SRB detail reports as of 04/29/87 Page: 91

$ORG S000H$
BA : ARRAY[!..15] OF BYTE;

] := Bl DIV B2; (*DIV fails - reports division by zero*)

Signed off 04/29/87 in release 101.50

Number: D200064964 Product: 8085 B PASCAL 500 648255001 01.40

One-line descrlptlon‘
Set comparisons with the empty set may fail

Problem:
Set comparisons with the empty set may fail. The following code
is an example of this problem:

"processor name"
PROGRAM TEST;
$EXTENSIONS ON$
TYPE

CH = 0.

SET1 = SET OF CH;
VAR

S1 SET1
PROCEDURE ERROR; EXTERNAL;

BEGIN
S1 := [];
IF S1 <> [] THEN (*In CONST_prog, not enough bytes are
END ERROR; defined for the set*)
ND.

Signed off 04/29/87 in release 101.50

Number: D200065334 Product: 8085 B PASCAL 500 648255001 01.40

One-line description: .
Assignment of constant string of length 1 to string variable may fail.

Problem:
Assignment of a constant string of length 1 to a string variable that
is itself a multidimensional array element may fail.

First, the address of the destination string is calculated in HL. Then
the value of the string length resulting from the assignment, i.e. one
(1), is loaded into the position reserved for the length of ine string
via a store indirect through HL. Up to this point all is as it should
be; however the value of the s1ngle character that comprises the
strxng is then also stored HL thITECt, overwriting the length and
failing to correctly load the string value. The HL register should

be incremented before the second store.

The following is an example:

SRB detail reports as of 04/29/87 Page: 92
“processor name”
PROGRAM TEST;
TYPE
v STRING_15 = PACKED ARRAY([0..15] OF CHAR;
AR
TWO_D_ARR : ARRAY[1..3,1..3] OF STRING_15;
BEGIN
TWO_D_ARR[2,1] := " *;
LD HL,0030H
PUSH HL
LD HL,00002H
PUSH HL
LD HL,00010H
PUSH HL
LD HL,00001H
PUSH HL
LD BC,DTEST-00040H
LD ,002H
CALL Zarrayref
LD A,001H
LD [HL],A (*or LD M,A ¥)
LD A,020H
LD [HL],A (*This is the error - should INC HL first¥*)
END.

Signed off 04/29/87 in release 101.50

SRB detail reports as of 04/29/87 Page: 93
Number: D200016303 Product: 8085 B PASCAL VAX 648255003 01.10
Keywords: CODE GENERATOR

One-line description:
Compiler generates incorrect code (assignment to record variable).

Temporary solution:
Enable the compiler option AMNESIA before the assignment statement.

Signed off 04/29/87 in release 301.70

Number: D200029819 Product: 8085 B PASCAL VAX 648255003 01.20
Keywords: POINTERS

One-line description: .
Variables of type pointer may not be incremented correctly.

Problem:
"PROCESSOR"
TYPE

PTR = “BYTE;
TX = PTR;

VAR
RXOUT: TX;
TEMP1,TEMP2 : BYTE;

BEGIN
TEMP1 := RXOUT";
LD HL, [RXOUT]
LD A, (HL]
LD [TEMP1], A :HERE, TEMP1 IS CORRECTLY LOADED WITH THE BYTE
THAT RXOUT IS POINTING TO

RXOUTL:= TX(SIGNED_lS%RXOUT)*l); { INCREMENT RXOUT}
D UT

HL, [RX0
INC HL
LD [RXOUT],HL ;RXOUT IS CORRECTLY INCREMENTED
TEMP2 := RXKOUT"; {TEMP2 SHOULD GET THE NEXT BYTE}
LD [TEMP2],A ;SINCE A WAS NOT DISTURBED, THE COMPILER DOES

;NOT REALIZE THAT THE POINTER WAS UPDATED.

Temporary solution:
Set $AMNESIA ON$ around the pointer referencing code.

Signed off 04/29/87 in release 301.70

Number: D200036855 Product: 8085 B PASCAL VAX 64825S003 01.20
Keywords: IF

One-line description:
IF B1 <rel-op> B2 THEN Bl := B1 - 1; {DOESN’T WORK}

- -0

SRB detail reports as of 04/29/87 Page: 94

Problem:
VAR B1l, B2 : BYTE;

BEGIN

IF BL (>|<|=}<=]|>=) B2 THEN

B1 := Bl - 1; {THE REGISTER CONTAINING Bl IS DECREMENTED, THEN
OVERWRITTEN BEFORE IT IS SAVED IN MEMORY}

Temporary solution:
$AMNESIA +$

Signed off 04/29/87 in release 301.70

Number: D200040147 Product: 8085 B PASCAL VAX 648255003 01.20
Keywords: CODE GENERATOR

One-line description:
Incorrect code generated for adding one char to another.

Problem:
VAR
SRC, DEST : CHAR;

BEGIN
DEST := DEST + SRC; {GENERATES INCORRECT CODE}

Temporary solution:
None at this time.

Signed off 04/23/87 in release 301.70

Number: D200058677 Product: 8085 B PASCAL VAX 648255003 01.50

One-line description: .
Using char and int. in control loop causes incorrect code to be gen’ed.

Problem: . .
If you use an integer and a char for the loop counters in a for
loop incorrect code will be generated.

“processor”
$EXTENSIONS ON$
PROGRAM DOWNTO;

VAR
I : SIGNED_16;
N : SIGNED_i6;
J : BYTE;
A : ARRAY([1..10] OF SIGNED_16;
BEGIN
Ji= 11;
N:= 0;
FOR I:= J-1 DOWNTO 1 DO /* 1 is initialized incorrectly with
BEGIN[I] I an undefined by DOWNTO+0189H */
A[I]:=I;

- -0

SRB detail reports as of 04/29/87 Page: 95

N:= N+1;
END;
END.

Temporary solution:
Declare the initializing variable (J in this example) to be
of the same type as the index (I in this example).

Signed off 04/29/87 in release 301.70

Number: D20005965S8 Product: 8085 B PASCAL VAX 648255003 01.50

One-line description:
$Range ON$ causes incorrect code to be generated for a test operation.

Problem:

The followlng program when compiled with the $RANGE ON$ option wil
cause incorrect code to be generated.

"B8085" | “"BZ80"
$EXTENSIONSS
$RANGE ON$

PROGRAM BOOLREAL;

VAR A,B,C : REAL;

L : BOOLEAN;
BEGIN

A := 10.0;

B := 15.0

C := 12.0;

L := (C < (B+.5)) AND ((C + .5) > A);

The two intermediate results " (C < (B +.5))" and "((C+.5) >A)"
are anded together and this result is compared with the value
two. Thus the case is never true. With RANGE OFF correct code
is generated.

Temporary solution: .
It is necessary to turn $RANGE OFF$ to obtain correct code. Simply
breaking up the expression will not work.

Signed off 04/29/87 in release 301.70

Number: D200060244 Product: 8085 B PASCAL VAX 648255003 01.50

One-line description:
Incorrect data offsets in listing file.

Problem:
"processor name"
PROGRAM PROVE;

SRB detail reports as of 04/29/87 Page: 96
VAR

X,Y:INTEGER

A: ARRAY[O. 99999] OF INTEGER;
BEGIN

$TESTS 1, LIST_CODE ON, LIST_OBJ ON$
(* Comment ON
Y := A[0];
Y = A[8000];
Y := A[9000];
Comment OFF = *)
$TESTS 3%
Y := A[16000];
Y := A[17000];
$TESTS 7%
Y := A[16000];
Y A[17000];
STESTS 1$
(* Comment ON
= A[32000];
Y := A[33000];
Comment OFF *)
END.

Temporary solution:
If arrays of this size are required download the file to the 64100
and compile.

Signed off 04/29/87 in release 301.70

Number: D200063325 Product: 8085 B PASCAL VAX 648255003 01.60

One-line description:
functional type change of a constant into multi-byte structure gen’s err

Problem: A

Functional type casting of a constant into a multi-byte structure
generates bad data.

“processor"”

PROGRAM BAD_DATA;

TYPE EVENT = RECORD
A

’

B : BYTE
C : INTEGER;
D : BYTE;
END;
VAR EVENT1 . EVENT;

PROCEDURE ~ GENERATOR();
BEGIN

EVENT1 := EVENT(0); { THIS ASSIGNMENT RESULTS IN BAD DATA }
END;

- -0

SRB detail reports as of 04/238/87 Page: 97

BEGIN
END.

Signed off 04/29/87 in release 301.70

Number: D200064345 Product: 8085 B PASCAL VAX 648255003 01.60

One-line description: . X
Error #1009 using byte-sized ORG’ed variables in FOR loops

Problem:
Error #1009 is generated when byte sized ORG’ed variables are
used in FOR loops. The following code illustrates the problem.

"processor name"

PROGRAM TEST;

$EXTENSIONS ON$

PROCEDURE ERR;

VAR

$0RG 5000%
B1,B2,X1: BYTE;

BEGIN

FOR X1 := Bl to B2 DO; (¥Pass 2 Error 1009 - No free registers*)

END

.

Temporary solution:
The error does not occur if the FOR loop variable is word sized instead
of byte sized. It will also go away if the ORG statement is removed.

Signed off 04/29/87 in release 301.70

Number: D200064444 Product: 8085 B PASCAL VAX 648255003 01.60

One-line description:
32-bit unsigned divide and modulus may fail

Problem:

The result of an unsigned 32-bit division or modulus operation may
be incorrect if the dividend and the destination are the same
location. The problem is in the library routine Zdworddiv. The
following code demonstrates the problem:

‘processor name"

PROGRAM TEST;

$EXTENSIONS ON$

VAR
B1,B2 : UNSIGNED_32;

BEGIN
Bl := UNSIGNED_32(0E00000000);
B2 := UNSIGNED_32(0900000000);
Bl := B1/B2;

END.

SRB detail reports as of 04/29/87 Page: 98
Signed off 04/29/87 in release 301.70

Number: D200064519 Product: 8085 B PASCAL VAX 648255003 01.60

One-line description:
Library routine REAL_ROUND may fail.

Problem: .
The library routine REAL_ROUND may fail, causing floating point
numbers to be incorrectly rounded to integers.

Signed off 04/29/87 in release 301.70

Number: D200064584 Product: 8085 B PASCAL VAX 648255003 01.60

One-1line description: . L.
DEBUG byte division and modulus may incorrectly report division by zero

Problem:

The DEBUG library routines for performing signed and unsigned byte
division and modulus operations may fail and incorrectly report

an attempted division by zero.

The following code fails in this manner:

"processor name"
PROGRAM TEST;
$EXTENSIONS ON$
VAR
B1,B2,B3 : BYTE;
$0RG S000H$
BA : ARRAY[1..15] OF BYTE;

BEGIN
Bl :=
B2 :=
B3 :=

BA[B3] := Bl DIV B2; (*DIV fails - reports division by zero*)

END.

O

Signed off 04/29/87 in release 301.70

Number: D200064972 Product: 8085 B PASCAL VAX 648255003 01.60

One-line description:
Set comparisons with the empty set may fail

Problem:

Set comparisons with the empty set may fail. The following code
is an example of this problem:

"processor name"
PROGRAM TEST;
$EXTENSIONS ON$
TYPE

CH = 0..127;
SET1 = SET OF CH;

SRB detail reports as of 04/29/87 Page: 99

VAR

S1 : SET!;
PROCEDURE ERROR EXTERNAL;
BEGIN

st := [];

IF S1 <>'£] THEN {*In CONST_prog, not enough bytes are
£ ERROR; defined for the set*)
ND.

Signed off 04/29/87 in release 301.70

Number: D200065342 Product: 8085 B PASCAL VAX 648255003 01.60

One-line description: R
Assignment of constant string of length 1 to string variable may fail.

Problem:

Ass1gnment of a constant string of length 1 to a strlng variable that
is itself a multidimensional array element may fail.

First, the address of the destination string is calculated in HL. Then
the value of the string length resulting from the assignment, i.e. one
(1) is loaded into the position reserved for the length of the string
via a store indirect through HL. Up to this point all is as it should
be; however, the value of the single character that comprises the
string is then also stored HL indirect, overwriting the length and
failing to correctly load the string value. The HL register should

be incremented before the second store.

The following is an example:

"processor name"
PROGRAM TEST;

TYPE
STRING_15 = PACKED ARRAY[0..15] OF CHAR;

VAR
TWO _D_ARR : ARRAY[1..3,1..3] OF STRING_15;

BEG
TWO D_ARR([2,1] := " ";
LD HL 0030H
PUSH HL
LD HL,00002H
PUSH HL
LD HL,00010H
PUSH HL
LD HL,00001H
PUSH HL
LD BC,DTEST-00040H
LD A,002H
CALL Zarrayref
LD A,001H
LD [HL],A (*or LD M,A *)
LD A,020H
LD [HL],A (*This is the error - should INC HL first¥)
END.

Signed off 04/29/87 in release 301.70
- -0

SRB detail reports as of 04/29/87 Page: 100

Number: D200067447 Product: 8085 B PASCAL VAX 648255003 01.60

One-line description:
Assignment of unsigned_8 variables to expression always assigns zero.

Problem:
The following example program generates incorrect code:

"processor name"
PROGRAM TEST;

VAR
Cp,DP,TP,SBS : UNSIGNED_8;

BEGIN
CP:=TP;
IF (CP'> DP) THEN

SBS:= CP - DP; (*This always assigns zero to SBS*)
END.

Signed off 04/29/87 in release 301.70

Number: D200067017 Product: 8085 B PASCAL VAX 648255003 01.60

One-line descrlptlon
.A,.R, and listing files should reside in directory compile is executed.

Problem:

The output files from the compilers and assemblers (.A and .R) reside
in the directory that the source file being operated on resides in.
This was a change implemented in the October 1986 SMS in order to make
the VAX hosted compxlers consistent with the HP-UX hosted comp1lers
Problems occur if the source file resides in a read-only directory.
Customer feels that the resultant files from the compile should reside
in the directory the compiler is invoked from.

Signed off 04/29/87 in release 301.70

SRB detail reports as of 04/23/87 Page: 101
Number: D200011262 Product: 8085 C 64826 01.00
Keywords: PASS 1

One-line description: .
Functions invoked via function pointers may JSR the wrong location,

Problem:

When the typedef statement is used to define pointers to functions,
and this pointer type is used in a cast of a variable array to invoke
code stored in that array, program execution may transfer to the wrong
location. For example, in the following code the simple call to
code_array fails while the call and assignment to p works correctly:

typedef int(*PFI)(); /* PFI a pointer to int functions */

int code_array[100]; /* array contains code */

PFI p; /* p a pointer of type PFI */

?fibug()
(*((PFI) code_array))(); /* fails in JSR to code_array */
(*(ps(PFI)code_array))(i; /* assignment and JSR successful */

Temporary solution:

Set up a dummy variable and perform an assignment to it when doing
this type of operation.

Signed off 04/29/87 in release 601.04

Number: D200011346 Product: 8085 C 64826 01.00
Keywords: PASS 1

One-line description: . X
Unsigned integers treated as signed when subtracted from pointers.

Problem:
When an unsigned short or integer is used as an offset to a pointer, the
unsigned will be treated as a signed when doing pointer calculations.
Offsets large enough to set the sign bit will be interpreted as a
negative offset when the offset is subtracted from a pointer. The
following code exibits the problem if offset is greater than 32767 dec.
unsigned offset;
struct { int a,b,c;

} *ptr;
unsigned long x;

Tain ()
X = ptr - offset; /* The compiler will generate code negating */
/¥ offset for the "-" operation. */
Temporary solution: . .
Cast the offset in the expression as the next larger integer.
ie. x = ptr - (unsigned long)offset;

- -0

SRB detail reports as of 04/29/87 Page: 102

Signed off 04/29/87 in release 601.04

Number: D200025742 Product: 8085 C 64826 01.01
Keywords: CODE GENERATOR .

One-line description:
Assigning a ptr. after its post incr/decr. gives incorrect value,

Problem:

Pointer assignment after a post increment or decrement to that pointer
stores incorrect value. The following is an illustration:

"weve

“"PROCESSOR_NAME"

unsigned short fct(g)
?n51gned short *g;

unsigned short a,b;
b=%*g;
*g++
a=*g;

}

The first assignment statement stores the contents of what g is point-
to in the accumulator. Once the pointer is incremented, the compiler
loads the accumulator (which still has the previous value) into the
variable a. The compiler is false remembering the value in the
accumulator as the current contents of what g is pointing to.

Temporary solution:

Turn $AMNESIA ON$ to force the reload of the accumulator from the BC
register pair.

Signed off 04/29/87 in release 601.04

Number: D200037622 Product: 8085 C 64826 01.01

One-line description: . .
IF statements involving return values and address calculations may fail.

Problem:

HP9000 compiler generates different code from 64000 and VAX, and both
are wrong. If an if statement compares the value returned from

a function with a value obtained via the structure pointer operator,
the value returned from the function may be overwritten by the address
of the structure element. This will cause the test to be erroneous.

Example:
non

“8085"

extern unsigned x();
struct
{long *ptr;

SRB detail reports as of 04/29/87 Page: 103

unsigned length;
} *now_string;

func_1()

if(x() < now_string->length) /* test fails */
r§turn(5);

Temporary solution:
Use a temporary variable to hold the return result of the function.

Signed off 04/29/87 in release 601.04

Number: D200040444 Product: 8085 C 64826 01.01

One-line description: .
Nested switch statements may generate infinite loop

Problem:

If you have nested switch statements and do not terminate the inner
switch’s cases with breaks the compiler generates an infinite loop.
npe

"68000"

main(){
int ¢;
switch(c) {
case 1: break;
default: switch(c){
case 2: break;

/% A break is needed here because the break
above for ’case 2’ generates a jump to
this location. If a break is not placed
here it falls into the code for
evaluating ’case 1’ above. */

}

Temporary solution:
Close default statement with a break.

won
"68000"
main(){
int c¢;
switch(c){
casel: break;
default: switch(c){
case 2: break;
break;
}
}

Signed off 04/23/87 in release 601.04
- -0

SRB detail reports as of 04/239/87 Page: 104

Number: D200059907 Product: 8085 C 64826 01.02

One-line description:
Compiler is not flagging an undefined structure.

Problem:

The customer reports that the program listeq below causes the
compiler to hang. I could not duplicate this problem, but, the
compiler incorrectly reported no errors.

wee
"processor"”

main() {

int i; .
struct undefined a[10][20];

}

The compiler should report that the type ’undefined’ is undefined.

Temporary solution:
No temporary solution.

Signed off 04/29/87 in release 601.04

Number: D200062828 Product: 8085 C 64826 01.02

One-line description: X X .
Incorrect code generated when function parameter is post incremented.

Problem:

Incorrect code is generated when a function argument is post
incremented. The following code is an example of this problem:

g
"8085"
$RECURSIVE OFF$
void puts(buf);
char *vuf;

while (*buf != °\0’)
putchar (*buf++);

Temporary solution: .
Pass the parameter to the function without post incrementing it, then
increment it after the function call.

Signed off 04/29/87 in release 601.04

SRB detail reports as of 04/29/87 Page: 105
Number: D200063297 Product: 8085 C 64826 01.03
Keywords: CODE GENERATOR

One-line description:
Character isn’t converted to int before calculations use it

Problem:

Kernigan and Rigchie states that a character is converted to an integer
before calculations use the char variable. Our compiler does not conver
t the character to an integer prior to any calculations.

For example:
wgn

"8086"

main() {
char c;
int i; .
i = ((ccc 4) *5)/1i;

AX register if c¢c = OFFH

XXXX MOV CL,#+00004H {moves 4 into counter}

00xx MOV AH,#0 {00h into AH}

00FF MOV AL,SS:BYTE PTR[BP-00003H] {loads c¢ into AL}

00F0 SHL AL,CL {shifts left 4 ¢ ;however, it loses the uppe
) r byte because it was not SHL AX,CL}

The character is not being treated as an integer. Making this SHL AX,CL
would fix the problem,

Emulating the generated code confirmed that the high byte (4 places) was
not being shifted into AH.

Temporary solution: X .
Type cast c to be an integer before using it in the expression.

Signed off 04/29/87 in release 601.04

Number: D200063610 Product: 8085 C 64826 01.03

One-line description:
C Function returning large (>2bytes) result can’t be called as procedure

Problem:

Functions returning large (>2byte) result cannot be called as
procedures.

Signed off 04/29/87 in release 601.04

Number: D200064881 Product: 8085 C 64826 01.03

One-line description: .
Funct calls via pointers with parms cause subsequent stack ref errors

Problem:

SRB detail reports as of 04/29/87 Page: 106

When functions are called via pointers and are passed parameters,
subsequent references to stack relative objects will be incorrect.
The following code is an example of this problem:

wen
"processor name"
extern int called_func();

typedef int (*PFIV();
PFI call_ptr = called_func;

?ain()
int local;
local = 6; (¥variable is accessed correctly*)
(*(call_ptr() (1,2); (¥*function call via pointer with parameters*)
, local = 3; (*wrong location accessed*)

Signed off 04/23/87 in release 601.04

Number: D200066203 Product: 8085 C 64826 01.03

One-line description:
Illegal forward reference flagged for legally defined string.

Problem:

nen
"processor"

char badstring(] = {"Wont work"};
char stringl] = “works fine";
?ain()

int i;

i = sizeof(string);

i = sizeof(badstring); /* Error 117 flagged., */

Temporary solution: .. .
Eliminate the braces when initializing a string.

.
“processor”

char string[] = "do it this way";
?ain()
int i;

i = sizeof(string);

SRB detail reports as of 04/29/87
Signed off 04/29/87 in release 601.04

Page:

107

SRB detail reports as of 04/29/87 Page: 108
Number: D200051979 Product: 8085 C 300 648265004 01.00

One-line description: .
Nested switch statements may generate infinite loop

Problem:

If you have nested switch statements and do not terminate the inner
switch’s cases with breaks the compiler generates an infinite loop.

“cn
"processor name"

main(){
int ¢ .
switch(c) {
case 1: break;
default: switcn(c){
case 2: break;

}

/* A break is needed here because the break
above for ’'case 2’ generates a jump to
this location. If a break is not placed
here it falls into the code for
evaluating ’case 1’ above. */

}

Temporary solution:
Close default statement with a break.

“68000"
main(){
int ¢;
switch(c){
casel: break;
default: switch(c){
y case 2: break;
) break;

}

Signed off 04/29/87 in release 401,20

Number: D200059931 Product: 8085 C 300 648265004 01.00

One-line description:
Compiler is not flagging an undefined structure.

Problem:

The customer reports that the program listed below causes the
compiler to hang. I could not duplicate this problem, but, the
compiler incorrectly reported no errors.

wen
"processor"

SRB detail reports as of 04/29/87 Page: 109
main() {

int 1i; X
struct undefined a[10][20];

}

The compiler should report that the type ’undefined’ is undefined.

Temporary solution:
No temporary solution.

Signed off 04/29/87 in release 401.20

Number: D200063321 Product: 8085 C 300 648265004 01.10

Keywords: CODE GENERATOR

One-line description:
Character isn’t converted to int before calculations use it

Problem:

Kernigan and Ritchie states that a character is converted to an integer
before calculations use the char variable. Our compiler does not conver
t the character to an integer prior to any calculations.

For example:
g

"8086"

main() {
char c¢;
int i

i= ({ccc 4) *5)/1;
AX register if ¢ = OFFH

XXXX MOV CL,#+00004H {moves 4 into counter}

00xx MOV AH,#0 {00n into AH}

00FF MOV AL,SS:BYTE PTR[BP-00003H] ({loads c into AL}

00F0 SHL AL,CL {shifts left 4 ¢ ;however, it loses the uppe

) r byte because it was not SHL AX,CL}

The character is not being treated as an integer. Making this SHL AX,CL
would fix the problem.

Emulating the generated code confirmed that the high byte (4 places) was
not being shifted into AH.

Temporary solution:
Type cast ¢ to be an integer before using it in the expression.

Signed off 04/29/87 in release 401.20

SRB detail reports as of 04/29/87 Page: 110
Number: D200063644 Product: 8085 C 300 648265004 01.10

One-line description:
C Function returning large (>2bytes) result can’t be called as procedure

Problem:

Functions returning large (>2byte) result cannot be called as
procedures,

Signed off 04/29/87 in release 401.20

Number: D200064915 Product: 8085 C

300 648265004 01.10

One-line description:
Funct calls via pointers with parms cause subsequent stack ref errors

Problem:

When functions are called via pointers and are passed parameters,
subsequent references to stack relative objects will be incorrect.
The following code is an example of this problem:

e
"processor name"

extern int called_func();
typedef int (*PFI)();

PFI call_ptr = called_func;

Tain()
int local;
local = 6; (*variable is accessed correctly*)
(*(call_ptr() (1,2); (¥function call via pointer with parameters*)
) local = 3; (*wrong location accessed¥)
Signed off 04/29/87 in release 401.20

Number: D200066233 Product: 8085 C

300 648265004 01.10

One-line description: .
Illegal forward reference flagged for legally defined string.

Problem:
g
"processor"

char badstring[] = {“"Wont work"};
char string[] = "works fine";
?ain()

int i;

i = sizeof(string);

i = sizeof(badstring); /* Error 117 flagged. */

- -0

SRB detail reports as of 04/23/87 Page: 111
}
Temporary solution:
Eliminate the braces when initializing a string.
g
"processor"
char string[] = "do it this way";
main()
.
int i;
i = sizeof(string);
Signed off 04/29/87 in release 401.20
Number: D200066555 Product: 8085 C 300 64826S004 01.10

One-line description:
No error message for unimplemented processor name.

Problem:
Specxfyxng an unlmplemented processor name in a C source file
will cause the compiler to go from pass 1 into C Nocode without

an error message. The listing file also does not report the
error.

Signed off 04/29/87 in release 401.20

SRB detail reports as of 04/29/87 Page: 112

Number: 5000179028 Product: 8085 C 500 64826S001 01.05

One-line description: R
Number of errors listed at bottom of the listing is incorrect.

Problem:
The following program, compiled with the -o option, does not
correctly total the number of errors at the end of the listing

"8085"
int x,y;
main ()
{ a ++; x = val; v =0;
functl(x y);
if (funcd() i
if (var == 0
}
If the line "if (var == 0);" is removed, the problem goes away. It
appears only to happen when an undefined variable is used in an if
statement.

A shorter example,

nee
"8085"
main () { if (var == 0); }
~103,1047407
103:
104: etc.
407: etc.

End of compilation, number of errors= 0

Temporary solu;ion:
Refer to the listing generated to determine errors.

Signed off 04/29/87 in release 101.60

Number: D200025753 Product: 8085 C 500 64826S001 01.10

Keywords: CODE GENERATOR

One-line description: . .
Assigning a ptr. after its post incr/decr. gives incorrect value.

Problem:

Pointer assignment after a post 1ncrement or decrement to that pointer
stores incorrect value. The following is an illustration:

won
“PROCESSOR_NAME"

unsigned short fct(g)
%nsigned short *g;

SRB detail reports as of 04/29/87 Page: 113

unsigned short a,b;
b=¥g;
*g++
a=*g;
}

The first assignment statement stores the contents of what g is point-
to in the accumulator. Once the pointer is incremented, the compiler
loads the accumulator (which still has the previous value) into the
variable a. The compiler is false remembering the value in the
accumulator as the current contents of what g is pointing to.

Temporary solution:
Turn $AMNES;A ON$ to force the reload of the accumulator from the BC
register pair.

Signed off 04/23/87 in release 101.60

Number: D200040451 Product: 8085 C 500 64826S001 01.20
One-line description: .
Nested switch statements may generate infinite loop

Problem:
If you have nested switch statements and do not terminate the inner
switch’s cases with breaks the compiler generates an infinite loop.

wen

"68000"

main(){
int ¢;
switch(c) {
case 1: break;
default: switch(c){
case 2: break;

}

/* A break is needed here because the break
above for 'case 2’ generates a jump to
this location. If a break is not placed
here it falls into the code for
evaluating ’case 1’ above, */

}

Temporary solution:
Close default statement with a break.

apw
"68000"
main(){
int c;
switch(c){
casel: break;
default: switch(c){
case 2: break;
break;
}
- -0

SRB detail reports as of 04/29/87 Page: 114
}
Signed off 04/29/87 in release 101.60

Number: D200042085 Product: 8085 C 500 648265001 01.20

One-line description: .
IF statements involving return values and address calculations may fail.

Problem:

HP9000 compiler generates different code from 64000 and VAX, and both
are wrong. If an if statement compares the value returned from

a function with a value obtained via the structure pointer operator,
the value returned from the function may be overwritten by the address
of the structure element. This will cause the test to be erroneous.

Example:

"8085"

extern unsigned x();
struct

{long *ptr;

unsigned length

} *now_string;

func_1()

if(x() < now_string->length) /* test fails */
rﬁturn(s);

Temporary solution:
Use a temporary variable to hold the return result of the function.

Signed off 04/29/87 in release 101,60

Number: D200059915 Product: 8085 C 500 648265001 01.40

One-line description: .
Compiler is not flagging an undefined structure.

Problem:

The customer reports that the program listed below causes the
compiler to hang. I could not duplicate this problem, but, the
compiler incorrectly reported no errors.

ne
"processor"

main() {

int i;
struct undefined a[10][20];

}

SRB detail reports as of 04/29/87 Page: 115

The compiler should report that the type ’'undefined’ is undefined.

Temporary solution:
No temporary solution.

Signed off 04/29/87 in release 101.60

Number: D200063305 Product: 8085 C 500 648265001 01.50

Keywords: CODE GENERATOR

One-1line descrlptlon
Character isn’t converted to int before calculations use it

Problem:

Kernigan and Ritchie states that a character is converted to an integer
before calculations use the char variable. Our compller does not conver
t the character to an integer prior to any calculations.

For gxample:

"8086"
main() {
char c;
int i;
i= (lece 4) *5)/1;

AX register if ¢ = OFFH

XXXX MOV CL,#+00004H {moves 4 into counter}

00xx MOV AH,#0 {00nh into AH}

O0FF MOV AL,SS:BYTE PTR[BP-00003H] {loads ¢ into AL}

00F0 SHL AL,CL {shifts left 4 c ;however, it loses the uppe

) r byte because it was not SHL AX,CL}

The character is not being treated as an integer. Making this SHL AX,CL
would fix the problem.

Emulating the generated code confirmed that the high byte (4 places) was
not being shifted into AH.

Temporary solution:
Type cast ¢ to be an integer before using it in the expression.

Signed off 04/29/87 in release 101.60

Number: D200063628 Product: 8085 C 500 64826S001 01.50

One-line description:

C Function returning large (>2bytes) result can’t be called as procedure
Problem:

Functions returning large (>2byte) result cannot be called as
procedures.

- -0

SRB detail reports as of 04/29/87 Page: 116

Signed off 04/29/87 in release 101.60

Number: D200064839 Product: 8085 C 500 648265001 01.50

One-line description:
Funct calls via pointers with parms cause subsequent stack ref errors

Problem:
When functions are called via pointers and are passed parameters,

subsequent references to stack relative objects will be incorrect.
The following code is an example of this problem:

wgn
"processor name"

extern int called_func();
typedef int (*PFIV();

PFI call_ptr = called _func;

?ain(l
int local;
local = 6; (*variable is accessed correctly*)
(*(call_ptr() (1,2); (*functlon call via pointer with parameters*)
local = 3; *wrong location accessed*)

Signed off 04/29/87 in release 101.60

Number: D200066217 Product: 8085 C 500 648265001 01.50

One-line description:
Illegal forward reference flagged for legally defined string.

Problem:
ven
"processor"

char badstring(] = {"Wont work"};
char string[] = "works fine";
?ain()

int i;

i = sizeof(string);

i = sizeof(badstring); /* Error 117 flagged. */

Temporary solution:
Eliminate the braces when initializing a string.

wee
"processor”

SRB detail reports as of 04/29/87 Page: 117
char stringl] = "“do it this way";
main()
(int i;
i = sizeof(string);
Signed off 04/29/87 in release 101.60
Number: D200066530 Product: 8085 C 500 64826S001 01.50

One-line description:
No error message for unimplemented processor name.

Problem:
Specifying an unimplemented processor name in a C source file
will cause the compiler to go from pass 1 into C Nocode without

an error message. The listing file also does not report the
error,

Signed off 04/29/87 in release 101.60

SRB detail reports as of 04/29/87 Page: 118

Number: D200025767 Product: 8085 C VAX 648265003 01.10

Keywords: CODE GENERATOR

One-line description:
Assigning a ptr. after its post incr/decr. gives incorrect value.

Problem:
Pointer‘assignment after a post ingremgnt or‘decremeng to that pointer
stores incorrect value. The following is an illustration:

wen

“PROCESSOR_NAME"

unsigned short fct(g)
%nsxgned short *g;

unsigned short a,b;
b=*g;
*g++;
a=¥*g;

}

The first assignment statement stores the contents of what g is p01nt-
to in the accumulator. Once the pointer is 1ncremented the compiler
loads the accumulator (which still has the previous value) into the
variable a. The compiler is false remembering the value in the
accumulator as the current contents of what g is pointing to.

Temporary solution:
Turn $AMNESIA ON$ to force the reload of the accumulator from the BC
register pair.

Signed off 04/29/87 in release 301.90

Number: D200040469 Product: 8085 C VAX 648265003 01.20

One-line description:
Nested switch statements may generate infinite loop

Problem:

If you have nested switch statements and do not terminate the inner
SVltCh s cases with breaks the compiler generates an infinite loop.
ape

“68000"

main(){
int c;
switch(c) {
case 1: break;
default: switch(c){
case 2: break;

}

/* A break is needed here because the break
above for ’case 2’ generates a jump to
this location. If a break is not placed
here it falls into the code for

- -0

SRB detail reports as of 04/29/87 Page: 119

evaluating ’case 1’ above. */

}

Temporary solution:
Close default statement with a break.

"68000"
main(){ |
int c;
switch(c){
casel: break;
default: switch(c){
case 2: break;
break;
}
}

Signed off 04/29/87 in release 301.90

Number: D200042093 Product: 8085 C VAX 648265003 01.20

One-line description:
- IF statements involving return values and address calculations may fail.

Problem:

HP9000 compiler generates different code from 64000 and VAX, and both
are wrong. If an if statement compares the value returned from

a function with a value obtained via the structure pointer operator,
the value returned from the function may be overwritten by the address
of the structure element. This will cause the test to be erroneous.

Example:

ne

"8085"

extern unsigned x();
struct

{long *ptr;
unsigned length;

} *now_string;

func_1()

if(x() < now_string->length) /* test fails */
rﬁturnts);

Temporary solution: .
Use a temporary variable to hold.the return result of the function.

Signed off 04/29/87 in release 301.90

SRB detail reports as of 04/29/87 Page: 120
Number: D200059923 Product: 8085 C VAX 648265003 01.60

One-line description:

Compiler is not flagging an undefined structure.

Problem:

The customer reports that the program listed below causes the
compiler to hang. I could not duplicate this problem, but, the
compiler incorrectly reported no errors.

g
“processor"

main() {

int i; .
struct undefined a[10][20];

}

The compiler should report that the type 'undefined’ is undefined.

Temporary solution:
No temporary solution.

Signed off 04/29/87 in release 301.90
Number: D200063313 Product: 8085 C
Keywords: CODE GENERATOR

VAX 648265003 01.80

One-line description: .
Character isn’t converted to int before calculations use it

Problem:

Kernigan and Ritchie states that a character is converted to an integer
before calculations use the char variable. Our compiler does not conver
t the character to an integer prior to any calculations.

For example:
ugn

"8086"
main{) {
char c;

int 1i;
i = ((ccc 4) *5)/1i;

AX register if ¢ = OFFH

XKXX MOV CL,#+00004H ({moves 4 into counter}

00xx MOV AH,#0 {o0h into AH}

00FF MOV AL,SS:BYTE PTR[BP-00003H] {loads c into AL}

00F0 SHL AL,CL {shifts left 4 c ;however, it loses the uppe

) r byte because it was not SHL AX,CL}

SRB detail reports as of 04/29/87 Page: 121

The character is not being treated as an integer. Making this SHL AX,CL
would fix the problem.

Emulating the generated code confirmed that the high byte (4 places) was
not being shifted into AH.

Temporary solution:
Type cast ¢ to be an integer before using it in the expression,

Signed off 04/29/87 in release 301.90

Number: D200063636 Product: 8085 C VAX 648265003 01.80

One-line description:
C Function returning large (>2bytes) result can’t be called as procedure

Problem:

Functions returning large (>2byte) result cannot be called as
procedures.

Signed off 04/29/87 in release 301.90

Number: D200064307 Product: 8085 C VAX 648265003 01.80

One-line description: .
Funct calls via pointers with parms cause subsequent stack ref errors

Problem:

When functions are called via pointers and are passed parameters,
subsequent references to stack relative objects will be incorrect.
The following code is an example of this problem:

wen
"processor name"

extern int called_func();
typedef int (*PFIV();

PFI call_ptr = called_func;

main()
int local;
local = 6; (*variable is accessed correctly*)
(*(call_ptr() (1,2); (*function call via pointer with parameters*)
) local = 3; (*wrong location accessed¥)

Signed off 04/29/87 in release 301.90

Number: D200066225 Product: 8085 C VAX 648265003 01.80

One-line description:
Illegal forward reference flagged for legally defined string.

Problem:
wen
"processor"”

SRB detail reports as of 04/29/87 Page:

char badstring(] = {"Wont work"};
char string[] = "works fine";

?ain(]
int i;

i = sizeof(string);

i = sizeof(badstring); /* Error 117 flagged. */

Temporary solution: . . .
Eliminate the braces when initializing a string.

L
"processor"”

char string[] = "do it this way";
main()
int i;

i = sizeof(string);

Signed off 04/29/87 in release 301.90

122

Number: D200066548 Product: 8085 C VAX 648265003
One-line description:
No error message for unimplemented processor name.

Problem:

Specifying an unimplemented processor name in a C source file
will cause the compiler to go from pass 1 into C Nocode without
an error message. The listing file also does not report the
error.

Signed off 04/29/87 in release 301.90

01.80

SRB detail reports as of 04/29/87 Page: 123
Number: 5000136093 Product: 8086/8 ASSEMB 64853 02.00
Keywords: CODE GENERATOR

One-line description:
Index addressing in MOV statement creates incorrect code

Problem:

The following program generates incorrect code:
"80186"
NNN EQU 0EEH

MOV AL ,NNN ;1line
MoV AL,ES:BYTE PTR NNN[BX] ;line
MoV AL,ES:BYTE PTR [NNN+BX] ;line
MoV AL,ES:BYTE PTR [NNN]([BX] ;line

oNw>

Line A generates BOEE which is correct; and line C and line D

both generate 268A87EE00 which is also correct. As expected these two
lines generate the same code. Line B, however, generates BOEE

(same as line A) which appears incorrect. Line B can be interpreted
as: the BYTE PTR of (the offset of NNN from ES + the contents of

BX) should be moved into AL. This does not seem to be happening

since the insertion of the statement MOV BX,#01H before line B

does not change the value being moved into AL in line B (still
generates BOEE).

Temporary solution:
No known temporary solution.

Signed off 04/29/87 in release 302.02

Number: 5000136226 Product: 8086/8 ASSEMB 64853 02.00

One-line description:
Corrupt file generated by assem. when large # of files are link. w/xref

Problem:

This problem can be demonstrated by using a customer tape that is
available from Robin Barker-Chambers. This only occurs when generating
a xref. Softfix must be run to resolve the problem. The absolute

file generated is always correct.

Signed off 04/29/87 in release 302.02

Number: 5000152090 Product: 8086/8 ASSEMB 64853 02.01

One-line description:
Assermb ler does not flag LR error when short jump > +/- 127 bytes

Problem:
When a short jump is used as follows:
"80186"
JMP SHORT LABEL
DBS 81H
LABEL
This program does not generate a LR error (illegal range error) even

- -0

SRB detail reports as of 04/29/87 Page:

a short jump is only allowed a +/-127 byte range.

Temporary solution:
No known temporary solution.

Signed off 04/29/87 in release 302.02

124
though the jump ois greater than +/-127 bytes. According to Intel

Number: 5000154542 Product: 8086/8 ASSEMB 64853 02.01
One-line description:
OLD_8087 directive is ignored after the use of DQ pseudo
Problem: A L. A
The "OLD_8087" directive is ignored following the use of
the pseudo DQ.
"8086"
0LD_8087
bQ 1
FDIVRP ST(1],ST generates 9BDEF1 -- wrong
0LD_8087
FDIVRP ST(1],ST generates SBDEFS -- correct
END
The DQ cancells the OLD_8087 directive.
Temporary solution: .
Use OLD_8087 pseudo after using DQ pseudo.
Signed off 04/23/87 in release 302.02
Number: 5000161836 Product: 8086/8 ASSEMB 64853 02.01

One-line description:
FMUL ST([3],ST[S]) does not flag error

Problem:
8086 assembler does not generate an error for the
following illegal instruction:

FMUL ST[3],ST(S]
Code for FMUL ST([3],ST is generated.
FMUL ST,ST generates ---> 9BDCC8 (expected 9BDSCS8)

FMUL ST{O] ST generates ---> 9BDCCS8

(expected 9BD8CS)
FMUL ST,ST{0] generates ---> 9BD8C8

All three of these statements is equivalent
The two different opcodes generated do the
same thing.

Temporary solution: .
No known temporary solution.

Signed off 04/29/87 in release 302.02

- -0

SRB detail reports as of 04/29/87 Page: 125
Number: D200005116 Product: 8086/8 ASSEMB 64853 00.08
Keywords: LINKER

One-line description:
"Total # of bytes loaded"” is incorrect if segment boundary is crossed.

Problem:
The linker listing Lndxcates an incorrect number of bytes being loaded
when a segment boundary is crossed.

"8086"

ex.
ORG OOFFFOH
DB OH, 1H,2H,3H, 4H,5H, 6H, 7H, 8H, SH
DB OAH,OBH,OCH,O0DH, OEH, OFH

PROG
NOP
END
Causes the following Linker listing;
FILE/PROG NAME PROGRAM DATA COMMON ABSOLUTE DATE...
NAME:UID 00000000 0000FFFO-FFFFFFFF
next address 00000001

XFER address= 00000000 Defined by DEFAULT
absolute & link_com file name=NAME:UID
Total# of bytes loaded= FFFF0011

Temporary solution: X . .
Avoid crossing segment boundaries at link time.

Signed off 04/29/87 in release 302.02

Number: D200033563 Product: 8086/8 ASSEMB 64853 02.00

One-line description:
STACKSEG pseudo op does not allocate space correctly.

Problem:

The STACKSEG pseudo instruction should allow the user to create a
logical stack segment of a specified length in bytes. Instead, the
assembler creates a segment where the number of bytes allocated is
exactly the value of the current program counter.

Signed off 04/29/87 in release 302.02

Number: D200042242 Product: 8086/8 ASSEMB 64853 02.00

One-line description:
Expression type errors occur for legal INC instructions.

Problem:
The following code generates errors as shown when assembled, although
each of the instructions are legal.

"processor name"
ASSUME CS:PROG
PROG

SRB detail reports as of 04/29/87 Page: 126

INC [BX][SI]

“ET (Expression type)
INC [BX+SI 3
ET,IE (Illegal expression)

Temporary solution:
Do not use INC instructions of this form.
Signed off 04/29/87 in release 302.02
Number: D200043885 Product: 8086/8 ASSEMB 64853 02.00

One-line description:

Macro called with more parameters than declared generates error.

Signed off 04/29/87 in release 302,02

SRB detail reports as of 04/29/87 Page: 127
Number: D200052100 Product: 8086/8 ASSEMB 300 648535004 02.00

One-line description: .
Expression type errors occur for legal INC instructions.

Problem:

The following code generates errors as shown when assembled, althbugh
each of the instructions are legal.

"processor name"

ASSUME CS:PROG
PROG
INC [BX1[SI]
“ET (Expression type)
INC [BX+SI]

“ET,IE (Illegal expression)

Temporary solution:
Do not use INC instructions of this form.

Signed off 04/29/87 in release 402.20

SRB detail reports as of 04/29/87 Page: 128
Number: D200042556 Product: 8086/8 ASSEMB 500 648535001 02.00

One-line description:

Expression type errors occur for legal INC instructions.

Problem:

The following code generates errors as shown when assembled, although
each of the instructions are legal.

"processor name"

ASSUME CS:PROG
PROG
INC [BX][SI)
“ET (Expression type)
INC [BX+SI]

“ET,IE (Illegal expression)

Temporary solution: . .
Do not use INC instructions of this form.

Signed off 04/29/87 in release 102.30

SRB detail reports as of 04/29/87 Page: 129
Number: D200042564 Product: 8086/8 ASSEMB VAX 648535003 02.00

One-line description:
Expression type errors occur for legal INC instructions.

Problem:
The following code generates errors as shown when assembled, although
each of the instructions are legal.

“processor name”

ASSUME CS:PROG
PROG
INC [BX][SI]
“ET (Expression type)
INC [BX+SI)

“ET,IE (Illegal expression)

Temporary solution:
Do not use INC instructions of this form.

Signed of f 04/28/87 in release 302.40

SRB detail reports as of 04/29/87 Page: 130
Number: 5000108969 Product: 8086/8 C 64818 02.00

One-line description:
Dereferencing a structue is not working properly.

Temporary solution:
Use the alternate dereferencing structure (many.one) suggested above.

Signed off 04/29/87 in release 803.02

Number: 5000135913 Product: 8086/8 C 64818 02.00
Keywords: CODE GENERATOR

One-line description: L,
AX not loaded with constant prior to using it to calculate expression

Problem:
e
“8086"
char af2]([2];
char b;
char ctsl;
bug() { char i,j,k;
v=a[j]k];
c[i¥*2] =p;
MOV AL,#+00002H (AL CONTAINS 2H) .
MUL SS:BYTE PTR [BP-00003H] (AX CONTAINS i*2)

b = c[i*2+1]; }
MUL SS:BYTE PTR [BP-00003H] (AX CONTAINS i*i%*2 -WRONG)
(THIS OCCURED BECAUSE ax WAS
ASSUMED TO CONTAIN 2H)

Temporary solution:
NO KNOWN TEMPORARY SOLUTION

Signed off 04/29/87 in release 803.02

Number: 5000160770 Product: 8086/8 C 64818 02.00
Keywords: CODE GENERATOR

One-line description:

The compiler generates incorrect code for floating point constants

Problem:
The data generated by the compiler for floating point constants
is not always correct. This problem does not occur on the 64100.

For example,
wen
"8086"
float varl = 32.0;

float var2 = 32/1;
float var3 = 32.0/1%;

Assembly code generated
DW 0000H, 4200H
DW 0000H, 4200H
DW 0000H, 4280H

- -0

SRB detail reports as of 04/29/87 Page: 131

float var4 = 32/1.0;

DW 0000H, 4280H
float var5 = 32.0/1.0;

DW 0000nh, 4280H
All of these expressions should generate: DW 0000H,4200H

Temporary solution:
The temporary solution is:

(1) Compile on the 64100.

or
(2) Expressions with constant operand(s) that are floating point
numbers may not be initialized in the declarations. They
should be initialized in the main program and type cast.
For example,
float wvarl;
main () {

varl = (float)32/1.0;
varl = 32.0/(float)1l;

Signed off 04/29/87 in release 803.02

Number: D200007831 Product: 8086/8 C 64818 00.56
Keywords: CODE GENERATOR

One-line description: .
Error #1006 generated when incorrect value returned from a function

Problem:

When a function is declared to return one type of value, but another
type is actually returned, the compiler may generate Pass 2 error #1006.
The following code exhibits this problem.

npe
“8086"

%har *char_ptr()
int i;
return((long)l)

Temporary solution:
Have the return statement in each function send back a value that
matches the type declaration of the function.

Signed off 04/29/87 in release 803.02

SRB detail reports as of 04/29/87 Page: 132
Number: D200010116 Product: 8086/8 C 64818 00.56
Keywords: PASS 1

One-line description: . .
Unsigned integers treated as signed when subtracted from pointers.

Problem:
When an unsigned short or integer is used as an offset to a pointer, the
unsigned will be treated as a signed when doing pointer calculations.
Offsets large enough to set the sign bit will be interpreted as a
negative of fset when the offset is subtracted from a pointer. The
following code exibits the problem if offset is greater than 32767 dec.
unsigned offset;
struct { 1nt a, b ,C3

*ptr;
unsigned long Xx;

Tain ()

x = ptr - offset; /* The compiler will generate code negating */

/* offset for the "-" operation. *

Temporary solution:
Cast the offset in the expression as the next larger integer.
ie. x = ptr - (unsigned long)offset;
Signed off 04/23/87 in release 803.02
Number: D200011395 Product: 8086/8 C 64818 00.56

Keywords: PASS 1

One-line description:
Functions invoked via function pointers may JSR the wrong location.

Problem:

When the typedef statement is used to define poxnters to functions,

and this p01nter type is used in a cast of a variable array to 1nvoke
code stored in that array, program execution may transfer to the wrong
location. For example, in the followxng code the simple call to
code_array fails while the call and assignment to p works correctly:

typedef int(*PFI)(); /* PFI a pointer to int functions ¥/
int code_array[100]; /* array contains code */
PFI p; /* p a pointer of type PFI */

pfibugl()

(*((PFI) code_array))(); /* fails in JSR to code_array */
(*(p=(PFI)code_ array))(j /* assignment and JSR successful */

Temporary solution: . . .
Set up a dummy variable and perform an assignment to it when doing
this type of operation.

SRB detail reports as of 04/239/87 Page: 133
Signed off 04/29/87 in release 803.02

Number: D200040295 Product: 8086/8 C 64818 02.00

One-line description:
Nested switch statements may generate infinite loop

Problem:
If you have nested switch statements and do not terminate the inner
switch’s cases with breaks the compiler generates an infinite loop.

wen

"68000"

main(){
int c;
switch(c) {
case 1: break;
default: switchl(c){
case 2: break;

/* A break is needed here because the break
above for ’case 2’ generates a jump to
this location. If a break is not placed
here it falls into the code for
evaluating ’case 1’ above. */

)

Temporary solution:
Close default statement with a break.

age
"68000"
main(){
int ¢;
switch(c){
casel: break;
default: switch(c){
case 2: break;
break;
}
}

Signed off 04/29/87 in release 803,02

Number: D200059675 Product: 8086/8 C 64818 03.00

One-line description:
Compiler is not flagging an undefined structure.

Problem:

The customer reports that the program listed below causes the
compller to hang. I could not duplicate this problem, but, the
compiler incorrectly reported no errors.

wee
"processor”

SRB detail reports as of 04/29/87 Page: 134
main() {

int i;

struct undefined a[(10])[20];

}

The compiler should report that the type ’undefined’ is undefined.

Temporary solution:
No temporary solution.

Signed off 04/239/87 in release 803,02
Number: D200063388 Product: 8086/8 C 64818 03.01

One-line description:
C Function returning large (>2bytes) result can’t be called as procedure

Problem:
Functions returning large (>2byte) result cannot be called as

procedures.
Signed off 04/29/87 in release 803.02
Number: D200065979 Product: 8086/8 C 64818 03.01

One-line description:
Illegal forward reference flagged for legally defined string.

Problem:
“en
"processor"

char badstring([] = {"Wont work"};
char string(] = "works fine";
main()

int i;

i = sizeof(string);

i = sizeof (badstring); /* Error 117 flagged. */

Temporary solution: . .
Eliminate the braces when initializing a string.

e
“processor”

char string[] = "do it this way";

main()

SRB detail reports as of 04/29/87 Page: 135 SRB detail reports as of 04/29/87 Page: 136

{ Number: D2000439S73 Product: 8086/8 C 300 648185004 03.00
int i;

One-line description:

i = sizeof(string); With $POINTER_SIZE 32$% assigning an address + a sizeof in 1 line fails.

Problem:
The following code illustrates the problem:
wew

"80186"
$POINTER_SIZE 32%
char *ptr;
{ct(ptr);

Signed off 04/29/87 in release 803.02

char *sptr;

sptr = &ptr + sizeof(char *);
sptr = &ptr;

sptr += sizeof(char *);

Different data is assigned to the pointer if the assignment is written

in one or two lines. The difference between both the loaded addresses
should be 4. :

Signed off 04/29/87 in release 403.20

Number: D200051912 Product: 8086/8 C 300 648185004 03.00

One-line description:)
Nested switch statements may generate infinite loop

Problem:

If you have nested switch statements and do not terminate the inner
switch’s cases with breaks the compiler generates an infinite loop.
e

"processor name"

switch(c) {
case 1: break;
default: switch(c){
case 2: break;

/* A break is needed here because the break
above for ’case 2’ generates a jump to
this location. If a break is not placed
here it falls into the code for

) evaluating ’case 1’ above. */

Temporary solution:

Close default statement with a break.
wgn

“processor name"

main(){ |
int ¢;
switch(c){

SRB detail reports as of 04/29/87 Page: 137
casel: break;
. default: switch(c){
case 2: break;
break;
}

Signed off 04/29/87 in release 403.20

Number: D200059709 Product: 8086/8 C 300 64818S004 03.00

One-line description: .
Compiler is not flagging an undefined structure.

Problem:

The customer reports that the program listed below causes the
compiler to hang. I could not duplicate this problem, but, the
compiler incorrectly reported no errors.

wen
"processor"”

main() {

int 1i;
struct undefined

}

af10][20];

The compiler should report that the type ’undefined’ is undefined.

Temporary solution:
No temporary solution.

Signed off 04/29/87 in release 403.20

Number: D200063412 Product: 8086/8 C 300 648185004 03.10

One-line description:
C Function returning large (>2bytes) result can’t be called as procedure

Problem:

Functions returning large (>2byte) result cannot be called as
procedures.

Signed off 04/29/87 in release 403.20

Number: D200066001 Product: 8086/8 C 300 648185004 03.10

One-line description:
Illegal forward reference flagged for legally defined string.

"processor"

SRB detail reports as of 04/29/87 Page: 138
char Dbadstring(] = {"Wont work"};
char string(] = "works fine";
main()
(int i;
i = sizeof(string);
i = sizeof(badstring); /¥ Error 117 flagged. */
Temporary solution:
Eliminate the braces when initializing a string.
WL .
processor
char string[] = "do it this way";
main()
¢ int i;
i = sizeof(string);
Signed off 04/29/87 in release 403.20
Number: D200066381 Product: 8086/8 C 300 648185004 03.10

One-line description:
No error message for unimplemented processor name.

Problem:

Specifying an unimplemented processor name in a C source file
will cause the compiler to go from pass 1 into C Nocode without
an error message. The listing file also does not report the
error.

Signed off 04/29/87 in release 403.20

SRB detail reports as of 04/29/87 Page: 138

Number: 5000149773 Product: 8086/8 C 500 648185001 03.00

One-line description: . X
Both operands of expression loaded into AX when calculating array index

Problem:

The following program loads both operands of an expression into
AX and then tries to add them together by adding AX to AX.

wee
"80188"
$FAR_EXTVARSS$

$POINTER_SIZE 32$
$FAR_PROCS

struct Button_Obj {
char button_code;
char label_code;
char button_parm
char button_attrib;

H

extern char Channel_Data(6][9];

#define Channel_Type
extern struct Button_obj Current_Buttons([60];
extern char S_D_Button _COdes[5] [8 8],
extern struct Button_obj Stat Btns[]

Copy_Buttons(Table Ptr, Table_Size)
struct Button ObJ (Table_ptr)[]
char Table_: Size;
{ char counter;
for (counteer-o counteeer < Table_size; counter++)
g Current Buttons[counter] - Table_ptr[counter]

return;

Set?p_stat()

char display_trace;

char column;

char btn_ code

Copy, Buttons(Stat _Btns, 54);

fOf Tdisplay_trace = 0; dlsplay trace <= 5; display_trace++)

for (column =0; column ¢ 8; column++)
btn_code = s’ _D_Button Codes[Channel _Data[display_trace]
[Channel _Typel [column];

MOV AL SS:BYTE PTR [BP - 00004H]
(loads column into AX)
Current Buttons[column + display_trace¥*8].button_code = (btn_cod

e & OX7F);
MOV AL,#+00008H
MUL SS:BYTE PTR [BP-0000SH] {loads display_trace*g
into AX over column)

- -0

SRB detail reports as of 04/29/87 Page: 140
ADD AX,AX (tries to add display_trace*8 to column
) not correct)
return; }

Temporary solution:

Use the compiler option, $AMNESIA ON$, around the incorrect state-
ment. This will force the compiler to forget the register contents
after each statement.

Signed off 04/29/87 in release 103.30

Number: 5000152108 Product: 8086/8 C
Keywords: CODE GENERATOR

500 648185001 03.00

One-line description:
ES registeris overwritten when loading a ptr. w/ addr.of a structure

Problem:

The f0110w1ng program overwrites the ES register when using two
levels of indirection.

“80188"
$FAR_EXTVARSS$
$POINTER_SIZE 32%

struct Button_Def {
char button_char;
char next;
char *(*labels)[]
int (*button_proc)();
int (*setup_proc)();

’
struct Button_Obj {
char butxl,butyl, butx2,buty2;
char button_code;
char label_code;
char button_parm,
char button_attrib;

i
#define BCont 0x04
#define BAccel 0.08
#define REPEATO 80
#define DELAY 160
#define ENTER 0x0000
#define RTimer TP_Timer_Cnt

extern struct Button_Def Button_List[];
extern struct Button_Obj Current, Buttons[]
extern char UserState;

extern char RepeatInterval;

extern char TP_Timer_Cnt;

SRB detail reports as of 04/239/87 Page: 141

extern char cbutn;
extern char bchar;
extern Put_Button();

?ebounceTimer()

struct Button_Def *but_p;
struct Button_Obj *obj_p;

switch (UserState) {

case 1:
Put_Button(ENTER| (int)cbutn);
Put_Button(0x0000|(1nt)cbutn)
UserState = 2;
obj_p = &Current _Buttons(cbutn];
but_p = &Button L15t[oh3_p->button code];

MOV AX,SEG Button_List
MOV ES,AX ;ES contains segment of Button_List
LES SI,SS:DWORD PTR [BP-6H] ;ES contains seg. of obj_p

MOV SS:WORD PTR[BP-8H],ES ; moves segment of obj_p into but_p
; should be segment of Button_List

obj_p = &Current_Buttons[cbutn];
but_p = &Button L1st[obJ_p->button code];
Temporary solution: . .
The temporary solution is to access the variable directly without
using pointers,
but_p = &Button_list[Current_Buttons[cbutn].button_code];

Signed off 04/29/87 in release 103.30

Number: 5000154245 Product: 8086/8 C 500 648185001 03.00

Keywords: CODE GENERATOR

One-line description: X
Compiler generates MOVSB without init. ES - POINTER -> member = VAR;

Problem:

The following code generates a MOVSB without loading the ES register
prior to moving the data. The Source register, SI, uses the DS
segment, but the destination register, DI, uses the ES register.

In this case the ES register has unknown contents.

nge
“8088"

$FAR_PROC ON$
$FAR_LIBRARIES ON$
$SEPARATE_CONST OFF$

SRB detail reports as of 04/29/87 Page: 142

struct str_1 { short instri;

short instr2;

short 1nstr3' };
struct str_2 { int instr_a;

int instr b

struct str_ 1 instr_c; };
extern struct str_1 data_ 1

test() X
{ struct str_2 *jp;
jp->instr_c = data_i;

LEA SI,DSTdata_1
MOV BX,SS:WORD PTR([BP-2H]
LEA DI,DS; [BX+000004H]
MOV CX.4#+00003H
CLD

(R et Would expect PUSH DS

POP ES to be here

REP MOVSB

MOVSB uses the ES:DI to calculate destination address,
but ES has not been loaded

A similiar example uses a temporary variable:

same declarations as above
test()
{ struct str_2 *jp;

struct str_1 x;

X = jp->instr_c;

x = data_1;

In this example the ES register gets loaded with the value of thhe
SS register. This is correct, but the DS register gets loaded with
the value of the ES register. This is incorrect.

Temporary solution: . .
THe temporary solution is to access the member directly. For example,

test()

{ struct str_1 y;
y.instr_c = data_l;

Signed off 04/29/87 in release 103.30

Number: D200040303 Product: 8086/8 C 500 648185001 02.01

One-line description: L.
Nested switch statements may generate infinite loop

Problem: .
If you have nested switch statements and do not terminate the inner

- -0

SRB detail reports as of 04/29/87 Page: 143

switch’s cases with breaks the compiler generates an infinite loop.
nee
“processor name"

main(){
int c;
switch(e) {
case 1: break;
default: switch(c){
case 2: break;

/* A break is needed here because the break
above for ’case 2’ generates a jump to
this location. If a break is not placed
here it falls into the code for
evaluating ’case 1’ above. */

}

Temporary solution:

Close default statement with a break.
“ow

“processor name"

main(){
int ¢;
switch(c){
casel: break;
default: switch(c){
case 2: break;
break;
}
}

Signed off 04/29/87 in release 103.30

Number: D200045559 Product: 8086/8 C 500 64818S001 02.01

One-line description:
File will not compile on the 9000/500.

Temporary solution:
Download the source to the 64000 compile it and then upload the
relocatable.

Signed off 04/29/87 in release 103.30

Number: D200059683 Product: 8086/8 C 500 648185001 03.10

One-line description: .
Compiler is not flagging an undefined structure.

Problem:

The customer reports that the program listed below causes the
compiler to hang. I could not duplicate this problem, but, the
compiler incorrectly reported no errors.

- -0

SRB detail reports as of 04/29/87 Page: 144

.
"processor"

main(} {

int 1i;
struct undefined a[10]}[20];

}

The compiler should report that the type ’'undefined’ is undefined.

Temporary solution;
No temporary solution.

Signed off 04/23/87 in release 103.30

Number: D200063396 Product: 8086/8 C 500 648185001 03.20

One-line description:
C Function returning large (>2bytes) result can’t be called as procedure

Problem:

Functions returning large (>2byte) result cannot be called as
procedures.

Signed off 04/29/87 in release 103.30

Number: D200065987 Product: 8086/8 C

500 648185001 03.20

One-line description: .
Illegal forward reference flagged for legally defined string.

Problem:

wen
"processor"”

char badstring[] = {"Wont work"};
char string[] = "works fine";
?ain()

int i;

i = sizeof(string);

i = sizeof(badstring); /* Error 117 flagged. */

Temporary solution: X .
Eliminate the braces when initializing a string.

woe
"processor"

char string{] = "do it this way";

- -0

SRB detail reports as of 04/29/87 Page: 145
main()
int i;
i = sizeof(string);
Signed off 04/29/87 in release 103,30
Number: D200066365 Product: 8086/8 C 500 64818S001 03.20

One-line description:
No error message for unimplemented processor name,

Problem; . .
Specifying an unimplemented processor name in a C source file
will cause the compiler to go from pass 1 into C Nocode without

an error message. The listing file also does not report the
error.

Signed off 04/29/87 in release 103,30

SRB detail reports as of 04/29/87 Page: 146
Number: 5000114645 Product: 8086/8 C VAX 648185003 02.00
One-line description:

Data space cannot exceed 32K.

Signed off 04/29/87 in release 303.50

Number: 5000128959 Product: 8086/8 C VAX 648185003 02.01

Keywords: CODE GENERATOR

One-line description:
float/double vars. in a subroutine uses MOVESB without init. ES

Problem:

The following example demonstrates that float variables used in subrouti
nes generate incorrect code. Thzs problem also occurs with the use

of double variables. The defect is present on all hosts.

e
"80186"
sub(a)
float all;

float b;
?[11 =b

The code assumes that DS=ES in near mode; however, the actual code
that is generated never initializes ES to be equilavent to DS before
the MOVESB instruction.

Temporary solution:
No known temporary solution.

Signed off 04/29/87 in release 303.50

Number: 5000129817 Product: 8086/8 C VAX 648185003 03.10
One-line description:
Compiler aborts when incorrectly passing address of array as funct. para

Problem:
The following program gets the expected error (Lvalue expected error)
when compiled on the 64100, but it generates a "Comp c passl cannot
recover from errors parsxng stopped at line xxx" error on the 8000
and VAX.

wen

"processor name"

$FAR_PROC ON$

$POINTER_SIZE 32%

extern int Reply();

extern int CF()

extern int HD();

main() { HD(&Reply,CF()):}

SRB detail reports as of 04/29/87 Page: 147

Customer would like same error message on the 9000/VAX as on the 64100.

Temporary solution:
No known temporary solution.

Signed off 04/29/87 in release 303.50

Number: D200040311 Product: 8086/8 C VAX 64818S003 02.00
One-line description:
Nested switch statements may generate infinite loop

Problem:

If you have nested switch statements and do not terminate the inner
switch’s cases with breaks, the compiler generates an infinite loop.
“en

"processor name"

main()¢
int c;
switch(c) {
case 1: break;
default: switch(c){
case 2: break;

}

/* A break 1s needed here because the break
above for ’case 2’ generates a jump to
this location. If a break is not placed
here, it falls into the code for

) evaluating ’case 1’ above. */

Temporary solution: .

Close default statement with a break.
aon

“processor name"

main(){
int c¢;
switeh(c){
casel: break;
default: switch(c){
case 2: break;
break;
}
}

Signed off 04/29/87 in release 303.50

Number: D200059691 Product: 8086/8 C VAX 648185003 03.10

One-}ine description: X
Compiler is not flagging an undefined structure.

Problem:

SRB detail reports as of 04/29/87 Page: 148
The customer reports that the program listeq below causes the
compiler to hang. I could not duplicate this problem, but, the
compiler incorrectly reported no errors,

nen
“processor”

main() {

int i .
struct undefined a[10]([20];

}

The compiler should report that the type ’undefined’ is undefined.

Temporary solution:
No temporary solution.

Signed off 04/29/87 in release 303.50
Number: D200063404 Product: 8086/8 C

VAX 648185003 03.40

One-line description:

C Function returning large (>2bytes) result can’t be called as procedure
Problem: .

Functions returning large (>2byte) result cannot be called as
procedures,

Signed off 04/29/87 in release 303.50

Number: D200065995 Product: 8086/8 C VAX 648185003 03.40

One-line description: . .
Illegal forward reference flagged for legally defined string.

Problem:
wen
"processor"

char badstringl] = {"Wont work"};
char stringl[] = "works fine";
main()

{ .

int i;

i = sizeof(string);

i = sizeof(badstring); /* Error 117 flagged. */

Temporary solution: . .
Eliminate the braces when initializing a string.

- -0

SRB detail reports as of 04/239/87 Page: 149

g
"processor"

char string[] = "do it this way";
main()
int i;

i = sizeof(string);

Signed off 04/29/87 in release 303.50

Number: D200066373 Product: 8086/8 C VAX 648185003 03.40
One-1line description:
No error message for unimplemented processor name.

Problem:

Specifying an unimplemented processor name in a C source file
will cause the compiler to go from pass 1 into C Nocode without
an error message. The listing file also does not report the
error.

Signed off 04/29/87 in release 303.50

SRB detail reports as of 04/239/87 Page: 150
Number: D200030775 Product: 8086/8 PASCAL 64814 02.00

One-line description: X
Incorrect code generated for assignment statement.

Problem: .
The following program illustrates a code generation problem,

PROGRAM test;

VAR
a, b, ¢ : BYTE;

BEGIN

IF a <> 255 THEN
b := (c * 10) + a;
END.

The compiler assumes that a register value is valid and does not
reload. Since the register value is NOT valid, this produces an
error.

Temporary solution:
Use the compiler option $AMNESIA ON$.

Signed off 04/29/87 in release 403.02
Number: D200037325 Product: 8086/8 PASCAL 64814 02.01

One-line description:
Program reboots or aborts with too many errors (64000 / host).

Signed off 04/29/87 in release 403.02
Number: D200055335 Product: 8086/8 PASCAL 64814 03.00
Keywords: CODE GENERATOR

One-line description:
$SEPARATE_CONST OFF$ USED WITH REAL # CONSTS. GENERATES POP CS/PUSH CS.

Problem:
THE FOLLOWING PROGRAM GENERATES TWO ILLEGAL INSTRUCTIONS: POP CS
AND PUSH CS.

“80186"

$POINTER_SIZE 32%
$SEPARATE_CONST OFF$
$GLOBPROC ON$
PROGRAM INIT;

$GLOBVAR ON$
VAR CPU : REAL;

PROCEDURE TEST;
BEGIN

SRB detail reports as of 04/238/87 Page: 151

CPU := 9,8304ES6;
END;

BEGIN
END.

THE PROBLEM ONLY OCCURS WHEN THE $SEPARATE_CONST OFF$ IS USED.

Temporary solution:
DO NOT USE $SEPARATE_CONST OFF$ WITH REAL CONSTANTS.

Signed off 04/29/87 in release 403.02

Number: D200063990 Product: 8086/8 PASCAL 64814 03.01
Keywords: CODE GENERATOR

One-line description: R
Record members’ addresses are calcul. incorrectly inside the WITH stmnt

Problem:

The address of a record member accessed by a pointer is calculated
incorrectly when use in a WITH statment.

"80186"
$POINTER_SIZE 32$
PROGRAM PROG_INIT;

TYPE
INFO = RECORD
DUMMY1 : INTEGER;
DUMMY2 : INTEGER;
END;
CONTROL = RECORD
COMMAND : INTEGER;
NUMBER : INTEGER;

END;
ALL_INFOS = RECORD

SBO : INFO;
SBI : ARRAY [1..10] OF CONTROL;
END;

VAR
K_AL_INFOS : ~ALL_INFOS;

PROCEDURE PROC_INIT;
BEGIN
WITH X_AL_INF0S".SBI[1] DO
LES BX,DS:DWORD PTR DPROG_INIT (loads addr of record -
type all_infos)
(loads addr of x_al_infos
.sbi[1].command]

ADD BX,#+00008H

BEGIN
NUMBER := 50;
PUSH #0

PUSH #+00032H

SRB detall reports as of 04/239/87 Page: 152

POP ES: [BX+0000CH] (puts value into incorrec

location - should be
BX+00004)
POP ES: [BX+0000EH] (should be BX+00006)
COMMAND := 20;
PUSH #0
PUSH #+00014H
POP ES: [BX+00008H]
POP ES: [BX+0000AH]
END;
END;

(should be BX)
(should be BX+00002)

Temporary solution:
The temporary solution is to not use the WITH statement.
Use the full path name to access the record member.

Signed off 04/29/87 in release 403,02

Number: D200065078 Product: 8086/8 PASCAL 64814 03.01

Keywords: PASS 3 CODE GENERATOR
One-line description; L
SHORT JMP generated instead of NEAR JMP when jumping > 32K

Problem:

This problem generates different code on the 64100 than on the
9000 series 500. On the 8000, the code generated is larger than
32K. Whenever it passes 32K, an #1113 error (Program Counters
do not agree) is flagged. A NEAR PTR JMP is generated.

On the 64100, the code generated does not cause any errors or
warnings, but the jump generated is incorrect. A SHORT JMP
has to be made within 32K. It should have been a NEAR PTR JMP.

The code is available on hplsdsb!robin under users/robin/D.hotsite/
D.BOR/fmt2_32k.p.

Signed off 04/29/87 in release 403.02

SRB detail reports as of 04/29/87 Page: 153
Number: D200050245 Product: 8086/8 PASCAL 300 648145004 03.00
Keywords: PASS 2

One-line description:
Too many errors, pass2: 80186 (PROCEDURE, WITH statement).

Signed off 04/29/87 in release 403,20

Number: D200051219 Product: 8086/8 PASCAL 300 648145004 03.00

One-line description:
Incorrect code generated for assignment statement.

Problem: X . X
The following program illustrates a code generation problem.

PROGRAM test;

VAR
a, b, ¢ : BYTE;

BEGIN
IF a <> 255 THEN
b := (c * 10) + a;
END.

The compiler assumes that a register value is valid and does not
reload. Since the register value is NOT valid, this produces an
error.

Temporary solution:
Use the compiler option $AMNESIA ONS$.

Signed off 04/23/87 in release 403.20

Number: D200051797 Product: 8086/8 PASCAL 300 648145004 03.00

One-line description: X
Program reboots or aborts with too many errors (64000 / host).

Signed off 04/29/87 in release 403.20

Number: D200055517 Product: 8086/8 PASCAL 300 648145004 03.00
Keywords: CODE GENERATOR

One-line description:
$SEPARATE_CONST OFF$ USED WITH REAL # CONSTS. GENERATES POP CS/PUSH CS.

Problem:
THE FOLLOWING PROGRAM GENERATES TWO ILLEGAL INSTRUCTIONS: POP CS
AND PUSH CS.

"80186"

$POINTER_SIZE 32$
$SEPARATE_CONST OFF$

SRB detail reports as of 04/29/87 Page: 154
$GLOBPROC ON$
PROGRAM INIT;

$GLOBVAR ON$
VAR CPU : REAL;

PROCEDURE TEST;
BEGIN
CPU := 9.8304E6;
END;

BEGIN
END.

THE PROBLEM ONLY OCCURS WHEN THE $SEPARATE_CONST OFF$ IS USED.

Temporary solution:
DO NOT USE $SEPARATE_CONST OFF$ WITH REAL CONSTANTS.

Signed off 04/28/87 in release 403.20

Number: D200064087 Product: 8086/8 PASCAL 300 64814S004 03.10
Keywords: CODE GENERATOR

One-line description: . L
Record members’ addresses are calcul. incorrectly inside the WITH stmnt

Problem:
The address of a record member accessed by a pointer is calculated
incorrectly when use in a WITH statment.

“80186"
$POINTER_SIZE 32§
PROGRAM PROG_INIT;

TYPE
INFO = RECORD
DUMMY1 : INTEGER;
DUMMY2 : INTEGER:
END;
CONTROL = RECORD
COMMAND : INTEGER;
NUMBER : INTEGER;

END;
ALL_INFOS = RECORD

SBO : INFO;
SBI : ARRAY [1..10] OF CONTROL;
END;

VAR
X_AL_INFOS : “ALL_INFOS;

PROCEDURE PROC_INIT;
BEGIN
WITH X_AL_INFOS™.SBI[1] DO

SRB detail reports as of 04/29/87 Page: 155

LES BX,DS:DWORD PTR DPROG_INIT (loads addr of record -
type all_infos)
(loads addr of x_al_infos

ADD BX,#+00008H
.sbi[1].command)

BEGIN
NUMBER := 50;
PUSH #0

PUSH #+00032H
POP ES: [BX+0000CH] (puts value into incorrec
location - should be
BX+00004)
POP ES: [BX+0000EH] (should be BX+00006)
COMMAND := 20;
PUSH #0
PUSH #+00014H
POP ES: [BX+00008H]
POP ES: [BX+0000AH]
END;
END;

(should be BX)
(should be BX+00002)

Temporary solution:
The temporary solution is to not use the WITH statement.
Use the full path name to access the record member.

Signed off 04/29/87 in release 403.20

SRB detail reports as of 04/29/87 Page: 156
Number: D200025908 Product: 8086/8 PASCAL 500 648145001 01.10
Keywords: PASS 2

One-line description:
Too many errors, pass2: 80186 (PROCEDURE, WITH statement).

Signed off 04/29/87 in release 103.20
Number: D200030783 Product: 8086/8 PASCAL 500 648145001 02.00

One-line description:
Incorrect code generated for assignment statement.

Problem: .
The following program illustrates a code generation problem.

PROGRAM test;

VAR
a, b, ¢ : BYTE;

BEGIN
IF a <> 255 THEN
b := (c * 10) + a;
END.
The compiler assumes that a register value is valid and does not
reload. Since the register value is NOT valid, this produces an
error.

Temporary solution:
Use the compiler option $AMNESIA ON$.

Signed off 04/29/87 in release 103.20

Number: D200037333 Product: 8086/8 PASCAL 500 648145001 02.00

One-line description: X
Program reboots or aborts with too many errors (64000 / host).

Signed off 04/29/87 in release 103.20
Number: D200055491 Product: 8086/8 PASCAL 500 64814S001 03.00
Keywords: CODE GENERATOR

One-line description:
$SEPARATE_CONST OFF$ USED WITH REAL # CONSTS. GENERATES POP CS/PUSH CS.

Problem:
THE FOLLOWING PROGRAM GENERATES TWO ILLEGAL INSTRUCTIONS: POP CS
AND PUSH CS.

"80186"

$POINTER_SIZE 32%
$SEPARATE_CONST OFF$

SRB detail reports as of 04/29/87 Page: 157
$GLOBPROC ON$
PROGRAM INIT;

$GLOBVAR ON$
VAR CPU : REAL;

PROCEDURE TEST;
BEGIN
CPU := 9.8304E6;
END;

BEGIN
END.

THE PROBLEM ONLY OCCURS WHEN THE $SEPARATE_CONST OFF$ IS USED.

Temporary solution:
DO NOT USE $SEPARATE_CONST OFF$ WITH REAL CONSTANTS.

Signed off 04/29/87 in release 103.20

Number: D200064071 Product: 8086/8 PASCAL 500 648145001 03.10
Keywords: CODE GENERATOR

One-line description: R
Record members’ addresses are calcul., incorrectly inside the WITH stmnt

Problem:

The address of a record member accessed by a pointer is calculated
incorrectly when use in a WITH statment.

"80186"
$POINTER_SIZE 32%
PROGRAM PROG_INIT;

TYPE
INFO = RECORD
DUMMYL : INTEGER;
DUMMY2 : INTEGER;
END;
CONTROL = RECORD
COMMAND : INTEGER;
NUMBER : INTEGER;

END;
ALL_INFOS = RECORD
SBO : INFO;
SBI : ARRAY [1..10] OF CONTROL;
E .

VAR
X_AL_INFOS : “ALL_INFOS;
PROCEDURE PROC_INIT;

BEGIN
WITH X_AL_INFOS™.SBI[1] DO

SRB detail reports as of 04/29/87 Page: 158
LES BX,DS:DWORD PTR DPROG_INIT (loads addr of record -

type all_infos)
ADD BX,#+00008H (loads addr of x_al_infos

.sbi[1].command

BEGIN
NUMBER := S0;
PUSH #0

PUSH #+00032H
POP ES: [BX+0000CH] (puts value into incorrec
location - should be
BX+00004)
POP ES: [BX+0000EH] (should be BX+00006)
COMMAND := 20;

PUSH #0
PUSH #+00014H
POP ES: [BX+00008H]
POP ES: [BX+0000AH]
END;
END;

(should be BX)
(should be BX+00002)

Temporary solution:
The temporary solution is to not use the WITH statement.
Use the full path name to access the record member,

Signed off 04/29/87 in release 103.20

SRB detail reports as of 04/29/87 Page: 159
Number: D200025916 Product: 8086/8 PASCAL VAX 648145003 01.10
Keywords: PASS 2

One-line description:
Too many errors, pass 2: 80186 (PROCEDURE, WITH statement).

Signed off 04/29/87 in release 303,30

Number: D200030791 Product: 8086/8 PASCAL VAX 648145003 02.00

One-line description:
Incorrect code generated for assignment statement.

Problem: . .
The following program illustrates a code generation problem.

PROGRAM test;

VAR
a, b, ¢ : BYTE;

BEGIN
IF a <> 255 THEN
b := (c * 10) + a;
END.

The compiler assumes that a register value is valid and does not

reload. Since the register value is NOT valid, this produces an
error.

Temporary solution:
Use the compiler option $AMNESIA ON$.

Signed off 04/29/87 in release 303.30

Number: D200037341 Product: 8086/8 PASCAL VAX 6548145003 02.00

One-line description:
Program reboots or aborts witl, too many errors (64000 / host).

Signed off 04/29/87 in release 303,30

Number: D200055509 Product: 8086/8 PASCAL VAX 648145003 03.00
Keywords: CODE GENERATOR

One-line description:
$SEPARATE_CONST OFF$ USED WITH REAL # CONSTS. GENERATES POP CS/PUSH CS.

Problem:
THE FOLLOWING PROGRAM GENERATES TWO ILLEGAL INSTRUCTIONS: POP CS
AND PUSH CS.

"80186"

$POINTER_SIZE 32%
$SEPARATE_CONST OFF$

SRB detail reports as of 04/29/87 Page: 160
$GLOBPROC ON$
PROGRAM INIT;

$GLOBVAR ON$
VAR CPU : REAL;

PROCEDURE TEST;
BEGIN
CPU := 9.8304E6;
END;

BEGIN
END.

THE PROBLEM ONLY OCCURS WHEN THE $SEPARATE_CONST OFF$ IS USED.

Temporary solution:
DO NOT USE $SEPARATE_CONST OFF$ WITH REAL CONSTANTS.

Signed off 04/23/87 in release 303,30

Number: D200064083 Product: 8086/8 PASCAL VAX 64814S003 03.20
Keywords: CODE GENERATOR

One-line description:
Record members’ addresses are calcul. incorrectly inside the WITH stmnt

Problem:

The address of a record member accessed by a pointer is calculated
incorrectly when use in a WITH statment.

"80186"
$POINTER_SIZE 32%
PROGRAM PROG_INIT;

PE
INFO = RECORD
DUMMY1 : INTEGER;
DUMMY2 : INTEGER;

END;
CONTROL = RECORD
COMMAND : INTEGER;
NUMBER : INTEGER;

END;
ALL_INFOS = RECORD

SBO : INFO;
SBI : ARRAY [1..10] OF CONTROL;
END;

VAR
X_AL_INFOS : “ALL_INFOS;

PROCEDURE PROC_INIT;
BEGIN
WITH X_AL_INFOS™.SBI[1] DO

SRB detail reports as of 04/29/87 Page: 161
LES BX,DS:DWORD PTR DPROG_INIT (loads addr of record -
type all_infos)
ADD BX,#+00008H

(1loads addr of x_al_infos
.sbi[1].command]

BEGIN

NUMBER .= S50,

PUSH #0

PUSH #+00032H

POP ES: [BX+0000CH] (puts value into incorrec
location - should be
BX+00004)

POP ES: [BX+0000EH] (should be BX+00006)
COMMAND := 20;

PUSH #0

PUSH #+00014H

POP ES: [BX+00008H]
POP ES: [BX+0000AH]
END;
END;

(should be BX)
(should be BX+00002)

Temporary solution: .
The temporary solution is to not use the WITH statement.
Use the full path name to access the record member.

Signed off 04/29/87 in release 303.30

SRB detail reports as of 04/29/87 Page: 162
Number: D200021790 Product: HOST SOFTWARE / VAX 64882 01.10

One-line description:
File name conversion (transfer) is inconsistent with COMP and ASM.

Signed off 04/29/87 in release 202.00

Number: D200045088 Product: HOST SOFTWARE / VAX 64882 01.20
Keywords: TRANSFER

One-line description:
Insufficient examples in the HELP entry.

Signed off 04/29/87 in release 202.00
Number: D200046102 Product: HOST SOFTWARE / VAX 64882 01.20

One-line description:
Transfer may not function across VAX-cluster.

Signed off 04/23/87 in release 202.00
Number: D2000473951 Product: HOST SOFTWARE / VAX 64882 01.20
Keywords: HIGH SPEED LINK

One-line description:
Initializing the HSL may require more than one shift/reset on the 64000.

Problem:

After CSIB is run, Mapbus (SYSTEM_1) is spawned, and the 64000 master
is reset to allow the Mapbus to complete, it appears that the Mapbus
has successfully completed. But, subsequently manually running a
Mapbus does not work. Furthermore, when the HSL is in this state,
transfers will not complete too.

Temporary solution:
It might be necessary to do two shift/resets on the 64000 master.

Signed off 04/29/87 in release 202.00

Number: D200048017 Product: HOST SOFTWARE / VAX 64882 01.20
Keywords: HIGH SPEED LINK

One-line description:
HSLSTOP doesn’t work if MAPBUS is pending.

Problem:
If MAPBUS(SYSTEM_ 1) is pending for CSIBn, HSLSTOP/HSL=n will not stop
the CSIBn process.

Temporary solution:
Use "$STOP PROCESS/ID= "

Signed off 04/23/87 in release 202.00
- -0

SRB detail reports as of 04/29/87 Page: 163

Number: D200048140 Product: HOST SOFTWARE / VAX 64882 01.50
Keywords: TRANSFER

One-line description:
CLUSTER-CLUSTER transfers don’t work.

Problem:
Cluster-Cluster transfers don’t work and may crash the VAX.

Temporary solution:
Transfer from a cluster to a temporary file on the VAX, then transfer
the temporary file to the second cluster.

Signed of f 04/29/87 in release 202.00

Number: D200054775 Product: HOST SOFTWARE / VAX 64882 01.60
Keywords: RCMAIN

One-line description:
RCMAIN/VERBOSE not described in the HELP file.

Signed off 04/29/87 in release 202.00
Number: D200065680 Product: HOST SOFTWARE VAX 64882 01.70

One-line description:
Misspellings in HPINSTALL.COM can cause %F-ERROR.

Problem:
Line # 272 has HPI$PROTDUCTS instead of HPI$PRODUCTS.

Line # 281 has HPI_End_copy_Product instead of HPI_End_copy_Products
(page 394)

Line # 421 has an inconsequential misspelling of represesetative.

Signed off 04/29/87 in release 202.00

Number: D200067512 Product: HOST SOFTWARE / VAX 64882 01.70

One-line description: .
HSL will not start with most 64000 printers (introduced in 1.7)

Signed off 04/29/87 in release 202.00

Number: D200047845 Product: HOST SOFTWARE / VAX 64882 01.20
Keywords: TRANSFER

One-line description:
TRANSFER does not timeout.

Signed off 04/29/87 in release 202.00

- -0

SRB detail reports as of 04/29/87 Page: 164
Number: D200048041 Product: HOST SOFTWARE / VAX 64882 01.20
Keywords: HIGH SPEED LINK

One-line description: L. X
IBDRIVER conficts with existing driver on the system.

Signed off 04/29/87 in release 202.00

Number: D200055012 Product: HOST SOFTWARE / VAX 64882 01.60
Keywords: MAPBUS

One-line description: . . .
Define MAPBUS as a verb in HPTABLES.CLD instead of a symbol in HPSETUP.

Signed off 04/29/87 in release 202.00

SRB detail reports as of 04/29/87 Page: 165
Number: D200060285 Product: NSC800 EMULATION 64292 01.02

One-line description: .
Incorrect Inverse Assembly with State when restart active

Problem:

The inverse assembler for State gives incorrect IA when restart
is active.

Example:

0019 LD A ¥

0078 XX refresh (restart req)
001A 01 memory read (restart req)
Should be:

0019 LD A,01

Signed off 04/29/87 in release 201.03

Number: D200067470 Product: NSC800 EMULATION 64232 01.02

One-line description:
NSC800 cannot access the last 256 byte block of user memory.

Problem:
It is not possible to access the last 256 block of user
memory under the following conditions:

1) running with a slow external oscillator, freq < 2MHz

2) the very last entry in the memory map is user memory.
3) you are using revision 1.02 of the NSC800 Emulation software.

When accessing the last block, typically you will always read
zeros.

Temporary solution:

Two work-arounds exist for this problem.

1) Add a dummy entry to the memory map following the last block of
user memory that was mapped prev10usly. The dummy map entry
should be the last entry in numerical order.

2) Modify the memory map so that the last entry is emulation memory
rather than user memory, since this problem only appears if the
last entry in the memory map is user memory.

If for example, you have memory mapped I/0 located at OFFOOH - OFFFFH,
then the two work- arounds mentioned above w111 be of no help to you.
In this spe01al case, the best work-around is to operate with an
older revision of NSC800 Emulation software, such as revision 1.01

Signed off 04/29/87 in release 201.03

SRB detail reports as of 04/29/87 Page: 1
Number: D200067488 Product: NSC800 EMULATION 64292

One line descrxptlon
"modify register PC" immediately after "load <absolute_file>" fails

Problem:

modlfy register PC" immediately after loading an absolute file
will fail to modify the PC.

Temporary solution:

Since thxs problem only occurs when the "modify register PC"
command is issued immediately after the "load" command, the
best work-around is to use the "reset" command after the
load, or simply repeat the modify register command until it
does work.

Signed off 04/29/87 in release 201.03

66
01.02

SRB detail reports as of 04/29/87 Page: 167
Number: D200072199 Product: OPERATING SYSTEM 64100 02.06

One-line description: .
MAIN Assemb stops table interpretation for expressions delinited by ".*

Problem:
?he 68000 assembler was demostrating problem with statements of the
orm
mov 0[A0,D0.L),2[A0,D0.L]
termlnatxng on the flrst ".L" in the expression handler of the
64000 table interpreter. The table trace showed that table
interpretation had ceased in the EXPRESSION pseudoinstruction
of the table.

Dave Ritchie
Signed off 04/29/87 in release 002.07

SRB detail reports as of 04/29/87 Page: 168
Number: D200061614 Product: USER DEF ASSEMB 300 648515004 01.00

One-line description:
Problem with timemark in hosted assemblers.

Problem:
The Hosted Assembler produces a timemark 1n the relocatable file
which has an offset from the actual time i.e. minus 14 hours.

Signed off 04/29/87 in release 401.20

Number: D200062653 Product: USER DEF ASSEMB 300 64851S004 01.00

One-line description:
EQU pseudo with OLLH for an operand may halt assembly.

Problem:

When an EQU statement is followed by OLLH as an operand, the assembly
process is halted. This should not happen. An error should be flagged
to the affect of an invalid operand, but the assembly process should

not halt. Assemble this file with listxng on, and notice that the
statements after the EQU OLLH statement are assembled. Then assemble
test009 (attached to this document under the file name EQU) with listing
on, and notice that there are only 107 lines listed (terminating with
EQU OLLH) and there should be 271 lines listed.

EQU OLLH
STA 41H
LDA 41H
END

Signed off 04/29/87 in release 401.20

Number: D200063248 Product: USER DEF ASSEMB 300 64851S004 01.10
Keywords: LINKER

One-line description:
Linker does not correctly handle "NO LOAD" files.

Signed off 04/29/87 in release 401.20

Number: D200067454 Product: USER DEF ASSEMB 300 648515004 01.10

One-line description: L.
Assembler aborts when full path name is specified.

Signed off 04/29/87 in release 401.20

Number: D200065011 Product: USER DEF ASSEMB 300 648515004 01.10

One-line description:
Assembler trys to assemble .A files.

Problem: X
If you mistakenly try to assembler a .A file the assembler does
not report an error and it hangs.

- -s

SRB detail reports as of 04/29/87

Signed off 04/29/87 in release 401.20

Page:

169

SRB detail reports as of 04/29/87 Page: 170
Number: 5000149211 Product: USER DEF ASSEMB 500 64851S001 01.40

One-line description:
Comma at the end of a HEX pseudo statement causes the assembler to hang.

Problem:
If a comma is incorrectly placed after a pseudo HEX instruction
the assembler hangs.
"processor"
HEX 00,
This is true only on the host machines.
Signed off 04/29/87 in release 101.60

Number: D200055384 Product: USER DEF ASSEMB 500 648515001 01.30

One-line description:
ASM is unable to assemble a file accessed across lan via a netunam.

Problem:
asm on the series 500 when accessing a file across LAN using
netunam will not assemble the file. Example:

$netunam /net/remote_machine uid:
Password:
$cd /net/remote_machine/some_directory
$asm file.s
asm: Termination, Input file not found.(line 0)

Signed off 04/29/87 in release 101.60
Number: D200061598 Product: USER DEF ASSEMB 500 64851S001 01.40

One-line description:
Problem with timemark in hosted assemblers.

Problem:

The Hosted Assembler produces a timemark in the relocatable file

which has an offset from the actual time i.e. minus 14 hours.

Signed off 04/29/87 in release 101.60

Number: D200063230 Product: USER DEF ASSEMB 500 648515001 01.50

Keywords: LINKER

One-line description: .
Linker does not correctly handle "NO LOAD" files.

Problem:

Temporary solution:

SRB detail reports as of 04/29/87 Page: 171

Signed off 04/29/87 in release 101.60

Number: D200067433 Product: USER DEF ASSEMB 500 648515001 01.50

One-line description: .
Assembler aborts when full path name is specified.

Problem:

Specifying the full path name of a file when invoking the assembler
causes the following error to be flagged.

asm: Can not recover from errors on line 1. (11)

Temporary solution:
Copy the file you wish to assemble to your current directory.

Signed off 04/29/87 in release 101.60

Number: D200064840 Product: USER DEF ASSEMB 600 648515001 01.50

One-line description:
Assembler trys to assemble .A files.

Problem:
If you mistakenly try to assembler a .A file the assembler does
not report an error and it hangs.

Signed off 04/29/87 in release 101.60

SRB detail reports as of 04/29/87 Page: 172
Number: 5000143370 Product: USER DEF ASSEMB VAX 648515003 01.04
Keywords: LINKER

One-line description: .
Linker does not correctly handle "NO LOAD" files.

Signed off 04/23/87 in release 301.60

Number: D200060830 Product: USER DEF ASSEMB VAX 648515003 01.50
Keywords: LINKER

One-line description:
Displacement > 32K error being flagged when it should not be.

Problem:

The problem is that their link contains a link_sym (.L) file. It
appears that when a link is done with a link_sym file and the
libraries are load at a location greater than 8000H this error
(Displacement > 32K) is flagged. The errors are flagged at

BSR instrucions which are well within 32K.

Signed off 04/29/87 in release 301.60

Number: D200062646 Product: USER DEF ASSEMB VAX 648515003 01.50

One-line description:
EQU pseudo with OLLH for an operand may halt assembly.

Problem:

When an EQU statement is followed by OLLH as an operand, the assembly
process is halted. This should not happen. An error should be flagged
to the affect of an invalid operand, but the assembly process should

not halt. Assemble this file with listing on, and notice that the
statements after the EQU OLLH statement are assembled. Then assemble
test009 (attached to this document under the file name EQU) with listing
on, and notice that there are only 107 lines listed (terminating with
EQU OLLH) and there should be 271 lines listed.

EQU OLLH

STA 41iH

LDA 41H

END
Signed off 04/29/87 in release 301.60

Number: D200065003 Product: USER DEF ASSEMB VAX 648515003 01.50

One-line description:
Assembler trys to assemble .A files.

Problem: .

If you mistakenly try to assembler a .A file the assembler does
not report an error and it hangs.

Signed off 04/29/87 in release 301.60

- -s

SRB detail reports as of 04/29/87

Page:

173

SRB detail reports as of 04/29/87 Page: 174
Number: 2700003921 Product: Z80/NSC800 C 64824 00.00

One-line description: . .
Changes to pointers to unions does not work properly in C language.

Problem:

The compiler does not recognize changes in pointers to unions. The
original value will be used as the new data if the compiler thinks
it is still available. AMNESIA has no effect.

Signed off 04/29/87 in release 401.04

Number: 2700003333 Product: Z80/NSC800 C 64824 00.00

One-line description: X X
Certain single argument Rvalues will not compile correctly.

Problem:
Slngle argument Rvalues which are operated on by the:
--, +=, -=, etc. operators, and assxgned to an indirect structure

member of an indirectly accesed structure will not compile correctly

in certain cases.

Signed off 04/29/87 in release 401.04

Number: 2700004093 Product: Z80/NSC800 C 64824 00.00

One-line description: X
Library routine REAL_SUB modifies DE register pair.

Problem:
LIBRARY ROUTINE REAL_SUB MODIFIES DE REGISTER PAIR

Signed off 04/29/87 in release 401.04

Number: 2700005603 Product: Z80/NSC800 C 64824 01.01
Keywords: CODE GENERATOR

One-line description:
Registers used by Zbshift loaded incorrectly after structure reference.

Temporary solution:
MASK THE BITS BEFORE THE SHIFT IS EXECUTED. SEE EXAMPLE BELOW.

g
"Z80"
typedef struct {
char hh, mm, ss;}
time;

int

conv_ tlme(tm _ptr)

time *tm_ptr;

{extern Int tab_sH[], tab_mL[], tabmH[], tab_hL[], tab_hH[];
static int acc;

acc += tab_sH[(tm_ptr~> ss &0x50) >>4];

- -8

SRB detail reports as of 04/29/87 Page: 175

/*Use above line rather than this next line*/
?cc += tab_sH[(tm_ptr-> ss >>4) & 0x05];

Signed off 04/23/87 in release 401.04

Number: 5000139204 Product: Z80/NSC800 C 64824 01.03
Keywords: CODE GENERATOR

One-line description: .
Character isn’t converted to int before calculations use it

Problem:

Kernigan and Ritchie states that a character is converted to an integer
before calculations use the char variable. Our compiler does not conver
t the character to an integer prior to any calculations.

For example:
wge

"8086"

main() {
char c;
int i;

i= (lcee a) *5)/1;
AX register if ¢ = OFFH

XXXX MOV CL,#+00004H {moves 4 into counter}

00xx MOV AH, #0 {00h into AH}

00FF MOV AL,SS:BYTE PTR[BP-00003H] ({loads ¢ into AL}

00F0 SHL AL CL {shifts left 4 c ;however, it loses the uppe

r byte because it was not SHL AX,CL}

}

The character is not being treated as an integer. Making this SHL AX,CL
would fix the problem.

Emulating the generated code confirmed that the high byte (4 places) was
not being shifted into AH.

Temporary solution:
Type cast ¢ to be an integer before using it in the expression.

Signed off 04/29/87 in release 401.04

Number: D200011148 Product: Z80/NSC800 C 64824 01.00
Keywords: PASS 1

One-line description: . X .
Functions invoded via function pointers may JSR the wrong location.

Problem:
When the typedef statement is used to define pointers to functions,
and this pointer type is used in a cast of a variable array to 1nvoke

- -8

SRB detail reports as of 04/29/87 Page: 176

code stored in that array, program execution may transfer to the wrong
location. For example, in the followlng code the simple call to
code_array fails while the call and assignment to p works correctly:

typedef int(*PFI)(); /* PFI a pointer to int functions */
int code_array[100]; /* array contains code */

PFI p; /* p a pointer of type PFI */
pfibug()

(*((PFI) code_array))(); /* fails in JSR to code_array */
(*(p=(PFI)code array))(f; /* assignment and JSR successful */

Temporary solution:
Set up a dummy variable and perform an assignment to it when doing
this type of operation.

Signed off 04/23/87 in release 401.04

Number: D200011221 Product: 280/NSC800 C 64824 01,00
Keywords: PASS 1

One-1line description:
Unsigned integers treated as signed when subtracted from pointers.

Problem:
When an unsigned short or integer is used as an offset to a pointer, the
unsigned will be treated as a signed when do1ng poxnter calculations.
Offsets large enough to set the sign bit will be interpreted as a
negatlve offset when the offset is subtracted from a pointer. The
following code exibits the problem if offset is greater than 32767 dec.
unsigned offset;
struct { int a,b,c;

} *ptr;
unsigned long X;

main ()
{

X = ptr - offset; /* The compiler will generate code negating */
/* offset for the "-" operation. */

Temporary solutlon
Cast the offset in the expression as the next larger integer.
ie. x = ptr - (unsigned long)offset;

Signed off 04/23/87 in release 401.04

Number: D200013300 Product: Z80/NSC800 C 64824 01.00
Keywords: CODE GENERATOR

One-line description:

Assigning a ptr. after its post incr/decr. gives incorrect value.

Problem:

SRB detail reports as of 04/239/87 Page: 177

Pointer assignment after a post increment or decrement to that pointer
stores incorrect value. The following is an illustration:

woe

"PROCESSOR_NAME"

unsigned short fct(g)
?nsigned short *g;

unsigned short a,b;
b=*g;
*g++
a=*g;

}

The first assignment statement stores the contents of what g is point-
to in the accumulator. Once the pointer is incremented, the compiler
loads the accumulator (which still has the previous value) into the
variable a. The compiler is false remembering the value in the
accumulator as the current contents of what g is pointing to.

Temporary solution:
Turn $AMNESIA ON$ to force the reload of the accumulator from the BC
register pair.

Signed off 04/29/87 in release 401.04

Number: D200015966 Product: Z80/NSC800 C 64824 01.01
Keywords : PASS 2

One-line description:
Pass 2 error #1006 in if construct when subtracting a const. from a var.

Problem:
Ege following code generates a Pass 2 error #1006.
"280"
#define NULL 0
fct(parm)
int parm;
{ if (parm - NULL)
parm = 10;

}
If "parm™ is defined as an integer pointer, two loads are performed but
no other code is generated to check for zero value.

Temporary solution:
Check for value of parm by using the "==" conditional operator.

Signed off 04/29/87 in release 401.04

SRB detail reports as of 04/29/87 Page: 178
Number: D200022301 Product: Z80/NSC800 C 64824 01.01
Keywords: CODE GENERATOR

One-line description:
Operating on parm. in function call generates incorrect code.

Temporary solution:

Func_B(retaini)
The temporary fix is to pass a varible that is updated before the
procedure call.

{int retainl
int Func_B();

if (parm_a != 0)
{retainl = !retainil

Signed off 04/29/87 in release 401.04

Number: D200022624 Product: Z80/NSC800 C 64824 01.01
Keywords: CODE GENERATOR

One-line description: . X
Pointer addressing wrong location after it has been updated.

Problem:

Using a pointer immediately after it has been updated results in an
improper memory location being addressed. The block of code below
demostrates this.

a,b;
a= 0xC082;
*a;
b= *a; /*"b" is getting what "a" used to point. "a" is not being
updated*/

Temporary solution:

Use $AMNESIA ON$ option directly after pointer is updated.
{char *a,b;

a= 0xc082;

a= *3;

$AMNESIA ON$

b= *a;

Signed off 04/29/87 in release 401.04

Number: D200034918 Product: Z80/NSC800 C 64824 01.01

One-line description:
Incorredt or NO listing file produced if fatal pass 2 errors (#10xx)

Problem:

SRB detail reports as of 04/29/87 Page: 179

c

280

#define NULL 0

ct(parm)

int parm;

if (parm - NULL)
parm=10;

Signed off 04/29/87 in release 401.04

Number: D200037697 Product: Z80/NSC800 C 64824 01.01

One-line description
DIF AND WRONG CODE PRODUCED IF ARRAY ELEMENT ASSIGNED RESULT OF INDIRECT

Problem:

Situations where an array element is assigned the result of an array
taken indirect may produce code on the 9000 that is dxfferent from th
64000 and the VAX, due to an uneeded reload of HL, however, in both ¢
generated code is’ wrong because the HL register is overwritten by the
preceeding calculations.

Sample code:
[
280

typedef int = PTR_TYPE;

long *dest _array([2];

int index;

struct STRUCT _TYPE /* may be union or struct */

{ long filler; /* a pointer & one or more other items */
%nt *i_ptr; /* requiring 4 or more bytes in any order *

func_1(param)
struct STRUCT_TYPE param; /* parameter must be of STRUCT_TYPE */

{
struce STRUCT_TYPE local_strucr{2]; /* must be local array of type
/* STRUCT_TYPE - size »>= 2 */

/* line generating incorrect code */
dest_array[index] = (* ((PTR_TYPE*) 0x0f1801) [33]);
/* cast any type of ptr - requires typedef */
/* constant must be long */

Signed off 04/29/87 in release 401.04

Number: D200040410 Product: Z80/NSC800 C 64824 01.01

One-line description: L.
Nested switch statements may generate infinite loop

Problem:
If you have nested switch statements and do not terminate the inner
switch’s cases with breaks the compiler generates an infinite loop.

- -8

SRB detail reports as of 04/29/87 Page: 180
nge
“68000"
main(){
int ¢
switch(c) {
case 1: break;

default: switeh(c){
case 2: break;

/* A break is needed here because the break
above for ’case 2’ generates a jump to
this location. If a break is not placed
here it falls into the code for

) evaluating ’case 1’ above. */

Temporary solution:
Close default statement with a break.

"68000"
main(){
int ¢;
switch(c){
casel: break;
default: switch(c){
case 2: bresk;
break;
}
}

Signed off 04/29/87 in release 401,04

Number: D200059865 Product: Z80/NSC800 C 64824 01.02

One-line description: .
Compiler is not flagging an undefined structure.

Problem:
The customer reports that the program listed below causes the

compiler to hang. I could not duplicate this problem, but, the
compiler incorrectly reported no errors.

wee

"processor"”
main() {

int 1i;
struct undefined a[10]{20];

}

The compiler should report that the type ’undefined’ is undefined.

- -8

SRB detail reports as of 04/29/87 Page: 181

Temporary solution:
No temporary solution.

Signed off 04/29/87 in release 401.04

Number: D200063032 Product: Z80/NSC800 C 64824 01.03

One-line desc{iptign: .
Funct calls via pointers with parms cause subsequent stack ref errors

Problem:

When functions are called via pointers and are passed parameters,
subsequent references to stack relativg objects will be incorrect.
The following code is an example of this problem:

wen
"processor name"

extern int called_func();
typedef int (*PFIV();

PFI call_ptr = called_func;

?ain()
int local;
local = 6; (*variable is accessed correctly*)
(*¥(call_ptr() (1,2); (*function call via pointer with parameters*)
local = 3; (*wrong location accessed*)

}
Signed off 04/29/87 in release 401,04
Number: D200063578 Product: 280/NSC800 C 64824 01.03

One-line description:
C Function returning large (>2bytes) result can’t be called as procedure

Problem:
Functions returning large (>2byte) result cannot be called as
procedures.

Signed off 04/29/87 in release 401.04

Number: D200066167 Product: Z80/NSC800 C 64824 01.03

One-line description: .
Illegal forward reference flagged for legally defined string.

Problem:
i
"processor"”

char badstring[] = {"Wont work"};
char string[] = "works fine";

SRB detail reports as of 04/29/87 Page:

?ain()
int i;

i = sizeof(string);

i = sizeof(badstring); /* Error 117 flagged., */

Tempqrary solution: Lo L. X
Eliminate the braces when initializing a string.

wge
“processor"”

char string(] = "do it this way";
main()
oo

int 1;

i = sizeof(string);

Signed off 04/29/87 in release 401.04

182

SRB detail reports as of 04/29/87 Page: 183

Number: D200051961 Product: Z80/NSC800 C 300 648245004 01.00
One-line description:
Nested switch statements may generate infinite loop

Problem:

If you have nested switch statements and do not terminate the inner
switch’s cases with breaks the compiler generates an infinite loop.

"
“processor name"

main(){
int c; .
switch(c) {
case 1: break;
default: switch(e){
case 2: break;

/* A vreak is needed here because the break
above for ’case 2’ generates a jump to
this location. If a break is not placed
here it falls into the code for
evaluating ’case 1’ above. */

)

Temporary solution:
Close default statement with a break.

ucn
"processor name"

main(){
int c;
switchlc){
casel: break;
default: switch(c){
case 2: break;
break;
}
}

Signed off 04/29/87 in release 401.20

Number: D200059899 Product: 280/NSC800 C 300 648245004 01.00

One-line description:
Compiler is not flagging an undefined structure,.

Problem:

The customer reports that the program listed below causes the
compiler to hang. I could not duplicate this problem, but, the
compiler incorrectly reported no errors.

wen
“processor”

SRB detail reports as of 04/29/87 Page: 184

main() {

int i;
struct undefined a[10][20];

}

The compiler should report that the type ’undefined’ is undefined.

Temporary solution:
No temporary solution.

Signed off 04/29/87 in release 401.20
Number: D200063283 Product: Z80/NSC800 C
Keywords: CODE GENERATOR

300 648245004 01.10

One-line description: R X
Character isn’t converted to int before calculations use it

Problem:

Kernigan and Ritchie states that a character is converted to an integer
before calculations use the char variable. Our compiler does not conver
t the character to an integer prior to any calculations.

For example:
g

"8086"

main() {
char c
mt

i-= ((C<< 4) *5)/i;
AX register if ¢ = OFFH

XXXX MOV CL,#+00004H {moves 4 into counter}

00xx MOV AH #0 {00h into AH}

00FF MOV AL,SS:BYTE PTR[BP-00003H] {loads ¢ 1nt9 AL}

00F0 SHL AL,CL {shifts left 4 c ;however, it loses the uppe

r byte because it was not SHL AX,CL}
}

The character is not being treated as an integer. Making this SHL AX,CL
would fix the problem.

Emulating the generated code confirmed that the high byte (4 places) was
not being shifted into AH.

Temporary solution: . L .
Type cast ¢ to be an integer before using it in the expression.

Signed off 04/29/87 in release 401.20

SRB detail reports as of 04/29/87 Page: 185
Number: D200063602 Product: Z80/NSC800 C 300 648245004 01.10

One-line description:
C Function returning large (>2bytes) result can’t be called as procedure

Problem:

Functions returning large (>2byte) result cannot be called as
procedures.

Signed off 04/29/87 in release 401.20

Number: D200064873 Product: Z80/NSC800 C 300 648245004 01.10

One-line description:
Funct calls via pointers with parms cause subsequent stack ref errors

Problem:

When functions are called via pointers and are passed parameters,
subsequent references to stack relative objects will be incorrect.
The following code is an example of this problem:

wen
"processor name"

extern int called_func();
typedef int (*PFIV();

PFI call_ptr = called_func;

Tain()
int local;
local = 6; (*variable is accessed correctly*)

(*(call_pir(l (1,2); (*function call via pointer with parameters*)

) local = 3; (*wrong location accessed*)

Signed off 04/29/87 in release 401.20

Number: D200066191 Product: Z80/NSC800 C 300 64824S004 01.10

One-line description:)
Illegal forward reference flagged for legally defined string.

Péoblem:
"processor"

char Dbadstring(] = {"Wont work"};
char string(] = "works fine";
?ain()

int i;

i = sizeof(string);

i = sizeof(badstring); /* Error 117 flagged. */

- -8

SRB detail reports as of 04/29/87 Page: 186
}

Temporary solution: o .
Eliminate the braces when initializing a string.

wge
“processor"”

char string[] = "do it this way";
?ain()
int i;

i = sizeof(string);

Signed off 04/29/87 in release 401.20

Number: D200066522 Product: Z80/NSC800 C 300 648245004 01.10

One-line description:
No error message for unimplemented processor name.

Problem:

Specifying an unimplemented processor name in a C source file
will cause the compiler to go from pass 1 into C Nocode without
an error message. The listing file also does not report the
error.

Signed off 04/29/87 in release 401.20

SRB detail reports as of 04/29/87 Page: 187

Number: D200015982 Product: Z80/NSC800 C 500 648245001 01.00

Keywords: PASS 2

One-line description: .
Pass 2 Error #1006 when subracting a const. from a var. in an if constr.

Problem:
The following code generates a Pass 2 error #1006.
nee
"Z80"
#define NULL 0
fct(parm]
int parm
{ if (parm - NULL)
parm = 10;

If "parm" is defined as an integer pointer, two loads are performed but
no other code is generated to check for zero value.

Temporary solution:
Check for value of parm by using the “==" conditional operator.

Signed off 04/29/87 in release 101.60

Number: D200025726 Product: Z80/NSC800 C
Keywords: CODE GENERATOR

500 648245001 01.10

One-line description:
Assigning a ptr. after its post incr/decr. gives incorrect value.

Problem:
Pointer.assignment after a post increment or decrement to that pointer
stores incorrect value, The following is an illustration:

nen

"PROCESS OR_NAME"

unsigned short fct(g)
unsigned short *g;

unsigned short a,b;
b=*g;
*g++
a=*g;

}

The first assignment statement stores the contents of what g is point-
to in the accumulator. Once the pointer is 1ncremented the compiler
loads the accumulator (which still has the previous value) into the
variable a. The compiler is false remembering the value in the
accumulator as the current contents of what g is pointing to.

Temporary solution:
Turn $AMNESIA ON$ to force the reload of the accumulator from the BC
register pair.

- -8

SRB detail reports as of 04/239/87 Page: 188

Signed off 04/29/87 in release 101.60
Number: D200040428 Product: Z80/NSC800 C

500 64824S001 01.20

One-line description: . .
Nested switch statements may generate infinite loop

Problem:

If you have nested switch statements and do not terminate the inner
switch’s cases with breaks the compiler generates an infinite loop.

"68000"

main(){
int Cc,
switch(c) {
case 1: break;
default: switch(c){
case 2: break;

}

/* A break is needed here because the break
above for ’case 2’ generates a jump to
this location. If a break is not placed
here it falls into the code for
evaluating ’case 1’ above. */

)

Temporary solution:
Close default statement with a break.

nen
"“68000"
main(){
int ¢c;
switch(c){
casel: break;
default: switch(c){
case 2: break;
break;
}
}

Signed off 04/29/87 in release 101.60
Number: D200059873 Product: 280/NSC800 C

500 648245001 01.40

One-line description:
Compiler is not flagging an undefined structure.

Problem:

The customer reports that the program listed below causes the
compiler to hang. I could not duplicate this problem, but, the
compiler incorrectly reported no errors.

we

SRB detail reports as of 04/29/87 Page: 189
“processor”
main() {

int i;
struct undefined a[10]([20];

}

The compiler should report that the type ’undefined’ is undefined.

Temporary solution:
No temporary solution.

Signed off 04/29/87 in release 101.60

Number: D200063263 Product: Z80/NSC800 C 500 64824S001 01.50

Keywords: CODE GENERATOR

One-line description:
Character isn’t converted to int before calculations use it

Problem:

Kernigan and Ritchie states that a character is converted to an integer
before calculations use the char variable. Our compiler does not conver
t the character to an integer prior to any calculations.

For example:
wgn

“8086"
main() {

char c;

int i;

i= (lccc 4) *5)/1;

AX register if ¢ = OFFH

XXXX MOV CL,#+00004H (moves 4 into counter}

00xx MOV AH,#0 {00h into AH}

00FF MOV AL,SS:BYTE PTR[BP-00003H] {loads c¢ into AL}

00F0 SHL AL,CL {shifts left 4 ¢ ;however, it loses the uppe
) r byte because it was not SHL AX,CL}

The character is not being treated as an integer. Making this SHL AX,CL
would fix the problem.

Emulating the generated code confirmed that the high byte (4 places) was
not being shifted into AH.

Temporary solution: Lo X
Type cast ¢ to be an integer before using it in the expression.

Signed off 04/29/87 in release 101.60

- -8

SRB detail reports as of 04/29/87 Page: 190
Number: D200063586 Product: Z80/NSC800 C 500 64824S001 01.50

One-line description:
C Function returning large (>2bytes) result can’t be called as procedure

Problem;
Functions returning large (>2byte) result cannot be called as
procedures.

Signed off 04/29/87 in release 101.60

Number: D200064857 Product: 280/NSC800 C 500 648245001 01.50

One-line description: .
Funct calls via pointers with parms cause subsequent stack ref errors

Problem:

When functions are called via po1nters and are passed parameters,
subsequent references to stack relative objects will be 1ncorrect
The following code is an example of this problem:

ngw
“processor name"

extern int called_func();
typedef int (*PFIJ();

PFI call_ptr = called_func;

Tain()
int local;
local = 6; (*variable is accessed correctly*)
(*(call_ptr() (1,2); (*function call via pointer with parameters*)
) local = 3; (*wrong location accessed*)

Signed off 04/29/87 in release 101,60

Number: D200066175 Product: Z80/NSC800 C 500 64824S001 01.50

One-line description: .
Illegal forward reference flagged for legally defined string.

Problem:
wee

"processor"

char Dbadstring(] = {"Wont work"};
char string[] = "works fine";

main()
{

[
Cad

nt i;

i = sizeof(string);
1l =

sxzeof{badstr1ng) /* Error 117 flagged. */

- -8

SRB detail reports as of 04/29/87 Page: 191
}

Temporary solution:
Eliminate the braces when initializing a string.

G
"processor”

char string[] = "do it this way";
?ain()
int i;

i = sizeof(string);

Signed off 04/29/87 in release 101.60

Number: D200066506 Product: Z80/NSC800 C 500 648245001 01.50

One-line description:
No error message for unimplemented processor name.

Problem:

Specifying an unimplemented processor name in a C source file
will cause the compiler to go from pass 1 into C Nocode without
an error message. The listing file also does not report the
error.

Signed off 04/29/87 in release 101.60

SRB detail reports as of 04/29/87 Page: 192

Number: D200015974 Product: Z80/NSC800 C VAX 648245003 01.00

Keywords: PASS 2

One-1line description:
Pass 2 Error #1006 when subtracting a const. from a var. in an if constr

Problem:
The following code generates a Pass 2 error #1006.
"zZ80"
#define NULL 0
fct(parm)
int parm;
{ if (parm - NULL)
parm = 10;

} }
If "parm" is defined as an integer pointer, two loads are performed but
no other code is generated to check for zero value.

Temporary solution:
Check for value of parm by using the "==" conditional operator.

Signed off 04/29/87 in release 301.390

Number: D200025734 Product: Z80/NSC800 C
Keywords: CODE GENERATOR

VAX 648245003 01.10

One-line description:
Assigning a ptr. after its post incr/decr. gives incorrect value.

Problem:
Pointer assignment after a post increment or decrement to that pointer
stores incorrect value. The following is an illustration:

nwen

"PROCESSOR_NAME"

unsigned short fct(g)
?nsigned short *g;

unsigned short a,b;
b=%*g;
*g++;
a=*g;

}

The first assignment statement stores the contents of what g is point-

. to in the accumulator. Once the pointer is incremented, the compiler

loads the accumulator (which still has the previous value) into the
variable a. The compiler is false remembering the value in the
accumulator as the current contents of what g is pointing to.

Temporary solution:
Turn $AMNESIA ON$ to force the reload of the accumulator from the BC
register pair.

- -8

SRB detail reports as of 04/29/87 Page: 193

Signed off 04/29/87 in release 301.90

Number: D200040436 Product: Z80/NSC800 C VAX 648245003 01.20

One-line description:
Nested switch statements may generate infinite loop

Problem:
If you have nested switch statements and do not terminate the inner
switch’s cases with breaks the compiler generates an infinite loop.

uen

"68000"

main(){
int c;
switch(c) {
case 1: break;
default: switch(c){
case 2: break;

}

/* A break is needed here because the break
above for ’case 2’ generates a jump to
this location. If a break is not placed
here it falls into the code for
evaluating ’case 1’ above. */

}

Temporary solution:
Close default statement with a break.

aow
"68000"
main(){
nt c;
switch(c){
casel: break;
default: switeh(c){

case 2: break;
break;
}
Signed off 04/29/87 in release 301.90

Number: D200059881 Product: 280/NSC800 C VAX 648245003 01.50

One-line description:
Compiler is not flagging an undefined structure.

Problem:

The customer reports that the program listed below causes the
compxler to hang. I could not duplicate this problem, but, the
compiler incorrectly reported no errors.

wee

SRB detail reports as of 04/239/87 Page: 194
"processor"

main() {

int i;

struct undefined a[10](20];

}

The compiler should report that the type ’undefined’ is undefined.

Temporary solution:
No temporary solution.

Signed off 04/29/87 in release 301.90
Number: D200063271 Product: Z80/NSC800. VAX 64824S00 01.80
Keywords: CODE GENERATOR

One-line description: .
Character isn’t converted to int before calculations use it

Problem:

Kernigan and Ritchie states that a character is converted to an integer
before calculations use the char variable. Our compxler does not conver
t the character to an integer prior to any calculations.

For example:
e

"8086"
main() {
char c;
int i;
i= (lcee 4) *s)/i;

AX register if ¢ = OFFH

XXXX MoV CL #+00004H (moves 4 into counter}

00xx MOV AH,#0 o AH} .

00FF MOV AL SS:BYTE PTR[BP 00003H] {loads ¢ into AL}

00F0 SHL AL,CL {shifts left 4 c ;however, it loses the uppe
) r byte because it was not SHL AX,CL}

The character is not being treated as an integer. Making this SHL AX,CL
would fix the problem.

Emulating the generated code confirmed that the high byte (4 places) was
not being shifted into AH.

Temporary solution: L. .
Type cast ¢ to be an integer before using it in the expression.

Signed off 04/29/87 in release 301.90

- -8

SRB detall reports as of 04/29/87 Page: 195
Number: D200063594 Product: Z80/NSC800 C VAX 648245003 01.80

One-line description:
C Function returning large (>2bytes) result can’t be called as procedure

Problem:

Functions returning large (>2byte) result cannot be called as
procedures,

Signed off 04/29/87 in release 301.90

Number: D200064865 Product: Z80/NSC800 C VAX 648245003 01.80
One-line description: .
Funct calls via pointers with parms cause subsequent stack ref errors

Problem:

When functions are called via pointers and are passed parameters,
subsequent references to stack relative objects will be lncorrect
The following code is an example of this problem:

g
"processor name"

extern int called_func();
typedef int (*PFIV();

PFI call_ptr = called_func;

main()
int local;
local = 6; (*variable is accessed correctly*)

(*(call ptr() (1,2);

(*function call via pointer with parameters*)
local = 3;

(*wrong location accessed*)

Signed off 04/29/87 in release 301.30

Number: D200066183 Product: Z80/NSC800 C VAKX 648245003 01.80

One-line description: .
Illegal forward reference flagged for legally defined string.

Problem:

“on

"processor"

char badstring[] = {"Wont work"};
char string(] = "works fine";

main()

int 1i;

i = sizeof(string);

i = sizeof(badstring); /* Error 117 flagged. */

- -8

SRB detail reports as of 04/29/87 Page: 196
}
Temporary solution:
Eliminate the braces when initializing a string.

C cessor

processor

char string[] = "do it this way";
main()

{ int i;

i = sizeof(string);
Signed off 04/29/87 in release 301.90
Number: D200066514 Product: 280/NSC800 C VAX 648245003 01.80

One-line description: |
No error message for unimplemented processor name.

Problem:

Specxfy1ng an unlmplemented processor name in a C source file
will cause the compiler to go from pass 1 into C Nocode without
an error message. The listing file also does not report the
error.

Signed off 04/29/87 in release 301.90

SRB detail reports as of 04/29/87 Page: 197

Number: 5000099176 Product: Z80/NSC800PASCAL 64823 01.01

Keywords: IF

One-line description:

IF Bl <rel-op> B2 THEN Bl := Bl - 1; ({DOESN’T WORK}

Problem:

VAR B1, B2 : BYTE;

BEGIN

IF Bl (>l¢|=|<=|>=) B2 THEN

BL := B1 - {; {THE REGISTER CONTAINING Bl IS DECREMENTED, THEN
OVERWRITTEN BEFORE IT IS SAVED IN MEMORY}

Temporary solution:

$AMNESIA +$

Signed off 04/29/87 in release 301.04

Number: S000105841 Product: 280/NSC800PASCAL 64823 01.01

Keywords: CODE GENERATOR

One-line description:

Incorrect code generated for adding one char to another.

Problem:

VAR

SRC, DEST : CHAR;

BEGIN

DEST := DEST + SRC; {GENERATES INCORRECT CODE}

Temporary solution:

None at this time.

Signed off 04/29/87 in release 301.04

Number: 5000146407 Product: Z80/NSC800PASCAL 64823 01.02

One-line description:
Error #1006 when accessing an element of a two-dimensional array.

Problem:
The following code generates Error #1006:

"processor name”

PROGRAM ESSAI;

TYPE
STRING_20=PACKED ARRAY([0..20] OF CHAR;
TAB_1=ARRAY([1.,10] OF STRING_20;
TAB=ARRAY[1..2] OF TAB_1;

VAR
V:TAB;

BEGIN
Vi1,1]):="a"; (*Error 1006*)

- -8

SRB detail reports as of 04/29/87 Page: 198
END.

Signed off 04/29/87 in release 301.04

Number: 5000157180 Product: Z80/NSC800PASCAL 64823 01.02

One-line description:
Assignment to multi-dimensional array causes error 1006,

Problem:
Assignment to multi-dimensional.arrays causes error 1006 to be
generated. The following code is an example:

"B280"
PROGRAM TEST;
TYPE
TEST_TYPE = ARRAY([1..2] OF CHAR;
TABLE_TEST = ARRAY[1..2,1..2] OF TEST_TYPE;

VAR
MTABLE : TABLE_TYPE;
DUMMY : TEST_TYPE;
BEGIN
DUMMY := MTABLE([1,1]

(*This causes Error 1006%)
END

Temporary solution:
Define the array as shown below:

"BZ80"
PROGRAM TEST;
TYPE
TEST_TYPE = ARRAY([1..2] OF CHAR;
2; OF TEST_TYPE;

] OF TABLE_TWO;

TABLE_TWO = ARRAY[1..
TABLE_TYPE = ARRAY[1.

VAR
MTABLE : TABLE_TYPE;
DUMMY1 : TABLE_TIWO;
DUMMY2 : TEST_TYPE;
BEGIN

DUMMY1 := MTABLE[1];
DUMMY2 := DUMMY1[1];
END

Signed off 04/29/87 in release 301.04

SRB detail reports as of 04/29/87 Page: 199
Number: D200020099 Product: Z80/NSCS800PASCAL 64823 01.01

One-}ine description:
Compiler does not generate cross reference table.

Temporary solution:

To generate a cross reference table simply edit the source file and
introduce an error (syntax error will do). The error will cause the
compiler to generate the cross reference table. Once the table has
been generated simply edit the source file and remove the error.

Signed off 04/23/87 in release 301.04

Number: D200029744 Product: Z80/NSC800PASCAL 64823 01.01
Keywords: POINTERS

One-line description: .
Variables of type pointer may not be incremented correctly.

Problem:
"PROCESSOR"
TYPE

PTR = “BYTE;
TX = PTR;

VAR
RXOUT: TX;
TEMP1,TEMP2 : BYTE;

BEGIN
TEMPL := RXOUT";
LD HL, [R¥OUT]
LD A, HL]
LD (TEMP1], A ;HERE, TEMP1 IS CORRECTLY LOADED WITH THE BYTE
‘THAT RXOUT IS POINTING TO

RXOUT := TX(SIGNED_16(RXOUT)+1); {INCREMENT RXOUT}

LD HL, [RXOUT]
INC HL
LD [RXOUT],HL ;RXOUT IS CORRECTLY INCREMENTED

TEMP2 := RXOUT"; {TEMP2 SHOULD GET THE NEXT BYTE}
LD [TEMP2],A ;SINCE A WAS NOT DISTURBED, THE COMPILER DOES
;NOT REALIZE THAT THE POINTER WAS UPDATED.

Temporary solution:
Set $AMNESIA ON$ around the pointer referencing code.

Signed off 04/23/87 in release 301,04

SRB detail reports as of 04/29/87 Page: 200
Number: D200037507 Product: Z80/NSC800PASCAL 64823 01.01
Keywords: PASS 2

One-line description: .
REBOOT DURING PASS 2 - related to position of variable declarations.

Problem:

The 64000 will reboot during pass 2 when compiling files where

1) The 105th external variable is an array, and

2) An element of the 105th external variable is accessed in the 139th
procedure or function in the file (external and locaily defined
procedures count in this total).

Temporary solution: A
Change the order of the external variable declarations, or change the
order of the procedure declarations.

Signed off 04/29/87 in release 301.04

Number: D200062976 Product: Z80/NSC800PASCAL 64823 01.03

One-line description:
Error #1009 using byte-sized ORG’ed variables in FOR loops

Problem:
Error #1009 is generated when byte sized ORG’ed variables are
used in FOR loops. The following code illustrates the problem.

“processor name"”

PROGRAM TEST;

$EXTENSIONS ON$

PROCEDURE ERR;

VAR

$ORG 5000%
B1,B2,X1: BYTE;

BEGIN

FOR X1 := Bl to B2 DO;
END;

(*Pass 2 Error 1003 - No free registers*)

Temporary solution: i
The error does not occur if the FOR loop variable is word sized instead
of byte sized. It will also go away if the ORG statement is removed.

Signed off 04/29/87 in release 301.04

Number: D200062984 Product: Z80/NSC800PASCAL 64823 01.03

One-line description: .
32-bit unsigned divide and modulus may fail

Problem:

SRB detail reports as of 04/29/87 Page: 201

The result of an unsigned 32-bit division or modulus operation may
be incorrect if the dividend and the destination are the same
location. The problem is in the library routine Zdworddiv. The
following code demonstrates the problem:

“processor name"”
PROGRAM TEST,
$EXTENSIONS ON$
VAR

B1,B2 : UNSIGNED_32;
EGIN

Bl := UNSIGNED_32(0E00000000]);
B2 := UNSIGNED_32(0900000000);
Bl := B1/B2;

END.

Signed off 04/29/87 in release 301.04

Number: D200062932 Product: Z80/NSC800PASCAL 64823 01.03

One-line description:
Library routine REAL_ROUND may fail.

Problem:
The library routine REAL_ROUND may fail, causing floating point
numbers to be incorrectly rounded to integers.

Signed off 04/29/87 in release 301.04

Number: D200063008 Product: Z80/NSC800PASCAL 64823 01.03

One-line description:
Set comparisons with the empty set may fail

Problem:
Set comparisons with the empty set may fail. The following code
1s an example of this problem:

‘processor name"
PROGRAM TEST;
$EXTENSIONS ON$
TYPE

CH = 0..127;

SET1 = SET OF CH;
VAR

S1 : SETI1;
PROCEDURE ERROR; EXTERNAL;
BEGIN

St := (1

IF S1 <> [] THEN (*In CONST_prog, not enough bytes are
END ERROR; defined for the set*)

Signed off 04/29/87 in release 301.04

- -8

SRB detail reports as of 04/29/87 Page: 202
Number: D200063016 Product: 280/NSC800PASCAL 64823 01.03

One-line description:
DEBUG byte division and modulus may incorrectly report division by zero

Problem:

The DEBUG library routines for performing signed and unsigned byte
division and modulus operations may fail and incorrectly report
an attempted division by zero.

The following code fails in this manner:
"processor name"
PROGRAM TEST;
$EXTENSIONS ON$
VAR
B1,B2,B3 : BYTE;
$ORG S000H$
BA : ARRAY[1..15] OF BYTE;

] := B1 DIV B2; (*DIV fails - reports division by zero¥*)

Signed off 04/29/87 in release 301.04
Number: D200063214 Product: Z80/NSC800PASCAL 64823 01.03
Keywords: PASS 3

One-line description: i
Error 1113 generated during pass 3 when 23rd label is encountered.

Problem:

The compiler generates an error 1113 when it encounters the 23rd
LABEL statement in a source file. The output listing shows that
the compiler actually generates an internal label twice in the
same code segment, which confuses the program counter,

Temporary solution: .
Remove this label and write code which achieves the same function
without using a GOTO statement.

Signed off 04/29/87 in release 301.04

Number: D200065292 Product: Z80/NSC800PASCAL 64823 01.03

One-line description: .
Assignment of constant string of length 1 to string variable may fail.

Problem:

Assignment of a constant string of length 1 to a string variable that
is itself a multidimensional array element may fail.

- -8

SRB detail reports as of 04/29/87 Page: 203

First, the address of the destination string is calculated in HL. Then
the value of the string length resulting from the assignment, i.e. one
(1), is loaded into the position reserved for the length of the string
via a store indirect through HL. Up to this point all is as it should
be; however, the value of the single character that comprises the
string is then also stored HL indirect, overwriting the length and
failing to correctly load the string value. The HL register should

be incremented before the second store.

The following is an example:

"processor name"
PROGRAM TEST;

TYPE

STRING_15 = PACKED ARRAY[0..15] OF CHAR;
VAR

TWO_D_ARR : ARRAY[!..3,1..3] OF STRING_15;

BEGIN
TWO_D_ARR[2,1] := * *;
LD HL,0030H
PUSH HL

LD HL,00002H
PUSH HL
LD HL,00010H
PUSH HL
LD HL,00001H

PUSH HL

LD BC,DTEST-00040H

LD A,002H

CALL Zarrayref

LD A,001H

LD [HL],A (*or LD M,A ¥*)

LD A,020H

LD [HL],A (*This is the error - should INC HL first¥*)

END.
Signed off 04/29/87 in release 301.04

Number: 5000136986 Product: Z80/NSC800PASCAL 64823 01.01
Keywords: ENHANCEMENT

One-line description: A
More accurate error message when wrong parm type is passed to STRWRITE.

??°§35mﬁass STRWRITE a two dimensional array (which is illegal) it
will generate error 1106.

"BZ80"

$EXTENSIONS ON$

PROGRAM STWRITE;

TYPE STRING_4 = PACKED ARRAY[0..3] OF CHAR;

- -8

SRB detail reports as of 04/29/87 Page: 204
VAR Y ARRAY[0..3,0..3] OF STRING_4;
z ARRAY (0. .3] OF STRING_4;
E STRING_4;
T SIGNED_16;
BEGIN
E := *TOTO’;
STRWRITE(Y[!,1],1,T,E:4);
END.

Passing a two dimensional array (Y[] in this example) is incorrect
because STRWRITE expects a ’string’ type variable. A ’string’ type
variable is defined as a packed array of [0..n] (note: one dimension).
It would be nice, however, if a meaningful error message was generated.

Signed off 04/29/87 in release 301.04

SRB detail reports as of 04/29/87 Page: 205
Number: D200051593 Product: Z80/NSC800PASCAL 300 648235004 01.00
Keywords: IF

One-line description:
IF Bl <rel-op> B2 THEN Bl := Bl - 1; ({DOESN’T WORK}

Problem:
VAR B1l, B2 : BYTE;

BEGIN

IF Bl (>|<|=|<=|>=) B2 THEN

B1 := Bl - 1; {THE REGISTER CONTAINING B1 IS DECREMENTED, THEN
OVERWRITTEN BEFORE IT IS SAVED IN MEMORY}

Temporary solution:
$AMNESIA +$

Signed off 04/29/87 in release 401.20

Number: D200051854 Product: Z80/NSCB800PASCAL 300 648235004 01.00
Keywords: CODE GENERATOR '

One-line description:
Incorrect code generated for adding one char to another.

Problem:
VAR
SRC, DEST : CHAR;

BEGIN
DEST := DEST + SRC; {GENERATES INCORRECT CODE}

Temporary solution:
None at this time.

Signed off 04/29/87 in release 401.20

Number: D200064311 Product: Z80/NSC800PASCAL 300 64823S004 01.10

One-line description:
Error #1009 using byte-sized ORG’ed variables in FOR loops

Problem:
Error #1009 is generated when byte sized ORG’ed variables are
used in FOR loops. The following code illustrates the problem.

‘processor name"
PROGRAM TEST;
$EXTENSIONS 0N$
PROCEDURE ERR;

VAR
$0RG 5000$
B1,B2,X1: BYTE;

BEGIN

SRB detail reports as of 04/23/87 Page: 206

FOR X1 := Bi to B2 DO;

(*Pass 2 Error 1009 - No free registers*)
END;

Temporary solution:
The error does not occur if the FOR loop variable is word sized instead
of byte sized. It will also go away if the ORG statement is removed.

Signed off 04/238/87 in release 401.20
Number: D200064410 Product: Z80/NSC800PASCAL 300 64823S004 01.10

One-line description: .
32-bit unsigned divide and modulus may fail

Problem:

The result of an unsigned 32-bit division or modulus operation may
be incorrect if the dividend and the destination are the same
location. The problem is in the library routine Zdworddiv. The
following code demonstrates the problem:

"processor name"

PROGRAM TEST;

$EXTENSIONS ON$

VAR
B1,B2 : UNSIGNED_32;

BEGIN
Bl := UNSIGNED_32(0E00000000);
B2 := UNSIGNED_32(0900000000);
Bl := B1/B2;

END.

Signed off 04/29/87 in release 401.20

Number: D200064485 Product: Z80/NSC800PASCAL 300 648235004 01.10

One-line description: .
Library routine REAL_ROUND may fail.

Problem:
The library routine REAL_ROUND may fail, causing floating point
numbers to be incorrectly rounded to 1ntegers

Signed off 04/29/87 in release 401.20

Number: D200064550 Product: 280/NSCB00PASCAL 300 648235004 01.10

One-line description:
DEBUG byte division and modulus may incorrectly report division by zero

Problem:

The DEBUG library routines for performlng signed and unsigned byte
division and modulus operations may fail and incorrectly report

an attempted division by zero.

The following code fails in this manner:

- -8

SRB detail reports as of 04/23/87 Page: 207

“processor name"
PROGRAM TEST;
$EXTENSIONS ON$
VAR
B1,B2,B3 : BYTE;
$0RG SO000H$
BA : ARRAY[1..15) OF BYTE;

BEGIN
Bl :=
B2 :=
B3 :=
BA[B3] := Bl DIV B2;

END.

Signed off 04/29/87 in release 401.20

S e

’
’
’

(*DIV fails - reports division by zero*)

Number: D200064949 Product: Z80/NSC800PASCAL 300 648235004 01.10

One-line description:
Set comparisons with the empty set may fail

Problem:
Set comparisons with the empty set may fail. The following code
is an example of this problem:

"processor name"
PROGRAM TEST;
$EXTENSIONS ON$
TYPE

CH = 0.,127;

SET1 = SET OF CH;
VAR

S1 : SET1;
PROCEDURE ERROR; EXTERNAL;
BEGIN

S1 := [];

IF S1 <> [] THEN
ERROR;

(*In CONST_prog, not enough bytes are
£ defined for the set¥)
ND

Signed off 04/29/87 in release 401.20

Number: D200065318 Product: Z80/NSC800PASCAL 300 648235004 01.10

One-line description:
Assignment of constant string of length 1 to string variable may fail.

Signed off 04/29/87 in release 401.20

SRB detail reports as of 04/29/87 Page:
Number: D200029777 Product: Z80/NSC800PASCAL 500 64823S001
Keywords: POINTERS

One-line description:
Variables of type pointer may not be incremented correctly.

Problem:
"PROCESSOR"
TYPE

PTR = “BYTE;
TX = PTR;

VAR
RXOUT: TX;
TEMP1,TEMP2 : BYTE;

BEGIN
TEMP1 := RXOUT™:
HL, [RX0UT]
LD a, tHL)
LD (TEMP1], A
"THAT RXOUT IS POINTING TO

RKOUT := TX(SIGNED_16(RXOUT)+1); {INCREMENT RXOUT}
LD gk,[kxourl

LD [RXOUT],HL ;RXOUT IS CORRECTLY INCREMENTED
TEMP2 := RXOUT"; {TEMP2 SHOULD GET THE NEXT BYTE}

208
01.10

JHERE, TEMP1 IS CORRECTLY LOADED WITH THE BYTE

LD [TEMP2],A ;SINCE A WAS NOT DISTURBED, THE COMPILER DOES

;NOT REALIZE THAT THE POINTER WAS UPDATED.

Temporary solution:
Set $AMNESIA ON$ around the pointer referencing code.

Signed off 04/29/87 in release 101.50

Number: D200036673 Product: Z80/NSC800PASCAL 500 64823S001
Keywords: IF

One-line description:
IF Bl <rel-op> B2 THEN Bi := Bl - 1; {DOESN’T WORK}

Problem:
VAR B1, B2 : BYTE;

BEGIN

IF B1 (>l<|=l¢=]>=) B2 THEN

Bl := Bl - 1; {THE REGISTER CONTAINING Bl IS DECREMENTED, THEN
OVERWRITTEN BEFORE IT IS SAVED IN MEMORY}

Temporary solution:
$AMNESIA +$

01.20

SRB detail reports as of 04/29/87 Page: 209
Signed off 04/29/87 in release 101.50

Number: D200040105 Product: Z80/NSC800PASCAL 500 648235001 01.20
Keywords: CODE GENERATOR

One-line description:
Incorrect code generated for adding one char to another.

Problem:
VAR
SRC, DEST : CHAR;

BEGIN
DEST := DEST + SRC; {GENERATES INCORRECT CODE}

Temporary solution:
None at this time,

Signed off 04/29/87 in release 101.50

Number: D200064295 Product: Z80/NSC800PASCAL 500 648235001 01.40

One-line description: .
Error #1009 using byte-sized ORG’ed variables in FOR loops

Problem:
Error #1009 is generated when byte sized ORG’ed variables are
used in FOR loops. The following code illustrates the problem.

"processor name"
PROGRAM TEST;
$EXTENSIONS ONS
PROCEDURE ERR;
VAR

$0RG 5000$
B1,B2,X1: BYTE;

BEGIN

FOR X1 := Bi to B2 DO;
END;

.

(*Pass 2 Error 1009 - No free registers*)

Temporary solution: .
The error does not occur if the FOR loop variable is word sized instead
of byte sized. It will also go away if the ORG statement is removed.

Signed off 04/29/87 in release 101.50

Number: D200064394 Product: Z80/NSC800PASCAL 500 648235001 01.40

One-line description:
32-bit unsigned divide and modulus may fail

Problem:
The result of an unsigned 32-bit division or modulus operation may

- -8

SRB detail reports as of 04/29/87 Page: 210

be incorrect if the d1v1dend and the destination are the same
location. The problem is in the library routine Zdworddiv. The
following code demonstrates the problem:

"processor name"

PROGRAM TEST;

$EXTENSIONS ON$

VAR
B1,B2 : UNSIGNED_32;

BEGIN
Bl := UNSIGNED_32(0E00000000);
B2 := UNSIGNED_32(0900000000)
Bl := B1/B2;

END.

Signed off 04/29/87 in release 101.50

Number: D200064463 Product: Z80/NSC800PASCAL 500 648235001 01.40

One-line description:
Library routine REAL_ROUND may fail.

Problem:

The library routine REAL_ROUND may fail, causing floating poxnt

numbers to be incorrectly rounded to 1ntegers

Signed off 04/29/87 in release 101.50

Number: D200064535 Product: Z80/NSC800PASCAL 500 648235001 01.40

One-line description: . .
DEBUG byte division and modulus may incorrectly report division by zero

Problem:

The DEBUG library routines for performing signed and unsigned byte
division and modulus operations may fail and incorrectly report

an attempted division by zero.

The following code fails in this manner:

“processor name"
PROGRAM TEST;
$EXTENSIONS ON$
VAR
B1,B2,B3 : BYTE;
$0RG 5000H$
BA : ARRAY[1..15] OF BYTE;

:= Bl DIV B2; (*DIV fails - reports division by zero*)

Signed off 04/29/87 in release 101.50

- -8

SRB detail reports as of 04/29/87 Page: 211t
Number: D200064923 Product: Z80/NSC800PASCAL 500 648235001 01.40

One-line description:
Set comparisons with the empty set may fail

Problem:

Set comparisons with the empty set may fail. The following code
is an example of this problem:

“processor name"
PROGRAM TEST;
$EXTENSIONS ON$
TYPE
CH = 0.
SET1 = SET OF CH;
VAR
S1 : SET1;
PROCEDURE ERROR EXTERNAL;
BEGIN
S1:= [];
IF §1 <> (] THEN (*In CONST_prog, not enough bytes are
END ERROR; defined for the set*)

Signed off 04/29/87 in release 101.50
Number: D200065284 roduct: Z280/NSC800PASCAL 500 648235001 01.40

One-line description:
Assignment of constant string of length 1 to string variable may fail.

Problem:

Assignment of a constant string of length 1 to a string variable that
is itself a multidimensional array element may fail.

First, the address of the destination string is calculated in HL. Then
the value of the string length resulting from the assignment, i.e. one
(1) is loaded into the position reserved for the length of the string
via a store indirect through HL. Up to this point all is as it should
be; however, the value of the single character that comprises the
string is then also stored HL indirect, overwriting the length and
failing to correctly load the string value. The HL register should

be incremented before the second store.

The following is an example:

"processor name"
PROGRAM TEST;

TYPE

STRING_15 = PACKED ARRAY[0..15] OF CHAR;
VAR

TWO_D_ARR : ARRAY([1..3,1..3] OF STRING_15;
BEGIN

TWO_D_ARR[2,1] := " *;
LD HL,0030H
PUSH HL
LD HL,00002H

SRB detail reports as of 04/29/87 Page: 212
PUSH HL
LD HL,00010H
PUSH HL
LD HL,00001H
PUSH HL
LD BC,DTEST-00040H
LD A,002H
CALL Zarrayref
LD A,001H
LD [HL],A (*or LD M,A ¥)
LD A,020H
LD [HL],A (*This is the error - should INC HL first*)

END.
Signed off 04/29/87 in release 101.50

SRB detail reports as of 04/29/87 Page: 213
Number: D2000238785 Product: Z80/NSC800PASCAL VAX 648235003 01.20
Keywords: POINTERS

One-line description:
Variables of type pointer may not be incremented correctly.

Problem:
*PROCESSOR"
TYPE

PTR = “BYTE;
TX = PTR;

VAR
RXOUT: TX;
TEMP1,TEMP2 : BYTE;

BEGIN
TEMPL := RXOUT™:
LD HL, [RXOUT]
LD a, tHL]
LD [TEMP1], A ;HERE, TEMPL IS CORRECTLY LOADED WITH THE BYTE
‘THAT RKOUT IS POINTING TO

RXOUT 6= TX(SIGNED_16 (RXOUT)+1); {INCREMENT RXOUT}
L

HL, [RXOUT]
INC HL
LD [RXOUT],HL ;RXOUT IS CORRECTLY INCREMENTED

TEMP2 := RXOUT"; {TEMP2 SHOULD GET THE NEXT BYTE}
LD [TEMP2],A ;SINCE A WAS NOT DISTURBED, THE COMPILER DOES
;NOT REALIZE THAT THE POINTER WAS UPDATED.

Temporary solution:

Set $AMNESIA ON$ around the pointer referencing code.

Signed off 04/29/87 in release 301.70

Number: D200036681 Product: Z80/NSC800PASCAL VAX 648235003 01.20
Keywords: IF

One-line description:
IF Bl <rel-op> B2 THEN Bl := Bl - 1; ({DOESN’T WORK}

Problem:
VAR B1, B2 : BYTE;

BEGIN

IF B1 (>|<I=|<=|>=) B2 THEN

Bl := Bl - 1; {THE REGISTER CONTAINING Bl IS DECREMENTED, THEN
OVERWRITTEN BEFORE IT IS SAVED IN MEMORY}

Temporary solution:
$AMNESIA +$

SRB detail reports as of 04/29/87 Page: 214
Signed off 04/29/87 in release 301.70

Number: D200040113 Product: Z80/NSC800PASCAL VAX 648235003 01.20
Keywords: CODE GENERATOR

One-line description:

Incorrect code generated for adding one char to another.
Problem:

VAR

SRC, DEST : CHAR;

BEGIN
DEST := DEST + SRC; {GENERATES INCORRECT CODE}

Temporary solution:
None at this time.

Signed off 04/29/87 in release 301.70

Number: D200064303 Product: Z80/NSC800PASCAL VAX 648235003 01.60

One-line description: .
Error #1009 using byte-sized ORG’ed variables in FOR loops

Problem:
Error #1009 is generated when byte sized ORG’ed variables are
used in FOR loops. The following code illustrates the problem,

"processor name"

PROGRAM TEST;

$EXTENSIONS ON$

PROCEDURE ERR;

VAR

$O0RG 5000$%
B1,B2,X1: BYTE;

BEGIN

FOR X1 := Bl to B2 DO;

(*Pass 2 Error 1009 - No free registers*)
END;

Temporary solution: .
The error does not occur if the FOR loop variable is word sized instead
of byte sized. It will also go away if the ORG statement is removed.

Signed off 04/29/87 in release 301.70

Number: D200064402 Product: Z80/NSC800PASCAL VAX 648235003 01.60

One-line description: .
32-bit unsigned divide and modulus may fail

Problem:
The result of an unsigned 32-bit division or modulus operation may

- -8

SRB detail reports as of 04/23/87 Page: 215

be incorrect if the dividend and the destination are the same
location. The problem is in the library routine Zdworddiv. The
following code demonstrates the problem:

"processor name"

PROGRAM TEST;

$EXTENSIONS ON$

VAR
B1,B2 : UNSIGNED_32;

BEGIN
B1 := UNSIGNED_32(0E00000000);
B2 := UNSIGNED 32(0900000000)
Bl :- B1/B2;

END.

Signed off 04/29/87 in release 301.70
Number: D200064477 Product: Z80/NSC800PASCAL VAX 648235003 01.60

One-line description:
Library routine REAL_ROUND may fail.

Problem:
The library routine REAL_ROUND may fail, causing floating point
numbers to be incorrectly rounded to integers.

Signed off 04/29/87 in release 301.70

Number: D200064543 Product: Z80/NSC800PASCAL VAX 648235003 01.60

One-line description:
DEBUG byte division and modulus may incorrectly report division by zero

Problem:

The DEBUG library routines for performlng 51gned and unsigned byte
division and modulus operations may fail and incorrectly report

an attempted division by zero.

The following code fails in this manner:

“processor name"
PROGRAM TEST;
$EXTENSIONS ON$
VAR
B1,B2,B3 : BYIE;
$0RG 500 0H$
BA : ARRAY[!..15] OF BYTE;

BEGIN
Bl :=
B2 :=

B3 :=

BA[B3] := Bl DIV B2; (*DIV fails - reports division by zero*)

END.

O =

>
’
’

Signed off 04/29/87 in release 301.70

- -8

SRB detail reports as of 04/29/87 Page: 216
Number: D200064931 Product: Z80/NSC800PASCAL VAX 648235003 01.60

One-line description:
Set comparisons with the empty set may fail

Problem:
Set comparisons with the empty set may fail. The following code
is an example of this problem:

"processor name"
PROGRAM TEST;
$EXTENSIONS ON$

TYPE
CH = 0..127;
SET1 = SET OF CH;
VAR
S1 : SETI;
PROCEDURE ERROR EXTERNAL;
BEGIN
S1 := [];
IF S1 <> [] THEN (*In CONST_prog, not enough bytes are
ERROR; defined for the set*)
END.
Signed off 04/29/87 in release 301.70
Number: D200065300 Product: Z80/NSC800PASCAL VAX 648235003 01.60

One-line description:
Assignment of constant string of length 1 to string variable may fail.

Problem:
Assignment of a constant string of length 1 to a string variable that
is itself a multidimensional array element may fail.

First, the address of the destination string is calculated in HL Then
the value of the string length resulting from the assignment, i.e. one
(1), is loaded into the position reserved for the length of the string
via a store indirect through HL. Up to this point all is as it should
be; however, the value of the 51ngle character that comprises the
strxng is then also stored HL indlrect, overwriting the length and
failing to correctly load the string value. The HL register should

be incremented before the second store.

The following is an example:

"processor name"
PROGRAM TEST;
TYPE
STRING_15 = PACKED ARRAY[0..15] OF CHAR;
VAR
TWO_D_ARR : ARRAY[1..3,1..3] OF STRING_15;
BEGIN
TWO_D_ARR[2,1] := " *;
LD HL,0030H
PUSH HL
LD HL,00002H

SRB detail reports as of 04/29/87 Page: 217

PUSH HL

LD HL,00010H

PUSH HL

LD HL,00001H

PUSH HL

LD BC,DTEST-00040H

LD A,002H

CALL Zarrayref

LD A,001H

LD [HL],A (*or LD M,A *)
LD A,020H

LD [HL],A (*This is the error - should INC HL first¥)

END.
Signed off 04/29/87 in release 301.70

SRB detail reports as of 04/29/87 Page: 218
Number: D200010132 Product: 28000 C 64820 00.56
Keywords: PASS 1

One-line description:
Unsigned integers treated as signed when subtracted from pointers

Problem:

When an unsigned short or Lnteger is used as an offset to a poxnter, the
unsigned will be treated as a sxgned when doxng p01nter calculations.
Offsets large enough to set the sxgn bit will be 1ntetpreted as a
negative offset when the offset is subtracted from a pointer. The
following code exibits the problem if offset is greater than 32767 dec.

unsigned offset;
struct { int a,b,c;
. *ptr;
unsigned long X;
Tain ()
x = ptr - offset; /* The compiler will generate code negating */
* offset for the "-" operation. */

Temporary solutlon

Cast the offset in the expression as the next larger integer.

ie. x = ptr - (unsigned longloffset;

Signed off 04/29/87 in release 001.06

Number: D200011403 Product: 28000 C 64820 00.56

Keywords: PASS 1

One-line descrlpt1on
Functions invoked via function pointers may JSR the wrong location.

Problem:

When the typedef statement is used to define pointers to functions,
and this poxnter type is used in a cast of a variable array to invoke
code stored in that array, program execution may transfer to the wrong
location. For example, in the following code the simple call to
code_array fails while the call and assignment to p works correctly:

typedef int(*PFI)(); /* PFI a pointer to int functions */
int code_array[100]; /* array contains code */
PFI p; /* p a pointer of type PFI */

pfibug()
(*((PFI) code_array))(); /* fails in JSR to code_array */
(*(ps(PFI)code_array))(5; /* assignment and JSR successful */

Temporary solution:
Set up a dummy variable and perform an assignment to it when doing
this type of operation.

SRB detall reports as of 04/29/87 Page:
Signed off 04/29/87 in release 001.06

219

Number: D200014498 Product: Z8000 C 64820

One-line description:
RANGE_ON

Problem:
With RANGE_ON, typecasting an integer and assigning it to an
unsigned_integer produces a range error.

Signed off 04/29/87 in release 001.06

01.03

Number: D200040345 Product: 28000 C 64820

One-line description:
Nested switch statements may generate infinite loop

Problem:

01.03

If you have nested switch statements and do not terminate the inner
switch’s cases with breaks the compiler generates an infinite loop.

agn
"68000"
main(){
int c;
switeh(e) {
case 1: break;
default: switch(c){

case 2: break,

/* A break is needed here because the break

above for ’case 2’ generates a jump to

this location. If a break is not placed

here it falls into the code for
evaluating ’case 1’ above. */

}

Temporary solution:
Close default statement with a break.
Ton

"68000"
main(){
int ¢;
switch(c){
casel: break;
default: switch(c){
case 2: break;
break;
}

}
Signed off 04/29/87 in release 001.06

SRB detail reports as of 04/29/87 Page: 220
Number: D200059741 Product: Z8000 C 64820 01.04

One-line description:
Compiler is not flagging an undefined structure.

Problem:

The customer reports that the program listed below causes the
compiler to hang. I could not duplicate this problem, but, the
compiler incorrectly reported no errors. ’

wen
"processor"

main() {

int 1i;
struct undefined

}

af10]([20];

The compiler should report that the type ’'undefined’ is undefined.

Temporary solution:
No temporary solution.

Signed off 04/29/87 in release 001.06

Number: D200063461 Product: 28000 C 64820 01.05

One-line description:
C Function returning large (>2bytes) result can’t be called as procedure

Problem: X

Functions returning large (>2byte) result cannot be called as
procedures.

Signed off 04/29/87 in release 001.06

Number: D200066043 Product: 28000 C 64820 01.05

One-line description:
Illegal forward reference flagged for legally defined string.

grgblem:

"grocessor"

char badstring(] = {"Wont work"};
char string[] = "works fine";
main()

¢ int i;

i = sizeof(string);

SRB detail reports as of 04/29/87 Page: 221

i = sizeof(badstring); /* Error 117 flagged. */

Temporary solution: A . .
Eliminate the braces when initializing a string.

wen
"processor”

char string[] = "do it this way";
main()
int i;

i = sizeof(string);

Signed off 04/29/87 in release 001.06

SRB detail reports as of 04/23/87 Page: 222

Number: D200051938 Product: 28000 C 300 648205004 01.00

One-line description: L.
Nested switch statements may generate infinite loop

Problem:
If you have nested switch statements and do not terminate the inner
switch’s cases with breaks the compiler generates an infinite loop.

wen
“processor name"

main(){
int c;
switch(c) {
case 1: break;
default: switch(c){
case 2: break;

/* A break is needed here because the break
above for ’case 2’ generates a jump to
this location. If a break is not placed
here it falls into the code for
evaluating ’'case 1’ above.

}

Temporary solution:
Close default statement with a break.

wen
"processor name"

main()J{ |
int ¢;
switch(c){
casel: break;
default: switch(c){
) case 2: break;
break;
}
}

Signed off 04/29/87 in release 401.20
Number: D200053774 Product: 28000 C

300 648205004 01.00

One-line description:
Compiler is not flagging an undefined structure.

Problem:

The customer reports that the program listeg below causes the
compiler to hang. I could not duplicate this problem, but, the
compiler incorrectly reported no errors.

e
“processor"

SRB detail reports as of 04/29/87 Page: 223

main() {

int i;
struct undefined a[10][20];

}

The compiler should report that the type ’undefined’ is undefined.

Temporary solution:
No temporary solution.

Signed off 04/29/87 in release 401.20

Number: D200063485 Product: Z8000 C 300 648205004 01.10

One-line description:
C Function returning large (>2bytes) result can’t be called as procedure

Problem:

Functions returning large (>2byte) result cannot be called as
procedures.

Signed off 04/29/87 in release 401.20

Number: D200066076 Product: Z8000 C 300 648205004 01.10

One-line description:
Illegal forward reference flagged for legally defined string.

Problem:

wge
“processor"”

char badstring{] = {"Wont work"};
char string(] = "works fine";

main()
int i;

i = sizeof(string);

i = sizeof(badstring); /* Error 117 flagged. */

Temporary solution:
Eliminate the braces when initializing a string.

won
“processor"

char string[] = "do it this way";

main()

SRB detail reports as of 04/29/87 Page: 224
o
int i;
i = sizeof(string);
Signed off 04/29/87 in release 401.20
Number:; D200066431 Product: 28000 C 300 648205004 01.10

One-line description:
No error message for unimplemented processor name.

Problem:
Specxfylng an unlmplemented processor name in a C source file
will cause the compiler to go from pass 1 into C Nocode without

an error message. The listing file also does not report the
error.

Signed off 04/29/87 in release 401.20

SRB detail reports as of 04/29/87 Page: 225

Number: D200040352 Product: Z8000 C 500 648205001 01.20
One-line description: L
Nested switch statements may generate infinite loop

Problem:

If you have nested switch statements and do not terminate the inner
switch’s cases with breaks the compiler generates an infinite loop.
e

"68000"

main(){
int c;
switch(c) {
case 1: break;
default: switch(c){
case 2: break;

}

/* A break is needed here because the break
above for ’'case 2’ generates a jump to
this location. If a break is not placed
here it falls into the code for
evaluating ’case 1’ above. */

}

Temporary solution:
Close default statement with a break.

gn
"68000"
main(){
int c;
switch(e){
casel: break;
default: switch(c){
case 2: break;
break;
}
}

Signed off 04/29/87 in release 101.60

Number: D200059758 Product: 28000 C 500 648205001 01.40

One-line description:
Compiler is not flagging an undefined structure.

Problem:

The customer reports that the program listeq below causes the
compller to hang. I could not duplicate this problem, but, the
compiler incorrectly reported no errors.

v
“processor”

main() {

SRB detail reports as of 04/29/87 Page: 226
int i,

struct undefined al[10][20];

}

The compiler should report that the type ’undefined’ is undefined.

Temporary solution:
No temporary solution.

Signed off 04/29/87 in release 101.60

Number: D200063473 Product: Z8000 C 500 648205001 01.50

One-line description:
C Function returning large (>2bytes) result can’t be called as procedure

Problem:

Functions returning large (>2byte) result cannot be called as
procedures.

Signed off 04/29/87 in release 101,60

Number: D200066050 Product: 28000 C

500 648205001 ~01.50

One-line description: . .
Illegal forward reference flagged for legally defined string.

Problem:

nen
"processor"”

char badstring[] = {"Wont work"};
char string[] = "works fine";
main()

int i;

i = sizeof(string);

i = sizeof(badstring); /* Error 117 flagged. */

Temporary solution: X
Eliminate the braces when initializing a string.

wee
"processor”

char string[] = "do it this way";
main()
{

int i;

SRB detail reports as of 04/29/87 Page: 227
i = sizeof(string);
Signed off 04/29/87 in release 101.60
Number: D200066423 Product: Z8000 C 500 64820S001 01.50

One-line description:
No error message for unimplemented processor name.

Problem: .
Specifying an unimplemented processor name in a C source file
will cause the compiler to go from pass 1 into C Nocode without

an error message. The listing file also does not report the
error.

Signed off 04/29/87 in release 101.60

SRB detail reports as of 04/29/87 Page: 228

Number: 1650018804 Product: 28000 C VAX 648205003 01.80

One-line description:
No error message for unimplemented processor name.

Problem:
Specifying an unimplemented processor name in a C source file
will cause the compiler to go from pass 1 into C Nocode without

an error message. The listing file also does not report the
error.

Signed off 04/29/87 in release 301.90

Number: D200040360 Product: 28000 C VAX 64820S003 01.20
One-line description: .
Nested switch statements may generate infinite loop

Problem:

If you have nested switch statements and do not terminate the inner
switch’s cases with breaks the compiler generates an infinite loop.

wen

"68000"

main(){
int ¢; .
switch(c) {
case 1: break;
default: switchl(c){
case 2: break;

/* A break is needed here because the break
above for ’case 2’ generates a jump to
this location. If a break is not placed
here it falls into the code for
evaluating ’case 1’ above. */

}

Temporary solution:
Close default statement with a break.
wo

"68000"
main(){
int c;
switch(c){
casel: break;
default: switch(c){
case 2: break;
break;
}

}
Signed off 04/29/87 in release 301,90

SRB detail reports as of 04/29/87 Page:

Number: D200058766 Product: 28000 C VAX 648205003

One-line description:
Compiler is not flagging an undefined structure.

Problem:
The customer reports that the program listed below causes the

compiler to hang. I could not duplicate this problem, but, the
compiler incorrectly reported no errors.

wee
"processor"

main() {

int 1i;
struct undefined

}

af10][20];

The compiler should report that the type ’undefined’ is undefined.

Temporary solution:
No temporary solution.

Signed off 04/29/87 in release 301.90

229
01.50

Number: D200063487 Product: 28000 C VAX 648205003

One-line description:

01.80

C Function returning large (>2bytes) result can’t be called as procedure

Problem:

Functions returning large (>2byte) result cannot be called as
procedures.

Signed off 04/29/87 in release 301.90

Number: D200066068 Product: 28000 C VAX 648205003

One-line description: .
Illegal forward reference flagged for legally defined string.

Problem:
nen
"processor"”

char badstring{] = {"Wont work"};
char string[] = "works fine";
main()

int i;

i = sizeof(string);

01.80

SRB detail reports as of 04/29/87 Page:

i = sizeof(badstring); /* Error 117 flagged. */

Temporary solution: L .
Eliminate the braces when initializing a string.

wen
"processor"

char string[] = "do it this way";
main()

int i;

i = sizeof(string);

Signed off 04/29/87 in release 301.90

230

(15] HEWLETT

Io PACKARD

5958-6019, May 1987 Printed in U.S.A.
E0587

	Front
	cover/inside
	title

	Comment Sheet
	comment-1
	comment-2

	Preface
	i/ii

	Index
	index-1
	index-2
	index-3
	index-4
	index-5
	index-6
	index-7
	index-8
	index-9
	index-10
	index-11
	index-12
	index-13
	index-14
	index-15
	index-16
	index-17
	index-18
	index-19
	index-20
	index-21/index-22

	Text
	1/2
	3/4
	5/6
	7/8
	9/10
	11/12
	13/14
	15/16
	17/18
	19/20
	21/22
	23/24
	25/26
	27/28
	29/30
	31/32
	33/34
	35/36
	37/38
	39/40
	41/42
	43/44
	45/46
	47/48
	49/50
	51/52
	53/54
	55/56
	57/58
	59/60
	61/62
	63/64
	65/66
	67/68
	69/70
	71/72
	73/74
	75/76
	77/78
	79/80
	81/82
	83/84
	85/86
	87/88
	89/90
	91/92
	93/94
	95/96
	97/98
	99/100
	101/102
	103/104
	105/106
	107/108
	109/110
	111/112
	113/114
	115/116
	117/118
	119/120
	121/122
	123/124
	125/126
	127/128
	129/130
	131/132
	133/134
	135/136
	137/138
	139/140
	141/142
	143/144
	145/146
	147/148
	149/150
	151/152
	153/154
	155/156
	157/158
	159/160
	161/162
	163/164
	165/166
	167/168
	169/170
	171/172
	173/174
	175/176
	177/178
	179/180
	181/182
	183/184
	185/186
	187/188
	189/190
	191/192
	193/194
	195/196
	197/198
	199/200
	201/202
	203/204
	205/206
	207/208
	209/210
	211/212
	213/214
	215/216
	217/218
	219/220
	221/222
	223/224
	225/226
	227/228
	229/230

	Back
	cover

