
HP 64753

Z80 Emulator
Softkey Interface

User’s Guide

HP Part No. 64753-97000
Printed In U.S.A.
June, 1990

Edition 2

Certification and Warranty

Certification Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory.
Hewlett-Packard further certifies that its calibration measurements are
traceable to the United States National Bureau of Standards, to the
extent allowed by the Bureau’s calibration facility, and to the
calibration facilities of other International Standards Organization
members.

Warranty This Hewlett-Packard system product is warranted against defects in
materials and workmanship for a period of 90 days from date of
installation. During the warranty period, HP will, at its option, either
repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer’s facility
at no charge within HP service travel areas. Outside HP service travel
areas, warranty service will be performed at Buyer’s facility only upon
HP’s prior agreement and Buyer shall pay HP’s round trip travel
expenses. In all other cases, products must be returned to a service
facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay
shipping charges to HP and HP shall pay shipping charges to return the
product to Buyer. However, Buyer shall pay all shipping charges,
duties, and taxes for products returned to HP from another country. HP
warrants that its software and firmware designated by HP for use with
an instrument will execute its programming instructions when properly
installed on that instrument. HP does not warrant that the operation of
the instrument, or software, or firmware will be uninterrupted or error
free.

Limitation of Warranty The foregoing warranty shall not apply to defects resulting from
improper or inadequate maintenance by Buyer, Buyer-supplied
software or interfacing, unauthorized modification or misuse, operation
outside of the environment specifications for the product, or improper
site preparation or maintenance.

No other warranty is expressed or implied. HP specifically
disclaims the implied warranties of merchantability and fitness for
a particular purpose.

Exclusive Remedies The remedies provided herein are buyer’s sole and exclusive
remedies. HP shall not be liable for any direct, indirect, special,
incidental, or consequential damages, whether based on contract,
tort, or any other legal theory.

Product maintenance agreements and other customer assistance
agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and
Service Office.

Notice

Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1989, 1990, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the
prior written consent of Hewlett-Packard Company. The information
contained in this document is subject to change without notice.

IBM and PC AT are registered trademarks of International Business
Machines Corporation.

MS-DOS is a trademark of Microsoft Corporation.

UNIX is a registered trademark of AT&T.

Hewlett-Packard Company
Logic Systems Division
8245 North Union Boulevard
Colorado Springs, CO 80920, U.S.A.

Printing History

New editions are complete revisions of the manual. The date on the
title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was issued.
Many product updates and fixes do not require manual changes, and
manual corrections may be done without accompanying product
changes. Therefore, do not expect a one-to-one correspondence
between product updates and manual revisions.

Edition 1 64753-90902, January 1989 E0189

Edition 2 64753-97000, June 1990

Using this Manual

Organization Introducing the Z80 Softkey Interface - Chapter 1

Getting Started - Chapter 2

Configuring the Emulator - Chapter 3

Using the Emulator - Chapter 4

Index

Use this manual with the Softkey Interface Reference.

Conventions Used Examples in this manual use these conventions:

run from START <RETURN>

run from Softkeys are in bold italic type.

START Entries you make are in normal text.

step Bold type signifies commands and options in
text.

<RETURN> Press the keyboard Return key.

Where to Start Follow the diagram below to decide where to start.

Refer to the Maps The HP 64700-Series Manual Maps also can help you get started. The
maps are in the package marked Read Me First.

Contents

1 Introducing the Z80 Softkey Interface

Introduction . 1-1
About the Z80 Emulator . 1-1

Emulator Features . 1-2
In-Circuit versus Out-of-Circuit 1-2
Tasks Performed by the Emulator 1-2
Real-Time versus Nonreal-Time 1-3

Restricted to Real-Time . 1-4
Nonreal-Time . 1-4

Activity Occurring while Your Program Runs 1-4
Precautions while Using the Emulator 1-5

Power Down Target System . 1-5
Verify User Probe Orientation 1-5
Protect Against Static Discharge 1-5

Getting Help . 1-5
Before Getting Started . 1-6

2 Getting Started

Introduction . 2-1
Overview of the Emulation Process 2-1

An Example for Getting Started 2-1
Example Program . 2-2

Function of the Example Program 2-2
Copy the Example Program 2-3

Assemble the Example Program 2-3
Link the Example Program . 2-3
Access the Emulator . 2-4

From the HP-UX shell . 2-4
From the Measurement System 2-5
Using the Softkeys . 2-5

Map Memory . 2-6
Create a Command File . 2-8
Use the Emulator . 2-8

Load and Run the Example Program 2-9

Contents-1

Observe Registers . 2-12
Single-step Through the Program 2-13
Trace Program Execution 2-14

Observe the Command File 2-15
Use the Command File . 2-16
End the Emulation Session 2-16

Release the Emulation System 2-17
Continue the Session Later 2-17
Keep the Emulator Locked 2-17
Select Another Measurement System 2-17
Emulator Operation After an end Command 2-17

How to Enter Numeric Values 2-18

3 Configuring the Emulator

Introduction . 3-1
When to Modify the Emulation Configuration 3-1
Emulation Configuration Questions 3-2

How to Modify the Configuration 3-2
Microprocessor clock source? 3-4
Enter monitor after configuration? 3-4
Restrict to real-time runs? . 3-5
Modify memory configuration? 3-5

Mapping Memory . 3-6
Modify emulator pod configuration? 3-6

Enable BUSREQ input from target system? 3-7
Respond to target system Maskable Interrupt? 3-8
Respond to target system Non-Maskable Interrupt? 3-9
Enable quick-break mode? 3-9
Enable WAIT input during emulation
 memory accesses? . 3-10
Write data to target system during
 emulation memory reads? 3-10
Drive background cycles to target system? 3-10
Value for address bits A15-A12 during
 background cycles? . 3-11

Modify debug/trace options? 3-11
Break processor on write to ROM? 3-11
Trace background or foreground operation? 3-11
Trace refresh cycles? . 3-12
Trace busack cycles? . 3-12

Modify simulated I/O configuration? 3-12

2-Contents

Enable polling for simulated I/O? 3-13
Simio control address 1? 3-13
File used for standard input? 3-13
File used for standard output? 3-13
File used for standard error? 3-14
Enable simio status messages? 3-14

Modify external analyzer configuration? 3-14
Modify interactive measurement specification? 3-14

Do you want to modify the interactive measurement
specification? . 3-15
Should BNC drive or receive Trig1? neither 3-16
Should CMBT drive or receive Trig1? neither 3-16
Should BNC drive or receive Trig2? neither 3-16
Should CMBT drive or receive Trig2? neither 3-16
Should Emulator break receive Trig2? no 3-16
Should Analyzer drive or receive Trig2? neither 3-16

Configuration file name? . 3-17
How to Load a Configuration File 3-17

4 Using the Emulator

Introduction . 4-1
Using the Emulator Out-of-Circuit 4-2
Using the Emulator In-Circuit . 4-3

Real-Time Operation Restrictions 4-4
Load Files . 4-4
Displaying Symbols . 4-5

Global . 4-6
Local . 4-7
Displaying Data . 4-8

Run a Program . 4-8
Trace Program Execution . 4-9

Stop a Trace . 4-10
Display Emulation Resources 4-11

Display Memory . 4-11
Display Registers . 4-14
Display Software Breakpoints 4-17
Display I/O Ports . 4-18

Step through a Program . 4-20
Modify Emulation Resources . 4-22

Modify Memory . 4-22
Modify Registers . 4-24

Contents-3

Modify Software Breakpoints 4-26
Modify I/O Ports . 4-28
Modify the Configuration . 4-28

Storing Information . 4-28
Copying to the Printer . 4-29
Other Commands that Control the Emulator 4-29

Reset the Emulator . 4-29
Send CMB EXECUTE to the CMB 4-30
Specify a Run or Trace . 4-30
Execute a Pod Command . 4-30
Make Performance Measurements 4-30
Wait . 4-31

Index

Illustrations

Figure 2-1. Example Z80 Program (getstart.S) 2-2
Figure 3-1. Should You Modify the Configuration? 3-3
Figure 3-2. Emulation and Target System Memory 3-7
Figure 3-3. Example Memory Map 3-8
Figure 3-4. Modify Interactive Measurements 3-15
Figure 4-1. Using the Emulator Out-of-Circuit 4-2
Figure 4-2. Using the Emulator In-Circuit 4-3

4-Contents

1

Introducing the Z80 Softkey Interface

Introduction The Z80 Emulator Softkey Interface allows you to operate the HP
64753 Z80 Emulator by pressing softkeys. The Softkey Interface
operates on the HP 9000 host computer.

If you have used HP emulators previously, you may find that operating
this product is similar. They are all softkey-driven.

About the Z80
Emulator

The HP 64753 Z80 Emulator is an 8-bit emulator that replaces the Z80
microprocessor in your target system. You may use the emulator for
software development of your programs before your target system is
completed. You can execute your programs on the emulator with
complete control of memory and registers. You can analyze and debug
your programs by making trace measurements using the emulation
analyzer.

The Z80 emulator performs just like the Z80 microprocessor. You
control the emulator from a terminal, personal computer (PC), or HP
9000 host computer. You can access and modify emulation and target
system registers and locations or blocks of memory with the emulator.
You also can step through programs to execute the code
instruction-by-instruction.

When target system hardware is complete, you can use the emulator
(either separately or with other products) to integrate the target system
hardware and software.

Introducing the Z80 Softkey Interface 1-1

Emulator Features These are the features of the HP 64753 Z80 Emulator:

Reset and run/stop control of the emulator.

Software control of target system memory mapping.

Symbolic debugging capability with both assembly and
high-level language programs.

Real-time emulation without wait states.

Simulated I/O for emulator access to the HP 9000 resources
(disk files, printer, keyboard, display and RS-232 port).

Fast downloading of programs into emulation and/or target
system memory.

Analysis for complex program tracing and debugging.

In-Circuit versus
Out-of-Circuit

Chapter 4 contains explanations of in-circuit and out-of-circuit
emulation, and examples of how to use the emulator.

Tasks Performed by
the Emulator

The emulator can help you with software and hardware debugging and
system integration. You accomplish these tasks using the basic
emulator features listed and described in table 1-1.

Task Description

Program Download and Execution Programs developed on the host computer or PC
(using an editor, and compiler or assembler and
linker) can be downloaded to memory using the
emulator.

1-2 Introducing the Z80 Softkey Interface

Task Description

Run and Stop Controls Programs may be executed from address or
symbolic locations. The emulator stops running
when you cause it to break into background with the
break command, or when you reset the emulation
processor with the reset command.

Memory Display and Modify You can display and modify locations or blocks of
emulation or target system memory.

Register Display and Modify You can display and modify the contents of
emulation processor and target system registers.

Analysis You can capture and display activity on the
emulation processor bus using the emulation
analyzer.

Program Stepping You can execute a user program one or more
instructions at a time, and observe the contents of
registers between instruction executions.

Memory Mapping You can map any or all of the emulation processor
address space to 256-byte blocks of emulation RAM
or ROM, or user RAM or ROM, or guarded memory.

Memory Characterization User and emulation memory can be configured as
RAM or ROM. You can define memory as ROM to
test ROM code without using ROM hardware.

Breakpoint Generation and
Error Detection

The emulator transfers program execution to
background when it encounters a software
breakpoint or illegal opcode during writes to ROM
and guarded memory accesses.

Clock Source Selection You can select to use the internal emulation clock or
the target system clock as the clock source for the
emulator.

Real-Time versus
Nonreal-Time

Two modes are available for operating the emulator: real-time and
nonreal-time. Real-time refers to the continuous execution of the target
system program without interference from the host computer, except

Introducing the Z80 Softkey Interface 1-3

by your request. Interference occurs when you break emulator
execution to background, or when a break occurs automatically.
Whenever the emulator is running in background it is no longer
executing your program in real-time.

Restricted to Real-Time

Emulator features performed in real-time mode include running and
tracing.

Nonreal-Time

When the emulator is not restricted to real-time operation, it can
perform all other tasks while your program is running, by temporarily
breaking to the monitor. These tasks include memory accesses
(displaying, loading, modifying, and storing), register accesses
(displaying and modifying), single-stepping, and symbol accesses
(displaying). (Memory accesses to emulation memory do not require a
break to the monitor and therefore can be performed in real time.)

Activity Occurring
while Your
Program Runs

While your program runs, several things are happening. As the
emulation processor generates address information for each cycle:

If the memory mapper identifies a target system resource with
the current address, the data path buffers between the target
system and the emulation processor are enabled.

If the address was mapped to emulation resource space, the
data path buffers between the emulation processor and the
emulation bus resources are enabled.

The emulation analyzer observes activity on the emulation
bus. It stores the program flow, which you can display later
without interrupting the real-time flow of the program.

1-4 Introducing the Z80 Softkey Interface

For information about the timing specifications of the Z80 emulator,
refer to the Z80 Terminal Interface User’s Guide .

Precautions while
Using the
Emulator

You should take the following precautions while using
Hewlett-Packard emulators. Damage to the emulator circuitry may
result if these precautions are not observed.

Power Down Target
System

Turn off power to the target system and the emulation system before
inserting the user probe. This helps to avoid circuit damage that can
result from voltage transients or improperly inserting the probe.

Verify User Probe
Orientation

Make sure to properly align pin 1 of the target system microprocessor
socket and pin 1 of the user probe before inserting the probe into the
socket. Failure to do so may result in damage to the emulator circuitry.

Protect Against
Static Discharge

The emulator contains devices that are susceptible to damage by static
discharge. Therefore, you should take precautionary measures before
handling the user probe to avoid emulator damage.

Getting Help If you need help using the Z80 emulator at any time, enter:

help <HELP_FILE> <RETURN>

The help file names will appear on the softkey labels. When you select
one of these help files, information about that topic will appear on the
screen.

Introducing the Z80 Softkey Interface 1-5

Note You can use a question mark (?) for the word “help” when accessing
information about the emulator.

Before Getting
Started

Before you begin using the Z80 emulator, make sure that you have
completed the following preparation steps:

1. Connect the emulator to the host computer. Refer to the HP
64700-Series Emulators Softkey Interface Installation Notice
and the HP 64700-Series Emulators Hardware Installation
and Configuration manual.

Note If you are using the HP 98659A High-Speed RS-422 Interface Card,
and have any problems with it, refer to the Installation Notice for the
HP 64700-Series Emulators Softkey Interface, and the Installation
Guide provided with the HP 98659A.

2. Install the Softkey Interface software on your host computer.
Refer to the HP 64700-Series Emulators Softkey Interface
Installation Notice for details.

3. Review the HP 64700-Series Emulators System Overview and
Softkey Interface Reference manuals. These should give you
an understanding of HP 64700-Series emulators and the
Softkey Interface.

When you are finished, continue to the next chapter to get started using
the emulator.

1-6 Introducing the Z80 Softkey Interface

2

Getting Started

Introduction This chapter contains procedures to help you learn to use the emulator.
The topics in this chapter include:

An overview of the emulation process.

An example for getting started.

Overview of the
Emulation Process

The overview of emulation process outlines what you need to do to use
your Z80 emulator. The Softkey Interface Reference elaborates on this
process.

Step Explanation

Prepare the software. Create, assemble, and link your Z80 programs.
Correct any errors that occur.

Prepare the emulator. Modify the emulation configuration and the
/usr/hp64000/etc/64700tab file to suit your needs.

Use the emulator and analyzer. Load a program into the emulator and run it. Use
the analyzer to trace program execution.

An Example for
Getting Started

This example should help you become more familiar with how to
operate the Z80 Emulator Softkey Interface. The steps involved are:

1. Copy the example program to your working directory.

2. Assemble the example program.

Getting Started 2-1

3. Link the example program.

4. Access the emulator.

5. Map memory.

6. Create a command file.

7. Use the emulator.

8. End the emulation session.

Example Program Figure 2-1 shows the example program used in this chapter, which
comes with the Z80 Softkey Interface. When you load the Z80 Softkey
Interface software, the program files are stored on the HP 9000 system.
The files are in the directory:

/usr/hp64000/demo/emul/hp64753

The source file is named getstart.S.

Function of the Example Program

The example program shows how the Z80 features can be used as a
timer or counter. Using the features of the emulator, you will learn how

"Z80"
;
; This example program loads four registers with values, then increments and
; decrements the appropriate registers until the count process is complete.
; The program then repeats.
;
;LABEL OPCODE OPERANDS COMMENT
;
START LD A,1 ;SET REGISTER A TO 1
 LD B,7 ;SET REGISTER B TO 7
 LD DE,1111H ;LOAD DE REGISTER
 LD HL,0FFH ;LOAD HL REGISTER
LOOP INC HL ;INCREMENT HL REGISTER
 INC A ;INCREMENT A REGISTER
 DJNZ LOOP ;DECREMENT B AND LOOP IF B IS NOT EQUAL TO 0
JUMP JP START ;REPEAT PROGRAM

Figure 2-1. Example Z80 Program (getstart.S)

2-2 Getting Started

to load the example program into emulation memory and execute it,
and trace program operation.

Copy the Example Program

Copy the example program (shown in figure 2-1) to the directory you
are working in. Keep the name getstart.S.

Assemble the
Example Program

The example program was assembled with the HP 64842 Z80 Cross
Assembler/Linker. To assemble the example program, follow these
steps:

asm -oex getstart.S <RETURN>

If errors occurred during assembly, debug the example program source
file, assemble it again, and check to make sure that no errors occur.

When the example program has assembled correctly, two additional
files will be created with the same base name given to the source file:
the relocatable file (getstart.R) and the assembler symbol file
(getstart.A).

Link the Example
Program

To link the relocatable file (getstart.R) produced by the assembler,
enter:

lnk <RETURN>

Answer the linker questions with the responses shown in bold type:

object files getstart

library files <RETURN>

Load addresses: PROG,DATA,COMN= 0,0,0 <RETURN>

more files (y or n) n <RETURN>

absolute file name getstart <RETURN>

The name of the example program absolute file created during the link
process is getstart.X. The files created during the link process include:

Filename Purpose

Getting Started 2-3

getstart.S Assembly language source file.

getstart.A Assembler symbol file.

getstart.K Linker command file.

getstart.L Linker symbol file.

getstart.R Relocatable object module file.

getstart.X Absolute file.

Access the Emulator You can access the Z80 Emulator Softkey Interface using two different
methods.

From the HP-UX shell

You can access the emulator quickly and directly from the HP-UX
shell using the emul700 command. If your PATH environment
variable includes /usr/hp64000/bin, you can use the emul700
command directly.

For this example, “z80emul” represents the logical name specified for
the Z80 emulator in the emulator device table file named
/usr/hp64000/etc/64700tab. The emulator name you defined may
differ. Enter:

emul700 z80emul <RETURN>

Note The logical name for the emulator must be included in the emulator
device table file, or else the emulator will not operate properly. In
addition, switches on the rear panel of the emulator must be set
correctly to correspond to the entries in the /usr/hp64000/etc/64700tab
file.

Refer to the Softkey Interface Installation Notice for details.

2-4 Getting Started

From the Measurement System

You can put your HP 64753 Z80 emulator in a measurement system.
This lets you include the emulator in coordinated measurements. For
more information, refer to the chapter on Coordinated Measurements
in the Softkey Interface Reference.

If your emulator is part of a measurement system (as described in the
Coordinated Measurements section of the Softkey Interface Reference),
you can use your emulator with the HP 64808 User Interface Software
(pmon).

If you PATH environment variable includes /usr/hp64000/bin, you can
use the pmon command directly. To configure the emulator into a
measurement system using pmon, and then access the emulator, you
must enter the following commands:

pmon <RETURN>
MEAS_SYS msinit <RETURN>
msconfig <RETURN>
make_measurement_system z80 <RETURN>
add <MOD#> naming_it z80emul <RETURN>
end <RETURN>
z80 default z80emul <RETURN>

MOD# is the module number of the emulator from the list displayed on
screen. The HP 64000-UX User Interface Software Manual explains
this process.

Using the Softkeys

Three rows of softkeys are available after you start the emulator. They
allow you to operate the emulation system.

 run trace step display modify break end ---ETC--

 load store stop trc copy reset specify cmb exec ---ETC--

pod cmd perfinit perfrun perfend ---ETC--

Each level of softkeys contains sublevels where additional commands
let you perform specific measurements and tasks. You can find detailed

Getting Started 2-5

information about the commands in these levels by referring to the
syntax diagrams in the Softkey Interface Reference.

Note When you enter numeric values, make sure to enter a standard base
letter following the number. If you do not enter a base letter, the system
interprets the number as decimal.

Map Memory You must choose a memory type for the memory in the Z80 emulator,
so that you can load the example program into emulation or user (target
system) memory. You do this by modifying the emulation
configuration.

To modify the emulator configuration, enter:

modify configuration <RETURN>

Answer the configuration questions for this example by responding to
each question with the entries shown below in bold. (Chapter 3
explains the emulation configuration process.)

Microprocessor clock source? internal <RETURN>

Enter monitor after configuration? yes <RETURN>

Restrict to real-time runs? no <RETURN>

Modify memory configuration? yes <RETURN>

You can now modify the Z80 emulation memory map. Using the
softkeys, define the memory map so that addresses 0 through 3fff
hexadecimal are configured as emulation RAM. For example:

0 thru 3FFFH emulation ram <RETURN>

The rest of memory maps to emulation RAM by default.

2-6 Getting Started

Your memory map should resemble:

When you finish, exit the memory map. Enter:

end <RETURN>

Continue answering the remaining configuration questions:

Modify emulator pod configuration? no <RETURN>

Modify debug/trace options? no <RETURN>

Modify simulated I/O configuration? no <RETURN>

Modify external analyzer configuration? no <RETURN>

Modify interactive measurement specification? no <RETURN>

Configuration file name? config1 <RETURN>

If a file named config1.EA already exists, you must either overwrite the
existing one or supply a different name.

These responses to the emulation configuration questions modify the
emulator’s default configuration with a new memory map definition.

Emulation memory blocks: available = 192 mapped = 64 size = 256 bytes
entry range type
 1 0H- 3FFFH EMUL/RAM

 <ADDR> default delete print end

Getting Started 2-7

All the answers to these questions are now stored in a configuration file
named config1.EA. The file name extension (.EA) indicates this is a
configuration file.

If you want, you can take time now to observe the content of the
configuration file. To do this, enter:

!more config1.EA <RETURN>

You can verify that the memory map is configured as you specified.
The memory map definition at the start of the configuration file should
resemble:

BEGIN MEMORY MAP

default emulation ram

0H thru 03FFFH emulation ram

END MEMORY MAP

Create a Command
File

Creating and using a command file is a convenient method for
performing a series of tasks using the emulator features. You can create
a command file by recording emulation commands in a file that you
execute later. Or you can type commands into a file using an editor.

For this example, turn on the “log_commands” feature to record
commands in a file. While you go through each step in this chapter,
commands that you execute will be logged to (recorded in) the file
until the “log_commands” feature is turned off.

To begin logging commands to a file, enter:

log_commands to CMDFILE <RETURN>

We will examine the command file later.

Use the Emulator In this example, you will use the emulator to:

1. Load and run the example program.

2. Break into the monitor and observe registers.

3. Single-step through the program.

2-8 Getting Started

4. Trace program execution.

Press the space bar to clear the command line. Observe the status line
and make sure the emulator is running in the monitor. If it isn’t, enter
break <RETURN>.

Load and Run the Example Program

You must load the example program into memory before the emulator
can execute it. If you do not specify a memory type, the program will
be loaded into emulation memory. To load the absolute file, enter:

load getstart <RETURN>

Display the contents of memory to make sure that the example program
has loaded properly. Enter:

set symbols on
display memory 0 mnemonic <RETURN>

The listing of emulation memory should resemble:

Notice that local symbols are displayed for address locations that
correspond to a particular symbol.

 Memory :mnemonic :file = getstart.S:
 address label data
 0000 getsta:START 3E01 LD A,01
 0002 0607 LD B,07
 0004 111111 LD DE,1111
 0007 21FF00 LD HL,00FF
 000A getstar:LOOP 23 INC HL
 000B 3C INC A
 000C 10FC DJNZ |getstart.S:LOOP
 000E getstar:JUMP C30000 JP getstart.S:START
 0011 04 INC B
 0012 3006 JR NC,001A
 0014 80 ADD A,B
 0015 FF RST 38
 0016 FF RST 38
 0017 FF RST 38
 0018 91 SUB C
 0019 FEFF CP FF

STATUS: Z80--Running in monitor_______________________________________........

Getting Started 2-9

Display global symbols in the example program by entering:

display global_symbols

The result on screen resembles:

Note that the only global symbol is the name of the source module
itself. No other symbols are declared as global in the assembler
program.

Global symbols in getstart
Filename symbols
Filename __
getstart.S

STATUS: Z80--Running in monitor_______________________________________........

2-10 Getting Started

To display local symbols in the example program, enter:

display local_symbols_in getstart.S:
<RETURN>

The result on screen resembles:

See chapter 4 for more information on symbols.

To make sure the program executes the instructions correctly, you will
set a software breakpoint, start the emulation processor, then observe
the contents of the registers. Enter:

display software_breakpoints <RETURN>
modify software_breakpoints enable
<RETURN>

Set a software breakpoint after the first pass of the loop. Enter:

modify software_breakpoints set 0EH

The status of the breakpoint is “pending.” Start the emulation
processor running the program. Enter:

run from 0 <RETURN>

When the emulation processor encounters the software breakpoint, it
stops execution of the example program and begins executing in the
monitor.

Symbols in getstart.S:
Static symbols
Symbol name ____________________ Address range __ Segment _____________ Offset
JUMP 000E PROG 000E
LOOP 000A PROG 000A
START 0000 PROG 0000

STATUS: Z80--Running in monitor ______________________________........

Getting Started 2-11

Observe Registers

When the emulation processor is running or executing in the monitor
you can observe the contents of registers.

To observe the contents of the Z80 registers, enter:

display registers ALL <RETURN>

You can observe the contents of the emulation processor registers,
including flags, the stack pointer, and the program counter.

Software breakpoints :enabled :offset = 0004
 address label status
 000A getstar:LOOP inactivated

STATUS: Z80--Running in monitor Software break: 0000e_________........

2-12 Getting Started

The result on screen resembles:

Some of these register values may differ on your system since the
program did not initialize them.

Single-step Through the Program

To observe the contents of the processor registers as the program is
running, step through the program. When you step the emulation
processor through the program, you also will see the opcode, program
instruction, and the next program counter address for each instruction
step.

To step through the example program, enter:

step 1 from 0 <RETURN>
step <RETURN>

The first two instructions of the example program have been executed.
The Z80 emulation processor registers will be displayed on screen.

Registers

 A B C D E H L sz h pnc IX IY SP PC A’ B’C’ D’E’ H’L’ sz’h’pnc’
 08 0000 1111 0106 00 0 000 0000 0000 0000 000E 00 0000 0000 0000 00 0 000
 I 00 IFF2 0 IMODE 0 R 20

STATUS: Z80--Running in monitor Software break: 0000e_________........

Getting Started 2-13

The result should resemble:

To execute the remaining instructions in the example program, enter
the step command until all instructions in the program have completed.
The display shows that the registers are tracking program execution.

Trace Program Execution

You can use the emulation analyzer to trace the execution of the
example program. The resulting trace is a collection of bus cycle states
captured by the analyzer that you can use to view program activity.

To start a trace of the example program, enter:

trace after getstart.S:START <RETURN>

The status line shows that the trace began.

The emulation processor will begin tracing after address 0. The status
line will show that a trace was started.

Set a software breakpoint after the first pass of the loop. Enter:

modify software_breakpoints set JUMP
<RETURN>

Registers

 A B C D E H L sz h pnc IX IY SP PC A’ B’C’ D’E’ H’L’ sz’h’pnc’
 08 0000 1111 0106 00 0 000 0000 0000 0000 000E 00 0000 0000 0000 00 0 000
 I 00 IFF2 0 IMODE 0 R 20

Step_PC 0000 LD A,01
 A B C D E H L sz h pnc IX IY SP PC
 01 0000 1111 0106 00 0 000 0000 0000 0000 0002

Step_PC 0002 LD B,07
 A B C D E H L sz h pnc IX IY SP PC
 01 0700 1111 0106 00 0 000 0000 0000 0000 0004

STATUS: Z80--Stepping complete__........

2-14 Getting Started

Start the emulation processor executing the program. Enter:

run from START <RETURN>

When the analyzer finds its trigger, the trace data can be displayed. To
display the trace, enter:

display trace <RETURN>

An example trace listing resembles:

For more information about setting up a trace, refer to the Analyzer
Softkey Interface User’s Guide.

Observe the
Command File

Because the “log_commands” feature is turned on, all commands have
been recorded in a file named CMDFILE. Turn off the
“log_commands” feature and look at the contents of the command file.
Enter:

log_commands off <RETURN>

You must type “log_commands” (or the first few letters, then press
Tab) because this option does not appear on the softkey labels. Enter:

!more CMDFILE <RETURN>

Trace List Offset=0 More data off screen (ctrl-F, ctrl-G)
Label: Address Data Opcode or Status time count
Base: symbols hex mnemonic w/symbols relative
after getstart.S:START 3E LD A,01 ------------
+001 getstart.S:+0001 01 01 operand 560 nS
+002 getstart.S:+0002 06 LD B,07 320 nS
+003 getstart.S:+0003 07 07 operand 560 nS
+004 getstart.S:+0004 11 LD DE,1111 320 nS
+005 getstart.S:+0005 11 11 operand 560 nS
+006 getstart.S:+0006 11 11 operand 360 nS
+007 getstart.S:+0007 21 LD HL,00FF 320 nS
+008 getstart.S:+0008 FF FF operand 560 nS
+009 getstart.S:+0009 00 00 operand 400 nS
+010 |getstart.S:LOOP 23 INC HL 280 nS
+011 getstart.S:+000B 3C INC A 760 nS
+012 getstart.S:+000C 10 DJNZ |getstart.S:LOOP 520 nS
+013 getstart.S:+000D FC FC operand 680 nS
+014 |getstart.S:LOOP 23 INC HL 920 nS

STATUS: Z80--Running in monitor Software break: 0000e_________........

Getting Started 2-15

The contents of the command file should resemble:

Use the Command
File

You can use the command file as is, or you can edit the file to add,
delete, or change these commands.

Note If you add commands to the command file, make sure that you enter
the commands exactly as they appear on the command line. Otherwise,
an error will result.

To execute the command file, enter:

CMDFILE <RETURN>

You can observe the commands as they execute.

End the Emulation
Session

Several options are available when you end an emulation session. How
you end the session depends on how you are operating the emulator.
You can refer to the end syntax in the Softkey Interface Reference for
more information.

For this example, either don’t end the emulation session, or end the
emulator locked. Then, when you enter it again later, the same
configuration and memory map will be used.

load getstart
set symbols on
display memory 0 mnemonic
display global_symbols
display local_symbols_in getstart.S:
display software_breakpoints
modify software_breakpoints enable
modify software_breakpoints set 0EH
run from 0
display registers ALL
step 1 from 0
step
trace after getstart.S:START
modify software_breakpoints set JUMP
run from START
display trace

2-16 Getting Started

Release the Emulation System

You can end the emulation session and release the emulator so that
others can access it. To do this, enter:

end release_system <RETURN>

Continue the Session Later

You can end the emulation session and continue with the same session
later. To do this, enter:

end <RETURN>

If you are using the emulator Softkey Interface from within a
windowing environment, ending the emulator will end that individual
window.

Keep the Emulator Locked

You can end the emulation session and keep the emulator locked to
you. To do this, enter:

end locked <RETURN>

If you are using the emulator Softkey Interface from within a
windowing environment, ending the emulator locked will end all
windows.

Select Another Measurement System

You can end the current measurement system and select another
measurement system if the emulator has been configured into a
measurement system.

Emulator Operation After an end Command

When you end the emulation session, the emulator will remain in the
last state specified. If the emulator was running when you ended
emulation, it will continue to run. If the emulator was searching for a
trace specification when you ended emulation, and it has not located
the trigger qualifier, it will continue to search for the qualifier.

Getting Started 2-17

How to Enter
Numeric Values

You can enter numeric values in these four standard bases: binary,
octal, decimal, and hexadecimal. You must include a base letter with
the number you specify, as shown below, or else the decimal base is
assumed.

Numeric Value Base

1001B Binary

1001O or 1001Q Octal

1001 or 1001D Decimal

1001H Hexadecimal

Note If you do not supply a base letter, decimal base is assumed.

2-18 Getting Started

3

Configuring the Emulator

Introduction These topics describe the emulation configuration process.

When to Modify the Emulation Configuration

Emulation Configuration Questions

How to Load a Configuration File

When to Modify
the Emulation
Configuration

Microprocessor-based target systems, like the one you might be
designing, have certain defined resources. One target system will
operate differently from another, depending on the design.

The emulation configuration questions allow you to configure the
emulator to work with target system resources. For example, to use the
emulator with a target system, you must configure the emulator to work
with the clock and memory resources of the target system.

The emulator contains memory that can be used if target system
memory is not yet available. To use emulation memory as target
system memory, you must define the mapping of memory resources.

Once you start modifying the emulation configuration, you must
supply answers to all configuration questions that appear, whether you
are using a target system or not. If your selections are the default
answers, just press the <RETURN> key to make the selection.

Configuring the Emulator 3-1

Emulation
Configuration
Questions

These questions are used to configure the Z80 emulator Softkey
Interface. Default answers are shown in bold.

Microprocessor clock source? internal

Enter monitor after configuration? yes

Restrict to real-time runs? no

Modify memory configuration? no

Modify emulator pod configuration? no

Modify debug/trace options? no

Modify simulated I/O configuration? no

Modify interactive measurement specification? no

Modify external analyzer configuration? no

Configuration file name?

These questions are explained on the following pages. Decide if you
need to modify the emulation configuration by following figure 3-1.

How to Modify the
Configuration

To begin modifying the emulation configuration, enter the Softkey
Interface. See chapter 2 if you need help doing this. Then, enter:

modify configuration <RETURN>

The configuration questions are explained in detail throughout the rest
of this chapter. Details about loading a configuration file are included
at the end of this chapter.

3-2 Configuring the Emulator

Figure 3-1. Should You Modify the Configuration?

Configuring the Emulator 3-3

Microprocessor
clock source?

internal Selects the 8 MHz clock source in the Z80
emulator.

external Choose “external” to select the clock source in
the target system. External clock speeds up to a
maximum of 10 MHz are supported.

When using the internal clock of the emulator,
code execution time is relative to the internal
clock speed. The internal clock specification is
selected when you perform out-of-circuit
emulation (for example, while debugging
software without a target system).

Enter monitor after
configuration?

yes When you choose “yes,” the emulator will
begin executing in background after you
modify the configuration.

no When you choose “no,” the emulator will not
begin executing in background after you
modify the configuration.

Note When the external clock is selected and the target system is powered
off, answer “no” to this question. Otherwise the configuration will fail.

3-4 Configuring the Emulator

Restrict to real-time
runs?

no When you answer “no” to this configuration
question, the emulator is not restricted to
real-time operation. This means that the
emulator will break and then resume when
displaying or modifying user memory,
registers, or I/O ports, or modifying software
breakpoints in user memory.

yes Restricts the emulator to real-time runs. This
means that displaying or modifying user
memory, registers, or I/O ports is allowed only
when the Z80 processor is executing in
background.

A run from <ADDRESS> command will
break the emulator into background. When the
emulator is restricted to real-time runs,
simulated I/O is not available, and run control
commands are not inhibited.

By restricting the emulator to real-time runs, the user program will not
experience any interference once the program starts running. When
restricting the emulator to real-time runs, breaks can be generated by
the emulation analyzer. You also can press break to stop program
execution and begin running in background.

Modify memory
configuration?

no If you choose “no,” all 64 kilobytes of memory
in the emulator will default to emulation RAM.
If the memory map was previously configured,
those definitions will remain unchanged.

yes If you answer “yes, the memory map appears.
This displays the available blocks of emulation
memory, the number of blocks that are mapped,

Configuring the Emulator 3-5

and the block size. Now, you can map
emulation and user memory as desired. After
you have set up the memory map and want to
map memory again, you must delete the entry
before the space can be mapped again. If you
try to map a block of memory that is already
mapped, the emulator will respond with a
message indicating that a duplicate definition
exists for the address you specify. You must
delete the memory map term, then redefine
those locations.

See the Softkey Interface Reference for more
information on memory mapping commands.

Mapping Memory

To perform emulation with a target system connected, the memory
mapper must be programmed to correspond to emulation and user
memory resources. Figure 3-2 shows an overview of emulation and
target system memory.

Reads or writes to guarded memory will cause the emulator to break
into background. If user or emulation ROM is specified, it is possible
to generate a break on write attempts to those address locations.

After configuring the emulation memory map as described in chapter 2,
your map should resemble the one shown in figure 3-3.

Modify emulator pod
configuration?

This question defines how the emulator will interact with the target
system. Answers to these questions may differ between various Z80
target systems, but will typically remain constant for any given target
system.

no If you answer “no” to this question, you will
bypass any modifications to the emulation
configuration, and the next configuration
question will be presented.

3-6 Configuring the Emulator

yes If you answer “yes” to this question, you can
make modifications to sublevel configuration
questions that appear. You can select answers
to the questions by pressing a softkey.

When you answer “yes,” the following questions will appear to allow
you to configure the Z80 emulator.

Enable BUSREQ input from target system?

yes When you select “yes” the emulator will
respond to a BUSREQ input from the target
system. During this time, the target system will
put valid data on the data bus.

Figure 3-2. Emulation and Target System Memory

Configuring the Emulator 3-7

no Select “no” if you want the emulation processor
to ignore bus requests by the target system.

Respond to target system Maskable Interrupt?

yes When you select “yes,” the emulator will
respond to target system interrupt requests
while it is running a user program. The
emulator will ignore the interrupt request if it is
running in the monitor when the request occurs.

Emulation memory blocks: available = 192 mapped = 64 size = 256 bytes
entry range type
 1 0H- 3FFFH EMUL/RAM

 <ADDR> default delete print end

Figure 3-3. Example Memory Map

3-8 Configuring the Emulator

no Select “no” if you want the emulation processor
to ignore interrupt requests by the target system.

Respond to target system Non-Maskable Interrupt?

yes When you select “yes,” the emulator will
respond to the non-maskable interrupt request
from the target system while it is running a user
program. If the emulator is running in the
monitor when a request is received, the request
will be serviced when the emulator returns to
execute the user program.

no Select “no” if you want the emulation processor
to ignore non-maskable interrupt requests by
the target system.

Enable quick-break mode?

no When you select “no” the emulation processor
will spend a typical amount of time in the
monitor when displaying registers, I/O, or user
(target system) memory. If CMB operation is
enabled, other emulators on the CMB also will
break to their monitors when this emulator
quickly breaks.

yes When you select “yes” the emulation processor
will quickly break to the monitor to display
registers, I/O, or target system memory. If
CMB operation is enabled, any other emulators
on the CMB will not break to the monitor when
this emulator quickly breaks.

Configuring the Emulator 3-9

Enable WAIT input during emulation memory accesses?

yes When you select “yes” the emulation processor
will respond to a wait input by the target
system during emulation memory reads and
writes. Wait states are always inserted during
target system memory accesses when requested.

no Select “no” if you don’t want wait states
inserted during emulation memory accesses.

Write data to target system during emulation memory reads?

no When you select “no” the emulator will drive
the data bus only during memory write and
output cycles.

yes When you select “yes” the emulator will drive
the data bus to the target system (with the value
read from emulation memory) during all read
cycles from emulation memory. This could
cause bus contention in the target system! For
more information on this configuration item,
refer to the Emulator Terminal Interface User’s
Guide for the Z80.

Drive background cycles to target system?

no When you select “no,” while the emulator is
executing in the monitor, it will appear to be
passive to the target system.

yes When you select “yes,” while the emulator is
executing in the monitor, the target system will
recognize that the monitor program is running.

When you select “yes” to this question, the following question is
presented.

3-10 Configuring the Emulator

Value for address bits A15-A12 during background cycles?

You can select the value that will be driven to the target system on
these address lines during background monitor operation. This value
can be in the range of 0 to 0FH. The default value is 0.

The entire 64-kilobyte address range is available for the user program.
If bus cycles are visible to the target system while the emulator is
running the monitor program, you should locate the monitor program
in a memory block where memory read operations will not cause
undesirable interaction with the target system.

Modify debug/trace
options?

no If you answer “no” to this configuration
question, you cannot modify the debug/trace
configuration.

yes If you answer “yes” to this question, a series of
four debug and trace questions will be
presented. You can then modify these options
as desired.

Break processor on write to ROM?

yes Answer “yes” to this question to cause the
emulator to break into background when
program execution performs a write to an
address mapped as ROM.

no Answering “no” keeps the emulator from
breaking when a write to ROM occurs.

Trace background or foreground operation?

foreground When you select “foreground” the analyzer will
trace emulation foreground cycles.

Configuring the Emulator 3-11

background When you select “background” the analyzer
will trace emulation background cycles. (This
is useful only for troubleshooting emulation
problems.)

both When you select “both” the analyzer will trace
both emulation foreground and background
cycles.

Trace refresh cycles?

no When you select “no,” memory refresh cycles
by the Z80 will not appear in an analysis trace
but will still occur (in foreground and
background cycles).

yes When you select “yes,” memory refresh cycles
(both foreground and background) will appear
in the analysis trace unless excluded by the
trace specification.

Trace busack cycles?

no When you select “no,” bus acknowledge cycles
by the Z80 will not appear in an analysis trace
but will still occur (in foreground and
background cycles).

yes When you select “yes,” bus acknowledge
cycles (both foreground and background) will
appear in the analysis trace unless excluded by
the trace specification.

Modify simulated I/O
configuration?

no This is the default answer. If you choose “no,”
modifications will not be allowed to the
simulated I/O configuration.

3-12 Configuring the Emulator

Note If you restrict the emulator to real-time operation, this question does
not appear during the configuration process.

yes If you choose “yes,” a new menu for the
simulated I/O configuration is displayed. The
following questions will appear:

Enable polling for simulated I/O?

no Answering “no” stops the simulated I/O
configuration process.

yes When you answer “yes,” additional questions
for the simulated I/O configuration process are
displayed. These questions are described in the
following paragraphs.

Simio control address 1?

The first of six control addresses is SIMIO_CA_ONE by default. This
and the following five addresses you specify can be used to define the
simulated I/O display, printer, RS-232 communication port, and
keyboard. The emulation system looks for the control addresses in data
memory.

After you have defined the control addresses, the following questions
are presented:

File used for standard input?

Enter the name of a file that will be used to receive input. The default
file is /dev/simio/keyboard.

File used for standard output?

Enter the name of a file that will be used to store output. The default
file is /dev/simio/display.

Configuring the Emulator 3-13

File used for standard error?

Enter the name of a file that will be used to store error messages. The
default file is /dev/simio/display.

Enable simio status messages?

yes When you select “yes,” command and return
code status messages will be displayed in the
upper right corner of the simulated I/O display.

no When you select “no,” simulated I/O status
messages are not displayed. Simulated I/O
operates faster when status messages are not
enabled.

Refer to the HP 64000-UX Simulated I/O Manual for more information
about Simulated I/O.

Modify external
analyzer

configuration?

no If you choose “no,” all modifications to the
external analyzer configuration are bypassed.

yes If you choose “yes,” you can modify the
external analyzer configuration.

For more information about configuring and using the external
analyzer, refer to the Analyzer Softkey Interface User’s Guide.

Modify interactive
measurement
specification?

You can decide whether you need to modify the interactive
measurement specification by reviewing the diagram and information
that follows.

3-14 Configuring the Emulator

Do you want to modify the interactive measurement
specification?

no By answering “no” to this configuration
question, the interactive measurement
specification won’t be changed.

yes To coordinate measurements between the
modules of a multiple module system, an
interactive measurement specification is
required. By answering “yes,” you can modify

Figure 3-4. Modify Interactive Measurements

Configuring the Emulator 3-15

the driver and receiver specification for the
BNC trigger, CMB trigger, emulator, and
analyzer.

When modifying the interactive measurement specification, the
following questions appear:

Should BNC drive or receive Trig1? neither

You can select whether the rear panel BNC connector will drive or
receive the emulation analyzer trig1 signal.

Should CMBT drive or receive Trig1? neither

You can select whether the CMB trigger will drive or receive the
emulation analyzer trig1 signal.

Should BNC drive or receive Trig2? neither

You can select whether the rear panel BNC connector will drive or
receive the emulation analyzer trig2 signal.

Should CMBT drive or receive Trig2? neither

You can select whether the CMB trigger will drive or receive the
emulation analyzer trig2 signal.

Should Emulator break receive Trig2? no

You can select whether the analyzer trig2 signal causes the emulator to
break from user program execution and begin executing in the monitor.

Should Analyzer drive or receive Trig2? neither

You can select whether the analyzer drives or receives the trig2 signal.

For more information about the interactive measurement specification,
refer to the chapter on Coordinated Measurements in the Softkey
Interface Reference.

3-16 Configuring the Emulator

Configuration file
name?

This allows you to save modifications to the emulation configuration in
a file. You can use this file for future emulation sessions.

To save the current emulation configuration to a file, enter:

config2 <RETURN>

You can edit the configuration file using a text editor. When you reload
the configuration file, the changes will be reflected in the new
emulation configuration.

This allows you to use an existing configuration file as a starting point
for a new configuration.

How to Load a
Configuration File

You can load a previously saved configuration file into the emulator to
change the emulation configuration. The options specified in the
configuration file define the new emulator configuration. This saves
you the trouble of reentering the modify configuration process to
define or change the emulation configuration.

For example, if a configuration file named config1.EA exists on your
host computer, and you want to load it into the emulator, enter:

load configuration config1 <RETURN>

All memory map, emulator, analyzer, and simulated I/O specifications
contained in config1.EA are set by the emulator.

Configuring the Emulator 3-17

Notes

3-18 Configuring the Emulator

4

Using the Emulator

Introduction This chapter contains descriptions of using the Z80 emulator in-circuit
(emulator probe connected to a target system) and out-of-circuit
(emulator probe not connected to a target system). For more
information about using the emulator in-circuit and out-of-circuit, refer
to the Z80 Terminal Interface User’s Guide.

The examples in this chapter should familiarize you with using the Z80
Emulator Softkey Interface. These include:

Load files.

Display symbols.

Run a program.

Trace program execution.

Display emulation resources (memory, registers, software
breakpoints, and I/O ports).

Step through a program.

Modify emulation resources (memory, registers, software
breakpoints, and I/O ports).

Store information.

Copying to the Printer

For more information about using the emulator in-circuit and
out-of-circuit, refer to the Z80 Terminal Interface User’s Guide.

Using the Emulator 4-1

Using the
Emulator
Out-of-Circuit

You use out-of-circuit emulation (no target system connected) to
develop or debug software that will be used in a target system.

Note If the clock speed of your target system and the clock speed of the
emulator differ, program execution speed will be relative to the internal
clock speed of the emulator when the internal clock source is selected.

Figure 4-1. Using the Emulator Out-of-Circuit

4-2 Using the Emulator

Using the
Emulator In-Circuit

The HP 64753 Z80 emulator can perform emulation in real-time or
nonreal-time while connected to a target system. If real-time
performance of the target system is important, use your emulator in
real-time mode.

You may need to run the emulator in real-time with some target
systems. Such systems typically are used for process control or other
time-critical applications requiring low interrupt latency and
instantaneous response. Target systems like these cannot be emulated
thoroughly if real-time emulation is not specified.

Figure 4-2. Using the Emulator In-Circuit

Using the Emulator 4-3

Real-Time Operation
Restrictions

Some emulator commands cannot be performed in real-time. When the
emulator is restricted to real-time operation:

1. A run or step command will cause the emulator to break into
the monitor.

2. You can access registers and I/O ports only while the emulator
is executing in the monitor.

3. Access to target system memory is allowed only while the
emulator is executing in the monitor. You can enable or
disable breakpoints in user (target system) memory only while
the emulator is executing in the monitor.

Load Files You can load programs and other types of files into memory, including
configuration files, trace files, symbol files, and a background monitor
program. Some examples include:

load getstart <RETURN>

This command loads an absolute file named getstart.X into
memory.

load emul_mem z80prog <RETURN>

This command loads an absolute file named z80prog.X into
emulation memory.

load user_mem z80prog <RETURN>

This command loads an absolute file named z80prog.X into
user (target system) memory.

load configuration z80config <RETURN>

This command loads a previously stored configuration file
named z80config.EA into emulation memory.

load trace z80trace <RETURN>

This command loads a trace file named z80trace.TR into the
emulator. A trace file contains information captured by the
analyzer during program execution.

4-4 Using the Emulator

load symbols getstart <RETURN>

This command loads the SRU symbol database for the module
getstart into the emulation system.

load bkg_mon monfile <RETURN>

This loads an absolute file into background memory.

Note The chapter about In-Circuit Emulation in the Z80 Terminal Interface
User’s Guide contains additional information about modifying the
operation of the monitor program.

Displaying
Symbols

When you load a program for the first time, the emulator uses the
Symbolic Retrieval Utilities (SRU) to build a symbol database for each
module. This database associates symbol names and symbol type
information (not data types) with logical addresses. You will see a
message on screen indicating the module for which the database is
being built.

Once a symbol database is created for a particular module, it does not
need to be rebuilt unless the module is changed. You can rebuild
modules using the srubuild utility (see the HP 64000-UX System
User’s Guide). Or, if you reenter emulation without building symbols,
the emulator software will automatically rebuild portions of the symbol
database as you reference symbols in modified modules.

Global symbol information is immediately available for the file that
you loaded. To obtain local symbol information, you need to specify
the module that contains the symbols.

You can use the symbol names instead of addresses when entering
expressions as part of an emulation command. Therefore, you don’t
have to remember segment:offset information to make a measurement.
Also, the emulator can display symbols as part of a measurement, using
the set symbols on command. This helps you relate the measurement
to your original program.

Using the Emulator 4-5

The HP 64753 emulator can read absolute files in HP-OMF format. For
more information on SRU, refer to the HP 64000-UX System User’s
Guide. Additional information on symbol entry syntax is in the
--SYMB-- syntax pages of the Softkey Interface Reference.

When you load an absolute file into memory, symbol information is
also loaded (unless you use the "nosymbols" syntax). Both global
symbols and symbols that are local to a source file can be displayed.

Global To display global symbols, enter the following command.

display global_symbols <RETURN>

This command displays global symbols in the file loaded in
emulation memory. If there are no global symbols in the
program, none will be displayed.

Listed are: address ranges associated with a symbol, the
segment with which the symbol is associated, and the offset of
that symbol within the segment.

The module names are listed under the heading “Filename
symbols.” For programs where several different object files
are linked to form a single absolute, you will see several
names listed here. You can enter these names as part of a

Global symbols in getstart
Filename symbols
Filename __
getstart.S

STATUS: Z80--Running in monitor_______________________________________........

4-6 Using the Emulator

symbol expression to specify symbols local to a particular
module.

Local

display local_symbols_in getstart.S: <RETURN>

This command displays local symbols in the example
program. When displaying local symbols, you must include
the name of the module in which the symbols are defined.

The address range, segment, and offset are displayed. The
result on screen resembles:

Symbols in getstart.S:
Static symbols
Symbol name ____________________ Address range __ Segment _____________ Offset
JUMP 000E PROG 000E
LOOP 000A PROG 000A
START 0000 PROG 0000

STATUS: Z80--Running in monitor_______________________________________........

Using the Emulator 4-7

Displaying Data You can display the data values of a variable in your program using the
display data command. For example, suppose you want to see the value
of a string at address 1000h that can be up to 32 bytes in length. Enter:

display data 1000h thru +32 char <RETURN>

You’ll see the following display:

The command set symbols on displays the label column, which
indicates the symbol associated with each address. It also enables
symbol display in other measurement screens, such as display memory,
display registers, and display trace.

Run a Program These commands show various ways to execute a program using the
Z80 emulator.

run <RETURN>

This command starts the emulator executing from the current
program counter address.

run from 0 <RETURN>

 Data :update
 address label type data
 1000 char[] This is a string.-............ F.

STATUS: Z80--Running in monitor_______________________________________........

4-8 Using the Emulator

This command causes the emulator to begin executing from
the specified address. It will continue to run until interrupted
by a break or reset command, an illegal opcode, a write to
ROM (if this emulator configuration item is enabled), a
software break, or a guarded memory access.

run from transfer_address <RETURN>

The emulator will begin executing from the starting address of
the program loaded into emulation memory. The transfer
address is defined in the linker map.

run from getstart.S:START <RETURN>

The emulator will begin executing from the symbol named
“START” in the user program named getstart, which is
loaded in memory.

run from START <RETURN>

The above variation will work if the current working symbol
(cws) is getstart.S:.

run from reset <RETURN>

This command begins execution from a reset address, or when
a target system reset signal occurs, depending on your setup.

Trace Program
Execution

You can use the emulation analyzer to trace program execution. During
a trace, the analyzer captures information which is stored in trace
memory. The trace command can be specified with various available
qualifiers. The trace may be executed repetitively (program execution
continues while the trace memory and display are continuously
updated).

trace <RETURN>

This initiates a trace with the default trace specification. The
analyzer will trigger on anything and will fill the trace buffer
with the first 512 or 1024 states captured, depending on
whether “count” is on or off. The display trace depth
command allows you to decide how much of the trace
memory to view.

Using the Emulator 4-9

trace again <RETURN>

This command starts the analyzer, without changing the trace
specification.

trace repetitively <RETURN>

This command repeatedly executes the trace. Program
execution will continue while trace memory and the trace
display are updated.

trace after data 7 occurs 2 <RETURN>

The trace will be executed after the specified data (07H) is
encountered twice during program execution.

trace before JUMP or 0EH <RETURN>

The trace will execute before the specified global or local
symbol, or before the specified address, whichever occurs first.

trace only address range 0H thru 0FH
<RETURN>

The trace command will store only addresses 0 through 0F
hexadecimal.

trace counting state data 10H <RETURN>

The analyzer will count only instructions with the specified
data value. The relative state count will be displayed.

trace break_on_trigger <RETURN>

This command will stop user program execution and cause the
emulator to begin executing in background when the analyzer
finds its trigger.

trace modify_command <RETURN>

The last trace command you executed will be displayed on
the command line for your modification. Modify the
command, then press <RETURN>.

Stop a Trace To stop a currently executing trace, enter:

stop_trace <RETURN>

The status line will indicate that the trace is halted.

4-10 Using the Emulator

Display Emulation
Resources

You can display emulation resources, including memory, registers,
software breakpoints, and I/O ports. This section shows you how.

Display Memory Various commands are available for displaying the contents of
emulation and user (target system) memory. Some examples are shown
below.

Note When the emulator is running, and is restricted to real-time runs, you
cannot display or modify user memory.

display memory getstart.S:START thru
getstart.S:JUMP <RETURN>

This command displays a range of addresses starting at the
symbol “START,” and ending at the symbol “JUMP.” The
result on screen resembles:

display memory mnemonic <RETURN>

This command displays addresses and mnemonic
representations of the corresponding opcodes and operands. If

 Memory :bytes :blocked :update
 address data :hex :ascii
 0000-07 3E 01 06 07 11 11 11 21 !
 0008-0E FF 00 23 3C 10 FC C3 . . # . . .

STATUS: Z80--Running user program Emulation trace complete______........

Using the Emulator 4-11

you do not specify a starting address or an address range, the
screen will show the range of addresses previously specified.

display memory absolute words <RETURN>

Absolute addresses and corresponding data will be displayed
in word format. Also displayed are ASCII representations of
the data. The result resembles:

 Memory :words :absolute :update
 address label data :hex :ascii
 0000 getsta:START 013E .
 0002 0706 ..
 0004 1111 ..
 0006 2111 !.
 0008 00FF ..
 000A getstar:LOOP 3C23 #
 000C FC10 ..
 000E getstar:JUMP 00C3 ..

STATUS: Z80--Running user program Emulation trace complete______........

4-12 Using the Emulator

display memory blocked long <RETURN>

This command displays blocked addresses and corresponding
data. One long word of data will be displayed for each address
location. ASCII representations of the data are also displayed.
The result resembles:

display memory 1020h real <RETURN>

This command displays the contents of memory as real
numbers. The result resembles:

 Memory :long words :blocked :update
 address data :hex :ascii
 0000-0C 0706013E 21111111 3C2300FF 00C3FC10 ...!... #......

STATUS: Z80--Running user program Emulation trace complete______........

 Memory :short real :update
 address label data :real
 1020 -2.25671E-018
 1024 NaN
 1028 -2.00000E+000
 102C 3.94475E-030
 1030 4.82321E-037
 1034 NaN
 1038 NaN
 103C 1.01484E-037
 1040 1.50956E-021
 1044 NaN
 1048 NaN
 104C 1.19112E-037
 1050 3.77227E-008
 1054 NaN
 1058 NaN
 105C 1.16893E-019

STATUS: Z80--Running user program Emulation trace complete______........

Using the Emulator 4-13

(NaN means Not a Number.)

display memory absolute offset_by 10
<RETURN>

This command displays addresses in absolute format. The
beginning of the list will be offset by the expression you
specify.

Display Registers By observing the emulation processor registers you can verify that your
program is running properly. Assemble and link your program (see
chapter 2), then load the absolute file into memory. Now, display the
emulation processor registers and step through the program to observe
activity in the registers.

When you display registers, the current program counter address is
displayed, with instruction opcodes (if stepping), register contents,
status of the flags, and the next program counter address. These
commands show you how to display the emulation processor registers.

display registers <RETURN>

This command displays the contents of the BASIC emulation
processor registers. To observe program activity beginning at
a specified address, you can step the processor from an
address, and display registers after each step command. The
result on screen resembles:

Registers

 A B C D E H L sz h pnc IX IY SP PC
 03 0500 1111 0102 00 0 000 0000 0000 0000 000B

STATUS: Z80--Running user program Emulation trace complete______........

4-14 Using the Emulator

display registers ALT <RETURN>

This command displays the alternate set of Z80 registers. The
result on screen resembles:

display registers INT <RETURN>

This command displays the set of Z80 interrupt registers. The
result on screen resembles:

Registers

 A B C D E H L sz h pnc IX IY SP PC
 03 0500 1111 0102 00 0 000 0000 0000 0000 000B

 A’ B’C’ D’E’ H’L’ sz’h’pnc’
 00 0000 0000 0000 00 0 000

STATUS: Z80--Running user program Emulation trace complete______........

Registers

 A B C D E H L sz h pnc IX IY SP PC
 03 0500 1111 0102 00 0 000 0000 0000 0000 000B

 A’ B’C’ D’E’ H’L’ sz’h’pnc’
 00 0000 0000 0000 00 0 000

 I 00 IFF2 0 IMODE 0

STATUS: Z80--Running user program Emulation trace complete______........

Using the Emulator 4-15

display registers ALL <RETURN>

This command displays all emulation registers. Available
classes of Z80 registers include: primary, complete, alternate,
and interrupt. The result on screen resembles:

display registers BASIC DE <RETURN>

This command allows you to display an individual register or
register pair (like the “DE” register pair). The result on screen
resembles:

Registers

 A B C D E H L sz h pnc IX IY SP PC
 03 0500 1111 0102 00 0 000 0000 0000 0000 000B

 A’ B’C’ D’E’ H’L’ sz’h’pnc’
 00 0000 0000 0000 00 0 000

 I 00 IFF2 0 IMODE 0

 A B C D E H L sz h pnc IX IY SP PC A’ B’C’ D’E’ H’L’ sz’h’pnc’
 01 0700 1111 00FF 00 0 000 0000 0000 0000 000A 00 0000 0000 0000 00 0 000
 I 00 IFF2 0 IMODE 0 R 15

STATUS: Z80--Running user program Emulation trace complete______........

Registers

 A B C D E H L sz h pnc IX IY SP PC
 03 0500 1111 0102 00 0 000 0000 0000 0000 000B

 A’ B’C’ D’E’ H’L’ sz’h’pnc’
 00 0000 0000 0000 00 0 000

 I 00 IFF2 0 IMODE 0

 A B C D E H L sz h pnc IX IY SP PC A’ B’C’ D’E’ H’L’ sz’h’pnc’
 01 0700 1111 00FF 00 0 000 0000 0000 0000 000A 00 0000 0000 0000 00 0 000
 I 00 IFF2 0 IMODE 0 R 15

 DE 1111

STATUS: Z80--Running user program Emulation trace complete______........

4-16 Using the Emulator

Display Software
Breakpoints

You can display currently defined software breakpoints, whether they
are set or cleared. Some examples are included below.

Note If no software breakpoints are set, or if software breakpoints are
disabled, a message will be displayed. To enable software breakpoints,
enter the command modify software_breakpoints enable. See the
Modify Emulation Resources section in this chapter for more
information.

display software_breakpoints <RETURN>

This command displays all currently defined software
breakpoints. The result resembles:

Software breakpoints :enabled
 address label status
 000E getstar:JUMP inactivated

STATUS: Z80--Running user program Emulation trace complete______........

Using the Emulator 4-17

display software_breakpoints
offset_by 4 <RETURN>

This command causes the software breakpoints to be offset
from the actual breakpoint address by the number specified
(4). The result resembles:

Display I/O Ports You can display data at the emulation processor I/O ports. Data at these
ports change, so your display may differ. Some examples follow.

Software breakpoints :enabled :offset = 0004
 address label status
 000A getstar:LOOP inactivated

STATUS: Z80--Running user program Emulation trace complete______........

4-18 Using the Emulator

display io_port 4 thru 8 <RETURN>

The contents of I/O ports 4 through 8 will be displayed. The
result on screen resembles:

display io_port 0 repetitively <RETURN>

The content of I/O ports 0 through 0fh will be displayed
continuously. Using the repetitively option, you can observe
what is continuously being sent to the target system I/O ports.
The result resembles:

I/O port :bytes :absolute
 address data :hex :ascii
 0004 04 ..
 0005 00 ..
 0006 00 ..
 0007 00 ..
 0008 00 ..

STATUS: Z80--Running user program Emulation trace complete______........

I/O port :bytes :absolute :repetitively
 address data :hex :ascii
 0000 00 ..
 0001 01 ..
 0002 02 ..
 0003 03 ..
 0004 04 ..
 0005 00 ..
 0006 00 ..
 0007 00 ..
 0008 00 ..
 0009 00 ..
 000A 00 ..
 000B 00 ..
 000C 00 ..
 000D 00 ..
 000E 00 ..
 000F 11 ..
STATUS: Z80--Running user program Emulation trace complete______........

Using the Emulator 4-19

Step through a
Program

Stepping through a program one instruction at a time allows you to
observe activity in the emulation processor registers as the program
executes. In this way, you can verify that the program is executing
properly. If problems exist with the program, stepping through it and
observing the processor registers can help you locate the problem area.

Some examples are included below.

Note Before stepping through a program, you should execute the display
registers command to observe the contents of the registers. Then all
successive step commands will automatically display registers.

step 1 from 0 <RETURN>

This executes one instruction from address 0. If the address is
the start of your program, the first instruction in your program
is executed. The result resembles:

step <RETURN>

When used with the previous command, this command causes
the emulation processor to execute the next program
instruction. You can continue to step through the program one

Registers

 A B C D E H L sz h pnc IX IY SP PC
 03 0500 1111 0101 00 0 000 0000 0000 0000 000A

Step_PC 0000 LD A,01
 A B C D E H L sz h pnc IX IY SP PC
 01 0700 1111 0106 00 0 000 0000 0000 0000 0002

STATUS: Z80--Running in monitor Emulation trace complete______........

4-20 Using the Emulator

instruction at a time by holding down the <RETURN> key.
The result on screen resembles:

step from getstart.S:START <RETURN>

The emulation processor will execute one instruction from the
global or local symbol you specify. (An absolute file must be
loaded into emulation or user memory before you can use
symbols in expressions.) The result resembles:

Registers

 A B C D E H L sz h pnc IX IY SP PC
 03 0500 1111 0101 00 0 000 0000 0000 0000 000A

Step_PC 0000 LD A,01
 A B C D E H L sz h pnc IX IY SP PC
 01 0700 1111 0106 00 0 000 0000 0000 0000 0002

Step_PC 0002 LD B,07
 A B C D E H L sz h pnc IX IY SP PC
 01 0700 1111 0106 00 0 000 0000 0000 0000 0004

STATUS: Z80--Stepping complete Emulation trace complete______........

Registers

 A B C D E H L sz h pnc IX IY SP PC
 03 0500 1111 0101 00 0 000 0000 0000 0000 000A

Step_PC 0000 LD A,01
 A B C D E H L sz h pnc IX IY SP PC
 01 0700 1111 0106 00 0 000 0000 0000 0000 0002

Step_PC 0002 LD B,07
 A B C D E H L sz h pnc IX IY SP PC
 01 0700 1111 0106 00 0 000 0000 0000 0000 0004

Step_PC 0000 LD A,01
 A B C D E H L sz h pnc IX IY SP PC
 01 0700 1111 0106 00 0 000 0000 0000 0000 0002

STATUS: Z80--Stepping complete Emulation trace complete______........

Using the Emulator 4-21

step 4 <RETURN>

This command causes the emulation processor to execute four
instructions from the current program counter address. The
result resembles:

Modify Emulation
Resources

You can modify the contents of memory, registers, software
breakpoints, I/O ports, and the emulation configuration. Hexadecimal
numbers can be specified with “h” or “H.” Some examples are
included below.

Modify Memory These commands show you how to modify memory. When you modify
memory mapped as user (target system) RAM (tram) or user ROM
(trom), the modifications are made to the target system memory.

modify memory 0 to 0FFH <RETURN>

This command modifies the content of a single address (0) to
the data you specify (FF hexadecimal).

modify memory 100H thru 10FH to 0
<RETURN>

Registers

Step_PC 0002 LD B,07
 A B C D E H L sz h pnc IX IY SP PC
 01 0700 1111 0106 00 0 000 0000 0000 0000 0004

Step_PC 0004 LD DE,1111
 A B C D E H L sz h pnc IX IY SP PC
 01 0700 1111 0106 00 0 000 0000 0000 0000 0007

Step_PC 0007 LD HL,00FF
 A B C D E H L sz h pnc IX IY SP PC
 01 0700 1111 00FF 00 0 000 0000 0000 0000 000A

Step_PC 000A INC HL
 A B C D E H L sz h pnc IX IY SP PC
 01 0700 1111 0100 00 0 000 0000 0000 0000 000B

STATUS: Z80--Stepping complete Emulation trace complete______........

4-22 Using the Emulator

This command modifies the contents of a range of addresses
(100H through 10FH) to zero.

modify memory 100h thru 10fh to 77h
<RETURN>

This command modifies the contents of the memory locations
specified to the data specified (77h). If you use the display
memory command to view these locations, the result
resembles:

 Memory :bytes :blocked :update
 address data :hex :ascii
 0100-07 77 77 77 77 77 77 77 77 w w w w w w w w
 0108-0F 77 77 77 77 77 77 77 77 w w w w w w w w

STATUS: Z80--Stepping complete Emulation trace complete______........

Using the Emulator 4-23

modify memory 100h thru 10fh to 1,2,3

This comand modifies the contents of the specified memory
locations to the values 1,2, and 3 in sequence until the
memory range is filled. The result resembles:

Modify Registers You can change the contents of emulation processor registers to help
locate problems in your programs. These commands show you some
methods for modifying registers.

Note When the Z80 emulator is running, and is restricted to real-time runs,
you cannot display or modify registers.

 Memory :bytes :blocked :update
 address data :hex :ascii
 0100-07 01 02 03 01 02 03 01 02
 0108-0F 03 01 02 03 01 02 03 01

STATUS: Z80--Stepping complete Emulation trace complete______........

4-24 Using the Emulator

modify register BASIC HL to 7 <RETURN>

This command stores the value 7 in the HL register pair. If
registers are already displayed, this command will
automatically display the new values. Otherwise use the
display registers command to display registers and view the
contents of the HL register pair. The result resembles:

modify register A to 0 <RETURN>

This command initializes the accumulator to zero. The result
resembles:

Registers

 A B C D E H L sz h pnc IX IY SP PC
 00 0700 1111 0007 00 0 000 0000 0000 0000 000B

STATUS: Z80--Running in monitor Emulation trace complete______........

Registers

 A B C D E H L sz h pnc IX IY SP PC
 00 0700 1111 0007 00 0 000 0000 0000 0000 000B

 A 00

STATUS: Z80--Running in monitor Emulation trace complete______........

Using the Emulator 4-25

Modify Software
Breakpoints

You use software breakpoints to stop execution of a program at a
particular location or locations. You can enable, set, clear, and disable
software breakpoints.

Note If you use the “LD B,B” instruction in your program and software
breaks are enabled, the Z80 emulator will interpret this instruction as a
software break.

modify software_breakpoints enable <RETURN>

This command turns on the software breakpoint feature. This
must be done before you can set any software breakpoints.

modify software_breakpoints set 0CH , 0EH
<RETURN>

This command sets two software breakpoints at addresses 12
and 14. Execution of the program will stop when the emulator
encounters either of these breakpoints. If software breakpoints
are not already displayed, use the display
software_breakpoints offset_by 0 command to view the
breakpoints. Use set symbols on to enable symbol display.
The result on screen resembles:

Software breakpoints :enabled
 address label status
 000C pending
 000E getstar:JUMP pending

STATUS: Z80--Running in monitor Emulation trace complete______........

4-26 Using the Emulator

modify software_breakpoints clear 0CH
<RETURN>

This command clears a single breakpoint at address 12. You
may want to clear a breakpoint so that the program does not
stop at that specific point. The result on screen resembles:

modify software_breakpoints disable <RETURN>

This command turns off the software breakpoint feature. The
result on screen resembles:

Software breakpoints :disabled
 address label status
 000E getstar:JUMP inactivated

STATUS: Z80--Running in monitor Emulation trace complete______........

Software breakpoints :enabled
 address label status
 000E getstar:JUMP pending

STATUS: Z80--Running in monitor Emulation trace complete______........

Using the Emulator 4-27

Modify I/O Ports You can send a data value to a specified I/O address (called a port) or
range of I/O addresses. For the following commands to be valid, the
emulator must be connected to a target system.

modify io_port 0FH to 011H <RETURN>

This command modifies the data at I/O port address 0FH to 11
hexadecimal.

modify io_port 1 thru 4 to 1 , 2 , 3 , 4
<RETURN>

This command sends data values 1, 2, 3, and 4 to the four I/O
ports specified.

Modify the
Configuration

You can view or modify the emulation configuration using this feature.

modify configuration <RETURN>

This command provides you with access to the emulation
configuration questions. You can verify the current
configuration, or modify answers to the configuration
questions to change the configuration. Chapter 3 contains
detailed information about configuring the emulator.

Storing
Information

Emulation memory or trace information can be saved in files to be used
for later analysis. The following commands show you how to use the
store feature.

store memory 0H thru 20H to memlist
<RETURN>

This causes the contents of memory locations 0 through 20H
to be stored in a file named memlist.X.

store memory START thru JUMP to list2
<RETURN>

This command stores the contents of memory beginning at the
symbol named “START,” through the address of the symbol
named “JUMP,” to a file named list2.X

4-28 Using the Emulator

store trace tracelist <RETURN>

This command copies information stored in the trace buffer to
a file named tracelist.TR.

Copying to the
Printer

You can copy emulation information to the printer, such as the contents
of memory, trace, registers, symbols, I/O ports, software breakpoints,
and others. When you execute a copy command, you may notice that
the print message writes over the command line. For example, enter:

copy display to printer <RETURN>

Does the print message overwrite the command line? If so, before
copying to the printer, you may want to set the PRINTER environment
variable so that the print message does not write over the command
line. To do this, enter:

set PRINTER = “lp -s” <RETURN>

Execute the copy command again, and notice that the command you
execute remains on the command line without being overwritten.

If you choose not to set the PRINTER environment variable as
described here, you can refresh the command line by pressing ^L
(CTRL L).

Other Commands
that Control the
Emulator

Other commands are available that let you to perform various tasks.
For more information about any of these, refer to the Softkey Interface
Reference.

Reset the Emulator To reset the emulator, enter:

reset <RETURN>

Using the Emulator 4-29

Target system operation is suspended while the emulator is in the reset
state. In this state, you cannot display registers or target system
memory. To release the emulator from the reset state, execute a run or
break command.

Send CMB EXECUTE
to the CMB

To produce a CMB EXECUTE signal on the CMB, enter:

cmb_execute <RETURN>

When a CMB EXECUTE pulse is sent to the CMB, all emulators
connected to the CMB which are configured to respond will take part
in the measurement.

Specify a Run or
Trace

You can use the specify command to prepare a run or trace command
for execution. When you use the specify command, the
emulator/analyzer will not execute the run or trace command
immediately after you enter it. You must follow that command with a
cmb_execute command. Then the run or trace command will execute.
For example, enter:

specify run from 0 <RETURN>
cmb_execute <RETURN>

Execute a Pod
Command

You can send commands directly to the emulator using the command
named pod_command. You must then execute display
pod_command to view the result.

To display the emulator memory map, enter:

pod_command “map” <RETURN>

To display the version of firmware for your emulator, enter:

pod_command “ver” <RETURN>

Make Performance
Measurements

You can make software performance measurements on your programs
using the Software Performance Measurement Tool (SPMT). This
post-processes information from the analyzer trace list, and stores the
results in a binary file.

4-30 Using the Emulator

To initialize software performance measurements, enter:

performance_measurement_initialize <RETURN>

To run a software performance measurement, enter:

performance_measurement_run <RETURN>

To end a software performance measurement, enter:

performance_measurement_end <RETURN>

For more information on making software performance measurements,
refer to the Analyzer Softkey Interface User’s Guide.

Wait You can cause the emulator to wait for a specified amount of time to
pass, or until a measurement completes. The wait command suspends
further command processing until one of these conditions is satisfied.

To cause the emulator to wait 30 seconds, enter:

wait 30 <RETURN>

To pause the emulator until a measurement completes, enter:

wait measurement_complete <RETURN>

Using the Emulator 4-31

Notes

4-32 Using the Emulator

Index

A access the emulator, 2-4
analyzer, 2-14
analyzing programs, 1-1
assemble the example program, 2-3
assembler symbol file (getstart.A), 2-3

B base letter for numeric values, 2-18
breakpoint, 1-3

C clock
selection, 1-3
speed of emulator, 4-2
speed of target system, 4-2

CMB EXECUTE signal, 4-30
command file, 2-8
configuration

file, 2-8, 3-17
process, 3-1

configure memory, 1-3
configuring the emulator, 3-1
copy information to printer, 4-29
create a command file, 2-8

D debugging programs, 1-1
display

activity on emulation processor bus, 1-3
emulation resources, 4-11
I/O ports, 4-18
memory, 1-3, 4-11
registers, 2-12, 4-14
software breakpoints, 4-17

downloading programs, 1-2

E edit the configuration file, 3-17
emul700 command, 2-4
emulation

analyzer, 1-1, 2-14

Index-1

emulation (cont’d)
clock, 1-3
configuration questions, 3-1
memory map, 2-6
process, 2-1

emulator device table file, 2-4
end

all windows, 2-17
and keep emulator locked, 2-17
and release emulator, 2-17
and select measurement system, 2-17
emulation session, 2-16
one window, 2-17

example
configuration file, 2-8
for getting started, 2-1
program (getstart.S), 2-3

example program
files, 2-2

example program absolute file (getstart.X), 2-3
execute a program, 1-3, 4-8

F features of the emulator, 1-2

G global symbols
displaying, 4-6

guarded memory accesses, 1-3

H HP 64000-UX emulators, 1-1
HP 9000 host computer, 1-1

I I/O address (port), 4-28
I/O ports, 4-18
illegal opcode, 1-3
in-circuit emulation, 4-3

L LD B,B instruction read as software break, 4-26
link the example program, 2-3
linker questions, 2-3
load

example program, 2-9
files into memory, 4-4

locate the problem area (in a program), 4-20

2-Index

log_commands feature, 2-8
logical name, 2-4

M manuals
Analyzer Softkey Interface User’s Guide, 4-31
Hardware Installation and Configuration, 1-6
Softkey Interface Installation Notice, 1-6
Softkey Interface Reference, 2-5, 2-16
System Overview, 1-6
User Interface Software Manual (pmon), 2-5

map memory, 1-3, 2-6
measurement system, 2-5
measurements, 1-1
memory

display, 1-3, 4-11
map, 2-6
modify, 1-3, 4-22

modify
emulation configuration, 2-6, 4-28
emulation resources, 4-22
I/O ports, 4-28
memory, 1-3, 4-22
registers, 4-24
software breakpoints, 4-26

N nonreal-time mode, 1-3, 4-3
numeric values, 2-18

O out-of-circuit emulation, 4-2

P performance measurements, 4-30
personal computer (PC), 1-1
pod_command execution, 4-30
power down the target system, 1-5
precautions, 1-5
print message overwrites command line, 4-29
PRINTER environment variable, 4-29

R real-time mode, 1-3, 4-3
register

display, 1-3
modify, 1-3, 4-24

register display and modify, 1-3

Index-3

registers, 4-14
relocatable file (getstart.R), 2-3
reset the emulator, 4-29
run

a program, 4-8
example program, 2-11

S save
current emulation configuration, 3-17
emulation memory in a file, 4-28
trace information in a file, 4-28

set command, 4-29
set PRINTER environment variable, 4-29
setting up a trace (for more information), 2-15
simulated I/O configuration questions

control address, 3-13
enable status messages, 3-14
polling for simulated I/O, 3-13
standard error file, 3-14
standard input file, 3-13
standard output file, 3-13

Softkey Interface, 1-1
softkey levels, 2-5
softkeys, 1-1
software

breakpoints, 1-3, 4-17, 4-26
development, 1-1
performance measurements, 4-30

specify a run or trace, 4-30
standard bases for numeric values, 2-18
static discharge, 1-5
step through a program, 1-3, 2-13, 4-20
stop emulator execution, 1-3
store information, 4-28

T target system, 1-1
clock, 1-3
memory, 4-22
resources, 3-1

tasks performed by the emulator, 1-2
terminal, 1-1

4-Index

trace
execution of example program, 2-14
measurements, 1-1
program execution, 4-9

trigger, 2-15

U use the emulator, 2-8, 4-1
user

probe orientation, 1-5
RAM (tram), 4-22
ROM (trom), 4-22

W wait command, 4-31
windowing environment, 2-17
writes to ROM, 1-3

Z Z80
emulator, 1-1
emulator restricted to real-time runs, 4-24
microprocessor, 1-1

Index-5

Notes

6-Index

	Using this Manual
	Contents
	Introducing the Z80 Softkey Interface
	Getting Started
	Configuring the Emulator
	Using the Emulator
	Index

