
HP 64756/7

70136/70236 Emulator
Softkey Interface

User’s Guide

HP Part No. 6 4756-97013
Printed in U.S.A.
August 1994

Edition 5

Notice Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or
for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability
of its software on equipment that is not furnished by
Hewlett-Packard.

© Copyright 1990, 1991, 1993, 1994 Hewlett-Packard Company.

This document contains proprietary information, which is
protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to
another language without the prior written consent of
Hewlett-Packard Company. The information contained in this
document is subject to change without notice.

UNIX is a registered trademark of AT&T.

Torx is a registered trademark of Camcar Division of Textron, Inc.

Hewlett-Packard Company
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication,or disclosure
by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA
94304 U.S.A. Rights for non-DOD U.S.Government Departments
and Agencies are as set forth in FAR 52.227-19(c)(1,2).

Printing History New editions are complete revisions of the manual. The date on
the title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was
issued. Many product updates and fixes do not require manual
changes and, manual corrections may be done without
accompanying product changes. Therefore, do not expect a
one-to-one correspondence between product updates and manual
revisions.

Edition 1
Edition 2
Edition 3
Edition 4
Edition 5

64756-97002, April 1990
64756-97005, August 1990
64756-97007, February 1991
64756-97010, August 1993
64756-97013, July 1994

Using this Manual

This manual covers the following emulators as used with the
Softkey Interface.

HP 64756F 70136 emulator
HP 64757F 70236 emulator
HP 64757G 70236A emulator

For the most part, the 70136, 70236 and 70236A emulators all
operate the same way. Differences between the emulators are
described where they exist. All of the 70136, 70236 and 70236A
emulators will be referred to as the "70136 emulator" in this
manual where they are alike. In the specific instances where 70236
or 70236A emulator differs from the 70136 emulator, it will be
referred as the "70236 emulator" or "70236A emulator".

This manual:

Shows you how to use emulation commands by executing
them on a sample program and describing their results.

Shows you how to use the emulator in-circuit (connected
to a target system).

Shows you how to configure the emulator for your
development needs. Topics include: restricting the
emulator to real-time execution, selecting a target system
clock source, and allowing the target system to insert wait
states.

This manual does not:

Show you how to use every Softkey Interface command
and option; the Softkey Interface is described in the
Softkey Interface Reference manual.

Organization

Chapter 1 Introduction to the 70136 Emulator. This chapter briefly
introduces you to the concept of emulation and lists the basic
features of the 70136 emulator.

Chapter 2 Getting Started. This chapter shows you how to use emulation
commands by executing them on a sample program. This chapter
describes the sample program and how to: load programs into the
emulator, map memory, display and modify memory, display
registers, step through programs, run programs, set software
breakpoints, search memory for data, and use the analyzer.

Chapter 3 "In-Circuit" Emulation. This chapter shows you how to install the
emulator probe into a target system and how to use "in-circuit"
emulation features.

Chapter 4 Configuring the Emulator. This chapter shows you how to: restrict
the emulator to real-time execution, select a target system clock
source, allow the target system to insert wait states, and select
foreground or background monitor.

Chapter 5 Using the Emulator. This chapter describes emulation topics
which are not covered in the "Getting Started" chapter.

Appendix A Using the Foreground Monitor. This appendix describes the
advantages and disadvantages of foreground and background
monitors and how to use foreground monitor.

Appendix B Using the Extended Mode. This appendix shows you how to use
the emulator in extended mode. This appendix describes a sample
program and how to: load programs into the emulator, display
memory, set software breakpoints, and use the emulation analyzer
in extended mode.

Contents

1 Introduction to the 70136 Emulator

Introduction . 1-1
Purpose of the Emulator . 1-1
Features of the 70136 Emulator 1-3

Supported Microprocessors . 1-3
Clock Speeds . 1-4
Emulation memory . 1-4
Analysis . 1-4
Registers . 1-5
Single-Step . 1-5
Breakpoints . 1-5
Reset Support . 1-5
Configurable Target System Interface 1-5
Foreground or Background Emulation Monitor 1-6
Real-Time Operation . 1-6
Easy Products Upgrades . 1-6

Limitations, Restrictions . 1-7
DMA Support . 1-7
User Interrupts . 1-7
Interrupts While Executing Step Command 1-7
Accessing Internal I/O Registers 1-7
PC relative addressing in trace list 1-8
"BRKXA" and "RETXA" Instructions in Stepping 1-8
Stepping at Software Breakpoint 1-8
Evaluation Chip . 1-8

2 Getting Started

Introduction . 2-1
Before You Begin . 2-2

Prerequisites . 2-2
A Look at the Sample Program 2-3

Entering the Softkey Interface . 2-5
From the "pmon" User Interface 2-5
From the HP-UX Shell . 2-6

Contents-1

Configure the Emulator for Examples 2-8
On-Line Help . 2-9

Softkey Driven Help . 2-9
Pod Command Help . 2-10

Loading Absolute Files . 2-11
Displaying Symbols . 2-12

Global . 2-12
Local . 2-13
Source Lines . 2-14

Displaying Memory in Mnemonic Format 2-15
Symbols in the Display . 2-16
Source Lines in the Display 2-17

Using Software Breakpoints . 2-18
Enabling/Disabling Software Breakpoints 2-19
Setting a Software Breakpoint 2-19

Running the Program . 2-20
From Transfer Address . 2-20
From Reset . 2-21

Stepping Through the Program 2-22
Modifying Memory . 2-23
Breaking into the Monitor . 2-24
Displaying Registers . 2-25
Stepping Through the Program 2-26
Using the Analyzer . 2-28

Specifying a Simple Trigger 2-28
Displaying the Trace . 2-29
Displaying Trace with Time Count Absolute 2-31
Displaying Trace with Compress Mode 2-32
Reducing the Trace Depth 2-33
Emulator Analysis Status Qualifiers 2-33
For a Complete Description 2-34

Resetting the Emulator . 2-35
Exiting the Softkey Interface . 2-35

End Release System . 2-35
Ending to Continue Later . 2-35
Ending Locked from All Windows 2-36
Selecting the Measurement System Display
or Another Module . 2-36

2-Contents

3 In-Circuit Emulation

Introduction . 3-1
Prerequisites . 3-1
Installing the Target System Probe 3-2

Auxiliary Output Lines . 3-3
Installing into a 70136 PLCC Type Socket 3-5
Installing into a 70136 PGA Type Socket 3-6
Installing into a 70136 QFP Type Socket 3-7
Installing into a 70236/70236A PGA Type Socket 3-8
Installing into a 70236/70236A QFP Type Socket 3-8
In-Circuit Configuration Options 3-10
Running the Emulator from Target Reset 3-11
Pin State in Background (70136) 3-12
Pin State in Background (70236/70236A) 3-14
Target System Interface (70136) 3-16
Target System Interface (70236/70236A) 3-19

4 Configuring the Emulator

Introduction . 4-1
General Emulator Configuration 4-4

Micro-processor Clock Source? 4-4
Enter Monitor After Configuration? 4-5
Restrict to Real-Time Runs? 4-5

Memory Configuration . 4-6
Monitor Type? . 4-6
Mapping Memory . 4-10

Emulator Pod Configuration . 4-13
Enable RESET inputs from target system? 4-13
Enable NMI inputs from target system? 4-13
Enable READY inputs from target system? 4-14
Select Algorithm for physical run addresses 4-15
Select target memory and I/O access size 4-16
Enable background cycles to target system?
(70136 Emulator) . 4-17
Enable background cycles to target system?
(70236/70236A Emulator) 4-18
Select emulation memory bus sizing signal 4-19
Select target memory bus sizing signal 4-19
Enable break on reading page registers? 4-20
Select AEX signal while background 4-21
Select FPU type for disassembly 4-21

Contents-3

Respond to target HLDRQ during background operation?
(70236/70236A Emulator Only) 4-22
Wait states for internal DMA cycles
(70236/70236A Emulator Only) 4-22
Enabling internal DMA during background operation?
(70236/70236A Emulator Only) 4-22

Debug/Trace Configuration . 4-23
Break Processor on Write to ROM? 4-23
Trace Background or Foreground Operation? 4-24
Trace Internal DMA cycles?
(70236/70236A Emulator only) 4-24
Trace refresh cycles? (70236/70236A Emulator only) 4-25
Trace dummy cycles during HALT acknowledge?
(70236 Emulator only) . 4-25

Simulated I/O Configuration . 4-26
External Analyzer Configuration 4-26
Interactive Measurement Configuration 4-26
Saving a Configuration . 4-26
Loading a Configuration . 4-27

5 Using the Emulator

Introduction . 5-1
Register Names and Classes (70136 Emulator) 5-2

BASIC(*) class . 5-2
PGR class . 5-2

Register Names and Classes (70236/70236A Emulator) 5-3
BASIC(*) class . 5-3
PGR class . 5-3
SIO class . 5-4
ICU class . 5-5
TCU class . 5-5
SCU class . 5-6
DMA71 class . 5-6
DMA37 class . 5-7

Hardware Breakpoints . 5-7
Features Available via Pod Commands 5-8
Storing Memory Contents to an Absolute File 5-9
Coordinated Measurements . 5-9

4-Contents

A Using the Foreground Monitor

Introduction . A-1
Comparison of Foreground and Background Monitors A-1

Background Monitors . A-2
Foreground Monitors . A-2

An Example Using the Foreground Monitor A-3
Modify EQU Statement . A-3
Assemble and Link the Monitor A-4
Modifying the Emulator Configuration A-4
Load the Program Code . A-6
Tracing from Reset to Break A-6
Tracing from Monitor to User Program A-9
Tracing from User Program to Break A-10
Single Step and Foreground Monitors A-11

Extended Address Mode . A-12
Limitations of Foreground Monitors A-12

Synchronized MeasurementsCMB A-12

B Using the Extended Mode

Introduction . B-1
Prerequisites . B-2

A Look at the Sample Program B-2
Entering the Softkey Interface B-6
Loading Absolute Files . B-7
Symbol Hierarchy with SRU and HP-OMF V33 Files B-8
Displaying Symbols . B-11

Global . B-11
Local . B-12

Address Expression in Extended Mode B-17
Display Memory . B-19
Using Software Breakpoints . B-21

Enabling/Disabling Software Breakpoints B-21
Setting a Software Breakpoint B-22

Running the Program . B-24
From Transfer Address . B-25

Stepping Through the Program B-27
Modifying Memory . B-28
Breaking into the Monitor . B-30
Displaying Registers . B-31
Stepping Through the Program B-32
Using the Analyzer . B-35

Contents-5

Specifying a Simple Trigger B-35
Displaying the Trace . B-37

Storing Memory Contents to an Absolute File B-38
Simulated I/O Configuration in the Extended Mode B-39

Illustrations

Figure 1-1. HP 64756/7 Emulator for uPD70136/70236 1-2
Figure 2-1. The "cmd_rds.c" Sample Program 2-4
Figure 2-2. Softkey Interface Display 2-7
Figure 3-1. Auxiliary Output Lines (70136 Emulator) 3-3
Figure 3-2. Installing into a 70136 PLCC type socket 3-5
Figure 3-3. Installing into a 70136 PGA type socket 3-6
Figure 3-4. Installing into a 70136 QFP type socket 3-7
Figure 3-5 Installing into a 70236 PGA type socket 3-9
Figure B-1. Sample program "setup.s" B-3
Figure B-2. Sample program "cmd_rds.c" B-5
Figure B-3. The "ex_cmd_rds.d" description file B-6

6-Contents

1

Introduction to the 70136 Emulator

Introduction The topics in this chapter include:

Purpose of the emulator

Features of the emulator

Limitations and Restrictions of the emulator

Purpose of the
Emulator

The 70136 emulator is designed to replace the 70136 microprocessor in
your target system to help you debug/integrate target system software
and hardware. The emulator performs just like the processor which it
replaces, but at the same time, it gives you information about the bus
cycle operation of the processor. The emulator gives you control over
target system execution and allows you to view or modify the contents
of processor registers, target system memory, and I/O resources.

Introduction 1-1

Figure 1-1. HP 64756/7 Emulator for uPD70136/70236

1-2 Introduction

Features of the
70136 Emulator

This section introduces you to the features of the emulator. The
chapters which follow show you how to use these features.

Supported
Microprocessors

The 70136 emulator probe has a 68-pin PLCC connector. Also
provided is the adapter, HP PART No. 64756-61612, that will allow
the PLCC probe to connect to the NEC EV-9200G-74 socket which
replaces the 74-pin QFP package of 70136 microprocessor.

The HP 64756 emulator supports the following packages of 70136
microprocessor.

68-pin PLCC

68-pin PGA
(With using PLCC to PGA adapter; refer to the "In-Circuit
Emulation Topics" chapter in this manual)

74-pin QFP
(With using PLCC to QFP adapter (HP PART No.
64756-61612) and NEC EV-9200G-74 socket)

The 70236 and 70236A emulator probe has an 132-pin PGA connector.
Also provided is the NEC EV-9500GD-120 adapter that will allow the
PGA probe to connect to the NEC EV-9200GD-120 socket which
replaces the 120-pin QFP package of 70236 microprocessor.

The HP 64757 emulator supports the following packages of 70236 or
70236A microprocessor.

132-pin PGA

120-pin QFP
(With using NEC EV-9500GD-120 adapter and NEC
EV-9200GD-120 socket)

Introduction 1-3

Clock Speeds The 70136 emulator runs with an internal clock speed of 16 MHz
(system clock), or with target system clocks from 2-16 MHz.

The 70236 emulator runs with an internal clock speed of 16 MHz
(system clock), or with target system clocks from 4-32 MHz.

The 70236A emulator runs with an internal clock speed of 16 MHz
(system clock), or with target system clocks from 4-40 MHz.

Emulation memory The HP 70136 emulator is used with one of the following Emulation
Memory Cards.

HP 64726 128K byte Emulation Memory Card
HP 64727 512K byte Emulation Memory Card
HP 64728 1M byte Emulation Memory Card
HP 64729 2M byte Emulation Memory Card

You can define up to 16 memory ranges (at 256 byte boundaries and at
least 256 byte in length). The monitor occupies 4K bytes leaving
124K, 508K, 1020K or 2044K bytes of emulation memory which you
may use.You can characterize memory ranges as emulation RAM,
emulation ROM, target system RAM, target system ROM, or guarded
memory. The emulator generates an error message when accesses are
made to guarded memory locations. You can also configure the
emulator so that writes to memory defined as ROM cause emulator
execution to break out of target program execution.

Analysis The HP 70136 emulator is used with one of the following analyzers
which allows you to trace code execution and processor activity.

HP 64704 80-channel Emulation Bus Analyzer
HP 64703 64-channel Emulation Bus Analyzer and
16-channel State Timing Analyzer

The HP 70236/70236A emulator is used with one of the following
analyzers which allows you to trace code execution and processor
activity.

HP 64704 80-channel Emulation Bus Analyzer
HP 64703 64-channel Emulation Bus Analyzer and
16-channel State Timing Analyzer
HP 64794A/C/D Deep Emulation Bus Analyzer

1-4 Introduction

When you use the HP 70236A emulator over 16MHz, you have to use
the HP 64794 Deep Emulation Bus Analyzer.

The Emulation Bus Analyzer monitors the emulation processor using
an internal analysis bus. The HP 64703 64-channel Emulation Bus
Analyzer and 16-channel State/Timing Analyzer allows you to probe
up to 16 different lines in your target system.

Registers You can display or modify the 70136 internal register contents.

Single-Step You can direct the emulation processor to execute a single instruction
or a specified number of instructions.

Breakpoints You can set up the emulator/analyzer interaction so that when the
analyzer finds a specific state, emulator execution will break to the
background monitor.

You can also define software breakpoints in your program. The
emulator uses one of 70136 undefined opcode (F1 hex) as software
breakpoint interrupt instruction. When you define a software
breakpoint, the emulator places the breakpoint interrupt instruction (F1
hex) at the specified address; after the breakpoint interrupt instruction
causes emulator execution to break out of your program, the emulator
replaces the original opcode.

Reset Support The emulator can be reset from the emulation system under your
control, or your target system can reset the emulation processor.

Configurable Target
System Interface

You can configure the emulator so that it honors target system wait
requests when accessing emulation memory. You can configure the
emulator so that it presents cycles to, or hides cycles from, the target
system when executing in background.

Introduction 1-5

Foreground or
Background

Emulation Monitor

The emulation monitor is a program that is executed by the emulation
processor. It allows the emulation controller to access target system
resources. For example, when you display target system memory, it is
the monitor program that executes 70136 instructions which read the
target memory locations and send their contents to the emulation
controller.

The monitor program can execute in foreground, the mode in which
the emulator operates as would the target processor. The foreground
monitor occupies processor address space and executes as if it were
part of the target program.

The monitor program can also execute in background, the emulator
mode in which foreground operation is suspended so that emulation
processor can be used to access target system resources. The
background monitor does not occupy any processor address space.

Real-Time Operation Real-time operation signifies continuous execution of your program
without interference from the emulator. (Such interference occurs when
the emulator temporarily breaks to the monitor so that it can access
register contents or target system memory or I/O.)

You can restrict the emulator to real-time execution. When the
emulator is executing your program under the real-time restriction,
commands which display/modify registers, display/modify target
system memory or I/O, or single-step are not allowed.

Easy Products
Upgrades

Because the HP 64700 Series development tools (emulator, analyzer,
LAN board) contain programmable parts, it is possible to reprogram
the firmware and some of the hardware without disassembling the HP
64700A/B Card Cage. This means that you’ll be able to update
product firmware, if desired, without having to call an HP field
representative to your site.

1-6 Introduction

Limitations,
Restrictions

DMA Support In the 70136 Emulator, Direct memory access to the emulation
memory by DMA controller is not permitted.

In the 70236 and the 70236A Emulator, Direct memory access to the
emulator by external DMA controller is not permitted.

User Interrupts If you use the background monitor in the 70136 emulator, interrupts are
suspended or ignored during background operation. NMI is suspended
until the emulator goes into foreground operation. INT interrupt is
ignored.

If you use the background monitor in the 70236 and the 70236A
emulator, interrupts from target system are suspended during
background operation. NMI, and INTP0-INTP7 are suspended until
the emulator goes into foreground operation.

Interrupts While
Executing Step

Command

While executing user program code in stepping in the foreground
monitor, interrupts are accepted if they are enabled in the foreground
monitor program. When using the foreground monitor you will see the
following error message, if the interrupts are acknowledged before
stepping user program code.

ERROR: Stepping failed

Although the error message above appears, the code is executed as you
expected to do.

Accessing
Internal I/O Registers

When you access internal I/O registers of the emulator, you should use
the "display/modify register" command with their register name instead
of the "display/modify io_port" command.

Introduction 1-7

PC relative
addressing
in trace list

When you use the following setting in your program, the branch
address forming in PC relative addressing may change to a wrong
value only in disassemble list.

The program is running in the extended address mode.
The effective address for the PC relative addressing is in the
other page.
The order of the pages is not in sequence in extended address.

"BRKXA" and
"RETXA"

Instructions in
Stepping

When the "BRKXA" and "RETXA" instructions are executed in
stepping, the emulator reads memory for disassembly after stepping.
When you execute "BRKXA" instruction in stepping, the normal
address where the "BRKXA" instruction is located is extended to read
memory for disassemble after stepping.
When you execute "RETXA" instruction in stepping, the normal
address which is extended to point the "RETXA" instruction is not
extended to read memory for disassemble after stepping.

Stepping at Software
Breakpoint

When you execute step commands in the foreground monitor, you
should not step at the address which the "Software Breakpoint" was
set; the stepping will be failed.

ERROR: Stepping failed

Evaluation Chip Hewlett-Packard makes no warranty of the problem caused by the
70136/70236/70236A Evaluation chip in the emulator.

1-8 Introduction

2

Getting Started

Introduction This chapter will lead you through a basic, step by step tutorial that
shows how to use the 70136 emulator with the Softkey Interface.

This chapter will:

Tell you what must be done before you can use the emulator
as shown in the tutorial examples.

Describe the sample program used for this chapter’s examples.

This chapter will show you how to:

Start up the Softkey Interface.

Load programs into emulation and target system memory.

Enter emulation commands to view execution of the sample
program.

Note that this chapter will show you how to use the emulator mainly
about the normal mode. Refer to appendix B for using the extended
mode of the emulator.

Getting Started 2-1

Before You Begin

Prerequisites Before beginning the tutorial presented in this chapter, you must have
completed the following tasks:

1. Connected the emulator to your computer. The HP 64700
Series Installation/Service manual show you how to do this.

2. Installed the Softkey Interface software on your computer.
Refer to the HP 64700 Series Installation/Service manual for
instructions on installing software.

3. In addition, you should read and understand the concepts of
emulation presented in the Concepts of Emulation and
Analysis manual. The Installation/Service manual also covers
HP 64700 system architecture. A brief understanding of these
concepts may help avoid questions later.

You should read the Softkey Interface Reference manual to
learn how to use the Softkey Interface in general. For the
most part, this manual contains information specific to the
70136 emulator.

2-2 Getting Started

A Look at the Sample
Program

The sample program used in this chapter is shown in Figure 2-1.
The program continuously reads values from Cmd_Input ; when a
value other than NULL is found, the program calls the Write_Msg
function to copy a string to the Msg_Dest array.

The sample program and the associated output files, including the HP
format absolute files, have been shipped with the Softkey Interface;
copy these files to the current directory with the following command:

$ cp /usr/hp64000/demo/emul/hp64756/* .
(70136)
$ cp /usr/hp64000/demo/emul/hp64757/* .
(70236)

The file cmd_rds.X contains the absolute code of the program. The file
cmd_rds.L contains the list of global symbols. The files cmd_rds.A
contains the list of local symbols for the respective files.

The user interface provides source line referencing if line information
is present in the local symbol file.

Getting Started 2-3

 1 volatile char Cmd_Input;
 2 char Msg_Dest[0x20];
 3
 4 void Write_Msg (const char *s)
 5 {
 6 char *Dest_Ptr;
 7
 8 Dest_Ptr = Msg_Dest;
 9 while (*s != ’\0’)
 10 {
 11 *Dest_Ptr = *s;
 12 Dest_Ptr++;
 13 s++;
 14 }
 15 }
 16
 17 main ()
 18 {
 19 static char Msg_A[] = "Command A Entered ";
 20 static char Msg_B[] = "Entered B Command ";
 21 static char Msg_I[] = "Invalid Command ";
 22 char c;
 23
 24 for (;;)
 25 {
 26 Cmd_Input = ’\0’;
 27 while ((c = Cmd_Input) == ’\0’);
 28 switch (c) {
 29 case ’A’ :
 30 Write_Msg (Msg_A);
 31 break;
 32 case ’B’ :
 33 Write_Msg (Msg_B);
 34 break;
 35 default :
 36 Write_Msg (Msg_I);
 37 break;
 38 }
 39 }
 40 }

Figure 2-1. The "cmd_rds.c" Sample Program

2-4 Getting Started

Entering the
Softkey Interface

If you have installed your emulator and Softkey Interface software as
directed in the HP 64700 Series Emulators Softkey Interface
Installation Notice, you are ready to enter the interface. The Softkey
Interface can be entered through the pmon User Interface Software or
from the HP-UX shell.

If you have used previous HP 64000-UX emulators (for
example, HP 64200 Series), you may be more familiar with
the pmon, msinit, and msconfig method of entering the
emulation interface.

If you wish to run the Softkey Interface in multiple windows,
you must enter from the HP-UX shell using the emul700
command. Refer to the Softkey Interface Reference manual
for more information on running in multiple windows.

From the "pmon"
User Interface

If /usr/hp64000/bin is specified in your PATH environment variable,
you can enter the pmon User Interface with the following command.

$ pmon <RETURN>

If you have not already created a measurement system for the 70136
emulator, you can do so with the following commands. First you must
initialize the measurement system with the following command.

MEAS_SYS msinit <RETURN>

After the measurement system has been initialized, enter the
configuration interface with the following command.

msconfig <RETURN>

To define a measurement system for the 70136 emulator, enter:

make_sys emv33 <RETURN>

Getting Started 2-5

Now, to add the emulator to the measurement system, enter:

add <module_number> naming_it n70136 <RETURN>

Enter the following command to exit the measurement system
configuration interface.

end <RETURN>

If the measurement system and emulation module are named "emv33"
and "n70136" as shown above, you can enter the emulation system
with the following command:

emv33 default n70136 <RETURN>

If this command is successful, you will see a display similar to figure
2-2. The status message shows that the default configuration file has
been loaded. If the command is not successful, you will be given an
error message and returned to the pmon User Interface. Error
messages are described in the Softkey Interface Reference manual.

For more information on creating measurements systems, refer to the
Softkey Interface Reference manual.

From the HP-UX Shell If /usr/hp64000/bin is specified in your PATH environment variable,
you can also enter the Softkey Interface with the following command.

$ emul700 <emul_name> <RETURN>

The "emul_name" in the command above is the logical emulator name
given in the HP 64700 emulator device table
(/usr/hp64000/etc/64700tab).
For example, the emulator name in the device table entry shown below
are "v33" for 70136 and "v53" for 70236/70236A.

#-------------+---------+--------------------+----+------+------+----+----+----
| | |xpar| baud |parity|flow|stop|char
logical name|processor| physical |mode| rate | | |bits|size
(14 chars) | type | device | | | |XON | |
| | |OFF | | NONE |RTS | 2 | 8
#-------------+---------+--------------------+----+------+------+----+----+----
#
v33 n70136 /dev/emcom23 OFF 230400 NONE RTS 2 8
v53 n70236 /dev/emcom23 OFF 230400 NONE RTS 2 8

2-6 Getting Started

If this command is successful, you will see a display similar to figure
2-2. The status message shows that the default configuration file has
been loaded. If the command is not successful, you will be given an
error message and returned to the HP-UX prompt. Error messages are
described in the Softkey Interface Reference manual.

 HPB3063-11001 A.04.00 19Jul92
 70136 SOFTKEY USER INTERFACE

 A Hewlett-Packard Software Product
 Copyright Hewlett-Packard Co. 1992

All Rights Reserved. Reproduction, adaptation, or translation without prior
 written permission is prohibited, except as allowed under copyright laws.

 RESTRICTED RIGHTS LEGEND

 Use , duplication , or disclosure by the Government is subject to
 restrictions as set forth in subparagraph (c) (1) (II) of the Rights
 in Technical Data and Computer Software clause at DFARS 52.227-7013.
 HEWLETT-PACKARD Company ,3000 Hanover St. , Palo Alto, CA 94304-1181

STATUS: Loaded configuration file_____________________________________...R....

 run trace step display modify break end ---ETC--

Figure 2-2. Softkey Interface Display

Getting Started 2-7

Configure the
Emulator for

Examples

To do operations described in this chapter (loading absolute program
into emulation memory, displaying memory contents, etc), you need to
configure the emulator as below. For detailed description of each
configuration options (question), refer to the "Configuring the
Emulator" chapter.

To get into the configure session of the emulator, enter the following
command.

modify configuration <RETURN>
The answer to series of questions as below.

Micro-processor clock source? internal <RETURN>

Enter monitor after configuration? yes <RETURN>

Restrict to real-time runs? no <RETURN>

Modify memory configuration? yes <RETURN>

Monitor type? background <RETURN>

Background monitor location? 0FF000H <RETURN>

Now you should be facing memory mapping screen. Three mapper
terms must be specified for the sample program.

 0h thru 03ffh emulation ram <RETURN>

 10000h thru 1f3ffh emulation ram <RETURN>

 80000h thru 8f7ffh emulation rom <RETURN>

 end <RETURN>

Modify emulator pod configuration? no <RETURN>

Modify debug/trace options? no <RETURN>

Modify simulated I/O configuration? no <RETURN>

Modify external analyzer configuration? no <RETURN>

Modify interactive measurement specification? no <RETURN>

Configuration file name? cmd_rds <RETURN>

If you wish to save the configuration specified above, answer this
question as shown.

Now you are ready to go ahead. Above configuration is used through
out this chapter.

2-8 Getting Started

On-Line Help There are two ways to access on-line help in the Softkey Interface. The
first is by using the Softkey Interface help facility. The second method
allows you to access the firmware resident Terminal Interface on-line
help information.

Softkey Driven Help To access the Softkey Interface on-line help information, type either
"help" or "?" on the command line; you will notice a new set of
softkeys. By pressing one of these softkeys and <RETURN>, you can
cause information on that topic to be displayed on your screen. For
example, you can enter the following command to access "system
command" help information.

? system_commands <RETURN>

The help information is scrolled on to the screen. If there is more than
a screenful of information, you will have to press the space bar to see
the next screenful, or the <RETURN> key to see the next line, just as
you do with the HP-UX more command. After all the information on
the particular topic has been displayed (or after you press "q" to quit
scrolling through information), you are prompted to press <RETURN>
to return to the Softkey Interface.

---SYSTEM COMMANDS & COMMAND FILES---

? displays the possible help files
help displays the possible help files

! fork a shell (specified by shell variable SH)
!<shell cmd> fork a shell and execute a shell command

cd <directory> change the working directory
pwd print the working directory
cws <SYMB> change the working symbol - the working symbol also
 gets updated when displaying local symbols and
 displaying memory mnemonic
pws print the working symbol

<FILE>p1 p2 p3 ... execute a command file passing parameters p1, p2, p3
 see "COMMAND FILES EXAMPLES" below for more detail
log_commands to <FILE> logs the next sequence of commands to file
log_commands off discontinue logging commands
name_of_module get the "logical" name of module (see 64700tab.net)

set <ENVVAR> = <VALUE> set and export a shell environment variable
set HP64KPATH = <MYPATH> set and export the shell environment variable that
 --More--(23%)

Getting Started 2-9

Pod Command Help To access the emulator’s firmware resident Terminal Interface help
information, you can use the following commands.

display pod_command <RETURN>
pod_command ’help cf’ <RETURN>

The command enclosed in string delimiters (", ’, or ^) is any Terminal
Interface command, and the output of that command is seen in the
pod_command display. The Terminal Interface help (or ?) command
may be used to provide information on any Terminal Interface
command or any of the emulator configuration options (as the example
command above shows).

Note If you want to use the Terminal Interface command by entering from
keyboard directly, you can do it after entering the following command.

pod_command keyboard

Pod Commands
 Time Command
 --- VALID CONFIGURATION NAMES ---
 clk - select internal or external emulation clock
 rrt - enable/disable restrict to real time runs
 mon - select foreground or background monitor
 cyc - enable/disable driving background cycle
 loc - background monitor location
 rad - segment:offset translation method
 trst - enable/disable RESET signal from the target system
 nmi - enable/disable NMI signal from the target system
 rdy - relationship between emulator and target ready (lk or unlk)
 ebs - select bus sizing signal for the emulation memory
 tbs - select bus sizing signal for the target memory
 pgrd - enable/disable read PGR on address translation
 lad - select address mode for file loading
 aex - select AEX signal when background
 fpu - select FPU type for disassembly

STATUS: N70136--Running in monitor____________________________________...R....
pod_command ’help cf’

 run trace step display modify break end ---ETC--

2-10 Getting Started

Loading Absolute
Files

The "load" command allows you to load absolute files into emulation
or target system memory. You can load absolute files in the following
formats:

HP absolute.

Intel Object Module Format (OMF-86).

HP-OMF V33 absolute. (This is the file format generated by
the HP 64875 V33/53 Extended Mode Locator product.)

The "load" command has no special options for loading different
absolute file formats; instead, the contents of the file are examined to
determine the format being used.

If you wish to load only that portion of the absolute file that resides in
memory mapped as emulation RAM or ROM, use the "load
emul_mem" syntax. If you wish to load only the portion of the
absolute file that resides in memory mapped as target RAM, use the
"load user_mem" syntax. If you want both emulation and target
memory to be loaded, do not specify "emul_mem" or "user_mem".

To load the emulator sample program absolute file, enter the following
command:

load cmd_rds <RETURN>

Getting Started 2-11

Displaying
Symbols

If symbol information is present in the absolute file, it is loaded along
with the absolute file (unless you use the "nosymbols" syntax). Both
global symbols and symbols that are local to a program module can be
displayed.

Global To display global symbols, enter the following command.

display global_symbols <RETURN>

Listed are: address ranges associated with a symbol, the segment that
the symbol is associated with, and the offset of that symbol within the
segment.

Global symbols in cmd_rds
Procedure symbols
Procedure name _________________ Address range __ Segment _____________ Offset
Write_Msg 8000:0000 - 003C PROG 0000
_div_by_0_trap 800C:0054 - 006E PROG 0000
_exec_funcs 8056:0041 - 0061 PROG 0000
_exit_msg 800C:015E - 018B PROG 0000
_fp_trap 800C:02AE - 0415 PROG 0000
_initGlobals 800C:00FE - 015C PROG 0000
atexit 8056:0008 - 0040 PROG 0000
main 8000:003D - 00C1 PROG 003D

Static symbols
Symbol name ____________________ Address range __ Segment _____________ Offset
Cmd_Input 1009:0008 DATA 0000
Err_Handler 805C:0057 PROG 0000
MM_CHECK_L 1000000A PROG 0000
MM_CHECK_X 1000000A PROG 0000

STATUS: N70136--Running in monitor____________________________________...R....
display global_symbols

 run trace step display modify break end ---ETC--

2-12 Getting Started

Local When displaying local symbols, you must include the name of the
module in which the symbols are defined. For example:

display local_symbols_in cmd_rds.c: <RETURN>

As you can see, the procedure symbols and static symbols in
"cmd_rds.c" are displayed.
If there is more than a screenful of information, you can use the up
arrow, down arrow, <Next> or <Prev> keys to scroll the information
up or down on the display.

Symbols in /usr/hp64000/demo/emul/hp64756/cmd_rds.c:
Procedure symbols
Procedure name _________________ Address range __ Segment _____________ Offset
Write_Msg 8000:0000 - 003C PROG 0000
main 8000:003D - 00C1 PROG 003D

Static symbols
Symbol name ____________________ Address range __ Segment _____________ Offset
Cmd_Input 1009:0008 DATA 0000
Msg_A 1009:0029 DATA 0021
Msg_B 1009:004A DATA 0042
Msg_Dest 1009:0009 DATA 0001
Msg_I 1009:006B DATA 0063
_Cmd_Input 1009:0008 DATA 0000
_Msg_Dest 1009:0009 DATA 0001
_Write_Msg 8000:0000 PROG 0000
_main 8000:003D PROG 003D

STATUS: N70136--Running in monitor____________________________________...R....
display local_symbols_in cmd_rds.c:

 run trace step display modify break end ---ETC--

Getting Started 2-13

Source Lines To display the address ranges associated with the program’s source
file, you must display the local symbols in the file. For example:

display local_symbols_in cmd_rds.c: <RETURN>

And scroll the information down on the display with up the arrow, or
<Next> key.

Symbols in /usr/hp64000/demo/emul/hp64756/cmd_rds.c:
Symbol name ____________________ Address range __ Segment _____________ Offset

Source reference symbols
Line range _____________________ Address range __ Segment _____________ Offset
#1-#5 8000:0000 - 0009 PROG 0000
#6-#8 8000:000A - 0013 PROG 000A
#9-#9 8000:0014 - 0017 PROG 0014
#10-#11 8000:0018 - 0023 PROG 0018
#12-#12 8000:0024 - 0027 PROG 0024
#13-#13 8000:0028 - 002B PROG 0028
#14-#14 8000:002C - 0038 PROG 002C
#15-#15 8000:0039 - 003C PROG 0039
#16-#18 8000:003D - 0046 PROG 003D
#19-#24 8000:0047 PROG 0047
#25-#26 8000:0048 - 004C PROG 0048
#27-#27 8000:004D - 005E PROG 004D
#28-#28 8000:005F - 007B PROG 005F

STATUS: N70136--Running in monitor____________________________________...R....
display local_symbols_in cmd_rds.c:

 run trace step display modify break end ---ETC--

2-14 Getting Started

Displaying
Memory in
Mnemonic Format

You can display, in mnemonic format, the absolute code in memory.
For example to display the memory of the sample program,

display memory main mnemonic <RETURN>

Notice that you can use symbols when specifying expressions.
The global symbol main is used in the command above to specify the
starting address of the memory to be displayed.

 Memory :mnemonic :file = /usr/hp64000/demo/emul/hp64756/cmd_rds.c:
 address data
 8000 003D C8020000 PREPARE 0002,00
 8000 0041 1E PUSH DS0
 8000 0042 B80910 MOV AW,#1009
 8000 0045 8ED8 MOV DS0,AW
 8000 0047 90 NOP
 8000 0048 C606080000 MOV 0008,#00
 8000 004D EB03 BR SHORT 000052
 8000 004F 90 NOP
 8000 0050 90 NOP
 8000 0051 90 NOP
 8000 0052 A00800 MOV AL,0008
 8000 0055 8846FE MOV [BP-02],AL
 8000 0058 0AC0 OR AL,AL
 8000 005A 7502 BNE/NZ 00005E
 8000 005C EBF3 BR SHORT 000051
 8000 005E 90 NOP

STATUS: N70136--Running in monitor____________________________________...R....
display memory main mnemonic

 run trace step display modify break end ---ETC--

Getting Started 2-15

Symbols in the
Display

The "set" command allows you to include symbols in mnemonic
memory displays and in the trace displays. For example:

set symbols on <RETURN>

 Memory :mnemonic :file = /usr/hp64000/demo/emul/hp64756/cmd_rds.c:
 address label data
 8000 003D PROG|_main C8020000 PREPARE 0002,00
 8000 0041 1E PUSH DS0
 8000 0042 B80910 MOV AW,#1009
 8000 0045 8ED8 MOV DS0,AW
 8000 0047 90 NOP
 8000 0048 C606080000 MOV 0008,#00
 8000 004D EB03 BR SHORT PROG|main+000015
 8000 004F 90 NOP
 8000 0050 90 NOP
 8000 0051 90 NOP
 8000 0052 A00800 MOV AL,0008
 8000 0055 8846FE MOV [BP-02],AL
 8000 0058 0AC0 OR AL,AL
 8000 005A 7502 BNE/NZ PROG|main+000021
 8000 005C EBF3 BR SHORT PROG|main+000014
 8000 005E 90 NOP

STATUS: N70136--Running in monitor____________________________________...R....
set symbols on

 run trace step display modify break end ---ETC--

2-16 Getting Started

Source Lines in the
Display

The "set" command also allows you to include source lines in
mnemonic memory displays and in the trace displays. For example:

set source on <RETURN>

 Memory :mnemonic :file = /usr/hp64000/demo/emul/hp64756/cmd_rds.c:
 address label data
 16
 17 main ()
 18 {
 8000 003D PROG|_main C8020000 PREPARE 0002,00
 8000 0041 1E PUSH DS0
 8000 0042 B80910 MOV AW,#1009
 8000 0045 8ED8 MOV DS0,AW
 19 static char Msg_A[] = "Command A Entered ";
 20 static char Msg_B[] = "Entered B Command ";
 21 static char Msg_I[] = "Invalid Command ";
 22 char c;
 23
 24 for (;;)
 8000 0047 90 NOP
 25 {
 26 Cmd_Input = ’\0’;

STATUS: N70136--Running in monitor____________________________________...R....
set source on

 run trace step display modify break end ---ETC--

Getting Started 2-17

Using Software
Breakpoints

Software breakpoints are provided with one of 70136 undefined
opcode (F1 hex) as breakpoint interrupt instruction.
When you define or enable a software breakpoint, the emulator will
replace the opcode at the software breakpoint address with the
breakpoint interrupt instruction.

Caution When you use extended address mode, care should be taken for
software breakpoints. If you change the relation between the physical
address and the extended address after you set a software breakpoint
(ex. change address mode or change the value of the page registers),
emulation system may not recognize the software breakpoint.

Refer to the "Using the Extended Mode" appendix.

Caution Software breakpoints should not be set, cleared, enabled, or disabled
while the emulator is running user code. If any of these commands are
entered while the emulator is running user code, and the emulator is
executing code in the area where the breakpoint is being modified,
program execution may be unreliable.

Note You must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data). If a software
breakpoint is set at a memory location which is not an instruction
opcode, the software breakpoint instruction will never be executed and
the break will never occur.

2-18 Getting Started

Note Because software breakpoints are implemented by replacing opcodes
with the breakpoint interrupt instruction, you cannot define software
breakpoints in target ROM.

When software breakpoints are enabled and emulator detects the
breakpoint interrupt instruction (F1 hex), it generates a break to
background request which as with the "processor break" command.
Since the system controller knows the locations of defined software
breakpoints, it can determine whether the breakpoint interrupt
instruction (F1 hex) is a software breakpoint or opcode in your target
program.

If it is a software breakpoint, execution breaks to the monitor,and the
breakpoint interrupt instruction is replaced by the original opcode. A
subsequent run or step command will execute from this address.
If it is an opcode of your target program, execution still breaks to the
monitor, and an "Undefined software breakpoint" status message is
displayed.
When software breakpoints are disabled, the emulator replaces the
breakpoint interrupt instruction with the original opcode.

Enabling/Disabling
Software Breakpoints

When you initially enter the Softkey Interface, software breakpoints
are disabled. To enable the software breakpoints feature, enter the
following command.

modify software_breakpoints enable <RETURN>

Setting a Software
Breakpoint

To set a software breakpoint at the address of global symbol "main" or
(or source line 17), enter the following command.

modify software_breakpoints set main
<RETURN>

or:

modify software_breakpoints set line 17
<RETURN>

Getting Started 2-19

Notice that an asterisk (*) appears next to the breakpoint address. The
asterisk shows that a software breakpoint is pending at that address.

Running the
Program

The "run" command causes the emulator to execute the user program.
Entering the "run" command by itself causes the emulator to begin
executing at the current program counter address. The "run from"
command allows you to specify an address at which execution is to
start.

From Transfer
Address

The "run from transfer_address" command specifies that the emulator
start executing at a previously defined "start address". Transfer
addresses are defined in assembly language source files with the END
assembler directive (i.e., pseudo instruction). Enter:

run from transfer_address <RETURN>

 Memory :mnemonic :file = /usr/hp64000/demo/emul/hp64756/cmd_rds.c:
 address label data
 16
 17 main ()
 18 {
* 8000 003D PROG|_main F1 illegal opcode, data = F1
 8000 003E 0200 ADD AL,[BW][IX]
 8000 0040 001EB809 ADD 09B8,BL
 8000 0044 108ED890 ADDC [BP-6F28],CL
 25 {
 26 Cmd_Input = ’\0’;
 8000 0048 C606080000 MOV 0008,#00
 27 while ((c = Cmd_Input) == ’\0’);
 8000 004D EB03 BR SHORT PROG|main+000015
 8000 004F 90 NOP
 8000 0050 90 NOP
 8000 0051 90 NOP
 8000 0052 A00800 MOV AL,0008

STATUS: N70136--Running in monitor____________________________________...R....
modify software_breakpoints set line 17

 run trace step display modify break end ---ETC--

2-20 Getting Started

Notice the highlighted bar on the screen; it shows the current program
counter.

Notice also that the asterisk is no longer next to the breakpoint
address; this shows that the breakpoint has been hit and is no longer
active.

From Reset The "run from reset" command specifies that the emulator begin
executing from reset vector as actual microprocessor does.

(See "Running From Reset" section in the "In-Circuit Emulation"
chapter).

Note You cannot use over 100000 hex address in "run" command.

 Memory :mnemonic :file = /usr/hp64000/demo/emul/hp64756/cmd_rds.c:
 address label data
 16
 17 main ()
 18 {
> 8000 003D PROG|_main C8020000 PREPARE 0002,00
 8000 0041 1E PUSH DS0
 8000 0042 B80910 MOV AW,#1009
 8000 0045 8ED8 MOV DS0,AW
 19 static char Msg_A[] = "Command A Entered ";
 20 static char Msg_B[] = "Entered B Command ";
 21 static char Msg_I[] = "Invalid Command ";
 22 char c;
 23
 24 for (;;)
 8000 0047 90 NOP
 25 {
 26 Cmd_Input = ’\0’;

STATUS: N70136--Running in monitor Software break: 08054:00049___...R....
run from transfer_address

 load store stop_trc copy reset specify cmb_exec ---ETC--

Getting Started 2-21

Stepping Through
the Program

The step command allows you to step through program execution an
instruction or a number of instructions at a time. You can step though
the instructions associated with high-level program source lines. Also,
you can step from the current program counter or from a specific
address. To step through the example program from the address of the
software breakpoint set earlier, enter the following command.

step source <RETURN>

Notice that the highlighted bar (the current program counter) moves to
the instructions associated with the next source line.

Enter the "step source" command again by pressing:

<RETURN>, <RETURN>

Notice that the emulator continues to step through the program and that
the message "assembly steps taken: XXX" appears on the status line.
This happens because the "while" test remains true, and the emulator
never completes the execution of the assembly instructions associated
with that source line. To stop the "step source" command, enter:

<CTRL>-c

 Memory :mnemonic :file = /usr/hp64000/demo/emul/hp64756/cmd_rds.c:
 address label data
 17 main ()
 18 {
 8000 003D PROG|_main C8020000 PREPARE 0002,00
 8000 0041 1E PUSH DS0
 8000 0042 B80910 MOV AW,#1009
 8000 0045 8ED8 MOV DS0,AW
 19 static char Msg_A[] = "Command A Entered ";
 20 static char Msg_B[] = "Entered B Command ";
 21 static char Msg_I[] = "Invalid Command ";
 22 char c;
 23
 24 for (;;)
 8000 0047 90 NOP
 25 {
 26 Cmd_Input = ’\0’;
> 8000 0048 C606080000 MOV 0008,#00

STATUS: N70136--Stepping complete_____________________________________...R....
step source

 run trace step display modify break end ---ETC--

2-22 Getting Started

Continue user program execution with the "run" command.

run <RETURN>

Modifying Memory The sample program is a simple command interpreter. Commands are
sent to the sample program through a "char" sized memory location,
global variable Cmd_Input . You can use the modify memory feature
to send a command to the sample program.
For example, to enter the command "A" (41H), use the following
command:

modify memory Cmd_Input bytes to 41h <RETURN>

or:

modify memory Cmd_Input string to ’A’
<RETURN>

To verify that the program correctly copied the message "Command A
Entered" to the Msg_Dest array, display the contents of the array with
the following command:

display data Msg_Dest thru +1fh char
<RETURN>

Enter the following commands to verify that the program works for the
other possible command inputs.

modify memory Cmd_Input string to ’B’
<RETURN>
modify memory Cmd_Input string to ’C’
<RETURN>

Notice that the display is updated when the memory contents change
due (indirectly) to the "modify memory" command.

Getting Started 2-23

Breaking into the
Monitor

The "break" command causes emulator execution to break from the
user program to the monitor. You can continue user program
execution with the "run" command. To break emulator execution from
the sample program to the monitor, enter the following command.

break <RETURN>

 Data :update
 address label type data
 1009 0009 DA|_Msg_Dest char[] Command A Entered

STATUS: N70136--Running user program__________________________________...R....
display data Msg_Dest thru +1fh char

 run trace step display modify break end ---ETC--

2-24 Getting Started

Displaying
Registers

Enter the following command to display registers. You can display the
basic registers, or an individual register.

display registers <RETURN>

Note You should not change the value of the 70136 page registers with using
"modify io_port" command. You should use the "modify registers"
command to change the value of page registers.

Refer to "Register Names and Classes" section in chapter 5.

Registers

Next PS:PC 8000:0055H
 PC 0055 SP 7EF6 IX 1703 IY 0049 BP 7EFA
 PS 8000 SS 1111 DS0 1009 DS1 1009 [rrrrvdibszfafpic]
 AW 1000 BW 0000 CW 0000 DW 1009 PSW 1111001001000110

STATUS: N70136--Running in monitor____________________________________...R....
 display registers

 run trace step display modify break end ---ETC--

Getting Started 2-25

Stepping Through
the Program

You can step through sample program instructions while displaying
registers. For example, entering several step commands will give you a
display similar to the following.

step <RETURN>, <RETURN>, <RETURN>, ...

Note You cannot use over 100000 hex address in "step from" command.

Note There are a few cases in which the emulator can not step.
Step command is not accepted between each of the following
instructions and the next instruction.

1) Manipulation instructions for sreg:
 MOV sreg,reg16; MOV sreg,mem16; POP sreg.

2) Prefix instructions:
 PS:, SS:, DS0:, DS1:,
 REPC, REPNC, REP, REPE, REPZ, REPNE, REPNZ.

3) EI, RETI, DI, BUSLOCK.

2-26 Getting Started

Continue user program execution with the "run" command.

run <RETURN>

Registers

Next PS:PC 8000:0055H
 PC 0055 SP 7EF6 IX 1703 IY 0049 BP 7EFA
 PS 8000 SS 1111 DS0 1009 DS1 1009 [rrrrvdibszfafpic]
 AW 1000 BW 0000 CW 0000 DW 1009 PSW 1111001001000110

Step_PC 8000:0055H MOV [BP-02],AL
Next PS:PC 8000:0058H
 PC 0058 SP 7EF6 IX 1703 IY 0049 BP 7EFA
 PS 8000 SS 1111 DS0 1009 DS1 1009 [rrrrvdibszfafpic]
 AW 1000 BW 0000 CW 0000 DW 1009 PSW 1111001001000110

Step_PC 8000:0058H OR AL,AL
Next PS:PC 8000:005AH
 PC 005A SP 7EF6 IX 1703 IY 0049 BP 7EFA
 PS 8000 SS 1111 DS0 1009 DS1 1009 [rrrrvdibszfafpic]
 AW 1000 BW 0000 CW 0000 DW 1009 PSW 1111001001000110

STATUS: N70136--Stepping complete_____________________________________...R....
step

 run trace step display modify break end ---ETC--

Getting Started 2-27

Using the Analyzer HP 64700 emulators contain an emulation analyzer. The emulation
analyzer monitors the internal emulation lines (address, data, and
status). Optionally, you may have an additional 16 trace signals which
monitor external input lines. The analyzer collects data at each pulse
of a clock signal, and saves the data (a trace state) if it meets a "storage
qualification" condition.

Specifying a Simple
Trigger

Suppose you want to look at the execution of the sample program after
the address of the first instruction in the Write_Msg function
(cmd_rds.c : line 4). To trigger on this address, enter:

trace after line 4 <RETURN>

The message "Emulation trace started" will appear on the status line.
Now, modify the command input byte to "A" with the following
command.

modify memory Cmd_Input string to ’A’
<RETURN>

The status line now shows "Emulation trace complete".

2-28 Getting Started

Displaying the Trace To display the trace, enter:

display trace <RETURN>

Line 0 (labeled "after") in the trace list above shows the state which
triggered the analyzer. The trigger state is always on line 0.

To display the remaining lines of the trace, press the <PGDN> or
<NEXT> key.

Trace List Offset=0
Label: Address Data Opcode or Status w/ Source Lines time count
Base: symbols hex mnemonic w/symbols relative
after PROG|_Write_Msg 04C8 04C8 prefetch ------------
+001 Write_Msg+000002 0000 0000 prefetch 240 nS
+002 ct5CAAa2:+007EE4 8000 8000 memory write 200 nS
+003 ct5CAAa2:+007EE2 008A 008A memory write 200 nS
 ##########.../demo/emul/hp64756/cmd_rds.c - line 1 thru 5 ########
 volatile char Cmd_Input;
 char Msg_Dest[0x20];

 void Write_Msg (const char *s)
 {
+004 PROG|_Write_Msg 008A PREPARE 0004,00 40. nS
+005 Write_Msg+000004 B81E B81E prefetch 80. nS
+006 ct5CAAa2:+007EE0 7EFA 7EFA memory write 160 nS
+007 Write_Msg+000006 1009 1009 prefetch 120 nS
+008 Write_Msg+000008 D88E D88E prefetch 160 nS

STATUS: N70136--Running user program Emulation trace complete______...R....
display trace

 run trace step display modify break end ---ETC--

Getting Started 2-29

Displaying Trace with No Symbol

The trace listing shown above has symbol information because of the
"set symbols on" setting before in this chapter. To see the trace listing
with no symbol information, enter the following command.

set symbols off

As you can see, the analysis trace display shows the trace list without
symbol information.

Note The character displayed in the right side of disassemble list specifies
the following information.

 | Character | Information |
 |---|
 | N | Normal address mode |
 | E | Extended address mode |
 | M | Monitor cycle (background) |

Trace List Offset=0
Label: Address Data Opcode or Status w/ Source Lines time count
Base: hex hex mnemonic relative
after 080000 04C8 04C8 prefetch N ------------
+001 080002 0000 0000 prefetch N 240 nS
+002 019000 8000 8000 memory write N 200 nS
+003 018FFE 008A 008A memory write N 200 nS
 ##########.../demo/emul/hp64756/cmd_rds.c - line 1 thru 5 ########
 volatile char Cmd_Input;
 char Msg_Dest[0x20];

 void Write_Msg (const char *s)
 {
+004 080000 008A PREPARE 0004,00 40. nS
+005 080004 B81E B81E prefetch N 80. nS
+006 018FFC 7EFA 7EFA memory write N 160 nS
+007 080006 1009 1009 prefetch N 120 nS
+008 080008 D88E D88E prefetch N 160 nS

STATUS: N70136--Running user program Emulation trace complete______...R....
 set symbols off

pod_cmd set perfinit perfrun perfend bbaunld ---ETC--

2-30 Getting Started

Note When you use the following setting in your program, the branch
address forming in PC relative addressing may change to a wrong
value in disassemble list.

The program is running in the extended address mode.

The effective address for the PC relative addressing is in the
other page.

The order of the pages is not in sequence in extended address.

Displaying Trace with
Time Count Absolute

Enter the following command to display count information relative to
the trigger state.

display trace count absolute <RETURN>

Trace List Offset=0
Label: Address Data Opcode or Status w/ Source Lines time count
Base: hex hex mnemonic absolute
after 080000 04C8 04C8 prefetch N ------------
+001 080002 0000 0000 prefetch N + 240 nS
+002 019000 8000 8000 memory write N + 440 nS
+003 018FFE 008A 008A memory write N + 640 nS
 ##########.../demo/emul/hp64756/cmd_rds.c - line 1 thru 5 ########
 volatile char Cmd_Input;
 char Msg_Dest[0x20];

 void Write_Msg (const char *s)
 {
+004 080000 008A PREPARE 0004,00 + 680 nS
+005 080004 B81E B81E prefetch N + 760 nS
+006 018FFC 7EFA 7EFA memory write N + 920 nS
+007 080006 1009 1009 prefetch N + 1.0 uS
+008 080008 D88E D88E prefetch N + 1.2 uS

STATUS: N70136--Running user program Emulation trace complete______...R....
 display trace count absolute

 run trace step display modify break end ---ETC--

Getting Started 2-31

Displaying Trace with
Compress Mode

If you want to see more executed instructions on a display, the 70136
emulator Softkey Interface provides compress mode for analysis
display. To see trace display with compress mode, enter the following
command:

display trace compress on <RETURN>

As you can see, the analysis trace display shows the analysis trace lists
without prefetch cycles. With this command you can examine program
execution easily.

If you want to see all of cycles including fetch cycles, enter following
command:

display trace compress off <RETURN>

The trace display shows you all of the cycles the emulation analyzer
have captured.

Trace List Offset=0
Label: Address Data Opcode or Status w/ Source Lines time count
Base: hex hex mnemonic absolute
+002 019000 8000 8000 memory write N + 440 nS
+003 018FFE 008A 008A memory write N + 640 nS
 ##########.../demo/emul/hp64756/cmd_rds.c - line 1 thru 5 ########
 volatile char Cmd_Input;
 char Msg_Dest[0x20];

 void Write_Msg (const char *s)
 {
+004 080000 008A PREPARE 0004,00 + 680 nS
+006 018FFC 7EFA 7EFA memory write N + 920 nS
+009 080004 D88E PUSH DS0 + 1.2 uS
+011 018FF6 1009 1009 memory write N + 1.5 uS
+012 080005 1009 MOV AW,#1009 + 1.6 uS
+014 080008 09FC MOV DS0,AW + 1.7 uS
 ##########.../demo/emul/hp64756/cmd_rds.c - line 6 thru 8 ########

STATUS: N70136--Running user program Emulation trace complete______...R....
 display trace compress on

 run trace step display modify break end ---ETC--

2-32 Getting Started

Note When the analysis trace is displayed with compress mode, the time
count may not indicate correct time counts. This happens when time
count is relative. Since the compress mode feature is implemented by
eliminating prefetch cycles when displaying analysis trace, relative
time count shows incorrect value. If you are interested in the time
count, display with time count absolute. Absolute value of time count
always show correct value. Keep this note in your mind when display
the trace with compress mode.

Reducing the Trace
Depth

The default states displayed in the trace list is 256 states. To reduce the
number of states, use the "display trace depth" command.

display trace depth 512 <RETURN>

Emulator Analysis
Status Qualifiers

The following analysis status qualifiers may also be used with the
70136 emulator.

 Qualifier Status Bits Description

 bs16 0xx xx1x xxxx xxxxB bus size 16
 bs8 0xx xx0x xxxx xxxxB bus size 8
 coproc 0x0 xxxx x101 x0xxB co-processor access
 exec 0x0 xxxx x0xx xxxxB executed code
 extaddr 0xx 1xxx xxxx xxxxB extended address mode
 fetch 0x0 xxxx 1100 x11xB program fetch
 grdacc 0xx xxxx 0xxx x1xxB guarded access
 haltack 0x0 xxxx x111 x00xB halt acknowledge
 holdack 0x1 xxxx xxxx xxxxB hold acknowledge
 intack 0x0 xxxx x100 x01xB interrupt acknowledge
 io 0x0 xxxx x110 x0xxB I/O access
 memory 0x0 xxxx 1110 x1xxB memory access
 memforcp 0x0 xxxx 1101 x1xxB memory access for cp
 nmladdr 0xx 0xxx xxxx xxxxB normal address mode
 read 0x0 xxxx x1xx xx1xB read cycle
 write 0x0 xxxx x1xx xx0xB write cycle
 wrrom 0xx xxx0 xxxx xx0xB write to ROM

Getting Started 2-33

In using the 70236 emulator, the analysis status qualifiers are shown
below.

For a Complete
Description

For a complete description of using the HP 64700 Series analyzer with
the Softkey Interface, refer to the Analyzer Softkey Interface User’s
Guide.

 Qualifier Status Bits Description

 bs16 1xxx xx1x xxxx xxxxB bus size 16
 bs8 1xxx xx0x xxxx xxxxB bus size 8
 coproc 1xx0 xxxx x101 00xxB co-processor access
 dma 1xx0 xxxx x110 11xxB DMA cycle
 dmac 0xxx xxxx xxxx xxxxB DMA cascade
 eio 1xx0 xxxx x110 00xxB external I/O access
 exec 1xx0 xxxx x0xx xxxxB executed code
 extaddr 1xxx 1xxx xxxx xxxxB extended address mode
 fetch 1xx0 xxxx 1100 011xB program fetch
 grdacc 1xxx xxxx 0xxx x1xxB guarded access
 haltack 1xx0 xxxx x111 000xB halt acknowledge
 holdack 1xx1 xxxx xxxx xxxxB hold acknowledge
 intacki 1xx0 xxxx x100 101xB interrupt acknowledge (from ICU)
 intacks 1xx0 xxxx x100 001xB interrupt acknowledge (from SLAVE)
 iio 1xx0 xxxx x110 10xxB internal I/O access
 memory 1xx0 xxxx 1110 01xxB memory access
 memforcp 1xx0 xxxx 1101 01xxB memory access for cp
 nmladdr 1xxx 0xxx xxxx xxxxB normal address mode
 read 1xx0 xxxx x1xx xx1xB read cycle
 refresh 1xx0 xxxx x100 111xB refresh cycle
 write 1xx0 xxxx x1xx xx0xB write cycle
 wrrom 1xxx xxx0 xxxx xx0xB write to ROM

2-34 Getting Started

Resetting the
Emulator

To reset the emulator, enter the following command.

reset <RETURN>

Note When the emulator is held in a reset state,the emulator is set to normal
address mode.

Exiting the
Softkey Interface

There are several options available when exiting the Softkey Interface:
exiting and releasing the emulation system, exiting with the intent of
reentering (continuing), exiting locked from multiple emulation
windows, and exiting (locked) and selecting the measurement system
display or another module.

End Release System To exit the Softkey Interface, releasing the emulator so that other users
may use the emulator, enter the following command.

end release_system <RETURN>

Ending to Continue
Later

You may also exit the Softkey Interface without specifying any
options; this causes the emulator to be locked. When the emulator is
locked, other users are prevented from using it and the emulator
configuration is saved so that it can be restored the next time you enter
(continue) the Softkey Interface.

end <RETURN>

Getting Started 2-35

Ending Locked from
All Windows

When using the Softkey Interface from within window systems, the
"end" command with no options causes an exit only in that window.
To end locked from all windows, enter the following command.

end locked <RETURN>

This option only appears when you enter the Softkey Interface via the
emul700 command. When you enter the Softkey Interface via pmon
and MEAS_SYS, only one window is permitted.

Refer to the Softkey Interface Reference manual for more information
on using the Softkey Interface with window systems.

Selecting the
Measurement System

Display
or Another Module

When you enter the Softkey Interface via pmon and MEAS_SYS, you
have the option to select the measurement system display or another
module in the measurement system when exiting the Softkey Interface.
This type of exit is also "locked"; that is, you can continue the
emulation session later. For example, to exit and select the
measurement system display, enter the following command.

end select measurement_system <RETURN>

This option is not available if you have entered the Softkey Interface
via the emul700 command.

2-36 Getting Started

3

In-Circuit Emulation

Introduction The emulator is in-circuit when it is plugged into the target system.
This chapter covers topics which relate to in-circuit emulation.

This chapter will:

Describe the issues concerning the installation of the emulator
probe into target systems.

Show you how to install the emulator probe.

Show you how to use features related to in-circuit emulation.

Prerequisites Before performing the tasks described in this chapter, you should be
familiar with how the emulator operates in general. Refer to the
Concepts of Emulation and Analysis manual and the "Getting Started"
chapter of this manual.

In-Circuit Emulation Topics 3-1

Installing the
Target System
Probe

The 70136 emulator probe has a 68-pin PLCC connector;
the 70236 and 70236A emulator probe has a 132-pin PGA connector.
The 70236 and 70236A emulator is shipped with a pin protector over
the target system probe. This guard is designed to prevent impact
damage to the pins and should be left in place while you are not using
the emulator.

Caution DAMAGE TO THE EMULATOR CIRCUITRY MAY RESULT IF
THESE PRECAUTIONS ARE NOT OBSERVED. The following
precautions should be taken while using the 70136 emulator.

Power Down Target System. Turn off power to the user target
system and to the 70136 emulator before inserting the user plug to
avoid circuit damage resulting from voltage transients or mis-insertion
of the user plug.

Verify User Plug Orientation. Make certain that Pin 1 of the target
system microprocessor socket and Pin 1 of the user plug are properly
aligned before inserting the user plug in the socket. Failure to do so
may result in damage to the emulator circuitry.

Protect Against Static Discharge. The 70136 emulator contains
devices which are susceptible to damage by static discharge.
Therefore, operators should take precautionary measures before
handling the user plug to avoid emulator damage.

Protect Target System CMOS Components. If your target system
includes any CMOS components, turn on the target system first, then
turn on the 70136 emulator; when powering down, turn off the
emulator first, then turn off power to the target system.

3-2 In-Circuit Emulation Topics

Auxiliary Output
Lines

Two auxiliary output lines, "TARGET BUFFER DISABLE " and
"SYSTEM RESET", are provided with the 70136 emulator. The
"TARGET BUFFER DISABLE " output line is also provided with the
70236 and 70236A emulator.

Caution DAMAGE TO THE EMULATOR PROBE WILL RESULT IF THE
AUXILIARY OUTPUT LINES ARE INCORRECTLY INSTALLED.
When installing the auxiliary output lines into the end of the emulator
probe cable, make sure that the ground pins on the auxiliary output
lines (labeled with white dots) are matched with the ground receptacles
in the end of the emulator probe cable.

Figure 3-1. Auxiliary Output Lines (70136 Emulator)

In-Circuit Emulation Topics 3-3

TARGET BUFFER DISABLE ---This active-high output is used when
the co-processor memory accesses to emulation memory will be
operated. This output is used to tristate (in other words, select the high
Z output) any target system devices on the 70136/70236/70236A data
bus. Target system devices should be tristated because co-processor
memory reads from emulation memory will cause data to be output on
the user probe.

This "TARGET BUFFER DISABLE" output will be driven with the
following timing in the co-processor memory access cycle.

SYSTEM RESET (70136 only) ---This active-high, CMOS output
should be used to synchronously reset the emulator and the target
system.

3-4 In-Circuit Emulation Topics

Installing into a
70136 PLCC Type
Socket

To connect the microprocessor connector to the target system,
proceeded with the following instructions.

Remove the 70136 microprocessor (PLCC type) from the
target system socket. Note the location of pin 1 on the
microprocessor and on the target system socket.

Store the microprocessor in a protected environment (such as
antistatic form).

Install the microprocessor connector into the target system
microprocessor socket.

Figure 3-2. Installing into a 70136 PLCC type socket

In-Circuit Emulation Topics 3-5

Installing into a
70136 PGA Type
Socket

The 70136 emulator is provided with an AMP 821574-1 socket and a
pin protector in order to plug into the target system socket of an PGA
type. You may use this AMP socket with the pin protector to connect
the microprocessor connector to the target system.
To connect the microprocessor connector to the target system,
proceeded with the following instructions.

Remove the 70136 microprocessor (PGA type) from the target
system socket. Note the location of pin A1 on the
microprocessor and on the target system socket.
Store the microprocessor in a protected environment (such as
antistatic form).
Place the microprocessor connector with an AMP socket and a
pin protector (see figure 3-3), attached to the end of the probe
cable, into the target system microprocessor socket.

Figure 3-3. Installing into a 70136 PGA type socket

3-6 In-Circuit Emulation Topics

Installing into a
70136 QFP Type
Socket

To connect the 70136 emulator microprocessor connector to the
NEC EV-9200G-74 socket on the target system, you should use the
adapter, HP PART NO. 64756-61612, that will allow the PLCC
microprocessor connector to connect to the QFP socket.

To connect the microprocessor connector to the target system,
proceeded with the following instructions.

Note the location of pin 1 on the NEC EV-9200G-74 socket
on the target system.
Place the microprocessor connector with the adapter (see
figure 3-4), attached to the end of the probe cable, into the
target system microprocessor socket.

Figure 3-4. Installing into a 70136 QFP type socket

In-Circuit Emulation Topics 3-7

Installing into a
70236/70236A
PGA Type Socket

To connect the microprocessor connector to the target system,
proceeded with the following instructions.

Remove the 70236 or 70236A microprocessor (PGA type)
from the target system socket. Note the location of pin A1 on
the microprocessor and on the target system socket.

Store the microprocessor in a protected environment (such as
antistatic form).

Install the microprocessor connector into the target system
microprocessor socket with a pin protector (see figure 3-5).

Caution DO NOT use the microprocessor connector without using a pin
protector. The pin protector is provided to prevent damage to the
microprocessor connector when connecting and removing the
microprocessor connector from the target system PGA socket.

Installing into a
70236/70236A
QFP Type Socket

To connect the 70236 or 70236A emulator microprocessor connector to
the
NEC EV-9200GD-120 socket on the target system, you should use the
NEC EV-9500GD-120 adapter that will allow the PGA microprocessor
connector to connect to the QFP socket.

3-8 In-Circuit Emulation Topics

Figure 3-5 Installing into a 70236 PGA type socket

In-Circuit Emulation Topics 3-9

In-Circuit
Configuration
Options

The 70136 emulator provide configuration options for the following
in-circuit emulation issues. Refer to the chapter on "Configuring the
Emulator" for more information on these configuration options.

Using the Target System Clock Source

The default 70136, 70236 and 70236A emulator configuration selects
the internal 16 MHz (system clock speed) clock as the emulator clock
source.

You should configure the emulator to select an external target system
clock source for the "in-circuit" emulation.

Allowing the Target System to Insert Wait States

High-speed emulation memory provides no-wait-state operation.
However, the emulator may optionally respond to the target system
ready line while emulation memory is being accessed.

Note When you use the NEC uPD72291 coprocessor on your target system
connected to 70136 microprocessor, the uPD72291 can access 70136
emulation memory on coprocessor memory read/write cycles.

In this case, you should reset the target system to connect the 70136
emulator to the uPD72291 coprocessor before starting emulation
session.

Enabling NMI and RESET Input from the Target System

You can configure whether the emulator should accept or ignore the
NMI and RESET signals from the target system.

3-10 In-Circuit Emulation Topics

Running the
Emulator from
Target Reset

You can specify that the emulator begins executing from target system
reset. When the target system RESET line becomes active and then
inactive, the emulator will start reset sequence (operation) as actual
microprocessor.

At First, you must specify the emulator responds to RESET signal by
the target system (see the "Enable RESET inputs from target system?"
configuration in Chapter 4 of this manual).

To specify a run from target system reset, select:

run from reset <RESET>

The status now shows that the emulator is "Awaiting target reset".
After the target system is reset, the status line message will change to
show the appropriate emulator status.

In-Circuit Emulation Topics 3-11

Pin State in
Background
(70136)

While the emulator is running in the background monitor, probe pins
are in the following state.

Address Bus Same as foreground

Data Bus Always high impedance except accessing target.
When accessing target by background monitor,
same as foreground.

R/W,M/IO
BUSST0

Setting the "Enable background cycles to target
system? no", always high impedance except
accessing target. When accessing target by
background monitor, same as foreground.

Setting the "Enable background cycles to target
system? yes", always high level except accessing
target. When accessing target by background
monitor, same as foreground.

BUSST1 Setting the "Enable background cycles to target
system? no", always high impedance except
accessing target. When accessing target by
background monitor, same as foreground.

Setting the "Enable background cycles to target
system? yes", always low level except accessing
target. When accessing target by background
monitor, same as foreground.

UBE Setting the "Enable background cycles to target
system? no", always high impedance except
accessing target. When accessing target by
background monitor, same as foreground.

Setting the "Enable background cycles to target
system? yes", Same as foreground.

3-12 In-Circuit Emulation Topics

Other Same as foreground

In-Circuit Emulation Topics 3-13

Pin State in
Background
(70236/70236A)

While the emulator is running in the background monitor, probe pins
are in the following state.

Address Bus Same as foreground

Data Bus Always high impedance except accessing target.
When accessing target by background monitor,
same as foreground.

 R/W,M/IO,
IORD,IOWR,
MWR

Setting the "Enable background cycles to target
system? no", always high impedance except
accessing target. When accessing target by
background monitor, same as foreground.

Setting the "Enable background cycles to target
system? yes", always high level except accessing
target. When accessing target by background
monitor, same as foreground.

MRD Setting the "Enable background cycles to target
system? no", always high impedance except
accessing target. When accessing target by
background monitor, same as foreground.

Setting the "Enable background cycles to target
system? yes" same as foreground except for
emulation memory write. When accessing
emulation memory write, low.

 BUSST2-0,
UBE,BCYST,
DSTB,BUFEN

Setting the "Enable background cycles to target
system? no", always high impedance except
accessing target. When accessing target by
background monitor, same as foreground.

Setting the "Enable background cycles to target
system? yes", Same as foreground.

3-14 In-Circuit Emulation Topics

Other Same as foreground

In-Circuit Emulation Topics 3-15

Target System
Interface
(70136)

R/W M/IO
BUSST2-1

These singals are connected to 70136 through
FCT257 and 10K ohm pull-up register.

A23-A0
UBE

These singals are connected to 70136 through
FCT244 and 10K ohm pull-up register.

3-16 In-Circuit Emulation Topics

BCYST DSTB These singals are connected to 70136 through
19.6 ohm.

D15-D0 These singals are connected to 70136 through
FCT245 and 10K ohm pull-up register.

READY
 BS8/BS16

These singals are connected to 70136 through
GAL and 10K ohm pull-up register.

In-Circuit Emulation Topics 3-17

HLDRQ
 NMI
RESET

These singals are connected to 70136 through
ACT14 and 4.7K ohm pull-up and 10K ohm
pull-down registers.

OTHER These singals are connected to 70136 through
FCT244 and 4.7K ohm pull-up and 10K ohm
pull-down registers.

3-18 In-Circuit Emulation Topics

Target System
Interface
(70236/70236A)

R/W M/IO
IORD IOWR
MRD MWR
BUSST2-0

These singals are connected to 70236/70236A
through FCT257 and 10K ohm pull-up register.

OTHER(INPUT) These singals are connected to 70236/70236A
through FCT244 and 10K ohm pull-up register.

In-Circuit Emulation Topics 3-19

D15-D0 These singals are connected to 70236/70236A
through FCT245 and 10K ohm pull-up register.

READY
 BS8/BS16

These singals are connected to 70236/70236A
through GAL and 10K ohm pull-up register.

OTHER(OUTPUT) These singals are connected to 70236/70236A
through FCT244 and 4.7K ohm pull-up and
10K ohm pull-down registers.

3-20 In-Circuit Emulation Topics

4

Configuring the Emulator

Introduction Your 70136 emulator can be used in all stages of target system
development. For instance, you can run the emulator out-of-circuit
when developing target system software, or you can use the emulator
in-circuit when integrating software with target system hardware.
Emulation memory can be used in place of, or along with, target
system memory. You can use the emulator’s internal clock or the
target system clock. You can execute target programs in real-time or
allow emulator execution to be diverted into the monitor when
commands request access of target system resources (target system
memory, register contents, etc.)

The emulator is a flexible instrument and it may be configured to suit
your needs at any stage of the development process. This chapter
describes the options available when configuring the 70136 emulator.

The configuration options are accessed with the following command.

modify configuration <RETURN>

After entering the command above, you will be asked questions
regarding the emulator configuration. The configuration questions are
listed below and grouped into the following classes.

Configuring the Emulator 4-1

General Emulator Configuration:

– Specifying the emulator clock source.
(Internal/external.)

– Selecting monitor entry after configuration.

– Restricting to real-time execution.

Memory Configuration:

– Selecting the emulation monitor type.

– Specifying the monitor location.

– Mapping memory.

Emulator Pod Configuration:

– Enabling RESET inputs from target system.

– Enabling NMI inputs from target system.

– Enabling READY inputs from target system.

– Selecting algorithm for physical run addresses.

– Selecting target memory and I/O access size.

– Enabling background cycles to target system
(70136 Emulator).

– Enabling background cycles to target system
(70236/70236A Emulator).

– Selecting emulation memory bus sizing signal.

– Selecting target memory bus sizing signal.

– Enabling break on reading page registers.

– Selecting the AEX (Address Extension) signal while
background.

– Selecting FPU (Floating Point Unit) type for disassembly.

4-2 Configuring the Emulator

– Enabling responding to target HLDRQ (Hold Request)
during background cycles
(70236/70236A Emulator only).

– Selecting the number of wait states for internal DMA
cycles
(70236/70236A Emulator only).

– Enable internal DMA cycles during background cycles
(70236/70236A Emulator only).

Debug/Trace Configuration:

– Enabling breaks on writes to ROM.

– Specifying tracing of foreground/background cycles.

– Specifying tracing of internal DMA cycles
(70236/70236A Emulator only).

– Specifying tracing of refresh cycles
(70236/70236A Emulator only).

– Specifying tracing of dummy cycles during HALT
acknowledge
(70236 Emulator only).

Simulated I/O Configuration: Simulated I/O is described in the
Simulated I/O reference manual.

External Analyzer Configuration: See the Analyzer Softkey
Interface User’s Guide.

Interactive Measurement Configuration: See the chapter on
coordinated measurements in the Softkey Interface Reference manual.

Configuring the Emulator 4-3

General Emulator
Configuration

The configuration questions described in this section involve general
emulator operation.

Micro-processor
Clock Source?

This configuration question allows you to select whether the emulator
will be clocked by the internal clock source or by a target system clock
source.

internal Selects the internal clock oscillator as the emulator
clock source.
The internal clock speed of the 70136, 70236 and
70236A are 16 MHz (system clock).

external Selects an external target system clock source, from
2 MHz up to 16 MHz can be entered in using the
70136 emulator.
In using the 70236 emulator, from 4 MHz to 32
MHz can be entered.
In using the 70236A emulator, from 4 MHz to 40
MHz can be entered.

Note When the 70136 emulator is plugged into the target system, you should
use the external target system clock source to synchronize the emulator
with the target system.

Note Changing the clock source drives the emulator into the reset state. If
you answer "yes" to the "Enter monitor after configuration?" question
that follows, the emulator resets (due to the clock source change) then
breaks into the monitor when the configuration is saved.

4-4 Configuring the Emulator

Enter Monitor After
Configuration?

This question allows you to select whether the emulator will be running
in the monitor or held in the reset state upon completion of the
emulator configuration.

How you answer this configuration question is important in some
situations. For example, when the external clock has been selected and
the target system is turned off, reset to monitor should not be selected;
otherwise, configuration will fail. When an external clock source is
specified, this question becomes "Enter monitor after configuration
(using external clock)?" and the default answer becomes "no".

yes When reset to monitor is selected, the emulator will
be running in the monitor after configuration is
complete. If the reset to monitor fails, the previous
configuration will be restored.

no After the configuration is complete, the emulator
will be held in the reset state.

Restrict to Real-Time
Runs?

The "restrict to real-time" question lets you configure the emulator so
that commands which cause the emulator to break to monitor and
return to the user program are refused.

no All commands, regardless of whether or not they
require a break to the emulation monitor, are
accepted by the emulator.

yes When runs are restricted to real-time and the
emulator is running the user program, all
commands that cause a break (except "reset",
"break", "run", and "step") are refused. For
example, the following commands are not allowed
when runs are restricted to real-time:

Display/modify registers.

Display/modify target system memory.

Display/modify I/O.

Configuring the Emulator 4-5

Caution If your target system circuitry is dependent on constant execution of
program code, you should restrict the emulator to real-time runs. This
will help insure that target system damage does not occur. However,
remember that you can still execute the "reset", "break", and "step"
commands; you should use caution in executing these commands.

Note When program execution should take place in real-time and the
emulator should break to the monitor to read page registers
(refer to "Enable break on reading page registers?" section in this
chapter), the following commands are not allowed with using physical
or <segment>:<offset> address expression.

Display/modify emulation memory.

Memory
Configuration

The memory configuration questions allows you to select the monitor
type, to select the location of the monitor, and to map memory. To
access the memory configuration questions, you must answer "yes" to
the following question.

Modify memory configuration?

Monitor Type? The monitor is a program which is executed by the emulation
processor. It allows the emulation system controller to access target
system resources. For example, when you enter a command that
requires access to target system resources (display target memory, for
example), the system controller writes a command code to a
communications area and breaks the execution of the emulation
processor into the monitor. The monitor program then reads the
command from the communications area and executes the processor
instructions which access the target system. After the monitor has
performed its task, execution returns to the user program. Monitor

4-6 Configuring the Emulator

program execution can take place in the "background" or "foreground"
emulator modes.

In the foreground emulator mode, the emulator operates as would the
target system processor.
In the background emulator mode, foreground execution is suspended
so that the emulation processor may be used for communication with
the system controller, typically to perform tasks which access target
system resources.

A background monitor program operates entirely in the background
emulator mode; that is, the monitor program does not execute as if it
were part of the target program. The background monitor does not take
up any processor address space and does not need to be linked to the
target program. The monitor resides in dedicated background memory.

A foreground monitor program performs its tasks in the foreground
emulator mode; that is, the monitor program executes as if it were part
of the target program. Breaks into the monitor always put the emulator
in the background mode; however, foreground monitors switch back to
the foreground mode before performing monitor functions.

Note Halt instructions will cause "processor halted" emulation status.

The emulator breaks to the monitor when you display/modify registers,
target system memory, or I/O in "processor halted" emulation status.
Refer to "Trace dummy cycles during HALT acknowledge?"
section in this chapter.

Note All memory mapper terms are deleted when the monitor type is
changed!

Configuring the Emulator 4-7

background The default emulator configuration selects the
background monitor. A memory overlay is created
and the background monitor is loaded into that area.

Note While running in background monitor, the 70136 emulator ignores
target system reset.

When the background monitor is selected, the execution of the monitor
is hidden from the target system (except for background cycles). When
you select the background monitor and the current monitor type is
"foreground", you are asked the next question.

1. Reset map (change of monitor type requires map reset)?

This question will be asked if you change the monitor type (in this
case, you have changed the monitor type from "foreground" to
"background"). This question reminds you that the map will be reset
and allows you to confirm your decision.

no The memory map is not reset, and the monitor type
is not changed.

yes This memory map is reset due to the change in
monitor type.

2. Background monitor location?

This configuration allows you to specify the location of the background
monitor program. When entering monitor block addresses, you must
only specify addresses on 4K boundaries; otherwise, the configuration
will be invalid, and the previous configuration will be restored. The
location of background monitor may be important because background
cycles of the 70136 emulator can be visible to the target system In
default, the monitor is located on 0FF000 hex through 0FFFFF hex.

4-8 Configuring the Emulator

foreground When you select the foreground monitor, processor
address space is taken up. The foreground monitor
takes up 4K bytes of memory. When the
foreground monitor is selected, breaking into the
monitor still occurs in a brief background state, but
the rest of the monitor program, the saving of
registers and the dispatching of emulation
commands, is executed in foreground.

Note You must not use the foreground monitor if you wish to perform
coordinated measurements.

When you select the foreground monitor and the current monitor type
is "background", you are asked the next question.

1. Reset map (change of monitor type requires map reset)?

This question will be asked if you change the monitor type (in this
case, you have changed the monitor type from "background" to
"foreground"). This question reminds you that the map will be reset
and allows you to confirm your decision.

no The memory map is not reset, and the monitor type
is not changed.

yes This memory map is reset due to the change in
monitor type.

2. Foreground monitor location?

You can relocate the monitor to any 4K byte boundary. The location
of a foreground monitor is important because it will occupy part of the
processor address space. Foreground monitor locations must not
overlap the locations of target system programs. When entering
monitor block addresses, you must only specify addresses on 4K byte
boundaries; otherwise, the configuration will be invalid, and the
previous configuration will be restored.

Configuring the Emulator 4-9

Note You should not load the foreground monitor provided with the 70136
emulator at the base address 0 or 0ff000 hex; the 70136
microprocessor’s vector table is located.
And, You can not load the foreground monitor at the base address over
100000 hex.

3. Monitor filename?

This question allows you to specify the name of the foreground
monitor program absolute file. Remember that you must assemble and
link your foreground monitor starting at the 4K byte boundary
specified for the previous "Foreground monitor location?" question.

The monitor program will loaded after you have answered all the
configuration questions.

Only the 4 kilobytes of memory reserved for the monitor are loaded at
the end of configuration; therefore, you should not link the foreground
monitor to the user program. If it is important that the symbol database
contain both monitor and user program symbols, you can create a
different absolute file in which the monitor and user program are
linked. Then, you can load this file after configuration.

Using the Foreground Monitor. When using the foreground
monitor, your program should set up a stack. The foreground monitor
assumes that there is a stack in the foreground program, and this stack
is used to save PS, PC, and PSW upon entry into the monitor.

Mapping Memory Depending on the emulator model number, emulation memory consists
of 128k, 512k, 1M or 2M bytes, mappable in 256 byte blocks.
However, you may use 124k, 508k, 1020k, or 2044k bytes of
emulation memory for your target system, because 4 kilobytes of
emulation memory specified by the "Foreground or background
monitor location?" question is required for the execution of the
monitor. The emulation memory system does not introduce wait states.

4-10 Configuring the Emulator

Note You can insert wait states on accessing emulation memory. Refer to
the "Enable READY input from the target system?" section in this
chapter.

The memory mapper allows you to characterize memory locations. It
allows you specify whether a certain range of memory is present in the
target system or whether you will be using emulation memory for that
address range. You can also specify whether the target system memory
is ROM or RAM, and you can specify that emulation memory be
treated as ROM or RAM.

When a foreground monitor selected, a 4 kilobyte block is
automatically mapped at the address specified by the "Foreground
monitor location?" question.

Note Target system accesses to emulation memory are not allowed. Target
system devices that take control of the bus (for example, DMA
controllers) cannot access emulation memory.

Blocks of memory can also be characterized as guarded memory.
Guarded memory accesses will generate "break to monitor" requests.
Writes to ROM will generate "break to monitor" requests if the "Enable
breaks on writes to ROM?" configuration item is enabled (see the
"Debug/Trace Configuration" section which follows).

Determining the Locations to be Mapped

Typically, assemblers generate relocatable files and linkers combine
relocatable files to form the absolute file. The linker load map listing
will show what locations your program will occupy in memory.

Configuring the Emulator 4-11

Defining the data bus size

The data bus size for memory accesses can be defined in this
command. For example, enter the following command to map memory.

 0h thru 7ffh emulation rom size16 <RETURN>

 800h thru 9ffh emulation ram size8 <RETURN>

 default target ram <RETURN>

 end <RETURN>

From 0 hex through 7ff hex is mapped as emulation ROM with 16-bit
data bus; from 800 hex through 9ff hex is mapped as emulation RAM
with 8-bit data bus; the other memory ranges are mapped as target
RAM with 16-bit data bus (if the data bus size is not specified in this
command, the address ranges will be mapped with 16-bit data bus by
default).

Note The data bus size for memory accesses also can be defined from the
BS8/BS16 input of the target system.
Refer to the "Enable emulation/target memory bus sizing signal"
section.

Note The data bus size of I/O accesses (external I/O only) is defined from
the BS8/BS16 input of the target system.

4-12 Configuring the Emulator

Emulator Pod
Configuration

To access the emulator pod configuration questions, you must answer
"yes" to the following question.

Modify emulator pod configuration?

Enable RESET inputs
from target system?

The 70136 emulator can respond or ignore target system reset while
running in user program or waiting for target system reset (refer to "run
from reset" command in the Softkey Interface Reference manual).
While running in background monitor, the 70136 emulator ignores
target system reset completely independent on this setting.

yes Specify that, this is a default configuration, make
the emulator to respond to reset from target system.
In this configuration, emulator will accept reset and
execute from reset vector (0FFFF0 hex) as same
manner as actual microprocessor after reset is
inactivated.

no The emulator ignores reset signal from target
system completely, even while in foreground
(executing user program).

Enable NMI inputs
from target system?

This question allows you to specify whether or not the emulation
processor accepts NMI signal generated by the target system.

yes The emulator accepts NMI signal generated by the
target system. When the NMI is accepted, the
emulator calls the NMI procedure as actual
microprocessor. Therefore, you need to set up the
NMI vector table, if you want to use the NMI
interrupt.

no The emulator ignores NMI signal from target
system completely.

Configuring the Emulator 4-13

Note
You should not use step command when if target system can generates
NMI.

When the emulator accepts NMI input in stepping, the following error
message will be shown.

 ERROR : Stepping failed

In this case, you should configure that the emulator ignores NMI input
from the target system in this configuration setting.

Enable READY
inputs from target

system?

High-speed emulation memory provides no-wait-state operation.
However, the emulator may optionally respond to the target system
ready line while emulation memory is being accessed.

no When the ready relationship is not locked to the
target system, emulation memory accesses ignore
ready signals from the target system (no wait states
are inserted).

yes When the ready relationship is locked to the target
system, emulation memory accesses honor ready
signals from the target system (wait states are
inserted if requested).

4-14 Configuring the Emulator

Select Algorithm for
physical run

addresses

The run and step commands allow you to enter addresses in either
logical form (segment:offset, e.g., 0F000H:0000H) or physical form
(e.g., 0F000H). When a physical address (non-segmented) is entered
with either a run or step command, the emulator must convert it to a
logical (segment:offset) address.

minseg Specifies that the physical run address is converted
such that the low 16 bits of the address become the
offset value. The physical address is right-shifted 4
bits and ANDed with 0F000H to yield the segment
value.

logical_addr = ((phys_addr >> 4) & 0xf000):(phys_addr & 0xffff)

maxseg Specifies that the low 4 bits of the physical address
become the offset. The physical address is
right-shifted 4 bits to yield the segment value.

logical_addr = (phys_addr >> 4):(phys_addr & 0xf)

curseg Specifies that the value entered with either a run or
step command (0 thru 0ffff hex) becomes the offset.
In this selecting, the current segment value is not
changed.

logical_addr = (current segment):(entered value)

If you use logical addresses other than the three methods which follow,
you must enter run and step addresses in logical form.

Configuring the Emulator 4-15

Select target memory
and I/O access size

This configuration specifies the type of microprocessor cycles that are
used by the monitor program to access target memory or I/O locations.
When a command requests the monitor to read or write to target system
memory or I/O, the monitor program will look at the access mode
setting to determine whether byte or word instructions should be used.

Bytes Selecting the byte access mode specifies that the
emulator will access target memory using upper
and lower byte cycles (one byte at a time).

Words Selecting the word access mode specifies that the
emulator will access target memory using word
cycles (one word at a time) at an even address.
When the emulator read or write odd number of
byte data, the emulator will read or write the last
byte data using byte cycle.
At an odd address, the emulator will access target
memory using byte cycles.

The default emulator configuration selects the byte access size at
power up initialization. Access mode specifications are saved; that is,
when a command changes the access mode, the new access mode
becomes the current default.

4-16 Configuring the Emulator

Enable background
cycles

to target system?
(70136 Emulator)

This configuration allows you to select whether or not the 70136
emulator will drive the bus status lines (M/IO, BUSST1, BUSST0,
R/W) on all background monitor cycles to the target system.

Note All address bus (A23 to A0), BCYST, and DSTB are always driven to
the target system on all background monitor cycles independent on this
configuration item.

All data bus (D15 to D0) are never driven to the target system on all
background monitor cycles.

yes Specifies that the emulator will drive the bus status
lines to the target system. All cycles appear to the
target system as memory read cycles (M/IO = 1,
BUSST1 = 0, BUSST0 = 1, R/W = 1) from the
address range of the monitor. It is possible to place
the monitor at different locations if read cycles
from the current range cause an undesired
interaction (see the "Background monitor
location?" in Memory Configuration).

no When you select this option, the bus status lines
(M/IO, BUSST1, BUSST0, R/W) are not driven to
the target system.

Configuring the Emulator 4-17

Enable background
cycles

to target system?
(70236/70236A

 Emulator)

This configuration allows you to select whether or not the 70236
emulator will drive the bus status lines (M/IO, R/W, BUSST2,
BUSST1, BUSST0, UBE, BCYST, DSTB) on all background monitor
cycles to the target system.

Note All address bus (A23 to A0), AEX, BUSLOCK, REFRQ, and HLDAK
are always driven to the target system on all background monitor
cycles independent on this configuration item.

All data bus (D15 to D0) are never driven to the target system on all
background monitor cycles.

Note The emulator will drive all bus lines on all DMA and refresh cycles in
the background monitor to the target system.

yes Specifies that the emulator will drive the bus status
lines to the target system. All cycles appear to the
target system as read cycles for memory (M/IO = 1,
R/W = 1) from the address range of the monitor. It
is possible to place the monitor at different
locations if read cycles from the current range cause
an undesired interaction (see the "Background
monitor location?" in Memory Configuration).

no When you select this option, the bus status lines
(M/IO, R/W, BUSST2, BUSST1, BUSST0, UBE,
BCYST, DSTB) are not driven to the target system.

4-18 Configuring the Emulator

Select
emulation memory

bus sizing signal

emulator Specifies that the bus size of emulation memory is
selected from the setting of the map configuration.
Refer to the "Mapping Memory" command
description in Memory Configuration.

target Specifies that the bus size of emulation memory is
defined from the BS8/BS16 input of the target
system.

Select target memory
bus sizing signal

target Specifies that the bus size of target memory is
defined from the BS8/BS16 input of the target
system.

emulator Specifies that the bus size of target memory is
selected from the setting of the map configuration.
Refer to the "Mapping Memory" command
description in Memory Configuration.

Note The data bus size of I/O accesses is only defined from the BS8/BS16
input of the target system.

Configuring the Emulator 4-19

Enable break on
reading page

registers?

This configuration item allows you to specify whether the emulator
should break to the monitor to read page registers or whether the
emulator should use the copy of page registers when the emulation
system will convert physical address to extended address in the
following commands.

Display/modify memory with entering physical or
<SEGMENT>:<OFFSET> address expression.

Modify software breakpoints

yes Specifies that the emulator should break to the
monitor to get the current value of page registers on
accesses to emulation/target memory.

no Specifies that the emulator should use the copy of
page registers which is renewed at breaking to the
monitor or changing the value of page registers
with using the following Softkey Interface
command (refer to the Softkey Interface Reference
manual).

modify register <PGR 1 .. PGR 64>

Note You may specify not to break to the monitor to read page registers
when you only use the normal address mode in your program or the
value of page registers is not changed after initalizing while executing
your program.

4-20 Configuring the Emulator

Select AEX signal
while background

Select the AEX (Address Extension) signal level in background
monitor cycles. This configuration option allows you to select the
AEX signal level which is driven to the target system while in the
background monitor cycles.

hold Specifies that the emulator will hold the AEX
signal with the level dependent on the last
foreground address mode just before entering
background monitor. When the program is running
on normal address mode, the emulator will hold the
AEX signal level low while the background
monitor cycles with this configuration.

unhold Specifies that the emulator will drive the AEX
signal with the level dependent on the address mode
in background monitor cycles. When you use the
extended address in an emulation command in
background monitor, the AEX signal will be driven
to high level with this configuration.

Select FPU type
for disassembly

Select assembler mnemonics for FPU (Floating Point Unit) to display
memory.

72291 Specifies that mnemonics for NEC uPD72291
floating point processor will be used to display
memory.

80287 Specifies that mnemonics for Intel 80287 numeric
processor extension will be used to display memory.

Configuring the Emulator 4-21

Respond to
target HLDRQ

during background
operation?

(70236/70236A
 Emulator Only)

This configuration allows you to specify whether or not the emulator
accepts HLDRQ (Hold Request) signal generated by the target system
in background.

no The emulator ignores HLDRQ signal from target
system completely in background.

yes The emulator accepts HLDRQ signal. When the
HLDRQ is accepted, the emulator will respond as
actual microprocessor.

Wait states for
internal DMA cycles

(70236/70236A
Emulator Only)

When you want to trace internal DMA cycles correctly with using the
emulator, you must set the number of wait states for internal DMA
cycles.

The number is the same as the value of DMAW (Wait for the DMA
cycle) of the WCY4 (programmable wait, cycle 4) register (I/O address
FFF6 hex). See the "Trace internal DMA cycles?" in Trace
configuration.

Enabling internal
DMA

during background
operation?

(70236/70236A
 Emulator Only)

This configuration allows you to specify whether or not the emulation
processor’s internal DMA is allowed while in background.

yes The internal DMA is allowed while in background.

no The internal DMA is not allowed while in
background.

4-22 Configuring the Emulator

Debug/Trace
Configuration

The debug/trace configuration questions allows you to specify breaks
on writes to ROM, enable/disable the software breakpoints feature, and
specify that the analyzer trace foreground/background execution. To
access the debug/trace configuration questions, you must answer "yes"
to the following question.

Modify debug/trace options?

Break Processor on
Write to ROM?

This question allows you to specify that the emulator break to the
monitor upon attempts to write to memory space mapped as ROM.
The emulator will prevent the processor from actually writing to
memory mapped as emulation ROM; however, they cannot prevent
writes to target system RAM locations which are mapped as ROM,
even though the write to ROM break is enabled.

yes Causes the emulator to break into the emulation
monitor whenever the user program attempts to
write to a memory region mapped as ROM.

no The emulator will not break to the monitor upon a
write to ROM. The emulator will not modify the
memory location if it is in emulation ROM.

Note The wrrom trace command status option allows you to use "write to
ROM" cycles as trigger and storage qualifiers. For example, you could
use the following command to trace about a write to ROM:
trace about status wrrom <RETURN>

Configuring the Emulator 4-23

Trace Background or
Foreground
Operation?

This question allows you to specify whether the analyzer trace only
foreground emulation processor cycles, only background cycles, or
both foreground or background cycles.

Note The character displayed in the right side of the mnemonic lines in the
trace list specifies the following information.

 | Character | Information |
 |---|
 | N | Normal address mode (foreground) |
 | E | Extended address mode (foreground) |
 | M | Monitor cycle (background) |
 --|

foreground Specifies that the analyzer trace only foreground
cycles. This option is specified by the default
emulator configuration.

background Specifies that the analyzer trace only background
cycles. (This is rarely a useful setting.)

both Specifies that the analyzer trace both foreground
and background cycles. You may wish to specify
this option so that all emulation processor cycles
may be viewed in the trace display.

Trace Internal DMA
cycles?

(70236/70236A
 Emulator only)

This question allows you to specify whether or not the analyzer trace
the 70236 emulation processor’s internal DMA cycles.

yes Specifies that the analyzer will trace the internal
DMA cycles.

no Specifies that the analyzer will not trace the internal
DMA cycles.

4-24 Configuring the Emulator

Trace refresh cycles?
(70236/70236A

 Emulator only)

This question allows you to specify whether or not the analyzer trace
the emulation processor’s refresh cycles.

yes Specifies that the analyzer will trace the refresh
cycles.

no Specifies that the analyzer will not trace the refresh
cycles.

Trace dummy cycles
during

HALT acknowledge?
(70236 Emulator only)

Whenever breaks occur during the emulator is halted, the HALT
acknowledge cycle will be occurred one more time.
This question allows you to specify whether or not the emulation
analyzer trace this HALT acknowledge cycles occurred by the breaks
during the emulator is halted.

no Specifies that the analyzer will not trace the dummy
HALT acknowledge cycles.

yes Specifies that the analyzer will trace the dummy
HALT acknowledge cycles.

Note Whenever breaks occur during the 70236 emulator is halted, the HALT
acknowledge cycle will be occurred one more time.
The emulation analyzer always traces this HALT acknowledge cycles
occurred by the breaks during the emulator is halted.

Note If the 70236A emulator breaks occur during the emulator is halted, the
HALT acknowledge cycle can not be occurred one more time. The
emulator keeps into the monitor.
So this configration is not avaibale for the 70236A emulator.

Configuring the Emulator 4-25

Simulated I/O
Configuration

The simulated I/O feature and configuration options are described in
the Simulated I/O reference manual.

External Analyzer
Configuration

The external analyzer configuration options are described in the
Analyzer Softkey Interface User’s Guide.

Interactive
Measurement
Configuration

The interactive measurement configuration questions are described in
the chapter on coordinated measurements in the Softkey Interface
Reference manual. Examples of coordinated measurements that can be
performed between the emulator and the emulation analyzer are found
in the "Using the Emulator" chapter.

Saving a
Configuration

The last configuration question allows you to save the previous
configuration specifications in a file which can be loaded back into the
emulator at a later time.

Configuration file name? <FILE>

The name of the last configuration file is shown, or no filename is
shown if you are modifying the default emulator configuration.

If you press <RETURN> without specifying a filename, the
configuration is saved to a temporary file. This file is deleted when
you exit the Softkey Interface with the "end release_system" command.

4-26 Configuring the Emulator

When you specify a filename, the configuration will be saved to two
files; the filename specified with extensions of ".EA" and ".EB". The
file with the ".EA" extension is the "source" copy of the file, and the
file with the ".EB" extension is the "binary" or loadable copy of the file.

Ending out of emulation (with the "end" command) saves the current
configuration, including the name of the most recently loaded
configuration file, into a "continue" file. The continue file is not
normally accessed.

Loading a
Configuration

Configuration files which have been previously saved may be loaded
with the following Softkey Interface command.

load configuration <FILE> <RETURN>
This feature is especially useful after you have exited the Softkey
Interface with the "end release_system" command; it saves you from
having to modify the default configuration and answer all the questions
again. To reload the current configuration, you can enter the following
command.

load configuration <RETURN>

Configuring the Emulator 4-27

Notes

4-28 Configuring the Emulator

5

Using the Emulator

Introduction The "Getting Started" chapter shows you how to use the basic features
of the 70136 emulator. This chapter describes the more in-depth
features of the emulator.

This chapter discusses:

Register names and classes.

Features available via "pod_command".

This chapter shows you how to:

Store the contents of memory into absolute files.

Make coordinated measurements.

Using the Emulator 5-1

Register Names
and Classes
(70136 Emulator)

The following register names and classes are used with the
display/modify registers commands in 70136 emulator.

BASIC(*) class

Register name Description

AW, BW
CW, DW
BP, IX, IY
DS0, DS1, SS
SP, PC, PS, PSW

BASIC registers.

PGR class (page registers)

Register name Description

PGR1
PGR2
 :
 :
PGR63
PGR64
XAM

PGR 1 register
PGR 2 register
 :
 :
PGR 63 register
PGR 64 register
XAM register (Read only)

5-2 Using the Emulator

Register Names
and Classes
(70236/70236A
Emulator)

The following register names and classes are used with the
display/modify registers commands in 70236 emulator.

BASIC(*) class

Register name Description

AW, BW
CW, DW
BP, IX, IY
DS0, DS1, SS
SP, PC, PS, PSW

BASIC registers.

PGR class (Page registers)

Register name Description

PGR1
PGR2
 :
 :
PGR63
PGR64
XAM

PGR 1 register
PGR 2 register
 :
 :
PGR 63 register
PGR 64 register
XAM register (Read only)

Using the Emulator 5-3

SIO class (System I/O registers)

Register name Description

 BSEL
BADR
BRC
WMB0
WCY1
WCY0
WAC

TCKS
SBCR
REFC
WMB1
WCY2
WCY3
WCY4
SULA
TULA
IULA
DULA
OPHA
OPSEL
SCTL

Bank selection register
Bank address register
Boud rate counter
Programmable wait, memory boundary 0 register
Programmable wait, cycle 1 register
Programmable wait, cycle 0 register
Programmable wait, memory address control
register
Timer clock selection register
Stand-by control register
Refresh control register
Programmable wait, memory boundary 1 register
Programmable wait, cycle 2 register
Programmable wait, cycle 3 register
Programmable wait, cycle 4 register
SCU low address register
TCU low address register
ICU low address register
DMAU low address register
On-chip peripheral high address register
On-chip peripheral selection register
System control register

5-4 Using the Emulator

ICU class (Interrupt Control Unit registers)

Register name Description

 IMKW
IRQ
IIS
IPOL
IPFW

IMDW
IIW1
IIW2
IIW3
IIW4

Interrupt mask word register
Interrupt request register (Read only)
Interrupt in-service register (Read only)
Interrupt polling register (Read only)
Interrupt priority and finish word register
(Write only)
Interrupt mode word register (Write only)
Interrupt initialize word 1 register (Write only)
Interrupt initialize word 2 register (Write only)
Interrupt initialize word 3 register (Write only)
Interrupt initialize word 4 register (Write only)

Caution When ipol register is displayed, interruptis are suspended until the FI
command is published.

TCU class (Timer Control Unit registers)

Register name Description

TCT0
TST0
TCT1
TST1
TCT2
TST2
TMD

Timer/counter 0 register
Timer status 0 register (Read only)
Timer/counter 1 register
Timer status 1 register (Read only)
Timer/counter 2 register
Timer status 2 register (Read only)
Timer/counter mode register (Write only)

Using the Emulator 5-5

SCU class (Serial Control Unit registers)

Register name Description

SRB
SST
STB
SCM
SMD
SIMK

Serial receive data buffer (Read only)
Serial status register (Read only)
Serial transmit data buffer (Write only)
Serial command register (Write only)
Serial mode register (Write only)
Serial interrupt mask register (Write only)

DMA71 class (DMA Control Unit registers (for uPD71071 mode)

Register name Description

 DICM
DCH
DBC_DCC0
DBC_DCC1
DBC_DCC2
DBC_DCC3
DBA_DCA0
DBA_DCA1
DBA_DCA2
DBA_DCA3
DMD0
DMD1
DMD2
DMD3
DDC
DST
DMK

DMA initialize register (Write only)
DMA channel register
DMA base/current count register channel 0
DMA base/current count register channel 1
DMA base/current count register channel 2
DMA base/current count register channel 3
DMA base/current address register channel 0
DMA base/current address register channel 1
DMA base/current address register channel 2
DMA base/current address register channel 3
DMA mode control register channel 0
DMA mode control register channel 1
DMA mode control register channel 2
DMA mode control register channel 3
DMA device control register
DMA status register (Read only)
DMA mask register

5-6 Using the Emulator

DMA37 class (DMA Control Unit register (for uPD71037 mode)

Register name Description

CMD
BANK0
BANK1
BANK2
BANK3
ADR0
ADR1
ADR2
ADR3
CNT0
CNT1
CNT2
CNT3
SFRQ

SMSK
MODE
CLBP
INIT
CMSK
AMSK

DMA read status/write command register
DMA bank register channel 0
DMA bank register channel 1
DMA bank register channel 2
DMA bank register channel 3
DMA current address register channel 0
DMA current address register channel 1
DMA current address register channel 2
DMA current address register channel 3
DMA current count register channel 0
DMA current count register channel 1
DMA current count register channel 2
DMA current count register channel 3
Software DMA write request register
(Write only)
DMA write single mask register(Write only)
DMA write mode register(Write only)
DMA clear byte pointer F/F (Write only)
DMA initialize register (Write only)
DMA clear mask register (Write only)
DMA write all mask register bit (Write only)

Using the Emulator 5-7

Hardware
Breakpoints

The analyzer may generate a break request to the emulation processor.
To break when the analyzer trigger condition is satisfied, use the
"break_on_trigger" trace option.

Additionally, you can see the program states before the breakpoint in
trace listing. Specify the trigger position at the end of trace listing by
using "before" option.

When the trigger condition is found. the emulator execution will break
into the emulation monitor. Then you can also see the trace listing
mentioned above, enter the following commands.

trace before <QUALIFIER>
break_on_trigger <RETURN>

Without the trigger condition, the trigger will never occur and will
never break.

Features Available
via Pod
Commands

Several emulation features available in the Terminal Interface but not
in the Softkey Interface may be accessed via the following emulation
commands.

display pod_command <RETURN>
pod_command ’<Terminal Interface command>’
<RETURN>

Some of the most notable Terminal Interface features not available in
the softkey Interface are:

Copying memory

Searching memory for strings or numeric expressions.

Sequencing in the analyzer.

Performing coverage analysis.

5-8 Using the Emulator

Refer to our Terminal Interface documentation for information on how
to perform these tasks.

Note Be careful when using the "pod_command". The Softkey Interface,
and the configuration files in particular, assume that the configuration
of the HP 64700 pod is NOT changed except by the Softkey Interface.
Be aware that what you see in "modify configuration" will NOT reflect
the HP 64700 pod’s configuration if you change the pod’s
configuration with this command. Also, commands which affect the
communications channel should NOT be used at all. Other commands
may confuse the protocol depending upon how they are used. The
following commands are not recommended for use with
"pod_command":

stty, po, xp - Do not use, will change channel operation and hang.
echo, mac - Usage may confuse the protocol in use on the channel.
wait - Do not use, will tie up the pod, blocking access.
init , pv - Will reset pod and force end release_system.
t - Do not use, will confuse trace status polling and unload.

Storing Memory
Contents to an
Absolute File

The "Getting Started" chapter shows you how to load absolute files
into emulation or target system memory. You can also store emulation
or target system memory to an absolute file with the following
command.

store memory 800h thru 84fh to absfile
<RETURN>

The command above causes the contents of memory locations
800H-84FH to be stored in the absolute file "absfile.X". Notice that
the ".X" extension is appended to the specified filename.

Using the Emulator 5-9

Coordinated
Measurements

For information on coordinated measurements and how to use them,
refer to the "Coordinated Measurements" chapter in the Softkey
Interface Reference manual.

5-10 Using the Emulator

A

Using the Foreground Monitor

Introduction By using and modifying the optional foreground monitor, you can
provide an emulation environment which is customized to the needs of
a particular target system.

The foreground monitors are supplied with the emulation software and
can be found in the following path:

/usr/hp64000/monitor/*
The monitor programs named Nfmon70136.s and Nfmon70236.s are
for the HP 64873 V series AxLS Cross Assembler/Linker.

Note Use the appropriate monitor; "Nfmon70136.s" for the 70136 emulator
and "Nfmon70236.s" for the 70236 and 70236A emulator.
"Nfmon70136.s" foreground monitor program is used in this example.
If your emulator is for the 70236 or 70236A, read this appendix by
replacing "Nfmon70136" with "Nfmon70236".

Comparison of
Foreground and
Background
Monitors

An emulation monitor is required to service certain requests for
information about the target system and the emulation processor. For
example, when you request a register display, the emulation processor
is forced into the monitor. The monitor code has the processor dump
its registers into certain emulation memory locations, which can then
be read by the emulator system controller without further interference.

Using the Foreground Monitor A-1

Background Monitors A background monitor is an emulation monitor which overlays the
processor’s memory space with a separate memory region.

Usually, a background monitor will be easier to work with in starting a
new design. The monitor is immediately available upon powerup, and
you don’t have to worry about linking in the monitor code or allocating
space for the monitor to use the emulator. No assumptions are made
about the target system environment; therefore, you can test and debug
hardware before any target system code has been written. All of the
processor’s address space is available for target system use, since the
monitor memory is overlaid on processor memory, rather than
subtracted from processor memory. Processor resources such as
interrupts are not fully taken by the background monitor.

However, all background monitors sacrifice some level of support for
the target system. For example, when the emulation processor enters
the monitor code to display registers, it will not respond to target
system interrupt requests. This may pose serious problems for
complex applications that rely on the microprocessor for real-time,
non-intrusive support. Also, the background monitor code resides in
emulator firmware and can’t be modified to handle special conditions.

Foreground Monitors A foreground monitor may be required for more complex debugging
and integration applications. A foreground monitor is a block of code
that runs in the same memory space as your program. Foreground
monitors allow the emulator to service real-time events, such as
interrupts, while executing in the monitor. For most multitasking,
interrupt intensive applications, you will need to use a foreground
monitor.

You can tailor the foreground monitor to meet your needs, such as
servicing target system interrupts. However, the foreground monitor
does use part of the processor’s address space, which may cause
problems in some target systems. You must also properly configure
the emulator to use a foreground monitor (see the "Configuring the
Emulator" chapter and the examples in this appendix).

A-2 Using the Foreground Monitor

You may link the foreground monitor with your code. However, if
possible, linking the monitor separately is preferred. This allows the
monitor to be downloaded before the rest of your program. Linking
monitor programs separately is more work initially, but it should prove
worthwhile overall, since the monitor can then be loaded efficiently
during the configuration process at the beginning of a session.

An Example Using
the Foreground
Monitor

In the following example, we will illustrate how to use a foreground
monitor with the sample program from the "Getting Started" chapter.
By using the emulation analyzer, we will also show how the emulator
switches from state to state using a foreground monitor.

For this example, we will be using the foreground monitor for the HP
64873 V series AxLS Cross Assembler/Linker. We will locate the
monitor at 1000H; the sample program will be located at 10000H and
80000H.

$ cp /usr/hp64000/monitor/Nfmon70136.s .
<RETURN>

Modify EQU
Statement

To use the monitor, you must modify the EQU statement near the top
of the monitor listing to point to the base address where the monitor
will be loaded.

$ chmod 644 Nfmon70136.s <RETURN>
$ vi Nfmon70136.s <RETURN>

Modifying Location of the Foreground Monitor

In this case, we will load the monitor at 1000H, so the modified EQU
statement looks like this:

MONSEGMENT EQU 00100H

You can load the monitor at any base address on a 4K byte boundary.

Using the Foreground Monitor A-3

Note You should not load the foreground monitor provided with the 70136
emulator at the base address 0 or 0ff000 hex; the 70136
microprocessor’s vector table is located.
And, You can not load the foreground monitor at the base address over
100000 hex.

Assemble and Link
the Monitor

You can assemble and link the foreground monitor program with the
following commands (which assume that /usr/hp64000/bin is defined
in the PATH environment variable):

$ asv33 -Lh Nfmon70136.s > Nfmon70136.lis
<RETURN>
$ ldv33 -c Nfmon70136.k -Lh > Nfmon70136.map
<RETURN>

The "Nfmon70136.k" linker command file is shown below.

The "??DATA1/??INIT" is used in the HP 64873 V series AxLS Cross
Assembler/Linker. You should set the "??DATA1/??INIT" to the
value added the offset value (0FFDH) to the foreground monitor
address (In this example, 1000H). When you want to relocate the
foreground monitor, you should modify the "??DATA1/??INIT" value
in the linker command file for the new foreground monitor address.

If you aren’t ready to use the sample program, do that now. Refer to
the "Getting Started" chapter to copy the sample program files to the
current directory.

Modifying the
Emulator

Configuration

The following assumes you are modifying the default emulator
configuration (that is, the configuration present after initial entry into
the emulator or entry after a previous exit using "end release_system").
Enter all the default answers except those shown below.

LOAD Nfmon70136.o
SEG ??DATA1/??INIT=001ffdH
END

A-4 Using the Foreground Monitor

Modify memory configuration? yes

You must modify the memory configuration so that you can select the
foreground monitor and map memory.

Monitor type? foreground

Specifies that you will be using a foreground monitor program.

Reset map (change of monitor type requires map reset)? yes

You must answer this question as shown to change the monitor type to
foreground.

Monitor address? 1000h

Specifies that the monitor will reside in the 4K byte block from 1000H
through 1FFFH.

Monitor file name? Nfmon70136

Enter the name of the foreground monitor absolute file. This file will
be loaded at the end of configuration.

Mapping Memory for the Example

When you specify a foreground monitor and enter the monitor address,
all existing memory mapper terms are deleted and a term for the
monitor block will be added. Add the additional term to map memory
for the sample program, and "end" out of the memory mapper.

0h thru 03ffh emulation ram <RETURN>
10000h thru 1f3ffh emulation ram <RETURN>
80000h thru 8f7ffh emulation rom <RETURN>
default target ram <RETURN>
end <RETURN>

Using the Foreground Monitor A-5

Modify debug/trace options? yes

You must answer this question as shown to access and modify the
question below.

Trace background or foreground operation? both

Later in this chapter, trace examples show transitions from reset into
the foreground monitor, from the monitor to the user program, and
from the user program back into the monitor. Since the foreground
monitor is actually entered via a few cycles in the emulator’s built-in
background monitor, we need to be able to view the background states.
Answering this configuration question as shown allows both
foreground and background emulation processor cycles to appear in the
trace.

Configuration file name? fmoncfg

If you wish to save the configuration specified above, answer this
question as shown.

Load the Program
Code

Now it’s time to load the sample program. You can load the sample
program with the following command:

load cmd_rds <RETURN>

Tracing from Reset
to Break

We want to see the monitor’s transition from the reset state to running
in the foreground monitor. First, put the emulator into its reset state
with the command:

reset <RETURN>

The 70136 emulator breaks to the foreground monitor via a few
background cycles. You can see the transition between reset and
foreground monitor execution. Enter following command.

trace <RETURN>

After entering the command above, the "Emulation trace started"
message appears on the status line. Enter the following command to
break into the monitor.

break <RETURN>

A-6 Using the Foreground Monitor

The status line now shows that the emulator is "Running in monitor"
and that the "Emulation trace complete". Enter the following
command to display the trace.

display trace <RETURN>

The trace listing shows that the processor began executing code; it
executed in background monitor. The "M"s in the trace listing indicate
the background monitor cycles.

Trace List Offset=0
Label: Address Data Opcode or Status time count
Base: hex hex mnemonic relative
after 0FFFF4 FFFF FFFF prefetch N ------------
+001 000008 0310 0310 memory read M 200 nS
+002 00000A 0100 0100 memory read M 160 nS
+003 001310 C62E C62E prefetch M 320 nS
+004 001312 0E06 0E06 prefetch M 200 nS
+005 000FEE F002 F002 undefined M 200 nS
+006 000FEC FFFF FFFF undefined M 160 nS
+007 000FEA 0000 0000 undefined M 200 nS
+008 001314 0002 0002 prefetch M 120 nS
+009 001316 A32E A32E prefetch M 120 nS
+010 001310 A32E MOV PS:020E,#00 80. nS
+011 001318 00E6 00E6 prefetch M 40. nS
+012 00120E 0000 xx00 memory write M 200 nS
+013 001316 0000 MOV PS:00E6,AW 80. nS
+014 00131A 892E 892E prefetch M 40. nS

STATUS: N70136--Running in monitor Emulation trace complete______...R....
display trace

 run trace step display modify break end ---ETC--

Using the Foreground Monitor A-7

To see the transition from background monitor to the foreground
monitor, press the <NEXT> key to page down until the background
cycles go.

You will see the transition from the background monitor to the
foreground monitor in the display.

Trace List Offset=0
Label: Address Data Opcode or Status time count
Base: hex hex mnemonic relative
+141 0013F4 0000 0000 prefetch M 80. nS
+142 0013EE 0000 NOP 80. nS
+143 0013EF FFBE NOP 160 nS
+144 0013F6 0000 0000 prefetch M 120 nS
+145 0013F0 0000 NOP 80. nS
+146 0013F1 FFFF illegal opcode, data = 0F CF 240 nS
+147 0013F8 0000 0000 prefetch M 80. nS
+148 000FEA 0500 0500 undefined M 160 nS
+149 000FEC 0100 0100 undefined M 200 nS
+150 000FEE F002 F002 undefined M 200 nS
+151 001500 8C2E 8C2E prefetch N 160 nS
+152 001502 FA16 FA16 prefetch N 160 nS
+153 001504 2E00 2E00 prefetch N 120 nS
+154 001506 2689 2689 prefetch N 120 nS
+155 001500 2689 MOV PS:00FA,SS 40. nS

STATUS: N70136--Running in monitor Emulation trace complete______...R....
display trace

 run trace step display modify break end ---ETC--

A-8 Using the Foreground Monitor

Tracing from Monitor
to User Program

We can look at the transition from the foreground monitor to running
the user program by triggering the trace on a user program address.
Enter:

trace about entry <RETURN>

Because you’d like to see the states leading up to the transition from
monitor to user program, trace "about" so that states before the trigger
are captured.

Now, run the sample program:

run from transfer_address <RETURN>

Display the trace with the following command:

display trace <RETURN>

The user program began execution at state 0. Now, you will know the
processor executed the RETI instruction to transfer execution to the
user program at state 0.

Trace List Offset=0
Label: Address Data Opcode or Status time count
Base: hex hex mnemonic relative
-007 001978 00CF 00CF prefetch N 40. nS
-006 0010EE 0FEA 0FEA memory read N 200 nS
-005 001978 0FEA RETI 80. nS
-004 00197A 0000 0000 prefetch N 40. nS
-003 001FEA 0006 0006 memory read N 200 nS
-002 001FEC 800C 800C memory read N 160 nS
-001 001FEE F002 F002 memory read N 200 nS
about 0800C6 0BEA 0BEA prefetch N 200 nS
+001 0800C8 0C00 0C00 prefetch N 120 nS
+002 0800CA B880 B880 prefetch N 120 nS
+003 0800CC 1000 1000 prefetch N 120 nS
+004 0800C6 1000 BR FAR PTR 800CB 80. nS
+005 0800CE D88E D88E prefetch N 40. nS
+006 0800CB B88E B8xx prefetch N 120 nS
+007 0800CC 1000 1000 prefetch N 120 nS

STATUS: N70136--Running user program Emulation trace complete______...R....
display trace

 run trace step display modify break end ---ETC--

Using the Foreground Monitor A-9

Tracing from User
Program to Break

You can trace the execution from the user program to the foreground
monitor due to a break condition. Since the foreground monitor
occupies the address range from 1000h through 1fffh, we can simply
trigger on any access to that range.

trace about range 1000h thru 1fffh <RETURN>

Satisfy the trigger condition by breaking the emulator into the monitor:

break <RETURN>

Now, display the trace with the following command:

display trace <RETURN>

Now, the trace listing shows that the processor entered the background
state to make the transition.

Trace List Offset=0
Label: Address Data Opcode or Status time count
Base: hex hex mnemonic relative
-007 08005E 8A90 8A90 prefetch N 40. nS
-006 08005C 8A90 BR SHORT 080051 80. nS
-005 080060 FE46 FE46 prefetch N 120 nS
-004 080051 9046 90xx prefetch N 120 nS
-003 080052 08A0 08A0 prefetch N 120 nS
-002 000008 0310 0310 memory read M 280 nS
-001 00000A 0100 0100 memory read M 160 nS
about 001310 C62E C62E prefetch M 320 nS
+001 001312 0E06 0E06 prefetch M 200 nS
+002 019004 F246 F246 undefined M 160 nS
+003 019002 8000 8000 undefined M 200 nS
+004 019000 0051 0051 undefined M 200 nS
+005 001314 0002 0002 prefetch M 120 nS
+006 001316 A32E A32E prefetch M 120 nS
+007 001310 A32E MOV PS:020E,#00 80. nS

STATUS: N70136--Running in monitor Emulation trace complete______...R....
display trace

 run trace step display modify break end ---ETC--

A-10 Using the Foreground Monitor

Single Step and
Foreground Monitors

To use the "step" command to step through processor instructions with
the foreground monitor listed in this chapter, you must modify the
processor’s interrupt vector table. The entry that you must modify is
the "BRK flag" interrupt vector, located at 4H thru 7H. The "BRK
flag" interrupt vector must point to the identifier UEE_BRK_FLAG in
the foreground monitor. For example, to modify the "BRK flag"
interrupt vector, enter the following commands:

load symbols Nfmon70136 <RETURN>
display local_symbols_in Nfmon70136: <RETURN>

To see the value of UEE_BRK_FLAG, press the <NEXT> key to page
down until the UEE_BRK_FLAG is displayed.
You will see that the value of UEE_BRK_FLAG is 0100:0A09 hex.
To modify the "BRK flag" interrupt vector to point to the
UEE_BRK_FLAG, enter the following command:

modify memory 4h words to 0A09H,0100H
<RETURN>

Now you can use the step feature. Enter:

display registers <RETURN>
load symbols cmd_rds <RETURN>
step from transfer_address <RETURN>
step <RETURN>

When you load the foreground monitor at the different base address,
you should modify the "BRK flag" interrupt vector to point to the
identifier UEE_BRK_FLAG with the same way.

Using the Foreground Monitor A-11

Extended Address
Mode

To use the foreground monitor in the extended mode, in defalt, you can
not use page register 0, page register 64 and other one page register to
locate the foreground monitor.

You must modify the processor’s interrupt vector indicated
"FGMON_VECNO" in the foreground monitor source.

You must set common stack area for the nomarl and exteded address
mode, because the foreground moniter temporay move into the normal
mode.

Limitations of
Foreground
Monitors

Listed below are limitations or restrictions present when using a
foreground monitor.

Synchronized
MeasurementsCMB

You cannot perform synchronized measurements over the CMB when
using a foreground monitor. If you need to make such measurements,
select the background monitor type when configuring the emulator.

A-12 Using the Foreground Monitor

B

Using the Extended Mode

Introduction This chapter will show you how to use the extended mode of the 70136
emulator with the Softkey Interface.

This chapter will:

Describe the sample program used for this chapter’s examples.

This chapter will show you how to:

Load programs into emulation and target system memory.

Enter emulation commands to view execution of the demo
program.

This chapter discusses:

Address expressions in emulation commands in the extended
mode.

Symbol hierarchy with SRU and HP-OMF V33 files.

Using the Extended Mode B-1

Prerequisites Before reading this chapter you should already know how the emulator
operates. You should know how to use the Softkey Interface, and how
to control the emulator from within the Softkey Interface. Refer to the
"Getting Started" chapter to learn about the emulator.

A Look at the Sample
Program

The sample program and the associated output files, including the
HP-OMF V33 format executable files, have been shipped with the
Softkey Interface; copy these files to the current directory with the
following command:

$ cp
/usr/hp64000/demo/emul/hp64756/ext_mode/* .
<RETURN> (70136)
$ cp
/usr/hp64000/demo/emul/hp64757/ext_mode/* .
<RETURN> (70236)

The following files are copied in your directory:

 cmd_rds.c cmd_rds.x ex_cmd_rds.d setup.s
 cmd_rds.k democonfig.EA ex_cmd_rds.x setup.x

The sample program consists of two separate tasks. The first task,
setup, initializes the processor and switches into the extended mode.
The cmd_rds task continuously reads values from Cmd_Input ; when
a value other than NULL is found, the program calls the Write_Msg
function to copy a string to the Msg_Dest array.
Each task will be placed in its own 1-Megabyte memory space, with
the setup task in the normal memory space and the cmd_rds task in
the extended memory.

The two stand-alone absolute files are linked together by the HP 64875
V33/53 Extended Mode Locator product.
The file ex_cmd_rds.x is the final V33 executable file in the HP-OMF
V33 file format.

Refer to the HP 64875 NEC V33/53 Extended Mode Locator:User’s
Guide to know how to assemble/link/locate the sample program.

B-2 Using the Extended Mode

;###
; Normal mode program: setup.s
;
; Sets up all the page registers,
; then breaks into extended mode
;
;###

$modv33
 NAME setup

 PUBLIC main,page_init,brkcmd
 EXTRN ?JUMP?cmd_rds?entry:FAR

vector1 EQU 20h ;use vector 20h
pgr_addr EQU 0ff00h ;I/O addr of PGRs
num_pgrs EQU 64 ;all of the PGRs
size_of_vector EQU 4 ;4 bytes for vector
size_of_pgr EQU 2 ;2 bytes for PGR
size_of_stack EQU 10h ;10h bytes for stack

program SEGMENT AT 100h
 ASSUME PS:program,DS0:data

;===
; RUN FROM HERE
;===
main PROC FAR
; set up stack pointer
 MOV AW,SEG stack_area
 MOV SS,AW
 MOV AW,OFFSET stack_area+size_of_stack
 MOV SP,AW
; set up page registers
 CALL init_pages
; set up break address
 CALL set_vector
; fly to extended mode - never come back
brkcmd: BRKXA vector1
;
main ENDP

;===
; SETUP PAGE REGISTERS
;===
; assume we are in normal mode
init_pages PROC NEAR
; set up memory address of source
 MOV AW,SEG page_init
 MOV DS1,AW
 MOV BP,OFFSET page_init
; set up I/O address of destination
 MOV DW,pgr_addr
; set up count
 MOV CW,num_pgrs
; now, write to the PGRs

Figure B-1. Sample program "setup.s"

Using the Extended Mode B-3

Entering the
Softkey Interface

Enter the Softkey Interface from the HP-UX shell with the following
command.

loop: MOV AW,DS1:[BP]
 OUT DW,AW
 INC BP
 INC BP
 INC DW
 INC DW
 DBNZ loop
; done
 RET
init_pages ENDP

;===
; SET ADDRESS TO FLY TO
;===
set_vector PROC NEAR
;
addr1 EQU vector1*size_of_vector
; set the segment of addr1 in DS0
 MOV AW,0
 MOV DS0,AW
; set the vector1
 MOV AW,SEG ?JUMP?cmd_rds?entry
 MOV DW,OFFSET ?JUMP?cmd_rds?entry
 MOV DS0:[WORD PTR addr1],DW
 MOV DS0:[WORD PTR addr1+2],AW
; done
 RET
;
set_vector ENDP

program ENDS

data SEGMENT WORD AT 200h
;===
; DATA TO SETUP TO PGRs
;===
; elv33 sets the proper table here
page_init DS num_pgrs*size_of_pgr
data ENDS

stack SEGMENT WORD AT 300h
;===
; RESERVE STACK AREA
;===
stack_area DS size_of_stack
stack ENDS

 END main

Figure B-1. Sample program "setup.s" (Cont’d)

B-4 Using the Extended Mode

 1 volatile char Cmd_Input;
 2 char Msg_Dest[0x20];
 3
 4 void Write_Msg (const char *s)
 5 {
 6 char *Dest_Ptr;
 7
 8 Dest_Ptr = Msg_Dest;
 9 while (*s != ’\0’)
 10 {
 11 *Dest_Ptr = *s;
 12 Dest_Ptr++;
 13 s++;
 14 }
 15 }
 16
 17 main ()
 18 {
 19 static char Msg_A[] = "Command A Entered ";
 20 static char Msg_B[] = "Entered B Command ";
 21 static char Msg_I[] = "Invalid Command ";
 22 char c;
 23
 24 for (;;)
 25 {
 26 Cmd_Input = ’\0’;
 27 while ((c = Cmd_Input) == ’\0’);
 28 switch (c) {
 29 case ’A’ :
 30 Write_Msg (Msg_A);
 31 break;
 32 case ’B’ :
 33 Write_Msg (Msg_B);
 34 break;
 35 default :
 36 Write_Msg (Msg_I);
 37 break;
 38 }
 39 }
 40 }

Figure B-2. Sample program "cmd_rds.c"

Using the Extended Mode B-5

$ emul700 <emul_name> <RETURN>

The "emul_name" in the command above is the logical emulator name
given in the HP 64700 emulator device table
(/usr/hp64000/etc/64700tab).
For example, the emulator name in the device table entry shown below
is "v33".

#-------------+---------+--------------------+----+------+------+----+----+----
| | |xpar| baud |parity|flow|stop|char
logical name|processor| physical |mode| rate | | |bits|size
(14 chars) | type | device | | | |XON | |
| | |OFF | | NONE |RTS | 2 | 8
#-------------+---------+--------------------+----+------+------+----+----+----
#
v33 n70136 /dev/emcom23 OFF 230400 NONE RTS 2 8

ex_cmd_rds;

task setup
{
 taskname = setup;
 mode = normal_mode;
 base = 0;
};

task cmd_rds
{
 taskname = cmd_rds;
 mode = extended_mode;
 table = page_init;
 base = 100000h
};

end.

Figure B-3. The "ex_cmd_rds.d" description file

B-6 Using the Extended Mode

To load the configuration file copied above, enter the following
command.

load configuration democonfig <RETURN>

Now you are ready to go ahead. Above configuration is used
throughout this chapter.

Loading Absolute
Files

To load the ’ex_cmd_rds.x’ executable file into the emulator, enter the
following command:

load ex_cmd_rds.x <RETURN>

Using the Extended Mode B-7

Symbol Hierarchy
with SRU and
HP-OMF V33 Files

The Symbol Retrieval Utility (SRU) allows the HP 64000-UX
emulation software to read several different file formats. It is now
possible to emulate using HP-OMF V33 files and get full symbol
support. The HP-OMF V33 file format is generated by the HP 64875
V33/53 Extended Mode Locator product.
Since SRU is language independent, it will provide symbol information
using the data in the object module format (executable) file.

Note When you emulate using the extended mode in your program, you
should generate the executable file with symbol information to load the
emulator by HP 64875 V33/53 Extended Mode Locator.

The HP-OMF V33 file format provides a sophisticated view of the
executable file and its symbols.
This view is more appropriate when dealing with symbols in high level
languages (such as C) than when using assembly language. SRU is
very resistant to language-specific symbol representations, providing a
consistent view of program symbols.

The HP-OMF V33 file format uses symbol relationships that
accommodate the concept of tasks.
Tasks reside at the highest level in the symbol hierarchy.
The HP-OMF V33 file format will create a task for each module which
is linked by the HP 64875 V33/53 Extended Mode Locator. Tasks
reside at a higher level than modules which are the unit of compilation
or assembly; a task "owns" the module.

B-8 Using the Extended Mode

This symbol hierarchy can be seen when using
HP-OMF V33 files and accessing and displaying symbols in
emulation. A task is the child of the root symbol. A module is the
child of a task symbol. Local symbols are accessed as children of file
name symbols or children of modules symbols, depending upon the
type of local symbol:

Local symbols that are line numbers are accessed through the
file name symbol.

Local symbols that are not line numbers are accessed through
the module name.

Now, with the HP-OMF V33 file, symbols are scoped as shown in the
next page. (This example is for a different executable than shown
above.)

Source references are created only for source lines that generate code.
All source lines, however, will be displayed on the source code listing.

The most reliable results will be obtained when using syntax that tells
the emulator whether the local symbols reside in the module symbol or
in the source file symbol.

Note The following examples pertain to emulation with HP-OMF V33 files
ONLY.

Note When you use the HP-OMF V33 file, you can not refer the symbol
which does not belong any segments.

Using the Extended Mode B-9

(root)---task_1---segment_1(fsegment)
 | (task) |-segment_2(fsegment)
 | |
 | |-global_static_1(static)
 | |-global_procedure_1(static)
 | |
 | |-file_1-----global_static_1(static)
 | |(module) |
 | | |-global_procedure_1---TEXTRANGE(procspecial)
 | | | (procedure) |-symbol_1(static)
 | | | --symbol_2(static)
 | | |
 | | |-local_static_1(static)
 | | |
 | | |-local_procedure_1----TEXTRANGE(procspecial)
 | | | (procedure) |-symbol_3(static)
 | | | --symbol_4(static)
 | | |
 | | --filename_1.c---------(source reference)
 | | (filename)
 | |
 | |-global_static_2(static)
 | |-global_procedure_2(static)
 | |
 | --file_2-----global_static_2(static)
 | (module) |
 | |-global_procedure_2---TEXTRANGE(procspecial)
 | | (procedure) |-symbol_5(static)
 | | --symbol_6(static)
 | |
 | |-local_static_2(static)
 | |
 | |-local_procedure_2----TEXTRANGE(procspecial)
 | | (procedure) |-symbol_7(static)
 | | --symbol_8(static)
 | |
 | --filename_2.c---------(source reference)
 | (filename)
 |
 --task_2---segment_3(fsegment)
 (task) |-segment_4(fsegment)
 |
 |-global_static_3(static)
 |-global_procedure_3(static)
 |
 --file_3-----global_static_3(static)
 (module) |
 |-global_procedure_3---TEXTRANGE(procspecial)
 | (procedure) |-symbol_9(static)
 | --symbol_10(static)
 |
 |-local_static_3(static)
 |
 |-local_procedure_3----TEXTRANGE(procspecial)
 | (procedure) |-symbol_11(static)
 | --symbol_12(static)
 |
 --filename_3.c---------(source reference)
 (filename)

B-10 Using the Extended Mode

Displaying
Symbols

If symbol information is present in the executable file, it is loaded
along with the executable file (unless you use the "nosymbols" syntax).
Both global symbols and symbols that are local to a program task can
be displayed.

Global To display global symbols, enter the following command.

display global_symbols <RETURN>

You will notice that only task symbols, "cmd_rds" and "setup", are
displayed.

Global symbols in ex_cmd_rds
Task symbols
Task name ___ ____
cmd_rds
setup

STATUS: N70136--Running in monitor____________________________________...R....
display global_symbols

 run trace step display modify break end ---ETC--

Using the Extended Mode B-11

Local

Task Symbols

Display global symbols will display the tasks in the executable. For
example, if you issued the command from the root directory:

display local_symbols_in cmd_rds(task)
<RETURN>

or

display local_symbols_in cmd_rds <RETURN>

This syntax used to access the children of the task cmd_rds.

Notice that the message of the first line on display announces the
current working symbol is "cmd_rds(task)".

(See the Symbolic Retrieval Utilty User’s Guide manual on SRU for
information about current working symbols.)

Symbols in cmd_rds(task)
Static symbols
Symbol name ____________________ Address range __ Segment _____________ Offset
Cmd_Input 01:1009:0008 data 0000
Err_Handler 01:805E:0057 lib 0055
MM_CHECK_L 01:1000:000A libdata 0000
MM_CHECK_X 01:1000:000A libdata 0000
MONITOR_MESSAGE 01:1000:0002 - 0005 envdata 0002
Msg_Dest 01:1009:0009 - 0028 data 0001
TOP_OF_STACK 01:1111:7F0A - 7F0B userstack 7EFE
USER_ENTRY 01:800E:00FB env 00F9
USR_STACK 01:1111:000C - 000D userstack 0000
Write_Msg 01:8000:0000 - 0040 prog_cmd_rds 0000
XEnv_86_except 01:1000:0000 - 0001 envdata 0000
_Cmd_Input 01:1009:0008 data 0000
_Msg_Dest 01:1009:0009 - 0028 data 0001
_Write_Msg 01:8000:0000 - 0040 prog_cmd_rds 0000
__HEAP_PTR 01:1000:0006 - 0009 envdata 0006

STATUS: cws:cmd_rds.cmd_rds__...R.... display
local_symbols_in cmd_rds(task)

 run trace step display modify break end ---ETC--

B-12 Using the Extended Mode

Module Symbols

Since module symbols reside under task symbols in HP-OMF V33
hierarchy, module symbols are not considered global symbols. Module
symbols are accessed as children of task symbols. Display global
symbols will display the tasks in the executable. Modules can be
shown by displaying the local symbols for a task. For example, if you
issued the command from the directory cmd_rds(task):

display local_symbols_in cmd_rds <RETURN>

This syntax used to access the children of the module cmd_rds.

Notice that the current working symbol has changed to
"cmd_rds(task).cmd_rds(module)" in the first line on display.

Symbols in cmd_rds(task).cmd_rds(module)
Procedure symbols
Procedure name _________________ Address range __ Segment _____________ Offset
Write_Msg 01:8000:0000 - 0040 prog_cmd_rds 0000
main 01:8000:0041 - 00E0 prog_cmd_rds 0041

Static symbols
Symbol name ____________________ Address range __ Segment _____________ Offset
Cmd_Input 01:1009:0008 data 0000
Msg_Dest 01:1009:0009 - 0028 data 0001
_Cmd_Input 01:1009:0008 data 0000
_Msg_Dest 01:1009:0009 - 0028 data 0001
_Write_Msg 01:8000:0000 prog_cmd_rds 0000
_main 01:8000:0041 prog_cmd_rds 0041

Filename symbols
Filename __
/usr/hp64000/demo/emul/hp64756/ext_mode/cmd_rds.c

STATUS: cws:cmd_rds.cmd_rds__...R....
display local_symbols_in cmd_rds.cmd_rds

 run trace step display modify break end ---ETC--

Using the Extended Mode B-13

Non-Line-Number Symbols

To access non-line-number local symbols, in the file cmd_rds.c, use the
following syntax:

display local_symbols_in
cmd_rds.cmd_rds<RETURN>

or

display local_symbols_in cmd_rds(module)
<RETURN>

This syntax is used to access the children of the module cmd_rds.

The second example will work if the task cmd_rds is the current
working symbol.

Symbols in cmd_rds(task).cmd_rds(module)
Procedure symbols
Procedure name _________________ Address range __ Segment _____________ Offset
Write_Msg 01:8000:0000 - 0040 prog_cmd_rds 0000
main 01:8000:0041 - 00E0 prog_cmd_rds 0041

Static symbols
Symbol name ____________________ Address range __ Segment _____________ Offset
Cmd_Input 01:1009:0008 data 0000
Msg_Dest 01:1009:0009 - 0028 data 0001
_Cmd_Input 01:1009:0008 data 0000
_Msg_Dest 01:1009:0009 - 0028 data 0001
_Write_Msg 01:8000:0000 prog_cmd_rds 0000
_main 01:8000:0041 prog_cmd_rds 0041

Filename symbols
Filename __
/usr/hp64000/demo/emul/hp64756/ext_mode/cmd_rds.c

STATUS: cws:cmd_rds.cmd_rds__...R....
display local_symbols_in cmd_rds.cmd_rds

 run trace step display modify break end ---ETC--

B-14 Using the Extended Mode

Line-Number Symbols

Symbol accesses for line-number symbols require the file name in
quotes. Use the following syntax to display local symbols which are
line numbers for the file cmd_rds.c:

display local_symbols_in
cmd_rds(task).cmd_rds(module)."cmd_rds.c":
<RETURN>

or

display local_symbols_in
cmd_rds."cmd_rds.c": <RETURN>

The second example will work if the task cmd_rds is the current
working symbol.

The quotes are used to specify the file name containing the line number
symbols for the emulator.

Symbols in .../usr/hp64000/demo/emul/hp64756/ext_mode/cmd_rds.c":
Source reference symbols
Line range _____________________ Address range __ Segment _____________ Offset
#1-#5 01:8000:0000 - 0009 prog_cmd_rds 0000
#6-#8 01:8000:000A - 0013 prog_cmd_rds 000A
#9-#9 01:8000:0014 - 0019 prog_cmd_rds 0014
#10-#11 01:8000:001A - 0025 prog_cmd_rds 001A
#12-#12 01:8000:0026 - 0029 prog_cmd_rds 0026
#13-#13 01:8000:002A - 002D prog_cmd_rds 002A
#14-#14 01:8000:002E - 003C prog_cmd_rds 002E
#15-#15 01:8000:003D - 0040 prog_cmd_rds 003D
#16-#18 01:8000:0041 - 004A prog_cmd_rds 0041
#19-#24 01:8000:004B prog_cmd_rds 004B
#25-#26 01:8000:004C - 0051 prog_cmd_rds 004C
#27-#27 01:8000:0052 - 006A prog_cmd_rds 0052
#28-#28 01:8000:006B - 008D prog_cmd_rds 006B
#29-#29 01:8000:008E prog_cmd_rds 008E
#30-#30 01:8000:008F - 00A0 prog_cmd_rds 008F

STATUS: cws:.../hp64000/demo/emul/hp64756/ext_mode/cmd_rds.c":_______...R....
display local_symbols_incmd_rds(task).cmd_rds(module)."cmd_rds.c":

 run trace step display modify break end ---ETC--

Using the Extended Mode B-15

It is not possible to display both types of local symbols
(non-line-number and line-number symbols) with the same command.

The syntax used with HP format absolute files to display local symbols
will work with HP-OMF V33 files if the task cmd_rds is the current
working symbol. As in the above example, this will display only the
line number symbols in file cmd_rds.c

display local_symbols_in cmd_rds.c: <RETURN>

B-16 Using the Extended Mode

Address
Expression in
Extended Mode

You can use the following address expression in emulation commands
in extended mode of the emulator.

<HP-OMF V33 symbol>

You can use the symbol which is generated by the HP 64875 V33/53
Extended Mode Locator just same as the
<TASK>:<SEGMENT>:<OFFSET> address expression below.

<TASK>:<SEGMENT>:<OFFSET>

This expression (TASK:0-0FF hex; SEGMENT:0-0FFFF hex;
OFFSET:0-0FFFF hex) is the task, segment and offset portion of the
logical address. Refer to the HP 64875 NEC V33/53 Extended Mode
Locator:User’s Guide.

fcode e <24-bit address>

This expression (0-0FFFFFF hex) with "fcode e" is a extended address
in the 70136 address range.

fcode p <20-bit address>

This expression (0-0FFFFF hex) with "fcode p" is a physical address in
the 70136 address range. In run or step commands, the emulation
system converts this physical address to a <SEGMENT>:<OFFSET>
address as specified by the "Select Algorithm for physical run
addresses" configuration option in "Configuring the Emulator" chapter.

Using the Extended Mode B-17

fcode none <20-bit address>

This expression (0-0FFFFF hex) with "fcode none" is a physical
address in the 70136 address range. In run or step commands, the
emulation system converts this physical address to a
<SEGMENT>:<OFFSET> address as specified by the "Select
Algorithm for physical run addresses" configuration option in
"Configuring the Emulator" chapter.

<SEGMENT>:<OFFSET>

This expression (SEGMENT:0-0FFFF hex; OFFSET:0-0FFFF hex) is
segment and offset portion of the logical address.

<I/O_ADDRESS>

This expression (0-0FFFF hex) is a 70136 I/O address. This expression
should be used in I/O command

B-18 Using the Extended Mode

Display Memory Use the following command to display memory for function main in
file cmd_rds.c in task cmd_rds:

display memory cmd_rds.cmd_rds.main mnemonic
<RETURN>
set symbols on <RETURN>

This tells the emulator to look in task cmd_rds, module cmd_rds, and
then for label main. You could also use the command when the current
working symbol is "cmd_rds(task).cmd_rds(module)":

display memory main(procedure) mnemonic
<RETURN>

To include source lines in mnemonic memory displays, enter the
following command:

set source on <RETURN>

 Memory :mnemonic :file = .../hp64000/demo/emul/hp64756/ext_mode/cmd_rds.c":
 address label data
 16
 17 main ()
 18 {
 01:8000:0041 cmd_rd._main C8020000 PREPARE 0002,00
 01:8000:0045 1E PUSH DS0
 01:8000:0046 B80910 MOV AW,#1009
 01:8000:0049 8ED8 MOV DS0,AW
 19 static char Msg_A[] = "Command A Entered ";
 20 static char Msg_B[] = "Entered B Command ";
 21 static char Msg_I[] = "Invalid Command ";
 22 char c;
 23
 24 for (;;)
 01:8000:004B 90 NOP
 25 {
 26 Cmd_Input = ’\0’;

STATUS: N70136--Running in monitor____________________________________...R....
set source on

Using the Extended Mode B-19

Note When you use the <SEGMENT>:<OFFSET> address expression in
displaying memory command, you should enter the same
<SEGMENT> value to enter address ranges.
When you use the <TASK>:<SEGMENT>:<OFFSET> address
expression in displaying memory command, you should enter the same
<TASK> and <SEGMENT> value to enter address ranges.

Note When you load the HP-OMF V33 format file, the symbols have
<TASK>:<SEGMENT>:<OFFSET> information. When you enter the
following address expression in "display memory mnemonic"
command, the symbols will be not displayed with mnemonic memory
display because the address entered has no <TASK> information.

fcode none <20-bit address>
fcode p <20-bit address>
<SEGMENT>:<OFFSET>

Note When program execution should take place in real-time and the
emulator should break to the monitor to read page registers (refer to
"Configuring the Emulator" chapter), the commands showing above
with the following address expressions which need physical to
extended address conversion are not allowed in running user program.

fcode none <20-bit address>
fcode p <20-bit address>
<SEGMENT>:<OFFSET>

If you entered, the following error message will be shown:

ERROR: Restricted to real time runs

B-20 Using the Extended Mode

Using Software
Breakpoints

Caution If you change the relation between the physical address and the
extended address (ex. change the value of page registers) after you set a
software breakpoint with the following address expressions, the
breakpoint interrupt instruction (F1 hex) is left in memory and the
software break will not occur at the specified address.

fcode none <20-bit address>
fcode p <20-bit address>
<SEGMENT>:<OFFSET>

Caution Software breakpoints should not be set, cleared, enabled, or disabled
while the emulator is running user code. If any of these commands are
entered while the emulator is running user code, and the emulator is
executing code in the area where the breakpoint is being modified,
program execution may be unreliable.

Enabling/Disabling
Software Breakpoints

When you initially enter the Softkey Interface, software breakpoints
are disabled. To enable the software breakpoints feature, enter the
following command.

modify software_breakpoints enable <RETURN>

Using the Extended Mode B-21

Setting a Software
Breakpoint

To set a software breakpoint at the address of function main (source
line 17) in file cmd_rds.c in task cmd_rds, enter the following
command:

modify software_breakpoints set
cmd_rds.cmd_rds.main <RETURN>

or

modify software_breakpoints set main
<RETURN>

The second example will work if the task cmd_rds is the current
working symbol.

Notice that an asterisk (*) appears next to the breakpoint address. The
asterisk shows that a software breakpoint is pending at that address.

 Memory :mnemonic :file = .../hp64000/demo/emul/hp64756/ext_mode/cmd_rds.c":
 address label data
 16
 17 main ()
 18 {
*01:8000:0041 cmd_rd._main F1 illegal opcode, data = F1
 01:8000:0042 0200 ADD AL,[BW][IX]
 01:8000:0044 001EB809 ADD 09B8,BL
 01:8000:0048 108ED890 ADDC [BP-6F28],CL
 25 {
 26 Cmd_Input = ’\0’;
 01:8000:004C main.Block_1 C606080000 MOV 0008,#00
 01:8000:0051 90 NOP
 27 while ((c = Cmd_Input) == ’\0’);
 01:8000:0052 EB05 BR SHORT pr|main.Block_1+00000D
 01:8000:0054 90 NOP
 01:8000:0055 90 NOP
 01:8000:0056 90 NOP

STATUS: N70136--Running in monitor____________________________________...R....
 modify software_breakpoints set cmd_rds.cmd_rds.main

 run trace step display modify break end ---ETC--

B-22 Using the Extended Mode

To use source line numbers in setting software breakpoints, you should
change the current working symbol to the line numbers for the source
file before setting software breakpoints.

For example, if you want to set a software breakpoint at the address of
source line 17 in file cmd_rds.c in task cmd_rds, you should change the
current working symbol to
cmd_rds(task).cmd_rds(module)."cmd_rds.c" before setting software
breakpoints.

Enter the following command:

cws cmd_rds.cmd_rds."cmd_rds.c": <REUTRN>

To set the software breakpoint, enter the following command:

modify software_breakpoints set line 17
<RETURN>

Using the Extended Mode B-23

Running the
Program

The "run" command causes the emulator to execute the user program.
Entering the "run" command by itself causes the emulator to begin
executing at the current program counter address. The "run from"
command allows you to specify an address at which execution is to
start.

You can use the following address expression in the "run from"
command in extended mode.

<HP-OMF V33 symbol>

You can use the symbol which is generated by the HP 64875 V33/53
Extended Mode Locator just same as the
<TASK>:<SEGMENT>:<OFFSET> address expression below.

<TASK>:<SEGMENT>:<OFFSET>

This expression (TASK:0-0FF hex; SEGMENT:0-0FFFF hex;
OFFSET:0-0FFFF hex) is task, segment and offset portion of the
logical address. Refer to the HP 64875 NEC V33/53 Extended Mode
Locator:User’s Guide.

Note When you enter <HP-OMF V33 symbol> or
<TASK>:<SEGMENT>:<OFFSET> address expression in the "run
from" command, the <TASK> information entered is ignored by the
emulation system.

When you enter the "run from" command in "running in monitor"
status, the <TASK> which is active just before entering the monitor is
used.
In "running user program" status, the current working <TASK> is used.

B-24 Using the Extended Mode

fcode p <20-bit address>

This expression (0-0FFFFF hex) with "fcode p" is a physical address in
the 70136 address range. The emulation system converts this address
to a <SEGMENT>:<OFFSET> address as specified by the "Select
Algorithm for physical run addresses" configuration option in
"Configuring the Emulator" chapter.

fcode none <20-bit address>

This expression (0-0FFFFF hex) with "fcode none" is a physical
address in the 70136 address range. The emulation system converts
this address to a <SEGMENT>:<OFFSET> address as specified by the
"Select Algorithm for physical run addresses" configuration option in
"Configuring the Emulator" chapter.

<SEGMENT>:<OFFSET>

This expression (SEGMENT:0-0FFFF hex; OFFSET:0-0FFFF hex) is
the segment and offset portion of the logical address.

From Transfer
Address

The "run from transfer_address" command specifies that the emulator
start executing at a previously defined "start address". Transfer
addresses are defined in assembly language source files with the END
assembler directive (i.e., pseudo instruction) in the normal mode task.
Enter:

run from transfer_address <RETURN>

Using the Extended Mode B-25

Notice the highlighted bar on the screen; it shows the current program
counter.

Notice also that the asterisk is no longer next to the breakpoint
address; this shows that the breakpoint has been hit and is no longer
active.

In run or step commands, the emulation system converts this physical
address to a <SEGMENT>:<OFFSET> address as specified by the
"Select Algorithm for physical run addresses" configuration option in
"Configuring the Emulator" chapter.

 Memory :@e :mnemonic :file = .../demo/emul/hp64756/ext_mode/cmd_rds.c":
 address label data
 16
 17 main ()
 18 {
>01:8000:0041 cmd_rd._main C8020000 PREPARE 0002,00
 01:8000:0045 1E PUSH DS0
 01:8000:0046 B80910 MOV AW,#1009
 01:8000:0049 8ED8 MOV DS0,AW
 19 static char Msg_A[] = "Command A Entered ";
 20 static char Msg_B[] = "Entered B Command ";
 21 static char Msg_I[] = "Invalid Command ";
 22 char c;
 23
 24 for (;;)
 01:8000:004B 90 NOP
 25 {
 26 Cmd_Input = ’\0’;

STATUS: N70136--Running in monitor Software break:0180041@e.....R....
run from transfer_address

 run trace step display modify break end ---ETC--

B-26 Using the Extended Mode

Stepping Through
the Program

The step command allows you to step through program execution an
instruction or a number of instructions at a time. You can step though
the instructions associated with high-level program source lines. Also,
you can step from the current program counter or from a specific
address. To step through the example program from the address of the
software breakpoint set earlier, enter the following command.

step source <RETURN>

Notice that the highlighted bar (the current program counter) moves to
the instructions associated with the next source line.

Enter the "step source" command again by pressing:

<RETURN>, <RETURN>

Notice that the emulator continues to step through the program and that
the message "assembly steps taken: XXX" appears on the status line.
This happens because the "while" test remains true, and the emulator
never completes the execution of the assembly instructions associated
with that source line. To stop the "step source" command, enter:

<CTRL>-c

Continue user program execution with the "run" command.

run <RETURN>

Using the Extended Mode B-27

Modifying Memory The sample program is a simple command interpreter. Commands are
sent to the sample program through a "char" sized memory location,
global variable Cmd_Input . You can use the modify memory feature
to send a command to the sample program.

Use the following command to modify memory for static symbol
Cmd_Input in file cmd_rds.c in task cmd_rds:

modify memory cmd_rds.cmd_rds.Cmd_Input
strings to ’A’ <RETURN>

or

modify memory Cmd_Input string to ’A’
<RETURN>

The second example will work if the current working symbol is
"cmd_rds(task).cmd_rds(module)". This tells the emulator to look in
task cmd_rds, module cmd_rds, and then for label Cmd_Input.

To verify that the program correctly copied the message "Command A
Entered" to the Msg_Dest array, display the contents of the array with
the following command:

display data Msg_Dest thru +1fh char
<RETURN>

Enter the following commands to verify that the program works for the
other possible command inputs.

modify memory Cmd_Input string to ’B’
<RETURN>
modify memory Cmd_Input string to ’C’
<RETURN>

Notice that the display is updated when the memory contents change
due (indirectly) to the "modify memory" command.

B-28 Using the Extended Mode

Note When you use the <SEGMENT>:<OFFSET> address expression in
modifying memory command, you should enter the same
<SEGMENT> value to enter address ranges.

When you use the <TASK>:<SEGMENT>:<OFFSET> address
expression in modifying memory command, you should enter the same
<TASK> and <SEGMENT> value to enter address ranges.

When you use the <TASK>:<SEGMENT>:<OFFSET> address
expression in modifying memory command, you can not enter the
address ranges which crosses the page boundary that is not physically
continuous are refused.
<TASK>:<SEGMENT>:<OFFSET> range must be within the area a
or b for "modify memory" command.

 logical address physical address
 (20-bit address) (24-bit address)

 | | | A |
 | a | /-------------|------------|
 |------------|------------+ : :
 | b | \-------------|------------|
 | | | B |

 Data :update
 address label type data
 01:1009:0009 cm._Msg_Dest char[] Command A Entered

STATUS: N70136--Running user program__________________________________...R....
display data Msg_Dest thru +1fh char

 run trace step display modify break end ---ETC--

Using the Extended Mode B-29

Note When program execution should take place in real-time and the
emulator should break to the monitor to read page registers (refer to
"Configuring the Emulator" chapter), the commands showing above
with the following address expressions which need physical to
extended address conversion are not allowed in running user program.

fcode none <20-bit address>
fcode p <20-bit address>
<SEGMENT>:<OFFSET>

If you entered, the following error message will be shown:

ERROR: Restricted to real time runs

Breaking into the
Monitor

The "break" command causes emulator execution to break from the
user program to the monitor. You can continue user program
execution with the "run" command. To break emulator execution from
the sample program to the monitor, enter the following command.

break <RETURN>

B-30 Using the Extended Mode

Displaying
Registers

Enter the following command to display registers. You can display the
basic registers, or an individual register.

display registers <RETURN>

Note You should not change the value of 70136 and 70236 page registers
with using "modify io_port" command. You should use the "modify
registers" command to change the value of page registers.

Refer to "Register Names and Classes" section in chapter 5.

Registe

Next PS:PC 18005C@e
 PC 005C SP 7EF6 IX 0000 IY 0049 BP 7EFA
 PS 8000 SS 1111 DS0 1009 DS1 1009 [rrrrvdibszfafpic]
 AW 1000 BW 0000 CW 0000 DW 1009 PSW 1111001001000110

STATUS: N70136--Running in monitor____________________________________...R....
display registers

 run trace step display modify break end ---ETC--

Using the Extended Mode B-31

Stepping Through
the Program

You can step through sample program instructions while displaying
registers. For example, entering several step commands will give you a
display similar to the following.

step <RETURN>, <RETURN>, <RETURN>, ...

Registers

Next PS:PC 18005D@e
 PC 005D SP 7EF6 IX 0000 IY 0049 BP 7EFA
 PS 8000 SS 1111 DS0 1009 DS1 1009 [rrrrvdibszfafpic]
 AW 1000 BW 0000 CW 0000 DW 1009 PSW 1111001001000110

Step_PC 18005D@e NOP
Next PS:PC 18005E@e
 PC 005E SP 7EF6 IX 0000 IY 0049 BP 7EFA
 PS 8000 SS 1111 DS0 1009 DS1 1009 [rrrrvdibszfafpic]
 AW 1000 BW 0000 CW 0000 DW 1009 PSW 1111001001000110

Step_PC 18005E@e NOP
Next PS:PC 18005F@e
 PC 005F SP 7EF6 IX 0000 IY 0049 BP 7EFA
 PS 8000 SS 1111 DS0 1009 DS1 1009 [rrrrvdibszfafpic]
 AW 1000 BW 0000 CW 0000 DW 1009 PSW 1111001001000110

STATUS: N70136--Stepping complete_____________________________________...R....
step

 run trace step display modify break end ---ETC--

B-32 Using the Extended Mode

You can use the following address expression in the "step from"
command in extended mode.

<HP-OMF V33 symbol>

You can use the symbol which is generated by the HP 64875 V33/53
Extended Mode Locator just same as the
<TASK>:<SEGMENT>:<OFFSET> address expression below.

<TASK>:<SEGMENT>:<OFFSET>

This expression (TASK:0-0FF hex; SEGMENT:0-0FFFF hex;
OFFSET:0-0FFFF hex) is task, segment and offset portion of the
logical address. Refer to the HP 64875 NEC V33/53 Extended Mode
Locator:User’s Guide.

Note When you enter <HP-OMF V33 symbol> or
<TASK>:<SEGMENT>:<OFFSET> address expression in the "step
from" command, the <TASK> information entered is ignored by the
emulation system.

When you enter the "step from" command in "running in monitor"
status, the <TASK> which is active just before entering the monitor is
used.
In "running user program" status, the current working <TASK> is used.

fcode p <20-bit address>

This expression (0-0FFFFF hex) with "fcode p" is a physical address in
the 70136 address range. The emulation system converts this address
to a <SEGMENT>:<OFFSET> address as specified by the "Select
Algorithm for physical run addresses" configuration option in
"Configuring the Emulator" chapter.

Using the Extended Mode B-33

fcode none <20-bit address>

This expression (0-0FFFFF hex) with "fcode none" is a physical
address in the 70136 address range. The emulation system converts
this address to a <SEGMENT>:<OFFSET> address as specified by the
"Select Algorithm for physical run addresses" configuration option in
"Configuring the Emulator" chapter.

<SEGMENT>:<OFFSET>

This expression (SEGMENT:0-0FFFF hex; OFFSET:0-0FFFF hex) is
the segment and offset portion of the logical address.

Note There are a few cases in which the emulator can not step.
Step command is not accepted between each of the following
instructions and the next instruction.

1) Manipulation instructions for sreg:
 MOV sreg,reg16; MOV sreg,mem16; POP sreg.

2) Prefix instructions:
 PS:, SS:, DS0:, DS1:,
 REPC, REPNC, REP, REPE, REPZ, REPNE, REPNZ.

3) EI, RETI, DI, BUSLOCK.

Continue user program execution with the "run" command.

run <RETURN>

B-34 Using the Extended Mode

Using the Analyzer HP 64700 emulators contain an emulation analyzer. The emulation
analyzer monitors the internal emulation lines (address, data, and
status). Optionally, you may have an additional 16 trace signals which
monitor external input lines. The analyzer collects data at each pulse
of a clock signal, and saves the data (a trace state) if it meets a "storage
qualification" condition.

Specifying a Simple
Trigger

Suppose you want to look at the execution of the sample program after
the address of the first instruction in the Write_Msg function in file
cmd_rds.c in task cmd_rds. To trigger on this address, enter:

trace about address
cmd_rds.cmd_rds.Write_Msg <RETURN>

or

trace about address Write_Msg <RETURN>

The second example will work if the current working symbol is
"cmd_rds(task).cmd_rds(module)".

The message "Emulation trace started" will appear on the status line.
Now, modify the command input byte to "A" with the following
command.

modify memory Cmd_Input string to ’A’
<RETURN>

The status line now shows "Emulation trace complete".

Using the Extended Mode B-35

You can use the following address expression in the "trace" command
in extended mode.

<HP-OMF V33 symbol>

You can use the symbol which is generated by the HP 64875 V33/53
Extended Mode Locator just same as the
<TASK>:<SEGMENT>:<OFFSET> address expression below.

<TASK>:<SEGMENT>:<OFFSET>

This expression (TASK:0-0FF hex; SEGMENT:0-0FFFF hex;
OFFSET:0-0FFFF hex) is task, segment and offset portion of the
logical address. Refer to the HP 64875 NEC V33/53 Extended Mode
Locator:User’s Guide.

<24-bit address>

This expression (0-0FFFFFF hex) is a extended address in the 70136
address range.

B-36 Using the Extended Mode

Displaying the Trace To display the trace, enter:

display trace <RETURN>

Line 0 (labeled "about") in the trace list above shows the state which
triggered the analyzer. The trigger state is always on line 0.

If there is data that does not appear on the screen, you can use <CTRL>
f and <CTRL> g to roll the display left and right. The trace labels,
shown on the second line of the display, are described earlier in this
section.

To display the remaining lines of the trace, press the <PGDN> or
<NEXT> key.

Trace List Offset=0
Label: Address Data Opcode or Status w/ Source Lines time count
Base: symbols hex mnemonic w/symbols relative
-007 B.Block_1+000009 8000 PUSH DW 80. nS
-006 B.Block_1+000010 C483 C483 prefetch 120 nS
-005 u|cmd_rds+007EE8 1009 1009 memory write 160 nS
-004 B.Block_1+00000A 1009 PUSH AW 80. nS
-003 u|cmd_rds+007EE6 0029 0029 memory write 240 nS
-002 B.Block_1+00000B 0029 CALL FAR PTR 80000 80. nS
-001 B.Block_1+000012 EB04 EB04 prefetch 40. nS
about cmd_r._Write_Msg 04C8 04C8 prefetch 200 nS
+001 Write_Msg+000002 0000 0000 prefetch 240 nS
+002 u|cmd_rds+007EE4 8000 8000 memory write 280 nS
+003 u|cmd_rds+007EE2 009E 009E memory write 240 nS
 ##########.../emul/hp64756/ext_mode/cmd_rds.c - line 1 thru 5 ####
 volatile char Cmd_Input;
 char Msg_Dest[0x20];

STATUS: N70136--Running user program Emulation trace complete______...R....
display trace

 run trace step display modify break end ---ETC--

Using the Extended Mode B-37

Storing Memory
Contents to an
Absolute File

The "Getting Started" chapter shows you how to load absolute files
into emulation or target system memory. You can also store emulation
or target system memory to an absolute file with the following
command.

store memory cmd_rds.cmd_rds.main thru +0ffh
to <absfile> <RETURN>

The command above causes the contents of the memory range from
function main in file cmd_rds.c in task cmd_rds (100 hex) to be stored
in the absolute file "absfile.X". Notice that the ".X" extension is
appended to the specified filename.

Note When you reload the absolute file made by "store memory" command
with following address expressions, you should set up the same value
to page registers
(PGR 1 - PGR 64) that you enter the "store memory" command.
Otherwise, the memory image is not same as when you enter the "store
memory" command.

You also should add the "fcode p" option to reload the absolute file.

fcode none <20-bit address>
fcode p <20-bit address>
<SEGMENT>:<OFFSET>

B-38 Using the Extended Mode

Simulated I/O
Configuration in
the Extended
Mode

When you use the simulated I/O feature in the extended mode, care
should be taken to answer the simulated I/O configuration questions in
"modify configuration" command.

When you set the simulated I/O Control Address, you should add the
<TASK> information.

For example, The symbol "SIMIO_CA_ONE" is the default symbol
associated with the first simulated I/O Control Address.

Simio control address 1? SIMIO_CA_ONE

If the symbol "SIMIO_CA_ONE" belongs the task <task1>, you
should modify the simulated I/O Control Address as follows.

Simio control address 1? task1.SIMIO_CA_ONE

Refer to the Simulated I/O reference manual.

Using the Extended Mode B-39

Notes

B-40 Using the Extended Mode

Index

A absolute files
loading, 2-11, B-7
storing, 5-9, B-38

Address expression
extended mode, B-17

algorithm, cur segment, 4-15
algorithm, max segment, 4-15
algorithm, min segment, 4-15
analyzer

configuring the external, 4-26
features of, 1-4
sequencing, 5-8
status qualifiers, 2-33

analyzer, using the, 2-28, B-35
apapter

PGA to QFP package of the uPD70236 and uPD70236, 1-3
PLCC to QFP package of the uPD70136, 1-3

assemblers, 4-11
assembling foreground monitor, A-4

B background, 1-6, 4-7
background cycles

tracing, 4-24
background monitor, 4-7 - 4-8, A-2

location, 4-8
pin state, 3-12, 3-14
things to be aware of, 4-8

breakpoint interrupt instruction
software breakpoints (70136), 2-18

breaks
break command, 2-24, B-30
guarded memory accesses, 4-11
software breakpoints, 2-18, B-21
write to ROM, 4-23

BRKXA and RETXA instructions, 1-8
BS8/BS16 input

Index-1

 emulation memory, 4-19
 I/O accesses, 4-12, 4-19
 memory accesses, 4-12
 target memory, 4-19

Bus size
map command, 4-12

bus status line (70136 emulator)
 driven on the background cycle, 4-17

bus status line (70236 emulator)
 driven on the background cycle, 4-18

C caution statements
change page registers after software breakpoints defined, 2-18, B-21
real-time dependent target system circuitry, 4-6
software breakpoint cmds. while running user code, 2-18

cautions
installing the target system probe, 3-2

characterization of memory, 4-11
clobal symbol, 2-15
clock source

external, 3-10, 4-4
in-circuit, 4-4
internal, 3-10, 4-4

comparison of foreground/background monitors, A-1
compress mode,trace display, 2-32
configuration

example of using foreground monitor, A-4
for running example program, 2-8

configuration options
 enable internal DMA during background operation (70236

emulator only), 4-22
 wait states for internal DMA cycles (70236 emulator only), 4-22
accept target NMI, 4-13
background cycles to the target system (70136 emulator), 4-17
background cycles to the target system (70236 emulator), 4-18
background monitor location, 4-8
break on reading page register, 4-20
break processor on write to ROM, 4-23
emulation memory bus sizing, 4-19
enable READY input, 4-14
foreground monitor location, 4-9
honor target reset, 4-13

2-Index

in-circuit, 3-10
monitor filename, 4-10
monitor type, 4-6
respond to target HLDRQ during background operation (70236

emulator only), 4-22
segment algorithm, 4-15
select FPU type for disassembly, 4-21
select the AEX signal level in background, 4-21
target memory and I/O access, 4-16
target memory bus sizing, 4-19
trace background/foreground operation, 4-24
trace dummy cycles during HALT acknowledge (70236 emulator

only), 4-25
trace internal DMA cycles (70236 emulator only), 4-24
trace refresh cycles (70236 emulator only), 4-25

coordinated measurements, 4-26, 5-9
coprocessor

access emulation memory, 3-10
copy memory, 5-8
coverage analysis, 5-8
cur segment algorithm, 4-15

D device table file, 2-6
display command

memory mnemonic, 2-15
memory mnemonic with symbols, 2-16
registers, 2-25, B-31
symbols, 2-12, B-11
trace, 2-29, B-37
with source line, 2-17

DMA
external, 4-11

DMA (70136), 1-7

E emul700, command to enter the Softkey Interface, 2-6, 2-36
emulation analyzer, 1-4
emulation memory

access by uPD72291 coprocessor, 3-10
loading absolute files, 2-11
note on target accesses, 4-11
RAM and ROM characterization, 4-11
size of, 4-10

Index-3

emulation monitor
foreground or background, 1-6

emulator
before using, 2-2
before using the extended mode, B-2
configuration, 4-1
configure the emulator for example, 2-8
device table file, 2-6
feature list, 1-3
prerequisites, 2-2, B-2
purpose of, 1-1
running from target reset, 3-10 - 3-11
supported microprocessor package, 1-3

emulator configuration
break processor on write to ROM, 4-23
clock selection, 4-4
for example, 2-8
loading, 4-27
monitor entry after, 4-5
restrict to real-time runs, 4-5
saving, 4-26
trace background/foreground operation, 4-24
trace dummy cycles during HALT acknowledge (70236 emulator

only), 4-25
trace internal DMA cycles (70236 emulator only), 4-24
trace refresh cycles (70236 emulator only), 4-25

Emulator features
emulation memory, 1-4

emulator probe
installing, 3-2

END assembler directive (pseudo instruction), 2-20, B-25
end command, 2-35, 4-27
Evalution Chip, 1-8
exit, Softkey Interface, 2-35
external analyzer

configuration, 4-26
external clock source, 4-4

F file extensions
.EA and .EB, configuration files, 4-27

files
cmd_rds.A, 2-3

4-Index

cmd_rds.L, 2-3
foreground, 1-6, 4-7
foreground monitor, 4-7, 4-9, A-2

assembling/linking, A-4
configuration for sample program, A-4
example of using, A-3
location, 4-9
location of shipped files, A-1
monitor program, 4-10
relocating, A-3
single-step processor, A-11
things to be aware of, 4-10
transition from monitor to user program, A-9
transition from reset to break, A-6
transition from user program to break, A-10
using the, A-1

foreground operation, tracing, 4-24

G getting started, 2-1
global symbols

displaying, 2-12, B-11
guarded memory accesses, 4-11

H halt instructions, 4-7
hardware breakpoints, 5-7
help

on-line, 2-9
pod command information, 2-10
softkey driven information, 2-9

HP-OMF V33 format files, B-8

I in-circuit configuration options, 3-10
in-circuit emulation, 3-1
installation, 2-2

software, 2-2
interactive measurements, 4-26
internal clock source, 4-4
internal I/O register access, 1-7
internal I/O registers

display, 1-7
modify, 1-7

interrupt
accepting NMI from target system, 4-13

Index-5

from target system, 3-10
from target system (70136), 1-7
from target system (70236), 1-7
while stepping, 1-7

L line number symbols, B-15
linkers, 4-11
linking foreground monitor, A-4
load map, 4-11
loading absolute files, 2-11, B-7
loading emulator configurations, 4-27
local symbols

displaying, 2-13, B-12
location address

 foreground monitor, 4-10, A-4
locked, end command option, 2-36
logical run address, conversion from physical address, 4-15

M Map command
 data bus size, 4-12

mapping memory, 4-10
max segment algorithm, 4-15
measurement system, 2-36

creating, 2-5
memory

characterization, 4-11
copying, 5-8
display, B-19
mapping, 4-10
mnemonic display, 2-15
mnemonic display with symbols, 2-16
modifying, 2-23, B-28
searching for strings or expressions, 5-8
with source line, 2-17

microprocessor package, 1-3
microprocessor socket

 for QFP package of uPD70136, 1-3
 for QFP package of uPD70236 and uPD70236, 1-3

min segment algorithm, 4-15
mnemonic memory display, 2-15
modify command

configuration, 4-1

6-Index

memory, 2-23, B-28
software breakpoints set, 2-19, B-22

module, 2-36
module, emulation, 2-6
monitor

background, 4-7 - 4-8, A-2
background monitor location, 4-8
breaking into, 2-24, B-30
comparison of foreground/background, A-1
description, 4-6
foreground, 4-7, 4-9, A-2
foreground monitor file, 4-10
foreground monitor location, 4-9
selecting entry after configuration, 4-5
using the foreground monitor, A-1

N nosymbols, 2-12, B-11
note

PC relative addressing in disassemble list, 2-31
pod command from keyboard, 2-10
run address not allowed over 1M hex, 2-21
step address not allowed over 1M hex, 2-26

notes
break to read page registers, 4-20
coordinated measurements require background. monitor, 4-9
mapper terms deleted when monitor type is changed, 4-7
pod commands that should not be executed, 5-9
selecting internal clock forces reset, 4-4
software breakpoints not allowed in target ROM, 2-19
software breakpoints only at opcode addresses, 2-18
step not accepted, 2-26, B-34
target accesses to emulation memory, 4-11
use the appropriate foreground monitor program, A-1
write to ROM analyzer status, 4-23

O OMF-86 absolute file format, 2-11
on-line help, 2-9

P page register access
using register command, 2-25, B-31

PATH, HP-UX environment variable, 2-5 - 2-6
physical run address, conversion to logical run address, 4-15
Pin guard

Index-7

target system probe, 3-2
pmon, User Interface Software, 2-36
pod_command, 2-10

features available with, 5-8
help information, 2-10

prerequisites for using the emulator, 2-2
prerequisites for using the extended mode, B-2
program counter

mnemonic memory display, 2-21, B-26

R RAM, mapping emulation or target, 4-11
READY signal, 4-14
READY signals on accesses to emulation memory, 4-11
real-time execution

restricting the emulator to, 4-5
register commands, 1-5
registers

classes (70136 emulator), 5-2
classes (70236 emulator), 5-3
display/modify, 2-25, B-31
names (70136 emulator), 5-2
names (70236 emulator), 5-3

release_system
end command option, 2-35, 4-26 - 4-27

relocatable files, 4-11
relocating foreground monitor, A-3
reset (emulator)

running from target reset, 2-21, 3-11
reset (reset emulator) command, 2-35
RESET signal, 3-10, 4-13
restrict to real-time runs

emulator configuration, 4-5
permissible commands, 4-5
target system dependency, 4-6

ROM
mapping emulation or target, 4-11
writes to, 4-11

run address, conversion from physical address, 4-15
run command, 2-20, B-24
run from target reset, 3-10 - 3-11, 4-13

8-Index

S sample program
description, 2-3, B-2

saving the emulator configuration, 4-26
sequencer, analyzer, 5-8
softkey driven help information, 2-9
Softkey Interface

entering, 2-5
exiting, 2-35
on-line help, 2-9

software breakpoint
stepping, 1-8

software breakpoints, 2-18, B-21
enabling/disabling, 2-19, B-21
setting, 2-19, B-22

software installation, 2-2
source lines

displaying, 2-14
SRU (Symbol Retrieval Utility), B-8
ssimilated I/O, 4-26
stacks

using the foreground monitor, 4-10
status qualifiers, 2-33
step command, 2-22, 2-26, B-27, B-32
Stepping

at software breakpoint, 1-8
BRKXA and RETXA instructions, 1-8

stepping failed, 1-7 - 1-8
string delimiters, 2-10
symbols

displaying, 2-12, B-11
hierarchy, B-8

synchronized measurement, A-12
system overview, 2-2

T target memory
loading absolute files, 2-11
RAM and ROM characterization, 4-11

target reset
running from, 3-11

target reset, running from, 3-10
target system

dependency on executing code, 4-6

Index-9

interface, 3-16, 3-19
Target system probe

cautions for installation, 3-2
pin guard, 3-2

tasks (HP-OMF V33 file format), B-8
terminal interface, 2-10, 5-8
Trace list

extended address mode, 2-30
normal address mode, 2-30
PC relative addressing in disassemble list, 1-8

trace, displaying the, 2-29, B-37
trace, displaying with time count absolute, 2-31
trace, reducing the trace depth, 2-33
trace,displaying with compress mode, 2-32
tracing background operation, 4-24
tracing dummy cycles during HALT acknowledge (70236
emulator), 4-25
tracing internal DMA cycles (70236 emulator only), 4-24
tracing refresh cycles (70236 emulator only), 4-25
transfer address, running from, 2-20, B-25
trigger state, 2-29, B-37
trigger, specifying, 2-28, B-35

U UEE_BRK_FLAG, foreground monitor label, A-11
undefined software breakpoint, 2-19
user (target) memory

 loading absolute files, 2-11
using the emulator, 5-1
using the extended mode, B-1

W wait states, allowing the target system to insert, 4-14
window systems, 2-36
write to ROM break, 4-23

10-Index

	Using this Manual
	Contents
	Introduction to the 70136 Emulator
	Getting Started
	In-Circuit Emulation
	Configuring the Emulator
	Using the Emulator
	Using the Foreground Monitor
	Using the Extended Mode
	Index

