HP 64853

8086/88, 70108/116
Cross Assembler/Linker
User’'s Guide/Reference

HEWLETT
[ﬁl”] PACKARD
Edition1

64853-90910
E0189
Printed in U.S.A. January 1989

Notice

Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warran-

ties of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein
or for incidental or consequential damagesanreection with

the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reli-
ability of its software on equipment that is notrfished by
Hewlett-Packard.

© Copyright 1987, 1989, Hewlett-Packard Company.

This document contains proprietary information, which is pro-
tected by copyright. All rights are reserved. No part of this docu-
ment may be photocopied, reproduced or translated to another
language without the prior written consent of Hewlett-Packard
Company. The information contained in this document is sub-
ject to change without notice.

AdvancelLink, Vectra and HP are trademarks of Hewlett-
Packard Company.

MS-DOS is a trademark of Microsofto@oration.
UNIX is a registered trademark of AT&T.

VAX/VMS is a registered trademark of Digital Eleghics Cor-
poration.

Logic Systems Division
8245 North Union Boulevard
Colorado Springs, CO 80920, U.S.A

Printing History

New editions are complete revisions of the manual. The date
on the title page changes only when a new edition is published.

A software code may be printed before the date; this indicates
the version level of the software product at the time the manual
or update was issued. Maproduct updates and fixes do not re-
quire manual, and manual corrections may be done without ac-
companying product changes. Therefore, do not expect a one-to-
one correspondence between product updates and manual revi-
sions.

Edition 1 January 1989 64853-90910 E0189
(replaces 64853-90908 E0486
64853-90909 E0288

Certification and W arranty

Certification

Hewlett-Packard Company certifies that this product met its
published specifications at the time of shipment from the fac-
tory. Hewlett-Packard further certifies that its calibration meas-
urements are traceable to the United States National Bureau of
Standards, to the extent allowed by the Bureau’s calibration fa-
cility, and to the calibration facilities of other International
Standards Organization members.

Warranty

This Hewlett-Packard system product is warranted against de-
fects in materials and workmanship for a period of 90 days from
date of installation. During the warranty period, HP will, at its
option, either repair or replace products which prove to be de-
fective.

Warranty service of this producilibe performed at Buyer’s fa-
cility at no charge within HP service travel areas. Outside HP
service travel areas, warranty service will be performed at
Buyer's facility onlyupon HP’s prior aggement and Buyer shall
pay HP’s round trip travel expenses. In all other cases, products
must be returned to a serviceifg designated by HP.

For products returned to HP for warranty service, Buyer shall
prepay shipping charges to HP and HP shall pay shipping
charges to return the product to Buyer. However, Buyer shall
pay all shipping charges, duties, and taxes for products returned

Limitation of
Warranty

Exclusive Remedies

to HP from another country. HP warrants that its software and
firmware designated by HP for use with an instrument will exe-
cute its progamming insructions when properly installed on

that instrument. HP does not warrant that the operation of the
instrument, or software, or firmware will be unimepted or er-
ror free.

The foregoing warranty shall not apply to defects resulting from
improper or inadequate maintenance by Buyer, Buyer-supplied
software or interfacing, unauthorized modification or misuse,
operation outside of the environment specifications for the
product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically dis-
claims the implied warranties of merchantability and fitness for
a particular purpose.

The remedies provided herein are buyer’s sole and exclusive
remedies. HP shall not be liable for any direct, indirect, special,
incidental, or consequential damages, whether based on con-
tract, tort, or any other legal theory.

Product maintenance agreements and other custossistance
agreements are available for Hewlett-Packanaducts.

For any assistance, contaouy nearest Hewlett-Packard Sales
and Service Office.

Using This Manual

This 8086/8088 Series Assembler/Linker manual is pasklem
oriented. Tasks that you will perform with the assembler/linker
are shown below:

Organization

Chapter 1

Chapter 2

Chapter 3

Overviews the HP 64000 Assembler/Linker gardvides a brief
introduction to the 8086/8088 Assembler/Linker.

Provides a quick example by stepping through the process of as-
sembling and linking three example program modules.

Discusses how to use the assembler. Chapter 3 contains a de-
scription of the command and command line options that allows
you to assemble your program modules. This chapter also de-
scribes the output files which are created by the assembler.

Chapter 4

Chapter 5.

Chapter 6

Chapter 7

Chapter 8

Discusses how to link assembly language programs. Chapter 4
contains a description of the command and command line op-
tions that allow you to link your program modules. This chapter
also describes the input files to the linker and the ouput files
that are created by the linker.

Discusses source file format and exgsiens. Chapter 5 con-

tains information on the label, operation, operand and com-
ment fields of an assembly language program source file, as well
as information on symbolic terms, numeric terms, string con-
stants, expression operators, and relocatable expressions.

Discusses progmming considerations. Chapter 6 contains in-
formation how and when to use special 8086/8088 pseudo in-
structions and keyword operators.

Discusses pseudo instructions. Chapter 7 contains syntax de-
scriptions of the HP 64000 and special 8086/8088 pseudo in-
structions.

Discusses macros instructions. Chapter 8 contains asdiecu
of advantages and disadvantages of using macros and informa-
tion on how to use macros.

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Contains a summary of t/8986/8088, 80186/80188, and 80286
instruction set.

Contains information for 8028&rotected mode assembler pro-
gramming. This appendixincludes descriptions of the special
80286 pseudo itructions, and a protected mo8@286 example

program.

Contains information on the 70116/70108 assembler, including
microprocessor architecture, pragnming considerations, and
the 70116/70108 inguction set smmary.

Contains information on 8087 architectupeggramming con-
siderations, special 8087 pseudatinstions, and th8087 in-
struction set smmary.

Contains information on 8089 architectupeggramming con-
siderations, the special 8089 pseuddrinction, and th&089 in-
struction set smmary.

Contains information on the 70320/70330 assembler, including
microprocessor architecture, pragnming considerations, and
the 70320/70330 inmuction set smmary.

Contains a list of the assembler@ messages, and gives a brief
description of each.

Appendix H Contains descriptions of fatal and nonfatal link errors, why the
error occurred, and how to correct it.

Appendix | Contains ASCII Conversion Table.

Index Contains topics of interest for quick location.

Contents

|
Chapter 1

Assembler/Linker Introduction

HP 64000 Assembler. i 1-1
Functional Description i 1-1
Assembler Operation., 1-2

HP 64000 Linker e 1-2
Functional Description 1-3
Relocatable Code Areas ..., 1-3
Linking Relocatable Files For Emulation 1-5
Introduction To The 8086/8088 Assembler/Linker. 1-5
80286 Protected Mode i 1-5
Processor Directives 1-6

Host-SpecificIssues.o i 1-7

|
Chapter 2

A Quick Example

Introduction 2-1
Objectives of the Example Program. 2-1

Description of the Example Program..................... 2-2
The MOV_MESG Program Module................... 2-3
The "TRANSFER "Program Module.................. 2-8

Contents-1

The "DELAY"Program Module 2-10

Assembling Program Module Source Files........... 2:11
Viewing Assembler ListingFiles 2-12
Program Module Assembly Listings..................... 2-12
Creating an Example LibraryFile....................... 2-19
Linking Program Module Relocatable Files 2-20
Callingthe Linker. i, 2-20
Answering Linker Questions........................ 2-21
Linker ListingFile i 2-23

Chapter 3 Assembling Your Programs

Introduction 3-1
Functional Components Of The Assembler 3-1
Initialization. 3-2
Pass 1. ... 3-2
Pass 2. .. 3-2
Pass 3. .. 3-2
Pass 4. ... 3-2
Input/Output Files. 3-3
Source lnputFile 3-3
Assembler Qutput Files 3-3
Specifying Page Length of Assembler Output Listing ... 3-5
Assembling The Programc .. 3-6
asm (HP-UX) e 3-7
asm (MS-DOS). 3-9
assemble (HP 64000)cciiiiiiiiiiiinnn.n. 3-11
asm (VAXIVMS) . .o 3-13
Output Listingo 3-15

2-Contents

Chapter 4

Linking Your Programs

Introduction 4-1
Linker Functional Components 4-2
Initialization. 4-2
Pass 1. ... 4-2
Pass 2. ... 4-2
Cross-reference 4-2
Linker Input/Output Files 4-3
Linker InputFiles. i 4-3
Linker Qutput Files i 4-3
Specifying Relocatable Filesto be Linked................. 4-4
Answering Linker Questions, 4-4
Explanation of Link Editor Questions 4-6
Using Linker Command Files. 4-8
Runningthe Linker....... i 4-9
INK (HP-UX). ..o 4-10
INK(MS-DOS) ...t e 4-12
INK (HP 64000)ttt e 4-14
INK (VAXIVMS). .o 4-17
Linker OUtput o 4-19
Listing (Load Map).o oo 4-20
Cross-Reference Table. 4-23

Chapter 5

Source File Format And Expressions

Introduction e 5-1

Source Stament FormatRules............ 5-1
Field Sequence 5-2
Delimited Fields 5-3
Label Field Position. 5-3

Contents-3

StatementLength i 5-3

LabelField. 5-4
Operation Field. i 5-6
Operand Field i, 5-6
CommentField............ .. i, 5-7
Delimiters. 5-7
Symbolic Terms. 5-8
Program Counter ($)ooiii i 5-8
NUMENCTEIMS . ..o e 5-8
StringConstants 5-9
Expression Operatorst 5-11
ArithmeticOperators. 5-11
Logical Operators. 5-11
Operator Precedence 5-12
Relational Comparison (MacrosOnly). 5-12
Relocatable Expressions. 5-13
Absolute Terms. 5-14
Relocatable Terms i 5-14
Invalid Relocatable Terms. 5-15

Chapter 6 Programming Considerations

Introduction 6-1
Key Concepts to Understanding the 8086/8088
Assembler... 6-2
Impact of Segmented Architecture on Programming 6-2
8086/8088 Segmented Architecture 6-2
Physical Addresses vs. Logical Addresses
(Segment:Offset)... 6-3
Different Logical Addresses Can Specify
the Same Physical Address. 6-4
Physical Addresses i 6-4

4-Contents

Specifying Segments for Memory

Referencing Operands ... 6-5
Specifying Segment Registers Explicitly. 6-5
Specifying Segment Registers Implicitly. 6-6
HP 64000 COdE Areasvuiiiiiaiiaannn 6-6
Using the ASSUME Pseudo Instruction 6-7
Forward References.......... 6-8
Segment OVverridesot e 6-9
Turning Off the "ASSUME"Pseudo 6-9
TypesofOperations 6-10
Five "Types" Associated with Program Symbols 6-10

How '"Types" Are Associated with
Memory Locations. .. 6-11

"Types" Associated With Data Locations 6-12
"Types" Associated With Instruction Locations. 6:12
Three Conditions to Remember
About "Types" When Writing Programs 6-13
When Instructions Have Two Operands,
and Both Imply A "Type". 6-13
When '"Types" Associated with Operands Disagree. 6-14
When Instructions Have Two Operands,
And Only One Is Associated With A "Type" 6-14

When No "Types" Are Associated With Instruction . . 6-15
Assigning "Types"to Operands Which
Imply No "Type" .. 6-15

Using Keyword Operators 6-16
Assigning '"Types"to Operands Which Imply None 6-18
Type Overrides e 6-18
Using Near Type Overrides., 6-19
Using FAR PTR Type Overrides. 6-20
Using the SHORT Keyword Operator 6-21
Using the LABEL Pseudo Instruction 6-21
Using the THIS Keyword Operator. 6-23
Using the PROC Pseudo Instruction 6-25
Other Keyword Operators., 6-27

Predefined Symbols......... 6-27

Operands 6-29
Register Operands ... 6-29
Default Register Operandscovue... 6-29
Immediate Operands 6-30.

Contents-5

6-Contents

Chapter 7

MemoryOperandst 6-31
String Operations it 6-32

Pseudo Instruction Summary

HP 64000 Pseudo Itrsictions., 7-2
Special 8086/8088 Pseudo insctions. 7-3
Pseudo Instruction Syntax i 7-4
ALIGN 7-5
ASC 7-6
ASSUME. ... 7-7
BIN 7-9
COMN/DATA/IPROG ... e 7-10
DB . 7-12
DBS . 7-14
DD 7-15
DD S 7-17
DWW . 7-18
DWW S . 7-20
DECIMAL .. 7-21
END 7-22
EQU 7-23
EXPAND ... 7-24
EXT 7-25
GLB . 7-27
HE X 7-28
P 7-29
INCLUDE ... e 7-31
LABEL ..o 7-32
LIST 7-33
MASK 7-35
NAME .. 7-37
NOLIST 7-38
O CT 7-40

PROC. . 7-42
REAL. . 7-45
REPT 7-47
SET 7-48
SPC 7-49
TITLE . 7-51
WARN/NOWARN . .. 7-52

Chapter 8

Using Macro Instructions

Introduction 8-1
AdvantagesofUsingMacros. 8-1
Disadvantages of UsingMacros., 8-2
Macros —vs— Subroutines 8-3
Macro Format. 8-3
Header Statement. i 8-3
Macro Definition Name. 8-4
Macro Definition Body i 8-4
Macro Trailer Statement 8-4
Example e 8-5
CallingMacros 8-5
Example 8-5
Optional Parameters. ... 8-6
Symbolic Parameters 8-6
Text Replacement and Concatenation 8-7
Unique Label Generation. 8-8
Example 8-8
Conditional Assembly. 8-9
SETInstruction ... 8-9
AF Instruction 8:11
GOTO Instruction. 8-11
NOP Instruction. i 8-12

Contents-7

8-Contents

Appendix A

Appendix B

Checking Macro Definition Parameters............. 8-13
Indexing Parameters 8-15.

8086/8088 Series Instruction Set Summary

80286 Programming

Introduction B-1
The "SEG" Keyword Operator In 80286 Programs B-2
80286 Pseudo IMUCtioNSt B-3
The DD Pseudo Instruction B0286 Programs............ B-3
CALL_GATE/TASK_GATE/

INTR_GATE/TRAP_GATE B-4
IJMP/ CALL. .. B-5
SEGMENT .. B-6
SEG_DES/TSS DES/LDT_DES ot B-7
STACKSEG . ..o B-8
The 80286 Example Program. B-9

Appendix C

70108/70116 Programming And Instruction Set
Summary

Programming Considerations C-1
Modes Of Operation...........c. i C-2
Addressing Capalities i C-2
Instruction Set Smmary C-3
70116/70108 Registerdnesccuiin... C-6
Instruction Set Symbols C-7

Appendix D

8087 Programming and Instruction Set Summary

Introduction e D-1
8087 Architecture. D-2
FloatingPoint Stack D-2
8087 ENVIONMENt . .. it D-3
Status Word e D-4
ControlWord D-4
TagWord . ..o D-6
Exception Pointers. ... D-7
Instruction Opcode. D-8
Data TYPeS . . .o D-8
Rulesand Conventions., D-11
Data Transfer Instructions D-11
Examples D-12
Arithmetic Instructions D-12
Classical Stack i i e D-13
Example D-13
Stack Element D-13
Example D-14
Stack Elementand POP............. D-14
Example D-14

Contents-9

RealMemory. D-14

Example D-14
BinaryInteger ... D-14
Example D-15
Comparison Instructions i D-15
Example D-15
Transcendental Instructions D-15
Constant Instructions i D-16
Processor Control Instructions D-16
Special 8087 Pseudo tmsctions D-17
8087 Ingruction Set Smmary. ... D-18
DO i D-19
DT o D-21

Appendix E

10-Contents

8089 Programming and Instruction Set Summary

8089 Architecture. E-2
RegiSters. . .o E-2
Operands.o e E-5
Register Operandst E-5
Pointer/RegisterOperands, E-5
Immediate Data Operandsc.iviuin... E-6
Program Location Operands. E-6
Data MemoryOperandscoiiiiiinnnnnn... E-7
Data MemoryBitOperands E-8
Special 8089 Pseudo fmsctions E-9
EVEN . E-10
8089 Ingruction Set Smmary E-11

Appendix F

70320/70330 Programming And Instruction Set
Summary

Programming Considerations
Addressing Capalities
Instruction Set Smmary
70320/70330 Registerdnes.,
Instruction Set Symbols

Appendix G

Assembler Error Messages

Detectionand Listing,
Assembler ErrorCodes i

Appendix H

Linker Error Messages

Error Messages.
Fatal ErrorMessages,
Nonfatal Error Messages.ccovivinnn...

Contents-11

Appendix| ASCII Conversion Table

Index

12-Contents

lllustrations

Figure 1-1.
Figure 2-1.
Figure 2-1.
Figure 2-2.
Figure 2-3.

Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 6-1.
Figure C-1
Figure D-1
Figure D-2
Figure D-3
Figure D-4
Figure D-5
Figure D-5
Figure E-1

Figure F-1.

Figure G-1

Linker Module Functions. 1-4
The MOV_MESGdhirce File................ 2-4
The MOV_MESGdarce File (Contd)........ 2-5
The TRANSFERoSrce File. 2-9
The DELAY 8urce File. 2-10
The MOV_MESG Assembly Listing. 2-13
The TRANSFER Assembly Listing 2-17
The DELAY Assembly Listing. 2-18
The DEMO Linker Listfile.................. 2-23
Burce Program Example 3-15
Assembler Output Listing. 3-16
Assembler Output Listing Withigrs 3-18
Example Linker @omand File............... 4-9
Example Load Map Listing. 4-20
Sample Cross Reference Table............... 4-23
Calculating Physical w/Logical Addresses 6-4
. Typical Instruction Format C-4
. StatusWord Format D-3
. ControlWord Format. D-5
. TagWord Format D-6
. Exception PointersFormat D-7
.DataFormats.......... D-9
. Data Formats (Contd)..................... D-10
. 8089 Registers E-3
Typical Instruction Format. F-4
. Error Message Format...................... G-2

Contents-13

Tables

14-Contents

Table 5-1. Delimiters i 5-6
Table 6-1. Keyword Operatorsccoiiina.... 6-16
Table 6-1. Keyword Operators (Contd) 6-17
Table 6-2. Predefined Symbols................. 6-28
Table A-1. ConditionalJump Flags. A-2
Table A-2. Instruction Set&umary..................... A-3
Table A-3. Operand Forms i, A-36
Table C-1. 70116/70108 Itrsiction Set Smmary.......... C-8
Table D-1. 8087 Data Typesvvit i D-8
Table D-2. Arithmetic Instructions D-12
Table D-3. 8087 Irtsuction Set Smmary D-23
Table E-1. 8089 Irisuction Set Smmary E-12
Table F-1. 70320/70330 Specific Inst. SehfBoary. F-12

Assembler/Linker Introduction

HP 64000 The HP 64000 Assembler is a table-driven assembler to convert

Assembler the users source program into relocatable data which can then
be linked into executable machine language. The assembler is ca-
pable of producing code for virtually any microprocessor. Main
assembler functions are the same regardless of the microproces-
sor being specified. Additional information is added for individ-
ual microprocessors in the form of tables. Tables are used to in-
terpret processor-specific instructions and mnemonics.

Functional The assembler covers the interactions required with the host sys-
Description tem. Functions include reading and parsing the source program.
All of the input and output file operations required by the
source program, the resulting relocatable codelianfiles are
handled by the assembler. The
assembler also:

1. Parses each line of the source program identifying the in-
struction for the specific processor.

2. Maintains a symbol table whose contents contain file sym-
bols along with the associated values and symbol types.

3. Checks operand fields and flags errors if the syntax and/or
address rules are not followed.

Assembler/Linker Introduction 1-1

Assembler Operation

The HP 64000 Assembler reads the first line of thece file

and looks for an assembler directive indicating which processor
language is in the file that follows. The assembler then reads an-
other file that contains the table for the indicated processor.

A simple interpreter is part of the assembler that handles the ta-
ble code. The interpreter takes the specially coded table infor-
mation and decodes it into instructions for the

assembler. These instructions call up assembler functions, such
as expression handlers, and object code generation.
Instructions also allow for arithmetic operations and testing for
Boolean results.

HP 64000 Linker

The linker is table-driven. Relocatable object modules are com-
bined into one absolute file and executed in an emulation envi-
ronment or used for progmming PROM’s (see Figuilel).

Table driven architecture allows the linker to support a variety
of processors. The assembler directive in each relocatable file is
used to identify the required processor tables. Each supported
processor has a linker table used by the linker for configuration.

Linker tables contain two types of information: general
information (such as word width and addressing space), and ta-
bles or sequences of instructions for the linker. The different in-
struction types and addsging modes allowed in the targebc-
essor correspond to the entry points in the linker table.

1-2 Assembler/Linker Introduction

Functional In preparing object code modules for the HP 64000 load
Description program, the linker performs two functions: relocation and link-
ing. These two functions are discussed in the following para-
graphs.

Relocatable Code Several relocatable areas are provided by thé#®0 assem-
Areas bler and linker. Assembler pseudos ORG, PROG, DATA and

COMN define the relocatability of code. ORG defines code to
be absolute or nonrelocatable. PROG and DATA are general
purpose relocatable counters that allow user partitioned code
to the loaded at different memory locations. For example,
pseudos can load all program in ROM and all data in RAM.
COMN specifies that the data be relocated to the same starting
address as the COMN data from all other relocatable modules.
When relocatable modules are linked, the user provides the
starting addresses for the PROG, DATA and COMN relocat-
able code.

Assembler/Linker Introduction 1-3

RELOCATABLE
FILES

¢

LINKER ® Build list of files with
load address.

INITIALIZATION ® Build list of library files
(PASS @) with lood oddresses.

¢ ® Save "Lnk_cmd" file.
®Build Symbol Table.
LINKER @®ldentify Externals ond
PASS 1 Clobals.

®Scan Llibrary Files.

®Read Relocatable Code.
LINKER ®Interpret Record Type.
PASS 2 @®GCenerate Absolute Code.
ABSOLUTE
FILE

Figure 1-1. Linker Module Functions

1-4 Assembler/Linker Introduction

Linking Relocatable
Files For Emulation

Introduction To The
8086/8088
Assembler/Linker

80286 Protected
Mode

Relocatable modules are linked and absolute and symbol files
generated for use in emulation by the linker. During emulation
the user may debug the program using symbols from the source
program. The user does not have to know whereemory the
linker stored the relocatable code. Any locatiomi@amory may

be referred to by its symbolic name or by its absolute address.

The linker also creates a global symbol file for every link opera-
tion. This file is used by the emulator, along with assembler sym-
bol tables, to provide symbolic debugging. It may also be used in
subsequent links to preload the linker symbol table. This feature
may be used in overlays and in reducing linking and download
time for large pieces of software.

8086, 8088, 80186, 80188, 8089_86, and 8089_88

assemblers each support an address space of 20 bit80T8&
assembler supports ti88286 micoprocessor instruction set for
the 8086 compatible mode, i.e., 20 bit address space. All of the
above assemblers use the 8086 or 8088 linkers. Load addresses
specified in assembler ORG statements or linker load address
statements ar@put as 32 bit logical addresses (i.e., segment/off-
set). The upper 16 bits are the segment. The lower 16 bits are
the offset. No delimiter exist between segment and offset. No
procedure exists with this Assembler/Linker to input the physi-
cal

address. The user must use the logical address.

The 80286 assembleungports the80286 micoprocessor

instruction set in the protected mode. Timsans the

assembler uses the 24 bit address space. Both in assembler ORG
and linker address statements, pnegram must specify the 24

bit physical address of the object code. There is no procedure to
input a logical address of selector and

offset.

The 80286 mimprocessor, upon reset, starts in the 20 bit ad-
dress 8086 compatible mode. Transition from the 8086 compat-
ible mode to the 80288rotected mode is performed program-

Assembler/Linker Introduction 1-5

matically, i.e. the descriptor tables must be initialized and the
machine status word set to the protected mode. Further, once
invoked by the program, an exit cannot be done except using
"RESET".

Note The HP 64853’s "80286" assembler was designed as an early sup-
port tool for theB0286 micoprocessor running in the Protected
Virtual Address Mode. In that mode there are some known limi-
tations. (For instance, the "80286" assembler is not compatible

with the HP 64228 - 80286 Emulator.) We enrage80286 us-

ers to use the HP 64859 Cross Assembler/Linker instead. The
HP 6485%roduct supports th@0286 in both the Real Address
Mode and the Protected Virtual Address Mode.

Processor Directives When developing an assembly language program, whether a co-
processor is involved or not, select the appropriate directive
from: "8086", "8088", "80186", "80188", "80286", "8089_86",
"8089_88", "70108", "70116", "70320", or “70330". The directive
number should be that of the processor being used.

1-6 Assembler/Linker Introduction

Host-Specific
Issues

The preceeding sections have discussed the HP 64000
assembler and linker in a general fashion about features of the
assembler that are the same for the different hosts. There are
some host-specifics that make the assembler

appear differently on the different hosts. These host-specific is-
sues have to do not with the operation and function of the as-
sembler and linker, but instead of the machine-specific com-
mand line interface and file name conventiorte.olughout the
rest of the manual, these differences will be a described where
appropriate. For quick reference,

however, refer to the following table for a summary of the inter-
face differences.

Assembler/Linker Introduction 1-7

COMMANDS

HP-UX MS-DOS HP 64000 VAXIVMS
asm asm assemble asm
Ink Ink link Ink
OPTIONS
HP-UX MS-DOS HP 64000 VAXINMS
-0 /o listfile /IOUTPUT
-l Nl list /LIST
-n /n nolist INOLIST
-e le expand IEXPAND
-X Ix xref IXREF
-t It nocode /INOCODE
-C /c no_overlap /INOMEM_OVRLP
-v N (no option) /NERBOSE
FILE NAMES
HP-UX MS-DOS HP 64000 VAXINMS
filename.S flename.S Filename:surce FILENAME.S
flename.R flename.R Filename:reloc FILENAME.R
flename.A flename.A Filename:asmb_sym FILENAME.A
filename.X flename.X Filename:absolute FILENAME.X
filename.L filename.L Filename:link_sym FILENAME.L
flename.K filename.K Filename:link_com FILENAME.K
flename.O filename.O Filenamelisting FILENAME.LIS

1-8 Assembler/Linker Introduction

A Quick Example

Introduction

Objectives of the
Example Program

This chapter contains a quick step-by-step example of the proc-
ess of assembling and linking several program modules. You will
be acquainted with the HP 64000, 8086/8088 Cross Assembler/
Linker and shown the steps in assembling and linking program
modules.

Topics listed below are covered by the exanglegram. They

are provided to indicate why the example program is written the
way it is. The example program shows some of the basic features
of the 8086/8088 Cross Assembler/Linker. The exampde

gram will:

Contain 8086/8088 assembly languagérinctions written to
use PROG, DATA, and COMN relocatable code areas (seg-
ments).

Contain a few of the most used special 8086/8088 pseudo in-
structions.

Show how the HP 64000 relocatable code areas (PROG,
DATA, and COMN) are used in linking relocatable program
modules.

Contain an example of a simple macro definition.
Show how to link two or more program modules.
Show how to link relocatable files from a libraryfile.

A Quick Example 2-1

Note #

The example programs in this chapter (and in the rest of the
manual) are not resident in the assembler/linker software.
Therefore, if you wish to step through the examples on your sys-
tem exactly as they are shown in the manual, you must enter the
program module source files.

Description of the
Example Program

2-2 A Quick Example

The example program moves data from three diffenggrhory
locations to a fourtimemory location. The program is divided
into three modules to show how several program modules are
linked together.

The MOV_MESG program module is made up of a data table
containing the messages to be transferred. The main program
defines a macro and calls "transfer" and "delaytsutines. A
memory storage location to which the messagkbevtrans-
ferred is also included.

The TRANSFER program module contains the TRANSFER
subroutine which is called by the main program. The TRANS-
FER subroutine transfers data between tv@mory locations

to the destination memory location. The subroutifeget the
addresses of the beginning and end of the message to be trans-
ferred by reading the contents of two "parametessipay“mem-

ory locations. These "parametersgag"'memory locations are
defined in the MOV-MESG program module.

The MOV_MESG
Program Module

The DELAY program module contains the DELAY subroutine
called by the main program. The DELAY subroutine causes a
delay whose length is specified by the contents of a "parameter
passing'memory location. The parametergsamgmemory loca-
tion is defined in the MOV_MESG program module. The DE-
LAY program module vl be placed in an example library file

to show how to link relocatable files from a library file.

The example program providedmove three messages con-
tained in a data table to another memory location. The messages
are labeled MESGO0, MESG1, and MESG2. Ends of each mes-
sage are also labeled so that the progrdhkmow how many

words of data to transfer. The destination memory location is la-
beled VIDEO_RAM.

The example programil(1) move the first message to
VIDEO_RAM, where it will be displayed for dert length of

time. The example programilithen (2) move the second mes-
sage to VIDEO_RAM, where is is displayed for a shorter length
of time. Finally, the example shows a (3) movement of the third
message to VIDEO_RAM, where it is displayed for an even
shorter length of time. The progranilihen loop back to dis-

play the second and third messages, one after the other, repeat-
edly. The MOV_MESG source file is shown below.

A Quick Example 2-3

"8086"

GLB MESG_OFFSET,MESG_END_OFFSET
GLB DELAY_COUNT,VIDEO_RAM,START
EXT TRANSFER,DELAY

DATA

DATA_TABLE

MESG_OFFSET DWS 1

MESG_END_OFFSET DWS 1

DELAY_COUNT DWS 1

MESGO DB "THIS EXAMPLE PROGRAM "
DB "MOVES SEVERAL MESSAGES "
DB "FROM A DATATABLETO A"
DB "MEMORY LOCATION"

MESGO_END

MESG1 DB "THE FIRST MESSAGE IS "
DB "DISPLAYED FOR A MEDIUM "
DB "LENGTH OF TIME "
DB " "

MESG1_END

MESG2 DB "THE SECOND MESSAGE IS "
DB "DISPLAYED FOR A SHORTER "
DB "LENGTH OF TIME "
DB " "

MESG2_END

Figure 2-1. The MOV_MESG Source File

2-4 A Quick Example

PROG
ASSUME CS:PROG,DS:DATA,ES:COMN

START MOV AX,SEG DATA_TABLE
MOV DS,AX
MOV AX,SEG VIDEO_RAM
MOV ES,AX
SET_UP MACRO &MESG_NO,&MESG_NO_END,&DELAY_COUNT
MOV MESG_OFFSET,OFFSET &MESG_NO
MOV MESG_END_OFFSET,OFFSET &MESG_NO_END

MOV DELAY_COUNT, &DELAY_COUNT
CALL TRANSFER

CALL DELAY
MEND
SET_UP MESGO,MESGO_END.,# 5FFH

REPEAT SET_UP MESG1,MESG1_END,# 4FFH
SET_UP MESG2,MESG2_END.,# 3FFH

JMP REPEAT
COMN

VIDEO_RAM DDS 40H
END

Figure 2-1. The MOV_MESG Source File (Cont'd)

A Quick Example 2-5

2-6 A Quick Example

Declaring Global Symbols

The MOV_MESG program module first declares global sym-
bols using the GLB pseudo instruction. The labels
MESG_IOFFSET, MESG_END_OFFSET, and VIDEO_RAM
are declared as global symbols because they are to be used by
the TRANSFER subroutine module. MESG_OFFSET, and
MESG_END_OFFSET are memory locations which contain
offset addresses of the beginning and end of the messages to be
transferred to VIDEO_RAM.

The label DELAY_COUNT is declared as a global symbol be-
cause the DELAY library subroutinaliwse the contents of

the DELAY_COUNT memory location as a count value.
START is declared global because it labels the starting address
for program execution.

Declaring External Symbols

The external (EXT) pseudo instruction allows use of labels
which are defined in other program modules. In the
MOV_MESG program module, CALL DELAY and CALL
TRANSFER instructions use labels defined in the DELAY and
TRANSFER program modules, respectively. Therefore, DE-
LAY and TRANSFER must be declared as external symbols.

DATA Relocatable Code Area

The DATA code area (segment) contains memory locations
through which values are passed to the DELAY and TRANS-
FER subroutines. The DWS spe@aiB6/8088 pseudo itrsic-
tion reserves 1 word for memory for each of the labels
MESG_OFFSET, MEST_END_OFFSET, and DE-
LAY_COUNT.

The DATA code area also contains the three messages to be dis-
played in the VIDEO_RAM memory location. ASCII string
messages are defined with the DB (Define Byte)

special 8086/8088 pseudo insction. These three messages are
labeled MESGO0, MESG1, and MESG?2. Ends of the three mes-
sages are labeled MESGO_END, MESG1 END, and

MESG2_END to allowthe program to determine how many
words to transfer.

PROG Relocatable Code Area

Program code for all three modules appears in the PROG code
area (segment). The ASSUME pseudo instructidia tiee as-
sembler that the segment values of the addresses
corresponding to the H®4000 code areas PROG, DATA, and
COMN are in segment registers CS, DS, and ES respectively. As
an example, when we load the MESG_OFFSET location with
data, the assembler will assume that DS

contains the segment value of the MESG_OFFSET address (be-
cause MESG_OFFSET isin the DATA code area).

The program begins by loading the processors segment registers
with values corresponding to the DATA and COMN segments.

It is not necessary to initialize the CS register since all program
instructions Wl be linked to the same PROG segment. Register
CS will not be used in

calculating addresses of memory references in the PROG seg-
ment.

SET_UP Macro Definition

Next the program must load the "pareter pasing"memory lo-
cations with values for the TRANSFER and DELAY subrou-
tines. Since these memory locations are loaded three times, each
time using different offset addresses, a macro definition elimi-
nates the need for writing the same set of instructions three
times.

A Quick Example 2-7

The "TRANSFER "
Program Module

2-8 A Quick Example

Macro parameters, &SMESG_NO, &MESG_NO_END, and
&DELAY_COUNT, allows variables to be created whose val-
ues are assigned when the macrdringion is used. Since the
TRANSFER and DELAY subroutines are called each time af-
ter the MESG_OFFSET, MESG_END_OFFSET, and DE-
LAY_COUNT "parameter pssing" locations are loaded, the
CALL

instructions are also included in the macro definition.

After the SET_UP macro has been defined, the program uses
the macro instruction three times to transfer the three messages
to the VIDEO_RAM memory location.

COMN Relocatable Code Area

The special 8086/8088 DDS (Define Double-Wotdr&ge)
pseudo instruction reserves 40H double-wordwemory (256
bytes). VIDEO_RAM labels the start of this destination mem-
ory location.

The TRANSFER program module contains the subroutine
called by the main program. The TRANSFER subroutine
moves data from the address whose offset is in location
MESG_OFFSET through the address whose offset is in loca-
tion MESG_END_OFFSET on then to the destination memory
location VIDEO_RAM. THE TRANSFER program module
source file is shown below.

"8086"

TRANSFER

GLB TRANSFER

EXT DS:MESG_OFFSET WORD
EXT DS:MESG_END_OFFSET WORD
EXT ES:VIDEO_RAM

MOV CX,MESG_END_OFFSET
SuUB CX,MESG_OFFSET

SHR CX1

CLD

MOV SLMESG_OFFSET

LEA DI, VIDEO_RAM

REP MOVSW

RET

Figure 2-2. The TRANSFER Source File

The 'DELAY"
Program Module

Notice TRANSFER program module does not specifya PROG,
DATA or COMN segment. The default segment isthe PROG
relocatable code area. For this reason, the

instructions in this subroutine are actually in the PROG pro-
gram area.

Notice also there is no ASSUME pseudo instruction in this
module. That is because all the data location referencing labels
are external. Because we can include segment information in
EXT declarations, it is not necessaryto use the ASSUME
pseudo instruction in this module.

You may also specify the "type" of an external label with the
EXT pseudo instruction. The "type"WORD is specified for ex-
ternal symbols MESG_OFFSET and MESG_END_OFFSET to
tell the assembler that the memory locations are 16-bits wide.

The DELAY program module contains the DELAY
subroutine called by the main program. The DELAY

A Quick Example 2-9

subroutine displays the various messages for the length

of time specified by the contents of the DELAY_COUNT mem-
ory location. The DELAY program module source file is shown
below.

As with the TRANSFER program module, the only data loca-

"8086"

GLB DELAY

EXT DS:DELAY_COUNT WORD
DELAY MOV CX,DELAY_COUNT
OVER MOV BX,DELAY_COUNT
UNDER DEC BX

JINZ UNDER

DEC CX

JINZ OVER

RET

Figure 2-3. The DELAY Source File

tion referencing operand is an external label. The
segment to be assumed with the label DELAY_COUNT, and
the "type" are defined in the EXT pseudo instruction operand.

Also, since no relocatable code area is defined, these
instructions are in the PROG code area by default.

2-10 A Quick Example

Assembling
Program Module
Source Files

Assembling program module source files creates relocatable
files, assembly symbol files, and optionally, an assembler listing
file. The commands to assembtrusce files for the different
hosts are shown below:

HP-UX
asm -oe movemesg.S > movmesg.O

MS-DOS
asm /oe movmesg.S > movmesg.O

HP 64000

assem ble MOV_MESG listfile MOV_MESG
options expand

VAXIVMS
asm/expand/output= movmesg.lis movmesg.s

The assemble commands used in this example specify that an as-
sembly "listfile" be created. The wonands also specify that the
"listfile" be an expanded listing, i.e., a listing that shows all the in-
structions caused by using a macro instruction and all the object
code generated by the

assembler.

TRANSFER and DELAY program modules for each host are
assembled in the same way.

A Quick Example 2-11

Viewing Assembler
Listing Files

Using the "listfile” option when assemblipgograms causes as-
sembler error messages tolisted in the listing file instead of
the standard output. The commands which

allows you to look at the assembler listing file are shown below:

HP-UX
cat movmesg.O

MS-DOS
type movmesg.O

HP 64000
edit MOV_MESG:listing

VAX/IVMS
type movmesg.s

Assembler listing files for the TRANSFER and DELAdYo-
gram modules may be viewed in the same way.

Program Module
Assembly Listings

2-12 A Quick Example

Listfiles for the MOV_MESG, TRANSFER, and DELAY pro-
gram modules follow. The column captions are not produced by
the assembler. They were put there as an aid in viewing the list-
ings.

LOCATION OBJECT CODE SOURCE LINE

0000
0000
0002
0004

0006
000B
0010
0015
001A
001B
0020
0025
002A
002F
0032
0037
003C
0041
0046
0049
004E
0053
0058
005D
005E

5448495320
4558414D50
4C45205052
4F4752414D
20
4D4F564553
2053455645
52414C204D
4553534147
455320
46524F4D20
4120444154
4120544142
4C4520544F
204120
4D454DA4F52
59204C4F43
4154494F4E
2020202020
20

1"8086"

O©CoOoO~NOOUThWN

14

15

16

17
18

LIST 50

GLB MESG_OFFSET,MESG_END_OFFSET
GLB DELAY_COUNT,VIDEO_RAM,START
EXT TRANSFER,DELAY

DATA

DATA_TABLE

MESG_OFFSET DWS 1
MESG_END_OFFSET DWS 1
DELAY_COUNT DWS 1
MESGO DB "THIS EXAMPLE PROGRAM"
DB "MOVES SEVERAL MESSAGES"

DB "FROM A DATA TABLE TO"

DB "MEMORY LOCATION"

MESGO_END

Figure 2-4. The MOV_MESG Assembly Listing

A Quick Example

2-13

LOCATION OBJECT CODE SOURCE LINE

005E

0063
0068
006D
0072
0073
0087
008A
008F
0078
0945
0099
009E
00A1
00A6
00AB
00BO
00B5
00B6

00B6
00BB
00CO
00C5
00CA
0occC
00D1
00D6
00DB
O0EO
OOE4
00E9
007D
0082

2-14 A Quick Example

5448452046

4952535420
4D45535341
4745204953
20
444953504C
554D20
4C454E4754
48204F4620
4159454420
4494D4520
2020202020
202020
2020202020
2020202020
2020202020
2020202020
20

5448452053
45434FAE4A4
204D455353
4147452049
5320
444953504C
4159454420
464F522041
2053484F52
54455220
4C454E4754
48204F4620
464F522041
204D454449

19 MESG1

20

21

22

23 MESG1_END
24
25 MESG2

26

27

DB

DB

DB

DB

DB

DB

DB

"THE FIRST MESSAGE IS"

"DISPLAYED FOR A MEDIUM"

"LENGTH OF TIME"

"THE SECOND MESSAGE IS"

"DISPLAYED FOR A SHORTER"

"LENGTH OF TIME"

Figure 2-4. The MOV_MESG Assembly Listing (Cont'd)

LOCATION OBJECT CODE SOURCE LINE

00EE
O00F3
O0F8
00FD
0102
0107
010C
010D

0000
0003
0005
0008

000A
000A
000E
0010

0014
0016
001B

54494D4520
2020202020
2020202020 28
2020202020
2020202020
2020202020
20
29 MESG2_END
30
31
32
33
B80000 34 START
8ED8 35
B80000 36
8ECO 37
38
39 SET_UP
40
41
42
43
44
45
46
47
C7060000 +
0006
C7060002 +
005E
C7060004FF +
05

DB " "
PROG

ASSUME CS:PROG,DS:DATA,ES:COMN
MOV AX,SEG DATA_TABLE
MOV DS,AX

MOV AX,SEG VIDEO_RAM
MOV ES,AX

MACRO &MESG_NO,&MESG_NO_END,
&DELAY_COUNT

MOV MESG_OFFSET,OFFSET &MESG_NO
MOV MESG_END_OFFSET,OFFSET
&MESG_NO_END

MOV DELAY_COUNT, &DELAY_COUNT

CALL TRANSFER

CALL DELAY

MEND

SET_UP MESGO,MESGO_END,# 5FFH

MOV MESG_OFFSET,OFFSET MESGO

MOV MESG_END_OFFSET,OFFSET
MESGO_END

MOV DELAY_COUNT, # 5FFH

Figure 2-4. The MOV_MESG Assembly Listing (Cont'd)

A Quick Example 2-15

LOCATION OBJECT CODE SOURCE LINE
01CE 80000 + CALL TRANSFER
001F E80000 + CALL DELAY
0022 48REPEAT SET_UP MESG1,MESG1_END,# 4FFH
0022 C7060000 + MOV MESG_OFFSET,OFFSET MESG1
0026 005E
0028 C7060002 + MOV MESG_END_OFFSET,OFFSET
MESG1_END
002C 00B6
002E C7060004FF + MOV DELAY_COUNT, # 4FFH
0033 04
0034 E80000 + CALL TRANSFER
0037 E80000 + CALL DELAY
003A 49 SET_UP MESG2,MESG2_END.,# 3FFH
003A C7060000 + MOV MESG_OFFSET,OFFSET MESG2
003E 00B6
0040 C7060002 + MOV MESG_END_OFFSET,OFFSET
MESG2_END
0044 010D
0046 C7060004FF + MOV DELAY_COUNT, # 3FFH
004B 03
004C E80000 + CALL TRANSFER
004F E80000 + CALL DELAY
0052 EBCE 50 JMP REPEAT
51
52 COMN
0000 53 VIDEO_RAM DDS 40H
54 END
Errors= 0

Figure 2-4. The MOV_MESG Assembly Listing (Cont'd)

2-16 A Quick Example

LOCATION OBJECT CODE SOURCE LINE

1"8086"
2 GLB TRANSFER
3 EXT DS:MESG_OFFSET WORD
4 EXT DS:MESG_END_OFFSET WORD
5 EXT ES:VIDEO_RAM
6
0000 8BOEOOOO 7 TRANSFER MOV CX,MESG_END_OFFSET
0004 2BOEO00O 8 SuUB CX,MESG_OFFSET
0008 D1E9 9 SHR CX1
000A FC 10 CLD
000B 8B360000 11 MOV SLMESG_OFFSET
000F 8D3E0000 12 LEA DI,VIDEO_RAM
0013 F3A5 13 REP MOVSW
0015 C3 14 RET

Errors=0

Figure 2-5. The TRANSFER Assembly Listing

A Quick Example 2-17

LOCATION OBJECT CODE SOURCE LINE
1"8086"
2 GLB DELAY
3 EXT DS:DELAY_COUNT WORD
4
0000 8BOEO00O 5 DELAY MOV CX,DELAY_COUNT
0004 8B1E0000 6 OVER MOV BX,DELAY_COUNT
0008 4B 7 UNDER DEC BX
0009 75FD 8 INZ UNDER
000B 49 9 DEC CX
000C 75F6 10 INZ OVER
000E C3 11 RET
Errors= 0

2-18 A Quick Example

Figure 2-6. The DELAY Assembly Listing

Creating an
Example Library
File

One of the goals of this example chapter was to show how to

link library files and ordinary relocatable files. We also decided
that the DELAY module would be put into a library file whose
name is host-dependent. The following are the various host com-
mands to create the libraryfile.

HP-UX
cat delay.R>> exlib.R

MS-DOS
type delay.R>> exlib.R

HP 64000
library DELAY to EX LIB

VAXIVMS
append/newdelay.R exlib.R

A Quick Example 2-19

Linking Program Linking is the process in which our three program modules will

Module be joined together to form a single program. The result of link-
. ing relocatable program modules is an absolute file which con-

Relocatable Files tains object code to be executed by the microprocessor.

The linker permits combining any number of relocatable files,
no-load files, and linker symbol files into an absolute file. It also
allows specification of load addresses of the relocatable pro-
gram areas in program modules.

Linker questions and answers are explained below.

Calling the Linker The host-specific commands to access the linker are shown be-
low:

HP-UX
lInk -0 > demo.O

MS-DOS
Ink /o > demo

HP 64000
link listfile DEMO

VAXIVMS
Ink /output= demo.lisl

2-20 A Quick Example

Answering Linker
Questions

Object files?

Library files?

This section will answer the linker questions for the example
program, explaining the reason each answer.

movmesg.R,transfer.R (HP-UX, MS-DOS)

MOV_MESG, TRANSFER (HP 64000)
movmesg,transfer (VAX/VMS)

Answer the object files question with the names of the relocat-
able program modules. Answering "two" relocatable files causes
the linker to join back-to-back relocatable code program mod-
ule areas. If you prefer to specify the load

addresses of relocatable files individually, only "one" file at a
time should be answered for this question. Press < RETURN> .
Next question:

exlib.R (HP-UX, MS-DOS)

EX_LIB (HP 64000)
exlib (VAX/VMS)

The library files question gives you the opportunity to specify a
library of relocatable program modules. The linkdtattempt

to find modules containing labels from the program modules
that have not, as yet, been defined in the files answered in the
first question. In our example, the linkeithsearch the EX_LIB
library for any relocatable module which defines the label DE-
LAY. The relocatable file fitting that definition is relocatable
program module DELAY (included earlier in the EX_LIB li-
brary).

If the label DELAY happens to be defined in two of the library's
relocatable program modules, a link error will

A Quick Example 2-21

More files?

Absolute file name=

2-22 A Quick Example

occur. Press < RETURN> . Next question:

Load addresses: PROG,DATA,COMN=
000001000H,000002000H,000003000H

The load address question allows specification of addresses of
the relocatable segments of PROG, DATA, and COMN. (Any
ORG pseudo instructions in the relocatable program modules
defines the address of the ORG absolute code area.) Press
<RETURN>. Next question:

no

Answer "no"to the more files question. We have already speci-
fied all the relocatable files to be linked. If we had answered the
object files question above with onlythe MOV_MESG relocat-
able module, we would have to answer this question with "yes"
to provide the linker information for the TRANSFER relocat-
able program module. Press < RETURN> . Next question:

list,xref,overlap_check,comp_db=
on off on off

Default answers for this question are sufficient for this example.
Just press the < RETURN> keyin response to this question.
Next question:

demo.X (HP-UX, MS-DOS)

DEMO (HP 64000)
demo (VAX/VMS)

You must answer this question with a valid file name. We will
usedemoas an absolute file name. The linkell then(1) cre-

ate an absolute file with the name with a host-specific extension;
(2) create a linker command file (whose contents are the an-
swers just given); and (3) create a linker symbol file with the

Linker Listing File

same name (demo) and host-specific
extension.

To see the results of the link we just specified, let’s look at the
linker listing file shown below.

FILE/PROG NAME PROGRAM DATA COMMON

MOV_MESG:USERID 0000 1000 00002000 00003000 Tue, 19 Mar1985
TRANSFER:USERID 0000 1054 Tue, 19 Mar 1985
next address 0000 106A 000210D 00003100

Libraries

EX_LIB:USERID

DELAY:USERID 0000 06A Tue, 19 Mar 1985

next address 0000 1079 0000210D 00003100
XFER address= 00000000 Defined by DEFAULT

No. of passes through libraries= 1

absolute & link_com file name= DEMO:USERID

Total# of bytes loaded= 00000286

Figure 2-7. The DEMO Linker Listfile

Notice in Figure 2-7 above that the PROG, DATA and COMN
areas of the MOV_MESG relocatable file have been linked to
the addresses specified in the load addresses linker question.
Also notice that the TRANSFER and DELAY program mod-
ules have been linked at the PROG

addresses immediately following PROG memory space taken up
by the program MOV_MESG. This linkésting file shows that
library files are linked behind any other object files that have
been specified.

This now completes this quick example of assembler/linker pro-
gram modules.

A Quick Example 2-23

Notes

2-24 A Quick Example

Assembling Your Programs

Introduction

This chapter provides a description of the 64200
assembler and its operation. A description of the assembler op-
tions and their use is provided.

Functional
Components Of
The Assembler

The assembler has five major functional components:
initialization, pass 1, pass 2, error/asm_sym generation (pass 3),
and cross-reference listing (pass 4). These functional compo-
nents are used by the assembler to make source code files for
specific processors and produce relocatable

object code.

Assembling Your Programs 3-1

Initialization The assembler initialization function acquires the necessary in-
formation for setting the proper configuration and specific per-
sonality for the assembler. The information is

input file

listing file

options (list, nolist, expand, nocode, xref)
assembler personality (e.g. directive "8086")

Pass 1 Pass 1 performs the standard assembler pass 1 functions of read-
ing source files, keeping program counters, and building the
symbol table.

Pass 2 Pass 2 performs the standard pass 2 functions of reading source
files, keeping program counters, using the symbol table, and gen-
erating relocatable code.

Pass 3 Pass 3 performs the functions of printing error text, the fatal er-
ror segment, and generating a sorted assembler symbol file.

Pass 4 Pass 4 generates a cross-reference map if required.

3-2 Assembling Your Programs

Input/Output Files

Source Input File

Assembler Output
Files

Input to the assembler is a source file. Source filedieas take
different forms depending upon the host computer.

HP-UX,

MS-DOS,

VAXIVMS filename.S (TheSextension need not be
specified. Avoid filenames that result in
confusing output flenamespen.asnis
an example.)

HP 64000 Fileame.surce (The extensiosourceis

the default and need not be specified.)
Source files cosist of the following:

Example Description
"8086" Assembler directive.
Source Code Caaisting of urce statments and

pseudo instructions; refer to chapter 7.

The assembler produces files stored under the same as the
source file, with host-dependent extensions. The

assembler produces three files: a relocatable file, an
assembly symbol file, and an optional listing file. If any

of these three files exist before assembly of the source file, the
assembler will replace them with new files.

Relocatable File

flename.R (HP-UX, MS-DOS, VAX/VMS)
Filename:reloc (HP 64000)

The relocatable object module is in a format that can be proc-
essed by the linker. If the relocatable file already exists, it will be
overwritten.

Assembling Your Programs 3-3

Assembly Symbol File

flename.A (HP-UX, MS-DOS, VAX/VMS)
Filename:asmb_sym (HP 64000)

The assembly symbol file contains all local symbols defined in
the source file. The assembly symbol file can be used for sym-
bolic debugging. If the file already exists, it will be overwritten.

ListFile (Optional)

flename.O (HP-UX, MS-DOS, VAX/VMS)
Filename:listing (HP 64000)

Listfile is an optional listing. It can be directed to a line printer,
stored in a file, or displayed on your terminal. listfile already
exists, it will be overwritten. The listing can include:

Source staments with object code.
Error messages.
Summary of erors with a descriptiotist.

3-4 Assembling Your Programs

Symbol cross-reference list composed of all symbols
except local macro labels and parameters. The symbol table
format is discussed in the chapter titled "Linking Your Pro-

grams."
The cross-reference list is alphabetically sorted by syméimlen

Specifying Page Assembler output listing can be controlled to limit the number
Length of Assembler of lines appearing on each page of the output. The following

Output Listing rules apply.

1. Output listing syntaxid:IST < limit>

2. Effective values for < limit> are 5 thrlR7. If a number
less than five is used, the first page of output will have six
lines, and succeeding pages will have five lines.

3. The instruction cannot be included in tist options on
the directive line. Rather, it must be treated as an opcode
with an operand. The instructionlbnot be
accepted by the assembler ifit is entered from the key-
board.

Assembling Your Programs 3-5

|
Assembling The Once a source file exists, it can be assembled using the host-spe-

Program cific command for invoking the assembler. A syntax description
follows for assembler activation on the various hosts.

3-6 Assembling Your Programs

asm (HP-UX)

Syntax

asm[-I][-n][x][-e][-t][-0]<file>

Syntax Definition

Definition for syntactical term and output default are as

follows:
< file>

output default

Option Defintions

Source file to be assembled.

Listing files are not produced unliéss
file output is specified by the [-0]
option. In this case, the listfile appears on
'stdout’. To direct output into a file, use
the shell redirection "> filename".

asm recognizes the following options, the first of which must be
preceded by a dash (-); however, options can be concatenated

(for instance, -0x):

Listfile on (default is off).

Overrides all list and nolist pseudos in
the source file and forcdisting of all
lines.

Overrides all list and nolist pseudos in
the source file and forces tisting of all
lines.

Overrides all list and expand pseudos in
the source file and forces expandist of
all areas selected for listing inwrce file.

Causes assembly with no object code gen-
eration or relocatable file creation.

Assembling Your Programs 3-7

asm (HP-UX)
Cont'd

Examples

Note #

3-8 Assembling Your Programs

-X Causes a cross-reference to be printed to
the < list destination> .

asm datl.S

Assembles source file dat1.S; no outpsting.
asm -ox datl.S > datl.0

Assembles source file dat1.S; outfigting to file dat1.0 with a
symbol cross-reference table.

asm -t datl.S

Assembles source file datl.S; producing no relocatable file and
listing only erors to the display.

asm resides in public directofysr/hp64000/bin If
/usr/hp64000/bin is in the user’s directory path, the
assembly can be run using only thentcoand asni'. The
assembler personality tables are locatefismhp64000/tables

|
asm (MS-DOS)

Syntax asm [/ [/n] [/X] [/e] [/t] [/o] < file>

Syntax Definition
Syntax definition of terms and output defaults are as

follows:
< file> Source file to be assembled.
output default Listing files are not produced unliéss

file output is specified by the [/0]

option. In this case, the listfile

appears orstdout’. To direct output

into a file, use the command parser redi-
rection > filename".

Option Definitions

asm recognizes the following optiions which must be preceded
by a slash (/). In addition, options can be concatenated (e.g., /0X).

/o Listfile on (default is off).

Nl Overrides all list and nolist pseudos in
the source file and forcdisting of all
lines.

/n Overrides all list and nolist pseudos in
the source file and forces tisting of all
lines.

le Overrides all list and expand pseudos in

the source file and forces expandist of
all areas selected for listing inwrce file.

Assembling Your Programs 3-9

asm (MS-DOS)

Cont'd
It Causes assembly with no object code gen-
eration and no relocatable file
creation.
Ix Causes a cross-reference to be printed to

the < list destination>

Examples asm datl.s

Assembles source file datl.s; no outpsting
asm /ox datl.S> datl1.0

Assembles source file datl.S; outfigting to file dat1.0 with a
symbol cross-reference table.

asm /t datl.S

Assembles source file dat1.S; producing no relocatable file and
listing only erors to the display.

Note # The assembler resides in directti?64700\BIN. If
\HP64700\BIN is in the user’s directory path, the assembly can
be run using only the comand asm. The assembler personal-
ity tables are located MiP64700\TABLES.

3-10 Assembling Your Programs

assemble
(HP 64000)

Syntax assemble < FILE> [listfile < list destination>]

options [list| nolist] [expand] [nocode] [xref]

Syntax Definition
< FILE> Source file to be assembled. Selects file
or device for listing output.

< list destination>

See < list destination> under "defaults"
heading.

Option Definitions
Allows user to override listing options specified in tbeice

file.

list Overrides all list and nolist pseudos in
the source file and forcdisting of all
lines.

nolist Overrides all list and nolist pseudos in
the source file and forces tisting except
errors.

expand Overrides all list and expand pseudos in
the source file and forces expandistl of
all areas selected for listing inwrce file.

nocode Causes assembly with no object code gen-
eration or relocatable file creation.

xref Causes a cross-reference to be printed to

the < list destination> .

Assembling Your Programs 3-11

Default Values < list destination>

By default, listing output is sent to the listfile default specified
in last userid command. If ristfile default was specified in the
last userid command, thistfile default is null.

options

If "options" is not selected, all listings occur as per pseudo in-
structions specified in the source file. If "options"is selected,
and nothing else, then

An output listing of thesurce program with object codes
and error messageslvbe made.

No expansion of macros and multiple-byte pseudo instruc-
tions will occur.

No symbol cross-reference listingpe made.

Examples assemble SAM

Assembles source file SAM; outpligting to specified listfile de-
fault.

assemble SAM listfile CHARLEY

Assembles source file SAM; outpligting to file CHARLEY of
type listing.

assemble SAM listfile display options nolist nocode

Assembles source file SAM; producing no relocatable file and
listing only e@rors to the display.

3-12 Assembling Your Programs

|
asm (VAXIVMS)

Syntax asm [options] < file>

Syntax Definition
Definiton for syntactical term and output default are as follows:

< file> Source file to be assembled.

output default Listing files are not produced unléss
file output is specified by the option /out-
put [= < file>].

Option Definitions

asm recognizes the following options which must be preceded by
a slash (/); however, options can be concatenated (for instance,
/nolist/nocode fileame).

/output [= < file>]

Listfile on (default is off). Ifthe option
"Joutput”is used with no "=", the listfile
will be placed in a file of the same
basename with &is extension.

/list Overrides all list and nolist pseudos in
the source file and forcdisting of all
lines.

/nolist Overrides all list and nolist pseudos in
the source file and forces fisting except
errors.

/expand Overrides all list and expand pseudos in

the source file and forces expandist of
all areas selected for listing inwrce file.

Assembling Your Programs 3-13

asm (VAX/VMS) /nocode Causes assembly with no object code gen-
Contd eration or relocatable file creation.
Ixref Causes a cross-reference to be printed to

the < list destination> .

Examples asm datl.s

Assembles source file datl.s; no outpsting.
asm/output datl.s

Assembles source file datl.s; outpisting to file datl.lis.
asm/nocode datl.s

Assembles source file datl.s; producing no relocatable file and
listing only e@rors to the display.

3-14 Assembling Your Programs

Output Listing An example of an assembler output listing is given in

"8086"

INIT

SET

POOL

STOP

XREF

GLB

Figure 3-2, using theosirce program examplisted in
Figure 3-1. Figure 3-3 shows an assembler output listing that
contains error messages.

INIT,SET,POOL,STOP

MOV AX,0000H; The INIT portion initializes registers.

MOV BX,0005H;SET increments registers AX, BX and DX.

MOV CX,0005H;SET compares register CX to zero. CXis

MOV DX,0000H;compared to zero by the LOOP instruction.

INC AX ;If CXis not zero it jumps to SET. After

INC BL ;CX becomes zero, the high byte of register
INC DX ;B (BH) is incremented and compared to five.
LOOP SET ;While BH is < five, POOL is repeated. When
INC BH ;BH equals five, the program is stopped.
CMP BH, 05H ;The program can be resumed without going
JNZ POOL ;into the weeds, because the next instruction
HLT ;is an unconditional jump to INIT.

JMP INIT

Figure 3-1. Source Program Example

Assembling Your Programs 3-15

FILE: KW86 HEWLETT-PACKARD: 8086 Assembler

LOCATION OBJECT CODE LINE SOURCE LINE COMMENTS
1 "8086" XREF
2
3
4 GLB INIT,SET,POOL,STOP
5
6
0000 B80000 7 INIT MOV AX,0000H ;
0003 BB0000 8 MOV BX,0000H ;
0006 B90500 9 MOV CX,0005H ;
0009 BAO000O 10 MOV DX,0000H ;
000C 40 11 SET INC AX
000D FEC3 12 INC BX
000F 42 13 INC DX
0010 E2FA 14 LOOP SET
0012 FEC7 15 POOL INC BH
0014 80FF05 16 CMP BH,05H
0017 75F9 17 INZ POOL
0019 F4 18 STOP HLT
001A EBE4 19 JMP INIT
Errors= 0
LINE # SYMBOL TYPE REFERENCES
7 INIT P 4,19
15 POOL P 4,17
11 SET P 4,14
18 STOP P 4

Figure 3-2. Assembler Output Listing

3-16 Assembling Your Programs

Note # In the cross-reference table, the letter listed under the TYPE
column has the following definition:
A = Absolute
C = Common (COMN)
D = Data (DATA)

E = External
P = Program (PROG)
U = Undefined

Assembling Your Programs 3-17

File: KW86
LOCATION OBJECT CODE LINE

0000 B80000
0003 B80000
ERROR - UO
0009 BA000O
0ooC 40
000D FEC3
000F 42
0010 E2FA
0012 FEC7
0014 80FF05
0017 75F9
ERROR - US, see Line 9
0019 F4
001A EBE4

HEWLETT-PACKARD:
SOURCE LINE

1

©CoOoO~NOOUThWN

15
16
17

18
19

Errors = 2, previous error at line 17
The indicated symbol is not defined as a Label or declared
as an external.

US - Undefined Symbol.

UO - Unidentified Opcode.

FILE: KW86

LINE #

7
*kk
15
11
18

CROSS REFERENCE TABLE

SYMBOL

INIT
POL
POOL
SET
STOP

8086"

GLB INIT,SET,POOL,STOP

INIT

SET

POOL

STOP

XREF

MOV
MOV
MVO

MOV
INC
INC
INC
LOOP
INC
CMP
JINZ

HLT
JMP

TYPE

TV TUVTTUTCTDO

8086 Assembler

AX,0000H
BX,0000H
CX,0005H
N

DX,0000H
AX
BX
DX
SET

BH
BH,05H
POL

N

INIT

Opcode encountered is not defined for this microprocessor.

REFERENCES

4,19
17
4
4,14
4

Figure 3-3. Assembler Output Listing With Errors

3-18 Assembling Your Programs

Note #

Error messages are inserted immediately following the state-
ment where the error occurs. All error messages (after the first
error message)illcontain a pointer to the stament where the
last error occurred. At the end of the source prodisiing, an
error summary statementibe printed. The ssnmary wil con-
tain a statement as to the total numberrodes noted, along

with a line reference to the previous error. il also define all
error codedisted in the surce prograntisting. Refer to Appen-
dix C for a listing of all eror codes.

Assembling Your Programs 3-19

Notes

3-20 Assembling Your Programs

Linking Your Programs

Introduction

A system application program, referred to as the linker, com-
bines relocatable object modules into one absolute file. This ab-
solute file can be loaded and executed in an emulation system or
used for progamming PROMs. Interaction between the user

and the linker remains basically the same for anyopioces-

sor assembler supported.

The linker prepares object code modules for emulation on the
HP 64000, by performing two functions:

Relocation: allocates memory space for each program relocat-
able module and relocates operand
addresses to correspond to relocatable code.

Linking: symbolically links relocatable modules.

Linking Your Programs 4-1

Linker Functional
Components

Initialization

Pass 1

Pass 2

Cross-reference

4-2 Linking Your Programs

The linker has four major functional components: initialization,
passl, pass2, and cross-reference generation.

The initialization function requires the following information
from user keyboard input or as anomand file:

File names of all object files to be loaded.

File names of libraries to be searched.

Relocation information.

Listing options.

File name for the command/absolute/linker symbol file.

Pass 1 relocates all object file global symbols. If
unresolved differencegmain afteprocessing all of

the object files, then libraries are searched during Pass
1.

Pass 2 generates the absolute linker symbol and load
map files. If memory overlaps are found, thelybe
flagged during Pass 2.

Cross reference generation builds a table listing all
global symbols, relocatable object modules that define
global symbols, and relocatable modules that reference
the symbols.

Linker
Input/Output Files

Linker Input Files The linker processes two types of files: (1) relocatable files cre-
ated by assembling source programs); and (2) linker
symbol files (created previously by the linker). Filenames and ex-
tensions for the various hosts are shown below.

Relocatable Files

flename.R (HP-UX, MS-DOS, VAX/VMS)
Filename:reloc (HP 64000)

Linker Synbol Files

flename.L (HP-UX, MS-DOS, VAX/VMS)
Filename:link_sym (HP 64000)

Linker Output Files Linking relocatable files produces four output files: (1) an abso-
lute file ; (2) a linker symbol file ; (3) a linker command file ;
and (4) an optional load map listfile . Fieemes and file exten-
sions for the various hosts follow.

Absolute File (object code) ame:absolute

filename.X (HP-UX, MS-DOS, VAX/VMS)
Filename:absolute (HP 64000)

Linker Symbol File

flename.L (HP-UX, MS-DOS, VAX/VMS)
Filename:link_sym (HP 64000)

Linking Your Programs 4-3

Linker Command File ame:link_com

filename.K (HP-UX, MS-DOS, VAX/VMS)
Filename:link_com (HP 64000)

Listfile (optional) ame:listing

flename.O (HP-UX, MS-DOS, VAX/VMS)
Filename:listing (HP 64000)

Specifying Files to be linked (and their respective load addresses) are speci-
Relocatable Files fied by: (1) answering the linker questions; or (2) using a linker

to be Linked command file.

Answering the linker questions builds a linker command file.
This linker command file may then be used to link the files that
were specified in previous answers to the linker questions with-
out having to answer the questions again.

Linker command files may also be edited. Edited linker com-
mand files may be used to specify: (1) new relocatable files to be
linked; (2) different load addresses for the same relocatable
files; or (3) both new relocatable files and different load ad-
dresses.

Answering Linker The commands to access the linker question is as follows:
Questions

Ink < RETURN> (HP-UX, MS-DOS, VAX/VMS)
link < RETURN> (HP 64000)

4-4 Linking Your Programs

Object files?
Library files?

Load addresses:
PROG,DATA,COMN

More files? (y or n)

Absolute file name=

Note #

The questions that will be asked and the expectgubreses to
build a linker command file are

{User types names of relocatable files to be linked}

{User types names of library files required for linking}

{User specifies proper addresses}

{Enter either "y"or "n". If "y", then link editor reprompts again
from ‘object files’ question. If "n", then link editor continues to
the next question.}

{User enters absolute file identifier}

Always terminate the last entry on a line with a comma if, during
any question by the linker, entries are of such length that two or
more lines are needed. Comma termination indicates to the
linker that more entires follow. If any question (except the ’li-
brary files’ question) is answered improperly or not answered at
all (if no default values are shown), the link editalt request

the proper information to be entered before it proceeds to the
next question.

Linking Your Programs 4-5

Explanation of Link
Editor Questions

Object files?

4-6 Linking Your Programs

Object files?

You are asked for the name of each of the files that are to be
linked. Object files that are listed after the "object file" question
may contain relocatable modules, no-load files, and/or linker
symbol files (for global symbol references).

No-load files No-load files are differentiated from normal re-
locatable files by enclosing the no-load files in parentheses: (file-
name). Parentheses indicate to the linker that no code is to be
generated for the file. Relocation and linking occurs in the same
manner as if the file was a load file. Note that the absolute im-
age file generated by the linker does not contain the object code
for the no-load file. No-load files are useful in linking to exist-

ing ROM code or in the design of software systems requiring
memory overlays.

Linker Symbol Files Linker symbol files are included in the
object file list when relocatable files contain references to global
symbol locations in program modules already linked. An exam-
ple of "object file?" response is shown below.

filel.R,(file2.R file3.R),file4.L (HP-UX, MS-DOS, VAX/VMS)
Filel,(File2,File3),File4:link_sym (HP 64000)

Library Files?

The library files question is the same as for object files. After all
object files have been linked, the linker determines if any exter-
nal symbols remain undefined. The linker searches the library
files for object modules that define these symbols. The linker re-
locates and links only those relocatable modules that satisfy ex-
ternal references.

If a library file name is given as a ppmnse to the "object files?"
guestion, then all the relocatable modules in the library file will

Library files?

Note #

be relocated and linked. If a library file name is given as a re-
sponse to the "library files?" question, then only those relocat-
able modules that define the unsatisfied externals will be relo-
cated and linked. The remaining relocatable modules in the li-
brary file will be ighored.

It is also possible to combine relocatable files into a library by
using the HP 64000 library oomand.

An example answer to the "library files?" question is:

/usr/hp 64000/lib/ns8 086 (HP-UX)

\user\hp64000\ lib\ns8086 (MS-DOS)
LIB:NS8086 (HP 64000)
HP$DISK:[HP6 4000.NS8086] (VAX/VMS)

Load Addresse s:PROG,DATA,COMN

This question requires you to select separate, relocatable mem-
ory areas for the different modules of the program. Logical ad-
dresses (i.e., segment:offset) are entered unless your source files
contain the "80286" directive. If the "80286" directive is present,
then 24 bit physical addresses are entered. For example, if the
following entries were made:

Load addresses:PROG,DATA,COMN=
00001000H,00002000H,00003000H

The linker would relocate the PROG file module in memory lo-
cation starting at address 1000H. The DATA module
relocates to memory location starting at address 2000H. The
COMN module relocates to memory location starting

at address 3000H.

Load addresses may be entered using any number base (binary,
octal, decimal, or hexadecimal). However, the addresses listed in
the load map are given in hexadecimal only.

Linking Your Programs 4-7

More files?

Absolute File Name?

Using Linker
Command Files

4-8 Linking Your Programs

You now determine if more files are to be linked. If yes ('Y"),
then the linker begins interrogation again, allowing additional
object and library files to be specified with new load addresses.
You may continue with the previously relocatable area by typing
"CONT"in the appropriate field when specifying new relocat-
able areas. The relocatable area is treated as if no new address
was assigned. An example of the use of the "CONT" notation is
as follows:

Load addresses:PROG,DATA,COMN=
OFFO00BCCH,CONT,00003FFCH

You now assign aame to the command/absolute image file
about to linked. The absolute file created by the linker is always
associated with a link command file and a global symbol file of
the same name.

The linker produces up to three files: (1) an absolute file ; (2) a
linker symbol file ; and, if none exists, (3) anvmand file .

Once linker command files have been created, they may be used
to re-link the same relocatable filetmdut answering the

linker questions a second time. Linker command files are highly
useful when modifications are made to assembly language pro-
grams and when these programs must then be reassembled and
re-linked.

Linker command files may also be edited. Edited linker com-
mand files can link different relocatable files, or specify differ-
ent load addresses, or both.

On the HP 64000, linker comand files are edited by entering
the following commands:

link < CMDFILE> options edit

You may now step through and change your previous answers
to the linker questions by modifying the entries.

On the HP-UX, MS-DOS, and VAX/VMS systems, you must
edit the linker command file like any other text file because the
linker command file is an ASCII text file.

The command file format for HP-UX, MS-DOS, and
VAX/N/MS is shown in the following figure.

segment (begin a new segment)

object files < FILE1> [,< FILE2> ... < FILEn>]
library files [<LIB1> < LIB2>,..< LIBn>]
load addresses < PROG>, < DATA>, < COMN>
[segment

(Include as many segments as needed)
absolute file name < ABSFILE>

Figure 4-1. Example Linker Command File

Running the Linker The following pages describe link syntax for the different hosts
and explain the procedure to link relocatable modules.

Linking Your Programs 4-9

|
Ink (HP-UX)

Syntax

4-10 Linking Your Programs

Ink [-n] [-X] [-0] [-c] < file>

Syntax Definitions
Definitions for syntactical terms are as follows:

< file> A variable representing the linker com-
mand file name. The syntax for < file>:

< file> => <filename.K>

The file type must be a linker command file that ends in the .K
file extension; no other file type can be specified with the Ink
command.

output default Listing files are not created unless-the
option is invoked, in which case the list-
file is written tostdout. To direct the out-
put into a file, use HP-U X syntax file-
namewith the -o option.

Option Definitions

Ink recognizes the following options, the first of which must be
preceded by a dash (-); however, options may be concatenated
(e.g. -nxoc):

-n Do not produce a load mdigting.

-X Produce a symbol cross-reference listing.
-0 Cause the listing to be created.

-C Do not check for memory overlap.

Ink (HP-UX) Cont'd

Example

Note #

Note #

Here are two examples of the Ink command:

Ink -xo reg8.K> reg9
or
Ink -xo reg8.K| Ipr

In the first example above, the output listing with cross-refer-
ence table will be put in a file "reg9".

To save the error output with the outpisting, redirect stderr.
Example:
Ink -xo reg8.K > reg9 2> &1

In the second example above, the output listing with cross-refer-
ence table will be output to the line printer.

The linker is contained in public directdusr/hp64000/bin If
/usr/hp64000/bin is in the user’s directory path, a link can be
run by using only the scomand Ihk". The personality tables are
in /usr/hp64000/tables

Linking Your Programs 4-11

|
Ink (MS-DOS)

Syntax

4-12 Linking Your Programs

Ink /n /x /o /c < file>

Syntax Definitions
Syntax definitions of terms include:

< file> A variable representing the linker com-
mand file name. The syntaxfor < file> is:

<file> = > < filename.K>

The file type must be a linker command file that ends in the .K
file extension. No other file type extension can be specified with
thelnk command.

output default Listing files are not created unless/the
option is invoked. If invoked, the listfile
is written tostdout. To direct the output
into a file, use the command parser redi-
rection> filenamewith the/o option.

Option Definitions

Ink recognizes the following options only when preceded by a
slash (/). Options may also be concatenated (e.g., /nxoc):

/n Do not produce a load mdigting.

IX Produce a symbol cross-reference listing.
/o Cause the listing to be created.

Ic Do not check for memory overlap.

Ink (MS-DOS)
Contd

Examples Two examples of the Ink command are:

Ink /xo reg8.K:reg9
or
Ink /xo reg8.K

The output listing with cross-reference table in the first example
will be put in a file "reg9".

Note # To save the error output with the outpisting, redirect stderr.
Example:
Ink /xo re3g8.K > reg9 2:&1

The output listing with cross-reference table in the second exam-
ple will be output to the screen.

Note # The linker is contained in public directoiyP64700\BIN. If
\HP64700\BINis in the user’s directory path, a link can be run
by using only the commanthk”. The personality tables are in
\HP64700\TABLES

Linking Your Programs 4-13

link (HP 64000)

Syntax

4-14 Linking Your Programs

link [< FILE>] [listfile < list destination>]

options [edit][nolist][xref][no_overlap_check][comp_dDb]

Syntax Definitions

<FILE>

< list destination>

Options Definitions

A file of type link_com to be used to di-
rect the linker as to relocatable and relo-
cation addresses.

File or device to which listing output is
sent.

Allows you to override options specified in the linker command

file.
nolist

xref

edit

no_overlap_check

Overrides the list option specified in the
linker command file anduppresses out-
put of a load map.

Overrides no xref option specified in the
linker command file and forces output of
a global symbol cross-reference table.

Allows you to edit the current link_com
file.

Overrides overlap_check option specified
in the linker command file and sup-
presses errors caused by

link (HP 64000)

Cont'd memory overlaps. Default condition for
overlap_check is ON.

comp_db This file is created by the linker when re-
guested and is a data base containing in-
formation from all of the comp_sym files
associated with relocatables in an abso-
lute file.

Note # If previous link commands have specified the comp_db option,
and new link commands do not specify the comb_db option,
then old comp_db files will not gurged.

Default Values <FILE> If no linker command file is specified,
the default allows creation of a new file of
type link_com.

< list destination>
Defaults to user specified listfile default.

options If options is not entered, listing defaults
to options specified in the linker com-
mand file. If options is specified, but no
option is selected, a load map listing with
no cross-reference is made.

Linking Your Programs 4-15

link (HP 64000)
Contd

Examples

4-16 Linking Your Programs

link

Requests the linker to create a new linker command file. Listing
output will go to the listfile default.

link KW86

Links the absolute file KW86 containing files in linker com-
mand file KW86. The listing output will go to the listfile default
and any options in the KW86:link_com file are in effect.

link KW86 options edit

This requests the linker command file KW86 options edit for
the purpose of viewing or editing. Afigting output will go to
the listfile default.

|
Ink (VAX/VMS)

Syntax

Ink < file>

Options Default Values
/[no]map /map
/[no]xref /noxref
/[no]mem_ovip /mem_ovip
/[no]output=[< file>] /nooutput

Syntax Definitions
Definitions for syntactical terms are as follows:

< file> A variable representing the linker com-
mand file name. The syntaxfor < file> is:

< file> => <filename.K>

The extension does not have to be specified; it automatically de-
faults to .K.

Options Definitions

Ink recognizes the following options which must be preceded by
a slash (/). All of the options can be negated by placing a "no"in
front of the option; for example, /nomap.

/map Produces a load map listing.
Ixref Produces a symbol cross-reference listing.
/mem_ovip Checks for memory overlap.

Linking Your Programs 4-17

Ink (VAXIVMYS) Joutput[= < file>]

Cont'd If you specify Joutput, then a listing file
will be generated. If < file> is omitted,
then the absolute file namelhvbe used
for the listing file. The default extension
for listing files is .LIS.

Examples Here are two examples of the Ink command:

Ink reg8
or
Ink/xref/output= reg reg8

In the first example above, reg8.K will be used as a linker com-
mand file with no output. In the second example, reg8.K will be
used as the linker command file, and a load tisijpg and sym-
bol cross-reference listingbe put in file reg.LIS.

4-18 Linking Your Programs

Linker Output

Note #

Linker listings may be output to the terminal CRT, line printer,
or any file. The following information may be
included in the linker output listing:

Listing (Load Map).
Cross-reference table.
Error messages.

Certain error messages containing more than 80 characters will
be viewed as wrapped around or truncated on many terminals.
Complete error messageslwe printed when using the line
printer or a list file for listings.

Linking Your Programs 4-19

Listing (Load Map) A load map is a listing of theemory areas allocated to each re-
locatable file. The listing begins with the first file linked gpro-
ceeds to list all other linked files with their allocatadmory lo-
cations. An example of a load map listing that will be printed on

the system printer is as follows:

FILE/PROG NAME PROGRAM DATA COMMON ABSOLUTE DATE
reg4 00010000-00010037 Mon, 26 Mar 1984
REG4
reg7 00000000 Mon, 26 Mar 1984
next address 0000003A
XFER address = 0000000 Defined by DEFAULT

Current working directory = /users/bobg
Absolute file name = reg8:absolute
Total number of bytes loaded = 72

FILE/PROG NAME PROGRAM DATA COMMON ABSOLUTE
KYBD:SAVE 0000

EXCT:SAVE 0B00-0B34
DSPL:SAVE A100

next address 0021 Al121

REG1:SAVE B000

REG2:SAVE B103

REG3:SAVE B206

next address B30C

Libraries

PARAMETER:SAVE 0021

MULTEQUAT:SAVE 0221

next address 0421 Al121

XREF address= 0B00 Defined by EXCT

No. of passes through Libraries= 1

absolute & Link_com file name= SETAG1:SAVE
Total# of bytes Loaded= 0782

Figure 4-2. Example Load Map Listing

4-20 Linking Your Programs

DATE TIME COMMENTS
Thu,5, Jun 1982 11:37
Thu, 5 Jun 1982 10:38
Thu, 5 Jun 1982 11:38

Thu, 5 Jun 1982 11:52
Thu, 5 Jun 1982 11:53
Thu, 5 Jun 1982 11:58

Thu, 5, Jun 1982 11:43
Thu, 5 Jun 1982 11:45

File/Prog Name

Program

Data

Common

Absolute

A brief description of each column in the listing follows:

This column contains the name of the files that are linked (reg4
and reg?). If the sourceame differs from the relocatable name,
the source ame is indented and printed below the relocatable
file name (# REGA4).

If library files are referenced, the master library will be listed.
Subsections of the master library referenced will also be listed
beneath the library file name. Subsectionibbe indented to in-
dicate that they are part of the main library file. No-load files
will be displayed in parentheses)

This column indicates the first address (hexadecimal) of a mem-
ory block that contains the PROG relocatable code in the file
listed in the FILE/PROGAME column.

This column indicates the first address (hexadecimal) of a mem-
ory block that contains the DATA relocatable code in the file
listed in the FILE/PROGAME column.

This column indicates the first address (hexadecimal) of a mem-
ory block containing the COMN relocatable code in the file
listed in the FILE/PROGAME column.

This column indicates the hexadecimal addresses of a memory
block containing the absolute code assigned by the file listed in
the FILE/PROG NAME column.

Linking Your Programs 4-21

Note #

Date
Time
Comments

XFER address

Current working directory
Absolute file name

Total bytes loaded

4-22 Linking Your Programs

The "next address” statement in the load g indicates

the next available hexadecimal address in PROG, DATA or
COMN memory areas. This statement may also be used to deter-
mine the number of bytes (words for 164pibcessors) that are
contained in each area (next address less starting address= total
bytes).

This column indicates the date that the file in the FILE/PROG
NAME column was assembled.

This column indicates the time that the file listed in the
FILE/PROG NAME column was assembled.

User comments may be entered in this column during assembly
by the assembler pseudo NAME instruction.

The starting address in memory for program execution is
XFER. XFER address can be assigned using the END pseudo
in one of the relocatable files.

Indicates the current MS-DOS directory being used.

Indicates the absolute file namssaned to the linked files.

Total number of bytes loaded during this link is indicated here.

Cross-Reference
Table

SYMBOL R

DATAl6 A
DATA32 A
DATA8 A

The cross-reference table lists all global symbols, relocatable ob-
ject modules that define them, and relocatable modules that ref-
erence them. An example of a cross-reference listing titldtew
listed on the system printer is as follows:

VALUE

00007ABC
000F423F
0000007E

DEF BY REFERENCES

reg4 reg7
reg4 reg7
reg4 reg7

Figure 4-3. Sample Cross Reference Table

Symbol

R(Relocation)

Value

Def by

References

Each column in the cross-reference listing represents:

All global symbols will be listed in this column.

A letter identifies the type of program module in this column.
Available letters and their definitions are:

A=
C=
D=
P=
U=

Absolute
Common (COMN)
Data (DATA)
Program (PROG)
Undefined

Value of the relocated address of the symbol is in this column.

A file name that defines the global symbol is in this column.

This column lists the file@ames that reference the global symbol.

Linking Your Programs 4-23

This concludes discussion of the Linker.

4-24 Linking Your Programs

Source File Format And Expressions

|

Introduction The HP Model 64000 Assembler recognizes three types of
source statments: mimprocessor instructions, assembler
pseudo opcodes, and macro definitions or calls. This chapter de-
scribes the coding rules and conventions that must be followed
when using the assembler.

|

Source Statement Each microprocessor instruction, assembler pseudo opcode, or

Format Rules macro call is divided into four fields: the label field, the opera-

tion field, the operand field, and the comment field. Format
rules to be followed when constructing a line of source program
follow:

Source File Format and Expressions 5-1

Field Sequence Field sequence cannot be changed. The correct order of field se-

guence is:

Label Operation Operand Comment

SAVE EQU EXEC1 ;SAVE
;EQUATES
;TO EXEC1

Note # You are recommended to have each field in thece state-
ment start at a fixed position (column) in the source line. This
format may be defined using the tab setting capabilities of the
system editor to specify each field’s starting position. The pres-
entation of the prograristing in a fixed format irproves read-
ability.

Delimited Fields One or more spaces (blanks) must separate the fields in a
source stament.

Note # Because of the way the assembler parser works, white space may
be treated as the end of a statement when in fact the end ofthe
statement has not been reached. If the
assembler sees what it considers to be a complete, syntactically
aceptable statement before enntering white space, it may
stop at that white space without reading temainder of the
statement. The resulting generated codibe different than
the code for the actual statement. This difference may not be dis-
covered until execution time. Some examples of this problem
follow:

5-2 Source File Format and Expressions

"8086"
SIGN ORG 10H
MOV CX, BXOFFSET SIGN

Although OFFSET SIGN idlegal, the assembler does not rec-
ognize it as illegal because the pardepged at the valid int-
struction "MOV CX, BX."Using an EQU to replace BX OFF-
SET SIGN will not solve theroblem because EQU'’s are ex-
panded before they are parsed.

"8086"
DATA
VALUE

DB 10 DUP (?)

Label Field Position

Statement Length

DUP is not supported by this assembler. However, the code in
this example will not cause anrer because the parser saw
"VALUE DB 10 as a valid instruction.

A label field, if used, must begin in column 1 of
the source stament. If column 1 is blank, the
assembler assumes that the label field is omitted.

Additional rules and conventions governing sourceestant
length and fields are given in the following paragraphs.

A source stament may contain up tbl0 characters

(including spaces). A statement is terminated by a carriage re-
turn < RETURN> . Any stament containing more than 110
characters will bertincated tdl10 characters.

Source File Format and Expressions 5-3

Blank lines will not affect the object modules and may be
introduced to improve readgiby of the source prograntisting.

Label Field Labels may be used in all microprocessor instructions, some as-
sembler pseudo opcodes, and macro calls. Since the label as-
signed identifies that particular statement and may be used as a
reference point by other statementsin the
program every label must be unigue within each source pro-
gram.

Note Some specific symbols are predefined and cannot be used as la-
bels. Predefined symbols will depeapgon the microprocessor
being supported.

The label field starts in column 1 of the sourceatent and
must be terminated by a space or a colon (3).

Note A colon (:) cannot be used to terminate a macro label. Refer to
chapter 8 for construction of Macros.

A valid label may contain any number of charact&h first
character in the label must be an upper case

alphabetic character.Remaining label characters may be either
alphabetic or numeric. The alphanumeric character set includes
the letters of the alphabet (upper and lower case), the underline
symbol (), and the numeric digits 0 through 9. Invalid symbols

5-4 Source File Format and Expressions

Operation Field

shown below include the dollar sign ($), the question mark (?)
and beginning a label with a number (4).

Valid Symbols Invalid Symbols

Ab cd ab.cd?
AB_CD $BCDEF
A5rHi 4UVWXY

If more than fifteen characters are entered in the label field, the
assembler will print all characters in the output listing but will
use onlythe first 15 characters for label identification. There-
fore, the assembler will recognize:

STATEMENTLABELA1
and
STATEMENTLABELA2

as being identical 15 character long labels. A duplicate-symbol
error messageilithen beissued.

Statements requiring labels are macro definitions and EQU
pseudo instructions.gsignment of a label is optional for all
other statements.

The operation field contains: a mnemonic code for a microproc-
essor instruction; an assembler pseudo opcode (refer to chapter
7); or a macro call (refer to chapter 8). The assembler pseudo
opcode specifies the operation or function to be performed. The
operation field follows the label field and is separated from it by
a least one space, a tab, or a colon(:). If there is no label, the
pseudo opcode may begin in any column position following col-
umn 1.

Operation field termination is done by one or more spaces, or
by a tab. If no operand field follows, the operation field can also
be terminated either by a carriage return, or by a semicolon(;) in-
dicating the start of the comment field.

Assembler pseudo and control statememtside the
following capabilities:

Source File Format and Expressions 5-5

Assembler control.

Object program linkage.
Address and Symbol definitions.
Constant definition.

Assembly listing control.
Storage allocation.

A label will be &signed to theuwrrent program counter location

if the label is specified and the operation field does not contain

a microprocessor instruction, an assembler pseudo opcode, or a
macro call.

Operand Field Values or locations required by the microprocessor instruction,
assembler pseudo opcode, or macro call are specified by the op-
erand field. The microprocessor uses various modes of address-
ing for obtaining the operands and saving the results of program
execution.

The mnemonic instruction and the information in the operand
field determines the addressing mode. Each

instruction determines proper operand type and sequence. The
operand field, if present, follows the operation field and must be
separated from it by at least one space ().

An operand may contain an expression consisting of a single
symbolic term, a single numeric term, or a combination of sym-
bolic and numeric terms, enclosed in parentheses, and joined by
the expression operators +, -, *, and /.

5-6 Source File Format and Expressions

Comment Field

An optional comment field may contain any information that
the user deems necessary to idemqdytions of the program.
The delimiter for the comment field is the semicolon (;), a tab,
or a space following the operand field. A semicolon in any col-
umn of the source stamnent vill invoke the canment field (ex-
cept when used in an ASCII string). In situations where more
than one line of progmming is needed for the comment field,
an asterisk (*) in column 1 of a source staent indicates the
following information is part of a comment field antbsild not
be acted on as if it were part of the program.

Delimiters Certain delimiting characters are restricted and are used to indi-
cate the end of fields or labels, and the beginning of other fields
or labels. Delimiters should not be used as ordinary characters.
For examplea space cannot be used as part of a label narnde.
description of delimiters in Table 5-1 follows:

Table 5-1. Delimiters
Delimiter Use
Space Separates fields or operands; ends a label.
Tab Separates fields; ends a label.
Semicolon (;) Indicates start of comment field.
Asterisk (*) When used in column one of source statement

Carets (™ ..)
Colon (3)
Parentheses((...))
Single Quotes ('...")
Ampersand (&)

Double Ampersand(&&)Indexes macro parameters.
Quad Ampersand (&&&&) Identifies a Macro unique number.
Quotation Marks ("...")

indicates that comment field will follow.
Indicates a character string.

Indicates end of label field.

Used in expression for precedence.
Indicates a character string.

Indicates macro parameters.

Indicates a character string.

Source File Format and Expressions 5-7

Symbolic Terms A symbol used in the operand field must be a one that has been
defined in the program, such as a symbol in the label field, a ma-
chine instruction, or a symbol in the label field of an EQU
pseudo instruction. (Note that the EQU label field must be de-
fined prior to referencing).

A symbol may be either absolute or relocatable. Either type de-
pends on the type of assembly selected. The assembler

assigns a value to a symbol whenamnttered in a label field of

a source staiment. If theprogram is to be loaded in

absolute form, the values assigned by the assengxieain

fixed. If the program is to be relocated, the actual value of a sym-
bol will be established by the linker (refer to chapter 4 for linker
processing).

A symbolic term may be preceded by a plus (+) or minus (-)
sign. If preceded by a plus (+) or no sign, the symbol refers to
its associated value. If preceded by a minus (-) sign, the symbol
refers to the 2's complement of its associated binary value.

Program Counter ($) ($) is a symbolic term used to indicate the current value of the
program counter. ($) can be used any place that symbolic refer-
ences are legal (for example: $+ 2).

Numeric Terms Numeric terms may be binary, octal, decimal, or hexadecimal. A
binary term must have the suffix "B" (for example: 101101B). Oc-
tal values must have either an "O" or a "Q" suffix (for example:
260, or 26Q). A hexadecimal term must have both the suffix
"H"and a number prefix (using 0,2, or 3 for example: OBBH,
2CDH, 36H).When no suffix is assigned decimal value is as-
sumed

5-8 Source File Format and Expressions

Note #

String Constants

It is necessary tetart a hexadecimal term with a decimal digit

since the assembler identifies a term starting with an alphabetic
character as a symbolic referengk alphabetic hexadecimal

digits must be capital lettersfor compatability with the HP

64000 system

assembler.

In addition to numeric and symbolic constants, an operation

may also contain string constants. String constants are produced
by using ASCII (American Standard Code for

Information Interchange) characters (See appendixH for ASCII
values.). String constants, combined with other symbols and con-
stants, are written by enclosing ASCII characters within quota-
tion marks ("..."), single quote marks ('...) or carets (* ..).

The numeric value of a string is defined as follows:

Null String
A null string ("") (") or (*) has a numerical value of zero.

One Character String

A one character string is stored in the high order byte of the low
word (if more than one word is used). The value that appears
there is the hexadecimal value of the ASCII representation of
the character. The low order byte has the value OOH. Example:

'C="C"= 00000000B = O0H = Low order byte
01000011B = 43H = High order byte

Source File Format and Expressions 5-9

Two Character String

A two character string is stored in the low word (if more than
one word is used). The hex ASCII value of thefirst character of
the string is stored in the high order byte of the word and the
hex ASCII value of the second character of the stringpied

in the low order byte. If any words remain, their bytes contain
O00H. Example:

'AB'= "BA"= B = 01000010B = 42H = Low order byte
A = 01000001B = 41H = High order byte

Note # The MASK pseudo instruction allows the user to alter ASCII
strings. Refer to the MASK pseudo description in Chapter 7.

Strings Longer Than Two Characters

There are restrictions as to where strings longer than two char-
acters may be used. For strings longer than two characters, the
hex ASCII value of each character in the strindased in byte

order. That means the ASCII value of the first character is

stored at the lowest byte address for the string and the last char-
acter is stored at the highest byte address for the string.
Example:

'BCDE’= "BCDE'= B= 01000010B = 42H = Low byte
C = 01000011B = 43H = 2nd byte
D = 01000100B = 44H = 3rd byte
E = 01000101B = 45H = High byte

5-10 Source File Format and Expressions

Expression The assembler contains two groups of egpi@n operators that
Operators permit the following operations:
Arithmetic Operators The arithmetic operators are:
Operator Interpretation

+ Addition

- Subtraction

* Multiplication

/ Division

Examples

The following expressions generate the bit pattern for ASCII
character W (0101011B):

1+28*2
1+ (-28*-2)
1+ (84/3)*2

Logical Operators Logical operators are used to form logical expressions. A logical
expression may be used any place an expression can legally be
used. The logical operators are as follows:

Operator Interpretation
AN. Logical AND
NT. Logical one’s complement
.OR. Logical OR
.SL. Shift left
.SR. Shift right

Source File Format and Expressions 5-11

Examples

EXEC1.SL.1
NT.CHAR
EXEC1.0R.EXEC2

Operator Prec edence Operators have a descending order of precedence defining
which operator is evaluated first or next in an expression. Opera-
tors are listed below in descending order of precedence.

Parentheses (...) override all precedence.

.NT.
.SL.,.SR.
.OR.,.AN.
* |

+ -

Relational When the assembler processes an ".IF "instruction, the
Comparison (Macros logical expression in the operand field is evaluated.
Only) Relational operators are:

Operator Interpretation

EQ. equal

.NE. notequal

LT. less than

.GT. greater than

LE. less than or equal

.GE. greater than or equal

5-12 Source File Format and Expressions

Relocatable
Expressions

Three program counters are provided for identifying relocatable
code areas. The three areas are identified as data (DATA), pro-
gram (PROG), and common (COMN). These areas can be
changed from one relocatable area to another using assembler
pseudo codes. (Refer to chapter 7 for more information.) Rules
governing use of relocatable expressions are given in the follow-
ing paragraphs.

The value of a relocatable term will besaned during the link-

ing process. Thesaigned value W dependupon:

The relocatable areas (PROG, DATA, or COMN) to which it
is assigned, and;

Where the area is located in memory during the link opera-
tion.

Expressions may be formed from absolute and relocatable terms
using arithmetic operators and parentheses. Expressions result-
ing from this type of operation must be either absolute or one of
the three relocatable types.

Source File Format and Expressions 5-13

Absolute Terms Absolute terms are expressions having values not dependent
upon the location of the program moduleniemory. Forma-
tion of absolute expressions requires that:

Each absolute term or constant is an absolute expression.

If AD and BD are relocatable symbols in the same relocat-
able area, then (AD-BD) is designated an absolute expres-
sion. (This designation is absolute because the difference be-
tween AD and BD remains constant regardless of the reloca-
tion factor of the program. That is, if the program is relo-
cated, the values of AD and BD are offset by the same
amount.)

If A2 and B2 are absolute symbols, then:
(A2+ B2)
(A2*B2)
(A2-B2)
and (A2/B2)

are absolute expressions.

Relocatable Terms Relocatable terms are expressions having values undefined at
link time. Formation of relocatable expressions requires that:

Any relocatable term is a relocatable expression.

If DA is an absolute expression and DR is a relocatable ex-
pression, then:

(DA+ DR)
(DR+ DA)
and (DR-DA)

are relocatable expressions and are the only relationship
permitted. An absolute expression may be subtracted from
a relocatable expression. A relocatable expression may not
be subtracted from an absolute expression.

5-14 Source File Format and Expressions

Invalid Relocatable
Terms

Use of relocatable terms in certain ways makes them invalid and
will generate eror messages. A valid example (c) is provided be-
low along with two invalid relocatable terms (a & b) that gener-
ate error messages:

a. Two relocatable symbols - same area (PROG, DATA,
or COMN). If DA and DB are two relocatable symbols,
then:

(DA+ DB)
(DA*DB)
and (DA/DB)

areinvalid expressions The assembler does not recog-
nize where these symbols are being storadémory.

b. Two relocatable symbols - different areas (PROG,
DATA, or COMN). If DA and DB are two relocatable
symbols, then:

(DA+ DB)
(DA-DB)
and (DA*DB)

areinvalid expressions The assembler does not recog-
nize where these symbols are being storadémory.

c. Relocatable symbols in different areas (PROG, DATA,
COMN) can be combined if the expression results in
one relocatable type. For example, if relocatable sym-
bols DA and DB are PROG type and relocatable sym-
bol DC is DATA type, the expression:

(DA+ DC-DB)
is avalid expressionsince (DA-DB) is an absolute off-
set to DC.

This concludes the discussion of source file format and
expressions.

Source File Format and Expressions 5-15

Notes

5-16 Source File Format and Expressions

Programming Considerations
|

Introduction

This chapter will help you to write assembly langupgegrams

by describing the HP 64000 8086/8088 assembler. If you know

how the assembler works, what is expected in an assembly lan-
guage program, and how the assembler generates code, then pro-
gramming wll be easier. If you follow the guidelines in this chap-
ter, your code W generally have fewer errors at first writing. Er-

rors wll be easier to identify and can bercected if and when

they do occur.

This chapter contains special 8086/8088 pseudouosons and
keyword operators. It is important to understand pseudo instruc-
tions and keyword operators because together they tell the as-
sembler howto generate code.

Programming Considerations 6-1

Key Concepts to
Understanding the
8086/8088 Assembler

The two most important concepts to know when using the
8086/8088 Assembler are:

. The concept of aegmented architectureThis requires using

segment and offset values in assembly language memory loca-
tion references.

The concept thadne assembly language mnemonic capec-

ify several types of operationsTypes of operations relate to

the size of data that is assembled or linked, or to the distance
in memory of program transfers.

Impact of
Segmented
Architecture on
Programming

8086/8088
Segmented
Architecture

8086/8088 mimprocessors are designed with a segmented archi-
tecture. Given a segmented architecture with 20

address lines, these processors can adédedsytes

(1 megabyte) of physical memory. Memory addresses inside the
8086/8088 mimprocessors are calculated with two

16-bit quantities: a segment and an offset. Figure 6-1 shows how
physical memory addresses are calculated with

segments and offsets.

6-2 Programming Considerations

Physical Addresses
vs. Logical
Addresses

(Segment:Offset)

Logical Addresses

A logical address is a 32-bit (segment:offset) quantity whose up-
per and lower 16-bit offset values are used to calculate a 20-bit
physical address. The assembler recognizes only logical ad-
dresses.

Absolute Addresses

Logical addresses must be used when absolute addresses are
specified in your assembly language programs, (for

example, in the ORG pseudo instruction opera82hbits of in-
formation must be supplied in logical addresses. The first 16-bits
specify the segment value of the address. The next 16-bits spec-
ify the offset value.

Programming Considerations 6-3

Different Logical
Addresses Can
Specify the Same
Physical Address

Physical Addresses It is possible for two different pairs of "segment:offset” values to
specify the same physical address. Be awarettadifferent
pairs of segment and offset values can specify the same physical
address.For example, the
instructions ORGL0002345H and ORG 12000345H specify the
same physical address:

Contents of reg. DS = 1000H Contents of reg. ES = 1200H
Contents of reg. BP = + 2345H Contents of reg. BX = + 0345H
Address DS:[BP] = 12345H Address ES:[BX] = 12345H

16—bit segment

+ 16—bit offset

20—bit physical address

19 bits 0

Figure 6-1. Calculating Physical w/Logical Addresses

6-4 Programming Considerations

Specifying Segments
for Memory
Referencing
Operands

Specifying Segment
Registers Explicitly

Every assembly language programemory reference must refer

to one of the processors four segment registers. Contents of the
segment register will be tH®-bit segment value of the logical
address.

The offset value of the logical address will be specified fyoa

gram label, a base register, an index register, or a combination of
two or three of the above, depending on the

addressing mode. There are two ways in which the segment regis-
ter can be specified in assembly language instructions:

Segment registers can be specified explicitly, by
including the segment register name in the instructions mem-
ory referencing operand.

Segment registers can be specified implicitly, by using the
special 8086/8088 ASSUME pseudo instruction.

Specifying which segment register is to be used in calculating an
address requires including it in the assembly language instruc-
tion operand. The following instructions demonstrate this tech-
nique. (Note in the example below that DW is a special
8086/8088 pseudo itreiction. It defines and initializes a word of
memory.)

LOCATION OBJECT CODE SOURCE LINE

1 "8086"
0000 383C 2 LABL DwW 3C38H

3
0002 2EA30000 4 MOV CS:LABL,AX
0006 899F0000 5 MOV DS:LABL[BX],BX
000A 26894E00 6 MOV ES:[BP],CX
000E 2E89800000 7 MOV CS:LABL[BX][SI],AX
0013 8903 8 MOV SS:[BP][DI],AX
Errors=0

Programming Considerations 6-5

Specifying Segment Another way to specify the segment portion of the logical
Registers Implicitly address is to let the assembler "ASSUME" the segment register
for you. ASSUME is a special 8086/8088 pseudo
instruction which allows you to relate one of the processors seg-
ment registers to one of the HP 64000 code areas.

HP 64000 Code Areas The HP 64000 defines three relocatable code areas: PROG,
DATA, and COMN. One absolute code area is also defined
(ORG). Locate parts of your assembly language program in
each of these four code areas by using the appropriaGl6{®
pseudo instruction: PROG, DATA, COMN, or ORG. The de-
fault code area is PROG. The assembler maintains a program
counter for each of these code areassign the
actual addresses of these relocatable code areas when linking
your programs. The address of the ORG absolute code area pro-
gram counter is specified in the ORG pseudo
instructions operand.

HP 64000 code areas can betght of as segments of physical
memory.

6-6 Programming Considerations

Using the ASSUME The ASSUME pseudo instruction allows you to relate one of
Pseudo Instruction the microprocessors segment registers to one of thé4ae0
code areas. When memory references are made by your assembly
language instructions, the assembler
assumes which segment register should be used to calculate the
physical address. When using the ASSUME pseudo,
assembly language instructions may be written in the form
shown below.

LOCATION OBJECT CODE SOURCE LINE

1 "8086"
2 DATA
0000 383C 3 LABL DW 3C38H
0002 4 DEST DWS 1
5
6 PROG
7 ASSUME DS:DATA,CS:PROG
0000 B80000 8 MOV AX,SEG LABL ;These two
0003 8ED8 9 MOV DS, AX ;instructions
;initialize reg.DS
10
0005 A30000 11 MOV LABL,AX ;DS:LABL,AX
;is assumed
0008 899F0000 12 MOV LABL[BX],BX ;DS:LABL[BX],BX
;is assumed
00oC 894E00 13 MOV [BP],CX ;SS:[BP],CX
; is assumed
000F 89800000 14 MOV LABL[BX][SI],AX
;DS:LABL[BX][SI],AX
0013 8903 15 MOV [BP][DI],AX ;SS:[BP][DI],AX
;is assumed
0015 A4 16 MOVS DEST,LABL
ERROR-IO n
Errors= 1, previous error at line 16

10 - Invalid Operand, Invalid or unexpected operand encountered or operand is missing

Programming Considerations 6-7

The assembler assumes segment registers based on two things:
(1) The operand of the ASSUME pseudo instruction, and (2)

the code area in which the program labels appear. In the exam-
ple program above, LABL appears in the DATA code area. The
assembler assumes that any memory references containing the
label LABL should use register DS as the segment because it ap-
pears in the DATA code area.

When memory references do not contain labels, the
assembler assumes that the SS register should be used as the seg-
ment value in calculating the physical address.

The example indicates an error on the last line. The error indi-
cates that the assembler expected the destination operand of the
MOVS instruction to be in the ES segment. The example did

not assume anything about the ES register. Adding ", ES:DATA"
to the ASSUME pseudo

instruction operand Wcorrect the error and allow the last in-
struction to assemble correctly.

Note ﬂ In 8086 string inguctions, the assembler always expects the des-
tination operand to be associated with segment register ES.

Forward References Since the assembler cannot know what segment a forward refer-
enced variable will reside in prior to its definition, a segment
override byte will be generated for all forward referenced vari-
ables during Pass One. This will be done if a segment override
was not explicitly specified. An extra byte may result for these in-
structions, but Wl produce working code. You may wish to con-
sider this when laying out your programs. Placing the data defi-
nition sections prior to the data referencing sectiongndlt
duce fewer bytes of code.

6-8 Programming Considerations

Segment Overrides When using the ASSUME pseudo it is possible to explicitly tell

the assembler which of the processor’s segment registers to use
in calculating the physical addresgslding segment overrides to
memory referencing operands tells the assembler which seg-

ment register to useSegment overrides "CS:"and "ES:" cause

the assembler to generate code identical to the code generated
by assembling the first example program in the following exam-
ple:

LOCATION OBJECT CODE SOURCE LINE

1 "8086"
2 DATA
0000 383C 3LABL DW 3C38H
4
5 PROG
6 ASSUME DS:DATA,CS:PROG
0000 B80000 7 MOV AX,SEG LABL ;These two
0003 8ED8 8 MOV DS,AX ;instructions initialize
;reg.DS
9
0005 2EA30000 10 MOV CS:LABL,AX
0009 899F0000 11 MOV LABL[BX],BX ;DS:LABL[BX],BX
;is assumed
000D 26894E00 12 MOV ES:[BP],CX
0011 2E89800000 13 MOV CS:LABL[BX][SI],AX
0016 8903 14 MOVS [BP][DI],AX ;SS:[BP][DI],AX
;is assumed
Errors= 0

Turning Off the Specifying "NOTHING" in the pseudo instruction’s operand
"ASSUME" Pseudo field turns off the ASSUME pseudo instruction. NOTHING
will cause the assembler to expect segment registers to be explic-
itly stated in memory referencing operands.

Programming Considerations 6-9

You may also "assume nothing" about a specific segment regis-
ter by specifying NOTHING in the code area portion of the AS-
SUME pseudo instruction operand, e.g., ASSUME CS:NOTH-
ING. If a memory referencing operand is to use a segment regis-
ter for which NOTHING is assumed, then that segment register
must be stated explicitly in the operand.

Types of
Operations

Five 'Types"
Associated with
Program Symbols

Different types of operations may be specified with the same
8086/8088 assembly language mnemonic. Types of operations
specify the size of the data that is operated on. Data size may be
a byte, word, or a double-word sized piece of information. Types
of operations refer also to the distance of program transfers to a
memory location. Types of operations refer to the same 64K seg-
ment or to a memory location in another 64K segment.

The 8086/8088 assembler associates a "type" with @vegram
symbol (label) in order to aid the assembler in generating object
code. Program symbols (labels) appear at two kinds of memory
locations: data locations or instruction locations.

MEMORY LOCATION

TYPE

Data locations

Instruction locations

- BYTE (8-bits wide)
- WORD (16-bits wide)
- DWORD (32-bits wide)

- NEAR (within _+ 32K bytes)
- FAR (beyond_+ 32K bytes)

6-10 Programming Considerations

How "Types"Are The assembler associates "types"with memory locations and
Associated with identifies the "types" associated with its program labels. Note in
Memorv Locations the example .belowthat DB (Define Bytg), DW (Define Word)_,
y and DD (Define Doubleword) are special 8086/8088 pseudo in-
structions which define and initializeaemory.

LOCATION OBJECT CODE SOURCE LINE

1 "8086"

2 DATA
0000 C415354 3 NAME DB "LAST"
0004 383CFFFF80 4 LABL DW 3C38H,0FFFFH,80H
0009 00
000A 002000F28F 5 VALU DD 0F2002000H,120.0E-3
000F C2F53D

6

7 PROG

8 ASSUME CS:PROG,DS:DATA,ES:COMN
0000 B80000 9 MOV AX,SEG NAME
0003 8ED8 10 MOV DS,AX
0005 B80000 11 MOV AX,SEG DELAY
0008 8ECO 12 MOV ES,AX
000A E80000 13 CALL DELAY
000D E90000 14 JMP DONE
0010 EBFE 15 DONE JMP DONE

16

17 COMN
0000 A10007 18 DELAY MOV AXLABL+ 3
0003 48 19 AGN DEC AX
0004 75FD 20 INZ AGN
0006 C3 21 RET

Errors= 0

Programming Considerations 6-11

"Types" Associated The "types" of data location labels are determined by the im-
With Data Locations plied size of pseudo instructions DB, DW, and DD.

The "type" associated with the label NAME is BYTE.
The "type" associated with the label LABL is WORD.
The "type" associated with the label VALU is DWORD.

Note that any expression involving these labels (NAME+ 1,
LABL+ 2, or VALU-4) will be of the same type as the label.

"Types" Associated The remaining labels in the exampleogram above appear at
With Instruction instruction locations, and are associated with the either type
Locations NEAR or type FAR.

By default the assembler assigns type"NEAR to all instruction
location labels.Therefore, in the example program above, DE-
LAY in the CALL DELAY instruction and DONE in the first
JMP DONE instruction default to "type" NEAR.

In the example the last IMP DONE instruction has one less

byte of code generated than the first. The assembler generates a
"short" jump for this instruction because the label DONE had al-
ready been recognized and evaluated to be within the value of
-128 to + 127 bytesIMP instructions whose operand labels

have been previously defined in the program allow the assem-

bler to generate the most efficient code possible.

6-12 Programming Considerations

Three Conditions to
Remember About

"Types" When Writing
Programs

Condition 1

Condition 2

Condition 3

When Instructions
Have Two Operands,
and Both Imply A
Type"

Assembly language instructions operate on byte, word, and dou-
ble-word size quantities. In most cases, the type of operation of
an assembly language instruction is determined by the "types" as-
sociated with the operands of that instruction.

Three conditions must be remembered about "types" associated
with operands:

If an assembly language instruction has two operands and
each is associated with a "type", then the "types" of those
operands must agree with each other.

If an assembly language instruction has two operands, and
a "type"is only associated with one of the operands, then
the operation will be of that same "type".

If no "type"is implied in an instruction’s operand(s), and
different "type" operations are allowed for the
instruction, then a "type" must be specified in the operand.

When an assembly language instruction has two operands, and
there is a "type" associated with both operands, both "types"
must agree with each other. For example, if the following in-
struction were added to the program above, an ET (Esjre
Type Invalid) error would occur.

MOV AL,LABL

The error occurs because the "type"implied by AL is BYTE and
the "type" associated with the label LABL is WORD. However,
the following instruction Wl not cause anreor

Programming Considerations 6-13

When "Types"
Associated with
Operands Disagree

When Instructions
Have Two Operands,
And Only One Is
Associated With A
Type"

because the types associated with the operands do agree with
each other.

MOV ALNAME+ 1

It is possible to move the byte at location LABL to register AL
by doing one of two things:

Use a type override.

Create a new label, whose "type"is BYTE, for the same mem-
ory location.

These two subjects are further discussed in the Using Keyword
Operators section which follows.

When an assembly language instruction has two operands, and
only one of these operands has an associated "type", the opera-
tion will be of that "type". For example:

MOV AX,[BX]
MOV AL,[BX]

Both of these instructions assemble with no errors because the
“type" of the operation is implied in only one operand. The first
instruction moves a word oiemory from the location ad-
dressed by register BX because the type associated with AX is
WORD. The second instruction moves a byte

because the "type" associated with register AL is BYTE.

6-14 Programming Considerations

When No "Types" Are
Associated With
Instruction

Assigning "Types"to
Operands Which
Imply No '"Type"

Assembly language instructions whose operations may be of dif-
ferent "types", and whose operands imply no "type" will cause the
assembler to generate error messages. For
example, consider the following instructions.

POP [BP]

MOV AX #0003
MUL [BP]

MOV [BP] # 4

Neither the first, third, or fourth instruction above appears to
imply a "type". Only the last two instructions cause error mes-
sages. No error message occurs for the first instruction because
type of operation is implied by the instruction POP. Only words
may be popped from the stack.

On the other hand, the MUL instruction may be either an
8-bit multiply or a 16-bit multiply. No "type"is implied by the
MUL operand. This instructionilvcause an ET (Expssion
Type Invalid) error message.

In the last instruction, the assembler doesn't evaluate whether
the immediate value is supposed to placedrmeaory location
for byte width, word or double-word.

Consequently, this instructionlicause an 10 (Invalid Oper-
and) error message to occur.

In the MUL and MOV instructions above, the assembler needs
more information to evaluate what code to generate. Keyword
operators must be added to the operand to direct the assembler
to the correct and expected "type" of

operation.

Programming Considerations 6-15

Using Keyword Keyword operators are necessary in some assembly language in-
Operators structions to give further information to the assembler. The fol-
lowing actions are accomplished in assembly languageuitrs
tions using keyword operators:

Specify "types"in operands which imply no type.
Override the "type" associated with a program label.
. Associate more than one "type"to a memory location.

Create immediate operands whose values are determined by
characteristics of program labels.

Fourteen keyword operators are defined by@b&6/8088 as-
sembler. The keyword operators are briefly summarized in table
6-1.

Table 6-1. Keyword Operators

Keyword Operator Description
BYTE Defines operation to be byte type (1 byte long).
WORD Defines operation to be word type(2 bytes long).
DWORD Defines operation to be double-word type

(4 bytes long).
NEAR Informs the assembler that the label associated

with the call or forward jump will be in
the same segment.

FAR Informs the assembler that the label associated
with the call or forward jump will be
in another segment.

PTR Used in conjunction with BYTE, WORD,
DWORD, NEAR, and FAR keyword operators
(e.g., BYTE PTR, WORD PTR, etc.) in
assembly language instruction operands to
override the "type" associated with a label, or to
specify the type of an operation if none is implied.

6-16 Programming Considerations

Table 6-1. Keyword Operators (Cont'd)

Keyword Operator Description

SHORT Informs the assembler that the label which appears
in the operand of a forward JMP instruction is
within + 127 bytes.

THIS Used with the EQU pseudo instruction to create
a label (with type BYTE, WORD, DWORD, NEAR,
or FAR) for the instruction that follows (e.g., LABL
EQU THIS WORD).

HIGH Creates an assembly language
instruction immediate operand whose value is the
high-order byte of a label's offset value.
label's offset value.

LOW Creates an assembly language instruction
immediate operand whose value is the low-order
byte of a label’s offset value.

OFFSET Creates an assembly language instruction
immediate operand whose value is the offset
(from the segment base) of a label's address.

SEG Creates an assembly language instruction
immediate operand whose value is the segment
of a label's address.

SIZE/TYPE Creates an assembly language immediate operand
whose value is a number associated with the "type" of a
label. The size values of the various types are:

BYTE 1 NEAR 0
WORD 2 FAR 7
DWORD 4

LENGTH Creates an immediate operand whose value is 1.

Programming Considerations 6-17

Assigning "Types"to Let’s return now to the previous example instruction in which
Operands Which the assembler could not evaluate the size of the operation. The

Imply None instruction was:

MUL [BP]

To correct the ET (Expssion type invalid) error that

occurs when assembling this instruction, you must specify in the
operand whether the multiply should be 8-bit or

16-bit. Adding the BYTE PTR keyword operators to them-

ory operand, [BP], will indicate to the assembler that the multi-
plication should be 8-bit. Adding the keyword operators

WORD PTR will indicate that the operatiohauld bel6-bit.
Either of the following instructionsilvbe assembled whout

error messages:

MUL BYTE PTR [BP]
MUL WORD PTR [BP]

Type Overrides In the LAST program example we could move a bytmemory
from location NAME+ 1 to register AL. Now
suppose you want to move the first two bytesiatmory loca-
tion NAME into register AX. To do this change the
instruction to:

MOV AX,NAME

This instruction causes an ET (Exps®n type invalid) error to
occur during assembly. The error occurs because we attempt
moving a BYTE sized memory operand into a WORD sized reg-
ister.Size of assembly language operands must agree.

To cause the assembler to accept this instruction, override the
type associated with the label NAME. A type override will
change the "type" of a program label in that instruction’s oper-
and only. To override the BYTE type of the NAME label, add
the keyword operators WORD PTR to

6-18 Programming Considerations

the memory operand NAME as follows:
MOV AX,WORD PTR NAME

This instruction causes assembler generated code ihatowve
the first two bytes, or the first word, at location NAME into reg-
ister AX.

Using Near Type NEAR 'types"associated with instruction location referencing
Overrides operands as a default may also be overridden.
Instructions whosenemory operands include references to in-
struction locations are JMP and CALL. Consider the JMP and
CALL usage in examples below:

LOCATION OBJECT CODE SOURCE LINE
1 "8086"
0000 E80900 2 CALL DELAY
0003 E80009 3 CALL DELAY2
0006 E90A00 4 JMP OVER
0009 E90000 5 JMP OVER2
6
000C B80300 7 DELAY MOV AX# 3
000F 48 8 AGN DEC AX
0010 75FD 9 INZ AGN
0012 C3 10 RET
11
0013 E8F6FF 12 OVER CALL DELAY
0016 E80009 13 CALL DELAY2
0019 EBFE 14 DONE JMP DONE
15
16 COMN
0000 E90013 17 OVER2 JMP OVER
0003 E90019 18 JMP DONE
0006 E8000C 19 CALL DELAY
20
0009 B80300 21 DELAY2 MOV AX,3
000C 48 22 AGN2 DEC AX
000D 75FD 23 INZ AGN2
000F C3 24 RET
Errors=0

Programming Considerations 6-19

Using FAR PTR Type
Overrides

From the instructions above note that the assembler

associates the "type" NEAR with all the CALL and JMP
instruction operands, except for backward jumps to labels in the
same segment. (The assembler generates three bytes of code for
NEAR instructions above.)

Suppose that two program segmenilsuwitimately be linked at
addresses which are separated by more than 64K bytes. In this
condition, specify that any calls or jumps

between the two segments are of type FAR. Using FAR PTR
type overrides accomplishes this. Adding type overrides to in-
tersegment JMP and CALL instruction operandB result in

the code shown below.

LOCATION OBJECT CODE SOURCE LINE
1 "8086"
0000 E80F00 2 CALL DELAY
0003 9A0000000F 3 CALL FAR PTR DELAY2
0008 E90E00 4 JMP OVER
00oB EBOC 5 JMP SHORT OVER
000D EA00000000 6 JMP FAR PTR OVER2
7
0012 B80300 8 DELAY MOV AX#3
0015 48 9 AGN DEC AX
0016 75FD 10 INZ AGN
0018 C3 11 RET
12
0019 E8F6FF 13 OVER CALL DELAY
0o1C 9A0000000F 14 CALL FAR PTR DELAY2
0021 EBFE 15 DONE JMP FAR PTR DONE
16
17 COMN
0000 EA00000019 18 OVER2 JMP FAR PTR OVER
0005 EA00000021 19 JMP FAR PTR DONE
000A 9A00000012 20 CALL FAR PTR DELAY
21
000F B80300 22 DELAY 2 MOV AX3
0012 48 23 AGN2 DEC AX
0013 75FD 24 JINZ AGN2
0015 C3 25 RET
Errors= 0

6-20 Programming Considerations

Using the SHORT
Keyword Operator

Using the LABEL
Pseudo Instruction

Notice that the FAR PTR keyword operators have no effect on
the last JIMP instruction in the PROG segment (PROG is in-
itially the default code areajvhen JMP instruction operands
contain labels whose addresses are backward relative to the cur-
rent program counter address, the assembler will generate code
for the shortest possible JMP instruction, regardless of any at-
tempted type overrides This is demonstrated when the assem-
bler generates code for a short (within OFFH bytes) jump in the
JMP FAR PTR DONE instruction in the example above.

The SHORT in the previous programs JMP SHORT OVER in-
struction is yet another keyword operator. The SHORT key-
word operator is used when the label in a JMP instruction’s op-
erand is a forward reference, i.e., the label is defined later on in
the program, and within OFFH bytes.

An alternative exists to issuing type overrides in assembly lan-
guage instructions asmeans of changing the "type"

associated with a memory location. You can assign more than
one type to the same memory location with the LABEL or EQU
pseudo instructions. Both LABEL and EQU are special
8086/8088 pseudo itraictions. The LABEL pseudoinstruction

is equivalent to a combination of the EQU pseudo instruction
and the THIS keyword operator. Consider the following instruc-
tions:

Programming Considerations 6-21

LOCATION OBJECT CODE SOURCE LINE

1
2
3
4
0000 43 5
0001 22 6
7
0002 CcC 8
OCCH 0003 8A 9
10
11
12
0000 B80000 13
0003 8ED8 14
15
0005 C53E0000 16
0009 C53E0000 17
000D C53E0000 18
19
0011 FF2E0000 20
0015 FF2E0000 21
0019 FF2E0000 22
23
001D A10000 24
0020 A10000 25
26
0023 A00003 27
0026 A00003 28

Errors= 0

"3086"

DOUBLE
UPWORD
BYTE3
BYTE2

LOWORD
BYTE1

BYTEO

DATA
LABEL DWORD
LABEL WORD

DB 43H
DB 22H
LABEL WRD
DB 0CCH
DB 8AH
PROG

ASSUME CS:PROG,DS:DATA
MOV AX,SEG DOUBLE
MOV DS,AX

LDS DI,DOUBLE
LDS DI, DWORD PTR UPWORD
LDS DI, DWORD PTR BYTE3

JMP DOUBLE
JMP DWORD PTR UPWORD
JMP DWORD PTR BYTE3

MOV AX,UPWORD
MOV AX,WORD PTR BYTE3

MOV AL,BYTEO
MOV AL,BYTE PTR LOWORD+ 1

Here, with four bytes ahemory, DOUBLE is defined which is
assigned type DWORD. UPWORD and LOWORD are as-
signed type WORD. BYTE3, BYTE2,BYTE1, and BYTEO are
assigned type BYTE. Equivalent ingctions, using different la-
bels, are written in the PROG segment to show that different la-
bels refer to the same memory locations.

6-22 Programming Considerations

Using the THIS
Keyword Operator

The same program repeated below uses the EQU pseudo in-
struction in conjunction with the THIS keyword operator.

LOCATION OBJECT CODE SOURCE LINE
1 "8086"
2 DATA
< 0000> 3 DOUBLE EQU THIS DWORD
< 0000> 4 UPWORD EQU THIS WORD
0000 43 5 BYTE3 DB 43H
0001 22 6 BYTE 2 DB 22H
< 0002> 7 LOWORD EQU THIS WORD
0002 CcC 8 BYTE1 DB 0CCH
0003 8A 9 BYTEO DB 8AH
10
11 PROG
12 ASSUME CS:PROG,DS:DATA
0000 B80000 13 MOV AX,SEG DOUBLE
0003 8ED8 14 MOV DS,AX
15
0005 C53E0000 16 LDS DI,DOUBLE
0009 C53E0000 17 LDS DI, DWORD PTR UPWORD
000D C53E0000 18 LDS DI, DWORD PTR BYTE3
19
0011 FF2E0000 20 JMP DOUBLE
0015 FF2E0000 21 JMP DWORD PTR UPWORD
0019 FF2E0000 22 JMP DWORD PTR BYTE3
23
001D A10000 24 MOV AX,UPWORD
0020 A10000 25 MOV AX,WORD PTRBYTE 3
26
0023 A00003 27 MOV AL,BYTEO
0026 A00003 28 MOV AL,BYTE PTR LOWORD+ 1

Errors= 0

Programming Considerations 6-23

Creating labels with different "types" also applies to instruction
location labels. To illustrate how different "types" may be as-
signed to the same instruction location, the next program makes
type FAR all intersegment jumps and calls by associating the
same instruction location with different "types".

LOCATION OBJECT CODE SOURCE LINE

1 "8086"
0000 E80900 2 CALL DELAY
0003 E8000F 3 CALL DELAY2 ERROR-IO
0006 E90A00 4 JMP OVER
0009 E90000 5 JMP OVER2
ERROR-IO, see line3 n

6

7 FAR_DELAY PROC FAR
0ooC B80300 8 DELAY MOV AX# 3
000F 48 9 AGN DEC AX
0010 75FD 10 JINZ AGN
0012 CB 11 RET

12

13 FAR_OVER LABEL FAR
0013 E8F6FF 14 OVER CALL DELAY
0016 E8000F 15 CALL DELAY2
ERROR-IO,see line 5 n

16 FAR_DONE LABEL FAR
0019 EBFE 17 DONE JMP DONE

18

19 COMN

20 OVER 2 LABEL FAR
0000 EA00000013 21 JMP FAR_OVER
0005 EA00000019 22 JMP FAR_DONE
000A 9A0000000C 23 CALL FAR_DELAY

24

25 DELAY2 PROC FAR
000F B80300 26 MOV AX,3
0012 48 27 AGN 2 DEC AX
0013 75FD 28 JINZ AGN 2
0015 CB 29 RET

Errors= 3,previous error at linel5

10 - Invalid Operand, Invalid or unexpected operand encountered or operand is missing

6-24 Programming Considerations

Using the PROC
Pseudo Instruction

PROC is a new special 8086/8088 pseudtrirtsion used in the
program above. PROC pseudo instruction operates in the same
way as the LABEL pseudo except that only the "types"NEAR or
FAR may be associated with the next

instruction location.

Notice that intersegment jumps and calls in the COMN segment
all have the "type" FAR associated with their operands. (The as-
sembler generates five bytes of code for FAR jumps or calls in
the program above.)

Error messages are caused by intersegment JMP and CALL in-
structions in the PROG segment (initially the default code

area). Errors occur because intersegment JMP and CALL oper-
ands contain labels that are defined later on in the program. For-
ward references to labels that are assigned "type" FAR must con-
tain type overrides. Adding the FAR PTR keyword operators to
the forward referencing JMP and CALL instruction operands

will result in the code shown below.

Programming Considerations 6-25

LOCATION OBJECT CODE LINE SOURCE
1 "8086"
0000 E80D00 2 CALL DELAY
0003 9A0000000F 3 CALL FAR PTR DELAY2
0008 E90C00 4 JMP OVER
000B EA00000000 5 JMP FAR PTR OVER2
6
7 FAR_DELAY PROC FAR
0010 B80300 8 DELAY MOV AX# 3
0013 48 9 AGN DEC AX
0014 75FD 10 INZ AGN
0016 CB 11 RET
12
13 FAR_OVER LABEL FAR
0017 E8F6FF 14 OVER CALL DELAY
001A 9A0000000F 15 CALL FAR PTR DELAY2
16 FAR_DONE LABEL FAR
001F EBFE 17 DONE JMP DONE
18
19 COMN
20 OVER2 LABEL FAR
0000 EA00000017 21 JMP FAR_OVER
0005 EAO0000001F 22 JMP FAR_DONE
000A 9A00000010 23 CALL FAR_DELAY
24
25 DELAY 2 PROC FAR
000F B80300 26 MOV AX,3
0012 48 27 AGN 2 DEC AX
0013 75FD 28 INZ AGN2
0015 CB 29 RET
Errors=0

6-26 Programming Considerations

Other Keyword
Operators

HIGH, LOW, OFFSET, SEG, SIZE, and TYPE are all keyword
operators used with program labels to create

assembly language instruction immediate operands. (See table 6-
1 for the individual descriptions of these keyword operators.)

Predefined
Symbols

When writing assembly language programs you need to be aware
that certain symbols have been predefined and may not be used
as symbols (labels) in your programs. Predefined symbols in-
clude register names, and special operands for pseuloans

tions. The predefined symbols are shown in table 6-2.

Programming Considerations 6-27

Table 6-2. Predefined Symbols

Microprocessor Register Names

AH BP CX ES
AL BX DH P
AX CH DL Sl
BH CL DS SP
BL CS DX SS

Keyword Operators

BYTE LOW PTR BYTE

DWORD NEAR QWORD THIS

FAR NOTHING SEG TYPE

HIGH OFFSET SHORT WORD
SIZE

Segment Names

ORG PROG DATA COMN

Pseudo Instruction Operands

EO DPLO DPL2 RO
ER DPL1 DPL3 RW

Miscellaneous Symbols

ABS LENGTH MODULE_NUMBER ST

6-28 Programming Considerations

Operands

Register Operands Forms register operands may take are:

16-BIT GENERAL 8-BIT SEGMENT
REGISTERS REGISTERS REGISTERS
AX AH- High byte of AX Cs

BX AL - Low byte of AX DS

CX BH - High byte of BX ES

DX BL - Low byte of BX SS

SP CH - High byte if CX

BP CL - Low byte of CX

Sl DH - High byte of DX

DI DL - Low byte of DX

The accumulator may be either AX or AL.

Default Register The default register AL is for byte operations. The following in-
Operands structions accomijsh identical results:

MOV BYTE PTR[BX]
MOV ALBYTE PTR[BX]

The default register AX is for word operations. The
assembler will generate identical code for the following
instructions:

ADD WORD PTR[SI],
ADD WORD PTR[SI],AX

The comma in the first imuction is necessary. Otherwise, the
assembler will intepret AX as the destination operand.

Programming Considerations 6-29

Immediate Operands Forms that immediate operands may take are:

16-BIT IMMEDIATE OPERANDS 8-BIT IMMEDIATE OPERANDS
#0 - #OFFFFH #0 - #O0FFH
SEG ABEL HIGH ABEL
OFFSET ABEL LOW ABEL
SIZE ABEL
TYPE ABEL

Unless one of the keyword operators is used to create an
immediate operand, immediate operands must be prefixed by
the pound (#) symbol. If operands are not prefixed by a key-
word operator or a pound sign, the first character in each oper-
and must be a digit.

The "type" WORD will be associated with operands containing
the SEG and OFFSET keyword operators. Likewise, the "type"
BYTE will be associated with the operands containing the
HIGH, LOW, SIZE, and TYPE keyword operators. (No "type"
is implied with number operands.)

Valid forms for program labels (identified by < LABEL>
above) are discussed in the source file format chapter 5.

6-30 Programming Considerations

Memory Operands

Forms that memory operand may take are shown below:

ADDRESSING MODE MEMORY OPERAND FORMS
Direct ABEL
Register Indirect [BX]
[BP]
[SI]
[D1]
Based < DISP> [BX]
< DISP> [BP]
Indexed < DISP> [SI]
< DISP> [DI]

Based Indexed

< DISP> [BX] [SI]
< DISP> [BX] [DI]
< DISP> [BP] [SI]
< DISP> [BP] [DI]

All memory operands may contain segment and type override
prefixes.

In the based indexed addressing mode, the order in which the
base and index registers appear does not matter.

Optional displacement value < DISP> can hEagram label
(whose format is discussed in the source file format chapter 5),
or an immediate value (containing the pound (#) prefix only).

Base or indexregisters enclosed in brackets may be followed by
plus (+) or minus (-) constant expressions as shown below:

[BX+ VALU]
[SI-7+ 3]
[BP+ 80H]
[DI+ VALU-4]

Label VALU in the operands shown above must be equivalent
to a constant expression.

Programming Considerations 6-31

String Operations

All string operations use source index register (Sl) to

address the source operands, which are assumed to be in the cur-
rent data segment (segment contained in DS). (The source seg-
ment may be overridden.)

Destination index register (D) is used to address the destina-
tion operands, which are assumed to be located in the current
extra segment (segment contained in ES). (The destination seg-
ment must always be in ES.)

If the direction flag (DF) is cleared, the operand pointers are in-
cremented after each operation: once for byte operations and
twice for word operations. If the DF flag is set, the operand
pointers are decremented after each operation.

6-32 Programming Considerations

Pseudo Instruction Summary
. __|

Introduction

This chapter describes the HP Model 64000 assembler pseudo
instructions. The pseudo instructions are usedigting con-
trol, program counter, linkage control, and constant definitions.

An assembler pseudo may be either an instruction to the
assembler or a request for so special service. Most pseudos re-
quire no memory space because, unlike microprocessor
instructions, they produce no object code.

The pseudo instruction descriptions are organized
alphabetically in this chapter. A summary of the pseudnies
tions is shown below.

Pseudo Instruction Summary 7-1

HP 64000 Pseudo

Instructions

Pseudo Function

ASC Stores data imemory in ASCII format.

BIN Stores data imemoryin binary format.

COMN Assigns common block of data or code to a specific locatiomemory.

DATA Assigns data to a specific locationmmemory.

DECIMAL Stores data imemory in decimal format.

END Terminates the logical end of a program module. Operand field can be used to in-
dicate the starting address in memory for program execution.

EXPAND Causes an output listing of alerce and macro generated codes.

GLB Defines symbol that is used globally (referenced by other program modules).

HEX Stores data imemory in hexadecimal format.

IF Allows sections of code to be conditionally assembled.

INCLUDE Allows a secondary file to be included in the source inp etasir.

LIST Used to modify output listing gfrogram.

MASK Performs AND/OR logical operations on designated ASCII string.

NAME Permits used to add comments for reference in the load map.

NOLIST Suppresses outplistings (except gor messages).

OCT Allows user to store data in octal format.

ORG Sets program counter to specifiemory address for absolute pragming.

PROG Assigns surce stagments to a specific location in memory. Assembler default con-
dition is PROG storage area.

REAL Converts real decimal numbers to IEEE binary floating point constants.

REPT Enables user to repeat a sourceestegnt any number of times.

SET Defines label field symbol with operand field value. Symbol can be redefined.

SKIP Enables user to skip to a new page to continue protiséng.

SPC Enables user to generate blank lines within prodistimg.

TITLE Enables user to create a test line at the top of each page listing foutle pro-
gram.

WARN/

NOWARN Turn warning message in soulcgting ON or OFF.

7-2 Pseudo Instruction Summary

Special 8086/8088

Pseudo

Instructions

Pseudo Function

ALIGN Increments theurrent program counter address, if odd.

ASSUME Associates a segment register with a segment name (PROG, DATA, COMN, or
ORG).

DB Defines and initializes BYTE length memory locations.

DBS Reserves memory space in bytes.

DD Defines and initializes DWORD (double-word) length memory locations. DD can
also be used to define real numbers.

DDS Reserves memory space in double-words.

Dw Defines and initializes WORD length memory locations.

DWS Reserves memory space in words.

EQU Equates label field symbol with operand value. Operands may be the same as any
regular instruction operand. The label field symbol cannot be redefined.

EXT Defines external symbols. May also associate the symbol with a segment register
and a TYPE.

LABEL Creates and assigns a TYPE to the label field symbol. The address of the symbol
will be the nexitmemory location.

PROC Creates a procedure label of type FAR or NEAR.

SET Allows symbols to be defined and assigned values. A symbol defined with the SET

pseudo may have its value changed later on in the program with another SET
pseudo instruction.

Pseudo Instruction Summary 7-3

Pseudo The following descriptions list and define each assembler and
Instruction Syntax control instruction in detail. They alisted alphabetically.

Note Special 80286, 8087, and 8089 pseuddringion descriptions
are found in their respective appendices.

7-4 Pseudo Instruction Summary

ALIGN Align to Word Boundary
(Special 8086/8088 Series Pseudo)
Syntax Label Operation Operand
ALIGN
Description If the current program counter address is odd, ALIGINin¢re-
ment the program counter by one. This optimizes word data
storage, since access time is less when an address is on a word
boundary.
Example
LOCATION OBJECT CODE LINE SOURCE LINE
1 "8086"
0000 0001 2 NAME1 DB 0,1
0002 02 3 NAME2 DB 2
4 ALIGN
0004 0000 5 NAME3 DW NAME1
0006 0002 6 NAME4 DW NAME2
Errors= 0

Pseudo Instruction Summary 7-5

ASC Store Al Data in Memory
Syntax Label Operation Operand
[symbol] ASC string expression
or
[symbol] ASCII string expression
Description The ASC pseudo instruction allows the user to stor€IA®xt
in memory using quotation marks, apostrophes or carets (*) as
delimiters. The first delimiter must be used as the terminating
delimiter.
The ASCII character(s) specified in the operand field may be in
the form of a string expression.
Example
LOCATION OBJECT CODE LINE SOURCE LINE
1 "8086"
0000 4142436162 2 ASC "ABCabc"
0005 63
0006 4141274127 3 ASCII "AAAAA"
(00]0]=] 4141
000D 4242224141 4 ASCII 'BB"AA"BB’
0012 224242
Errors=0

7-6 Pseudo Instruction Summary

ASSUME

Syntax

Description

Assume Segment Location
(Special 8086/8088 Series Pseudo)

Label Operation Operand
ASSUME segreg:segnam [,...]
or

ASSUME NOTHING (default)

The ASSUME instruction informs the assembler of the
addresses contained in the segment registers. The instruction is
required prior to any memory references which do not explicitly
name a segment register.

The ASSUME declaration associates a segment register with a
segment name. All references to items in the named segment
cause segment override prefixes to be generated if necessary.

The "segnam" portion of the syntax €tatent must be one of
the following:

PROG
DATA
COMN
ORG
NOTHING

The ASSUME NOTHING instruction removes all former
assumptions as to which base addresses were in which
segment registers. This turns off the implicit generation of seg-
ment-overridednitially, all segment registers are

assumed to NOTHING.

Pseudo Instruction Summary 7-7

ASSUME (Cont'd)

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
0000 2 LABEL DWS
0004 2EA10000 3 MOV
0008 Al 4 MOV
ERROR-IO

5 ASSUME
0009 2EA10000 6 MOV

Errors= 1,previous error at Line4

2
AX,DS:LABEL
AX,LABEL

CS:PROG
AX,LABEL

IO-Invalid Operand, Invalid or unexpected operand encountered or operand is missing.

7-8 Pseudo Instruction Summary

BIN Store Word Length Binary Data in Memory
Syntax Label Operation Operand
[symbol] BIN binary number(s)
or
[symbol] BINARY binary number(s)
Description The BIN pseudo instruction allows the user to store data in bi-
nary format in memory.
The number(s) specified in the operand field is (are) written in
binary format. If more than one operand is specified, each must
be separated from the other by a comma. Each operand specifies
a 16 bit word.
Example
LOCATION OBJECT CODE LINE SOURCE LINE
1 "8086"
0000 0008 2 BIN 1000
0002 0006000C 3 BINARY 110,1100
0006 00030006 4 LBL BIN 011,0110
Errors= 0

Pseudo Instruction Summary 7-9

COMN/DATA/PROG Designated Memory Storage Area

Syntax Label Operation Operand

COMN
or
DATA
or
PROG

Description Three program counters are used to identify areas of relocatable
code. The areas are designated as data (DATA), program
(PROG), and common (COMN). You can change from one re-
locatable area to another using these pseudoinstructions.

PROG and DATA instructions function identically. They are
merely two names that identify two separate, relocatable mem-
ory areas. Common (COMN) allows construction of a common
block of data used by different program modules. The default
area is PROG.

Normally, the default memory area (PROG) will be used when
constructing a source program. The DAM&mMory area might
occupy another part of memory. DATA can be used for storing
data, tables, instructions, etc.

The COMN pseudo can be used to group information that is
common to a number of program modulessifyning these type
of items to a specific area in memory facilitapgegram modifi-
cation and referencing.

7-10 Pseudo Instruction Summary

COMN DATA
PROG (Cont'd)

Note # All information assigned to the COMN areantemory must be
grouped in one program file. If two or more files
assign information to the COMN area, the linkdf awerlay
the first data stored with the second block of data
assigned, thereby erasing the first block of data. However, this
feature may be useful in the design of software systems requiring
overlays.

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"

2 COMN
0000 4558414D50 3 ASC "EXAMPLE"
0005 4C45

4 DATA
0000 00030008 5 LBEL BIN 011,1000,011
0004 0003

6 PROG
0000 BB0O00O 7 MOV BX,# LBEL
Errors=0

Pseudo Instruction Summary 7-11

DB

Syntax

Description

Define Byte
(Special 8086/8088 Series Pseudo)

Label Operation Operand

[Name] DB [expression,...]

The DB instruction may be used to accdistpthe following:

Initialize memory locations.
Define the type characteristic of variables.

When used with a variable expression in the label field, the DB
instruction defines the variable to be type "BYTE". The DB in-
struction cannot be used to initialimemory storage using an
address expression in the operand field. To initialize storage
with characters, enclose the characters in quotation marks or
apostrophes. The DB instruction is the only legal instruction
for strings that contain more than two characters. Each charac-
ter in the string requires one byte of memory.

7-12 Pseudo Instruction Summary

DB (Cont'd)

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
0000 0001 2 V1 DB 0,1
0002 05 3 V2 DB 5
0003 4142434445 4 V3 DB "ABCDE"
0000 8A00000 5 MOV AL,DS:V1
0ooB 8A1E0001 6 MOV BL,DS:V1+1
000F 8A2E0002 7 MOV CH,DS:VS
Errors=0

Pseudo Instruction Summary 7-13

DBS

LOCATION

Syntax

Description

Example

OBJECT CODE

Define Byte Storage
(Special 8086/8088 Series Pseudo)

Label Operation Operand

Name DBS expression

The DBS instruction reserves space in bytes. Esgio@ must

be a valid assembly time expression with no forward references.
DBS causes the program counter to beemoented by the value
of expression. It will defin®lAME as a valid byte variable.

LINE SOURCE LINE

0000
000A

Errors=0

00

1 "8086"
2 TABLE DBS 10
3 V1 DB 0

7-14 Pseudo Instruction Summary

DD

Syntax

Description

Define Double-Word
(Special 8086/8088 Series Pseudo)

Label Operation Operand

[Name] DD [expression,...]

The DD instruction may be used to accdistpthe following:

Initialize memory locations.
Define the type characteristic of variables.

When used with a variable expression in the label field, the DD
instruction defines the variable to be type double-word.

When an address expression is used in the operand field, the DD
instruction vill initialize two words ofmemory with the segment
and offset of the variable.

When using character strings to initialize memory storage, the
length of the character string is restricted to a maximum of two
characters. The characters are swapped and placed in the low or-
der word, with the high word being zero. If only a single charac-
ter is used, it will be placed in the high byte of the low word.

The DD operation can also be used to define real-number
pseudos. Real numbers are always expressed in decimal values.
Be sure to include the decimal point. You may use either the
normal decimal or the scientific form of the expression. You

may also specify either positive or negative numbers and expo-
nents (+ /-n.mE+ /-X). Positive numbers are assumed if you do
not specify.

Pseudo Instruction Summary 7-15

DD (Cont'd)

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
0000 00000000 2 P1 DD P1
0004 0000001C 3 P2 DD L
0008 00000000 4 P3 DD P1
ooocC 0000E442 5 J1 DD 114.0
0010 0000C842 6 J2 DD 1.0E2
0014 00401CC6 7 J3 DD -1.0E4
0018 8FC2F53D 8 J4 DD 120.0E-3
0oi1C C51E0000 9 L LDS BX,DS:P1
0020 C4E60008 10 LES SI,DS:P3
0024 2EFF2E0004 11 JMP CS:P2
Errors=0

7-16 Pseudo Instruction Summary

DDS

LOCATION

Syntax

Description

Example

Define Double-Word Storage
(Special 8086/8088 Series pseudo)

Label Operation Operand

Name DDS expression

The DDS instruction reserves space in double words. Expres-
sions must be valid assembly expressions with no forward refer-
ences. DDS causes the program counter to be

incremented bydur times the value of the ex@m®on. It will de-
fine NAME as a valid double word exg®on.

OBJECT CODE LINE SOURCE LINE

0000
0010

Errors= 0

FFFFO0000

1 "8086"
2 TABL DDS 4
3 P1 DD 65535

Pseudo Instruction Summary 7-17

DW Define Word
(Special 8086/8088 Series Pseudo)

Syntax Label Operation Operand

[Name] DW [expression, ...]

Description The DW instruction may be used to accdistpthe following:

Initialize memory locations.
Define the type characteristic of variables.

When used with a variable expression in the label field, the DW
instruction defines the variable to be type word.

When an address expression is used in the operand field, the
DW instruction vill initialize a word ofmemory with the offset
of the variable.

When using character strings to initialize memory storage, the
length of the character string is restricted to two characters. The
characters will be swappedmmemory. If a single character is
specified, it will be placed in the byte with the higher numbered
address.

7-18 Pseudo Instruction Summary

DW (Cont'd)

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
0000 0000424102 2 X DW 0,"AB",2
0005 00
0006 0000 3 Y DW X
0008 8B1E006 4 MOV BX,DS:Y
0oocC A10004 5 MOV AX,DS:X+ 4
000F 8B07 6 MOV AX, [BX]
0011 A30002 7 MOV DS:X+ 2, AX
Errors= 0

Pseudo Instruction Summary 7-19

DWS

LOCATION

Syntax

Description

Example

OBJECT CODE

Define Word Storage
(Special 8086/8088 Series Pseudo)

Label Operation Operand

Name DWS expression

The DWS instruction reserves space in words. Esgio@s must

be valid assembly time expressions with no forward references.
DWS causes the program counter to beantented by twice

the value of expression. It will defiZéAME as a valid word
variable.

LINE SOURCE LINE

0000
0014

Errors= 0

FFFF

1 "8086"
2 STRG DWS OAH
3 P1 Dw 65535

7-20 Pseudo Instruction Summary

DECIMAL

LOCATION

Syntax

Description

Note #

Example

OBJECT CODE

Decimal Constant

Label Operation Operand

[symbol] DECIMAL decimal number

The DECIMAL pseudo instruction allows the user to store data
in decimal format in memory.

The number(s) specified in the operand field is (are) written in
decimal format. If more than one operand is specified, each one
must be separated from the other by a comma.

The DECIMAL pseudo instruction can be used in the form
DEC.

LINE SOURCE LINE

0000
0004

Errors=0

007FOO0FF
0000

1 "8086"
2 DECIMAL 127,255
3 DECIMAL 65536

Pseudo Instruction Summary 7-21

END

Syntax

Description

Example

LOCATION OBJECT CODE

Program Module Termination

Label Operation Operand

END [expression]

The END instruction terminates the logical end of a program
module. It is optional. If omitted, the programillve automat-
ically terminated after the last statement in phegram module
being edited.

The optional expression in the operand field represents the
starting address in memory for program execution. This
address initializes the program counter when the file is loaded
during emulation. The expression must be an

absolute or relocatable value (not an external symbol refer-
ence).

LINE SOURCE LINE

0000 007FOOFF
0004 0000
Errors=0

1 "8086"

2 DECIMAL 127,255
3 DECIMAL 65536
4 END

7-22 Pseudo Instruction Summary

EQU Equate
(Special 8086/8088 Series Pseudo

Syntax Label Operation Operand

[symbol] EQU expression

Description The EQU instruction is used to esligb a relationship
between a symbol and an expression. The symbol in the label
field acquires the same value as the expression in the operand
field. Redefinition of the symbol is not permitted. If the operand
field of an EQU instruction contains another symbol, it must be
defined previously in the source program.

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
0000 0000 2 X DB 0,0
< 0002> 3 TWO EQU #2
< 0001> 4 X1 EQU DS:WORD PTR
X [BP+ 1] [DI]
< 0000> 5 XH EQU HIGH X
0002 6602060000 6 ADD XX
ERROR-ET A
ERROR-ET, see Line 6 A
ERROR - IO, see Line 6 A
< 0000> 7 XX EQU AX
0007 03CO0 8 ADD AX

Errors = 3, previous error at line 6
ET - Expression Type, The type of expression is not valid or the operand is not valid
IO - Invalid Operand, Invalid or unexpected operand encountered or operand is missing

Pseudo Instruction Summary 7-23

EXPAND Listing of Macro Expansions
Syntax Label Operation Operand
EXPAND
Description The EXPAND instruction can be used in the assembler direc-
tive statement or embedded in tlo&isce program. If embedded
in the source program, itilkgenerate, within the output listing,
all macro and data expansions that follow it.
You may exit the EXPAND output listing mode by embedding
the LIST directive in the proper location within the source pro-
gram.
Example

LOCATION OBJECT CODE LINE SOURCE LINE
1 "8086"
2 EXPAND

0000 4142436162 3 ASC "ABCabc"

0005 63

0006 4141274127 4 ASCII "AAAAA"

000B 4141

000D 4242224141 5 ASCII 'BB"AA"BB’

0012 224242
6 LIST

0015 4142436162 7 ASC "ABCabc"

001B 414274127 8 ASCII "AAATAA"

0022 4242224141 9 ASCII 'BB"AA"BB’

Errors=0

7-24 Pseudo Instruction Summary

EXT

Syntax

Note #

Description

Define External Symbols
(Special 8086/8088 Series Pseudo)

Label Operation Operand
EXT SYMBOL1,SYMBOL2
or
EXTRN SYMBOL1,SYMBOL2
or

EXTERNAL SYMBOL1,SYMBOL2

Do not use the "EXT" short form of 'EXTERNAL" in the
"70108", "70116", “70320", and "70330" méprocessor modes.
The NEC processors recognize an instruction with the mne-
monic name of "EXT." Using the "EXT" form of

the EXTERNAL pseudo op will cause a conflict with the
instruction mnemonic "EXT"and cause an "lO - Invalid Oper-
and"error at the pseudo op location. Use either "'EXTRN" or
"EXTERNAL"to refer to this pseudo op when in the NEC mi-
croprocessor modes.

The EXT instruction permits the optionating of segment reg-
ister (segreg) and type required for the 8086 and 8088 micro-
processors. The EXT instruction also providdistaof symbols
referenced in this program module but defined in another pro-
gram moduleWhen multiple symbols are listed in the operand
field, they must be separated by commas.

The optional TYPE, when required, may be BYTE, WORD,
DWORD, NEAR, FAR, or ABS. (The ABS type allows you to
declare constant numbers, which have been declared global

Pseudo Instruction Summary 7-25

EXT (Contd)

in other modules, as externals.) If no TYPE is declared, the as-
sembler assigns NEAR by default. If no segreg is declared, the
assembler assigns it to NOTHING by default.

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
2 EXT CS:SAM,
CS:GEORGE
3 EXT DS:PETE, WORD
FRED
0000 A00000 4 MOV AL,PETE
0003 26A10000 5 MOV AXES:FRED
0007 E90000 6 JMP SAM
000A 9A00000000 7 CALL FAR PTR GEORGE
Errors=0

7-26 Pseudo Instruction Summary

GLB Define Global Symbols
Syntax Label Operation Operand
GLB SYMBOL1,SYMBOL2
or
GLOBAL SYMBOL1,SYMBOL2

Description Symbols that are defined in one program module and referenced
by other program modules must be declared global in the pro-
gram module where they are defined.

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
2 GLB LBEL
3 GLOBAL TABLE
0000 4 TABLE DDS 3
< 2000> 5 LBEL EQU 2000H
Errors=0

Pseudo Instruction Summary 7-27

HEX Store Hexadecimal Data in Memory
Syntax Label Operation Operand
[symbol] HEX hexadecimal number
Description The HEX pseudo instruction allows the user to store data in
hexadecimal format. The number(s) specified in the operand
field is (are) written in hexadecimal format. If more than one op-
erand is specified, each one must be separated from the other by
a comma.
Example

LOCATION OBJECT CODE LINE SOURCE LINE
1 "8086"

0000 OOFFFFFF 2 HEX FF,OFFFF

0004 000AQOFE 3 EXEC HEX AFE,05,5F,7,81

0oocC 00070081

0010 FFFF 4 HEX FFFFFF

Errors=0

7-28 Pseudo Instruction Summary

Syntax

Description

Conditional Assembly
(Special 8086/8088 Series Pseudos

Label Operation Operand
IF < absolute expression>
ELSE

IFEND or ENDIF
or
IF < absolute expression>

IFEND or ENDIF

The IF pseudo instruction allows sections of code to be condi-
tionally assembled. Sections of code are assembled or skipped
based on an absolute expression. This expression is treated as a
Boolean function with either a TRUE or a FALSE value.

The IF instruction evaluates an absolute egpian as a logical
function with the value zero FALSE and a nonzero value
TRUE. When the expression evaluates to a nonzero (TRUE)
condition, the code following the IF instruction is assembled un-
tilan ELSE or IFEND or ENDIF instruction is encountered. If
the expression evaluates to zero (FALSE), then the ELSE part
of the IF instruction is assembled until an IFEND or ENDIF is
found. The expresion type must be absolute (type= 0). All sym-
bolic references must be defined before being used with a IF in-
struction. The lower 32 bits of the exgs@®n value are used to
determine the true or false condition. The IFEND or ENDIF in-
structions are used to terminate the IF instruction. They must
either follow the

Pseudo Instruction Summary 7-29

IF (Cont'd) ELSE instruction or the IF instruction if no ELSE portion is de-

sired.

Conditional IF instructions can be nested up to 20 levels deep.
If the nesting levels exceed 20, then an 10 (invalid operand) er-
ror will be flagged on the IF irisuction. If an error is flagged on
an ELSE or IFEND/ENDIF instruction, a nesting level error
has occurred. One of these three instructions was encountered
before an IF instruction or more IFEND or ENDIF instructions

were found than IF

instructions. The end of the assembly source is treated as an
IFEND or ENDIF instruction and no error is flagged if the as-
sembler is currently in an IF instruction.

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
< 0058> 2 TRUE EQU
< 000> 3 FALSE EQU
4
5 IF
0000 B85800 6 MOV
7 ELSE
8 MOVE
9 ENDIF
10
11 IF
12 MOVEW
13 ELSE
0003 B80000 14 MOV
15 ENDIF

Errors=0

58H
0

TRUE
AX, TRUE

AX,FALSE
FALSE
AX,TRUE

AX, FALSE

7-30 Pseudo Instruction Summary

INCLUDE

Syntax

Description

Example

LOCATION OBJECT CODE

Include Secondary File in Source Input

Label Operation Operand

INCLUDE < Host-Specific File
Naming Conventions>

The INCLUDE pseudo instruction allows a secondary file to be
included in the source input sam. Only one level of inclusion

is allowed. Nested INCLUDE files will result in anrer mes-
sage.

LINE SOURCE LINE

ERROR-IS

0000 000B
0002 0006000C
0006 00030006

1 "8086"

2 INCLUDE ~ C:/USERID/BIN
+ "8086"

N

+ BIN 1011

+ BINARY 110,1100

+ LBEL BIN 011,0110

Errors= 1, previous error at line 2
IS - llegal Symbol, Syntax expected an identifier and encountered an invalid character or term

Pseudo Instruction Summary 7-31

LABEL Label
(Special 8086/8088 Series Pseudo)
Syntax Label Operation Operand
Name LABEL [type]

Description The LABEL instruction may be used to create a symbol name
and assign a type to that symbol. Available types that may be as-
signed to a symbol are: BYTE, WORD, DWORD, NEAR, and
FAR.If no type is specified, the default is NEAR

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"

2 MEM_WORD LABEL WORD
0000 2214 3 MEM_BYTE DB 22H,14H
0002 A10000 4 MOV AX,DS:MEM_WORD
0005 A10000 5 MOV AX,DS:WORD PTR

MEM_BYTE

0008 A00000 6 MOV AL,DS:MEM_BYTE
000B E90A00 8 JMP DONE_NEAR
000E EA00000018 9 JMP FAR PTR DONE_FAR
00113 9A00000018 10 CALL FARPTR DONE_FAR

11 DONE_FAR LABEL FAR
0018 EBFE 12 DONE_NEAR JMP DONE_NEAR
001A EBFC 13 JMP FAR PTR DONE_FAR
001C 9A100000018 14 CALL DONE_FAR
Errors=0

7-32 Pseudo Instruction Summary

LIST

Syntax

Description

Note

Format Assembler Listfile

Label Operation Operand Comment
LIST
or
LIST <decimal number> ;controlled
;listing

The LIST instruction can be used in the assembler directive
statement or embedded in theusce program. If embedded in
the source program, itilhgenerate one line of output for each
line of source code that follows it.

The output listing can be controlled so that a desired number of
lines per output page can be achieved. See the ASSEMBLING
YOUR PROGRAMS (chapter 3) for information on specifying
the page length of assembler output listings.

All LIST instructions embedded in the source prograithbs
overridden if any list option is specified in the assembler direc-
tive statement. (Refer to chapter 2 for assembler directive state-
ment definition.)

Pseudo Instruction Summary 7-33

LIST (Cont'd)

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"

2 LIST 56

3 LIST
0000 4142436162 4 ASC "ABCabc"
0006 4141274127 5 ASCII "AA'A'AA"
000D 4242224141 6 ASCII 'BB"AA"BB’

7 EXPAND
0015 4142436162 8 ASC "ABCabc"
001A 63
001B 4141274127 9 ASCII "AA'A'AA"
0020 4242224141 10 ASCII 'BB"AA"BB’
0027 224242
Errors=0

7-34 Pseudo Instruction Summary

MASK

Syntax

Description

Note #

Set Mask

Label Operation Operand

MASK (AND),(OR)

The MASK instruction permits masking of &8 strings. The
instruction affects ASII strings only and Wl produce a logical
'AND’ operation with each ASCII character followed by a logi-
cal 'OR’operation. (The OR operand is optional. However, the
'OR’operation is always performed.)

The initial MASK conditions are:
AND = OFFH, and OR= 00H

When MASK is used with two operands, and then later with
only one, the previous second operand is still active.

Pseudo Instruction Summary 7-35

MASK (Cont'd)
Example
LOCATION OBJECT CODE LINE SOURCE LINE
1 "8086"
0000 41424344 2 ASC "ABCD"
3 MASK 22H
0004 00020200 4 ASC "ABCD"
5 MASK OFFH
0008 41424344 6 ASC "ABCD"
7 MASK OFFH,55H
ooocC 55575755 8 ASC "ABCD"
9 MASK 22H
0010 55575755 1 ASC "ABCD"
Errors=0

7-36 Pseudo Instruction Summary

NAME

Add Comments to Load Map Listing

Syntax Label Operation Operand Comment
NAME "SALPHA" ;character
;string
Description The NAME instruction is used to addmments to the object
module for reference on the load map listing. Tema string
may contain any combination of characters, numbers, or special
characters. NAME is limited to a maximum of 22 characters.
Example
"8086"
NAME "UP TO 22 CHARACTERS"
DB OFFH
Example Linker
(Load Map) Listing
PROGRAM DATA COMMON ABSOLUTEDATE TIME COMMENTS
000000 Tue, 10 Mar 1985, 1:35 UPTO22
CHARACTERS
000001
1

Pseudo Instruction Summary 7-37

NOLIST

Syntax

Description

Example Source File

No Output Listing

Label Operation Operand

NOLIST

The NOLIST instruction can be used in the assembler directive
statement or embedded in theusce program. If embedded in
the source program, itilhsuppress the outplisting of all

source statments following it. If used in the assembler directive
statement, it Wl suppress all outputstings except gor mes-
sages.

"8086"

NOLIST
ASC
ASCII
ASCII
EXPAND
ASC
ASCII
ASCII

"ABCabc"
"aa’ A’AA"
'BB"AA"BB’

"ABCabc"
"AAAAA"
'BB"AA"bb’

7-38 Pseudo Instruction Summary

NOLIST (Cont'd)

Example Assembler

Listing

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"

6 EXPAND
0015 4142436162 7 ASC "ABCabc"
001A 63
001B 4141274127 8 ASCII "AA'A’AA"
0020 4141
0022 4242224141 9 ASCII 'BB"AA"BB’
0027 224242
Errors=0

Pseudo Instruction Summary 7-39

OCT Store Octal Data in Memory
Syntax Label Operation Operand
[symbol] OCT octal number
or
[symbol] OCTAL octal number
Description The OCT pseudo instruction allows the user to store data in oc-
tal format.
The number(s) specified in the operand field is (are) written in
octal format. If more than one operand is specified, each one
must be separated from the other by a comma.
Example
LOCATION OBJECT CODE LINE SOURCE LINE
1 "8086"
0000 07770077 2 OCT 777,77
0004 00050067 3 OCT 5,67,03
0008 0003
000A 7777 4 OCT TITTITTY
Errors=0

7-40 Pseudo Instruction Summary

ORG

Syntax

Description

Note

Absolute Code Area

Label Operation Operand

ORG address

The ORG instruction is used for absolute pesgming. It sets
the contents of the location counter to the address entered in
the operand field. The next statement, following the ORG in-
struction, vill be located at the address specified.

The ORG instruction cannot be used to alter the relocatable
area counters associated with the DATA, PROM, and COMN
instructions. The relocatable area instructions do not contain
operands. Their associated counters start at zero and are initial-
ized at linking time.

When using the ORG directive care should be taken to ensure
that the assigned memory location il not result in memory
overlap during the link operation.

A label symbol is generally not used in the operand field of this
instruction. However, if a symbol is entered, it must be defined
in a label field of a prior statement in th@usce program. The
symbol must be an absolute expression.

Pseudo Instruction Summary 7-41

PROC Procedure Definition
(Special 8086/8088 Series Pseudo)

Syntax Label Operation Operand

[Name] PROC [type]

Description The PROC instruction tis the assembler that the codes follow-
ing will be designated as type FAR or NEAR. The PROC in-
struction emains in effect until another PROCtingction is
given. If no PROC statement is usedhmiut designating a type,
the assembler assumes NEAR.

The value of a label will be theirent location of the program
counter and it vil be of the type listed in the operand field.

The PROC instruction (explicit or implicit) has the following ef-
fects:

Associates the label with the current value of the program
counter and types the label.

Determines whether the corresponding RET instruction will
be coded as an intersegment (between segments) return or as
an intrasegment (within segment) return.

— Ifa PROC FAR definition is used, then the corresponding
RET is coded as intersegment.

— IfaPROC NEAR is used (or in the default case), then the
corresponding RET is coded as intrasegment.

The ENDP statement iegal.

7-42 Pseudo Instruction Summary

PROC (Cont'd)

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
0000 E80800 2 CALL P1
0003 9A0000000D 3 CALL P2
0008 40 4 P1 INC AX
ooocC C3 5 RET

6 P2 PROC NEAR
000D 43 7 INC BX
000E CB 8 RET
Errors=0

The first call (to P1) is an implicit PROC because of the RET in-
struction. It defaults to NEAR. The second call (to P2) is explic-
itly identified as a PROC NEAR. Ifthe NEAR was not present
in this definition, then the default would still be NEAR.

Pseudo Instruction Summary 7-43

PROC (Cont'd)

Note # An error can occur if you try to make far procedure call to a rou-
tine within the same file. As an example, the following program
will generate a Legal Rangerer because the DWS instruction
has pushed out of the 64K segment limit. A more common case
(and more easily fixed) might be where a single file contains a
large amount of program code that causes the segment limit to
be exceeded. Changing the type of the PROC to FAR does not
solve the problem;
instead, a different kind of error is caused. To avoid these er-
rors, do not create code thatlwequire a FAR CALL within

the same file.
1 "8086"
0000 E80000 2 CALL P1
ERROR - LR n
0003 3 USESPCE DWS 65536
4 P1 PROC
0003 40 5 INC AX
0004 C3 6 RET
Errors= 1, previous error at line 2

LR - Legal Range, Address or displacement is out of range of the instructions’s addressing
capability.

7-44 Pseudo Instruction Summary

REAL Real Number

Syntax Label Operation Operand

REAL real decimal number

Description The REAL instruction converts real decimal numbers to IEEE
binary floating point constants. ShoB2¢bit) or long (64-bit)
IEEE binary floating point values can be generated by the
REAL instruction.

A real decimal number must start with a decimal digit(s), fol-
lowed by a decimal point, and end with a decimal digit(s). Pow-
ers of 10 are added after the decimal digit with an "E" or "L"
qualifier. Real decimal numbers specified with an "E" qualifier
or with no qualifier are converted to short real binary floating
point (32 bits). The "L" qualifier indicates a long real number.

Numbers are converted to the IEEE standard for real numbers
and stored high to low; where, the highest byte (containing the
sign bit) is stored at the lowest address value and the lowest byte
is stored at the highest address.

Pseudo Instruction Summary 7-45

REAL (Cont'd)

Example
LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"

0000 3F8000000 2 REAL 1.0 =1
0004 43C80000 3 REAL 1.0E2 :=100.
0008 3C2eD70A 4 REAL 1.0E-2 =0.01
000C BC23D70A 5 REAL -1.0E-2- ;=-0.01
0010 40590000 6 REAL -1.0L2 ;LONG REAL= 100
0014 00000000
Errors=0

7-46 Pseudo Instruction Summary

REPT Repeat Next Source Stahent
Syntax Label Operation Operand
REPT number
Description The REPT instruction is used to repeat the next source state-
ment any given number of times.
Example
LOCATION OBJECT CODE LINE SOURCE LINE
1 "8086"
2 REPT 4
0000 48 + DEC AX
0001 48 + DEC AX
0002 48 + DEC AX
0003 48 3 DEC AX
Errors= 0

Pseudo Instruction Summary 7-47

SET

Syntax

Description

Example

LOCATION OBJECT CODE

Define Symbol
(Special 8086/8088 Series Pseudo)

Label Operation Operand

symbol SET expression

The SET pseudo instruction allows a symbol to be defined and
assigned a value. It is similar to the EQU pseudo, except with
SET the value can be changed during the assembly process. The
expression used must be absolute (type = 0) and all symbolic
references must be defined before they are used.

LINE SOURCE LINE

< 1000>
< 1004>

Errors=0

1 "8086"
2 EXEC SET 1000H
3 EXEC SET EXEC+ 4

7-48 Pseudo Instruction Summary

SPC

Syntax

Description

Line Space

Label Operation Operand

SPC [number]

Whenever a SPC instruction is encountered in the source pro-
gram, the assembler will space downward (line feed) a specified
number of lines. The number of line feeds required is indicated
in the operand field. If the operand field is left blank, the assem-
bler will generate one blank line. The SPQtinstion is printed

in the output listing only if anreor exists in the operand field.

Pseudo Instruction Summary 7-49

SPC (Cont'd)

Example Source File

"8086"
EXEC SET 1000H
SPC 3
EXEC SET EXEC+4
Example Listing
LOCATION OBJECT CODE LINE SOURCE LINE
1" 8086"
<1000> 2 EXEC SET 1000H
<1004> 4 EXEC SET EXEC+ 4

Errors =0

7-50 Pseudo Instruction Summary

TITLE
Syntax
Description
Example
Hewlett Packard:

Change Listfile Title

Label Operation Operand

TITLE "Name"

The TITLE instruction Wl initiate a page eject and create a
"Name" line at the top of each pagsing for the surce pro-
gram that follows. The title may be 70 characters in length and
may be changed any number of times during the program.

This statement, if inserted as the second statement imthees
program (directly after the assembler directivall,ecause the ti-
tle to be printed on the first page listing tloeisce program and
thereafter on the top of each page. Alternatively, if the TITLE
instruction is inserted in the program at some place other than
the second statement of theusce program, the instruction will
initiate a page eject and the new title will be printed at the top
of the new page and each page thereatfter.

Sample Title:

LOCATION OBJECT CODE LINE SOURCE LINE

Errors =0

Pseudo Instruction Summary 7-51

WARN/NOWARN

Warning/No Warning

Syntax Label Operation Operand

WARN
or
NOWARN

Description The NOWARN instruction turns off the warning message in the

source line. The WARN instruction restores it.

7-52 Pseudo Instruction Summary

Using Macro Instructions

Introduction

This chapter discusses macro directives, their use and construc-
tion. Using macro definitions (macros) eliminates the repeti-
tious writing of the same sequence of instruction during source
code construction.

Any legitimate sequence of instructions may be incorporated
into a macro. This process is called "macro definition". Once de-
fined, a single macro call may be used at any point in the source
program to insert a sequence of instructions defined by the
macro definition. The insertion of a

sequence of instructions is referred to as "macro expansion”.

Advantages of
Using Macros

A macro definition provides means oproducing, at program
assembly time, a commonly used sequence of

assembler statements as many times as needed. The

sequence of statements is specified just once as a macro. There-
after, at any point in the program where theseestants are to

be produced, a single macro caill wause the sequence to be
generated.

Using Macro Instructions 8-1

Using macros properlyilvserve to:
Simplify program coding.

Significantly reduce progimming erors otherwise caused by
rewriting similar instructions throughout the program.

Ensure that common functions are performed by standard
routines.

Improve program readdly.

Reduce duplication of effort among pragimmers
assigned to thproject.

Disadvantages of Variables used in a macro are only known within itSuch vari-

Using Macros ables are local rather than global. This can create unecessary
confusion. Other disadvantages of macros are:

Repetition of the same macro may create many instructions.

Possible effects on registers and flags that may not be clearly
stated.

8-2 Using Macro Instructions

Macros —vs— In some situations, a subroutine, rather than multiplani

Subroutines macro statements, can reduce ovgratigram size. Subroutines
require branching, then returning, from another part of the pro-
gram. Subroutines usually increase program execution time.
Variables in a subroutine are evaluated only during program
execution further slowing program execution. Macro parame-
ters are evaluated at assembly time and do not slow down
execution as much as subroutines.

Macro Format A macro definition consists obtir parts that must appear in the
order given below:

1. Header statement.
2. Macro definition name.
3. Macro definition body.

4. Trailer statement.

Header Statement First the header statement occurs to specify both the name of
the new macro instruction and the formal argumentsafpar
ters) that will be used in the macrotingtion. General macro
header syntaxis:

Name MACRO [optional parameters]

Using Macro Instructions 8-3

Macro Definition Next the name of the macro definition is written in the label
Name field of the source statnent and must not be terminated by a
colon (:). To avoid multiple-label conflicts, the assembler treats
labels within macros as local labels, applying only to that par-
ticular macro. MACRO is written in the operation field of the
source statment. The optional parameters follow in the oper-
and field of the source s&ment.

Macro Definition Next the body of a macro definition must define the action of
Body the macro instructiorthere is no limit to the number of in-
structions that may appear in a macro definition body. Fields
within the macro body are the same as those of an assembler in-
struction. Rules for forming a macro statement resemble the
rules for forming an
assembler instruction.

Note Macro definition bodies may contain the names of other mac-
ros. In other words, macros may be defined in terms of other
macros. Macro bodies may not contain nested macros defini-
tions. A nested macro definition would be a completely new
macro defined within the macro body of another macro. Nested
macros are not allowed.

Macro Trailer The last consideration is the trailer statement mussisbof a
Statement single line. The operand field of the line contains the word
MEND (macro end).

An example of a macro instruction is as follows:

8-4 Using Macro Instructions

Example

Note #

Label Operation Operand Command
SAVE MACRO

OPC EXEC1

OPC SAVEA

OPC EXEC2

OPC SAVEB

MEND

The opcode symbol (OPC) listed in the operation field will take
the form of a mnemonic instruction for the specific microproces-
sor being proggmmed.

Calling Macros

Example

To call the SAVE macro, insert the macro name in the opera-
tion field of the source stament and the code in the body of
the macro will be generated in theogram as if it had been
typed there. The generated instructionlve printed in the
listing of theprogram (only if the expanlést option is speci-
fied).

SAVE

OPC EXEC1
OPC SAVEA
OPC EXEC2
OPC SAVEB

Using Macro Instructions 8-5

Optional
Parameters

Symbolic Parameters

8-6 Using Macro Instructions

Formal parameters of a macro definition are often referred to
as symbolic variables. Macro symbolic parameters (as distin-
guished from ordinary labels or symbols) are those symbols that
may be assigned different values by gtegammer When as-
sembler instructions are generated according to the macro defi-
nition, dummy parameters are replaced by values that have

been assigned to them. Three simple rules must be followed

when forming dummy parameters:

The first character of the dummy parameter must be an am-
persand (&).

The second character of the dummy parameter must be a let-
ter of the alphabet. All remaining characters, if any, can be
letters or numbers.

Any number of parameters or parameters of various lengths
may be entered in the operand field of a macro definition.
However, the entire line length must not exceed 110 charac-
ters (not including a carriage return). In addition, after argu-
ments are substituted for parameters in a macro call, the lines
resulting from the macro expansion must not exceed 110 char-
acters. If the 110 character length is exceededrram mes-

sage is issued.

Symbolic parameters used in the macro definition asgaed
values by the progmmer in each macro call referencing that
particular macro. An example of the general syntax for symbolic
parameters is:

Label Operation Operand

ADDS MACRO &SUBNAM,&PARAM
JP &SUBNAM
DEF &PARAM
MEND

Text Replacement
and Concatenation

Note

Assigning paameters to the ADDS macro develops:

ADDS ADD,SUM+ 27
JP ADD
DEF SUM+ 27

Macros may also be used for text replacement. Macros can also
perform concatenation of a parameter to generate a new word.
Consider the following macro instruction:

Label Operation Operand

SAVE MACRO &EXEC4,&PARM1,&PARM2
LD&EXEC4 &PARM1
ST&EXEC4 &PARM?2

You may now call this simple macro instructiossign your
own parameters, amtoduce the following insert into your pro-
gram:

SAVE A,EXEC2,EXEC3
LDA RO,EXEC2
LD EXEC3,R0

Note the substitution of actual parameters of call A, EXEC2,
EXECS - for dummy parameters in the macro heading
(&EXEC4, &PARM1, and &PARM?2). Note further that the se-
guence of call parameters interchange directly with the se-
guence of the dummy parameters.

A macro does not necessarily produce the same source code
each time it is called. Changing the parameters in a macro call
will change thegurce code that the macro generates.

Using Macro Instructions 8-7

Unique Label
Generation

Example

The macro assembler generates unique local labels each time a
macro is called by using four ampersand characters in a label
(&&&&). When a macro is called, &&&4& is replaced by four
decimal digits. Note, this four-digit constant is ieerented

every time a macro is called, even if the ampersand characters
are not in the macro label. With this labeling, a macro can be
called more than once in a program (no duplication of label).

= O

tHHH RO RBOONOOAONR

"8086"

TEXT MACRO &STRING

L1 &&&& DB L2 &&&&-L1 &&&&-1 ;Length of string.
ASC &STRING

L2 &&&&

MEND

TEXT "STRING # 1"

L1 0001 DB L2 0001-L1 0001-1 ;Length of string.
ASC "STRING # 1"

L2_0001

TEXT "STRING # 2"

L1 0002 db L2 _0002-L1 0002-1 : ;Length of string.

ASC "STRING #2"
L2_0002

8-8 Using Macro Instructions

Conditional
Assembly

.SET Instruction

Four conditional assembly instructions are available for use with
the HP 64000 Assembler. When inserted among theragits

in the body of a macro definition, they provide theans for in-
structing the assembler to branch and loop among the state-
ments of the executable program. These conditional assembly in-
structions Wl not be printed in the listing of therogram (un-

less they contain an error). Only their effects can be seen in the
generated object code. The four conditional instructions are:

SET
AF
.GOTO
.NOP

The .SET instruction provides a way tesgn or modify an ex-
pression value of a macro local. This instructigaigns the

value of the operand field to the name specified in the label

field. When the label is encountered subsequently in the macro
program, the assembler substitutes its new value. This value re-
mains unchanged until altered by a subsequent .SET instruction.
The general format ofa .SET

instruction is as follows:

Label Operation Operand

name SET expression

Using Macro Instructions 8-9

An example of a .SET instruction is as follows:

GENTABLE
LOOP_COUNT
LOOP_TOP

LOOP_COUNT

MACRO
SET
.NOP
DEF
DEF
DEF
SET
AF.
MEND

&COUNT
&COUNT

1
2

3

LOOP_COUNT-1
LOOP_COUNT.GT.0 LOOP_TOP

8-10 Using Macro Instructions

Call expansion:

GENTABLE

DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF

IF Instruction

Note #

.GOTO Instruction

The .IF instruction is the conditional-branch instruction using
six types of relational operators. These operators are:

EQ. === equal

.NE === not equal
LT. === less than

.GT. === greater than

LE. === less than or equal
.GE. === greater than or equal

All relational operator comparisons are 32 bits unsigned.

An .IF instruction has the following format:
Operation Operand

AF Exp .(Relational Operator). Exp Label

The .IF instruction directs the assembler to relationally compare
two expressions. If the value of this comparison is true, a branch
is taken to the statement named by the label symbol in the oper-
and field. Otherwise, the statement immediately following the

F instruction is processed by the assembler.

The .GOTO statement is the unconditional-branctrircsion.
It has the following format:

Operation Operand

.GOTO Label

The.GOTO instruction directs the assembler to branch, uncon-
ditionally, to the statement named by the label symbol in the op-
erand field.

Using Macro Instructions 8-11

.NOP Instruction

Note #

A .NOP instruction is a no-operation instruction. This instruc-
tion is useful with .IF and .GOTO instructions when branching
is required to sections of the program that are not labelled. The
.NOP instruction format is as follows:

Label Operation

Label .NOP

When a branch is taken to a .NOP instruction, the effect is the
same as if a branch were taken to the statement immediately fol-
lowing it.

Conditional assembly instructions generate no source code.

The sole function of the .SET, .IF, .GOTO, and .NOP instruc-
tions are to conditionally alter the sequence in which the assem-
bler processes the source program or macro definition instruc-
tions.

Example
CONDITION MACRO &P1,&P2,&P3
AF &P1 .EQ.1 LOAD
AF &P1 .EQ. 2 STORE
.GOTO DONE
LOAD .NOP
OPC &P2
OPC &P3
.GOTO DONE
STORE .NOP
OPC &P3
OPC &P2
DONE .NOP
MEND

8-12 Using Macro Instructions

Some call expansion examples are as follows:
CONDITION 1,EXEC2,BLUE

OPC EXEC2
OPC BLUE
CONDITION 2,EXEC2,BLUE
OPC BLUE
OPC EXEC2
CONDITION O

<NOCODE>

|
Checking Macro
Definition
Parameters

When using macro calls, you may want to omit specifiepae-
ters defined in the macro definition. This is accomplished by us-
ing the null symbol (") or a comma (,). For example:

Macro definition:

EXEC2 MACRO &P1,&P2,&P3,&P4
Macro call:
EXEC2 ,EXEC3," 0FCH

In the above example, &P2 is assigned a value of EXEC3 and
&P4 avalue FCH. &P1 and &P3 parameters are omitted.

Using Macro Instructions 8-13

An example of a macro expansion is as follows:

CALLSUB MACRO &SUB,&P1,&P2,&P3
JP &SUB
AF &P1 .EQ. ™ DONE
DEF &P1
AF &P2 .EQ. ™ DONE
DEF &P2
AF &P3 .EQ. ™ DONE
DEF &PS

DONE .NOP
MEND

Note #

8-14 Using Macro Instructions

When testing for null parameters, if a WARNING statement is
generated, enclose the macro parameter designator in quotation
marks (see "&SP" below) and compare it with the null parame-
ter indicator (single quotation marks) enclosed in quotation
marks. For example:

IF "&SP".EQ."™DONE

Indexing Parameters

Three expansion call examples are as follows:

(a.) CALLSUB ADD,PARAM
JP ADD
DEF PARAM
(b.) CALLSUB ADD
JP ADD
(c.) CALLSUB ADD,IN,OUT,RESULT
JP ADD
DEF IN
DEF ouT
DEF RESULT

The assembler can, when instructed, index through a parameter
list to determine if all or certain parameters are presentindex-

ing is accomplished by using a macro local symbol prefaced with
two ampersands (&&). The following macro directive is an ex-
ample to index parameters:

1. CALLSUB MACRO &P1,&P2,&P3,&P4

2. JMP &P1

3. PARAM SET 2

4, PARAM_LOOP .NOP

5. AF &&PARAM.EQ.""JUMP
_OUT MERGE

6. DEF &&PARAM

7. PARAM SET PARAM+ 1

8. .GOTO PARAM_LOOP

9. JUMP_OUT .NOP

10. MEND

Using Macro Instructions 8-15

A line-by-line explanation of the above macro example follows:

Line 1. Defines the macro directive and CALL-
SUB with its dummy parameters &P1,
&P2, &P3, &P4.

Line 2. Completes a subroutine call designated
by parameter &P1.

Line 3. Sets name PARAM to a value of 2.

Line 4. Assigns a .NOP s&mnent the name
PARAM_LOOP.

Line 5. Since the PARAM label has been as-

signed the value 2 (see line 3), the .IF
statement checks to see if the second pa-
rameter of the macro call statement has
been omitted. Ifit has, the .IF statement
causes the program to branch to the
JUMP_OUT statement.

Note During each iteration of the PARAM_LOOP, the value of
PARAM is increased by 1 (see line 7). The iterations continue
until the .IF statement is satisfied.

Line 6. Updates the value of PARAM to the cur-
rent value assigned.

Line 7. Adds 1 to the current value of PARAM.

Line 8. Loopsto PARAM_LOOP.

Line 9. Uses a .NOP statement to exit the
PARAM_LOOP iteration.

Line 10. Ends the macro.

Three macro expansions of the previous macro example are as
follows:

8-16 Using Macro Instructions

(@) CALLSUB
JP

(b.) CALLSUB
JP
DEF
DEF

(. CALLSUB
JP
DEF
DEF
DEF

ADD
ADD

ADD,LOC1,LOC2
ADD

LOC1

LOC2

ADD,P1,P2,P3
ADD

P1

P2

P3

This concludes the discussion concerning the use of macros in

assembly programs.

Using Macro Instructions 8-17

Notes

8-18 Using Macro Instructions

8086/8088 Series Instruct ion Set Summary

Introduction This appendix contains a summary of 8086/8088/
80186/80286 insuction sets. Included is a table describing the
operands which appear in the instruction setreary. The in-
struction set smmary is presented first in table A-2. The table
of operand forms (table A-3) follows the instruction set sum-
mary.

8086/8088 Instruct ion Set Summary A-1

Table A-1. Conditional Jump Flags

JAJINBE (CForzF) = 0
JAE/INB CF=0
JB/INAE CF=1
JBE/INA (CForzF) = 1
JC CF=1
JE/JZ ZF=1
JG/INLE ((SFxorOF)orzF) = 0
JGE/JNL (SFxorOF) = 0
JL/INGE (SFxorOF) = 1
JLE/ING ((SFxorOF)orzF) = 1
JNC CF=0
JNE/INZ ZF=0
JNO OF=0
JNP/JPO PF=0
JNS SF=0
JO OF=1
JP/IPE PF=1
JS SF=1

Table Convention In Table A-2, the information is organized in the following man-
ner:

Mnemonic General Operand

Short Description

Specific Operands

A more complete description that may include dis-
cussion of any specific operands that might be valid
for the instruction.

A-2 8086/8088 Instruct ion Set Summary

Table A-2. Instruction Set Summary

AAA (no operands)

ASCII adjust AL after addition

Used after the ADD instruction, this instructioflw
if the lower nibble of AL is greater than 9 or if the
auxiliary carryflag is 1, add 6 to AL, inement AH,

and set the carry and auxiliary carry flags. Otherwise,

the carry and auxiliary carry flags are reset. The |
per nibble of AL will always be 0 after this imsc-
tion. Register AL will contain the decimal digit re-
sult.

AAD (no operands)

ASCII adjust AX before division.

This instruction Wl prepare twounpacked BCD dig
itsin AH and AL for division by adding 10xAH to
AL and setting AH to zero.

AAM (no operands)

ASCII adjust AX after multiply.

p_

Used after two unpacked BCD digits have been mul-

tiplied, this instruction Wl unpack the result (found

in AL) of the unpacked BCD multiplication, leavin
the most significant digit in AH and the least sign
cant digit in AL.

AAS (no operands)

ASCII adjust AL after subtraction.

g
fi-

Used after the subtraction of one BCD digit from

other whose byte result is in AL, this instructioml,w

if the lower nibble of AL is greater than 9 or if the
auxiliary carry flag is 1, then demment AL by 6, deq
rement AH, and set the carry and éiary carry

flags. Otherwise, the carry and auxiliary carry flag
are reset.The upper nibble of Alilvalways be 0 af-
ter instruction. Register AL Wcontain the decima
digit result.

8086/8088 Instruct ion Set Summary A-3

U7

an-

Table A-2. Instruction Set Summary (Cont'd)

ADC destination,source Add with carry.
register,register This instruction adds the source operand and the
register,memory value of the carry flag to the destination operand
memory,register The destination will contain the result of the
register,immediate operation.
memory,immediate
accumulator,immediate

ADD destination,source Addition.
register,register This instruction adds the source operand to the gesti-
register,memory nation operand. The destination will contain the fe-
memory,register sult of the operation.
register,immediate
memory,immediate
accumulator,immediate

AND destination,source Logical AND.

register,register
register,memory
memory,register
register,immediate
memory,immediate
accumulator,immediate

This instruction performs a logical AND operatio

=)

on the operands. The destination will contain theg re-

sult of the AND operation

A-4 8086/8088 Instruct ion Set Summary

Table A-2. Instruction Set Summary (Cont'd)

ARPL
(80286)

destination,source

Adjust RPL field of selector.

mem16,reg16
regl6,regl6

This 80286 Protected Mode imgction will compare
the RPL field (bottom two bits) of the operands. |

f

the RPL field of the destination operand is less than

the RPL field of the source operand, then the ze

(o]

flagis set to 1 and the RPL field of the first operand

is increased to that of the source operand. If not,
zero flag is set to 0 and the destination RPL field
not changed.

the
is

BOUND

destination,source

(80186/80286)

Check array index against bounds

regl6,mptr32

This 80186/188, 80286 itrsiction compares the de
tination operand to two words in memory. The de
nation operand must be greater than or equal to
first memory word and less than or equal to the §
ond memory word. An INT 5 will occur if the desti
tion operand does not meet the condition above

CALL

target

Call a procedure.

near-proc
far-proc
memptrl6
regptrlé
memptr32
call-gate
task-gate
TSS

This instruction clis aprocedure. The procedure
may be in the current code segment (near-proc,
memptrl6, and regptrl6 operands), or in anothe
code segment (far-proc, antbmptr32 operands).

For the 80286 Protected Mode, calls may also be

made to call gates, task gates, and to Task State
ments (TSSs) using the faroc operand.

=

seg-

8086/8088 Instruct ion Set Summary A-5

Table A-2. Instruction Set Summary (Cont'd)

CBW (no operands) Convert byte to word.
This instruction extends the signed byte in AL to a
signed word in AX.

CLC (no operands) Clear carry flag.
This instruction sets the carryflag to 0.

CLD (no operands) Clear the direction flag.
This instruction sets the direction flag to 0. When
the direction flag is 0, string instructionélwause
the contents of the indexregister(s)to be incre-
mented.

CLlI (no operands) Clear the interrupt flag.
This instruction sets the interrupt enable flag to @ (if
the current privilege level is at least as privileged jas
the IOPL in 80286 Protected Mode). External, mask-
able interrupts are disabled after this instruction.

CLTS (no operands) Clear the task switched flag

(80286)
This 80286 Privilege Level = 0 itrsiction clears the
task switched flag in the Machine Status Word. The
TS flag is set every time a task switch occurs.

CMC (no operands) Complement the carry flag.
This instruction sets the carryflag if it is cleared, or
clears the carryflagifit is set.

CMP destination,source Compare destination to source.

A-6 8086/8088 Instruct ion Set Summary

Table A-2. Instruction Set Summary (Cont'd)

register,register
register,memory
memory,register
register,immediate
memory,immediate
accumulator,immediate

This instruction subtracts the source operand frg
the destination operand and sets the flags accor
ingly. The result of the subtract operation is dis-
carded

m

CMPS

source-string,dest-string

Compare string.

source-string,dest-string

This instruction subtracts the source string, at [S
to the destination string, at ES:[DI]. The flags ar
fected by this operation, but neither string is
changed. This instruction may be preceded with {
REPE or REPZ prefixes, in which case the instry
tion will be repeated until CX is 0. The CMPS in-
struction may also be preceded with the REPNE
REPNZ prefixes, in which case the instruction wi
be repeated until CX or the zero flag is 0. In the |
peat operations, CX is decremented;Sl and DI a
either both

incremented (if direction flag = 0) or both decre-
mented (if direction flag = 1).

CwD

(no operands)

Convert word to doubleword.

This instruction extends the signed word in AX tg
signed doubleword in DX:AX.

b af-

8086/8088 Instruct ion Set Summary A-7

Table A-2. Instruction Set Summary (Cont'd)

DAA (no operands)

Decimal adjust AL after addition.

Used after an ADD instruction whose result is a {
digit BCD byte in AL, this instruction converts the
result in AL into two BCD digits. If the lower nibbl
of AL is greater than 9 or if the auxiliary carry flag
1, AL isincremented by 6 and the diaty carry flag
is set. Otherwise, the auxiliary carry flag is reset.
Next, if the upper nibble of AL is greater than 9 0
the carryflag is set, AL is incremented by 60H an
the carry flag is set. Otherwise, the carryflag is
cleared.

WO

S

rif

DAS (no operands)

Decimal adjust AL after subtraction.

Used after a subtraction instruction whose result
two digit BCD byte in AL, this instruction converts

sa

the result in AL into two BCD digits. If the lower
nibble of AL is greater than 9 or if the auxiliary ca|
flagis 1, AL is decremented by 6 and theibany
carry flag is set. Otherwise, the auxiliary carry flag
reset. Next, if the upper nibble of AL is greater th
9 orifthe carryflagis set, AL is decremented by ¢
and the carry flag is set. Otherwise, the carry flag
cleared.

rry

is
an
5OH
S

DEC destination

Decrement operand by 1.

register
memory

This instruction de@ments the operand by 1. The
carry flag is not affected by this instruction.

A-8 8086/8088 Instruct ion Set Summary

Table A-2. Instruction Set Summary (Cont'd)

DIV source Unsigned division.
register Unsigned values in AX or DX:AX are divided by tihe
memory source operand byte or word, respectively. When|AX
is divided by the source operand byte, the quotiept is
stored in AL and theemainder istored in AX.
When DX:AX is divided by the source operand
word, the quotient is stored in AX and thenrain-
der is stored in DX.
ENTER # bytes,nesting-level Make stack frame for proce dure paramete rs.
(80186/80286)
immediate,0 This 80186/188, 80286 itrsiction creates a stack
immediate,1 frame. The destination operand specifies the number
immediate,immed8 of bytes to be allocated for the procedure’s stack
The source operand specifies the lexical nesting |evel
of the procedure.
ESC external-opcode,source Escape.
immediate,memory This instruction provides a way for coprocessors|to

immediate,register

obtain opcodes and memory operands from the
8086/88 or 80186/188 nrigprocessors. The extern

R

opcode is an immediate value (0 - 63). The memory

source operand allows the coprocessor to read t

ne

memory location.The register source operand causes

the microprocessor to do nothing.

HLT (no operands)

Halt.

This instruction causes the processor to enter th
halt state. The process@mains in the halt state y
tila RESET or an external interrupt
occurs.

8086/8088 Instruct ion Set Summary A-9

Table A-2. Instruction Set Summary (Cont'd)

hen
)-

gn

IDIV source Signed division.
register The signed values in AX or DX:AX are divided by
memory the source operand byte or word, respectively. W|
AX is divided by the source operand byte, the qu
tient is stored in AL and themainder istored in
AH. When DX:AX is divided by the source operand
word, the quotient is stored in AX and thenrain-
der is stored in DX. Theemainder has the same s
as the dividend (AX or DX:AX).
IMUL source Signed multiplication.
reg8 The source operand may be either a byte or worg
regl6 guantity. When the source operand is a byte, it ig
memory multiplied by AL, and the signed result is placed i

AX. Carry and overflow flags are set to 0 if AH wa
initially a sign extension of AL. Otherwise, the car
and overflow flags are 1. When the source opera
a word, it is multiplied by AX, and the signed resu|
is placed in DX:AX. Carry and overflow flags are {
to 0 if DX was initially a sign extension of AX. Oth
wise,the carry and overflow flags are 1.

ry

nd is
It
et
er-

A-10 8086/8088 Instruct ion Set Summary

Table A-2. Instruction Set Summary (Cont'd)

IMUL dest,source
(80186/80286)

Signed multiplication.

regl6,immed8
regl6,meml6,immediate
regl6,regl6,immediate

The 80186 and 80286 allow multiple operands. T
two operand instruction is the same as the byte i
struction above except that the result is placed in
16 bit register specified. In the three operand ins
tions, the second operand is multiplied by the im
diate value, and the result is placed in the registe
specified in the first operand. The carry and over
flags are set to 0 if the signed result is less than -
32768 or greater than 32767.

ne
n-
the
truc-
me-
r
low

IN accumulator,port

Input from port.

accumulator,immed8
accumulator,DX

This instruction Wl cause a byte (accumulator =
AL) or word (accumulator = AX) to be input fronj
the port whose address is specified by an 8 bit im
diate value or is in register DX.

me-

INC destination Increment operand by 1.
register This instruction inoements the operand by 1. The
memory carry flag is not affected by this instruction.

INS dest-string,port Input from port to string.

(80186/80286)

dest-string,DX

This instruction transfers data from the input por
specified by the contents of register DX to to the
tination memory location ES:[DI]. This instruction

it
des-

may be preceded by the REP prefix described later in

this table.

8086/8088 Instruct ion Set Summary A-11

Table A-2. Instruction Set Summary (Cont'd)

INSB (no operands)
(80186/80286)

Input byte(s) from port to string.

No operands are required with this 80186/80286
struction because the dest-string type BYTE, ang
segment override "ES:" are implied in this instruc
tion mnemonic. The REP prefixis also allowed wi
this instruction.

INSW (no operands)
(80186/80286)

Input word(s) from port to string.

No operands are required with this 80186/80286

struction because the dest-string type WORD, and

the segment override "ES:" are implied in this in-
struction mnemonic. The REP prefixis also allow
with this instruction.

INT interrupt-type

Call interrupt procedure.

immed8

This instruction cls an interupt procedure. The in
mediate operand multiplied by four specifies the
dress of the interrupt pointer. The interrupt point
contains the segment:offset

address of the interrupt service routine. In 80286
Protected Mode, the immediate operand is the irj
number of the service routine’s gate descriptor in
Interrupt Descriptor Table (IDT).

n-
the

th

n-

ed

dex
the

INTO (no operands)

Interrupt on overflow.

This instruction is the same as the INT instructio
except that immediate operand is implicitly 4, and
the overflow flag must be set for the interrupt to &
taken.

e

A-12 8086/8088 Instruct ion Set Summary

Table A-2. Instruction Set Summary (Cont'd)

IRET (no operands)

Return from interrupt.

This instruction pops the IP, CS, and flag registe
and returns program execution to the point wher
was interrupted.

In the 80286 Protected Mode, thewet from inter-
rupt will cause a task switch to occur if the nested
task flag is set. When a task switch occurs on an
terrupt return, the service routine TSS is update
and if the service routine task is re-entered, the ¢
following the IRET will be executed.

e it

o

ode

JA/INBE short-label

Jump if above/if not below or equal.

short-label

This instruction Wl cause a jump to an address
within + 127 or -128 from the next IP if: (carry flag
OR zero flag) = 0.

JAE/INB short-label

Jump if above or equal/if not below.

short-label

This instruction Wl cause a jump to an address
within + 127 or -128 from the next IP if: carry flag
0.

JB/INAE short-label

Jump if below/if not above or equal.

short-label

This instruction Wl cause a jump to an address
within + 127 or -128 from the next IP if: carry flag
1.

JBE/IJNA short-label

Jump if below or equal/if not above.

short-label

This instruction Wl cause a jump to an address
within + 127 or -128 from the next IP if: (carry flag
OR zero flag) = 1.

8086/8088 Instruct ion Set Summary A-13

Table A-2.

Instruction Set Summary (Cont'd)

JC short-label Jump if carry flag is set.
short-label This instruction Wl cause a jump to an address
within + 127 or -128 from the next IP if: carry flag 1
1.
JCXZ short-label Jump if CX is zero.
short-label This instruction Wl cause a jump to an address
within + 127 or -128 from the next IP if register C
= 0.
JE/JZ short-label Jump if equal/if zero.
short-label Instruction vill cause jump to an address within
+ 127 or -128 from the next IP if: zero flag = 0.
JG/INLE short-label Jump if greater/if not less or equal.
short-label This instruction Wl cause a jump to an address
within + 127 or -128 from the next IP if: [(sign flag
XOR overflow flag) OR zero flag] = 0.
JGE/JNL short-label Jump if greater or equal/if not less.
short-label This instruction Wl cause a jump to an address
within + 127 or -128 from the next IP if: (sign flag
XOR overflow flag) = 0.
JUINGE short-label Jump if less/if not greater or equal.
short-label This instruction Wl cause a jump to an address

within + 127 or -128 from the next IP if: (sign flag
XOR overflow flag) = 1.

A-14 8086/8088 Instruct ion Set Summary

Table A-2.

Instruction Set Summary (Cont'd)

JLE/ING short-label Jump if less or equal/if not greater.
short-label This instruction Wl cause a jump to an address
within + 127 or -128 from the next IP if: (sign flag
XOR overflow flag) OR zero flag= 1.
JMP target Jump.
short-label This instruction transfers program execution to the
near-label address specified by the operand. The target may be
memptrl6 in the current code segment (short-label, near-lapel,
regptrlé memptrl6, and regptrl6 operands), in another cpde
far-label segment (far-label and memptr32 operands). In {he
memptr32 80286 Protected Mode, jumps may also be made| to
call-gate call gates, task gates, and to Task State Segments
task-gate (TSSs) using the faproc operand.
TSS
JNC short-label Jump if carry flag is reset.
short-label This instruction Wl cause a jump to an address
within + 127 or -128 from the next IP if: carry flag
0.
JNE/INZ short-label Jump if not equal/if not zero.
short-label This instruction Wl cause a jump to an address
within + 127 or -128 from the next IP if: zero flag 7
0.
JNO short-label Jump if not overflow.
short-label This instruction Wl cause a jump to an address

within + 127 or -128 from the next IP if: overflow
flag= 0.

8086/8088 Instruct ion Set Summary A-15

Table A-2. Instruction Set Summary (Cont'd)

JNP/JIPO short-label Jump if not parity/if parity odd.
short-label This instruction Wl cause a jump to an address
within + 127 or -128 from the next IP if: parity flag
0.
JNS short-label Jump if not sign.
short-label This instruction Wl cause a jump to an address
within + 127 or -128 from the next IP if: sign flag 5
0.
JO short-label Jump if overflow.
short-label This instruction Wl cause a jump to an address
within + 127 or -128 from the next IP if: overflow
flag= 1.
JP/IPE short-label Jump if parity/if parity even.
short-label This instruction Wl cause a jump to an address
within + 127 or -128 from the next IP if: parity flag
1.
JS short-label Jump if sign.
short-label This instruction Wl cause a jump to an address
within + 127 or -128 from the next IP if: sign flag 5
1.
LAHF (no operands) Load flags into register AH.
This instruction wl load register AH with the low
byte of the flag word.

A-16 8086/8088 Instruct ion Set Summary

Table A-2. Instruction Set Summary (Cont'd)

LAR destination,source
(80186/80286)

Load access rights byte.

regl6,reg16
regl6,memi6

This 80286 Protected Mode imgction wll load the
access rights byte from the descriptor, whose self
is the source operand, into the high byte of the d
nation 16 bit register. The low byte of the 16 bit r¢
ter is set to zero. If the descriptor cannot be acce
from the current privilege level or the selector RH
the load is not performed, and the zero flag is
cleared. The zero flag is set if the load is perform

LDS/LES destination,source

Load doubleword pointer.

regl6,memory

This instruction wl load the first word from the
sourcememory location (offset value) into the des
nation register operand. The second word from t
sourcememory location (segment or selector valy
is loaded into DS or ES. When a selector value i
loaded (80286 Protected Mode), the cache from
selector’s associated descriptor is also loaded.

bctor
B sti-
:gis_
ssed
L,

pd.

—
1

he
e)

the

LEA destination,source

Load effective address offset.

regl6,memory

This instruction Wl load the offset of theaurce
memory operand into the 16 bit register
destination.

8086/8088 Instruct ion Set Summary A-17

Table A-2. Instruction Set Summary (Cont'd)

LEAVE (no operands)
(80186/80286)

High level procedure exit.

This 80186/188, 80286 itrsiction wll copy BP to SP
and POP BP, therebyreleasing a procedure’s stg
space. LEAVE is the complementary operation t
ENTER.

ck

O

LGDT/LIDT memory
(80286)

Load GDT/IDT Register.

memory

This 80286, Privilege Level = O itrsiction will load
6 bytes from the memory address into the Global
Interrupt Descriptor Table register. The finsem-
ory word will be the LIMIT of the GDT or IDT regi

or

's_

ter, the next three bytes are the BASE, and the last

byte is ignored.

LLDT selector
(80286)

Load LDT Register.

mem16
regl6

This 80286 Protected Mode, PL = Otingtion’s se-
lector operand should point to an LDT descripto
the Global Descriptor Table. The LDT descriptor
loaded into the LDT register.

n
S

LMSW source
(80286)

Load Machine Status Word.

mem16
regl6

This 80286, Privilege Level = 0 itrsiction wil load
the source word into the Machine Status Word.
When this instruction is used to switch to protect
mode, it must be immediately followed by an in-
trasegment jump instruction to flush the instructi
qgueue. This instruction cannot be used to switch
back to the real address mode.

D
o

DN

A-18 8086/8088 Instruct ion Set Summary

Table A-2. Instruction Set Summary (Cont'd)

LOCK (no operands) Assert BUS LOCK signal.
This instruction prefix causes the BUS LOCK signal
to be asserted for duration of the instruction it pne-
fixes. The bus is not locked for all cycles during the
following instructions: CMPS, SCAS, STOS, LODS,
PUSHA, POPA, CALL, RET, IRET, ENTER,
BOUND, PUSH, POP, or any ESC.

LODS source-string Load string operand.

source-string

This instruction loads AL or AX with the byte or
word at location [SI]. The source-string

operand will specify whether the operation is of fype
BYTE or WORD. After the load, Sl is incremented
if the direction flag = 0 or decremented if the direc-
tion flag = 1. Increments or decremenil e
either by 1 for byte operations or 2 for word operg-
tions. This instruction may be preceded with the
REP prefix, which is described later in this table.

LODSB (no operands)

Load byte string operand.

This instruction is the same as the LODS instruction
except that no operand is required because the in-
struction implies a byte operation and the "DS:" deg-
ment override is assumed. The byte at DS:[SI] is
loaded into AL.

8086/8088 Instruct ion Set Summary A-19

Table A-2. Instruction Set Summary (Cont'd)

LODSW (no operands)

Load word string operand.

This instruction is the same as the LODS instruc

except that no operand is required because the in-

ion

struction implies a word operation and the "DS:" seg-

ment override is assumed. The word at DS:[SI] is
loaded into AL.

LOOP short-label

Loop control with CX counter.

short-label

This instruction Wl decrement register CX and
transfer program control to within#27 or -128
bytes from the next IP if: CX does not equal 0.

LOOPE/LOOPZ short-label

Loop if equal/if zero.

short-label

This instruction Wl decrement register CX and
transfer program control to within#27 or -128

bytes from the next IP if. CX not equal to 0 and z¢ro

flag= 1.

LOOPNE/NZ short-label

Loop if not equal/if not zero.

short-label

This instruction Wl decrement register CX and
transfer program control to within#27 or -128

bytes from the next IP if: CX not equal to 0 and z¢ro

flag= 0.

A-20 8086/8088 Instruct ion Set Summary

Table A-2. Instruction Set Summary (Cont'd)

lec-

1%

t
e se-
ro

v

LSL destination,source Load segment limit.
(80286)
regl6,reg16 This 80286 Protected Mode imgction wil load the
regl6,meml6 limit value from the segment descriptor whose se
tor is the source operand into the high byte of th
destination 16 bit register. If the descriptor canng
be accessed from the current privilege level or th
lector RPL, the load is not performed, and the z¢
flagis cleared. The zero flag is set if the load is per-
formed.
LTR source Load task register.
(80286)
regl6é This 80286 Protected Mode Privilege Level = 0 ir
memory struction vill load the task register with the TSS s
register lector source operand.The loaded TSS is marked
busy; however, no task switch occurs.
MOV destination,source Move.

memory,accumulator
accumulator,memory
register,register
register,memory
memory,register
register,immediate
memory,immediate
seg-reg,regl6
seg-reg,meml6
regl6,seg-reg
memory,seg-reg

Transfers bytes or words from the source operan
the destination operand.

d to

8086/8088 Instruct ion Set Summary A-21

Table A-2. Instruction Set Summary (Cont'd)

MOVS dest-string,source-string Move data from string to string.

dest-string,source-string This instruction moves data from the source string
[SI] to the destination string ES:[DI]. The string op-
erands are used to specify either
BYTE or WORD operation. After the load, Sl an(d
DIl are incremented if the direction flag = 0 or degre-
mented if the direction flag = 1. Increments or decre-
ments will be either by 1 for byte operations or 2 for
word operations. This instruction may be preceded
with the REP prefix, which is described later in thjs
table.

MOVSB (no operands) Move byte string.

This instruction is the same as the MOVS instrug
tion except that no operand is required because the
instruction implies a byte operation and the "DS!'
segment override is assumed for the source opefand.
The byte at DS:[SI] is moved to ES:[DI].

MOVSW (no operands) Move word string.

This instruction is the same as the MOVS instrug
tion except that no operand is required because the
instruction implies a word operation and the "DS{"
segment override is assumed for the source opefand.
The word at DS:[SI] is moved to ES:[DI].

A-22 8086/8088 Instruct ion Set Summary

Table A-2. Instruction Set Summary (Cont'd)

MUL source Unsigned multiplication.

register The unsigned values in AL or AX are multiplied
memory by the source operand byte or word, respec-
tively. When AL is multiplied by the source operand
byte, the result is stored in AX and the carry and
overflow flags are set unless AH = 0, in which cage
they are reset. When AX is multiplied by the source
operand word, the result is stored in DX:AX and the
carry and overflow flags are set unless DX = 0, in
which case they are reset.

NEG destination Two’s complement negation.
register This instruction replaces the destinatimemory op
memory erand with its two’s complement. The carryis set un-

less the value of the destination operand is zero,|in
which case it is reset.

NOP (no operand) No operation.
This one byte instruction (opcode 90H) performs|no
operation.
NOT destination One’s complement negation.
register This instruction replaces the destination operang
memory with its one’s complement (logical NOT).

8086/8088 Instruct ion Set Summary A-23

Table A-2. Instruction Set Summary (Cont'd)

OR destination,source

Logical inclusive OR.

register,register
register,memory
memory,register
register,immediate
memory,immediate
accumulator,immediate

This instruction performs a logical OR operation

on

the operands. The destination will contain the result

of the OR operation.

ouT port,accumulator

Output to port.

immed8,accumulator
DX,accumulator

This instruction Wl cause a byte (accumulator =

AL) or word (accumulator = AX) to be output from

the port whose address is specified by an 8 bit imme-

diate value or is in register DX.

OUTS DX,source-string
(80186/80286)

Output string to port.

DX,source-string

This 80186/80286 irteuction transfers data from th
source string [SI] to the port whose address is sp
fied by the contents of register DX. The type ope
tion (BYTE or WORD) is specified in the source-
string operand. This instruction may be preceded
the REP prefix which is described later in this tab

OUTSB (no operands)
(80186/80286)

Output byte string to port.

This instruction is the same as the OUTS instruc
except that no operands are required because a
operation is implied in the instruction mnemonic
and the segment override "DS:"is assumed for th
source operand. The byte at DS:[Sil] tve output td
the port whose address is in DX.

e
eci-
a-

by
le.

tion
byte

e

A-24 8086/8088 Instruct ion Set Summary

Table A-2. Instruction Set Summary (Cont'd)

OUTSW (no operands)
(80186/80286)

Output word string to port.

This instruction is the same as the OUTS instruc
except that no operands are required because a
operation is implied in the instruction mnemonic
and the segment override "DS:"is assumed for th
source operand. The word at DS:[Slll e output
to the port whose address is in DX.

tion
word

POP destination

Pop word off stack.

regl6
seg-reg(CS illegal)
mem16

This instruction Wl pop the word at the top of the
stack (SS:SP) and place it in the destination. SP
cremented by 2. In th&0286 Protected Mode, if th
destination is a segment register, the word at the
of the stack must be a selector.

sin-

17

top

POPA (no operands)
(80186/80286)

Pop all general registers.

This 80186/80286 irieuction will pop the eight gen-
eral purpose registers in the following order: DI, {
BP, SP, BX, DX, CX, AX. The SP value popped i
discarded.

U7

POPF (no operands)

Pop into flags register.

This instruction Wl pop the word from the top of
the stack (SS:SP) into the flags register. In the 8(

the 1/0 privilege level will only be altered if execut}

ing at PL = 0. The interrupt enable fladl\we al-
tered only when executing at a privilege level equ
to the 1/O privilege level or higher.

286,

8086/8088 Instruct ion Set Summary A-25

Table A-2. Instruction Set Summary (Cont'd)

immediate (80286)

PUSH source Push word onto stack.
regl6é This instruction wl push the surce operand word
seg-reg onto the top of the stack (SS:SP). SP is decreme
mem16 by 2. Immediateaurce operands are allowed for t

80286, and PUSH SP will push the value of SP b
fore the instruction. (In th&086, PUSH SP will
push the value of SP after the instruction.

nted

D
]

PUSHA (no operands) Push all general registers.
(80186/80286)
This 80186/80286 inteuction wil push the eight gen
eral purpose registers in the following order: AX,
CX, DX, BX, original SP, BP, SI, DI. The SP valus
pushed is the SP value before the PUSHA instru
tion.
PUSHF (no operands) Push the flags register.
This instruction Wl push the flag register onto the
stack (SS:SP). SP is decremented by 2.
RCL destination,count Rotate left through carry.
register,1 This instruction wl rotate the destination operan
register,CL left, though the carry flag, the number of times s
memory,1 fied by the count operand (either 1 or the conten
memory,CL of CL). The carryflag is rotated into the destinati

operand’s low order bit.

A-26 8086/8088 Instruct ion Set Summary

Table A-2.

Instruction Set Summary (Cont'd)

RCR destination,count

Rotate right through carry.

register,1
register,CL
memory,1
memory,CL

This instruction Wl rotate the destination operand
right, though the carry flag, the number of times
specified by the count operand (either 1 or the can-
tents of CL). The carry flag is rotated into the desti
nation operand’s high order bit.

REP

Repeat string instructions.

The REP instruction prefixiwcause the string in-
struction to be repeated until CX = 0.Register CK is
decremented after every execution of the string in-
struction. The REP prefix may be used with the fq
lowing string instruction faifies: INS, MOVS,
OUTS, and STOS.

REPE/REPZ

The REPE/REPZ instruction prefixliv

cause the string instruction to be repeated until
CX = 0 or until the zero flag = 1. Register CX is de-
cremented after every execution of the stringrins
tion. The REPE/REPZ prefix may be used with the
following string instruction faities: CMPS and
SCAS.

REPNE/REPNZ

The REPNE/REPNZ instruction prefidliv

cause the string instruction to be repeated until
CX = 0 or until the zero flag = 0. Register CX is de-
cremented after every execution of the stringrins
tion. The REPNE/REPNZ prefix may be used with
the following string instruction faies:CMPS and
SCAS.

8086/8088 Instruct ion Set Summary A-27

Table A-2. Instruction Set Summary (Cont'd)

ad-
e of

D7

n se-

il
er-
tion
der

i
hp-
na-

RET pop-value (optional) Return from procedure.
pop-value This instruction transfers control back to a returr
dress which was pushed onto the stack at the tin
the procedure call. The optional pop-value allow:
you to release additional bytes from the stack; th
pop-value is added to SP. 80286 Protected Mode
intersegment returns are made through the retu
lector to a code segment of equal or less privileg
ROL destination,count Rotate left.
register,1 This instruction Wl rotate the destination operan
register,CL left the number of times specified by the count of
memory,1 and (either 1 or the contents of CL). The destina
memory,CL operand’s high order bit is rotated into the low or
bit.
ROR destination,count Rotate right.
register,1 This instruction Wl rotate the destination operan
register,CL right the number of times specified by the count ¢
memory,1 erand (either 1 or the contents of CL). The destil
memory,CL tion operand’s low order bit is rotated into the high
order bit.
SAHF (no operands) Store AH into the flag register.

This instruction Wl store register AH into the low
byte of the flag word.

A-28 8086/8088 Instruct ion Set Summary

Table A-2.

Instruction Set Summary (Cont'd)

SAL/SHL destination,count Shift arithmetic/logical left.
register,1 This instruction Wl shift the destination operand
register,CL left the number of times specified by the count oper-
memory,1 and (either 1 or the contents of CL). Zeroes are
memory,CL shifted into the low order bit. The overflow flag is
cleared if the sign bit is the same at the end of the op-
eration.
SAR destination,count Shift arithmetic right.
register,1 This instruction Wl shift the destination operand
register,CL right the number of times specified by the count gp-
memory,1 erand (either 1 or the contents of CL). Shifted into
memory,CL the high order bit are bits equal to the original high
order bit, so that the sign of the operand is pre-
served.
SBB destination Source Integer subtraction with borrow.
register,register This instruction subtracts the source operand anjd
register,memory the carry flag from the destination operand. The ¢les-

memory,register

register,immediate
memory,immediate
accumulator,immediate

tination operand will contain the result of the ope
tion. Byte sized immediate values are sign-extended
before subtraction.

8086/8088 Instruct ion Set Summary A-29

ra-

Table A-2. Instruction Set Summary (Cont'd)

SCAS dest-string

Scan string operand.

dest-string

This instruction subtracts the byte or word destin
tion string (ES:[DI]) from AL or AX, respectively.

The flags are set as a result of the subtraction, b
the result is discarded. Register Dl is incremente

the direction flag = 0 or decremented if the direct

tion flag = 1. Increments or decremenil e
either by 1 for byte operations or 2 for word oper
tions. This instruction may be preceded with the
REPE or REPNE prefixes, which are described
der the REP entryin this table.

a-

Uit
d if

n_

SCASB (no operands)

Scan byte string operand.

This instruction is the same as the SCAS instruct
except that no operand is required because the |
struction implies a byte operation and the ES:[DI
destination location is assumed, as it was for the
SCAS instruction.

ion
n-

SCASW (no operands)

Scan word string operand.

This instruction is the same as the SCAS instruct
except that no operand is required because the |
struction implies a word operation and the ES:[D
destination location is assumed, as it was for the
SCAS instruction.

ion
n-

1]

A-30 8086/8088 Instruct ion Set Summary

Table A-2. Instruction Set Summary (Cont'd)

SGDT/SIDT memory Store GDT/IDT Register.
(80286)
memory This 80286, Privilege Level = O itrsiction wll store
6 bytes into memory from the Global or Interrupt
Descriptor Table register. The first memory word
will be the LIMIT of the GDT or IDT register, the
next three bytes are the BASE, and the last byte js un-
defined.
SLDT destination Store LDT Register.
(80286)
mem16 This 80286, Protected Mode, Privilege Level = 0O |n-
regl6 struction stores the LDT register, which contains|a
selector pointing to an LDT descriptor in the Glopal
Descriptor Table, into a word length register or
memory location.
SMSW destination Store Machine Status Word.
(80286)
mem16 This 80286 inguction wll store the Machine Statufs
regl6 Word into a word length register or memory loca-
tion.
STC (no operands) Set carry flag.

This instruction sets the carryflag to 1.

STD

(no operands)

Set the direction flag.

This instruction sets the direction flag to 1. When
the direction flag is 1, string instructionélwause
the contents of the index register(s) to be decre-
mented.

8086/8088 Instruct ion Set Summary A-31

Table A-2. Instruction Set Summary (Cont'd)

STI

(no operands)

Set the interrupt enable flag.

This instruction sets the interrupt enable flag to]
the current privilege level is at least as privileged
the IOPL, in 80286 Protected Mode). External,
maskable interrupts are enabled after the execut
the next instruction.

| (if
as

ing

STOS

dest-string

Store string operand.

dest-string

This instruction loads AL or AX into the byte or
word at location ES:[SI]. The dest-string operand
will specify whether the operation is of type BYTH

or WORD. After the load, DI is incremented if the¢

direction flag = 0 or decremented if the direction
flag= 1.Increments or decrementd e either by
1 for byte operations or 2 for word operations. Th
instruction may be preceded with the REP prefix
which is described later in this table.

S

STOSB

(no operands)

Store byte string operand.

This instruction is the same as the STOS instruc
except that no operand is required because the |
struction implies a byte operation and the "ES:" S

ment override is assumed. The byte in AL is stored

into ES:[DI].

ion
n-
eg-

STOSW

(no operands)

Store word string operand.

STR

destination

This instruction is the same as the STOS instruc
except that no operand is required because the |
struction implies a word operation and the "ES:"
ment override is assumed. The word in AX is sto]
into ES:[DI].

Store Task Register. (80286)

ion

seg-
ed

A-32 8086/8088 Instruct ion Set Summary

Table A-2. Instruction Set Summary (Cont'd)

mem16
regl6

This 80286, Protected Mode tngction stores the
Task Register into a word length register or mem
location.

ory

m

Sti-

a-
ed

0
ult is

SUB destination,source Subtraction.
register,register This instruction subtracts the source operand fro
register,memory the destination operand.memory,register The de
memory,register nation operand will contain the result of the oper
register,immediate tion. Byte-sized immediate values are sign-exteng
memory,immediate before subtraction if destination is word sized.
accumulator,immediate

TEST destination,source Logical compare.
register,register This instruction performs a logical AND on the tw
register,memory operands and sets the flags accordingly. The res
memory,register discarded.
register,immediate
memory,immediate
accumulator,immediate

VERR selector Verify a segment for reading

(80286)
mem16 This 80286, Protected Mode tngction tests if the
regl6 segment to which the selector points is readable

from the current privilege level. The zero flag is s¢
to 1ifthe segment is readable: to O if it is not.

8086/8088 Instruct ion Set Summary A-33

Table A-2. Instruction Set Summary (Cont'd)

VERW selector Verify a segment for writing.

(80286)
mem16 This 80286, Protected Mode tnsction tests if the
regl6 segment to which the selector points is writable ffom

the current privilege level. The zero flag is set to 1 if
the segment is writable: to O if it is not.

WAIT (no operands) Wait for signal level.

This instruction causes tI8986/8018&rocessor to
enter the wait state until the TEST pin is active.
In the 80286, the WAIT irtsuction suspends execy
tion until the BUSY pin, driven by the 80287 nu-
meric processor, is inactive (high).

XCHG destination,source Exchange memory/register with register.
accumulator,reg16 This instruction exchanges the source and destipna-
regl6,accumulator tion operands. In the 80286, the BUS LOCK signjal
memory,register is asserted during the exchange regardless of a
register,memory LOCK prefixor IOPL.
register,register

XLAT source-table Table look-up translation.
source-table Before this instruction is executed, AL should co

tain the unsigned indexto the table at DS:[BX]. This
instruction vill move the byte at location DS:[BX +
AL]to AL.

A-34 8086/8088 Instruct ion Set Summary

Table Convention In Table A-3, information is laid out in the following way:

Operand

Forms this operand may take and possibly
further explanation of those forms.

8086/8088 Instruct ion Set Summary A-35

Table A-3. Operand Forms

register

Includes forms of "reg16" and "reg8" operands be
reg8

AH, AL, BH, BL, CH, CL, DH, DL.
regl6

AX, BX, CX, DX, SP, BP, SI, DI.
seg-reg

CS, DS, SS, ES.
accumulator

AX or AL.
immediate

0 thru # OFFFH

SEG < LABEL>

OFFSET < LABEL>

also "immed8" operands below.
immed8

0 thru # OFFH

HIGH < LABEL>
LOW < LABEL>
SIZE < LABEL>
TYPE <LABEL>

OW.

A-36 8086/8088 Instruct ion Set Summary

Table A-3. Operand Forms (Cont'd)

memory

ADDRESSING MODES:

Direct

Register Indirect
Based

Indexed

Based Indexed

NOTE: ['is the same as using "+ ".
That is, [BX] [SI] is equivalent to [BX+ Sl], etc.

The form of a memory operand will depend on th
addressing mode. (Segment overrides, CS:, DS;,
and SS: allowed in all modes.)

< LABEL>

[BX], [BP], [SI], [D]]

< LABEL> [BX] and < LABEL> [BP]
< LABEL> [SI] and < LABEL> [DI]
< LABEL> [BX][SI]

< LABEL> [BX][DI]

< LABEL> [BP][SI]

< LABEL> [BP][DI]

mem3

The form of this operand is the same as the "men
ory'operand except that the operand must be ag
ated with the type BYTE. Either the label must bq
type BYTE, or the BYTE PTR type override must
precede the memory operand.

meml16

The form of this operand is the same as the "men
ory'operand except that the operand must be ag
ated with the type WORD. Either the label must
of type WORD, or the WORD PTR type override
must precede the memory operand.

FS:,

SOCi-

b of

8086/8088 Instruct ion Set Summary A-37

Table A-3. Operand Forms (Cont'd)

source-table

This operand will be a label located at the beginning
of a translation table. This operand must be of type
BYTE. The assembler assumes that BX containgthe

address of the beginning of the translation table.

source-string

This operand will be a label. The assembler uses

this

operand to determine whether a string operation is a

byte operation (in which case the label will be of t
BYTE), or a word operation (in which case the la
will be of type WORD). The assembler will assum

that Sl contains the label's offset address and that

ype
bel
e

DS contains the segment address (or segment sg¢lec-
tor in 80286 Protected Mode) for the label's segment

unless a segment override is used.

dest-string

This operand will be a label. The assembler uses
operand to determine whether a string operation
byte operation (in which case the label will be of t
BYTE), or a word operation (in which case label

be of type WORD). The assembler will assume tH
DI contains the label's offset address and that E§
contains the segment address (or segment selec|
80286 Protected Mode) for the label's segment. T
assembler will always assume that ES points to tf
destination string’s segment. Segment overrides

not allowed.

this
isa
ype
will
at

tor in
he
e
are

A-38 8086/8088 Instruct ion Set Summary

Table A-3. Operand Forms (Cont'd)

short-label

This operand must reference a label within -128 ¢r
+ 127 bytes from the next itrsiction pointer loca-
tion.

near-label

This operand must reference a label in the
current code segment.

far-label

This operand will reference a label in another code
segment. Since the assembler will assume all jumps
to be near, the type FAR must be
associated with label, either in the instruction opér-
and by preceding the label with FAR PTR, or the|la-
bel’s external declaration (with the EXT pseudo in-
struction).

In the 80286 Protected Mode, the far-label operand
may be used to jump to code segments, call gates,
task gates, or Task State Segments (TSSs). Labels
must be associated with the type FAR (either in the

instruction operand or in the external (EXT) declara-
tion).

near-proc

This operand must reference a label in the
current code segment.

8086/8088 Instruct ion Set Summary A-39

Table A-3. Operand Forms

far-proc

This operand will reference a label in another co
segment. Since the assembler will assume all cal
be near, the type FAR must be associated with t
bel, either in the instruction operand by precedin
the label with FAR PTR, or the label's external d¢
laration (with the EXT pseudo instruction).

In the 80286 Protected Mode, the far-label operg
may be used to jump to code segments, call gate
task gates, or Task State Segments (TSSs). The
bels must be associated with the type FAR (eithd
the instruction operand or in the external (EXT)
declaration).

sto
ne la-

pC-

nd

la-
rin

memptrl6

This operand takes the same form as the "memqg
operand. The memory location to which this ope
and points will contain the offset address to whicl
program control vl be transferred (in thewrent
code segment).

N

A-40 8086/8088 Instruct ion Set Summary

Table A-3. Operand Forms (Cont'd)

mptr32

This operand takes the same form as the "memory"
operand except that the operand must be associated

with the type DWORD. The memory location to
which this operand points will contain the seg-
ment:offset (selector:offset in the 80286 Protecte
Mode) address to which program contrdl e
transferred. The offset portion of the target locat
is contained in the low address memory word, an

segment (or selector) portion of the target location

is contained in the high address memory word.

on

regptrl6

This operand takes the same form as the "regl6'

op-

erand. The register will contain the offset address to

which program control il be transferred (in the cUr-

rent code segment).

8086/8088 Instruct ion Set Summary A-41

Notes

A-42 8086/8088 Instruct ion Set Summary

80286 Programming

Introduction

This appendix contains information on how to write 80RB8%-
tected mode programs. TB8186 assembleupports the30286
microprocessor instruction set for the real address m@@R6(
compatible). The 8086/8088 pseudotimstions and keyword
operators also apply to the 80286 with exceptions noted below.

The processor directive that must appear in the first column of
the first line of your assembly language program source files is
"80286".

The additional instructions that make up 80286 insruction
set have been included in the 8086/808& ingion set sum-
mary.

Using the "80286" directive allowsyr programs to contain the
special 80286 pseudo imgctions whose descriptions appear on
the following pages.

80286 Programm ing B-1

Note #

The HP 64853’s "80286" assembler was designed as an early sup-
port tool for theB0286 micoprocessor running in the Protected
Virtual Address Mode. As such, there are some known limita-
tions. (For instance, the "80286" assembler is not compatible
with the HP 64228 - 80286 Emulator.) We enrage80286 us-

ers to use the HP 64859 Cross Assembler/Linker instead. The
HP 6485%roduct supports th@0286 in both the Real Address
Mode and the Protected Virtual Address Mode.

The "SEG"
Keyword Operator
In 80286
Programs

B-2 80286 Programming

The SEG pseudo instruction only works in 8086 compatible
mode. SEGE translates the 24 bit address into an 8086 type seg-
ment offset, and generates the segment. This is implemented so
that the user can initialize data structures while the processor is
still in the 8086 compatible mode, and the user is using the
80286protected mode assembler. A physical address of
UVWXYZ hexis translated to a 80286 logical address of
VOOOWXYZ hex. Note the most significant nibble of address

has no meaning to tH8986. The segment is always generated in
this fashion. Since this assembler does not use the 80286 logical
address of selector and offset, the SEG pseudo instruction will
generate bad code if the microprocessor is in the protected
mode. The user must load immediate numbers equivalent to the
appropriate selector in order to initialize data structures while

in the microprocessor protected mode.

80286 Pseudo
Instructions

The pseudo instructions SEGMENT, ENDS, and STACKSEG
allow the use of identifying labels. These segment labels are only
local, however, to the module in which they are defined. Seg-
ment labels will not be usable with thetinstions SEG_DES,

TSS _DES, and LDT_DES iftheyare declared to be EXTER-
NAL.

Any descriptor tables desired must be created by the program.
Table creation is not automatic. The instructions SEG_DES,
TSS_DES, and LDT_DES create complete segment descriptor
entries. Instructions CALL_GATE, TASK_GATE,
INTR_GATE, and TRAP_GATE will create complete gate de-
scriptor entries.

All selector references must be "immediate" values becasue only
physical addresses are used by the assembiler..

The following pseudo instructions are only applicabl8@286
assembly language programs.

The DD Pseudo
Instruction in
80286 Programs

The DD pseudo instruction works identically for @86 and

the 80286, except if the value field of the DD opcode is a relocat-
able label. In the 8086 the pseudotinstion would initialize
memory with the 8086 logical address of the relocatable label.
Since for the 80286, a 24 bit physical addresspsii, the80286
assembler generates an 8086 logical address in the manner de-
scribed for the SEG pseudo instruction, and initialmesnory

with this value. Since the 80286 assembler does not use the
80286 logical address of selector and offset, if you desam-

oryto be initialized, you must directly specify the immediate
value of the selector and offset.

80286 Programm ing B-3

CALL_GATE
TASK_GATE
INTR_GATE
TRAP_GATE

Syntax

Description

Example

B-4 80286 Programming

Define Call Gate Descriptor
Define Task Gate Descriptor
Define Interrupt Gate Descriptor
Define Trap Gate Descriptor
(Special 80286 Pseudos)

Label Operation Operand

CALL_GATE DPL,SELECTOR < OFFSET,
< WORD_COUNT>
TASK_GATE DPL,SELECTOR < ,OFFSET >
INTR_GATE DPL,SELECTOR <,OFFSET >
TRAP_GATE DPL,SELECTOR < ,OFFSET >

Gate descriptors are used only for transfer of control from the
instructions in one segment to the instructions in another seg-
ment. Gates provide some segment protection in that access to
other level tasks must reference a gate. These pseudo instruc-
tions, therefore, allow the creation of gate descriptor data struc-
tures. They each require a data privilege level, i.e., DPLO,..,
DPL3, and an immediate selector. The offset from the selector
is optional, and for CALL_GATE, the word_count term is op-
tional.

For an example of this pseudo instruction and how it relates to
the other 80286 pseudo tngctions, see th80286 exampl@ro-
gram at the end of this appendix.

JMP
CALL

Syntax

Description

Example

Unconditional, Intersegment Jump
Unconditional, Intersegment Call
(Special 80286 Pseudos)

Label Operation Operand
JMP SELECTOR< ,OFFSET>
CALL SELECTOR< ,OFFSET>

Because the 80286 assembler does not use 80286 logical ad-
dresses (i.e., selector and offset), if the user attempts to do an in-
tersegment JMP or CALL, incorrect cod@lwe generated.

This expansion of the JMP and CALL instructions allows the

user to specify the immediate value of the SELECTOR of the
segment to jump to, and optionallythe OFFSET in the segment.

For an example of this pseudo instruction and how it relates to
the other 80286 pseudo tngctions, see th80286 exampl@ro-
gram at the end of this appendix.

80286 Programm ing B-5

SEGMENT

Syntax

Description

Example

B-6 80286 Programming

Create New Logical Segment
(Special 80286 Pseudo)

Label Operation Operand
Name SEGMENT ATTR
Name ENDS

This pseudo instruction creates a new logical segment, within
the current 64K PROG, DATA, COMN, or ORG segment.
These segments cannot be nested, ahdlibe created sequen-
tially within the current segment. The total length of all the logi-
cal segments within PROG, DATA, COMN, or ORG segments
must not exceed 64K. The SEGMENT pseudo is provided for
the user, to have many separate logical segments within one file,
with the provsion that together they are less than 64K of mem-
ory. This SEGMENT pseudo instruction is to bdizgd with

the descriptor table building pseudo instructions. Each SEG-
MENT pseudo instruction must have a corresponding ENDS
pseudo instruction.

The attributes (ATTR) assignable to a segment aue: Ex-
ecutable Only (EO), Executable and Readable (ER), Readable
Only (RO), and Readable and Writable (RW).

For an example of this pseudo instruction and how it relates to
the other 80286 pseudo tnsgctions, see th80286 exampl@ro-
gram at the end of this appendix.

SEG_DES
TSS_DES
LDT_DES
Syntax
Description
Example

Create Segment Descriptor

Create Task Segment Descriptor

Create Local Descriptor Table Descriptor
(Special 80286 Pseudos)

Label Operation Operand

SEG_DES SEG NAME < ,DPL,LENGTH>
TSS_DES SEG NAME < ,DPL,LENGTH>
LDT_DES SEG NAME < ,DPL,LENGTH>

This pseudo instruction creates a descriptor data structure. It
must be given an operand which was defined to be a SEG-
MENT. Optionally, the user can include the data privilege num-
beri.e., DPLO .. DPL3, and length of the segment in bytes.

For an example of this pseudo instruction and how it relates to
the other 80286 pseudo tngctions, see th80286 exampl@ro-
gram at the end of this appendix.

80286 Programm ing B-7

STACKSEG

Syntax

Description

Example

B-8 80286 Programming

Create Logical Stack Segment
(Special 80286 Pseudo)

Label Operation Operand

Name STACKSEG LENGTH

This pseudo instruction creates a logical stack segment with
length LENGTH bytes. This pseudo does not require a SEG-
MENT or ENDS pseudo instruction.

For an example of this pseudo instruction and how it relates to
the other 80286 pseudo tnsgctions, see th80286 exampl@ro-
gram at the end of this appendix.

The 80286 This example program initializes all system data segments re-
Example Program quired for a simple three task system and then schedules the
tasks as follows: task 1 will start, followed by task 2, followed by
task 1 in a repetitive fashion. If any internal exceptions or exter-
nal interrupts are generated, taskiBlve invoked halting the
processor. The system data segmeiitbe tenporarily setup
in ROM and transferred to RAM using a string move.

80286 Example

Program

"80286"
GLOBAL IDT,GDT,LDT1,LDT2

LIMIT_FF EQU OOFFH
LIMIT_100 EQU 0100H
OFFSET_00 EQU 0000H
BASE_00 EQU OOH
REG_00 EQU 0000H
INTEL_RESV_B EQU OO0H
FLAG_WORD EQU OO0H
SEL_GDTA EQU 0008H
SEL_LDT_ 1 EQU 0010H
SEL_LDT_1A EQU 0018H
SEL_LDT_2 EQU 0020H
SEL_LDT_2A EQU 0028H
SEL_LDT_3 EQU 0030H
SEL_LDT_3A EQU 0038H
SEL_TSS 1 EQU 0040H
SEL_TSS_1A EQU 0048H
SEL_TSS_2 EQU 0050H
SEL_TSS 2A EQU 0058H
SEL_TSS_3 EQU 0060H
SEL_TSS_3A EQU 0068H
ATTR_TG_DPLO EQU 085H

80286 Programm ing B-9

ATTR_TG_DPL1
ATTR_TG_DPL2
ATTR_TG_DPL3
ATTR_DS_DPLO
ATTR_DS_DPL1
ATTR_DS_DPL2
ATTR_DS_DPL3
ATTR_LDT

ATTR_TS_DPLO
ATTR_TS_DPL1
ATTR_TS_DPL2
ATTR_TS_DPL3
ATTR_CS_DPLO
ATTR_CS_DPL1
ATTR_CS_DPL2
ATTR_CS_DPL3

EQU 0A5H
EQU 0C5H
EQU OE5H
EQU 092H
EQU 0B2H
EQU OD2H
EQU OF2H
EQU 082H
EQU 081H
EQU 0ALH
EQU 0C1H
EQU OE1H
EQU 09AH
EQU 0BAH
EQU ODAH
EQU OFAH

The following macro is used for defining a task state segment.
The parameters passed are the virtual address of the stack
pointer (SS_SEL and SP), the flagword (FLAGS), the code
segment selector (CS_SEL), thetmstion pointer (IP), the

task Idt selector (LDT_SEL), the data segment selector
(DS_SEL), and the extra data segment selector (ES_SEL). The
stack pointer passed is used temporarily for all 4 stacks. all task
state segments created will have a blank back link selector, and
have all registers cleared except for the registers passed as pa-
rameters.

TSS_SEG

MACRO

DW
REPT
DwW
DwW
DwW
DwW

B-10 80286 Programming

&SP,&SS_SEL,&FLAGS,&CS_SEL,&IP,
&LDT_SEL,&DS_SEL,&ES_SEL
0000H

3

&SP,&SS_SEL

&IP

&FLAGS
REG_00,REG_00,REG_00,REG_00

IDT

DW

DwW
DW
DwW
MEND

DATA
ASSUME
SEGMENT
TASK_GATE
TASK_GATE
TASK_GATE
TASK_GATE
TASK_GATE
TASK_GATE
TASK_GATE
TASK_GATE
TASK_GATE
TASK_GATE
TASK_GATE
TASK_GATE
TASK_GATE
TASK_GATE
TASK_GATE
TASK_GATE
TASK_GATE
TASK_GATE
TASK_GATE
TASK_GATE

TASK_GATE

TASK_GATE
TASK_GATE
TASK_GATE
TASK_GATE
TASK_GATE

&SP

REG_00,REG_00,REG_00

&ES_SEL,&CS_SEL,&SS_SEL,&DS_SEL

&LDT_SEL

DS:DATA
RW

DPLO,SEL_TSS_3
DPLO,SEL_TSS_3
DPLO,SEL_TSS_3
DPLO,SEL_TSS_3
DPLO,SEL_TSS_3
DPLO,SEL_TSS_3
DPLO,SEL_TSS_3
DPLO,SEL_TSS_3
DPLO,SEL_TSS_3
DPLO,SEL_TSS_3
DPLO,SEL_TSS_3
DPLO,SEL_TSS_3
DPLO,SEL_TSS_3
DPLO,SEL_TSS_3
DPLO,SEL_TSS_3
DPLO,SEL_TSS_3
DPLO,SEL_TSS_3
DPLO,SEL_TSS_3
DPLO,SEL_TSS_3
DPLO,SEL_TSS_3

DPLO,SEL_TSS_3
DPLO,SEL_TSS_3
DPLO,SEL_TSS_3
DPLO,SEL_TSS_3
DPLO,SEL_TSS 3
DPLO,SEL_TSS 3
DPLO,SEL_TSS 3

;IDT

80286 Programm ing B-11

IDT
GDT

GDT
LDT1

LDT1
LDT2

LDT2
LDT3

TASK_GATE
TASK_GATE
TASK_GATE
TASK_GATE
TASK_GATE
TASK_GATE
ENDS
SEGMENT
SEG_DES
SEG_DES
LDT_DES
SEG_DES
LDT _DES
SEG_DES
LDT_DES
SEG_DES
TSS_DES
SEG_DES
TSS_DES
SEG_DES
TSS_DES
SEG_DES
REPT

DD

ENDS
SEGMENT
SEG_DES
SEG_DES
REPT

DD

ENDS
SEGMENT
SEG_DES
SEG_DES
REPT

DD

ENDS
SEGMENT

B-12 80286 Programming

DPLO,SEL_TSS 3
DPLO,SEL_TSS_3
DPLO,SEL_TSS_3
DPLO,SEL_TSS_3
DPLO,SEL_TSS_3
DPLO,SEL_TSS_3

RW

GDT ;GDT. FIRST DES IS
GDT ;FOR THE NULL SELECTOR
LDT1

LDT1

LDT2

LDT2

LDT3

LDT3

TSS1

TSS1

TSS2

TSS2

TSS3

TSS3

18

00000000H,00000000H

RW

TASK1,DPLO,LIMIT_100 ;LDT1
STACK

30

00000000H,00000000H

RW

TASK2,DPLO,LIMIT_100 ;LDT2
STACK

30

00000000H,00000000H

RW

SEG_DES

SEG_DES

REPT

DD
LDT3 ENDS
TSS1 SEGMENT

TSS_SEG
TSS1 ENDS
TSS2 SEGMENT

TSS_SEG
TSS2 ENDS
TSS3 SEGMENT

TSS_SEG
TSS3 ENDS
IDT_LIMIT_BASE
GDT_LIMIT_BASE

ORG

ALIGN
STACK STACKSEG
STACK SEGMENT

DWS
STACK_TOP DW
STACK ENDS

PROG

ASSUME
INITIALIZE

MOV

MOV

MOV
LD_IDT

TASK3,DPLO,LIMIT_100 ;LDT3

STACK
30

00000000H,00000000H

RW

00FEH,000CH,FLAG_WORD,0004H,0FFSET 00,
SEL_LDT_1,000CH,000CH

RW

;TSS1

00FEH,000CH,FLAG_WORD,0004H,
OFFSET_00,SEL_LDT_2,000CH,000CH

RW

;TSS2

00FEH,000CH,FLAG_WORD,0004H,
OFFSET_00,SEL_LDT_3,000CH,000CH

DBS
DBS
00000700H

254
RW
127
O0O000H

CS:PROG

AX,SEG STACK_TOP

SS,AX

SP,OFFSET STACK_TOP

;TSS3

[e22Ne)]

80286 Programm ing B-13

MOV
MOV
MOV
MOV
MOV
MOV

LIDT

LD_GDT
MOV
MOV
MOV
MOV
LGDT
SET_P_MODE
MOV
LMSW
IMP
LD TR
MOV
LTR
START_TASK1

AXSEG IDT

DS,AX

WORD PTR IDT_LIMIT_BASE # LIMIT_FF
WORD PTR IDT_LIMIT_BASE[2],OFFSET IDT
BYTE PTR IDT_LIMIT_BASE[4],# BASE_00
BYTE PTRIDT_LIMIT_BASE[5] ,# INTEL_RESV_B

WORD PTR IDT_LIMIT_BASE

WORD PTR GDT_LIMIT_BASE,# LIMIT_FF

WORD PTR GDT_LIMIT_BASE[2],OFFSET GDT
BYTE PTR GDT_LIMIT_BASE[4] # BASE_00

BYTE PTR GDT_LIMIT_BASE[5].# INTEL_RESV_B
WORD PTR GDT_LIMIT_BASE

AX#00000101B ;SET PE AND EM BITS IN MSW
AX
LD_TR ;DUMMY JUMP TO FLUSH QUEUE

AX# SEL_TSS_3
AX

Opcode for a jump using direct virtual address dword (VADW
NAMES TSS1 SELECTOR)

JMP

B-14 80286 Programming

SEL_TSS_ 1 ;THIS REPRESENTS
;THE SELECTOR

TASK 1 jumpsto TASK2

ASSUME CS:ORG
ORG OOOOFFO00H

Fix TSS3 IP,SP,ES,CS,SS,DS within TASK1. TSS3 was faulty
when TASK1 was first invoked.

TASK1 SEGMENT ER
MOV AX,SEL_TSS_3A
MOV DS,AX
MOV WORD PTR [14],# 0000H
MOV WORD PTR [26],# 00FEH
MOV WORD PTR [34],# 000CH
MOV WORD PTR [36],# 0004H
MOV WORD PTR [38],# 000CH
MOV WORD PTR [40],# 000CH
Opcode for a jump using direct virtual address dword (VADW
NAMES TSS2 SELECTOR)
TASK1_LOOP JMP SEL_TSS 2
JMP TASK1_LOOP
TASK1 ENDS
Jumps back to TASK 1.
ASSUME CS:ORG
ORG 0000FF100H

80286 Programm ing B-15

Opcode for a jump using direct virtual address dword (VADW

NAMES TSS1 SELECTOR)
TASK2 SEGMENT ER
TASK2_LOOP JMP SEL_TSS 1
JMP
TASK2_LOOP
TASK2 ENDS
TASKS3 halts the processor.
ASSUME CS:0ORG
ORG 0000FF200H
TASK3 SEGMENT ER
HLT
JMP TASK3
TASK3 ENDS

B-16 80286 Programming

Set up the restart vector to jump to INITIALIZE.

ASSUME CS:ORG
ORG OO0OOFFFFOH
JMP FAR PTR INITIALIZE
NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

80286 Programm ing B-17

Notes

B-18 80286 Programming

70108/70116 Programm ing And Instruction Set

Summary

This appendix contains general information. Architecture, oper-
ands, and condition flags are briefly discussed. For detailed de-
scriptions of the microprocessors, refer to the manufacturers us-
ers manual.

Programming
Considerations

Note

Sixteen-bit operands may be assigned to even or odd

address locations. For data and address operands, the least sig-
nificant byte of the word will betsred in the lower-valued ad-
dress. The most significant byte will b®ed in the next higher
address. The 70116 maprocessor automatically performs the
required number of memory accesses: one if the word operand
begins on an even byte address, and two if it begins on an odd
byte address. The 70108

always performs two memory accesses for each 16-bit operand.

See the "EXT" pseudo op in the chapter titled "Pseudo
Instruction Smmary" about "EXT" conflicts with NEC
processors.

70108/70116 Programm ing/Instruction Set Summary C-1

Modes Of
Operation

Two modes of operation are possible with theropcocessors:
Native Mode and 8080 Mode or emulation mode. pracessor
in Native Mode executes 8086/8088 compatible

instructions, while irB080 Mode the 8080 set of imsctions is
emulated. The mode flag of the program status word is set (1)
for native mode execution, and cleared (0) for 8080 mode.

Two instructions BRKEM (Break for Emulation) and RETEM
(Return from Emulation) control entry into and out of emula-
tion mode from native mode.

Two instructions CALLN (Call native routine) and RETI (Re-
turn from Interrupt) W switch operation from 8080 mode to
native mode and back to 8080 mode.

As the assembler directive, use "70108" or "70116" for
native mode, "70108_80" or "70116_80" for 8080 mode.

Addressing
Capabilities

In general, memory operands may be addressed directly, using
al6-bit offset, or indirectly, using a base and/or index register
added to an optional 8- or 16-bit dispatent value.

C-2 70108/70116 Programm ing/Instruction Set Summary

Instruction Set
Summary

All mnemonic instructions are sunarized in table C-1. The in-
struction set is arranged in alphabetical order. Refer to the
manufacturer’s users guide for more detailed information.

Figure C-2 shows the typical machine instruction format. The lo-
cation of an operand in a register or memory will be specified by
up to three files in each instruction format. These fields are the
mode field (mod), the register field (reg), and the register/mem-
ory field (r/m). When used, they occupy the second byte of the
instruction format. The mode field occupies the two most signifi-
cant bits of the byte and specifies how the r/m field will be used
in locating the operand. The reg field occupies the next three
bits following the mode field and specifies either an 8-bit regis-
ter or a 16-bit register where an operariliitve located.

Note, bytes three through six of an instruction are optional
fields that usually contain the displacement (DISP) value of a
memory operand and/or the actual value of an immediate con-
stant operand. The effective address (EA) of the memory

70108/70116 Programm ing/Instruction Set Summary C-3

operand will be computed according to the mode and r/m fields
as follows:

Register operands may be indicated within the instruction for-
mat by the reg field which will represent the selected register.
Operands may be indicated by an encoded field, in which case
EA will represent the register selected by the r/m fieldruts
tions without a "W" bit in their format always refer 16-bit reg-
isters; those with a "w" bit in their format refer to either 8- or 16-
bit registers according to the following reg field assignments:

16-bit (W=1) 8-bit (W= 0)
reg field: 000 = reg AW 000 = reg AL
001 = reg CW 001 = reg CL
010 = reg DW 010 = reg DL
011 = reg BW 011 = reg BL
100 = reg SP 100 = reg AH
101 = reg BP 101 = reg CH
110 = reg IX 110 = reg DH
111 =reg IY 111 = reg BH
BYTE BYTE
1 2
' | ' - BYTE BYTE BYTE BYTE
7 2 1 o 7 65 32 0 3 4 5 6

disp—lo disp—hi

opcode d w mod reg r/m or or data data
data data
OPTIONAL

Figure C-1. Typical Instruction Format

C-4 70108/70116 Programm ing/Instruction Set Summary

d: direction to (1) or from (0) register

w: byte (0) or word (1) operation
mod and r/m: addressing mode -register of memory
reg: register select

The SEGMENT OVERRIDE PREFIX takes the form of:
001reg110 in which the register is assigned in the following man-
ner:

reg Segment register
00 DS1

01 PS

10 SS

11 DS0

70108/70116 Programm ing/Instruction Set Summary C-5

70116/70108
Register Names

The following are reserved symbols. They have special meaning
to the assembler and cannot appear as user-defined symbols.
The 8086/8088 registepunterparts are shown in parentheses.

SYMBOL (8086/8088) DESCRIPTION

AH (AH) High-order byte of register A
AL (AL) Low-order byte of register A
AW (AX) 16-bit register A

BH (BH) High-order byte register B
BL BL) Low-order byte register B
BP (BP) Base pointer

BW (BX) 16-bit register B

CH (CH) High-order byte register C
CL (CL) Low-order byte register C
Cw (CX) 16-bit register C

DH (DH) High-order byte register D
DL (DL) Low-order byte register D
DS0 (DS) Data segment O register
DS1 (ES) Data segment 1 register
DW (DX) 16-bit register D

IX (S Source index register

Y (DS) Destination index register
PC (IP) Program counter

PS (CS) Program segment register
SP (SP) Stack pointer

SS (SS) Stack segment register

C-6 70108/70116 Programm ing/Instruction Set Summary

Instruction Set

Symbols used in table C-1, Instruction SeimBuary, are as fol-

Symbols lows:

SYMBOL DESCRIPTION

addr Address (16 bits)

addr-hi Most significant byte of address

addr-lo Least significant byte of address

d One-bit field identifying direction to (1) or from (0) register

data Immediate operand (8- or 16-bit)

disp 8- or 16-bit displacement from end of current instruction

disp-hi Most significant byte of 16-bit displacement

disp-lo Least significant byte of 16-bit displacement

imm 3, 4 or 8-bit immediate operand

mod Two-bit field defining addressing mode

offset-hi Most significant byte in 16-bit offset destination address
of target instruction

offset-lo Least significant byte in 16-bit offset destination address
of target instruction

reg Field that defines the register used

r/m Three-bit field, in conjunction with the mod and "W" fields
defines EA

seg Segment register

seg-hi Most significant byte in 16-bit segment destination address
of target instruction

seg-lo Least significant byte in 16-bit segment destination address
of target instruction

port Number of I/O port

S:W Sign-extended byte indicator

v Interrupt: defines variable type (v=1), or type 3 (v= 0) Shift
or Rotate: variable number of bits to shift or rotate (v= 1),
or one bit (v=0)

w One-bit field identifying byte (0) or word (1) instruction

z Instruction being repeated terminates when zero flag is

equal to z

70108/70116 Programm ing/Instruction Set Summary C-7

Table C-1. 70116/70108 Instruct ion Set Summary

Mnemonic

Byte 1

Byte 2

Byte 3

Byte 4

ADD Add

Memory or Register
Operand with
Register Operand

Immediate Operand
to Memory or
Register Operand

Immediate Operand
to Accumulator

ADDC Add with Carry
Memory or Register
Operand with
Register Operand
Immediate Operand
to Memory or
Register Operand

Immediate Operand
to Accumulator

ADDA4S Add Nibble
String

ADJBA Adijust Byte Add

ADJBS Adjust Byte
Subtract

ADJ4A Adjust Nibble Add

000000dw

100000sw

0000010w

000100dw

100000sw

0001010w

00001111

00110111

00111111

00100111

mod reg r/m

mod 000 r/m

data

mod reg r/m

mod 010 r/m

data

00100000

data

data if
w=1

data

data if
w=1

data if
s:.w=01

data if
s:w=01

C-8 70108/70116 Programm ing/Instruction Set Summary

Table C-1. 701116/70108 Instruct ion Set Summary (Cont'd)

Mnemonic Byte 1 Byte 2 Byte 3 Byte 4
ADJ4S Adjust Nibble 00101111
Subtract

AND And Logically

Memory or Register 001000dw mod reg r/m

Operand with

Register Operand

Immediate Operand 1000000w mod 100 r/m data data if
to Memory or =1
Register Operand

Immediate Operand 0010010w data data if
to Accumulator w=1
BC/BL Branch if Carry/ 01110010 disp
Lower
BCWZ Branch if CW 11100011 disp
Equals Zero
BE/BZ Branch if Equal/ 01110100 disp
Zero
BGE Branch if Greater 01111101 disp
Than or Equal
BGT Branch if Greater 01111111 disp
Than
BH Branch if Higher 01110111 disp
BLE Branch if Less 01111110 disp

Than or Equal

BLT Branch if Less Than 01111100 disp

70108/70116 Programm ing/Instruction Set Summary C-9

Table C-1. 70116/70108 Instruct ion Set Summary (Cont'd)

Mnemonic Byte 1 Byte 2 Byte 3 Byte 4
BN Branch if Negative 01111000 disp
BNC/BNL Branch if Not 01110011 disp
Carry/Not Lower
BNE/BNZ Branch if Not 01110101 disp
Equal/Not Zero
BNH Branch if Not 01110110 disp
Higher
BNV Branch if Not 01110001 disp
Overflow
BP Branch if Positive 01111001 disp
BPE Branch if Parity 01111010 disp
Even
BPO Branch if Parity 01111011 disp
Odd
BR Branch
Intrasegment or11101001 disp-lo disp-hi
Intragroup Direct
Intrasegment Direct 11101011 disp-lo
Short
Intrasegment or11111111 mod 100 r/m
Intragroup Indirect
Intersegment Direct 11101010 offset-lo offset-hi seg-lo
Byte 5= seg-hi

C-10 70108/70116 Programm ing/Instruction Set Summary

Table C-1. Instruction Set Summary (Cont'd)

Mnemonic Byte 1 Byte 2 Byte 3 Byte 4
Intersegment 11111111 mod 101 m (mod 11)
Indirect
BRK Break 1100110v imm (if v=1)
BRKEM Break for 00001111 11111111 imm
Emulation
BRKYV Break if Overflow 11001110
BUSLOCK Bus Lock Prefix 11110000
BV Branch if Overflow 01110000 disp
CALL Call
Direct Intrasegment 11101000 disp-lo disp-hi
or Intragroup
Indirect Intraseg- 11111111 mod 010 r/m
ment or Intragroup
Direct Intersegment 10011010 offset-lo offset-hi seg-lo
Byte 5= seg-hi
Indirect Inter- 11111111 mod 011 m (mod11)
segment
CALLN Call Native 11101101 11101101 imm (effective for
8080 mode also)
CHKIND Check Index 01100010 mod reg m

70108/70116 Programm ing/Instruction Set Summary C-11

Table C-1. Instruction Set Summary (Cont'd)

COMPBK/CMPBKB/CMPBKW 1010011w
Compare Block/
Compare Block Byte/
Compare Block Word

Mnemonic Byte 1 Byte 2 Byte 3 Byte 4
CLR1 Clear Bit
Bit CL of Memory or 00001111 0001001w mod 000 r/m
Register Operand
Bit imm of Memory 00001111 0001101w mod 000 r/m
or Register Operand
Carry Flag 11111000
Direction Flag 11111100
CMP Compare Operands
Memory or Register 0011101w mod reg r/m
Operand with
Register Operand
Register Operand 0011100w mod reg m
with Memory
Immediate Operand 100000sw mod 111 r/m data data if
with Memory or s:w=01
Register Operand
Immediate Operand 0011110w data data if
with Accumulator w=1

C-12 70108/70116 Programm ing/Instruction Set Summary

Table C-1. Instruction Set Summary (Cont'd)

Mnemonic Bytel Byte 2 Byte 3 Byte 4

COPM/CMPMB/CMPMW 1010111w
Compare Multiple/
Compare Multiple Byte/
Compare Multiple Word

CMP4S Compare Nibble 00001111 00100110
String

CVTBD Convert Binary 11010100 00001010
to Decimal

CVTBW Convert byte 10011000
to Word

CVTDB Convert Decimal 11010101 00001010
to Binary

CVTWL Convert Decimal 10011001

to Long Word

DBNZ Decrement and 11100010 disp
Branch if Not Zero

DBNZE Decrement and 11100001 disp
Branch if Not Zero
and Equal

DBNZNE Decrement and 11100000 disp

Branch if Not Zero
and Not Equal

70108/70116 Programm ing/Instruction Set Summary C-13

Table C-1. Instruction Set Summary (Cont'd)

Mnemonic Bytel Byte 2 Byte 3 Byte 4
DEC Decrement Operand by One
Memory or Register 1111111w mod 001 r/m
Operand
Word Register 01001 reg
Operand
DI Disable Interrupt 1111010
DISPOSE Dispose a
Stack Frame 11001001
DIV Divide Signed 1111011w mod 111 r/m
DIVU Divide Unsigned 1111011w mod 110 r/m
El Enable Interrupt 11111011
EXT Extract Bit Field
Register 00001111 00110011 11 regreg
Immediate 00001111 00111011 11000 reg imm
FPO1 Floating Point Operation 1
Register 1101 1xxx 1lyyyzzz
Memory 11011xxx mod yyy m
FPO2 Floating Point Operation 2
Register 0110011x 11yyyzzz
Memory 0110011x mod yyy m
HALT Halt 11110100

C-14 70108/70116 Programm ing/Instruction Set Summary

Table C-1. Instruction Set Summary (Cont'd)

Mnemonic Bytel Byte 2 Byte 3 Byte 4

IN Input Byte and
Input Word from
Fixed Port 1110010w port

Variable Port 1110110w
INC Increment Operand

by One Memory or 1111111w mod 000 r/m
Register Operand

Register Operand 01000reg
(Word)
INM Input Multiple 0110110w
INS Insert Bit Field
Register 00001111 00110001 11 reg reg
Immediate 00001111 00111001 11000 reg imm
LDEA Load Effective 10001101 mod reg m

Address to Register

LDM/LDMB/LDMW 1010110w
Load Multiple/
Load Multiple Byte/
Load Multiple Word

70108/70116 Programm ing/Instruction Set Summary C-15

Table C-1. Instruction Set Summary (Cont'd)

Memory Operand
Memory or Register
Register

Memory or Register
Operand

32 Bit Memory to

Data Segment 0
Register

Operand to Segment

Segment Register to

10001110

10001100

11000101

Mnemonic Bytel Byte 2 Byte 3 Byte 4
MOV Move

Memory or Register 1000101w mod reg r/m

Operand to

Register Operand

Register Operand 1000100w mod reg m

to Memory

Immediate Operand to 1100011w mod 000 m data data if

Memory Operand =1

Immediate Operand 1011wreg data data if

to Register =1

Memory Operand to 1010000w addr-lo addr-hi

Accumulator

Accumulator to 1010001w addr-lo addr-hi

mod Oseg r/m

mod Oseg r/m

mod reg m

C-16 70108/70116 Programm ing/Instruction Set Summary

Table C-1. Instruction Set Summary (Cont'd)

Mnemonic Byte 1 Byte 2 Byte 3 Byte 4
32 Bit Memory to 11000100 mod reg m
Data Segment 1
Register
PSW to AH 10011111
AH to PSW 10011110

MOVBK/MOVBKB/MOBBKW 1010010w
Move block/Move Block
Byte/Move Block Word

MUL Multiply Signed
Multiply Accumulator 1111011w mod 101 r/m
by Register or Memory

Immediate 011010s1 mod reg r/m data data if
s=0
MULU Multiply Unsigned
Accumulator by 1111011w mod 100 r/m
Register or Memory

NEG Negate, or Form 1111011w mod 011 r/m
2's Complement

NOP No Operation 10010000

NOT, or Form 1111011w mod 010 r/m

1's Complement

70108/70116 Programm ing/Instruction Set Summary C-17

Table C-1. Instruction Set Summary (Cont'd)

Mnemonic Byte 1 Byte 2

Byte 3

Byte 4

NOT1 Not Bit

Bit CL of Memory or 00001111 0001011w
Register Operand

Bit imm of Memory 00001111 0001111w
or Register Operand

Carry Flag 11110101

OR Inclusive OR
Memory or Register 000010dw mod reg r/m
Operand with Register
Operand

Immediate Operand to 1000000w mod 001 r/m
Memory or Register
Operand

Immediate Operand 0000110w data
to Accumulator

OUT Output Byte Output Word

Fixed Port 1110011w port
Variable Port 1110111w

OUTM Output Multiple 0110111w

POLL Poll and wait 10011011

mod 000 r/m

mod 000 r/m

data

data if
w=1

imm

data if
w=1

C-18 70108/70116 Programm ing/Instruction Set Summary

Table C-1. Instruction Set Summary (Cont'd)

Mnemonic Byte 1 Byte 2 Byte 3 Byte4d
POP Pop Word off Stack
into Destination
Memory Operand 10001111 mod 000 m
Register Operand 01011reg
Segment Register 000seg111 (reg 01)
Pop Flags off Stack 10011101
All General 01100001
Registers
PREPARE Prepare New 11001000 data-lo data-hi data
Stack Frame
PUSH Push Word onto Stack
Memory Operand 11111111 mod 110 m
Register Operand 01010reg
(Word)
Segment Register 000seg110
Push Flags onto 10011100
Stack
Push All General 01100000
Registers
Immediate 011010s0 data data if
s=0

70108/70116 Programm ing/Instruction Set Summary C-19

Table C-1. Instruction Set Summary (Cont'd)

Mnemonic Byte 1 Byte 2 Byte 3 Byte4d
REP/REPE/REPZ/REPNE 1111001z
REPNZ
Repeat String
Operation
RPC Repeat While 01100101
Carry
REPNC Repeat While 01100100
Not Carry
RET Return from Procedure
Intrasegment 11000011
Intrasegment and 11000010 data-lo data-hi
Add Immediate to
Stack Pointer
Intersegment 11001011
Intersegment and 11001010 data-lo data-hi
Add Immediate to
Stack Pointer
RETEM Return from 11101101 11111101 (effective for
Emulation 8080 mode also)
RETI Return from 11001111
Interrupt
ROL
Rotate Left 110100vw mod 000 r/m
by count 1100000w mod 000 r/m count

C-20 70108/70116 Programm ing/Instruction Set Summary

Table C-1. Instruction Set Summary (Cont'd)

Mnemonic Byte 1 Byte 2 Byte 3 Byte4d
ROLLC
Rotate Left 110100vw mod 010 r/m

through Carry
by count 1100000w mod 010 r/m count
ROL4 Rotate Left Nibble

8 bit Memory or 00001111 00101000 mod 000 r/m
Register Operand

ROR

Rotate Right 110100vw mod 001 r/m

by count 1100000w mod 001 r/m count
RORC

Rotate Right 110100vw mod 011 r/m

through Carry
by count 1100000w mod 011 r/m count

ROR4 Rotate Right Nibble
8 bit Memory or 00001111 00101010 mod 000 r/m
Register Operand

SET1 Set Bit
Bit CL of Memory 00001111 0001010w mod 000 r/m
or Register Operand

Bit imm of Memory 00001111 0001110w mod 000 r/m imm
of Register Operand

Carry Flag 11111001

Direction Flag 11111101

70108/70116 Programm ing/Instruction Set Summary C-21

Table C-1. Instruction Set Summary (Cont'd)

Mnemonic Byte 1 Byte 2 Byte 3 Byte4d
SHL Shift Left
Shift Arithmetic 110100vw mod 100 r/m
Left and Shift
Logical Left
by count 1100000w mod 100 r/m count
Shift Logical Right 110100vw mod 101 r/m
by count 1100000w mod 101 r/m count
SHRA
Shift Right 110100vw mod 111 r/m
Arithmetic
by count 1100000w mod 111 r/m count
STM/STMB/STMW 1010101w
Store Multiple/
Store Multiple Byte/
Store Multiple Word
SUB Subtract
Memory or Register 001010dw mod reg r/m
Operand and Register
Operand
Immediate Operand 100000sw mod 101 r/m data data if
from Memory or s:iw=01
Register Operand
Immediate Operand 0010110w data data if
from Accumulator w=1

C-22 70108/70116 Programm ing/Instruction Set Summary

Table C-1. Instruction Set Summary (Cont'd)

Mnemonic

Byte 1

Byte 2

Byte 3 Byte4

SUBC Subtract with Carry
Memory or Register
Operand and

Register Operand

Immediate Operand
from Memory
Register Operand

Immediate Operand
from Accumulator

SUBA4S Subtract Nibble
String

TEST Test, Logical AND
Memory or Register
Operand with
Register Operand

Immediate Operand
with Memory or
Register Operand

Immediate Operand
with Accumulator

TEST1 Test Bit
Bit CL of Memory or
Register Operand

Bit imm of Memory
or Register Operand

000110dw

100000sw

0001110w

00001111

1000010w

1111011w

1010100w

00001111

00001111

mod reg r/m

mod 011 r/m

data

00100010

mod reg r/m

mod 000 r/m

data

0001000w

0001100w

data if
orw=1

data

data if
=1

data data if

data if
w=1

mod 000 r/m

mod 000 r/m imm

70108/70116 Programm ing/Instruction Set Summary C-23

Table C-1. Instruction Set Summary (Cont'd)

Mnemonic Byte 1 Byte 2

Byte 3

Byte4

TRANS/TRANSB Translate 110101
Byte

XCH Exchange
Memory or Register 1000011w mod reg r/m
Operand with Register
Operand

Register Operand 10010reg
with Accumulator

XOR Exclusive OR
Memory or Register 001100dw mod reg r/m
Operand with Register
Operand

Immediate Operand 1000000w mod 110 r/m
Memory or Register
Operand

Immediate Operand 0011010w data
to Accumulator

Segment Override Prefix 001sreg110

data

data if
=1

data if
w=1

C-24 70108/70116 Programm ing/Instruction Set Summary

D

8087 Programm ing and Instruction Set Summary

Introduction

The 8087 can act as agrocessor with the host microprocessor

or as a numeric data processor. As a coprocesso8p8ve

shares the same instructionestm and can perform parallel exe-
cutions. In the memory addressing mode, 8086/8088/80186 E S-
CAPE instructions W cause the 8086/8088/80186 to calculate

an address and read its contents. The 8086/8088/801&G& &)

the contents at this address. Meanwhile, the 8087 has been moni-
toring the instruction se.am. When an ESCAPE imsction is
detected, the 8087 stapsocessing. The 8087 latches the in-
struction. If an address was calculated, it is captured. The data is
then read by the 8086/8088/80186 at this location. THeuios

tion is decoded by the 8087 to determine how many more words
are needed from memory. After fetching all the data required,
the 8087 releases the bus and begins calculating. The
8086/8088/80186 then continues executing therircsion

stream.

In numeric procssing the 8087 hastir rounding modes se-

lected by the rounding control (RC) field in the control word
(refer to figure D-2). Rounding occurs when the format of the
destination cannot exactly represent the true result in arithmetic
and store operations. The pigon control (PC) field selects

the precision of the result: 24, 53, or 64 bits; default is 64 bits.
Real numbers can be closed by either of two models of infinity:
projective or affine. The infinity control (IC) field selects the

type of closure. Default is projective.

8087 Programm ing and Instruction Set Summary D-1

Note

The 8087 represents data and final results of calculations be-
tween + /- 2.3 x 10308 to + /- 1.7 x 10308 (at double prem)si

This is not an exact representation. Remember that arithmetic
on real numbers is inherently approximate. Howeverg808y

does perform exact arithmetic on integers. An operation on two
integers returns an exact integer result (providing it is within
range).

Since the 8087 is abprocessor, it uses the host processor direc-
tive, i.e., "8086", "8088", "80186", "80188".

8087 Archite cture

The progammer can access tB887 floating-point stack, the

seven words that specify the 8087 eamiment, and the seven

data types addressed by the 8087. A description of these features
follows.

Floating Point
Stack

This stack has eight elements with sign, exponent, and signifi-
cand fields. Each of the registers in the stack is 80 bits wide. The
field format used in all stack calculations is the temporary real
data format described later under Data Types.

The current top element in the floating point stack is the stack
top (ST) field in the status word (described in the next section).
A load (push) operation demments the stack pointer by one

D-2 8087 Programm ing and Instruction Set Summary

then loads a value into the new stack top. For example,
FLDLG?2 loads log102 into the new stack top. An operation that
pops the stack inements the stack pointer by one. For exam-
ple, FADDP ST[3],ST adds the stack top to element 3, replaces
element 3 with this sum, and pops the stack.

8087 Environment Status word, control word, tag word, two-word instruction ad-

dress, and two-word data address define the 8087cammient.

Status Word Status word can be inspected by storing imiamory with an
8087 ingruction and then examining it wi8086/8088 CPU
code. The format of the status word is shown in figure D-1.

15 14 13 12 11 10 9 8 7 6 5
B C3 ST ST ST Cc2 C1 Co IR * PE
4 3 2 1 0
UE OE ZE DE JE
B: Busy field shows if 8087 is executing (1) or idle (0). C3-CO0: Condition code, used
mainly for conditional branching.
ST: Points to 8087 stack element that is current stack top.
IR: Interrupt request, latched to record pending interrupt to 8086/8088 CPU.

Figure D-1. Status Word Format

8087 Programm ing and Instruction Set Summary D-3

The remaining six bits are exception flags set when an exception
occurs during instruction execution. For more information see
the next section concerning the Control Word.

PE: Precision
UE: Underflow
OE: Overflow
ZE: Zero divide
DE: Denormalized operand
IE: Invalid operation
Control Word The control word is made up of the exception masks, an inter-

rupt enable mask, and control bits. The format of the control
word is shown in figure D-2.

D-4 8087 Programm ing and Instruction Set Summary

15 14 13 12 11 10 9 8 7
* * * IC RC RC PC PC RC
6 5 4 3 2 1 0
* PM UM oM M DM IM

*Not used

IC: Infinity control: affine = 1; projective = 0 (the default).

RC: Rounding control: 00 = to nearest or even (the default); 01 = down; 10 = up;
11 = truncate toward zero.

PC: Precision control: 00 = 24 bits; 01 = reserved; 10 = 53 bits;

11 = 64 bits (the default).

IEM: Interrupt-enable mask: 0 = enabled; 1 = disabled (masked).

PM: Precision Mask: masked (1) = return rounded resullt;
unmasked (0) = return rounded result, request interrupt.

UM: Underflow Mask: masked (1) = denormalize result; unmasked (0) = (for register
destination) adjust exponent, store result, request interrupt; (for memory
destination) request interrupt.

OM: Overflow Mask: masked (1) = return properly signed ;
unmasked (0) = (for register destination) adjust exponent,
store result, request interrupt; (for memory destination) request interrupt.

ZM: Zerodivide Mask: masked (1) = return y signed with EXCLUSIVE OR
of operand signs; unmasked(0) = request interrupt.

DM: Denormalized Operand Mask: masked (1) = (for memory operand) proceed
as usual; (for register operand) convert to valid unnormal, then reevaluate for
exceptions; unmasked (0) = request interrupt.

IM: Invalid Operation Mask: masked (1) = if one operand is NAN, return it;

if both are NANS, return NAN having the larger absolute value; if neither
is NAN, return indefinite; unmasked (0) = request interrupt.

Figure D-2. Control Word Format

8087 Programm ing and Instruction Set Summary D-5

Tag Word Tag fields TAG(0) through TAG(7) describe the status of stack

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
TAG(7) | TAG(6) | TAG(5) | TAG(4) | TAG(3) | TAG(2) | TAG(1) | TAG(Q)

Figure D-3. Tag Word Format

elements 0 through 7, respectively. The format is shown in fig-
ure D-3 above.

Tag Field Values:

00 = Values (Normal or Unnormal)

01 = Zero (True)

10 = Xpecial (Not-A-Number, infinity, or Denormal)
11 = Empty

D-6 8087 Programm ing and Instruction Set Summary

Exception Pointers Exception pointers are available for user written exception han-

dlers. When the 8087 executes artringtion, the instruction ad-
dress and opcode are saved in the exception pointers. If the in-
struction referencesraemory operand, the operand address is
also saved. An exception handler can be written to store these
pointers in memory and obtain information concerning the in-
struction that caused an error. The exception pointers format is
shown in figure D-4.

19

OPERAND ADDRESS = 20-BIT PHYSICAL ADDRESS

INSTRUCTION OPCODE

INSTRUCTION ADDRESS = 20-BIT PHYSICAL ADDRESS

Figure D-4. Exception Pointers Format

8087 Programm ing and Instruction Set Summary D-7

Instruction Opcode

The instruction opcode is defined in the 11 least significant bits;
the five most significant bits are always the 8680k (11011B),
i.e., the CPU ESCAPE bits.

Data Types The 8087 can address seven different data types with all of the

8086 addressing modes. Table D-1 lists the seven addressable
8087 data types.
Table D-1. 8087 Data Types
Significant

Data Type Bits Decimal Digits Approx. Decimal Range

Word Integer 16 4-5 -32768 < N< _+ 32767

Short Integer 32 9 -2x109 < N< _+2x109

Long Integer 64 18 -Ox1018< _N< _+9x1018

Packed Decimal 80 18 9.9 < N< _+9..9

Short Real 32 6-7 0,1.2x10-38 < _IN!<_+3.4x1038

Long Real 64 15-16 0,2.3x10-308 < _IN!< _1.7x10308

Temporary Real 80 19-20 0,3.4x10-4932 < _IN!<_1.1x104932

D-8 8087 Programm ing and Instruction Set Summary

The data formats are shown in figure D-5.

15

31

63

/9

© Word Integer
Mag (Two's Complement)
© Short Integer
Mag (Two's Complement)
© Long Integer
Mag (Two's Complement)
2 © Packed Decimal
Mag
X |] 7 |oveveesescscscncncsscscrasanances | dO

Figure D-5. Data Formats

8087 Programm ing and Instruction Set Summary D-9

©® Short Real

Biased
Exponent | Significand

® Long Real

Biased
Exponent Significand

64 65 ® Temporary Real

Biased
Exponent Significand

Figure D-5. Data Formats (Cont'd)

D-10 8087 Programm ing and Instruction Set Summary

S: Sign bit (0= positive, 1= negative).

Mag: Magnitude
dn: Decimal digit- two per byte
X: Don't care; 8087 igores when loading,

zeros when storing.

I: Integer bit of significand; stored in
temporary real, implicit in short real
and long real.

N Implicit binary point location.

Biased Exponent: Short Real 7FH
Long Real 3FHH
Temporary Real 3FFFH

Rules and
Conventions

Data Transfer
Instructions

The 8087 inguctions use either floating point stack elements or
variables in memory as operands. The 808 irtsions cannot
use labels, 8086 registers, or immediate values as operands. All
of the instructions are sumarized at the end of this chapter.

The data transfer instructions move operands between stack ele-
ments or between the stack top and memory. Each of the seven
data types can be converted to temporary real and loaded onto
the stack or stored imemory in one operation. The 8087 tag
word is automatically updated by data transfer instructions to
show stack contents after instruction execution. The data trans-
fer instructions are: load real (FLD), store real (FST), store real
and pop (FSTP), exchange registers (FXCH), integer load
(FILD), integer store (FIST), integer store and pop (FISTP),
packed decimal (BCD) load (FBLD), and packed decimal

(BCD) store and pop (FBSTP).

8087 Programm ing and Instruction Set Summary D-11

Examples

FLD1 ;Load 1 on top of stack.
FST ST[4] ;Transfer top of stack to stack element 4.

Arithmetic 8087 arithmetic intsuctions have many variations on basic add,
Instructions subtract, multiply and divide operations. Operands can be lo-

cated in stack elements or memory. Results can be deposited in
any of the stack elements. Operands can be any of the following
data types: word integer, short integer, short real, or long real.
Five instruction forms using these instructions includessital
stack, stack element, stack element and popjmeaiory, and
binary integer. These forms are explained in detail in the follow-
ing pages. The forms, mnemonics, and operand forms are sum-
marized in table D-2.

Table D-2. Arithmetic Instructions

Instruction Form Mnemonic Operand

Classical Stack Fxx ST[1],ST

Stack Element Fxx ST[i],ST or ST,ST[i]

Stack Element FxxP ST[i],ST

and Pop

Real Memory Fxx ST,short-real/long-real

Binary Integer FIxx ST,word-integer/short-integer

Implicit operands are shown in italics; they are not coded.

XX = ADD destination < --destination + source
DIV destination < -- destination / source
DIVR destination < -- source / destination
MUL destination < -- destination . source
SuUB destination < -- destination - source
SUBR destination < -- source - destination

D-12 8087 Programm ing and Instruction Set Summary

Classical Stack

Example

Stack Element

Assembler code generation for the arithmetic instructions
FMUL, FMULP, FADD, FADDP, FDIV, FDIVP, FDIVR,
FSUB, FSUBP, and FSUBPR takes place in one of two ways
(subject to the issue/revision date of the assembler software).
The pseudo instruction "NEVB087" $iould be used if the soft-
ware is dated 1 February, 1984, or later apdagram has been
written to be compatible with the latest processoisien. The
pseudo instruction "OLD8087" can be used if the machine code
is to be compatible with the old software. OLD_8087 is the de-
fault if neither instruction is specified.

The pseudo instruction need be used only once, but must pre-
cede any 8087 inauctions.

In this form, the 8087 operates like a classical stack machine.
Only the opcode is coded. The 8087 takes theee operand

from the top of the stack and the destination from the next stack
element. The operation is completed, the stack is popped, and
the result of the operation is returned to the new stack top. This
effectively replaces the operands with the result. The instruc-
tions that can be used with this form are: FADD, FSUB,
FSUBR, FMUL, FDIV, and FDIVR.

FSUB ;Subtract stack top from next stack
;element, pop stack and return
;difference to floating point stack.

In this form, the stack top (ST) is one operand and any stack ele-
ment is the other operand. The instructions that can be used
with this form are: FADD, FSUB, FSUBR, FMUL, FDIV, and
FDIVR.

8087 Programm ing and Instruction Set Summary D-13

Example

Stack Element and
POP

Example

Real Memory

Example

Binary Integer

FADD ST,ST[4] ;Add the stack top to stack element 4,
;replace stack element 4 with the
;sum, and pop the floating point stack.

In cases where the stack top is only needed for one operation,
this form picks up the stack top for the source operand and then
discards it by popping the floating point stack. Instructions that
can be used with this form are: FADDP, FSUBP, FSUBRP,
FMULP, FDIVP, and FDIVRP.

FDIVP ST[3],ST ;Divide stack element 3 by the stack
;top, replace element 3 with the
;quotient, and pop the floating
;point stack.

In this form, a real number is used directly as a source operand.
The instructions that can be used with this form are: FADD,
FSUB, FSUBR, FMUL, FDIV, and FDIVR.

FMUL RANGE ;Multiply the stack top by the
;value in memory for RANGE and
;replace the stack top with the
;product.

A binary integer is used directly as a source operand. Instruc-
tions used with this form are: FIADD, FISUB, FISUBR,
FIMUL, FIDIV, and FIDIVR.

D-14 8087 Programm ing and Instruction Set Summary

Example

FIMUL TBL_5 ;Multiply the integer memory operand
;TBL_5 times the stack top and return
;the product to the stack top.

Comparison
Instructions

Example:

8087 comparison ineuctions analyze the stack top, usuallyin re-
lationship to another operand. The result is reflected in the
status word condition code. This can be inspected by transfer-
ring the condition code to memory with the store status word in-
struction (FSTSW). The compare instructions are: compare real
(FCOM), compare real and pop (FCOMP), compare real and
pop twice (FCOMPP), integer compare (FICOM), integer com-
pare and pop (FCOMP), test (FTST), and examine (FXAM).

FCOM ST[3] ;Compare stack top with stack element 3.

Transcendental
Instructions

Transcendental instructions perform the core calculations for

all the common trigonometric, inverse trigopnometric, hyper-
bolic, inverse hyperbolic, logarithmic, and exponential func-
tions. Prologue and epilogue software can be used to reduce ar-
guments to a range accepted by the instructions and to adjust
the result to correspond to the original arguments, if necessary.
These instructions operate on the top one or two stack ele-
ments. The results are returned to the stack. Operands must be
valid and the timing within the range for the instruction. An op-

8087 Programm ing and Instruction Set Summary D-15

erand to a transcendental must be normalized to be valid. De-
normals, unnormals, infinities, and NANs are considered inva-
lid. The transcendental instructions are: partial tangent
(FPTAN), partial arctangent (FPATAN), calculate 2x-1
(F2XM1), calculate Y*logX (FYL2X), and calculate Y

*logo(X+ 1) (FYL2XP1).

Constant
Instructions

All of these instructions push a constant onto the stack. These
constants have full temporary real pséan (64 bits) and are ac-
curate to about 19 decimal digits. The constant instructions are:
load + 0.0 (FLDX), load + 1.0 (FLD1), load pi (FLDPI), load
l0gi12, (FLDL2T), and load log (FLDL2E).

Processor Control
Instructions

Most of these instructions are used in system-level activities
such as initialization, exception handling, and task switching.
Some of the instructions have alternate mnemonics with a sec-
ond character N inserted. This instructs the assembler to pre-
cede the instruction with a CPU NOP instead of a CPU WAIT.
The alternate mnemonic should be used if there is the danger

of an endless wait with the CPU WAIT instruction.An endless

wait could ensue if, for example, the CPU interrupt enable flag
was cleared during a time when the 8087 was expected to gener-
ate an interrupt external to the CPU. Program execution would
be inhibited because the interrupt would go unanswerdidt A

of the control instructions follows:

D-16 8087 Programm ing and Instruction Set Summary

FINIT/ENINIT

Initialize processor

FDISI/FNDISI Disable interrupts
FENI/FNENI Enable interrupts
FLDCW Load control word
FSTCW/FNSTCW Store control word
FSTSW/FNSTSW Store status word
FCLEX/FNCLEX Clear exceptions
FSTENV/FNSTENV Store environment
FLDENV Load environment
FSAVE/FNSAVE Save state

FRSTOR Restore state
FINCSTP Increment stack pointer
FDECSTP Decrement stack pointer
FFREE Free register

FNOP No operation

FWAIT CPU wait

Special 8087 This information supplements chapter 6 of this manual, the
PSEUDO INSTRUCTION SUMMARY. Onlyinstructions ap-

Pseudo

Instructions plicable to the 808@rocessor are included here.

Pseudos DD and DW are the same as those for the 8086 and are
explained in chapter 6 of this manual. The 8087 pseudnuitts
tions DQ and DT are explained on the following pages.

8087 Programm ing and Instruction Set Summary D-17

8087 Instruction The instruction set is samarized in table D-3 in alphabetical

Set Summary order. Refer to the manufacturer’s users manual for details. An
explanation of the symbols used in the table follows. Note, d,
mod, and r/m are the same as symbols used in the 8086.

d: Destination; 0 = top of stack, 1 = one of
stack elements.
[i]: Three-bit field identifying stack element;

0 = top of stack, 1 = element next

to top, and so on.
m: One-bit field for data type length; real,

0 = short real 1 = long real; integer,

0 = short integer 1 = word integer.
mod: Two-bit field defining addressing mode.
r/m: mod, m, and this three-bit field define EA.

The 8087 infuction set smmary, Table D-3, follows the
pseudo instructions.

D-18 8087 Programm ing and Instruction Set Summary

DQ

Syntax

Description

Define Quadword
(Special 8087 Pseudo)

Label Operation Operand

Name DQ expression [,...]

The DQ instruction can be used to accdistpthe following:

Initialize memory locations.
Define the type characteristic of variables.

When used with a variable expression in the label field, the DQ
instruction defines the variable to be type quadword.

The DQ instruction can also be used to define long integer or
long real data types. An expression used to define long integers
can only include integer numbers. Only 32 bits of expression are
used to define the lower two words of the long integer. The up-
per two words of the expression are the sign extension. Real
numbers are always expressed in decimal values. Be sure to in-
clude the decimal point. You may use either the normal decimal
form of the expression or the scientific form. You may also spec-
ify either positive or negative numbers and exponents (+ /-
n.mE+ /-x). Positive numbers are assumed if you do not specify.

8087 Programm ing and Instruction Set Summary D-19

DQ (Cont'd)
Example
FILE: DQ:USERID HEWLETT-PACKARD: 8086 Assembler
LOCATION OBJECT CODE LINE SOURCE LINE
1 "8086"
0000 96000000 2 LONG_INTEGER DQ 123+ 27
0004 00000000
0008 0000000000 3 LONG_REAL DQ 123.0
000D CO5E40
Errors=0

D-20 8087 Programm ing and Instruction Set Summary

DT

Syntax

Description

Define Tenbyte
(Special 8087 Pseudo)

Label Operation Operand

Name DT expression [,...]

The DT instruction can be used to accdistpthe following.

Initialize memory locations.
Define the type characteristic of variables.

When used with a variable name in the label field, the DT in-
struction defines the variable to be type "tenbyte".

The DT instruction can also be used to define temporaryreal
and packed decimal data types. Real numbers are always ex-
pressed in decimal values. Be sure to include the decimal point.
You can use either the normal decimal form of the expression

or the scientific form. You can also specify either positive or
negative numbers and exponents (+ /-n.mE+ /-x). Positive num-
bers are assumed if you do not specify. Range is -1.1E+ 4932 to -
3.4E-4932, + 1.1E+ 4932 to + 3.4E-4932. Packed decimals can be
up to 18 decimal characters without decimal point.

8087 Programm ing and Instruction Set Summary D-21

DT (Cont'd)

Example:

FILE: DT:USERID

HEWLETT-PACKARD: 8086 Assembler

LOCATION OBJECT CODE LINE SOURCE LINE
1"8086"
0000 0000000000 2 TEMP_REAL DT 124.0
0005 0000F80540
000A 2401000000 3 PACKED _DECIMAL DT 124
O00F 0000000000
Errors= 0

D-22 8087 Programm ing and Instruction Set Summary

Table D-3. 8087 Instruct ion Set Summary

Mnemonic Byte 1 Byte 2 Byte 3
F2XMI Calculate 2X -1 10011011 11011001 11110000
FABS Take absolute value 10011011 11011001 11100001
of top of stack
FADD/FADDP Add real or
add real and pop stack
Stack top and stack 10011011 11011d00 110000]i]
element
Stack top and memory 10011011 11011m00 mod000r/m
operand
Pop stack 10011011 11011110 11000{i}
FBLD Load packed decimal 10011011 11011111 mod100r/m
(BCD) onto top of stack
FBSTP Store packed 10011011 11011111 mod110r/m
decimal (BCD) and
pop stack
FCHS CHange sign of the 10011011 11011001 11100000
top stack element
FCLEX/FNCLEX Clear 10011011 11011011 11100010
exceptions
FCOM Compare real
Compare stack top 1001 011 11011000 11010Ji]
and stack element
Compare stack top 100-11011 11011m00 mod010r/m

and memory operand

8087 Programm ing and Instruction Set Summary D-23

Table D-3.

8087 Instruct ion Set Summary (Cont'd)

Mnemonic Byte 1 Byte 2 Byte 3
FCOMP Compare real and
pop stack
Compare stack top and 10011011 11011000 11011[i]
and stack element
and pop
Compare stdack to and 10011011 11011m00 mod011lr/m
FCOMP Compare real and 10011011 11011110 11011001
memory and pop
FCOMPP Compare realand 10011011 11011110 11011001
pop stack twice
FDECSTP Decrement stack 10011011 11011001 11110110
top pointer
FDISI/FNDISI Disabole 10011011 11011011 11100001
interrupts
FDIV/FDIVP Divide real
or divide real and
pop stack
Stack top and stack 10011011 11011d00 1111100
element
Stack top and memory 10011011 11011m00 mod111r/m
operand
Pop stack 10011011 11011110 111117i]
FENI/FENI Enable 10011011 11011011 11100000
interrupts
FIADD Add integer 10011011 11011m10 mod000r/m

D-24 8087 Programm ing and Instruction Set Summary

Table D-3. 8087 Instruct ion Set Summary (Cont'd)

Mnemonic Byte 1 Byte 2 Byte 3
FICOM/FICOMP Integer
compare or integer
compare and pop stack
Compare integer 10011011 11011m10 mod010r/m
Compare integerand 10011011 11011m10 mod011lr/m
pop stack
FDIV Integer divide 10011011 11011m10 mod110r/m
FIDIVR Reversed integer 10011011 11011m10 mod111lr/m
divide
FILD Load integer onto
top of sdtack
Integer memory to 10011011 11011m11 mod000r/m
top of stack
Long integer memory 10011011 11011111 mod101r/m
to top of stack
FIMUL Integer multiply 10011011 11011m10 mod001r/m
FINCSTP Increment stack 10011011 11011011 11100011
FINIT/ENINIT Initialize 10011011 11011011 11100011
‘processor
FIST Store integer 10011011 11011m11 mod010r/m

8087 Programm ing and Instruction Set Summary D-25

Table D-3 8087 Instruct ion Set Summary (Cont'd)

Mnemonic Byte 1 Byte 2 Byte 3
FISTP Store integer and
pop stack
Top of stack to intger 10011011 11011m11 mod011r/m
memory and pop stack
Top of tack to long 10011011 11011111 mod111r/m
integer and
pop stack
FISUB Integer subtract 10011011 11011m10 mod100r/m
FISUBR Reversed integer 10011011 11011m10 mod101r/m
subtract

FLD Load real onto top

of stiack
Stack element to 10011011 11011001 11000[i]
stack top
Real memory operand 10011011 11011mo01 mod000r/m
to stack top
Temporary real memory10011011 11011011 mod101r/m
operand to stack top
FLD1 Load + 1.0 onto 10011011 11011001 11101000
top of stack
FLDCW Load control word 10011011 11011001 mod101r/m
FLDENV Load 8087 10011011 11011001 m,0d100r/m
FLD2E Load log,10 onto 10011011 11011001 11101010

top of stack

D-26 8087 Programm ing and Instruction Set Summary

Table D-3.

8087 Instruct ion Set Summary (Cont'd)

Mnemonic Byte 1 Byte 2 Byte 3
FLDLG2 Load logg2 onto 10011011 11011001 11101001
top of stack
FLDLN2 Load loge2 onto 10011011 11011001 11101101
top of stack
FLDPI load pi onto top 10011011 11011001 11101011
of stack
FLDZ Load + 0.0 onto top 10011011 11011001 11101110
of stack
FMUL/FMULP Multiply real
or multiply real and
pop stack
Stack top and stack 10011011 11011d00 “00°[i]
element
Stack top and memory 10011011 11011m00 mod001r/m
operand
Pop stack 10011011 11011110 mod001r/m
FNOP No operation 10011011 11011001 11010000
FSTCW/FNSTCW Store 1001101 11011001 mod
control word
FSTENV/FNSTENYV Store ‘000" 11011001 mod110r/m
8087 enviornment
FSTENV/FNSTENYV Store 10011011 11011001 mod110r/m
8087 environment
FSTSW/FNSTSW Store 8087 10011011 11011101 mod111r/m

status word

111n

8087 Programm ing and Instruction Set Summary D-27

Table D-3.

8087 Instruct ion Set Summary (Cont'd)

Mnemonic Byte 1 Byte 2 Byte 3
FPATAN Partial 10011011 11011001 11110011
arctangent function
FPREM Partial remainder 0011011 11011001 11111000
FPTAN Partial tangent 10011011 11011001 11110010
function
FRNDINT Round to integer 10011011 11011001 11111100
FRSTOR Restore state 10011011 11011101 mod100n
FSCALE Scale 10011011 11011001 11110102
FSQRT Square root 10011011 11011001 11111010
FST Store real
Stack top and stack 10011011 11011101 11010[i]
element
Stack top to real 10011011 11011mo01 mod010r/m
memory operand
FSTP Store real and
pop stack
Store top of stack 10011011 1011101 11011[i]
into stack element
and pop stack
Store top of stack 10011011 11011m01 mod011r/m

into short or long
real memory and
pop stack

D-28 8087 Programm ing and Instruction Set Summary

Table D-3. 8087 Instruct ion Set Summary (Cont'd)

Mnemonic Byte 1 Byte 2 Byte 3

Store top of stack 10011011 1011011 mod111r/m
into temporary real
operand and pop stack

FSUB/FSUBP Subtract real
or subtract real and

pop stack

Stack top and stack 10011011 11011d00 11200[i]
element

Stack top and memory 10011011 11011m00 mod100r/m
operand

Pop stack 10011011 11011110 111007i]

FSUBR/FSUBRP Reversed real
subtraction or reversed
subtraction and pop stack

Stack top and stack 10011011 11011d00 11101[i]
element
Stack top and memory 10011011 11011m00 mod101r/m
operand
Pop stack 10011011 11011110 11101[i]
FTST Test top of stack 10011011 11011001 11100100
FWAIT CPU wait 10011011
FXAM Examine top of 10011011 11011001 11100101

stack element

8087 Programm ing and Instruction Set Summary D-29

Table D-3. 8087 Instruct ion Set Summary (Cont'd)

Mnemonic Byte 1 Byte 2 Byte 3
FXCH Exchange contents 10011011 11011001 11001Ji]
of stack element with
stack top
FXTRACT Extract exponent 10011011 11011001 11110100

and significand from
number in top of stack

FYL2X Calculate Y*log,X 10011011 11011001 11110001

FYL2XP1 Calculate 10011011 11011001 11111001
Y*logo(X+ 1)

D-30 8087 Programm ing and Instruction Set Summary

8089 Programm ing and Instruction Set Summary

Note

The 8089 mioprocessor independently manages and maintains
I/O operations. This lifts the 1/O burden from the host CPU, sig-
nificantly improving system throughput.

There are two system configurations: LOCAL and REMOTE.
In LOCAL configuration the 8089 shares the system bus with
the host processor. In REMOTE tB@89 shares the system bus
and has a remote bus not accessible to thegrosessor. In
LOCAL, the 8089 and the hoptocessor have a common bus
controlled by request/grant (RQ/GT) circuitry. The system bus
shared by the processors can be 8 or 16 bits808@ can ad-
dress a gigabyte of memory and 64k of I/O addresses. In RE-
MOTE, the 8089 can addresemory up to 64k over the remote
bus and one gigabyte over the system bus.

Local 64K address space refers to addresses on the remote bus
in the REMOTE configuration. In LOCAL, this 64k address
space is used for 1/O addressing. System space addresses in the
LOCAL configuration access memory. In REMOTE, system ad-
dresses access the shared system bus.

Use the processor numbe8089 86" or "8089_88", for the as-
sembler directive.

8089 Programm ing & Instruction Set Summary E-1

8089 Archite cture There are two independent I/0O channels on the 8089. Each
channel operates simultaneously. Each has a separate set of reg-
isters. Each channel also has separate external interrupt, DMA
request, and external terminate pins.

Registers 8089 registers are used in assembly language task toek
grams and in DMA transfer operations. Registers are identical
for both channels. 8089 register organization is shown in figure
E-1.

E-2 8089 Programm ing & Instruction Set Summary

19 0
GA G.P. POINTER/REGISTER
GB G.P. POINTER/REGISTER
GC G.P. POINTER/REGISTER
P TASK BLOCK PROGRAM POINTER
5 0
BC BYTE COUNT
IX INDEX
cc CHANNEL CONTROL
MC MASK COMPARE
19 0
PP PB POINTER

Figure E-1. 8 089 Registers

8089 Programm ing & Instruction Set Summary E-3

Each register in Figure E-1 has a tag bit associated with it. The
tag bit is primarily used in data addressing. A "1"indicates a 16-
bit local space address (I/0O). A "0"indicates a 20-bit system
space address (memory).

Registers GA and GBare 20-bit pointer/registers, plus a tag bit.
These registers are used to point to data in task block programs.
They provide the source and destination addresses in DMA
transfers as controlled by register CC parameters. GA and GB
can also be used as 16-bit gengnapose registers in task block
programs.

Register GCis a 20-bit pointer/register, plus a tag bit. GC

points to data in task block programs. During DMA transfers in
the translate mode, GC contains the base address of a 256-byte
translation table. GC can also be used as a 16-bit gemeral

pose register in task block programs.

Register TPis a 20-bit pointer/register with a tag bit. It points
to the address of the next instruction to be executed. TP is
loaded from the command parameter block (PB) when task
block program execution is started or resumed.

Register BCis a 16-bit genergdurpose register used as a hyte
counter during DMA transfers. With an 8-bit source, BC is de-
cremented by one after each transfer (by two after each transfer
from a 16-bit surce).

Register IXis a 16-bit generglurpose register. The contents of
IX is added to a base pointer/register to access data in some
memory addressing modes.

Register CCis a 16-bit register that controls DMA transfers and
chained task block program instruction execution.

Register MCis a 16-bit generglurpose register that supplies
mask and compare bytes for instructions JIMCE and JMCNE. It
is also used in DMA transfer mask/compare operations.

The last registe?P,cannot be progmmed by the user. This
20-bit register is automatically loaded with the channel com-
mand parameter block address when a channel is

E-4 8089 Programm ing & Instruction Set Summary

started. PP always points to system space (memory). In
accessing the user defined part of PB, PP is used as a base ad-
dress.

Operands

Register Operands

MOVI GA,0FO00H

Pointer/Register
Operands

LPDI C,TABLE

The 8089 has sixtypes of operands: register, pointer/register, im-
mediate data, program location, datamory, and data memory
bit. The following paragraphs explain these operands.

The register operand symbols were shown in figure E-1. These
symbols identify the registers for the assemblaey cannot be
redefined by the programmer

Example
;Move immediate value OFOOH to register GA.

The pointer/registers are: GA, GB, GC, and TP. They are 20-bit
registers with associated tag bits. These registers point to data
memory and I/O space in the CPU system. These registers are in-
cluded here because they can be used as 16-bit gpuepalse
registers.

Example

;Load register GC with 16 bits of
;immediate data represented by TABLE.

8089 Programm ing & Instruction Set Summary E-5

Immediate Data Immediate data operands can be a data memory locatpoo; a
Operands gram location, or an 8- or 16-bit value.

Examples

ARRAY DS 56 ;Reserve 56 bytes of data memory.
;The first byte is labeled ARRAY.

LPDI TP,LABEL1 ;Load register TP with the address
;of program location LABEL1.

ORI GA,0D6BH :OR contents of GA with 16-bit
:;immediate value of OD6BH.

Program Location A program location operand is used in conditional and uncondi-
Operands tional control transfer instructions to specify the jump location.
In most cases this is a label representing the jump location in
the program.

Example

JMP LAST1 ;Jump unconditionally to instruction
;LASTL.

E-6 8089 Programm ing & Instruction Set Summary

Data Memory

Operands
MOV CC,[GA]
OR MC,[GC].6
ADD [GB+ IX],BC

Data memory is always addressed indirectly through one of the
pointer registers: GA, GB, GC, or PP (represented by reg). The
20-bit system spacenemory) and 16-bit local space (1/0) can

be accessed. There are four forms of daéanory operands.

1. Base address only [reg]; reg contains the data memory ad-
dress.

Example
;Starting at the address in GA, move
;16 bits of data memory to register CC.

2. Base address plus unsigned 8-bit offset [reg].d (d is expres-
sion evaluated modulo 256 forming an 8-bit offset).

Example

;OR register MC with word of data
;memory starting at location GC+ 6
;(low byte).

3. Base address plus indexregister [reg+ IX] forms data mem-
ory address. No change occurs in base address or index reg-
ister.

Example

;Add contents of BC to data memory
;starting at address GB+ IX (low byte).

8089 Programm ing & Instruction Set Summary E-7

DEC [GA+ IX+]

Data Memory Bit
Operands

MSB

CLR [GB] .4

Base address plus indexregister [reg+ X+]. Index register
is post incremented by byte (1) or word (2). Data memory
address is sum of base address and index register. After in-
struction execution, index register is automatically incre-
mented by size of operand. No change in base address oc-

curs.

Example:

;Decrement data memory word starting
;at GA+ IX. After execution, IXis
;incremented by 2 (word).

Instructions that operate on bits of a dai@mory byte need op-
erands specifying the bit. Bits are numbered as follows:

BITS
5 4 3 2 1 0
LSB
Example:

;Clear bit four of data memory byte at GB.

E-8 8089 Programm ing & Instruction Set Summary

Special 8089
Pseudo
Instructions

This information supplements chapter 6 of this manual, the
PSEUDO INSTRUCTION SUMMARY. Onlyinstructions ap-
plicable to the 808frocessor are included here.

Pseudos DB, DD, and DW are the same as the 8086. 8089
pseudo DS is the same as the 8086 DBS. These are explained in
Chapter 7 of this manual. For the 8089 pseudo PUBLIC, use the
64000 GLOBAL. EVEN is explained on the following page.

8089 Programm ing & Instruction Set Summary E-9

EVEN Set Program Counter To Even Address
(Special 8089 Pseudo)

Syntax Label Operation

[Name] EVEN

Description The EVEN pseudo instructionilwncr ement the errent pro-
gram counter by one ifit is odd. Ifit is even the pseudo is ig-
nored.

If a label name is present, it issigned the starting address of
the program counter.

Example

FILE: EVEN:USERID HEWLETT-PACKARD: 808986 Assembler
LOCATION OBJECT CODE LINE SOURCE LINE

1"8089_86"
0000 003F55 2 DB 0,3FH,55H

3 LBEL EVEN
ERROR-UO A
0003 4000 411 DB 40H,0

Errors= 1, previous error at line 3
UO - Unidentified Opcode, Opcode encountered is not defined for this micro-processor

E-10 8089 Programm ing & Instruction Set Summary

8089 Instruction
Set Summary

The instruction set is sumarized in table E-1 by type of imsc-
tion. Refer to the manufacturer’s user manual for details. An ex-
planation of the symbols used in the table follows.

b: Data memory bit symbol.

IM8: 8-bit immediate value.

IM16: 16-bit immediate value.

L: Expression specifying program location.
DMS8: 8 bits data memory.

DM16: 16 bits data memory.

DM24: 3 bytes data memory.

DM32: 4 bytes data memory.

Reg8: The least significant byte in a 16-bit register.
If it is the destination of a data transfer, the
data is sign extended (bit 7) to 16 bits. If the
register is a 20-bit register, data is sign
extended to 20 bits and the tag bit is set to 1.

In a 20-bit pointer register, thedr MSB are
undefined after all arithmetic and logical
operations (except addition). Addition to a
pointer register can result in a carry into the
four MSB.

All data is sign extended to 16 bits with
arithmetic and logical operations.

Regl6: All of the 16-bit register is used in an operation.
If a 20-bit pointer register is the destination of
a data transfer, the data is sign extended (bit 15)
to 20 bits and the tag bit is set to logical 1.
Also, the upper four bits (16 to 19) are
undefined after arithmetic and logical
operations. Addition to a pointer register can
result in a carry into the four MSB.

8089 Programm ing & Instruction Set Summary E-11

Table E-1. 8089 Instruct ion Set Summary

Arithmetic and Logical

ADD

di-

D
1

Reg16,DM16 Add register and 16-bit dataemory
DM16,Reg16
ADDB
Reg8,DM8 Add register and 8-bit data memory
DM8,Reg8
DDBI
Reg8,IM8 Add register or 8-bit data memory and 8-bit immg
DM8,IM8 ate value
ADDI
Reg16,IM16 Add register or 16-bit datmemory and 16-bit immg
DM16,IM16 diate value
AND
Reg16,DM16 And register with 16-bit datamemory
DM16,Reg16
ANDB
Reg8,DM8 And register with 8-bit data memory
ANDBI
Reg8,IM8 And register or 8-bit data memory with 8-bit imm
DM8,IM8 diate value

E-12 8089 Programm ing & Instruction Set Summary

Table E-1. 8089 Instruct ion Set Summary (Cont'd)

Arithmetic and Logical (Cont'd)

ANDI
Reg16,IM16 And register or 16-bit datmemory with 16-bit im-
DM16,IM16 mediate value

DEC
Reg16 Decrement register di6-bit datamemory
DM16

DECB
DM8 Decrement 8-bit data memory

INC
Reg16 Increment register at6-bit datamemory
DM16

INCB
DM8 Increment 8-bit data memory

OR
Reg16,DM16 Or register and 16-bit dataemory
DM16,Reg16

ORB
Reg8,DM8 Or register and 8-bit data memory
DM8,Reg8

8089 Programm ing & Instruction Set Summary E-13

Table E-1. 8089 Instruct ion Set Summary (Cont'd)

Arithmetic and Logical (Cont'd)

ORBI

Reg8,IM8 OR register or 8-bit data memory with 8-bit imme|
DM8,IM8 ate value

ORI
Reg16,IM16 Or register or 16-bit datmemory with 16-bit imme
DM16,IM16 diate value

NOT
Reg16 Complement register or 16-bit dateemory op-
DM16 tional: put complemented data in register
Reg16,DM16

NOTB
DM8 Complement 8-bit data memory; optional: put co
Reg8,DM8 plemented data in register

m-

Bit Manipulation and Test

SETB

DM8,b Set selected data memory bit to one
CLR

DM8,b Clear selected data memory bit to zero
JBT/LIBT

DM8,b,L Jump on data memory bit true (1)

E-14 8089 Programm ing & Instruction Set Summary

Table E-1. 8089 Instruct ion Set Summary (Cont'd)

Bit Manipulation and Test (Cont’d)

JNBT/LINBT

DM8,b,L

Jump on data memory bit not true (1)

Control Transfer - Unconditional

CALL/LCALL

DM24,L

Store TP pointer/register and tag bit; jump

JMP/LIMP

Jump

Control Transfer - Conditional

JMCE/LIMCE
DM8,L Jump on mask/compare equal
JMCNE/LIMCNE
DM8,L Jump on mask/compare not equal
JINZ/LINZ
Reg16,L Jump on nonzero register or dat@mory word
DM16,L
JNZB/LINZB
DM8,L Jump on nonzero dataemory byte

8089 Programm ing & Instruction Set Summary E-15

Table E-1. 8089 Instruct ion Set Summary (Cont'd)

Control Transfer - Conditional (Cont'd)

JZ/Liz

Reg16,L Jump on zero register or data memory
DM16,L

JZB/LJZB

Jump on zero data memory byte

Data Transfer

LPD

Load 20-bit pointer/register from dat@emory

Load 20-bit pointer/register from immediate valug

Move 20-bit pointer/register tot@e) or from (re-
store)memory

Reg16,DM16 Move 16 bits of data memory to/from data memqg
DM16,Reg16 or register
DM16,DM16

E-16 8089 Programm ing & Instruction Set Summary

Table E-1. 8089 Instruct ion Set Summary (Cont'd)

Data Transfer (Cont'd)

MOVB

Reg8,DM8 Move 8 bits of data memory to/from data memor
DM8,Reg8 register
DM8,DM8

Reg16,IM16 Move 16 bits of immediate value to data memory
DM16,IM16 register

Reg8,IM8 Move 8 bits of immediate value to data memory
DM8,IM8 register

Miscellaneous

HLT

Halt task block program execution; channel BUS
flag byte in the CB Cleared to 00H

No operation

Set interrupt service flip flop

DM8,IM8,L Test and set data memory byte with system bus
locked

8089 Programm ing & Instruction Set Summary E-17

Table E-1. 8089 Instruct ion Set Summary (Cont'd)

Miscellaneous (Cont'd)

WID

SD

Set DMA source and destination logical widths

Begin DMA transfer following execution of next in
struction

E-18 8089 Programm ing & Instruction Set Summary

70320/70330 Programm ing And Instruction Set

Summary

Note #

This appendix contains general information. Architecture, oper-
ands, and condition flags are briefly discussed. The instructions
of 70320/70330 miwprocessors are upward compatible with
those of 70108/70116 nriprocessors. Only

instruction specific to th&@0320/70330 mimprocessors are de-
scribed in this appendix. For common instructions, refer to the
"70108/70116 Progimming And Ingruction Set Smmary" chap-

ter in this manual. For detailed descriptions of the microproces-
sors, refer to the manufacturers users manual.

See the "EXT" pseudo op in the chapter titled "Pseudo
Instruction Smmary" about "EXT" conflicts with NEC
processors.

70320/70330 Programm ing/Instruction Set Summary F-1

Programming
Considerations

Sixteen-bit operands may be assigned to even or odd address lo-
cations. For data and address operands, the least significant
byte of the word will betered in next higher address. The

70330 micoprocessor automatically performs the required num-
ber of memory accesses, one if the word operand begins on an
even byte address, and two if it begins on an odd byte address.
The 70320 always performs tweemory accesses for each 16-bit
operand.

As the assembler directive, use "70320" or "70330".

Addressing
Capalbilities

In general, memory operands may be addressed directly, using a
16-bit offset, or indirectly, using a base and/or index register
added to an optional 8- or 16-bit dispatent value.

Instruction Set
Summary

The instruction set of th0320/330 is upwardly compatible
with that of the 70108/70116 in the native mode.

The mnemonic instructions which are specific (added) to the
70320/70330 are sumarized in table F-1. The imaction set is
arranged in alphabetical order. For detailed information refer
to the manufacturer’s users guide.

Figure F-1 shows the typical machine instruction format. The
location of an operand in a register or memory will be specified
by up to three fields in instruction format. These fields are the

F-2 70320/70330 Programm ing/Instruction Set Summary

mode field (mod) , the register field (reg), and the register/mem-
oryfield (r/m). When used, they occupy the second byte of the
instruction format. The mode field occupies the two most sig-
nificant bits of the byte and specifies how the r/m fields will be
used in locating the operand. The reg field occupies the next
three bits following the mode field and specifies either an 8-bit
register or a 16-bit register where an operailidoe located.

Note, bytes three through six of an instruction are optional
fields that usually contain the displacement (DISP) value of a
memory operand and/or the actual value of an immediate con-
stant operand. The effective address (EA) of the memory oper-
and will be computed according to the mode and r/m fields as
follows:

Mode R/M Fields

*if mod= 00 then DISP= 0, disp-lo and disp-hi are absent.

if mod=01 then DISP= disp-lo sign-extended to 16-bits,
and disp-hi is absent.

if mod= 10 then DISP= disp-hi:disp-lo.

if mod=11 then r/m is treated as a reg field.

if r/m= 000 then EA= (BW)+ (IX)+ DISP

if r/m=001 then EA= (BW)+ (IY)+ DISP

if r/m=010 then EA= (BP)+ (IX)+ DISP

if r/m=011 then EA= (BP)+ (IY)+ DISP

if r/m=100 then EA= (IX)+ DISP

if r/m=101 then EA= (IY)+ DISP

*if r/m= 110 then EA= (BP)+ DISP

if r’m=111 then EA= (BW)+ DISP

*except if mod= 00 and r/m= 110 then EA= disp-hi:disp-lo.

70320/70330 Programm ing/Instruction Set Summary F-3

Register operands may be indicated within the instruction for-
mat by the reg field which will represent the selected register, or
by an encoded field, in which case EA will represent the register
selected by the r/m field. Instructions without a "W" bit in their
format refer to either 8- or 16-bit registers according to the fol-
lowing reg field assignments:

16-bit (W= 1) 8-bit (W= 0)
reg field: 000 = reg AW 000 = reg AL
001 = regCW 001 = regCL
010 = reg DW 010= reg DL
011 = reg BW 011 = regBL
100 = reg SP 100 = reg AH
101 = reg BP 101 = reg CH
110 = reg IX 110 = reg DH
111 = reglY 111 = reg BH
BYTE BYTE
1 2
' | ' - BYTE BYTE BYTE BYTE
7 2 1 o 7 65 32) 3 4 5 6
disp—lo disp—hi
opcode d w mod reg r/m or or data data
data data
OPTIONAL

Figure F-1. Typical Instruction Format

F-4 70320/70330 Programm ing/Instruction Set Summary

d: direction to (1) or from (0) register

W; byte (0) or word (1) operation
mod and r/m: addressing mode - registema&mory
reg: register select

The SEGMENT OVERRIDE PREFIX takes the form
0f:001reg110 in which the register is assigned in the following
manner:

reg Segment register
00 DS1

01 PS

10 SS

11 DSO

70320/70330 Programm ing/Instruction Set Summary F-5

70320/70330 The following symbols are reserved. They have special meaning
Register Names to the assembler and cannot appear as user-defined symbols.
SYMBOL DESCRIPTION
AH High-order byte of register A
AL Low-order byte of register A
AW 16-bit register A
BH High-order byte of register B
BL Low-order byte of register B
BP Base Pointer
BW 16-bit register B
CH High-order byte of register C
CL Low-order byte of register C
CwW 16-bit register C
DH High-order byte of register D
DL Low-order byte of register D
DSO Data segment O register
DS1 Data segment 1 register
DwW 16-bit register D
IX Source indexregister
Y Destination index register
PC Program counter
PS Program segment register
SP Stack pointer
SS Stack segment register

F-6 70320/70330 Programm ing/Instruction Set Summary

SYMBOL

BRGO
BRG1
DICO

DIC1
DMACO
DMAC1
DMAMO
DMAM1
EMSO
EMS1
EMS2
EXICO
EXIC1
EXIC2
FLAG
IDB
INTM

MDO
MD1

DESCRIPTION

Baud rate generator register 0
Baud rate generator register 1
DMA interrupt request

control register 0

DMA interrupt request

control register 1

DMA control register 0

DMA control register 1

DMA mode register 0

DMA mode register 1

External interrupt macro service
control register 0

External interrupt macro service
control register 1

External interrupt macro service
control register 2

External interrupt request
control register 0

External interrupt request
control register 1

External interrupt request
control register 2

User flag register

Internal data area base register
External interrupt mode register
Modulo/Timer register 0
Modulo/Timer register 1

70320/70330 Programm ing/Instruction Set Summary F-7

SYMBOL DESCRIPTION

PO Port O

P1 Port 1

P2 Port 2

PMO Port 0 mode register

PM1 Port 1 mode register

PM2 Port 2 mode register

PMCO Port 0 mode control register

PMC1 Port 1 mode control register

PMC2 Port 2 mode control register

PMT Port T mode register

PRC Processor control register

PT Port T

RFM Refresh mode register

RxBO Receive buffer register 0

RxB1 Receive buffer register 1

SCCo Serial control register 0

SCC1 Serial control register 1

SCEO Serial error register 0

SCE1 Serial error register 1

SCMO Serial mode register 0

SCM1 Serial mode register 1

SEICO Serial interrupt request
control register 0

SEIC1 Serial interrupt request
control register 1

SRICO Serial receive interrupt request
control register 0

SRIC1 Serial receive interrupt request
control register 1

SRMSO0 Serial receive macro service
control register 0

SRMS1 Serial receive macro service
control register 1

STBC Standby control register

F-8 70320/70330 Programm ing/Instruction Set Summary

SYMBOL
STICO

STIC1
STMSO0
STMS1
TBIC
TMO
™M1
TMCO
TMC1
TMICO
TMIC1
TMIC2
TMMSO0
TMMS1
TMMS2
TxBO

TxB1
WTC

DESCRIPTION

Serial transmit interrupt request
control register 0

Serial transmit interrupt request
control register 1

Serial transmit macro service
control register 0

Serial transmit macro service
control register 1

Time base interrupt request
control register

Timer register 0

Timer register 1

Timer control register 0

Timer control register 1

Timer unit interrupt request
control register 0

Timer unit interrupt request
control register 1

Timer unit interrupt request
control register 2

Timer unit macro service

control register 0

Timer unit macro service

control register 1

Timer unit macro service

control register 2
Transmit buffer register 0
Transmit buffer register 1
Wait control register

70320/70330 Programm ing/Instruction Set Summary F-9

Instruction Set The symbols used in table F-1, Instruction SenhBary, are as
SYMBOL DESCRIPTION
addr address (16 bits)
addr-hi Most significant byte of address
addr-lo Least significant byte of address
d One-bit field identifying direction to
(1) or from (0O) register
data Immediate operand (8- b6-bit)
disp 8- or 16-bit displaament from end
of current instruction
disp-hi Most significant byte in 16-bit
offset displacement
disp-lo Least significant byte d6-bit
offset displacement
imm 3, 4 or 8-bit immediate operand
mod Two-bit field defining addressing mode
offset-hi Most significant byte in 16-bit offset
destination address of target instruction
offset-lo Least significant byte ih6-bit
offset destination address
of target instruction
reg Field that defines the defines
the register used
r/m Three-bit field, in conjunction with
the mod and "W" fields defines EA
seg Segment register
seg-hi Most significant byte in 16-bit segment
destination address of target instruction
seg-lo Least significant byte it6-bit segment
destination address of target instruction
sfr An 8-bit variable which specifies an
8-bit special function register
port Number of I/O port
SIwW Sign-extended byte indicator

F-10 70320/70330 Programm ing/Instruction Set Summary

SYMBOL DESCRIPTION

Y Interrupt: defines variable type
(v=1), or type 3 (v=0) Shift
or Rotate; variable number of bits to
shift or rotate (v= 1), or one bit (v=0)

w One-bit field identifying byte (0) or
word (1) instruction
z Instruction being repeated terminated

when zero flag is equal to z

70320/70330 Programm ing/Instruction Set Summary F-11

Table F-1. 70320/70330 Specific Inst. Set Summary

Mnemonic Byte 1 Byte 2 Byte 3 Byte 4
BTCLR Branch if True 00001111 10011100 sfr imm

and Clear Byte 5 disp
RETRBI Return from 00001111 10010001

Register Bank
Switching Interrupt

BRKCS Break Context 00001111 00101101 11000 reg
Switch

FINT Finish Interrupt 00001111 10010010

MOVSPA Move Stack 00001111 00100101
Pointer After context
switch

MOVSPB Move Stack 00001111 10010101 11111 reg
Pointer Before context
switch

STOP Stop 00001111 10011110

TSKSW Task switch 00001111 10010100 11111 reg

F-12 70320/70330 Programm ing/Instruction Set Summary

Assembler Error Messages

Detection and

Listing

Note #

The assembler detects and lists albes noted in a source pro-
gram module. Program errors are indicated in the source pro-
gram listing by a two-letter code following eaaiusce state-
ment that contains an error.

If multiple errors occur in the same source sta¢nt, only the
first error noted Wil be reported (in most cases).

Each error message contains an error code. The error message
contains a cursor (*) that points to the error location in the
source stament. The wor message also contains a staént

that indicates the line number of the previous sourcerstant

that was in error. Line number indicatorsifiéate error tracing.

At the end of the progralfisting is a ssnmary of the number of
errors within the program. A brief description of all error codes
is also noted at the end of the progristing.

Assembler Error Messages G-1

The error message format is as follows:

ERROR - (code), seeline XX _~_

/ /]

Error Line No. of Cursor Pointing
Code Previous to Source Statement
Error Error

Figure G-1. Error Message Format

G-2 Assembler Error Messages

Assembler Error
Codes

AS

CL

DE

DS

Dz

EG

EO

ES

The list of @ror codes (in alphabetical order) along with a de-
scription of their meaning is as follows:

ASCII STRING - The length of ASCII string was not valid or
the string was terminated improperly.

CONDITIONAL LABEL - Syntax of a conditional macro source
statement requires a conditional label that wassimg.

DEFINITION ERROR - Indicated symbol must be defined prior
to it being referenced. (Symbol may be defined later in program
sequence).

DUPLICATE SYMBOL - Indicates that the defined symbol

noted has been previously defined in the program assembly se-
qguence. (This occurs when the same symbol is equated to two
values (using EQU directive) or when the same symbol labels
two instructions).

DIVISION BY ZERO - Invalid mathematical operationdnd re-
sulting in the assembler trying to divide by zero.

EXTERNAL GLOBAL - Externals cannot be defined as globals.

EXTERNAL OVERFLOW - Program module found to have too
many external declarations.

EXPANDED SOURCE - Indicates insufficient input buffer area
designated to perform macro expansion. (This could be the re-

Assembler Error Messages G-3

sult of too many arguments being specified for a parameter sub-
stitution, or too many symbols being entered in the macro defi-
nition).

ET EXPRESSION TYPE - The resulting type of expression was
found to be invalid. An absolute exgsion was expected and
not found or exprssion contains an illegal combination of relo-
catable types (refer to chapter 4 for rules and conventions).

IC ILLEGAL CONSTANT - Indicates that the assembler encoun-
tered a invalid constant. For example: 109B (9 is invalid)

IE LLEGAL EXPRESSION - Specified expression found was
either incomplete or an invalid term was within the expression.

10 INVALID OPERAND - Specified operand was either incom-
plete or inaccurately used for this operation. (This occurs when
an unexpected operand was encountered or the operand was
missing. If the required operand is an expression, e endi-
cates that the first item in the operand field was illegal).

IP ILLEGAL PARAMETER - lllegal parameters weredind in
macro header.

IS ILLEGAL SYMBOL - Syntax expected an identifier and instead
encountered aiflegal character or token.

LR LEGAL RANGE - Address or displacement caused the location
counter to exceed the maximunmemory location of the instruc-
tion’s addressing capdiby.

G-4 Assembler Error Messages

MC

MD

ML

MM

MO

MP

MS

NI

PE

MACRO CONDITION - Relational (conditional) operator in
macro was found to be invalid.

MACRO DEFINITION - Macro was called before being defined
in the source file. (Macro definition must precede call).

MACRO LABEL - Label was not found within the macro body.
(Macros cannot contain labels.)

MISSING MEND - A macro definition with a missing MEND
directive was included in the program.

MISSING OPERATOR - An arithmetic operator was expected
but not found.

MISMATCHED PARENTHESES - Right or left parenthesis
were not found.

MACRO SYMBOL - A local symbol within a macro body is re-
quired but was not found.

NESTED INCLUDE - The INCLUDE pseudo instruction can-
not be nested.

PARAMETER ERROR - An error detected in the macro pa-
rameter wasisted in the surce stag@ment.

Assembler Error Messages G-5

PH

RC

RM

SE

TR

uc

uo

UP

us

PHASE ERROR - More code was generated during pass 2 than
during pass 1. This errorilhbe caused by an illegal use of a for-
ward reference to a variable.

REPEAT CALL - Repeat cannot precede a macro call.

REPEAT MACRO - Repeat pseudo-operation code cannot pre-
cede a macro definition.

STACK ERROR - A statement or expssion does not conform
to the required syntax.

TEXT REPLACEMENT - The specified text replacement string
was found to be invalid.

UNDEFINED CONDITIONAL - Conditional operation code
was found to be invalid.

UNDEFINED OPERATION CODE - Operation code encoun-
tered was not defined for the microprocessor, or the assembler
disallowed the operation to be processed in its current context.
(This occurs when the operation code is misspelled or an invalid
delimiter follows the label field.)

UNDEFINED PARAMETER - The parameteofind in a macro
body was not included in the macro header.

UNDEFINED SYMBOL - The indicated symbol was not defined
as a label or declared as external.

G-6 Assembler Error Messages

Assembler Error Messages G-7

Notes

G-8 Assembler Error Messages

Linker Error Messages

Error Messages

Fatal Error Messages

When an error is detected during the link process, the linker will
determine if the error is fatal or nonfatal. If the error is classi-
fied as fatal, the linker will abort the linkingocess. If the error

is nonfatal the linker il continue the linkingorocess, but will
generate error messages thdtlye listed in the output listing.

A description of each error message is give in the following para-
graphs.

Upon encountering a fatal error the linkdal display one of
the following messages on the terminal. The linker will abort
the link process and return control of the system to the monitor.

Target Processors Disagree

The linker willissue this message if the relocatable modules to
be linked are designed for different processors. Ensure that all
relocatable modules assigned for linking are written for the
same type microprocessor.

Checksum Error

The linker willissue this message if it is unable to read a relocat-
able file due to a checksum error or other irregularities in the

Linker Error Messages H-1

Nonfatal Error
Messages

Linker Error Messages H-2

file. To correct this situation, reassemble the relocatable file;
then, relink.

File Not Found

The linker willissue this message if it is unable to locate a file
during a link operation.

File Extension and File Type Disagree

The linker willissue this message if the extension assigned to a
file does not agree with its type.

Linker Command File Not Found

The linker willissue this message if a link is requested using an
invalid command file name.

Upon encountering nonfatal errors, the linkdt @ontinue the
link operation and print the error messages (except initializa-
tion errors) in the outpuisting. An eror message that listed
will contain a description of ther and the ame of the file
where the error occurred. If the nlidlt is in effect, the linker

will direct the eror messages to the system CRT.

lllegal entry: reenter

During initialization the linker will indicate on the terminal
that the user has made an illegabsse to an interrogation.
To correct this situation, reenter the proper response.

Duplicate symbol

During pass 1 of the link process, the linker detects that the
same symbol has been declared global by more than one relocat-
able module. The first definition holds true. The relocatable
module that first defines the symbol may be found in the cross-

reference table. To correct this error, remove the extra global
declarations.

Load address out of range.

The linker has tried to relocate code beyond the addressing
range of the specified microprocessor. To correct this situation,
reassign the relocatable addresses.

Multiple transfer address

During pass 1, the linker finds that the transfer address has been
defined by more than one relocatable module. The first defini-
tion holds true. The relocatable module that first defined the
transfer address will be given at the conclusion of the linking. To
correct this situation, remove the extra transfer address. Reas-
semble the amended relocatable module; then, relink. If a xfer
address is defined by both a nonload program and a load pro-
gram, no error W be given. The loaghrogram xfer address

takes precedence.

Undefined symbol

During pass 2, undefined symbol error occurs when the linker

finds that a symbol has been declared external but not defined
by a global definition. To correct this situation, define the sym-
bol.

Out of memory in xref

Unlike the fatal error (Out of Memory in Xref), this error oc-
curs when memory space is available for a complete symbol ta-
ble but only a portion of the cse-reference table. The linker

will complete the xref operation, listing only th@artion of the
cross-reference table for whiaemory space was available. To
correct this situation, reduce the number of files, global sym-
bols, and/or external symbols used during the current link.

Linker Error Messages H-3

Linker Error Messages H-4

Memory overlap

This error indicates that relocatable program areas have been
overlapped in memory. The error messagtlist the program
names and the overlapping areas.

Max addr or seg boundary exceeded

This error occurs when the linker has attempted to locate code
outside the valid addressing range of pnecessor or the cur-
rent segment.

ASCII Conversion Table

General

To produce the ASII characters in column 1 in the ASCII ta-
ble, hold down the control (CTRL) key on the keyboard and
then press the corresponding characterikésd in column # 3.
For example, CTRL—H produces a BS or backspace&(iS
08H) and CTRL—[produces an ESC or escapeGAS 1BH).

Also, deciphering the hexadecimal value of a character is accom-
plished by adding the plus value (+ 0, + 20, + 40, + 60) of the col-
umn in which the character appears to the "N" column value di-
rectly across from the character. For example, the hexadecimal
value of "a"is 1 + 60, or 61H. The hexadecimal value of "Q"is 11
+ 40, or 51H. Similarly, the hexadecimal value of ":"is 1A + 20,

or 3AH.

Conversely, subtracting the highest possible plus value from the
hexadecimal value will yield the "N" column value. Directly
across from the "N" column value, in the appropriate plus value
column, will be the desired character. For example, subtracting
60 from 61H yields 1. The "N" column value of 1 is directly
across from "a"in the + 60 column. In a like manner, subtracting
20 from 3A yields 1A. The "N" column value of 1A is directly
across from ""in the + 20 column.

ASCII Conversion Table [-1

American Standard Code for Information Interchange (ASCII)

Column
Number

TMUOUOT@P>OO~NOUTNWNRO

PRPRPRRRPRPRPERPRRERPRRLRRLRRLRRER
TMUOUOW>OONOUDWNERO

Column#1
(+0)

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
Sl
DLE
DC1(Xon)
DC2(tape)
D C3(Xoff)
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
us

I-2 ASCII Conversion Table

Column #2
(+ 20)
SP
!
#
$
%
&

(
)

+

©ONOI AW O™

NV oA

Column # 3
(+ 40)

>~/~N-<><§<C_|w;U,O'UOz§I—7<L'_IOT'mUOU°>@

Column #4

(+ 60)

oQ "p o0 T®

[S——

Ulw-'—f-hN‘<><E<C.—rm_‘_Q-oo:,3—x

EL

Index

Absolute address, 1-5
Absolute addresses, 6-3
Absolute code, 1-3
Absolute file, 2-20
Absolute terms, 5-14
Address rules, 1-1
Advantages of using macros, 8-1
ALIGN (to word boundary) pseudo instruction, 7-5
Arithmetic operators, 5-11
ASCII conversion table, I-1
asm (HP-UX) syntax, 3-7
asm (MS-DOS) syntax, 3-9
asm (VAX/VMS) syntax3-13
assemble (HP 64000) syntax, 3-11
assembler coding rules, 5-1
Assembler directive, 1-2
Assembler functional description, 1-1
assembler option definitions
(HP 64000 syntax), 3-11
(HP-UX syntax), 3-7
(MS-DOS syntax), 3-9
(VAX/VMS syntax),3-13
Assembler output files, 3-3
assembler output listing, 3-5, 3-15
assembler personality tables, 3-10
Assembler pseudo opcode, 5-1
Assembler tables, 1-1
Assembler/Linker Introduction, 1-1
Assembly symbol file, 3-4
Assigning types to operands which implyne 6-18
ASSUME pseudo instructiol;5 - 6-7, 6-9

Index-1

2-Index

Base register, 6-5

Calling linkers, 2-20

Calling macros, 8-5

Checking parameterg;13

command summary, 1-8

Comment field5-1, 5-7

COMN, 5-13

COMN pseudo instruction, 1-3
Conditional assembly instructiorg9, 8-12
Creating an Example Library File, 2-19
Cross reference generation, 4-2
Cross-reference map, 3-2
Cross-reference table, 4-23

DATA, 5-13

DATA pseudo instruction, 1-3

DB pseudo instructiorg-11

DD pseudo instructiorg-11

Default register operands, 6-29
DELAY subroutine, 2-3

Delimiter, macro, 8-4

Delimiters, 5-7

Descriptor tables, 1-6

differences, commands for hosts, 1-8
Disadvantages of using macros, 8-2
Dummy parameters, macro, 8-6
DW pseudo instructiorg-5, 6-11

8086/8088 segmented architecture, 6-2
Emulation environment, 1-2
Emulation files, 1-5
EQU pseudo instructiorn;8, 6-21
Error message8;15, 4-19, H-1
Fatal, H-1
Nonfatal, H-2
Expression operators, 5-6, 5-11
EXT conflict, NEC processorg;25

Far keyword operator, 6-20

filename.A, 3-4

filename.K, 4-4

filename.L, 4-3

flename.O 3-4, 4-4

flename.R, 3-3

filename.X, 4-3

Filename:asmb_sym, 3-4

Filename:link_sym, 4-3

Filenamelisting, 3-4

Filename:reloc, 3-3

Five types of assembly language operations, 6-10
Floating point stack, D-2

Format rules, source code, 5-1

Format, macro, 8-3

Functional components of the assembler, 3-1
functional description of HP 64000 linker, 1-3

.GOTO, 8-9, 8-11

High keyword operators, 6-27

host command summary, 1-8

How types are associated with memory locations, 6-11
HP 64000 assemble, 3-11

HP 64000 assemble options, 3-11
HP 64000 assembler, 3-1

HP 64000 assembler operation, 1-2
HP 64000 code areas, 6-6

HP 64000 link, 4-14

HP 64000 link options, 4-14

HP-UX asm, 3-7

HP-UX asm options, 3-7

HP-UX Ink, 4-10

HP-UX Ink options, 4-10

IF, 8-9, 8-11

Immediate operand6;30
Index register, 6-5

Indexing parameter8;15
Indexing parameters (&&B-15

Index-3

Initialization function, 3-2

Initialization of linker, 4-2

Instruction location$-12

Introduction to the 8086/8088 assembler/linker, 1-5
Invalid Relocatable Terms, 5-15

L Labelfield, 5-1, 5-4

LABEL pseudo instructiorg-21

Labels, unique macro, 8-8

link (HP 64000) syntax, 4-14

Link error,2-21

Linker, 1-2

linker absolute output file, 4-3

linker command file, 4-4

linker functional components, 4-2

linker input files, 4-3

linker list file, 4-4

Linker load map, 4-20

linker option definitions
(HP 64000 syntax), 4-14
(HP-UX syntax), 4-10
(MS-DOS syntax), 4-12
(VAX/VMS syntax),4-17

Linker output, 4-19

Linker questions, 2-21, 4-4
Library files question, 2-21
Load address question, 2-22
More files question, 2-22
Obiject file question, 2-21

linker symbol file, 4-3

Linker syntaxrules, 4-9

Linker table, 1-2
Entry points, 1-2

Linking library files, 2-19

Linking modules back-to-back, 2-21

Linking program module2-20

Linking relocatable files for emulation, 1-5

Listfile, 3-4

Ink (HP-UX) syntax, 4-10

Ink (MS-DOS) syntax, 4-12

4-Index

Ink (VAX/VMS) syntax,4-17

load program for the HB4000, 1-3
Local Variables in Macros, 8-2
Logical addresses, 6-3

Logical operators, 5-11

Low keyword operators, 6-27

Macro
Header statement, 8-3
Source stament, 8-4
Trailer statement, 8-4
Macro call, 5-1
Macro calls, 8-6, 8-13
Macro definition, 2-1, 8-1
Macro definitions, 8-1, 8-3
Macro expansion, 8-1
Macro format, 8-3
Macro formation rules, 8-4
macro nesting, 8-4
Macro parameters, 8-6
Macros, 8-1
MASK pseudo instructiorg-10
Memory operands, 6-31
Memory overlays, 4-6
MEND (Macro end), 8-4
Microprocessor instruction, 5-1
MS-DOS asm, 3-9
MS-DOS asm options, 3-9
MS-DOS Ink, 4-12
MS-DOS Ink options, 4-12

NEAR keyword operator, 6-19
nesting macros, 8-4

No-load files, 4-21
Nonrelocatable code, 1-3
.NOP, 8-9, 8-12

Null parameters, testing fo8;14
Numeric terms, 5-8

Index-5

O OFFSET keyword operators, 6-27

OPC (opcode symbol), 8-5

Operand field, 5-1, 5-6

Operation field, 5-1, 5-5

Operator precedence, 5-12

option definitions
assembler (HP 64000 syntax), 3-11
assembler (HP-UX syntax), 3-7
assembler (MS-DOS syntax), 3-9
assembler (VAX/VMS syntaxB-13
linker (HP 64000 syntax), 4-14
linker (HP-UX syntax), 4-10
linker (MS-DOS syntax), 4-12
linker (VAX/VMS syntax),4-17

ORG pseudo instruction, 1-3

Overlays, 1-5

P Parameter concatenation using macros, 8-7
Parameter indexing (&&)8-15
Physical addresses, 6-3
Predefined symbols, 6-27
PROC pseudo instructiof;25
Processor directives, 1-6
PROG, 5-13
PROG pseudo instruction, 1-3
Program counter ($), 5-8
Program label, 6-5
Protected mode for 80286, 1-5
Protected virtual address mode, 1-6
pseudo instructions, ALIGN (to word boundary), 7-5

R Real address mode, 1-6
Register operands, 6-29
Relational operators, 5-12
Relocatability of code, 1-3
Relocatable code areas, 1-3
Relocatable expressions, 5-13
Relocatable file, 3-3
Relocatable object modules, 1-2, 3-4

6-Index

Relocatable terms, 5-14
RESET command, 1-6

SAVE macro, 8-5
SEG keyword operators, 6-27
Segment overrides, 6-9
Segment registers, 6-5
Explicit, 6-5
Implicit, 6-5
Segmented architecture, 6-2
.SET instruction, 8-9
SHORT keyword operator, 6-21
SIZE keyword operators, 6-27
Source input file, 3-3
Source stament format rules, 5-1
Specifying segment registers explicitly, 6-5
Specifying segment registers implicitly, 6-6
Specifying segments for memory referencing operands, 6-5
Starting addresses, user provided, 1-3
Statement length limitations, 5-3
String constants, 5-9
String operations, 6-32
Symbolic debugging, 1-5, 3-4
Symbolic parameters, macro, 8-6
Symbolic terms, 5-8
Symbols, null, 8-13
syntax
asm (HP-UX), 3-7
asm (MS-DOS), 3-9
asm (VAX/VMS),3-13
assemble (HP 64000), 3-11
link (HP 64000), 4-14
Ink (HP-UX), 4-10
Ink (MS-DOS), 4-12
Ink (VAX/VMS), 4-17
Syntaxrules, 1-1

Text replacement using macros, 8-7
THIS keyword operator, 6-23
TYPE keyword operators, 6-27

Index-7

8-Index

Type overrides, 6-18
Types of data location labels, 6-12
Types of operations, 6-10

Using keyword operators, 6-16

Using other keyword operators, 6-27
Using the LABEL pseudo instructiof;21
Using the PROC pseudo instructi@i?5
Using the SHORT keyword operator, 6-21
Using the THIS keyword operator, 6-23

VAX/VMS asm,3-13
VAX/N/MS asm options3-13
VAX/NMS Ink, 4-17
VAX/NMS Ink options,4-17

Warning statements;14

	Using This Manual
	Contents
	Assembler/Linker Introduction
	A Quick Example
	Assembling Your Programs
	Linking Your Programs
	Source File Format And Expressions
	Programming Considerations
	Pseudo Instruction Summary
	Using Macro Instructions
	8086/8088 Series Instruction Set Summary
	80286 Programming
	70108/70116 Programming And Instruction Set Summary
	8087 Programming and Instruction Set Summary
	8089 Programming and Instruction Set Summary
	70320/70330 Programming And Instruction Set Summary
	Assembler Error Messages
	Linker Error Messages
	ASCII Conversion Table
	Index

