
User’s Guide

Emulation-Bus Analyzer
with deep trace memory
(HP 64794)

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection
with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1993 Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the prior
written consent of Hewlett-Packard Company. The information contained in
this document is subject to change without notice.

HP is a trademark of Hewlett-Packard Company.
UNIX is a registered trademark of UNIX System Laboratories Inc. in the
U.S.A. and other countries.
SunOS, SPARCsystem, Open Windows, and Sun View are trademarks of Sun
Microsystems, Inc.
Microtec is a registered trademark of Microtec Research, Inc.
TORX is a registered trademark of the Camcar Division of Textron, Inc.

Hewlett-Packard Company
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by the
U.S. Government is subject to restrictions as set forth in subparagraph (c) (1)
(ii) of the Rights in Technical Data and Computer Software Clause in DFARS
252.227-7013. Hewlett-Packard Company, 3000 Hanover Street, Palo Alto,
CA 94304 U.S.A. Rights for non-DOD U.S. Government Departments and
Agencies are as set forth in FAR 52.227-19 (c) (1,2).

ii

Printing History

New editions are complete revisions of the manual.

A software code may be printed before the date below; this indicates the
version level of the software product at the time the manual was issued. Many
product updates and fixes do not require manual changes, and manual
corrections may be done without accompanying product changes. Therefore,
do not expect a one-to-one correspondence between product updates and
manual revisions.

Safety information and Certification and Warranty

Safety information and certification and warranty information can be found at
the end of this manual on the pages before the back cover.

Edition 1 64794-97000 June 1993

iii

In This Book

This manual documents the HP 64794 Emulation-Bus Analyzer with deep
trace memory. It supplements the manuals you received with your
emulator/analyzer product. Use those manuals for operating and service of
your emulator/analyzer product, except as noted in this manual. This manual
contains:

Chapter 1 presents an overview of the Emulation-Bus Analyzer with deep
trace memory and shows you differences between it and the Emulation-Bus
Analyzer with 1K trace memory it is designed to replace.

Chapter 2 discusses tasks that are available to you when using the
Emulation-Bus Analyzer with deep trace memory. These tasks are not
available when using the Emulation-Bus Analyzer with 1K trace memory it
replaces. Tasks that can be performed the same in both analyzers are not
described in this manual.

Chapter 3 discusses the differences between the interface of the
Emulation-Bus Analyzer with deep trace memory and the interface of the
Emulation-Bus Analyzer with 1K trace memory that is described in the
emulator/analyzer manual(s) you received from Hewlett-Packard.

Chapter 4 discusses two concepts that will help you understand functions of
the Emulation-Bus Analyzer with deep trace memory: trace memory depth,
and operation of the trace tag counter.

Chapter 5 discusses error and status messages that you may see when using the
Emulation-Bus Analyzer with deep trace memory.

Chapter 6 shows how to install and service the Emulation-Bus Analyzer with
deep trace memory.

In this manual, the HP 64794 Emulation-Bus Analyzer with deep trace
memory is called the deep analyzer. The HP 64703, HP 64704, and HP 64706
Emulation-Bus Analyzers with 1K trace memories are called the 1K analyzer.

iv

Contents

1 Deep Analyzer, at a glance

Deep Analyzer - at a glance 2
Software compatibility 4
Compatibility with the HP64700 Series Emulation System firmware 4
Compatibility with the hosted user interface software 5
Overview of differences between the deep analyzer and the 1K analyzer 7
Compatible mode vs deep mode 9

2 Unique Deep Analyzer Tasks

Tasks that must be performed in the workstation interface 13
To set trace memory depth to be unloaded in the deep analyzer 14
To format the trace list display 16

Example tasks you may wish to perform in the workstation
interface 18
To capture a continuous stream of program execution no matter how large
your program 19

Tasks that must be performed in the terminal interface 22
To set trace memory depth in the deep analyzer 23
To display the trace list 24

v

Example tasks you may wish to perform in the terminal
interface 25
To prevent storage of sequencer-advance states in the trace memory 27
To specify trace start with a sequencer term other then term one active 28
To set up the emulation-bus analyzer so its counts are enabled by an external
instrument 29
To break the emulator to its monitor after the emulation-bus analyzer
completes a trace 30
To trigger one emulation-bus analyzer from another emulation-bus
analyzer 31

3 Interfaces of the Deep Analyzer

Graphical User Interface and Softkey User Interface
Differences 35
New commands 35
Trace list differences 35
Negative time or state counts in trace lists 36

PC Interface Differences 39

Terminal Interface Differences 40
Exclamation mark "!" in count column of PC interface and terminal interface
trace lists 41
Counter overflow indication not seen in trace list 41
Negative time or state counts in trace lists 41
ta (trace activity) 42
tcf (trace configuration) 43
tck (trace clock) 45
tcq (trace tag counter) 47
tf (trace format) 48
tgout (trigger output) 49
tsck (trace slave clocks) 54
tsq (trace sequencer) 55

Contents

vi

4 Concepts

Trace depths of the deep analyzer 59
Unload depth 59
Capture depth 59
Using unload depth in a workstation interface 60
Using capture depth in a terminal interface 61

Trace tag counter of the deep analyzer 63
How the counter works 63
Negative time or state counts in workstation trace lists 64
Exclamation marks "!" in count columns of PC interface and terminal interface
trace lists 68
Counter overflow indication not seen in trace list 68
Negative time or state counts in terminal interface trace lists 69

5 Error and Status Messages

Error and Status Messages 74

IL# in trace list Mnemonic column 76

6 Installation and Service

Installing hardware 79
Equipment supplied 79
Equipment and tools needed 79
Installation overview 79
Antistatic precautions 80
Checking hardware installation 80
Service information 80
Step 1. Install optional memory modules, if desired 81
Step 2. Install the deep analyzer card in the HP 64700A card cage 83
Step 3. Turn on power 91
Verifying the installation 92
What is pv doing to the analyzer? 93
Troubleshooting 93
Parts list 94
What is an exchange part? 94

Contents

vii

Glossary

Index

Contents

viii

1

Deep Analyzer, at a glance

1

Deep Analyzer - at a glance

 Sample terminal interface trace list

U>tcf -deep
U>tl -d -e 5320..5328
 Line addr,H 68040 Mnemonic count,R
 ------- -------- -- -------------
 5320 000008f8 BLE.B $000008E4 -------------
 =000008fa MOVEQ #$00000050,D0
 5321 000008fc CMP.L D2,D0 0.08uS
 =000008fe BLS.B $000008E4
 5322 000008e8 TST.B ($00,A2,D2.L) 0.08uS
 5323 000008ec BEQ.B $000008F6 0.08uS
 =000008ee ADDQ.L #1,D2
 5324 000008f0 MOVEQ #$00000050,D0 0.14uS
 =000008f2 CMP.L D0,D2
 5325 _sysbuf $00------ log sdata byte read 0.08uS
 5326 000008f4 BCS.B $000008E8 0.08uS
 =000008f6 TST.L D2
 5327 000008f0 MOVEQ #$00000050,D0 0.12uS
 =000008f2 CMP.L D0,D2
 5328 000008f4 BCS.B $000008E8 0.08uS
 =000008f6 TST.L D2

Chapter 1: Deep Analyzer, at a glance

2

This chapter describes the HP 64794 Emulation-Bus Analyzer with deep trace
memory, and lists differences between it and the HP 64703, HP 64704, and
HP 64706 Emulation-Bus Analyzers with 1K trace memories it is designed to
replace.

Note In this manual, the HP 64794 Emulation-Bus Analyzer with deep trace
memory will be called the deep analyzer. The HP 64703, HP 64704, and
HP 64706 Emulation-Bus Analyzers with 1K trace memories will be referred
to as the 1K analyzer.

The following information is covered in this chapter:

• Software versions required for compatibility with the deep analyzer.

• General discussion of differences between the deep analyzer and the 1K
analyzer it replaces.

• Discussion of the purpose and use of the compatible mode and the deep
mode of the deep analyzer.

Chapter 1: Deep Analyzer, at a glance

3

Software compatibility

To use the deep analyzer with an HP 64700 Series Emulation System, the
firmware of the emulation system and the software of the hosted user interface
(if used) must be compatible with the deep analyzer. If you are using a hosted
interface that is not compatible with the deep analyzer, the deep analyzer will
automatically confine its operation to the specifications of the 1K analyzer.
Refer to "Compatible mode vs deep mode" later in this chapter. The following
paragraphs show you how to find your software versions and determine
whether or not they are compatible with the deep analyzer.

Compatibility with the HP64700 Series Emulation System
firmware

The HP 64700 emulation system is composed of several subsystems, each of
which contains its own firmware and unique software version. The way to see
the firmware versions of these subsystems depends on the interface you are
using. The method to use in each interface is described below:

• Terminal Interface: Type ver beside your system prompt.

• Softkey User Interface: Enter the following commands:

display pod_command
pod_command "ver"

• Graphical User Interface: Choose Settings→Pod Command Keyboard.
Move the cursor to the command line and type ver. Then press the
suspend softkey.

• PC Interface: Select System Terminal. Type ver. Then press the Ctr l-\
keyboard keys.

• Real-Time C Debugger Interface (for PC): Choose the Help→About
Debugger/Emulator (ALT,H,A) command.

To use the deep analyzer in an HP 64700 series emulation system, you must
have system firmware version A.03.00, or higher. Any version of the emulator
or LAN subsystem firmware may be used with the deep analyzer. (Future
versions of the emulation subsystem firmware may automatically switch on
features of the deep analyzer that are not available in the 1K analyzer.) The
deep analyzer contains its own firmware; therefore, it is always compatible.

Chapter 1: Deep Analyzer, at a glance
Software compatibility

4

Compatibility with the hosted user interface software

Hosted user interfaces for emulation subsystems are available for execution on
workstations and PCs. Each hosted user interface has its own software
version, which is displayed when the interface first appears on screen.

The following table lists the hosted user interfaces of the emulator/analyzer
and shows versions of interface software you must use in order to obtain the
full features of the deep analyzer. (All software versions of the terminal
interface allow use of the full features of the deep analyzer.)

Emulator/analyzer interface Minimum software version required

Workstation interfaces:
 Softkey User Interface
 Graphical User Interface
PC interfaces:
 PC interface (older interface to PC)

 Real-Time C Debugger interface

A.05.20 or higher.
C.05.20 or higher.

not supported in any software version.
 (However, the deep analyzer can replace the
 1K analyzer to provide improved counting
 speed and resolution with no tradeoffs).
all software versions.

-> ver

 Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under copyright laws.

HP64700 Series Emulation System
 Version: A.03.00 13Dec90

HP64742C/D Motorola 68000 emulator
 Version: A.00.09 16Mar92
 Speed: 12.5 MHz
 Memory: 510 KBytes

HP64740 Compatible (PPN: 64794) Deep Emulation Analyzer
 Version: A.03.00 27May93
 PC Board: 794-01-A
 Depth: 80ch X 1K states selected, 80ch X 8K states available
 Bank 1: not loaded
 Bank 2: not loaded
 Bank 3: not loaded
 Bank 4: not loaded

HP64701A LAN Interface
 Version: A.00.05 18Mar93

->

← This firmware version number must be A.03.00 or
 later version number. Ignore the other product
 firmware versions in this list.

Chapter 1: Deep Analyzer, at a glance
Software compatibility

5

Workstation interfaces

Workstation interfaces for the most popular microprocessor emulators have
been updated to support deep analyzer capabilities. These workstation
interfaces have software version C.05.20 or higher. Older software versions of
workstation interfaces will work with the deep analyzer but will limit the depth
to 512/1K states (refer to compatible mode, discussed later in this chapter).

You can check the software version number of your Graphical User Interface
or Softkey User Interface in two ways:

• The software version number of your interface is shown in the first display
after you turn power on.

• If you are working in the Graphical User Interface, choose
Help→Version... The software version number will be shown when the
new display window opens.

PC interfaces

The PC Interface will not be updated for the deep analyzer; therefore, it only
provides a 1K trace depth. However, the deep analyzer can replace the 1K
analyzer when you use the PC Interface, and it will provide improved counting
and resolution.

A new version of the PC interface (soon to be released) is called the
Real-Time C Debugger Interface. It will replace the PC Interface. The first
release of the Real-Time C Debugger Interface will support deep analyzer
capabilities.

 HPB3090-19307 C.05.20 01Jun93
 68040 GRAPHICAL USER INTERFACE

 A Hewlett-Packard Software Product
 Copyright Hewlett-Packard Co. 1992

All Rights Reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under copyright laws.

 RESTRICTED RIGHTS LEGEND

Use , duplication , or disclosure by the Government is subject to
restrictions as set forth in subparagraph (c) (1) (II) of the Rights
in Technical Data and Computer Software clause at DFARS 52.227-7013.
HEWLETT-PACKARD Company, 3000 Hanover St. , Palo Alto, CA 94304-1181

← This software version
 number must be C.05.20 or
 later version number.

Chapter 1: Deep Analyzer, at a glance
Software compatibility

6

Overview of differences between the deep
analyzer and the 1K analyzer

The deep analyzer has a width of 80 data channels. It can be used to replace
1K analyzers having 48 channels, 64 channels, and 80 channels. Some
versions of the 1K analyzer also offered external analysis channels. The deep
analyzer does not offer external analysis channels.

Differences between the deep analyzer and the 1K analyzer consist of the
depth of the trace memory, and counting capability at different analysis clock
rates. When using the 1K analyzer, the types of trace counting that can be
performed are limited by your analyzer clock rate. Counts of time and counts
of occurrences of selected states can only be made with clock rates below
specified speeds. Also, you must sacrifice trace memory depth when making
these counts. The deep analyzer can perform counts of time between trace
states, and counts of occurrences of selected states regardless of the emulator
clock speed, and with no sacrifice of trace memory depth. Specific differences
between the deep analyzer and the 1K analyzer are summarized in the table
below. Specifications not shown in the table are the same for the deep
analyzer and the 1K analyzer.

Specification Deep Analyzer 1K Analyzer

Trace Depth 8K base
Expandable to 64K or 256K
 using optional plug-in
 memory modules
Depth does not change when
 counting is used

1K without time or state count
512 with time or state count

Counting vs Analyzer Clock
Speed

Works at full speed with all
 supported emulators
There are no feature tradeoffs
 with analyzer clock speed

25 Mhz without time or state
 count
20 MHz with state count but
 without time count
16.66 MHz with time count or
 state count

Chapter 1: Deep Analyzer, at a glance
Overview of differences between the deep analyzer and the 1K analyzer

7

Specification Deep Analyzer 1K Analyzer

Time Count Resolution 20 nsec
Full resolution retained for up
 to 22.9 minutes
Resolution retained after 22.9
 minutes, but no indication
 is given for the number of
 times counter overflowed

40 nsec
If greater than 82 usec between
 stored states, resolution is
 reduced

Maximum State Count at full
Resolution

68,719,476,735 (236 -1) If greater than 2047 counts
 between stored states,
 resolution is reduced

Maximum Prestore Memory 1 prestore state per store state 2 prestore states per store state

Cross Trigger/Break Selections
Available using TRIG1/TRIG2

Drive Sources for
 TRIG1/TRIG2:
 - Trace Point
 - Trace Complete
 - N states before trace
 complete
 - Any resource or
 combination of resources
 (pattern, range or arm)
 or combination of
 resources and sequencer
 states.

Receive TRIG1/TRIG2

Drive sources for
 TRIG1/TRIG2:
 - Trace Point

Receive TRIG1/TRIG2

Analyzer Status Trace Activity command not
 implemented

Channel activity shows h, l, or t
 in response to terminal
 interface command "ta"

Firmware Upgrade
Requirements

Flash ROMs built in - no
 additional requirements

Requires additional Flash
 Board to upgrade firmware

Chapter 1: Deep Analyzer, at a glance
Overview of differences between the deep analyzer and the 1K analyzer

8

Compatible mode vs deep mode

The deep analyzer has a compatible mode and a deep mode. By default, the
deep analyzer is initialized in the compatible mode. When in the compatible
mode, the deep analyzer appears to be the 1K analyzer; it has the same trace
memory limitations as the 1K analyzer: 1024 states of maximum depth, and
512 states when making time or state counts. Some emulators have high level
interfaces that cannot work with an analyzer that has a trace memory depth
greater than 1K. Therefore, in order to be compatible with all of the emulator
interfaces that might use the deep analyzer, the compatible mode is the default
mode at power up.

If your Graphical User Interface or Softkey Interface can work with the full
memory depth of the deep analyzer, your system will automatically switch to
the deep mode during startup. All Real-Time C Debugger Interfaces switch to
the deep mode. If your emulator interface cannot work with the full memory
depth of the deep analyzer (refer to the paragraph titled "Software
Compatibility"), it will remain in the compatible mode; you will still be able to
use the counting abilities of the deep analyzer to make state and time counts
during measurements at full analysis speed.

Note that all emulator terminal interfaces can work with the full memory
depth of the deep analyzer. If your high-level interface is one that cannot
work with the full memory depth of the deep analyzer, and if you must make a
measurement that requires the depth of the deep analyzer, you can use the
terminal interface of your emulator/analyzer to make the measurement; then
switch back to your high-level interface after you have completed your
measurement. Make sure you return the analyzer to the compatible mode
before switching back to your high-level interface. The terminal interface
command that selects memory depth is tcf (trace configuration). Refer to
Chapter 2 of this manual for details of how to set memory depth in the
terminal interface.

Note that certain terminal interface commands can cause problems within the
high-level interface. The high-level interface may not know about
configuration changes made by using terminal interface commands. A
high-level interface command may default a setup you made through a
terminal interface command. For additional information, read the
"---WARNING---" statement that appears on screen when you first access the
the pod_command display for terminal interface commands.

Chapter 1: Deep Analyzer, at a glance
Compatible mode vs deep mode

9

The following table lists emulators whose workstation interfaces have been
enhanced to work with the greater trace memory depths of the deep analyzer
(refer to the paragraph titled "Software Compatibility"). If your emulator is
not listed in the table below, it may still work with the deep analyzer, but you
may have to accept the limitation of 1024 states of trace memory depth, and
the memory depth tradeoffs when using its high-level interface.

Emulators That Can Use The Full Power Of The Deep Analyzer

HP Model No.
For Motorola
Processors HP Model No. For Intel Processors

64742

64748
64747
64783
64749
64746
64751

68000
68EC000
68HC001
68020/EC020
68030/EC030
68040/EC040/LC040
68331/332
68302
68340

64762/64763

64764/64765

64767

8086/88
80C86/C88
80186/188
80C186/C188
80C186EA/C188EA
80C186EB/C188EB
80C186XL/C188XL

At the time this manual was printed, the following emulators were not able to
work with the deep analyzer:

• HP 64774, 29000 Emulator - because of power supply limitations in the
card cage containing the emulator.

• HP 64760, 80960K Emulator - because it uses a special analyzer, not the
1K analyzer that is replaced by the deep analyzer.

• HP 64759, 78K2 Emulator - because this emulator uses special clocking
hardware, which is available in the 1K analyzer, but not in the deep
analyzer.

Chapter 1: Deep Analyzer, at a glance
Compatible mode vs deep mode

10

2

Unique Deep Analyzer Tasks

11

This chapter discusses tasks that are available to you when using the deep
analyzer. These tasks are not available when using the 1K analyzer. Types of
tasks in this chapter include:

• Tasks you need to do when using the deep analyzer that you do not need
to do when using the 1K analyzer.

• Example measurements you may wish to make with the deep analyzer that
are not possible with the 1K analyzer.

The example tasks described in this chapter are shown being performed in one
interface and not in the others. The reasons one interface was chosen and not
another to perform a task are:

• A workstation interface provides access to the host’s file system for storing
trace data.

• Certain cross-triggering and cross-arming features for coordinating
measurements between emulators and analyzers are only available in
commands of the terminal interface.

Note Tasks that can be performed in the 1K analyzer the same as in the deep
analyzer are not described in this chapter. Refer to the emulator/analyzer
manuals you received with your emulator.

Chapter 2: Unique Deep Analyzer Tasks

12

Tasks that must be performed in the
workstation interface

If you are using the Graphical User Interface or the Softkey User Interface,
you will need to perform the following tasks when using the deep analyzer:

• Setting the depth of the trace memory that will be unloaded after a
measurement.

• Setting the format for display of the trace list.

Chapter 2: Unique Deep Analyzer Tasks
Tasks that must be performed in the workstat ion interface

13

To set trace memory depth to be unloaded in the
deep analyzer

• Choose Trace→Display Options ..., and in the dialog box, enter the desired
< DEPTH> in the entry field beside Unload Depth. Then click OK or Apply.

• Using the command line, enter display trace depth < DEPTH>.

< DEPTH> is the portion of the trace memory that the deep analyzer will
unload for display or file transfer after capturing new trace data. You can
specify unload of any depth from 9 states to the maximum depth of the trace
memory of your deep analyzer. If you enter zero (0) as the unload
< DEPTH> , the analyzer will be set to unload its full depth.

The unload depth you specify will affect how quickly the analyzer responds to
a wait measurement_complete command. The analyzer detects measurement
complete after the trigger has been captured, the trace memory has been filled
to the unload depth, and the unload depth has been unloaded. Measurement
complete is also detected if the trace has been halted and all available data has
been unloaded.

You can respecify the unload depth after the trace is complete. For example,
you may have captured 256K states, but specified unload of only 8K states.
After viewing them, you may specify unload of 16K states. By specifying an
unload depth of 16K, the trace unload will be completed more quickly than if
you specified unload of the full 256K states. When you increase the unload
depth, the additional depth will be unloaded as long as a new trace has not
started.

Trace data is always unloaded around the trigger position. For example, if you
specified unload of 8K memory depth:

• If trigger is the first state in memory (trace after), the first 8K states in
memory will be unloaded.

• If trigger is the center state in memory (trace about), the 4K states before
trigger and the 4K states after trigger will be unloaded.

• If trigger is the last state in memory (trace before), the 8K states before
trigger will be unloaded.

Chapter 2: Unique Deep Analyzer Tasks
Tasks that must be performed in the workstat ion interface

14

Examples To unload the first 4K memory depth for display in your deep analyzer:

Choose Trace→Display Options ..., and in the dialog box, type 4096 in the
entry field beside Unload Depth. Then click OK or Apply.

On the command line, enter:

display trace depth 4096

To unload the full memory depth in your deep analyzer:

Choose Trace→Display Options ..., and in the dialog box, type either 0 or the
full memory depth in the entry field beside Unload Depth. Then click OK or
Apply.

On the command line, enter:

display trace depth 0 or <full memory depth>

Chapter 2: Unique Deep Analyzer Tasks
Tasks that must be performed in the workstat ion interface

15

To format the tr ace l ist display

• Choose Trace→Display Options ..., and in the dialog box, select the desired
format for the display of trace data beside Data Format. Mnemonic provides a
trace list that combines the information in the data and status fields into an
assembly language program listing. Absolute provides a trace list that shows
numerical values to represent the data and status fields in trace memory. Real
Time OS shows a trace list obtained from the HP Real Time Operating System
product, if it is installed. Note that some emulated processors do not supply
sufficient status to identify the start of an instruction. If your emulator is for
one of these processors, you must enter a separate command to tell the
analyzer where to begin trace disassembly: either use the disassemble from
option in the display trace popup menu, or enter a display trace
disassemble_from_line_number < NO.> command on the command line.
Also, you can move the cursor over the desired starting line in the trace list
and single-click the right mouse button.

• If you selected Data Format Absolute, select the desired type of status display
beside Status Format. Mnemonic obtains a mnemonic representation of the
value of the status bits. Hex shows the value of the status bits as a hexadecimal
number. Binary shows the values of the individual status bits as a binary
number.

• Select the Count Mode desired. Relative shows the change in the count of
time or states since the last displayed state in the trace list. Absolute shows
the total count of time or states since the trigger state. Refer to the concepts
chapter in this manual for details of counter overflow and how it affects the
information shown in relative and absolute counts.

• Select Dequeue Enable, if desired and available for your emulator. Dequeuing
a trace removes unexecuted prefetches from your trace list, and aligns
instructions with their related operand cycles on the display. An undequeued
trace list shows instructions and operand fetches in the order they occurred on
the processor’s buses.

• Select the desired Unload Depth. This is the depth of the trace memory that
will be unloaded for display and/or file transfer after trace data is captured.
Note that the entire trace memory will be used to store captured states

Chapter 2: Unique Deep Analyzer Tasks
Tasks that must be performed in the workstat ion interface

16

regardless of the Unload Depth you specify. Unload Depth is discussed in
detail in the concepts chapter in this manual.

• In the entry field beside Address Offset, enter the value to be subtracted from
the address and symbol/source line references of each instruction to yield the
address that is displayed. You can specify an offset value to cause the listed
addresses to match the addresses in compiler or assembler listings.

• Shift the display window to any desired location in the trace list by typing a
trace memory line number in the entry field beside Move to Line. The display
window will place the specified trace memory line number in the center of the
screen and show trace information before and after it.

Chapter 2: Unique Deep Analyzer Tasks
Tasks that must be performed in the workstat ion interface

17

Example tasks you may wish to
perform in the workstation interface

The example shown in this section uses commands in the Graphical User
Interface and commands in the terminal interface. The terminal interface
commands are accessed through the "pod_command" method available in the
Graphical User Interface and Softkey User Interface. The reason that the
workstation interface was chosen to perform this example task is that it
provides access to the file system for storing trace data.

The following task is described in this section:

• How to capture all of the execution of your target program in a file or
series of files.

Chapter 2: Unique Deep Analyzer Tasks
Example tasks you may wish to perform in the workstation interface

18

To capture a continuous stream of program
execution no matter how large your program

The following example shows you how to capture all of the execution of your
target program. You may wish to capture target program execution for
storage, for future reference, and/or for comparison with execution after
making program modifications. The execution of a typical target program will
require more memory space than is available in the trace memory of an
analyzer. This example shows you how to capture all of your target program
execution while excluding unwanted execution of the emulation monitor.

1 Choose Trace→Display Options ..., and in the dialog box, enter 0 or the total
depth of your deep analyzer trace memory in the entry field beside Unload
Depth. Then click OK or Apply. This sets unload depth to maximum.

2 For this measurement, the analyzer will drive trig1 and the emulator will
receive trig1 from the trigger bus inside the 64700 card cage. The trig1 signal
is used to cause the emulator to break to its monitor program shortly before
the trace memory is filled. This use of trig1 is not supported in workstation
interface commands. Therefore, terminal interface commands (accessible
through the pod command feature) must be used. Enter the following
commands:

Settings→Pod Command Keyboard
tgout trig1 -c < states before end of memory> (trigger output trig1 before
trace complete)
bc -e trig1 (break conditions enabled on trig1)
Click the suspend softkey

Note that "tgout trig1 -c < states...> " means generate trig1 as an output when
the state that is < states...> before the end of the trace memory is captured in
the trace memory; "bc -e trig1" means enable the emulator to break to its
monitor program when it receives trig1.

Select a value for < states before end of memory> that allows enough time
and/or memory space for the emulator to break to its monitor program before
the trace memory is filled. Otherwise, some of your program execution will
not be captured in the trace. Many states may be executed before the
emulation break occurs, depending on the state of the processor when the
trig1 signal arrives. Also, if your program executes critical routines in which

Chapter 2: Unique Deep Analyzer Tasks
Example tasks you may wish to perform in the workstation interface

19

interrupts are masked, the occurrence of trig1 may be ignored until the critical
routine is completed (when using a foreground monitor).

3 If you are using a foreground monitor, enter the following additional pod
commands to prevent the trace memory from capturing monitor execution.
The following example commands will obtain this result in some emulators:

Settings→Pod Command Keyboard
trng addr= < address range occupied by your monitor> (trigger on range
address = < address range>)
 where < address range> is expressed as < first addr> ..< last addr>
tsto !r (trace store not range)
Click the suspend softkey

Note that "trng addr= < addr> ..< addr> " means define an address range for
the analyzer; "tsto !r" means store all trace activity except activity occurring in
the defined address range.

4 Start the analyzer trace with the command, Trace→Again

5 Start your program running using Execution→Run→from() , from Transfer
Address, or from Reset, as appropriate.

The Trace→Again (or trace again) command starts the analyzer trace with the
most recent trace specifications (including the pod_command specifications
you entered). The trace command cannot be used by itself because it defaults
the "bc -e trig1", "trng addr= ...", and "tsto !r" specifications, returning them to
their default values before the trace begins.

You can see the progress of your trace with the command, Display→Status. A
line in the Trace Status listing will show how many states have been captured.

6 The notation "trig1 break" usually followed by "Emulation trace complete" will
appear on the status line. If "trig1 break" remains on the status line without
"Emulation trace complete", manually stop the trace with the command:

Trace→Stop

You must wait for the notation "trig1 break" and/or "Emulation trace
complete" to appear on the status line; this ensures the trace memory is filled
during the trace (except for the unfilled space you specified in Step 2 above).

Chapter 2: Unique Deep Analyzer Tasks
Example tasks you may wish to perform in the workstation interface

20

Note that when you set a delay specification using tgout -c or tgout -t (trigger
output delay before trace complete/after trigger), the trace will indicate
complete as soon as the analyzer has captured the state specified, even though
the entire trace memory has not been filled.

If the notation "trig1 break" remains on the status line without being replaced
by "Emulation trace complete", it indicates the trace memory is not completely
filled, and no more states are being captured.

7 Store the entire trace memory content in a file with a command like:

wait measurement_complete ; copy trace to < directory/filename>

The "wait" command is inserted ahead of the "copy" command to ensure that
the unload of trace data is complete before you try to store it. Without "wait",
you will get an ERROR message warning that the unload is still in process.
The < filename> is an ASCII filename for a binary file that can be viewed
using the load trace command.

8 Start a new trace with the command: trace again

9 Resume the program run from the point where it was interrupted when the
emulator broke to the monitor with the command: run

10 Wait until the notation "trig1 break" and/or "Emulation trace complete"
appears on the status line. Then store the new trace memory content in a new
file with commands like:

stop_trace
wait measurement_complete ; copy trace to < directory/filename+ 1>

Note that "filename+ 1" in the above command suggests use of consecutive
filenames to store your execution files, such as FILENAME1, FILENAME2,
etc.

Repeat steps 8 through 10 above until all program execution has been
captured. Your destination directory will have a set of files that, taken
together, contain all of your program execution. Note that if you did not
prevent capture of foreground monitor cycles in step 3 above, the last few
trace lines in each file may contain monitor cycles.

Chapter 2: Unique Deep Analyzer Tasks
Example tasks you may wish to perform in the workstation interface

21

Tasks that must be performed in the
terminal interface

If you are using the terminal interface, you will need to perform the following
tasks when using the deep analyzer:

• Setting the depth of the trace memory.

• Displaying the trace list.

Chapter 2: Unique Deep Analyzer Tasks
Tasks that must be performed in the terminal interface

22

To set trace memory depth in the deep analyzer

• Set the depth of the analyzer trace memory by typing tcf -deep < DEPTH>
(trace configure deep < DEPTH>).

< DEPTH> is the portion of the trace memory that the deep analyzer will use
to store captured data during a trace.
< DEPTH> can be any depth from 1 state to the maximum number of states
that can be stored in the trace memory of your deep analyzer.
Maximum trace memory depth can be obtained by omitting the < DEPTH>
parameter from your command, or by specifying < DEPTH> as 0.

The memory depth you specify will affect the analyzer response to a w -m (wait
for measurement complete) command. The analyzer detects measurement
complete after the trigger has been captured and the trace memory depth you
specify has been filled.

Examples To obtain a 4K memory depth in your deep analyzer, enter:

tcf -deep 4096

To obtain the full memory depth in your deep analyzer, enter:

tcf -deep <full memory depth available in your analyzer>

or

tcf -deep 0

or

tcf -deep

Entering tcf -deep 0 or tcf -deep allows you to achieve maximum trace memory
depth even if you are unsure of exactly how much depth is available on the
analyzer card.

Chapter 2: Unique Deep Analyzer Tasks
Tasks that must be performed in the terminal interface

23

To display the trace list

• Display the trace list using the default parameters by typing: tl

If the trigger has been captured in memory, the trace list can be displayed
while the trace is in progress. Otherwise, "** Trigger not in memory **" will
appear under the column headings in the trace list. The only way to see the
trace list before the trigger is captured is to halt the trace. Then the trace list
will show a history of states captured (if any), leading up to the point where
you halted the trace.

The trace list buffer is as deep as you set it. Refer to the paragraph titled, "To
set trace memory depth in the deep analyzer". You can selectively display
portions of the trace memory using the tl (trace list) command.

Examples To return to the top of the trace list and disassemble instructions, type:

U> tl -td

To vary the number of states displayed, type:

U> tl -td 5

To display the first 20 states, type

U> tl -td 20

To suppress display of the column headers, use the -h option:

U> tl -h

To align the instruction on trace list line number 38 with the operand cycles
on line number 47, enter the command:

U> tl -d -od 38 47

Note that the -d and -od options shown above are not used in all emulators.
Check the tl command in your emulator.

Chapter 2: Unique Deep Analyzer Tasks
Tasks that must be performed in the terminal interface

24

Example tasks you may wish to
perform in the terminal interface

Tasks you may wish to perform using terminal interface commands include:

• Setting up the emulation-bus analyzer to exclude sequencer-advance
states from the trace memory.

• Setting up the emulation-bus analyzer to begin its sequence on a term
other than term 1.

• Setting up the emulation-bus analyzer so that its counts are enabled by an
external instrument.

• Setting up your emulator to break to its monitor routine after the
emulation-bus analyzer completes a trace.

• Setting up the emulation-bus analyzer to identify the state it is presently
capturing as its trigger state when it receives a trigger-recognition signal
from another emulation-bus analyzer.

The last three examples in this section show measurement coordination
between the deep analyzer and other emulators and analyzers. The first
coordination example shows measurement functions of the deep analyzer
being enabled by an externally supplied "arm" signal. The remaining two
examples show coordination of measurements using trig1/trig2 on the trigger
bus inside the 64700 card cage. Execution in associated emulators and/or
measurements in other analyzers can be started or stopped by the deep
analyzer when it recognizes events during a measurement. The events include:

• The analyzer recognizes a state that meets its trigger specification.

• The analyzer captures a specified number of states after capturing its
trigger state.

• The analyzer completes its trace (capturing trigger plus filling trace
memory).

• The analyzer captures a state that is a specified number of states before its
trace memory is filled.

Chapter 2: Unique Deep Analyzer Tasks
Example tasks you may wish to perform in the terminal interface

25

• The analyzer recognizes an arbitrary event or set of events specified by the
user.

The cross-trigger and arming features listed above are not implemented
directly with commands available in workstation or PC interfaces (except for
generation of trig1/trig2 when the analyzer trigger is recognized). These
features can only be obtained by using commands in the terminal interface.
You can use the following methods to gain access to terminal interface
commands from within high-level interfaces:

• If using the Graphical User Interface or Softkey User Interface, use the
"pod command" method of accessing terminal interface commands.

• In a PC Interface, access the terminal interface through the System
Terminal command.

• In the Real-Time C Debugger Interface, use HP ARPA Services to select
TELNET.

After typing the terminal interface commands desired, you can return to your
high-level interface to continue your test procedure. Refer to the paragraph
titled "To capture a continuous stream of program execution no matter how
large your program" in the "Tasks that are performed more easily in the
Graphical User Interface and Softkey Interface" section of this chapter for an
example using terminal interface commands.

Note that the current capability of the softkey user interface is "break on
trigger". This sets up the analyzer to generate trig1 only when its trigger
specification is satisfied.

Chapter 2: Unique Deep Analyzer Tasks
Example tasks you may wish to perform in the terminal interface

26

To prevent storage of sequencer-advance states
in the trace memory

• Prevent storage of the states that cause the sequencer to advance from one
sequence state to another by typing: tsq -inc dis (trace sequencer "include"
disabled).

• Restore the default specification that causes the analyzer to store all
sequencer-advance states by typing: tsq -inc en (trace sequencer "include"
enabled)

The default setup causes the deep analyzer to store all states that advance the
sequencer from one sequence state to another. These sequence-advance states
are stored regardless of whether they are qualified by your store-qualifier
specification (tsto) or not. There may be times when you are using an
elaborate sequence to identify one or two trace lines that you want to capture
in memory. This selection allows you to prevent storage of the series of
sequence-advance states.

Chapter 2: Unique Deep Analyzer Tasks
Example tasks you may wish to perform in the terminal interface

27

To specify trace start with a sequencer term other
then term one active

• Specify any sequence term to be the first active term at trace start by typing:
tsq -init < TERM# > (trace seqencer initial term = < TERM# >)

Where < TERM# > is the sequence term you want to be the first active term
at trace start.

There may be times when you want an elaborate sequencer setup to begin with
a term other than term 1 as the first active term.

Chapter 2: Unique Deep Analyzer Tasks
Example tasks you may wish to perform in the terminal interface

28

To set up the emulation-bus analyzer so its
counts are enabled by an external instrument

1 Connect the rear panel BNC to deliver trig1 to the analyzer by typing:
bnct -d trig1 (BNC input drives trig1).

2 Set the emulation-bus analyzer to be armed when it receives trig1 by typing:
tarm = trig1 (trace analyzer arm signal supplied on trig1). The first time that
the trig1 signal goes from false to true after the trace is started, the arm signal
will switch to true and remain true for the rest of the measurement.

3 Set the emulation-bus analyzer to perform its count only when it is armed by
typing: tcq arm (trace tag counter armed (enabled) by the arm signal).

You can connect a logic analyzer to the rear panel BNC and give it the power
to control when the emulation-bus analyzer counts states. Perhaps you would
like to have the emulation-bus analyzer count the number of calls to a
particular routine, but only after execution of an external event. You could set
up the logic analyzer to monitor that event, and to supply a TTL level to the
rear panel BNC when the event occurs. Then the emulation-bus analyzer
could be set up to count calls to the routine of interest, but only after the
TTL-true is supplied from the logic analyzer.

Chapter 2: Unique Deep Analyzer Tasks
Example tasks you may wish to perform in the terminal interface

29

To break the emulator to its monitor after the
emulation-bus analyzer completes a trace

1 Set the analyzer to drive trig1 when the analyzer completes its trace (captures
trigger plus enough states to fill its trace memory) by typing: tgout trig1
complete (trigger output on trig1 when measurement complete).

2 Set the emulator to break to its monitor program on receipt of the trig1 signal
by typing: bc -e trig1 (break condition enabled on trig1)

You may use this setup to stop your program at some point in its execution so
you can single step through a portion of your target program after a complex
set of conditions have been established in your target system.

Trig1 and trig2 are used to coordinate measurements between instruments in
the instrumentation card cage. The analyzer can drive or receive either or
both of these lines. Also, the rear-panel BNC and the CMB trigger signal can
drive or receive either of these signals.

The above steps cause the emulator to break to its monitor program when the
emulation-bus analyzer completes its trace. When you use trig1 and/or trig2
to coordinate actions in associated equipment there is delay in the
coordination. In the example above, the emulator may execute several states
between the time the analyzer completes its trace and the emulator breaks to
its monitor program.

The analyzer can be set up to generate a trigger output on trig1 and/or trig2 on
the following events:

• Recognition of the analyzer trigger (tgout trig1 trigger).
• Completion of a trace, the trigger captured and trace memory filled

(tgout trig1,trig2 complete).
• Capture of a state that is < DELAY> number of states after the trigger

was captured (tgout trig2 -t 20).
• Capture of a state that occurs after the trigger state and is < DELAY>

number of states before the end of trace memory (tgout trig1,trig2 -c 10).
• Recognition of a specific state (tgout trig1 addr= 100).
• Recognition of a pattern when a particular sequence term is active in the

complex mode (tgout 1 p1)

Chapter 2: Unique Deep Analyzer Tasks
Example tasks you may wish to perform in the terminal interface

30

To trigger one emulation-bus analyzer from
another emulation-bus analyzer

1 Connect a CMB cable (coordinated measurement bus) between the two 64700
card cages.

2 In the first analyzer, specify the analyzer trigger by typing: tg < state> (trigger
on < state>)

where < state> is a unique state to be recognized by the analyzer (such as,
addr= 1000 and data= 44 and stat= write)

3 Set the first analyzer to drive trig1 when it captures a state that meets the
trigger specification by typing: tgout trig1 trigger (trigger output on trig1 when
trigger specification satisfied)

4 Set the second analyzer to trigger its trace when it receives trig1 from the first
analyzer by typing: tarm = trig1; tg arm (trace arm signal is on trig1, trigger
when arm switches to true)

5 Establish interaction through the rear panel CMB connection on each card
cage, as follows: In the interface of the first analyzer, set the rear panel CMB
connection to receive trigger by typing: cmbt -r trig1 (CMB trigger line
receives trig1). In the interface of the second analyzer, set the rear panel
CMB connection to drive trigger to the second analyzer by typing: cmbt -d
trig1 (CMB trigger line drives trig1).

6 Make sure the first (driving) analyzer is not driving trig1 by issuing the th
(trace halt) command.

7 Start the second (receiving) analyzer using the t (trace) command.

8 Start the first (driving) analyzer using the t (trace) command.

With this coordination, you can effectively widen your analysis bus to any
number of channels, limited only by the number of analyzers available in your
system.

Chapter 2: Unique Deep Analyzer Tasks
Example tasks you may wish to perform in the terminal interface

31

Trig1 and trig2 are used to coordinate measurements between instruments in
the instrumentation card cage. An analyzer can drive or receive either or both
of these lines. Also, the rear-panel BNC and the CMB trigger signal can drive
or receive either of these signals.

When you use trig1 and/or trig2 to coordinate actions in associated
equipment, there is delay in the coordination. In the example above, several
states may be executed between the time the first analyzer recognizes its
trigger and the time the second analyzer recognizes its trigger.

An analyzer can be set up to generate a trigger output pulse on trig1 and/or
trig2 on any of the following events:

• Recognition of the analyzer trigger (tgout trig1 trigger).
• Completion of a trace, the trigger captured and trace memory filled

(tgout trig1,trig2 complete).
• Capture of a state that is < DELAY> number of states after the trigger

was captured (tgout trig2 -t 20).
• Capture of a state that occurs after the trigger state and is < DELAY>

number of states before the end of trace memory (tgout trig1,trig2 -c 10).
• Recognition of a specific state (tgout trig1 addr= 100).
• Recognition of a pattern when a particular sequence term is active in the

complex mode (tgout 1 p1)

Chapter 2: Unique Deep Analyzer Tasks
Example tasks you may wish to perform in the terminal interface

32

3

Interfaces of the Deep Analyzer

33

This chapter discusses the differences between the interface of the deep
analyzer and the interface of the 1K analyzer that is described in the
emulator/analyzer manual(s) you received with your equipment.

The following information is covered in this chapter:

• Differences you will see when controlling the deep analyzer through the
workstation interfaces (Graphical User Interface and Softkey User
Interface).

• Differences you will see when controlling the deep analyzer through the
PC interfaces (PC Interface and Real-Time C Debugger Interface).

• Differences you will see when controlling the deep analyzer through the
terminal interface. Each of the terminal interface commands that have
different syntactical structures and capabilities between the deep analyzer
and the 1K analyzer are described in detail.

Chapter 3: Interfaces of the Deep Analyzer

34

Graphical User Interface and Softkey
User Interface Differences

The following pages show differences you will see when using the Graphical
User Interface or the Softkey User Interface (for workstations) with the deep
analyzer instead of with the 1K analyzer described in your emulator/analyzer
manual(s).

New commands

No new commands were added in the Softkey User Interface.

One new dialog box (shown later in this chapter) was developed for use in the
Graphical User Interface. It is called the Trace Options dialog box. It helps
you set up trace display specifications for the deep analyzer. The dialog box
maps directly to the command-line options.

One new popup menu (shown later in this chapter) was developed for use in
the trace list display. It is called the trace list popup menu. It allows you to
begin trace disassembly from any selected line in the trace list, open a window
to edit the source file where a trace list line resides, and display the program
memory content associated with a line in the trace list.

The Trace Options dialog box and the trace list popup menu are also available
for the 1K analyzer in systems using the latest software versions, listed in the
"Software compatibility" paragraph in Chapter 1.

Trace list differences

The trace list display of the deep analyzer has an additional item of
information in its heading that may not appear in the heading of your 1K
analyzer: it shows trace unload depth. It will appear as:

Trace List Depth=256k Offset=0

If you specified a trace memory unload depth as described in the section titled
"Tasks that must be performed in the workstation interface" of Chapter 2 , the
depth you specified will be shown. For example, if you installed the optional
memory modules on your deep analyzer board to obtain a depth of 256K, but
you entered the command display trace depth 4096, then the heading line

Chapter 3: Interfaces of the Deep Analyzer
Graphical User Interface and Softkey User Interface Differences

35

would show "Depth= 4096". If you do not specify a trace memory unload
depth, the maximum trace memory depth (default depth) will be shown, and
the full depth will be unloaded. The unload depth of the trace memory is
discussed in detail in the concepts chapter of this manual.

Negative time or state counts in trace lists

If a counter overflow occurs during a trace measurement, you may see a
relative count or absolute count of negative time or negative states in the trace
list. This is a normal condition. It is discussed in detail in the concepts
chapter of this manual.

Chapter 3: Interfaces of the Deep Analyzer
Graphical User Interface and Softkey User Interface Differences

36

Examples To use the Trace Options dialog box:

Click to select the desired
format of trace disassembly.

Click to select the way that
absolute status information
is shown in the trace list.

Click to select count
reference: Relative (to
preceding state), or
Absolute (to trigger).

Click to select trace list
dequeuing, if available for
your emulator.

Enter the desired depth of
the trace memory to be
unloaded for display or
storage in a file.

Enter a value to be
subtracted from addresses
and symbol/source-line
references shown in the
trace list.

Enter the desired trace list
line number to be placed on
screen.

Click OK
to specify
the trace
options
and close
the dialog
box.

Click Apply
to specify
the trace
options and
leave the
dialog box
open.

Click
these
buttons to
select
predefined
or
previously
specified
entries.

Click this
button to
cancel the
entries
and close
the dialog
box.

Chapter 3: Interfaces of the Deep Analyzer
Graphical User Interface and Softkey User Interface Differences

37

Examples To use the trace list popup menu:

Click to begin trace
disassembly from the
selected line, moving
that line to the top of
the display (if
disassemble_from_...
is available for your
emulator).

Click to open an edit
window into the
source file that
contains the address
of the selected line.

Click to open a
display window into
memory containing
the address of the
selected line. Note
that the format of the
memory display will
be mnemonic for
addresses in the code
segment and absolute
otherwise.

Chapter 3: Interfaces of the Deep Analyzer
Graphical User Interface and Softkey User Interface Differences

38

PC Interface Differences

Hewlett-Packard offers two interfaces for use on personal computers: the PC
Interface (older interface), and the Real-Time C Debugger Interface. The
Real-Time C Debugger Interface is an upgrade and replacement for the PC
Interface.

When using the deep analyzer in the PC Interface, you will see the same
commands and functions as the 1K analyzer, described in your
emulator/analyzer manual(s). The older PC interface does not support the
deep analyzer. However, when using the deep analyzer in the compatible
mode (512/1K depth), time or state counting is performed at full processor
speed with all supported emulators (refer to "Compatible mode vs deep mode"
in Chapter 1).

When using the Real-Time C Debugger Interface, differences between the use
of the 1K analyzer and the deep analyzer are documented in the manual(s) you
received with your Real-Time C Debugger product.

Chapter 3: Interfaces of the Deep Analyzer
PC Interface Differences

39

Terminal Interface Differences

The following pages show differences you will see when using the terminal
interface with the deep analyzer instead of with the 1K analyzer described in
your emulator/analyzer manual(s). The following commands are different
when used with the deep analyzer from those used with the 1K analyzer:

• ta (trace activity) has no function - trace activity is not implemented.

• tcf (trace configuration) sets depth of the analyzer trace memory.

• tck (trace clock) provides a reduced set of clocking options.

• tcq (trace tag counter) supports use of an arm signal for measurement
coordination.

• tf (trace format) allocates more space for showing trace memory line
numbers and time or state counts.

• tgout (trigger output) provides a broad selection of trigger-generation
options.

• tsck (trace slave clocks) has no function. Slave clocks are not available in
the deep analyzer.

• tsq (trace sequencer) provides options for excluding sequencer-advance
states from trace memory, and for selecting the initial sequencer state.

Details of the differences in the above commands are given in the remaining
pages of this chapter.

Certain features of the deep analyzer can only be obtained by using the
terminal interface. These features include:

• Generation of trig1/trig2 when the analyzer completes its trace.

• Generation of trig1/trig2 a specified number of states after the analyzer
trigger is captured.

• Generation of trig1/trig2 a specified number of states before the end of
the trace memory.

If using a workstation interface, you can access these trigger-generating
options through the "pod command" method of accessing terminal interface

Chapter 3: Interfaces of the Deep Analyzer
Terminal Interface Differences

40

commands. In a PC Interface, access the terminal interface through the
System Terminal command. In the Real-Time C Debugger Interface, use HP
ARPA Services to select TELNET.

You can specify the terminal interface commands desired, and then return to
your high-level interface to continue your test procedure. Refer to the
paragraph titled "To capture a continuous stream of program execution no
matter how large your program" in the "Tasks that are performed more easily
in the Graphical User Interface and Softkey Interface" section of Chapter 2 for
an example using terminal interface commands.

Note that the current capability of the softkey user interface is "break on
trigger". This sets up the analyzer to generate trig1 only when its trigger
specification is satisfied.

Exclamation mark "!" in count column of PC interface and
terminal interface trace lists

An exclamation mark in the count column of the trace list indicates the
counter overflowed before the present state was captured. This symbol is
supplied to alert you to the counter overflow. It is discussed in detail in the
concepts chapter of this manual.

Counter overflow indication not seen in trace list

If a counter overflow occurred before the start of the range you specified in
your "trace display" command, the counter overflow indication will not be seen
in your trace list. When the analyzer reads memory to compose a trace list, it
reads only the portion of memory you specify.

Negative time or state counts in trace lists

If a counter overflow occurs during a trace measurement, you may see a
relative count or absolute count of negative time or negative states in the trace
list. This is a normal condition. It is discussed in detail in the concepts
chapter of this manual.

Chapter 3: Interfaces of the Deep Analyzer
Terminal Interface Differences

41

ta (trace activity)

The ta command can be accepted by the deep analyzer, but it will provide no
information. The ta command was available on the 1K analyzer to display
activity on each of the analyzer input lines.

Examples Display current analyzer signal activity:

M> ta

Using the deep analyzer, you will see a display similar to the following:

Pod 5 = -------- --------
Pod 4 = -------- --------
Pod 3 = -------- --------
Pod 2 = -------- --------
Pod 1 = -------- --------

The results display indicates that signal activity cannot be determined.

Chapter 3: Interfaces of the Deep Analyzer
Terminal Interface Differences

42

tcf (trace configuration)

The tcf command is used to set the configuration for the emulation-bus
analyzer.

The parameters are as follows:

-e Specifying -e sets the analyzer to the easy configuration.

-c Specifying -c sets the analyzer to the complex configuration.

-1k Specifying -1k sets the analyzer to the compatible mode. In this mode, the
analyzer is compatible with all emulator interfaces that were designed to work
with the 1K analyzer The trace memory is 1024 states deep if you have no
state or time count included in your trace specification; it is 512 states deep if
a state or time count is included in your trace specification. This is the default
mode at power up.

-deep [< depth>] Specifying -deep sets the analyzer to the deep mode; the trace memory depth
will be the maximum depth available in the analyzer. Specifying
-deep < depth> sets the analyzer to have a trace memory of the depth you
specify (less than the maximum depth). You may want to specify a reduced
depth when making a series of traces to be sent to post-processing software.

Specify < depth> using a decimal number. For example, to obtain the same
depth as the 1K analyzer, enter the tcf -deep 1024 command. This gives you
the same trace depth as the 1K analyzer without imposing the memory
tradeoff for counting in the compatible mode (tcf -1k).

Chapter 3: Interfaces of the Deep Analyzer
tcf (trace configuration)

43

The -deep mode of the deep analyzer can be used with any HP emulator
through the terminal interface. If using the terminal interface, you must select
the -deep mode after power up by entering the tcf -deep [depth] command.

The -deep mode of the analyzer will work with most popular HP
emulator/high-level interface combinations. In high-level interfaces that can
use the deep mode of the analyzer with their associated emulator, the -deep
mode is automatically selected after power up. Refer to Chapter 1 for details.

If you are using the deep analyzer with a high-level emulator interface that
cannot work with the deep analyzer, the -1k (compatible) mode will be
maintained after power up. You will still be able to take advantage of the
unrestricted counting speed of the analyzer. If you need to take a trace with
greater memory depth than the 1K depth of the compatible mode, you can use
the -deep mode through the terminal interface to take your trace. Refer to the
paragraph titled "To capture a continuous stream of program execution no
matter how large your program" for an example of how terminal interface
commands can be used in high-level interfaces.

Caution Be sure you return the deep analyzer to the 1K (compatible) mode before
returning to the high-level emulator interface that cannot work with the deep
mode of the deep analyzer. Failure to do so will cause unpredictable behavior
of the high-level emulation interface.

If no parameters are supplied, the current analyzer configuration is displayed.
After powerup, the default analyzer configuration is tcf -e and tcf -1k. The
tinit command will set tcf -e, but will not affect the tcf -1k/-deep specification.

Examples Display the current analyzer configuration:

M> tcf

Set the analyzer to complex configuration:

M> tcf -c

Set the analyzer for a 4K memory depth:

tcf -deep 4096

Chapter 3: Interfaces of the Deep Analyzer
tcf (trace configuration)

44

tck (trace clock)

The tck (trace clock) command allows specification of clock qualifiers and
clock edges for the master clocks used by the deep analyzer. The tck command
also allows specification of maximum clock speed; the clock speed
specifications are only included for compatibility with the 1K analyzer. Clock
speed has no effect in the deep analyzer.

Note that this command is set at powerup by the emulation system; it should
not normally be changed by the user.

The parameters that are different when using the deep analyzer are as follows:

r Specifying r indicates that the analyzer is to be clocked on the rising edge of
the indicated clock signal (either the L clock, the M clock, or both clocks). If
you specify both clocks, the rising edge of either the L or M clock can clock a
state.

f Specifying f indicates that the analyzer is to be clocked on the falling edge of
the indicated clock signal (either the L clock or the M clock). If both L and M
clocks are specified, then both clock edges must be rising.

Chapter 3: Interfaces of the Deep Analyzer
tck (trace clock)

45

l Specifying l N sets the analyzer so that it will only accept other clock signals
when the N clock signal is low (less positive/more negative voltage). Used as a
qualifier (example: clock on rising edge of L only if N is low). Note that -l N is
the same as -b, which captures only background monitor execution.

h Specifying h N sets the analyzer so that it will only accept other clock signals
when the N clock signal is high (more positive/less negative voltage). Used as a
qualifier (example: clock on falling edge of M only if N is high). Note that
-h N is the same as -u, which captures only execution in user address space.

CLOCK SIGNALS The l and h operators can be used on clock signal N.

The r and f operators may be used on clock signals L and M .

If no parameters are specified, the current clock definitions are displayed.
Clock options are set at initialization and depend on the particular emulator
in use.

Examples Specify that trace data can be clocked into the analyzer on either the rising
edge of the L clock or on the rising edge of the M clock, but only when the N
clock is low:

R> tck -r LM -l N

The tck command is included with the analyzer for internal system
initialization and system control through high-level software interfaces. It is
used to select the analyzer master clock(s), and clock qualifier, if desired.

The clocking options operate on three different master clock signals: L, M and
N. These clocks are generated by the emulator; the emulation master clock
edges are set at powerup for the particular emulator being used. You should
not change them.

When the L and M clocks are specified by the -r option, either the rising edge
of clock L or clock M can clock the trace. If clock N is specified as a qualifier
(l or h) it is ANDed so that the trace is only clocked when the qualifier is also
met.

Chapter 3: Interfaces of the Deep Analyzer
tck (trace clock)

46

tcq (trace tag counter)

The tcq command allows you to specify the type of count to be made by the
emulation trace tag counter, and specify a qualification for the counter, if
desired. Using this command, you can specify whether the analyzer measures
time between each state it captures, counts occurrences of certain types of
states you specify, or makes no count at all. Additionally, you can specify that
counts be made only when the arm signal is asserted.

The only parameter that is different when using the deep analyzer is the arm
parameter, listed below:

arm If you specify tcq arm, the trace tag counter will make its counts only after the
arm signal is true. The arm signal can be supplied on either trig1 or trig2, and
can be asserted by either the analyzer itself, by an associated emulator or
analyzer on the coordinated measurement bus, or by an instrument connected
to the rear panel BNC on the instrumentation card cage.

The arm signal begins in the false state. It switches to the true state and
remains true after the first false-to-true transition of the selected signal(s).

Examples To specify that counts be made only after an external instrument provides a
false-to-true transition to the rear panel BNC, type:

R>bnct -d trig1
R>tarm =trig1
R>tcq arm

Chapter 3: Interfaces of the Deep Analyzer
tcq (trace tag counter)

47

tf (trace format)

The tf command allows you to specify which pieces of information from the
trace memory of the deep analyzer will be displayed by tl (trace list)
commands. You will see two differences in the trace list when using the deep
analyzer:

• The trace memory line number column and the time/state count column
are wider than when using the 1K analyzer.

• Double spacing between columns in the trace list has been changed to
single spacing.

Chapter 3: Interfaces of the Deep Analyzer
tf (trace format)

48

tgout (trigger output)

The tgout command allows you to specify either trig1, trig2, or both trigger
signals to be driven when the emulation-bus analyzer finds the condition you
specify. Trig1 and trig2 are bidirectional signal lines that can be used to
coordinate measurement activity between emulators and analyzers installed in
the instrumentation card cage, and instruments connected to the BNC or the
CMB on the rear panel of the card cage. For details of how to configure and
use trig1 and trig2, refer to the chapter on making coordinated measurements
in your emulator/analyzer manual(s).

Note that there is delay in measurements that use tgout for measurement
coordination. For example, you may specify that the emulator break to its
monitor program when it receives trig1 from the analyzer. Several states may
be executed in the emulator between the time the analyzer recognizes its
trigger condition, generates trig1, delivers trig1 to the emulator, and the
emulator responds to trig1 by breaking to its monitor program.

Chapter 3: Interfaces of the Deep Analyzer
tgout (trigger output)

49

The parameters are as follows:

none If none is specified, neither trig1 nor trig2 will be driven by the analyzer.

trig1 If trig1 is specified, the trig1 signal will be driven by the analyzer when the
condition you specify is found. If you do not specify a condition in your
command, recognition of the analyzer trigger is assumed to be the specified
condition.

trig2 If trig2 is specified, the trig2 signal will be driven by the analyzer when the
condition you specify is found. If you do not specify a condition in your
command, recognition of the analyzer trigger is assumed to be the specified
condition.

To specify that both trig1 and trig2 should be driven, concatenate both options
with a comma: tgout trig1,trig2 .

trigger Drive the selected trig1/trig2 signal(s) when the analyzer satisfies its trigger
specification.

complete Drive the selected trig1/trig2 signal(s) when the analyzer completes its
measurement (captures trigger plus fills trace memory).

-t < delay> Drive the selected trig1/trig2 signal(s) when the analyzer satisfies its trigger
specification and captures the additional number of states specified in
< delay> . If you are using this feature to capture a continuous stream of
target program activity, you may find some stacking cycles at the end of each
trace memory if your emulation processor does stacking before a break.

Note that if you use -t < delay> or -c < delay>, your trace will be completed
automatically when the analyzer has captured enough states to satisfy the delay
specification.

-c < delay> Drive the selected trig1/trig2 signal(s) when the analyzer captures the state
that is after the trigger and is < delay> states before the end of trace memory.
If you are using this feature to capture a continuous stream of target program
activity, you may find some stacking cycles at the end of each trace memory if
your emulation processor does stacking before a break.

Note that if you use -t < delay> or -c < delay>, your trace will be completed
automatically when the analyzer has captured enough states to satisfy the delay
specification.

< expression> Drive the selected trig1/trig2 signal(s) when the analyzer recognizes the
state(s) that satisfies < expression> . The < expression> is a simple expression

Chapter 3: Interfaces of the Deep Analyzer
tgout (trigger output)

50

in easy configuration, and a complex expression in complex configuration. If
you have already specified a tgout < trigger(s)> < expression>, you can
change the expression without having to reenter the < trigger(s)> ; simply type
tgout < new_expression>.

expr Drive the selected trig1/trig2 signal(s) when the analyzer captures the state
that satisfies the most recently defined < expression> . This is useful if you
have already defined a complex tgout expression, and now you want to use that
same expression to drive a different trigger.

If no parameters are specified, the current state of tgout is displayed. Upon
powerup or tinit , the default state is tgout none.

Examples Display the state of tgout:

M> tgout

Set the emulator so that it will break from target program execution to
monitor execution upon receipt of the analyzer trigger:

M> tcf -e
M> bc -e trig1
M> tgout trig1
M> tg addr=710

The emulator will break to its monitor program after the analyzer encounters
address 710, asserts trig 1, and trig 1 is recognized by the emulator. This form
of emulation break includes delay in the break response time. Therefore, it is
not possible to predict which state will be executing when the emulator
responds to the trig1 break signal and enters the monitor.

To generate trig1 when the analyzer detects a write to address 1000 when in
easy configuration:

M> tgout trig1 addr=1000 and stat=write

To generate trig2 when the analyzer completes a trace:

M> tgout trig2 complete

Chapter 3: Interfaces of the Deep Analyzer
tgout (trigger output)

51

To generate trig1 and trig2 when the analyzer stores the tenth state after its
trigger:

M> tgout trig1,trig2 -t 10

To generate trig2 when the analyzer captures the fifth state before the end of
its trace memory:

M> tgout trig2 -c 5

To generate trig1 on any access to any address from 2000 through 2010 using
easy configuration:

M> tgout trig1 expr
M> tgout addr=2000..2010

 or

M> tgout trig1 addr=2000..2010

To generate trig1 on any write to any address in the range from 2000..2010
while in complex configuration:

M> tcf -c
M> trng addr=2000..2010
M> tpat p5 stat=write
M> tgout r and p5

While in complex configuration, to generate trig1 if pattern p1 is found while
the sequencer is at level 1, or if pattern p2 is found while the sequencer is at
level 2:

M>tgout trig1
M>tgout 1 p1
M>tgout 2 p2

To define an expression, and then assign it to generate trig2:

M>tgout addr=100 and data=44 and stat=write
M>tgout trig2 expr

Chapter 3: Interfaces of the Deep Analyzer
tgout (trigger output)

52

The most recent expression defined for the tgout command is remembered by
the analyzer. Once defined, the expression can be assigned to drive either
trig1, trig2, or both in a later command.

To define an expression for trig2 and then reassign it to trig1 in a later
command:

M>tgout trig2 addr=100 and data=44 and stat=write
M>tgout trig1 expr

Note: To stop the analyzer from driving the trig1/trig2 line, issue the th (trace
halt) command.

See Also bc (allows you to specify a break to emulation monitor when the tgout
condition is satisfied)

bnct (specifies whether or not trig1 and trig2 are used to drive and/or receive
the rear panel BNC connector signal line)

cmbt (specifies whether or not trig1 and trig2 are used to drive and/or receive
the CMB trigger signal)

tarm (used to specify that the analyzer will be armed upon assertion or
negation of trig1 or trig2, for synchronizing measurements that include other
analyzers)

th (halts the analyzer trace and turns off any active drive of trig1/trig2)

w -m (wait_measurement_complete. The point where measurement complete
is recognized is affected by any specification that includes the -t or -c options
of the tgout command)

Chapter 3: Interfaces of the Deep Analyzer
tgout (trigger output)

53

tsck (trace slave clocks)

The tsck command was used to specify slave clock edges for the emulation-bus
analyzer. The deep analyzer does not support slave clocks. This command is
included for the compatibility mode of the deep analyzer (the mode in which
the deep analyzer appears to be a 1K analyzer to emulator interfaces that
depend on use of the 1K analyzer).

Chapter 3: Interfaces of the Deep Analyzer
tsck (trace slave clocks)

54

tsq (trace sequencer)

The tsq command allows you to manipulate or display the trace sequencer.
Note: the tif and telif commands are used to define each sequencer state
specification.

The parameters that have been added for use with the deep analyzer are as
follows:

inc Specifying inc allows you to choose whether or not the states that cause the
sequencer to transition from one state to another (or to the same state, in the
case of restart) are qualified for storage in trace memory. By default, all states
that satisfy sequencer advance specifications are stored in the trace memory
(tsq -inc en). There may be times when an elaborate series of
sequencer-advance steps is required to obtain a single traced state. You can

Chapter 3: Interfaces of the Deep Analyzer
tsq (trace sequencer)

55

prevent your trace memory from being filled with sequencer-advance states by
using this command.

init Using init allows you to specify which sequence term will be the first active
sequence term when a new trace begins. By default, term 1 is the first active
sequence term when a new trace begins.

Examples To allow all states that satisfy sequencer-advance specifications to be stored in
the trace memory (the default), enter the command:

R> tsq -inc en

To disable storage of sequencer states in trace memory, enter the command:

R> tsq -inc dis

To specify that sequence term 5 will be the active term when the trace first
begins, enter the command:

R> tsq -init 5

Chapter 3: Interfaces of the Deep Analyzer
tsq (trace sequencer)

56

4

Concepts

57

This chapter discusses two concepts that will help you understand functions of
the deep analyzer:

• Trace memory depth. Two trace memory depths are used in the deep
analyzer: unload depth, and capture depth.

• The trace tag counter, and how it works. This will help you understand
what is happening when it shows a negative time count or state count
within a series of positive counts in a trace list.

Chapter 4: Concepts

58

Trace depths of the deep analyzer

The deep analyzer uses two trace depths: unload depth, and capture depth.
The trace depth you use depends on the interface you use.

Unload depth

The Graphical User Interface and Softkey User Interface use unload depth.
This is the depth of the trace memory that will be unloaded when new trace
data is captured. Regardless of how much or how little unload depth you
specify, the entire trace memory will be filled with captured states during a
deep analyzer trace.

Trace data must be unloaded before it can be displayed, copied, or stored in a
file. If you request display of a portion of the trace memory before the unload
is complete; the analyzer will interrupt its unload process, unload the portion
requested, and then return to the place where it was interrupted and continue
the unload process. If you try to copy or store a portion of the trace memory
before the unload process is complete, you will see an error message advising
that you must wait until the unload is complete. The entire depth must be
unloaded before any portion of it can be copied or stored. You can enter a
new unload depth specification after a trace is complete to increase the
amount of trace memory that is unloaded for display, file storage, or for
copying to files and printers, if desired.

Capture depth

Terminal interface commands can be used to specify how much of the deep
analyzer trace memory will be used to store trace data. When you specify a
limited capture depth in the terminal interface, the deep analyzer will stop
capturing new data as soon as the specified capture depth is filled. The
portion of the trace memory outside the range of your capture depth
specification will be unused.

Chapter 4: Concepts
Trace depths of the deep analyzer

59

Using unload depth in a workstation interface

You can specify unload of any depth from 9 states to the maximum number of
states that can be stored in the trace memory of your deep analyzer. You will
want to select an unload depth that is:

• Large enough to include the activity you wish to view, store, or copy.

• Small enough to unload quickly, avoiding unnecessary delay in unloading
the trace memory.

Trace data is always unloaded around the trigger position. For example,
assume you specified unload of 8K depth:

• If trigger is the first state in memory (trace after), the first 8K states in
memory will be unloaded.

• If trigger is the center state in memory (trace about), the 4K states before
trigger and the 4K states after trigger will be unloaded.

• If trigger is the last state in memory (trace before), the 8K states before
trigger will be unloaded.

Trace memory must be unloaded before it can be displayed in a trace list,
stored in a file, or copied to a printer. Trace data is unloaded in background
when new trace data is available. This minimizes the waiting period required
to unload the trace memory after a measurement is complete. Approximately
four minutes are required to unload a full 256K trace memory with LAN. By
selecting a reduced portion of the trace memory to be unloaded, your trace list
will be available to store and/or copy more quickly.

You can obtain immediate display of trace memory content as long as the
requested display area is within the range of your unload depth specification.
The analyzer will shift to the requested location, unload it, and give you the
desired display. Then it will return to the point where it interrupted its
unloading process and begin unloading again.

If you specify an unload depth of 10 and then request display of line 50, the
trace list will scroll as close to line 50 as possible (line 10 in this example), and
stop because line 50 is not within the line range being unloaded. If you then
specify an unload depth of 1000 and request display of trace list line number
50, line 50 and associated lines will appear immediately. If you then respecify
an unload depth of 10, line 50 will still be available for display. Once you have

Chapter 4: Concepts
Trace depths of the deep analyzer

60

unloaded a line range from a particular trace, specifying a smaller line range
will have no effect on the data available for display because it will already be
unloaded.

If you specify an unload depth , the depth you specify will be shown in the
heading of the trace list. For example, if you installed the optional memory
modules on your deep analyzer board to obtain a depth of 256K, but you
entered the command display trace depth 4096, then the heading line would
show "Depth= 4096". If you do not specify an unload depth, the maximum
trace memory depth (default depth) will be shown, and the full depth will be
unloaded.

The unload depth you specify will affect how quickly the analyzer responds to
a wait measurement_complete command. The analyzer detects measurement
complete after the trigger has been captured, the trace memory has been filled
to the unload depth, and the unload depth has been unloaded. Note that
measurement complete is also detected if the trace has been halted and all
available data has been unloaded.

Using capture depth in a terminal interface

In the terminal interface, you specify how much of the physical memory space
available in the analyzer will be used to store captured states during a trace.
Any unspecified memory space will be unused and ignored by the analyzer.

You may want to specify use of a reduced capture depth in order to complete
your traces more quickly, or when making a series of traces to be sent to
post-processing software.

The tcf (trace configuration) command of the terminal interface is used to set
the capture depth.

Specifying tcf -deep sets the analyzer to the deep mode and specifies use of the
maximum capture depth available in the analyzer. Specifying -deep < depth>
sets the analyzer to the deep mode, but specifies use of only the capture depth
you specify.

Note that you can enter the tcf -deep 1024 command, if desired. This gives you
the same capture depth as the 1K analyzer, but without imposing the memory
tradeoff for counting (which is imposed in the compatible mode).

Chapter 4: Concepts
Trace depths of the deep analyzer

61

The deep mode of the deep analyzer can be used with any HP emulator
through the terminal interface. If using the terminal interface, you may specify
use of the deep mode after power up by entering the tcf -deep [depth]
command.

The deep mode of the analyzer will work with most popular HP
emulator/high-level interface combinations. High-level interfaces that can use
the deep mode of the analyzer with their associated emulator select tcf -deep
automatically after power up. Refer to Chapter 1 for details.

If you are using the deep analyzer with a high-level emulator interface that
cannot work with the deep mode of the analyzer, the compatible mode
(tcf -1k) will be maintained after power up. You will still be able to use the
unrestricted counting speed of the analyzer. If you need to take a trace with
greater memory depth than the 1K depth of the compatible mode, you can use
the deep mode through terminal interface commands to take your trace.
Refer to the chapter titled "Unique deep analyzer tasks" for an example of how
terminal interface commands can be used in high-level interfaces.

Caution Be sure you return the deep analyzer to the 1K (compatible) mode before
returning to the high-level emulator interface that cannot work with the deep
mode of the deep analyzer. Failure to do so will cause unpredictable behavior
of the high-level emulation interface.

Chapter 4: Concepts
Trace depths of the deep analyzer

62

Trace tag counter of the deep analyzer

This section describes the trace tag counter and explains the causes of certain
unusual content that you may see in your trace lists.

How the counter works

The trace tag counter of the deep analyzer is a 36-bit counter. It begins
counting at the start of a trace and continues until the end of the trace. In the
time-count mode, it increments its count one time every 20 nsec. It reaches
full count at 22.9 minutes (22 minutes and 54 seconds). When it increments
again, after reaching full count, it restarts at 0. There is never a loss of
resolution, however, no indication is given for the number of times the
counter reached its full count and started at 0 again (counter overflow). The
deep analyzer sets a flag in memory and stores it along with the first state
captured after counter overflow.

Note Due to increased counter resolution, you will see time values ranging from
thousands of seconds (KS)to tens of nanoseconds (nS).

During a trace, the present value of the trace tag counter is stored with each
stored state. Post-processing software computes the counter value to be
shown in a trace list display by subtracting the value of the reference state
from the value of the present state.

• When counts are displayed in relative mode, the reference state is the
preceding displayed state; you will see the difference between the counter
value stored with the present state and the counter value stored with the
preceding displayed state.

• When counts are displayed in absolute mode, the reference state is the
trigger state; you will see the difference between the counter value stored
with the present state and the counter value stored with the trigger state.

Chapter 4: Concepts
Trace tag counter of the deep analyzer

63

Note that the count is between displayed states in relative mode. If your trace
list is inverse assembled and/or dequeued, several states may have been
captured in trace memory between the present displayed state and the
displayed state immediately before it. The count value shown in the trace list
is obtained by subracting the count value stored with the last displayed state
from the count value stored with the present state.

All time values are adjusted to center them around the trigger point. In count
relative mode, the time value stored with the trigger state is subtracted from
all counter values. This corrects the trigger state counter value to 0. This also
explains how negative times can be shown for states captured before the
trigger state.

Negative time or state counts in workstation trace
lists

If counter overflow occurs during a trace measurement, you may see a count of
negative time or negative states in the trace list. This indicates that the
counter value stored with the reference state was greater than the counter
value stored with the present state. In absolute time counts, negative times
will continue to be seen until a state is captured whose counter value is greater
than the trigger state counter value. In relative time counts, negative time
should only be seen beside the first state captured after the counter overflows.

The next three example illustrations show effects of counter overflow in
workstation trace lists. The first illustration is a wait loop routine that was run
on an HP emulator for a Motorola 68040. The wait loop runs for
approximately 1 second (999.98 mS), and then restarts. The deep analyzer was
set up to capture only the start state of the wait loop (address 0FDCH).

Chapter 4: Concepts
Trace tag counter of the deep analyzer

64

 Memory :mnemonic
 address data

 1
 2
 3 main()
 4 {
 00000FD2 4E560000 LINK.W A6,#$0000
 00000FD6 2F03 MOVE.L D3,-(A7)
 00000FD8 2F02 MOVE.L D2,-(A7)
 5 int delaytime;
 6 int somethingtodo;
 7
 8
 9 while (1)
 00000FDA 4E71 NOP
 10 {
 11 somethingtodo = 0;
 00000FDC 7600 MOVEQ #$00000000,D3
 12 for (delaytime = 0; delaytime 510621; delaytime++)
 00000FDE 7400 MOVEQ #$00000000,D2
 00000FE0 4E71 NOP
 13 {
 14 somethingtodo++;
 00000FE2 5283 ADDQ.L #1,D3
 15 }
 00000FE4 4E71 NOP
 00000FE6 5282 ADDQ.L #1,D2
 00000FE8 4E71 NOP
 00000FEA 0C820007CA CMPI.L #$0007CA9D,D2
 00000FF0 6DF0 BLT.B $00000FE2
 00000FF2 4E71 NOP
 16 }
 00000FF4 4E71 NOP
 00000FF6 60E4 BRA.B $00000FDC
 00000FF8 4E71 NOP
 17 }
 00000FFA 4E71 NOP
 00000FFC 241F MOVE.L (A7)+,D2
 00000FFE 261F MOVE.L (A7)+,D3
 00001000 4E5E UNLK A6

Chapter 4: Concepts
Trace tag counter of the deep analyzer

65

The second illustration in this series (see below) is a trace list taken in the
softkey user interface, and displayed with a relative count. Counter overflow
occurred between state +1369 and state + 1370. The counter value stored
with state + 1370 is 1,373.4 seconds (22.89 minutes) less than the counter
value stored with state +1369. While this count does not give you useful
information about state + 1370 captured from your target program, it is the
only state in the trace list whose count is invalid. The next state, and states
thereafter, do give useful information.

Trace List Offset=0
Label: Address Data Opcode or Status time count
Base: hex hex mnemonic relative
------ -------- -------- --- ------------
after 00023FF8 27000000 $27000000 sdata long write ------------
+001 00000FDC 76007400 $76007400 sprog long read 38.50 uS
+002 00000FDC 76007400 $76007400 sprog long read 880 nS
+003 00000FDC 76007400 $76007400 sprog long read 999.98 mS
+004 00000FDC 76007400 $76007400 sprog long read 999.98 mS
 .
 .
 .
+1366 00000FDC 76007400 $76007400 sprog long read 999.98 mS
+1367 00000FDC 76007400 $76007400 sprog long read 999.98 mS
+1368 00000FDC 76007400 $76007400 sprog long read 999.98 mS
+1369 00000FDC 76007400 $76007400 sprog long read 999.98 mS
+1370 00000FDC 76007400 $76007400 sprog long read - 1.3734 KS
+1371 00000FDC 76007400 $76007400 sprog long read 999.98 mS
+1372 00000FDC 76007400 $76007400 sprog long read 999.98 mS
+1373 00000FDC 76007400 $76007400 sprog long read 999.98 mS

Chapter 4: Concepts
Trace tag counter of the deep analyzer

66

The third illustration in this series (see below) is a trace list of the same trace
as the second illustration, but displayed with an absolute count. The count
stored with the trigger state (state 0) is 6.4131 seconds greater than the count
stored with state +1370. This offset occurs because it is not possible to
predict exactly how much time will pass between the start of the trace and the
capture of the trigger state.

You can see that the count of time decreases after the counter overflow occurs
until the count stored with a new state exceeds the count stored with the
trigger state. After that, the count increases again. Without knowing exactly
what counter value was stored with the trigger state, you cannot tell exactly
how much time has elapsed since the trigger was captured (after the counter
overflow occurs).

Trace List Offset=0
Label: Address Data Opcode or Status time count
Base: hex hex mnemonic absolute
------ -------- -------- --- ------------
after 00023FF8 27000000 $27000000 sdata long write ------------
+001 00000FDC 76007400 $76007400 sprog long read + 38.50 uS
+002 00000FDC 76007400 $76007400 sprog long read + 39.38 uS
+003 00000FDC 76007400 $76007400 sprog long read + 1.0000 S
+004 00000FDC 76007400 $76007400 sprog long read + 2.0000 S
 .
 .
 .
+1366 00000FDC 76007400 $76007400 sprog long read + 1.3640 KS
+1367 00000FDC 76007400 $76007400 sprog long read + 1.3650 KS
+1368 00000FDC 76007400 $76007400 sprog long read + 1.3660 KS
+1369 00000FDC 76007400 $76007400 sprog long read + 1.3670 KS
+1370 00000FDC 76007400 $76007400 sprog long read - 6.4131 S
+1371 00000FDC 76007400 $76007400 sprog long read - 5.4131 S
+1372 00000FDC 76007400 $76007400 sprog long read - 4.4131 S
+1373 00000FDC 76007400 $76007400 sprog long read - 3.4132 S
+1374 00000FDC 76007400 $76007400 sprog long read - 2.4132 S
+1375 00000FDC 76007400 $76007400 sprog long read - 1.4132 S
+1376 00000FDC 76007400 $76007400 sprog long read -413.21 mS
+1377 00000FDC 76007400 $76007400 sprog long read +586.77 mS
+1378 00000FDC 76007400 $76007400 sprog long read + 1.5868 S
+1379 00000FDC 76007400 $76007400 sprog long read + 2.5867 S
+1380 00000FDC 76007400 $76007400 sprog long read + 3.5867 S
+1381 00000FDC 76007400 $76007400 sprog long read + 4.5867 S
+1382 00000FDC 76007400 $76007400 sprog long read + 5.5867 S

Chapter 4: Concepts
Trace tag counter of the deep analyzer

67

Exclamation marks "!" in count columns of PC
interface and terminal interface trace lists

An exclamation mark in the count column of the PC interface or terminal
interface trace list indicates the counter overflowed (began again at 0) before
the present state was captured. The exclamation mark warns you that the
counter value may not be accurate because the analyzer is unable to determine
how many times the counter overflowed between the preceding state and the
state where the exclamation mark is shown.

If you were to scroll through a trace list of the entire trace memory in relative
count mode, a "!" would be seen beside the first state after each occurrence of
counter overflow (each 22.9 minutes). If you were to scroll through the entire
trace memory in absolute count, the "!" would be seen beside every state after
the first occurrence of counter overflow. Refer to the last illustrations in this
chapter for an example of a terminal interface trace list with exclamation
marks.

Counter overflow indication not seen in trace list

If you scroll through a reduced portion of the trace memory, one that contains
no counter overflow, no counter overflow indication will be seen, even if
counter overflow occurred before the line range you specified in your
display/store/copy command. The routine that reads trace memory to
compose a trace list only reads the portion of the trace memory you specify in
your display/store/copy command.

Chapter 4: Concepts
Trace tag counter of the deep analyzer

68

Negative time or state counts in terminal interface
trace lists

If counter overflow occurs during a trace measurement, you may see a count of
negative time or negative states in the trace list. This indicates that the
counter value stored with the reference state was greater than the counter
value stored with the present state. In absolute time counts, negative times
will continue to be seen until a state is captured whose counter value is greater
than the trigger state counter value. In relative time counts, the counter value
is corrected so no negative time is seen.

The last three example illustrations in this chapter show effects of counter
overflow in terminal interface trace lists. The first illustration shows the
terminal interface setup that was used to capture wait loop execution. This is
the same wait loop that was used to demonstrate counter overflow in the
workstation interface. This illustration also shows the assembly language
listing of the wait loop program. The wait loop runs for approximately 1
second (999.98 mS), and then restarts.

 tif 1 any 2
 tif 2 never
 tsq -t 2
 tsto 1 p5
 tsto 2 p5
 tpat p5 addr=0FDCH
U$
U$m -dm 0fd2..1000
 000000fd2 - LINK.W A6,#$0000
 000000fd6 - MOVE.L D3,-(A7)
 000000fd8 - MOVE.L D2,-(A7)
 000000fda - NOP
 000000fdc - MOVEQ #$00000000,D3
 000000fde - MOVEQ #$00000000,D2
 000000fe0 - NOP
 000000fe2 - ADDQ.L #1,D3
 000000fe4 - NOP
 000000fe6 - ADDQ.L #1,D2
 000000fe8 - NOP
 000000fea - CMPI.L #$0007CA9D,D2
 000000ff0 - BLT.B $00000FE2
 000000ff2 - NOP
 000000ff4 - NOP
 000000ff6 - BRA.B $00000FDC
 000000ff8 - NOP
 000000ffa - NOP
 000000ffc - MOVE.L (A7)+,D2
 000000ffe - MOVE.L (A7)+,D3
 000001000 - UNLK A6
U$

Chapter 4: Concepts
Trace tag counter of the deep analyzer

69

The setup of the deep analyzer (illustration on preceding page) was edited to
retain only the specifications that were required to capture the demonstration
illustrations. The deep analyzer was set up to transition to sequence state 2
after the capture of any state, and accept transition to sequence state 2 as the
trigger. Storage was qualified only for the start state of the wait loop (address
0FDCH), using tpat p5.

The second illustration (see below) is a trace list displayed with a relative
count. Counter overflow occurred between state +1369 and state + 1370. An
exclamation mark is shown in the first character space of the count column.
The counter value stored with state +1370 is the same as all the preceding
counter values because it is corrected by software in the terminal interface.
Therefore it gives useful information about the program being traced. This
number would not be correct if the counter had overflowed two or more times
between state + 1369 and state + 1370.

U$tf
 tf addr,h mne count,r
U$tl 0..1090
 Line addr,H 68040 Mnemonic count,R
 ------- -------- -- -------------
 0 00023ff8 $27000000 sdata long write -------------
 1 00000fdc $76007400 sprog long read 38.50uS
 2 00000fdc $76007400 sprog long read 0.88uS
 3 00000fdc $76007400 sprog long read 999.98274mS
 4 00000fdc $76007400 sprog long read 999.98280mS
 5 00000fdc $76007400 sprog long read 999.98282mS
 .
 .
 .
 1367 00000fdc $76007400 sprog long read 999.98278mS
 1368 00000fdc $76007400 sprog long read 999.98272mS
 1369 00000fdc $76007400 sprog long read 999.98270mS
 1370 00000fdc $76007400 sprog long read ! 999.98270mS
 1371 00000fdc $76007400 sprog long read 999.98290mS
 1372 00000fdc $76007400 sprog long read 999.98290mS
 1373 00000fdc $76007400 sprog long read 999.98290mS
 1374 00000fdc $76007400 sprog long read 999.98290mS

Chapter 4: Concepts
Trace tag counter of the deep analyzer

70

The third illustration (see below) is a trace list of the same trace as in the
second illustration, but displayed with an absolute count. The count stored
with the trigger state (state 0) is 6.41311124 seconds greater than the count
stored with state +1370. You can see the count reducing as the count stored
with each state approaches, and then exceeds, the count stored with the trigger
state. An exclamation mark is shown preceding every state after the counter
overflow to indicate that the count shown may not indicate the true time
between the trigger state and the state shown in the trace list.

 Line addr,H 68040 Mnemonic count,A
 ------- -------- -- -------------
 0 00023ff8 $27000000 sdata long write 0
 1 00000fdc $76007400 sprog long read 38.50uS
 2 00000fdc $76007400 sprog long read 39.38uS
 3 00000fdc $76007400 sprog long read 1.00002212S
 4 00000fdc $76007400 sprog long read 2.00000492S
 5 00000fdc $76007400 sprog long read 2.99998774S
 .
 .
 .
 1368 00000fdc $76007400 sprog long read 1.3659764KS
 1369 00000fdc $76007400 sprog long read 1.3669764KS
 1370 00000fdc $76007400 sprog long read !-6.41311124S
 1371 00000fdc $76007400 sprog long read !-5.41312852S
 1372 00000fdc $76007400 sprog long read !-4.41314576S
 1373 00000fdc $76007400 sprog long read !-3.41316298S
 1374 00000fdc $76007400 sprog long read !-2.41318018S
 1375 00000fdc $76007400 sprog long read !-1.41319738S
 1376 00000fdc $76007400 sprog long read !-413.21458mS
 1377 00000fdc $76007400 sprog long read ! 586.76820mS
 1378 00000fdc $76007400 sprog long read ! 1.58675100S
 1379 00000fdc $76007400 sprog long read ! 2.58673382S
 1380 00000fdc $76007400 sprog long read ! 3.58671664S
 1381 00000fdc $76007400 sprog long read ! 4.58669944S
 1382 00000fdc $76007400 sprog long read ! 5.58668224S
 1383 00000fdc $76007400 sprog long read ! 6.58666504S

Chapter 4: Concepts
Trace tag counter of the deep analyzer

71

72

5

Error and Status Messages

73

Error and Status Messages

This chapter contains descriptions of error messages and status messages that
you may see while using the deep analyzer. The error and status messages are
listed in in numerical order by their error message numbers. Only error and
status messages that are unique to the deep analyzer are listed in this chapter.
If you do not see the message you are looking for in this chapter, refer to the
manual(s) you received with your emulation system.

If you are using a workstation interface or a PC interface, you may not see the
error message number along with the message on the status line. You can
view the error log display of your interface to see the error message number, if
desired.

1002 !STATUS 1002! Analyzer SIMMs are not all the same size; using smallest size

Cause: Plug-in SIMMs are used to expand the trace depth to 64k or 256k
states. Four SIMMs, all of the same size must be used. If they are not all the
same size, the smallest SIMM size in the set of four will be used for trace
depth.

Action: No action necessary.

1203 !STATUS 1203! Trigger position changed to accomodate trig1, trig2 delay spec

Cause: The terminal interface tgout (trigger output) command provides a
delay feature that allows for driving of the trig1 and/or trig2 signals a specified
number of states after trigger or before trace complete. The setup of this delay
feature interacts with the trigger position specification. The trigger position
specification may be automatically modified by the deep analyzer in order to
make the delay feature work in the expected manner.

Action: You can use the terminal interface command tp (trigger position) to
examine the new trigger position value.

Chapter 5: Error and Status Messages
!STATUS 1002! Analyzer SIMMs are not all the same size; using smallest size

74

1254 !ERROR 1254! Incompatibile signal out events: < Incompatible Event Name>

Cause: The terminal interface tgout (trigger output) command may be used to
drive the trig1 and/or trig2 signals to the emulator in response to several
different events. The events are trigger recognition, measurement complete,
finding a specified expression, delay after trigger recognition, and delay before
measurement complete. Some of these events may be ORed together, but a
delay specification may not be ORed with trigger recognition or mesaurement
complete events.

Action: Examine your tgout specification and modify it to remove ORing of
delay specifications with trigger recognition or measurement complete events.

1255 !ERROR 1255! Trig1, trig2 delay spec out of bounds: < Entered Numeric
Value>

Cause: The terminal interface tgout (trigger output) command provides a
delay feature that allows for driving of the trig1 and/or trig2 signals a specified
number of states after trigger or before trace complete. The delay value must
be in the range 0 through "current analyzer depth - 1". The current analyzer
depth is controlled by the terminal interface command tcf. Note: Use of this
delay feature may cause modification of the current trigger position value.

Action: Correct the delay value in your specification so that it is within the
range of 0 through "current analyzer depth -1".

1256 !ERROR 1256! Event "expr" cannot be combined with expression definition

Cause: The terminal interface tgout (trigger output) command may use an
arbitrary expression as an event to drive the trig1 and/or trig2 signals to the
emulator. This expression can be set up two ways. One way uses two tgout
commands; the first command defines the signals and type of events, and the
second command defines the expression. This is most useful when defining
complicated expressions. The other way uses one tgout command which
defines the expression as the event. This error message indicates that you have
tried to combine the two methods.

Action: Reenter your tgout command using the correct format for the
command. Refer to the tgout command description in the chapter titled
"Interfaces of the Deep Analyzer" for correct formats for the tgout command.

Chapter 5: Error and Status Messages
!ERROR 1254! Incompat ibile signal out events: < Incompatible Event Name>

75

IL# in trace list Mnemonic column

The notation # # IL# may appear in place of an inverse-assembled instruction
in the Mnemonic column of a trace list. This notation indicates the inverse
assembler was unable to find the information it needed to complete a trace list
line. Probably, the information was not available in the trace memory.

For example, you would see the # # IL# notation in your trace list if you were
tracing an Intel processor and you qualified capture of only instruction
execution cycles during your trace. The inverse assembler would look for an
opcode to associate with each instruction execution, but it would find none.
When its search for an opcode timed out, it would place # # IL# in the
Mnemonic column of the trace list.

The following trace list was obtained to show the appearance of # # IL# in a
trace list Mnemonic column. The example trace list was obtained from an
80186 emulator using its terminal interface.

 Line addr,H 8018x mnemonic,H count,R seq
 ------- ------ ------------------------------------ ------------- ---
 26200 81991 ##IL# 3.00uS .
 26201 81994 ##IL# 3.00uS .
 26202 81996 ##IL# 1.00uS .
 26203 8197f ##IL# 3.26uS .
 26204 81984 ##IL# 4.98uS .
 26205 81985 ##IL# 1.02uS .
 26206 8198a ##IL# 4.00uS .

The analyzer takes a long time to compose a trace list when the inverse
assembler times out before it places each line on screen. Typically, the
analyzer takes 2 seconds to place each line on screen when it fails to find the
information it needs and places # # IL# on screen, instead.

Chapter 5: Error and Status Messages
!ERROR 1256! Event "expr" cannot be com bined with expression definition

76

6

Installation and Service

77

This chapter shows you how to install the analysis hardware. It also shows you
how to verify installation by using the performance verification procedure.
These installation tasks are described in the following sections:

The following information is covered in this chapter:

• Steps to follow when installing analyzer hardware.

• How to verify proper installation and operation of analyzer hardware.

• A complete list of replaceable parts for the analyzer, and instructions on
how to order replaceable parts.

Chapter 6: Installation and Service

78

Installing hardware

This section shows you how to install the analysis hardware, and how to
connect to the emulator hardware and optional software performance analyzer.

Equipment supplied

The minimum system contains:

• HP 64794 Emulation-Bus Analyzer (deep analyzer) card.

• Ribbon cable.

• HP Emulation Control card.

• HP 64700A Card Cage.

Optional parts are:

• HP 64172A 256-Kbyte Memory Modules (for additional memory depth).

• HP 64172B 1-Mbyte Memory Modules (for additional memory depth).

• HP 64708A Software Performance Analyzer.

Equipment and tools needed

If you must remove circuit cards from the card cage before you can install the
deep analyzer hardware, you need:

• Flat-blade screwdriver with shaft at least 5 inches long (13 mm approx).

Installation overview

The steps in the installation process are:

1 Install the optional memory modules on the deep analyzer card, if desired.

2 Install the deep analyzer card in the HP 64700A Card Cage.

3 Connect the ribbon cable from the deep analyzer card to the emulation
control card, if required. Some emulators do not have a connection for
this cable.

Chapter 6: Installation and Service
Installing hardware

79

4 Apply power to the HP 64700A Card Cage.

Your emulation and analysis system may already be installed, depending on
how parts of the system were ordered.

Antistatic precautions

Printed-circuit cards contain electrical components that are easily damaged by
small amounts of static electricity. To avoid damage to the emulator and
analyzer cards, follow these guidelines:

• If possible, work at a static-free workstation.

• Handle the cards only by the edges; do not touch components or traces.

• Use a grounding wrist strap that is connected to the HP 64700A chassis.

Note If you already have a modular HP 64700A Card Cage and want to remove the
1K analyzer and install the deep analyzer in its place, the analyzer firmware
will be updated by your installation because the analyzer firmware is contained
on the analyzer card.

Checking hardware installation

After hardware installation, run a performance test to verify that the analyzer
and emulator are working properly. The performance verification procedure
is described under "Verifying the installation," later in this chapter.

Service information

Use this chapter when removing and installing hardware, running performance
verification, and ordering parts. See the HP 64700 Series Installation/Service
Guide for information on system configurations, installing product software,
software updates, and ordering parts for the card cage. Turn off power to the
card cage before removing or installing hardware.

Chapter 6: Installation and Service
Installing hardware

80

Step 1. Install optional memory modules, if
desired

Observe antistatic precautions

With no optional memory modules installed on the deep analyzer card, the
trace memory depth is 8K. If you are going to use the analyzer with this
default trace memory depth, skip this step and proceed to Step 2 of this
installation procedure.

1 Determine placement of the optional memory modules. Two types of modules may be installed:
256-Kbyte (HP 64172A), and 1-Mbyte (HP 64172B). Either module type may be installed in the
banks on the analyzer card. Do not use HP 64171A/B memory modules; they are too slow.

If you install no memory modules, the deep analyzer will have 8K maximum memory depth.
If you install four 256-Kbyte memory modules, the analyzer will have 64K maximum memory depth.
If you install four 1-Mbyte memory modules, the analyzer will have 256K maximum memory depth.

If you install a combination of 256-Kbyte memory modules and 1-Mbyte memory modules, the
analyzer will have 64K maximum memory depth. All four connectors must have memory modules
installed before the analyzer depth will be increased.

Chapter 6: Installation and Service
Step 1. Install optional memory modules, if desired

81

2 Install optional memory modules on the deep analyzer card. There is a cutout at one end of the
memory modules so they can only be installed the correct way.

To install a memory module:

Align the groove in the memory module with the alignment rib in the connector.

Align the cutout in the memory module with the projection in the connector.

Place the memory module into the connector groove at an angle.

Firmly press the memory module into the connector and make sure it is completely seated.

Rotate the memory module forward so that the pegs on the connector fit into the holes on the
memory module.

Make sure the release tabs at each end of the connector snap around the memory module to hold it
in place.

Chapter 6: Installation and Service
Step 1. Install optional memory modules, if desired

82

Step 2. Install the deep analyzer card in the HP
64700A card cage

WARNING Before removing or installing parts in the HP 64700A card cage, make sure
the card cage power is off and the power cord is disconnected.

CAUTION Do NOT stand the HP 64700A card cage on the rear panel. You might
damage the rear panel ports and connectors.

1 Use a ground strap when removing or installing cards in the HP 64700A card cage to reduce the
risk of damage to the circuit cards from static discharge. A jack on the rear panel of the
HP 64700A card cage is provided for this purpose.

Chapter 6: Installation and Service
Step 2. Install the deep analyzer card in the HP 6 4700A card cage

83

2 Turn the thumb screw and remove the top cover by sliding the cover toward the rear and up.

Chapter 6: Installation and Service
Step 2. Install the deep analyzer card in the HP 6 4700A card cage

84

3 Remove the side cover by unsnapping the two latches and lifting off.

4 Remove the card supports.

Chapter 6: Installation and Service
Step 2. Install the deep analyzer card in the HP 6 4700A card cage

85

5 If you do not need to remove an existing analyzer card from the HP 64700A Card Cage, skip this
step and the next two steps. Go to step number 8 in this procedure.

Remove any connections across the tops of the cards.

The emulator card(s) must be removed before the analyzer card can be removed. To remove the
emulator card(s), first, completely loosen the four egress thumb screws.

Insert a flat blade screwdriver in the access hole and eject each card, one at a time, by rotating the
screwdriver.

6 Remove the software performance analyzer, if installed.

Chapter 6: Installation and Service
Step 2. Install the deep analyzer card in the HP 6 4700A card cage

86

7 To remove the analyzer card, insert a flat blade screwdriver in the access hole and eject the
analyzer card by rotating the screwdriver.

Do not remove the system control card. This card is used in all HP 64700 emulation and analysis
systems.

Chapter 6: Installation and Service
Step 2. Install the deep analyzer card in the HP 6 4700A card cage

87

8 Install the deep analyzer card and the emulation control card(s). The deep analyzer card is
installed in the slot next to the system controller card. The emulation control card(s) is installed in
the first slot at the bottom of the HP 64700A Card Cage. The software performance analyzer card
may occupy any slot between the deep analyzer and the emulation control card(s). These cards are
identified with labels that show their model numbers and serial numbers. Note that components
on the analyzer card face the opposite direction to the other cards.

To install a card, insert it into the plastic guides. Make sure the connectors are properly aligned;
then, press the card into the mother board socket. Ensure that each card is seated all the way into
its mother board socket. If a card can be removed with your fingers, it is NOT seated all the way
into its mother board socket.

Tighten the thumbscrews that hold the emulation control card to the HP 64700A Card Cage frame.

Attach the ribbon cable from the deep analyzer card to the emulation control card (if there is a
connector on the emulation control card), and to the software performance analyzer card, if
installed.

Chapter 6: Installation and Service
Step 2. Install the deep analyzer card in the HP 6 4700A card cage

88

9 Install the card supports.

10 To install the side cover, insert the side cover into the tab slots and fasten the two latches.

Chapter 6: Installation and Service
Step 2. Install the deep analyzer card in the HP 6 4700A card cage

89

11 Install the top cover in reverse order of its removal, but make sure that the side panels of the
top cover are attached to the side clips on the frame.

Chapter 6: Installation and Service
Step 2. Install the deep analyzer card in the HP 6 4700A card cage

90

Step 3. Turn on power

Connect the power cord to the rear panel of the HP 64700A Card Cage, and turn on power. The
line power switch is a pushbutton located at the lower, left-hand corner of the front panel. To turn
ON power, push the line switch button in to the ON position. The power light at the lower,
right-hand corner of the front panel will be illuminated.

Chapter 6: Installation and Service
Step 3. Turn on power

91

Verifying the installation

Verify installation by running the performance verification procedure for your
emulator/analyzer. The exact performance verification procedure to follow
depends on which emulator you have installed in your card cage, and which
emulation interface you are using. Follow the procedure for your
emulator/analyzer and its interface, as outlined in your emulator/analyzer
manual.

If your installation is correct, the performance verification procedure should
give you a display similar to the following:

Testing: HP64783A Motorola 68040 Emulator
 PASSED:
 Number of tests: 1 Number of failures: 0
Testing: HP64740 Compatible (PPN: 64794A) Deep Emulation Analyzer
 PASSED:
 Number of tests: 1 Number of failures: 0

 Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation
without prior
written permission is prohibited, except as allowed under copyright
laws.

 HP64700 Series Emulation System
 Version A.04.00 22Oct92
HP64783A Motorola 68040 Emulator
HP64740 Compatible (PPN: 64794A) Deep Emulation Analyzer
HP 64701A LAN Interface

If you have an emulation failure, you can replace the assembly that failed
through your local Hewlett-Packard representative, and through the Support
Materials Organization (SMO). Refer to the list of replacable parts at the end
of this chapter.

To verify installation of the optional memory modules on the deep analyzer
card, type the ver command, as follows:

M> ver

 HP64740 Compatible (PPN: 64794A) Deep Emulation Analyzer
 Version: A.03.00 25Jun93 Unreleased
 PC Board: 794-01-A1
 Depth: 80ch X 1K states selected, 80ch X 64K states available
 Bank 0: HP64172A (20ns) 256 Kbyte Module
 Bank 1: HP64172A (20ns) 256 Kbyte Module
 Bank 2: HP64172A (20ns) 256 Kbyte Module
 Bank 3: HP64172A (20ns) 256 Kbyte Module

Chapter 6: Installation and Service
Verifying the installation

92

What is pv doing to the analyzer?

The performance verification procedure provides a thorough check of the
functionality of all of the products installed in the HP 64700A Card Cage. The
exact set of test modules contained in the performance verification procedure
varies from one product to another. After the performance verification is run,
all products are set to their power on initialization states.

Troubleshooting

The test results for all of the performance verification modules are indicated
by a simple PASS/FAIL message. The PASSED message gives a high level of
confidence that all major functions and signals are operating properly.

A FAIL message indicates that one or more of the tested functions is NOT
working. In this event, an HP field representative can either swap assemblies
to isolate the failure, or replace all of the major assemblies. The optional
memory modules are not part of the analyzer card assembly. These memory
modules must be ordered separately. Remove these memory modules from
the analyzer card before replacing the card assembly.

Chapter 6: Installation and Service
Verifying the installation

93

Parts list

What is an exchange part?

Exchange parts are shown on the parts list. A defective part can be returned
to HP for repair in exchange for a rebuilt part.

Analyzer card (exchange)

To replace the analyzer card on the exchange program, you must remove the
parts listed below, and return only the analyzer card. Remove:

• the ribbon cable that connects the emulation control card to the analyzer
card.

• the optional memory modules installed in BANK1 through BANK4.

Main Assembly

Component Part New Exchange

HP 64794A Emulation-Bus Analyzer (deep) Card 64794-66501 64794-69501

34-pin ribbon cable 64708-61601

HP 64172A 256-Kbyte SRAM Module

HP 64172B 1-Mbyte SRAM Module

64172A

64172B

64172-69501

64172-69502

Chapter 6: Installation and Service
Parts list

94

Glossary

absolute count An absolute count in the trace list count column indicates
the total count accumulated between the displayed state and the trigger state.
For example, an absolute time count shown beside trace memory line number
100 indicates the elapsed time between capture of the trigger state and capture
of state 100.

analyzer clock speed The analyzer clock speed is defined as the bus cycle
rate of the emulation processor. If the emulation processor is running at
21 MHz and the fastest bus cycle requires 3 clocks, then the analyzer clock
speed (bus cycle rate) is 21/3 = 7 MHz.

compatible mode The compatible mode of the deep analyzer configures the
analyzer to provide the same memory depth as the 1K analyzer: 1024 states
deep when the analyzer is not configured to make a count of states or time
during a measurement, and 512 states deep when the analyzer is configured to
make a count of states or time during a measurement. If the emulator
interface you are using along with the deep analyzer requires that you use the
compatible mode, the deep analyzer will still be able to provide one of its
benefits for your measurement; you will be able to make your counts of states
or time at full emulator clock speed.

counter overflow This is the condition when the counter reaches maximum
count and begins a new count from zero. The counter simply counts
continuously once a trace begins; it increments its count every 20 ns, and
reaches maximum count in about 22.9 minutes (22 minutes and 54 seconds).
The deep analyzer sets a flag in memory and stores it along with the first state
that is captured after the counter overflow occurs (first state captured after the
counter begins again at zero).

deep analyzer In this manual, the term "deep analyzer" refers to the
HP 64794 Emulation-Bus Analyzer with deep trace memory.

95

expression In the terminal interface of your emulator, a simple expression is
the information that can fit into a single pattern or a single range (such as,
addr= 2105, data!= 15, and addr= 4012..401a). A complex expression is made
up of pattern, range, and arm labels joined together by various operators that
define the specific condition. Each of the pattern and range labels must be
previously assigned to specific simple expressions using the terminal interface
commands: tpat and trng .

label A label identifies a set of one or more analyzer channels. Example, the
label "addr" is used to identify the analyzer channels connected to the address
bus of the emulation processor.

overflow See counter overflow.

prestore qualifier A specification that must be met by a state before it can
be saved in the analyzer prestore memory.

qualifier A specification that must be met before an action can be taken by
the analyzer. For example, a store qualifier is a specification that must be met
by an incoming state before it can be stored in the trace memory. The "arm"
condition can be used as an additional qualifier. For example, an external
analyzer may be set up to supply a true signal to the rear panel BNC connector
on the card cage when it detects a true condition in the target system. Then
the analyzer can be set up to store qualify a certain kind of state, but only when
the arm signal from the BNC is true.

relative count A relative count in the trace list count column shows the
count between the present displayed state and the state displayed immediately
before it. Relative time count, for example, shows the elapsed time between
the previous displayed state and the present state. Note that the count is
between displayed states. If your trace list is inverse assembled and/or
dequeued, several states may have been captured in memory between the
present displayed state and the displayed state immediately before it.

store qualifier A specification that must be met by a state before it can be
saved in the analyzer trace memory.

Glossary
expression

96

trigger The trigger signals are called trig1 and trig2. They are bidirectional
signal lines that can be used to coordinate measurement activity between
emulators and analyzers installed in the instrumentation card cage, and
between instruments connected to the BNC on the rear panel of the card cage.
For details of how to configure and use trig1 and trig2, refer to the chapter on
"Tasks you can do with the deep analyzer" in this manual, and the chapter on
making coordinated measurements in your emulator/analyzer manual(s).

Note that there is delay when you use trig1 and/or trig2 for measurement
coordination. For example, you may specify that the emulator break to its
monitor program when it receives trig1 from the analyzer. Several states may
be executed in the emulator between the time the analyzer recognizes its
trigger condition, generates trig1, delivers trig1 to the emulator, and the
emulator responds to trig1 by breaking to its monitor program.

1K analyzer In this manual, the term "1K analyzer" refers to the HP 64703,
HP 64704, and HP 64706 Emulation-Bus analyzers with 1K trace memories.

! When shown in the trace list count column of the terminal interface or the
PC interface, the exclamation mark "!" indicates counter overflow.

Glossary
trigger

97

98

Index

A absolute, glossary definition of, 95
activity, analyzer line, 42
analyzer

clock (master) specification, 45-46
configuration, 43-44
count qualifier, 47
differences, 1-10
line activity, 42
master clock specification, 45-46
slave clocks, 54
trace list format, 48
trace sequencer, 55-56
trigger output, 49-53

analyzer clock speed, glossary definition of, 95
1K analyzer

definition of, 3
glossary definition of, 97

B break in emulator due to trace complete, 30

C capture continuous stream of execution, 19
capture depth, physical memory, 59-62
card cage, installing deep analyzer, 83-90
caution, antistatic, 80
clocks

specifying analyzer master, 45-46
specifying analyzer slave, 54

compatibility with software versions, 4-6
compatible mode

description, 9-10
glossary definition of, 95

concepts, depth of memory and trace counter, 58
configuration of the analyzer, 43-44
count qualifier, 47

99

counter
analyzer tag, 47
full count, 63
how it works, 63
overflow, 63
overflow indication not seen in trace list, 41, 68

counter overflow, glossary definition of, 95
counts

controlled by external analyzer, 29
negative counts in count column, 64, 69
negative values in count column, 36, 41

crosstriggering emulation-bus analyzers, 31

D deep analyzer
at a glance, 2
definition of, 3
emulators that can work with it, 10
emulators that cannot work with it, 10
glossary definition of, 95

deep mode
description of, 9-10
of the deep analyzer, 61

definitions of terms in glossary, 95-97
depth

capture in terminal interface, 61
reasons for selecting unload depth, 60
unload depth vs capture depth, 59-62

depth of memory
how to obtain different depths, 81-82
setting in terminal interface, 23

dialog box, trace options, 37
differences

between deep and 1K analyzers, 7-8
using graphical interface with deep analyzer, 35-38
using PC interface with deep analyzer, 39
using softkey interface with deep analyzer, 35-38
using terminal interface with deep analyzer, 40-42

displaying trace list in terminal interface, 24

Index

100

E edges (analyzer clock), rising, falling, both, 45
emulation break on analyzer trace complete, 30
emulators

that can work with deep analyzer, 10
that cannot work with deep analyzer, 10

equipment supplied with deep analyzer, 79
error messages, 73-76
exchange part, defined, 94
exclamation mark "!" in trace list count column, 41, 68
expression, glossary definition of, 96

F features only available in terminal interface, 25, 40
formats of trace list, 48

G glossary of terms, 95-97
graphical interface differences when using deep analyzer, 35-38

H hardware installation, 79-80
high level interface, using pod commands within, 19

I # # IL# in trace list Mnemonic column, 76
installation

deep analyzer card in card cage, 83-90
how to check it, 80
of analyzer hardware, 79-80
of optional memory modules, 81-82
verifying it is correct, 92-93

interface differences, 34
graphical interface when using deep analyzer, 35-38
PC interface when using deep analyzer, 39
softkey interface when using deep analyzer, 35-38
terminal interface when using deep analyzer, 40-42

L L clock (analyzer), 46
label, glossary definition of, 96
line activity (analyzer), 42
list of replaceable parts, 94

Index

101

M M clock (analyzer), 46
master clocks (analyzer), 45-46
memory, preventing storage of sequencer-advance state, 27
memory depth

capture depth in terminal interface, 61
setting in terminal interface, 23

memory modules, how to install, 81-82
menu, popup menu in trace list, 38
messages, error and status, 73-76
mixing pod commands with high level commands, 19
mnemonic column shows # # IL# notation, 76

N N clock (analyzer), 46
negative counts in trace list count column, 36, 41, 64, 69
new commands

in graphical user interface, 35
in softkey interface, 35

notation # # IL# in trace list, 76

O overflow, glossary definition of, 96

P parts list, 94
PC interface differences for deep analyzer, 39
performance verification after installation, 92-93
physical

capture depth, 59-62
capture depth in terminal interface, 61

pod commands used in high level interface, 19
popup menu in trace list, 38
prestore qualifier, glossary definition of, 96
prevent storage of sequencer-advance states, 27
problems seen in graphical and softkey interfaces, 64

Q qualifier, glossary definition of, 96
qualifiers

analyzer count, 47
analyzer master clock, 45-46

R relative, glossary definition of, 96

Index

102

S sequencer
preventing states from being stored in memory, 27
preventing storage of sequencer-advance state, 27
trace, 55-56
trace start with active term other than term1, 28

signals
analyzer clocks, 46
slave clocks (analyzer), 54
trigger output, 49-53

softkey interface differences when using deep analyzer, 35-38
software compatibility, 4-6
status messages, 73-76
store qualifier, glossary definition of, 96

T ta (trace activity display) command, 42
tag counter (analyzer), 47
tcf (set easy/complex configuration) command, 43-44
tck (specify master clock) command, 45-46
tcq (specify count qualifier) command, 47
term other than term 1 active at trace start, how to specify, 28
terminal interface

commands used in high level interface, 19
differences when using deep analyzer, 40-42

terms in the glossary, 95-97
testing analyzer hardware, 92-93
tf (specify trace list format) command, 48
tgout (specify signal driven on trigger) command, 49-53
time, negative times shown in count column, 36, 41, 64, 69
trace

continuous stream of execution, 19
count controlled by external analyzer, 29
data unload, how fast it is done, 60
preventing storage of sequencer-advance state, 27

trace list
differences in graphical interface, 35
differences in softkey interface, 35
display in terminal interface, 24
format command in terminal interface, 48
popup menu, 38

trace list contains # # IL# notation, 76
trace options dialog box, 37
trace tag counter, how it works, 63

Index

103

trigger one analyzer with another, 31
trigger, glossary definition of, 97
troubleshooting, 93
tsck (specify slave clocks) command, 54
tsq (specify sequencer) command, 55-56

U unload
how trigger position affects area unloaded, 60
reasons for making depth selection, 60

unload depth, 59-62
unload of trace data, how fast it is done, 60

V versions of compatible software, 4-6

W wait for measurement complete, how it is affected by unload depth, 61

Index

104

Certification and W arranty

Certification

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard
further certifies that its calibration measurements are traceable to the United
States National Bureau of Standards, to the extent allowed by the Bureau’s
calibration facility, and to the calibration facilities of other International
Standards Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in materials
and workmanship for a period of 90 days from date of installation. During the
warranty period, HP will, at its option, either repair or replace products which
prove to be defective.

Warranty service of this product will be performed at Buyer’s facility at no
charge within HP service travel areas. Outside HP service travel areas,
warranty service will be performed at Buyer’s facility only upon HP’s prior
agreement and Buyer shall pay HP’s round trip travel expenses. In all other
cases, products must be returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping
charges to HP and HP shall pay shipping charges to return the product to
Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for
products returned to HP from another country. HP warrants that its software
and firmware designated by HP for use with an instrument will execute its
programming instructions when properly installed on that instrument. HP
does not warrant that the operation of the instrument, or software, or
firmware will be uninterrupted or error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,
unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance agreements
are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service
Office.

Safety

Summary of Safe Procedures

The following general safety precautions must be observed during all phases of
operation, service, and repair of this instrument. Failure to comply with these
precautions or with specific warnings elsewhere in this manual violates safety
standards of design, manufacture, and intended use of the instrument.
Hewlett-Packard Company assumes no liability for the customer’s failure to
comply with these requirements.

Ground The Instrument

To minimize shock hazard, the instrument chassis and cabinet must be
connected to an electrical ground. The instrument is equipped with a
three-conductor ac power cable. The power cable must either be plugged into
an approved three-contact electrical outlet. The power jack and mating plug of
the power cable meet International Electrotechnical Commission (IEC) safety
standards.

Do Not Operate In An Explosive Atmosphere

Do not operate the instrument in the presence of flammable gases or fumes.
Operation of any electrical instrument in such an environment constitutes a
definite safety hazard.

Keep Away From Live Circuits

Operating personnel must not remove instrument covers. Component
replacement and internal adjustments must be made by qualified maintenance
personnel. Do not replace components with the power cable connected. Under
certain conditions, dangerous voltages may exist even with the power cable
removed. To avoid injuries, always disconnect power and discharge circuits
before touching them.

Designed to Meet Requirements of IEC Publication 348

This apparatus has been designed and tested in accordance with IEC
Publication 348, safety requirements for electronic measuring apparatus, and
has been supplied in a safe condition. The present instruction manual
contains some information and warnings which have to be followed by the user
to ensure safe operation and to retain the apparatus in safe condition.

Do Not Service Or Adjust Alone

Do not attempt internal service or adjustment unless another person, capable
of rendering first aid and resuscitation, is present.

Do Not Substitute Parts Or Modify Instrument

Because of the danger of introducing additional hazards, do not install
substitute parts or perform any unauthorized modification of the instrument.
Return the instrument to a Hewlett-Packard Sales and Service Office for
service and repair to ensure that safety features are maintained.

Dangerous Procedure Warnings

Warnings, such as the example below, precede potentially dangerous
procedures throughout this manual. Instructions contained in the warnings
must be followed.

Warning Dangerous voltages, capable of causing death, are present in this instrument.
Use extreme caution when handling, testing, and adjusting.

Safety Symbols Used In Manuals

The following is a list of general definitions of safety symbols used on
equipment or in manuals:

Instruction manual symbol: the product is marked with this symbol when it is
necessary for the user to refer to the instruction manual in order to protect
against damage to the instrument.

Hot Surface. This symbol means the part or surface is hot and should not be
touched.

Indicates dangerous voltage (terminals fed from the interior by voltage
exceeding 1000 volts must be marked with this symbol).

Protective conductor terminal. For protection against electrical shock in case
of a fault. Used with field wiring terminals to indicate the terminal which must
be connected to ground before operating the equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal
common, as well as providing protection against electrical shock in case of a
fault. A terminal marked with this symbol must be connected to ground in the
manner described in the installation (operating) manual before operating the
equipment.

Frame or chassis terminal. A connection to the frame (chassis) of the
equipment which normally includes all exposed metal structures.

Alternating current (power line).

Direct current (power line).

Alternating or direct current (power line).

Caution The Caution sign denotes a hazard. It calls your attention to an operating
procedure, practice, condition, or similar situation, which, if not correctly
performed or adhered to, could result in damage to or destruction of part or
all of the product.

Warning The Warning sign denotes a hazard. It calls your attention to a procedure,
practice, condition or the like, which, if not correctly performed, could result
in injury or death to personnel.

	In This Book
	Contents
	Deep Analyzer, at a glance
	Unique Deep Analyzer Tasks
	Interfaces of the Deep Analyzer
	Concepts
	Error and Status Messages
	Installation and Service
	Glossary
	Index
	Certification and Warranty
	Safety

