
HP 64700 Emulators
Terminal Interface:
Analyzer User’s Guide

Edition 1

64740-90909E1187
Printed in U.S.A. 11/87

Notice

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of mer-
chantability and fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for incidental or conse-
quential damages in connection with the furnishing, performance, or
use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1987, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be pho-
tocopied, reproduced or translated to another language without the
prior written consent of Hewlett-Packard Company. The information
contained in this document is subject to change without notice.

AdvanceLink, Vectra and HP are trademarks of Hewlett-Packard
Company.

IBM and PC AT are registered trademarks of International Business
Machines Corporation.

MS-DOS is a trademark of Microsoft Corporation.

UNIX is a registered trademark of AT&T.

Torx is a registered trademark of Camcar Division of Textron, Inc.

Logic Systems Division
8245 North Union Boulevard
Colorado Springs, CO 80918, U.S.A.

Printing History

New editions are complete revisions of the manual. The dates on the ti-
tle page change only when a new edition is published.

A software code may be printed before the date; this indicates the ver-
sion level of the software product at the time the manual was issued.
Many product updates and fixes do not require manual changes and,
conversely, manual corrections may be done without accompanying
product changes. Therefore, do not expect a one to one correspon-
dence between product updates and manual revisions.

Edition 1 11/87 64740-90909E1187

Using this Manual

This manual will show you how to use the HP 64700 series analyzer
with the firmware resident Terminal Interface.

This manual will:

• Briefly introduce the analyzer and its features.

• Show you how to use the analyzer in its simplest, power-up condi-
tion. From there, it will progressively show you how and why you
would use additional trace commands.

• Show you how to use the external analyzer.

• Show you how to cross-trigger between the emulation analyzer and
the external analyzer.

• Show you how to specify analyzer clocks.

• Show you how to save the analyzer configuration in a command file.

This manual will not:

• Show you how to use the analyzer with the PC Interface; this is
done in the HP 64700 Emulators PC Interface: Analyzer User’s
Guide.

• Show you how to use the analyzer with the Softkey Interface; this is
done in the HP 64700 Emulators Softkey Interface: Analyzer User’s
Guide.

• Describe all analyzer commands options in alphabetical order; this
is done in the HP 64700 Emulators Terminal Interface: User’s Refer-
ence.

• Show you how to use the external timing analyzer. Timing analysis
is only available when using host computer interfaces such as the
PC Interface or the Sofkey Interface. Refer to the appropriate host
computer interface Analyzer User’s Guide.

• Show you how to cross-trigger the analyzers of multiple HP 64700
Series emulators over the Coordinated Measurement Bus (CMB);
this is done in the HP 64700 Emulators Terminal Interface: CMB
User’s Guide.

Organization

Chapter 1 Introducing the HP 64700 Series Analyzer. This chapter lists the basic
features of the analyzer. The following chapters show you how to use
these features.

Chapter 2 Getting Started. This chapter shows you how to use the analyzer from
its simplest power-up condition to making simple sequence specifica-
tions.

Chapter 3 Accessing Full Analyzer Capability. This chapter shows you how to ac-
cess and use the full power and capability of the HP 64700 Series ana-
lyzer (more powerful sequencing and the use complex expressions).

Chapter 4 Using the External Analyzer. This chapter shows you how to use the
external analyzer as part of the emulation analyzer or as an inde-
pendent state analyzer.

Chapter 5 Making Coordinated Measurements. This chapter shows you how to
use the analyzer trigger condition to break the emulator and how to
cross-trigger between the emulation analyzer and the external analyzer.

Chapter 6 Special Analyzer Topics. This chapter shows you how to name and
qualify analyzer clock sources. It shows you how to use slave clocks to
demultiplex data on analyzer trace signals. It also shows you how to
save and retrieve analyzer command specifications to and from com-
mand files.

Contents

Chapter 1 Introducing the HP 64700 Series Analyzer

Overview. 1-1
Analyzer Features. 1-1

Simple Measurements. 1-3
Trace Storage, Prestore, and Count . 1-3
Sequencer. 1-3
Simple Commands for Common Measurements. 1-3
External Analysis . 1-3
Coordinated Measurements . 1-4
Other Features. 1-4

Chapter 2 Getting Started

Introduction . 2-1
Prerequisites . 2-2
The Sample Program . 2-2

Description of the Sample Program . 2-2
Before You Can Use the Analyzer . 2-5

Map Memory. 2-5
Load the Program . 2-6

Contents-1

Run the Program. 2-6
The Default Trace Specification. 2-6

Initializing the Analyzer (tinit) . 2-7
Starting the Trace (t) . 2-7
Halting the Trace (th) . 2-7
Displaying the Trace Status (ts) . 2-7
Displaying the Trace (tl) . 2-8

Expressions in Trace Commands. 2-10
Tokens . 2-10
Trace Labels. 2-11
Predefined Trace Labels . 2-11
Values . 2-11
Predefined Equates for Emulation Analyzer Status. 2-13
Expression Examples. 2-14

Changing the Trace Format (tf) . 2-14
Specifying a Simple Trigger (tg) . 2-16

Specifying an Occurrence Count. 2-18
Specifying Storage Qualifiers (tsto) . 2-19
Prestoring States (tpq) . 2-20

Qualifying Prestore States . 2-20
Turning Off Prestore . 2-21

Changing the Count Qualifier (tcq) . 2-22
Using the Sequencer (tsq) . 2-23

Resetting the Sequencer (tsq -r) . 2-24
The Default Sequencer Specification . 2-24
Simple Trigger and the Sequencer . 2-25
Primary and Secondary Branch Expressions (tif, telif) 2-26
Inserting Sequence Terms (tsq -i) . 2-29
Deleting Sequence Terms (tsq -d). 2-29

Changing the Trigger Position (tp) . 2-30
Tracing a Program as it Starts Up . 2-32

Contents-2

Chapter 3 Accessing Full Analyzer Capability

Introduction . 3-1
Prerequisites . 3-2
"Easy" and "Complex" Configuration Differences 3-2

Sequence Terms and the Trigger . 3-2
Primary Branch Expressions . 3-3
Secondary Branch Expressions . 3-3
Storage Qualifiers . 3-3
Complex Expressions. 3-3

Commands that Change in the "Complex" Configuration. 3-7
The Sample Program . 3-12

Before You Can Use the Analyzer . 3-12
Switching into the "Complex" Configuration (tcf -c) 3-12
The Default Sequencer Specification (tsq -r). 3-13
Specifying a Simple Trigger (tg) . 3-14
Using the Sequencer in the "Complex" Configuration 3-16

Hints to Make Setting Up the Sequencer Easy 3-17
Tracing "Windows" of Activity. 3-23
Isolating and Tracing Specific Conditions. 3-28

Chapter 4 Using the External Analyzer

Introduction . 4-1
Before You Can Use the External Analyzer 4-1

Connecting the Analyzer Probe Lines to the Target System . . . 4-2
Specifying External Trace Signal Threshold Voltages 4-8
Defining External Trace Labels. 4-8
Selecting the External Analyzer Mode . 4-9

Aligned with Emulation Analyzer . 4-9
Independent State Analyzer . 4-10

Contents-3

Independent State Analyzer Commands (xt, xtarm, ...) 4-10
Specifying the Independent Analyzer Clock Source. 4-11

Independent Timing Analyzer . 4-11
External Analyzer Specifications . 4-12

Chapter 5 Making Coordinated Measurements

Introduction . 5-1
Specifying an Arm Condition . 5-2
Driving Signals When the Trigger is Found 5-3

Breaking on an Analyzer Trigger . 5-5
Cross-Arming Between Emulation and External Analyzers 5-6

Cross-Triggering . 5-7

Chapter 6 Special Analyzer Topics

Introduction . 6-1
Displaying Trace Activity (ta). 6-1
Specifying the Analyzer Clock Source (tck). 6-2

Tracing Background Execution. 6-2
Selecting Clock Signals . 6-3
Specifying the Maximum Qualified Clock Speed 6-4
Qualifying Clocks (tck -l, -h) . 6-5

Contents-4

Using Slave Clocks for Demultiplexing (tsck) 6-6
Mixed Clocks . 6-7
True Demultiplexing . 6-9

Saving Trace Specifications in Command Files. 6-9
Example . 6-9

Contents-5

Illustrations

Figure 1-1. Block Diagram of HP 64700 Series Analyzer 1-2
Figure 2-1. Pseudo-Code Algorithm of Sample Program 2-3
Figure 2-2. Sample Program Listing . 2-4
Figure 2-3. The Default Sequencer Specification 2-24
Figure 2-4. Specifying Primary and Secondary Branches 2-27
Figure 3-1. "Complex" Configuration Sample Program 3-8
Figure 3-2. "Complex" Configuration Default Sequencer. 3-14
Figure 3-3. Simple Trigger in "Complex" Configuration 3-16
Figure 3-4. Flowchart of Hypothetical Program. 3-18
Figure 3-5. Drawing the Sequencer Diagram 3-20
Figure 3-6. Tracing a "Window" of Activity. 3-24
Figure 3-7. Sequencer to Isolate Sample Program Bug 3-31
Figure 4-1. Assembling the Analyzer Probe 4-2
Figure 4-2. Attaching Grabbers to Probe Wires. 4-3
Figure 4-3. Removing Cover to Emulator Connector 4-4
Figure 4-4. Connecting the Probe to the Emulator 4-5
Figure 4-5. Connecting Probe to the Target System. 4-7
Figure 5-1. Coordinated Measurements . 5-4
Figure 6-1. Qualified Clocks . 6-4
Figure 6-2. Mixed Clock Demultiplexing . 6-6
Figure 6-3. Slave Clocks . 6-7
Figure 6-4. True Demultiplexing. 6-8

Contents-6

1

Introducing the HP 64700 Series Analyzer

Overview This manual describes the HP 64700 Series analyzer. Each HP 64700
Series emulator contains an internal emulation analyzer. Your emula-
tor may optionally contain an external analyzer.

The emulation analyzer captures emulator bus cycle information syn-
chronously with the processor’s clock signal. A trace is a collection of
these captured states. The trigger state specifies when the trace meas-
urement is taken. The external analyzer captures activity on signals ex-
ternal to the emulator, typically other target system signals.

The analyzer commands are the same in every emulator; consequently,
this manual is shipped with every HP 64700 Series emulator. A block
diagram of the analyzer is shown in figure 1-1.

Analyzer Features This chapter lists basic features of the HP 64700 Series analyzer. The
chapters which follow show you how to use these features.

Simple
Measurements

The default condition of the analyzer allows you to perform a simple
measurement by entering a single "trace" command. You can enter ad-

Introduction 1-1

Figure 1-1. Block Diagram of HP 64700 Series Analyzer

Introduction 1-2

ditional trace commands to qualify when execution should be traced
and which bus cycle states should be stored.

Trace Storage,
Prestore, and Count

The analyzer can store up to 1024 states in trace memory. These states
can be normal storage states or prestore states (states which precede
normal storage states). A count may be associated with normal storage
states; you can specify that the analyzer count in either time or the oc-
currences of some state. When counts are specified, only 512 states can
be stored.

Sequencer You can use the analyzer to search for a particular sequence of states.
The sequencer, which makes this possible, has several levels (also called
sequence terms). Each level of the sequencer can search for two states
at a time. When one of these states is found, the sequencer branches to
another sequence term. The term that is branched to depends on
which state is found first.

Simple Commands
for Common

Measurements

When the emulator is powered up or initialized, the analyzer is set up
in its "easy" configuration. The "easy" configuration hides much of the
complexity of the analyzer and makes it easier to use; it allows you to
make simple measurements without requiring a thorough knowledge
of the analyzer. You can access the full capability of the analyzer via a
command to select the "complex" configuration.

External Analysis Your HP 64700 Series emulator may optionally contain an external
analyzer. The external analyzer provides 16 external trace signals and
two external clock inputs. You can use the external analyzer as an ex-
tension to the emulation analyzer, as an independent state analyzer, or
as an independent timing analyzer.

Coordinated
Measurements

When multiple HP 64700 Series emulators are connected via the Coor-
dinated Measurement Bus (CMB), you can use the analyzer to trigger

Introduction 1-3

the analyzers of other emulators. You can also use the analyzer to trig-
ger instruments connected to the BNC port. Conversely, the analyzer
may be triggered by other emulators and instruments.

Also, if your emulator contains an external analyzer being used as an in-
dependent analyzer, coordinated measurements may take place be-
tween the emulation analyzer and the external analyzer.

Other Features The list above is only a basic description of the HP 64700 Series ana-
lyzer features. The chapters which follow show you how to use these
features.

Introduction 1-4

2

Getting Started

Introduction This chapter shows you how to use the emulation analyzer from mak-
ing simple measurements to searching for a sequence of states. It does
not describe how to access or use the full capability of the analyzer (see
the chapter on "Accessing Full Analyzer Capability").

This chapter:

• Describes the sample program on which example measurements
are made.

• Describes the default, power-up condition of the analyzer (includ-
ing how to: initialize the analyzer, start the trace measurement, halt
the trace, display the trace status, display the trace, and change the
format of the trace listing).

• Describes expressions allowed in trace commands.

• Shows you how to specify a simple trigger.

• Shows you how to specify a storage qualifier.

• Shows you how trace prestore is used.

• Shows you how to change the count qualifier.

• Shows you how to use the sequencer.

• Shows you how to change the position of the trigger state in the
trace.

Getting Started 2-1

Prerequisites Before reading the examples in this chapter you should already know
how the emulator operates. You should know what the various emula-
tor prompts mean, and you should know how to use the emulation
commands. Refer to the appropriate Terminal Interface: Emulator
User’s Guide manual to learn about the emulator; then, return to this
manual.

The Sample
Program

The sample program is used to illustrate analyzer examples. The sam-
ple program is written in assembly language so the disassembled trace
listings will be more meaningful.

The examples in this chapter have been generated using an 80186 (HP
64764) emulator. The sample program is written in 80186 assembly
language.

It is not important that you know the 80186 assembly language; how-
ever, you should understand what the various sections of the program
do and associate these tasks with the labels used in the program.

You are encouraged to rewrite the sample program in the assembly
language appropriate for your emulator. Then, you can use your ana-
lyzer to perform the examples shown in this chapter. Of course, the
output of your commands will be different than those shown here.

Description of the
Sample Program

A pseudo-code algorithm of the sample program is shown in figure 2-1.

The sample program is not intended to represent a real routine. The
program uses four different callers of the WRITE_NUMBER subrou-
tine to simulate situations in real programs where routines are called

Getting Started 2-2

from many different places. An example later in this chapter will show
you how to use the analyzer to determine where a routine is called from.

An assembler listing of the sample program is shown in figure 2-2. It is
provided so that you can see the addresses associated with the program
labels. The program area, which contains the instructions to be exe-
cuted by the microprocessor, is located at 400H. The RESULTS area,
to which the random numbers are written, is located at 500H. The area
which contains a variable used by the RAND subroutine and the loca-
tions for the stack is located at 600H.

Before You Can
Use the Analyzer

Before you can use the analyzer to perform measurements on the sam-
ple program, you must map memory and load the sample program.

 Initialize the stack pointer.
 AGAIN: Save the two previous random numbers.
 Call the RAND random number generator subroutine.
 Test the two least significant bits of the previous random number.
 If 00B then goto CALLER_0.
 If 01B then goto CALLER_1.
 If 10B then goto CALLER_2.
 If 11B then goto CALLER_3.
 CALLER_0: Call the WRITE_NUMBER subroutine.
 Goto AGAIN (repeat program).
 CALLER_1: Call the WRITE_NUMBER subroutine.
 Goto AGAIN (repeat program).
 CALLER_2: Call the WRITE_NUMBER subroutine.
 Goto AGAIN (repeat program).
 CALLER_3: Call the WRITE_NUMBER subroutine.
 Goto AGAIN (repeat program).

 WRITE_NUMBER: Write the random number to a 256 byte data area, using the second
 previous random number as an offset into that area.
 RETURN from subroutine.

 RAND: Pseudo-random number generator which returns a random number
 from 0-0FFH.
 RETURN from subroutine.

Figure 2-1. Pseudo-Code Algorithm of Sample Program

Getting Started 2-3

FILE: anly.S HEWLETT-PACKARD: 80186 Assembler

LOCATION OBJECT CODE LINE SOURCE LINE

 1 "80186"
 2 ORG 400H
 3 ASSUME DS:ORG,ES:ORG
 4
 0400 B80000 5 START MOV AX,SEG RAND_SEED
 0403 8ED8 6 MOV DS,AX
 0405 8ED0 7 MOV SS,AX
 0407 B80000 8 MOV AX,SEG RESULTS
 040A 8EC0 9 MOV ES,AX
 040C BCFE06 10 MOV SP,OFFSET STACK
 11 * The next three instructions move the second
 12 * previous random number into DI (offset to
 13 * RESULTS area).
 040F 8AC7 14 AGAIN MOV AL,BH
 0411 25FF00 15 AND AX,#0FFH
 0414 8BF8 16 MOV DI,AX
 17 * Previous random # moved to BH.
 0416 8AFB 18 MOV BH,BL
 19 * RAND returns random number in AX.
 0418 E83300 20 CALL RAND
 21 * Current random # moved to BL.
 041B 8AD8 22 MOV BL,AL
 041D 8AE7 23 MOV AH,BH
 24 * The following instructions determine which
 25 * caller calls WRITE_NUMBER (depends on last
 26 * two bits of the previous random number).
 041F D0DC 27 RCR AH,1
 0421 7207 28 JC ONE_THREE
 0423 D0DC 29 RCR AH,1
 0425 7216 30 JC CALLER_2
 0427 E90700 31 JMP CALLER_0
 042A D0DC 32 ONE_THREE RCR AH,1
 042C 7215 33 JC CALLER_3
 042E E90600 34 JMP CALLER_1
 35 * The WRITE_NUMBER routine is called from four
 36 * different places. The program is repeated
 37 * after the subroutine return.
 0431 E81400 38 CALLER_0 CALL WRITE_NUMBER
 0434 EBD9 39 JMP AGAIN
 0436 90 40 NOP
 0437 E80E00 41 CALLER_1 CALL WRITE_NUMBER
 043A EBD3 42 JMP AGAIN
 043C 90 43 NOP
 043D E80800 44 CALLER_2 CALL WRITE_NUMBER
 0440 EBCD 45 JMP AGAIN
 0442 90 46 NOP
 0443 E80200 47 CALLER_3 CALL WRITE_NUMBER
 0446 EBC7 48 JMP AGAIN

Figure 2-2. Sample Program Listing

Getting Started 2-4

Map Memory The program, destination, and stack areas of the sample program were
ORGed at addresses 400H, 500H, and 600H, respectively. Therefore,
map the range from 400H through 7ffH to emulation memory before
loading the program, as shown in the command below.

 R> map 400..7ff eram

To display the resulting memory map:

 R> map
 # remaining number of terms : 15
 # remaining emulation memory : 1f400h bytes
 map 00400..007ff eram # term 1
 map other tram

Mapping memory is described in more detail in your Terminal Inter-
face: Emulator User’s Guide.

 49 * The WRITE_NUMBER routine writes the random
 50 * number to the RESULTS area. The second
 51 * previous number is the offset in this area.
 0448 26889D0005 52 WRITE_NUMBER MOV RESULTS[DI],BL
 044D C3 53 RET
 54 * The RAND routine generates a pseudo-random
 55 * number from 0-0FFH, and leaves the result
 56 * in AX.
 044E B86D4E 57 RAND MOV AX,#4E6DH
 0451 26F72E0006 58 IMUL RAND_SEED
 0456 153903 59 ADC AX,#339H
 0459 7301 60 JNC PAST_INC
 045B 42 61 INC DX
 045C 26A30006 62 PAST_INC MOV RAND_SEED,AX
 0460 8BC2 63 MOV AX,DX
 0462 25FF00 64 AND AX,#0FFH
 0465 C3 65 RET
 66
 67 ORG 500H
 68 * Random numbers written to this area.
 0500 69 RESULTS DBS 0FFH
 70
 71 ORG 600H
 72 * Variable used in RAND subroutine.
 0600 0100 73 RAND_SEED DW 1
 0602 74 DDS 3FH
 06FE 75 STACK DWS 1 ; Stack area.
 76 END

Errors= 0

Figure 2-2. Sample Program Listing (Cont’d)

Getting Started 2-5

Load the Program Absolute files, in a number of different file formats, can be loaded into
an HP 64700 Series emulator in a number of different ways. Refer to
the Terminal Interface: Emulator User’s Guide for information on load-
ing programs into the emulator.

Run the Program To start the emulator executing the example you would enter the run
command below.

 R> r 400
 U>

The address 400H is the start address of the sample program and the
"U> " prompt shows that the emulator is executing the "user" sample
program.

The Default Trace
Specification

After the emulator is powered-up or initialized, the analyzer is in its
simplest configuration. The default condition will trigger on any state,
and store all captured states. You can simply issue a trace command (t)
to trace the states currently executing.

Initializing the
Analyzer (tinit)

To be sure that the analyzer is in its default or power-up state, or to re-
set the analyzer to its default state, you can enter the tinit (trace initiali-
zation) command.

 U> tinit

Getting Started 2-6

Starting the Trace (t) Enter the t (trace) command to tell the analyzer to begin monitoring
the states which appear on the trace signals. You will see a message
which confirms that a trace is started.

 U> t
 Emulation trace started

Halting the Trace (th) The th (trace halt) command allows you to halt a trace measurement.
When the th command is entered, the message "Emulation trace
halted" is displayed.

Displaying the Trace
Status (ts)

Enter the ts (trace status) command to view what the analyzer is doing
(or what the analyzer has done if the trace has completed).

 U> ts
 --- Emulation Trace Status ---
 NEW User trace complete
 Arm ignored
 Trigger in memory
 Arm to trigger ?
 States 512 (512) 0..511
 Sequence term 2
 Occurrence left 1

The first line of the emulation trace status display shows that the user
trace has been "completed"; other possibilities are that the trace is still
"running" or that the trace has been "halted". The word "NEW" indi-
cates that the most recent trace has not been displayed. The word
"User" indicates that the trace was taken in response to a t command;
the other possibility is that a "CMB" execute signal started the trace.

The "Arm ignored" line shows that the arm condition, which can be
used to qualify trace measurements, is ignored. Consequently, the
"Arm to trigger" time is not meaningful and a question mark is dis-
played. (The "Making Coordinated Measurements" chapter explains
arm conditions.)

The trigger state (indicated by state number 0) has been stored in trace
memory, as well as the 511 states which follow the trigger. Because the

Getting Started 2-7

default trigger condition is any state, the first state after the t command
becomes the trigger state. Because all captured states are stored, the
next 511 states are stored in the trace.

The "sequence term" and "occurrence left" items are explained later.

Displaying the Trace
(tl)

Use the tl (trace list) command to display the trace data.

 U> tl 0..20
 Line addr,H 8018x mnemonic,H count,R seq
 ----- ------ ------------------------------------ --------- ---
 0 00434 d9ebH, opcode fetch --- +
 1 00448 8826H, opcode fetch 0.960 uS .
 2 006fc 0434H, mem write 0.560 uS .
 3 00448 MOV ES:BYTE PTR 0500H[DI],BL 0.120 uS .
 4 00449 0.280 uS .
 5 0044a 009dH, opcode fetch 0.120 uS .
 6 0044c c305H, opcode fetch 0.560 uS .
 7 0044e 6db8H, opcode fetch 0.520 uS .
 8 00450 264eH, opcode fetch 1.080 uS .
 9 00536 xx94H, mem write 0.560 uS .
 10 0044d RET 0.120 uS .
 11 006fc 0434H, mem read 0.840 uS .
 12 00434 d9ebH, opcode fetch 0.800 uS .
 13 00436 e890H, opcode fetch 0.560 uS .
 14 00434 JMP SHORT 040fH 0.120 uS .
 15 00438 000eH, opcode fetch 0.400 uS .
 16 0040f 8axxH, opcode fetch 0.680 uS .
 17 00410 25c7H, opcode fetch 0.560 uS .
 18 0040f MOV AL,BH 0.120 uS .
 19 00412 00ffH, opcode fetch 0.400 uS .
 20 00411 AND AX,#00ffH 0.160 uS .

The first column on the trace list contains the line number. The trigger
is always on line 0.

The second column contains the address information associated with
the trace states. Addresses in this column may be locations of instruc-
tion opcodes on fetch cycles, or they may be sources or destinations of
operand cycles.

The third column shows mnemonic information about the emulation
bus cycle. The disassembled instruction mnemonic is shown for in-
struction cycles. The data and mnemonic status ("d9ebH, opcode
fetch", for example) are shown for bus cycles. In the 80186 emulator,
the mnemonic information is already disassembled (i.e., assembly lan-
guage mnemonics are shown); in other emulators, like the 68000, you

Getting Started 2-8

must use the -d option to the tl command to view the mnemonic infor-
mation in disassembled form.

The fourth column shows the count information (time is counted by de-
fault). The "R" indicates that each count is relative to the previous state.

The fifth column contains information about the sequencer. The "+ "
on line 0 indicates the state satisfied a branch condition (in this case, a
trigger condition).

An important thing to notice about the trace list above involves lines 7,
13, and 15. These states show opcode fetches for instructions which are
not executed because of a transfer of execution to other addresses. This
can happen with microprocessors like the 80186 and the 68000 because
they have pipelined architectures or instruction queues which allow
them to prefetch the next instructions before the current instruction is
finished executing.

You can enter the help tl command to see the other options available
when displaying a trace.

Getting Started 2-9

Expressions in
Trace Commands

So far, the default trace specifications have been used, and you have not
entered any expressions. Expressions are used in commands which
qualify the trace. This section describes the expressions which may be
used in trace commands. Expressions may be specified in the following
forms (the pound sign, # , appears before comments):

 any/all # special tokens
 never/none
 arm

 label=<value>
 label!=<value>
 label=<value> and label=<value> ... # this condition
 label!=<value> or label!=<value> ... # not this condition
 label=<value>..<value> # this range
 label!=<value>..<value> # not this range

Note If you wish to specify an expression such as "label = < value> and la-
bel != < value> ", you must configure the analyzer so that you have
access to its full capability.

Note Only one range resource is available. You can, however, use this
range (or "not this range") in more than one trace command.

Tokens The tokens any or all specify any or all conditions; you can use these to-
kens interchangeably. The tokens never or none specify false condi-
tions; they are used to turn off qualifiers. The never and none tokens
may also be used interchangeably. The arm token represents a condi-
tion external to the analyzer. Arm conditions are described in the
"Making Coordinated Measurements" chapter.

Getting Started 2-10

Trace Labels Labels shown in the forms above may be predefined trace labels or la-
bels which you define with the tlb (trace label) command or the xtlb (ex-
ternal trace label) command if you have an external analyzer. Trace la-
bels can be up to 31 characters long.

Predefined Trace
Labels

To see the trace labels which have been predefined, enter the tlb (trace
label) command with no options and the xtlb (external trace label) com-
mand with no options (if an external analyzer is present).

 U> tlb
 #### Emulation trace labels
 tlb addr 0..19
 tlb data 20..35
 tlb stat 36..46
U>xtlb
 #### External trace labels
 xtlb xbits 0..15

The labels addr, data, stat, and xbits are predefined. The addr label
represents the trace signals (0 through 19) which monitor the emula-
tion processor’s address pins. The data label represents the trace sig-
nals (20 through 35) which monitor the emulation processor’s data
pins. The stat label represents the trace signals (36 through 46) which
monitor other emulation processor signals. The xbits label represents
the external trace signals. The definitions of the address, data, and
status bits are different for each emulator.

Values Values are a series of 1s, 0s, or don’t cares (x). Don’t cares are not al-
lowed in ranges or decimal numbers. A value of all don’t cares may be
represented by a question mark (?).

Constants

A value may be specified as a constant in any of the following number
bases. (Constants with no base specified are assumed to be hexadeci-
mal numbers.)

Getting Started 2-11

• Hexadecimal (base H or h). For example: 6eh, 9xH, 0f3, or 0cfh.
(The leading digit of a hexadecimal constant must be 0-9.)

• Decimal (base T or t, for base "ten"). For example: 27t or 99T.
(Don’t cares are not allowed in decimal numbers.)

• Binary (base Y or y). For example: 1101y, 01011Y, or 0xx10xx11y.
(The leading digit of a binary constant must be 0 or 1. Do not use
the characters "B" or "b" to specify the base of binary numbers be-
cause they will be interpreted as hexadecimal numbers; for exam-
ple, 1B equals 27 decimal.)

• Octal (base Q, q, O, or o). For example: 777o, 6432q, or 7xx3Q.
(The leading digit of an octal constant must be 0-7.)

Operators

When specifying values, constants can be combined with the following
operators (in descending order of precedence):

-, ~ Unary two’s complement, unary one’s com-
plement. The unary two’s complement op-
erator is not allowed on constants containing
don’t care bits.

*, /, % Integer multiply, divide, and modulo. These
operators are not allowed on constants con-
taining don’t care bits.

+ , - Addition, subtraction. These operators are
not allowed on constants containing don’t
care bits.

< < , < < < , > > ,
> > > Shift left, rotate left, shift right, rotate right.

& Bitwise AND.

^ Bitwise exclusive or, XOR.

| Bitwise inclusive OR.

&& Logical AND/bit-wise merge. When bits are
different, the first value overrides the second;
e.g., 10xxy && 11x1y = = 10x1y.

Getting Started 2-12

Note All operations are carried out on 32-bit numbers.

Refer to the Terminal Interface: User’s Reference description of expr for
operator truth tables.

Predefined Equates
for Emulation

Analyzer Status

The equ (specify equates) command allows you to equate values with
names. Equates for common status values are predefined. To view the
names equated with common analysis status, enter the equ command
with no options. (These status equates are also listed in the help proc
information.)

 U> equ
 ### Equates ###
 equ bus=1xxxxxxxxxxy # Bus cycle.
 equ coproc=0xxxxxx0xxxxy # Coprocessor cycle.
 equ dma=0xxxxx1xxxxxy # DMA cycle.
 equ grd=0xxxx1xxxxxxy # Guarded memory access.
 equ hlt=0xxxxxxxx100y # Halt acknowledge cycle.
 equ instr=0xxxxxxxxxxy # Executed instruction state.
 equ inta=0xxxxxxxx111y # Interrupt acknowledge cycle.
 equ ior=0xxxxxxxx110y # I/O port read cycle.
 equ iow=0xxxxxxxx101y # I/O port write cycle.
 equ mr=0xxxxxxxx010y # Memory read cycle.
 equ mw=0xxxxxxxx001y # Memory write cycle.
 equ of=0xxxxxxxx011y # Opcode fetch.
 equ proc=0xxxxx0xxxxxy # Processor (not DMA) cycle.
 equ rom=0xxx1xxxxxxxy # Access to ROM cycle.

These predefined equates may be used to specify values for the stat
trace label. For example:

stat=bus

is the same as:

stat=0xxxxxxxxxxy

Getting Started 2-13

Refer to the appropriate Terminal Interface: Emulator User’s Guide for
information on the status signals for your HP 64700 series emulator.

Expression Examples Some example trace command expressions follow.

addr=500 and data=30 and stat=mr
addr=400+5*20t and data=0
stat=0xx10y
addr=520..532
stat!=0xx10y or stat!=0x1xxy

Changing the
Trace Format (tf)

You can change the format of the trace information with the tf (trace
format) command. Use the help tf command to review the options
available.

 U> help tf

 tf - specify trace display format

 tf - display current format
 tf <label>,<base> - display the label in the specified base
 tf mne - disassembled mnemonic
 tf count - count, absolute (relative to trigger)
 tf count,a - count, absolute (relative to trigger)
 tf count,r - count, relative to preceding state
 tf seq - sequencer state change
 tf mne <label>,<base> count count,r seq
 - multiple fields may be specified
 tf addr,H mne count,r seq - default format

 --- VALID <label> NAMES ---
 any <label> defined via the tlb or xtlb command

 --- VALID <base> OPTIONS ---
 Y or y = binary T or t = decimal
 H or h = hexadecimal Q, q, O, or o = octal
 A or a = ascii
 <base> defaults to hex if not specified

Getting Started 2-14

The tf command primarily allows you to arrange the columns of trace
information in a different manner. However, notice that you can in-
clude any trace label in the trace. (This is especially useful with the ex-
ternal analyzer.) Also, notice that the trace label information can be
displayed in various number bases, and that counts can be displayed
relative or absolute. To display the default trace format, enter the tf
command with no options.

 U> tf
 tf addr,H mne count,R seq

The following trace format command will move the sequencer informa-
tion to the first column, add the status information in binary format,
and delete the count column.

 U> tf seq addr,h stat,y mne
 U> tl
 Line seq addr,H stat,Y 8018x mnemonic,H
 ----- --- ------ ----------- ------------------------------------
 21 . 00414 11000010011 f88bH, opcode fetch
 22 . 00416 11000010011 fb8aH, opcode fetch
 23 . 00414 01000010011 MOV DI,AX
 24 . 00418 11000010011 33e8H, opcode fetch
 25 . 00416 01000010011 MOV BH,BL
 26 . 0041a 11000010011 8a00H, opcode fetch
 27 . 00418 01000010011 CALL NEAR PTR 044eH
 28 . 0041c 11000010011 8ad8H, opcode fetch
 29 . 0044e 11000010011 6db8H, opcode fetch
 30 . 006fc 11000010001 041bH, mem write
 31 . 0044e 01000010011 MOV AX,#4e6dH
 32 . 00450 11000010011 264eH, opcode fetch
 33 . 00452 11000010011 2ef7H, opcode fetch
 34 . 00451 01000010011 IMUL ES:WORD PTR 0600H
 35 . 00454 11000010011 0600H, opcode fetch
 36 . 00452 01000010011
 37 . 00456 11000010011 3915H, opcode fetch
 38 . 00600 11000010010 0119H, mem read
 39 . 00458 11000010011 7303H, opcode fetch
 40 . 0045a 11000010011 4201H, opcode fetch
 41 . 00456 01000010011 ADC AX,#0339H

Notice that the number of lines specified in the last tl (trace list) com-
mand become the default.

Enter the following command to return to the default trace format.

 U> tf addr,h mne count,r seq

Getting Started 2-15

Specifying a
Simple Trigger
(tg)

The tg (specify simple trigger) command allows you to specify when the
analyzer should begin storing states. For example, suppose you want to
look at the execution of the sample program after the AGAIN label,
and therefore, you would like to begin storing states after the AGAIN
address occurs. To do this you could enter the tg command shown be-
low and display the trace.

 U> tg addr=40f
 U> t
 Emulation trace started
 U> ts
 --- Emulation Trace Status ---
 NEW User trace complete
 Arm ignored
 Trigger in memory
 Arm to trigger ?
 States 512 (512) 0..511
 Sequence term 2
 Occurrence left 1
 U> tl
 Line addr,H 8018x mnemonic,H count,R seq
 ----- ------ ------------------------------------ --------- ---
 0 0040f 8axxH, opcode fetch --- +
 1 00410 25c7H, opcode fetch 0.520 uS .
 2 0040f MOV AL,BH 0.120 uS .
 3 00412 00ffH, opcode fetch 0.440 uS .
 4 00411 AND AX,#00ffH 0.120 uS .
 5 00414 f88bH, opcode fetch 0.400 uS .
 6 00416 fb8aH, opcode fetch 0.560 uS .
 7 00414 MOV DI,AX 0.120 uS .
 8 00418 33e8H, opcode fetch 0.400 uS .
 9 00416 MOV BH,BL 0.160 uS .
 10 0041a 8a00H, opcode fetch 0.400 uS .
 11 00418 CALL NEAR PTR 044eH 0.120 uS .
 12 0041c 8ad8H, opcode fetch 0.400 uS .
 13 0044e 6db8H, opcode fetch 0.960 uS .
 14 006fc 041bH, mem write 0.560 uS .
 15 0044e MOV AX,#4e6dH 0.120 uS .
 16 00450 264eH, opcode fetch 0.400 uS .
 17 00452 2ef7H, opcode fetch 0.560 uS .
 18 00451 IMUL ES:WORD PTR 0600H 0.280 uS .
 19 00454 0600H, opcode fetch 0.240 uS .
 20 00452 0.160 uS .

In the trace list above, line 0 shows the beginning of the program loop
and line 11 shows the call of the RAND subroutine. The disassembled
mnemonics on lines 15 and 18 show instructions which are executed in
the RAND subroutine.

Getting Started 2-16

As you can see in the trace status display, 512 analyzer states are saved
in the trace list. To display the "next" lines in a trace list, enter the tl
(trace list) command with no options.

 U> tl
 Line addr,H 8018x mnemonic,H count,R seq
 ----- ------ ------------------------------------ --------- ---
 21 00456 3915H, opcode fetch 0.400 uS .
 22 00600 5c9eH, mem read 0.800 uS .
 23 00458 7303H, opcode fetch 0.560 uS .
 24 0045a 4201H, opcode fetch 0.520 uS .
 25 00456 ADC AX,#0339H 3.680 uS .
 26 00459 JAE SHORT 045cH 0.560 uS .
 27 0045c a326H, opcode fetch 0.240 uS .
 28 0045c a326H, opcode fetch 0.960 uS .
 29 0045e 0600H, opcode fetch 0.560 uS .
 30 0045c MOV ES:0600H,AX 0.120 uS .
 31 0045d 0.120 uS .
 32 00460 c28bH, opcode fetch 0.280 uS .
 33 00600 9680H, mem write 0.680 uS .
 34 00460 MOV AX,DX 0.160 uS .
 35 00462 ff25H, opcode fetch 0.400 uS .
 36 00464 c300H, opcode fetch 0.520 uS .
 37 00462 AND AX,#00ffH 0.160 uS .
 38 00466 f006H, opcode fetch 0.400 uS .
 39 00465 RET 0.280 uS .
 40 00468 0001H, opcode fetch 0.240 uS .
 41 006fc 041bH, mem read 0.560 uS .

In the trace list above you see the last few instructions executed by the
RAND subroutine (the RET is the last instruction). To see the instruc-
tions executed upon return from the RAND subroutine, enter the tl
command again.

 U> tl
 Line addr,H 8018x mnemonic,H count,R seq
 ----- ------ ------------------------------------ --------- ---
 42 0041b 8axxH, opcode fetch 0.800 uS .
 43 0041c 8ad8H, opcode fetch 0.560 uS .
 44 0041b MOV BL,AL 0.120 uS .
 45 0041e d0e7H, opcode fetch 0.400 uS .
 46 0041d MOV AH,BH 0.160 uS .
 47 00420 72dcH, opcode fetch 0.400 uS .
 48 0041f RCR AH,1 0.120 uS .
 49 00422 d007H, opcode fetch 0.440 uS .
 50 00421 JB SHORT 042aH 0.120 uS .
 51 00424 72dcH, opcode fetch 0.400 uS .
 52 00423 RCR AH,1 0.280 uS .
 53 00426 e916H, opcode fetch 0.280 uS .
 54 00425 JB SHORT 043dH 0.120 uS .
 55 00428 0007H, opcode fetch 0.400 uS .
 56 0043d e8xxH, opcode fetch 0.960 uS .
 57 0043e 0008H, opcode fetch 0.560 uS .
 58 0043d CALL NEAR PTR 0448H 0.120 uS .
 59 00440 cdebH, opcode fetch 0.400 uS .
 60 00448 8826H, opcode fetch 0.960 uS .

Getting Started 2-17

 61 006fc 0440H, mem write 0.520 uS .
 62 00448 MOV ES:BYTE PTR 0500H[DI],BL 0.160 uS .

The instructions shown in the trace list above decide which caller will
call the WRITE_NUMBER subroutine. Line 58 shows the disassem-
bled mnemonic of the instruction which calls the WRITE_NUMBER
subroutine. The address information shows that the caller is
CALLER_2. Line 62 shows the MOV instruction associated with the
WRITE_NUMBER subroutine. To view the remaining instruction cy-
cles of the WRITE_NUMBER subroutine, enter the tl command
again.

 U> tl
 Line addr,H 8018x mnemonic,H count,R seq
 ----- ------ ------------------------------------ --------- ---
 63 00449 0.280 uS .
 64 0044a 009dH, opcode fetch 0.120 uS .
 65 0044c c305H, opcode fetch 0.560 uS .
 66 0044e 6db8H, opcode fetch 0.520 uS .
 67 00450 264eH, opcode fetch 1.080 uS .
 68 0051d 5fxxH, mem write 0.560 uS .
 69 0044d RET 0.120 uS .
 70 006fc 0440H, mem read 0.840 uS .
 71 00440 cdebH, opcode fetch 0.800 uS .
 72 00442 e890H, opcode fetch 0.520 uS .
 73 00440 JMP SHORT 040fH 0.160 uS .
 74 00444 0002H, opcode fetch 0.400 uS .
 75 0040f 8axxH, opcode fetch 0.680 uS .
 76 00410 25c7H, opcode fetch 0.560 uS .
 77 0040f MOV AL,BH 0.120 uS .
 78 00412 00ffH, opcode fetch 0.400 uS .
 79 00411 AND AX,#00ffH 0.160 uS .
 80 00414 f88bH, opcode fetch 0.400 uS .
 81 00416 fb8aH, opcode fetch 0.520 uS .
 82 00414 MOV DI,AX 0.160 uS .
 83 00418 33e8H, opcode fetch 0.400 uS .

Line 69 in the trace list above shows the RET instruction associated
with the WRITE_NUMBER subroutine. Line 68 shows the random
number 5FH is written to address 51DH.

The bus cycle data contains "don’t cares" when bytes are read or writ-
ten. Lower byte writes are made to even addresses, and upper byte
writes are made to odd addresses.

Line 77 shows the AGAIN address associated with the next loop of the
program.

Getting Started 2-18

Specifying an
Occurrence Count

When specifying a simple trigger, you can include an occurrence count.
The occurrence count specifies that the analyzer trigger on the Nth oc-
currence of some state. For example, to trigger the analyzer when the
address 40FH occurs a hundred times, enter the command below.

 U> tg addr=40f 100

The default base for an occurrence count is decimal. You may specify
occurrence counts from 1 to 65535.

Specifying
Storage Qualifiers
(tsto)

By default, all captured states are stored; however, you can qualify
which states get stored with the tsto (trace storage qualifier) command.
For example, to store only the states which write random numbers to
the RESULTS area, enter the following command.

 U> tsto addr=500..5ff

Issuing the trace command and then listing the trace will result in a dis-
play similar to the one shown below.

 U> t
 Emulation trace started
 U> tl
 Line addr,H 8018x mnemonic,H count,R seq
 ----- ------ ------------------------------------ --------- ---
 0 0040f INSTRUCTION--opcode unavailable --- +
 1 0055a xx16H, mem write 31.48 uS .
 2 0050b 11xxH, mem write 34.44 uS .
 3 00516 xx45H, mem write 36.48 uS .
 4 00511 dbxxH, mem write 36.48 uS .
 5 00545 10xxH, mem write 35.40 uS .
 6 005db 8fxxH, mem write 34.72 uS .
 7 00510 xxb0H, mem write 35.40 uS .
 8 0058f 39xxH, mem write 35.00 uS .
 9 005b0 xxe2H, mem write 36.48 uS .
 10 00539 afxxH, mem write 34.44 uS .
 11 005e2 xx85H, mem write 35.40 uS .
 12 005af 9cxxH, mem write 36.48 uS .
 13 00585 35xxH, mem write 35.00 uS .

Getting Started 2-19

 14 0059c xx3bH, mem write 36.24 uS .
 15 00535 c1xxH, mem write 35.40 uS .
 16 0053b 45xxH, mem write 36.48 uS .
 17 005c1 7dxxH, mem write 36.48 uS .
 18 00545 11xxH, mem write 36.20 uS .
 19 0057d e0xxH, mem write 36.20 uS .
 20 00511 3fxxH, mem write 35.00 uS .

Notice that the trigger state (line 0) is included in the trace list; trigger
states are always stored.

This trace shows that the last two hex digits of the address in the RE-
SULTS area are the same as the random number which gets written
two states earlier (see the data in the "mnemonic" column of the trace
list). This is expected because the sample program writes the current
random number using the second previous random number as an off-
set into the RESULTS area.

Prestoring States
(tpq)

Suppose you find a bug in a subroutine, but you determine that the
problem is actually due to something set up by the calling routine. Sup-
pose also that the subroutine is called from a variety of places in your
program. Prestore can be used to determine where the subroutine is
called from when the bug occurs.

Prestore allows you to save up to two states which precede a normal
store state. Prestore is turned off by default. However, you can use the
tpq command to specify a prestore qualifier.

Qualifying Prestore
States

You can use a prestore qualifier to find out which caller calls the
WRITE_NUMBER subroutine in the sample program. Because you
know the CALL assembly language instruction is used to call a subrou-
tine, you can qualify prestore states as states whose data equals the
CALL opcode.

Getting Started 2-20

 U> tpq data=0e8xx
 U> t
 Emulation trace started
 U> tl
 Line addr,H 8018x mnemonic,H count,R seq
 ----- ------ ------------------------------------ --------- ---
 -1 00434 INSTRUCTION--opcode unavailable prestore .
 0 0040f INSTRUCTION--opcode unavailable --- +
 1 00430 e800H, opcode fetch prestore .
 2 00443 e8xxH, opcode fetch prestore .
 3 005d4 xxcdH, mem write 31.48 uS .
 4 00430 e800H, opcode fetch prestore .
 5 00437 e8xxH, opcode fetch prestore .
 6 0057f a4xxH, mem write 36.20 uS .
 7 0043a INSTRUCTION--opcode unavailable prestore .
 8 00431 e8xxH, opcode fetch prestore .
 9 005cd 91xxH, mem write 35.00 uS .
 10 00430 e800H, opcode fetch prestore .
 11 00437 e8xxH, opcode fetch prestore .
 12 005a4 xxb9H, mem write 36.48 uS .
 13 00430 e800H, opcode fetch prestore .
 14 00437 e8xxH, opcode fetch prestore .
 15 00591 74xxH, mem write 36.24 uS .
 16 0043a INSTRUCTION--opcode unavailable prestore .
 17 00431 e8xxH, opcode fetch prestore .
 18 005b9 8exxH, mem write 34.96 uS .
 19 00436 e890H, opcode fetch prestore .

The prestore state immediately preceding each write state shows the ad-
dress of the caller.

The analyzer uses the same resource to save prestore states as it does to
save count tags. Consequently, the "prestore" string is shown in the
"count" column of the trace list. Notice that the time counts are relative
to the previous normal storage state. Turning off the count qualifier
does not turn off prestore; however, the "prestore" string cannot be
seen in the "count" column of the trace list.

States which satisfy the prestore qualifier and the storage qualifier at
the same time are stored as normal states.

Turning Off Prestore When you do not wish to have prestored states saved in the trace, you
can turn off the prestore feature with the following tpq (trace prestore
qualifier) command.

 U> tpq none

Getting Started 2-21

Changing the
Count Qualifier
(tcq)

Suppose now that you are interested in only one address in the RE-
SULTS area. You wish to see how many loops of the program occur
between each write of a random number to this address. You can use
the tcq (trace count qualifier) command to count a state which occurs
once on each loop of the program. For example, let the address of in-
terest be 5C2H. The following commands set up the sequencer so that
only this state is stored in the trace.

 U> tg addr=5c2
 U> tsto addr=5c2

In the analyzer’s default state, the count qualifier is time, which means
that the time between states in the trace is saved. Entering the tcq com-
mand with no options shows the current count qualifier.

 U> tcq
 tcq time

Specify the count qualifier as the AGAIN address (40FH) which gets
executed once on each program loop. Then, start the trace and list the
trace.

Getting Started 2-22

 U> tcq addr=40f
 U> tf addr,h mne count,r count,a
 U> t
 Emulation trace started
 U> tl
 Line addr,H 8018x mnemonic,H count,R count,A
 ----- ------ ------------------------------------ --------- ---------
 0 005c2 xx75H, mem write --- 0
 1 005c2 xx2bH, mem write 92 92
 2 005c2 xx90H, mem write 166 258
 3 005c2 xxeaH, mem write 124 382
 4 005c2 xxb7H, mem write 140 522
 5 005c2 xxbfH, mem write 274 796
 6 005c2 xxd3H, mem write 124 920
 7 005c2 xx44H, mem write 364 1284
 8 005c2 xx33H, mem write 1256 2.540e03
 9 005c2 xx8dH, mem write 478 3.018e03
 10 005c2 xxe5H, mem write 148 3.166e03
 11 005c2 xx78H, mem write 274 3.440e03
 12 005c2 xxecH, mem write 272 3.712e03
 13 005c2 xx5dH, mem write 1062 4.774e03
 14 005c2 xxa2H, mem write 610 5.384e03
 15 005c2 xxd2H, mem write 540 5.924e03
 16 005c2 xx46H, mem write 746 6.670e03
 17 005c2 xx17H, mem write 434 7.104e03
 18 005c2 xxe8H, mem write 756 7.860e03
 19 005c2 xx44H, mem write 682 8.542e03
 20 005c2 xx78H, mem write 192 8.734e03

The trace listing shown above shows that the program executes a vari-
able number of times for each time that a random number is written to
5C2H. The command which follows will change the trace format back
to its previous specification.

 U> tf addr,h mne count,r seq

Using the
Sequencer (tsq)

The sequencer is a state machine that searches for a particular se-
quence of states. The sequencer has several levels, called sequence
terms. Each sequence term can search for two states at a time, and the
primary state may have an occurrence count specified. If the primary
state occurs the number of times specified, the sequencer branches to
the next term; if the secondary state is found before the primary state
occurs the number of times specified, the sequencer branches back to

Getting Started 2-23

the first term. The same secondary branch condition is used for all se-
quence terms, and secondary branches are always back to the first term;
therefore, the secondary branch is called the global restart.

Resetting the
Sequencer (tsq -r)

To reset the sequencer to its default, power-up state use the -r option
to the tsq (trace sequencer) command. To display the default se-
quencer specification, enter the tsq command with no options.

 U> tsq -r
 U> tsq
 tif 1 any # Any state will cause a branch out of term 1.
 tsto all # Store all states.
 telif never # Global restart turned off.

The Default
Sequencer

Specification

After power-up, initialization, or sequencer reset, the sequencer con-
sists of one term (see figure 2-3).

It may be helpful to think of the tif (primary branch expression) com-

Figure 2-3. The Default Sequencer Specification

Getting Started 2-24

mand as a conditional statement. For example, "If (some state occurs),
then branch".

Because sequence term 1 is the last term and a branch out of the last
term constitutes the trigger, the primary branch expression (any) of
term 1 specifies the trigger condition. The expression any says that any
captured trace state will cause a branch. Therefore, the trigger will oc-
cur immediately after the t (trace) command is issued (if instructions
are being executed).

The tsto (trace storage qualifier) command specifies that all captured
states are stored. The trace storage qualifier is a global; that is, it ap-
plies to all sequence terms. In addition to states which satisfy the trace
storage qualifier, any state which causes a branch is stored in trace
memory. Also, prestore states can be saved before states which satisfy
the trace storage qualifier.

The telif command is used to specify the secondary branch expression
for every sequence term; this expression is called the global restart. It
may be helpful to think of the telif command as an "else if" conditional
statement. For example, "Else if (some state occurs before) then
branch to term 1".

The global restart in the default sequencer specification is never. This
means no trace state can cause a secondary branch.

You have already seen how the tsto command is used. You will learn
how to use the tif and telif commands later in this chapter.

Simple Trigger and
the Sequencer

The simple trigger command used previously in this chapter has the fol-
lowing effect on the sequencer:

 U> tg addr=40f # If address of 40FH occurs once, then trigger.
 U> tsq
 tif 1 addr=40f
 tsto all
 telif never

Notice that only the primary branch expression of the first sequence
term (the trigger condition) is different than the default sequencer
specification. The address 40FH is the AGAIN address of the sample
program, the first address of the sample program loop. A trace state

Getting Started 2-25

whose address equals 40FH will trigger the analyzer, causing trace
memory to be filled with states and stop.

When the tg command is entered with no options, the primary branch
expression of the first sequence term is displayed. This is the trigger
condition only when one term exists in the sequencer.

Primary and
Secondary Branch

Expressions (tif, telif)

You can use sequence terms to trace a specific combination of events.
For example, CALLER_3 can be used to write any random number,
but suppose you want to trace only the situation where CALLER_3 is
used to write a random number to address 5C2H. You can set up the
sequencer so that it first searches for CALLER_3 by specifying the ad-
dress of CALLER_3 as the primary branch expression of the first se-
quence term.

 U> tif 1 addr=443

After CALLER_3 is found, the sequencer should then search for the
write to address 5C2H. You can do this by specifying the address
5C2H as the primary branch expression of the second sequence term.

 U> tif 2 addr=5c2

However, if the program jumps to AGAIN before the write to 5C2H,
you know that CALLER_3 is not used to write the random number
this time, and the sequencer should start over. You can specify the
global restart expression to do this.

 U> telif addr=40f

If the write to address 5C2H occurs before the program executes the in-
struction at AGAIN, the sequencer will take a primary branch out of
the last term and trigger the analyzer. The resulting sequencer specifi-
cation is shown below.

 U> tsq
 tif 1 addr=443
 tif 2 addr=5c2
 tsto all
 telif addr=40f

Getting Started 2-26

The sequencer specification above is represented in figure 2-4. The pri-
mary branch expression of the first sequence term is the address associ-
ated with CALLER_3 (443H). The primary branch expression for the
second sequence term is the specific write condition we would like to
trace; it is also the trigger condition. The primary branch out of the sec-
ond term constitutes the trigger.

The sequencer works like this: After the trace is started, the first se-
quence term searches for the CALLER_3 address. When the
CALLER_3 state is found, the sequencer branches to term 2. Now, the
second sequence term searches for the address 5C2H. If address 5C2H
is found before the state which satisfies the secondary branch expres-
sion (the AGAIN address), the analyzer is triggered, causing the ana-
lyzer memory to be filled with states before the analyzer stops. If the
AGAIN address occurs before the primary branch (in either the first or
second terms), the sequencer branches back to the first sequence term.
The following commands start the trace and display the trace status.

Figure 2-4. Specifying Primary and Secondary Branches

Getting Started 2-27

 U> t
 Emulation trace started
 U> ts
 --- Emulation Trace Status ---
 NEW User trace complete
 Arm ignored
 Trigger in memory
 Arm to trigger ?
 States 512 (512) 0..511
 Sequence term 3
 Occurrence left 1

The "Sequence term" line of the trace status display shows the number
of the term the sequencer was in when the trace completed. Because a
branch out of the last sequence term constitutes the trigger, the num-
ber displayed is what would be the next term (3 in the preceding exam-
ple) even though that term is not defined. If the trace is halted, the se-
quence term number just before the halt is displayed; otherwise, the
current sequence term number is displayed. If the current sequence
term is changing too quickly to be read, a question mark (?) is displayed.

The "Occurrence left" line of the trace status display shows the number
of occurrences remaining before the primary branch can be taken out
of the current sequence term. If the occurrence left is changing too
quickly to be read, a question mark (?) is displayed.

Listing the trace will result in the following display.

 U> tl
 Line addr,H 8018x mnemonic,H count,R seq
 ----- ------ ------------------------------------ --------- ---
 0 005c2 xx75H, mem write --- +
 1 0044d INSTRUCTION--opcode unavailable 0 .
 2 006fc 0446H, mem read 0 .
 3 00446 c7ebH, opcode fetch 0 .
 4 00448 8826H, opcode fetch 0 .
 5 00446 JMP SHORT 040fH 0 .
 6 0044a 009dH, opcode fetch 0 .
 7 0040f 8axxH, opcode fetch 1 .
 8 00410 25c7H, opcode fetch 0 .
 9 0040f MOV AL,BH 1 .
 10 00412 00ffH, opcode fetch 0 .
 11 00411 AND AX,#00ffH 0 .
 12 00414 f88bH, opcode fetch 0 .
 13 00416 fb8aH, opcode fetch 0 .
 14 00414 MOV DI,AX 0 .
 15 00418 33e8H, opcode fetch 0 .
 16 00416 MOV BH,BL 0 .
 17 0041a 8a00H, opcode fetch 0 .
 18 00418 CALL NEAR PTR 044eH 0 .
 19 0041c 8ad8H, opcode fetch 0 .
 20 0044e 6db8H, opcode fetch 0 .

Getting Started 2-28

Remember, the primary branch out of the last term constitutes the
trigger. Also, a primary branch always advances to the next higher
term. A secondary branch from any term is always made back to the
first sequence term (global restart).

Inserting Sequence
Terms (tsq -i)

The sequencer may have a total of 4 terms. You can insert sequence
terms with the tsq (trace sequencer) command using the -i (insert) op-
tion. For example, to insert a sequence term before the second term,
enter the following command.

 U> tsq -i 2

Enter the tsq command with no options to display the resulting se-
quencer specification.

 U> tsq
 tif 1 addr=443
 tif 2 any # Inserted term.
 tif 3 addr=5c2
 tsto all
 telif never

You can also use the tsq -i command to add sequence terms. For exam-
ple, to add a fourth sequence term, enter the following command.

 U> tsq -i 4

Enter the tsq command with no options to display the resulting se-
quencer specification.

 U> tsq
 tif 1 addr=443
 tif 2 any
 tif 3 addr=5c2
 tif 4 any # Added term.
 tsto all
 telif never

Getting Started 2-29

Deleting Sequence
Terms (tsq -d)

You delete sequence terms using the -d option to the tsq (trace se-
quencer specification) command. For example, to delete the terms
which were just inserted, enter the following commands.

 U> tsq -d 2
 U> tsq -d 3

After a term is deleted, the remaining terms are renumbered; this is
why the third term is deleted above instead of the fourth (which no
longer exists after the tsq -d 2 command). Enter the tsq command with
no options to verify that the sequencer is as it was before inserting and
deleting terms.

 U> tsq
 tif 1 addr=443
 tif 2 addr=5c2
 tsto all
 telif addr=40f

Changing the
Trigger Position
(tp)

The preceding trace specification caused the analyzer to fill trace mem-
ory with the states which followed the trigger. The reason the trigger
appears at the start of the trace list is because of the current trigger posi-
tion specification. To see the current trigger position specification, en-
ter the tp (trigger position) command with no options.

 U> tp
 tp s

The trigger position default is s, which specifies that the trigger appears
at the start of the trace. You can also specify that the trigger appear in
the center of the trace with the c option, or that the trigger appear at
the end of the trace with the e option; additionally, you can specify a
certain number of states to appear before (-b) or after (-a) the trigger in
the trace. For example, changing the trigger position so that 10 states

Getting Started 2-30

appear before the trigger in the trace and reissuing the trace will result
in the trace list which follows.

 U> tp -b 10
 U> t
 Emulation trace started
 U> tl
 Line addr,H 8018x mnemonic,H count,R seq
 ----- ------ ------------------------------------ --------- ---
 -11 00444 0002H, opcode fetch --- .
 -10 00443 INSTRUCTION--opcode unavailable 0 .
 -9 00446 c7ebH, opcode fetch 0 .
 -8 00448 8826H, opcode fetch 0 .
 -7 006fc 0446H, mem write 0 .
 -6 00448 MOV ES:BYTE PTR 0500H[DI],BL 0 .
 -5 00449 0 .
 -4 0044a 009dH, opcode fetch 0 .
 -3 0044c c305H, opcode fetch 0 .
 -2 0044e 6db8H, opcode fetch 0 .
 -1 00450 264eH, opcode fetch 0 .
 0 005c2 xx75H, mem write 0 +
 1 0044d RET 0 .
 2 006fc 0446H, mem read 0 .
 3 00446 c7ebH, opcode fetch 0 .
 4 00448 8826H, opcode fetch 0 .
 5 00446 JMP SHORT 040fH 0 .
 6 0044a 009dH, opcode fetch 0 .
 7 0040f 8axxH, opcode fetch 1 .
 8 00410 25c7H, opcode fetch 0 .
 9 0040f MOV AL,BH 1 .
 U>

Notice that the top of the trace is not exactly 10 lines before the trigger.
The actual trigger position is within + /- 1 state of the number specified
if counting states or time; otherwise, the actual trigger position is within
+ /- 3 states of the number specified.

Getting Started 2-31

Tracing a
Program as it
Starts Up

If a background monitor is being used, you can trace the program as it
starts up by breaking to background, starting the trace, and running the
program as shown by the commands below.

 U> tinit
 U> b
 M> t
 Emulation trace started
 M> r 400
 U> tl -t 20
 Line addr,H 8018x mnemonic,H count,R seq
 ----- ------ ------------------------------------ --------- ---
 0 00400 00b8H, opcode fetch --- +
 1 00402 8e00H, opcode fetch 0.520 uS .
 2 00400 MOV AX,#0000H 0.160 uS .
 3 00404 8ed8H, opcode fetch 0.400 uS .
 4 00403 MOV DS,AX | 0.280 uS .
 5 00406 b8d0H, opcode fetch 0.240 uS .
 6 00405 MOV SS,AX | 0.160 uS .
 7 00408 0000H, opcode fetch 0.400 uS .
 8 00407 MOV AX,#0000H 0.120 uS .
 9 0040a c08eH, opcode fetch 0.440 uS .
 10 0040c febcH, opcode fetch 0.520 uS .
 11 0040a MOV ES,AX | 0.160 uS .
 12 0040e 8a06H, opcode fetch 0.400 uS .
 13 0040c MOV SP,#06feH 0.120 uS .
 14 00410 25c7H, opcode fetch 0.400 uS .
 15 0040f MOV AL,BH 0.280 uS .
 16 00412 00ffH, opcode fetch 0.280 uS .
 17 00411 AND AX,#00ffH 0.120 uS .
 18 00414 f88bH, opcode fetch 0.400 uS .
 19 00416 fb8aH, opcode fetch 0.560 uS .
 U>

Getting Started 2-32

3

Accessing Full Analyzer C apability

Introduction This chapter:

• Introduces the terms "complex configuration" and "easy configura-
tion" to represent the analyzer configurations which respectively al-
low access to the full capability (as described in this chapter) and
the capability provided with the easy-to-use configuration (as de-
scribed in the "Getting Started" chapter).

• Describes the trace commands which are different in the "complex"
configuration. Also describes how expressions are different in the
"complex" configuration.

• Describes the sample program used for the examples in this chap-
ter.

• Shows you how to configure the analyzer so that you have access to
its full capability.

• Describes the sequencer upon entry into the "complex" configura-
tion and how to reset the sequencer to this state.

• Describes the sequencer after a "simple trigger" specification.

• Shows you how to use the sequencer in the "complex" configura-
tion.

Accessing Full Analyzer Capability 3-1

Prerequisites Before reading the examples in this chapter you should already know
how the emulator operates. You should know what the various emula-
tor prompts mean, and you should know how to use the emulation
commands. Refer to the appropriate Terminal Interface: Emulator
User’s Guide to learn about the emulator; then, return to this manual.

You should also know how the analyzer operates in its limited capabil-
ity configuration (refer to the "Getting Started" chapter).

"Easy" and
"Complex"
Configuration
Differences

The analyzer configuration which allows you to access its full capability
is called the "complex" configuration. The easy-to-use configuration (as
described in the previous chapter) is called the "easy" configuration.
The differences between the two configurations are as follows.

Sequence Terms
and the Trigger

In the "easy" configuration, you can insert or delete terms from the se-
quencer, and the branch out of the last sequence term constitutes the
trigger. The simple trigger command (tg) sets up a one term se-
quencer, and the expression specified with the tg command becomes
the primary branch expression of the first sequence term.

In the "complex" configuration, there are always eight terms in the se-
quencer. Any of the sequence terms except the first may be specified as
the trigger term. In the "complex" configuration, entry into the trigger
term constitutes the trigger. The simple trigger command (tg) sets the
primary branch expression of sequence term 1, and specifies the second
sequence term as the trigger term.

Accessing Full Analyzer Capability 3-2

Primary Branch
Expressions

In the "easy" configuration, primary branches are always made to the
next higher sequence term.

In the "complex" configuration, primary branches may be made to any
sequence term.

Secondary Branch
Expressions

In the "easy" trace configuration, the secondary branch expression is a
global restart. In other words, the secondary branch expression applies
to all sequence terms, and the branch is always back to the first se-
quence term.

In the "complex" configuration, secondary branch expressions may be
specified for each sequence term. Also, secondary branches can be
made to any sequence term.

Storage Qualifiers In the "easy" configuration, the trace storage qualifier is "global" and ap-
plies to all sequence terms.

In the "complex" trace configuration, a storage qualifier is associated
with each sequence term; however, the tsto command still allows you to
specify storage qualifiers globally.

Complex Expressions In the "complex" configuration, up to eight patterns and one range are
used in trace commands wherever expressions were used in the "easy"
configuration. Patterns and ranges are equal to "easy" configuration ex-
pressions. The additional capability allowed in the "complex" configura-
tion is that these patterns may be used in combinations to specify more
complex expressions.

Specifying Trace Patterns

Use the help tpat command to see how trace patterns may be specified.

Accessing Full Analyzer Capability 3-3

 U> help tpat

 tpat - set and display pattern resources

 tpat - display all patterns
 tpat <pattern> - display named patterns
 tpat <pattern> <label>=<value> - equals pattern
 tpat <pattern> <label>!=<value> - not equals pattern
 tpat <pattern> <label>=<value> and <label>=<value>
 tpat <pattern> <label>!=<value> or <label>!=<value>

 --- VALID <pattern> NAMES ---
 p1 through p8 - defining patterns 1 through 8
 --- VALID <label> NAMES ---
 label - labels defined via tlb command
 --- NOTE ---
 the analyzer mode must be complex to use this command

Up to eight trace patterns can be specified with the tpat (trace pattern)
command. The trace pattern names are p1, p2, ..., p8.

The expression associated with a trace pattern can be the keywords all,
any, none, or never, or the expression may be trace labels equated to
values (which can be ANDed together) or trace labels not equal to val-
ues (which can be ORed together). Examples of valid pattern specifica-
tions follow.

U>tpat p1 addr=520 and data=0xxaa and stat=mw
U>tpat p5 addr!=5c2 or data!=0xx3x or stat!=mr

The values which are associated with trace labels are the same as de-
scribed in the "Getting Started" chapter.

Specifying a Trace Range

Use the help trng command to find out how the trace range resource
may be specified. The range name is r, and !r specifies "not in range".

 U> help trng

 trng - set or display range pattern

 trng - display range
 trng <label>=<value>..<value> - define range

 --- VALID <label> NAMES ---
 label - labels defined via tlb command
 --- NOTE ---
 the analyzer mode must be complex to use this command

Accessing Full Analyzer Capability 3-4

Again, values may be specified as described in the "Getting Started"
chapter. Examples of valid range specifications follow.

 U> trng addr=500..5ff
 U> trng data=0080..008f

Combining Resources

The eight patterns (p1..p8), the range (r for "in range" or !r for "not in
range"), and the arm qualifier (described in the "Making Coordinated
Measurements" chapter) are grouped into the two sets shown below.

Set 1: p1, p2, p3, p4, r, and !r .

Set 2: p5, p6, p7, p8, and arm.

Resources within a set may be combined using one of the intraset op-
erators, | (OR) or ~ (NOR). Examples of some valid and invalid in-
traset combinations follow.

 U> tsto p1 | p2 | p3 | r
 U> tsto p5 ~ p6 ~ arm
 U> tsto p1 | p2 ~ p3
 !ERROR 1249! Invalid qualifier expression: ~ p3

This expression is invalid because you cannot use both | (OR) and ~
(NOR) operators within the same set.

 U> tsto p1 ~ p2 ~ p5
 !ERROR 1249! Invalid qualifier expression: p5

This expression is invalid because you cannot combine resources from
different sets with the | (OR) or ~ (NOR) operators.

The two sets can be combined with the and and or interset (between
set) operators. Interset operators are also called global set operators.

The intraset (within a set) operators (~ , |) are evaluated first; then, the
interset operators are evaluated. You cannot use interset operators on
patterns in the same set. Examples of some valid and invalid combina-
tions of the two sets follow.

 U> tsto p1 ~ p2 and p5 | p6
 U> tsto p3 | p4 | !r or p7
 U> tsto p8 ~ arm and p1 ~ p2
 U> tsto p1 and p2
!ERROR 1249! Invalid qualifier expression: p2

Accessing Full Analyzer Capability 3-5

This set combination is invalid because p1 and p2 are in the same set.

Note that "p1 ~ p1" is allowed; this type of expression may occasionally
be useful if you are running out of pattern resources and wish to specify
a logical NOT of some existing pattern. For example, consider the fol-
lowing commands:

tpat p1 addr=0
tif 1 p1
tif 2 p1 ~ p1

The primary branch of term 2 will be taken when "addr!= 0".

Limitations of Combining Patterns

Only the OR (|) and NOR (~) logical operators are available as in-
traset operators. However, you can create the AND and NAND opera-
tors by applying DeMorgan’s law (the "/" character is used to represent
a logical NOT):

AND A and B = /(/A and /B) NOR
NAND /(A and B) = /A or /B OR

For example, suppose you want to specify the following storage quali-
fier:

 U> tsto p1 & p2 or p5 & p6
 !ERROR 1241! Invalid qualifier resource or operator: &

The error occurs because the & operator is not a valid intraset opera-
tor. If the specifications for the trace patterns are:

 tpat p1 addr=5ff
 tpat p2 data=39xx and stat=mw
 tpat p5 addr=500
 tpat p6 data=0xx39 and stat=mw

You can enter an equivalent expression to the one which caused the er-
ror by making the following changes to the trace patterns and using the
NOR (~) operator in the tsto command.

 U> tpat p1 addr!=5ff
 U> tpat p2 data!=39xx or stat!=mw
 U> tpat p5 addr!=500
 U> tpat p6 data!=0xx39 or stat!=mw
 U> tsto p1 ~ p2 or p5 ~ p6

Accessing Full Analyzer Capability 3-6

Commands that
Change in the
"Complex"
Configuration

Changing the trace configuration will affect the following trace com-
mands. In a few cases, the options of the affected trace command are
different. However, in most cases, the only difference is that complex
expressions are used where easy configuration expressions were used
before.

• tcq (Trace Count Qualifier) -- Options are the same. Complex ex-
pressions are used.

• telif (Secondary Branch Expressions) -- Different options. In the
"easy" configuration, the secondary branch expression is a "global re-
start". It applies to all sequence terms and causes branches back to
the first sequence term. In the "complex" configuration, you can
specify secondary branch expressions for each sequence term and
the branch may be to any sequence term. Complex expressions are
used.

• tg (Simple Trigger) -- Options are the same. Complex expressions
are used.

• tif (Primary Branch Expressions) -- Different options. In the "easy"
configuration, primary branches are always to the next sequence
term. In the "complex" configuration, primary branches may be to
any sequence term. (The number of the destination term must be
specified before the occurrence count.) Complex expressions are
used.

• tpq (Trace Prestore Qualifier) -- Options are the same. Complex
expressions are used.

• tsq (Trace Sequencer Specification) -- Different options. In the
"easy" configuration, you can insert or delete terms. A branch out
of the last sequencer term constitutes the trigger. In the "complex"
configuration, you cannot insert or delete sequence terms. Eight
terms are always in the sequencer. Any term but the first can be
designated as the trigger term. (No expressions are involved.)

• tsto (Trace Storage Qualifier) -- Different options. In the "easy"
configuration, the trace storage qualifier is global, that is, it applies
to all sequence terms. In the "complex" configuration, storage
qualifiers are associated with each sequence term (though you can
specify that one storage qualifier applies to all terms). Complex ex-
pressions are used.

Accessing Full Analyzer Capability 3-7

The Sample
Program

The sample program used to illustrate the use of the analyzer in the
"complex" configuration is the same as the example used in the "Get-
ting Started" chapter, except that after a certain number of random
numbers are written, a quicksort routine sorts the random numbers.
After the random numbers are sorted, the program runs again. The
sample program listing is shown below.

FILE: srnd.S HEWLETT-PACKARD: 80186 Assembler

LOCATION OBJECT CODE LINE SOURCE LINE

 1 "80186"
 2 ORG 400H
 3 ASSUME DS:ORG,ES:ORG
 4
 0400 B80000 5 START MOV AX,SEG RAND_SEED
 0403 8ED8 6 MOV DS,AX
 0405 8ED0 7 MOV SS,AX
 0407 B80000 8 MOV AX,SEG RESULTS
 040A 8EC0 9 MOV ES,AX
 040C BC3A08 10 MOV SP,OFFSET STACK
 11 * CX used as a counter for the random numbers written.
 040F B9FF04 12 MOV CX,#4FFH
 0412 8AC7 13 AGAIN MOV AL,BH
 0414 25FF00 14 AND AX,#0FFH
 15 * DI contains the offset to the RESULTS area (3rd
 16 * previous random number).
 0417 8BF8 17 MOV DI,AX
 18 * BH contains the previous random number.
 0419 8AFB 19 MOV BH,BL
 041B E83E00 20 CALL RAND
 21 * RAND returns the random number in AX.
 22 * BL contains the current random number.
 041E 8AD8 23 MOV BL,AL
 0420 8AE7 24 MOV AH,BH

Figure 3-1. "Complex" Configuration Sample Program

Accessing Full Analyzer Capability 3-8

 25 * The instructions which follow determine which
 26 * caller calls WRITE_NUMBER (depends on the last
 27 * two bits of the previous random number).
 0422 D0DC 28 RCR AH,1
 0424 7207 29 JC ONE_THREE
 0426 D0DC 30 RCR AH,1
 0428 7216 31 JC CALLER_2
 042A E90700 32 JMP CALLER_0
 042D D0DC 33 ONE_THREE RCR AH,1
 042F 7215 34 JC CALLER_3
 0431 E90600 35 JMP CALLER_1
 36 * The WRITE_NUMBER routine is called from four
 37 * different places. After the subroutine return,
 38 * the program checks how many random numbers have
 39 * been written.
 0434 E83D00 40 CALLER_0 CALL WRITE_NUMBER
 0437 E90F00 41 JMP NEAR PTR TEST
 043A E83700 42 CALLER_1 CALL WRITE_NUMBER
 043D E90900 43 JMP NEAR PTR TEST
 0440 E83100 44 CALLER_2 CALL WRITE_NUMBER
 0443 E90300 45 JMP NEAR PTR TEST
 0446 E82B00 46 CALLER_3 CALL WRITE_NUMBER
 0449 49 47 TEST DEC CX
 48 * If the counter is not zero, continue to write
 49 * random numbers.
 044A 75C6 50 JNZ AGAIN
 51 * The counter is zero. Sort the random numbers
 52 * in the RESULTS area.
 044C B9FF04 53 MOV CX,#4FFH ; Reset counter.
 54 * Push the "high address" and "low address"
 55 * parameters expected by the QSORT routine.
 044F B8FF05 56 MOV AX,OFFSET RESULTS+0FFH
 0452 50 57 PUSH AX
 0453 B80005 58 MOV AX,OFFSET RESULTS
 0456 50 59 PUSH AX
 60 * Call the QSORT routine.
 0457 E82000 61 CALL NEAR PTR QSORT
 045A EBB6 62 JMP AGAIN ; Repeat program.
 63

 64 *--
 65 * The RAND subroutine generates a pseudo-random
 66 * number from 0-0FFH. The result is left in
 67 * register AX.
 68 *--
 69
 045C B86D4E 70 RAND MOV AX,#4E6DH
 045F 26F72E0006 71 IMUL RAND_SEED
 0464 153903 72 ADC AX,#339H
 0467 7301 73 JNC PAST_INC
 0469 42 74 INC DX
 046A 26A30006 75 PAST_INC MOV RAND_SEED,AX
 046E 8BC2 76 MOV AX,DX
 0470 25FF00 77 AND AX,#0FFH
 0473 C3 78 RET
 79

Figure 3-1. "Complex" Config. Sample Program (Cont’d)

Accessing Full Analyzer Capability 3-9

 80 *--
 81 * The WRITE_NUMBER subroutine writes the random
 82 * number to the RESULTS area. The second previous
 83 * random number is the offset in this area.
 84 *--
 85
 0474 26889D0005 86 WRITE_NUMBER MOV RESULTS[DI],BL
 0479 C3 87 RET
 88

 89 *--
 90 * The QSORT subroutine is passed the high and low
 91 * addresses of some area of bytes to be sorted on
 92 * the stack.
 93 *--
 94
 047A 8BEC 95 QSORT MOV BP,SP
 047C 8B7E04 96 MOV DI,[BP+4] ; DI = high index.
 047F 8B7602 97 MOV SI,[BP+2] ; SI = low index.
 98
 99 * The following section splits the area to be sorted
 100 * into two areas. QSORT will be called to sort each
 101 * of these smaller areas.
 102
 103 * If high index is less than low index, then sort
 104 * is done.
 0482 3BFE 105 OVER CMP DI,SI
 0484 7C3A 106 JL DONE
 107 * AL = dividing value (from low index).
 0486 8A04 108 MOV AL,[SI]
 109 * (Increment allows DEC_HIGH loop to work first
 110 * time through.)
 0488 47 111 INC DI
 112 * Move low index up until it points to a value
 113 * greater than the dividing value.
 0489 46 114 INC_LOW INC SI
 048A 3A04 115 CMP AL,[SI]
 048C 7E06 116 JLE DEC_HIGH
 048E 3BFE 117 CMP DI,SI
 0490 7E15 118 JLE OUT
 0492 EBF5 119 JMP INC_LOW
 120 * Move high index down until it points to a value
 121 * less than or equal to the dividing value.
 0494 4F 122 DEC_HIGH DEC DI
 0495 3A05 123 CMP AL,[DI]
 0497 7CFB 124 JL DEC_HIGH
 125 * If high index is less than or equal to low index,
 126 * the area is split; do not swap values.
 0499 3BFE 127 CMP DI,SI
 049B 7E0A 128 JLE OUT
 129 * If high index is greater than low index, swap
 130 * values and move indexes again.
 049D 8A24 131 MOV AH,[SI]
 049F 8A15 132 MOV DL,[DI]
 04A1 8814 133 MOV [SI],DL

Figure 3-1. "Complex" Config. Sample Program (Cont’d)

Accessing Full Analyzer Capability 3-10

 04A3 8825 134 MOV [DI],AH
 04A5 EBE2 135 JMP INC_LOW
 136 * SI = low address (needed to swap dividing value).
 04A7 8B7602 137 OUT MOV SI,[BP+2]
 138 * Swap dividing value and high index value.
 04AA 8A15 139 MOV DL,[DI]
 04AC 8814 140 MOV [SI],DL
 04AE 8805 141 MOV [DI],AL
 142
 143 * The area is now split into two smaller areas.
 144 * The last high index value is the middle of the
 145 * two areas. The high and low addresses for the
 146 * second QSORT call are pushed first.
 147
 04B0 8B5604 148 MOV DX,[BP+4]
 04B3 52 149 PUSH DX ; Push high.
 04B4 47 150 INC DI
 04B5 57 151 PUSH DI ; Push middle + 1.
 04B6 4F 152 DEC DI
 04B7 4F 153 DEC DI
 04B8 57 154 PUSH DI ; Push middle - 1.
 04B9 56 155 PUSH SI ; Push low.
 04BA E8BDFF 156 CALL QSORT
 04BD E8BAFF 157 CALL QSORT
 04C0 C20400 158 DONE RET 4 ; Pop values on return.
 159

 160 *--
 161 * The 256 byte long RESULTS area is where the random
 162 * numbers are written and are the locations which
 163 * get sorted. The area at 600H contains the stack.
 164 *--
 165
 166 ORG 500H
 167 * Random numbers written to this area.
 0500 168 RESULTS DBS 0FFH
 169
 170 ORG 600H
 171 * Variable used in RAND subroutine.
 0600 0100 172 RAND_SEED DW 1
 0602 173 DDS 8EH
 083A 174 STACK DWS 1 ; Stack area.
 175 END

Errors= 0

Figure 3-1. "Complex" Config. Sample Program (Cont’d)

Accessing Full Analyzer Capability 3-11

Before You Can Use
the Analyzer

You must map memory, load the program, and run the program as was
done in the previous chapter. The only difference is that another block
of emulation memory must be mapped since the stack takes up more
space.

 R> map 800..0bff eram
 R> map
 # remaining number of terms : 14
 # remaining emulation memory : 1f000h bytes
 map 00400..007ff eram # term 1
 map 00800..00bff eram # term 2
 map other tram

Switching into the
"Complex"
Configuration (tcf
-c)

To enter the "complex" analyzer configuration, use the -c option to the
tcf (trace configuration) command. This will cause the analyzer to be
initialized to its default "complex" configuration state.

 U> tcf -c

The tcf -e command will place the analyzer back into the "easy" configu-
ration. Changing the analyzer configuration to "easy" will reset the
trace pattern specifications, the trigger position, and the count and
prestore qualifiers.

Accessing Full Analyzer Capability 3-12

The Default
Sequencer
Specification (tsq
-r)

After entering the "complex" analyzer configuration, the sequencer is in
its default state. The tsq (trace sequencer specification) command with
no options will display the sequencer.

 U> tsq
 tif 1 any 2
 tif 2 any 3
 tif 3 any 4
 tif 4 any 5
 tif 5 any 6
 tif 6 any 7
 tif 7 any 8
 tif 8 never
 tsq -t 2
 tsto 1 all
 tsto 2 all
 tsto 3 all
 tsto 4 all
 tsto 5 all
 tsto 6 all
 tsto 7 all
 tsto 8 all
 telif 1 never
 telif 2 never
 telif 3 never
 telif 4 never
 telif 5 never
 telif 6 never
 telif 7 never
 telif 8 never

If the tsq information scrolls off your screen, you may wish to display
the sequencer specifications with a combination of other display com-
mands; for example, you could enter the tif , telif, tsto, and tsq -t com-
mands to display the same information.

There are eight terms in the "complex" configuration sequencer. By de-
fault, the primary branch expression for each term (except term 8) is
any, the secondary branch expression for each term is never, and the
storage qualifier for each term is all. The trigger term is the second se-
quence term. This sequencer specification will result in the same trace
data as the default sequencer specification in the "easy" configuration
(except that there will be more sequencer branches after the trigger). A
diagram of the default sequencer specification is shown in figure 3-2.

Accessing Full Analyzer Capability 3-13

Specifying a
Simple Trigger
(tg)

Using the tg (simple trigger) command in the "complex" configuration
will cause the first two sequence terms to be modified. The pattern
specified in the tg command becomes the primary branch expression of
the first sequence term. The primary and secondary branch expressions
of the second sequence term are set to never, and this term is specified
as the trigger term. The secondary branch expression of the first se-
quencer term is also set to never.

Figure 3-2. "Complex" Configuration Default Sequencer

Accessing Full Analyzer Capability 3-14

The result of the tg command in the "complex" configuration is the
same as in the "easy" configuration, and equivalent tg commands
(where the pattern is the same as the "easy" configuration expression,
and the storage qualifiers are the same) will yield identical traces in
each of the trace configurations.

As in the "easy" configuration, the tg command with no options will dis-
play the primary branch expression of the first sequence term. This will
only be the trigger condition when the second sequence term is the trig-
ger term.

The commands below specify a simple trigger and display the resulting
sequencer. A diagram of this sequencer specification is shown in figure
3-3.

 U> tpat p1 addr=412
 U> tg p1
 U> tsq
 tif 1 p1 2
 tif 2 never
 tif 3 any 4
 tif 4 any 5
 tif 5 any 6
 tif 6 any 7
 tif 7 any 8
 tif 8 never
 tsq -t 2
 tsto 1 all
 tsto 2 all
 tsto 3 all
 tsto 4 all
 tsto 5 all
 tsto 6 all
 tsto 7 all
 tsto 8 all
 telif 1 never
 telif 2 never
 telif 3 never
 telif 4 never
 telif 5 never
 telif 6 never
 telif 7 never
 telif 8 never

Accessing Full Analyzer Capability 3-15

Using the
Sequencer in the
"Complex"
Configuration

This section contains three examples of setting up the sequencer:

• The first example shows the general steps to follow when setting
up the sequencer in the complex configuration. Labels from a hy-
pothetical program are used to illustrate the steps involved.

• The second example shows how to set up the sequencer to trace
"windows" of program activity. The sequencer is set up to trace ac-
tivity in the RAND subroutine of this chapter’s sample program.

• The third example shows how to use the sequencer to isolate and
trace specific conditions. The analyzer is used to find the cause of
a "bug" in this chapter’s sample program.

Figure 3-3. Simple Trigger in "Complex" Configuration

Accessing Full Analyzer Capability 3-16

Hints to Make
Setting Up the

Sequencer Easy

When you become experienced at using the "complex" configuration,
you will be able to simply enter the trace commands for the measure-
ment you want. Until then, following the steps listed below may make
it easier for you to set up the sequencer.

1. Write down the sequencer algorithm.

2. Draw the sequencer diagram.

3. Define the trace patterns (tpat) and range (trng).

4. Specify the primary and secondary branch expressions (tif , telif).

5. Specify the trigger term (tsq -t X)

6. Specify the storage qualifiers (tsto).

Generally, you will always follow steps 3 through 6 when setting up the
sequencer in the "complex" configuration. In reality, you will probably
perform steps 1 and 2 at the same time, but here the algorithm is ex-
plained before the sequencer diagram is presented. Once you become
experienced with how the sequencer works, you may be able to visual-
ize steps 1 and 2 without having to write anything down.

Write Down Sequencer Algorithm

It is a good idea to write down what you want the sequencer to do. A se-
quence term can be used to "search" for some trace state; this is a se-
quence term with a primary branch expression but no secondary branch
expression.

A sequence term can also be used for conditional branching; this is a se-
quence term with both primary and secondary branch expressions. If
some trace state occurs, then go to sequence term X (primary branch).
Else, if another trace state occurs before the first, go to term Y (secon-
dary branch).

Either branch may be to any sequence term. If a state satisfies both the
primary and secondary branch expressions, the primary branch will be

Accessing Full Analyzer Capability 3-17

taken. Also, occurrence counts may only be specified with primary
branch expressions.

The following examples are based on a hypothetical program whose
flowchart is shown in figure 3-4.

Suppose there is a problem in the hypothetical program. You can iden-
tify two situations which cause this problem, but you are not quite sure
as to why the problem occurs, and you would like to trace the program
execution around either of these situations.

The first situation which causes the problem is when TRIG_STATE_1
occurs in PROCESS_1. The second situation is when
TRIG_STATE_2 occurs in PROCESS_2 (which may or may not be
called after PROCESS_1). Either state can occur in both processes
and in other processes in the program loop; the problem will only arise

Figure 3-4. Flowchart of Hypothetical Program

Accessing Full Analyzer Capability 3-18

when the specific state occurs in the specific process. The sequencer
should take the following steps.

Step 1: First of all, you want the sequencer to search for PROC-
ESS_1.

Step 2: After PROCESS_1 is found, you want the sequencer to
search for TRIG_STATE_1 until PROCESS_1 exits. If
TRIG_STATE_1 is found before PROCESS_1_EXIT, the sequencer
should trigger the analyzer. If PROCESS_1 exits before
TRIG_STATE_1 is found, the sequencer should go on and search for
the next problem situation.

Step 3: After PROCESS_1 exits, you want to search for PROC-
ESS_2. If PROCESS_3 occurs first, then you know PROCESS_2
was not called, and the problem situation did not occur in this loop of
the program. The sequencer should go back and search for the next
occurrence of PROCESS_1. If PROCESS_2 is found before PROC-
ESS_3, the sequencer should go on and look for the state which iden-
tifies the problem in PROCESS_2.

Step 4: If PROCESS_2 is called, you want to search for
TRIG_STATE_2. If PROCESS_3 occurs before TRIG_STATE_2,
you know PROCESS_2 has exited and that the problem situation did
not occur in this loop of the program. The sequencer should go back
and search for the next occurrence of PROCESS_1. If
TRIG_STATE_2 is found before PROCESS_3, the sequencer should
trigger the analyzer.

Step 5: If the trigger condition is found in steps 2 or 4, the se-
quencer should trigger the analyzer by branching to the trigger term.
There should be no branches out of the trigger term.

Accessing Full Analyzer Capability 3-19

A pseudo-code algorithm of the sequencer follows.

 Term_1: If (PROCESS_1 occurs)
 Then go to Term_2.
 Term_2: If (TRIG_STATE_1 occurs before PROCESS_1_EXIT)
 Then trigger the analyzer, i.e., go to Term_5.
 Else if (PROCESS_1_EXIT occurs before TRIG_STATE_1)
 Then go to Term_3.
 Term_3: If (PROCESS_2 occurs before PROCESS_3)
 Then go to Term_4.
 Else if (PROCESS_3 occurs before PROCESS_2)
 Then go to Term_1.
 Term_4: If (TRIG_STATE_2 occurs before PROCESS_3)
 Then trigger the analyzer, i.e., go to Term_5.
 Else if (PROCESS_3 occurs before TRIG_STATE_2)
 Then go Term_1.
 Term_5: Analyzer is triggered on entry.
 No branches are made from this term.

Figure 3-5. Drawing the Sequencer Diagram

Accessing Full Analyzer Capability 3-20

Draw Sequencer Diagram

After you have listed (or while you are listing) the steps you want the se-
quencer to take, draw a state diagram of the sequencer as it would fol-
low those steps. For example, the sequencer diagram for the steps
listed above is shown in figure 3-5.

Define the Trace Patterns

When you know which states the sequencer is to look for, specify those
states in trace patterns. Consider whether or not you will be using
global set operators (and or or) with any of the patterns; if so, make
sure those patterns are in different sets. Below are the tpat specifica-
tions to be used in the sequencer above.

 U> tpat p1 addr=448 # PROCESS_1.
 U> tpat p2 addr=5ff and data=0f7xx and stat=mw # TRIG_STATE_1.
 U> tpat p3 addr=490 # PROCESS_1_EXIT.
 U> tpat p4 addr=4c2 # PROCESS_2.
 U> tpat p5 addr=4f0 # PROCESS_3.
 U> tpat p6 addr=5fe and data=0xxf7 and stat=mw # TRIG_STATE_2.

Specify Primary and Secondary Branch Expressions

After the trace patterns are defined, you are ready to specify the pri-
mary and secondary branch expressions of the sequence terms using the
tif and telif commands.

 U> tif 1 p1
 U> tif 2 p2 5
 U> telif 2 p3 3
 U> tif 3 p4
 U> telif 3 p5 1
 U> tif 4 p6
 U> telif 4 p5 1
 U> tif 5 never
 U> telif 5 never

Specify the Trigger Term

From the sequencer diagram in figure 3-4, you can see that entry into
the fifth term constitutes the trigger. The trigger term is specified with
the -t option to the tsq command as shown below.

Accessing Full Analyzer Capability 3-21

 U> tsq -t 5

Specify Storage Qualifiers

Since each sequence term may have a storage qualifier, storage quali-
fier specification is part of the sequencer setup. Suppose, in the exam-
ple above, that you do not wish to store states while searching for
PROCESS_1 but that you wish to store all states after PROCESS_1 is
found. The commands below will do this. Remember, states which
cause sequencer branches are stored regardless of the trace storage
qualifier.

 U> tsto all
 U> tsto 1 none

The command which follows will cause the trigger state to appear in
the center of the trace.

 U> tp c

To view the resulting sequencer setup, enter the tsq command with no
options.

 U> tsq
 tif 1 p1 2
 tif 2 p2 5
 tif 3 p4 4
 tif 4 p6 5
 tif 5 never
 tif 6 any 7
 tif 7 any 8
 tif 8 never
 tsq -t 5
 tsto 1 none
 tsto 2 all
 tsto 3 all
 tsto 4 all
 tsto 5 all
 tsto 6 all
 tsto 7 all
 tsto 8 all
 telif 1 never
 telif 2 p3 3
 telif 3 p5 1
 telif 4 p5 1
 telif 5 never
 telif 6 never
 telif 7 never
 telif 8 never

Accessing Full Analyzer Capability 3-22

Tracing "Windows"
of Activity

One common use for the "complex" configuration sequencer is to trace
"windows" of execution or, perhaps, to eliminate "windows" of execu-
tion from traces. For example, suppose you wish to trace only the exe-
cution within a certain range of addresses. These addresses could be a
subroutine or perhaps they are just the addresses of instructions in
which you are interested.

A simple windowing sequencer specification would consist of a window
enable term, a window disable term, and perhaps a trigger term (if you
wish to trigger on a condition other than the enable or disable terms).
Only the states which occur between the window enable condition and
the window disable condition are stored.

To trace only the execution of the sample program’s RAND subrou-
tine, you would set up the sequencer specification so that the first ad-
dress of the RAND subroutine is the window enable term and the ad-
dress of the RAND subroutine’s "return" instruction is the window dis-
able term. Suppose also that you wish to trigger when the QSORT rou-
tine is called. The diagram of the sequencer to do this is shown in fig-
ure 3-6.

Enter the following commands to set up the sequencer. First of all, re-
set the sequencer.

 U> tsq -r

Next, equate the addresses to be used in the sequencer branch expres-
sions to easily recognizable names. The address of the window enable
condition, the first address of the RAND subroutine, is 45CH. The ad-
dress of the window disable condition, the RAND subroutine’s "return"
instruction, is 473H. The address of the trigger condition, the address
of the call to QSORT, is 457H. Use the equ command, as shown be-
low, to specify the equates.

 U> equ Rand=45c
 U> equ RandRet=473
 U> equ QsortCall=457

Accessing Full Analyzer Capability 3-23

Specify trace patterns that equal these addresses.

 U> tpat p1 addr=Rand # WINDOW ENABLE.
 U> tpat p2 addr=RandRet # WINDOW DISABLE.
 U> tpat p3 addr=QsortCall # TRIGGER CONDITION.

Specify the primary and secondary branch expressions, and specify the
trigger term.

 U> tif 1 p1
 U> telif 1 p3 3
 U> tif 2 p2 1
 U> tif 3 p1 1 2
 U> tsq -t 3

Notice that the primary branch expression of the trigger term (3) is two
occurrences of the Rand address. Ordinarily, you might expect to use
any state as the condition on which to continue searching for the win-

Figure 3-6. Tracing a "Window" of Activity

Accessing Full Analyzer Capability 3-24

dow enable. However, since the RAND subroutine is located after the
QSORT call, prefetches from the Rand address would be interpreted
as window enable conditions. Two prefetches from the Rand address
occur: one before the QSORT call, and one after. The primary branch
condition of the trigger term causes the sequencer to continue search-
ing for the window enable condition after the two prefetches from the
Rand address.

Specify the storage qualifiers so that states are stored only while search-
ing for the window disable condition. The first command below speci-
fies all storage qualifiers to be none. The second command specifies
that all states be stored while searching for the window disable condi-
tion.

 U> tsto none
 U> tsto 2 all

Enter the following commands to specify that time be counted (so that
the count column in the trace contains useful information) and to place
the trigger position 10 states below the top of the trace.

 U> tcq time
 U> tp -b 10

Accessing Full Analyzer Capability 3-25

Enter the tsq command with no options to display the sequencer speci-
fication.

 U> tsq
 tif 1 p1 2
 tif 2 p2 1
 tif 3 p1 1 2
 tif 4 any 5
 tif 5 any 6
 tif 6 any 7
 tif 7 any 8
 tif 8 never
 tsq -t 3
 tsto 1 none
 tsto 2 all
 tsto 3 none
 tsto 4 none
 tsto 5 none
 tsto 6 none
 tsto 7 none
 tsto 8 none
 telif 1 p3 3
 telif 2 never
 telif 3 never
 telif 4 never
 telif 5 never
 telif 6 never
 telif 7 never
 telif 8 never

Accessing Full Analyzer Capability 3-26

Starting the trace, waiting for the measurement to complete, and dis-
playing the trace will result in the following information.

 U> t
 Emulation trace started
 U> tl -t 50
 Line addr,H 8018x mnemonic,H count,R seq
 ----- ------ ------------------------------------ --------- ---
 -11 0046c 0600H, opcode fetch --- .
 -10 0046a INSTRUCTION--opcode unavailable 0.120 uS .
 -9 0046b INSTRUCTION--opcode unavailable 0.160 uS .
 -8 0046e c28bH, opcode fetch 0.280 uS .
 -7 00600 0f39H, mem write 0.640 uS .
 -6 0046e MOV AX,DX 0.160 uS .
 -5 00470 ff25H, opcode fetch 0.400 uS .
 -4 00472 c300H, opcode fetch 0.560 uS .
 -3 00470 AND AX,#00ffH 0.120 uS .
 -2 00474 8826H, opcode fetch 0.400 uS .
 -1 00473 RET 0.280 uS +
 0 00457 INSTRUCTION--opcode unavailable 22.80 uS +
 1 0045c 6db8H, opcode fetch 23.70 mS +
 2 0045c 6db8H, opcode fetch 5.440 uS +
 3 00838 041eH, mem write 0.520 uS .
 4 0045c MOV AX,#4e6dH 0.160 uS .
 5 0045e 264eH, opcode fetch 0.400 uS .
 6 00460 2ef7H, opcode fetch 0.560 uS .
 7 0045f IMUL ES:WORD PTR 0600H 0.240 uS .
 8 00462 0600H, opcode fetch 0.280 uS .
 9 00460 0.120 uS .
 10 00464 3915H, opcode fetch 0.440 uS .
 11 00600 0f7fH, mem read 0.800 uS .
 12 00466 7303H, opcode fetch 0.560 uS .
 13 00468 4201H, opcode fetch 0.520 uS .
 14 00464 ADC AX,#0339H 3.920 uS .
 15 00467 JAE SHORT 046aH 0.560 uS .
 16 0046a a326H, opcode fetch 0.280 uS .
 17 0046a a326H, opcode fetch 0.960 uS .
 18 0046c 0600H, opcode fetch 0.520 uS .
 19 0046a MOV ES:0600H,AX 0.120 uS .
 20 0046b 0.160 uS .
 21 0046e c28bH, opcode fetch 0.280 uS .
 22 00600 4e4dH, mem write 0.680 uS .
 23 0046e MOV AX,DX 0.120 uS .
 24 00470 ff25H, opcode fetch 0.400 uS .
 25 00472 c300H, opcode fetch 0.560 uS .
 26 00470 AND AX,#00ffH 0.120 uS .
 27 00474 8826H, opcode fetch 0.400 uS .
 28 00473 RET 0.280 uS +
 29 0045c 6db8H, opcode fetch 21.72 uS +
 30 00838 041eH, mem write 0.520 uS .
 31 0045c MOV AX,#4e6dH 0.160 uS .
 32 0045e 264eH, opcode fetch 0.400 uS .
 33 00460 2ef7H, opcode fetch 0.520 uS .
 34 0045f IMUL ES:WORD PTR 0600H 0.280 uS .
 35 00462 0600H, opcode fetch 0.280 uS .
 36 00460 0.120 uS .
 37 00464 3915H, opcode fetch 0.400 uS .
 38 00600 4e4dH, mem read 0.840 uS .

Accessing Full Analyzer Capability 3-27

Isolating and Tracing
Specific Conditions

There is a "bug" in this chapter’s sample program. Occasionally, after
the 256 bytes of the RESULTS area have been sorted by the QSORT
subroutine, you will see a byte out of order in the last eight or so bytes
of the area. You can see what happens by setting software breakpoints
before and after the QSORT routine is executed, running the program,
and displaying memory.

First of all, break to the monitor.

 U> b
 M>

Now, define a macro called sort which will:

• Set a breakpoint at an address inside the QSORT subroutine, say
489H (instead of the first couple addresses of the routine so that
prefetches at the end of the WRITE_NUMBER routine are not
interpreted as entries into QSORT).

• Run the program until that breakpoint is hit (so you know the con-
tents in the RESULTS area are about to be sorted).

• Set another breakpoint at the AGAIN address.

• Run the program until the AGAIN address is hit (the contents of
the RESULTS area should be sorted at this point).

• Display the contents of the results area.

The following mac command accomplishes the items listed above.

 M>mac sort={bp -e 489;r;w 1;bp -e 412;r;w 1;m -db 500..5ff}

Accessing Full Analyzer Capability 3-28

Enable software breakpoints with the bc (emulator break conditions)
command, and execute the sort macro.

 M>bc -e bp
 M>bp 489
 M>bp 412
 M>sort
 # bp -e 489;r;w 1;bp -e 412;r;w 1;m -db 500..5ff
 # waiting for 1 second....
 # waiting for 1 second....
 00500..0050f 80 80 81 83 83 85 88 89 8e 8f 8f 92 92 92 93 94
 00510..0051f 95 97 97 99 9a 9a 9b 9b 9b 9d 9d 9d 9d a0 a0 a0
 00520..0052f a1 a2 a2 a2 a4 a5 a6 a8 a8 aa aa ab ac ad af af
 00530..0053f af b3 b4 b4 b4 b6 b7 b7 b7 b9 ba bb bb bc be c0
 00540..0054f c0 c1 c2 c2 c3 c4 c7 c7 c8 c8 c9 ca cc cd cd d0
 00550..0055f d1 d1 d2 d2 d3 d4 d4 d6 d8 d9 d9 db dc df e0 e1
 00560..0056f e2 e4 e4 e5 e6 e6 e6 e8 ea ea ec ec f0 f0 f0 f2
 00570..0057f f4 f4 f4 f6 f6 f6 f8 fb fc fd fd fe 01 02 03 04
 00580..0058f 06 07 07 08 09 0b 0e 0e 11 13 13 14 15 18 18 19
 00590..0059f 1e 1e 20 21 22 23 24 25 26 26 27 28 28 2c 2c 2c
 005a0..005af 2c 2f 2f 31 31 32 32 32 33 33 34 35 35 36 37 37
 005b0..005bf 3e 3e 3e 3f 41 43 44 45 46 46 47 47 48 48 48 49
 005c0..005cf 4a 4a 4b 4b 4c 4d 4d 4d 4d 4d 4e 4e 4f 50 52 55
 005d0..005df 56 56 56 57 58 58 59 5a 5a 5c 5e 5f 61 61 63 66
 005e0..005ef 67 68 68 69 6a 6a 6a 6b 6b 6c 6d 6e 6e 6f 6f 6f
 005f0..005ff 70 70 71 73 74 78 7a 7a 7b 7c 7c 7d 7e 7f 7f 39
 !ASYNC_STAT 615! Software breakpoint: 0000:0489
 !ASYNC_STAT 615! Software breakpoint: 0000:0412

Look carefully at the last several bytes of the RESULTS area. You
may notice that a byte is out of order. If not, execute the sort macro,
and look at the display again. Sometimes, the program works correctly;
other times, you will see a byte out of order.

The memory display shows that the QSORT routine works for the
most part, which makes you suspect that the problem occurs on the fi-
nal write to the RESULTS area. To verify this, you might set up the se-
quencer to trigger on any event, store only the address following the re-
turn from QSORT (to the main program), and prestore writes to the
last eight bytes of the RESULTS area.

Accessing Full Analyzer Capability 3-29

 M> r
 U> tg any
 U> tpat p1 addr=45a
 U> tsto p1
 U> trng addr=5f8..5ff
 U> tpq r
 U> t
 Emulation trace started
 U> w -m
 # waiting for analysis measurements to complete...
 U> tl
 Line addr,H 8018x mnemonic,H count,R seq
 ----- ------ ------------------------------------ --------- ---
 0 00428 1672H, opcode fetch --- +
 1 005fd 3dxxH, mem write prestore .
 2 005fc xx23H, mem write prestore .
 3 0045a b6ebH, opcode fetch 4.977 mS .
 4 005ff 0bxxH, mem write prestore .
 5 005ff 0bxxH, mem write prestore .
 6 0045a b6ebH, opcode fetch 23.10 mS .
 7 0045a JMP SHORT 0412H 0.680 uS .
 8 005ff e4xxH, mem write prestore .
 9 005ff 40xxH, mem write prestore .
 10 0045a b6ebH, opcode fetch 46.88 mS .
 11 005ff 6fxxH, mem write prestore .
 12 005ff 6fxxH, mem write prestore .
 13 0045a b6ebH, opcode fetch 23.33 mS .
 14 0045a JMP SHORT 0412H 0.680 uS .
 15 005ff f8xxH, mem write prestore .
 16 005f8 xx60H, mem write prestore .
 17 0045a b6ebH, opcode fetch 46.88 mS .
 18 005ff 39xxH, mem write prestore .
 19 005ff 39xxH, mem write prestore .

From the previous trace, you see that the final writes made in the
QSORT subroutine are indeed improper values for that part of the
RESULTS area. Displaying additional lines of the trace shows you
there are common bad values written to 5FFH. You can set up a trace
to trigger on one of the common bad writes to 5FFH, and store all the
states which lead up to this event. The resulting trace may show you
what is wrong with the program.

The sequencer specification which follows will trigger on a write of
39xxH to 5FFH. There is nothing special about the value 39xxH; it was
just a common bad value when this example was generated. You may
see other bad values being written to 5FFH, and you should trace on
them instead. The sequencer algorithm to capture the events which
lead to a final QSORT write of 39xxH to 5FFH is listed below.

1. Search for the beginning of the QSORT routine. (The first oc-
currence of the INC_LOW address assures that the QSORT
routine is actually entered; this eliminates prefetches of the

Accessing Full Analyzer Capability 3-30

QSORT address from being interpreted as entry into the rou-
tine.)

2. If a write of 39H to address 5FFH occurs, this may or may not
be the trigger event -- another condition must be tested (see 3).
Else, if the QSORT routine exits before a write of 39H to
5FFH occurs, the trigger event has not occurred in this loop of
the program; in this case, the sequencer should restart.

3. A write of 39H to 5FFH has occurred. If the QSORT routine
exits without any other value being written to 5FFH, this is the
trigger event. Else, if a write of some value other than 39H is
made to 5FFH, the previous write is not the event to trigger on,
and the sequencer should go back to searching for writes of
39H to 5FFH.

Figure 3-7. Sequencer to Isolate Sample Program Bug

Accessing Full Analyzer Capability 3-31

The corresponding sequencer diagram is shown in figure 3-7.

The commands to set up the sequencer, display the sequencer, issue the
trace, and display the trace are shown below. Since we are interested in
the instructions which occur before the trigger, the trigger position is
specified such that only 10 states are stored after the trigger state.

 U> tsq -r
 U> tpq none

 U> tpat p1 addr=489
 U> tpat p2 addr=5ff and data=39xx and stat=mw
 U> tpat p3 addr=45a
 U> tpat p4 addr=5ff and stat=mw
 U> tpat p5 data!=39xx

 U> tif 1 p1
 U> tif 2 p2
 U> telif 2 p3 1
 U> tif 3 p3
 U> telif 3 p4 and p5 2
 U> tif 4 never
 U> telif 4 never
 U> tsq -t 4

 U> tsto none
 U> tsto 2 all
 U> tsto 3 all
 U> tsto 4 all

 U> tsq
 tif 1 p1 2

Accessing Full Analyzer Capability 3-32

 tif 2 p2 3
 tif 3 p3 4
 tif 4 never
 tif 5 any 6
 tif 6 any 7
 tif 7 any 8
 tif 8 never
 tsq -t 4
 tsto 1 none
 tsto 2 all
 tsto 3 all
 tsto 4 all
 tsto 5 none
 tsto 6 none
 tsto 7 none
 tsto 8 none
 telif 1 never
 telif 2 p3 1
 telif 3 p4 and p5 2
 telif 4 never
 telif 5 never
 telif 6 never
 telif 7 never
 telif 8 never

 U> tp -a 10

 U> t
 Emulation trace started
 U> w -m
 # waiting for analysis measurements to complete...
 U> tl -19
 Line addr,H 8018x mnemonic,H count,R seq
 ----- ------ ------------------------------------ --------- ---
 -19 004c2 0000H, opcode fetch 0.560 uS .
 -18 004c0 RET #0004H 0.120 uS .
 -17 004c4 ffffH, opcode fetch 0.400 uS .
 -16 00822 04c0H, mem read 0.560 uS .
 -15 004c0 04c2H, opcode fetch 1.080 uS .
 -14 004c2 0000H, opcode fetch 0.560 uS .
 -13 004c0 RET #0004H 0.120 uS .
 -12 004c4 ffffH, opcode fetch 0.400 uS .
 -11 00828 04c0H, mem read 0.560 uS .
 -10 004c0 04c2H, opcode fetch 1.080 uS .
 -9 004c2 0000H, opcode fetch 0.520 uS .
 -8 004c0 RET #0004H 0.160 uS .
 -7 004c4 ffffH, opcode fetch 0.400 uS .
 -6 0082e 04c0H, mem read 0.560 uS .
 -5 004c0 04c2H, opcode fetch 1.080 uS .
 -4 004c2 0000H, opcode fetch 0.520 uS .
 -3 004c0 RET #0004H 0.160 uS .
 -2 004c4 ffffH, opcode fetch 0.400 uS .
 -1 00834 045aH, mem read 0.520 uS .
 0 0045a b6ebH, opcode fetch 1.080 uS +

By continuing to list the trace lines before the trigger (tl -< line_num-
ber>), you will eventually come across the sequencer branch prior to
the trigger.

Accessing Full Analyzer Capability 3-33

 U> tl -210
 Line addr,H 8018x mnemonic,H count,R seq
 ----- ------ ------------------------------------ --------- ---
 -210 0048e CMP DI,SI 0.160 uS .
 -209 00492 f5ebH, opcode fetch 0.400 uS .
 -208 00490 JLE SHORT 04a7H 0.120 uS .
 -207 00494 3a4fH, opcode fetch 0.400 uS .
 -206 004a7 8bxxH, opcode fetch 0.680 uS .
 -205 004a8 0276H, opcode fetch 0.560 uS .
 -204 004a7 MOV SI,WORD PTR 02H[BP] 0.120 uS .
 -203 004aa 158aH, opcode fetch 0.400 uS .
 -202 00824 05ffH, mem read 0.840 uS .
 -201 004aa MOV DL,BYTE PTR [DI] 0.400 uS .
 -200 004ac 1488H, opcode fetch 0.120 uS .
 -199 00600 xx39H, mem read 0.840 uS .
 -198 004ac MOV BYTE PTR [SI],DL 0.400 uS .
 -197 004ae 0588H, opcode fetch 0.120 uS .
 -196 004b0 568bH, opcode fetch 1.080 uS .
 -195 005ff 39xxH, mem write 0.560 uS +
 -194 004ae MOV BYTE PTR [DI],AL 0.120 uS .
 -193 004b2 5204H, opcode fetch 1.240 uS .
 -192 00600 xx7eH, mem write 0.520 uS .
 -191 004b0 MOV DX,WORD PTR 04H[BP] 0.160 uS .

From these lines of the trace list, you can see that the instructions at ad-
dresses 4AAH and 4ACH are the ones that cause the problems. These
are the instructions associated with the OUT section of the QSORT
subroutine. They are used to swap the dividing value and the value at
the high index after a segment of the list to be sorted is split. You can
see that the high index is address 600H, which it should never be. How-
ever, looking back at the program you see that the increment of the
high index so that DEC_HIGH works the first time through will cause
problems when the JLE OUT instruction gets executed in the
INC_LOW loop. Changing the program in the following manner will
fix the problem (notice the instructions surrounded by the "# " charac-
ter).

Accessing Full Analyzer Capability 3-34

*--
* The QSORT subroutine is passed the high and low
* addresses of some area of bytes to be sorted on
* the stack.
*--

QSORT MOV BP,SP
 MOV DI,[BP+4] ; DI = high index.
 MOV SI,[BP+2] ; SI = low index.

* The following section splits the area to be sorted
* into two areas. QSORT will be called to sort each
* of these smaller areas.

* If high index is less than low index, then sort
* is done.
OVER CMP DI,SI
 JL DONE
* AL = dividing value (from low index).
 MOV AL,[SI]
* (Increment allows DEC_HIGH loop to work first
* time through.)

*#### The following instruction deleted. ##########
* INC DI
*##

* Move low index up until it points to a value
* greater than the dividing value.
INC_LOW INC SI
 CMP AL,[SI]

*#### The following instruction is changed. #######
 JLE NEXT
*##

 CMP DI,SI
 JLE OUT
 JMP INC_LOW

*#### The following instruction is new. ###########
NEXT INC DI
*##

* Move high index down until it points to a value
* less than or equal to the dividing value.
DEC_HIGH DEC DI
 CMP AL,[DI]
 JL DEC_HIGH
* If high index is less than or equal to low index,
* the area is split; do not swap values.
 CMP DI,SI
 JLE OUT
* If high index is greater than low index, swap
* values and move indexes again.
 MOV AH,[SI]
 MOV DL,[DI]
 MOV [SI],DL
 MOV [DI],AH

Accessing Full Analyzer Capability 3-35

 JMP INC_LOW
* SI = low address (needed to swap dividing value).
OUT MOV SI,[BP+2]
* Swap dividing value and high index value.
 MOV DL,[DI]
 MOV [SI],DL
 MOV [DI],AL

* The area is now split into two smaller areas.
* The last high index value is the middle of the
* two areas. The high and low addresses for the
* second QSORT call are pushed first.

 MOV DX,[BP+4]
 PUSH DX ; Push high.
 INC DI
 PUSH DI ; Push middle + 1.
 DEC DI
 DEC DI
 PUSH DI ; Push middle - 1.
 PUSH SI ; Push low.
 CALL QSORT
 CALL QSORT
DONE RET 4 ; Pop values on return.

Accessing Full Analyzer Capability 3-36

4

Using the External Analyzer

Introduction Your HP 64700 Series analyzer may optionally contain 16 external
trace signals. These trace lines allow you to analyze additional target
system signals. The external analyzer may be configured as an exten-
sion to the emulation analyzer, as an independent state analyzer, or as
an independent timing analyzer.

Note The external analyzer’s independent timing mode cannot be used
from the Terminal Interface. A host computer interface is necessary
to provide timing analysis. Consequently, independent timing analysis
is not described in this manual. Refer to the appropriate host com-
puter interface analyzer manual (either the PC Interface: Analyzer
User’s Guide or the Softkey Interface: Analyzer User’s Guide).

Before You Can
Use the External
Analyzer

There are several things to do before you can use the external analyzer:

Using the External Analyzer 4-1

• Connect the analyzer probe to signals of interest in your target sys-
tem.

• Specify threshold voltages of external trace signals.

• Label the external trace signals.

• Select the external analyzer mode.

Connecting the
Analyzer Probe

Lines to the Target
System

The following steps must be taken to connect the analyzer probe to the
target system:

1. Assemble the analyzer probe.

2. Connect the probe to the emulator.

3. Connect the probe wires to the target system.

Figure 4-1. Assembling the Analyzer Probe

Using the External Analyzer 4-2

Assembling the Analyzer Probe

The analyzer probe is a two-piece assembly, consisting of ribbon cable
and 18 probe wires (16 data channels and the J and K clock inputs) at-
tached to a connector. Either end of the ribbon cable may be con-
nected to the 18 wire connector, and the connectors are keyed so they
may only be attached one way. Align the key of the ribbon cable con-
nector with the slot in the 18 wire connector, and firmly press the con-
nectors together. (See figure 4-1.)

Each of the 18 probe wires has a signal and a ground connection. Each
probe wire is labeled for easy identification. Thirty-six grabbers are pro-
vided for the signal and ground connections of each of the 18 probe
wires. The signal and ground connections are attached to the pin in the
grabber handle. (See figure 4-2.)

Figure 4-2. Attaching Grabbers to Probe Wires

Using the External Analyzer 4-3

Connecting the Probe to the Emulator

The external analyzer probe is attached to a connector under the snap-
on cover in the front upper right corner of the emulator. Remove the
snap-on cover by pressing the side tabs toward the center of the cover;
then, pull the cover out. (See figure 4-3.)

Each end of the ribbon cable connector is keyed so that it can be con-
nected to the emulator in only one way. Align the key of the ribbon ca-
ble connector with the slot in the emulator connector, and gently press
the ribbon cable connector into the emulator connector. (See figure 4-
4.)

Figure 4-3. Removing Cover to Emulator Connector

Using the External Analyzer 4-4

Note Check for bent connector pins before connecting the analyzer probe
to the emulator.

Figure 4-4. Connecting the Probe to the Emulator

Using the External Analyzer 4-5

Connecting Probe Wires to the Target System

Caution Turn OFF target system power before connecting analyzer probe
wires to the target system. The probe grabbers are difficult to handle
with precision, and it is extremely easy to short the pins of a chip (or
other connectors which are close together) with the probe wire while
trying to connect it.

You can connect the grabbers to pins, connectors, wires, etc., in the tar-
get system. Pull the hilt of the grabber towards the back of the grabber
handle to uncover the wire hook. When the wire hook is around the
desired pin or connector, release the hilt to allow the tension of the
grabber spring to hold the connection. (See figure 4-5.)

Using the External Analyzer 4-6

Figure 4-5. Connecting Probe to the Target System

Using the External Analyzer 4-7

Specifying External
Trace Signal

Threshold Voltages

The external analyzer probe signals are divided into two groups: the
lower byte (channels 0 through 7 and the J clock), and the upper byte
(channels 8 through 15 and the K clock). You can specify a threshold
voltage for each of these groups. The default threshold voltages are
specified with the keyword TTL which translates to 1.4 volts.

Use the xtv (threshold voltage for external trace signals) command to
specify different threshold voltages. The -l option to xtv allows you to
specify threshold voltages for the lower group. The -u option allows
you to specify threshold voltages for the upper group. Voltages may be
in the range from -6.4 volts to 6.35 volts (with a 50mV resolution); you
may also use the keywords TTL , CMOS (which translates to 2.5 volts),
or ECL (which translates to -1.3 volts). The command below specifies
ECL threshold voltages for all external trace signals.

 R> xtv -l ECL -h ECL

Defining External
Trace Labels

Defining external trace labels is not something you must do before you
can use the external analyzer; however, it is something you may wish to
do to make specifying qualifiers easier. External trace labels may be
used in any of the external analyzer modes.

One external trace label has been predefined, xbits. This label is associ-
ated with all 16 external trace signals. This label appears in the default
trace format and listing.

If you wish to define external trace labels to further break down the ex-
ternal signals, use the xtlb (external trace label) command as shown be-
low.

 R> xtlb iodata 0..7
 R> xtlb ioaddr 8..11
 R> xtlb iostat 12..14
 R> xtlb intr 15

You may change the trace listing format (xtf or tf) to include external
trace labels after they have been defined.

Using the External Analyzer 4-8

Selecting the
External Analyzer

Mode

By default, on power-up or after trace initialization (tinit), the external
analyzer is aligned with the emulator. In this mode, you have 16 exter-
nal trace signals which are clocked with the same signal(s) as the emula-
tion analyzer. The external trace signals may be used to capture target
system signals synchronized with the emulation clock.

The external analyzer may also operate as an independent state ana-
lyzer, or it may operate as an independent timing analyzer if a host com-
puter interface program is used. In the Terminal Interface, use the
xtmo (external trace mode) command to select the independent state
mode or to re-select the emulation mode. The -s option to xtmo is
used to select the independent state analyzer mode.

 R> xtmo -s

To re-select the emulation analyzer extension mode, use the -e option
to the xtmo command.

 R> xtmo -e

Aligned with
Emulation
Analyzer

When xtmo -e is specified (which is the default), the external analyzer
becomes an extension of the emulation analyzer. In other words, they
operate as one analyzer. The only external trace commands allowed in
this mode are xtv, xtlb, and xtmo. You can, however, display the help
text for the other external trace commands. The external labels may be
referenced in emulation trace commands in this mode.

External trace signal data is captured on the trace clock specified in the
tck (trace clock source) command. You should not use the external J
and K signals to clock the emulation trace; however, you may wish to
use these signals to qualify the emulation trace clock (refer to the
"Qualifying Clocks" section of the "Special Analyzer Topics" chapter.)

Using the External Analyzer 4-9

Independent
State Analyzer

When xtmo -s is specified, the external analyzer operates as an inde-
pendent state analyzer. The independent state analyzer is identical to
the emulation analyzer, except that only 16 bits of analysis are available.
Your HP 64700 Series emulator now contains two state analyzers; two
sets of analyzer resources (trace memory, patterns, qualifiers, etc.) are
available, one for the emulation analyzer and one for the independent
state analyzer.

When the independent state analyzer mode is selected, you can use one
analyzer to arm the other. You can specify the arm condition as a
qualifier, perhaps as the trigger condition (cross-triggering). (Refer to
the "Making Coordinated Measurements" chapter for more informa-
tion on cross-triggering.)

Independent State
Analyzer Commands

(xt, xtarm, ...)

When you use the external analyzer as an independent state analyzer, a
whole new set of external trace commands become available. Every
trace command (except for the trace activity, ta, and trace initialization,
tinit , commands) is duplicated for the independent state analyzer and
prefixed with an x. For example, the following commands become
available in the independent state mode: xt, xtarm, xtcf, xtck, xtcq,
xtelif, xtg, xth, xtif , xtl, xtlb, xtp, xtpat, xtpq, xtrng, xts, xtsck, xtsq, and
xtsto. These commands operate identically to their counterpart emula-
tion analyzer commands.

Using the External Analyzer 4-10

Specifying the
Independent

Analyzer Clock
Source

The clock source for the independent state analyzer is specified with
the xtck (external trace clock) command. The independent state ana-
lyzer may be clocked with target system clock signals connected to the
JCL and KCL external clock inputs. (Refer to the "Selecting Clock Sig-
nals" section of the "Special Analyzer Topics" chapter).

Independent Analyzer Slave Clocks

You can specify slave clocks for the external analyzer with the xtsck (ex-
ternal trace slave clock) command. Specifying slave clocks is the same
for the external analyzer as it is for the emulation analyzer; refer to the
"Using Slave Clocks for Demultiplexing" section of the "Special Ana-
lyzer Topics" chapter.

Independent
Timing Analyzer

When xtmo -t is specified, the external analyzer operates as an inde-
pendent timing analyzer.

Note The external analyzer’s independent timing mode cannot be used
from the Terminal Interface. A host computer interface is necessary
to provide timing analysis. Consequently, independent timing analysis
is not described in this manual. Refer to the appropriate host com-
puter interface analyzer manual (either the PC Interface: Analyzer
User’s Guide or the Softkey Interface: Analyzer User’s Guide).

Using the External Analyzer 4-11

External Analyzer
Specifications

• Threshold Accuracy = + /- 50 mV.

• Dynamic Range = + /- 10 V about threshold setting.

• Minimum Input Swing = 600 mV pp.

• Minimum Input Overdrive = 250 mV or 30% of threshold setting,
whichever is greater.

• Absolute Maximum Input Voltage = + /- 40 V.

• Probe Input Resistance = 100K ohms + /- 2%.

• Probe Input Capacitance = approximately 8 pF.

• Maximum + 5 Probe Current = 0.650 A.

• + 5 Probe Voltage Accuracy = + 5.0 + /- 5%.

External State Analyzer Specifications

• Data Setup Time = 10 nS min.

• Data Hold Time = 0 nS min.

• Qualifier Setup Time = 20 nS min.

• Qualifier Hold Time = 5 nS min.

• Minimum Clock Width = 10 nS

• Minimum Clock Period:

— No Tagging Mode = 40 nS (25 Mhz clock).

— Event Tagging Mode = 50 nS (20 MHz clock).

— Time Tagging Mode = 60 nS (16 MHz clock).

• Minimum Time from Slave Clock to Master Clock = 10 nS.

• Minimum Time from Master Clock to Slave Clock = 50 nS.

Using the External Analyzer 4-12

5

Making Coordinated Measurements

Introduction Coordinated measurements are measurements synchronously made in
multiple emulators or analyzers. Coordinated measurements can be
made between HP 64700 Series emulators which communicate over
the Coordinated Measurement Bus (CMB). Coordinated measure-
ments can also be made between an emulator and some other instru-
ment connected to the BNC connector. These types of coordinated
measurements, that is, measurements which involve signals external to
an HP 64700 Series emulator, are described in the Coordinated Meas-
urement Bus Operating Manual.

This chapter will describe coordinated measurements which are made
internal to an HP 64700 Series emulator and which involve the HP
64700 Series analyzer. The types of coordinated measurements involv-
ing the analyzer which can be made internal to an HP 64700 series emu-
lator are:

• Breaking into the monitor on an analyzer trigger.

• Using the emulation analyzer to arm the external analyzer (in an in-
dependent mode).

• Using the external analyzer (in an independent mode) to arm the
emulation analyzer.

The last two instances above are referred to as cross-arming. When
arm conditions are used to trigger an analyzer, cross-triggering takes
place. Cross-triggering is a subset of cross-arming.

Arm conditions may also be used to qualify primary and secondary
branches, as well as storage or prestore qualifiers.

Making Coordinated Measurements 5-1

An arm condition may not be used as a count qualifier.

Specifying an Arm
Condition

By default, the analyzer is always armed. This means that the analyzer
arm condition is always true. The tarm (trace arm condition) com-
mand is used to specify or display the arm condition. The tarm com-
mand with no options will display the current arm condition.

 R> tarm
 tarm always

There are two internal signals, trig1 and trig2, which may be specified
as the arm condition. You can specify that the arm condition be true
when one of these two signals is true (= trig1 or = trig2) or when one of
these two signals is false (!= trig1 or != trig2). The command below
will arm the emulation analyzer when trig1 is true.

 R> tarm =trig1

The xtarm (external trace arm condition) command is used to specify
the external analyzer arm condition when in the independent state or
independent timing modes. The command below will cause the exter-
nal analyzer to be armed when the trig2 signal is false.

 R> xtarm !=trig2

The keyword arm may be used to specify primary and secondary
branch qualifiers, as well as storage or prestore qualifiers. The keyword
arm may not be used to specify a count qualifier. For example, to trig-
ger the emulation analyzer when it becomes armed, enter the com-
mand below.

 R> tg arm

Arm Condition Status

The ts (trace status) command displays information on the arm condi-
tion. If the tarm condition is specified as always, the message "Arm ig-
nored" is displayed. If the tarm condition is specified as one of the in-
ternal signals, either the message "Arm not received" or "Arm received"
is displayed. The display indicates if the arm condition happened any

Making Coordinated Measurements 5-2

time since the most recent trace started, even if it happened after the
trace was halted or became complete.

The "Arm to trigger" line displays the amount of time between the arm
condition and the trigger. The time displayed will be from 0.04 uS to
41.943 mS, less than 0.04 uS, or greater than 41.943 mS. If the arm sig-
nal is ignored or the trigger is not in memory, a question mark (?) is dis-
played.

Driving Signals
When the Trigger is

Found

The default condition of the analyzer specifies that neither the emula-
tion analyzer nor the external analyzer will drive the internal trig1 or
trig2 signals when the trigger is found. The tgout command is used to
specify that these signals be driven when the emulation analyzer trigger
is found. The tgout command with no options will display the signal
which is currently being driven when the trigger is found (or none if no
signal is driven when the trigger is found).

 R> tgout
 tgout none

The signals which may be driven when the trigger is found are the inter-
nal signals trig1 and trig2. These signals may be received by the CMB
or BNC TRIGGER lines, the emulator break, or the arm condition of
the external analyzer. The following command will cause the trig1 sig-
nal to be driven when the emulation analyzer trigger is found.

 R> tgout trig1

The xtgout command is used to specify which signal (trig1 or trig2) is to
be driven when the external analyzer trigger is found. The keyword
none is again used to specify that no signal should be driven. The com-
mand below specifies that trig2 be driven when the external analyzer
trigger is found.

 R> xtgout trig2

A diagram of the internal signals and the commands which may be used
to drive them or to arm an analyzer with them are shown in figure 5-1.
This diagram is only intended to show logical connections, and does not
represent actual circuitry inside the emulator.

Making Coordinated Measurements 5-3

Figure 5-1. Coordinated Measurements

Making Coordinated Measurements 5-4

Breaking on an
Analyzer Trigger

The bc (break conditions) command is used to enable or disable the
conditions which may break the emulator into the monitor. The inter-
nal signals trig1 and trig2 may be used to cause breaks to background.
Therefore, to cause an analyzer trigger to break the emulator, you must
specify that the analyzer drive one of the internal signals when the trig-
ger is found, and enable a break on that internal signal. For example,
the commands below will cause the emulation analyzer trigger to break
the emulator.

 R> tg any
 R> tgout trig1
 R> bc -e trig1
 R> r 400
 U> t
 Emulation trace started
 U> es
 80186--Running in monitor
 --in normal mode
 !ASYNC_STAT 618! trig1 break
 M>

After the break occurs, the analyzer will stop driving the trig line that
caused the break. Therefore, if trig1 is used both to break and to drive
the CMB TRIGGER (for example), TRIGGER will go true when the
trigger is found and then will go false after the emulator breaks. How-
ever, if trig1 is used to cause the break and trig2 is used to drive the
CMB TRIGGER, TRIGGER will stay true after the trigger until the
trace is halted or until the next trace starts.

Making Coordinated Measurements 5-5

Cross-Arming
Between
Emulation and
External Analyzers

Cross-arming between the emulation analyzer and the external ana-
lyzer is a matter of specifying that one analyzer drive one of the internal
signals (trig1 or trig2) and then specifying that the other analyzer be
armed on that signal. For example, to cause the external analyzer to
arm the emulation analyzer, the commands below are entered.

 R> xtmo -s
 R> xtgout trig1
 R> tarm =trig1

 R> tif 1 arm
 R> tif 2 addr=40f
 R> r 400

 U> t
 Emulation trace started
 U> xt
 External trace started

It is often important to start the analyzer which receives a signal before
the analyzer which drives the signal. For example, if you start the ana-
lyzer which drives a signal first, the signal may already be driven before
you start the analyzer which receives the signal. The receiving analyzer
will most likely capture states which execute long after the condition
which caused the signal to be driven.

Making Coordinated Measurements 5-6

To cause the emulation analyzer to arm the external analyzer, enter the
commands below.

 R> xtmo -s
 R> tgout trig1
 R> xtarm =trig1

 R> xtif 1 arm
 R> xtif 2 xbits=87
 R> r 400

 U> xt
 External trace started
 U> t
 Emulation trace started

Cross-Triggering Cross-triggering is a special case of cross arming in which the arm con-
dition triggers the analyzer. The commands below will cause the emula-
tion analyzer to trigger after it is armed by the external analyzer trigger
condition.

 R> xtmo -s
 R> xtgout trig1
 R> tarm =trig1
 R> tg arm

 U> t
 Emulation trace started
 U> xt
 External trace started

Making Coordinated Measurements 5-7

Notes

Making Coordinated Measurements 5-8

6

Special Analyzer Topics

Introduction This chapter describes analyzer topics which are not specifically related
to the "easy" or "complex" configurations, the external analyzer, or coor-
dinated measurements. The analyzer topics which fall into this cate-
gory are listed below and described in this chapter.

• Displaying trace activity.

• Specifying the analyzer clock source.

• Slave clocks and demultiplexing.

• Saving trace specifications in command files.

Displaying Trace
Activity (ta)

The ta (trace activity) command allows you to display the current status
of the analyzer trace signals. The trace activity display allows you to
view the status of trace signals at any time, regardless of whether a pend-
ing trace is completed or not. An example of the ta command and its
output is shown below.

Special Analyzer Topics 6-1

 U> ta
 Pod 3 = 01100100 100?000?
 Pod 2 = 11011101 ????????
 Pod 1 = 01??1??? 00000000
 External Pod = 0010?1?? 010??001

The trace signals are displayed in sets of sixteen. Pod 1 represents emu-
lation analyzer trace signals 0 through 15 (the least significant bit is on
the right). Pod 2 and Pod 3 represent emulation trace signals 16
through 31 and 32 through 48, respectively. External Pod represents
the external analyzer trace signals.

A trace signal is displayed as a low (0) when it is below the threshold
voltage (as specified by the xtv command), high (1) when it is above the
threshold voltage, or moving (?).

Specifying the
Analyzer Clock
Source (tck)

The emulation and external analyzers have default clock source values.
Use the tck (trace clock) command to specify or display the clock used
for the emulation analyzer. The xtck (external trace clock) command is
used to specify or display the clock used for the external analyzer. En-
tering the tck command with no options will display the current emula-
tion trace clock specification.

 R> tck
 tck -r L -u -s S

Tracing Background
Execution

By default, the analyzer traces user (that is, foreground) code; this is
specified by the -u option to the tck command. However, it is possible
to trace background code; this is specified by the -b option to the tck
command.

 R> tck -b
 R> tck
 tck -r L -b -s S

Special Analyzer Topics 6-2

Notice that the user/background option is a switch in the clock specifi-
cation. Changing the option as shown above does not affect the rest of
the trace clock specification. It is also possible to trace both user and
background code; this is accomplished by specifying both options in a
single tck command.

 R> tck -ub
 R> tck
 tck -r L -ub -s S

Selecting Clock
Signals

Three tck options may be used to select analyzer clock sources:

-r Specifies that the clock should take place on the rising edge of
the signal(s) which follow.

-f Specifies that the clock should take place on the falling edge of
the signal(s) which follow.

-x Specifies that the clock should take place on both edges of the
signal(s) which follow.

Five clock signals may be selected: J, K, L, M, and N. Clocks J and K
are the external clock inputs available when your emulator contains an
external analyzer. The external clock inputs should not be used to
clock the emulation analyzer; however, it may occasionally be useful to
use the external clock signals to qualify the emulation trace (see the
"Qualifying Clocks" discussion below).

The L, M, and N clock signals are generated by the emulator. Typically,
the L clock is the emulation clock derived by the emulator, the N clock
is used as a qualifier to provide the user/background tracing options (-u
and -b) to tck, and the M clock is not used.

When several clocks are specified, they are ORed; that is, each signal
specified will clock the analyzer.

Special Analyzer Topics 6-3

Specifying the
Maximum Qualified

Clock Speed

The maximum qualified clock rate is the repetition rate of all specified
clock signals (see figure 6-1). You are allowed to select the maximum
qualified clock speed of the analyzer; however, there are tradeoffs in-
volving the trace count qualifier to be considered. You select the maxi-
mum qualified clock speed with the -s option to the tck command.
There are three maximum speeds that can be specified:

• Slow (tck -s S). Slow specifies a maximum qualified clock rate of
16 MHz. When S is selected, there are no restrictions on the trace
count qualifier.

• Fast (tck -s F). Fast specifies a maximum qualified clock rate of 20
MHz. When "F" is selected, the trace count qualifier may be used
to count states but not time.

Figure 6-1. Qualified Clocks

Special Analyzer Topics 6-4

• Very Fast (tck -s VF). Very fast specifies a maximum qualified
clock rate of 25 MHz. When "VF" is selected, the trace count quali-
fier may not be used at all (in other words, tcq none).

Qualifying Clocks
(tck -l, -h)

The selected clock signals may be qualified with other clock signals;
that is, the selected signals may only clock the analyzer when the qualify-
ing clock signal is true. Clock signals are qualified by using the -l and -h
options to the tck command. The -l option is used to specify a qualify-
ing signal which only allows the trace to clock when this signal is lower
than the threshold voltage. The -h option is used to specify a qualifying
signal which only allows the trace to clock when this signal is higher
than the threshold voltage. Any signal, J, K, L, M, or N, may be used to
qualify other signals.

Note If several clock qualifiers are specified, the analyzer will be clocked if
any one is true. This applies to the user/background qualifier as well.
If you wish to use one of the external clocks as the only qualifier, you
must turn off the user/background qualifier; in other words, tck -ub.

Qualifier Setup and Hold Times of the External Analyzer

Qualifier setup time is approximately 25 nanoseconds when the exter-
nal analyzer is aligned with emulation analyzer (xtmo -e). Qualifier
setup time is approximately 20 nanoseconds when the external analyzer
operates as an independent state analyzer (xtmo -s). Qualifier hold
time is approximately 5 nanoseconds.

Special Analyzer Topics 6-5

Using Slave
Clocks for
Demultiplexing
(tsck)

There are two modes of demultiplexing that can be set for each 16-bit
pod: mixed clocks and true demultiplexing.

Emulation trace slave clocks are specified with the tsck (trace slave
clock) command. External analyzer slave clocks are specified with the
xtsck (external trace slave clock) command. (Master clocks are speci-
fied by the tck and xtck commands.) By default, the slave clocks are
turned OFF, as may be specified by the -o option to the tsck command.

Rising edges (-r), falling edges (-f), or both edges (-x) of clocks J, K, L,
M, or N may be specified as the slave clock.

Figure 6-2. Mixed Clock Demultiplexing

Special Analyzer Topics 6-6

Mixed Clocks The mixed clock mode is specified with the -m option to the tsck com-
mand. In this mode, the lower 8 channels of the pod (bits 0-7) are
latched with the slave clock, and the master clock gates the entire pod
(see figure 6-2).

If no slave clock has appeared since the last master clock, the data on
the lower 8 bits of the pod will be latched at the same time as the upper
8 bits. If more than one slave clock has appeared since the last master
clock, only the first slave data will be available to the analyzer (see fig-
ure 6-3).

Figure 6-3. Slave Clocks

Special Analyzer Topics 6-7

Figure 6-4. True Demultiplexing

Special Analyzer Topics 6-8

True Demultiplexing The true demultiplexing mode is specified with the -d option to the tsck
command. In this mode, the lower 8 channels of the pod (bits 0-7) are
latched with the slave clock; the upper 8 channels also get data from sig-
nals 0-7, but they are clocked with the master clock. Thus, the analyzer
gets two copies of bits 0-7. The slave clock latches the data for bits 0-7,
and the master clock then gates the entire pod into the analyzer (see fig-
ure 6-4).

If no slave clock has appeared since the last master clock, the data on
the lower 8 bits of the pod will be the same as the upper 8 bits. If more
than one slave clock has appeared since the last master clock, only the
first slave data will be available to the analyzer.

Saving Trace
Specifications in
Command Files

If you are using your emulator in the transparent configuration (in
other words, the emulator is connected between a terminal and a host
computer), you can save trace specifications to command files on the
host computer.

Example The following example makes several assumptions:

• A host computer running HP-UX (which you are currently logged
in to).

• The terminal is connected to port B, and the host computer is con-
nected to port A.

• The analyzer is in the "complex" configuration, and you have a
trace configuration which you wish to save.

Special Analyzer Topics 6-9

Because you may wish to save trace specifications at any time, it is a
good idea to create a macro containing the commands used to save the
trace specification.

 U> mac tsave={po -o a; echo "cat > tspec";w 1; tcf; tpat; trng; tsq; tpq; tcq; tp;
echo "#+#"; echo \04; po -o b}

The commands which make up the tsave macro do the following things:

po -o a; This command specifies that standard output
be sent to port A, in this case, the host com-
puter.

echo "cat > tspec";

This command will open a file on the host
computer. This file will receive the output of
the trace display commands which follow.

w 1; This command causes the emulation system
to wait for one second to ensure that the "cat
> tspec" command has time to set up on the
host.

tcf; tpat; trng;
tsq; tpq; tcq; tp; These commands send the current trace

specification to the standard output.

echo "# + # "; This command sends the "# + # " command
file terminator string to the standard output.
The terminator string is used when you use
the command file to respecify the trace.

echo \04; This command sends a < CTRL> d end of
file character to the host computer to close
the "tspec" file.

po -o b; This command specifies that standard output
be sent to port B, in this case, the terminal.

After the macro has been defined, you can save the current trace speci-
fication by entering the name of the macro as you would any other com-
mand.

Special Analyzer Topics 6-10

 U> tsave
 # po -o a;echo "cat > tspec";w 1;tcf;tpat;trng;tsq;tpq;tcq;tp;echo "#+#";echo
\04;po -o b
 U>

After tsave has executed, there exists a file called "tspec" on the host
computer which contains the trace specification. To use the command
file to load the trace specification enter the po (port control) command
with the -s option.

 U> po -s "cat tspec"

 # waiting for 1 second....
 tcf -c
 tpat p1 addr=489
 tpat p2 addr=5ff and data=39xx and stat=mw
 tpat p3 addr=45a
 tpat p4 addr=5ff and stat=mw
 tpat p5 data!=39xx
 tpat p6 addr=5fe and data=0xxf7 and stat=mw
 tpat p7 any
 tpat p8 any
 trng addr=5f8..5ff
 tif 1 p1 2
 tif 2 p2 3
 tif 3 p3 4
 tif 4 never
 tif 5 any 6
 tif 6 any 7
 tif 7 any 8
 tif 8 never
 tsq -t 4
 tsto 1 none
 tsto 2 all
 tsto 3 all
 tsto 4 all
 tsto 5 none
 tsto 6 none
 tsto 7 none
 tsto 8 none
 telif 1 never
 telif 2 p3 1
 telif 3 p4 and p5 2
 telif 4 never
 telif 5 never
 telif 6 never
 telif 7 never
 telif 8 never
 tpq none
 tcq time
 tp -a 10
 #+#
 U>

Special Analyzer Topics 6-11

Notes

Special Analyzer Topics 6-12

Index

A absolute count display, 2-15
absolute files, loading, 2-6
addr (predefined trace label), 2-11
analyzer probe

assembling, 4-3
connecting to the emulator, 4-4
connecting to the target system, 4-6

arm condition, specifying, 5-2

B background execution, tracing, 6-2
bases (number), 2-11
bc (break conditions) command, 3-29
BNC connector, 5-1
branch expression

primary, 2-25/2-26
secondary, 2-25/2-26

C clock speed, maximum qualified, 6-4
clocks

master, 6-7
qualifying, 6-5
See also: slave clocks
specification, 6-2

CMB (coordinated measurement bus), 5-1
CMOS (keyword for specifying threshold voltages), 4-8
command files

saving trace specifications, 6-9
terminator string, 6-10

complex configuration
definition, 3-2
how trace commands change, 3-7

configuration
See: trace configuration

coordinated measurements, 1-4

Index-1

definition, 5-1
count qualifier, 2-22
counts

displaying relative or absolute, 2-15
See also: occurrence counts

cross-arming, 5-1, 5-6
cross-triggering, 5-1, 5-7

D data (predefined trace label), 2-11
DeMorgan’s law, 3-6
demultiplexing

mixed clocks mode, 6-7
true demultiplexing mode, 6-9
using slave clocks for, 6-6

disassembly, 2-9

E easy configuration
definition, 3-2

ECL (keyword for specifying threshold voltages), 4-8
emulation analyzer

definition, 1-1
emulator prompts, 2-2
emulator status lines, predefined equates for, 2-13
equ (specify equates) command, 2-13, 3-23
equates, predefined for emulator status, 2-13
expression operators, 2-12
expressions, 2-10

in the complex configuration, 3-3
external analyzer, 1-3

clock specification, 6-2
definition, 1-1
extension to emulation analyzer, 4-9
independent state analyzer, 4-10
independent state commands, 4-10
independent timing analyzer, 4-11
selecting the mode, 4-9
setup and hold times, 6-5
slave clocks, 6-6
specifications, 4-12
timing mode unavailable in Terminal Interface, 4-1

Index-2

trace trigger output, 5-3
using, 4-1

F features of the analyzer, 1-1
format of trace list, 2-14

G global restart, 2-24/2-25
global set operators, 3-5
grabbers

connecting to analyzer probe, 4-3

H halting the trace, 2-7
hold times for external analyzer, 6-5

I initializing the analyzer, 2-7
instruction queues, 2-9
interset operators, 3-5
intraset operators, 3-5
isolating program bugs, 3-28

L labels
See: trace labels

listing the trace, 2-8
loading absolute files, 2-6

M mac (macros) command, 3-28, 6-9
mapping memory, 2-5
master clocks, 6-7
memory mapping, 2-5
mixed clocks demultiplexing mode, 6-7
mnemonic information, 2-9

N number bases, 2-11

O occurrence counts, 2-18
operators

expression, 2-12
interset, 3-5
intraset, 3-5

Index-3

P patterns (trace), 3-3
defining, 3-21
limitations of combining, 3-6

pipelined architecture, 2-9
po (port control) command, 6-10
predefined equates for emulator status, 2-13
predefined trace labels, 2-11
prestore, 2-20
prestore qualifier, 2-20
primary branch expression, 2-25/2-26

difference between easy and complex configuration, 3-3
probe

See: analyzer probe
prompts, 2-2

Q qualified clock speed
maximum, 6-4

qualifier
clock, 6-2
count, 2-22
prestore, 2-20
primary branch, 2-25
secondary branch, 2-25
simple trigger, 2-16
slave clock, 6-6
storage, 2-19

R range (trace), 3-4
relative count display, 2-15
run command (r), 2-6

S secondary branch expression, 2-25/2-26
difference between easy and complex configuration, 3-3

sequence terms, 2-23
definition, 1-3
difference between easy and complex configuration, 3-2

sequencer, 1-3
algorithm, 3-17
default specification, 2-24
default specification in the complex configuration, 3-13

Index-4

deleting terms, 2-29
drawing the diagram, 3-21
hints for setting up in the complex configuration, 3-17
inserting terms, 2-29
resetting, 2-24
simple trigger specification, 2-25
using, 2-23

setup times for external analyzer, 6-5
simple measurements, 1-3
simple trigger

in the complex configuration, 3-14
in the easy configuration, 2-16

slave clocks, 6-6
specifications of external analyzer, 4-12
starting the trace, 2-7
startup, tracing a program on, 2-32
stat (predefined trace label), 2-11
status

See: trace status
status lines, predefined equates for, 2-13
storage (trace), 1-3
storage qualifier, 2-19

difference between easy and complex configuration, 3-3

T t (start trace) command, 2-7
ta (trace activity) command, 6-1
tarm (trace arm condition) command, 5-2
tcf (trace configuration) command, 3-12
tck (trace clock) command, 6-2
tcq (trace count qualifier) command, 2-22

in the complex configuration, 3-7
telif (secondary branch expression) command, 2-25/2-26

in the complex configuration, 3-7
terminator string for command files, 6-10
tf (trace format) command, 2-14
tg (simple trigger) command

in the complex configuration, 3-7, 3-14
tg (specify simple trigger) command, 2-16
tgout (trace trigger output) command, 5-3
th (trace halt) command, 2-7

Index-5

threshold voltages, specifying, 4-8
tif (primary branch expression) command, 2-25/2-26
tif (primary branch expressions) command

in the complex configuration, 3-7
tinit (trace initialization) command, 2-7
tl (trace list) command, 2-8
tp (trigger position) command, 2-30
tpat (trace patterns) command, 3-3
tpq (trace prestore qualifier) command, 2-20

in the complex configuration, 3-8
trace

clock specification, 6-2
count qualifier, 2-22
displaying activity, 6-1
halting the, 2-7
listing format, 2-14
listing the, 2-8
patterns (in complex configuration), 3-3
prestore qualifier, 2-20
range (in complex configuration), 3-4
saving specifications in command files, 6-9
starting the, 2-7
storage qualifier, 2-19
trigger output, 5-3
trigger position, 2-30

trace configuration
complex or easy, 3-2
selecting complex, 3-12

trace format
default, 2-15

trace labels
defining external, 4-8
predefined, 2-11

trace status, 2-7
trig1 and trig2 internal signals, 5-2
trigger

breaking to the monitor on, 5-5
definition, 1-1
difference between easy and complex configuration, 3-2
driving signals when found, 5-3

Index-6

easy configuration, 2-25
simple complex configuration specification, 3-14
specifying a simple, 2-16

trigger condition, 2-25
trigger position, 2-30

accuracy of, 2-31
trigger term, 3-2
trng (trace range) command, 3-4
ts (trace status) command, 2-7

arm information, 5-3
occurrence left information, 2-28
sequence term information, 2-28

tsck (trace slave clock) command, 6-6
tsq (trace sequencer specification) command

in the complex configuration, 3-8
tsto (trace storage qualifier) command, 2-19

in the complex configuration, 3-8
TTL (keyword for specifying threshold voltages), 4-8

V values in trace expressions, 2-11
voltages, specifying threshold, 4-8

W w (wait) command, 3-29, 6-10
windows of activity, using the analyzer to trace, 3-23

X xbits (predefined external trace label), 2-11
xtarm (external trace arm condition) command, 5-2
xtck (external analyzer clock) command, 4-11
xtck (external trace clock) command, 6-2
xtgout (external trace trigger output) command, 5-3
xtlb (external trace label) command, 4-8
xtmo (external trace mode) command, 4-9
xtsck (external trace slave clock) command, 6-6
xtv (threshold voltage for external trace signals), 4-8

Index-7

Notes

Index-8

	Using this Manual
	Contents
	Introducing the HP 64700 Series Analyzer
	Getting Started
	Accessing Full Analyzer Capability
	Using the External Analyzer
	Making Coordinated Measurements
	Special Analyzer Topics
	Index

