
HP 64853
8086/88, 70108/116
Cross Assembler/Linker
User’s Guide/Reference

Edition1

64853-90910
E0189
Printed in U.S.A. January 1989

Notice

Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warran-
ties of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein
or for incidental or consequential damages in connection with
the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reli-
ability of its software on equipment that is not furnished by
Hewlett-Packard.

© Copyright 1987, 1989, Hewlett-Packard Company.

This document contains proprietary information, which is pro-
tected by copyright. All rights are reserved. No part of this docu-
ment may be photocopied, reproduced or translated to another
language without the prior written consent of Hewlett-Packard
Company. The information contained in this document is sub-
ject to change without notice.

AdvanceLink, Vectra and HP are trademarks of Hewlett-
Packard Company.

MS-DOS is a trademark of Microsoft Corporation.

UNIX is a registered trademark of AT&T.

VAX/VMS is a registered trademark of Digital Electronics Cor-
poration.

Logic Systems Division
8245 North Union Boulevard
Colorado Springs, CO 80920, U.S.A.

Printing History

New editions are complete revisions of the manual. The date
on the title page changes only when a new edition is published.

A software code may be printed before the date; this indicates
the version level of the software product at the time the manual
or update was issued. Many product updates and fixes do not re-
quire manual, and manual corrections may be done without ac-
companying product changes. Therefore, do not expect a one-to-
one correspondence between product updates and manual revi-
sions.

Edition 1 January 1989 64853-90910 E0189
(replaces 64853-90908 E0486

64853-90909 E0288

)

Certification and W arranty

Certification Hewlett-Packard Company certifies that this product met its
published specifications at the time of shipment from the fac-
tory. Hewlett-Packard further certifies that its calibration meas-
urements are traceable to the United States National Bureau of
Standards, to the extent allowed by the Bureau’s calibration fa-
cility, and to the calibration facilities of other International
Standards Organization members.

Warranty This Hewlett-Packard system product is warranted against de-
fects in materials and workmanship for a period of 90 days from
date of installation. During the warranty period, HP will, at its
option, either repair or replace products which prove to be de-
fective.

Warranty service of this product will be performed at Buyer’s fa-
cility at no charge within HP service travel areas. Outside HP
service travel areas, warranty service will be performed at
Buyer’s facility only upon HP’s prior agreement and Buyer shall
pay HP’s round trip travel expenses. In all other cases, products
must be returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall
prepay shipping charges to HP and HP shall pay shipping
charges to return the product to Buyer. However, Buyer shall
pay all shipping charges, duties, and taxes for products returned

to HP from another country. HP warrants that its software and
firmware designated by HP for use with an instrument will exe-
cute its programming instructions when properly installed on
that instrument. HP does not warrant that the operation of the
instrument, or software, or firmware will be uninterrupted or er-
ror free.

Limitation of
Warranty

The foregoing warranty shall not apply to defects resulting from
improper or inadequate maintenance by Buyer, Buyer-supplied
software or interfacing, unauthorized modification or misuse,
operation outside of the environment specifications for the
product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically dis-
claims the implied warranties of merchantability and fitness for
a particular purpose.

Exclusive Remedies The remedies provided herein are buyer’s sole and exclusive
remedies. HP shall not be liable for any direct, indirect, special,
incidental, or consequential damages, whether based on con-
tract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance
agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales
and Service Office.

Using This Manual

This 8086/8088 Series Assembler/Linker manual is task/problem
oriented. Tasks that you will perform with the assembler/linker
are shown below:

Organization

Chapter 1 Overviews the HP 64000 Assembler/Linker and provides a brief
introduction to the 8086/8088 Assembler/Linker.

Chapter 2 Provides a quick example by stepping through the process of as-
sembling and linking three example program modules.

Chapter 3 Discusses how to use the assembler. Chapter 3 contains a de-
scription of the command and command line options that allows
you to assemble your program modules. This chapter also de-
scribes the output files which are created by the assembler.

Chapter 4 Discusses how to link assembly language programs. Chapter 4
contains a description of the command and command line op-
tions that allow you to link your program modules. This chapter
also describes the input files to the linker and the ouput files
that are created by the linker.

Chapter 5. Discusses source file format and expressions. Chapter 5 con-
tains information on the label, operation, operand and com-
ment fields of an assembly language program source file, as well
as information on symbolic terms, numeric terms, string con-
stants, expression operators, and relocatable expressions.

Chapter 6 Discusses programming considerations. Chapter 6 contains in-
formation how and when to use special 8086/8088 pseudo in-
structions and keyword operators.

Chapter 7 Discusses pseudo instructions. Chapter 7 contains syntax de-
scriptions of the HP 64000 and special 8086/8088 pseudo in-
structions.

Chapter 8 Discusses macros instructions. Chapter 8 contains a discussion
of advantages and disadvantages of using macros and informa-
tion on how to use macros.

Appendix A Contains a summary of the 8086/8088, 80186/80188, and 80286
instruction set.

Appendix B Contains information for 80286 protected mode assembler pro-
gramming. This appendix includes descriptions of the special
80286 pseudo instructions, and a protected mode 80286 example
program.

Appendix C Contains information on the 70116/70108 assembler, including
microprocessor architecture, programming considerations, and
the 70116/70108 instruction set summary.

Appendix D Contains information on 8087 architecture, programming con-
siderations, special 8087 pseudo instructions, and the 8087 in-
struction set summary.

Appendix E Contains information on 8089 architecture, programming con-
siderations, the special 8089 pseudo instruction, and the 8089 in-
struction set summary.

Appendix F Contains information on the 70320/70330 assembler, including
microprocessor architecture, programming considerations, and
the 70320/70330 instruction set summary.

Appendix G Contains a list of the assembler error messages, and gives a brief
description of each.

Appendix H Contains descriptions of fatal and nonfatal link errors, why the
error occurred, and how to correct it.

Appendix I Contains ASCII Conversion Table.

Index Contains topics of interest for quick location.

Contents

Chapter 1 Assembler/Linker Introduction

HP 64000 Assembler . 1-1
Functional Description . 1-1
Assembler Operation . 1-2

HP 64000 Linker . 1-2
Functional Description . 1-3
Relocatable Code Areas . 1-3
Linking Relocatable Files For Emulation 1-5
Introduction To The 8086/8088 Assembler/Linker 1-5
80286 Protected Mode . 1-5
Processor Directives . 1-6

Host-Specific Issues. 1-7

Chapter 2 A Quick Example

Introduction . 2-1
Objectives of the Example Program. 2-1

Description of the Example Program . 2-2
The MOV_MESG Program Module 2-3
The "TRANSFER " Program Module 2-8

Contents-1

The "DELAY" Program Module . 2-10
Assembling Program Module Source Files 2-11

Viewing Assembler Listing Files . 2-12
Program Module Assembly Listings . 2-12
Creating an Example Library File . 2-19
Linking Program Module Relocatable Files 2-20

Calling the Linker . 2-20
Answering Linker Questions . 2-21
Linker Listing File . 2-23

Chapter 3 Assembling Your Programs

Introduction . 3-1
Functional Components Of The Assembler 3-1

Initialization. 3-2
Pass 1. 3-2
Pass 2. 3-2
Pass 3. 3-2
Pass 4. 3-2

Input/Output Files. 3-3
Source Input File . 3-3
Assembler Output Files . 3-3
Specifying Page Length of Assembler Output Listing . . . 3-5

Assembling The Program . 3-6
asm (HP-UX) . 3-7
asm (MS-DOS). 3-9
assemble (HP 64000) . 3-11
asm (VAX/VMS) . 3-13
Output Listing . 3-15

2-Contents

Chapter 4 Linking Your Programs

Introduction . 4-1
Linker Functional Components . 4-2

Initialization. 4-2
Pass 1. 4-2
Pass 2. 4-2
Cross-reference . 4-2

Linker Input/Output Files . 4-3
Linker Input Files . 4-3
Linker Output Files . 4-3

Specifying Relocatable Files to be Linked. 4-4
Answering Linker Questions . 4-4
Explanation of Link Editor Questions 4-6
Using Linker Command Files. 4-8

Running the Linker . 4-9
lnk (HP-UX). 4-10
lnk (MS-DOS) . 4-12
link (HP 64000) . 4-14
lnk (VAX/VMS). 4-17
Linker Output . 4-19

Listing (Load Map). 4-20
Cross-Reference Table. 4-23

Chapter 5 Source File Format And Expressions

Introduction . 5-1
Source Statement Format Rules . 5-1

Field Sequence . 5-2
Delimited Fields . 5-3
Label Field Position . 5-3

Contents-3

Statement Length . 5-3
Label Field . 5-4
Operation Field. 5-6
Operand Field . 5-6
Comment Field . 5-7
Delimiters. 5-7
Symbolic Terms. 5-8
Program Counter ($) . 5-8
Numeric Terms . 5-8
String Constants . 5-9

Expression Operators . 5-11
Arithmetic Operators. 5-11
Logical Operators . 5-11
Operator Precedence . 5-12
Relational Comparison (Macros Only). 5-12

Relocatable Expressions. 5-13
Absolute Terms. 5-14
Relocatable Terms . 5-14
Invalid Relocatable Terms. 5-15

Chapter 6 Programming Considerations

Introduction . 6-1
Key Concepts to Understanding the 8086/8088
 Assembler. . . 6-2

Impact of Segmented Architecture on Programming 6-2
8086/8088 Segmented Architecture . 6-2
Physical Addresses vs. Logical Addresses
 (Segment:Offset) . . . 6-3
Different Logical Addresses Can Specify
 the Same Physical Address 6-4
Physical Addresses . 6-4

4-Contents

Specifying Segments for Memory
 Referencing Operands . . . 6-5
Specifying Segment Registers Explicitly 6-5
Specifying Segment Registers Implicitly 6-6
HP 64000 Code Areas . 6-6
Using the ASSUME Pseudo Instruction 6-7
Forward References . 6-8
Segment Overrides . 6-9
Turning Off the "ASSUME" Pseudo 6-9

Types of Operations . 6-10
Five "Types" Associated with Program Symbols 6-10
How "Types" Are Associated with
 Memory Locations. . . 6-11
"Types" Associated With Data Locations 6-12
"Types" Associated With Instruction Locations. 6-12
Three Conditions to Remember
 About "Types" When Writing Programs 6-13
When Instructions Have Two Operands,
 and Both Imply A "Type". 6-13
When "Types" Associated with Operands Disagree. 6-14
When Instructions Have Two Operands,
 And Only One Is Associated With A "Type" 6-14
When No "Types" Are Associated With Instruction 6-15
Assigning "Types" to Operands Which
 Imply No "Type" . . 6-15

Using Keyword Operators . 6-16
Assigning "Types" to Operands Which Imply None 6-18
Type Overrides . 6-18
Using Near Type Overrides. 6-19
Using FAR PTR Type Overrides . 6-20
Using the SHORT Keyword Operator 6-21
Using the LABEL Pseudo Instruction 6-21
Using the THIS Keyword Operator 6-23
Using the PROC Pseudo Instruction 6-25
Other Keyword Operators. 6-27

Predefined Symbols . 6-27
Operands . 6-29

Register Operands . 6-29
Default Register Operands . 6-29
Immediate Operands . 6-30

Contents-5

Memory Operands . 6-31
String Operations . 6-32

Chapter 7 Pseudo Instruction Summary

HP 64000 Pseudo Instructions. 7-2
Special 8086/8088 Pseudo Instructions. 7-3
Pseudo Instruction Syntax . 7-4
ALIGN . 7-5
ASC . 7-6
ASSUME. 7-7
BIN . 7-9
COMN/DATA/PROG . 7-10
DB . 7-12
DBS . 7-14
DD . 7-15
DDS . 7-17
DW . 7-18
DWS. 7-20
DECIMAL . 7-21
END . 7-22
EQU . 7-23
EXPAND . 7-24
EXT . 7-25
GLB . 7-27
HEX . 7-28
IF . 7-29
INCLUDE . 7-31
LABEL . 7-32
LIST . 7-33
MASK . 7-35
NAME . 7-37
NOLIST . 7-38
OCT . 7-40

6-Contents

ORG . 7-41
PROC. 7-42
REAL. 7-45
REPT . 7-47
SET . 7-48
SPC . 7-49
TITLE . 7-51
WARN/NOWARN . 7-52

Chapter 8 Using Macro Instructions

Introduction . 8-1
Advantages of Using Macros . 8-1
Disadvantages of Using Macros. 8-2
Macros –vs– Subroutines . 8-3
Macro Format. 8-3

Header Statement . 8-3
Macro Definition Name. 8-4
Macro Definition Body . 8-4
Macro Trailer Statement . 8-4
Example . 8-5

Calling Macros . 8-5
Example . 8-5

Optional Parameters . 8-6
Symbolic Parameters . 8-6
Text Replacement and Concatenation 8-7

Unique Label Generation. 8-8
Example . 8-8

Conditional Assembly. 8-9
.SET Instruction . 8-9
.IF Instruction . 8-11
.GOTO Instruction . 8-11
.NOP Instruction. 8-12

Contents-7

Checking Macro Definition Parameters. 8-13
Indexing Parameters . 8-15

Appendix A 8086/8088 Series Instruction Set Summary

Appendix B 80286 Programming

Introduction . B-1
The "SEG" Keyword Operator In 80286 Programs B-2
80286 Pseudo Instructions . B-3
The DD Pseudo Instruction in 80286 Programs B-3
CALL_GATE/ TASK_GATE/
 INTR_GATE/ TRAP_GATE B-4
JMP/ CALL. B-5
SEGMENT . B-6
SEG_DES/ TSS_DES/ LDT_DES . B-7
STACKSEG . B-8
The 80286 Example Program . B-9

8-Contents

Appendix C 70108/70116 Programming And Instruction Set
Summary
Programming Considerations . C-1
Modes Of Operation . C-2
Addressing Capabilities . C-2
Instruction Set Summary . C-3
70116/70108 Register Names . C-6
Instruction Set Symbols . C-7

Appendix D 8087 Programming and Instruction Set Summary

Introduction . D-1
8087 Architecture. D-2
Floating Point Stack . D-2
8087 Environment . D-3

Status Word . D-4
Control Word . D-4
Tag Word . D-6
Exception Pointers . D-7
Instruction Opcode. D-8
Data Types . D-8

Rules and Conventions . D-11
Data Transfer Instructions . D-11
Examples . D-12
Arithmetic Instructions . D-12
Classical Stack . D-13
Example . D-13
Stack Element . D-13
Example . D-14
Stack Element and POP. D-14
Example . D-14

Contents-9

Real Memory. D-14
Example . D-14
Binary Integer . D-14
Example . D-15

Comparison Instructions . D-15
Example . D-15

Transcendental Instructions . D-15
Constant Instructions . D-16
Processor Control Instructions . D-16
Special 8087 Pseudo Instructions . D-17
8087 Instruction Set Summary. D-18
DQ . D-19
DT . D-21

Appendix E 8089 Programming and Instruction Set Summary

8089 Architecture. E-2
Registers. E-2

Operands . E-5
Register Operands . E-5
Pointer/Register Operands . E-5
Immediate Data Operands . E-6
Program Location Operands. E-6
Data Memory Operands . E-7
Data Memory Bit Operands . E-8

Special 8089 Pseudo Instructions . E-9
EVEN . E-10
8089 Instruction Set Summary . E-11

10-Contents

Appendix F 70320/70330 Programming And Instruction Set
Summary
Programming Considerations . F-2
Addressing Capabilities . F-2
Instruction Set Summary . F-2
70320/70330 Register Names . F-6
Instruction Set Symbols . F-10

Appendix G Assembler Error Messages

Detection and Listing . G-1
Assembler Error Codes . G-3

Appendix H Linker Error Messages

Error Messages. H-1
Fatal Error Messages . H-1
Nonfatal Error Messages . H-2

Contents-11

Appendix I ASCII Conversion Table

Index

12-Contents

Illustrations

Figure 1-1. Linker Module Functions . 1-4
Figure 2-1. The MOV_MESG Source File. 2-4
Figure 2-1. The MOV_MESG Source File (Cont’d). 2-5
Figure 2-2. The TRANSFER Source File. 2-9
Figure 2-3. The DELAY Source File. 2-10
Figure 2-4. The MOV_MESG Assembly Listing. 2-13
Figure 2-5. The TRANSFER Assembly Listing 2-17
Figure 2-6. The DELAY Assembly Listing. 2-18
Figure 2-7. The DEMO Linker Listfile 2-23
Figure 3-1. Source Program Example 3-15
Figure 3-2. Assembler Output Listing. 3-16
Figure 3-3. Assembler Output Listing With Errors 3-18
Figure 4-1. Example Linker Command File 4-9
Figure 4-2. Example Load Map Listing. 4-20
Figure 4-3. Sample Cross Reference Table. 4-23
Figure 6-1. Calculating Physical w/Logical Addresses 6-4
Figure C-1. Typical Instruction Format C-4
Figure D-1. Status Word Format . D-3
Figure D-2. Control Word Format. D-5
Figure D-3. Tag Word Format . D-6
Figure D-4. Exception Pointers Format D-7
Figure D-5. Data Formats . D-9
Figure D-5. Data Formats (Cont’d) . D-10
Figure E-1. 8089 Registers . E-3
Figure F-1. Typical Instruction Format. F-4
Figure G-1. Error Message Format . G-2

Contents-13

Tables

Table 5-1. Delimiters . 5-6
Table 6-1. Keyword Operators . 6-16
Table 6-1. Keyword Operators (Cont’d) 6-17
Table 6-2. Predefined Symbols . 6-28
Table A-1. Conditional Jump Flags . A-2
Table A-2. Instruction Set Summary . A-3
Table A-3. Operand Forms . A-36
Table C-1. 70116/70108 Instruction Set Summary C-8
Table D-1. 8087 Data Types . D-8
Table D-2. Arithmetic Instructions . D-12
Table D-3. 8087 Instruction Set Summary D-23
Table E-1. 8089 Instruction Set Summary E-12
Table F-1. 70320/70330 Specific Inst. Set Summary. F-12

14-Contents

1

Assembler/Linker Introduction

HP 64000
Assembler

The HP 64000 Assembler is a table-driven assembler to convert
the users source program into relocatable data which can then
be linked into executable machine language. The assembler is ca-
pable of producing code for virtually any microprocessor. Main
assembler functions are the same regardless of the microproces-
sor being specified. Additional information is added for individ-
ual microprocessors in the form of tables. Tables are used to in-
terpret processor-specific instructions and mnemonics.

Functional
Description

The assembler covers the interactions required with the host sys-
tem. Functions include reading and parsing the source program.
All of the input and output file operations required by the
source program, the resulting relocatable code and list files are
handled by the assembler. The
assembler also:

1. Parses each line of the source program identifying the in-
struction for the specific processor.

2. Maintains a symbol table whose contents contain file sym-
bols along with the associated values and symbol types.

3. Checks operand fields and flags errors if the syntax and/or
address rules are not followed.

Assembler/Linker Introduction 1-1

Assembler Operation The HP 64000 Assembler reads the first line of the source file
and looks for an assembler directive indicating which processor
language is in the file that follows. The assembler then reads an-
other file that contains the table for the indicated processor.

A simple interpreter is part of the assembler that handles the ta-
ble code. The interpreter takes the specially coded table infor-
mation and decodes it into instructions for the
assembler. These instructions call up assembler functions, such
as expression handlers, and object code generation.
Instructions also allow for arithmetic operations and testing for
Boolean results.

HP 64000 Linker The linker is table-driven. Relocatable object modules are com-
bined into one absolute file and executed in an emulation envi-
ronment or used for programming PROM’s (see Figure 1-1).

Table driven architecture allows the linker to support a variety
of processors. The assembler directive in each relocatable file is
used to identify the required processor tables. Each supported
processor has a linker table used by the linker for configuration.

Linker tables contain two types of information: general
information (such as word width and addressing space), and ta-
bles or sequences of instructions for the linker. The different in-
struction types and addressing modes allowed in the target proc-
essor correspond to the entry points in the linker table.

1-2 Assembler/Linker Introduction

Functional
Description

In preparing object code modules for the HP 64000 load
program, the linker performs two functions: relocation and link-
ing. These two functions are discussed in the following para-
graphs.

Relocatable Code
Areas

Several relocatable areas are provided by the HP 64000 assem-
bler and linker. Assembler pseudos ORG, PROG, DATA and
COMN define the relocatability of code. ORG defines code to
be absolute or nonrelocatable. PROG and DATA are general
purpose relocatable counters that allow user partitioned code
to the loaded at different memory locations. For example,
pseudos can load all program in ROM and all data in RAM.
COMN specifies that the data be relocated to the same starting
address as the COMN data from all other relocatable modules.
When relocatable modules are linked, the user provides the
starting addresses for the PROG, DATA and COMN relocat-
able code.

Assembler/Linker Introduction 1-3

Figure 1-1. Linker Module Functions

1-4 Assembler/Linker Introduction

Linking Relocatable
Files For Emulation

Relocatable modules are linked and absolute and symbol files
generated for use in emulation by the linker. During emulation
the user may debug the program using symbols from the source
program. The user does not have to know where in memory the
linker stored the relocatable code. Any location in memory may
be referred to by its symbolic name or by its absolute address.

The linker also creates a global symbol file for every link opera-
tion. This file is used by the emulator, along with assembler sym-
bol tables, to provide symbolic debugging. It may also be used in
subsequent links to preload the linker symbol table. This feature
may be used in overlays and in reducing linking and download
time for large pieces of software.

Introduction To The
8086/8088

Assembler/Linker

8086, 8088, 80186, 80188, 8089_86, and 8089_88
assemblers each support an address space of 20 bits. The 80186
assembler supports the 80286 microprocessor instruction set for
the 8086 compatible mode, i.e., 20 bit address space. All of the
above assemblers use the 8086 or 8088 linkers. Load addresses
specified in assembler ORG statements or linker load address
statements are input as 32 bit logical addresses (i.e., segment/off-
set). The upper 16 bits are the segment. The lower 16 bits are
the offset. No delimiter exist between segment and offset. No
procedure exists with this Assembler/Linker to input the physi-
cal
address. The user must use the logical address.

80286 Protected
Mode

The 80286 assembler supports the 80286 microprocessor
instruction set in the protected mode. This means the
assembler uses the 24 bit address space. Both in assembler ORG
and linker address statements, the program must specify the 24
bit physical address of the object code. There is no procedure to
input a logical address of selector and
offset.

The 80286 microprocessor, upon reset, starts in the 20 bit ad-
dress 8086 compatible mode. Transition from the 8086 compat-
ible mode to the 80286 protected mode is performed program-

Assembler/Linker Introduction 1-5

matically, i.e. the descriptor tables must be initialized and the
machine status word set to the protected mode. Further, once
invoked by the program, an exit cannot be done except using
"RESET".

Note The HP 64853’s "80286" assembler was designed as an early sup-
port tool for the 80286 microprocessor running in the Protected
Virtual Address Mode. In that mode there are some known limi-
tations. (For instance, the "80286" assembler is not compatible
with the HP 64228 - 80286 Emulator.) We encourage 80286 us-
ers to use the HP 64859 Cross Assembler/Linker instead. The
HP 64859 product supports the 80286 in both the Real Address
Mode and the Protected Virtual Address Mode.

Processor Directives When developing an assembly language program, whether a co-
processor is involved or not, select the appropriate directive
from: "8086", "8088", "80186", "80188", "80286", "8089_86",
"8089_88", "70108", "70116", "70320", or "70330". The directive
number should be that of the processor being used.

1-6 Assembler/Linker Introduction

Host-Specific
Issues

The preceeding sections have discussed the HP 64000
assembler and linker in a general fashion about features of the
assembler that are the same for the different hosts. There are
some host-specifics that make the assembler
appear differently on the different hosts. These host-specific is-
sues have to do not with the operation and function of the as-
sembler and linker, but instead of the machine-specific com-
mand line interface and file name conventions. Throughout the
rest of the manual, these differences will be a described where
appropriate. For quick reference,
however, refer to the following table for a summary of the inter-
face differences.

Assembler/Linker Introduction 1-7

COMMANDS

HP–UX MS–DOS HP 64000 VAX/VMS

asm
lnk

asm
lnk

assemble
link

asm
lnk

OPTIONS

HP–UX MS–DOS HP 64000 VAX/VMS

-o
-l
-n
-e
-x
-t
-c
-v

/o
/l
/n
/e
/x
/t
/c
/v

listfile
list

nolist
expand

xref
nocode

no_overlap
(no option)

/OUTPUT
/LIST

/NOLIST
/EXPAND

/XREF
/NOCODE

/NOMEM_OVRLP
/VERBOSE

FILE NAMES

HP–UX MS–DOS HP 64000 VAX/VMS

filename.S
filename.R
filename.A
filename.X
filename.L
filename.K
filename.O

filename.S
filename.R
filename.A
filename.X
filename.L
filename.K
filename.O

Filename:source
Filename:reloc

Filename:asmb_sym
Filename:absolute
Filename:link_sym
Filename:link_com

Filename:listing

FILENAME.S
FILENAME.R
FILENAME.A
FILENAME.X
FILENAME.L
FILENAME.K

FILENAME.LIS

1-8 Assembler/Linker Introduction

2

A Quick Example

Introduction This chapter contains a quick step-by-step example of the proc-
ess of assembling and linking several program modules. You will
be acquainted with the HP 64000, 8086/8088 Cross Assembler/
Linker and shown the steps in assembling and linking program
modules.

Objectives of the
Example Program

Topics listed below are covered by the example program. They
are provided to indicate why the example program is written the
way it is. The example program shows some of the basic features
of the 8086/8088 Cross Assembler/Linker. The example pro-
gram will:

• Contain 8086/8088 assembly language instructions written to
use PROG, DATA, and COMN relocatable code areas (seg-
ments).

• Contain a few of the most used special 8086/8088 pseudo in-
structions.

• Show how the HP 64000 relocatable code areas (PROG,
DATA, and COMN) are used in linking relocatable program
modules.

• Contain an example of a simple macro definition.

• Show how to link two or more program modules.

• Show how to link relocatable files from a library file.

A Quick Example 2-1

Note The example programs in this chapter (and in the rest of the
manual) are not resident in the assembler/linker software.
Therefore, if you wish to step through the examples on your sys-
tem exactly as they are shown in the manual, you must enter the
program module source files.

Description of the
Example Program

The example program moves data from three different memory
locations to a fourth memory location. The program is divided
into three modules to show how several program modules are
linked together.

The MOV_MESG program module is made up of a data table
containing the messages to be transferred. The main program
defines a macro and calls "transfer" and "delay" subroutines. A
memory storage location to which the messages will be trans-
ferred is also included.

The TRANSFER program module contains the TRANSFER
subroutine which is called by the main program. The TRANS-
FER subroutine transfers data between two memory locations
to the destination memory location. The subroutine will get the
addresses of the beginning and end of the message to be trans-
ferred by reading the contents of two "parameter passing" mem-
ory locations. These "parameter passing" memory locations are
defined in the MOV-MESG program module.

2-2 A Quick Example

The DELAY program module contains the DELAY subroutine
called by the main program. The DELAY subroutine causes a
delay whose length is specified by the contents of a "parameter
passing" memory location. The parameter passing memory loca-
tion is defined in the MOV_MESG program module. The DE-
LAY program module will be placed in an example library file
to show how to link relocatable files from a library file.

The MOV_MESG
Program Module

The example program provided will move three messages con-
tained in a data table to another memory location. The messages
are labeled MESG0, MESG1, and MESG2. Ends of each mes-
sage are also labeled so that the program will know how many
words of data to transfer. The destination memory location is la-
beled VIDEO_RAM.

The example program will (1) move the first message to
VIDEO_RAM, where it will be displayed for a short length of
time. The example program will then (2) move the second mes-
sage to VIDEO_RAM, where is is displayed for a shorter length
of time. Finally, the example shows a (3) movement of the third
message to VIDEO_RAM, where it is displayed for an even
shorter length of time. The program will then loop back to dis-
play the second and third messages, one after the other, repeat-
edly. The MOV_MESG source file is shown below.

A Quick Example 2-3

"8086"

GLB MESG_OFFSET,MESG_END_OFFSET
 GLB DELAY_COUNT,VIDEO_RAM,START
 EXT TRANSFER,DELAY

DATA
DATA_TABLE
MESG_OFFSET DWS 1
MESG_END_OFFSET DWS 1
DELAY_COUNT DWS 1
MESG0 DB "THIS EXAMPLE PROGRAM "
 DB "MOVES SEVERAL MESSAGES "

 DB "FROM A DATA TABLE TO A "
 DB "MEMORY LOCATION"

MESG0_END
MESG1 DB "THE FIRST MESSAGE IS "

 DB "DISPLAYED FOR A MEDIUM "
 DB "LENGTH OF TIME "
 DB " "

MESG1_END
MESG2 DB "THE SECOND MESSAGE IS "

 DB "DISPLAYED FOR A SHORTER "
 DB "LENGTH OF TIME "
 DB " "

MESG2_END

Figure 2-1. The MOV_MESG Source File

2-4 A Quick Example

 PROG
 ASSUME CS:PROG,DS:DATA,ES:COMN

START MOV AX,SEG DATA_TABLE
 MOV DS,AX
 MOV AX,SEG VIDEO_RAM

 MOV ES,AX
SET_UP MACRO &MESG_NO,&MESG_NO_END,&DELAY_COUNT

 MOV MESG_OFFSET,OFFSET &MESG_NO
MOV MESG_END_OFFSET,OFFSET &MESG_NO_END

 MOV DELAY_COUNT, &DELAY_COUNT
 CALL TRANSFER

 CALL DELAY
 MEND
 SET_UP MESG0,MESG0_END,# 5FFH

REPEAT SET_UP MESG1,MESG1_END,# 4FFH
 SET_UP MESG2,MESG2_END,# 3FFH
 JMP REPEAT
 COMN

VIDEO_RAM DDS 40H
 END

Figure 2-1. The MOV_MESG Source File (Cont’d)

A Quick Example 2-5

Declaring Global Symbols

The MOV_MESG program module first declares global sym-
bols using the GLB pseudo instruction. The labels
MESG_IOFFSET, MESG_END_OFFSET, and VIDEO_RAM
are declared as global symbols because they are to be used by
the TRANSFER subroutine module. MESG_OFFSET, and
MESG_END_OFFSET are memory locations which contain
offset addresses of the beginning and end of the messages to be
transferred to VIDEO_RAM.

The label DELAY_COUNT is declared as a global symbol be-
cause the DELAY library subroutine will use the contents of
the DELAY_COUNT memory location as a count value.
START is declared global because it labels the starting address
for program execution.

Declaring External Symbols

The external (EXT) pseudo instruction allows use of labels
which are defined in other program modules. In the
MOV_MESG program module, CALL DELAY and CALL
TRANSFER instructions use labels defined in the DELAY and
TRANSFER program modules, respectively. Therefore, DE-
LAY and TRANSFER must be declared as external symbols.

DATA Relocatable Code Area

The DATA code area (segment) contains memory locations
through which values are passed to the DELAY and TRANS-
FER subroutines. The DWS special 8086/8088 pseudo instruc-
tion reserves 1 word for memory for each of the labels
MESG_OFFSET, MEST_END_OFFSET, and DE-
LAY_COUNT.

The DATA code area also contains the three messages to be dis-
played in the VIDEO_RAM memory location. ASCII string
messages are defined with the DB (Define Byte)
special 8086/8088 pseudo instruction. These three messages are
labeled MESG0, MESG1, and MESG2. Ends of the three mes-
sages are labeled MESG0_END, MESG1_END, and

2-6 A Quick Example

MESG2_END to allow the program to determine how many
words to transfer.

PROG Relocatable Code Area

Program code for all three modules appears in the PROG code
area (segment). The ASSUME pseudo instruction tells the as-
sembler that the segment values of the addresses
corresponding to the HP 64000 code areas PROG, DATA, and
COMN are in segment registers CS, DS, and ES respectively. As
an example, when we load the MESG_OFFSET location with
data, the assembler will assume that DS
contains the segment value of the MESG_OFFSET address (be-
cause MESG_OFFSET is in the DATA code area).

The program begins by loading the processors segment registers
with values corresponding to the DATA and COMN segments.
It is not necessary to initialize the CS register since all program
instructions will be linked to the same PROG segment. Register
CS will not be used in
calculating addresses of memory references in the PROG seg-
ment.

SET_UP Macro Definition

Next the program must load the "parameter passing" memory lo-
cations with values for the TRANSFER and DELAY subrou-
tines. Since these memory locations are loaded three times, each
time using different offset addresses, a macro definition elimi-
nates the need for writing the same set of instructions three
times.

A Quick Example 2-7

Macro parameters, &MESG_NO, &MESG_NO_END, and
&DELAY_COUNT, allows variables to be created whose val-
ues are assigned when the macro instruction is used. Since the
TRANSFER and DELAY subroutines are called each time af-
ter the MESG_OFFSET, MESG_END_OFFSET, and DE-
LAY_COUNT "parameter passing" locations are loaded, the
CALL
instructions are also included in the macro definition.

After the SET_UP macro has been defined, the program uses
the macro instruction three times to transfer the three messages
to the VIDEO_RAM memory location.

COMN Relocatable Code Area

The special 8086/8088 DDS (Define Double-Word Storage)
pseudo instruction reserves 40H double-words of memory (256
bytes). VIDEO_RAM labels the start of this destination mem-
ory location.

The "TRANSFER "
Program Module

The TRANSFER program module contains the subroutine
called by the main program. The TRANSFER subroutine
moves data from the address whose offset is in location
MESG_OFFSET through the address whose offset is in loca-
tion MESG_END_OFFSET on then to the destination memory
location VIDEO_RAM. THE TRANSFER program module
source file is shown below.

2-8 A Quick Example

Notice TRANSFER program module does not specify a PROG,
DATA or COMN segment. The default segment is the PROG
relocatable code area. For this reason, the
instructions in this subroutine are actually in the PROG pro-
gram area.

Notice also there is no ASSUME pseudo instruction in this
module. That is because all the data location referencing labels
are external. Because we can include segment information in
EXT declarations, it is not necessary to use the ASSUME
pseudo instruction in this module.

You may also specify the "type" of an external label with the
EXT pseudo instruction. The "type" WORD is specified for ex-
ternal symbols MESG_OFFSET and MESG_END_OFFSET to
tell the assembler that the memory locations are 16-bits wide.

The "DELAY"
Program Module

The DELAY program module contains the DELAY
subroutine called by the main program. The DELAY

"8086"
GLB TRANSFER
EXT DS:MESG_OFFSET WORD
EXT DS:MESG_END_OFFSET WORD
EXT ES:VIDEO_RAM

TRANSFER MOV CX,MESG_END_OFFSET
SUB CX,MESG_OFFSET
SHR CX,1
CLD
MOV SI,MESG_OFFSET
LEA DI,VIDEO_RAM
REP MOVSW
RET

Figure 2-2. The TRANSFER Source File

A Quick Example 2-9

subroutine displays the various messages for the length
of time specified by the contents of the DELAY_COUNT mem-
ory location. The DELAY program module source file is shown
below.

As with the TRANSFER program module, the only data loca-

tion referencing operand is an external label. The
segment to be assumed with the label DELAY_COUNT, and
the "type" are defined in the EXT pseudo instruction operand.

Also, since no relocatable code area is defined, these
instructions are in the PROG code area by default.

"8086"

GLB DELAY
 EXT DS:DELAY_COUNT WORD

DELAY MOV CX,DELAY_COUNT
OVER MOV BX,DELAY_COUNT
UNDER DEC BX

 JNZ UNDER
 DEC CX
 JNZ OVER
 RET

Figure 2-3. The DELAY Source File

2-10 A Quick Example

Assembling
Program Module
Source Files

Assembling program module source files creates relocatable
files, assembly symbol files, and optionally, an assembler listing
file. The commands to assemble source files for the different
hosts are shown below:

HP-UX

asm -oe movemesg.S > movmesg.O

MS-DOS

asm /oe movmesg.S > movmesg.O

HP 64000

assem ble MOV_MESG listfile MOV_MESG
options expand

VAX/VMS

asm/expand/output= movmesg.lis movmesg.s

The assemble commands used in this example specify that an as-
sembly "listfile" be created. The commands also specify that the
"listfile" be an expanded listing, i.e., a listing that shows all the in-
structions caused by using a macro instruction and all the object
code generated by the
assembler.

TRANSFER and DELAY program modules for each host are
assembled in the same way.

A Quick Example 2-11

Viewing Assembler
Listing Files

Using the "listfile" option when assembling programs causes as-
sembler error messages to be listed in the listing file instead of
the standard output. The commands which
allows you to look at the assembler listing file are shown below:

HP-UX

cat movmesg.O

MS-DOS

type movmesg.O

HP 64000

edit MOV_MESG:listing

VAX/VMS

type movmesg.s

Assembler listing files for the TRANSFER and DELAY pro-
gram modules may be viewed in the same way.

Program Module
Assembly Listings

Listfiles for the MOV_MESG, TRANSFER, and DELAY pro-
gram modules follow. The column captions are not produced by
the assembler. They were put there as an aid in viewing the list-
ings.

2-12 A Quick Example

LOCATION OBJECT CODE SOURCE LINE

1 "8086"
 2 LIST 50
 3 GLB MESG_OFFSET,MESG_END_OFFSET

4 GLB DELAY_COUNT,VIDEO_RAM,START
 5 EXT TRANSFER,DELAY

6
7 DATA

0000 8 DATA_TABLE
0000 9 MESG_OFFSET DWS 1
0002 10 MESG_END_OFFSET DWS 1
0004 11 DELAY_COUNT DWS 1
 12
0006 5448495320 13 MESG0 DB "THIS EXAMPLE PROGRAM"
000B 4558414D50
0010 4C45205052
0015 4F4752414D
001A 20
001B 4D4F564553 14 DB "MOVES SEVERAL MESSAGES"
0020 2053455645
0025 52414C204D
002A 4553534147
002F 455320
0032 46524F4D20 15 DB "FROM A DATA TABLE TO"
0037 4120444154
003C 4120544142
0041 4C4520544F
0046 204120
0049 4D454D4F52 16 DB "MEMORY LOCATION"
004E 59204C4F43
0053 4154494F4E
0058 2020202020
005D 20
005E 17 MESG0_END
 18

Figure 2-4. The MOV_MESG Assembly Listing

A Quick Example 2-13

LOCATION OBJECT CODE SOURCE LINE

005E 5448452046 19 MESG1 DB "THE FIRST MESSAGE IS"

0063 4952535420
0068 4D45535341
006D 4745204953
0072 20
0073 444953504C 20 DB "DISPLAYED FOR A MEDIUM"
0087 554D20
008A 4C454E4754 21 DB "LENGTH OF TIME"
008F 48204F4620
 0078 4159454420
094 5 4494D4520
0099 2020202020
009E 202020
00A1 2020202020 22 DB " "
00A6 2020202020
00AB 2020202020
00B0 2020202020
00B5 20
00B6 23 MESG1_END
 24
00B6 5448452053 25 MESG2 DB "THE SECOND MESSAGE IS"
00BB 45434F4E44
00C0 204D455353
00C5 4147452049
00CA 5320
00CC 444953504C 26 DB "DISPLAYED FOR A SHORTER"
00D1 4159454420
00D6 464F522041
00DB 2053484F52
00E0 54455220
00E4 4C454E4754 27 DB "LENGTH OF TIME"
00E9 48204F4620
007D 464F522041
0082 204D454449

Figure 2-4. The MOV_MESG Assembly Listing (Cont’d)

2-14 A Quick Example

LOCATION OBJECT CODE SOURCE LINE

00EE 54494D4520
00F3 2020202020
00F8 2020202020 28 DB " "
00FD 2020202020
0102 2020202020
0107 2020202020
010C 20
010D 29 MESG2_END

30
 31 PROG

32 ASSUME CS:PROG,DS:DATA,ES:COMN
33

0000 B80000 34 START MOV AX,SEG DATA_TABLE
0003 8ED8 35 MOV DS,AX
0005 B80000 36 MOV AX,SEG VIDEO_RAM
0008 8EC0 37 MOV ES,AX

38
39 SET_UP MACRO &MESG_NO,&MESG_NO_END,

&DELAY_COUNT
40 MOV MESG_OFFSET,OFFSET &MESG_NO

 41 MOV MESG_END_OFFSET,OFFSET
&MESG_NO_END

 42 MOV DELAY_COUNT, &DELAY_COUNT
 43 CALL TRANSFER
 44 CALL DELAY
 45 MEND

46
000A 47 SET_UP MESG0,MESG0_END,# 5FFH
000A C7060000 + MOV MESG_OFFSET,OFFSET MESG0
000E 0006
0010 C7060002 + MOV MESG_END_OFFSET,OFFSET

MESG0_END
0014 005E
0016 C7060004FF + MOV DELAY_COUNT, # 5FFH
001B 05

Figure 2-4. The MOV_MESG Assembly Listing (Cont’d)

A Quick Example 2-15

LOCATION OBJECT CODE SOURCE LINE

01C E 80000 + CALL TRANSFER
001F E80000 + CALL DELAY
0022 48REPEAT SET_UP MESG1,MESG1_END,# 4FFH
0022 C7060000 + MOV MESG_OFFSET,OFFSET MESG1
0026 005E
0028 C7060002 + MOV MESG_END_OFFSET,OFFSET

MESG1_END
002C 00B6
002E C7060004FF + MOV DELAY_COUNT, # 4FFH
0033 04
0034 E80000 + CALL TRANSFER
0037 E80000 + CALL DELAY
003A 49 SET_UP MESG2,MESG2_END,# 3FFH
003A C7060000 + MOV MESG_OFFSET,OFFSET MESG2
003E 00B6
0040 C7060002 + MOV MESG_END_OFFSET,OFFSET

MESG2_END
0044 010D
0046 C7060004FF + MOV DELAY_COUNT, # 3FFH
004B 03
004C E80000 + CALL TRANSFER
004F E80000 + CALL DELAY
0052 EBCE 50 JMP REPEAT
 51
 52 COMN
0000 53 VIDEO_RAM DDS 40H
 54 END
Errors= 0

Figure 2-4. The MOV_MESG Assembly Listing (Cont’d)

2-16 A Quick Example

LOCATION OBJECT CODE SOURCE LINE

1 "8086"
2 GLB TRANSFER
3 EXT DS:MESG_OFFSET WORD
4 EXT DS:MESG_END_OFFSET WORD
5 EXT ES:VIDEO_RAM
6

0000 8B0E0000 7 TRANSFER MOV CX,MESG_END_OFFSET
0004 2B0E0000 8 SUB CX,MESG_OFFSET
0008 D1E9 9 SHR CX,1
000A FC 10 CLD
000B 8B360000 11 MOV SI,MESG_OFFSET
000F 8D3E0000 12 LEA DI,VIDEO_RAM
0013 F3A5 13 REP MOVSW
0015 C3 14 RET
Errors= 0

Figure 2-5. The TRANSFER Assembly Listing

A Quick Example 2-17

LOCATION OBJECT CODE SOURCE LINE

1 "8086"
2 GLB DELAY
3 EXT DS:DELAY_COUNT WORD
4

0000 8B0E0000 5 DELAY MOV CX,DELAY_COUNT
0004 8B1E0000 6 OVER MOV BX,DELAY_COUNT
0008 4B 7 UNDER DEC BX
0009 75FD 8 JNZ UNDER
000B 49 9 DEC CX
000C 75F6 10 JNZ OVER
000E C3 11 RET
Errors= 0

Figure 2-6. The DELAY Assembly Listing

2-18 A Quick Example

Creating an
Example Library
File

One of the goals of this example chapter was to show how to
link library files and ordinary relocatable files. We also decided
that the DELAY module would be put into a library file whose
name is host-dependent. The following are the various host com-
mands to create the library file.

HP-UX

cat delay.R > > exlib.R

MS-DOS

type delay.R > > exlib.R

HP 64000

library DELAY to EX_LIB

VAX/VMS

append/new delay.R exlib.R

A Quick Example 2-19

Linking Program
Module
Relocatable Files

Linking is the process in which our three program modules will
be joined together to form a single program. The result of link-
ing relocatable program modules is an absolute file which con-
tains object code to be executed by the microprocessor.

The linker permits combining any number of relocatable files,
no-load files, and linker symbol files into an absolute file. It also
allows specification of load addresses of the relocatable pro-
gram areas in program modules.

Linker questions and answers are explained below.

Calling the Linker The host-specific commands to access the linker are shown be-
low:

HP-UX

llnk -o > demo.O

MS-DOS

lnk /o > demo

HP 64000

link listfile DEMO

VAX/VMS

lnk /output= demo.lisl

2-20 A Quick Example

Answering Linker
Questions

This section will answer the linker questions for the example
program, explaining the reason each answer.

Object files? movmesg.R,transfer.R (HP-UX, MS-DOS)

MOV_MESG, TRANSFER (HP 64000)

movmesg,transfer (VAX/VMS)

Answer the object files question with the names of the relocat-
able program modules. Answering "two" relocatable files causes
the linker to join back-to-back relocatable code program mod-
ule areas. If you prefer to specify the load
addresses of relocatable files individually, only "one" file at a
time should be answered for this question. Press < RETURN> .
Next question:

Library files? exlib.R (HP-UX, MS-DOS)

EX_LIB (HP 64000)

exlib (VAX/VMS)

The library files question gives you the opportunity to specify a
library of relocatable program modules. The linker will attempt
to find modules containing labels from the program modules
that have not, as yet, been defined in the files answered in the
first question. In our example, the linker will search the EX_LIB
library for any relocatable module which defines the label DE-
LAY. The relocatable file fitting that definition is relocatable
program module DELAY (included earlier in the EX_LIB li-
brary).

If the label DELAY happens to be defined in two of the library’s
relocatable program modules, a link error will

A Quick Example 2-21

 occur. Press < RETURN> . Next question:

Load addresses: PROG,DATA,COMN=

 000001000H,000002000H,000003000H

The load address question allows specification of addresses of
the relocatable segments of PROG, DATA, and COMN. (Any
ORG pseudo instructions in the relocatable program modules
defines the address of the ORG absolute code area.) Press
< RETURN> . Next question:

More files? no

Answer "no" to the more files question. We have already speci-
fied all the relocatable files to be linked. If we had answered the
object files question above with only the MOV_MESG relocat-
able module, we would have to answer this question with "yes"
to provide the linker information for the TRANSFER relocat-
able program module. Press < RETURN> . Next question:

list,xref,overlap_check,comp_db=

on off on off

Default answers for this question are sufficient for this example.
Just press the < RETURN> key in response to this question.
Next question:

Absolute file name= demo.X (HP-UX, MS-DOS)

DEMO (HP 64000)

demo (VAX/VMS)

You must answer this question with a valid file name. We will
use demo as an absolute file name. The linker will then(1) cre-
ate an absolute file with the name with a host-specific extension;
(2) create a linker command file (whose contents are the an-
swers just given); and (3) create a linker symbol file with the

2-22 A Quick Example

same name (demo) and host-specific
extension.

Linker Listing File To see the results of the link we just specified, let’s look at the
linker listing file shown below.

Notice in Figure 2-7 above that the PROG, DATA and COMN
areas of the MOV_MESG relocatable file have been linked to
the addresses specified in the load addresses linker question.
Also notice that the TRANSFER and DELAY program mod-
ules have been linked at the PROG
addresses immediately following PROG memory space taken up
by the program MOV_MESG. This linker listing file shows that
library files are linked behind any other object files that have
been specified.

This now completes this quick example of assembler/linker pro-
gram modules.

FILE/PROG NAME PROGRAM DATA COMMON

MOV_MESG:USERID 0000 1000 00002000 00003000 Tue, 19 Mar1985
TRANSFER:USERID 0000 1054 Tue, 19 Mar 1985
next address 0000 106A 000210D 00003100

Libraries
EX_LIB:USERID
DELAY:USERID 0000 06A Tue, 19 Mar 1985
next address 0000 1079 0000210D 00003100
XFER address= 00000000 Defined by DEFAULT
No. of passes through libraries= 1
absolute & link_com file name= DEMO:USERID
Total# of bytes loaded= 00000286

Figure 2-7. The DEMO Linker Listfile

A Quick Example 2-23

Notes

2-24 A Quick Example

3

Assembling Your Programs

Introduction This chapter provides a description of the HP 64000
assembler and its operation. A description of the assembler op-
tions and their use is provided.

Functional
Components Of
The Assembler

The assembler has five major functional components:
initialization, pass 1, pass 2, error/asm_sym generation (pass 3),
and cross-reference listing (pass 4). These functional compo-
nents are used by the assembler to make source code files for
specific processors and produce relocatable
object code.

Assembling Your Programs 3-1

Initialization The assembler initialization function acquires the necessary in-
formation for setting the proper configuration and specific per-
sonality for the assembler. The information is

• input file

• listing file

• options (list, nolist, expand, nocode, xref)

• assembler personality (e.g. directive "8086")

Pass 1 Pass 1 performs the standard assembler pass 1 functions of read-
ing source files, keeping program counters, and building the
symbol table.

Pass 2 Pass 2 performs the standard pass 2 functions of reading source
files, keeping program counters, using the symbol table, and gen-
erating relocatable code.

Pass 3 Pass 3 performs the functions of printing error text, the fatal er-
ror segment, and generating a sorted assembler symbol file.

Pass 4 Pass 4 generates a cross-reference map if required.

3-2 Assembling Your Programs

Input/Output Files

Source Input File Input to the assembler is a source file. Source file filenames take
different forms depending upon the host computer.

HP-UX,
MS-DOS,
VAX/VMS filename.S (The .S extension need not be

specified. Avoid filenames that result in
confusing output filenames. open.asm is
an example.)

HP 64000 Filename.source (The extension :source is
the default and need not be specified.)

Source files consist of the following:

Example Description

"8086" Assembler directive.

Source Code Consisting of source statements and
pseudo instructions; refer to chapter 7.

Assembler Output
Files

The assembler produces files stored under the same name as the
source file, with host-dependent extensions. The
assembler produces three files: a relocatable file, an
assembly symbol file, and an optional listing file. If any
of these three files exist before assembly of the source file, the
assembler will replace them with new files.

Relocatable File

filename.R (HP-UX, MS-DOS, VAX/VMS)
Filename:reloc (HP 64000)

The relocatable object module is in a format that can be proc-
essed by the linker. If the relocatable file already exists, it will be
overwritten.

Assembling Your Programs 3-3

Assembly Symbol File

filename.A (HP-UX, MS-DOS, VAX/VMS)
Filename:asmb_sym (HP 64000)

The assembly symbol file contains all local symbols defined in
the source file. The assembly symbol file can be used for sym-
bolic debugging. If the file already exists, it will be overwritten.

ListFile (Optional)

filename.O (HP-UX, MS-DOS, VAX/VMS)
Filename:listing (HP 64000)

Listfile is an optional listing. It can be directed to a line printer,
stored in a file, or displayed on your terminal. If a listfile already
exists, it will be overwritten. The listing can include:

• Source statements with object code.

• Error messages.

• Summary of errors with a description list.

3-4 Assembling Your Programs

• Symbol cross-reference list composed of all symbols
except local macro labels and parameters. The symbol table
format is discussed in the chapter titled "Linking Your Pro-
grams."

The cross-reference list is alphabetically sorted by symbol name.

Specifying Page
Length of Assembler

Output Listing

Assembler output listing can be controlled to limit the number
of lines appearing on each page of the output. The following
rules apply.

1. Output listing syntax is: LIST < limit>

2. Effective values for < limit> are 5 thru 127. If a number
less than five is used, the first page of output will have six
lines, and succeeding pages will have five lines.

3. The instruction cannot be included in the list options on
the directive line. Rather, it must be treated as an opcode
with an operand. The instruction will not be
accepted by the assembler if it is entered from the key-
board.

Assembling Your Programs 3-5

Assembling The
Program

Once a source file exists, it can be assembled using the host-spe-
cific command for invoking the assembler. A syntax description
follows for assembler activation on the various hosts.

3-6 Assembling Your Programs

asm (HP-UX)

Syntax asm [-l] [-n] [-x] [-e] [-t] [-o] < file>

Syntax Definition

Definition for syntactical term and output default are as
follows:

< file> Source file to be assembled.

output default Listing files are not produced unless list-
file output is specified by the [-o]
option. In this case, the listfile appears on
’stdout’. To direct output into a file, use
the shell redirection "> filename".

Option Defintions

asm recognizes the following options, the first of which must be
preceded by a dash (-); however, options can be concatenated
(for instance, -ox):

-o Listfile on (default is off).

-l Overrides all list and nolist pseudos in
the source file and forces listing of all
lines.

-n Overrides all list and nolist pseudos in
the source file and forces no listing of all
lines.

-e Overrides all list and expand pseudos in
the source file and forces expanded list of
all areas selected for listing in source file.

-t Causes assembly with no object code gen-
eration or relocatable file creation.

Assembling Your Programs 3-7

asm (HP-UX)
Cont’d

-x Causes a cross-reference to be printed to
the < list destination> .

Examples asm dat1.S

Assembles source file dat1.S; no output listing.

asm -ox dat1.S > dat1.O

Assembles source file dat1.S; output listing to file dat1.O with a
symbol cross-reference table.

asm -t dat1.S

Assembles source file dat1.S; producing no relocatable file and
listing only errors to the display.

Note asm resides in public directory /usr/hp64000/bin. If
/usr/hp64000/bin is in the user’s directory path, the
assembly can be run using only the command "asm". The
assembler personality tables are located in /usr/hp64000/tables.

3-8 Assembling Your Programs

asm (MS-DOS)

Syntax asm [/l] [/n] [/x] [/e] [/t] [/o] < file>

Syntax Definition

Syntax definition of terms and output defaults are as
follows:

< file> Source file to be assembled.

output default Listing files are not produced unless list-
file output is specified by the [/0]
option. In this case, the listfile
appears on ’stdout’. To direct output
into a file, use the command parser redi-
rection "> filename".

Option Definitions

asm recognizes the following optiions which must be preceded
by a slash (/). In addition, options can be concatenated (e.g., /ox).

/o Listfile on (default is off).

/l Overrides all list and nolist pseudos in
the source file and forces listing of all
lines.

/n Overrides all list and nolist pseudos in
the source file and forces no listing of all
lines.

/e Overrides all list and expand pseudos in
the source file and forces expanded list of
all areas selected for listing in source file.

Assembling Your Programs 3-9

asm (MS-DOS)
Cont’d

/t Causes assembly with no object code gen-
eration and no relocatable file
creation.

/x Causes a cross-reference to be printed to
the < list destination>

Examples asm dat1.s

Assembles source file dat1.s; no output listing

asm /ox dat1.S> dat1.O

Assembles source file dat1.S; output listing to file dat1.O with a
symbol cross-reference table.

asm /t dat1.S

Assembles source file dat1.S; producing no relocatable file and
listing only errors to the display.

Note The assembler resides in directory \HP64700\BIN. If
\HP64700\BIN is in the user’s directory path, the assembly can
be run using only the command "asm". The assembler personal-
ity tables are located in \HP64700\TABLES.

3-10 Assembling Your Programs

 assemble
(HP 64000)

Syntax assemble < FILE> [listfile < list destination>]

 options [list | nolist] [expand] [nocode] [xref]

Syntax Definition
< FILE> Source file to be assembled. Selects file

or device for listing output.

< list destination>

See < list destination> under "defaults"
heading.

Option Definitions

Allows user to override listing options specified in the source
file.

list Overrides all list and nolist pseudos in
the source file and forces listing of all
lines.

nolist Overrides all list and nolist pseudos in
the source file and forces no listing except
errors.

expand Overrides all list and expand pseudos in
the source file and forces expanded list of
all areas selected for listing in source file.

nocode Causes assembly with no object code gen-
eration or relocatable file creation.

xref Causes a cross-reference to be printed to
the < list destination> .

Assembling Your Programs 3-11

Default Values < list destination>

By default, listing output is sent to the listfile default specified
in last userid command. If no listfile default was specified in the
last userid command, the listfile default is null.

options

If "options" is not selected, all listings occur as per pseudo in-
structions specified in the source file. If "options" is selected,
and nothing else, then

• An output listing of the source program with object codes
and error messages will be made.

• No expansion of macros and multiple-byte pseudo instruc-
tions will occur.

• No symbol cross-reference listing will be made.

Examples assemble SAM

Assembles source file SAM; output listing to specified listfile de-
fault.

assemble SAM listfile CHARLEY

Assembles source file SAM; output listing to file CHARLEY of
type listing.

assemble SAM listfile display options nolist nocode

Assembles source file SAM; producing no relocatable file and
listing only errors to the display.

3-12 Assembling Your Programs

asm (VAX/VMS)

Syntax asm [options] < file>

Syntax Definition

Definiton for syntactical term and output default are as follows:

< file> Source file to be assembled.

output default Listing files are not produced unless list-
file output is specified by the option /out-
put [= < file>].

Option Definitions

asm recognizes the following options which must be preceded by
a slash (/); however, options can be concatenated (for instance,
/nolist/nocode filename).

/output [= < file>]

Listfile on (default is off). If the option
"/output" is used with no "= ", the listfile
will be placed in a file of the same
basename with a .lis extension.

/list Overrides all list and nolist pseudos in
the source file and forces listing of all
lines.

/nolist Overrides all list and nolist pseudos in
the source file and forces no listing except
errors.

/expand Overrides all list and expand pseudos in
the source file and forces expanded list of
all areas selected for listing in source file.

Assembling Your Programs 3-13

asm (VAX/VMS)
Cont’d

/nocode Causes assembly with no object code gen-
eration or relocatable file creation.

/xref Causes a cross-reference to be printed to
the < list destination> .

Examples asm dat1.s

Assembles source file dat1.s; no output listing.

asm/output dat1.s

Assembles source file dat1.s; output listing to file dat1.lis.

asm/nocode dat1.s

Assembles source file dat1.s; producing no relocatable file and
listing only errors to the display.

3-14 Assembling Your Programs

Output Listing An example of an assembler output listing is given in
Figure 3-2, using the source program example listed in
Figure 3-1. Figure 3-3 shows an assembler output listing that
contains error messages.

"8086" XREF

GLB INIT,SET,POOL,STOP
INIT MOV AX,0000H; The INIT portion initializes registers.

MOV BX,0005H;SET increments registers AX, BX and DX.
MOV CX,0005H;SET compares register CX to zero. CX is
MOV DX,0000H;compared to zero by the LOOP instruction.

SET INC AX ;If CX is not zero it jumps to SET. After
INC BL ;CX becomes zero, the high byte of register
INC DX ;B (BH) is incremented and compared to five.
LOOP SET ;While BH is < five, POOL is repeated. When

POOL INC BH ;BH equals five, the program is stopped.
CMP BH, 05H ;The program can be resumed without going
JNZ POOL ;into the weeds, because the next instruction

STOP HLT ;is an unconditional jump to INIT.

JMP INIT

Figure 3-1. Source Program Example

Assembling Your Programs 3-15

FILE: KW86 HEWLETT-PACKARD: 8086 Assembler

LOCATION OBJECT CODE LINE SOURCE LINE COMMENTS

1 "8086" XREF
2
3
4 GLB INIT,SET,POOL,STOP
5
6

0000 B80000 7 INIT MOV AX,0000H ;
0003 BB0000 8 MOV BX,0000H ;
0006 B90500 9 MOV CX,0005H ;
0009 BA0000 10 MOV DX,0000H ;
000C 40 11 SET INC AX
000D FEC3 12 INC BX
000F 42 13 INC DX
0010 E2FA 14 LOOP SET
0012 FEC7 15 POOL INC BH
0014 80FF05 16 CMP BH,05H
0017 75F9 17 JNZ POOL
0019 F4 18 STOP HLT
001A EBE4 19 JMP INIT

Errors = 0

LINE # SYMBOL TYPE REFERENCES

7 INIT P 4,19
15 POOL P 4,17
11 SET P 4,14
18 STOP P 4

Figure 3-2. Assembler Output Listing

3-16 Assembling Your Programs

Note In the cross-reference table, the letter listed under the TYPE
column has the following definition:
A = Absolute
C = Common (COMN)
D = Data (DATA)
E = External
P = Program (PROG)
U = Undefined

Assembling Your Programs 3-17

File: KW86 HEWLETT-PACKARD: 8086 Assembler
LOCATION OBJECT CODE LINE SOURCE LINE

1 " 8086" XREF
2
3
4 GLB INIT,SET,POOL,STOP
5
6

0000 B80000 7 INIT MOV AX,0000H
0003 B80000 8 MOV BX,0000H

9 MVO CX,0005H
ERROR - UO ^
0009 BA0000 10 MOV DX,0000H
000C 40 11 SET INC AX
000D FEC3 12 INC BX
000F 42 13 INC DX
0010 E2FA 14 LOOP SET
0012 FEC7 15 POOL INC BH
0014 80FF05 16 CMP BH,05H
0017 75F9 17 JNZ POL
ERROR - US, see Line 9 ^
0019 F4 18 STOP HLT
001A EBE4 19 JMP INIT
Errors = 2, previous error at line 17
US - Undefined Symbol. The indicated symbol is not defined as a Label or declared

as an external.
UO - Unidentified Opcode. Opcode encountered is not defined for this microprocessor.

FILE: KW86 CROSS REFERENCE TABLE
LINE # SYMBOL TYPE REFERENCES

7 INIT P 4,19
* * * POL U 17
15 POOL P 4
11 SET P 4,14
18 STOP P 4

Figure 3-3. Assembler Output Listing With Errors

3-18 Assembling Your Programs

Note Error messages are inserted immediately following the state-
ment where the error occurs. All error messages (after the first
error message) will contain a pointer to the statement where the
last error occurred. At the end of the source program listing, an
error summary statement will be printed. The summary will con-
tain a statement as to the total number of errors noted, along
with a line reference to the previous error. It will also define all
error codes listed in the source program listing. Refer to Appen-
dix C for a listing of all error codes.

Assembling Your Programs 3-19

Notes

3-20 Assembling Your Programs

4

Linking Your Programs

Introduction A system application program, referred to as the linker, com-
bines relocatable object modules into one absolute file. This ab-
solute file can be loaded and executed in an emulation system or
used for programming PROMs. Interaction between the user
and the linker remains basically the same for any microproces-
sor assembler supported.

The linker prepares object code modules for emulation on the
HP 64000, by performing two functions:

• Relocation: allocates memory space for each program relocat-
able module and relocates operand
addresses to correspond to relocatable code.

• Linking: symbolically links relocatable modules.

Linking Your Programs 4-1

Linker Functional
Components

The linker has four major functional components: initialization,
pass1, pass2, and cross-reference generation.

Initialization The initialization function requires the following information
from user keyboard input or as a command file:

• File names of all object files to be loaded.

• File names of libraries to be searched.

• Relocation information.

• Listing options.

• File name for the command/absolute/linker symbol file.

Pass 1 Pass 1 relocates all object file global symbols. If
unresolved differences remain after processing all of
the object files, then libraries are searched during Pass
1.

Pass 2 Pass 2 generates the absolute linker symbol and load
map files. If memory overlaps are found, they will be
flagged during Pass 2.

Cross-reference Cross reference generation builds a table listing all
global symbols, relocatable object modules that define
global symbols, and relocatable modules that reference
the symbols.

4-2 Linking Your Programs

Linker
Input/Output Files

Linker Input Files The linker processes two types of files: (1) relocatable files cre-
ated by assembling source programs); and (2) linker
symbol files (created previously by the linker). Filenames and ex-
tensions for the various hosts are shown below.

Relocatable Files

filename.R (HP-UX, MS-DOS, VAX/VMS)
Filename:reloc (HP 64000)

Linker Synbol Files

filename.L (HP-UX, MS-DOS, VAX/VMS)
Filename:link_sym (HP 64000)

Linker Output Files Linking relocatable files produces four output files: (1) an abso-
lute file ; (2) a linker symbol file ; (3) a linker command file ;
and (4) an optional load map listfile . Filenames and file exten-
sions for the various hosts follow.

Absolute File (object code) ame:absolute ame:absolute

filename.X (HP-UX, MS-DOS, VAX/VMS)
Filename:absolute (HP 64000)

Linker Symbol File

filename.L (HP-UX, MS-DOS, VAX/VMS)
Filename:link_sym (HP 64000)

Linking Your Programs 4-3

Linker Command File ame:link_com ame:link_com

filename.K (HP-UX, MS-DOS, VAX/VMS)
Filename:link_com (HP 64000)

Listfile (optional) ame:listing ame:listing

filename.O (HP-UX, MS-DOS, VAX/VMS)
Filename:listing (HP 64000)

Specifying
Relocatable Files
to be Linked

Files to be linked (and their respective load addresses) are speci-
fied by: (1) answering the linker questions; or (2) using a linker
command file.

Answering the linker questions builds a linker command file.
This linker command file may then be used to link the files that
were specified in previous answers to the linker questions with-
out having to answer the questions again.

Linker command files may also be edited. Edited linker com-
mand files may be used to specify: (1) new relocatable files to be
linked; (2) different load addresses for the same relocatable
files; or (3) both new relocatable files and different load ad-
dresses.

Answering Linker
Questions

The commands to access the linker question is as follows:

lnk < RETURN> (HP-UX, MS-DOS, VAX/VMS)

link < RETURN> (HP 64000)

4-4 Linking Your Programs

The questions that will be asked and the expected responses to
build a linker command file are

Object files? {User types names of relocatable files to be linked}

Library files? {User types names of library files required for linking}

Load addresses:
PROG,DATA,COMN

{User specifies proper addresses}

More files? (y or n) {Enter either "y" or "n". If "y", then link editor reprompts again
from ’object files’ question. If "n", then link editor continues to
the next question.}

Absolute file name= {User enters absolute file identifier}

Note Always terminate the last entry on a line with a comma if, during
any question by the linker, entries are of such length that two or
more lines are needed. Comma termination indicates to the
linker that more entires follow. If any question (except the ’li-
brary files’ question) is answered improperly or not answered at
all (if no default values are shown), the link editor will request
the proper information to be entered before it proceeds to the
next question.

Linking Your Programs 4-5

Explanation of Link
Editor Questions

Object files?

You are asked for the name of each of the files that are to be
linked. Object files that are listed after the "object file" question
may contain relocatable modules, no-load files, and/or linker
symbol files (for global symbol references).

No-load files No-load files are differentiated from normal re-
locatable files by enclosing the no-load files in parentheses: (file-
name). Parentheses indicate to the linker that no code is to be
generated for the file. Relocation and linking occurs in the same
manner as if the file was a load file. Note that the absolute im-
age file generated by the linker does not contain the object code
for the no-load file. No-load files are useful in linking to exist-
ing ROM code or in the design of software systems requiring
memory overlays.

Linker Symbol Files Linker symbol files are included in the
object file list when relocatable files contain references to global
symbol locations in program modules already linked. An exam-
ple of "object file?" response is shown below.

Object files? file1.R,(file2.R,file3.R),file4.L (HP-UX, MS-DOS, VAX/VMS)
File1,(File2,File3),File4:link_sym (HP 64000)

Library Files?

The library files question is the same as for object files. After all
object files have been linked, the linker determines if any exter-
nal symbols remain undefined. The linker searches the library
files for object modules that define these symbols. The linker re-
locates and links only those relocatable modules that satisfy ex-
ternal references.

If a library file name is given as a response to the "object files?"
question, then all the relocatable modules in the library file will

4-6 Linking Your Programs

be relocated and linked. If a library file name is given as a re-
sponse to the "library files?" question, then only those relocat-
able modules that define the unsatisfied externals will be relo-
cated and linked. The remaining relocatable modules in the li-
brary file will be ignored.

It is also possible to combine relocatable files into a library by
using the HP 64000 library command.

An example answer to the "library files?" question is:

Library files? /usr/hp 64000/lib/ns8 086 (HP-UX)
\user\hp64000\ lib\ns8086 (MS-DOS)
LIB:NS8086 (HP 64000)
HP$DISK:[HP6 4000.NS8086] (VAX/VMS)

Load Addresse s:PROG,DATA,COMN

This question requires you to select separate, relocatable mem-
ory areas for the different modules of the program. Logical ad-
dresses (i.e., segment:offset) are entered unless your source files
contain the "80286" directive. If the "80286" directive is present,
then 24 bit physical addresses are entered. For example, if the
following entries were made:

Load addresses:PROG,DATA,COMN=
00001000H,00002000H,00003000H

The linker would relocate the PROG file module in memory lo-
cation starting at address 1000H. The DATA module
relocates to memory location starting at address 2000H. The
COMN module relocates to memory location starting
at address 3000H.

Note Load addresses may be entered using any number base (binary,
octal, decimal, or hexadecimal). However, the addresses listed in
the load map are given in hexadecimal only.

Linking Your Programs 4-7

More files? You now determine if more files are to be linked. If yes ("y"),
then the linker begins interrogation again, allowing additional
object and library files to be specified with new load addresses.
You may continue with the previously relocatable area by typing
"CONT" in the appropriate field when specifying new relocat-
able areas. The relocatable area is treated as if no new address
was assigned. An example of the use of the "CONT" notation is
as follows:

Load addresses:PROG,DATA,COMN=
0FF000BCCH,CONT,00003FFCH

Absolute File Name? You now assign a name to the command/absolute image file
about to linked. The absolute file created by the linker is always
associated with a link command file and a global symbol file of
the same name.

Using Linker
Command Files

The linker produces up to three files: (1) an absolute file ; (2) a
linker symbol file ; and, if none exists, (3) a command file .
Once linker command files have been created, they may be used
to re-link the same relocatable files without answering the
linker questions a second time. Linker command files are highly
useful when modifications are made to assembly language pro-
grams and when these programs must then be reassembled and
re-linked.

Linker command files may also be edited. Edited linker com-
mand files can link different relocatable files, or specify differ-
ent load addresses, or both.

On the HP 64000, linker command files are edited by entering
the following commands:

link < CMDFILE> options edit

You may now step through and change your previous answers
to the linker questions by modifying the entries.

4-8 Linking Your Programs

On the HP-UX, MS-DOS, and VAX/VMS systems, you must
edit the linker command file like any other text file because the
linker command file is an ASCII text file.

The command file format for HP-UX, MS-DOS, and
VAX/VMS is shown in the following figure.

Running the Linker The following pages describe link syntax for the different hosts
and explain the procedure to link relocatable modules.

segment (begin a new segment)
object files < FILE1> [,< FILE2> ,... ,< FILEn>]
library files [< LIB1> ,< LIB2> ,...< LIBn>]
load addresses < PROG> , < DATA> , < COMN>
[segment

.

. (Include as many segments as needed)

.

.]
absolute file name < ABSFILE>

Figure 4-1. Example Linker Command File

Linking Your Programs 4-9

lnk (HP-UX)

Syntax lnk [-n] [-x] [-o] [-c] < file>

Syntax Definitions

Definitions for syntactical terms are as follows:

< file> A variable representing the linker com-
mand file name. The syntax for < file> :

< file> = > < filename.K>

The file type must be a linker command file that ends in the .K
file extension; no other file type can be specified with the lnk
command.

output default Listing files are not created unless the -o
option is invoked, in which case the list-
file is written to stdout. To direct the out-
put into a file, use HP-UX syntax > file-
name with the -o option.

Option Definitions

lnk recognizes the following options, the first of which must be
preceded by a dash (-); however, options may be concatenated
(e.g. -nxoc):

-n Do not produce a load map listing.

-x Produce a symbol cross-reference listing.

-o Cause the listing to be created.

-c Do not check for memory overlap.

4-10 Linking Your Programs

lnk (HP-UX) Cont’d

Example Here are two examples of the lnk command:

lnk -xo reg8.K > reg9
or
lnk -xo reg8.K | lpr

In the first example above, the output listing with cross-refer-
ence table will be put in a file "reg9".

Note To save the error output with the output listing, redirect stderr.
Example:
lnk -xo reg8.K > reg9 2> &1

In the second example above, the output listing with cross-refer-
ence table will be output to the line printer.

Note The linker is contained in public directory /usr/hp64000/bin. If
/usr/hp64000/bin is in the user’s directory path, a link can be
run by using only the command "lnk". The personality tables are
in /usr/hp64000/tables.

Linking Your Programs 4-11

lnk (MS-DOS)

Syntax lnk /n /x /o /c < file>

Syntax Definitions

Syntax definitions of terms include:

< file> A variable representing the linker com-
mand file name. The syntax for < file> is:

< file> = > < filename.K>

The file type must be a linker command file that ends in the .K
file extension. No other file type extension can be specified with
the lnk command.

output default Listing files are not created unless the /o
option is invoked. If invoked, the listfile
is written to stdout. To direct the output
into a file, use the command parser redi-
rection > filename with the /o option.

Option Definitions

lnk recognizes the following options only when preceded by a
slash (/). Options may also be concatenated (e.g., /nxoc):

/n Do not produce a load map listing.

/x Produce a symbol cross-reference listing.

/o Cause the listing to be created.

/c Do not check for memory overlap.

4-12 Linking Your Programs

lnk (MS-DOS)
Cont’d

Examples Two examples of the lnk command are:

lnk /xo reg8.K:reg9
 or
lnk /xo reg8.K

The output listing with cross-reference table in the first example
will be put in a file "reg9".

Note To save the error output with the output listing, redirect stderr.
Example:
lnk /xo re3g8.K > reg9 2:&1

The output listing with cross-reference table in the second exam-
ple will be output to the screen.

Note The linker is contained in public directory \HP64700\BIN. If
\HP64700\BIN is in the user’s directory path, a link can be run
by using only the command "lnk". The personality tables are in
\HP64700\TABLES.

Linking Your Programs 4-13

link (HP 64000)

Syntax link [< FILE>] [listfile < list destination>]

options [edit][nolist][xref][no_overlap_check][comp_db]

Syntax Definitions

< FILE> A file of type link_com to be used to di-
rect the linker as to relocatable and relo-
cation addresses.

< list destination>

File or device to which listing output is
sent.

Options Definitions

Allows you to override options specified in the linker command
file.

nolist Overrides the list option specified in the
linker command file and suppresses out-
put of a load map.

xref Overrides no xref option specified in the
linker command file and forces output of
a global symbol cross-reference table.

edit Allows you to edit the current link_com
file.

no_overlap_check

Overrides overlap_check option specified
in the linker command file and sup-
presses errors caused by

4-14 Linking Your Programs

link (HP 64000)
Cont’d memory overlaps. Default condition for

overlap_check is ON.

comp_db This file is created by the linker when re-
quested and is a data base containing in-
formation from all of the comp_sym files
associated with relocatables in an abso-
lute file.

Note If previous link commands have specified the comp_db option,
and new link commands do not specify the comb_db option,
then old comp_db files will not be purged.

Default Values < FILE> If no linker command file is specified,
the default allows creation of a new file of
type link_com.

< list destination>

Defaults to user specified listfile default.

options If options is not entered, listing defaults
to options specified in the linker com-
mand file. If options is specified, but no
option is selected, a load map listing with
no cross-reference is made.

Linking Your Programs 4-15

link (HP 64000)
Cont’d

Examples link

Requests the linker to create a new linker command file. Listing
output will go to the listfile default.

link KW86

Links the absolute file KW86 containing files in linker com-
mand file KW86. The listing output will go to the listfile default
and any options in the KW86:link_com file are in effect.

link KW86 options edit

This requests the linker command file KW86 options edit for
the purpose of viewing or editing. Any listing output will go to
the listfile default.

4-16 Linking Your Programs

lnk (VAX/VMS)

Syntax lnk < file>

 Options

/[no]map
/[no]xref
/[no]mem_ovlp
/[no]output= [< file>]

Default Values

/map
/noxref
/mem_ovlp
/nooutput

Syntax Definitions

Definitions for syntactical terms are as follows:

< file> A variable representing the linker com-
mand file name. The syntax for < file> is:

< file> = > < filename.K>

The extension does not have to be specified; it automatically de-
faults to .K.

Options Definitions

lnk recognizes the following options which must be preceded by
a slash (/). All of the options can be negated by placing a "no" in
front of the option; for example, /nomap.

/map Produces a load map listing.

/xref Produces a symbol cross-reference listing.

/mem_ovlp Checks for memory overlap.

Linking Your Programs 4-17

lnk (VAX/VMS)
Cont’d

/output[= < file>]

If you specify /output, then a listing file
will be generated. If < file> is omitted,
then the absolute file name will be used
for the listing file. The default extension
for listing files is .LIS.

Examples Here are two examples of the lnk command:

lnk reg8
or
lnk/xref/output= reg reg8

In the first example above, reg8.K will be used as a linker com-
mand file with no output. In the second example, reg8.K will be
used as the linker command file, and a load map listing and sym-
bol cross-reference listing will be put in file reg.LIS.

4-18 Linking Your Programs

Linker Output Linker listings may be output to the terminal CRT, line printer,
or any file. The following information may be
included in the linker output listing:

• Listing (Load Map).

• Cross-reference table.

• Error messages.

Note Certain error messages containing more than 80 characters will
be viewed as wrapped around or truncated on many terminals.
Complete error messages will be printed when using the line
printer or a list file for listings.

Linking Your Programs 4-19

Listing (Load Map) A load map is a listing of the memory areas allocated to each re-
locatable file. The listing begins with the first file linked and pro-
ceeds to list all other linked files with their allocated memory lo-
cations. An example of a load map listing that will be printed on
the system printer is as follows:

FILE/PROG NAME PROGRAM DATA COMMON ABSOLUTE DATE
reg4 00010000-00010037 Mon, 26 Mar 1984

REG4
reg7 00000000 Mon, 26 Mar 1984
next address 0000003A

XFER address = 0000000 Defined by DEFAULT
Current working directory = /users/bobg
Absolute file name = reg8:absolute
Total number of bytes loaded = 72

FILE/PROG NAME PROGRAM DATA COMMON ABSOLUTE DATE TIME COMMENTS
KYBD:SAVE 0000 Thu,5, Jun 1982 11:37
EXCT:SAVE 0B00-0B34 Thu, 5 Jun 1982 10:38
DSPL:SAVE A100 Thu, 5 Jun 1982 11:38
next address 0021 A121

REG1:SAVE B000 Thu, 5 Jun 1982 11:52
REG2:SAVE B103 Thu, 5 Jun 1982 11:53
REG3:SAVE B206 Thu, 5 Jun 1982 11:58
next address B30C

Libraries
PARAMETER:SAVE 0021 Thu, 5, Jun 1982 11:43
MULTEQUAT:SAVE 0221 Thu, 5 Jun 1982 11:45
next address 0421 A121

XREF address= 0B00 Defined by EXCT
No. of passes through Libraries= 1
absolute & Link_com file name= SETAG1:SAVE
Total# of bytes Loaded= 0782

Figure 4-2. Example Load Map Listing

4-20 Linking Your Programs

A brief description of each column in the listing follows:

File/Prog Name This column contains the name of the files that are linked (reg4
and reg7). If the source name differs from the relocatable name,
the source name is indented and printed below the relocatable
file name (# REG4).

If library files are referenced, the master library will be listed.
Subsections of the master library referenced will also be listed
beneath the library file name. Subsections will be indented to in-
dicate that they are part of the main library file. No-load files
will be displayed in parentheses (...).

Program This column indicates the first address (hexadecimal) of a mem-
ory block that contains the PROG relocatable code in the file
listed in the FILE/PROG NAME column.

Data This column indicates the first address (hexadecimal) of a mem-
ory block that contains the DATA relocatable code in the file
listed in the FILE/PROG NAME column.

 Common This column indicates the first address (hexadecimal) of a mem-
ory block containing the COMN relocatable code in the file
listed in the FILE/PROG NAME column.

Absolute This column indicates the hexadecimal addresses of a memory
block containing the absolute code assigned by the file listed in
the FILE/PROG NAME column.

Linking Your Programs 4-21

Note The "next address" statement in the load map listing indicates
the next available hexadecimal address in PROG, DATA or
COMN memory areas. This statement may also be used to deter-
mine the number of bytes (words for 16-bit processors) that are
contained in each area (next address less starting address= total
bytes).

Date This column indicates the date that the file in the FILE/PROG
NAME column was assembled.

Time This column indicates the time that the file listed in the
FILE/PROG NAME column was assembled.

 Comments User comments may be entered in this column during assembly
by the assembler pseudo NAME instruction.

XFER address The starting address in memory for program execution is
XFER. XFER address can be assigned using the END pseudo
in one of the relocatable files.

 Current working directory Indicates the current MS-DOS directory being used.

Absolute file name Indicates the absolute file name assigned to the linked files.

Total bytes loaded Total number of bytes loaded during this link is indicated here.

4-22 Linking Your Programs

Cross-Reference
Table

The cross-reference table lists all global symbols, relocatable ob-
ject modules that define them, and relocatable modules that ref-
erence them. An example of a cross-reference listing that will be
listed on the system printer is as follows:

Each column in the cross-reference listing represents:

 Symbol All global symbols will be listed in this column.

 R(Relocation) A letter identifies the type of program module in this column.
Available letters and their definitions are:

A= Absolute
C= Common (COMN)
D= Data (DATA)
P= Program (PROG)
U= Undefined

 Value Value of the relocated address of the symbol is in this column.

Def by A file name that defines the global symbol is in this column.

References This column lists the file names that reference the global symbol.

SYMBOL R VALUE DEF BY REFERENCES

DATA16 A 00007ABC reg4 reg7
DATA32 A 000F423F reg4 reg7
DATA8 A 0000007E reg4 reg7

Figure 4-3. Sample Cross Reference Table

Linking Your Programs 4-23

This concludes discussion of the Linker.

4-24 Linking Your Programs

 5

Source File Format And Expressions

Introduction The HP Model 64000 Assembler recognizes three types of
source statements: microprocessor instructions, assembler
pseudo opcodes, and macro definitions or calls. This chapter de-
scribes the coding rules and conventions that must be followed
when using the assembler.

Source Statement
Format Rules

Each microprocessor instruction, assembler pseudo opcode, or
macro call is divided into four fields: the label field, the opera-
tion field, the operand field, and the comment field. Format
rules to be followed when constructing a line of source program
follow:

Source File Format and Expressions 5-1

Field Sequence Field sequence cannot be changed. The correct order of field se-
quence is:

Label Operation Operand Comment

SAVE EQU EXEC1 ;SAVE
;EQUATES
;TO EXEC1

Note You are recommended to have each field in the source state-
ment start at a fixed position (column) in the source line. This
format may be defined using the tab setting capabilities of the
system editor to specify each field’s starting position. The pres-
entation of the program listing in a fixed format improves read-
ability.

Delimited Fields One or more spaces (blanks) must separate the fields in a
source statement.

Note Because of the way the assembler parser works, white space may
be treated as the end of a statement when in fact the end of the
statement has not been reached. If the
assembler sees what it considers to be a complete, syntactically
aceptable statement before encountering white space, it may
stop at that white space without reading the remainder of the
statement. The resulting generated code will be different than
the code for the actual statement. This difference may not be dis-
covered until execution time. Some examples of this problem
follow:

5-2 Source File Format and Expressions

"8086"
SIGN ORG 10H
MOV CX, BX OFFSET SIGN

Although OFFSET SIGN is illegal, the assembler does not rec-
ognize it as illegal because the parser stopped at the valid int-
struction "MOV CX, BX." Using an EQU to replace BX OFF-
SET SIGN will not solve the problem because EQU’s are ex-
panded before they are parsed.

"8086"
DATA
VALUE DB 10 DUP (?)

DUP is not supported by this assembler. However, the code in
this example will not cause an error because the parser saw
"VALUE DB 10 as a valid instruction.

Label Field Position A label field, if used, must begin in column 1 of
the source statement. If column 1 is blank, the
assembler assumes that the label field is omitted.

Additional rules and conventions governing source statement
length and fields are given in the following paragraphs.

Statement Length A source statement may contain up to 110 characters
(including spaces). A statement is terminated by a carriage re-
turn < RETURN> . Any statement containing more than 110
characters will be truncated to 110 characters.

Source File Format and Expressions 5-3

Blank lines will not affect the object modules and may be
introduced to improve readability of the source program listing.

Label Field Labels may be used in all microprocessor instructions, some as-
sembler pseudo opcodes, and macro calls. Since the label as-
signed identifies that particular statement and may be used as a
reference point by other statements in the
program, every label must be unique within each source pro-
gram.

Note Some specific symbols are predefined and cannot be used as la-
bels. Predefined symbols will depend upon the microprocessor
being supported.

The label field starts in column 1 of the source statement and
must be terminated by a space or a colon (:).

Note A colon (:) cannot be used to terminate a macro label. Refer to
chapter 8 for construction of Macros.

A valid label may contain any number of characters. The first
character in the label must be an upper case
alphabetic character. Remaining label characters may be either
alphabetic or numeric. The alphanumeric character set includes
the letters of the alphabet (upper and lower case), the underline
symbol (_), and the numeric digits 0 through 9. Invalid symbols

5-4 Source File Format and Expressions

shown below include the dollar sign ($), the question mark (?)
and beginning a label with a number (4).

Valid Symbols Invalid Symbols

Ab_cd ab.cd?

AB_CD $BCDEF

A5rHi 4UVWXY

If more than fifteen characters are entered in the label field, the
assembler will print all characters in the output listing but will
use only the first 15 characters for label identification. There-
fore, the assembler will recognize:

STATEMENTLABELA1

and

STATEMENTLABELA2

as being identical 15 character long labels. A duplicate-symbol
error message will then be issued.

Statements requiring labels are macro definitions and EQU
pseudo instructions. Assignment of a label is optional for all
other statements.

Operation Field The operation field contains: a mnemonic code for a microproc-
essor instruction; an assembler pseudo opcode (refer to chapter
7); or a macro call (refer to chapter 8). The assembler pseudo
opcode specifies the operation or function to be performed. The
operation field follows the label field and is separated from it by
a least one space, a tab, or a colon(:). If there is no label, the
pseudo opcode may begin in any column position following col-
umn 1.

Operation field termination is done by one or more spaces, or
by a tab. If no operand field follows, the operation field can also
be terminated either by a carriage return, or by a semicolon(;) in-
dicating the start of the comment field.

Assembler pseudo and control statements provide the
following capabilities:

Source File Format and Expressions 5-5

• Assembler control.

• Object program linkage.

• Address and Symbol definitions.

• Constant definition.

• Assembly listing control.

• Storage allocation.

A label will be assigned to the current program counter location
if the label is specified and the operation field does not contain
a microprocessor instruction, an assembler pseudo opcode, or a
macro call.

Operand Field Values or locations required by the microprocessor instruction,
assembler pseudo opcode, or macro call are specified by the op-
erand field. The microprocessor uses various modes of address-
ing for obtaining the operands and saving the results of program
execution.

The mnemonic instruction and the information in the operand
field determines the addressing mode. Each
instruction determines proper operand type and sequence. The
operand field, if present, follows the operation field and must be
separated from it by at least one space ().

An operand may contain an expression consisting of a single
symbolic term, a single numeric term, or a combination of sym-
bolic and numeric terms, enclosed in parentheses, and joined by
the expression operators + , -, *, and /.

5-6 Source File Format and Expressions

Comment Field An optional comment field may contain any information that
the user deems necessary to identify portions of the program.
The delimiter for the comment field is the semicolon (;), a tab,
or a space following the operand field. A semicolon in any col-
umn of the source statement will invoke the comment field (ex-
cept when used in an ASCII string). In situations where more
than one line of programming is needed for the comment field,
an asterisk (*) in column 1 of a source statement indicates the
following information is part of a comment field and should not
be acted on as if it were part of the program.

Delimiters Certain delimiting characters are restricted and are used to indi-
cate the end of fields or labels, and the beginning of other fields
or labels. Delimiters should not be used as ordinary characters.
For example, a space cannot be used as part of a label name. A
description of delimiters in Table 5-1 follows:

Delimiter Use

Space Separates fields or operands; ends a label.
Tab Separates fields; ends a label.
Semicolon (;) Indicates start of comment field.
Asterisk (*) When used in column one of source statement

indicates that comment field will follow.
Carets (^ ...^) Indicates a character string.
Colon (:) Indicates end of label field.
Parentheses((...)) Used in expression for precedence.
Single Quotes (’...’) Indicates a character string.
Ampersand (&) Indicates macro parameters.
Double Ampersand(&&)Indexes macro parameters.
Quad Ampersand (&&&&) Identifies a Macro unique number.
Quotation Marks ("...") Indicates a character string.

Table 5-1. Delimiters

Source File Format and Expressions 5-7

Symbolic Terms A symbol used in the operand field must be a one that has been
defined in the program, such as a symbol in the label field, a ma-
chine instruction, or a symbol in the label field of an EQU
pseudo instruction. (Note that the EQU label field must be de-
fined prior to referencing).

A symbol may be either absolute or relocatable. Either type de-
pends on the type of assembly selected. The assembler
assigns a value to a symbol when encountered in a label field of
a source statement. If the program is to be loaded in
absolute form, the values assigned by the assembler remain
fixed. If the program is to be relocated, the actual value of a sym-
bol will be established by the linker (refer to chapter 4 for linker
processing).

A symbolic term may be preceded by a plus (+) or minus (-)
sign. If preceded by a plus (+) or no sign, the symbol refers to
its associated value. If preceded by a minus (-) sign, the symbol
refers to the 2’s complement of its associated binary value.

Program Counter ($) ($) is a symbolic term used to indicate the current value of the
program counter. ($) can be used any place that symbolic refer-
ences are legal (for example: $+ 2).

Numeric Terms Numeric terms may be binary, octal, decimal, or hexadecimal. A
binary term must have the suffix "B" (for example: 101101B). Oc-
tal values must have either an "O" or a "Q" suffix (for example:
26O, or 26Q). A hexadecimal term must have both the suffix
"H" and a number prefix (using 0,2, or 3 for example: 0BBH,
2CDH, 36H). When no suffix is assigned decimal value is as-
sumed.

5-8 Source File Format and Expressions

Note It is necessary to start a hexadecimal term with a decimal digit
since the assembler identifies a term starting with an alphabetic
character as a symbolic reference. All alphabetic hexadecimal
digits must be capital letters for compatability with the HP
64000 system
assembler.

String Constants In addition to numeric and symbolic constants, an operation
may also contain string constants. String constants are produced
by using ASCII (American Standard Code for
Information Interchange) characters (See appendix H for ASCII
values.). String constants, combined with other symbols and con-
stants, are written by enclosing ASCII characters within quota-
tion marks ("..."), single quote marks (’...’) or carets (^ ...^).

The numeric value of a string is defined as follows:

Null String

A null string (" ") (’ ’) or (^ ^) has a numerical value of zero.

One Character String

A one character string is stored in the high order byte of the low
word (if more than one word is used). The value that appears
there is the hexadecimal value of the ASCII representation of
the character. The low order byte has the value 00H. Example:

’C’ = "C" = 00000000B = 00H = Low order byte
01000011B = 43H = High order byte

Source File Format and Expressions 5-9

Two Character String

A two character string is stored in the low word (if more than
one word is used). The hex ASCII value of thefirst character of
the string is stored in the high order byte of the word and the
hex ASCII value of the second character of the string is stored
in the low order byte. If any words remain, their bytes contain
00H. Example:

’AB’ = "BA" = B = 01000010B = 42H = Low order byte
A = 01000001B = 41H = High order byte

Note The MASK pseudo instruction allows the user to alter ASCII
strings. Refer to the MASK pseudo description in Chapter 7.

Strings Longer Than Two Characters

There are restrictions as to where strings longer than two char-
acters may be used. For strings longer than two characters, the
hex ASCII value of each character in the string is stored in byte
order. That means the ASCII value of the first character is
stored at the lowest byte address for the string and the last char-
acter is stored at the highest byte address for the string.
 Example:

’BCDE’= "BCDE"= B = 01000010B = 42H = Low byte

C = 01000011B = 43H = 2nd byte

D = 01000100B = 44H = 3rd byte

E = 01000101B = 45H = High byte

5-10 Source File Format and Expressions

Expression
Operators

The assembler contains two groups of expression operators that
permit the following operations:

Arithmetic Operators The arithmetic operators are:

Operator Interpretation

+ Addition
- Subtraction
* Multiplication
/ Division

Examples

The following expressions generate the bit pattern for ASCII
character W (0101011B):

1+ 28*2
1+ (-28* -2)
1+ (84/3)*2

Logical Operators Logical operators are used to form logical expressions. A logical
expression may be used any place an expression can legally be
used. The logical operators are as follows:

Operator Interpretation
.AN. Logical AND
.NT. Logical one’s complement
.OR. Logical OR
.SL. Shift left
.SR. Shift right

Source File Format and Expressions 5-11

Examples

EXEC1.SL.1
NT.CHAR
EXEC1.OR.EXEC2

Operator Prec edence Operators have a descending order of precedence defining
which operator is evaluated first or next in an expression. Opera-
tors are listed below in descending order of precedence.

Parentheses (...) override all precedence.

.NT.

.SL.,.SR.

.OR.,.AN.
* ,/
+ ,-

Relational
Comparison (Macros

Only)

When the assembler processes an ".IF " instruction, the
logical expression in the operand field is evaluated.
Relational operators are:

Operator Interpretation

.EQ. equal

.NE. not equal

.LT. less than

.GT. greater than

.LE. less than or equal

.GE. greater than or equal

5-12 Source File Format and Expressions

Relocatable
Expressions

Three program counters are provided for identifying relocatable
code areas. The three areas are identified as data (DATA), pro-
gram (PROG), and common (COMN). These areas can be
changed from one relocatable area to another using assembler
pseudo codes. (Refer to chapter 7 for more information.) Rules
governing use of relocatable expressions are given in the follow-
ing paragraphs.

The value of a relocatable term will be assigned during the link-
ing process. The assigned value will depend upon:

• The relocatable areas (PROG, DATA, or COMN) to which it
is assigned, and;

• Where the area is located in memory during the link opera-
tion.

Expressions may be formed from absolute and relocatable terms
using arithmetic operators and parentheses. Expressions result-
ing from this type of operation must be either absolute or one of
the three relocatable types.

Source File Format and Expressions 5-13

Absolute Terms Absolute terms are expressions having values not dependent
upon the location of the program module in memory. Forma-
tion of absolute expressions requires that:

• Each absolute term or constant is an absolute expression.

• If AD and BD are relocatable symbols in the same relocat-
able area, then (AD-BD) is designated an absolute expres-
sion. (This designation is absolute because the difference be-
tween AD and BD remains constant regardless of the reloca-
tion factor of the program. That is, if the program is relo-
cated, the values of AD and BD are offset by the same
amount.)

• If A2 and B2 are absolute symbols, then:

(A2+ B2)
(A2*B2)
(A2-B2)
and (A2/B2)

are absolute expressions.

Relocatable Terms Relocatable terms are expressions having values undefined at
link time. Formation of relocatable expressions requires that:

• Any relocatable term is a relocatable expression.

• If DA is an absolute expression and DR is a relocatable ex-
pression, then:

(DA+ DR)
(DR+ DA)
and (DR-DA)

are relocatable expressions and are the only relationship
permitted. An absolute expression may be subtracted from
a relocatable expression. A relocatable expression may not
be subtracted from an absolute expression.

5-14 Source File Format and Expressions

Invalid Relocatable
Terms

Use of relocatable terms in certain ways makes them invalid and
will generate error messages. A valid example (c) is provided be-
low along with two invalid relocatable terms (a & b) that gener-
ate error messages:

a. Two relocatable symbols - same area (PROG, DATA,
or COMN). If DA and DB are two relocatable symbols,
then:

(DA+ DB)
(DA*DB)
and (DA/DB)

are invalid expressions. The assembler does not recog-
nize where these symbols are being stored in memory.

b. Two relocatable symbols - different areas (PROG,
DATA, or COMN). If DA and DB are two relocatable
symbols, then:

(DA+ DB)
(DA-DB)
and (DA*DB)

are invalid expressions. The assembler does not recog-
nize where these symbols are being stored in memory.

c. Relocatable symbols in different areas (PROG, DATA,
COMN) can be combined if the expression results in
one relocatable type. For example, if relocatable sym-
bols DA and DB are PROG type and relocatable sym-
bol DC is DATA type, the expression:

(DA+ DC-DB)

is a valid expression since (DA-DB) is an absolute off-
set to DC.

This concludes the discussion of source file format and
expressions.

Source File Format and Expressions 5-15

Notes

5-16 Source File Format and Expressions

6

Programming Considerations

Introduction This chapter will help you to write assembly language programs
by describing the HP 64000 8086/8088 assembler. If you know
how the assembler works, what is expected in an assembly lan-
guage program, and how the assembler generates code, then pro-
gramming will be easier. If you follow the guidelines in this chap-
ter, your code will generally have fewer errors at first writing. Er-
rors will be easier to identify and can be corrected if and when
they do occur.

This chapter contains special 8086/8088 pseudo instructions and
keyword operators. It is important to understand pseudo instruc-
tions and keyword operators because together they tell the as-
sembler how to generate code.

Programming Considerations 6-1

Key Concepts to
Understanding the

8086/8088 Assembler

The two most important concepts to know when using the
8086/8088 Assembler are:

• The concept of a segmented architecture. This requires using
segment and offset values in assembly language memory loca-
tion references.

• The concept that one assembly language mnemonic can spec-
ify several types of operations. Types of operations relate to
the size of data that is assembled or linked, or to the distance
in memory of program transfers.

Impact of
Segmented
Architecture on
Programming

8086/8088
Segmented

Architecture

8086/8088 microprocessors are designed with a segmented archi-
tecture. Given a segmented architecture with 20
address lines, these processors can address 220 bytes
(1 megabyte) of physical memory. Memory addresses inside the
8086/8088 microprocessors are calculated with two
16-bit quantities: a segment and an offset. Figure 6-1 shows how
physical memory addresses are calculated with
segments and offsets.

6-2 Programming Considerations

Physical Addresses
vs. Logical
Addresses

(Segment:Offset)

Logical Addresses

A logical address is a 32-bit (segment:offset) quantity whose up-
per and lower 16-bit offset values are used to calculate a 20-bit
physical address. The assembler recognizes only logical ad-
dresses.

Absolute Addresses

Logical addresses must be used when absolute addresses are
specified in your assembly language programs, (for
example, in the ORG pseudo instruction operand). 32-bits of in-
formation must be supplied in logical addresses. The first 16-bits
specify the segment value of the address. The next 16-bits spec-
ify the offset value.

Programming Considerations 6-3

Different Logical
Addresses Can

Specify the Same
Physical Address

Physical Addresses It is possible for two different pairs of "segment:offset" values to
specify the same physical address. Be aware that two different
pairs of segment and offset values can specify the same physical
address. For example, the
instructions ORG 10002345H and ORG 12000345H specify the
same physical address:

Contents of reg. DS = 1000H Contents of reg. ES = 1200H

Contents of reg. BP = + 2345H Contents of reg. BX = + 0345H

Address DS:[BP] = 12345H Address ES:[BX] = 12345H

Figure 6-1. Calculating Physical w/Logical Addresses

6-4 Programming Considerations

Specifying Segments
for Memory

Referencing
Operands

Every assembly language program memory reference must refer
to one of the processors four segment registers. Contents of the
segment register will be the 16-bit segment value of the logical
address.

The offset value of the logical address will be specified by a pro-
gram label, a base register, an index register, or a combination of
two or three of the above, depending on the
addressing mode. There are two ways in which the segment regis-
ter can be specified in assembly language instructions:

• Segment registers can be specified explicitly, by
including the segment register name in the instructions mem-
ory referencing operand.

• Segment registers can be specified implicitly, by using the
special 8086/8088 ASSUME pseudo instruction.

Specifying Segment
Registers Explicitly

Specifying which segment register is to be used in calculating an
address requires including it in the assembly language instruc-
tion operand. The following instructions demonstrate this tech-
nique. (Note in the example below that DW is a special
8086/8088 pseudo instruction. It defines and initializes a word of
memory.)

LOCATION OBJECT CODE SOURCE LINE

1 "8086"
0000 383C 2 LABL DW 3C38H

3
0002 2EA30000 4 MOV CS:LABL,AX
0006 899F0000 5 MOV DS:LABL[BX],BX
000A 26894E00 6 MOV ES:[BP],CX
000E 2E89800000 7 MOV CS:LABL[BX][SI],AX
0013 8903 8 MOV SS:[BP][DI],AX

Errors= 0

Programming Considerations 6-5

Specifying Segment
Registers Implicitly

Another way to specify the segment portion of the logical
address is to let the assembler "ASSUME" the segment register
for you. ASSUME is a special 8086/8088 pseudo
 instruction which allows you to relate one of the processors seg-
ment registers to one of the HP 64000 code areas.

HP 64000 Code Areas The HP 64000 defines three relocatable code areas: PROG,
DATA, and COMN. One absolute code area is also defined
(ORG). Locate parts of your assembly language program in
each of these four code areas by using the appropriate HP 64000
pseudo instruction: PROG, DATA, COMN, or ORG. The de-
fault code area is PROG. The assembler maintains a program
counter for each of these code areas. Assign the
actual addresses of these relocatable code areas when linking
your programs. The address of the ORG absolute code area pro-
gram counter is specified in the ORG pseudo
instructions operand.

HP 64000 code areas can be thought of as segments of physical
memory.

6-6 Programming Considerations

Using the ASSUME
Pseudo Instruction

The ASSUME pseudo instruction allows you to relate one of
the microprocessors segment registers to one of the HP 64000
code areas. When memory references are made by your assembly
language instructions, the assembler
assumes which segment register should be used to calculate the
physical address. When using the ASSUME pseudo,
assembly language instructions may be written in the form
shown below.

LOCATION OBJECT CODE SOURCE LINE

1 "8086"
2 DATA

0000 383C 3 LABL DW 3C38H
0002 4 DEST DWS 1

5
6 PROG
7 ASSUME DS:DATA,CS:PROG

0000 B80000 8 MOV AX,SEG LABL ;These two
0003 8ED8 9 MOV DS, AX ;instructions

;initialize reg.DS
10

0005 A30000 11 MOV LABL,AX ;DS:LABL,AX
 ;is assumed
0008 899F0000 12 MOV LABL[BX],BX ;DS:LABL[BX],BX

;is assumed
000C 894E00 13 MOV [BP],CX ;SS:[BP],CX

; is assumed
000F 89800000 14 MOV LABL[BX][SI],AX

;DS:LABL[BX][SI],AX
0013 8903 15 MOV [BP][DI],AX ;SS:[BP][DI],AX

;is assumed
0015 A4 16 MOVS DEST,LABL
ERROR-IO ^

Errors= 1, previous error at line 16
IO - Invalid Operand, Invalid or unexpected operand encountered or operand is missing

Programming Considerations 6-7

The assembler assumes segment registers based on two things:
(1) The operand of the ASSUME pseudo instruction, and (2)
the code area in which the program labels appear. In the exam-
ple program above, LABL appears in the DATA code area. The
assembler assumes that any memory references containing the
label LABL should use register DS as the segment because it ap-
pears in the DATA code area.

When memory references do not contain labels, the
assembler assumes that the SS register should be used as the seg-
ment value in calculating the physical address.

The example indicates an error on the last line. The error indi-
cates that the assembler expected the destination operand of the
MOVS instruction to be in the ES segment. The example did
not assume anything about the ES register. Adding ",ES:DATA"
to the ASSUME pseudo
instruction operand will correct the error and allow the last in-
struction to assemble correctly.

Note In 8086 string instructions, the assembler always expects the des-
tination operand to be associated with segment register ES.

Forward References Since the assembler cannot know what segment a forward refer-
enced variable will reside in prior to its definition, a segment
override byte will be generated for all forward referenced vari-
ables during Pass One. This will be done if a segment override
was not explicitly specified. An extra byte may result for these in-
structions, but will produce working code. You may wish to con-
sider this when laying out your programs. Placing the data defi-
nition sections prior to the data referencing sections will pro-
duce fewer bytes of code.

6-8 Programming Considerations

Segment Overrides When using the ASSUME pseudo it is possible to explicitly tell
the assembler which of the processor’s segment registers to use
in calculating the physical address. Adding segment overrides to
memory referencing operands tells the assembler which seg-
ment register to use. Segment overrides "CS:" and "ES:" cause
the assembler to generate code identical to the code generated
by assembling the first example program in the following exam-
ple:

LOCATION OBJECT CODE SOURCE LINE

1 "8086"
2 DATA

0000 383C 3 LABL DW 3C38H
4
5 PROG
6 ASSUME DS:DATA,CS:PROG

0000 B80000 7 MOV AX,SEG LABL ;These two
0003 8ED8 8 MOV DS,AX ;instructions initialize

;reg.DS
9

0005 2EA30000 10 MOV CS:LABL,AX
0009 899F0000 11 MOV LABL[BX],BX ;DS:LABL[BX],BX

;is assumed
000D 26894E00 12 MOV ES:[BP],CX
0011 2E89800000 13 MOV CS:LABL[BX][SI],AX
0016 8903 14 MOVS [BP][DI],AX ;SS:[BP][DI],AX

;is assumed
Errors= 0

Turning Off the
"ASSUME" Pseudo

Specifying "NOTHING" in the pseudo instruction’s operand
field turns off the ASSUME pseudo instruction. NOTHING
will cause the assembler to expect segment registers to be explic-
itly stated in memory referencing operands.

Programming Considerations 6-9

You may also "assume nothing" about a specific segment regis-
ter by specifying NOTHING in the code area portion of the AS-
SUME pseudo instruction operand, e.g., ASSUME CS:NOTH-
ING. If a memory referencing operand is to use a segment regis-
ter for which NOTHING is assumed, then that segment register
must be stated explicitly in the operand.

Types of
Operations

Different types of operations may be specified with the same
8086/8088 assembly language mnemonic. Types of operations
specify the size of the data that is operated on. Data size may be
a byte, word, or a double-word sized piece of information. Types
of operations refer also to the distance of program transfers to a
memory location. Types of operations refer to the same 64K seg-
ment or to a memory location in another 64K segment.

Five "Types"
Associated with

Program Symbols

The 8086/8088 assembler associates a "type" with every program
symbol (label) in order to aid the assembler in generating object
code. Program symbols (labels) appear at two kinds of memory
locations: data locations or instruction locations.

MEMORY LOCATION TYPE

Data locations - BYTE (8-bits wide)
- WORD (16-bits wide)
- DWORD (32-bits wide)

Instruction locations - NEAR (within _+ 32K bytes)
- FAR (beyond_+ 32K bytes)

6-10 Programming Considerations

How "Types" Are
Associated with

Memory Locations

The assembler associates "types" with memory locations and
identifies the "types" associated with its program labels. Note in
the example below that DB (Define Byte), DW (Define Word),
and DD (Define Doubleword) are special 8086/8088 pseudo in-
structions which define and initialize memory.

LOCATION OBJECT CODE SOURCE LINE

1 "8086"
2 DATA

0000 C415354 3 NAME DB "LAST"
0004 383CFFFF80 4 LABL DW 3C38H,0FFFFH,80H
0009 00
000A 002000F28F 5 VALU DD 0F2002000H,120.0E-3
000F C2F53D

6
7 PROG
8 ASSUME CS:PROG,DS:DATA,ES:COMN

0000 B80000 9 MOV AX,SEG NAME
0003 8ED8 10 MOV DS,AX
0005 B80000 11 MOV AX,SEG DELAY
0008 8EC0 12 MOV ES,AX
000A E80000 13 CALL DELAY
000D E90000 14 JMP DONE
0010 EBFE 15 DONE JMP DONE

16
17 COMN

0000 A10007 18 DELAY MOV AX,LABL+ 3
0003 48 19 AGN DEC AX
0004 75FD 20 JNZ AGN
0006 C3 21 RET

Errors= 0

Programming Considerations 6-11

"Types" Associated
With Data Locations

The "types" of data location labels are determined by the im-
plied size of pseudo instructions DB, DW, and DD.

• The "type" associated with the label NAME is BYTE.

• The "type" associated with the label LABL is WORD.

• The "type" associated with the label VALU is DWORD.

 Note that any expression involving these labels (NAME+ 1,
LABL+ 2, or VALU-4) will be of the same type as the label.

"Types" Associated
With Instruction

Locations

The remaining labels in the example program above appear at
instruction locations, and are associated with the either type
NEAR or type FAR.

By default the assembler assigns "type" NEAR to all instruction
location labels. Therefore, in the example program above, DE-
LAY in the CALL DELAY instruction and DONE in the first
JMP DONE instruction default to "type" NEAR.

In the example the last JMP DONE instruction has one less
byte of code generated than the first. The assembler generates a
"short" jump for this instruction because the label DONE had al-
ready been recognized and evaluated to be within the value of
-128 to + 127 bytes. JMP instructions whose operand labels
have been previously defined in the program allow the assem-
bler to generate the most efficient code possible.

6-12 Programming Considerations

Three Conditions to
Remember About

"Types" When Writing
Programs

Assembly language instructions operate on byte, word, and dou-
ble-word size quantities. In most cases, the type of operation of
an assembly language instruction is determined by the "types" as-
sociated with the operands of that instruction.

Three conditions must be remembered about "types" associated
with operands:

Condition 1 If an assembly language instruction has two operands and
each is associated with a "type", then the "types" of those
operands must agree with each other.

Condition 2 If an assembly language instruction has two operands, and
a "type" is only associated with one of the operands, then
the operation will be of that same "type".

Condition 3 If no "type" is implied in an instruction’s operand(s), and
different "type" operations are allowed for the
instruction, then a "type" must be specified in the operand.

When Instructions
Have Two Operands,

and Both Imply A
"Type"

When an assembly language instruction has two operands, and
there is a "type" associated with both operands, both "types"
must agree with each other. For example, if the following in-
struction were added to the program above, an ET (Expression
Type Invalid) error would occur.

MOV AL,LABL

The error occurs because the "type" implied by AL is BYTE and
the "type" associated with the label LABL is WORD. However,
the following instruction will not cause an error

Programming Considerations 6-13

because the types associated with the operands do agree with
each other.

MOV AL,NAME+ 1

When "Types"
Associated with

Operands Disagree

It is possible to move the byte at location LABL to register AL
by doing one of two things:

• Use a type override.

• Create a new label, whose "type" is BYTE, for the same mem-
ory location.

These two subjects are further discussed in the Using Keyword
Operators section which follows.

When Instructions
Have Two Operands,

And Only One Is
Associated With A

"Type"

When an assembly language instruction has two operands, and
only one of these operands has an associated "type", the opera-
tion will be of that "type". For example:

MOV AX,[BX]
MOV AL,[BX]

Both of these instructions assemble with no errors because the
"type" of the operation is implied in only one operand. The first
instruction moves a word of memory from the location ad-
dressed by register BX because the type associated with AX is
WORD. The second instruction moves a byte
because the "type" associated with register AL is BYTE.

6-14 Programming Considerations

When No "Types" Are
Associated With

Instruction

Assembly language instructions whose operations may be of dif-
ferent "types", and whose operands imply no "type" will cause the
assembler to generate error messages. For
example, consider the following instructions.

POP [BP]
MOV AX,# 0003
MUL [BP]
MOV [BP],# 4

Neither the first, third, or fourth instruction above appears to
imply a "type". Only the last two instructions cause error mes-
sages. No error message occurs for the first instruction because
type of operation is implied by the instruction POP. Only words
may be popped from the stack.

On the other hand, the MUL instruction may be either an
8-bit multiply or a 16-bit multiply. No "type" is implied by the
MUL operand. This instruction will cause an ET (Expression
Type Invalid) error message.

In the last instruction, the assembler doesn’t evaluate whether
the immediate value is supposed to placed in a memory location
for byte width, word or double-word.
Consequently, this instruction will cause an IO (Invalid Oper-
and) error message to occur.

Assigning "Types" to
Operands Which
Imply No "Type"

In the MUL and MOV instructions above, the assembler needs
more information to evaluate what code to generate. Keyword
operators must be added to the operand to direct the assembler
to the correct and expected "type" of
operation.

Programming Considerations 6-15

Using Keyword
Operators

Keyword operators are necessary in some assembly language in-
structions to give further information to the assembler. The fol-
lowing actions are accomplished in assembly language instruc-
tions using keyword operators:

• Specify "types" in operands which imply no type.

• Override the "type" associated with a program label.

• Associate more than one "type" to a memory location.

• Create immediate operands whose values are determined by
characteristics of program labels.

Fourteen keyword operators are defined by the 8086/8088 as-
sembler. The keyword operators are briefly summarized in table
6-1.

Keyword Operator Description

BYTE Defines operation to be byte type (1 byte long).
WORD Defines operation to be word type(2 bytes long).
DWORD Defines operation to be double-word type

(4 bytes long).
NEAR Informs the assembler that the label associated

with the call or forward jump will be in
the same segment.

FAR Informs the assembler that the label associated
with the call or forward jump will be
in another segment.

PTR Used in conjunction with BYTE, WORD,
DWORD, NEAR, and FAR keyword operators
(e.g., BYTE PTR, WORD PTR, etc.) in
assembly language instruction operands to
override the "type" associated with a label, or to
specify the type of an operation if none is implied.

Table 6-1. Keyword Operators

6-16 Programming Considerations

Keyword Operator Description

SHORT Informs the assembler that the label which appears
in the operand of a forward JMP instruction is
within + 127 bytes.

THIS Used with the EQU pseudo instruction to create
a label (with type BYTE, WORD, DWORD, NEAR,
or FAR) for the instruction that follows (e.g., LABL
EQU THIS WORD).

HIGH Creates an assembly language
instruction immediate operand whose value is the
high-order byte of a label’s offset value.
label’s offset value.

LOW Creates an assembly language instruction
immediate operand whose value is the low-order
byte of a label’s offset value.

OFFSET Creates an assembly language instruction
immediate operand whose value is the offset
(from the segment base) of a label’s address.

SEG Creates an assembly language instruction
immediate operand whose value is the segment
of a label’s address.

SIZE/TYPE Creates an assembly language immediate operand
whose value is a number associated with the "type" of a
label. The size values of the various types are:

BYTE 1 NEAR 0
WORD 2 FAR 7
DWORD 4

LENGTH Creates an immediate operand whose value is 1.

Table 6-1. Keyword Operators (Cont’d)

Programming Considerations 6-17

Assigning "Types" to
Operands Which

Imply None

Let’s return now to the previous example instruction in which
the assembler could not evaluate the size of the operation. The
instruction was:

MUL [BP]

To correct the ET (Expression type invalid) error that
occurs when assembling this instruction, you must specify in the
operand whether the multiply should be 8-bit or
16-bit. Adding the BYTE PTR keyword operators to the mem-
ory operand, [BP], will indicate to the assembler that the multi-
plication should be 8-bit. Adding the keyword operators
WORD PTR will indicate that the operation should be 16-bit.
Either of the following instructions will be assembled without
error messages:

MUL BYTE PTR [BP]
MUL WORD PTR [BP]

Type Overrides In the LAST program example we could move a byte of memory
from location NAME+ 1 to register AL. Now
suppose you want to move the first two bytes at memory loca-
tion NAME into register AX. To do this change the
instruction to:

MOV AX,NAME

This instruction causes an ET (Expression type invalid) error to
occur during assembly. The error occurs because we attempt
moving a BYTE sized memory operand into a WORD sized reg-
ister. Size of assembly language operands must agree.

To cause the assembler to accept this instruction, override the
type associated with the label NAME. A type override will
change the "type" of a program label in that instruction’s oper-
and only. To override the BYTE type of the NAME label, add
the keyword operators WORD PTR to

6-18 Programming Considerations

 the memory operand NAME as follows:

MOV AX,WORD PTR NAME

This instruction causes assembler generated code that will move
the first two bytes, or the first word, at location NAME into reg-
ister AX.

Using Near Type
Overrides

NEAR "types" associated with instruction location referencing
operands as a default may also be overridden.
Instructions whose memory operands include references to in-
struction locations are JMP and CALL. Consider the JMP and
CALL usage in examples below:

LOCATION OBJECT CODE SOURCE LINE

1 "8086"
0000 E80900 2 CALL DELAY
0003 E80009 3 CALL DELAY2
0006 E90A00 4 JMP OVER
0009 E90000 5 JMP OVER2

6
000C B80300 7 DELAY MOV AX,# 3
000F 48 8 AGN DEC AX
0010 75FD 9 JNZ AGN
0012 C3 10 RET

11
0013 E8F6FF 12 OVER CALL DELAY
0016 E80009 13 CALL DELAY2
0019 EBFE 14 DONE JMP DONE

15
16 COMN

0000 E90013 17 OVER2 JMP OVER
0003 E90019 18 JMP DONE
0006 E8000C 19 CALL DELAY

20
0009 B80300 21 DELAY2 MOV AX,3
000C 48 22 AGN2 DEC AX
000D 75FD 23 JNZ AGN2
000F C3 24 RET
Errors= 0

Programming Considerations 6-19

From the instructions above note that the assembler
associates the "type" NEAR with all the CALL and JMP
instruction operands, except for backward jumps to labels in the
same segment. (The assembler generates three bytes of code for
NEAR instructions above.)

Using FAR PTR Type
Overrides

Suppose that two program segments will ultimately be linked at
addresses which are separated by more than 64K bytes. In this
condition, specify that any calls or jumps
between the two segments are of type FAR. Using FAR PTR
type overrides accomplishes this. Adding type overrides to in-
tersegment JMP and CALL instruction operands, will result in
the code shown below.

LOCATION OBJECT CODE SOURCE LINE

1 "8086"
0000 E80F00 2 CALL DELAY
0003 9A0000000F 3 CALL FAR PTR DELAY2
0008 E90E00 4 JMP OVER
000B EB0C 5 JMP SHORT OVER
000D EA00000000 6 JMP FAR PTR OVER2

7
0012 B80300 8 DELAY MOV AX,# 3
0015 48 9 AGN DEC AX
0016 75FD 10 JNZ AGN
0018 C3 11 RET

12
0019 E8F6FF 13 OVER CALL DELAY
001C 9A0000000F 14 CALL FAR PTR DELAY2
0021 EBFE 15 DONE JMP FAR PTR DONE

16
17 COMN

0000 EA00000019 18 OVER2 JMP FAR PTR OVER
0005 EA00000021 19 JMP FAR PTR DONE
000A 9A00000012 20 CALL FAR PTR DELAY

21
000F B80300 22 DELAY 2 MOV AX,3
0012 48 23 AGN 2 DEC AX
0013 75FD 24 JNZ AGN2
0015 C3 25 RET

Errors= 0

6-20 Programming Considerations

Notice that the FAR PTR keyword operators have no effect on
the last JMP instruction in the PROG segment (PROG is in-
itially the default code area). When JMP instruction operands
contain labels whose addresses are backward relative to the cur-
rent program counter address, the assembler will generate code
for the shortest possible JMP instruction, regardless of any at-
tempted type overrides. This is demonstrated when the assem-
bler generates code for a short (within 0FFH bytes) jump in the
JMP FAR PTR DONE instruction in the example above.

Using the SHORT
Keyword Operator

The SHORT in the previous programs JMP SHORT OVER in-
struction is yet another keyword operator. The SHORT key-
word operator is used when the label in a JMP instruction’s op-
erand is a forward reference, i.e., the label is defined later on in
the program, and within 0FFH bytes.

Using the LABEL
Pseudo Instruction

An alternative exists to issuing type overrides in assembly lan-
guage instructions as a means of changing the "type"
associated with a memory location. You can assign more than
one type to the same memory location with the LABEL or EQU
pseudo instructions. Both LABEL and EQU are special
8086/8088 pseudo instructions. The LABEL pseudoinstruction
is equivalent to a combination of the EQU pseudo instruction
and the THIS keyword operator. Consider the following instruc-
tions:

Programming Considerations 6-21

LOCATION OBJECT CODE SOURCE LINE

1 "8086"
2 DATA
3 DOUBLE LABEL DWORD
4 UPWORD LABEL WORD

0000 43 5 BYTE3 DB 43H
0001 22 6 BYTE2 DB 22H

7 LOWORD LABEL WRD
0002 CC 8 BYTE 1 DB 0CCH
0CCH 0003 8A 9 BYTE 0 DB 8AH

10
11 PROG
12 ASSUME CS:PROG,DS:DATA

0000 B80000 13 MOV AX,SEG DOUBLE
0003 8ED8 14 MOV DS,AX

15
0005 C53E0000 16 LDS DI,DOUBLE
0009 C53E0000 17 LDS DI,DWORD PTR UPWORD
000D C53E0000 18 LDS DI,DWORD PTR BYTE3

19
0011 FF2E0000 20 JMP DOUBLE
0015 FF2E0000 21 JMP DWORD PTR UPWORD
0019 FF2E0000 22 JMP DWORD PTR BYTE3

23
001D A10000 24 MOV AX,UPWORD
0020 A10000 25 MOV AX,WORD PTR BYTE3

26
0023 A00003 27 MOV AL,BYTE0
0026 A00003 28 MOV AL,BYTE PTR LOWORD+ 1

Errors= 0

Here, with four bytes of memory, DOUBLE is defined which is
assigned type DWORD. UPWORD and LOWORD are as-
signed type WORD. BYTE3, BYTE2, BYTE1, and BYTE0 are
assigned type BYTE. Equivalent instructions, using different la-
bels, are written in the PROG segment to show that different la-
bels refer to the same memory locations.

6-22 Programming Considerations

Using the THIS
Keyword Operator

The same program repeated below uses the EQU pseudo in-
struction in conjunction with the THIS keyword operator.

LOCATION OBJECT CODE SOURCE LINE

1 "8086"
2 DATA

< 0000> 3 DOUBLE EQU THIS DWORD
< 0000> 4 UPWORD EQU THIS WORD

0000 43 5 BYTE 3 DB 43H
0001 22 6 BYTE 2 DB 22H

< 0002> 7 LOWORD EQU THIS WORD
0002 CC 8 BYTE 1 DB 0CCH
0003 8A 9 BYTE 0 DB 8AH

10
11 PROG
12 ASSUME CS:PROG,DS:DATA

0000 B80000 13 MOV AX,SEG DOUBLE
0003 8ED8 14 MOV DS,AX

15
0005 C53E0000 16 LDS DI,DOUBLE
0009 C53E0000 17 LDS DI,DWORD PTR UPWORD
000D C53E0000 18 LDS DI,DWORD PTR BYTE3

19
0011 FF2E0000 20 JMP DOUBLE
0015 FF2E0000 21 JMP DWORD PTR UPWORD
0019 FF2E0000 22 JMP DWORD PTR BYTE3

23
001D A10000 24 MOV AX,UPWORD
0020 A10000 25 MOV AX,WORD PTR BYTE 3

26
0023 A00003 27 MOV AL,BYTE0
0026 A00003 28 MOV AL,BYTE PTR LOWORD+ 1

Errors= 0

Programming Considerations 6-23

Creating labels with different "types" also applies to instruction
location labels. To illustrate how different "types" may be as-
signed to the same instruction location, the next program makes
type FAR all intersegment jumps and calls by associating the
same instruction location with different "types".

LOCATION OBJECT CODE SOURCE LINE

1 "8086"
0000 E80900 2 CALL DELAY
0003 E8000F 3 CALL DELAY2 ERROR-IO
0006 E90A00 4 JMP OVER
0009 E90000 5 JMP OVER2
ERROR-IO, see line3 ^

6
7 FAR_DELAY PROC FAR

000C B80300 8 DELAY MOV AX,# 3
000F 48 9 AGN DEC AX
0010 75FD 10 JNZ AGN
0012 CB 11 RET

12
13 FAR_OVER LABEL FAR

0013 E8F6FF 14 OVER CALL DELAY
0016 E8000F 15 CALL DELAY2
ERROR-IO,see line 5 ^

16 FAR_DONE LABEL FAR
0019 EBFE 17 DONE JMP DONE

18
19 COMN
20 OVER 2 LABEL FAR

0000 EA00000013 21 JMP FAR_OVER
0005 EA00000019 22 JMP FAR_DONE
000A 9A0000000C 23 CALL FAR_DELAY

24
25 DELAY2 PROC FAR

000F B80300 26 MOV AX,3
0012 48 27 AGN 2 DEC AX
0013 75FD 28 JNZ AGN 2
0015 CB 29 RET

Errors= 3,previous error at line15
IO - Invalid Operand, Invalid or unexpected operand encountered or operand is missing

6-24 Programming Considerations

Using the PROC
Pseudo Instruction

PROC is a new special 8086/8088 pseudo instruction used in the
program above. PROC pseudo instruction operates in the same
way as the LABEL pseudo except that only the "types" NEAR or
FAR may be associated with the next
instruction location.

Notice that intersegment jumps and calls in the COMN segment
all have the "type" FAR associated with their operands. (The as-
sembler generates five bytes of code for FAR jumps or calls in
the program above.)

Error messages are caused by intersegment JMP and CALL in-
structions in the PROG segment (initially the default code
area). Errors occur because intersegment JMP and CALL oper-
ands contain labels that are defined later on in the program. For-
ward references to labels that are assigned "type" FAR must con-
tain type overrides. Adding the FAR PTR keyword operators to
the forward referencing JMP and CALL instruction operands
will result in the code shown below.

Programming Considerations 6-25

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
0000 E80D00 2 CALL DELAY
0003 9A0000000F 3 CALL FAR PTR DELAY2
0008 E90C00 4 JMP OVER
000B EA00000000 5 JMP FAR PTR OVER2

6
7 FAR_DELAY PROC FAR

0010 B80300 8 DELAY MOV AX,# 3
0013 48 9 AGN DEC AX
0014 75FD 10 JNZ AGN
0016 CB 11 RET

12
13 FAR_OVER LABEL FAR

0017 E8F6FF 14 OVER CALL DELAY
001A 9A0000000F 15 CALL FAR PTR DELAY2

16 FAR_DONE LABEL FAR
001F EBFE 17 DONE JMP DONE

18
19 COMN
20 OVER2 LABEL FAR

0000 EA00000017 21 JMP FAR_OVER
0005 EA0000001F 22 JMP FAR_DONE
000A 9A00000010 23 CALL FAR_DELAY

24
25 DELAY 2 PROC FAR

000F B80300 26 MOV AX,3
0012 48 27 AGN 2 DEC AX
0013 75FD 28 JNZ AGN2
0015 CB 29 RET

Errors= 0

6-26 Programming Considerations

Other Keyword
Operators

HIGH, LOW, OFFSET, SEG, SIZE, and TYPE are all keyword
operators used with program labels to create
assembly language instruction immediate operands. (See table 6-
1 for the individual descriptions of these keyword operators.)

Predefined
Symbols

When writing assembly language programs you need to be aware
that certain symbols have been predefined and may not be used
as symbols (labels) in your programs. Predefined symbols in-
clude register names, and special operands for pseudo instruc-
tions. The predefined symbols are shown in table 6-2.

Programming Considerations 6-27

Microprocessor Register Names

AH BP CX ES
AL BX DH IP
AX CH DL SI
BH CL DS SP
BL CS DX SS

Keyword Operators

BYTE LOW PTR BYTE
DWORD NEAR QWORD THIS
FAR NOTHING SEG TYPE
HIGH OFFSET SHORT WORD

SIZE

Segment Names

ORG PROG DATA COMN

Pseudo Instruction Operands

EO DPL0 DPL2 RO
ER DPL1 DPL3 RW

Miscellaneous Symbols

ABS LENGTH MODULE_NUMBER ST

Table 6-2. Predefined Symbols

6-28 Programming Considerations

Operands

Register Operands Forms register operands may take are:

16-BIT GENERAL 8-BIT SEGMENT
REGISTERS REGISTERS REGISTERS

AX AH- High byte of AX CS
BX AL - Low byte of AX DS
CX BH - High byte of BX ES
DX BL - Low byte of BX SS
SP CH - High byte if CX
BP CL - Low byte of CX
SI DH - High byte of DX
DI DL - Low byte of DX

The accumulator may be either AX or AL.

Default Register
Operands

The default register AL is for byte operations. The following in-
structions accomplish identical results:

MOV BYTE PTR[BX]
MOV AL,BYTE PTR[BX]

The default register AX is for word operations. The
assembler will generate identical code for the following
instructions:

ADD WORD PTR[SI],
ADD WORD PTR[SI],AX

The comma in the first instruction is necessary. Otherwise, the
assembler will interpret AX as the destination operand.

Programming Considerations 6-29

Immediate Operands Forms that immediate operands may take are:

16-BIT IMMEDIATE OPERANDS 8-BIT IMMEDIATE OPERANDS

0 - # 0FFFFH # 0 - # 0FFH
SEG ABEL HIGH ABEL
OFFSET ABEL LOW ABEL

SIZE ABEL
TYPE ABEL

Unless one of the keyword operators is used to create an
immediate operand, immediate operands must be prefixed by
the pound (#) symbol. If operands are not prefixed by a key-
word operator or a pound sign, the first character in each oper-
and must be a digit.

The "type" WORD will be associated with operands containing
the SEG and OFFSET keyword operators. Likewise, the "type"
BYTE will be associated with the operands containing the
HIGH, LOW, SIZE, and TYPE keyword operators. (No "type"
is implied with number operands.)

Valid forms for program labels (identified by < LABEL>
above) are discussed in the source file format chapter 5.

6-30 Programming Considerations

Memory Operands Forms that memory operand may take are shown below:

ADDRESSING MODE MEMORY OPERAND FORMS

Direct ABEL
Register Indirect [BX]

[BP]
[SI]
[DI]

Based < DISP> [BX]
< DISP> [BP]

Indexed < DISP> [SI]
< DISP> [DI]

Based Indexed < DISP> [BX] [SI]
< DISP> [BX] [DI]
< DISP> [BP] [SI]

 < DISP> [BP] [DI]

All memory operands may contain segment and type override
prefixes.

In the based indexed addressing mode, the order in which the
base and index registers appear does not matter.

Optional displacement value < DISP> can be a program label
(whose format is discussed in the source file format chapter 5),
or an immediate value (containing the pound (#) prefix only).

Base or index registers enclosed in brackets may be followed by
plus (+) or minus (-) constant expressions as shown below:

[BX+ VALU]
[SI-7+ 3]
[BP+ 80H]
[DI+ VALU-4]

Label VALU in the operands shown above must be equivalent
to a constant expression.

Programming Considerations 6-31

String Operations All string operations use source index register (SI) to
address the source operands, which are assumed to be in the cur-
rent data segment (segment contained in DS). (The source seg-
ment may be overridden.)

Destination index register (DI) is used to address the destina-
tion operands, which are assumed to be located in the current
extra segment (segment contained in ES). (The destination seg-
ment must always be in ES.)

If the direction flag (DF) is cleared, the operand pointers are in-
cremented after each operation: once for byte operations and
twice for word operations. If the DF flag is set, the operand
pointers are decremented after each operation.

.

6-32 Programming Considerations

7

Pseudo Instruction Summary

Introduction This chapter describes the HP Model 64000 assembler pseudo
instructions. The pseudo instructions are used for listing con-
trol, program counter, linkage control, and constant definitions.

An assembler pseudo may be either an instruction to the
assembler or a request for so special service. Most pseudos re-
quire no memory space because, unlike microprocessor
instructions, they produce no object code.

The pseudo instruction descriptions are organized
alphabetically in this chapter. A summary of the pseudoinstruc-
tions is shown below.

Pseudo Instruction Summary 7-1

HP 64000 Pseudo
Instructions

Pseudo Function

ASC Stores data in memory in ASCII format.
BIN Stores data in memory in binary format.
COMN Assigns common block of data or code to a specific location in memory.
DATA Assigns data to a specific location in memory.
DECIMAL Stores data in memory in decimal format.
END Terminates the logical end of a program module. Operand field can be used to in-

dicate the starting address in memory for program execution.
EXPAND Causes an output listing of all source and macro generated codes.
GLB Defines symbol that is used globally (referenced by other program modules).
HEX Stores data in memory in hexadecimal format.
IF Allows sections of code to be conditionally assembled.
INCLUDE Allows a secondary file to be included in the source input stream.
LIST Used to modify output listing of program.
MASK Performs AND/OR logical operations on designated ASCII string.
NAME Permits used to add comments for reference in the load map.
NOLIST Suppresses output listings (except error messages).
OCT Allows user to store data in octal format.
ORG Sets program counter to specific memory address for absolute programming.
PROG Assigns source statements to a specific location in memory. Assembler default con-

dition is PROG storage area.
REAL Converts real decimal numbers to IEEE binary floating point constants.
REPT Enables user to repeat a source statement any number of times.
SET Defines label field symbol with operand field value. Symbol can be redefined.
SKIP Enables user to skip to a new page to continue program listing.
SPC Enables user to generate blank lines within program listing.
TITLE Enables user to create a test line at the top of each page listing for the source pro-

gram.
WARN/
NOWARN Turn warning message in source listing ON or OFF.

7-2 Pseudo Instruction Summary

Special 8086/8088
Pseudo
Instructions

Pseudo Function

ALIGN Increments the current program counter address, if odd.
ASSUME Associates a segment register with a segment name (PROG, DATA, COMN, or

ORG).
DB Defines and initializes BYTE length memory locations.
DBS Reserves memory space in bytes.
DD Defines and initializes DWORD (double-word) length memory locations. DD can

also be used to define real numbers.
DDS Reserves memory space in double-words.
DW Defines and initializes WORD length memory locations.
DWS Reserves memory space in words.
EQU Equates label field symbol with operand value. Operands may be the same as any

regular instruction operand. The label field symbol cannot be redefined.
EXT Defines external symbols. May also associate the symbol with a segment register

and a TYPE.
LABEL Creates and assigns a TYPE to the label field symbol. The address of the symbol

will be the next memory location.
PROC Creates a procedure label of type FAR or NEAR.
SET Allows symbols to be defined and assigned values. A symbol defined with the SET

pseudo may have its value changed later on in the program with another SET
pseudo instruction.

Pseudo Instruction Summary 7-3

Pseudo
Instruction Syntax

The following descriptions list and define each assembler and
control instruction in detail. They are listed alphabetically.

Note Special 80286, 8087, and 8089 pseudo instruction descriptions
are found in their respective appendices.

7-4 Pseudo Instruction Summary

ALIGN Align to Word Boundary
(Special 8086/8088 Series Pseudo)

Syntax Label Operation Operand

ALIGN

Description If the current program counter address is odd, ALIGN will incre-
ment the program counter by one. This optimizes word data
storage, since access time is less when an address is on a word
boundary.

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
0000 0001 2 NAME1 DB 0,1
0002 02 3 NAME2 DB 2

4 ALIGN
0004 0000 5 NAME3 DW NAME1
0006 0002 6 NAME4 DW NAME2

Errors= 0

Pseudo Instruction Summary 7-5

ASC Store ASCII Data in Memory

Syntax Label Operation Operand

[symbol] ASC string expression
or

[symbol] ASCII string expression

Description The ASC pseudo instruction allows the user to store ASCII text
in memory using quotation marks, apostrophes or carets (^) as
delimiters. The first delimiter must be used as the terminating
delimiter.

The ASCII character(s) specified in the operand field may be in
the form of a string expression.

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
0000 4142436162 2 ASC "ABCabc"
0005 63
0006 4141274127 3 ASCII "AA’A’AA"
000B 4141
000D 4242224141 4 ASCII ’BB"AA"BB’
0012 224242

Errors= 0

7-6 Pseudo Instruction Summary

ASSUME Assume Segment Location
(Special 8086/8088 Series Pseudo)

Syntax Label Operation Operand

ASSUME segreg:segnam [,...]
or
ASSUME NOTHING (default)

Description The ASSUME instruction informs the assembler of the
addresses contained in the segment registers. The instruction is
required prior to any memory references which do not explicitly
name a segment register.

The ASSUME declaration associates a segment register with a
segment name. All references to items in the named segment
cause segment override prefixes to be generated if necessary.

The ":segnam" portion of the syntax statement must be one of
the following:

PROG
DATA
COMN
ORG
NOTHING

The ASSUME NOTHING instruction removes all former
assumptions as to which base addresses were in which
segment registers. This turns off the implicit generation of seg-
ment-overrides. Initially, all segment registers are
assumed to NOTHING.

Pseudo Instruction Summary 7-7

ASSUME (Cont’d)

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
0000 2 LABEL DWS 2
0004 2EA10000 3 MOV AX,DS:LABEL
0008 A1 4 MOV AX,LABEL
ERROR-IO

5 ASSUME CS:PROG
0009 2EA10000 6 MOV AX,LABEL

Errors= 1,previous error at Line4
IO-Invalid Operand, Invalid or unexpected operand encountered or operand is missing.

7-8 Pseudo Instruction Summary

BIN Store Word Length Binary Data in Memory

Syntax Label Operation Operand

[symbol] BIN binary number(s)
or

[symbol] BINARY binary number(s)

Description The BIN pseudo instruction allows the user to store data in bi-
nary format in memory.

The number(s) specified in the operand field is (are) written in
binary format. If more than one operand is specified, each must
be separated from the other by a comma. Each operand specifies
a 16 bit word.

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
0000 0008 2 BIN 1000
0002 0006000C 3 BINARY 110,1100
0006 00030006 4 LBL BIN 011,0110

Errors= 0

Pseudo Instruction Summary 7-9

COMN/DATA/PROG Designated Memory Storage Area

Syntax Label Operation Operand

COMN
or
DATA
or
PROG

Description Three program counters are used to identify areas of relocatable
code. The areas are designated as data (DATA), program
(PROG), and common (COMN). You can change from one re-
locatable area to another using these pseudoinstructions.

PROG and DATA instructions function identically. They are
merely two names that identify two separate, relocatable mem-
ory areas. Common (COMN) allows construction of a common
block of data used by different program modules. The default
area is PROG.

Normally, the default memory area (PROG) will be used when
constructing a source program. The DATA memory area might
occupy another part of memory. DATA can be used for storing
data, tables, instructions, etc.

The COMN pseudo can be used to group information that is
common to a number of program modules. Assigning these type
of items to a specific area in memory facilitates program modifi-
cation and referencing.

7-10 Pseudo Instruction Summary

COMN DATA
PROG (Cont’d)

Note All information assigned to the COMN area in memory must be
grouped in one program file. If two or more files
assign information to the COMN area, the linker will overlay
the first data stored with the second block of data
assigned, thereby erasing the first block of data. However, this
feature may be useful in the design of software systems requiring
overlays.

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
2 COMN

0000 4558414D50 3 ASC "EXAMPLE"
0005 4C45

4 DATA
0000 00030008 5 LBEL BIN 011,1000,011
0004 0003

6 PROG
0000 BB0000 7 MOV BX,# LBEL

Errors= 0

Pseudo Instruction Summary 7-11

DB Define Byte
(Special 8086/8088 Series Pseudo)

Syntax Label Operation Operand

[Name] DB [expression,...]

Description The DB instruction may be used to accomplish the following:

• Initialize memory locations.

• Define the type characteristic of variables.

When used with a variable expression in the label field, the DB
instruction defines the variable to be type "BYTE". The DB in-
struction cannot be used to initialize memory storage using an
address expression in the operand field. To initialize storage
with characters, enclose the characters in quotation marks or
apostrophes. The DB instruction is the only legal instruction
for strings that contain more than two characters. Each charac-
ter in the string requires one byte of memory.

7-12 Pseudo Instruction Summary

DB (Cont’d)

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
0000 0001 2 V1 DB 0,1
0002 05 3 V2 DB 5
0003 4142434445 4 V3 DB "ABCDE"
0000 8A00000 5 MOV AL,DS:V1
000B 8A1E0001 6 MOV BL,DS:V1+ 1
000F 8A2E0002 7 MOV CH,DS:VS

Errors= 0

Pseudo Instruction Summary 7-13

DBS Define Byte Storage
(Special 8086/8088 Series Pseudo)

Syntax Label Operation Operand

Name DBS expression

Description The DBS instruction reserves space in bytes. Expression must
be a valid assembly time expression with no forward references.
DBS causes the program counter to be incremented by the value
of expression. It will define NAME as a valid byte variable.

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
0000 2 TABLE DBS 10
000A 00 3 V1 DB 0

Errors= 0

7-14 Pseudo Instruction Summary

DD Define Double-Word
(Special 8086/8088 Series Pseudo)

Syntax Label Operation Operand

[Name] DD [expression,...]

Description The DD instruction may be used to accomplish the following:

• Initialize memory locations.

• Define the type characteristic of variables.

When used with a variable expression in the label field, the DD
instruction defines the variable to be type double-word.

When an address expression is used in the operand field, the DD
instruction will initialize two words of memory with the segment
and offset of the variable.

When using character strings to initialize memory storage, the
length of the character string is restricted to a maximum of two
characters. The characters are swapped and placed in the low or-
der word, with the high word being zero. If only a single charac-
ter is used, it will be placed in the high byte of the low word.

The DD operation can also be used to define real-number
pseudos. Real numbers are always expressed in decimal values.
Be sure to include the decimal point. You may use either the
normal decimal or the scientific form of the expression. You
may also specify either positive or negative numbers and expo-
nents (+ /-n.mE+ /-x). Positive numbers are assumed if you do
not specify.

Pseudo Instruction Summary 7-15

DD (Cont’d)

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
0000 00000000 2 P1 DD P1
0004 0000001C 3 P2 DD L
0008 00000000 4 P3 DD P1
000C 0000E442 5 J1 DD 114.0
0010 0000C842 6 J2 DD 1.0E2
0014 00401CC6 7 J3 DD -1.0E4
0018 8FC2F53D 8 J4 DD 120.0E-3
001C C51E0000 9 L LDS BX,DS:P1
0020 C4E60008 10 LES SI,DS:P3
0024 2EFF2E0004 11 JMP CS:P2

Errors= 0

7-16 Pseudo Instruction Summary

DDS Define Double-Word Storage
(Special 8086/8088 Series pseudo)

Syntax Label Operation Operand

Name DDS expression

Description The DDS instruction reserves space in double words. Expres-
sions must be valid assembly expressions with no forward refer-
ences. DDS causes the program counter to be
incremented by four times the value of the expression. It will de-
fine NAME as a valid double word expression.

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
0000 2 TABL DDS 4
0010 FFFF00000 3 P1 DD 65535

Errors= 0

Pseudo Instruction Summary 7-17

DW Define Word
(Special 8086/8088 Series Pseudo)

Syntax Label Operation Operand

[Name] DW [expression, ...]

Description The DW instruction may be used to accomplish the following:

• Initialize memory locations.

• Define the type characteristic of variables.

When used with a variable expression in the label field, the DW
instruction defines the variable to be type word.

When an address expression is used in the operand field, the
DW instruction will initialize a word of memory with the offset
of the variable.

When using character strings to initialize memory storage, the
length of the character string is restricted to two characters. The
characters will be swapped in memory. If a single character is
specified, it will be placed in the byte with the higher numbered
address.

7-18 Pseudo Instruction Summary

DW (Cont’d)

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
0000 0000424102 2 X DW 0,"AB",2
0005 00
0006 0000 3 Y DW X
0008 8B1E006 4 MOV BX,DS:Y
000C A10004 5 MOV AX,DS:X+ 4
000F 8B07 6 MOV AX, [BX]
0011 A30002 7 MOV DS:X+ 2, AX

Errors= 0

Pseudo Instruction Summary 7-19

DWS Define Word Storage
(Special 8086/8088 Series Pseudo)

Syntax Label Operation Operand

Name DWS expression

Description The DWS instruction reserves space in words. Expressions must
be valid assembly time expressions with no forward references.
DWS causes the program counter to be incremented by twice
the value of expression. It will define NAME as a valid word
variable.

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
00000000 2 STRG DWS 0AH
0014 FFFF 3 P1 DW 65535

Errors= 0

7-20 Pseudo Instruction Summary

DECIMAL Decimal Constant

Syntax Label Operation Operand

[symbol] DECIMAL decimal number

Description The DECIMAL pseudo instruction allows the user to store data
in decimal format in memory.

The number(s) specified in the operand field is (are) written in
decimal format. If more than one operand is specified, each one
must be separated from the other by a comma.

Note The DECIMAL pseudo instruction can be used in the form
DEC.

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
0000 007F00FF 2 DECIMAL 127,255
0004 0000 3 DECIMAL 65536

Errors= 0

Pseudo Instruction Summary 7-21

END Program Module Termination

Syntax Label Operation Operand

END [expression]

Description The END instruction terminates the logical end of a program
module. It is optional. If omitted, the program will be automat-
ically terminated after the last statement in the program module
being edited.

The optional expression in the operand field represents the
starting address in memory for program execution. This
address initializes the program counter when the file is loaded
during emulation. The expression must be an
absolute or relocatable value (not an external symbol refer-
ence).

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
0000 007F00FF 2 DECIMAL 127,255
0004 0000 3 DECIMAL 65536

4 END

Errors= 0

7-22 Pseudo Instruction Summary

EQU Equate
(Special 8086/8088 Series Pseudo

Syntax Label Operation Operand

[symbol] EQU expression

Description The EQU instruction is used to establish a relationship
between a symbol and an expression. The symbol in the label
field acquires the same value as the expression in the operand
field. Redefinition of the symbol is not permitted. If the operand
field of an EQU instruction contains another symbol, it must be
defined previously in the source program.

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
0000 0000 2 X DB 0,0

< 0002> 3 TWO EQU # 2
< 0001> 4 X1 EQU DS:WORD PTR

X [BP+ 1] [DI]
< 0000> 5 XH EQU HIGH X

0002 6602060000 6 ADD XX
ERROR-ET ^
ERROR-ET, see Line 6 ^
ERROR - IO, see Line 6 ^

< 0000> 7 XX EQU AX
0007 03C0 8 ADD AX

Errors = 3, previous error at line 6
ET - Expression Type, The type of expression is not valid or the operand is not valid
IO - Invalid Operand, Invalid or unexpected operand encountered or operand is missing

Pseudo Instruction Summary 7-23

EXPAND Listing of Macro Expansions

Syntax Label Operation Operand

EXPAND

Description The EXPAND instruction can be used in the assembler direc-
tive statement or embedded in the source program. If embedded
in the source program, it will generate, within the output listing,
all macro and data expansions that follow it.

You may exit the EXPAND output listing mode by embedding
the LIST directive in the proper location within the source pro-
gram.

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
2 EXPAND

0000 4142436162 3 ASC "ABCabc"
0005 63
0006 4141274127 4 ASCII "AA’A’AA"
000B 4141
000D 4242224141 5 ASCII ’BB"AA"BB’
0012 224242

6 LIST
0015 4142436162 7 ASC "ABCabc"
001B 414274127 8 ASCII "AA’A’AA"
0022 4242224141 9 ASCII ’BB"AA"BB’

Errors= 0

7-24 Pseudo Instruction Summary

EXT Define External Symbols
(Special 8086/8088 Series Pseudo)

Syntax Label Operation Operand

EXT SYMBOL1,SYMBOL2
or
EXTRN SYMBOL1,SYMBOL2
or
EXTERNAL SYMBOL1,SYMBOL2

Note Do not use the "EXT" short form of "EXTERNAL" in the
"70108", "70116", "70320", and "70330" microprocessor modes.
The NEC processors recognize an instruction with the mne-
monic name of "EXT." Using the "EXT" form of
the EXTERNAL pseudo op will cause a conflict with the
instruction mnemonic "EXT" and cause an "IO - Invalid Oper-
and" error at the pseudo op location. Use either "EXTRN" or
"EXTERNAL" to refer to this pseudo op when in the NEC mi-
croprocessor modes.

Description The EXT instruction permits the optional listing of segment reg-
ister (segreg) and type required for the 8086 and 8088 micro-
processors. The EXT instruction also provides a list of symbols
referenced in this program module but defined in another pro-
gram module. When multiple symbols are listed in the operand
field, they must be separated by commas.

The optional TYPE, when required, may be BYTE, WORD,
DWORD, NEAR, FAR, or ABS. (The ABS type allows you to
declare constant numbers, which have been declared global

Pseudo Instruction Summary 7-25

EXT (Cont’d)
in other modules, as externals.) If no TYPE is declared, the as-
sembler assigns NEAR by default. If no segreg is declared, the
assembler assigns it to NOTHING by default.

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
2 EXT CS:SAM,

CS:GEORGE
3 EXT DS:PETE, WORD

FRED
0000 A00000 4 MOV AL,PETE
0003 26A10000 5 MOV AX,ES:FRED
0007 E90000 6 JMP SAM
000A 9A00000000 7 CALL FAR PTR GEORGE

Errors= 0

7-26 Pseudo Instruction Summary

GLB Define Global Symbols

Syntax Label Operation Operand

GLB SYMBOL1,SYMBOL2
or
GLOBAL SYMBOL1,SYMBOL2

Description Symbols that are defined in one program module and referenced
by other program modules must be declared global in the pro-
gram module where they are defined.

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
2 GLB LBEL
3 GLOBAL TABLE

0000 4 TABLE DDS 3
< 2000> 5 LBEL EQU 2000H

Errors= 0

Pseudo Instruction Summary 7-27

HEX Store Hexadecimal Data in Memory

Syntax Label Operation Operand

[symbol] HEX hexadecimal number

Description The HEX pseudo instruction allows the user to store data in
hexadecimal format. The number(s) specified in the operand
field is (are) written in hexadecimal format. If more than one op-
erand is specified, each one must be separated from the other by
a comma.

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
0000 00FFFFFF 2 HEX FF,0FFFF
0004 000A00FE 3 EXEC HEX A,FE,05,5F,7,81
000C 00070081
0010 FFFF 4 HEX FFFFFF

Errors= 0

7-28 Pseudo Instruction Summary

IF Conditional Assembly
(Special 8086/8088 Series Pseudos

Syntax Label Operation Operand

IF < absolute expression>
.

ELSE .
.

IFEND or ENDIF
or
IF < absolute expression>

.

.

.
IFEND or ENDIF

Description The IF pseudo instruction allows sections of code to be condi-
tionally assembled. Sections of code are assembled or skipped
based on an absolute expression. This expression is treated as a
Boolean function with either a TRUE or a FALSE value.

The IF instruction evaluates an absolute expression as a logical
function with the value zero FALSE and a nonzero value
TRUE. When the expression evaluates to a nonzero (TRUE)
condition, the code following the IF instruction is assembled un-
til an ELSE or IFEND or ENDIF instruction is encountered. If
the expression evaluates to zero (FALSE), then the ELSE part
of the IF instruction is assembled until an IFEND or ENDIF is
found. The expression type must be absolute (type= 0). All sym-
bolic references must be defined before being used with a IF in-
struction. The lower 32 bits of the expression value are used to
determine the true or false condition. The IFEND or ENDIF in-
structions are used to terminate the IF instruction. They must
either follow the

Pseudo Instruction Summary 7-29

IF (Cont’d) ELSE instruction or the IF instruction if no ELSE portion is de-
sired.

Conditional IF instructions can be nested up to 20 levels deep.
If the nesting levels exceed 20, then an I0 (invalid operand) er-
ror will be flagged on the IF instruction. If an error is flagged on
an ELSE or IFEND/ENDIF instruction, a nesting level error
has occurred. One of these three instructions was encountered
before an IF instruction or more IFEND or ENDIF instructions
were found than IF
instructions. The end of the assembly source is treated as an
IFEND or ENDIF instruction and no error is flagged if the as-
sembler is currently in an IF instruction.

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
< 0058> 2 TRUE EQU 58H
< 000> 3 FALSE EQU 0

4
5 IF TRUE

0000 B85800 6 MOV AX,TRUE
7 ELSE
8 MOVE AX,FALSE
9 ENDIF
10
11 IF FALSE
12 MOVEW AX,TRUE
13 ELSE

0003 B80000 14 MOV AX, FALSE
15 ENDIF

Errors= 0

7-30 Pseudo Instruction Summary

INCLUDE Include Secondary File in Source Input

Syntax Label Operation Operand

INCLUDE < Host-Specific File
Naming Conventions>

Description The INCLUDE pseudo instruction allows a secondary file to be
included in the source input stream. Only one level of inclusion
is allowed. Nested INCLUDE files will result in an error mes-
sage.

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
2 INCLUDE C:/USERID/BIN
+ "8086"

ERROR-IS ^
0000 000B + BIN 1011
0002 0006000C + BINARY 110,1100
0006 00030006 + LBEL BIN 011,0110
Errors= 1, previous error at line 2
IS - Illegal Symbol, Syntax expected an identifier and encountered an invalid character or term

Pseudo Instruction Summary 7-31

LABEL Label
(Special 8086/8088 Series Pseudo)

Syntax Label Operation Operand

Name LABEL [type]

Description The LABEL instruction may be used to create a symbol name
and assign a type to that symbol. Available types that may be as-
signed to a symbol are: BYTE, WORD, DWORD, NEAR, and
FAR. If no type is specified, the default is NEAR.

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
2 MEM_WORD LABEL WORD

0000 2214 3 MEM_BYTE DB 22H,14H
0002 A10000 4 MOV AX,DS:MEM_WORD
0005 A10000 5 MOV AX,DS:WORD PTR

MEM_BYTE
0008 A00000 6 MOV AL,DS:MEM_BYTE

7000B E90A00 8 JMP DONE_NEAR
000E EA00000018 9 JMP FAR PTR DONE_FAR
00113 9A00000018 10 CALL FAR PTR DONE_FAR

11 DONE_FAR LABEL FAR
0018 EBFE 12 DONE_NEAR JMP DONE_NEAR
001A EBFC 13 JMP FAR PTR DONE_FAR
001C 9A100000018 14 CALL DONE_FAR

Errors= 0

7-32 Pseudo Instruction Summary

LIST Format Assembler Listfile

Syntax Label Operation Operand Comment

LIST
or
LIST < decimal number> ;controlled

;listing

Description The LIST instruction can be used in the assembler directive
statement or embedded in the source program. If embedded in
the source program, it will generate one line of output for each
line of source code that follows it.

The output listing can be controlled so that a desired number of
lines per output page can be achieved. See the ASSEMBLING
YOUR PROGRAMS (chapter 3) for information on specifying
the page length of assembler output listings.

Note All LIST instructions embedded in the source program will be
overridden if any list option is specified in the assembler direc-
tive statement. (Refer to chapter 2 for assembler directive state-
ment definition.)

Pseudo Instruction Summary 7-33

LIST (Cont’d)

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
2 LIST 56
3 LIST

0000 4142436162 4 ASC "ABCabc"
0006 4141274127 5 ASCII "AA’A’AA"
000D 4242224141 6 ASCII ’BB"AA"BB’

7 EXPAND
0015 4142436162 8 ASC "ABCabc"
001A 63
001B 4141274127 9 ASCII "AA’A’AA"
0020 4242224141 10 ASCII ’BB"AA"BB’
0027 224242

Errors= 0

7-34 Pseudo Instruction Summary

MASK Set Mask

Syntax Label Operation Operand

MASK (AND),(OR)

Description The MASK instruction permits masking of ASCII strings. The
instruction affects ASCII strings only and will produce a logical
’AND’ operation with each ASCII character followed by a logi-
cal ’OR’ operation. (The OR operand is optional. However, the
’OR’ operation is always performed.)

The initial MASK conditions are:

AND = OFFH, and OR= 00H

Note When MASK is used with two operands, and then later with
only one, the previous second operand is still active.

Pseudo Instruction Summary 7-35

MASK (Cont’d)

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
0000 41424344 2 ASC "ABCD"

3 MASK 22H
0004 00020200 4 ASC "ABCD"

5 MASK OFFH
0008 41424344 6 ASC "ABCD"

7 MASK OFFH,55H
000C 55575755 8 ASC "ABCD"

9 MASK 22H
0010 55575755 10 ASC "ABCD"

Errors= 0

7-36 Pseudo Instruction Summary

NAME Add Comments to Load Map Listing

Syntax Label Operation Operand Comment

NAME "SALPHA" ;character
;string

Description The NAME instruction is used to add comments to the object
module for reference on the load map listing. The name string
may contain any combination of characters, numbers, or special
characters. NAME is limited to a maximum of 22 characters.

Example

"8086"
NAME "UP TO 22 CHARACTERS"
DB OFFH

Example Linker
(Load Map) Listing

PROGRAM DATA COMMON ABSOLUTE DATE TIME COMMENTS

000000 Tue, 10 Mar 1985 , 1:35 UP TO 22
CHARACTERS

000001

1

Pseudo Instruction Summary 7-37

NOLIST No Output Listing

Syntax Label Operation Operand

NOLIST

Description The NOLIST instruction can be used in the assembler directive
statement or embedded in the source program. If embedded in
the source program, it will suppress the output listing of all
source statements following it. If used in the assembler directive
statement, it will suppress all output listings except error mes-
sages.

Example Source File

"8086"
NOLIST
ASC "ABCabc"
ASCII "aa’A’AA"
ASCII ’BB"AA"BB’
EXPAND
ASC "ABCabc"
ASCII "AA’A’AA"
ASCII ’BB"AA"bb’

7-38 Pseudo Instruction Summary

NOLIST (Cont’d)

Example Assembler
Listing

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
6 EXPAND

0015 4142436162 7 ASC "ABCabc"
001A 63
001B 4141274127 8 ASCII "AA’A’AA"
0020 4141
0022 4242224141 9 ASCII ’BB"AA"BB’
0027 224242

Errors= 0

Pseudo Instruction Summary 7-39

OCT Store Octal Data in Memory

Syntax Label Operation Operand

[symbol] OCT octal number
or

[symbol] OCTAL octal number

Description The OCT pseudo instruction allows the user to store data in oc-
tal format.

The number(s) specified in the operand field is (are) written in
octal format. If more than one operand is specified, each one
must be separated from the other by a comma.

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
0000 07770077 2 OCT 777,77
0004 00050067 3 OCT 5,67,03
0008 0003
000A 7777 4 OCT 77777777

Errors= 0

7-40 Pseudo Instruction Summary

ORG Absolute Code Area

Syntax Label Operation Operand

ORG address

Description The ORG instruction is used for absolute programming. It sets
the contents of the location counter to the address entered in
the operand field. The next statement, following the ORG in-
struction, will be located at the address specified.

Note The ORG instruction cannot be used to alter the relocatable
area counters associated with the DATA, PROM, and COMN
instructions. The relocatable area instructions do not contain
operands. Their associated counters start at zero and are initial-
ized at linking time.

When using the ORG directive care should be taken to ensure
that the assigned memory location will not result in memory
overlap during the link operation.

A label symbol is generally not used in the operand field of this
instruction. However, if a symbol is entered, it must be defined
in a label field of a prior statement in the source program. The
symbol must be an absolute expression.

Pseudo Instruction Summary 7-41

PROC Procedure Definition
(Special 8086/8088 Series Pseudo)

Syntax Label Operation Operand

[Name] PROC [type]

Description The PROC instruction tells the assembler that the codes follow-
ing will be designated as type FAR or NEAR. The PROC in-
struction remains in effect until another PROC instruction is
given. If no PROC statement is used without designating a type,
the assembler assumes NEAR.

The value of a label will be the current location of the program
counter and it will be of the type listed in the operand field.

The PROC instruction (explicit or implicit) has the following ef-
fects:

• Associates the label with the current value of the program
counter and types the label.

• Determines whether the corresponding RET instruction will
be coded as an intersegment (between segments) return or as
an intrasegment (within segment) return.

— If a PROC FAR definition is used, then the corresponding
RET is coded as intersegment.

— If a PROC NEAR is used (or in the default case), then the
corresponding RET is coded as intrasegment.

The ENDP statement is illegal.

7-42 Pseudo Instruction Summary

PROC (Cont’d)

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
0000 E80800 2 CALL P1
0003 9A0000000D 3 CALL P2

0008 000B 40 4 P1 INC AX
000C C3 5 RET

6 P2 PROC NEAR
000D 43 7 INC BX
000E CB 8 RET
Errors= 0

The first call (to P1) is an implicit PROC because of the RET in-
struction. It defaults to NEAR. The second call (to P2) is explic-
itly identified as a PROC NEAR. If the NEAR was not present
in this definition, then the default would still be NEAR.

Pseudo Instruction Summary 7-43

PROC (Cont’d)

Note An error can occur if you try to make far procedure call to a rou-
tine within the same file. As an example, the following program
will generate a Legal Range error because the DWS instruction
has pushed out of the 64K segment limit. A more common case
(and more easily fixed) might be where a single file contains a
large amount of program code that causes the segment limit to
be exceeded. Changing the type of the PROC to FAR does not
solve the problem;
instead, a different kind of error is caused. To avoid these er-
rors, do not create code that will require a FAR CALL within
the same file.

1 "8086"
0000 E80000 2 CALL P1
ERROR - LR ^
0003 3 USESPCE DWS 65536

4 P1 PROC
0003 40 5 INC AX
0004 C3 6 RET

Errors= 1, previous error at line 2

LR - Legal Range, Address or displacement is out of range of the instructions’s addressing
capability.

7-44 Pseudo Instruction Summary

REAL Real Number

Syntax Label Operation Operand

REAL real decimal number

Description The REAL instruction converts real decimal numbers to IEEE
binary floating point constants. Short (32-bit) or long (64-bit)
IEEE binary floating point values can be generated by the
REAL instruction.

A real decimal number must start with a decimal digit(s), fol-
lowed by a decimal point, and end with a decimal digit(s). Pow-
ers of 10 are added after the decimal digit with an "E" or "L"
qualifier. Real decimal numbers specified with an "E" qualifier
or with no qualifier are converted to short real binary floating
point (32 bits). The "L" qualifier indicates a long real number.

Numbers are converted to the IEEE standard for real numbers
and stored high to low; where, the highest byte (containing the
sign bit) is stored at the lowest address value and the lowest byte
is stored at the highest address.

Pseudo Instruction Summary 7-45

REAL (Cont’d)

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
0000 3F8000000 2 REAL 1.0 ;= 1
0004 43C80000 3 REAL 1.0E2 ;= 100.
0008 3C2eD70A 4 REAL 1.0E-2 ;= 0 .01
000C BC23D70A 5 REAL -1.0E-2- ;= -0.01
0010 40590000 6 REAL -1.0L2 ;LONG REAL= 100
0014 00000000

Errors= 0

7-46 Pseudo Instruction Summary

REPT Repeat Next Source Statement

Syntax Label Operation Operand

REPT number

Description The REPT instruction is used to repeat the next source state-
ment any given number of times.

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
 2 REPT 4

0000 48 + DEC AX
0001 48 + DEC AX
0002 48 + DEC AX
0003 48 3 DEC AX

Errors= 0

Pseudo Instruction Summary 7-47

SET Define Symbol
(Special 8086/8088 Series Pseudo)

Syntax Label Operation Operand

symbol SET expression

Description The SET pseudo instruction allows a symbol to be defined and
assigned a value. It is similar to the EQU pseudo, except with
SET the value can be changed during the assembly process. The
expression used must be absolute (type = 0) and all symbolic
references must be defined before they are used.

Example

LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
< 1000> 2 EXEC SET 1000H
< 1004> 3 EXEC SET EXEC+ 4

Errors= 0

7-48 Pseudo Instruction Summary

SPC Line Space

Syntax Label Operation Operand

SPC [number]

Description Whenever a SPC instruction is encountered in the source pro-
gram, the assembler will space downward (line feed) a specified
number of lines. The number of line feeds required is indicated
in the operand field. If the operand field is left blank, the assem-
bler will generate one blank line. The SPC instruction is printed
in the output listing only if an error exists in the operand field.

Pseudo Instruction Summary 7-49

SPC (Cont’d)

Example Source File

"8086"
EXEC SET 1000H

SPC 3
EXEC SET EXEC+ 4

Example Listing

LOCATION OBJECT CODE LINE SOURCE LINE

1 " 8086"
< 1000> 2 EXEC SET 1000H

< 1004> 4 EXEC SET EXEC+ 4

Errors = 0

7-50 Pseudo Instruction Summary

TITLE Change Listfile Title

Syntax Label Operation Operand

TITLE "Name"

Description The TITLE instruction will initiate a page eject and create a
"Name" line at the top of each page listing for the source pro-
gram that follows. The title may be 70 characters in length and
may be changed any number of times during the program.

This statement, if inserted as the second statement in the source
program (directly after the assembler directive), will cause the ti-
tle to be printed on the first page listing the source program and
thereafter on the top of each page. Alternatively, if the TITLE
instruction is inserted in the program at some place other than
the second statement of the source program, the instruction will
initiate a page eject and the new title will be printed at the top
of the new page and each page thereafter.

Example

Hewlett Packard: Sample Title:

LOCATION OBJECT CODE LINE SOURCE LINE

Errors = 0

Pseudo Instruction Summary 7-51

WARN/NOWARN Warning/No Warning

Syntax Label Operation Operand

WARN
or
NOWARN

Description The NOWARN instruction turns off the warning message in the
source line. The WARN instruction restores it.

7-52 Pseudo Instruction Summary

8

Using Macro Instructions

Introduction This chapter discusses macro directives, their use and construc-
tion. Using macro definitions (macros) eliminates the repeti-
tious writing of the same sequence of instruction during source
code construction.

Any legitimate sequence of instructions may be incorporated
into a macro. This process is called "macro definition". Once de-
fined, a single macro call may be used at any point in the source
program to insert a sequence of instructions defined by the
macro definition. The insertion of a
sequence of instructions is referred to as "macro expansion".

Advantages of
Using Macros

A macro definition provides a means of producing, at program
assembly time, a commonly used sequence of
assembler statements as many times as needed. The
sequence of statements is specified just once as a macro. There-
after, at any point in the program where these statements are to
be produced, a single macro call will cause the sequence to be
generated.

Using Macro Instructions 8-1

Using macros properly will serve to:

• Simplify program coding.

• Significantly reduce programming errors otherwise caused by
rewriting similar instructions throughout the program.

• Ensure that common functions are performed by standard
routines.

• Improve program readability.

• Reduce duplication of effort among programmers
assigned to the project.

Disadvantages of
Using Macros

Variables used in a macro are only known within it. Such vari-
ables are local rather than global. This can create unecessary
confusion. Other disadvantages of macros are:

• Repetition of the same macro may create many instructions.

• Possible effects on registers and flags that may not be clearly
stated.

8-2 Using Macro Instructions

Macros –vs–
Subroutines

In some situations, a subroutine, rather than multiple in-line
macro statements, can reduce overall program size. Subroutines
require branching, then returning, from another part of the pro-
gram. Subroutines usually increase program execution time.
Variables in a subroutine are evaluated only during program
execution further slowing program execution. Macro parame-
ters are evaluated at assembly time and do not slow down
execution as much as subroutines.

Macro Format A macro definition consists of four parts that must appear in the
order given below:

1. Header statement.

2. Macro definition name.

3. Macro definition body.

4. Trailer statement.

Header Statement First the header statement occurs to specify both the name of
the new macro instruction and the formal arguments (parame-
ters) that will be used in the macro instruction. General macro
header syntax is:

Name MACRO [optional parameters]

Using Macro Instructions 8-3

Macro Definition
Name

Next the name of the macro definition is written in the label
field of the source statement and must not be terminated by a
colon (:). To avoid multiple-label conflicts, the assembler treats
labels within macros as local labels, applying only to that par-
ticular macro. MACRO is written in the operation field of the
source statement. The optional parameters follow in the oper-
and field of the source statement.

Macro Definition
Body

Next the body of a macro definition must define the action of
the macro instruction. There is no limit to the number of in-
structions that may appear in a macro definition body. Fields
within the macro body are the same as those of an assembler in-
struction. Rules for forming a macro statement resemble the
rules for forming an
assembler instruction.

Note Macro definition bodies may contain the names of other mac-
ros. In other words, macros may be defined in terms of other
macros. Macro bodies may not contain nested macros defini-
tions. A nested macro definition would be a completely new
macro defined within the macro body of another macro. Nested
macros are not allowed.

Macro Trailer
Statement

The last consideration is the trailer statement must consist of a
single line. The operand field of the line contains the word
MEND (macro end).

An example of a macro instruction is as follows:

8-4 Using Macro Instructions

Example Label Operation Operand Command

SAVE MACRO
OPC EXEC1
OPC SAVEA
OPC EXEC2
OPC SAVEB
MEND

Note The opcode symbol (OPC) listed in the operation field will take
the form of a mnemonic instruction for the specific microproces-
sor being programmed.

Calling Macros To call the SAVE macro, insert the macro name in the opera-
tion field of the source statement and the code in the body of
the macro will be generated in the program as if it had been
typed there. The generated instructions will be printed in the
listing of the program (only if the expand list option is speci-
fied).

Example

SAVE
OPC EXEC1
OPC SAVEA
OPC EXEC2
OPC SAVEB

Using Macro Instructions 8-5

Optional
Parameters

Formal parameters of a macro definition are often referred to
as symbolic variables. Macro symbolic parameters (as distin-
guished from ordinary labels or symbols) are those symbols that
may be assigned different values by the programmer. When as-
sembler instructions are generated according to the macro defi-
nition, dummy parameters are replaced by values that have
been assigned to them. Three simple rules must be followed
when forming dummy parameters:

• The first character of the dummy parameter must be an am-
persand (&).

• The second character of the dummy parameter must be a let-
ter of the alphabet. All remaining characters, if any, can be
letters or numbers.

• Any number of parameters or parameters of various lengths
may be entered in the operand field of a macro definition.
However, the entire line length must not exceed 110 charac-
ters (not including a carriage return). In addition, after argu-
ments are substituted for parameters in a macro call, the lines
resulting from the macro expansion must not exceed 110 char-
acters. If the 110 character length is exceeded, an error mes-
sage is issued.

Symbolic Parameters Symbolic parameters used in the macro definition are assigned
values by the programmer in each macro call referencing that
particular macro. An example of the general syntax for symbolic
parameters is:

Label Operation Operand

ADDS MACRO &SUBNAM,&PARAM
JP &SUBNAM
DEF &PARAM
MEND

8-6 Using Macro Instructions

Assigning parameters to the ADDS macro develops:

ADDS ADD,SUM+ 27
JP ADD
DEF SUM+ 27

Text Replacement
and Concatenation

Macros may also be used for text replacement. Macros can also
perform concatenation of a parameter to generate a new word.
Consider the following macro instruction:

Label Operation Operand

SAVE MACRO &EXEC4,&PARM1,&PARM2
LD&EXEC4 &PARM1
ST&EXEC4 &PARM2

You may now call this simple macro instruction, assign your
own parameters, and produce the following insert into your pro-
gram:

SAVE A,EXEC2,EXEC3
LDA R0,EXEC2
LD EXEC3,R0

Note the substitution of actual parameters of call A, EXEC2,
EXEC3 - for dummy parameters in the macro heading
(&EXEC4, &PARM1, and &PARM2). Note further that the se-
quence of call parameters interchange directly with the se-
quence of the dummy parameters.

Note A macro does not necessarily produce the same source code
each time it is called. Changing the parameters in a macro call
will change the source code that the macro generates.

Using Macro Instructions 8-7

Unique Label
Generation

The macro assembler generates unique local labels each time a
macro is called by using four ampersand characters in a label
(&&&&). When a macro is called, &&&& is replaced by four
decimal digits. Note, this four-digit constant is incremented
every time a macro is called, even if the ampersand characters
are not in the macro label. With this labeling, a macro can be
called more than once in a program (no duplication of label).

Example

1 "8086"
2
3 TEXT MACRO &STRING
4
5 L1_&&&& DB L2_&&&&-L1_&&&&-1 ;Length of string.
6 ASC &STRING
7 L2_&&&&
8
9 MEND
10
11 TEXT "STRING # 1"
+
+ L1_0001 DB L2_0001-L1_0001-1 ;Length of string.
+ ASC "STRING # 1"
+ L2_0001
+
12
13 TEXT "STRING # 2"
+
+ L1_0002 db L2_0002-L1_0002-1 : ;Length of string.
+ ASC "STRING # 2"
+ L2_0002
+

8-8 Using Macro Instructions

Conditional
Assembly

Four conditional assembly instructions are available for use with
the HP 64000 Assembler. When inserted among the statements
in the body of a macro definition, they provide the means for in-
structing the assembler to branch and loop among the state-
ments of the executable program. These conditional assembly in-
structions will not be printed in the listing of the program (un-
less they contain an error). Only their effects can be seen in the
generated object code. The four conditional instructions are:

.SET

.IF

.GOTO

.NOP

.SET Instruction The .SET instruction provides a way to assign or modify an ex-
pression value of a macro local. This instruction assigns the
value of the operand field to the name specified in the label
field. When the label is encountered subsequently in the macro
program, the assembler substitutes its new value. This value re-
mains unchanged until altered by a subsequent .SET instruction.
The general format of a .SET
instruction is as follows:

Label Operation Operand

name .SET expression

Using Macro Instructions 8-9

An example of a .SET instruction is as follows:

GENTABLE MACRO &COUNT
LOOP_COUNT .SET &COUNT
LOOP_TOP .NOP

DEF 1
DEF 2
DEF 3

LOOP_COUNT .SET LOOP_COUNT-1
.IF. LOOP_COUNT.GT.0 LOOP_TOP
MEND

Call expansion:

GENTABLE 3
DEF 1
DEF 2
DEF 3
DEF 1
DEF 2
DEF 3
DEF 1
DEF 2
DEF 3

8-10 Using Macro Instructions

.IF Instruction The .IF instruction is the conditional-branch instruction using
six types of relational operators. These operators are:

.EQ. = = = equal

.NE = = = not equal

.LT. = = = less than

.GT. = = = greater than

.LE. = = = less than or equal

.GE. = = = greater than or equal

Note All relational operator comparisons are 32 bits unsigned.

An .IF instruction has the following format:

Operation Operand

.IF Exp .(Relational Operator). Exp Label

The .IF instruction directs the assembler to relationally compare
two expressions. If the value of this comparison is true, a branch
is taken to the statement named by the label symbol in the oper-
and field. Otherwise, the statement immediately following the
.IF instruction is processed by the assembler.

.GOTO Instruction The .GOTO statement is the unconditional-branch instruction.
It has the following format:

Operation Operand

.GOTO Label

The .GOTO instruction directs the assembler to branch, uncon-
ditionally, to the statement named by the label symbol in the op-
erand field.

Using Macro Instructions 8-11

.NOP Instruction A .NOP instruction is a no-operation instruction. This instruc-
tion is useful with .IF and .GOTO instructions when branching
is required to sections of the program that are not labelled. The
.NOP instruction format is as follows:

Label Operation

Label .NOP

When a branch is taken to a .NOP instruction, the effect is the
same as if a branch were taken to the statement immediately fol-
lowing it.

Note Conditional assembly instructions generate no source code.
The sole function of the .SET, .IF, .GOTO, and .NOP instruc-
tions are to conditionally alter the sequence in which the assem-
bler processes the source program or macro definition instruc-
tions.

Example

CONDITION MACRO &P1,&P2,&P3
.IF &P1 .EQ. 1 LOAD
.IF &P1 .EQ. 2 STORE
.GOTO DONE
LOAD .NOP
OPC &P2
OPC &P3
.GOTO DONE
STORE .NOP
OPC &P3
OPC &P2
DONE .NOP
MEND

8-12 Using Macro Instructions

Some call expansion examples are as follows:

CONDITION 1,EXEC2,BLUE
OPC EXEC2
OPC BLUE
CONDITION 2,EXEC2,BLUE
OPC BLUE
OPC EXEC2
CONDITION 0

< NOCODE>

Checking Macro
Definition
Parameters

When using macro calls, you may want to omit specific parame-
ters defined in the macro definition. This is accomplished by us-
ing the null symbol ("") or a comma (,). For example:

Macro definition:

EXEC2 MACRO &P1,&P2,&P3,&P4

Macro call:

EXEC2 ,EXEC3,"",0FCH

In the above example, &P2 is assigned a value of EXEC3 and
&P4 a value FCH. &P1 and &P3 parameters are omitted.

Using Macro Instructions 8-13

An example of a macro expansion is as follows:

CALLSUB MACRO &SUB,&P1,&P2,&P3
JP &SUB
.IF &P1 .EQ. "" DONE
DEF &P1
.IF &P2 .EQ. "" DONE
DEF &P2
.IF &P3 .EQ. "" DONE
DEF &PS

DONE .NOP
MEND

Note When testing for null parameters, if a WARNING statement is
generated, enclose the macro parameter designator in quotation
marks (see "&SP" below) and compare it with the null parame-
ter indicator (single quotation marks) enclosed in quotation
marks. For example:
 IF "&SP" .EQ. "’’" DONE

8-14 Using Macro Instructions

Three expansion call examples are as follows:

(a.) CALLSUB ADD,PARAM
JP ADD
DEF PARAM

(b.) CALLSUB ADD
JP ADD

(c.) CALLSUB ADD,IN,OUT,RESULT
JP ADD
DEF IN
DEF OUT
DEF RESULT

Indexing Parameters The assembler can, when instructed, index through a parameter
list to determine if all or certain parameters are present. Index-
ing is accomplished by using a macro local symbol prefaced with
two ampersands (&&). The following macro directive is an ex-
ample to index parameters:

1. CALLSUB MACRO &P1,&P2,&P3,&P4
2. JMP &P1
3. PARAM .SET 2
4. PARAM_LOOP .NOP
5. .IF &&PARAM.EQ."’’"JUMP

_OUT MERGE
6. DEF &&PARAM
7. PARAM SET PARAM+ 1
8. .GOTO PARAM_LOOP
9. JUMP_OUT .NOP
10. MEND

Using Macro Instructions 8-15

A line-by-line explanation of the above macro example follows:

Line 1. Defines the macro directive and CALL-
SUB with its dummy parameters &P1,
&P2, &P3, &P4.

Line 2. Completes a subroutine call designated
by parameter &P1.

Line 3. Sets name PARAM to a value of 2.

Line 4. Assigns a .NOP statement the name
PARAM_LOOP.

Line 5. Since the PARAM label has been as-
signed the value 2 (see line 3), the .IF
statement checks to see if the second pa-
rameter of the macro call statement has
been omitted. If it has, the .IF statement
causes the program to branch to the
JUMP_OUT statement.

Note During each iteration of the PARAM_LOOP, the value of
PARAM is increased by 1 (see line 7). The iterations continue
until the .IF statement is satisfied.

Line 6. Updates the value of PARAM to the cur-
rent value assigned.

Line 7. Adds 1 to the current value of PARAM.

Line 8. Loops to PARAM_LOOP.

Line 9. Uses a .NOP statement to exit the
PARAM_LOOP iteration.

Line 10. Ends the macro.

Three macro expansions of the previous macro example are as
follows:

8-16 Using Macro Instructions

(a.) CALLSUB ADD
JP ADD

(b.) CALLSUB ADD,LOC1,LOC2
JP ADD
DEF LOC1
DEF LOC2

(c.) CALLSUB ADD,P1,P2,P3
JP ADD
DEF P1
DEF P2
DEF P3

This concludes the discussion concerning the use of macros in
assembly programs.

Using Macro Instructions 8-17

Notes

8-18 Using Macro Instructions

A

8086/8088 Series Instruct ion Set Summary

Introduction This appendix contains a summary of the 8086/8088/
80186/80286 instruction sets. Included is a table describing the
operands which appear in the instruction set summary. The in-
struction set summary is presented first in table A-2. The table
of operand forms (table A-3) follows the instruction set sum-
mary.

8086/8088 Instruct ion Set Summary A-1

Table Convention In Table A-2, the information is organized in the following man-
ner:

Mnemonic General Operand Short Description

Specific Operands A more complete description that may include dis-
cussion of any specific operands that might be valid
for the instruction.

 JA/JNBE
JAE/JNB
JB/JNAE
JBE/JNA
JC
JE/JZ
JG/JNLE
JGE/JNL
JL/JNGE
JLE/JNG
JNC
JNE/JNZ
JNO
JNP/JPO
JNS
JO
JP/JPE
JS

(CForZF) = 0
CF = 0
CF = 1
(CForZF) = 1
CF = 1
ZF = 1
((SFxorOF)orZF) = 0
(SFxorOF) = 0
(SFxorOF) = 1
((SFxorOF)orZF) = 1
CF = 0
ZF = 0
OF = 0
PF = 0
SF = 0
OF = 1
PF = 1
SF = 1

Table A-1. Conditional Jump Flags

A-2 8086/8088 Instruct ion Set Summary

AAA (no operands) ASCII adjust AL after addition

Used after the ADD instruction, this instruction will,
if the lower nibble of AL is greater than 9 or if the
auxiliary carry flag is 1, add 6 to AL, increment AH,
and set the carry and auxiliary carry flags. Otherwise,
the carry and auxiliary carry flags are reset. The up-
per nibble of AL will always be 0 after this instruc-
tion. Register AL will contain the decimal digit re-
sult.

AAD (no operands) ASCII adjust AX before division.

This instruction will prepare two unpacked BCD dig-
its in AH and AL for division by adding 10xAH to
AL and setting AH to zero.

AAM (no operands) ASCII adjust AX after multiply.

Used after two unpacked BCD digits have been mul-
tiplied, this instruction will unpack the result (found
in AL) of the unpacked BCD multiplication, leaving
the most significant digit in AH and the least signifi-
cant digit in AL.

AAS (no operands) ASCII adjust AL after subtraction.

Used after the subtraction of one BCD digit from an-
other whose byte result is in AL, this instruction will,
if the lower nibble of AL is greater than 9 or if the
auxiliary carry flag is 1, then decrement AL by 6, dec-
rement AH, and set the carry and auxiliary carry
flags. Otherwise, the carry and auxiliary carry flags
are reset.The upper nibble of AL will always be 0 af-
ter instruction. Register AL will contain the decimal
digit result.

Table A-2. Instruction Set Summary

8086/8088 Instruct ion Set Summary A-3

ADC destination,source Add with carry.

register,register
register,memory
memory,register
register,immediate
memory,immediate
accumulator,immediate

This instruction adds the source operand and the
value of the carry flag to the destination operand.
The destination will contain the result of the
operation.

ADD destination,source Addition.

register,register
register,memory
memory,register
register,immediate
memory,immediate
accumulator,immediate

This instruction adds the source operand to the desti-
nation operand. The destination will contain the re-
sult of the operation.

AND destination,source Logical AND.

register,register
register,memory
memory,register
register,immediate
memory,immediate
accumulator,immediate

This instruction performs a logical AND operation
on the operands. The destination will contain the re-
sult of the AND operation

Table A-2. Instruction Set Summary (Cont’d)

A-4 8086/8088 Instruct ion Set Summary

ARPL
(80286)

destination,source Adjust RPL field of selector.

mem16,reg16
reg16,reg16

This 80286 Protected Mode instruction will compare
the RPL field (bottom two bits) of the operands. If
the RPL field of the destination operand is less than
the RPL field of the source operand, then the zero
flag is set to 1 and the RPL field of the first operand
is increased to that of the source operand. If not,the
zero flag is set to 0 and the destination RPL field is
not changed.

BOUND
(80186/80286)

destination,source Check array index against bounds

reg16,mptr32 This 80186/188, 80286 instruction compares the des-
tination operand to two words in memory. The desti-
nation operand must be greater than or equal to the
first memory word and less than or equal to the sec-
ond memory word. An INT 5 will occur if the destina-
tion operand does not meet the condition above.

CALL target Call a procedure.

near-proc
far-proc
memptr16
regptr16
memptr32
call-gate
task-gate
TSS

This instruction calls a procedure. The procedure
may be in the current code segment (near-proc,
memptr16, and regptr16 operands), or in another
code segment (far-proc, and memptr32 operands).

 For the 80286 Protected Mode, calls may also be
made to call gates, task gates, and to Task State seg-
ments (TSSs) using the far-proc operand.

Table A-2. Instruction Set Summary (Cont’d)

8086/8088 Instruct ion Set Summary A-5

CBW (no operands) Convert byte to word.

This instruction extends the signed byte in AL to a
signed word in AX.

CLC (no operands) Clear carry flag.

This instruction sets the carry flag to 0.

CLD (no operands) Clear the direction flag.

This instruction sets the direction flag to 0. When
the direction flag is 0, string instructions will cause
the contents of the index register(s)to be incre-
mented.

CLI (no operands) Clear the interrupt flag.

This instruction sets the interrupt enable flag to 0 (if
the current privilege level is at least as privileged as
the IOPL in 80286 Protected Mode). External, mask-
able interrupts are disabled after this instruction.

CLTS
(80286)

(no operands) Clear the task switched flag

This 80286 Privilege Level = 0 instruction clears the
task switched flag in the Machine Status Word. The
TS flag is set every time a task switch occurs.

CMC (no operands) Complement the carry flag.

This instruction sets the carry flag if it is cleared, or
clears the carry flag if it is set.

CMP destination,source Compare destination to source.

Table A-2. Instruction Set Summary (Cont’d)

A-6 8086/8088 Instruct ion Set Summary

register,register
register,memory
memory,register
register,immediate
memory,immediate
accumulator,immediate

This instruction subtracts the source operand from
the destination operand and sets the flags accord-
ingly. The result of the subtract operation is dis-
carded

CMPS source-string,dest-string Compare string.

source-string,dest-string This instruction subtracts the source string, at [SI],
to the destination string, at ES:[DI]. The flags are af-
fected by this operation, but neither string is
changed. This instruction may be preceded with the
REPE or REPZ prefixes, in which case the instruc-
tion will be repeated until CX is 0. The CMPS in-
struction may also be preceded with the REPNE or
REPNZ prefixes, in which case the instruction will
be repeated until CX or the zero flag is 0. In the re-
peat operations, CX is decremented;SI and DI are
either both
incremented (if direction flag = 0) or both decre-
mented (if direction flag = 1).

CWD (no operands) Convert word to doubleword.

This instruction extends the signed word in AX to a
signed doubleword in DX:AX.

Table A-2. Instruction Set Summary (Cont’d)

8086/8088 Instruct ion Set Summary A-7

DAA (no operands) Decimal adjust AL after addition.

Used after an ADD instruction whose result is a two
digit BCD byte in AL, this instruction converts the
result in AL into two BCD digits. If the lower nibble
of AL is greater than 9 or if the auxiliary carry flag is
1, AL is incremented by 6 and the auxiliary carry flag
is set. Otherwise, the auxiliary carry flag is reset.
Next, if the upper nibble of AL is greater than 9 or if
the carry flag is set, AL is incremented by 60H and
the carry flag is set. Otherwise, the carry flag is
cleared.

DAS (no operands) Decimal adjust AL after subtraction.

Used after a subtraction instruction whose result is a
two digit BCD byte in AL, this instruction converts
the result in AL into two BCD digits. If the lower
nibble of AL is greater than 9 or if the auxiliary carry
flag is 1, AL is decremented by 6 and the auxiliary
carry flag is set. Otherwise, the auxiliary carry flag is
reset. Next, if the upper nibble of AL is greater than
9 or if the carry flag is set, AL is decremented by 60H
and the carry flag is set. Otherwise, the carry flag is
cleared.

DEC destination Decrement operand by 1.

register
memory

This instruction decrements the operand by 1. The
carry flag is not affected by this instruction.

Table A-2. Instruction Set Summary (Cont’d)

A-8 8086/8088 Instruct ion Set Summary

DIV source Unsigned division.

register
memory

Unsigned values in AX or DX:AX are divided by the
source operand byte or word, respectively. When AX
is divided by the source operand byte, the quotient is
stored in AL and the remainder is stored in AX.
When DX:AX is divided by the source operand
word, the quotient is stored in AX and the remain-
der is stored in DX.

ENTER
(80186/80286)

bytes,nesting-level Make stack frame for proce dure paramete rs.

immediate,0
immediate,1
immediate,immed8

This 80186/188, 80286 instruction creates a stack
frame. The destination operand specifies the number
of bytes to be allocated for the procedure’s stack.
The source operand specifies the lexical nesting level
of the procedure.

ESC external-opcode,source Escape.

immediate,memory
immediate,register

This instruction provides a way for coprocessors to
obtain opcodes and memory operands from the
8086/88 or 80186/188 microprocessors. The external-
opcode is an immediate value (0 - 63). The memory
source operand allows the coprocessor to read the
memory location.The register source operand causes
the microprocessor to do nothing.

HLT (no operands) Halt.

This instruction causes the processor to enter the
halt state. The processor remains in the halt state un-
til a RESET or an external interrupt
occurs.

Table A-2. Instruction Set Summary (Cont’d)

8086/8088 Instruct ion Set Summary A-9

IDIV source Signed division.

register
memory

The signed values in AX or DX:AX are divided by
the source operand byte or word, respectively. When
AX is divided by the source operand byte, the quo-
tient is stored in AL and the remainder is stored in
AH. When DX:AX is divided by the source operand
word, the quotient is stored in AX and the remain-
der is stored in DX. The remainder has the same sign
as the dividend (AX or DX:AX).

IMUL source Signed multiplication.

reg8
reg16
memory

The source operand may be either a byte or word
quantity. When the source operand is a byte, it is
multiplied by AL, and the signed result is placed in
AX. Carry and overflow flags are set to 0 if AH was
initially a sign extension of AL. Otherwise, the carry
and overflow flags are 1. When the source operand is
a word, it is multiplied by AX, and the signed result
is placed in DX:AX. Carry and overflow flags are set
to 0 if DX was initially a sign extension of AX. Other-
wise,the carry and overflow flags are 1.

Table A-2. Instruction Set Summary (Cont’d)

A-10 8086/8088 Instruct ion Set Summary

IMUL
(80186/80286)

dest,source Signed multiplication.

reg16,immed8
reg16,mem16,immediate
reg16,reg16,immediate

The 80186 and 80286 allow multiple operands. The
two operand instruction is the same as the byte in-
struction above except that the result is placed in the
16 bit register specified. In the three operand instruc-
tions, the second operand is multiplied by the imme-
diate value, and the result is placed in the register
specified in the first operand. The carry and overflow
flags are set to 0 if the signed result is less than -
32768 or greater than 32767.

IN accumulator,port Input from port.

accumulator,immed8
accumulator,DX

This instruction will cause a byte (accumulator =
AL) or word (accumulator = AX) to be input from
the port whose address is specified by an 8 bit imme-
diate value or is in register DX.

INC destination Increment operand by 1.

register
memory

This instruction increments the operand by 1. The
carry flag is not affected by this instruction.

INS
(80186/80286)

dest-string,port Input from port to string.

dest-string,DX This instruction transfers data from the input port
specified by the contents of register DX to to the des-
tination memory location ES:[DI]. This instruction
may be preceded by the REP prefix described later in
this table.

Table A-2. Instruction Set Summary (Cont’d)

8086/8088 Instruct ion Set Summary A-11

INSB
(80186/80286)

(no operands) Input byte(s) from port to string.

No operands are required with this 80186/80286 in-
struction because the dest-string type BYTE, and the
segment override "ES:" are implied in this instruc-
tion mnemonic. The REP prefix is also allowed with
this instruction.

INSW
(80186/80286)

(no operands) Input word(s) from port to string.

No operands are required with this 80186/80286 in-
struction because the dest-string type WORD, and
the segment override "ES:" are implied in this in-
struction mnemonic. The REP prefix is also allowed
with this instruction.

INT interrupt-type Call interrupt procedure.

immed8 This instruction calls an interrupt procedure. The im-
mediate operand multiplied by four specifies the ad-
dress of the interrupt pointer. The interrupt pointer
contains the segment:offset
address of the interrupt service routine. In the 80286
Protected Mode, the immediate operand is the index
number of the service routine’s gate descriptor in the
Interrupt Descriptor Table (IDT).

INTO (no operands) Interrupt on overflow.

This instruction is the same as the INT instruction
except that immediate operand is implicitly 4, and
the overflow flag must be set for the interrupt to be
taken.

Table A-2. Instruction Set Summary (Cont’d)

A-12 8086/8088 Instruct ion Set Summary

IRET (no operands) Return from interrupt.

This instruction pops the IP, CS, and flag registers
and returns program execution to the point where it
was interrupted.

In the 80286 Protected Mode, the return from inter-
rupt will cause a task switch to occur if the nested
task flag is set. When a task switch occurs on an in-
terrupt return, the service routine TSS is updated,
and if the service routine task is re-entered, the code
following the IRET will be executed.

JA/JNBE short-label Jump if above/if not below or equal.

short-label This instruction will cause a jump to an address
within + 127 or -128 from the next IP if: (carry flag
OR zero flag) = 0.

JAE/JNB short-label Jump if above or equal/if not below.

short-label This instruction will cause a jump to an address
within + 127 or -128 from the next IP if: carry flag =
0.

JB/JNAE short-label Jump if below/if not above or equal.

short-label This instruction will cause a jump to an address
within + 127 or -128 from the next IP if: carry flag =
1.

JBE/JNA short-label Jump if below or equal/if not above.

short-label This instruction will cause a jump to an address
within + 127 or -128 from the next IP if: (carry flag
OR zero flag) = 1.

Table A-2. Instruction Set Summary (Cont’d)

8086/8088 Instruct ion Set Summary A-13

JC short-label Jump if carry flag is set.

short-label This instruction will cause a jump to an address
within + 127 or -128 from the next IP if: carry flag =
1.

JCXZ short-label Jump if CX is zero.

short-label This instruction will cause a jump to an address
within + 127 or -128 from the next IP if register CX
= 0.

JE/JZ short-label Jump if equal/if zero.

short-label Instruction will cause jump to an address within
+ 127 or -128 from the next IP if: zero flag = 0.

JG/JNLE short-label Jump if greater/if not less or equal.

short-label This instruction will cause a jump to an address
within + 127 or -128 from the next IP if: [(sign flag
XOR overflow flag) OR zero flag] = 0.

JGE/JNL short-label Jump if greater or equal/if not less.

short-label This instruction will cause a jump to an address
within + 127 or -128 from the next IP if: (sign flag
XOR overflow flag) = 0.

JL/JNGE short-label Jump if less/if not greater or equal.

short-label This instruction will cause a jump to an address
within + 127 or -128 from the next IP if: (sign flag
XOR overflow flag) = 1.

Table A-2. Instruction Set Summary (Cont’d)

A-14 8086/8088 Instruct ion Set Summary

JLE/JNG short-label Jump if less or equal/if not greater.

short-label This instruction will cause a jump to an address
within + 127 or -128 from the next IP if: (sign flag
XOR overflow flag) OR zero flag= 1.

JMP target Jump.

short-label
near-label
memptr16
regptr16
far-label
memptr32
call-gate
task-gate
TSS

This instruction transfers program execution to the
address specified by the operand. The target may be
in the current code segment (short-label, near-label,
memptr16, and regptr16 operands), in another code
segment (far-label and memptr32 operands). In the
80286 Protected Mode, jumps may also be made to
call gates, task gates, and to Task State Segments
(TSSs) using the far-proc operand.

JNC short-label Jump if carry flag is reset.

short-label This instruction will cause a jump to an address
within + 127 or -128 from the next IP if: carry flag =
0.

JNE/JNZ short-label Jump if not equal/if not zero.

short-label This instruction will cause a jump to an address
within + 127 or -128 from the next IP if: zero flag =
0.

JNO short-label Jump if not overflow.

short-label This instruction will cause a jump to an address
within + 127 or -128 from the next IP if: overflow
flag = 0.

Table A-2. Instruction Set Summary (Cont’d)

8086/8088 Instruct ion Set Summary A-15

JNP/JPO short-label Jump if not parity/if parity odd.

short-label This instruction will cause a jump to an address
within + 127 or -128 from the next IP if: parity flag =
0.

JNS short-label Jump if not sign.

short-label This instruction will cause a jump to an address
within + 127 or -128 from the next IP if: sign flag =
0.

JO short-label Jump if overflow.

short-label This instruction will cause a jump to an address
within + 127 or -128 from the next IP if: overflow
flag = 1.

JP/JPE short-label Jump if parity/if parity even.

short-label This instruction will cause a jump to an address
within + 127 or -128 from the next IP if: parity flag =
1.

JS short-label Jump if sign.

short-label This instruction will cause a jump to an address
within + 127 or -128 from the next IP if: sign flag =
1.

LAHF (no operands) Load flags into register AH.

This instruction will load register AH with the low
byte of the flag word.

Table A-2. Instruction Set Summary (Cont’d)

A-16 8086/8088 Instruct ion Set Summary

LAR
(80186/80286)

destination,source Load access rights byte.

reg16,reg16
reg16,mem16

This 80286 Protected Mode instruction will load the
access rights byte from the descriptor, whose selector
is the source operand, into the high byte of the desti-
nation 16 bit register. The low byte of the 16 bit regis-
ter is set to zero. If the descriptor cannot be accessed
from the current privilege level or the selector RPL,
the load is not performed, and the zero flag is
cleared. The zero flag is set if the load is performed.

LDS/LES destination,source Load doubleword pointer.

reg16,memory This instruction will load the first word from the
source memory location (offset value) into the desti-
nation register operand. The second word from the
source memory location (segment or selector value)
is loaded into DS or ES. When a selector value is
loaded (80286 Protected Mode), the cache from the
selector’s associated descriptor is also loaded.

LEA destination,source Load effective address offset.

reg16,memory This instruction will load the offset of the source
memory operand into the 16 bit register
destination.

Table A-2. Instruction Set Summary (Cont’d)

8086/8088 Instruct ion Set Summary A-17

LEAVE
(80186/80286)

(no operands) High level procedure exit.

This 80186/188, 80286 instruction will copy BP to SP
and POP BP, thereby releasing a procedure’s stack
space. LEAVE is the complementary operation to
ENTER.

LGDT/LIDT
(80286)

memory Load GDT/IDT Register.

memory This 80286, Privilege Level = 0 instruction will load
6 bytes from the memory address into the Global or
Interrupt Descriptor Table register. The first mem-
ory word will be the LIMIT of the GDT or IDT regis-
ter, the next three bytes are the BASE, and the last
byte is ignored.

LLDT
(80286)

selector Load LDT Register.

mem16
reg16

This 80286 Protected Mode, PL = 0 instruction’s se-
lector operand should point to an LDT descriptor in
the Global Descriptor Table. The LDT descriptor is
loaded into the LDT register.

LMSW
(80286)

source Load Machine Status Word.

mem16
reg16

This 80286, Privilege Level = 0 instruction will load
the source word into the Machine Status Word.
When this instruction is used to switch to protected
mode, it must be immediately followed by an in-
trasegment jump instruction to flush the instruction
queue. This instruction cannot be used to switch
back to the real address mode.

Table A-2. Instruction Set Summary (Cont’d)

A-18 8086/8088 Instruct ion Set Summary

LOCK (no operands) Assert BUS LOCK signal.

This instruction prefix causes the BUS LOCK signal
to be asserted for duration of the instruction it pre-
fixes. The bus is not locked for all cycles during the
following instructions: CMPS, SCAS, STOS, LODS,
PUSHA, POPA, CALL, RET, IRET, ENTER,
BOUND, PUSH, POP, or any ESC.

LODS source-string Load string operand.

source-string This instruction loads AL or AX with the byte or
word at location [SI]. The source-string
 operand will specify whether the operation is of type
BYTE or WORD. After the load, SI is incremented
if the direction flag = 0 or decremented if the direc-
tion flag = 1. Increments or decrements will be
either by 1 for byte operations or 2 for word opera-
tions. This instruction may be preceded with the
REP prefix, which is described later in this table.

LODSB (no operands) Load byte string operand.

This instruction is the same as the LODS instruction
except that no operand is required because the in-
struction implies a byte operation and the "DS:" seg-
ment override is assumed. The byte at DS:[SI] is
loaded into AL.

Table A-2. Instruction Set Summary (Cont’d)

8086/8088 Instruct ion Set Summary A-19

LODSW (no operands) Load word string operand.

This instruction is the same as the LODS instruction
except that no operand is required because the in-
struction implies a word operation and the "DS:" seg-
ment override is assumed. The word at DS:[SI] is
loaded into AL.

LOOP short-label Loop control with CX counter.

short-label This instruction will decrement register CX and
transfer program control to within +127 or -128
bytes from the next IP if: CX does not equal 0.

LOOPE/LOOPZ short-label Loop if equal/if zero.

 short-label This instruction will decrement register CX and
transfer program control to within +127 or -128
bytes from the next IP if: CX not equal to 0 and zero
flag = 1.

LOOPNE/NZ short-label Loop if not equal/if not zero.

short-label This instruction will decrement register CX and
transfer program control to within +127 or -128
bytes from the next IP if: CX not equal to 0 and zero
flag = 0.

Table A-2. Instruction Set Summary (Cont’d)

A-20 8086/8088 Instruct ion Set Summary

LSL
(80286)

destination,source Load segment limit.

reg16,reg16
reg16,mem16

This 80286 Protected Mode instruction will load the
limit value from the segment descriptor whose selec-
tor is the source operand into the high byte of the
destination 16 bit register. If the descriptor cannot
be accessed from the current privilege level or the se-
lector RPL, the load is not performed, and the zero
flag is cleared. The zero flag is set if the load is per-
formed.

LTR
(80286)

source Load task register.

reg16
memory
register

This 80286 Protected Mode Privilege Level = 0 in-
struction will load the task register with the TSS se-
lector source operand.The loaded TSS is marked
busy; however, no task switch occurs.

MOV destination,source Move.

memory,accumulator
accumulator,memory
register,register
register,memory
memory,register
register,immediate
memory,immediate
seg-reg,reg16
seg-reg,mem16
reg16,seg-reg
memory,seg-reg

Transfers bytes or words from the source operand to
the destination operand.

Table A-2. Instruction Set Summary (Cont’d)

8086/8088 Instruct ion Set Summary A-21

MOVS dest-string,source-string Move data from string to string.

dest-string,source-string This instruction moves data from the source string
[SI] to the destination string ES:[DI]. The string op-
erands are used to specify either
 BYTE or WORD operation. After the load, SI and
DI are incremented if the direction flag = 0 or decre-
mented if the direction flag = 1. Increments or decre-
ments will be either by 1 for byte operations or 2 for
word operations. This instruction may be preceded
with the REP prefix, which is described later in this
table.

MOVSB (no operands) Move byte string.

This instruction is the same as the MOVS instruc-
tion except that no operand is required because the
instruction implies a byte operation and the "DS:"
segment override is assumed for the source operand.
The byte at DS:[SI] is moved to ES:[DI].

MOVSW (no operands) Move word string.

This instruction is the same as the MOVS instruc-
tion except that no operand is required because the
instruction implies a word operation and the "DS:"
segment override is assumed for the source operand.
The word at DS:[SI] is moved to ES:[DI].

Table A-2. Instruction Set Summary (Cont’d)

A-22 8086/8088 Instruct ion Set Summary

MUL source Unsigned multiplication.

register The unsigned values in AL or AX are multiplied
memory by the source operand byte or word, respec-
tively. When AL is multiplied by the source operand
byte, the result is stored in AX and the carry and
overflow flags are set unless AH = 0, in which case
they are reset. When AX is multiplied by the source
operand word, the result is stored in DX:AX and the
carry and overflow flags are set unless DX = 0, in
which case they are reset.

NEG destination Two’s complement negation.

register
memory

This instruction replaces the destination memory op-
erand with its two’s complement. The carry is set un-
less the value of the destination operand is zero, in
which case it is reset.

NOP (no operand) No operation.

This one byte instruction (opcode 90H) performs no
operation.

NOT destination One’s complement negation.

register
memory

This instruction replaces the destination operand
with its one’s complement (logical NOT).

Table A-2. Instruction Set Summary (Cont’d)

8086/8088 Instruct ion Set Summary A-23

OR destination,source Logical inclusive OR.

register,register
register,memory
memory,register
register,immediate
memory,immediate
accumulator,immediate

This instruction performs a logical OR operation on
the operands. The destination will contain the result
of the OR operation.

OUT port,accumulator Output to port.

immed8,accumulator
DX,accumulator

This instruction will cause a byte (accumulator =
AL) or word (accumulator = AX) to be output from
the port whose address is specified by an 8 bit imme-
diate value or is in register DX.

OUTS
(80186/80286)

DX,source-string Output string to port.

DX,source-string This 80186/80286 instruction transfers data from the
source string [SI] to the port whose address is speci-
fied by the contents of register DX. The type opera-
tion (BYTE or WORD) is specified in the source-
string operand. This instruction may be preceded by
the REP prefix which is described later in this table.

OUTSB
(80186/80286)

(no operands) Output byte string to port.

This instruction is the same as the OUTS instruction
except that no operands are required because a byte
operation is implied in the instruction mnemonic
and the segment override "DS:" is assumed for the
source operand. The byte at DS:[SI] will be output to
the port whose address is in DX.

Table A-2. Instruction Set Summary (Cont’d)

A-24 8086/8088 Instruct ion Set Summary

OUTSW
(80186/80286)

(no operands) Output word string to port.

This instruction is the same as the OUTS instruction
except that no operands are required because a word
operation is implied in the instruction mnemonic
and the segment override "DS:" is assumed for the
source operand. The word at DS:[SI] will be output
to the port whose address is in DX.

POP destination Pop word off stack.

reg16
seg-reg(CS illegal)
mem16

This instruction will pop the word at the top of the
stack (SS:SP) and place it in the destination. SP is in-
cremented by 2. In the 80286 Protected Mode, if the
destination is a segment register, the word at the top
of the stack must be a selector.

POPA
(80186/80286)

(no operands) Pop all general registers.

This 80186/80286 instruction will pop the eight gen-
eral purpose registers in the following order: DI, SI,
BP, SP, BX, DX, CX, AX. The SP value popped is
discarded.

POPF (no operands) Pop into flags register.

This instruction will pop the word from the top of
the stack (SS:SP) into the flags register. In the 80286,
the I/O privilege level will only be altered if execut-
ing at PL = 0. The interrupt enable flag will be al-
tered only when executing at a privilege level equal
to the I/O privilege level or higher.

Table A-2. Instruction Set Summary (Cont’d)

8086/8088 Instruct ion Set Summary A-25

PUSH source Push word onto stack.

reg16
seg-reg
mem16
immediate (80286)

This instruction will push the source operand word
onto the top of the stack (SS:SP). SP is decremented
by 2. Immediate source operands are allowed for the
80286, and PUSH SP will push the value of SP be-
fore the instruction. (In the 8086, PUSH SP will
push the value of SP after the instruction.

PUSHA
(80186/80286)

(no operands) Push all general registers.

This 80186/80286 instruction will push the eight gen-
eral purpose registers in the following order: AX,
CX, DX, BX, original SP, BP, SI, DI. The SP value
pushed is the SP value before the PUSHA instruc-
tion.

PUSHF (no operands) Push the flags register.

This instruction will push the flag register onto the
stack (SS:SP). SP is decremented by 2.

RCL destination,count Rotate left through carry.

register,1
register,CL
memory,1
memory,CL

This instruction will rotate the destination operand
left, though the carry flag, the number of times speci-
fied by the count operand (either 1 or the contents
of CL). The carry flag is rotated into the destination
operand’s low order bit.

Table A-2. Instruction Set Summary (Cont’d)

A-26 8086/8088 Instruct ion Set Summary

RCR destination,count Rotate right through carry.

register,1
register,CL
memory,1
memory,CL

This instruction will rotate the destination operand
right, though the carry flag, the number of times
specified by the count operand (either 1 or the con-
tents of CL). The carry flag is rotated into the desti-
nation operand’s high order bit.

REP Repeat string instructions.

The REP instruction prefix will cause the string in-
struction to be repeated until CX = 0.Register CX is
decremented after every execution of the string in-
struction. The REP prefix may be used with the fol-
lowing string instruction families: INS, MOVS,
OUTS, and STOS.

REPE/REPZ

The REPE/REPZ instruction prefix will
cause the string instruction to be repeated until
CX = 0 or until the zero flag = 1. Register CX is de-
cremented after every execution of the string instruc-
tion. The REPE/REPZ prefix may be used with the
following string instruction families: CMPS and
SCAS.

REPNE/REPNZ

The REPNE/REPNZ instruction prefix will
cause the string instruction to be repeated until
CX = 0 or until the zero flag = 0. Register CX is de-
cremented after every execution of the string instruc-
tion. The REPNE/REPNZ prefix may be used with
the following string instruction families:CMPS and
SCAS.

Table A-2. Instruction Set Summary (Cont’d)

8086/8088 Instruct ion Set Summary A-27

RET pop-value (optional) Return from procedure.

pop-value This instruction transfers control back to a return ad-
dress which was pushed onto the stack at the time of
the procedure call. The optional pop-value allows
you to release additional bytes from the stack; the
pop-value is added to SP. In 80286 Protected Mode,
intersegment returns are made through the return se-
lector to a code segment of equal or less privilege.

ROL destination,count Rotate left.

register,1
register,CL
memory,1
memory,CL

This instruction will rotate the destination operand
left the number of times specified by the count oper-
and (either 1 or the contents of CL). The destination
operand’s high order bit is rotated into the low order
bit.

ROR destination,count Rotate right.

register,1
register,CL
memory,1
memory,CL

This instruction will rotate the destination operand
right the number of times specified by the count op-
erand (either 1 or the contents of CL). The destina-
tion operand’s low order bit is rotated into the high
order bit.

SAHF (no operands) Store AH into the flag register.

This instruction will store register AH into the low
byte of the flag word.

Table A-2. Instruction Set Summary (Cont’d)

A-28 8086/8088 Instruct ion Set Summary

SAL/SHL destination,count Shift arithmetic/logical left.

register,1
register,CL
memory,1
memory,CL

This instruction will shift the destination operand
left the number of times specified by the count oper-
and (either 1 or the contents of CL). Zeroes are
shifted into the low order bit. The overflow flag is
cleared if the sign bit is the same at the end of the op-
eration.

SAR destination,count Shift arithmetic right.

register,1
register,CL
memory,1
memory,CL

This instruction will shift the destination operand
right the number of times specified by the count op-
erand (either 1 or the contents of CL). Shifted into
the high order bit are bits equal to the original high
order bit, so that the sign of the operand is pre-
served.

SBB destination Source Integer subtraction with borrow.

register,register
register,memory
memory,register
register,immediate
memory,immediate
accumulator,immediate

This instruction subtracts the source operand and
the carry flag from the destination operand. The des-
tination operand will contain the result of the opera-
tion. Byte sized immediate values are sign-extended
before subtraction.

Table A-2. Instruction Set Summary (Cont’d)

8086/8088 Instruct ion Set Summary A-29

SCAS dest-string Scan string operand.

dest-string This instruction subtracts the byte or word destina-
tion string (ES:[DI]) from AL or AX, respectively.
The flags are set as a result of the subtraction, but
the result is discarded. Register DI is incremented if
the direction flag = 0 or decremented if the direc-
tion flag = 1. Increments or decrements will be
either by 1 for byte operations or 2 for word opera-
tions. This instruction may be preceded with the
REPE or REPNE prefixes, which are described un-
der the REP entry in this table.

SCASB (no operands) Scan byte string operand.

This instruction is the same as the SCAS instruction
except that no operand is required because the in-
struction implies a byte operation and the ES:[DI]
destination location is assumed, as it was for the
SCAS instruction.

SCASW (no operands) Scan word string operand.

This instruction is the same as the SCAS instruction
except that no operand is required because the in-
struction implies a word operation and the ES:[DI]
destination location is assumed, as it was for the
SCAS instruction.

Table A-2. Instruction Set Summary (Cont’d)

A-30 8086/8088 Instruct ion Set Summary

SGDT/SIDT
(80286)

memory Store GDT/IDT Register.

memory This 80286, Privilege Level = 0 instruction will store
6 bytes into memory from the Global or Interrupt
Descriptor Table register. The first memory word
will be the LIMIT of the GDT or IDT register, the
next three bytes are the BASE, and the last byte is un-
defined.

SLDT
 (80286)

destination Store LDT Register.

mem16
reg16

This 80286, Protected Mode, Privilege Level = 0 in-
struction stores the LDT register, which contains a
selector pointing to an LDT descriptor in the Global
Descriptor Table, into a word length register or
memory location.

SMSW
(80286)

destination Store Machine Status Word.

mem16
reg16

This 80286 instruction will store the Machine Status
Word into a word length register or memory loca-
tion.

STC (no operands) Set carry flag.

This instruction sets the carry flag to 1.

STD (no operands) Set the direction flag.

This instruction sets the direction flag to 1. When
the direction flag is 1, string instructions will cause
the contents of the index register(s) to be decre-
mented.

Table A-2. Instruction Set Summary (Cont’d)

8086/8088 Instruct ion Set Summary A-31

STI (no operands) Set the interrupt enable flag.

This instruction sets the interrupt enable flag to 1 (if
the current privilege level is at least as privileged as
the IOPL, in 80286 Protected Mode). External,
maskable interrupts are enabled after the executing
the next instruction.

STOS dest-string Store string operand.

dest-string This instruction loads AL or AX into the byte or
word at location ES:[SI]. The dest-string operand
will specify whether the operation is of type BYTE
or WORD. After the load, DI is incremented if the
direction flag = 0 or decremented if the direction
flag = 1. Increments or decrements will be either by
1 for byte operations or 2 for word operations. This
instruction may be preceded with the REP prefix,
which is described later in this table.

STOSB (no operands) Store byte string operand.

This instruction is the same as the STOS instruction
except that no operand is required because the in-
struction implies a byte operation and the "ES:" seg-
ment override is assumed. The byte in AL is stored
into ES:[DI].

STOSW (no operands) Store word string operand.

This instruction is the same as the STOS instruction
except that no operand is required because the in-
struction implies a word operation and the "ES:" seg-
ment override is assumed. The word in AX is stored
into ES:[DI].

STR destination Store Task Register. (80286)

Table A-2. Instruction Set Summary (Cont’d)

A-32 8086/8088 Instruct ion Set Summary

mem16
reg16

This 80286, Protected Mode instruction stores the
Task Register into a word length register or memory
location.

SUB destination,source Subtraction.

register,register
register,memory
memory,register
register,immediate
memory,immediate
accumulator,immediate

This instruction subtracts the source operand from
the destination operand.memory,register The desti-
nation operand will contain the result of the opera-
tion. Byte-sized immediate values are sign-extended
before subtraction if destination is word sized.

TEST destination,source Logical compare.

register,register
register,memory
memory,register
register,immediate
memory,immediate
accumulator,immediate

This instruction performs a logical AND on the two
operands and sets the flags accordingly. The result is
discarded.

VERR
(80286)

selector Verify a segment for reading

mem16
reg16

This 80286, Protected Mode instruction tests if the
segment to which the selector points is readable
from the current privilege level. The zero flag is set
to 1 if the segment is readable: to 0 if it is not.

Table A-2. Instruction Set Summary (Cont’d)

8086/8088 Instruct ion Set Summary A-33

VERW
(80286)

selector Verify a segment for writing.

mem16
reg16

This 80286, Protected Mode instruction tests if the
segment to which the selector points is writable from
the current privilege level. The zero flag is set to 1 if
the segment is writable: to 0 if it is not.

WAIT (no operands) Wait for signal level.

This instruction causes the 8086/80188 processor to
enter the wait state until the TEST pin is active.

In the 80286, the WAIT instruction suspends execu-
tion until the BUSY pin, driven by the 80287 nu-
meric processor, is inactive (high).

XCHG destination,source Exchange memory/register with register.

accumulator,reg16
reg16,accumulator
memory,register
register,memory
register,register

This instruction exchanges the source and destina-
tion operands. In the 80286, the BUS LOCK signal
is asserted during the exchange regardless of a
LOCK prefix or IOPL.

XLAT source-table Table look-up translation.

source-table Before this instruction is executed, AL should con-
tain the unsigned index to the table at DS:[BX]. This
instruction will move the byte at location DS:[BX +
AL] to AL.

Table A-2. Instruction Set Summary (Cont’d)

A-34 8086/8088 Instruct ion Set Summary

Table Convention In Table A-3, information is laid out in the following way:

Operand

Forms this operand may take and possibly
further explanation of those forms.

8086/8088 Instruct ion Set Summary A-35

register

Includes forms of "reg16" and "reg8" operands below.

reg8

AH, AL, BH, BL, CH, CL, DH, DL.

reg16

AX, BX, CX, DX, SP, BP, SI, DI.

seg-reg

CS, DS, SS, ES.

accumulator

AX or AL.

immediate

0 thru # 0FFFFH
SEG < LABEL>
 OFFSET < LABEL>
also "immed8" operands below.

immed8

0 thru # 0FFH

HIGH < LABEL>
LOW < LABEL>
SIZE < LABEL>
TYPE < LABEL>

Table A-3. Operand Forms

A-36 8086/8088 Instruct ion Set Summary

memory

The form of a memory operand will depend on the
addressing mode. (Segment overrides, CS:, DS:,ES:,
and SS: allowed in all modes.)

ADDRESSING MODES:

Direct
Register Indirect
Based
Indexed
Based Indexed

< LABEL>
[BX], [BP], [SI], [DI]
< LABEL> [BX] and < LABEL> [BP]
< LABEL> [SI] and < LABEL> [DI]
< LABEL> [BX][SI]
< LABEL> [BX][DI]
< LABEL> [BP][SI]
< LABEL> [BP][DI]

NOTE: ’] [’ is the same as using "+ ".
That is, [BX] [SI] is equivalent to [BX+ SI], etc.

mem8

The form of this operand is the same as the "mem-
ory" operand except that the operand must be associ-
ated with the type BYTE. Either the label must be of
type BYTE, or the BYTE PTR type override must
precede the memory operand.

mem16

The form of this operand is the same as the "mem-
ory" operand except that the operand must be associ-
ated with the type WORD. Either the label must be
of type WORD, or the WORD PTR type override
must precede the memory operand.

Table A-3. Operand Forms (Cont’d)

8086/8088 Instruct ion Set Summary A-37

source-table

This operand will be a label located at the beginning
of a translation table. This operand must be of type
BYTE. The assembler assumes that BX contains the
address of the beginning of the translation table.

source-string

This operand will be a label. The assembler uses this
operand to determine whether a string operation is a
byte operation (in which case the label will be of type
BYTE), or a word operation (in which case the label
will be of type WORD). The assembler will assume
that SI contains the label’s offset address and that
DS contains the segment address (or segment selec-
tor in 80286 Protected Mode) for the label’s segment
unless a segment override is used.

dest-string

This operand will be a label. The assembler uses this
operand to determine whether a string operation is a
byte operation (in which case the label will be of type
BYTE), or a word operation (in which case label will
be of type WORD). The assembler will assume that
DI contains the label’s offset address and that ES
contains the segment address (or segment selector in
80286 Protected Mode) for the label’s segment. The
assembler will always assume that ES points to the
destination string’s segment. Segment overrides are
not allowed.

Table A-3. Operand Forms (Cont’d)

A-38 8086/8088 Instruct ion Set Summary

short-label

This operand must reference a label within -128 or
+ 127 bytes from the next instruction pointer loca-
tion.

near-label

This operand must reference a label in the
current code segment.

far-label

This operand will reference a label in another code
segment. Since the assembler will assume all jumps
to be near, the type FAR must be
associated with label, either in the instruction oper-
and by preceding the label with FAR PTR, or the la-
bel’s external declaration (with the EXT pseudo in-
struction).

In the 80286 Protected Mode, the far-label operand
may be used to jump to code segments, call gates,
task gates, or Task State Segments (TSSs). Labels
must be associated with the type FAR (either in the
instruction operand or in the external (EXT) declara-
tion).

near-proc

This operand must reference a label in the
current code segment.

Table A-3. Operand Forms (Cont’d)

8086/8088 Instruct ion Set Summary A-39

far-proc

This operand will reference a label in another code
segment. Since the assembler will assume all calls to
be near, the type FAR must be associated with the la-
bel, either in the instruction operand by preceding
the label with FAR PTR, or the label’s external dec-
laration (with the EXT pseudo instruction).

In the 80286 Protected Mode, the far-label operand
may be used to jump to code segments, call gates,
task gates, or Task State Segments (TSSs). The la-
bels must be associated with the type FAR (either in
the instruction operand or in the external (EXT)
declaration).

memptr16

This operand takes the same form as the "memory"
operand. The memory location to which this oper-
and points will contain the offset address to which
program control will be transferred (in the current
code segment).

Table A-3. Operand Forms

A-40 8086/8088 Instruct ion Set Summary

mptr32

This operand takes the same form as the "memory"
operand except that the operand must be associated
with the type DWORD. The memory location to
which this operand points will contain the seg-
ment:offset (selector:offset in the 80286 Protected
Mode) address to which program control will be
transferred. The offset portion of the target location
is contained in the low address memory word, and
segment (or selector) portion of the target location
is contained in the high address memory word.

regptr16

This operand takes the same form as the "reg16" op-
erand. The register will contain the offset address to
which program control will be transferred (in the cur-
rent code segment).

Table A-3. Operand Forms (Cont’d)

8086/8088 Instruct ion Set Summary A-41

Notes

A-42 8086/8088 Instruct ion Set Summary

B

80286 Programming

Introduction This appendix contains information on how to write 80286 pro-
tected mode programs. The 80186 assembler supports the 80286
microprocessor instruction set for the real address mode (8086
compatible). The 8086/8088 pseudo instructions and keyword
operators also apply to the 80286 with exceptions noted below.

The processor directive that must appear in the first column of
the first line of your assembly language program source files is
"80286".

The additional instructions that make up the 80286 instruction
set have been included in the 8086/8088 instruction set sum-
mary.

Using the "80286" directive allows your programs to contain the
special 80286 pseudo instructions whose descriptions appear on
the following pages.

80286 Programm ing B-1

Note The HP 64853’s "80286" assembler was designed as an early sup-
port tool for the 80286 microprocessor running in the Protected
Virtual Address Mode. As such, there are some known limita-
tions. (For instance, the "80286" assembler is not compatible
with the HP 64228 - 80286 Emulator.) We encourage 80286 us-
ers to use the HP 64859 Cross Assembler/Linker instead. The
HP 64859 product supports the 80286 in both the Real Address
Mode and the Protected Virtual Address Mode.

The "SEG"
Keyword Operator
In 80286
Programs

The SEG pseudo instruction only works in the 8086 compatible
mode. SEGE translates the 24 bit address into an 8086 type seg-
ment offset, and generates the segment. This is implemented so
that the user can initialize data structures while the processor is
still in the 8086 compatible mode, and the user is using the
80286 protected mode assembler. A physical address of
UVWXYZ hex is translated to a 80286 logical address of
V000WXYZ hex. Note the most significant nibble of address
has no meaning to the 8086. The segment is always generated in
this fashion. Since this assembler does not use the 80286 logical
address of selector and offset, the SEG pseudo instruction will
generate bad code if the microprocessor is in the protected
mode. The user must load immediate numbers equivalent to the
appropriate selector in order to initialize data structures while
in the microprocessor protected mode.

B-2 80286 Programming

80286 Pseudo
Instructions

The pseudo instructions SEGMENT, ENDS, and STACKSEG
allow the use of identifying labels. These segment labels are only
local, however, to the module in which they are defined. Seg-
ment labels will not be usable with the instructions SEG_DES,
TSS_DES, and LDT_DES if they are declared to be EXTER-
NAL.

Any descriptor tables desired must be created by the program.
Table creation is not automatic. The instructions SEG_DES,
TSS_DES, and LDT_DES create complete segment descriptor
entries. Instructions CALL_GATE, TASK_GATE,
INTR_GATE, and TRAP_GATE will create complete gate de-
scriptor entries.

All selector references must be "immediate" values becasue only
physical addresses are used by the assembler..

The following pseudo instructions are only applicable to 80286
assembly language programs.

The DD Pseudo
Instruction in
80286 Programs

The DD pseudo instruction works identically for the 8086 and
the 80286, except if the value field of the DD opcode is a relocat-
able label. In the 8086 the pseudo instruction would initialize
memory with the 8086 logical address of the relocatable label.
Since for the 80286, a 24 bit physical address is input, the 80286
assembler generates an 8086 logical address in the manner de-
scribed for the SEG pseudo instruction, and initializes memory
with this value. Since the 80286 assembler does not use the
80286 logical address of selector and offset, if you desire mem-
ory to be initialized, you must directly specify the immediate
value of the selector and offset.

80286 Programm ing B-3

CALL_GATE
TASK_GATE
INTR_GATE
TRAP_GATE

Define Call Gate Descriptor
Define Task Gate Descriptor
Define Interrupt Gate Descriptor
Define Trap Gate Descriptor
(Special 80286 Pseudos)

Syntax Label Operation Operand

CALL_GATE DPL,SELECTOR < ,OFFSET,
 < WORD_COUNT>

TASK_GATE DPL,SELECTOR < ,OFFSET >
INTR_GATE DPL,SELECTOR < ,OFFSET >
TRAP_GATE DPL,SELECTOR < ,OFFSET >

Description Gate descriptors are used only for transfer of control from the
instructions in one segment to the instructions in another seg-
ment. Gates provide some segment protection in that access to
other level tasks must reference a gate. These pseudo instruc-
tions, therefore, allow the creation of gate descriptor data struc-
tures. They each require a data privilege level, i.e., DPL0,..,
DPL3, and an immediate selector. The offset from the selector
is optional, and for CALL_GATE, the word_count term is op-
tional.

Example For an example of this pseudo instruction and how it relates to
the other 80286 pseudo instructions, see the 80286 example pro-
gram at the end of this appendix.

B-4 80286 Programming

JMP
CALL

Unconditional, Intersegment Jump
Unconditional, Intersegment Call
(Special 80286 Pseudos)

Syntax Label Operation Operand

JMP SELECTOR< ,OFFSET>
CALL SELECTOR< ,OFFSET>

Description Because the 80286 assembler does not use 80286 logical ad-
dresses (i.e., selector and offset), if the user attempts to do an in-
tersegment JMP or CALL, incorrect code will be generated.
This expansion of the JMP and CALL instructions allows the
user to specify the immediate value of the SELECTOR of the
segment to jump to, and optionally the OFFSET in the segment.

Example For an example of this pseudo instruction and how it relates to
the other 80286 pseudo instructions, see the 80286 example pro-
gram at the end of this appendix.

80286 Programm ing B-5

SEGMENT Create New Logical Segment
(Special 80286 Pseudo)

Syntax Label Operation Operand

Name SEGMENT ATTR
Name ENDS

Description This pseudo instruction creates a new logical segment, within
the current 64K PROG, DATA, COMN, or ORG segment.
These segments cannot be nested, and will all be created sequen-
tially within the current segment. The total length of all the logi-
cal segments within PROG, DATA, COMN, or ORG segments
must not exceed 64K. The SEGMENT pseudo is provided for
the user, to have many separate logical segments within one file,
with the provision that together they are less than 64K of mem-
ory. This SEGMENT pseudo instruction is to be utilized with
the descriptor table building pseudo instructions. Each SEG-
MENT pseudo instruction must have a corresponding ENDS
pseudo instruction.

The attributes (ATTR) assignable to a segment are four: Ex-
ecutable Only (EO), Executable and Readable (ER), Readable
Only (RO), and Readable and Writable (RW).

Example For an example of this pseudo instruction and how it relates to
the other 80286 pseudo instructions, see the 80286 example pro-
gram at the end of this appendix.

B-6 80286 Programming

SEG_DES
TSS_DES
LDT_DES

Create Segment Descriptor
Create Task Segment Descriptor
Create Local Descriptor Table Descriptor
(Special 80286 Pseudos)

Syntax Label Operation Operand

SEG_DES SEG_NAME < ,DPL,LENGTH>
TSS_DES SEG_NAME < ,DPL,LENGTH>
LDT_DES SEG_NAME < ,DPL,LENGTH>

Description This pseudo instruction creates a descriptor data structure. It
must be given an operand which was defined to be a SEG-
MENT. Optionally, the user can include the data privilege num-
ber i.e., DPL0 .. DPL3, and length of the segment in bytes.

Example For an example of this pseudo instruction and how it relates to
the other 80286 pseudo instructions, see the 80286 example pro-
gram at the end of this appendix.

80286 Programm ing B-7

STACKSEG Create Logical Stack Segment
(Special 80286 Pseudo)

Syntax Label Operation Operand

Name STACKSEG LENGTH

Description This pseudo instruction creates a logical stack segment with
length LENGTH bytes. This pseudo does not require a SEG-
MENT or ENDS pseudo instruction.

Example For an example of this pseudo instruction and how it relates to
the other 80286 pseudo instructions, see the 80286 example pro-
gram at the end of this appendix.

B-8 80286 Programming

The 80286
Example Program

This example program initializes all system data segments re-
quired for a simple three task system and then schedules the
tasks as follows: task 1 will start, followed by task 2, followed by
task 1 in a repetitive fashion. If any internal exceptions or exter-
nal interrupts are generated, task 3 will be invoked halting the
processor. The system data segments will be temporarily setup
in ROM and transferred to RAM using a string move.

80286 Example
Program

"80286"
GLOBAL IDT,GDT,LDT1,LDT2

LIMIT_FF EQU 00FFH
LIMIT_100 EQU 0100H
OFFSET_00 EQU 0000H
BASE_00 EQU 00H
REG_00 EQU 0000H
INTEL_RESV_B EQU 00H
FLAG_WORD EQU 00H
SEL_GDTA EQU 0008H
SEL_LDT_1 EQU 0010H
SEL_LDT_1A EQU 0018H
SEL_LDT_2 EQU 0020H
SEL_LDT_2A EQU 0028H
SEL_LDT_3 EQU 0030H
SEL_LDT_3A EQU 0038H
SEL_TSS_1 EQU 0040H
SEL_TSS_1A EQU 0048H
SEL_TSS_2 EQU 0050H
SEL_TSS_2A EQU 0058H
SEL_TSS_3 EQU 0060H
SEL_TSS_3A EQU 0068H
ATTR_TG_DPL0 EQU 085H

80286 Programm ing B-9

ATTR_TG_DPL1 EQU 0A5H
ATTR_TG_DPL2 EQU 0C5H
ATTR_TG_DPL3 EQU 0E5H
ATTR_DS_DPL0 EQU 092H
ATTR_DS_DPL1 EQU 0B2H
ATTR_DS_DPL2 EQU 0D2H
ATTR_DS_DPL3 EQU 0F2H
ATTR_LDT EQU 082H
ATTR_TS_DPL0 EQU 081H
ATTR_TS_DPL1 EQU 0A1H
ATTR_TS_DPL2 EQU 0C1H
ATTR_TS_DPL3 EQU 0E1H
ATTR_CS_DPL0 EQU 09AH
ATTR_CS_DPL1 EQU 0BAH
ATTR_CS_DPL2 EQU 0DAH
ATTR_CS_DPL3 EQU 0FAH

The following macro is used for defining a task state segment.
The parameters passed are the virtual address of the stack
pointer (SS_SEL and SP), the flag word (FLAGS), the code
segment selector (CS_SEL), the instruction pointer (IP), the
task ldt selector (LDT_SEL), the data segment selector
(DS_SEL), and the extra data segment selector (ES_SEL). The
stack pointer passed is used temporarily for all 4 stacks. all task
state segments created will have a blank back link selector, and
have all registers cleared except for the registers passed as pa-
rameters.

TSS_SEG MACRO &SP,&SS_SEL,&FLAGS,&CS_SEL,&IP,
 &LDT_SEL,&DS_SEL,&ES_SEL

DW 0000H
REPT 3
DW &SP,&SS_SEL
DW &IP
DW &FLAGS
DW REG_00,REG_00,REG_00,REG_00

B-10 80286 Programming

DW &SP

DW REG_00,REG_00,REG_00
DW &ES_SEL,&CS_SEL,&SS_SEL,&DS_SEL
DW &LDT_SEL
MEND

DATA
ASSUME DS:DATA

IDT SEGMENT RW
TASK_GATE DPL0,SEL_TSS_3 ;IDT
TASK_GATE DPL0,SEL_TSS_3
TASK_GATE DPL0,SEL_TSS_3
TASK_GATE DPL0,SEL_TSS_3
TASK_GATE DPL0,SEL_TSS_3
TASK_GATE DPL0,SEL_TSS_3
TASK_GATE DPL0,SEL_TSS_3
TASK_GATE DPL0,SEL_TSS_3
TASK_GATE DPL0,SEL_TSS_3
TASK_GATE DPL0,SEL_TSS_3
TASK_GATE DPL0,SEL_TSS_3
TASK_GATE DPL0,SEL_TSS_3
TASK_GATE DPL0,SEL_TSS_3
TASK_GATE DPL0,SEL_TSS_3
TASK_GATE DPL0,SEL_TSS_3
TASK_GATE DPL0,SEL_TSS_3
TASK_GATE DPL0,SEL_TSS_3
TASK_GATE DPL0,SEL_TSS_3
TASK_GATE DPL0,SEL_TSS_3
TASK_GATE DPL0,SEL_TSS_3

TASK_GATE DPL0,SEL_TSS_3
DPL0,SEL_TSS_3

TASK_GATE DPL0,SEL_TSS_3
TASK_GATE DPL0,SEL_TSS_3
TASK_GATE DPL0,SEL_TSS_3
TASK_GATE DPL0,SEL_TSS_3
TASK_GATE DPL0,SEL_TSS_3

80286 Programm ing B-11

TASK_GATE DPL0,SEL_TSS_3
TASK_GATE DPL0,SEL_TSS_3
TASK_GATE DPL0,SEL_TSS_3
TASK_GATE DPL0,SEL_TSS_3
TASK_GATE DPL0,SEL_TSS_3
TASK_GATE DPL0,SEL_TSS_3

IDT ENDS
GDT SEGMENT RW

SEG_DES GDT ;GDT. FIRST DES IS
SEG_DES GDT ;FOR THE NULL SELECTOR
LDT_DES LDT1
SEG_DES LDT1
LDT_DES LDT2
SEG_DES LDT2
LDT_DES LDT3
SEG_DES LDT3
TSS_DES TSS1
SEG_DES TSS1
TSS_DES TSS2
SEG_DES TSS2
TSS_DES TSS3
SEG_DES TSS3
REPT 18
DD 00000000H,00000000H

GDT ENDS
LDT1 SEGMENT RW

SEG_DES TASK1,DPL0,LIMIT_100 ;LDT1
SEG_DES STACK
REPT 30
DD 00000000H,00000000H

LDT1 ENDS
LDT2 SEGMENT RW

SEG_DES TASK2,DPL0,LIMIT_100 ;LDT2
SEG_DES STACK
REPT 30
DD 00000000H,00000000H

LDT2 ENDS
LDT3 SEGMENT RW

B-12 80286 Programming

SEG_DES TASK3,DPL0,LIMIT_100 ;LDT3
SEG_DES STACK
REPT 30
DD 00000000H,00000000H

LDT3 ENDS
TSS1 SEGMENT RW

TSS_SEG 00FEH,000CH,FLAG_WORD,0004H,OFFSET_00,
SEL_LDT_1,000CH,000CH ;TSS1

TSS1 ENDS
TSS2 SEGMENT RW

TSS_SEG 00FEH,000CH,FLAG_WORD,0004H,
OFFSET_00,SEL_LDT_2,000CH,000CH

;TSS2
TSS2 ENDS
TSS3 SEGMENT RW

TSS_SEG 00FEH,000CH,FLAG_WORD,0004H,
OFFSET_00,SEL_LDT_3,000CH,000CH

;TSS3
TSS3 ENDS

IDT_LIMIT_BASE DBS 6
GDT_LIMIT_BASE DBS 6

ORG 00000700H
ALIGN

STACK STACKSEG 254
STACK SEGMENT RW

DWS 127
STACK_TOP DW 0000H
STACK ENDS

PROG
ASSUME CS:PROG

INITIALIZE
MOV AX,SEG STACK_TOP
MOV SS,AX
MOV SP,OFFSET STACK_TOP

LD_IDT

80286 Programm ing B-13

MOV AX,SEG IDT
MOV DS,AX
MOV WORD PTR IDT_LIMIT_BASE,# LIMIT_FF
MOV WORD PTR IDT_LIMIT_BASE[2],OFFSET IDT
MOV BYTE PTR IDT_LIMIT_BASE[4],# BASE_00
MOV BYTE PTRIDT_LIMIT_BASE[5],# INTEL_RESV_B

LIDT WORD PTR IDT_LIMIT_BASE

LD_GDT
MOV WORD PTR GDT_LIMIT_BASE,# LIMIT_FF
MOV WORD PTR GDT_LIMIT_BASE[2],OFFSET GDT
MOV BYTE PTR GDT_LIMIT_BASE[4],# BASE_00
MOV BYTE PTR GDT_LIMIT_BASE[5],# INTEL_RESV_B
LGDT WORD PTR GDT_LIMIT_BASE

SET_P_MODE
MOV AX,# 00000101B ;SET PE AND EM BITS IN MSW
LMSW AX
JMP LD_TR ;DUMMY JUMP TO FLUSH QUEUE

LD_TR
MOV AX,# SEL_TSS_3
LTR AX

START_TASK1

Opcode for a jump using direct virtual address dword (VADW
NAMES TSS1 SELECTOR)

JMP SEL_TSS_1 ;THIS REPRESENTS
;THE SELECTOR

B-14 80286 Programming

TASK 1 jumps to TASK2

ASSUME CS:ORG
ORG 0000FF000H

Fix TSS3 IP,SP,ES,CS,SS,DS within TASK1. TSS3 was faulty
when TASK1 was first invoked.

TASK1 SEGMENT ER
MOV AX,SEL_TSS_3A
MOV DS,AX
MOV WORD PTR [14],# 0000H
MOV WORD PTR [26],# 00FEH
MOV WORD PTR [34],# 000CH
MOV WORD PTR [36],# 0004H
MOV WORD PTR [38],# 000CH
MOV WORD PTR [40],# 000CH

Opcode for a jump using direct virtual address dword (VADW
NAMES TSS2 SELECTOR)

TASK1_LOOP JMP SEL_TSS_2
JMP TASK1_LOOP

TASK1 ENDS

Jumps back to TASK 1.

ASSUME CS:ORG
ORG 0000FF100H

80286 Programm ing B-15

Opcode for a jump using direct virtual address dword (VADW
NAMES TSS1 SELECTOR)

TASK2 SEGMENT ER
TASK2_LOOP JMP SEL_TSS_1

JMP

TASK2_LOOP

TASK2 ENDS

TASK3 halts the processor.

ASSUME CS:ORG
ORG 0000FF200H

TASK3 SEGMENT ER
HLT
JMP TASK3

TASK3 ENDS

B-16 80286 Programming

Set up the restart vector to jump to INITIALIZE.

ASSUME CS:ORG
ORG 0000FFFF0H
JMP FAR PTR INITIALIZE
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP

80286 Programm ing B-17

Notes

B-18 80286 Programming

C

70108/70116 Programm ing And Instruction Set
Summary

This appendix contains general information. Architecture, oper-
ands, and condition flags are briefly discussed. For detailed de-
scriptions of the microprocessors, refer to the manufacturers us-
ers manual.

Programming
Considerations

Sixteen-bit operands may be assigned to even or odd
address locations. For data and address operands, the least sig-
nificant byte of the word will be stored in the lower-valued ad-
dress. The most significant byte will be stored in the next higher
address. The 70116 microprocessor automatically performs the
required number of memory accesses: one if the word operand
begins on an even byte address, and two if it begins on an odd
byte address. The 70108
always performs two memory accesses for each 16-bit operand.

Note See the "EXT" pseudo op in the chapter titled "Pseudo
Instruction Summary" about "EXT" conflicts with NEC
processors.

70108/70116 Programm ing/Instruction Set Summary C-1

Modes Of
Operation

Two modes of operation are possible with the microprocessors:
Native Mode and 8080 Mode or emulation mode. The processor
in Native Mode executes 8086/8088 compatible
instructions, while in 8080 Mode the 8080 set of instructions is
emulated. The mode flag of the program status word is set (1)
for native mode execution, and cleared (0) for 8080 mode.

Two instructions BRKEM (Break for Emulation) and RETEM
(Return from Emulation) control entry into and out of emula-
tion mode from native mode.

Two instructions CALLN (Call native routine) and RETI (Re-
turn from Interrupt) will switch operation from 8080 mode to
native mode and back to 8080 mode.

As the assembler directive, use "70108" or "70116" for
native mode, "70108_80" or "70116_80" for 8080 mode.

Addressing
Capabilities

In general, memory operands may be addressed directly, using
a16-bit offset, or indirectly, using a base and/or index register
added to an optional 8- or 16-bit displacement value.

C-2 70108/70116 Programm ing/Instruction Set Summary

Instruction Set
Summary

All mnemonic instructions are summarized in table C-1. The in-
struction set is arranged in alphabetical order. Refer to the
manufacturer’s users guide for more detailed information.

Figure C-2 shows the typical machine instruction format. The lo-
cation of an operand in a register or memory will be specified by
up to three files in each instruction format. These fields are the
mode field (mod), the register field (reg), and the register/mem-
ory field (r/m). When used, they occupy the second byte of the
instruction format. The mode field occupies the two most signifi-
cant bits of the byte and specifies how the r/m field will be used
in locating the operand. The reg field occupies the next three
bits following the mode field and specifies either an 8-bit regis-
ter or a 16-bit register where an operand will be located.

Note, bytes three through six of an instruction are optional
fields that usually contain the displacement (DISP) value of a
memory operand and/or the actual value of an immediate con-
stant operand. The effective address (EA) of the memory

70108/70116 Programm ing/Instruction Set Summary C-3

 operand will be computed according to the mode and r/m fields
as follows:

Register operands may be indicated within the instruction for-
mat by the reg field which will represent the selected register.
Operands may be indicated by an encoded field, in which case
EA will represent the register selected by the r/m field. Instruc-
tions without a "W" bit in their format always refer to 16-bit reg-
isters; those with a "w" bit in their format refer to either 8- or 16-
bit registers according to the following reg field assignments:

16-bit (W= 1) 8-bit (W= 0)
reg field: 000 = reg AW 000 = reg AL

001 = reg CW 001 = reg CL
010 = reg DW 010 = reg DL
011 = reg BW 011 = reg BL
100 = reg SP 100 = reg AH
101 = reg BP 101 = reg CH
110 = reg IX 110 = reg DH
111 = reg IY 111 = reg BH

Figure C-1. Typical Instruction Format

C-4 70108/70116 Programm ing/Instruction Set Summary

d: direction to (1) or from (0) register
w: byte (0) or word (1) operation
mod and r/m: addressing mode -register of memory
reg: register select

The SEGMENT OVERRIDE PREFIX takes the form of:
001reg110 in which the register is assigned in the following man-
ner:

reg Segment register
00 DS1
01 PS
10 SS
11 DS0

70108/70116 Programm ing/Instruction Set Summary C-5

70116/70108
Register Names

The following are reserved symbols. They have special meaning
to the assembler and cannot appear as user-defined symbols.
The 8086/8088 register counterparts are shown in parentheses.

SYMBOL (8086/8088) DESCRIPTION

AH (AH) High-order byte of register A
AL (AL) Low-order byte of register A
AW (AX) 16-bit register A
BH (BH) High-order byte register B
BL BL) Low-order byte register B
BP (BP) Base pointer
BW (BX) 16-bit register B
CH (CH) High-order byte register C
CL (CL) Low-order byte register C
CW (CX) 16-bit register C
DH (DH) High-order byte register D
DL (DL) Low-order byte register D
DS0 (DS) Data segment 0 register
DS1 (ES) Data segment 1 register
DW (DX) 16-bit register D
IX (SI) Source index register
IY (DS) Destination index register
PC (IP) Program counter
PS (CS) Program segment register
SP (SP) Stack pointer
SS (SS) Stack segment register

C-6 70108/70116 Programm ing/Instruction Set Summary

Instruction Set
Symbols

Symbols used in table C-1, Instruction Set Summary, are as fol-
lows:

SYMBOL DESCRIPTION

addr Address (16 bits)
addr-hi Most significant byte of address
addr-lo Least significant byte of address
d One-bit field identifying direction to (1) or from (0) register
data Immediate operand (8- or 16-bit)
disp 8- or 16-bit displacement from end of current instruction
disp-hi Most significant byte of 16-bit displacement
disp-lo Least significant byte of 16-bit displacement
imm 3, 4 or 8-bit immediate operand
mod Two-bit field defining addressing mode
offset-hi Most significant byte in 16-bit offset destination address

of target instruction
offset-lo Least significant byte in 16-bit offset destination address

of target instruction
reg Field that defines the register used
r/m Three-bit field, in conjunction with the mod and "W" fields

defines EA
seg Segment register
seg-hi Most significant byte in 16-bit segment destination address

of target instruction
seg-lo Least significant byte in 16-bit segment destination address

of target instruction
port Number of I/O port
s:w Sign-extended byte indicator
v Interrupt: defines variable type (v= 1), or type 3 (v= 0) Shift

or Rotate: variable number of bits to shift or rotate (v= 1),
or one bit (v= 0)

w One-bit field identifying byte (0) or word (1) instruction
z Instruction being repeated terminates when zero flag is

equal to z

70108/70116 Programm ing/Instruction Set Summary C-7

Mnemonic Byte 1 Byte 2 Byte 3 Byte 4

ADD Add

Memory or Register 000000dw mod reg r/m
Operand with
Register Operand

Immediate Operand 100000sw mod 000 r/m data data if
to Memory or s:w= 01
Register Operand

Immediate Operand 0000010w data data if
to Accumulator w= 1

ADDC Add with Carry

Memory or Register 000100dw mod reg r/m
Operand with

 Register Operand

Immediate Operand 100000sw mod 010 r/m data data if
to Memory or s:w= 01
Register Operand

Immediate Operand 0001010w data data if
to Accumulator w= 1

ADD4S Add Nibble 00001111 00100000
String

ADJBA Adjust Byte Add 00110111

ADJBS Adjust Byte 00111111
Subtract

ADJ4A Adjust Nibble Add 00100111

Table C-1. 70116/70108 Instruct ion Set Summary

C-8 70108/70116 Programm ing/Instruction Set Summary

Mnemonic Byte 1 Byte 2 Byte 3 Byte 4

ADJ4S Adjust Nibble 00101111
Subtract

AND And Logically

Memory or Register 001000dw mod reg r/m
Operand with
Register Operand
Immediate Operand 1000000w mod 100 r/m data data if
to Memory or w= 1
Register Operand

Immediate Operand 0010010w data data if
to Accumulator w= 1

BC/BL Branch if Carry/ 01110010 disp
Lower

BCWZ Branch if CW 11100011 disp
Equals Zero

BE/BZ Branch if Equal/ 01110100 disp
Zero

BGE Branch if Greater 01111101 disp
Than or Equal

BGT Branch if Greater 01111111 disp
Than

BH Branch if Higher 01110111 disp
BLE Branch if Less 01111110 disp

Than or Equal

BLT Branch if Less Than 01111100 disp

Table C-1. 701116/70108 Instruct ion Set Summary (Cont’d)

70108/70116 Programm ing/Instruction Set Summary C-9

Mnemonic Byte 1 Byte 2 Byte 3 Byte 4

BN Branch if Negative 01111000 disp

BNC/BNL Branch if Not 01110011 disp
Carry/Not Lower

BNE/BNZ Branch if Not 01110101 disp
Equal/Not Zero

BNH Branch if Not 01110110 disp
Higher

BNV Branch if Not 01110001 disp
Overflow

BP Branch if Positive 01111001 disp

BPE Branch if Parity 01111010 disp
Even

BPO Branch if Parity 01111011 disp
Odd

BR Branch

Intrasegment or11101001 disp-lo disp-hi
Intragroup Direct

Intrasegment Direct 11101011 disp-lo
Short

Intrasegment or11111111 mod 100 r/m
Intragroup Indirect

Intersegment Direct 11101010 offset-lo offset-hi seg-lo
Byte 5= seg-hi

Table C-1. 70116/70108 Instruct ion Set Summary (Cont’d)

C-10 70108/70116 Programm ing/Instruction Set Summary

 Mnemonic Byte 1 Byte 2 Byte 3 Byte 4

Intersegment 11111111 mod 101 m (mod 11)
Indirect

BRK Break 1100110v imm (if v= 1)

BRKEM Break for 00001111 11111111 imm
 Emulation

BRKV Break if Overflow 11001110

BUSLOCK Bus Lock Prefix 11110000

BV Branch if Overflow 01110000 disp

CALL Call

Direct Intrasegment 11101000 disp-lo disp-hi
or Intragroup

Indirect Intraseg- 11111111 mod 010 r/m
ment or Intragroup

Direct Intersegment 10011010 offset-lo offset-hi seg-lo
Byte 5= seg-hi

Indirect Inter- 11111111 mod 011 m (mod11)
segment

CALLN Call Native 11101101 11101101 imm (effective for
8080 mode also)

CHKIND Check Index 01100010 mod reg m

Table C-1. Instruction Set Summary (Cont’d)

70108/70116 Programm ing/Instruction Set Summary C-11

 Mnemonic Byte 1 Byte 2 Byte 3 Byte 4

CLR1 Clear Bit

Bit CL of Memory or 00001111 0001001w mod 000 r/m
Register Operand

Bit imm of Memory 00001111 0001101w mod 000 r/m
or Register Operand

Carry Flag 11111000

Direction Flag 11111100

CMP Compare Operands
Memory or Register 0011101w mod reg r/m
Operand with
Register Operand

Register Operand 0011100w mod reg m
with Memory

Immediate Operand 100000sw mod 111 r/m data data if
with Memory or s:w= 01
Register Operand

Immediate Operand 0011110w data data if
with Accumulator w= 1

COMPBK/CMPBKB/CMPBKW 1010011w
Compare Block/
Compare Block Byte/
Compare Block Word

Table C-1. Instruction Set Summary (Cont’d)

C-12 70108/70116 Programm ing/Instruction Set Summary

Mnemonic Byte1 Byte 2 Byte 3 Byte 4

COPM/CMPMB/CMPMW 1010111w
Compare Multiple/
Compare Multiple Byte/
Compare Multiple Word

CMP4S Compare Nibble 00001111 00100110
String

CVTBD Convert Binary 11010100 00001010
to Decimal

CVTBW Convert byte 10011000

to Word

CVTDB Convert Decimal 11010101 00001010
to Binary

CVTWL Convert Decimal 10011001
to Long Word

DBNZ Decrement and 11100010 disp
Branch if Not Zero

DBNZE Decrement and 11100001 disp
Branch if Not Zero
and Equal

DBNZNE Decrement and 11100000 disp
Branch if Not Zero
and Not Equal

Table C-1. Instruction Set Summary (Cont’d)

70108/70116 Programm ing/Instruction Set Summary C-13

Mnemonic Byte1 Byte 2 Byte 3 Byte 4

DEC Decrement Operand by One
Memory or Register 1111111w mod 001 r/m

 Operand

Word Register 01001 reg
Operand

DI Disable Interrupt 1111010

DISPOSE Dispose a
Stack Frame 11001001

DIV Divide Signed 1111011w mod 111 r/m

DIVU Divide Unsigned 1111011w mod 110 r/m

EI Enable Interrupt 11111011

EXT Extract Bit Field
Register 00001111 00110011 11 reg reg

Immediate 00001111 00111011 11000 reg imm

FPO1 Floating Point Operation 1
Register 11011xxx 11yyyzzz

Memory 11011xxx mod yyy m

FPO2 Floating Point Operation 2
Register 0110011x 11yyyzzz

Memory 0110011x mod yyy m

HALT Halt 11110100

Table C-1. Instruction Set Summary (Cont’d)

C-14 70108/70116 Programm ing/Instruction Set Summary

Mnemonic Byte1 Byte 2 Byte 3 Byte 4

IN Input Byte and
Input Word from
Fixed Port 1110010w port

Variable Port 1110110w

INC Increment Operand
by One Memory or 1111111w mod 000 r/m
Register Operand

Register Operand 01000reg
(Word)

INM Input Multiple 0110110w

INS Insert Bit Field
Register 00001111 00110001 11 reg reg

Immediate 00001111 00111001 11000 reg imm

LDEA Load Effective 10001101 mod reg m
Address to Register

LDM/LDMB/LDMW 1010110w
Load Multiple/
Load Multiple Byte/
Load Multiple Word

Table C-1. Instruction Set Summary (Cont’d)

70108/70116 Programm ing/Instruction Set Summary C-15

Mnemonic Byte1 Byte 2 Byte 3 Byte 4

MOV Move
Memory or Register 1000101w mod reg r/m
Operand to
Register Operand

Register Operand 1000100w mod reg m
to Memory

Immediate Operand to 1100011w mod 000 m data data if
Memory Operand w= 1

Immediate Operand 1011wreg data data if
to Register w= 1

Memory Operand to 1010000w addr-lo addr-hi
Accumulator

Accumulator to 1010001w addr-lo addr-hi
Memory Operand

Memory or Register 10001110 mod 0seg r/m
 Operand to Segment

Register

Segment Register to 10001100 mod 0seg r/m
Memory or Register
Operand

32 Bit Memory to 11000101 mod reg m
Data Segment 0
Register

Table C-1. Instruction Set Summary (Cont’d)

C-16 70108/70116 Programm ing/Instruction Set Summary

Mnemonic Byte 1 Byte 2 Byte 3 Byte 4

32 Bit Memory to 11000100 mod reg m
Data Segment 1
Register

PSW to AH 10011111

AH to PSW 10011110

MOVBK/MOVBKB/MOBBKW 1010010w
Move block/Move Block
Byte/Move Block Word

MUL Multiply Signed
 Multiply Accumulator 1111011w mod 101 r/m

by Register or Memory

Immediate 011010s1 mod reg r/m data data if
s= 0

MULU Multiply Unsigned
Accumulator by 1111011w mod 100 r/m
Register or Memory

NEG Negate, or Form 1111011w mod 011 r/m
2‘s Complement

NOP No Operation 10010000

NOT, or Form 1111011w mod 010 r/m
1‘s Complement

Table C-1. Instruction Set Summary (Cont’d)

70108/70116 Programm ing/Instruction Set Summary C-17

Mnemonic Byte 1 Byte 2 Byte 3 Byte 4

NOT1 Not Bit

Bit CL of Memory or 00001111 0001011w mod 000 r/m
Register Operand

Bit imm of Memory 00001111 0001111w mod 000 r/m imm
 or Register Operand

Carry Flag 11110101

OR Inclusive OR
Memory or Register 000010dw mod reg r/m
Operand with Register
Operand

Immediate Operand to 1000000w mod 001 r/m data data if
 Memory or Register w= 1
Operand

Immediate Operand 0000110w data data if
to Accumulator w= 1

OUT Output Byte Output Word
Fixed Port 1110011w port
Variable Port 1110111w

OUTM Output Multiple 0110111w

POLL Poll and wait 10011011

Table C-1. Instruction Set Summary (Cont’d)

C-18 70108/70116 Programm ing/Instruction Set Summary

Mnemonic Byte 1 Byte 2 Byte 3 Byte4

POP Pop Word off Stack
 into Destination

Memory Operand 10001111 mod 000 m

Register Operand 01011reg

Segment Register 000seg111 (reg 01)

Pop Flags off Stack 10011101

All General 01100001
Registers

PREPARE Prepare New 11001000 data-lo data-hi data
Stack Frame

PUSH Push Word onto Stack

Memory Operand 11111111 mod 110 m

Register Operand 01010reg
 (Word)

Segment Register 000seg110

Push Flags onto 10011100
Stack

Push All General 01100000
Registers

Immediate 011010s0 data data if
 s= 0

Table C-1. Instruction Set Summary (Cont’d)

70108/70116 Programm ing/Instruction Set Summary C-19

Mnemonic Byte 1 Byte 2 Byte 3 Byte4

REP/REPE/REPZ/REPNE 1111001z
REPNZ
Repeat String
Operation

RPC Repeat While 01100101
Carry

REPNC Repeat While 01100100
Not Carry

RET Return from Procedure

Intrasegment 11000011

Intrasegment and 11000010 data-lo data-hi
Add Immediate to
Stack Pointer

Intersegment 11001011

Intersegment and 11001010 data-lo data-hi
Add Immediate to
Stack Pointer

RETEM Return from 11101101 11111101 (effective for
Emulation 8080 mode also)

RETI Return from 11001111
Interrupt

ROL
Rotate Left 110100vw mod 000 r/m

by count 1100000w mod 000 r/m count

Table C-1. Instruction Set Summary (Cont’d)

C-20 70108/70116 Programm ing/Instruction Set Summary

Mnemonic Byte 1 Byte 2 Byte 3 Byte4

ROLLC
Rotate Left 110100vw mod 010 r/m
through Carry

 by count 1100000w mod 010 r/m count

ROL4 Rotate Left Nibble
8 bit Memory or 00001111 00101000 mod 000 r/m
Register Operand

ROR
Rotate Right 110100vw mod 001 r/m

by count 1100000w mod 001 r/m count

RORC
Rotate Right 110100vw mod 011 r/m
through Carry

by count 1100000w mod 011 r/m count

ROR4 Rotate Right Nibble
8 bit Memory or 00001111 00101010 mod 000 r/m
Register Operand

SET1 Set Bit
Bit CL of Memory 00001111 0001010w mod 000 r/m
or Register Operand

Bit imm of Memory 00001111 0001110w mod 000 r/m imm
of Register Operand

Carry Flag 11111001

Direction Flag 11111101

Table C-1. Instruction Set Summary (Cont’d)

70108/70116 Programm ing/Instruction Set Summary C-21

Mnemonic Byte 1 Byte 2 Byte 3 Byte4

SHL Shift Left
Shift Arithmetic 110100vw mod 100 r/m
Left and Shift
Logical Left

 by count 1100000w mod 100 r/m count

Shift Logical Right 110100vw mod 101 r/m

by count 1100000w mod 101 r/m count

SHRA
Shift Right 110100vw mod 111 r/m
Arithmetic
by count 1100000w mod 111 r/m count

STM/STMB/STMW 1010101w
Store Multiple/
Store Multiple Byte/
Store Multiple Word

SUB Subtract
Memory or Register 001010dw mod reg r/m
Operand and Register
Operand
Immediate Operand 100000sw mod 101 r/m data data if
from Memory or s:w= 01
Register Operand

Immediate Operand 0010110w data data if
from Accumulator w= 1

Table C-1. Instruction Set Summary (Cont’d)

C-22 70108/70116 Programm ing/Instruction Set Summary

Mnemonic Byte 1 Byte 2 Byte 3 Byte4

SUBC Subtract with Carry
 Memory or Register 000110dw mod reg r/m

Operand and

Register Operand

Immediate Operand 100000sw mod 011 r/m data data if
 from Memory or w= 1
 Register Operand

Immediate Operand 0001110w data data if
from Accumulator w= 1

 SUB4S Subtract Nibble 00001111 00100010
String

TEST Test, Logical AND
Memory or Register 1000010w mod reg r/m
Operand with
Register Operand

Immediate Operand 1111011w mod 000 r/m data data if
with Memory or w= 1
Register Operand

Immediate Operand 1010100w data data if
with Accumulator w= 1

TEST1 Test Bit

Bit CL of Memory or 00001111 0001000w mod 000 r/m
Register Operand

Bit imm of Memory 00001111 0001100w mod 000 r/m imm
or Register Operand

Table C-1. Instruction Set Summary (Cont’d)

70108/70116 Programm ing/Instruction Set Summary C-23

Mnemonic Byte 1 Byte 2 Byte 3 Byte4

TRANS/TRANSB Translate 110101
Byte

XCH Exchange
Memory or Register 1000011w mod reg r/m
Operand with Register
Operand

Register Operand 10010reg
with Accumulator

XOR Exclusive OR
Memory or Register 001100dw mod reg r/m
Operand with Register
Operand

Immediate Operand 1000000w mod 110 r/m data data if
Memory or Register w= 1
Operand

Immediate Operand 0011010w data data if
to Accumulator w= 1

Segment Override Prefix 001sreg110

Table C-1. Instruction Set Summary (Cont’d)

C-24 70108/70116 Programm ing/Instruction Set Summary

D

8087 Programm ing and Instruction Set Summary

Introduction The 8087 can act as a coprocessor with the host microprocessor
or as a numeric data processor. As a coprocessor, the 8087
shares the same instruction stream and can perform parallel exe-
cutions. In the memory addressing mode, 8086/8088/80186 ES-
CAPE instructions will cause the 8086/8088/80186 to calculate
an address and read its contents. The 8086/8088/80186 ignores
the contents at this address. Meanwhile, the 8087 has been moni-
toring the instruction stream. When an ESCAPE instruction is
detected, the 8087 starts processing. The 8087 latches the in-
struction. If an address was calculated, it is captured. The data is
then read by the 8086/8088/80186 at this location. The instruc-
tion is decoded by the 8087 to determine how many more words
are needed from memory. After fetching all the data required,
the 8087 releases the bus and begins calculating. The
8086/8088/80186 then continues executing the instruction
stream.

In numeric processing the 8087 has four rounding modes se-
lected by the rounding control (RC) field in the control word
(refer to figure D-2). Rounding occurs when the format of the
destination cannot exactly represent the true result in arithmetic
and store operations. The precision control (PC) field selects
the precision of the result: 24, 53, or 64 bits; default is 64 bits.
Real numbers can be closed by either of two models of infinity:
projective or affine. The infinity control (IC) field selects the
type of closure. Default is projective.

8087 Programm ing and Instruction Set Summary D-1

The 8087 represents data and final results of calculations be-
tween + /- 2.3 x 10308 to + /- 1.7 x 10308 (at double precision).
This is not an exact representation. Remember that arithmetic
on real numbers is inherently approximate. However, the 8087
does perform exact arithmetic on integers. An operation on two
integers returns an exact integer result (providing it is within
range).

Note Since the 8087 is a coprocessor, it uses the host processor direc-
tive, i.e., "8086", "8088", "80186", "80188".

8087 Archite cture The programmer can access the 8087 floating-point stack, the
seven words that specify the 8087 environment, and the seven
data types addressed by the 8087. A description of these features
follows.

Floating Point
Stack

This stack has eight elements with sign, exponent, and signifi-
cand fields. Each of the registers in the stack is 80 bits wide. The
field format used in all stack calculations is the temporary real
data format described later under Data Types.

The current top element in the floating point stack is the stack
top (ST) field in the status word (described in the next section).
A load (push) operation decrements the stack pointer by one

D-2 8087 Programm ing and Instruction Set Summary

then loads a value into the new stack top. For example,
FLDLG2 loads log102 into the new stack top. An operation that
pops the stack increments the stack pointer by one. For exam-
ple, FADDP ST[3],ST adds the stack top to element 3, replaces
element 3 with this sum, and pops the stack.

8087 Environment Status word, control word, tag word, two-word instruction ad-
dress, and two-word data address define the 8087 environment.

Status Word Status word can be inspected by storing it in memory with an
8087 instruction and then examining it with 8086/8088 CPU
code. The format of the status word is shown in figure D-1.

15 14 13 12 11 10 9 8 7 6 5

B C3 ST ST ST C2 C1 C0 IR * PE

4 3 2 1 0

UE OE ZE DE JE

B: Busy field shows if 8087 is executing (1) or idle (0). C3-C0: Condition code, used
mainly for conditional branching.

ST: Points to 8087 stack element that is current stack top.
IR: Interrupt request, latched to record pending interrupt to 8086/8088 CPU.

Figure D-1. Status Word Format

8087 Programm ing and Instruction Set Summary D-3

The remaining six bits are exception flags set when an exception
occurs during instruction execution. For more information see
the next section concerning the Control Word.

PE: Precision
UE: Underflow
OE: Overflow
ZE: Zero divide
DE: Denormalized operand
IE: Invalid operation

Control Word The control word is made up of the exception masks, an inter-
rupt enable mask, and control bits. The format of the control
word is shown in figure D-2.

D-4 8087 Programm ing and Instruction Set Summary

15 14 13 12 11 10 9 8 7

* * * IC RC RC PC PC RC

6 5 4 3 2 1 0

* PM UM OM ZM DM IM

*Not used

IC: Infinity control: affine = 1; projective = 0 (the default).
RC: Rounding control: 00 = to nearest or even (the default); 01 = down; 10 = up;

11 = truncate toward zero.
PC: Precision control: 00 = 24 bits; 01 = reserved; 10 = 53 bits;

11 = 64 bits (the default).
IEM: Interrupt-enable mask: 0 = enabled; 1 = disabled (masked).
PM: Precision Mask: masked (1) = return rounded result;

unmasked (0) = return rounded result, request interrupt.
UM: Underflow Mask: masked (1) = denormalize result; unmasked (0) = (for register

destination) adjust exponent, store result, request interrupt; (for memory
destination) request interrupt.

OM: Overflow Mask: masked (1) = return properly signed ;
unmasked (0) = (for register destination) adjust exponent,
store result, request interrupt; (for memory destination) request interrupt.

ZM: Zerodivide Mask: masked (1) = return y signed with EXCLUSIVE OR
of operand signs; unmasked(0) = request interrupt.

DM: Denormalized Operand Mask: masked (1) = (for memory operand) proceed
as usual; (for register operand) convert to valid unnormal, then reevaluate for
exceptions; unmasked (0) = request interrupt.

IM: Invalid Operation Mask: masked (1) = if one operand is NAN, return it;
if both are NANS, return NAN having the larger absolute value; if neither
is NAN, return indefinite; unmasked (0) = request interrupt.

Figure D-2. Control Word Format

8087 Programm ing and Instruction Set Summary D-5

Tag Word Tag fields TAG(0) through TAG(7) describe the status of stack

elements 0 through 7, respectively. The format is shown in fig-
ure D-3 above.

Tag Field Values:

00 = Values (Normal or Unnormal)
01 = Zero (True)
10 = Xpecial (Not-A-Number, infinity, or Denormal)
11 = Empty

Figure D-3. Tag Word Format

D-6 8087 Programm ing and Instruction Set Summary

Exception Pointers Exception pointers are available for user written exception han-
dlers. When the 8087 executes an instruction, the instruction ad-
dress and opcode are saved in the exception pointers. If the in-
struction references a memory operand, the operand address is
also saved. An exception handler can be written to store these
pointers in memory and obtain information concerning the in-
struction that caused an error. The exception pointers format is
shown in figure D-4.

Figure D-4. Exception Pointers Format

8087 Programm ing and Instruction Set Summary D-7

Instruction Opcode The instruction opcode is defined in the 11 least significant bits;
the five most significant bits are always the 8087 hook (11011B),
i.e., the CPU ESCAPE bits.

Data Types The 8087 can address seven different data types with all of the
8086 addressing modes. Table D-1 lists the seven addressable
8087 data types.

Significant
Data Type Bits Decimal Digits Approx. Decimal Range

Word Integer 16 4-5 -32768 < _N< _+ 32767
Short Integer 32 9 -2x109 < _N< _+ 2x109
Long Integer 64 18 -9x1018< _N< _+ 9x1018
Packed Decimal 80 18 -9...9 < _N< _+ 9...9
Short Real 32 6-7 0, 1.2x10-38 < _!N!< _+ 3.4x1038
Long Real 64 15-16 0, 2.3x10-308 < _!N!< _1.7x10308
Temporary Real 80 19-20 0,3.4x10-4932 < _!N!< _1.1x104932

Table D-1. 8087 Data Types

D-8 8087 Programm ing and Instruction Set Summary

The data formats are shown in figure D-5.

Figure D-5. Data Formats

8087 Programm ing and Instruction Set Summary D-9

Figure D-5. Data Formats (Cont’d)

D-10 8087 Programm ing and Instruction Set Summary

S: Sign bit (0= positive, 1= negative).
Mag: Magnitude
dn: Decimal digit- two per byte
X: Don’t care; 8087 ignores when loading,

 zeros when storing.
I: Integer bit of significand; stored in

temporary real, implicit in short real
and long real.

^ : Implicit binary point location.
Biased Exponent: Short Real 7FH

Long Real 3FHH
Temporary Real 3FFFH

Rules and
Conventions

The 8087 instructions use either floating point stack elements or
variables in memory as operands. The 8087 instructions cannot
use labels, 8086 registers, or immediate values as operands. All
of the instructions are summarized at the end of this chapter.

Data Transfer
Instructions

The data transfer instructions move operands between stack ele-
ments or between the stack top and memory. Each of the seven
data types can be converted to temporary real and loaded onto
the stack or stored in memory in one operation. The 8087 tag
word is automatically updated by data transfer instructions to
show stack contents after instruction execution. The data trans-
fer instructions are: load real (FLD), store real (FST), store real
and pop (FSTP), exchange registers (FXCH), integer load
(FILD), integer store (FIST), integer store and pop (FISTP),
packed decimal (BCD) load (FBLD), and packed decimal
(BCD) store and pop (FBSTP).

8087 Programm ing and Instruction Set Summary D-11

Examples

FLD1 ;Load 1 on top of stack.
FST ST[4] ;Transfer top of stack to stack element 4.

Arithmetic
Instructions

8087 arithmetic instructions have many variations on basic add,
subtract, multiply and divide operations. Operands can be lo-
cated in stack elements or memory. Results can be deposited in
any of the stack elements. Operands can be any of the following
data types: word integer, short integer, short real, or long real.
Five instruction forms using these instructions include: classical
stack, stack element, stack element and pop, real memory, and
binary integer. These forms are explained in detail in the follow-
ing pages. The forms, mnemonics, and operand forms are sum-
marized in table D-2.

Instruction Form Mnemonic Operand

Classical Stack Fxx ST[1],ST
Stack Element Fxx ST[i],ST or ST,ST[i]
Stack Element FxxP ST[i],ST
and Pop
Real Memory Fxx ST,short-real/long-real
Binary Integer FIxx ST,word-integer/short-integer

Implicit operands are shown in italics; they are not coded.

xx = ADD destination < --destination + source
DIV destination < -- destination / source
DIVR destination < -- source / destination
MUL destination < -- destination . source
SUB destination < -- destination - source
SUBR destination < -- source - destination

Table D-2. Arithmetic Instructions

D-12 8087 Programm ing and Instruction Set Summary

Assembler code generation for the arithmetic instructions
FMUL, FMULP, FADD, FADDP, FDIV, FDIVP, FDIVR,
FSUB, FSUBP, and FSUBPR takes place in one of two ways
(subject to the issue/revision date of the assembler software).
The pseudo instruction "NEW_8087" should be used if the soft-
ware is dated 1 February, 1984, or later and a program has been
written to be compatible with the latest processor revision. The
pseudo instruction "OLD_8087" can be used if the machine code
is to be compatible with the old software. OLD_8087 is the de-
fault if neither instruction is specified.

The pseudo instruction need be used only once, but must pre-
cede any 8087 instructions.

Classical Stack In this form, the 8087 operates like a classical stack machine.
Only the opcode is coded. The 8087 takes the source operand
from the top of the stack and the destination from the next stack
element. The operation is completed, the stack is popped, and
the result of the operation is returned to the new stack top. This
effectively replaces the operands with the result. The instruc-
tions that can be used with this form are: FADD, FSUB,
FSUBR, FMUL, FDIV, and FDIVR.

Example FSUB ;Subtract stack top from next stack
;element, pop stack and return
;difference to floating point stack.

Stack Element In this form, the stack top (ST) is one operand and any stack ele-
ment is the other operand. The instructions that can be used
with this form are: FADD, FSUB, FSUBR, FMUL, FDIV, and
FDIVR.

8087 Programm ing and Instruction Set Summary D-13

Example FADD ST,ST[4] ;Add the stack top to stack element 4,
;replace stack element 4 with the
;sum, and pop the floating point stack.

Stack Element and
POP

In cases where the stack top is only needed for one operation,
this form picks up the stack top for the source operand and then
discards it by popping the floating point stack. Instructions that
can be used with this form are: FADDP, FSUBP, FSUBRP,
FMULP, FDIVP, and FDIVRP.

Example FDIVP ST[3],ST ;Divide stack element 3 by the stack
;top, replace element 3 with the
;quotient, and pop the floating
;point stack.

Real Memory In this form, a real number is used directly as a source operand.
The instructions that can be used with this form are: FADD,
FSUB, FSUBR, FMUL, FDIV, and FDIVR.

Example FMUL RANGE ;Multiply the stack top by the
;value in memory for RANGE and
;replace the stack top with the
;product.

Binary Integer A binary integer is used directly as a source operand. Instruc-
tions used with this form are: FIADD, FISUB, FISUBR,
FIMUL, FIDIV, and FIDIVR.

D-14 8087 Programm ing and Instruction Set Summary

Example FIMUL TBL_5 ;Multiply the integer memory operand
;TBL_5 times the stack top and return
;the product to the stack top.

Comparison
Instructions

8087 comparison instructions analyze the stack top, usually in re-
lationship to another operand. The result is reflected in the
status word condition code. This can be inspected by transfer-
ring the condition code to memory with the store status word in-
struction (FSTSW). The compare instructions are: compare real
(FCOM), compare real and pop (FCOMP), compare real and
pop twice (FCOMPP), integer compare (FICOM), integer com-
pare and pop (FCOMP), test (FTST), and examine (FXAM).

Example: FCOM ST[3] ;Compare stack top with stack element 3.

Transcendental
Instructions

Transcendental instructions perform the core calculations for
all the common trigonometric, inverse trigonometric, hyper-
bolic, inverse hyperbolic, logarithmic, and exponential func-
tions. Prologue and epilogue software can be used to reduce ar-
guments to a range accepted by the instructions and to adjust
the result to correspond to the original arguments, if necessary.
These instructions operate on the top one or two stack ele-
ments. The results are returned to the stack. Operands must be
valid and the timing within the range for the instruction. An op-

8087 Programm ing and Instruction Set Summary D-15

erand to a transcendental must be normalized to be valid. De-
normals, unnormals, infinities, and NANs are considered inva-
lid. The transcendental instructions are: partial tangent
(FPTAN), partial arctangent (FPATAN), calculate 2x-1
(F2XM1), calculate Y*log2X (FYL2X), and calculate Y
*log2(X+ 1) (FYL2XP1).

Constant
Instructions

All of these instructions push a constant onto the stack. These
constants have full temporary real precision (64 bits) and are ac-
curate to about 19 decimal digits. The constant instructions are:
load + 0.0 (FLDX), load + 1.0 (FLD1), load pi (FLDPI), load
log102, (FLDL2T), and load loge2 (FLDL2E).

Processor Control
Instructions

Most of these instructions are used in system-level activities
such as initialization, exception handling, and task switching.
Some of the instructions have alternate mnemonics with a sec-
ond character N inserted. This instructs the assembler to pre-
cede the instruction with a CPU NOP instead of a CPU WAIT.
The alternate mnemonic should be used if there is the danger
of an endless wait with the CPU WAIT instruction. An endless
wait could ensue if, for example, the CPU interrupt enable flag
was cleared during a time when the 8087 was expected to gener-
ate an interrupt external to the CPU. Program execution would
be inhibited because the interrupt would go unanswered. A list
of the control instructions follows:

D-16 8087 Programm ing and Instruction Set Summary

FINIT/FNINIT Initialize processor
FDISI/FNDISI Disable interrupts
FENI/FNENI Enable interrupts
FLDCW Load control word
FSTCW/FNSTCW Store control word
FSTSW/FNSTSW Store status word
FCLEX/FNCLEX Clear exceptions
FSTENV/FNSTENV Store environment
FLDENV Load environment
FSAVE/FNSAVE Save state
FRSTOR Restore state
FINCSTP Increment stack pointer
FDECSTP Decrement stack pointer
FFREE Free register
FNOP No operation
FWAIT CPU wait

Special 8087
Pseudo
Instructions

This information supplements chapter 6 of this manual, the
PSEUDO INSTRUCTION SUMMARY. Only instructions ap-
plicable to the 8087 processor are included here.

Pseudos DD and DW are the same as those for the 8086 and are
explained in chapter 6 of this manual. The 8087 pseudo instruc-
tions DQ and DT are explained on the following pages.

8087 Programm ing and Instruction Set Summary D-17

8087 Instruction
Set Summary

The instruction set is summarized in table D-3 in alphabetical
order. Refer to the manufacturer’s users manual for details. An
explanation of the symbols used in the table follows. Note, d,
mod, and r/m are the same as symbols used in the 8086.

d: Destination; 0 = top of stack, 1 = one of
stack elements.

[i]: Three-bit field identifying stack element;
0 = top of stack, 1 = element next
to top, and so on.

m: One-bit field for data type length; real,
0 = short real 1 = long real; integer,
0 = short integer 1 = word integer.

mod: Two-bit field defining addressing mode.
r/m: mod, m, and this three-bit field define EA.

The 8087 instruction set summary, Table D-3, follows the
pseudo instructions.

D-18 8087 Programm ing and Instruction Set Summary

DQ Define Quadword
(Special 8087 Pseudo)

Syntax Label Operation Operand

Name DQ expression [,...]

Description The DQ instruction can be used to accomplish the following:

• Initialize memory locations.

• Define the type characteristic of variables.

When used with a variable expression in the label field, the DQ
instruction defines the variable to be type quadword.

The DQ instruction can also be used to define long integer or
long real data types. An expression used to define long integers
can only include integer numbers. Only 32 bits of expression are
used to define the lower two words of the long integer. The up-
per two words of the expression are the sign extension. Real
numbers are always expressed in decimal values. Be sure to in-
clude the decimal point. You may use either the normal decimal
form of the expression or the scientific form. You may also spec-
ify either positive or negative numbers and exponents (+ /-
n.mE+ /-x). Positive numbers are assumed if you do not specify.

8087 Programm ing and Instruction Set Summary D-19

DQ (Cont’d)

Example

FILE: DQ:USERID HEWLETT-PACKARD: 8086 Assembler
LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
0000 96000000 2 LONG_INTEGER DQ 123+ 27
0004 00000000
0008 0000000000 3 LONG_REAL DQ 123.0
000D C05E40

Errors= 0

D-20 8087 Programm ing and Instruction Set Summary

DT Define Tenbyte
(Special 8087 Pseudo)

Syntax Label Operation Operand

Name DT expression [,...]

Description The DT instruction can be used to accomplish the following.

• Initialize memory locations.

• Define the type characteristic of variables.

When used with a variable name in the label field, the DT in-
struction defines the variable to be type "tenbyte".

The DT instruction can also be used to define temporary real
and packed decimal data types. Real numbers are always ex-
pressed in decimal values. Be sure to include the decimal point.
You can use either the normal decimal form of the expression
or the scientific form. You can also specify either positive or
negative numbers and exponents (+ /-n.mE+ /-x). Positive num-
bers are assumed if you do not specify. Range is -1.1E+ 4932 to -
3.4E-4932, + 1.1E+ 4932 to + 3.4E-4932. Packed decimals can be
up to 18 decimal characters without decimal point.

8087 Programm ing and Instruction Set Summary D-21

DT (Cont’d)

Example:

FILE: DT:USERID HEWLETT-PACKARD: 8086 Assembler
LOCATION OBJECT CODE LINE SOURCE LINE

1 "8086"
0000 0000000000 2 TEMP_REAL DT 124.0
0005 0000F80540
000A 2401000000 3 PACKED_DECIMAL DT 124
000F 0000000000

Errors= 0

D-22 8087 Programm ing and Instruction Set Summary

Mnemonic Byte 1 Byte 2 Byte 3

F2XMI Calculate 2X -1 10011011 11011001 11110000

FABS Take absolute value 10011011 11011001 11100001
of top of stack

FADD/FADDP Add real or
add real and pop stack

Stack top and stack 10011011 11011d00 110000[i]
element

Stack top and memory 10011011 11011m00 mod000r/m
operand

Pop stack 10011011 11011110 11000{ i}

FBLD Load packed decimal 10011011 11011111 mod100r/m
(BCD) onto top of stack

FBSTP Store packed 10011011 11011111 mod110r/m
decimal (BCD) and
pop stack

FCHS CHange sign of the 10011011 11011001 11100000
top stack element

FCLEX/FNCLEX Clear 10011011 11011011 11100010
exceptions

FCOM Compare real
Compare stack top 1001 011 11011000 11010[i]
and stack element

Compare stack top 100-11011 11011m00 mod010r/m
and memory operand

Table D-3. 8087 Instruct ion Set Summary

8087 Programm ing and Instruction Set Summary D-23

Mnemonic Byte 1 Byte 2 Byte 3

FCOMP Compare real and
pop stack

Compare stack top and 10011011 11011000 11011[i]
and stack element
and pop

Compare stdack to and 10011011 11011m00 mod011r/m

FCOMP Compare real and 10011011 11011110 11011001
memory and pop

FCOMPP Compare real and 10011011 11011110 11011001
pop stack twice

FDECSTP Decrement stack 10011011 11011001 11110110
top pointer

FDISI/FNDISI Disabole 10011011 11011011 11100001
interrupts

FDIV/FDIVP Divide real
or divide real and
pop stack

Stack top and stack 10011011 11011d00 11111[i]
element
Stack top and memory 10011011 11011m00 mod111r/m
operand

Pop stack 10011011 11011110 11111[i]

FENI/FENI Enable 10011011 11011011 11100000
interrupts

FIADD Add integer 10011011 11011m10 mod000r/m

Table D-3. 8087 Instruct ion Set Summary (Cont’d)

D-24 8087 Programm ing and Instruction Set Summary

Mnemonic Byte 1 Byte 2 Byte 3

FICOM/FICOMP Integer
compare or integer
compare and pop stack

Compare integer 10011011 11011m10 mod010r/m

Compare integer and 10011011 11011m10 mod011r/m
pop stack

FDIV Integer divide 10011011 11011m10 mod110r/m

FIDIVR Reversed integer 10011011 11011m10 mod111r/m
divide

FILD Load integer onto
top of sdtack

Integer memory to 10011011 11011m11 mod000r/m
top of stack

Long integer memory 10011011 11011111 mod101r/m
to top of stack

FIMUL Integer multiply 10011011 11011m10 mod001r/m

FINCSTP Increment stack 10011011 11011011 11100011

FINIT/FNINIT Initialize 10011011 11011011 11100011
‘processor

FIST Store integer 10011011 11011m11 mod010r/m

Table D-3. 8087 Instruct ion Set Summary (Cont’d)

8087 Programm ing and Instruction Set Summary D-25

Mnemonic Byte 1 Byte 2 Byte 3

FISTP Store integer and
pop stack

Top of stack to intger 10011011 11011m11 mod011r/m
memory and pop stack

Top of tack to long 10011011 11011111 mod111r/m
integer and
pop stack

FISUB Integer subtract 10011011 11011m10 mod100r/m

FISUBR Reversed integer 10011011 11011m10 mod101r/m
subtract

FLD Load real onto top
of stiack

Stack element to 10011011 11011001 11000[i]
stack top

Real memory operand 10011011 11011m01 mod000r/m
to stack top

Temporary real memory10011011 11011011 mod101r/m
operand to stack top

FLD1 Load + 1.0 onto 10011011 11011001 11101000
top of stack

FLDCW Load control word 10011011 11011001 mod101r/m

FLDENV Load 8087 10011011 11011001 m,0d100r/m

FLD2E Load log210 onto 10011011 11011001 11101010
top of stack

Table D-3 8087 Instruct ion Set Summary (Cont’d)

D-26 8087 Programm ing and Instruction Set Summary

Mnemonic Byte 1 Byte 2 Byte 3

FLDLG2 Load log102 onto 10011011 11011001 11101001
top of stack

FLDLN2 Load loge2 onto 10011011 11011001 11101101
top of stack

FLDPI load pi onto top 10011011 11011001 11101011
of stack

FLDZ Load + 0.0 onto top 10011011 11011001 11101110
of stack

FMUL/FMULP Multiply real
or multiply real and
pop stack

Stack top and stack 10011011 11011d00 ‘‘00‘[i]
element

Stack top and memory 10011011 11011m00 mod001r/m
operand

Pop stack 10011011 11011110 mod001r/m

FNOP No operation 10011011 11011001 11010000

FSTCW/FNSTCW Store 1001101 11011001 mod111r/
control word

FSTENV/FNSTENV Store ‘00‘‘0‘‘ 11011001 mod110r/m
8087 enviornment

FSTENV/FNSTENV Store 10011011 11011001 mod110r/m
8087 environment

FSTSW/FNSTSW Store 8087 10011011 11011101 mod111r/m
status word

Table D-3. 8087 Instruct ion Set Summary (Cont’d)

8087 Programm ing and Instruction Set Summary D-27

Mnemonic Byte 1 Byte 2 Byte 3

FPATAN Partial 10011011 11011001 11110011
arctangent function

FPREM Partial remainder 0011011 11011001 11111000

FPTAN Partial tangent 10011011 11011001 11110010
function

FRNDINT Round to integer 10011011 11011001 11111100

FRSTOR Restore state 10011011 11011101 mod100r/

FSCALE Scale 10011011 11011001 11111101

FSQRT Square root 10011011 11011001 11111010

FST Store real

Stack top and stack 10011011 11011101 11010[i]
element

Stack top to real 10011011 11011m01 mod010r/m
memory operand

FSTP Store real and
pop stack

Store top of stack 10011011 1011101 11011[i]
into stack element
and pop stack

Store top of stack 10011011 11011m01 mod011r/m
into short or long

 real memory and
pop stack

Table D-3. 8087 Instruct ion Set Summary (Cont’d)

D-28 8087 Programm ing and Instruction Set Summary

Mnemonic Byte 1 Byte 2 Byte 3

Store top of stack 10011011 1011011 mod111r/m
into temporary real
operand and pop stack

FSUB/FSUBP Subtract real
or subtract real and
pop stack

Stack top and stack 10011011 11011d00 11100[i]
element

Stack top and memory 10011011 11011m00 mod100r/m
operand

Pop stack 10011011 11011110 11100[i]

FSUBR/FSUBRP Reversed real
subtraction or reversed
subtraction and pop stack

Stack top and stack 10011011 11011d00 11101[i]
element

Stack top and memory 10011011 11011m00 mod101r/m
operand

Pop stack 10011011 11011110 11101[i]

FTST Test top of stack 10011011 11011001 11100100

FWAIT CPU wait 10011011

FXAM Examine top of 10011011 11011001 11100101
stack element

Table D-3. 8087 Instruct ion Set Summary (Cont’d)

8087 Programm ing and Instruction Set Summary D-29

Mnemonic Byte 1 Byte 2 Byte 3

FXCH Exchange contents 10011011 11011001 11001[i]
of stack element with
stack top

FXTRACT Extract exponent 10011011 11011001 11110100
and significand from
number in top of stack

FYL2X Calculate Y* log2X 10011011 11011001 11110001

FYL2XP1 Calculate 10011011 11011001 11111001
Y* log2(X+ 1)

Table D-3. 8087 Instruct ion Set Summary (Cont’d)

D-30 8087 Programm ing and Instruction Set Summary

E

8089 Programm ing and Instruction Set Summary

The 8089 microprocessor independently manages and maintains
I/O operations. This lifts the I/O burden from the host CPU, sig-
nificantly improving system throughput.

There are two system configurations: LOCAL and REMOTE.
In LOCAL configuration the 8089 shares the system bus with
the host processor. In REMOTE the 8089 shares the system bus
and has a remote bus not accessible to the host processor. In
LOCAL, the 8089 and the host processor have a common bus
controlled by request/grant (RQ/GT) circuitry. The system bus
shared by the processors can be 8 or 16 bits. The 8089 can ad-
dress a gigabyte of memory and 64k of I/O addresses. In RE-
MOTE, the 8089 can address memory up to 64k over the remote
bus and one gigabyte over the system bus.

Local 64K address space refers to addresses on the remote bus
in the REMOTE configuration. In LOCAL, this 64k address
space is used for I/O addressing. System space addresses in the
LOCAL configuration access memory. In REMOTE, system ad-
dresses access the shared system bus.

Note Use the processor number, "8089_86" or "8089_88", for the as-
sembler directive.

8089 Programm ing & Instruction Set Summary E-1

8089 Archite cture There are two independent I/O channels on the 8089. Each
channel operates simultaneously. Each has a separate set of reg-
isters. Each channel also has separate external interrupt, DMA
request, and external terminate pins.

Registers 8089 registers are used in assembly language task block pro-
grams and in DMA transfer operations. Registers are identical
for both channels. 8089 register organization is shown in figure
E-1.

E-2 8089 Programm ing & Instruction Set Summary

19 0

GA G.P. POINTER/REGISTER

GB G.P. POINTER/REGISTER

GC G.P. POINTER/REGISTER

TP TASK BLOCK PROGRAM POINTER

15 0

BC BYTE COUNT

IX INDEX

CC CHANNEL CONTROL

MC MASK COMPARE

19 0

PP PB POINTER

Figure E-1. 8 089 Registers

8089 Programm ing & Instruction Set Summary E-3

Each register in Figure E-1 has a tag bit associated with it. The
tag bit is primarily used in data addressing. A "1" indicates a 16-
bit local space address (I/O). A "0" indicates a 20-bit system
space address (memory).

Registers GA and GB are 20-bit pointer/registers, plus a tag bit.
These registers are used to point to data in task block programs.
They provide the source and destination addresses in DMA
transfers as controlled by register CC parameters. GA and GB
can also be used as 16-bit general purpose registers in task block
programs.

Register GC is a 20-bit pointer/register, plus a tag bit. GC
points to data in task block programs. During DMA transfers in
the translate mode, GC contains the base address of a 256-byte
translation table. GC can also be used as a 16-bit general pur-
pose register in task block programs.

Register TP is a 20-bit pointer/register with a tag bit. It points
to the address of the next instruction to be executed. TP is
loaded from the command parameter block (PB) when task
block program execution is started or resumed.

Register BC is a 16-bit general purpose register used as a byte
counter during DMA transfers. With an 8-bit source, BC is de-
cremented by one after each transfer (by two after each transfer
from a 16-bit source).

Register IX is a 16-bit general purpose register. The contents of
IX is added to a base pointer/register to access data in some
memory addressing modes.

Register CC is a 16-bit register that controls DMA transfers and
chained task block program instruction execution.

Register MC is a 16-bit general purpose register that supplies
mask and compare bytes for instructions JMCE and JMCNE. It
is also used in DMA transfer mask/compare operations.

The last register, PP, cannot be programmed by the user. This
20-bit register is automatically loaded with the channel com-
mand parameter block address when a channel is

E-4 8089 Programm ing & Instruction Set Summary

started. PP always points to system space (memory). In
accessing the user defined part of PB, PP is used as a base ad-
dress.

Operands The 8089 has six types of operands: register, pointer/register, im-
mediate data, program location, data memory, and data memory
bit. The following paragraphs explain these operands.

Register Operands The register operand symbols were shown in figure E-1. These
symbols identify the registers for the assembler. They cannot be
redefined by the programmer.

Example

MOVI GA,0F00H ;Move immediate value 0F00H to register GA.

Pointer/Register
Operands

The pointer/registers are: GA, GB, GC, and TP. They are 20-bit
registers with associated tag bits. These registers point to data
memory and I/O space in the CPU system. These registers are in-
cluded here because they can be used as 16-bit general purpose
registers.

Example

LPDI C,TABLE ;Load register GC with 16 bits of
;immediate data represented by TABLE.

8089 Programm ing & Instruction Set Summary E-5

Immediate Data
Operands

Immediate data operands can be a data memory location, a pro-
gram location, or an 8- or 16-bit value.

Examples

ARRAY DS 56 ;Reserve 56 bytes of data memory.
;The first byte is labeled ARRAY.

LPDI TP,LABEL1 ;Load register TP with the address
;of program location LABEL1.

ORI GA,0D6BH ;OR contents of GA with 16-bit
;immediate value of 0D6BH.

Program Location
Operands

A program location operand is used in conditional and uncondi-
tional control transfer instructions to specify the jump location.
In most cases this is a label representing the jump location in
the program.

Example

JMP LAST1 ;Jump unconditionally to instruction
;LAST1.

E-6 8089 Programm ing & Instruction Set Summary

Data Memory
Operands

Data memory is always addressed indirectly through one of the
pointer registers: GA, GB, GC, or PP (represented by reg). The
20-bit system space (memory) and 16-bit local space (I/O) can
be accessed. There are four forms of data memory operands.

1. Base address only [reg]; reg contains the data memory ad-
dress.

Example

MOV CC,[GA] ;Starting at the address in GA, move
;16 bits of data memory to register CC.

2. Base address plus unsigned 8-bit offset [reg].d (d is expres-
sion evaluated modulo 256 forming an 8-bit offset).

Example

OR MC,[GC].6 ;OR register MC with word of data
;memory starting at location GC+ 6
;(low byte).

3. Base address plus index register [reg+ IX] forms data mem-
ory address. No change occurs in base address or index reg-
ister.

Example

ADD [GB+ IX],BC ;Add contents of BC to data memory
;starting at address GB+ IX (low byte).

8089 Programm ing & Instruction Set Summary E-7

4. Base address plus index register [reg+ IX+]. Index register
is post incremented by byte (1) or word (2). Data memory
address is sum of base address and index register. After in-
struction execution, index register is automatically incre-
mented by size of operand. No change in base address oc-
curs.

Example:

DEC [GA+ IX+] ;Decrement data memory word starting
;at GA+ IX. After execution, IX is
;incremented by 2 (word).

Data Memory Bit
Operands

Instructions that operate on bits of a data memory byte need op-
erands specifying the bit. Bits are numbered as follows:

BITS
7 6 5 4 3 2 1 0
MSB LSB

Example:

CLR [GB],4 ;Clear bit four of data memory byte at GB.

E-8 8089 Programm ing & Instruction Set Summary

Special 8089
Pseudo
Instructions

This information supplements chapter 6 of this manual, the
PSEUDO INSTRUCTION SUMMARY. Only instructions ap-
plicable to the 8089 processor are included here.

Pseudos DB, DD, and DW are the same as the 8086. 8089
pseudo DS is the same as the 8086 DBS. These are explained in
Chapter 7 of this manual. For the 8089 pseudo PUBLIC, use the
64000 GLOBAL. EVEN is explained on the following page.

8089 Programm ing & Instruction Set Summary E-9

EVEN Set Program Counter To Even Address
(Special 8089 Pseudo)

Syntax Label Operation

[Name] EVEN

Description The EVEN pseudo instruction will incr ement the current pro-
gram counter by one if it is odd. If it is even the pseudo is ig-
nored.

If a label name is present, it is assigned the starting address of
the program counter.

Example

FILE: EVEN:USERID HEWLETT-PACKARD: 808986 Assembler
LOCATION OBJECT CODE LINE SOURCE LINE

1 "8089_86"
0000 003F55 2 DB 0,3FH,55H

3 LBEL EVEN
ERROR-UO ^
0003 4000 4 L1 DB 40H,0
Errors= 1, previous error at line 3
UO - Unidentified Opcode, Opcode encountered is not defined for this micro-processor

E-10 8089 Programm ing & Instruction Set Summary

8089 Instruction
Set Summary

The instruction set is summarized in table E-1 by type of instruc-
tion. Refer to the manufacturer’s user manual for details. An ex-
planation of the symbols used in the table follows.

b: Data memory bit symbol.
IM8: 8-bit immediate value.
IM16: 16-bit immediate value.
L: Expression specifying program location.
DM8: 8 bits data memory.
DM16: 16 bits data memory.
DM24: 3 bytes data memory.
DM32: 4 bytes data memory.
Reg8: The least significant byte in a 16-bit register.

If it is the destination of a data transfer, the
data is sign extended (bit 7) to 16 bits. If the
register is a 20-bit register, data is sign
extended to 20 bits and the tag bit is set to 1.

In a 20-bit pointer register, the four MSB are
undefined after all arithmetic and logical
operations (except addition). Addition to a
pointer register can result in a carry into the
four MSB.

All data is sign extended to 16 bits with
arithmetic and logical operations.

Reg16: All of the 16-bit register is used in an operation.
If a 20-bit pointer register is the destination of
a data transfer, the data is sign extended (bit 15)
to 20 bits and the tag bit is set to logical 1.
Also, the upper four bits (16 to 19) are
undefined after arithmetic and logical
operations. Addition to a pointer register can
result in a carry into the four MSB.

8089 Programm ing & Instruction Set Summary E-11

Arithmetic and Logical

ADD

Reg16,DM16
DM16,Reg16

Add register and 16-bit data memory

ADDB

Reg8,DM8
DM8,Reg8

Add register and 8-bit data memory

DDBI

Reg8,IM8
DM8,IM8

Add register or 8-bit data memory and 8-bit immedi-
ate value

ADDI

Reg16,IM16
DM16,IM16

Add register or 16-bit data memory and 16-bit imme-
diate value

AND

Reg16,DM16
DM16,Reg16

And register with 16-bit data memory

ANDB

Reg8,DM8 And register with 8-bit data memory

ANDBI

Reg8,IM8
DM8,IM8

And register or 8-bit data memory with 8-bit imme-
diate value

Table E-1. 8089 Instruct ion Set Summary

E-12 8089 Programm ing & Instruction Set Summary

Arithmetic and Logical (Cont’d)

ANDI

Reg16,IM16
DM16,IM16

And register or 16-bit data memory with 16-bit im-
mediate value

DEC

Reg16
DM16

Decrement register or 16-bit data memory

DECB

DM8 Decrement 8-bit data memory

INC

Reg16
DM16

Increment register or 16-bit data memory

INCB

DM8 Increment 8-bit data memory

OR

Reg16,DM16
DM16,Reg16

Or register and 16-bit data memory

ORB

Reg8,DM8
DM8,Reg8

Or register and 8-bit data memory

Table E-1. 8089 Instruct ion Set Summary (Cont’d)

8089 Programm ing & Instruction Set Summary E-13

Arithmetic and Logical (Cont’d)

ORBI

Reg8,IM8
DM8,IM8

OR register or 8-bit data memory with 8-bit immedi-
ate value

ORI

Reg16,IM16
DM16,IM16

Or register or 16-bit data memory with 16-bit imme-
diate value

NOT

Reg16
DM16
Reg16,DM16

Complement register or 16-bit data memory op-
tional: put complemented data in register

NOTB

DM8
Reg8,DM8

Complement 8-bit data memory; optional: put com-
plemented data in register

 Bit Manipulation and Test

SETB

DM8,b Set selected data memory bit to one

CLR

DM8,b Clear selected data memory bit to zero

JBT/LJBT

DM8,b,L Jump on data memory bit true (1)

Table E-1. 8089 Instruct ion Set Summary (Cont’d)

E-14 8089 Programm ing & Instruction Set Summary

 Bit Manipulation and Test (Cont’d)

JNBT/LJNBT

DM8,b,L Jump on data memory bit not true (1)

 Control Transfer - Unconditional

CALL/LCALL

DM24,L Store TP pointer/register and tag bit; jump

JMP/LJMP

L Jump

 Control Transfer - Conditional

JMCE/LJMCE

DM8,L Jump on mask/compare equal

JMCNE/LJMCNE

DM8,L Jump on mask/compare not equal

JNZ/LJNZ

Reg16,L
DM16,L

Jump on nonzero register or data memory word

JNZB/LJNZB

DM8,L Jump on nonzero data memory byte

Table E-1. 8089 Instruct ion Set Summary (Cont’d)

8089 Programm ing & Instruction Set Summary E-15

 Control Transfer - Conditional (Cont’d)

JZ/LJZ

Reg16,L
DM16,L

Jump on zero register or data memory

JZB/LJZB

DM8,L Jump on zero data memory byte

Data Transfer

LPD

P,DM32 Load 20-bit pointer/register from data memory

LPDI

P,IM16 Load 20-bit pointer/register from immediate value

MOVP

DM24,P
P,DM24

Move 20-bit pointer/register to (store) or from (re-
store) memory

MOV

Reg16,DM16
DM16,Reg16
DM16,DM16

Move 16 bits of data memory to/from data memory
or register

Table E-1. 8089 Instruct ion Set Summary (Cont’d)

E-16 8089 Programm ing & Instruction Set Summary

 Data Transfer (Cont’d)

MOVB

Reg8,DM8
DM8,Reg8
DM8,DM8

Move 8 bits of data memory to/from data memory or
register

MOVI

Reg16,IM16
DM16,IM16

Move 16 bits of immediate value to data memory or
register

MOVIB

Reg8,IM8
DM8,IM8

Move 8 bits of immediate value to data memory or
register

Miscellaneous

HLT

 Halt task block program execution; channel BUSY
flag byte in the CB Cleared to 00H

NOP

 No operation

SINTR

 Set interrupt service flip flop

TSL

DM8,IM8,L Test and set data memory byte with system bus
locked

Table E-1. 8089 Instruct ion Set Summary (Cont’d)

8089 Programm ing & Instruction Set Summary E-17

Miscellaneous (Cont’d)

WID

S,D Set DMA source and destination logical widths

XFER

 Begin DMA transfer following execution of next in-
struction

Table E-1. 8089 Instruct ion Set Summary (Cont’d)

E-18 8089 Programm ing & Instruction Set Summary

F

70320/70330 Programm ing And Instruction Set
Summary

This appendix contains general information. Architecture, oper-
ands, and condition flags are briefly discussed. The instructions
of 70320/70330 microprocessors are upward compatible with
those of 70108/70116 microprocessors. Only
instruction specific to the 70320/70330 microprocessors are de-
scribed in this appendix. For common instructions, refer to the
"70108/70116 Programming And Instruction Set Summary" chap-
ter in this manual. For detailed descriptions of the microproces-
sors, refer to the manufacturers users manual.

Note See the "EXT" pseudo op in the chapter titled "Pseudo
Instruction Summary" about "EXT" conflicts with NEC
processors.

70320/70330 Programm ing/Instruction Set Summary F-1

Programming
Considerations

Sixteen-bit operands may be assigned to even or odd address lo-
cations. For data and address operands, the least significant
byte of the word will be stored in next higher address. The
70330 microprocessor automatically performs the required num-
ber of memory accesses, one if the word operand begins on an
even byte address, and two if it begins on an odd byte address.
The 70320 always performs two memory accesses for each 16-bit
operand.

As the assembler directive, use "70320" or "70330".

Addressing
Capabilities

In general, memory operands may be addressed directly, using a
16-bit offset, or indirectly, using a base and/or index register
added to an optional 8- or 16-bit displacement value.

Instruction Set
Summary

The instruction set of the 70320/330 is upwardly compatible
with that of the 70108/70116 in the native mode.

The mnemonic instructions which are specific (added) to the
70320/70330 are summarized in table F-1. The instruction set is
arranged in alphabetical order. For detailed information refer
to the manufacturer’s users guide.

Figure F-1 shows the typical machine instruction format. The
location of an operand in a register or memory will be specified
by up to three fields in instruction format. These fields are the

F-2 70320/70330 Programm ing/Instruction Set Summary

mode field (mod) , the register field (reg), and the register/mem-
ory field (r/m). When used, they occupy the second byte of the
instruction format. The mode field occupies the two most sig-
nificant bits of the byte and specifies how the r/m fields will be
used in locating the operand. The reg field occupies the next
three bits following the mode field and specifies either an 8-bit
register or a 16-bit register where an operand will be located.

Note, bytes three through six of an instruction are optional
fields that usually contain the displacement (DISP) value of a
memory operand and/or the actual value of an immediate con-
stant operand. The effective address (EA) of the memory oper-
and will be computed according to the mode and r/m fields as
follows:

Mode R/M Fields

*if mod= 00 then DISP= 0, disp-lo and disp-hi are absent.
if mod= 01 then DISP= disp-lo sign-extended to 16-bits,

and disp-hi is absent.
if mod= 10 then DISP= disp-hi:disp-lo.
if mod= 11 then r/m is treated as a reg field.
if r/m= 000 then EA= (BW)+ (IX)+ DISP
if r/m= 001 then EA= (BW)+ (IY)+ DISP
if r/m= 010 then EA= (BP)+ (IX)+ DISP
if r/m= 011 then EA= (BP)+ (IY)+ DISP
if r/m= 100 then EA= (IX)+ DISP
if r/m= 101 then EA= (IY)+ DISP
*if r/m= 110 then EA= (BP)+ DISP
if r/m= 111 then EA= (BW)+ DISP

*except if mod= 00 and r/m= 110 then EA= disp-hi:disp-lo.

70320/70330 Programm ing/Instruction Set Summary F-3

Register operands may be indicated within the instruction for-
mat by the reg field which will represent the selected register, or
by an encoded field, in which case EA will represent the register
selected by the r/m field. Instructions without a "W" bit in their
format refer to either 8- or 16-bit registers according to the fol-
lowing reg field assignments:

16-bit (W= 1) 8-bit (W= 0)
reg field: 000 = reg AW 000 = reg AL

001 = reg CW 001 = reg CL
010 = reg DW 010 = reg DL
011 = reg BW 011 = reg BL
100 = reg SP 100 = reg AH
101 = reg BP 101 = reg CH
110 = reg IX 110 = reg DH
111 = reg IY 111 = reg BH

Figure F-1. Typical Instruction Format

F-4 70320/70330 Programm ing/Instruction Set Summary

d: direction to (1) or from (0) register
w: byte (0) or word (1) operation
mod and r/m: addressing mode - register or memory
reg: register select

The SEGMENT OVERRIDE PREFIX takes the form
of:001reg110 in which the register is assigned in the following
manner:

reg Segment register
00 DS1
01 PS
10 SS
11 DS0

70320/70330 Programm ing/Instruction Set Summary F-5

70320/70330
Register Names

The following symbols are reserved. They have special meaning
to the assembler and cannot appear as user-defined symbols.

SYMBOL DESCRIPTION

AH High-order byte of register A
AL Low-order byte of register A
AW 16-bit register A
BH High-order byte of register B
BL Low-order byte of register B
BP Base Pointer
BW 16-bit register B
CH High-order byte of register C
CL Low-order byte of register C
CW 16-bit register C
DH High-order byte of register D
DL Low-order byte of register D
DS0 Data segment 0 register
DS1 Data segment 1 register
DW 16-bit register D
IX Source index register
IY Destination index register
PC Program counter
PS Program segment register
SP Stack pointer
SS Stack segment register

F-6 70320/70330 Programm ing/Instruction Set Summary

SYMBOL DESCRIPTION

BRG0 Baud rate generator register 0
BRG1 Baud rate generator register 1
DIC0 DMA interrupt request

control register 0
DIC1 DMA interrupt request

control register 1
DMAC0 DMA control register 0
DMAC1 DMA control register 1
DMAM0 DMA mode register 0
DMAM1 DMA mode register 1
EMS0 External interrupt macro service

control register 0
EMS1 External interrupt macro service

control register 1
EMS2 External interrupt macro service

control register 2
EXIC0 External interrupt request

control register 0
EXIC1 External interrupt request

control register 1
EXIC2 External interrupt request

control register 2
FLAG User flag register
IDB Internal data area base register
INTM External interrupt mode register
MD0 Modulo/Timer register 0
MD1 Modulo/Timer register 1

70320/70330 Programm ing/Instruction Set Summary F-7

SYMBOL DESCRIPTION

P0 Port 0
P1 Port 1
P2 Port 2
PM0 Port 0 mode register
PM1 Port 1 mode register
PM2 Port 2 mode register
PMC0 Port 0 mode control register
PMC1 Port 1 mode control register
PMC2 Port 2 mode control register
PMT Port T mode register
PRC Processor control register
PT Port T
RFM Refresh mode register
RxB0 Receive buffer register 0
RxB1 Receive buffer register 1
SCC0 Serial control register 0
SCC1 Serial control register 1
SCE0 Serial error register 0
SCE1 Serial error register 1
SCM0 Serial mode register 0
SCM1 Serial mode register 1
SEIC0 Serial interrupt request

control register 0
SEIC1 Serial interrupt request

control register 1
SRIC0 Serial receive interrupt request

control register 0
SRIC1 Serial receive interrupt request

control register 1
SRMS0 Serial receive macro service

control register 0
SRMS1 Serial receive macro service

control register 1
STBC Standby control register

F-8 70320/70330 Programm ing/Instruction Set Summary

SYMBOL DESCRIPTION

STIC0 Serial transmit interrupt request
control register 0

STIC1 Serial transmit interrupt request
control register 1

STMS0 Serial transmit macro service
control register 0

STMS1 Serial transmit macro service
control register 1

TBIC Time base interrupt request
control register

TM0 Timer register 0
TM1 Timer register 1
TMC0 Timer control register 0
TMC1 Timer control register 1
TMIC0 Timer unit interrupt request

control register 0
TMIC1 Timer unit interrupt request

control register 1
TMIC2 Timer unit interrupt request

control register 2
TMMS0 Timer unit macro service

control register 0
TMMS1 Timer unit macro service

control register 1
TMMS2 Timer unit macro service

control register 2
TxB0 Transmit buffer register 0
TxB1 Transmit buffer register 1
WTC Wait control register

70320/70330 Programm ing/Instruction Set Summary F-9

Instruction Set
Symbols

The symbols used in table F-1, Instruction Set Summary, are as
follows:

SYMBOL DESCRIPTION

addr address (16 bits)
addr-hi Most significant byte of address
addr-lo Least significant byte of address
d One-bit field identifying direction to

(1) or from (0) register
data Immediate operand (8- or 16-bit)
disp 8- or 16-bit displacement from end

of current instruction
disp-hi Most significant byte in 16-bit

offset displacement
disp-lo Least significant byte of 16-bit

offset displacement
imm 3, 4 or 8-bit immediate operand
mod Two-bit field defining addressing mode
offset-hi Most significant byte in 16-bit offset

destination address of target instruction
offset-lo Least significant byte in 16-bit

offset destination address
of target instruction

reg Field that defines the defines
the register used

r/m Three-bit field, in conjunction with
the mod and "W" fields defines EA

seg Segment register
seg-hi Most significant byte in 16-bit segment

destination address of target instruction
seg-lo Least significant byte in 16-bit segment

destination address of target instruction
sfr An 8-bit variable which specifies an

8-bit special function register
port Number of I/O port
s:w Sign-extended byte indicator

F-10 70320/70330 Programm ing/Instruction Set Summary

SYMBOL DESCRIPTION

v Interrupt: defines variable type
(v= 1), or type 3 (v= 0) Shift
or Rotate; variable number of bits to
shift or rotate (v= 1), or one bit (v= 0)

w One-bit field identifying byte (0) or
word (1) instruction

z Instruction being repeated terminated
when zero flag is equal to z

70320/70330 Programm ing/Instruction Set Summary F-11

Mnemonic Byte 1 Byte 2 Byte 3 Byte 4

BTCLR Branch if True 00001111 10011100 sfr imm
and Clear Byte 5 disp

RETRBI Return from 00001111 10010001
Register Bank
Switching Interrupt

BRKCS Break Context 00001111 00101101 11000 reg
Switch

FINT Finish Interrupt 00001111 10010010

MOVSPA Move Stack 00001111 00100101
Pointer After context
switch

MOVSPB Move Stack 00001111 10010101 11111 reg
Pointer Before context
switch

STOP Stop 00001111 10011110

TSKSW Task switch 00001111 10010100 11111 reg

Table F-1. 70320/70330 Specific Inst. Set Summary

F-12 70320/70330 Programm ing/Instruction Set Summary

G

Assembler Error Messages

Detection and
Listing

The assembler detects and lists all errors noted in a source pro-
gram module. Program errors are indicated in the source pro-
gram listing by a two-letter code following each source state-
ment that contains an error.

Note If multiple errors occur in the same source statement, only the
first error noted will be reported (in most cases).

Each error message contains an error code. The error message
contains a cursor (^) that points to the error location in the
source statement. The error message also contains a statement
that indicates the line number of the previous source statement
that was in error. Line number indicators facilitate error tracing.

At the end of the program listing is a summary of the number of
errors within the program. A brief description of all error codes
is also noted at the end of the program listing.

Assembler Error Messages G-1

The error message format is as follows:

Figure G-1. Error Message Format

ERROR – (code), see line XX

Error Line No. of Cursor Pointing
Code Previous to Source Statement

Error Error

G-2 Assembler Error Messages

Assembler Error
Codes

The list of error codes (in alphabetical order) along with a de-
scription of their meaning is as follows:

AS ASCII STRING - The length of ASCII string was not valid or
the string was terminated improperly.

CL CONDITIONAL LABEL - Syntax of a conditional macro source
statement requires a conditional label that was missing.

DE DEFINITION ERROR - Indicated symbol must be defined prior
to it being referenced. (Symbol may be defined later in program
sequence).

DS DUPLICATE SYMBOL - Indicates that the defined symbol
noted has been previously defined in the program assembly se-
quence. (This occurs when the same symbol is equated to two
values (using EQU directive) or when the same symbol labels
two instructions).

DZ DIVISION BY ZERO - Invalid mathematical operation found re-
sulting in the assembler trying to divide by zero.

EG EXTERNAL GLOBAL - Externals cannot be defined as globals.

EO EXTERNAL OVERFLOW - Program module found to have too
many external declarations.

ES EXPANDED SOURCE - Indicates insufficient input buffer area
designated to perform macro expansion. (This could be the re-

Assembler Error Messages G-3

sult of too many arguments being specified for a parameter sub-
stitution, or too many symbols being entered in the macro defi-
nition).

ET EXPRESSION TYPE - The resulting type of expression was
found to be invalid. An absolute expression was expected and
not found or expression contains an illegal combination of relo-
catable types (refer to chapter 4 for rules and conventions).

IC ILLEGAL CONSTANT - Indicates that the assembler encoun-
tered a invalid constant. For example: 109B (9 is invalid)

IE LLEGAL EXPRESSION - Specified expression found was
either incomplete or an invalid term was within the expression.

IO INVALID OPERAND - Specified operand was either incom-
plete or inaccurately used for this operation. (This occurs when
an unexpected operand was encountered or the operand was
missing. If the required operand is an expression, the error indi-
cates that the first item in the operand field was illegal).

IP ILLEGAL PARAMETER - Illegal parameters were found in
macro header.

IS ILLEGAL SYMBOL - Syntax expected an identifier and instead
encountered an illegal character or token.

LR LEGAL RANGE - Address or displacement caused the location
counter to exceed the maximum memory location of the instruc-
tion’s addressing capability.

G-4 Assembler Error Messages

MC MACRO CONDITION - Relational (conditional) operator in
macro was found to be invalid.

MD MACRO DEFINITION - Macro was called before being defined
in the source file. (Macro definition must precede call).

ML MACRO LABEL - Label was not found within the macro body.
(Macros cannot contain labels.)

MM MISSING MEND - A macro definition with a missing MEND
directive was included in the program.

MO MISSING OPERATOR - An arithmetic operator was expected
but not found.

MP MISMATCHED PARENTHESES - Right or left parenthesis
were not found.

MS MACRO SYMBOL - A local symbol within a macro body is re-
quired but was not found.

NI NESTED INCLUDE - The INCLUDE pseudo instruction can-
not be nested.

PE PARAMETER ERROR - An error detected in the macro pa-
rameter was listed in the source statement.

Assembler Error Messages G-5

PH PHASE ERROR - More code was generated during pass 2 than
during pass 1. This error will be caused by an illegal use of a for-
ward reference to a variable.

RC REPEAT CALL - Repeat cannot precede a macro call.

RM REPEAT MACRO - Repeat pseudo-operation code cannot pre-
cede a macro definition.

SE STACK ERROR - A statement or expression does not conform
to the required syntax.

TR TEXT REPLACEMENT - The specified text replacement string
was found to be invalid.

UC UNDEFINED CONDITIONAL - Conditional operation code
was found to be invalid.

UO UNDEFINED OPERATION CODE - Operation code encoun-
tered was not defined for the microprocessor, or the assembler
disallowed the operation to be processed in its current context.
(This occurs when the operation code is misspelled or an invalid
delimiter follows the label field.)

UP UNDEFINED PARAMETER - The parameter found in a macro
body was not included in the macro header.

US UNDEFINED SYMBOL - The indicated symbol was not defined
as a label or declared as external.

G-6 Assembler Error Messages

Assembler Error Messages G-7

Notes

G-8 Assembler Error Messages

H

Linker Error Messages

Error Messages When an error is detected during the link process, the linker will
determine if the error is fatal or nonfatal. If the error is classi-
fied as fatal, the linker will abort the linking process. If the error
is nonfatal the linker will continue the linking process, but will
generate error messages that will be listed in the output listing.
A description of each error message is give in the following para-
graphs.

Fatal Error Messages Upon encountering a fatal error the linker will display one of
the following messages on the terminal. The linker will abort
the link process and return control of the system to the monitor.

Target Processors Disagree

The linker will issue this message if the relocatable modules to
be linked are designed for different processors. Ensure that all
relocatable modules assigned for linking are written for the
same type microprocessor.

Checksum Error

The linker will issue this message if it is unable to read a relocat-
able file due to a checksum error or other irregularities in the

Linker Error Messages H-1

file. To correct this situation, reassemble the relocatable file;
then, relink.

File Not Found

The linker will issue this message if it is unable to locate a file
during a link operation.

File Extension and File Type Disagree

The linker will issue this message if the extension assigned to a
file does not agree with its type.

Linker Command File Not Found

The linker will issue this message if a link is requested using an
invalid command file name.

Nonfatal Error
Messages

Upon encountering nonfatal errors, the linker will continue the
link operation and print the error messages (except initializa-
tion errors) in the output listing. An error message that is listed
will contain a description of the error and the name of the file
where the error occurred. If the null list is in effect, the linker
will direct the error messages to the system CRT.

Illegal entry: reenter

During initialization the linker will indicate on the terminal
that the user has made an illegal response to an interrogation.
To correct this situation, reenter the proper response.

Duplicate symbol

During pass 1 of the link process, the linker detects that the
same symbol has been declared global by more than one relocat-
able module. The first definition holds true. The relocatable
module that first defines the symbol may be found in the cross-

Linker Error Messages H-2

reference table. To correct this error, remove the extra global
declarations.

Load address out of range.

The linker has tried to relocate code beyond the addressing
range of the specified microprocessor. To correct this situation,
reassign the relocatable addresses.

Multiple transfer address

During pass 1, the linker finds that the transfer address has been
defined by more than one relocatable module. The first defini-
tion holds true. The relocatable module that first defined the
transfer address will be given at the conclusion of the linking. To
correct this situation, remove the extra transfer address. Reas-
semble the amended relocatable module; then, relink. If a xfer
address is defined by both a nonload program and a load pro-
gram, no error will be given. The load program xfer address
takes precedence.

Undefined symbol

During pass 2, undefined symbol error occurs when the linker
finds that a symbol has been declared external but not defined
by a global definition. To correct this situation, define the sym-
bol.

Out of memory in xref

Unlike the fatal error (Out of Memory in Xref), this error oc-
curs when memory space is available for a complete symbol ta-
ble but only a portion of the cross-reference table. The linker
will complete the xref operation, listing only that portion of the
cross-reference table for which memory space was available. To
correct this situation, reduce the number of files, global sym-
bols, and/or external symbols used during the current link.

Linker Error Messages H-3

Memory overlap

This error indicates that relocatable program areas have been
overlapped in memory. The error message will list the program
names and the overlapping areas.

Max addr or seg boundary exceeded

This error occurs when the linker has attempted to locate code
outside the valid addressing range of the processor or the cur-
rent segment.

Linker Error Messages H-4

I

ASCII Conversion Table

General To produce the ASCII characters in column 1 in the ASCII ta-
ble, hold down the control (CTRL) key on the keyboard and
then press the corresponding character key listed in column # 3.
For example, CTRL–H produces a BS or backspace (ASCII =
08H) and CTRL–[produces an ESC or escape (ASCII = 1BH).

Also, deciphering the hexadecimal value of a character is accom-
plished by adding the plus value (+ 0, + 20, + 40, + 60) of the col-
umn in which the character appears to the "N" column value di-
rectly across from the character. For example, the hexadecimal
value of "a" is 1 + 60, or 61H. The hexadecimal value of "Q" is 11
+ 40, or 51H. Similarly, the hexadecimal value of ":" is 1A + 20,
or 3AH.

Conversely, subtracting the highest possible plus value from the
hexadecimal value will yield the "N" column value. Directly
across from the "N" column value, in the appropriate plus value
column, will be the desired character. For example, subtracting
60 from 61H yields 1. The "N" column value of 1 is directly
across from "a" in the + 60 column. In a like manner, subtracting
20 from 3A yields 1A. The "N" column value of 1A is directly
across from ":" in the + 20 column.

ASCII Conversion Table I-1

American Standard Code for Information Interchange (ASCII)

Column Column # 1 Column # 2 Column # 3 Column # 4
Number (+ 0) (+ 20) (+ 40) (+ 60)

0 NUL SP @ ’
1 SOH ! A a
2 STX " B b
3 ETX # C c
4 EOT $ D d
5 ENQ % E e
6 ACK & F f
7 BEL ’ G g
8 BS (H h
9 HT) I i
A LF * J j
B VT + K k
C FF , L l
D CR - M m
E SO . N n
F SI / O o
10 DLE 0 P p
11 DC1(Xon) 1 Q q
12 DC2(tape) 2 R r
13 DC3(Xoff) 3 S s
14 DC4 4 T t
15 NAK 5 U u
16 SYN 6 V v
17 ETB 7 W w
18 CAN 8 X x
19 EM 9 Y y
1A SUB : Z z
1B ESC ; [{
1C FS < \ |
1D GS =] }
1E RS > ^ ~
1F US ? _ DEL

I-2 ASCII Conversion Table

Index

A Absolute address, 1-5
Absolute addresses, 6-3
Absolute code, 1-3
Absolute file, 2-20
Absolute terms, 5-14
Address rules, 1-1
Advantages of using macros, 8-1
ALIGN (to word boundary) pseudo instruction, 7-5
Arithmetic operators, 5-11
ASCII conversion table, I-1
asm (HP-UX) syntax, 3-7
asm (MS-DOS) syntax, 3-9
asm (VAX/VMS) syntax, 3-13
assemble (HP 64000) syntax, 3-11
assembler coding rules, 5-1
Assembler directive, 1-2
Assembler functional description, 1-1
assembler option definitions

(HP 64000 syntax), 3-11
(HP-UX syntax), 3-7
(MS-DOS syntax), 3-9
(VAX/VMS syntax), 3-13

Assembler output files, 3-3
assembler output listing, 3-5, 3-15
assembler personality tables, 3-10
Assembler pseudo opcode, 5-1
Assembler tables, 1-1
Assembler/Linker Introduction, 1-1
Assembly symbol file, 3-4
Assigning types to operands which imply none, 6-18
ASSUME pseudo instruction, 6-5 - 6-7, 6-9

Index-1

B Base register, 6-5

C Calling linkers, 2-20
Calling macros, 8-5
Checking parameters, 8-13
command summary, 1-8
Comment field, 5-1, 5-7
COMN, 5-13
COMN pseudo instruction, 1-3
Conditional assembly instructions, 8-9, 8-12
Creating an Example Library File, 2-19
Cross reference generation, 4-2
Cross-reference map, 3-2
Cross-reference table, 4-23

D DATA, 5-13
DATA pseudo instruction, 1-3
DB pseudo instruction, 6-11
DD pseudo instruction, 6-11
Default register operands, 6-29
DELAY subroutine, 2-3
Delimiter, macro, 8-4
Delimiters, 5-7
Descriptor tables, 1-6
differences, commands for hosts, 1-8
Disadvantages of using macros, 8-2
Dummy parameters, macro, 8-6
DW pseudo instruction, 6-5, 6-11

E 8086/8088 segmented architecture, 6-2
Emulation environment, 1-2
Emulation files, 1-5
EQU pseudo instruction, 5-8, 6-21
Error messages, 3-15, 4-19, H-1

Fatal, H-1
Nonfatal, H-2

Expression operators, 5-6, 5-11
EXT conflict, NEC processors, 7-25

2-Index

F Far keyword operator, 6-20
filename.A, 3-4
filename.K, 4-4
filename.L, 4-3
filename.O, 3-4, 4-4
filename.R, 3-3
filename.X, 4-3
Filename:asmb_sym, 3-4
Filename:link_sym, 4-3
Filename:listing, 3-4
Filename:reloc, 3-3
Five types of assembly language operations, 6-10
Floating point stack, D-2
Format rules, source code, 5-1
Format, macro, 8-3
Functional components of the assembler, 3-1
functional description of HP 64000 linker, 1-3

G .GOTO, 8-9, 8-11

H High keyword operators, 6-27
host command summary, 1-8
How types are associated with memory locations, 6-11
HP 64000 assemble, 3-11
HP 64000 assemble options, 3-11
HP 64000 assembler, 3-1
HP 64000 assembler operation, 1-2
HP 64000 code areas, 6-6
HP 64000 link, 4-14
HP 64000 link options, 4-14
HP-UX asm, 3-7
HP-UX asm options, 3-7
HP-UX lnk, 4-10
HP-UX lnk options, 4-10

I .IF, 8-9, 8-11
Immediate operands, 6-30
Index register, 6-5
Indexing parameters, 8-15
Indexing parameters (&&), 8-15

Index-3

Initialization function, 3-2
Initialization of linker, 4-2
Instruction locations, 6-12
Introduction to the 8086/8088 assembler/linker, 1-5
Invalid Relocatable Terms, 5-15

L Label field, 5-1, 5-4
LABEL pseudo instruction, 6-21
Labels, unique macro, 8-8
link (HP 64000) syntax, 4-14
Link error, 2-21
Linker, 1-2
linker absolute output file, 4-3
linker command file, 4-4
linker functional components, 4-2
linker input files, 4-3
linker list file, 4-4
Linker load map, 4-20
linker option definitions

(HP 64000 syntax), 4-14
(HP-UX syntax), 4-10
(MS-DOS syntax), 4-12
(VAX/VMS syntax), 4-17

Linker output, 4-19
Linker questions, 2-21, 4-4

Library files question, 2-21
Load address question, 2-22
More files question, 2-22
Object file question, 2-21

linker symbol file, 4-3
Linker syntax rules, 4-9
Linker table, 1-2

Entry points, 1-2
Linking library files, 2-19
Linking modules back-to-back, 2-21
Linking program modules, 2-20
Linking relocatable files for emulation, 1-5
Listfile, 3-4
lnk (HP-UX) syntax, 4-10
lnk (MS-DOS) syntax, 4-12

4-Index

lnk (VAX/VMS) syntax, 4-17
load program for the HP 64000, 1-3
Local Variables in Macros, 8-2
Logical addresses, 6-3
Logical operators, 5-11
Low keyword operators, 6-27

M Macro
Header statement, 8-3
Source statement, 8-4
Trailer statement, 8-4

Macro call, 5-1
Macro calls, 8-6, 8-13
Macro definition, 2-1, 8-1
Macro definitions, 8-1, 8-3
Macro expansion, 8-1
Macro format, 8-3
Macro formation rules, 8-4
macro nesting, 8-4
Macro parameters, 8-6
Macros, 8-1
MASK pseudo instruction, 5-10
Memory operands, 6-31
Memory overlays, 4-6
MEND (Macro end), 8-4
Microprocessor instruction, 5-1
MS-DOS asm, 3-9
MS-DOS asm options, 3-9
MS-DOS lnk, 4-12
MS-DOS lnk options, 4-12

N NEAR keyword operator, 6-19
nesting macros, 8-4
No-load files, 4-21
Nonrelocatable code, 1-3
.NOP, 8-9, 8-12
Null parameters, testing for, 8-14
Numeric terms, 5-8

Index-5

O OFFSET keyword operators, 6-27
OPC (opcode symbol), 8-5
Operand field, 5-1, 5-6
Operation field, 5-1, 5-5
Operator precedence, 5-12
option definitions

assembler (HP 64000 syntax), 3-11
assembler (HP-UX syntax), 3-7
assembler (MS-DOS syntax), 3-9
assembler (VAX/VMS syntax), 3-13
linker (HP 64000 syntax), 4-14
linker (HP-UX syntax), 4-10
linker (MS-DOS syntax), 4-12
linker (VAX/VMS syntax), 4-17

ORG pseudo instruction, 1-3
Overlays, 1-5

P Parameter concatenation using macros, 8-7
Parameter indexing (&&), 8-15
Physical addresses, 6-3
Predefined symbols, 6-27
PROC pseudo instruction, 6-25
Processor directives, 1-6
PROG, 5-13
PROG pseudo instruction, 1-3
Program counter ($), 5-8
Program label, 6-5
Protected mode for 80286, 1-5
Protected virtual address mode, 1-6
pseudo instructions, ALIGN (to word boundary), 7-5

R Real address mode, 1-6
Register operands, 6-29
Relational operators, 5-12
Relocatability of code, 1-3
Relocatable code areas, 1-3
Relocatable expressions, 5-13
Relocatable file, 3-3
Relocatable object modules, 1-2, 3-4

6-Index

Relocatable terms, 5-14
RESET command, 1-6

S SAVE macro, 8-5
SEG keyword operators, 6-27
Segment overrides, 6-9
Segment registers, 6-5

Explicit, 6-5
Implicit, 6-5

Segmented architecture, 6-2
.SET instruction, 8-9
SHORT keyword operator, 6-21
SIZE keyword operators, 6-27
Source input file, 3-3
Source statement format rules, 5-1
Specifying segment registers explicitly, 6-5
Specifying segment registers implicitly, 6-6
Specifying segments for memory referencing operands, 6-5
Starting addresses, user provided, 1-3
Statement length limitations, 5-3
String constants, 5-9
String operations, 6-32
Symbolic debugging, 1-5, 3-4
Symbolic parameters, macro, 8-6
Symbolic terms, 5-8
Symbols, null, 8-13
syntax

asm (HP-UX), 3-7
asm (MS-DOS), 3-9
asm (VAX/VMS), 3-13
assemble (HP 64000), 3-11
link (HP 64000), 4-14
lnk (HP-UX), 4-10
lnk (MS-DOS), 4-12
lnk (VAX/VMS), 4-17

Syntax rules, 1-1

T Text replacement using macros, 8-7
THIS keyword operator, 6-23
TYPE keyword operators, 6-27

Index-7

Type overrides, 6-18
Types of data location labels, 6-12
Types of operations, 6-10

U Using keyword operators, 6-16
Using other keyword operators, 6-27
Using the LABEL pseudo instruction, 6-21
Using the PROC pseudo instruction, 6-25
Using the SHORT keyword operator, 6-21
Using the THIS keyword operator, 6-23

V VAX/VMS asm, 3-13
VAX/VMS asm options, 3-13
VAX/VMS lnk, 4-17
VAX/VMS lnk options, 4-17

W Warning statements, 8-14

8-Index

	Using This Manual
	Contents
	Assembler/Linker Introduction
	A Quick Example
	Assembling Your Programs
	Linking Your Programs
	Source File Format And Expressions
	Programming Considerations
	Pseudo Instruction Summary
	Using Macro Instructions
	8086/8088 Series Instruction Set Summary
	80286 Programming
	70108/70116 Programming And Instruction Set Summary
	8087 Programming and Instruction Set Summary
	8089 Programming and Instruction Set Summary
	70320/70330 Programming And Instruction Set Summary
	Assembler Error Messages
	Linker Error Messages
	ASCII Conversion Table
	Index

