User’s Guide for the Graphical User Interface

HP 64760/HP 64761
80960
Emulation/Analysis

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and

fitness for a particular purpose.Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software
on equipment that is not furnished by Hewlett-Packard.

© Copyright 1987, 1991, 1992, 1993, Hewlett-Packard Company.

This document contains proprietary information, which is protected by copyright.
All rights are reserved. No part of this document may be photocopied, reproduced
or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject
to change without notice.

HP is a trademark of Hewlett-Packard Company.
Microtec is a registered trademark of Microtec Research Inc.

OSF/Motif and Motif are trademarks of the Open Software Foundation in the U.S.
and other countries.

SunOS, SPARCsystem, OpenWindows, and SunView are trademarks of Sun
Microsystems, Inc.

UNIX is a registered trademark of UNIX System Laboratories Inc. in the U.S.A.
and other countries.

Hewlett-Packard

P.O. Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c) (1)(ii) of the
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304 U.S.A.
Rights for non-DOD U.S. Government Departments and Agencies are as set forth
in FAR 52.227-19(c)(1,2).

Printing History

New editions are complete revisions of the manual. The date on the title page
changes only when a new edition is published.

A software code may be printed before the date; this indicates the version level of
the software product at the time the manual was issued. Many product updates and
fixes do not require manual changes, and manual corrections may be done without
accompanying product changes. Therefore, do not expect a one-to-one
correspondence between product updates and manual revisions.

Edition 1 64760-97001, June 1991
Edition 2 64760-97004, July 1991
Edition 3 B1488-97000, August 1992
Edition 4 B1488-97001, December 1993

Safety, and Certification and Warranty

Safety and certification and warranty information can be found at the end of this
manual on the pages before the back cover.

80960 Emulation and Analysis

The HP 64760 80960KA/KB/MC emulator or the HP 64761 80960SA/SB emulator
replace the microprocessor in your embedded microprocessor system, also called
thetarget systenso that you can control execution and view or modify processor
and target system resources.

The emulator is used with @mulation analyzethat captures emulation processor
bus cycle information synchronously with the processor’s clock signal.

The HP 64760 emulator is used with the HP 64705A 35 MHz Analyzer which
captures 108 channels of bus cycle information and optionally providegesnal
analyzerthat captures up to 16 channels of data external to the emulator.

The HP 64761 emulator is used with the HP 64704A 80-Channel Emulation Bus
Analyzer or the HP 64794 Deep Memory Emulation Bus Analyzer. No external
analysis is available with the HP 64704A.

With the Emulator, You Can ...

* Plug into 80960 target systems.

» Download programs into emulation memory or target system RAM.

» Display or modify the contents of processor registers and memory.

* Run programs, set up software breakpoints, step through programs, and reset
the emulation processor.

With the Analyzer, You Can ...

Trigger the analyzer when a particular bus cycle state is captured. States are
stored relative to the trigger state.

Qualify which states get stored in the trace.

Prestore certain states that occur before each normal store state.

Trigger the analyzer after a sequence of up to 8 events have occurred.
Capture data on other target system signals with the external analyzer.
Cause emulator execution to break when the analyzer finds its trigger condition.
With the HP 64705A analyzer (which is used with the HP 64760
80960KA/KB/MC emulator), you can use the 16-channels of external analysis
as an independent 100 MHz timing analyzer with the Timing Analyzer
Interface.

With the HP 64700 Card Cage, You Can ...

Use the RS-422 capability of the serial port and an RS-422 interface card on
the host computer (HP 98659 for the HP 9000 Series 300) to provide
upload/download rates of up to 230.4K baud.

Easily upgrade HP 64700 firmware by downloading to flash memory.

With Multiple HP 64700s, You Can ...

Start and stop up to 16 emulators at the same time.

Use the analyzer in one HP 64700 to arm (that is, activate) the analyzers in
other HP 64700 card cages or to cause emulator execution in other HP 64700
card cages to break.

Use the HP 64700’s BNC connector to trigger an external instrument (for
example, a logic analyzer or oscilloscope) when the analyzer finds its trigger
condition, or you can allow an external instrument to arm the analyzer or break
emulator execution.

With the Graphical User Interface, You Can ...

» Use the emulator and analyzer under an X Window System that supports
OSF/Motif interfaces.

» Enter commands using pull-down or pop-up menus.

» Enter, recall, and edit commands using the command line pushbuttons.

» Enter file names, recalled commands, recalled values, etc., using dialog boxes.

» Set breakpoints by pointing the mouse cursor on a line in the mnemonic
memory display and clicking.

» Create action keys for commonly used commands or command files.

With the Softkey Interface, You Can ...

» Use the emulator and analyzer with a terminal or terminal emulator.
* Quickly enter commands using softkeys, command recall, and command
editing.

80960 Emulator Differences

Differences Between the 80960 Emulators

Category

HP 64760

HP 64761

Processors

80960KA, 80960KB, and 80960MC
the chip’s Memory Management Unit
is not used)

@0960SA, 80960SB

Chip packages 132-pin PGA 84-lead PLCC, 80-lead QFP
Max chip clock 50 MHz 32 MHz
Max bus rate 25 MHz 16 MHz

Emulation bus
analyzer

HP 64705A 35 MHz Analyzer which:
- optionally provides 16-channels of
external analysis

HP 64704/794 80-Channel Emulation
Bus Analyzer which:
- does not provide external analysis

Emulator control car

d part of HP 64760

uses HP 64748C

Max emulation 4 Mbytes 2 Mbytes
memory
Mapper 16 terms with attributes for 8 terms, no attributes (emulation

synchronizing emulation memory to
the target system

memory synchronized with
configuration question)

Coverage memory

8 term/1 Mbytes

none

Emulation monitor
program

Background

Background/Foreground

In This Book

This book documents the Graphical User Interface and the Softkey Interface when
used with the HP 64760 80960KA/KB/MC emulator and HP 64705 analyzer or the
HP 64761 80960SA/SB emulator and HP 64704 analyzer. It is organized into five
parts whose chapters are described below.

Part 1. Quick Start Guide

Chapter 1 presents an overview of emulation and analysis and quickly shows
you how to use the emulator and analyzer.

Part 2. User’s Guide

Chapter 2 shows you how to start and exit the HP 64700 interfaces.
Chapter 3 shows you how to enter commands.

Chapter 4 shows how to configure the emulator.

Chapter 5 shows how to use the emulator.

Chapter 6 shows how to use the analyzer.

Chapter 7 shows how to use the Software Performance Measurement Tool
(SPMT) with the analyzer.

Chapter 8 shows how to use the external state analyzer.

Chapter 9 shows how to make coordinated measurements.

Chapter 10 shows how to change X resource settings for the Graphical User
Interface.

Part 3. Reference

Chapter 11 describes emulator/analyzer interface commands.
Chapter 12 lists the status and error messages that can occur while using the
emulator/analyzer interface.

Part 4. Concept Guide

Chapter 13 contains conceptual information on various topics.

Part 5. Installation Guide

Chapter 14 outlines the installation of the Graphical User Interface.
Chapter 15 shows you how to install or update emulator firmware.

Contents

Part 1

Quick Start Guide

Getting Started

The Emulator/Analyzer Interface — At a Glance

The Softkey Interface 26

Softkey Interface Conventions 27

The Graphical User Interface 28
Graphical User Interface Conventions 30

The Getting Started Tutorial 33

Step 1. Startthe demo 34

Step 2: Display the program in memory 35

Step 3: Run from processor reset 36

Step 4: Step high-level source lines 38

Step 5: Display the previous mnemonic display 39
Step 6: Run until an address 40

Step 7: Display data values 41

Step 8: Display registers 42

Step 9: Step assembly-level instructions 43

Step 10: Trace the program 44

Step 11: Display memory at an address in a register 46
Step 12: Patch assembly language code 47

Step 13: Exit the emulator/analyzer interface 50

26

Contents

Part 2 User’s Guide

2 Starting and Exiting HP 64700 Interfaces

Starting the Emulator/Analyzer Interface 55

To start the emulator/analyzer interface 55

To start the interface using the default configuration 56

To run a command file on interface startup 57

To display the status of emulators 57

To unlock an interface that was left locked by another user 58

Opening Other HP 64700 Interface Windows 59

To open additional emulator/analyzer windows 59
To open the high-level debugger interface window 60
To open the software performance analyzer (SPA) interface window

Exiting HP 64700 Interfaces 61

To close an interface window 61
To exit a debug/emulation session 62

Entering Commands

Using Menus, the Entry Buffer, and Action Keys 65

To choose a pulldown menu item using the mouse (method 1) 66
To choose a pulldown menu item using the mouse (method 2) 67
To choose a pulldown menu item using the keyboard 67

To choose popup menu items 69

To place values into the entry buffer using the keyboard 70

To copy-and-paste to the entry buffer 70

To recall entry buffer values 73

To use the entry buffer 73

60

To copy-and-paste from the entry buffer to the command line entry area

To use the action keys 75
To use dialog boxes 75
To access help information 79

74

10

Contents

Using the Command Line with the Mouse 80

To turn the command line on or off 80

To enter a command 81

To edit the command line using the command line pushbuttons 82
To edit the command line using the command line popup menu 83
Torecall commands 84

To get help about the command line 84

Using the Command Line with the Keyboard 85

To enter multiple commands on one command line 85
Torecall commands 86

To edit commands 86

To access on-line help information 87

Using Command Files 88

To start logging commands to a command file 91
To stop logging commands to a command file 91
To playback (execute) a command file 92

Using Pod Commands 93

To display the pod commands screen 94
To use pod commands 94

Forwarding Commands to Other HP 64700 Interfaces 95

To forward commands to the high-level debugger 95
To forward commands to the software performance analyzer 96

Configuring the Emulator

Using the Configuration Interface 101

To start the configuration interface 102

To modify a configuration section 104

To store a configuration 106

To change the configuration directory context 107
To display the configuration context 108

To access help information 108

To exit the configuration interface 109

To load a configuration 109

11

Contents

Modifying the General Configuration Items 110

To restrict the emulator to real-time runs 110
To turn OFF the restriction to real-time runs 111

Selecting the Emulation Monitor Program (HP 64761 Only) 112

To use the background monitor program 114
To use the foreground monitor program 115
To customize the foreground monitor program 116

Mapping Memory 117

To map memory ranges 119
To characterize unmapped ranges 121
To delete memory map ranges 122

Configuring the Emulator Pod 123

To synchronize to target system reset 123

To turn OFF synchronization to target system reset 126

To specify the target memory access size 126

To specify target system bus rate 127

To synchronize emulation memory accesses to target READY (HP 64761 Only)
127

Setting the Debug/Trace Options 128

To disable breaks on writes to ROM 128

To enable breaks on writes to ROM 129

To restrict breaks into monitor when released from reset 129
To allow breaks into monitor when released from reset 130

Using the Emulator

Loading and Storing Absolute Files 133

To load absolute files 133
To load absolute files without symbols 134
To store memory contents into absolute files 134

12

Contents

Using Symbols 135

To load symbols 135

To display global symbols 136

To display local symbols 137

To display a symbol’'s parent symbol 141

To copy-and-paste a full symbol name to the entry buffer 142

Using Context Commands 143

To display the current directory and symbol context 144
To change the directory context 144
To change the current working symbol context 145

Executing User Programs 146

To initialize your programming environment 146
To run programs from the current PC 148

To run programs from an address 148

To run programs from the transfer address 148
To run programs from reset 149

To run programs until an address 150

To stop (break from) user program execution 151
To step high-level source lines 151

To step assembly-level instructions 152

To reset the emulation processor 153

Using Software Breakpoints 154

To display the breakpoints list 155

To enable/disable breakpoints 156
To set a permanent breakpoint 158
To set a temporary breakpoint 159
To set all breakpoints 160

To deactivate a breakpoint 160

To re-activate a breakpoint 161

To clear a breakpoint 163

To clear all breakpoints 165

Displaying and Modifying Registers 166

To display register contents 168
To modify register contents 171

13

Contents

Displaying and Modifying Memory 172

To display memory 172

To display memory in mnemonic format 173

To return to the previous mnemonic display 173
To display memory in hexadecimal format 174
To display memory in real number format 175
To display memory at an address 176

To display memory repetitively 177

To modify memory 177

Displaying Data Values 178

To display data values 178
To clear the data values display and add a new item
To add items to the data values display 179

Displaying 80960 System Tables 180
To display the 80960 system tables 180

Changing the Interface Settings 182

To set the source/symbol modes 182
To set the display modes 183

Using System Commands 185

To set UNIX environment variables 185

To display the name of the emulation module 186
To display the eventlog 186

To display the errorlog 187

To edit files 188

To copy information to a file or printer 191

To open a terminal emulation window 192

Using Simulated /O 193
To display the simulated I/O screen 193
To use simulated I/O keyboard input 194

Using Basis Branch Analysis 195
To store BBA datato afile 195

179

14

Contents

6 Using the Emulation Analyzer

The Basics of Starting, Stopping, and Displayingcés 199

To start a trace measurement 200

To display the trace status 200

To stop a trace measurement 203

To display the trace 204

To position the trace display on screen 206
To change the trace depth 207

To modify the last

trace command entered 207

Using Execution Messages for Progriteasurements 208

To set execution trace messages 209

To display execution trace messages 210

To clear execution trace messages 211

To disable the execution trace message feature 212
To enable the execution trace message feature 212
To capture execution messages with the analyzer 212

Qualifying Trigger and Store Conditions 214

To qualify the trigger state and position 233

To trigger on a number of occurrences of some state 235
To qualify states stored in the trace 236

To prestore states before qualified store states 237

To change the count qualifier (HP 64704 Only) 238

To trace until the analyzer is halted 240

To break emulator execution on the analyzer trigger 241

Using the Sequencer 242

To trigger after a sequence of states 242
To specify a global restart state 244
To trace "windows" of program execution 245

15

Contents

Modifying the Trace Display 247

To display the trace about a line number 248

To display the trace in absolute format 249

To display the trace in mnemonic format 250

To display the trace with high-level source lines 253

To display the trace with symbol information = 255

To change column widths in the trace display 256

To display time counts in absolute or relative format 257

To display the trace with addresses offset 258

To return to the default trace display 259

To display external analyzer information (HP 64705 Only) 260

Saving and Restoring Traces 261

To save trace commands 261
To restore trace commands 262
To save traces 263

To restore traces 264

7 Making Software Performance Measurements

Activity Performance Measurements 267

To set up the trace command for activity measurements 269
To initialize activity performance measurements 270
To interpret activity measurement reports 274

Duration Performanckleasurements 282

To set up the trace command for duration measurements 283
To initialize duration performance measurements 285
To interpret duration measurement reports 287

Running Measurements and Creating Reports 291

To run performance measurements 291
To end performance measurements 292
To create a performance measurement report 293

16

Contents

8 Using the External State Analyzer

Setting Up the External Analyzer 297
To connect the external analyzer probe to the target system 298

Configuring the External Analyzer 301

To control the external analyzer with the emulator/analyzer interface 302
To specify the threshold voltage 303

To specify the external analyzer mode 304

To specify the slave clock mode 305

To define labels for the external analyzer signals 308

9 Making Coordinated Measurements

Setting Up for Coordinated Measurements 315

To connect the Coordinated Measurement Bus (CMB) 315
To connect to the rear panel BNC 317

Starting/Stopping Multiple Emulators 319

To enable synchronous measurements 319
To start synchronous measurements 320
To disable synchronous measurements 320

Using Trigger Signals 321

To drive the emulation analyzer trigger signal to the CMB 323

To drive the emulation analyzer trigger signal to the BNC connector 324
To drive the external analyzer trigger signal to the CMB 324

To drive the external analyzer trigger signal to the BNC connector 325
To break emulator execution on signal from CMB 325

To break emulator execution on signal from BNC 326

To break emulator execution on external analyzer trigger 326

To arm the emulation analyzer on signal from CMB 327

To arm the emulation analyzer on signal from BNC 327

To arm the emulation analyzer on external analyzer trigger 328

To arm the external analyzer on signal from CMB 328

To arm the external analyzer on signal from BNC 329

To arm the external analyzer on emulation analyzer trigger 329

17

Contents

10

Setting X Resources

To modify the Graphical User Interface resources 334
To use customized scheme files 338

To set up custom action keys 340

To set initial recall buffer values 341

To set up demos or tutorials 343

Part 3

11

Reference

Emulator/Analyzer Interface Commands

How Pulldown Menus Map to the Command Line 350
How Popup Menus Map to the Command Line 355
Syntax Conventions 357

Commands 358

break 359

bbaunld 360
cmb_execute 361

copy 362

copy local_symbols_in 366
copy memory 367

copy registers 369

copy trace 370

display 371

display data 374

display global_symbols 377
display local_symbols_in 378
display memory 379
display registers 383
display simulated_io 385
display software_breakpoints 386
display table 387

display trace 388

end 392
--EXPR-- 394
forward 397

18

help 398
init_processor 400
load 402
log_commands 404
modify 405

modify configuration 406

modify execution_messages 407
modify keyboard_to_simio 410
modify memory 411

modify register 414

modify software_breakpoints 416
performance_measurement_end 419
performance_measurement_initialize 420
performance_measurement_run 422
pod command 424

QUALIFIER 426

RANGE 428

reset 430

run 431

SEQUENCING 434

set 436

specify 441

STATE 443

step 446

stop_trace 448

store 449

--SYMB-- 451

trace 458

TRIGGER 461

wait 463

WINDOW 465

Contents

19

Contents

12

Status and Error Messages

80960 Emulation Status Messages 469
Graphical/Softkey Interface Messages - Unnumbered 471
Graphical/Softkey Interface Messages - Numbered 488

Terminal Interface Messages 491

Emulator Messages 491
General Emulator and System Messages 498
Analyzer Messages 512

Part 4

13

Concept Guide

Concepts

Target System Design Considerations 519

Resetting the Target System 519
Access for Emulator Probe 519
Probe Power Requirements and Processor Signal Considerations 519

The Effects of the Emulation Processor on Target Execution 520

Execution Messages 520

Trace Controls 521

Initial Memory Image 521
Background Monitor Execution 521

X Resources and the Graphical User Interface 523

X Resource Specifications 523
How X Resource Specifications are Loaded 525
Scheme Files 527

20

Contents

Part 5 Installation Guide

14 Installation

Installation at a Glance 534

Installation Overview for HP 9000 Hosted Systems 534
Installation Overview for Sun SPARCsystems 536

Installation for HP 9000 Hosted Systems 537

Step 1. Install the hardware in the HP 64700 Series Cardcage 537
Step 2. Configure the emulator for the communication channel 537
Step 3. Connect the emulator to your system 538

Step 4. Install the software 538

Step 5. Verify the software installation 540

Step 6a. Start the X server and the Motif Window Manager (mwm) 541
Step 6b. Start HP VUE 541

Step 7. Set the necessary environment variables 542

Step 8. Determine the logical name of your emulator 544

Step 9. Start the interface with the

emul700command 545

Step 10. Exit the Graphical User Interface 547

Installation for Sun SPARCsystems 548

Step 1. Install the hardware in the HP 64700 Series Cardcage 548
Step 2. Configure the emulator for the communication channel 548
Step 3. Connect the emulator to your system 549

Step 4. Install the software 549

Step 5. Start the X server and OpenWindows 550

Step 6. Set the necessary environment variables 550

Step 7. Verify the software installation 552

Step 8. Map your function keys 553

Step 9. Determine the logical name of your emulator 554

Step 10. Start the interface with the

emul700command 555

Step 11. Exit the Graphical User Interface 557

21

Contents

15 Installing/Updating Emulator Firmware

To update emulator firmware with "progflash” 561

To display current firmware version information
If there is a power failure during a firmware update

Glossary

Index

564
565

22

Part 1

Quick Start Guide

A one-glance overview of the product and a few task instructions to help you
comfortable.

23

Part 1

24

Getting Started

25

Chapter 1: Getting Started

The Emulator/Analyzer Interface — At a Glance

When an X Window System that supports OSF/Motif interfaces is running on the
host computer, the emulator/analyzer interface is the Graphical User Interface
which provides pull-down and pop-up menus, point and click setting of

breakpoints, cut and paste, on-line help, customizable action keys and pop-up recall
buffers, etc.

The emulator/analyzer interface can also be the Softkey Interface which is provided
for several types of terminals, terminal emulators, and bitmapped displays. When
using the Softkey Interface, commands are entered from the keyboard.

The Softkey Interface

Memory :mnemonic :file = .../usr/hpe4000/demo/debug_env/hpé4760/main.c":
address data

Display area. 00100000 GABS300000 stos g7,00108C00
00100008 09000C58 call 00100C60
0010000C O0BOO1lElC bal 00101E28
00100010 09000D70 call 00100D80
0 014 9080300000 1d 00107660,g0
001000 59840801 addo 01,g0,g0
00100020 9 00000 st g0, 00107660
00100028 8c80300000 1lda 00107660, g0
00100030 09000030 call 00100060
00100034 9088300000 1d 00107658,gl
0010003C 32046008 cmpobe 00,g1,00100044
00100040 09001CcD0 call 00101D10
00100044 0B002024 bal 00102068
00100048 O08FFFFCS b 00100010
0010004Cc 8AB8300000 stos g7,00108C02

. 00100054 0AQ00000 ret
Status line.
E— STATUS : aws: main."/usr/hpé4000/demo/debug_env/hpé4760/main.c": ...R...
. display memory main mnemonic
Command line.

Display area. Can show memory, data values, analyzer traces, registers,
breakpoints, status, simulated 1/0O, global symbols, local symbols, pod commands
(the emulator’'s underlying Terminal Interface), error log, or display log. You can
use the UP ARROW, DOWN ARROW, PAGE UP, and PAGE DOWN cursor keys
to scroll or page up or down the information in the active window.

26

Chapter 1: Getting Started

Status line. Displays the emulator and analyzer status. Also, when error and
status messages occur, they are displayed on the status line in addition to bei
saved in the error log.

Command line. Commands are entered on the command line by pressing
softkeys (or by typing them in) and executed by pressing the Return key. The Tab
and Shift-Tab keys allow you to move the cursor on the command line forward or
backward. The Clear line key (or CTRL-e) clears from the cursor position to the
end of the line. The CTRL-u key clears the whole command line.

Softkey Interface Conventions

Example Softkey Interface commands throughout the manual use the following
conventions:

bold Commands, options, and parts of command syntax.

bold italic Commands, options, and parts of command syntax which
may be entered by pressing softkeys.

normal User specified parts of a command.

$ Represents the UNIX prompt. Commands which follow
the "$" are entered at the UNIX prompt.

<RETURN> The carriage return key.

27

Chapter 1: Getting Started

Menu bar ——

Action keys

Entry buffer

Entry buffer recall
button.

Display area.

Scroll bar.

Status line. —__

Command line.

Command line entry

area.

Softkey pushbuttons

The Graphical User Interface

File Display Modify Execution Breakpoints Trace Settings Help

Action keys: | =Demo= | Disp Sre () | Trace() | Run | Step Source
| = Your Key = | Make | Disp Sre Prev |Run Resetto() | Break | Step Asm

{):imain J:H/ecall
Memory :imnemonic :file = .../usr/hpB4BBE/ demo/ debug_ main.c':
addre label data

31 5 wold update_system(); /* update system variables */
32 extern void interrupt_sim(}; /% simulate an interrupt */
33 extern void do_sort{); /% sets up ascii array and calls

maini}
i
init_system()
proc_spec_init(};
i
update_systel
Fom_check s++;
interrupt_sim{&num_checks);
if {graphl}
graph_datal);
proc_specificl];

while (truel

STATUS: cws: main.”fusr/hp64008/demo/debug_env/hp64760/main. c”:

isplay memory main mnemonic

Command: Cursor: |§.§é§€§£%§§} |Forward |Clearto end |Clear

Command buttons. Includes commandCursor buttons for command line area
recall button. control.

Menu Bar. Provides pulldown menus from which you select commands. When
menu items are not applicable, they appear half-bright and do not respond to mouse
clicks.

Action Keys. User-defined pushbuttons. You can label these pushbuttons and
define the action to be performed.

28

Chapter 1: Getting Started

Entry Buffer. Wherever you see "()" in a pulldown menu, the contents of the

entry buffer are used in that command. You can type values into the entry bu

or you can cut and paste values into the entry buffer from the display area or f

the command line entry area. You can also set up action keys to use the contents of
the entry buffer.

Entry Buffer Recall Button. Allows you to recall entry buffer values that have
been predefined or used in previous commands. When you click on the entry
buffer Recall button, a dialog box appears that allows you to select values.

Display Area. Can show memory, data values, analyzer traces, registers,
breakpoints, status, simulated 1/O, global symbols, local symbols, pod commands
(the emulator’s underlying Terminal Interface), error log, or display log.

Whenever the mouse pointer changes from an arrow to a hand, you can press and
hold theselectmouse button to access popup menus.

Scroll Bar. A "sticky slider" that allows navigation in the display area. Click on
the upper and lower arrows to scroll to the top (home) and bottom (end) of the
window. Click on the inner arrows to scroll one line. Drag the slider handle up or
down to cause continuous scrolling. Click between the inner arrows and the slider
handle to page up or page down.

Status Line. Displays the emulator and analyzer status. Also, when error and
status messages occur, they are displayed on the status line in addition to being
saved in the error log. You can press and holdeteetmouse button to access the
Status Line popup menu.

Command Line. The command line area is similar to the command line in the
Softkey Interface; however, the graphical interface lets you use the mouse to enter
and edit commands.

e« Command line entry area Allows you to enter commands from the
command line.

» Softkey pushbuttons Clicking on these pushbuttons, or pressing softkeys,
places the command in the command line entry area. You can press and hold
theselectmouse button to access the Command Line popup menu.

e Command buttons(includes command recall button). The commiaeturn
button is the same as pressing the carriage return key — it sends the command
in the command line entry area to the emulator/analyzer.

29

Chapter 1: Getting Started

The commandecall button allows you to recall previous or predefined
commands. When you click on the comm&uedtall button, a dialog box
appears that allows you to select a command.

e Cursor buttons for command line area control Allow you to move the
cursor in the command line entry area forward or backward, clear to the end of
the command line, or clear the whole command line entry area.

You can choose not to display the command line area by turning it off. For the
most common emulator/analyzer operations, the pulldown menus, popup menus,
and action keys provide all the control you need. Choosing menu items that require
use of the command line will automatically turn the command line back on.

Graphical User Interface Conventions

Choosing Menu Commands

This chapter uses a shorthand notation for indicating that you should choose a
particular menu item. For example, the following instruction

ChooséFile - Load - Configuration

means to first display tHele pulldown menu, then display thead cascade
menu, then select tl@onfiguration item from the Load cascade menu.

Based on this explanation, the general rule for interpreting this notation can be
stated as follows:

* The leftmost item in bold is the pulldown menu label.

+ If there are more than two items, then cascade menus are involved and all
items between the first and last item have cascade menus attached.

» The last item on the right is the actual menu choice to be made.

30

Chapter 1: Getting Started

Mouse Button and Keyboard Bindings

Because the Graphical User Interface runs on different kinds of computers, w
may have different conventions for mouse buttons and key names, the Graphica
User Interface supports different bindings and the customization of bindings.

This manual refers to the mouse buttons using general (or "generic") terms. The
following table describes the generic mouse button names and shows the default
mouse button bindings.

Mouse Button Bindings and Description

Bindings:

Generic

Button Sun

Name HP 9000 SPARCsystem Description

paste left left Paste from the display
area to the entry buffer.

command paste middle! middle! Paste from the entry
buffer to the command
line text entry area.

select right right Click selects first item in
popup menus. Press and
hold displays menus.

command selectleft right Displays pulldown menus.

pushbutton left left Actuates pushbuttons

select outside of the display area.

1 Middle button on three-button mouse. Both buttons on two-button mouse.

31

Chapter 1: Getting Started

The following tables show the default keyboard bindings.

Keyboard Key Bindings

Generic Key Name

menu select
insert

delete
left-arrow
right-arrow
up-arrow
down-arrow
escape

TAB

HP 9000
extend char
insert char
delete char
left arrow
right arrow
up arrow
down arrow
escape

TAB

Sun SPARCsystem

extend char
insert char
delete char
left arrow
right arrow
up arrow
down arrow

escape

TAB

32

Chapter 1: Getting Started

The Getting Started Tutorial

This tutorial gives you step-by-step instructions on how to perform a few basic
tasks using the emulator/analyzer interface. The tutorial examples presented in this
chapter make the following assumptions:

» The emulator and analyzer are installed into the HP 64700 Card Cage, the
HP 64700 is connected to the host computer, and the Softkey Interface
software has been installed as outlined in the "Installation" chapter.

e The emulator is plugged into the demo board and contains at least 256 Kbytes
of emulation memory.

The Demonstration Program

The demonstration program used in this chapter is a simple environmental control
system. The program controls the temperature and humidity of a room requiring
accurate environmental control.

33

Chapter 1: Getting Started
Step 1. Start the demo

Step 1. Start the demo

A demo program and its associated files are provided with the Graphical User
Interface.

Change to the demo directory.

$ cd /usr/hp64000/demo/debug_env/hp64760 <RETURN>
Refer to the README file for more information on the demo program.

Check that "/usr/hp64000/bin" and "." are in your PATH environment variable. To
see the value of PATH:

$ echo $PATH <RETURN>

If the Graphical User Interface software is installed on a different type of computer
than the computer you are using, edit the "platformScheme" resource setting in the
"Xdefaults.emul" file.

For example, if the Graphical User Interface will be run on a HP 9000 computer
and displayed on a Sun SPARCsystem computer, change the platform scheme to
"SunOS".

Start the emulator/analyzer demo.

$ Startemul <logical_emul_name> <RETURN>

This script starts the emulator/analyzer interface (with a customized set of action
keys), loads a configuration file for the demo program, and then loads the demo
program.

The <logical_emul_name> in the command above is the logical emulator name
given in the HP 64700 emulator device table file (flusr/hp64000/etc/64700tab.net).

34

Chapter 1: Getting Started
Step 2: Display the program in memory

Step 2: Display the program in memory

1 If the symbol "main” is not already in the entry buffer, move the mouse pointer to
the entry buffer (notice the flashing I-beam cursor) and type in "main”.

2 ChooseDisplay - Memory - Mnemonic ().

Or, using the command line, enter:

display memory main mnemonic <RETURN>

File Display Modify Execution Breakpoints Trace Seftings

Action keys: | = Demo = |Run Reset til () |Disp Src & Asm | Patch ()
| = Your Key = | tMake & Load | Step Asm | Step Source | Disp Var()
| Disp @REG || Disp Src Prev || Trace | Run [Again

() imain IReca

Memaory :mnemonic :file = .../ /usr/hpB4BBEB/ demo/ debug_erv/hpB47EB/ main. ¢
addre label data
31 extern void update_systemi); /#* update system wariables #*/
32 extern void interrupt_simi}; /% simulate an interrupt */
33 extern void do_sortil; /% sets up ascii array and call
34
35 maini}
35 i
97 init_systemi);
98 proc_spec_initi};
181 i
182 update_systemi};
183 num_checks++;
184 interrupt_sim{&num_checks)
185 if {graph?
1686 graph_datall;
187 proc_specificll);
33
186 while {truel

STATUS: cws: main."fusr/hp64008/demo/debug_env/hpbd4760/main.c”

The default display mode settings cause source lines and symbols to appear in
displays where appropriate. Notice you can use symbols when specifying
expressions. The global symbol "main" is used in the command above to specify
the starting address of the memory to be displayed.

35

Chapter 1: Getting Started
Step 3: Run from processor reset

Step 3: Run from processor reset

The transfer address is the entry address defined by the software development tools
and included with the program’s symbol information.

1 Click on theRun Reset til ()action key.

Or, using the command line, enter:

run from reset until main <RETURN>
Memory tmnemonic :file = .../ usr/hpB4BB8/ demo/ debug_env/hpE47E8/main. c":
addre label dats

31 extern woid update_system(); /#% update system wariables #/
32 extern woid interrupt_sim({}; /% simulate an interrupt */
33 extern woid do_sartll; /* sets up ascii array and calls
34
35 main(}
36 {

> init_systemi]);
98 proc_spec_initl(};
181 {
162 update_systemi]);
183 rum_checks++;
184 interrupt_sim{&num_checksl;
165 if {graph?
166 graph_datall;
167 proc_specificll);
33
168 while (true?

STATUS: Harning: no EHTRY/EXIT symbol; using TEXTRAWGE 1.3

Notice the highlighted bar on the screen; it shows the current program counter.

Notice the message "Warning: no ENTRY/EXIT symbol; using TEXTRANGE"
appears briefly on the status line. This message is from the Symbolic Retrieval
Utilities (SRU). When displaying procedure symbols, SRU is called to determine
the address range of the procedure.

This warning appears because the software development tools do not provide
procedure entry and exit symbols; therefore, the closest approximation we can
make is to use TEXTRANGE.

For more information on SRU, refer to tBgmbolic Retrieval Utilities User’s
Guide

36

Chapter 1: Getting Started
Step 3: Run from processor reset

2 Move the mouse pointer to the status line, and clickelertmouse button to
remove the temporary message on the status line.

Notice the message "Breakpoint register: <address>" is displayed on the status line
and that the emulator is "Running in monitor". When you run until an address, a
breakpoint is set at the address before the program is run.

37

Chapter 1: Getting Started
Step 4: Step high-level source lines

Step 4: Step high-level source lines

You can step through the program by high-level source lines. The emulator
executes as many instructions as are associated with the high-level program source
lines.

» To step a source line from the current program counter, click @tépeSource
action key.

Or, using the command line, enter:

step source <RETURN>

Memory :mnemonic :file = .../hpB480B/demo/debug_erw/hpB47EB/init_system.c':
addre label data
26
27 void init_wal_arr{};
28
23 void

init_systeml]}

38
- E A% FUMCTION init_system() */
32

/% Initialize the target walues for temperature and humidity */

33 target_temp = 73;

34 target_humid = 45;

35

36 /% Intialize the variables indicating the current environment #/
37 /* conditions */

a8 current_temp = B8;

33 current_humid = 41;

48

41 /#% SJet starting directions for temp and humid #*/

42 temp_dir = up;

Notice that the highlighted bar (the current program counter) moves to the next
high-level source line.

38

Chapter 1: Getting Started
Step 5: Display the previous mnemonic display

Step 5: Display the previous mnemonic display .

Click on theDisp Src Prevaction key.

Or, using the command line, enter:
display memory mnemonic previous_display <RETURN>
This command is useful, for example, when you have stepped into a function that

you do not wish to look at—you can display the previous mnemonic display and
run until the source line that follows the function call.

39

Chapter 1: Getting Started
Step 6: Run until an address

Step 6: Run until an address

When displaying memory in mnemonic format, a selection in the popup menu lets
you run from the current program counter address until a specific source line.

» Position the mouse pointer over the line "proc_spec_init();", press and hold the
selectmouse button, and chooRen Until from the popup menu.

¥
—'E Hewlett Packard Emulator/Analyzer: em80960 (i80960) E a EJ
File Display Modify Execution Breakpoints Trace Seftings Help
Action keys: | = Demo = |Run Reset til () |Disp Src & Asm | Patch ()
| = Your Key = | tMake & Load | Step Asm | Step Source | Disp Var()
| Disp @REG || Disp Src Prev || Trace | Run [Again
() imain IRecaII
Memory :mnemonic :file = .../ /usr/hpB4BBB/ demo/ debug_erv/hpB47EB/ main. c":
addre label dats A
31 extern void update_systemi); /#* update system wariables #*/
32 extern void interrupt_simi}; /% simulate an interrupt */
33 extern void do_sortil; /% sets up ascii array and call
34
35 main{}
35 i
97 init_systemi);
a5} proc ec_init{); " " " T
181 T Choose Action for Highlighted Line
laz update_sustemly; Set{Clear Software Breakpoint
183 num_checks++; -
184 interrupt_sim{&num_cH Edit Source
185 if {graph? n
188 graph_datal); Run Until
187 proc_specificll); Trace After
33
108 while (true) Trace Before
1STATUS: cws: main."Zusr/hp64000/demosdd |"2CE AADOUL NN Ny
¥ Trace Until ¥

Or, using the command line, enter:

run until main."main.c": line 98 <RETURN>

After the command has executed, notice the highlighted bar indicates the program
counter has moved to the specified source line.

40

Chapter 1: Getting Started
Step 7: Display data values

Step 7: Display data values

1 Click on theDisp Src Prevaction key.

Or, using the command line, enter:

display memory mnemonic previous_display <RETURN>

2 Position the mouse pointer over "num_checks" in the source line that reads
"num_checks++;" and click tigastemouse button (notice "num_checks" is cut
and pasted into the entry buffer).

3 Click on theDisp Var () action key.

Or, using the command line, enter:

display data , num_checks int32 <RETURN>

OData :update
addre label type data
AA1A766A |_num_check5 int3? 4]

The "num_checks" variable is added to the data values display and its value is
displayed as a 32-bit integer.

41

Chapter 1: Getting Started
Step 8: Display registers

Step 8: Display registers

You can display the contents of the processor registers.

» ChooseDisplay - Registers- basic

Or, using the command line, enter:

<RETURN>

display registers

Registers
pfp = BB118cch
r4 = BB1BGEZ1
r8 = HBABEEEA
rlz = HBABEEEA
gl = HBABEEZA
g4 = HBABEBZ3
gd = HBABEEEA
glz = HBABEEEA

LOCAL REGISTERS

AE118d48
ABHBABREZ
ABHBABER
ABHBABER

GLOBARL
ABHBEA17 4
ABHBEA17 4
ABHBABER
AR 182a54

rip = BA181e28
r6 = BAIE777E
rl@ = BACHEGEA
rl4 = BAOHEGEA
REGISTERS
g2 = BAOBEG4 1
gb = BADBAGEA
gld = BABEABEA
gl4 = BA1BAG1A

ABABREAZ
A 166618
ABABREAR
ABABREAR

ABAGBE 174
ABAGBE 174
12884a26
AB3118da8

42

Chapter 1: Getting Started
Step 9: Step assembly-level instructions

Step 9: Step assembly-level instructions

You can step through the program one instruction at a time.

To step one instruction from the current program counter, click dbtépeAsm
action key.

Or, using the command line, enter:

step <RETURN>

Registers
gl = HOEBEBAZA gl = HEABAD174 g2 = BABEBE4] g3 = HUABAL74
g4 = HOEEEBAZI g5 = HEBAD174 gb = DADHBEEE g7 = HUABA174
g8 = HOEOEBAEA g3 = HOUADEEA glH = BABEBEEE gll = 128084a26
gl2 = HOHBEAEA gl3 = HA182a54 gl4 = BAIEBEIE fp = BH118d460
Step_PC BALEIEZE mow gql4,gl3
Mext_PC BA1B1le2c
LOCAL REGISTERS
pfp = BB118ccl sp = BA118d48 rip = BAlHle2c r3 = OHOEEQAZ
r4 = BEIAEGEZ1 5 = BOQAEEEZ v = BAIEYYYE r7 = OO1EGG1B
r8 = HBEEEREE 3 = HOOAEEEA rl0 = BOBHBEEE r1]1 = OOOEE0G0
rl2 = HEEAEREE 13 = HO0AEEEA rl4 = BOBEBEEE r15 = OHOEE0G0
GLOBAL REGISTERS
gl = HBRBEEAZA gl = HABAE174 g2 = BABEAA4] g3 = AGEABA174
g4 = HBABEAZ3 g5 = HABAE174 gf = BABEAAAE g7 = AOABA174
g8 = HBRBEAEA g3 = HAGABEBA glB = BABEAAAE gll = 126B84a26
gle = HBRBAEAEA gl3 = BALABELA gl4 = BAIEAAIE fp = BE116d468

Notice, when registers are displayed, stepping causes the assembly language
instruction just executed to be displayed.

43

Chapter 1: Getting Started
Step 10: Trace the program

Step 10: Trace the program

When the analyzer traces program execution, it looks at the data on the emulation
processor’s bus and control signals at each clock cycle. The information seen at a
particular clock cycle is called a state.

When one of these states matches the "trigger state" you specify, the analyzer stores
states in trace memory. When trace memory is filled, the trace is said to be
"complete."

Click on theRecall button to the right of the entry buffer.

A selection dialog box appears. You can select from entry buffer values that have
been entered previously or that have been predefined.

Click on "main" in the selection dialog box, and click the "OK" pushbutton.

Notice that the value "main" has been returned to the entry buffer.

To trigger on the address "main" and store states that occur after the trigger, choose
Trace - After ().

Or, using the command line, enter:

trace after main <RETURN>

Move the mouse pointer to the status line, and clickelertmouse button to

remove the temporary message on the status line. Notice the message "Emulation

trace started" appears on the status line. This shows that the analyzer has begun to
look for the trigger state which is the address "main" on the processor’s address bus.

Run the emulator demo program from its transfer address by choosing
Execution— Run - from Reset

Or, using the command line, enter:

run from reset <RETURN>

44

Chapter 1: Getting Started
Step 10: Trace the program

Notice that now the message on the status line is "Emulation trace complete™.

shows the trigger state has been found and the analyzer trace memory has b
filled.

5 To view the captured states, choBésplay - Trace.

Or, using the command line, enter:

display trace <RETURN>

race List 0ffset=H]
Label: Address Opcode or Status w/ Source Lines time count
H unbol mremonic wisumbol relative

BHf AR HERR usr/ hpE40AH/ dem /hpB47EH/ main.e - line 1 thru

ofdebug_erw

n ();

code|main.main P: stos g/, tags|mai.main.c: Il.i.e 248 nS

Bt H R usr/ hpE40AE/ dema/ debug_erv/hpB4768/main.c - line 37 BEfHfHEE

init_systemft);

+B84 co|main+tBEEEEEEE P: call init.init_system 15.i.e 5zZ0 nS

Bt H R usr/ hpE40AE/ dema/ debug_erv/hpB4768/main.c - line 35 HAH#HAHEE
proc_spec_initl};

+HEE co|maintBEHEEEAC P: bal .proc_spec_init+HEEEEA 17.i.e 248 nS

+888 tags|mai.main.c: write shaort 4463 1l.i.e 4H8 nS

Bt usr/ hpE40AE/ dema/ debug_erv/hpB4766/ init_system.c - line 1t

wvoid init_wal_arri{l;

The default display mode settings cause source lines and symbols to appear in the
trace list.

Captured states are numbered in the left-hand column of the trace list. Line 0
always contains the state that caused the analyzer to trigger.

Other columns contain address information, data values, opcode or status
information, and time count information.

45

Chapter 1: Getting Started
Step 11: Display memory at an address in a register

Step 11: Display memory at an address in a
register

Click on theDisp @REGaction key.

Or, using the command line, enter the name of the command file:

mematreg <RETURN>
A command file dialog box appears (or a prompt appears in the command line).

Move the mouse pointer to the dialog box text entry area, type "fp", and click on
the "OK" button.

Or, if the prompt is in the command line:
fp <RETURN>

Memary :bytes :blocked :update

addre data ihe iascii

A 1180868-87 48 8D 11 BB DB 80 11 o7} B

AP 118088-8F 28 BC 18 B8 AC BD BB ©BA P
AP 118098-37 B8 @8 B8 @8 I 71 18 @8 By
AP 118098-5F AC B0 B8 @8 @8 AD 11 a2 P
AP 1 180AB-A7 Al BB BA BB 4B B BB @0 T 4

A 1 1BDAS-AF 28 BB BE BB CP BB BB BB e e
A8 1180EB-B7 Bz B8 BA BB 2B B3 BE B8 T
Ae 1 180EE-EF 268 BE BE BE 3B BE BE GE B ..
AB1180CA-C7 DB B8 BA BB 3B 2B 3@ 36 . B8
AB1180CE-CF A BB B BB BB B BB A6

A8 118008-D7 A8 BB BA BB B B BB BB

A 118008-DF A B8 BA BB BB AR BB BB

AP 1 180EB-E7 A B B BB B B BB BB

AP 1 1BDES-EF A B B BB B B BB BB

A8 1180FB-F7 A8 BB BA BB BB BA BE B8

AE 1 180F 8-FF B BE BE BE BE BE BE Ge e e e
A1 1BEHB-B7 B8 80 11 BB 58 8E 11 o7} F

46

Chapter 1: Getting Started
Step 12: Patch assembly language code

Step 12: Patch assembly language code

ThePatch () action key lets you patch code in your program.
1 ChooseExecution— Break to break emulator execution into the monitor.

2 With "main"” still in the entry buffer, choogisplay -~ Memory - Mnemonic ().

3 To display memory with assembly-level instructions intermixed with the high-level
source lines, click on th@isp Src & Asm action key.

Memory tmnemonic :file = .../ usr/hpB4BBA/ dema/ debug_erv/hpE47E6@/main. c”:
addre label data
31 extern woid update_systemil; /* update system wariables */
32 extern woid interrupt_simid; f#* simulate an interrupt #/
33 extern void do_sorti); /% sets up ascii array and calls
34
35 main}
35 i
68188886 co|main.main GABE30GE88 stos g7, tags|mai.main. c:
97 init_systemi]);
AR 18RERG ASEARCSE call init.init_system
95 proc_spec_initl{};
A6 1888EC ABABIEIC bal . proc_spec_init+0ABBABES
181 i
162 update_systemil;
AE 1886 168 A3BAR07A call up. update_system
183 rum_checks++;
BE1666 14 90803060668 1d zero|_num_checks,g@
A8 1686 1C 5354@5481 addo A1, gd, gd

4 Click on thePatch () action key.

A window appears and ttv¢ editor is started. Add the line:

callx update_system

Exit out of the editor, saving your changes.

The file you just edited is assembled, and the patch main menu appears. Type "a"
and press <RETURN> to apply the patch.

47

Chapter 1: Getting Started
Step 12: Patch assembly language code

Memory tmnemonic :file = .../ usr/hpB4BB8/ demo/ debug_env/hpE47E8/main. c":
addre label data
31 extern void update_system(); /* update system variables =#/
32 extern void interrupt_simi}; /% simulate an interrupt #*/
33 extern void do_sorti); /% sets up ascii array and calls
34
35 maini}
35 i
BB108888 co|main.main BE@B30AEEE callx up. update_system
97 init_systemi]);
AR1BREAG BIHEACSE call init.init_system
95 proc_spec_init(};
A6 188840 HEBE1EIC bal . proc_spec_init+0EABABAES
181 3
162 update_systemi);
AE 1886 18 B3EEA07A call up. update_system
183 rum_checks++;
BE166614 SpgEIEEEEE 1d zero|_num_checks,ga
A6 16868 1C 53840841 addo a1, gd, gd

Notice in the emulator/analyzer interface that the instruction at address "main" has

changed.

When patching a single address, make sure the new instruction takes up the same
number of bytes as the old instruction; otherwise, you may inadvertently modify

code that follows.

Type "main+8 thru main+15" in the entry buffer.

By entering an address range in the entry buffer (that is, <address> thru <address>)

before clicking on th@atch () action key, you can modify a patch template file
which allows you to insert as much or as little code as you wish.

48

Chapter 1: Getting Started
Step 12: Patch assembly language code

6 Click on thePatch () action key again.

A window running thevi editor again appears. Suppose you want to patch the
demo program so that the proc_spec_init() function is called before the
init_system() function. Suppose also that there is memory available at address
11FO00H. Edit the patch template file as shown below.

PCHS700 Assembly Patch File: PCHmain+8.s
#

Date : Wed Aug 26 17:00:20 MDT 1992

Dir : /users/guest/demo/debug_env/hp64760

Owner: guest

#

Warning: do not use CTRL-format opcodes; they will not
have the appropriate address when patched back

into your code. For example, use 'bx’ instead of 'b’,

and ’callx’ instead of "call’

.include "PCHSINC.s"

.sect patch,text,absolute main+8 # you may need to change this!

bx xyzzyq # You may want to change this name!

.sect patch2,text,absolute 0x11f000 # You MUST set this address!
Xyzzyq:

! following code to match your assembler syntax i
Patching Range: main+8 thru main+15

callx proc_spec_init

callx Init_system

bx main+8+8 # You MUST set this address also!
(guessed as location+8)

Notice that symbols can be used in the patch file. Exit out of the editor, saving
your changes.

The file you just edited is assembled, and the patch main menu appears. Type "a
<RETURN>" to apply the patch.

You can step through the program to view execution of the patch.

49

Chapter 1: Getting Started
Step 13: Exit the emulator/analyzer interface

. Step 13: Exit the emulator/analyzer interface

» To exit the emulator/analyzer interface and release the emulator, choose
File - Exit — Released

Or, using the command line, enter:

end release_system <RETURN>

50

Part 2

User’'s Guide

A complete set of task instructions and problem-solving guidelines, with a few
basic concepts.

51

Part 2

52

Starting and Exiting HP 64700
Interfaces

53

Starting and Exiting HP 64700 Interfaces

You can use several types of interfaces to the same emulator at the same time to
give yourself different views into the target system.

The strength of the emulator/analyzer interface is that it lets you perform the
real-time analysis measurements that are helpful when integrating hardware and
software.

The C debugger interface (which is a separate product) lets you view the stack
backtrace and high-level data structures, and it lets you use C language expressions
and macros. These features are most useful when debugging software.

The Software Performance Analyzer interface (which is also a separate product)
lets you make measurements that can help you improve the performance of your
software.

These interfaces can operate at the same time with the same emulator. When you
perform an action in one of the interfaces, it is reflected in the other interfaces.

Up to 10 interface windows may be started for the same emulator. Only one C
debugger interface window and one SPA window are allowed, but you can start
multiple emulator/analyzer interface windows.

The tasks associated with starting and exiting HP 64700 interfaces are grouped into
the following sections:

e Starting the emulator/analyzer interface.
» Opening other HP 64700 interface windows.
e Exiting HP 64700 interfaces.

54

Chapter 2: Starting and Exiting HP 64700 Interfaces
Starting the Emulator/Analyzer Interface

Starting the Emulator/Analyzer Interface

Before starting the emulator/analyzer interface, the emulator and interface sof
must have already been installed as described in the "Installation" chapter.

This section describes how to:

« Start the interface.

» Start the interface using the default configuration.

* Run acommand file on interface startup.

» Display the status of emulators defined in the 64700tab.net file.

* Unlock an interface that was left locked by another user.

To start the emulator/analyzer interface

Use theemul700 <emul_name>ommand.

If /Jusr/hp64000/binis specified in your PATH environment variable (as shown in
the "Installation" chapter), you can start the interface witlenma/700
<emul_name>command. The "emul_name" is the logical emulator name given in
the HP 64700 emulator device table (/usr/hp64000/etc/64700tab.net).

If you are running a window system on your host computer (for example, the X
Window System), you can run the interface in up to 10 windows. This capability
provides you with several views into the emulation system. For example, you can
display memory in one window, registers in another, an analyzer trace in a third,
and data in the fourth.

55

Chapter 2: Starting and Exiting HP 64700 Interfaces
Starting the Emulator/Analyzer Interface

Examples To start the emulator/analyzer interface for the 80960 emulator:

$ emul700 em80960 <RETURN>

The "em80960" in the command above is the logical emulator name given in the
HP 64700 emulator device table file (/lusr/hp64000/etc/64700tab.net).

Blank lines and the rest of each line after a '# character are ignored.

The information in each line must be in the specified order, with one line
for each HP series 64700 emulator. Use blanks or tabs to separate fields.
#

+ + +

Channel| Logical | Processor | Remainder of Information for the Channel
Type | Name | Type | (IP address for LAN connections)

+ + +

'# lan: em80960 80960 21.17.9.143
serial: em80960 80960 myhost/dev/iemcom23 OFF 9600 NONE XON 2 8

If you're currently running the X Window System, the Graphical User Interface
starts; otherwise, the Softkey Interface starts.

The status message shows that the default configuration file has been loaded. If the
command is not successful, you will be given an error message and returned to the
UNIX prompt. Error messages are described in the "Error Messages" chapter.

To start the interface using the default
configuration

» Use theemul700 -d <emul_namexommand.

In theemul700 -d <emul_name>xommand, thed option says to use the default
configuration. Thed option is ignored if the interface is already running in
another window or on another terminal.

56

Chapter 2: Starting and Exiting HP 64700 Interfaces
Starting the Emulator/Analyzer Interface

To run a command file on interface startup

* Use theemul700 -c <cmd_file> <emul_namerommand.

You can cause command files to be run upon starting the interface by using the
<cmd_file> option to theemul700command.

Refer to the "Using Command Files" section in the "Entering Commands" chapter
for information on creating command files.

Examples To start the emulator/analyzer interface and run the "startup” command file:

$ emul700 -c startup em80960 <RETURN>

To display the status of emulators

¢ Use theemul700 -loremul700 -lvcommand.

The-l option of theemul700command lists the status of all emulators defined in
the 64700tab and 64700tab.net files. If a logical emulator name is included in the
command, just the status of that emulator is listed.

You can also use the option with the| option for a verbose listing of the status
information.

Examples To list, verbosely, the status of the emulator whose logical name is "em80960":

$ emul700 -lv. em80960 <RETURN>

The information may be similar to:

em80960 - i80960 running; user = guest
description: 80960SA/SB emulation w/internal analysis, 1024Kb emul mem
user interfaces: xdebug, xemul, xperf, skemul, sktiming
device channel: /dev/emcom23

57

Chapter 2: Starting and Exiting HP 64700 Interfaces
Starting the Emulator/Analyzer Interface

Or, the information may be similar to:

em80960 - i80960 running; user = guest@myhost
description: 80960SA/SB emulation w/internal analysis, 1024Kb emul mem
user interfaces: xdebug, xemul, xperf, skemul, sktiming
internet address: 21.17.9.143

To unlock an interface that was left locked by
another user

» Use theemul700 -U <emul_namexommand.

The-U option to theemul700command may be used to unlock the emulators
whose logical names are specified. This command will fail if there currently is a
session in progress.

Examples To unlock the emulator whose logical name is "em80960":

$ emul700 -U em80960 <RETURN>

58

Chapter 2: Starting and Exiting HP 64700 Interfaces
Opening Other HP 64700 Interface Windows

Opening Other HP 64700 Interface Windows

TheFile - Emul700 menu lets you open additional emulator/analyzer interface
windows or other HP 64700 interface windows if those products have been
installed (for example, the software performance analyzer (SPA) interface and
high-level debugger interface).

This section shows you how to:
» Open additional emulator/analyzer interface windows.
* Open the high-level debugger interface window.

» Open the software performance analyzer (SPA) interface window.

To open additional emulator/analyzer windows

To open additional Graphical User Interface windows, choose
File - Emul700- Emulator/Analyzer under Graphic Window®r enter the
emul700 <emul_name>xommand in another terminal emulation window.

To open additional conventional Softkey Interface windows, choose

File - Emul700- Emulator/Analyzer under Terminal Windowsr enter the
emul700 -u skemul <emul_namerzommand in another terminal emulation
window.

You can open additional Graphical User Interface windows, or terminal emulation
windows containing the Softkey Interface.

When you open an additional window, the status line will show that this session is
joining a session already in progress, and the event log is displayed.

You can enter commands in any window in which the interface is running. When
you enter commands in different windows, the command entered in the first
window must complete before the command entered in the second window can
start. The status lines and the event log displays are updated in all windows.

59

Chapter 2: Starting and Exiting HP 64700 Interfaces
Opening Other HP 64700 Interface Windows

To open the high-level debugger interface window

enter theemul700 -u xdebug <emul_nameezommand in another terminal

. * ChooseFile - Emul700- High-Level Debugger ...under "Graphic Windows", or
emulation window.

For information on how to use the high-level debugger interface, refer to the
debugger/emulatddser’s Guide

To open the software performance analyzer
(SPA) interface window

* ChooseFile - Emul700- Performance Analyzer ...under "Graphic Windows", or
enter theemul700 -u xperf <emul_name>ommand in another terminal
emulation window.

For information on how to use the software performance analyzer, refer to the
Software Performance Analyzer User’'s Guide

60

Chapter 2: Starting and Exiting HP 64700 Interfaces
Exiting HP 64700 Interfaces

Exiting HP 64700 Interfaces

There are several options available when exiting the HP 764700 interfaces. Y|
can simply close one of the open interface windows, or you can exit the debu
session by closing all the open windows. When exiting the debug session, yo
lock the emulator so that you can continue later, or you can release the emulation
system so that others may use it. This section describes how to:

* Close an interface window.

» Exit a debug/emulation session.

To close an interface window

In the interface window you wish to close, chobse - Exit — Window. In the
emulator/analyzer interface command line, enteetitlcommand with no options.

All other interface windows remain open, and the emulation session continues,
unless the window closed is the only one open for the emulation session. In that
case, closing the window ends the emulation session, but locks the emulator so that
other users cannot access it.

61

Chapter 2: Starting and Exiting HP 64700 Interfaces
Exiting HP 64700 Interfaces

To exit a debug/emulation session

To exit the interface, save your configuration to a temporary file, and lock the
emulator so that it cannot be accessed by other users, ¢hlees&xit - Locked.
In the emulator/analyzer interface command line, entegriidockedcommand.

To exit the interface and release the emulator for access by other users, choose
File - Exit — Released In the emulator/analyzer interface command line, enter the
end release_systernommand.

If you exit the interface locked, the interface saves the current configuration to a
temporary file and locks the emulator to prevent other users from accessing it.
When you again start the interface with ¢éineul700command, the temporary file

is reloaded, and therefore, you return to the configuration you were using when you
quit the interface locked.

Also saved when you exit the interface locked are the contents of the entry buffer
and command recall buffer. These recall buffer values will be present when you
restart the interface.

In contrast, if you end released, you must have saved the current configuration to a
configuration file (if the configuration has changed), or the changes will be lost.

62

Entering Commands

63

Entering Commands

When an X Window System that supports OSF/Motif interfaces is running on the
host computer, the emulator/analyzer interface is the Graphical User Interface
which provides pull-down and pop-up menus, point and click setting of

breakpoints, cut and paste, on-line help, customizable action keys and pop-up recall
buffers, etc.

The emulator/analyzer interface also provides the Softkey Interface for several
types of terminals, terminal emulators, and bitmapped displays. When using the
Softkey Interface, commands are entered from the keyboard.

When using the Graphical User Interface,dbmmand lingortion of the interface

gives you the option of entering commands in the same manner as they are entered
in the Softkey Interface. If you are using the Softkey Interface, you can only enter
commands from the keyboard using the command line.

The menu commands in the Graphical User Interface are a subset of the commands
available when using the command line. While you have a great deal of capability
in the menu commands, you have even more in the command line.

This chapter shows you how to enter commands in each type of emulator/analyzer
interface. The tasks associated with entering commands are grouped into the
following sections:

« Using menus, the entry buffer, and action keys.
e Using the command line with the mouse.

e Using the command line with the keyboard.

e Using command files.

e Using pod commands.

e Forwarding commands to other HP 64700 interfaces.

64

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

Using Menus, the Entry Buffer, and Action Keys

This section describes the tasks you perform when using the Graphical User
Interface to enter commands. This section describes how to:

* Choose a pulldown menu item using the mouse.
» Choose a pulldown menu item using the keyboard.

* Use the popup menus.

» Use the entry buffer.

» Copy and paste to the entry buffer.
* Use action keys.

* Use dialog boxes.

» Access help information.

65

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To choose a pulldown menu item using the
mouse (method 1)

Position the mouse pointer over the name of the menu on the menu bar.
Press and hold tmmmmand selechouse button to display the menu.

While continuing to hold down the mouse button, move the mouse pointer to the
desired menu item. If the menu item has a cascade menu (identified by an arrow on
the right edge of the menu button), then continue to hold the mouse button down
and move the mouse pointer toward the arrow on the right edge of the menu. The
cascade menu will display. Repeat this step for the cascade menu until you find the
desired menu item.

Release the mouse button to select the menu choice.

If you decide not to select a menu item, simply continue to hold the mouse button
down, move the mouse pointer off of the menu, and release the mouse button.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or message box when the menu
item is chosen.

66

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To choose a pulldown menu item using the
mouse (method 2)

Position the mouse pointer over the menu name on the menu bar.

Click thecommand selechouse button to display the menu. .

Move the mouse pointer to the desired menu item. If the menu item has a cascade
menu (identified by an arrow on the right edge of the menu button), then repeat the
previous step and then this step until you find the desired item.

Click the mouse button to select the item.

If you decide not to select a menu item, simply move the mouse pointer off of the
menu and click the mouse button.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or other box when the menu item
is chosen.

To choose a pulldown menu item using the
keyboard

To initially display a pulldown menu, press and holdrtteu seleckey (for
example, the "Extend char" key on a HP 9000 keyboard) and then type the
underlined character in the menu label on the menu bar. (For example, " for
"File". Type the character in lower case only.)

To move right to another pulldown menu after having initially displayed a menu,
press theight-arrow key.

67

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To move left to another pulldown menu after having initially displayed a menu,
press thdeft-arrow key.

To move down one menu item within a menu, presddia-arrow key.
To move up one menu item within a menu, pressipharrow key.

To choose a menu item, type the character in the menu item label that is underlined.
Or, move to the menu item using the arrow keys and then presRET@JRN>
key on the keyboard.

To cancel a displayed menu, pressiEBeapekey.

The interface supports keyboard mnemonics and the use of the arrow keys to move
within or between menus. For each menu or menu item, the underlined character in
the menu or menu item label is the keyboard mnemonic character. Notice the
keyboard mnemonic is not always the first character of the label. If a menu item

has a cascade menu attached to it, then typing the keyboard mnemonic displays the
cascade menu.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or other box when the menu item
is chosen.

Dialog boxes support the use of the keyboard as well. To direct keyboard input to a
dialog box, you must position the mouse pointer somewhere inside the boundaries
of the dialog box. That is because the interkadoard focus policig set to

pointer. That just means that the window containing the mouse pointer receives the
keyboard input.

In addition to keyboard mnemonics, you can also specify keyboard accelerators
which are keyboard shortcuts for selected menu items. Refer to the "Setting X
Resources" chapter and the "Softkey.Input" scheme file for more information about
setting the X resources that control defining keyboard accelerators.

68

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To choose popup menu items

Move the mouse pointer to the area whose popup menu you wish to access. (If a
popup menu is available, the mouse pointer changes from an arrow to a hand.)

Press and hold ttselectmouse button.

After the popup menu appears (while continuing to hold down the mouse button),
move the mouse pointer to the desired menu item.

Release the mouse button to select the menu choice.

If you decide not to select a menu item, simply continue to hold the mouse button
down, move the mouse pointer off of the menu, and release the mouse button.

The following popup menus are available in the Graphical User Interface:
* Mnemonic Memory Display.

» Breakpoints Display.

» Global Symbols Display.

* Local Symbols Display.

+ Status Line.

« Command Line.

69

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To place values into the entry buffer using the
keyboard

Position the mouse pointer within the text entry area. (An "lI-beam" cursor will
appear.)

Enter the text using the keyboard.

To clear the entry buffer text area from beginning until end, prestnieu key
combination.

To copy-and-paste to the entry buffer

To copy and paste a discrete text string as determined by the interface, position the
mouse pointer over the text to copy and clickghstemouse button.

To specify the exact text to copy to the entry buffer: press and hgddstemouse
button; drag the mouse pointer to highlight the text to copy-and-paste; release the
pastemouse button.

You can copy-and-paste from the display area, the status line, and from the
command line entry area.

When you position the pointer and click the mouse button, the interface expands
the highlight to include the most complete text string it considers to be discrete.
Discrete here means that the interface will stop expanding the highlight in a given
direction when it discovers a delimiting character not determined to be part of the
string. A common delimiter would, of course, be a space.

When you press and hold the mouse button and drag the pointer to highlight text,
the interface copies all highlighted text to the entry buffer when you release the
mouse button.

Because the interface displays absolute addresses as hex values, any copied and
pasted string that can be interpreted as a hexadecimal value (that is, the string

70

Note

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

contains only numbers 0 through 9 and characters "a" through "f*) automatically
has an "h" appended.

If you have multiple Graphical User Interface windows open, a copy-and-paste
action in any window causes the text to appear in all entry buffers in all windows.
That is because although there are a number of entry buffers being displayed,
is actually only one entry buffer and it is common to all windows. That means
can copy a symbol or an address from one window and then use it in another
window.

On a memory display or trace display, a symbol may not be completely displayed
because there are too many characters to fit into the width limit for a particular
column of the display. To make a symbol usable for copy-and-paste, you can scroll
the screen left or right to display all, or at least more, of the characters from the
symbol. The interface displays absolute addresses as hex values.

Text pasted into the entry buffer replaces that which is currently there. You cannot
use paste to append text to existing text already in the entry buffer.

See "To copy-and-paste from the entry buffer to the command line entry area" for
information about pasting the contents of the entry buffer into the command line
entry area.

71

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

Example To paste the symbol "num_checks" into the entry buffer from the interface display
area, position the mouse pointer over the symbol and then click the paste mouse
button.

i Y
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | =Demo= | Disp Sre () | Trace() | Run | Step Source
| = Your Key = | Make | Disp Sre Prev |Run Resetto() | Break | Step Asm
{):inum_checks IRecaII
A mouse click Memory :mnemonic :File = .../usr/hpB4BBB/demo/debug_erv/hpB4768/main.c":
. addre label data
causes the interface 31 extern void update_system(}; /% update system wariasbles #/
to expand the 32 extern void interrupt_sim(}; /% simulate an interrupt */
h|ghl|ght to include extern void do_sort{); /% sets up ascii array and calls
the symbol R mein®
"num_checks" and init_system();
paste the symbol proe_spec_iniz();
into the entry buffer. update_system()]

um_check sged

interrupt_sim{&num_checks);
if {graphl}

graph_datal);
proc_specificl];

while (truel

main. " fusr/hp64000/demo/ debug_env/hp64760/main._ c”

72

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To recall entry buffer values

Position the mouse pointer over fRecall button just to the right of the entry
buffer text area, click the mouse button to bring up the Entry Buffer Recall dialog
box, and then choose a string from that dialog box.

The Entry Buffer Recall dialog box contains a list of entries gained during the
emulation session as well as any predefined entries present at interface startup.

If you exit the emulation/analysis session with the interface "locked", recall buffer
values are saved and will be present when you restart the interface.

You can predefine entries for the Entry Buffer Recall dialog box and define the
maximum number of entries by setting X resources (refer to the "Setting X
Resources" chapter).

See the following "To use dialog boxes" section for information about using dialog
boxes.

To use the entry buffer

Place information into the entry buffer (see the previous "To place values into the
entry buffer using the keyboard", "To copy-and-paste to the entry buffer”, or "To
recall entry buffer values" task descriptions).

Choose the menu item, or click the action key, that uses the contents of the entry
buffer (that is, the menu item or action key that contains "()").

73

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To copy-and-paste from the entry buffer to the
command line entry area

Place text to be pasted into the command line in the entry buffer text area.

You may do that by:
» Copying the text from the display area using the copy-and-paste feature.
» Enter the text directly by typing it into the entry buffer text area.

» Choose the text from the entry buffer recall dialog box.

Position the mouse pointer within the command line text entry area.

If necessary, reposition the cursor to the location where you want to paste the text.
If necessary, choose the insert or replace mode for the command entry area.

Click thecommand pastmouse button to paste the text in the command line entry
area at the current cursor position.

The entire contents of the entry buffer are pasted into the command line at the
current cursor position.

Although a paste from the display area to the entry buffer affects all displayed entry
buffers in all open windows, a paste from the entry buffer to the command line only
affects the command line of the window in which you are currently working.

See "To copy-and-paste to the entry buffer" for information about pasting
information from the display into the entry buffer.

74

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To use the action keys

1 If the action key uses the contents of the entry buffer, place the desired information
in the entry buffer.

2 Position the mouse pointer over the action key and click the action key.

Action keys are user-definable pushbuttons that perform interface or system
functions. Action keys can use information from the entry buffer — this makes it
possible to create action keys that are more general and flexible.

Several action keys are predefined when you first start the Graphical User Interface.
You can use the predefined action keys, but you'll really appreciate them when you
define and use your own.

Action keys are defined by setting an X resource. Refer to the chapter "Setting X
Resources" for more information about creating action keys.

To use dialog boxes

1 Click on an item in the dialog box list to copy the item to the text entry area.
2 Edit the item in the text entry area (if desired).

3 Click on the "OK" pushbutton to make the selection and close the dialog box, click
on the "Apply" pushbutton to make the selection and leave the dialog box open, or
click on the "Cancel" pushbutton to cancel the selection and close the dialog box.

The graphical interface uses a number of dialog boxes for selection and recall:

Directory Selection Selects the working directory. You can change to a
previously accessed directory, a predefined directory, or
specify a new directory.

75

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

File Selection From the working directory, you can select an existing file
name or specify a new file name.

Entry Buffer Recall ~ You can recall a previously used entry buffer text string, a
predefined entry buffer text string, or a newly entered entry
buffer string, to the entry buffer text area.

Command Recall You can recall a previously executed command, a
predefined command, or a newly entered command, to the
command line.

The dialog boxes share some common properties:

* Most dialog boxes can be left on the screen between uses.

» Dialog boxes can be moved around the screen and do not have to be positioned
over the graphical interface window.

» If you iconify the interface window, all dialog boxes are iconified along with
the main window.

Except for the File Selection dialog box, predefined entries for each dialog box
(and the maximum number of entries) are set via X resources (refer to the "Setting
X Resources" chapter).

76

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

Examples To use the File Selection dialog box:

The file filter selects
specific files.

A list of File Filter

filter-matching files
flrom the culrrgn; fusers/quest/demos/ debug_ernv/hpB47ER/ *. EA

directory. .

. _ Files
A list of files fusersiguest/demoidebug_envihp64760/Config.EA
PerIOUS|y accessed fusers/guestidemo/debuq envihp84760/Configall.EA
during the emulation «Previous Files=
session. fusersiguestidemoldebug envihp&d4760/Config.EA

. . usersfiquestidemolfdebuq envih
A single click on a

file name from either
list highlights the file
name and copies it tc
the text area. A

double click chooses
the file and closes thi ﬁ

dialog box. i ¥
Label informs you
what kind of file

selection you are fusers/guest/dema/debug_env/hpB4768/Configal 1. EA,
performing.

Load Emulation Configuration

Text entry area. -
Text is either OK Filter Cancel
copied here from
the recall list, or
entered directly.

Clicking this button Entering a new file filter Clicking this button
chooses the file name and clicking this button cancels the file selection
displayed in the text entry causes a list of files operation and closes the
area and closes the dialogmatching the new filter to dialog box.

box. be read from the directory.

77

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To use the Directory Selection dialog box:

Label informs you

O,f the type of list Emulator/Analyzer: Directory Selection
displayed.

A list of predefined Previous Working Directories

or previously ¥ Associated X Resource: "emul.iB0980* dirSelectSub.entrieg
accessed directories..{ #

%HDME

HP&4000/demofdebuq envihp8d4760
usersfiquestidemolfdebuq envihp&4760

A single click on a
directory name from
the list highlights

the name and copies
it to the text area. A
double click chooses
the directory and
closes the dialog £
box.

Selection

Esers.-" quest/demos/ debug_env/hpB47ER

Text entry area.

Directory name is
either copied here OK Apply
from the recall list,
or entered directly.

Clicking this button Clicking this button Clicking this button
chooses the directory chooses the directory cancels the directory
displayed in the text entrydisplayed in the text entryselection operation and
area and closes the dialogarea, but keeps the dialogcloses the dialog box.
box. box on the screen instead

of closing it.

78

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To access help information

1 Display the Help Index by choositglp — General Topic...or Help - Command
Line....

2 Choose a topic of interest from the Help Index.

The Help Index lists topics covering operation of the interface as well other
information about the interface. When you choose a topic from the Help Index, the
interface displays a window containing the help information. You may leave the
window on the screen while you continue using the interface.

79

Chapter 3: Entering Commands
Using the Command Line with the Mouse

Using the Command Line with the Mouse

When using the Graphical User Interface,dbemand lingortion of the interface

gives you the option of entering commands in the same manner as they are entered
in the Softkey Interface. Additionally, the graphical interface makes the softkey
labels pushbuttons so commands may be entered using the mouse.

If you are using the Softkey Interface, using the command line with the keyboard is
the only way to enter commands.

This section describes how to:

e Turn the command line off/on.
* Enter commands.

» Edit commands.

* Recall commands.

» Display the help window.

To turn the command line on or off

To turn the command line on or off using the pulldown menu, choose
Settings— Command Line.

To turn the command line on or off using the status line popup menu: position the
mouse pointer within the status line area, press and hodelégeimouse button,
and choos€ommand Line Off from the menu.

To turn the command line off using the command line entry area popup menu:
position the mouse pointer within the entry area, press and haldldnmouse
button, and chooseommand Line Off from the menu.

Turns display of the command line area "on" or "off." On means that the command
line is displayed and you can use the softkey label pushbuttons, the command
return and recall pushbuttons, and the cursor pushbuttons for command line editing.

80

Chapter 3: Entering Commands
Using the Command Line with the Mouse

Off means the command line is not displayed and you use only the pulldown menus
and the action keys to control the interface.

The command line area begins just below the status line and continues to the
bottom of the emulator/analyzer window. The status line is not part of the
command line and continues to be displayed whether the command line is on or off.

Choosing certain pulldown menu items while the command line is off causes
command line to be turned on. That is because the menu item chosen requir
some input at the command line that cannot be supplied another way.

To enter a command

Build a command using the softkey label pushbuttons by successively positioning
the mouse pointer on a pushbutton and clickingtishbutton selechouse button
until a complete command is formed.

Execute the completed command by clickingRleturn pushbutton (found near
the bottom of the command line in the "Command" group).

Or:

Execute the completed command using the Command Line entry area popup menu:
Position the mouse pointer in the command line entry area; press and hold the
selectmouse button until the Command Line popup menu appears; then, choose the
Execute Commandmenu item.

You may need to combine pushbutton and keyboard entry to form a complete
command.

A complete command is a string of softkey labels and text entered with the
keyboard. You know a command is complete wReturn pushbutton is not
halfbright. The interface does not check or act on a command, however, until the
command is executed. (In contrast, commands resulting from pulldown menu
choices and action keys are supplied with the needed carriage return as part of the
command.)

81

Chapter 3: Entering Commands
Using the Command Line with the Mouse

To edit the command line using the command
line pushbuttons

To clear the command line, click t@dear pushbutton.

To clear the command line from the cursor position to the end of the line, click the
Clear to end pushbutton.

To move to the right one command word or token, clickthvard pushbutton.
To move to the left one command word or token, clickBekup pushbutton.

To insert characters at the cursor position, presaseet key to change to
insertion mode, and then type the characters to be inserted.

To delete characters to the left of the cursor position, pres8HheKSPACE>
key.

When the cursor arrives at the beginning of a command word or token, the softkey
labels change to display the possible choices at that level of the command.

When moving by words left or right, tli@rward pushbutton becomes halfbright
and unresponsive when the cursor reaches the end of the command string.
Similarly, theBackup pushbutton becomes halfbright and unresponsive when the
cursor reaches the beginning of the command.

See "To edit the command line using the mouse and the command line popup
menu" and "To edit the command line using the keyboard" for information about
additional editing operations you can perform.

82

Chapter 3: Entering Commands
Using the Command Line with the Mouse

To edit the command line using the command
line popup menu

To clear the command line: position the mouse pointer within the Command Line
entry area; press and hold geectmouse button until the Command Line popup
menu appears; chooSéear Entire Line from the menu.

To clear the command line from the cursor position to the end of the line: position
the mouse pointer at the place where you want the clear-to-end to start; press and
hold theselectmouse button until the Command Line popup menu appears; choose
Clear to End of Line from the menu.

To position the cursor and insert characters at the cursor location: position the
mouse pointer in a non-text area of the command line entry area; press and hold the
selectmouse button to display the Command Line popup menu; cRos#®on

Cursor, Insert Mode from the menu; type the characters to be inserted.

To replace characters at the current cursor location: position the mouse pointer in a
non-text area of the command line entry area; press and halel¢cénouse

button to display the Command Line popup menu; chBoséion Cursor,

Replace Modefrom the menu; type the characters to be inserted.

To position the cursor and replace characters at the cursor location: position the
mouse pointer in a non-text area of the command line entry area; press and hold the
selectmouse button to display the Command Line popup menu; cRos#®on

Cursor, Replace Modefrom the menu; type the characters to be inserted.

When the cursor arrives at the beginning of a command word or token, the softkey
labels change to display the possible choices at that level of the command.

See "To edit the command line using the mouse and the command line
pushbuttons" and "To edit the command line using the keyboard" for information
about additional editing operations you can perform.

83

Chapter 3: Entering Commands
Using the Command Line with the Mouse

To recall commands

1 Click the pushbutton labeldgiecallin the Command Line to display the dialog box.

2 Choose a command from the buffer list. (You can also enter a command directly
into the text entry area of the dialog box.)

Because all command entry methods in the interface — pulldown menus, action
keys, and command line entries — are echoed to the command line entry area, the
contents of the Command Recall dialog box is not restricted to just commands
entered directly into the command line entry area.

The Command Recall dialog box contains a list of interface commands executed
during the session as well as any predefined commands present at interface startup.

If you exit the emulation/analysis session with the interface "locked", commands in
the recall buffer are saved and will be present when you restart the interface.

You can predefine entries for the Command Recall dialog box and define the
maximum number of entries by setting X resources (refer to the "Setting X
Resources" chapter).

See "To use dialog boxes" for information about using dialog boxes.

To get help about the command line

» To display the help topic explaining the operation of the command line, press the
Help pushbutton located near the bottom-right corner of the Command Line area.

84

Chapter 3: Entering Commands
Using the Command Line with the Keyboard

Using the Command Line with the Keyboard

When using the command line with the keyboard, you enter commands by pressing
softkeys whose labels appear at the bottom of the screen. Softkeys provide for
quick command entry, and minimize the possibility of errors.

The command line also provides command completion. You can type the first
characters of a command (enough to uniquely identify the command) and the

press <Tab>. The interface completes the command word for you.

Entering commands with the keyboard is easy. However, the interface provides
other features that make entering commands even easier. For example, you can:

» Enter multiple commands on one line.
* Recall commands.
» Edit commands.

» Access on-line help information.

To enter multiple commands on one command
line
» Separate the commands with semicolons (;).

More than one command may be entered in a single command line if the commands
are separated by semicolons (;).

Examples To reset the emulator and break into the monitor:

reset ; break <RETURN>

85

Chapter 3: Entering Commands
Using the Command Line with the Keyboard

Examples

To recall commands

Press <CTRL>r or <CTRL>b.

The most recent 20 commands you enter are stored in a buffer and may be recalled
by pressing <CTRL>r. Pressing <CTRL>b cycles forward through the recall buffer.

For example, to recall and execute the command prior to the last command:

<CTRL>r <CTRL>r <RETURN>

To edit commands

Use the <Left arrow>, <Right arrow>, <Tab>, <Shift><Tab>, <Insert char>, <Back
space>, <Delete char>, <Clear line>, and <CTRL>u keys.

The <Left arrow> and <Right arrow> keys move the cursor single spaces to the left
or right.

The <Tab> and <Shift><Tab> keys move the cursor to the next or previous word
on the command line.

The <Insert char> key enters the insert editing mode and allows characters or
command options to be inserted at the cursor location.

The <Back space> key deletes the character to the left of the cursor.
The <Delete char> key deletes the character to the right of the cursor.
The <Clear line> key deletes the characters from the cursor to the end of the line.

The <CTRL>u key erases the command line.

86

Chapter 3: Entering Commands
Using the Command Line with the Keyboard

Examples

To access on-line help information

Use thehelp or ? commands.

To access the command line’s on-line help information, type &ighgor ? on the
command line. You will notice a new set of softkeys. By pressing one of thes
softkeys and <RETURN>, you can display information on that topic.

To display information on the system commands:

help system_commands <RETURN>

Or:

? system_commands <RETURN>

The help information is scrolled on to the screen. If there is more than a screen full
of information, you will have to press the space bar to see the next screen full, or
the <RETURN> key to see the next line, just as you do with the Widdé¢

command. After all the information on the particular topic has been displayed (or
after you press "g" to quit scrolling through information), you are prompted to press
<RETURN> to return to the command line.

87

Chapter 3: Entering Commands
Using Command Files

Using Command Files

You can execute a series of commands that have been stored in a command file.
You can create command files by logging commands while using the interface or
by using an editor on your host computer.

Once you create a command file, you can execute the file in the emulation
environment by typing the name of the file on the command line and pressing
<RETURN>.

Command files execute until an end-of-file is found or until a syntax error occurs.
You can stop a command file by pressing <CTRL>c or the <Break> key.

This section shows you how to:
» Start logging commands to a command file.
» Stop logging commands to a command file.

» Playback (execute) a command file.

Nesting Command Files

You can nest a maximum of eight levels of command files. Nesting command files
means one command file calls another.

Comments in Command Files

Text that follows a pound sign (#), up to the end of the line, is interpreted as a
comment.

Using the wait Command

When editing command files, you can inseait commands to pause execution of
the command file at certain points.

If you press <CTRL>c to stop execution of a command file while the "wait"
command is being executed from the command file, the <CTRL>c will terminate
the "wait" command, but will not terminate command file execution. To do this,
press <CTRL>c again.

88

Chapter 3: Entering Commands
Using Command Files

Use thawait measurement_completeommand after changing the trace depth.
By doing this, when you copy or display the trace after changing the trace depth,
the new trace states will be available. Otherwise the new states won’t be available.

Passing Parameters

Command files provide a convenient method for passing parameters by using
parameter declaration line preceding the commands in the command file. Wh
command file is called, the system will prompt you for current values of the for
parameters listed.

Parameters are defined as:

Passed Parameters These are ASCII strings passed to a command file. Any
continuous set of ASCII characters can be passed. Spaces separate the
parameters.

Formal Parameters -These are symbols preceded by an ampergahd (
which are the variables of the command file.

The ASCII string passed (passed parameter) will be substituted for the formal
parameter when the command file is executed.

The only way to pass a parameter containing a space is to enclose the parameter in
double quotes () or single quotes (). Thus, to pass the parameter HP 9000 to a
command file, you can use either "HP 9000" or 'HP 9000'.

The special paramet&®ArG_IEfT gets set to all the remaining parameters
specified when the command file was invoked. This lets you use variable size
parameter lists. If no parameters are &&rG_|EfT gets set to NULL.

Consider the command file example (named CMDFILE) shown below:

PARMS &ADDR &VALUE1

#

modify a location or list of locations in memory
and display the result

#

modify memory &ADDR words to & VALUE1 &ArG_IEfT
display memory &ADDR blocked words

89

Chapter 3: Entering Commands
Using Command Files

When you execute CMDFILE, you will be prompted with:

Define command file parameter [&ADDR]

To pass the parameter, enter the address of the first memory location to be
modified. You will then be prompted f&/ALUEL . If you enter, for example,
"0,-1,20, Offffh, 4+5*4", the first parameter "0,-1,20," is passe&MALUE1 and
the remaining parameters "Offffh," and "4+5*4" are pass&ias |EfT .

You can also pass the parameters when you invoke the command file (for example,
CMDFILE 1000h 0,-1,20, Offfth, 4+5*4).

Other Things to Know About Command Files

You should know the following about using command files:

1

Command files may contain shell variables. Only those shell variables
beginning with "$" followed by an identifier will be supported. An identifier is
a sequence of letters, digits or underscores beginning with a letter or
underscore. The identifier may be enclosed by braces "{ }" or entered directly
following the "$" symbol. Braces are required when the identifier is followed
by a letter, a digit or an underscore that is not interpreted as part of its name.

For example, assume a directory named /users/softkeys and the shell variable
"S". The value of "S" is "soft". By specifying the directory as /users/${S}keys
the correct result is obtained. However, if you attempt to specify the directory
as /users/$Skeys, the Softkey Interface looks for the value of the variable
"Skeys". This is not the operators intended result. You may not get the
intended result unless Skeys is already defined to be "softkeys".

You can examine the current values of all shell variables defined in your
environment with the command "env".

Positional shell variables, such as $1, $2, and so on, are not supported. Neither
are special shell variables, such as $@, $*, and so on, supported.

You can continue command file lines. This is done by avoiding the line feed
with a backslash (). A line terminated by "\" is concatenated with any
following lines until a line that does not contain a backslash is found. A line
constructed in this manner is recognized and executed as one single command
line. If the last line in a command file is terminated by "\", it appears on the
command line but is not executed. Normally, the line feed is recognized as the
command terminator. The UNIX environment recognizes three quoting

90

Chapter 3: Entering Commands
Using Command Files

characters for shell commands which are double quotes ("), single quotes ('),
and the backslash symbol (\).

For example, the following three lines are treated as a single shell command.
The two hidden line feeds are ignored because they are inside the two single
quotes ():

lawk '/$/ { blanks++}
END { print blanks }

"an_unix_file

To start logging commands to a command file

ChooseFile - Log - Record and use the dialog box to select a command file name.

Using the command line, enter tlog_commands to <filescommand.

To stop logging commands to a command file

ChooseFile - Log - Stop.

Using the command line, enter tlog_commands offtommand.

91

Chapter 3: Entering Commands
Using Command Files

To playback (execute) a command file

ChooseéFile - Log - Playback and use the dialog box to select the name of the
command file you wish to execute.

Using the command line, enter the name of the command file and press
<RETURN>.

If you enter the name of the command file in the command line and the interface
cannot find the command file in the current directory, it searches the directories
specified in the HP64KPATH environment variable.

To interrupt playback of a command file, press the <CTRL>c key combination.
(The mouse pointer must be within the interface window.)

If you press <CTRL>c to stop execution of a command file while the "wait"
command is being executed from the command file, the <CTRL>c will terminate
the "wait" command, but will not terminate command file execution. To do this,
press <CTRL>c again.

92

Chapter 3: Entering Commands
Using Pod Commands

Using Pod Commands

Pod commands are Terminal Interface commands. The Terminal Interface is the
low-level interface that resides in the firmware of the emulator.

A pod command used in the Graphical User Interface bypasses the interface
goes directly to the emulator. Because some pod commands can cause the i
to become out-of-sync with the emulator, or even cause the interface to termin|
abnormally, they must be used with care.

For example, if you change configuration items, the actual state of the emulator will
no longer match the internal record the interface keeps about the state of the
emulator.

Issuing certain communications-related commands can prevent the interface from
communicating with the emulator and cause abnormal termination of the interface.

However, it is sometimes necessary to use pod commands. For example, you must
use a pod command to execute the emulap@rormance verification (pv)
routine. Performance verification is an internal self-test procedure for the emulator.

Remember that pod commands can cause trouble for the high-level interface if they
are used indiscriminately.

This section shows you how to:
» Display the pod commands screen.

* Use pod commands.

93

Chapter 3: Entering Commands
Using Pod Commands

To display the pod commands screen

ChooseDisplay — Pod Commands

The pod commands screen displays the results of pod (Terminal Interface)
commands. To set the interface to use pod commands, Gettisgs- Pod
Command Keyboard

To use pod commands

To begin using pod commands, cho8s#tings— Pod Command Keyboard

To end using pod commands, click twspendpushbutton softkey.

TheSettings— Pod Command Keyboardcommand displays the pod commands
screen and activates the keyboard for entering pod command on the command line.

94

Chapter 3: Entering Commands
Forwarding Commands to Other HP 64700 Interfaces

Forwarding Commands to Other HP 64700
Interfaces
To allow the emulator/analyzer interface to run concurrently with other HP 64700

interfaces like the high-level debugger and software performance analyzer, a
background "daemon" process is necessary to coordinate actions in the interfa

This background process also allows commands to be forwarded from one inté
to another. Commands are forwarded usinddheard command available in the
command line. The general syntax is:

forward <interface_name> "<command_string>" <RETURN>

This section shows you how to:
» Forward commands to the high-level debugger.

* Forward commands to the software performance analyzer.

Examples

To forward commands to the high-level debugger

Enter theforward debug "<command string>" command using the command
line.

To send the "Program Run" command to the debugger:
forward debug "Program Run" <RETURN>

Or, since only the capitalized key is required:

forward debug "P R" <RETURN>

95

Chapter 3: Entering Commands
Forwarding Commands to Other HP 64700 Interfaces

To forward commands to the software
performance analyzer

» Enter theforward perf "<command string>" command using the command line.

. Examples To send the "profile" command to the software performance analyzer:
forward perf "profile” <RETURN>

96

Configuring the Emulator

97

Configuring the Emulator

This chapter describes how to configure the emulator. You must map memory
whenever you use the emulator. When you plug the emulator into a target system,
you must configure the emulator so that it operates correctly in the target system.
The configuration tasks are grouped into the following sections:

» Using the configuration interface.

* Modifying the general configuration items.
» Selecting the emulation monitor program.
* Mapping memory.

» Configuring the emulator pod.

» Setting the debug/trace options.

The simulated I/O feature and configuration questions are described in the
Simulated 1/0 User’s Guide

The external analyzer configuration questions are described in the "Using the
External State Analyzer" chapter.

The interactive measurement configuration questions are described in the "Making
Coordinated Measurements" chapter.

Configuring for Operation in the Target System

Refer to the80960 Emulator User’s Guide for the Terminal Interféme
information on plugging the emulator into a target system. This manual also lists
the electrical and mechanical specifications of the emulator.

After you plug the emulator into a target system and turn on power to the
HP 64700, you need to configure the emulator so that it operates properly with your
target system.

The configuration tells the emulator how it should behave on reset, how emulation
memory should behave, and whether user programs should be executed in real-time.

98

Chapter 4: Configuring the Emulator

Before the emulator can operate in your target system, it needs to know the
following things:

Is there circuitry in the target system that requires programs to run in
real-time? Some emulator commands cause temporary breaks to the monitor
program, typically to access microprocessor register values or target system
memory. If the target system requires that programs run in real-time, you must
restrict the emulator to real-time runs.

Is there circuitry in the target system that constantly monitors bus

cycle execution (for example, memory refresh circuitry or a watchdog
timer)? If so, you should use the BGND output signal to tell the target syste
when the emulator is executing in background.

Where is memory located? Because the emulator can use target system
memory or emulation memory (or both), it is necessary to map ranges of memory
so that the emulator knows where to direct its accesses.

You can synchronize emulation memory accesses to the target system in order to
more closely imitate target system memory. For example, if emulation memory
replaces slower target system memory that requires wait states, synchronizing
emulation memory to the target system causes wait states to be inserted on
emulation memory accesses as they would be on target system memory accesses.

You specify the synchronization of emulation memory differently depending on
which emulator you're using: If you're using the HP 64760 emulator, you use the
syncattribute when mapping emulation memory ranges. If you're using the

HP 64761 emulator, you answer a configuration question to make the specification
for all emulation memory accesses.

Should the emulator reset be synchronized to the target system reset?
This is necessary in most target systems so that the emulator can be synchronized to
the same clock edge as the processor.

Should the emulator be allowed to temporarily break into the monitor
program when it comes out of reset?

Should temporary breaks be allowed while the emulator is executing
the user program or should user program execution occur in
real-time?

99

Chapter 4: Configuring the Emulator
What is the target system clock speed? This is so the emulator knows how
many wait states to insert on emulation memory accesses.

Should emulation memory accesses be synchronized to target
memory accesses?

100

Chapter 4: Configuring the Emulator
Using the Configuration Interface

Using the Configuration Interface

This section shows you how to modify, store, and load configurations using the
emulator configuration interface.

This section shows you how to:

» Start the configuration interface.

* Modify a configuration section.

» Store a configuration.

» Change the configuration directory context.
» Display the configuration context.

» Access help information.

» Exit the configuration interface.

* Load a configuration.

This section describes emulator configuration in general terms. Refer to the
remaining sections in this chapter for specific information about the emulator
configuration questions.

101

Chapter 4: Configuring the Emulator
Using the Configuration Interface

To start the configuration interface

ChooseModify — Emulator Config... from the emulator/analyzer interface
pulldown menu.

Using the command line, enter tmedify configuration command.

The configuration interface main menu (see example below) is displayed.

The configuration sections that are presented depend on the hardware and features
of your particular emulator.

The configuration interface may be left running while you are using the
emulator/analyzer interface.

If you're using the Softkey Interface, you don't get a main menu from which to
choose configuration sections; however, the same display area and command line
are used to answer the configuration questions.

102

Chapter 4: Configuring the Emulator
Using the Configuration Interface

Examples The 80960 emulator configuration interface main menu is shown below.

= Emulator Configuration Sections

& General ltems
£» Monitor Type
< Memory Map

Clicking on one of the
lines selects a particulal £» Emulator Pod Settings

configuration section. 4 DebugiTrace Options

£ Simulated 10

= Analyzer Configuration Sections

<> Interactive Measurement Specification

Clicking this button

presents the questions Modify Apply to Exit
for the selected Section Emulator Window

configuration section. ,

Clicking this button Clicking this button Clicking this button
stores the current exits the configuration presents the on-line help.
configuration. interface.

103

Chapter 4: Configuring the Emulator
Using the Configuration Interface

To modify a configuration section

1 Start the emulator configuration interface.

2 Click on a section name in the configuration interface main menu, and click the
"Modify Section" pushbutton.

3 Use the command line to answer the configuration questions.

If you're using the Softkey Interface:
The configuration questions in the "General Items" section are the first to be
asked.

To access the questions in the "Monitor Type" section, answer "yes" to the
"Modify memory configuration?" question.

To access the questions in the "Memory Map" section, answer "yes" to the
"Modify memory configuration?" question.

To access the questions in the "Emulator Pod Settings" section, answer "yes" to
the "Modify emulator pod configuration?" question.

To access the questions in the "Debug/Trace Options" section, answer "yes" to
the "Modify debug/trace options?" question.

104

Chapter 4: Configuring the Emulator
Using the Configuration Interface

Each configuration section presents a window similar to the following.

File Display

The menu bar.

When MOT restricted to real time runs, the emulator may temporarily
interrypt” running user code and break into the monitor to execute
certain commands. For example, commands that access target memory
@f processor registers will cause a break into the monitor to make
the access and then resume program execution.

Configuration help <
text display area.

When restricted to real time runs, any command that reguires access
<o target system or processor resources is not allowed while running
usdx code. You must explicitly break into the monitor to execute

theseNgommands.

Emulator status

and error message %\ Confiquring I8036@
line. Restrict to real-time runs? no

Command line text

entry area. [oeo [o [T[T [I [J[ReCALL]

Pushbutton softkeysi{ Command: Heanll Cursor: |Backup IFonl.rard |Clearto end:|Clear:

Command control
and cursor control
pushbuttons.

To answer a configuration question, click the softkey pushbutton that has your
answer. Or, click on the "Return” command pushbutton to accept the answer that is
shown.

When you answer a configuration question, you are normally presented with the
next question in the section; however, there are some cases when a carriage return
is required, and you can supply it by clicking the "Return" command pushbutton or
by pressing the <RETURN> key.

105

Chapter 4: Configuring the Emulator
Using the Configuration Interface

At the last question of a configuration section, you are asked if you wish to return
to the main menu. You can click the "next_sec" softkey pushbutton to access the
guestions in the next configuration section.

To recall a configuration question, click the "RECALL" softkey pushbutton. If you
do this at the starting question of a configuration section, you are asked if you want
to return to the main menu.

In order for the emulator to recognize any configuration changes, the configuration
must be applied to the emulator.

To store a configuration

When answering the configuration questions, chédse- Store...from the
pulldown menu, and use the File Selection dialog box to name the configuration
file.

From the configuration interface main menu, click on the "Apply to Emulator"
button, and use the File Selection dialog box to name the configuration file.

If you're using the Softkey Interface, the last configuration question,
"Configuration file name?", lets you name the file to which configuration
information is stored. If you don't enter a name, configuration information is saved
to a temporary file (which is deleted when you exit the interface and release the
emulation system).

The file to which the configuration is stored becomes the current configuration file.
The emulator only recognizes configuration changes when they are stored or loaded.

When modifying a configuration using the graphical interface, you can store your
answers at any time. This is useful for quickly verifying the effect a configuration
change has on the emulator.

Configuration information is saved in two files with extensions of ".EA" and ".EB".
The file with the ".EA" extension is the "source" copy of the file, and the file with
the ".EB" extension is the "binary" or loadable copy of the file.

106

Chapter 4: Configuring the Emulator
Using the Configuration Interface

For more information on how to use dialog boxes, refer to the "To use dialog
boxes" description in the "Using Menus, the Entry Buffer, and Action Keys"
section of the "Entering Commands" chapter.

To change the configuration directory context

* When answering the configuration questions, chédse- Directory... from the
pulldown menu, and use the Directory Selection dialog box to specify the new

directory.

The directory context specifies the directory to which configuration files are stored
and from which they are loaded.

For more information on how to use dialog boxes, refer to the "To use dialog
boxes" description in the "Using Menus, the Entry Buffer, and Action Keys"
section of the "Entering Commands" chapter.

107

Chapter 4: Configuring the Emulator
Using the Configuration Interface

To display the configuration context

* When answering the configuration questions, ch@ssglay - Context...from the
pulldown menu.

The current directory context and the current configuration files are displayed in a
window. Click the "Done" pushbutton when you wish to close the window.

mulator Configuration: Current Conte

z Directory: fusers/guest/demofdebug_envihp&4760
k Configuration File: fusersfguestidemofdebug_envihp&4760/Config

To access help information

* When answering the configuration questions, chétedp — General Topic...from
the pulldown menu.

» From the configuration interface main menu, click on the "Help Topic" button.

108

Chapter 4: Configuring the Emulator
Using the Configuration Interface

To exit the configuration interface

When answering the configuration questions, chédse- Exit... from the
pulldown menu (or type <CTRL>X), and click "Yes" in the confirmation dialog box.

From the configuration interface main menu, click the "Exit Window" button, and
click "Yes" in the confirmation dialog box.

The confirmation dialog box only appears if changes have been made to the c-
configuration.

When you choose "Yes" from the confirmation dialog box, any modifications made
to the configuration which haven’t been stored are lost. Choosing "No" from the
confirmation dialog box cancels the exit and keeps the emulator configuration
interface running.

To load a configuration

In the emulator/analyzer interface, chobde — Load — Emulator Config... from
the pulldown menu, and use the File Selection dialog box to specify the
configuration file to be loaded.

Using the command line, enter tload configuration <FILE> command.

This command loads previously created and stored configuration files.

109

Chapter 4: Configuring the Emulator
Modifying the General Configuration Iltems

Modifying the General Configuration Items

In order to modify the general configuration items, you must first start the
configuration interface and access the "General Items" configuration section (refer
to the previous "Using the Configuration Interface" section).

This section shows you how to:
» Restrict to real-time runs.

e Turn OFF the restriction to real-time runs.

CAUTION

To restrict the emulator to real-time runs
Answer "yes" to the "Restrict to real-time runs?" question.

If your target system circuitry is dependent on constant execution of program code,
you should restrict the emulator to real-time runs. This will help insure that target
system damage does not occur. However, remember you can still execesethe
break, andstepcommands; you should use caution in executing these commands.

The default configuration does not restrict the emulator to real-time runs.
Therefore, the emulator might make temporary breaks into the monitor to complete
certain commands. However, you may wish to restrict runs to real-time to prevent
temporary breaks that might cause target system problems.

When runs are restricted to real-time and the emulator is running the user program,
all commands that cause a break (exoegst break, run, step, and
init_processorare refused.

The following commands are not allowed when runs are restricted to real-time and
the emulator is running the user program:

» Display/modify registers.
» Display/modify target system memory.

» Load/store target system memory.

110

Chapter 4: Configuring the Emulator
Modifying the General Configuration Items

» Display/modify execution messages.
* Run until.
» Display tables.

If you want to enter one of these commands, you must first make an explicit break
into the monitor using thereak command.

Because the emulator contains dual-port emulation memory, commands that access
emulation memory are allowed while runs are restricted to real-time.

To turn OFF the restriction to real-time runs

Answer "no" to the "Restrict to real-time runs?" question.

All commands, regardless of whether or not they require a break to the emulation
monitor, are accepted by the emulator.

111

Chapter 4: Configuring the Emulator
Selecting the Emulation Monitor Program (HP 64761 Only)

Selecting the Emulation Monitor Program
(HP 64761 Only)

This section shows you how to:

» Use the background monitor program.

» Use the foreground monitor program.

e Customize the foreground monitor program.

When you power up the emulator, or when you initialize it, the background monitor
is used by default. You can also configure the emulator to use a foreground
monitor.

Regardless of which monitor you choose, a break command issued while the
processor is reset will cause entry into the background monitor. The foreground
monitor cannot run until your user programming environment is initialized either
by running your program, or by explicitly enteringné_processorcommand.

Before the background and foreground monitors are described, you should
understand the foreground and background emulator modes as well as the function
of the emulation monitor program.

The Background Emulator Mode

Background is the mode in which emulation processor execution does not appear
normally on the emulator probe. When in background, the emulator appears to the
target system to be in a suspended state. (Though background monitor activity
appears on the address and data lines, there are no ADS strobes.) In background
mode, the emulation microprocessor executes out of background memory.

The Foreground Emulator Mode

Foreground is the mode in which all emulation processor cycles appear on the
emulation probe, and the emulator executes as if it were a real microprocessor. The
emulator is in foreground when it executes user programs. In foreground mode, the
emulation microprocessor typically executes out of target system or emulation
memory.

112

Chapter 4: Configuring the Emulator
Selecting the Emulation Monitor Program (HP 64761 Only)

The Function of the Monitor Program

The monitor program is the interface between the emulation system controller and
the target system. The emulation system controller uses its own microprocessor to
accept and execute emulation, system, and analysis commands. The monitor
program is executed by the emulation microprocessor.

The monitor program makes possible emulation commands which access target
system resources. For example, when you enter a command to modify target
system memory, it is the execution of monitor program instructions that cause
new values to be written to target system memory.

When the emulation system controller recognizes that an emulation command
needs to access target system resources, it writes a command code to a
communications area and breaks the emulation processor execution into the
monitor program. The monitor program reads this command (and any associated
parameters) from the communications area and executes the appropriate
instructions to access these target system resources.

The Background Monitor

On emulator power-up, or after initialization, the emulator uses the background
monitor program. The background monitor program executes entirely in the
backgrouncemulator mode. The background monitor does not occupy processor
address space.

The Foreground Monitor

You can configure the emulator to use the foreground monitor program. When the
foreground monitor is selected, it executes inféinegroundemulator mode. The
foreground monitor occupies processor memory space and executes as if it were
part of the user program.

When you use the foreground monitor, breaks into the monitor still cause the
emulator to execute a number of cycles in background. The difference between the
foreground monitor and the background monitor is that when the background
monitor is used, all monitor functions are executed in background; when the
foreground monitor is used, the monitor functions are executed in foreground.

You may customize the foreground monitor, by defining routines that are executed
each time the monitor is entered, each time the monitor loops while waiting for
command codes, or each time the monitor is exited.

113

Chapter 4: Configuring the Emulator

Selecting the Emulation Monitor Program (HP 64761 Only)

Comparison of Background and Foreground Monitor Programs

with other emulators

Monitor Program Characteristic Background Foreground
Takes up processor memory space No Yes
Allows the emulator to respond to target system No Yes
interrupts during monitor execution

Can be customized No Yes
Can be used when performing coordinated measurements Yes No

To use the background monitor program

» Answer "background” to the "Monitor type?" question.

When you select the background monitor program, a memory overlay is created
and the background monitor is loaded into that area.

If your target system checks for processor execution (for example, it has a

watchdog timer) you can use the BGND auxiliary output to signal the target system
when the emulator is executing in the background monitor. The BGND signal is an

active high signal.

114

Chapter 4: Configuring the Emulator
Selecting the Emulation Monitor Program (HP 64761 Only)

To use the foreground monitor program

1 Answer "foreground” to the "Monitor type?" question.
2 Answer the "Fixed or variable foreground monitor priority?" question.

3 If you answered "fixed" to the previous question, enter the fixed foreground
monitor priority.

If you select the foreground monitor, it will be loaded for you in a portion of the
reserved upper 16 MBytes of memory. The emulator provides this memory for the
monitor independent of emulation memory or target system memory.

If you choose a variable foreground monitor priority, the foreground monitor will
assume the priority of whatever process is interrupted when the break occurred.

If you choose a fixed foreground monitor priority, you must enter a decimal value
between 0 and 31.

115

Chapter 4: Configuring the Emulator
Selecting the Emulation Monitor Program (HP 64761 Only)

To customize the foreground monitor program

1 Create the routines to be executed at monitor entry, exit, or at each loop of the
monitor program.

2 Load the routines into memory.

3 Modify the appropriate memory locations to contain pointers to the routines.

The operation of the foreground monitor can be customized by initializing three
function pointers to call routines which you have defined. You can invoke your
own function on monitor entry, during the monitor command loop, or on monitor
exit, by putting pointers to your functions in the following locations:

monitor entry: Oxfffc8ffO
monitor loop: Oxfffc8ff4
monitor exit: Oxfffc8ff8

116

Chapter 4: Configuring the Emulator
Mapping Memaory

Mapping Memory

Because the emulator can use target system memory or emulation memory (or
both), it is necessary to map ranges of memory so that the emulator knows where to
direct its accesses.

In the HP 64760 80960KA/KB/MC emulator, up to 16 ranges of memory can be
mapped. In the HP 64761 80960SA/SB emulator, up to 8 ranges of memory can be
mapped. The resolution of mapped ranges is 256 bytes (that is, the memory r

must begin on 256 byte boundaries and must be at least 256 bytes in length).

The amount of emulation memory that can be mapped depends on the number,
size, of memory modules installed on the emulator board. The HP 64760
80960KA/KB/MC emulator provides four slots for emulation memory modules.
The HP 64761 80960SA/SB emulator provides two slots for emulation memory

modules.
Amount of Emulation Memory, HP 64760 80960KA/KB/MC Emulator
Number of 256 Kbyte memory modules
0 1 2 3 4
0 oM 0.25M 0.5M 0.75M M
Number of 1 1 M 1.25M 1.5M 1.75M
Mbyte
memory 2 2M 2.25M 2.5M
modules
3 3M 3.25M
4 aM

117

Chapter 4: Configuring the Emulator
Mapping Memory

Amount of Emulation Memory and Blocks Available to the Mapper, HP
64761 80960SA/SB Emulator

Number of 256 Kbyte memory modules
0 1 2
Number 0 0 Kbytes 256 Kbytes 512 Kbytes
of 8 blocks 8 blocks
1 Mbyte 32 Kbytes each | 64 Kbytes each
memory |-, 1024 Kbytes 1280 Kbytes
modules 8 blocks 5 blocks
128 Kbytes each| 256 Kbytes each
2 2048 Kbytes
8 blocks
256 Kbytes each

Emulation memory is made available to the mapper in blocks. Inthe HP 64760
80960KA/KB/MC emulator, the block size is 16 Kbytes. In the HP 64761
80960SA/SB emulator, the total amount of emulation memory is divided into 8
equal blocks unless 256 Khyte and 1 Mbyte memory modules are mixed, in which
case there are 5 blocks, 256 Kbytes apiece.

When you map an address range to emulation memory, at least one block is
assigned to the range. When a block of emulation memory is assigned to a range, it
is no longer available, even though part of the block may be unused.

You should map all memory ranges used by your programs before loading
programs into memory.

118

Chapter 4: Configuring the Emulator
Mapping Memaory

To map memory ranges

Enter the address range, memory type, and if you're using the HP 64760
80960KA/KB/MC emulator, you can also enter siyacattribute for emulation
memory ranges.

You can characterize memory ranges as emulation RAM, emulation ROM, target
system RAM, target system ROM, or as guarded memory.

Guarded memory accesses will cause emulator execution to break into the m
program.

Writes to locations characterized as ROM will cause emulator execution to break
into the monitor program if the "Break processor on write to ROM?" trace/debug
configuration option is enabled.

Writes to emulation ROM will be inhibited. Writes by user code to target system
memory locations mapped as ROM or guarded memory will result in a break to the
monitor but are not inhibited (that is, the write still occurs).

If you're using the HP 64760 80960KA/KB/MC emulator, emulation memory
ranges contain an attribute that specifies whether accesses in that range of
emulation memory should be synchronized with the target system ADS signal
(sync) or not (nosync).

If no attribute is specified when mapping emulation memory ranges, the sync
attribute is chosen by default.

119

Chapter 4: Configuring the Emulator
Mapping Memory

Examples For example, consider the following section summary from the linker load map
output listing.
SECTION SUMMARY

SECTION ATTRIBUTE START END LENGTH ALIGN
checksumtable

ABSOLUTE CODE 00000000 0000001F 00000020 O (BYTE)
WARNING: (317) Section Assigned address below BASE
code NORMAL CODE 00100000 0010650F 00006510 256
literals 00106510 00106510 00000000 O (BYTE)
strings NORMAL CODE 00106510 00106636 00000127 16
const NORMAL CODE 00106640 001066EB 000000AC 16
__INITDATA

001066EC 001066EC 00000000 O (BYTE)

zerovars NORMAL DATA 001066F0 00107243 00000B54 16
vars NORMAL DATA 00107280 0010857F 00001300 64
tags NORMAL DATA 00108580 001085D7 00000058 16
ioports 001085D8 001085D8 00000000 O (BYTE)
heap NORMAL DATA 001085E0 001185DF 00010000 16
stack NORMAL CODE 001185E0 001185E0 00000000 4 (WORD)

ABSOLUTE FFO00000 FFFFFFFF 01000000 O (BYTE)

From the load map listing above, you can see the emulator demo program occupies
locations in two address ranges:

The check-sum words of the Initial Memory Image occupy locations 0 through
1FH. Because the contents of these segments will eventually reside in target
system ROM, this area should be characterized as ROM when mapped. This
will prevent these locations from being written over accidentally. If you
answer "yes" to the "Break processor on write to ROM?" debug/trace
configuration question, instructions that attempt to write to these locations will
cause emulator execution to break into the monitor.

The remaining code and data sections occupy locations 100000H through
1185E0H. Since the data sections are written to, this area should be
characterized as RAM when mapped.

Enter the following commands to map memory for the emulator demo program.

delete all <RETURN>
0 thru Offh emulation rom <RETURN>
100000h thru 11ffffh emulation ram <RETURN>

120

Chapter 4: Configuring the Emulator
Mapping Memaory

The resulting memory mapper screen is shown below.

T AH- FFH EMUL/ROM
2 18888aH- 11FFFFH EMUL/RAM

To exit out of the memory mapper, enter:

end <RETURN>

To characterize unmapped ranges

» Use thalefault softkey to characterize unmapped ranges.

Thedefault softkey in the memory mapper allows you to characterize unmapped
memory ranges. Unmapped memory ranges are treated as target system RAM by
default. Unmapped memory ranges cannot be characterized as emulation memory.

Examples To characterize unmapped ranges as target RAM:

default target ram <RETURN>

To characterize unmapped ranges as guarded memaory:

default guarded <RETURN>

To exit out of the memory mapper, enter:

end <RETURN>

121

Chapter 4: Configuring the Emulator
Mapping Memory

To delete memory map ranges

» Use thaleletesoftkey to characterize unmapped ranges.

Note that programs should be reloaded after deleting mapper terms. The memory
mapper may re-assign blocks of emulation memory after the insertion or deletion of
mapper terms.

. Examples To delete term 1 in the memory map:

delete 1 <RETURN>

To delete all map terms:

delete all <RETURN>

To exit out of the memory mapper, enter:

end <RETURN>

122

Chapter 4: Configuring the Emulator
Configuring the Emulator Pod

Configuring the Emulator Pod

In order to configure the emulator pod, you must first start the configuration
interface and access the "Emulator Pod Settings" configuration section (refer to the
previous "Using the Configuration Interface" section).

This section shows you how to:

* Synchronize to target system reset.

e Turn OFF synchronization to target system reset.
» Specify the target memory access size.

» Specify the target system bus rate.

» Synchronize emulation memory accesses to target READY (HP 64761 Only).

To synchronize to target system reset
Answer "yes" to the "Wait for target ‘80960 RESET'?" question.

Set the target system reset polarity by answering the "Target 'system reset’
polarity?" question.

Connect the emulator probe’s SYS_RESET line to the target system.

With most target systems, in order to synchronize the emulator with the same clock
edge as the processor, it is necessary for the emulator to wait until a target 80960
RESET pulse occurs before releasing the processor from the reset state.

The answer to the "Wait for target ‘80960 RESET'?" question controls how the
80960 processor in the emulator leaves the reset state.

If the "Wait for target ‘80960 RESET'?" question is answered "yes", the 80960
processor in the emulator must detect a high level at the target system 80960 socket
before the emulator hardware will allow the processor out of the reset state. If the
emulator does not detect a high level at the target system 80960 socket reset pin,

123

Chapter 4: Configuring the Emulator
Configuring the Emulator Pod

the emulator status will be "Awaiting target reset". Once this high level is detected,
the emulator will enter the "Awaiting target run" state and wait for a low level to be
detected. As soon as a low level is detected the processor will start to run.

If the "Wait for target ‘80960 RESET'?" question is answered "no", the emulator
only needs to detect a low level at the target system 80960 socket before the
processor in the emulator will be allowed to run. If the emulator does not detect a
low level, the processor will not be allowed to run, and the status will be "Awaiting
target run". Regardless of the configuration, any time that the level at the target
system 80960 socket is high, the processor in the emulator will remain in the reset
condition, and the status will be "Awaiting target run".

Basically, "Waiting for target ‘80960 RESET'?" requires the target system to
transition the RESET line at the 80960 socket from a high level to a low level
before the emulator will allow the processor to run. Otherwise, only a low level is
required.

Normally, the emulator should be configured to wait for target 80960 RESET.
Probably one of two conditions exist in the target system that will require this
configuration:

» First, the 80960 processor maintains an internal clock reference that is one-half
the frequency of the CLK2 input. The internal clock is synchronized to the
CLK2 input on the falling edge of the reset signal. Normally, the target system
has hardware ,other than the 80960, that is sensitive to the synchronization
between the CLK2 input and reset.

* The second condition that may exist in the target system is that the hardware
operation is different at the time the processor comes out of reset than it is after
some initialization code is executed. When the 80960 processor is plugged in
the target system this is not a problem. However, when an emulator is plugged
into the target system , the processor in the emulator can be reset from the
target system OR the emulator hardware. When the processor in the emulator
is reset by the emulation hardware the target system does not know that the
processor is reset therefore startup problems can occur.

Configuring the emulator to wait for target 80960 RESET can create a problem if

the target system is not in the same location as the user. This configuration requires
a reset pulse from the target system whenever the user tries to break or run after
issuing the reset command. This is where the SYS_RESET lead can be useful.
When this lead is connected to the master or system reset of the target system, and
is configured for the proper polarity (LOW or HIGH) the target system will know

when the emulator reset command has been issued. Now, when a reset command is
executed the SYS_RESET will be asserted and the high reset level at the 80960

124

Chapter 4: Configuring the Emulator
Configuring the Emulator Pod

target socket will be generated. When the break or run command is issued,
SYS_RESET will be released, a low level at the target 80960 socket will be
detected and the emulator and target system will maintain the correct
synchronization.

If neither of the mentioned hardware conditions exist, then the emulator can be
configured to NOT wait for the target 80960 RESET. In this case the SYS_RESET
lead is normally not needed.

The "Target 'system reset’ polarity" controls the polarity of the SYS_RESET le
that comes from the two pin connector J2, on the emulator probe board. This
can be connected to the target system so that the target system knows when
emulatorresetcommand has been executed. Whenmgketcommand is executed,
SYS_RESET is asserted. When Ibiheak, run, orinit_processorcommand is
executed, the SYS_ RESET line is released.

This lead is provided so that the emulator can be used to reset all of the hardware in
a target system. This may be necessary for some target systems whenever the
80960 processor is reset. The reset signal on the 80960 probe cannot be used to
perform this function because it is not bi-directional and is only received by the
emulator.

The SYS_RESET lead uses an open collector driver and will require a pull-up in
the target system. The probe does not provide a pull-up resistor because the
SYS_RESET lead is often connected to an RC network in the target system. The
output driver device is a 74F38.

If the target system'’s reset line is an active high, answer "high" to the "Target
'system reset’ polarity?" question. The pulse output on the SYS _RESET line will
be an active high.

If the target system'’s reset line is an active low, answer "low" to the "Target
'system reset’ polarity?" question. The pulse output on the SYS_RESET line will
be an active low.

Target system power should be OFF when connecting the SYS_RESET line to the
target system reset.

125

Chapter 4: Configuring the Emulator
Configuring the Emulator Pod

To turn OFF synchronization to target system
reset

Answer "no" to the "Wait for target ‘80960 RESET'?" question.

To specify the target memory access size

Answer the "Target memory access size?" question.

When accessing target system memory locations, the access mode specifies the type
of microprocessor cycles that are used to read or write the value(s). For example,
when the access mode is byte and a target system location is modified to contain

the value 12345678H, "stob" instructions are used to write the byte values 12H,

34H, 56H, and 78H to target system memory.

Answer "bytes" if the emulator should make 8-bit accesses to target system
memory.

Answer "shorts" if the emulator should make 16-bit accesses to target system
memory.

Answer "words" if the emulator should make 32-bit accesses to target system
memory.

The 80960SA/SB processor has a 16-bit data bus. Thus, "word" accesses are
generated as a burst of two successive 16-bit transfers.

If a command that requires an access of target memory cannot be satisfied with the
specified access size, the access will be made with whatever size is required to
complete the command. For example, an unaligned word access will be broken up
into two accesses of smaller sizes. Similarly, a request to modify a single byte will
use an access size of "bytes".

126

Chapter 4: Configuring the Emulator
Configuring the Emulator Pod

To specify target system bus rate

Answer the "Target system bus rate?" question.

The target system clock speed determines the number of wait states for accesses to
emulation memory by the processor.

Answer "fast" if the target system clock is faster than 20 MHz. The wait states
emulation memory accesses will be 2,1,1,1 when using the HP 64760
80960KA/KB/MC emulator or 1,0,0,0,0,0,0,0 when using the HP 64761
80960SA/SB emulator.

Answer "slow" if the target system clock is 20 MHz or slower. The wait states for
emulation memory accesses will be 1,1,1,1 when using the HP 64760
80960KA/KB/MC emulator or 0,0,0,0,0,0,0,0 when using the HP 64761
80960SA/SB emulator.

To synchronize emulation memory accesses to
target READY (HP 64761 Only)

Answer the "Synchronize emulation memory accesses to target READY?"
guestion.

When you answer "yes", accesses to emulation memory will wait for the target
system ADS. This synchronizes emulation memory accesses with the target system
READY signal.

When you answer "no", accesses to emulation memory will NOT wait for the target
system ADS.

The HP 64760 emulator also lets you synchronize emulation memory accesses to
the target READY signal by allowing attributes to be specified when mapping
emulation memory ranges.

127

Chapter 4: Configuring the Emulator
Setting the Debug/Trace Options

Setting the Debug/Trace Options

In order to set the debug/trace options, you must first start the configuration
interface and access the "Debug/Trace Options" configuration section (refer to the
previous "Using the Configuration Interface" section).

This section shows you how to:

* Enable breaks on writes to ROM.

» Disable breaks on writes to ROM.

» Restrict breaks into monitor when released from reset.

* Allow breaks into monitor when released from reset.

To disable breaks on writes to ROM

» Answer "no" to the "Break processor on write to ROM?" question.

The emulator will not break to the monitor upon a write to ROM.

The emulator will not modify the memory location if it is in emulation ROM.

128

Chapter 4: Configuring the Emulator
Setting the Debug/Trace Options

To enable breaks on writes to ROM

Answer "yes" to the "Break processor on write to ROM?" question.

The emulator will break into the emulation monitor whenever the user program
attempts to write to a memory region mapped as ROM.

The emulator will prevent the processor from actually writing to memory mapp
as emulation ROM; however, it cannot prevent writes to target system RAM
locations which are mapped as ROM, even though the write to ROM break is
enabled.

To restrict breaks into monitor when released
from reset

Answer "no" to the "Enter monitor from reset?" question.

Two emulator features, execution breakpoints and execution messages, require
initialization by the emulator after each reset. The emulator must execute in the
monitor program for a short period of time to initialize these features.

The default configuration allows the emulator to temporarily break into the monitor
when released from reset. However, if your target system requires that the
processor run directly into user code after reset, you must turn off breaks when the
emulator is reset.

When you run from reset while breaks into the monitor from reset are restricted,
status messages inform you that execution messages and breakpoints are
temporarily disabled. Execution messages and breakpoints will be re-enabled when
emulator execution breaks into the monitor.

If breakpoints were enabled and software breakpoints were set in the program
before the reset, then there are "fmark" instructions still in the program. If an
"fmark" instruction is executed, it may cause the program to run incorrectly.

129

Chapter 4: Configuring the Emulator
Setting the Debug/Trace Options

To allow breaks into monitor when released from
reset

* Answer "yes" to the "Enter monitor from reset?" question.

The emulator will enter the monitor when it comes out of reset. This means that a
target system reset pulse will cause a break to the monitor. It also meansaithat a
command from the reset state will cause entry into the monitor long enough to
re-enable breakpoints and execution trace messages before running user code.

130

Using the Emulator

131

Using the Emulator

This chapter describes general tasks you may wish to perform while using the
emulator. These tasks are grouped into the following sections:

* Loading absolute files.
* Using symbols.

» Executing user programs (starting, stopping, stepping, and resetting the
emulator).

» Using software breakpoints.

» Displaying and modifying registers.
» Displaying and modifying memory.
» Changing the interface settings.

* Using system commands.

132

Chapter 5: Using the Emulator
Loading and Storing Absolute Files

Loading and Storing Absolute Files

This section describes the tasks related to loading absolute files into the emulator
and storing memory contents into absolute files. This section shows you how to:

* Load absolute files into memory.
* Load absolute files without symbols.

» Store memory contents into absolute files.

To load absolute files

» ChooseFile - Load — Executableand use the dialog box to select the absolute file.

* Using the command line, enter tbad <absolute_file>command.

You can load absolute files into emulation or target system memory. You can load
IEEE-695 format absolute files. You can also load HP format absolute files. The
store memorycommand creates HP format absolute files.

If you wish to load only that portion of the absolute file that resides in memory
mapped as emulation RAM or ROM, use the command lioatsemul_mem
syntax.

If you wish to load only the portion of the absolute file that resides in memory
mapped as target RAM, use the command liloeld user_memsyntax.

If you want both emulation and target memory to be loaded, do not specify
emul_memor user_mem

Examples To load the demo program absolute file, enter the following command:

load ecs.x <RETURN>

To load only portions of the absolute file that reside in target system RAM:

133

Chapter 5: Using the Emulator
Loading and Storing Absolute Files

load user_mem absfile <RETURN>

To load only portions of the absolute file that reside in emulation memory:

load emul_mem absfile <RETURN>

To load absolute files without symbols

» ChooseFile - Load - Program Only and use the dialog box to select the absolute
file.

» Using the command line, enter toad <absolute_file> nosymbolsommand.

To store memory contents into absolute files

» Using the command line, enter ttere memorycommand.

You can store emulation or target system memory contents into HP format absolute
files on the host computer. Absolute files are stored in the current directory. If no
extension is given for the absolute file name, it is given a ".X" extension.

Examples To store the contents of memory locations 900H through 9FFH to an absolute file
on the host computer named "absfile":

store memory 900h thru 9ffth to absfile <RETURN>

After the command above, a file named "absfile.X" exists in the current directory
on the host computer.

134

Chapter 5: Using the Emulator
Using Symbols

Using Symbols

If symbol information is present in the absolute file, it is loaded along with the
absolute file (unless you use thesymbolsoption). Both global symbols and
symbols that are local to a program module can be displayed.

Long symbol names can be truncated in the symbols display; however, you can
increase the width of the symbols display by starting the interface with more
columns (refer to the "Setting X Resources" chapter).

This section describes how to:

* Load symbols. .
» Display global symbols.

» Display local symbols.

» Display a symbol’'s parent symbol.

» Copy-and-paste a full symbol name to the entry buffer.

To load symbols

ChooseéFile - Load — Symbols Onlyand use the dialog box to select the absolute
file.

Using the command line, enter tbad symbols <absolute_filexxommand.

Unless you use theosymbolsoption when loading absolute files, symbols are
loaded automatically. However, if you did userbgymbolsoption when loading
the absolute file, you can load the symbols without loading the absolute file again.

This option is particularly useful for loading symbols for files located in target
ROM so that you can use symbols with that code.

135

Chapter 5: Using the Emulator

Using Symbols

Examples To load symbols from the demo program:
load symbols ecs.x <RETURN>
To display global symbols
ChooseDisplay — Global Symbols
Using the command line, enter ttisplay global_symbolscommand.
Listed are: address ranges associated with a symbol, the segment the symbol is
associated with, and the offset of that symbol within the segment.
If there is more than a screen full of information, you can use the up arrow, down
arrow, <NEXT>, or <PREV> keys to scroll the information up or down on the
display.

Examples To display global symbols in the demo program:

display global_symbols <RETURN>

Global symbols in ecs.=

Procedure symbols

Procedure name Address range __ Segment Offszet
_START AB183638 - BB183857 code jala]al]
_flsbuf AB183618 - BB1B3B26 code a10e
clear_screen AR 1AZBCA - HA1BZBOE code Y]
close AB1B2A5E - BB1B2AIE code al1e
combsort [0 188608 - B01883A6 code BEDE
do_sart A0188368 - BO1BAC57 code B3Bd
exec_cmd BER182C268 - BE1B2C07 code BZEB
fflush AR 1B2EDE - BB1B2FZE code B398
fileno AB1B2E4d - BB1B2ESF code jal]elz]
fpute AR 1B2F36 - BB1B2FE3 code HEFE
fputs AB1B2F38 - BB1BZFCE code B158
gen_ascii_data AR 1AAZER - BA1BEECI code G tat]
get_targets AA1AEE4E8 - BA1ALLIF code BaCA
graph_data AB181018 - BBI1BIEIF code BF 38
initSimioFerC AB1823CE - HB1BZAA3 code BE5e
init_system AB1AACER - BA1ER0ET code BABA

136

Chapter 5: Using the Emulator
Using Symbols

To display local symbols

When displaying symbols, position the mouse pointer over a symbol on the symbol
display screen and click tlselectmouse button.

When displaying symbols, position the mouse pointer over the symbol, press and
hold theselectmouse button, and choo®esplay Local Symbolsfrom the popup
menu.

Position the mouse cursor in the entry buffer and enter the module whose loc
symbols are to be displayed; then, chddsplay — Local Symbols ()

Using the command line, enter ttlisplay local_symbols_in <modulexommand.

To display the address ranges associated with the high-level program’s source file
line numbers, you must display the local symbols in the file.

137

Chapter 5: Using the Emulator

Using Symbols

Examples

View the local
symbols associated
with the highlighted
symbol by choosing
this menu item.

To use the Symbols Display popup menu:

—'l Hewlett Packard Fmulator/Analyzer: emB0960 (i50960) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | <Demo= | Disp Sre () | Trace () | Step Source

[<Yourkey> i| Make | Disp Sre Prev ||Run Resetto ()i [Step Asm
()1 num_checks IRecaII

Global sumbols in ecs.x
Procedure symbols

user_constraint
user_intrh
user_machine
user_operation
user_protection
user_real_arithmeti
user_reserved
USET_Trace
user_type

write

write_hdur

Static symbols

Address range

AR1AZD0168 - BE1A2033

[A 1 AEDEE - B8 1BEESF
Global Symbols Display 37
Display Loeal Symbols g?
Prgplay Parent Symbols ?;
Cut Full Symbol Mame 7
Edit File Defining Symbol 5

AR 1AZ448 - BE1AZ437
A@1A25688 - BE182517
AR 162836 - BE182BB3
AR1A1G0E - BA1A1373

Segment

code
code
code
code
code
code
code
code
code
code
code
code
code
code

STATUS:

9605x--Running in monitor

138

Chapter 5: Using the Emulator
Using Symbols

Using the command line

To display local symbols in a module:

display local_symbols_in update_sys <RETURN>

Symbals in update_sysimodule!?

Frocedure symbols

Procedure name Address range __ Segment 0ffset
get_targets AH1ABE4R - BAIE11IF code BACH
graph_data AB181018 - BA1B1EIF code BF 38
read_conditions BR1A11268 - BEIB13E7 code B3RE
save_points AH1A193A - BAIHI0HS code BCHB
set_outputs AB1A15CH - BAIB16CF code BE4B
update_system AB1ARDBA - BAIBRESF code BABA
write_hdwr AR 181606 - BB1B1373 code #9586
Filename symbals

Filename

fusr/hpB4E8E/ dema/ debug_erwv/hpB4766/ update_sys. o

To display local symbols in a procedure:

display local_symbols_in update_sys.save_points <RETURN>

Suymbals in update_sysimodulel.save_points{procedure?
Procedure special symbols

Procedure special name Address range __ Segment 0ffset
ENTRY AR181356 code acaa
TEXTRANGE AR1A19868 - BR1B10E3 code aced

139

Chapter 5: Using the Emulator
Using Symbols

To display address ranges associated with the high-level source line numbers:

display local_symbols_in update_sys."update_sys.c":

<RETURN>

Symbols in .../ usr/hpB4806/ demo/ debug_erv/hpB4768/ update_sys.c”

Source reference sumbols

Line range Address range __ Segment Offzet
H1-147 AP 1BA08E - B01BA087 code jal]elz]
#48-H48 A0 188088 - B0 1BADAF code BEEE
#43-#43 AB188038 - BE18A033 code e 18
#58-#53 8188034 - @0 1BA0A7 code e 14
#54-#56 A8 1BA0AS - BB 1BADBE code BEZ8
#57-H59 AQ 18A0BC - @0 1BADDE code BE3C
#EE-#E8 @018a00C - H01080E3 code BEsc
#EA-HEB A0 1BA0ES - B0 1BADEF code BEES
#E1-#61 A8 1BA0E4 - BB 1BADE7 code BEE4
#E2-HE3 A0 1BA0FE - BB 1BADF7 code BE78
#E3-#63 [0 18a0FC - B01080FF code BE7C
#E54-#54 A0 18A0FE - BO1BADFE code BE78
#E5-HE8 A0 10BERE - EB1BAELE code Bege
#E3-H72 AR 1BBEIC - BB 1BEEZF code BE3C
#73-#75 A0 1B8E3E - BO1BAE33 code BEBd
#7E-#77 AB1BBE34 - BB1BAE3F code BBB4

140

Chapter 5: Using the Emulator
Using Symbols

To display a symbol’s parent symbol

* When displaying symbols, position the mouse pointer over the symbol, press and
hold theselectmouse button, and choo®&splay Parent Symbolsrom the popup

menu.
Examples
i z
—'l Hewlett Packard Fmulator/Analyzer: emB0960 (i50960) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | <Demo= | Disp Sre () | Trace () | Run | Step Source
[<Yourkey> i| Make | Disp Sre Prev ||Run Resetto ()i Break [Step Asm
{)i num_checks IRecaH
View the parent Sumbols in update_sysimodulel.save_points{procedure!)
Symbol aSSOC|ated Procedure special symbols A
A . . Procedure special name Address range __ Segment Offzet
with the highlighted : | entry B 1A1950 code BCAE
- el

i de]
Local Symbols Display

Display Loeal Symbols
Display Parent Symbols
Cut Full Symbol Hame
Edit File Defining Symbol

symbol by choosing
this menu item. —

| STATUS: 9605x--Running in monitor 3
]

141

Chapter 5: Using the Emulator
Using Symbols

To copy-and-paste a full symbol name to the
entry buffer

* When displaying symbols, position the mouse pointer over the symbol, press and
hold theselectmouse button, and chooSet Full Symbol Namefrom the popup
menu.

Once the full symbol name is in the entry buffer, you can use it with pulldown
menu items or paste it to the command line area.

By cutting the full symbol name, you get the complete names of symbols that have
been truncated. Also, you are guaranteed of specifying the proper scope of the

symbol.
Examples
i z
—'l Hewlett Packard Fmulator/Analyzer: emB0960 (i50960) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | <Demo= | Disp Sre () | Trace () | Run | Step Source
[<Yourkey> i| Make | Disp Sre Prev ||Run Resetto ()i Break [Step Asm
():} update_sysimadulel. save_points{procedure} IRecaH
Copy the fU” name Sumbols in update_sysimodule’ ry
: H Procedure symbols
of the hlgh“ghted Procedure nams Address range __ Segment O0ffzet
symbol to the entry get_targets BALAEE4R - BR1AL1IF code zlc]al
. graph_data BA1A1018 - BEIALELIF code BF38
buffer by choosing read_canditions BELE1128 - BE181387 code B3RP

BA1A1956 — FD10

this menu item. se_utputs Local Symbols Display BP16 1RCE code

- B10BESF cods aEEa
Display Local Symbols 55141973 code #3548

Display Parent Symbols
| Cut Full Symbol Mame
Edit File Defining Symbol

Filename sym
Filenams

fusr/hpG4BE8/ dema

e_sSUs.C

STATUS: cws: update_sys

11 E

142

Chapter 5: Using the Emulator
Using Context Commands

Using Context Commands

The commands in this section display and control the directory and symbol
contexts for the interface.

Directory context. The current directory context is the directory accessed by all
system references for files—primarily load, store, and copy commands—if no
explicit directory is mentioned. Unless you have changed directories since
beginning the emulation session, the current directory context is that of the
directory from which you started the interface.

Symbol context. The emulator/analyzer interface and the Symbol Retrieval
Utilities (SRU) together support a current working symbol context. The curren
working symbol represents an enclosing scope for local symbols. If symbols h

not been loaded into the interface, you cannot display or change the symbol context.

This section shows you how to:
» Display the current directory and symbol context.
» Change the directory context.

* Change the symbol context.

143

Chapter 5: Using the Emulator
Using Context Commands

To display the current directory and symbol
context

* ChooseDisplay — Context.

» Using the command line, enter {w&d andpws commands.

The current directory and working symbol contexts are displayed, and also the
name of the last executable file from which symbols were loaded.

. Example

Directory context.

Directory: fusersiguest/demofdebug_envihp&4760

_—Symbol File: fusersfguestidemo/debug_envihp&4760fecs.x
Executable from Symbol Scope: main."fusrthp&4000/demoldebug_envihpb4760/main.c”:
which symbols were
last loaded.

Done

Symbol context.

To change the directory context

» ChooseFile - Context— Directory and use the dialog box to select a new directory.

* Using the command line, enter tbek<directory> command.

The Directory Selection dialog box contains a list of directories accessed during the
emulation session as well as any predefined directories present at interface startup.

144

Chapter 5: Using the Emulator
Using Context Commands

You can predefine directories and set the maximum number of entries for the
Directory Selection dialog box by setting X resources (see the "Setting X
Resources" chapter).

To change the current working symbol context

ChooseéFile - Context— Symbolsand use the dialog box to select the new
working symbol context.

Using the command line, enter thws <symbol_context>ommand. (Because
cwsis a hidden command and doesn’t appear on a softkey label, you have to
in.)

You can predefine symbol contexts and set the maximum number of entries for the
Symbol Scope Selection dialog box by setting X resources (see the "Setting X
Resources" chapter).

Displaying local symbols or displaying memory in mnemonic format causes the
working symbol context to change as well. The new context will be that of the
local symbols or memory locations displayed.

145

Chapter 5: Using the Emulator
Executing User Programs

Executing User Programs

You can use the emulator to run programs, break program execution into the
monitor, step through the program by high-level source lines or by assembly
language instructions, and reset the emulation processor.

When displaying memory in mnemonic format, a highlighted bar shows the current
program counter address. When you step, the mnemonic memory display is
updated to highlight the new program counter address.

When displaying resisters, the register display is updated to show you the contents
of the registers after each step.

You can open multiple interface windows to display memory in mnemonic format
and registers at the same time. Both windows are updated after stepping.

This section describes how to:

» Initialize your programming environment.

e Start the emulator running the user program.
» Stop (break from) user program execution.

e Step through user programs.

* Reset the emulation processor.

To initialize your programming environment

ChooseExecution- Init Processor.

Using the command line, enter tihé_processorcommand.

Theinit_processorcommand causes the processor to execute a continue
initialization IAC message.

If the processor enters the monitor directly out of reset, your program’s
environment is not yet initialized. Therefore, commands that depend on that

146

Chapter 5: Using the Emulator
Executing User Programs

environment, such as displaying the processor’s registers, are not meaningful. If
you enter such a command, the emulator will issue the following error message:

ERROR 184: You must do a processor initialization first

Theinit_processorcommand allows you to initialize your programming
environment and re-enter the monitor. First, the eight check-sum words in the
program’s initial memory image (IMI) are read to verify that they will compute to a
valid checksum. Then the PRCB in the IMI is read to determine if it is valid. If the
IMI verification passes, the monitor issues a continue initialization IAC message.
This causes the processor to carry out the initialization procedure that follows the
processor self test, ending just before the first user instruction is executed. The
monitor is then re-entered in an initialized state.

If arun command is entered before the processor is initialized, the emulator w
the initialization, re-enter the monitor, and then run. If the check-sum words in
IMI are not valid, the processor FAILURE pin will be asserted and the process
will enter the stopped state.

The continue initialization IAC message clears the trace controls register which the
emulator uses to establish execution messages and breakpoints. Therefore, the
init_processorcommand forces the monitor to be re-entered in order to restore the
previous setting of the trace controls register.

However, a continue initialization IAC message issued by YOUR program does not
cause the monitor to be entered. If your program executes a continue initialization
IAC message, portions of your debug environment will be disabled until a
subsequent break occurs.

This is similar to the situation that can occur if you run out of reset directly into
your program without first entering the monitor. For more information, see the
"Enter monitor from reset?" question in the configuration menu.

147

Chapter 5: Using the Emulator
Executing User Programs

To run programs from the current PC

* ChooseExecution— Run - from PC.

* Using the command line, enter thum command.

When the emulator is executing the user program, the message "Running user
program" is displayed on the status line.

To run programs from an address

» Position the mouse pointer in the entry buffer and enter the address you want to run
from; then, choosExecution- Run - from ().

» Using the command line, enter tha from <address>command.

Examples To run from address 920H:

run from 920h <RETURN>

To run programs from the transfer address

* ChooseExecution— Run - from Transfer Address.

* Using the command line, enter thum from transfer_address command.

Most software development tools allow you to specify a starting or entry address
for program execution. That address is included with the absolute file’s symbolic
information and is known by the interface astthasfer address

148

Chapter 5: Using the Emulator
Executing User Programs

To run programs from reset

ChooseExecution— Run - from Reset

Using the command line, enter thum from reset command.

Therun from reset command specifies a run from the reset state. It is equivalent
to entering aesetcommand followed by un command. The processor will be
reset and then allowed to run.

If the emulator is configured to synchronize to the target system reset (by
answering "yes" to the "Wait for target reset?" configuration question), the
processor will not begin running until the target 80960 RESET line becomes a
and then inactive.

The SYS_RESET output line on the emulator probe can be connected to your target
system reset circuit to force a reset pulse whenever the emulator comes out of the
reset state. If the SYS_RESET output is not connected, the status line will show
that the emulator is "Waiting for target reset".

If the emulator is not synchronized to the target system reset (by answering "no" to
the "Wait for target reset?" configuration question), the processor will run without
waiting for a pulse to occur on the target 80960 RESET line.

When the processor starts running, it may first enter the monitor before running
user code. This behavior depends on the answer to the "Enter monitor from reset?"
configuration question. If the emulator is configured to enter the monitor from

reset, the monitor will be entered long enough to restore the setting of execution
messages and breakpoints before running your program.

If the emulator is configured to run directly into user code out of reset (by
answering "no" to the "Enter monitor from reset?" configuration question), the
monitor will not be entered, and part of your debug environment may be
temporarily disabled. A subsequent break into the monitor will restore the setting
of execution messages and breakpoints.

A run from reset command may also be entered with the target powered down.
The emulator will respond with the "No target system power" prompt, indicating no
target system power. When the target is powered up and asserts and negates
RESET, the emulator will run from processor initialization.

149

Chapter 5: Using the Emulator
Executing User Programs

Examples

To run programs until an address

When displaying memory in mnemonic format, position the mouse pointer over the
line that you want to run until; then press and holdstiectmouse button and
chooseRun Until from the popup menu.

Position the mouse pointer in the entry buffer and enter the address you want to run
from; then, choosExecution- Run - until ().

Using the command line, enter tha until <address>command.

Therun until command allows you to break into the monitor immediately AFTER
a particular execution event.

These break conditions are implemented by setting bits in the processor’s trace
control register and by setting the processor’s on-chip breakpoint registers.

Unlike setting a software breakpoint, memory does not have to be modified to set a
breakpoint register. This allows you to set a breakpoint in target ROM.

Please note that a software breakpoint occurs immediately before executing the
instruction at the specified address, whereamaintil break condition occurs
after the instruction has executed.

Therun until command will not cause a break when the address contains certain
instructions. For example, if you set a breakpoint register on an IAC instruction or
a return from interrupt, the break will not occur.

If you run until an instruction that explicitly modifies the fp register (for example,
Ida 2600,fp), the break will occur; however, all local registers except the rip will be
lost.

Refer to theun command description in the "Emulator/Analyzer Interface
Commands" chapter for a complete description ofuheuntil command.

To run from the transfer address until the address of the global symbol main:

run from transfer_address until address main <RETURN>

150

Chapter 5: Using the Emulator
Executing User Programs

Examples

To stop (break from) user program execution

ChooseExecution- Break.

Using the command line, enter thiwak command.

This command generates a break to the background monitor.

While the break will occur as soon as possible, the actual stopping point may be
many cycles after the break request (dependent on the type of instruction being
executed and whether the processor is in a hold state).

If the emulator in unable to break when execution messages are set, clear the
execution messages and look at the "trace-enable" flag in the Process Control
Register. This flag is cleared (disabled) as a part of the processor’s initialization
procedure, and it should be left this way to avoid taking trace faults in your
program. If you find the "trace-enable" flag is set, edit your program and make
sure there are no "modpc" instructions that set this flag.

Software breakpoints and then until command allow you to stop execution at
particular points in the user program.

To break emulator execution from the user program to the monitor:

break <RETURN>

To step high-level source lines

ChooseExecution- Step Sourceand select one of the items from the cascade
menu.

Using the command line, enter ttep sourcecommand.

When stepping through instructions associated with source lines, execution can
remain in a loop and the message "Stepping source line 1; Next PC: <address>" is

151

Chapter 5: Using the Emulator
Executing User Programs

Examples

displayed on the status line. In this situation you can abort the step command by
pressing <CTRL>c.

If you step on an instruction that explicitly modifies the fp register (for example,
Ida 2600,fp), all local registers except the rip will be lost.

To step through instructions associated with the high-level source lines at the
current program counter:

step source <RETURN>
To step through instructions associated with high-level source lines at address
"main":

step source from main <RETURN>

Examples

To step assembly-level instructions

ChooseExecution- Step Instruction and select one of the items from the cascade
menu.

Using the command line, enter ttepcommand.

The step command allows you to step through program execution an instruction or
a number of instructions at a time. Also, you can step from the current program
counter or from a specific address.

If you step on an instruction that explicitly modifies the fp register (for example,
Ida 2600,fp), all local registers except the rip will be lost.

To step one instruction from the current program counter:
step <RETURN>

To step a number of instructions from the current program counter:

step 8 <RETURN>

152

Chapter 5: Using the Emulator
Executing User Programs

To step a number of instructions from a specified address:

step 16 from 920h <RETURN>

To reset the emulation processor

ChooseExecution- Reset

Using the command line, enter tlesetcommand.

Theresetcommand causes the processor to be held in a reset stateesik,a

run, step, orinit_processorcommand is entered. A CMB execute signal will also
cause the emulator to run if reset. Also, a request to access target memory while
reset will cause a break into the monitor.

153

Chapter 5: Using the Emulator
Using Software Breakpoints

Note

Using Software Breakpoints

Software breakpoints provide a way to accurately stop the execution of your
program at selected locations.

Version A.04.00 or greater of the HP 64700 system firmware provides support for
permanent as well as temporary breakpoints. If your version of HP 64700 system
firmware is less than A.04.00, only temporary breakpoints are supported.

When you set a software breakpoint at an address, the instruction at that address is
replaced with an "fmark" instruction. When the "fmark" instruction is executed,
control is passed to the emulator’'s monitor program, and the original instruction is
restored in the user program. Thus, execution is interrupted before the instruction
at the specified address is executed.

In order to successfully set a software breakpoint, the emulator must be able to
write to the memory location specified. Therefore, software breakpoints cannot be
set in target memory while the emulator is reset, and they can never be set in target
ROM. (Therun until address command allows you to break at locations in target
ROM.)

Another way to break user program execution at a certain point is to break on the
analyzer trigger. Please note, however, that the analyzer breakpoints are not
precise. There is some delay between the time the trigger event occurs and the time
the break occurs.

This section shows you how to:
» Display the breakpoints list.
» Enable/disable breakpoints.
» Set a permanent breakpoint.
» Set a temporary breakpoint.
» Set all breakpoints.

» Deactivate a breakpoint.

» Re-activate a breakpoint.

154

Chapter 5: Using the Emulator
Using Software Breakpoints

» Clear a breakpoint.

» Clear all breakpoints.

To display the breakpoints list

ChooseDisplay - Breakpoints or Breakpoints - Display.

Using the command line, enter tiisplay software_breakpointscommand.

The breakpoints display shows the address and status of each breakpoint cur
defined. If symbolic addresses are turned on (when setting the display modes), the
symbolic label associated with a breakpoint is also displayed. Also, the breakpoints
display shows whether the breakpoint feature is enabled or disabled.

Software breakpoints :enabled
addre label tati
BA 1HARRE .../ demo/debug_erv/hpB4768/main. c": line 96 pending
BAE 18ABAC .../ demo/debug_erv/hpB47EB/main. ¢ line 98 inactiwvated
BA1HAA1H .../ demo/debug_erv/hpB476B/main. c": line 182 pending
The status of a breakpoint can be:
temporary Which means the temporary breakpoint has been set but not

encountered during program execution. These breakpoints are
removed when the breakpoint is encountered.

pending Which means the temporary breakpoint has been set but not
encountered during program execution. These breakpoints are
inactivated when the breakpoint is encountered.

permanent Which means the permanent breakpoint is active.

inactivated Which means the breakpoint has been inactivated somehow.
Temporary breakpoints are inactivated when they are
encountered during program execution. Both temporary and

155

Chapter 5: Using the Emulator
Using Software Breakpoints

permanent breakpoints may be inactivated using the breakpoints
display popup menu.

In the breakpoints display, a popup menu is available. You can set, inactivate, or
clear breakpoints as well as enable or disable the breakpoints feature from the
popup menu.

To enable/disable breakpoints

Choose th8reakpoints - Enable toggle.

When displaying the breakpoint list, press and hold&hectmouse button and
then choos&nable/Disable Software Breakpointgrom the popup menu.

Using the command line, enter tmedify software_breakpoints enableor
modify software_breakpoints disablecommand.

The breakpoints feature must be enabled before you can set, inactivate, or clear
breakpoints.

If breakpoints were set when the feature was disabled, they are "inactivated" when
the feature is re-enabled, and you must set them again.

156

Examples

Bring up menu and
choose this item to
change states.

Chapter 5: Using the Emulator
Using Software Breakpoints

To enable software breakpoints using the breakpoints display popup menu:

1] 1
—'l Hewlett Packard Fmulator/Analyzer: emB0960 (i50960) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | <Demo= | Disp Sre () | Trace () | Run | Step Source

[<Yourkey> i| Make | Disp Sre Prev ||Run Resetto ()i Break [Step Asm
():imain IRecaII
Sof tware breakpoints :disabled
addre label taty A
BE 1ABaEE ... /demofdebug_srv/hpB4768/main.c": line 96 inactivated
B0 168686880 ... /demo/debug_erv/hpE4768/main.c": line 98 inactivated
BE 106616 ... fdemafdebug_erv/hpE476@8/main. c”: line 182 inactivated
Choose Action for Highlighted Line
Setfnactivate Breakpoint
Cleay {delotey Bregkpalyt
Choose Action for All Breakpoints
Enable/Disable Software Breakpoints
Hut Al Breakpoints
Clear (delete) All Breakpoints A 4
| STATUS: 9605x--Running in monitor 3
] 13

157

Chapter 5: Using the Emulator
Using Software Breakpoints

To set a permanent breakpoint

When displaying memory in mnemonic format, position the mouse pointer over the
program line at which you wish to set the breakpoint and clicketeetmouse

button. Or, press and hold teelectmouse button and chooSet/Clear Software
Breakpoint from the popup menu.

Place an absolute or symbolic address in the entry buffer; then, choose
Breakpoints - Permanent ()

Using the command line, enter tmedify software_breakpoints set <address>
permanentcommand.

Permanent breakpoints are available if your version of HP 64700 system firmware
is A.04.00 or greater.

The breakpoints feature must be enabled before individual breakpoints can be set.

Note that you must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data).

When displaying memory in mnemonic format, asterisks (*) appear next to
breakpoint addresses. An asterisk shows the breakpoint is active. Also, if
assembly level code is being displayed, the disassembled instruction mnemonic at
the breakpoint address will show the breakpoint instruction.

158

Chapter 5: Using the Emulator
Using Software Breakpoints

Examples To set permanent breakpoints using the mnemonic memory display popup menu:
I ¥
—'l Hewlett Packard Fmulator/Analyzer: emB0960 (i50960) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Click this line to set & Action keys: | <Demo> | Disp Sre() | Trace () | Run | Step Source
breakpoint. [<Yourkey> i| Make | Disp Sre Prev ||Run Resetto ()i Break [Step Asm
():imain IRecaII
. T Il : ic :file = .../ /hpB48688/ demao/ deb /hpB4768/main.c":
CIICk thls ||ne to E:g;ge mnTn;Ezllc: 1le dataUST" P emo E0UQ_Emy P main.c A
Clear a breaprInt gé extern va%d deate_sgstu.am()i f* update system wariables */
i extern void interrupt_sim{}; /* simulate an interrupt */
(Astensks mark set 33 extern void do_sortil); /% sets up ascii array and calls
. 34
breakpoints.) % maind)
36 {
37 init_systeml);
* ol proc_spec_initil;
181 {
) B update_system();
Bring up menu and 183 rum_checkst+; Choose Action for Highlighted Line
P 184 interrupt_sim{&ny =
choose this item to LGS iF (graph Set/Clear Software Breakpoint
set (or clear) a 185 g’”:pegﬁ;zgii Edit Source
breakpoint on the - Run Until
. . . while (truel
. race After
highlighted line Trace Aft
3 5T|F|T|.|5: 9605x--Running in monitor Trace Before iELJ 3

To set a temporary breakpoint

» Place an absolute or symbolic address in the entry buffer; then, choose
Breakpoints — Temporary () (or Breakpoints - Set ()if your version of
HP 64700 system firmware is less than A.04.00).

» Using the command line, enter tmedify software_breakpoints set <address>
temporary or modify software_breakpoints set <addresseommand.

The breakpoints feature must be enabled before individual breakpoints can be set.

159

Chapter 5: Using the Emulator
Using Software Breakpoints

Note that you must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data).

When displaying memory in mnemonic format, asterisks (*) appear next to
breakpoint addresses. An asterisk shows the breakpoint is active. Also, if
assembly level code is being displayed, the disassembled instruction mnemonic at
the breakpoint address will show the breakpoint instruction.

To set all breakpoints

* When displaying the breakpoint list, position the mouse pointer within the
breakpoints display screen, press and holdefectmouse button, and chodSet
All Breakpoints from the popup menu.

» ChooseBreakpoints - Set All.

» Using the command line, enter tmedify software_breakpoints secommand.

Breakpoints must be enabled before being set.

To deactivate a breakpoint

* When displaying breakpoints, position the mouse pointer over the line displaying
the active breakpoint and click teelectmouse button. Or, press and hold the
selectmouse button and chooSet/Inactivate Breakpointfrom the popup menu.

A deactivated breakpoint remains in the breakpoint list and can be re-activated
later. Deactivating a breakpoint is different than clearing a breakpoint because a
cleared breakpoint is removed from the breakpoints list.

160

Chapter 5: Using the Emulator
Using Software Breakpoints

To re-activate a breakpoint

* When displaying breakpoints, position the mouse pointer over the line displaying
the inactivated breakpoint and click gelectmouse button. Or, press and hold the
selectmouse button and chooSet/Inactivate Breakpointfrom the popup menu.

The "inactivated" breakpoint either becomes "temporary" (or "pending") if it was

set as a temporary breakpoint or "permanent” if it was set as a permanent
breakpoint.

161

Chapter 5: Using the Emulator
Using Software Breakpoints

Examples To re-activate breakpoints using the breakpoints display popup menu:

z
—'l Hewlett Packard Fmulator/Analyzer: emB0960 (i50960) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | <Demo= | Disp Sre () | Trace () | Run | Step Source
[<Yourkey> i| Make | Disp Sre Prev ||Run Resetto ()i Break [Step Asm
Change status with g |():{main |Recall
mouse click on this SJoftware breakpoints :enabled
I|ne (menu and addre label tatuy A
X . | i 1beaad .../demo/debug_erv/hpB476B/main.c": line 9B pending
h|ghl|ght do not .../ demao/debug_erv/hpG4768/main.c": line 38 pending

appear).

Choose this menu
item to change the
state of the
highlighted
breakpoint.

Choose Action for Highlighted Line

line inactivated

Setfinactivate Breakpoint
Clear (delete) Breakpoint

Choose Action for All Breakpoints

Enable/Disable Software Breakpoints
Set All Breakpoints
Clear (delete) All Breakpoints

| STATUS:

9605x--Running in monitor

162

Chapter 5: Using the Emulator
Using Software Breakpoints

To clear a breakpoint

When displaying memory in mnemonic format, position the mouse pointer over the
program line at which you wish to clear a currently set breakpoint (notice the
asterisk at the left of the line) and click g&ectmouse button. Or, press and hold

the selectmouse button and chooSet/Clear Software Breakpointfrom the

popup menu.

When displaying breakpoints, position the mouse pointer over the line displaying
the breakpoint you wish to clear, press and holgéfectmouse button, and

chooseClear (delete) Breakpointfrom the popup menu. .
Place an absolute or symbolic address in the entry buffer; then choose
Breakpoints Clear ().

Using the command line, enter tmedify software_breakpoints clear <address>
command.

When you clear a breakpoint, it is removed from the breakpoints list.

163

Chapter 5: Using the Emulator
Using Software Breakpoints

Examples

To clear a software breakpoint using the breakpoints display popup menu:

E
oE

—'l Hewlett Packard Fmulator/Analyzer: emB0960 (i50960)
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | <Demo= | Disp Sre () | Trace () | Run | Step Source
[<Yourkey> i| Make | Disp Sre Prev ||Run Resetto ()i Break [Step Asm
():imain IRecaII
Sof tware breakpoints :enabled A
. addre label taty
Bring up the menu 28 18BBEE ... /demofdebug_erv/hpB4760/main. o' : line 96 pending
and choose this item B0 168a6E8C ... /demo/debug_erv/hpE47608/main.c": line 98 pending
B . e ai ending|
to clear the Choose Action for Highlighted Line
highlighted Set/Inactivate Breakpoint
breakpoint. Clear (delete) Breakpoint

Choose Action for All Breakpoints
Enable/Disable Software Breakpoints
Set All Breakpoints
Clear (delete) All Breakpoints

| STATUS:

9605x--Running in monitor

164

Chapter 5: Using the Emulator
Using Software Breakpoints

To clear all breakpoints

» When displaying breakpoints, position the mouse pointer within the Breakpoints
Display screen, press and hold sieéectmouse button, and chooSéear (delete)
All Breakpoints from the popup menu.

» ChooseBreakpoints - Clear All.

» Using the command line, enter tmedify software_breakpoints clearcommand.

165

Chapter 5: Using the Emulator
Displaying and Modifying Registers

Displaying and Modifying Registers

This section describes tasks related to displaying and modifying emulation
processor registers. Registers are grouped into the following classes: local, global,
floating-point, and control.

You can display the contents of an individual register or of all the registers in a
class. You can display or modify individual fields of the control registers.

This section shows you how to:
» Display register contents.
* Modify register contents.

The register classes, names, and control register fields are listed in the following
table.

Register Class | Register Field Description
local r3 through r15 Local Registers for General Use
pfp (or r0) Previous Frame Pointer
sp (orrl) Stack Pointer
rip (or r2) Return Instruction Pointer
global g0 through g14 Global Registers
fp (or g15) Frame Pointer
float fp0 through fp3 Floating-Point Registers
control pctl (or pc) Process Controls
istate Internal State (31..21)
pri Priority (20..16)
state State (13)
pend Trace-Fault Pending (10)
resume Resume (9)
exec Execution Mode (1)
enable Trace Enable (0)

166

Chapter 5: Using the Emulator
Displaying and Modifying Registers

Register Class | Register Field Description

control (cont'd) | actl (or ac) Arithmetic Controls
round Floating-Point Rounding Control (31..30)
norm Floating-Point Normalizing Mode (29)
fpm Floating-Point Masks (28..24)
inm Floating Inexact Mask (28)
dzm Floating Zero-Divide Mask (27)
iom Floating Invalid-Op Mask (26)
unm Floating Underflow Mask (25)
ovm Floating Overflow Mask (24)
fpf Floating-Point Flags (20..15):
inf Floating Inexact Flag (20)
dzf Floating Zero-Divide Flag (19)
iof Floating Invalid-Op Flag (18)
unf Floating Underflow Flag (17)
ovf Floating Overflow Flag (16)
nif No Imprecise Faults (15)
iovm Integer Overflow Mask (12)
iovf Integer Overflow Flag (8)
stat Arithmetic Status (6..3)
cc Condition Code (2..0)

control (cont'd) | tctl (or tc) Trace Controls
events Trace Events (23..17):
brkpt_e Breakpoint Trace Event (23)
super_e Supervisor Trace Event (22)
preret_e Prereturn Trace Event (21)
return_e Return Trace Event (20)
call_e Call Trace Event (19)
branch_e Branch Trace Event (18)
instr_e Instruction Trace Event (17)
trace Trace Modes (7..1):
brkpt_t Breakpoint Trace Mode (7)
super_t Supervisor Trace Mode (6)
preret_t Prereturn Trace Mode (5)
return_t Return Trace Mode (4)
call_t Call Trace Mode (3)
branch_t Branch Trace Mode (2)
instr_t Instruction Trace Mode (1)

167

Chapter 5: Using the Emulator
Displaying and Modifying Registers

Register Class | Register Field Description
control (cont'd) | ictl (oric) Interrupt Control Register
int0 INTO Vector (7..0)
intl INT1 Vector (15..8)
int2 INT2 Vector (23..16)
int3 INT3 Vector (31..24)

Examples

To display register contents

ChooseDisplay - Registers

Using the command line, enter tiiisplay registerscommand.

When displaying registers, you can display classes of registers and individual
registers. You can display individual fields of the control registers.

To display the basic register contents:

display registers <RETURN>

LOCAL REGISTERS
pfp = 000404c0 sp = 00040550 rip = 00000944 r3 = 00000000
r4 = 00000000 r5 =00000000 r6 = 00000000 r7 = 00000000
r8 = 00000000 r9 = 00000000 ri0 = 00000000 ril = 00000000
r12 = 00000000 r13 = 00000000 rl4 = 00000000 rl5 = 00000000
GLOBAL REGISTERS
g0 =3f001002 gl = 00000020 g2 = 00040400 g3 = 00000000
g4 =000000b0 g5 =fi000010 g6 = 00000280 g7 = fffifff
g8 =00000000 g9 = 00000000 g10 = 00000000 g1l = 00000000
g12 = 00040000 g13 = 00000029 g14 = 00000000 fp = 00040500

168

Chapter 5: Using the Emulator
Displaying and Modifying Registers
To display the contents of an individual register:

display registers rip <RETURN>
rip = 0000094¢c

To display registers in the "global" class:

display registers global <RETURN>

GLOBAL REGISTERS
g0 =3f001002 gl = 00000020 g2 = 00040400 g3 = 00000000
g4 =000000b0 g5 =ff000010 g6 = 00000280 g7 = fffifff
g8 =00000000 g9 = 00000000 g10 = 00000000 g1l = 00000000
g12 = 00040000 g13 = 00000029 g14 = 00000000 fp = 00040500

To display registers in the "local" class:

display registers local <RETURN>

LOCAL REGISTERS
pfp = 000404cO0 sp = 00040550 rip =00000948 r3 = 00000000
r4 =00000000 r5 =00000000 r6 =00000000 r7 =00000000
r8 =00000000 r9 =00000000 r10=00000000 rl1l = 00000000
rl2 = 00000000 r13 = 00000000 r14 = 00000000 r15 = 00000000

To display registers in the "float" class:

display registers float <RETURN>

FLOATING POINT REGISTERS
fp0 = +9.1584803445224064760e-2320 2202 0000001 3ffffffff
fpl = +9.1584803445224064760e-2320 2202 0000001 3ffffffff
fp2 = +9.1584803445224064760e-2320 2202 0000001 3ffffffff
fp3 = +9.1584803445224064760e-2320 2202 0000001 3ffffffff

To display registers in the "control" class:

display registers control <RETURN>

CONTROL REGISTERS
pc =001f2002 ac =3f001002 tc =a0008082 ic = ff000000

169

Chapter 5: Using the Emulator
Displaying and Modifying Registers

To display the Process-Controls Word:

display registers pctl <RETURN>
PROCESS CONTROLS (pctl = 001f2002)

istate: Internal State =0

pri: Priority =1f
state: State =1 (interrupted)

pend: Trace Fault Pending = 0 (none pending)
resume: Resume = 0 (instruction not suspended)

exec: Execution Mode =1 (supervisor)
enable: Trace Enable = 0 (disabled)

To display the Priority field of the Process-Controls Word:
display registers pctl.pri <RETURN>

pctl.pri: Priority = 1f

170

Chapter 5: Using the Emulator
Displaying and Modifying Registers

To modify register contents

» ChoosaModify - Registers...and use the dialog box to name the register and

specify its value.

Clicking the "Recall" pushbutton fe
you select register names and values
from predefined or previously
specified entries.

Placing the mouse pointer in the tex
entry area lets you type in the register
name and value.

To define the type of value, press and
hold thecommand selechouse

button and drag the mouse to select
the value type.

~Modify Register

Mame { pfp

Recall

Value

Recall

Cancel

Clicking this button modifies
Clicking this button modifies the the register to the value
register to the value specified and specified and leaves the dialogdialog box.
closes the dialog box. box open.

» Using the command line, enter tmedify register <register> to <value>

command.

Clicking this button cancels
modification and closes the

You can modify all registers except the trace control register; the emulation
processor trace events are used by the emulator to implemant thil feature.

171

Chapter 5: Using the Emulator
Displaying and Modifying Memory

Displaying and Modifying Memory

You can display and modify the contents of memory in hexadecimal formats and in
real number formats. You can also display the contents of memory in assembly
language mnemonic format.

This section shows you how to:

» Display memory.

» Display memory in mnemonic format.

» Display memory in mnemonic format at the current PC.
» Return to the previous mnemonic display.

» Display memory in hexadecimal format.

» Display memory in real number format.

» Display memory at an address.

» Display memory repetitively.

* Modify memory.

* Modify memory at an address.

To display memory

* ChooseDisplay - Memory.

This command either re-displays memory in the format specified by the last
memory display command, or, if no previous command has been executed, displays
memory as hexadecimal bytes beginning at address zero.

172

Chapter 5: Using the Emulator
Displaying and Modifying Memory

To display memory in mnemonic format

To display memory at a particular address, place an absolute or symbolic address in
the entry buffer; then, chooBésplay -~ Memory - Mnemonic (), or, using the
command line, enter thiisplay memory <address> mnemonicommand.

To display memory at the current program counter address, choose
Display -~ Memory — Mnemonic at PC or, using the command line, enter the
display memory mnemonic at_pcommand.

allows you to view the program counter while stepping through user program

A highlighted bar shows the location of the current program counter address. -
execution.

Whether source lines, assembly language instructions, or symbols are included in
the display depends on the modes you choose with the

Settings— Source/Symbols Modesr Settings— Display Modespulldown menu
items. See the "Changing the Interface Settings" section.

If symbols are loaded into the interface, the default is to display source only.

To return to the previous mnemonic display

ChooseDisplay - Memory - Mnemonic Previous

Using the command line, enter ttlisplay memory mnemonic previous_display
command.

This command is useful for quickly returning to the previous mnemonic memory
display.

For example, suppose you are stepping source lines and you step into a function
that you would like to step over. You can return to the previous mnemonic
memory display, set a breakpoint at the line following the function call, and run the
program from the current program counter.

173

Chapter 5: Using the Emulator
Displaying and Modifying Memory

Examples

To display memory in hexadecimal format

Place an absolute or symbolic address in the entry buffer; then, choose
Display - Memory — Hex () and select the size from the cascade menu.

Using the command line, enter ttisplay memory <address> blocked <size>
command.

This command displays memory as hexadecimal values beginning at the address in
the entry buffer.

To display memory in absolute word format:

display memory ascii_old_data absolute words <RETURN>
Memory :long words rabsolute :update

addre label data :he iascii
AB1A7138 _ascii_old_d 2AZE2828

AR 167134 AR333428 .34
AR 187138 736156823 saPtt
A8 187 13C AB34z6268 .4

A 187 148 JBZEz626]

AR 187 144 AB3E382E . 8.
AR 187148 63775323 iwS#
AB18714C AB31=828 .
AR 1671548 41454CBA AEL.
AR 167154 AB444552 .DER
AR 187158 ZBBEBS4LC nel
A8 187 15C AB3 12828 .1
A 167 166 41454C43 AELLC
AR 187 164 AB444552 .DER
AB187 168 2B657641 evi
AB18716C AB3EZE3A .8.8
AB167 178 41434C43 AELLC

174

Chapter 5: Using the Emulator
Displaying and Modifying Memory

To display memory in blocked byte format:

display memory ascii_old_data blocked bytes <RETURN>

Memary :bytes :blaocked :update
addre data ihe iascii

AR1a71368-37 ¢ 28 =28 zZ@ =28 34 33 @A 43 .
AR 187 138-3F 23 58 61 73 zZ8 zZA 34 @4 BFPas 4.
AR 187 1468-47 28 28 28 38 ZE 3@ 38 @4 A aa.
8187 145-4F 23 53 Y7 B3 =28 zZ@8 31 @4 B Swi 1.
AR1871568-57 A 4C 45 41 52 45 44 @A .LER RED.
AR 187 158-5F 4C B 6BE Z@ 28 zZ@ 31 @A Len 1.
AR 187 166-67 43 4C 45 41 52 45 44 @4 CLER RED.
AB187 168-6F 41 Y6 B5 28 38 ZE 38 @4 A e a. 8.
AR1a7178-77 43 4C 45 41 52 45 44 @4 CLER RED.
AB187178-7F 43 4C 45 41 52 45 44 @4 CLER RED.
AR187188-87 43 4C 45 41 52 45 44 @4 CLER RED.
AR187188-8F 43 4C 45 41 52 45 44 @4 CLER RED.
AR187138-37 43 4C 45 41 52 45 44 @4 CLER RED.
AR187135-3F 43 4C 45 41 52 45 44 @4 CLER RED.
AR 187 1AB-A7 43 4C 45 41 52 45 44 @4 CLER RED.
AR 187 1AE-AF 43 4C 45 41 52 45 44 @4 CLER RED.
aB1a7168-67 43 4C 45 41 52 45 44 @4 CLER RED.

To display memory in real number format

Place an absolute or symbolic address in the entry buffer; then, choose
Display—Memory - Real () and select the size from the cascade menu.

Using the command line, enter ttlisplay memory <address> real <size>
command.

Displays memory as a list of real number values beginning at the address in the
entry buffer. Short means four byte real numbers and long means eight byte real
numbers.

175

Chapter 5: Using the Emulator
Displaying and Modifying Memory

Examples To display memory in 64-bit real number format:
display memory real long <RETURN>
Memary :leng real :update

addre label data :real
BR1B7130 _ascii_old_d 1. BE523655484 1 20E - 307
89167133 1. 119517829 16463E-307
B 167148 3. A@438751483420E- 308
AR 167148 9. 5263725690548 3E - 303
AP 167 158 2.25513384 11 7836E-307
9167158 3.526379 147436 12E-308
B9 167 168 2. 25519384 1 1 7888E-307
B9 167 168 3. APEESE42 | 1@ 188E-308
AR 187179 2. 255199841 17838E-307
A9 167173 2.25513384 1 17838E-307
B9 167 180 2.25513384 1 17838E-307
8167188 2. 25519384 1 1 7858E-307
AR 167139 2. 255199841 17838E-307
A9 167133 2.25513384 1 17838E-307
B9 167 1AD 2.25513384 1 17838E-307
BB 167 1AB 2. 25519384 1 1 7858E-307
B 167 160 2.25519984 1 1 7838E-307

To display memory at an address

» Place an absolute or symbolic address in the entry buffer; then, choose
Display—Memory - At ().

This command displays memory in the same format as that of the last memory
display command. If no previous command has been issued, memory is displayed
as hexadecimal bytes.

176

Chapter 5: Using the Emulator
Displaying and Modifying Memory

To display memory repetitively
ChooseDisplay - Memory - Repetitively.

Using the command line, enter tilisplay memory repetitvelycommand.

The memory display is constantly updated. The format is specified by the last
memory display command.

This command is ignored if the last memory display command was a mnemonic

display. .

To modify memory

ChooseModify -~ Memory and complete the command using the command line.

To modify memory at a particular address, place an absolute or symbolic address in
the entry buffer; then, choosodify . Memory at () and complete the command
using the command line.

Using the command line, enter tmedify memory command.

You can modify the contents of one memory location or a range of memory
locations. Options allow you to modify memory in byte, short, word, and real
number formats.

177

Chapter 5: Using the Emulator
Displaying Data Values

Displaying Data Values

The data values display lets you view the contents of memory as data types. You
can display data values in the following formats:

bytes

8-bit integers

unsigned 8-bit integers
chars

words

16-bit integers

unsigned 16-bit integers
long words

32-bit integers

unsigned 32-bit integers

This section shows you how to:
» Display data values.
* Clear the data values display and add a new item.

* Add item to the data values display.

To display data values

ChooseDisplay - Data Values

Using the command line, enter tiisplay datacommand.

Items must be added to the data values display before you can use this command.

The data display shows the values of simple data types in the user program. When
the display mode setting turns ON symbols, a label column that shows symbol
values is added to the data display.

Step commands and commands that cause the emulator to enter the monitor (for
example, encountering a breakpoint) cause the data values screen to be updated.

178

Chapter 5: Using the Emulator
Displaying Data Values

To clear the data values display and add a new
item

Place an absolute or symbolic address in the entry buffer; then, choose
Display - Data Values- New () and select the data type from the cascade menu.

Using the command line, enter itisplay data <address>command.

To add items to the data values display .

Place an absolute or symbolic address in the entry buffer; then, choose
Display - Data Values- Add () and select the data type from the cascade menu.

Using the command line, enter itisplay data , <address>ommand.

179

Chapter 5: Using the Emulator
Displaying 80960 System Tables

Displaying 80960 System Tables

You can display the processor control block and the system interrupt tables.
This section shows you how to:

» Display the 80960 system tables.

Examples

To display the 80960 system tables

ChooseDisplay - System Tableand select the particular table from the cascade
menu.

Using the command line, enter tiisplay table command.

Thedisplay table command gives you a formatted display of the 80960 processor
control block, the system tables, and the interrupt and fault tables.

The system procedure, trace procedure, and interrupt tables contain more
information than can be displayed on a 24-line screen or window. You can use the
up arrow, down arrow, <NEXT>, or <PREV> keys to scroll the information up or
down on the display.

To display the processor control block:
display table <RETURN>

Or:
display table processor_control_block <RETURN>

180

Chapter 5: Using the Emulator
Displaying 80960 System Tables

Table
BEE 1A 448: Processor Control Block (FRCE
ABE1EYd44: Processor Controls = HEEEBBAC
ARE1RYd54: Interrupt Table Pointer = BE1E734@
AEA1EYd58: Interrupt Stack Fointer = BA1@56aa
ARE1AYHEE: Offset 32 = HBEABBRZTF
ABE187d64: Offset 36 (spt index) = HHAEBRZTF
BEE187dES8: Fault Table Fointer = BE162360
ARE1RYdEe: Offset 44 = HBEABBARG

ABA1E7d38: Processor Scratch Space AERERERA AHOHEEEE BREREARAD BEHEBEER

AEE 187 d=0: APRERERA AHEHEEEE BRORENAE HEEEBEER
ARE187dba: AREREEEE HARHEEEE HREARARE BHEHA0ER
ABE 187 dch: AREREABA PAREABHE HRBARARE BHEEABDER
ABA187dda: APRERERA AHEHEEEE BRBREANAD BEEEEEER
AEA 187 ded: APRERERA AHEHEEEE BRORERAE 12584aZ6

To display the system address table:

display table system_address <RETURN>

To display the system procedure table:

display table system procedure <RETURN>

To display the trace procedure table:

display table trace _procedure <RETURN>

To display the fault table:
display table fault <RETURN>

To display the interrupt table:
display table interrupt <RETURN>

181

Chapter 5: Using the Emulator
Changing the Interface Settings

Changing the Interface Settings

This section shows you how to:
» Set the source/symbol modes.

* Set the display modes.

To set the source/symbol modes

To display assembly language mnemonics with absolute addresses, choose

Settings— Source/Symbol Modes. Absolute, or, using the command line, enter
theset source off symbols offommand.

To display assembly language mnemonics with absolute addresses replaced by
global and local symbols where possible, ch&ettings- Source/Symbol

Modes- Symbols or, using the command line, enter $ie¢ source off symbols
on command.

To display assembly language mnemonics intermixed with high-level source lines,

chooseSettings— Source/Symbol Modes. Source Mixed or, using the command
line, enter theset source on symbols ooommand.

To display only high-level source lines, cho&sttings- Source/Symbol

Modes- Source Only, or, using the command line, enter sie¢ source only
symbols oncommand.

The source/symbol modes affect mnemonic memory displays and trace displays.

Each display mode cascade menu choice is a toggle. Choosing one of these items
causes it to be the only one active and toggles all others off. Provided that symbols
were loaded, the interface defaults to:

» Source only for mnemonic memory displays.

» Source mixed for trace listing displays.

182

Chapter 5: Using the Emulator
Changing the Interface Settings

To set the display modes

» ChooseSettings- Display Modes...to open the display modes dialog box.

Press and hold theelect - Source/Symbols View
mouse button and drag the

mouse to select "Source Only",
"Source Mixed", or "Off". Source in Trace |Source Mixed r=

ce in Memory | Source Only =

Tab Expansion (2 to 15 Spaces)
. | Symbolic Addresses
Clicking toggles whether ¥
symbolic information is ~Field Widths
displayed.

Move the mouse pointer to the Symbols in Mnemonic Field

text entry area and type in the :
value. Descriptions of the W 148

modes follow. Source: (60 to 255) All Others: (1 to 80)

~Auto Update

Clicking toggles auto update —iiill Memory Displays (Except Mnemonic)
settings.] Trace Display

.: Default All Settings

Clicking this checkbox

changes all display mode

settings to their defaults.

Clicking this button saves your Clicking this button saves Clicking this button cancels your
changes and closes the dialog your changes and leaves thehanges and closes the dialog box.
box. dialog box open.

183

Chapter 5: Using the Emulator
Changing the Interface Settings

Source/Symbols View

Source in Memoryspecifies whether source lines are included, mixed with
assembly code, or excluded from mnemonic memory displays.

Source in Tracespecifies whether source lines are included, mixed with stored
states, or excluded from trace displays.

Symbolic Addressespecifies whether symbols are included in displays.

Tab Expansionsets the number of spaces displayed for tabs in source lines.

Source/Symbols View

Label Field sets the width (in characters) of the address field in the trace list or
label (symbols) field in any of the other displays.

Mnemonic Field sets the width (in characters) of the mnemonic field in memory
mnemonic, trace list, and register step mnemonic displays. It also changes the
width of the status field in the trace list.

Symbols in Mnemonic Fieldsets the maximum width of symbols in the mnemonic
field of the trace list, memory mnemonic, and register step mnemonic displays.

Source Linessets the width (in characters) of the source lines in the memory
mnemonic display.

Auto Update

Memory Displaystoggles whether memory displays are automatically updated
after commands that change memory contents or whether you must enter memory
display commands to update the display. You may wish to turn off memory
display updates, for example, when displaying memory mapped 1/O.

Trace Displaystoggles whether trace displays are automatically updated when

trace measurements complete or whether you must enter trace display commands to
update the display. You may wish to turn off trace display updates in one
emulator/analyzer window in order to compare the display with a new trace display
in another emulator/analyzer window.

184

Chapter 5: Using the Emulator
Using System Commands

Using System Commands

With the Softkey Interface system commands, you can:

» Set UNIX environment variables while in the Softkey Interface.
» Display the name of the emulation module.

» Display the event log.

» Display the error log.

To set UNIX environment variables

* Using the command line, enter thet <VAR>command.

You can set UNIX shell environment variables from within the Softkey Interface
with theset <environment_variable> = <valuexommand.

Examples To set the PRINTER environment variable to "lp -s":

set PRINTER ="Ip -s" <RETURN>

After you set an environment variable from within the Softkey Interface, you can
verify the value of it by enteringet <RETURN>,

185

Chapter 5: Using the Emulator
Using System Commands

Examples

To display the name of the emulation module

Using the command line, enter th@me_of modulecommand.

While operating your emulator, you can verify the name of the emulation module.
This is also the logical name of the emulator in the emulator device file.

To display the name of your emulation module:

name_of module <RETURN>

The name of the emulation module is displayed on the status line.

To display the event log

ChooseDisplay - Event Log.

Position the mouse pointer on the status line, press and halel¢ltenouse
button, and then chooisplay Event Logfrom the popup menu.

Using the command line, enter tlisplay event_logcommand.

The last 100 events that have occurred during the emulation session are displayed.

The status of the emulator and analyzer are recorded in the event log, as well as the
conditions that cause the status to change (for example, software breakpoints and
trace commands).

186

Chapter 5: Using the Emulator
Using System Commands

To display the error log

* ChooseDisplay - Error Log .

» Position the mouse pointer on the status line, press and halel¢licenouse
button, and then chooSisplay Error Log from the popup menu.

» Using the command line, enter tilisplay error_log command.

The last 100 error messages that have occurred during the emulation session
displayed.

187

Chapter 5: Using the Emulator
Using System Commands

To edit files

ChooseéFile - Edit - File and use the dialog box to specify the file name.

To edit a file based on an address in the entry buffer, place an address reference
(either absolute or symbolic) in the entry buffer; then, chBdse. Edit — At ()
Location.

To edit a file based on the current program counter, chtilese Edit — At PC
Location.

To edit a file associated with a symbol when you are displaying symbols, position
the mouse pointer over the symbol, press and holskleetmouse button, and
chooseEdit File At Symbol from the popup menu.

To edit a file when displaying memory in mnemonic format, position the mouse
pointer over the line of source where you want to begin the edit, press and hold the
selectmouse button, and choo&dit Source from the popup menu.

When editing files at addresses, the interface determines which source file contains
the code generated for the address and opens an edit session on the file. The
interface will issue an error if it cannot find a source file for the address.

The interface will choose the "vi" editor as its default editor, unless you specify
another editor by setting an X resource. Refer to the "Setting X Resources" chapter
for more information about setting this resource.

You must load symbols before most commands will work because symbol
information is needed to be able to locate the files.

188

Chapter 5: Using the Emulator
Using System Commands

Examples To edit a file that defines a symbol:
i
—'l Hewlett Packard Fmulator/Analyzer: emB0960 (i50960)
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | <Demo= | Disp Sre () | Trace () | Run | Step Source
[<Yourkey> i| Make | Disp Sre Prev ||Run Resetto ()i Break [Step Asm
_ _ ():imain IRecaII
_C:hOOSI.ng this menu Global sumbols in ecs.x
Item br“’]gs up a Procedure symbols A
. . Procedure nams Address range __ Segment O0ffzet
terminal window read BALEZAAR - BA1AZEZE code @130
code

with an edit session
open on the file
where the
highlighted symbol is

defined. —_—

S oints A0 1A

read_conditions pElal12a - BEIB13E7

set_outputs Global Symbols Display

strepyd - =
unlink Display Local Symbols B
update_sustem Dgpiny Parent Symbols 3
user_arithmetic =
user_constraint Cut Full Symbol Name =
e [EdiLFile Defining Symbol -
user_aoperation BA1A24668 - BE1B2477 code
user_protection BB 1824EA - BE1EZ24F7 code
user_real_arithmeti AR 1E24AA - BE1EZ24B7 code
user_reserved AR 1AZ4AA - AR1AZ417 code
user_trace BAlE2448 - BE162457 code

| STATUS: 9605x--Running in monitor

189

Chapter 5: Using the Emulator
Using System Commands

To edit afile at a source line:

i
—'l Hewlett Packard Fmulator/Analyzer: emB0960 (i50960)
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | <Demo= | Disp Sre () | Trace () | Run | Step Source
[<Yourkey> i| Make | Disp Sre Prev ||Run Resetto ()i Break [Step Asm
[): save_points IRecaII
H H Memory :mnemonic :file = .../hpE64888/demo/ debug_erv/hpB4768/update_sys. c":
ChOOS|ng thls menu addre label dats A
item brings up a 263
A i 264 old_datalcurr_locl. temp = current_temp;
term'nal WII’]dOW 265 old_datalcurr_locl.humid = current_humid;
: H H 266 loc++;
with an edit session T g .
open on the file 267.3@ if (eurr_los > NUM_OF_OLDY | Choose Action for Highlighted Line
268
where the 269 temp_tot=0; SetiClear Software Breakpoint
. . 278 f (i=RA; 1 <NUM_OF_OLO; i++7 P
highlighted source /%I/EW1 Edit Source
i ; H .26 For (i=B; 1<NUM_OF_OLD: i++} |Run Until
Ilne exists. 278,13 for (i=8;1<NUM_OF_OLD; i++)
vz Trace After
g;i old_datalcurr_locl. ave_temp Trace Before OLD
275 humid_tot=A; Trace About
278 for (1=8;:CNUM_OF_OLD; i+ [Trace Until
| STATUS: 9605x--Running in monitor Al p| N
i ;

190

Chapter 5: Using the Emulator
Using System Commands

To copy information to a file or printer

ChooseéFile - Copy, select the type of information from the cascade menu, and use
the dialog box to select the file or printer.

Using the command line, enter tt@py command.

ASCII characters are copied to the file or printer.
If you copy information to an existing file, it will be appended to the file.

Refer to the following paragraphs for details about the different copy options.

Display ... Copies information currently in the display area. This option is use
for restricting the number of lines that are copied. Also, this option is useful for
copying the contents of register classes other than BASIC.

Memory ... Copies the contents of a range of memory. The format is the same as
specified in the last display memory command. For example, if you copy memory
after displaying a range of memory in mnemonic format, the file would contain the
mnemonic memory information. If there is no previous display memory command,
the format used is a blocked hex byte format beginning at address zero.

Data Values ... Copies the contents of the defined data values last displayed. An
error occurs if you try to copy data values to a file if you have not yet displayed
data values.

System Table ... Copies the contents of the system table last displayed. An
error occurs if you try to copy system table information to a file if you have not yet
displayed one of the tables.

Trace ... The most recently captured trace is copied to the file. The copied trace
listing is formatted according to the current display mode.

You can set the display mode with ®Bettings— Source/Symbols Modesr
Settings— Display Modespulldown menu items. See the "Changing the Interface
Settings" section.

191

Chapter 5: Using the Emulator
Using System Commands

Registers ... Copies the current values of the BASIC register class to a file. To
copy the contents of the other register classes, first display the registers in that
class, and then use thie - Copy - Display ...command.

Breakpoints ... Copies the breakpoints list. If no breakpoints are present in the
list, only the enable/disable status is copied.

Status ... Copies the emulator/analyzer status display.

Global Symbols ... Copies the global symbols. If symbols have not been
loaded, this menu item is grayed-out and unresponsive.

Local Symbols () ... Copies the local symbols from the symbol scope named

(by an enclosing symbol) in the entry buffer. If symbols have not been loaded, this
menu item is grayed-out and unresponsive.

Pod Commands ... Copies the last 100 lines from the pod commands display.

Error Log ... Copies the last 100 lines from the error log display.

Event Log ... Copies the last 100 lines from event log display.

To open a terminal emulation window

ChooseFile - Term...

This command opens a terminal window into the current working directory context.

192

Chapter 5: Using the Emulator
Using Simulated 1/10

Using Simulated 1/O

Simulated 1/O is a feature of the emulator/analyzer interface that lets you use the
same keyboard and display that you use with the interface to provide input to
programs and display program output.

To use simulated I/O, your programs must communicate with the simulated I/O
control address and the buffer locations that follow it.

Also, before simulated 1/0O can work, the emulator must be configured to enable
polling of the simulated I/O control address and to define the control address

location.
This section shows you how to: .

» Display the simulated I/O screen.
» Use simulated I/0O keyboard input.

Refer to theSimulated 1/0 User’s Guidier complete details on how simulated 1/0
works.

To display the simulated I/O screen

ChooseDisplay — Simulated 10.

Before you can display simulated 1/O, polling for simulated I/O must be enabled in
the emulator configuration.

193

Chapter 5: Using the Emulator

Using Simulated 1/10

Examples

Simulated I/0 display Status messages disabled
display is open
48 52 80 5@ hH t T
43 53 88 89
43 54 73 B8
S8 55 73 &7 h H t T
56 56 7B BB h
51 57 78 85 h H t T
51 58 77 54 h H t T
52 59 77 83 h H t T
52 BA 7B B2 h H t T
53 53 76 76 H T
43 54 73 75 h H t T
5 55 72 74
58 56 72 73
51 57 71 72 h H tT
52 58 71 71 h H T
52 59 7@ 7@ h

A message tells you whether the display is open or closed. You can modify the
configuration to enable status messages.

To use simulated 1/0 keyboard input

To begin using simulated I/O input, cho&sitings— Simulated 10 Keyboard.

To end simulated I/O and return to using the interface, useipendsoftkey.

The command line entry area is used for simulated input with the keyboard.
Therefore, if the command line is turned off, choosing this menu item with turn
command line display back on.

If you are planning to use even a modest amount of simulated I/O input during an
emulation session, it might be a good idea to open another Emulator/Analyzer
window to be used exclusively for simulated I/O input and output.

194

Chapter 5: Using the Emulator
Using Basis Branch Analysis

Using Basis Branch Analysis

Basis branch analysis (BBA) is provided by the HP Branch Validator product. This
product is used to analyze the testing of your programs, create more complete test
suites, and quantify your level of testing.

The HP Branch Validator records branches executed in a program and generates
reports that provide information about program execution during testing. It uses a
special C preprocessor to add statements that write to a data array when program
branches are taken. After running the program in the emulator (using test input),
you can store the BBA information to a file. Then, you can generate reports based
on the stored information.

This section shows you how to:
» Store BBA data to afile.

Refer to theHP Branch Validator (BBA) User’s Guider complete details on the
BBA product and how it works.

To store BBA data to a file

ChooseFile - Store— BBA Data and use the selection dialog box to specify the
file name.

The default file name "bbadump.data” can be selected from the dialog box.

195

196

Using the Emulation Analyzer

197

Using the Emulation Analyzer

This chapter describes tasks you may wish to perform while using the emulation
analyzer. These tasks are grouped into the following sections:

» The basics of starting, stopping, and displaying traces.
e Using execution trace messages.

» Qualifying trigger and store conditions.

» Using the sequencer.

» Modifying trace displays.

e Saving and restoring traces.

198

Chapter 6: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

The Basics of Starting, Stopping, and Displaying
Traces

This section describes the basic tasks that relate to starting and stopping trace
measurements.

When you start a trace measurement, the analyzer begins looking at the data on the
emulation processor’s bus and control signals on each analyzer clock signal. The
information seen on a particular clock is called a state.

When one of these states matches the "trigger state" you specify, the analyzer stores
states in trace memory. When trace memory is filled, the trace is said to be
"complete." The default trigger state specification is "any state," so when you start

a trace measurement after initializing the analyzer, the analyzer will "trigger" on the
first state it sees and store the following states in trace memory.

Once you start a trace measurement, you can view the progress of the measu
by displaying the trace status.

In some situations, for example, when the trigger state is never found or when the
analyzer hasn't filled trace memory, the trace measurement does not complete. In
these situations, you can halt the trace measurement.

Once atrace is displayed, you can use the cursor keys and other keys to position the
trace list on the display. To speed up the display of traces, you can reduce the
depth of the trace list. Also, when entering trace commands, there is a special
command that allows you to recall and modify the last trace command entered.

This section describes how to:

e Start trace measurements.

» Display the trace status.

e Stop trace measurements.

« Display the trace.

» Position the trace display on the screen.
e Change the trace depth.

* Modify the last trace command entered.

199

Chapter 6: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

Examples

To start a trace measurement

Chooselrace - Everything.

Using the command line, enter tinace command.

Thetrace command tells the analyzer to begin monitoring the states which appear
on the trace signals. You will see a message that confirms that a trace is started.

The default trace command (simpfgice with no options) will trigger on any state,
store all captured states.

While the emulator is running the user program, you can start the default trace
measurement with the command:

trace <RETURN>
A message is displayed on the status line to show you that the "Emulation trace

[has] started", and another message will show you when the "Emulation trace [is]
complete”.

To display the trace status

ChooseDisplay - Status

Using the command line, enter ilisplay statuscommand.

In addition to the analyzer information shown on the status line (Emulation trace
started, Emulation trace complete, etc.), you can display complete analyzer status
with the command below.

200

Chapter 6: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

Examples To display the trace status:

display status <RETURN>

Status

Emulator Status
368S=x--Running user program
Trace Status

Emulation trace complete
Arm ignored

Trigger in memory

Arm to trigger 7

States 512 (512) B..511
Sequence term 2
Occurrence left |1

The first line of the emulation trace status display shows the user trace has been
"completed”; other possibilities are that the trace is still "running” or that the trace
has been "halted".

The "Arm ignored" line shows that the arm condition, which can be used to qualify
trace measurements, is ignored. Consequently, the "Arm to trigger" time is not
meaningful and a question mark is displayed. (The "Making Coordinated
Measurements" chapter explains arm conditions.)

The second line of the trace status display contains information on the arm
condition. If the analyzer is always armed, the message "Arm ignored" is

displayed. If the analyzer is to be armed by one of the internal signals, either the
message "Arm not received" or "Arm received" is displayed. The display indicates

if the arm condition happened any time since the most recent trace started, even fif it
happened after the trace was halted or became complete.

The "Arm to trigger" line displays the amount of time between the arm condition
and the trigger. When using the HP 64761 80960SA/SB emulator and HP 64704
analyzer, the time displayed will be from -0.04 microseconds to 41.943
milliseconds, less than -0.04 microseconds, or greater than 41.943 milliseconds.
When using the HP 64760 80960KA/KB/MC emulator and HP 64705 analyzer, the
time displayed is -22.9 minutes to +22.9 minutes. If the arm signal is ignored or
the trigger is not in memory, a question mark (?) is displayed.

201

Chapter 6: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

The "States" line shows the number of states that have been stored (out of the
number that is possible to store) and the line numbers that the stored states occupy.
(The trigger state is always stored on line 0.)

The "Sequence term" line of the trace status display shows the number of the term
the sequencer was in when the trace completed. Because adarbotthe last
sequence ternconstitutes the trigger, the number displayed is what would be the
next term (2 in the preceding example) even though that term is not defined. If the
trace is halted, the sequence term number just before the halt is displayed,;
otherwise, the current sequence term number is displayed. If the current sequence
term is changing too quickly to be read, a question mark (?) is displayed.

The "Occurrence left" line of the trace status display shows the number of
occurrences remaining before the primary branch can be taken out of the current
sequence term. If the occurrence left is changing too quickly to be read, a question
mark (?) is displayed.

202

Chapter 6: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

To stop a trace measurement

* Choosé€lrace - Stop.

* Using the command line, enter thtep_tracecommand.

You can, and most likely will, specify traces whose trigger or storage states are
never found. When this happens, the "Emulation trace complete" message is never
shown, and the trace continues to run ("Emulation trace running"). When these
situations occur, you can halt the trace measurement wigitahetracecommand.

Thestop_tracecommand is also useful to deactivate signals which are driven
when the trigger is found (refer to the "Making Coordinated Measurements"
chapter).

Examples To halt a trace measurement:

stop_trace <RETURN>

When thestop_tracecommand is entered, the message "Emulation trace halted" is
displayed.

203

Chapter 6: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

Examples

To display the trace

Chooselrace - Display or Display - Trace.

Using the command line, enter tiisplay trace command.

You can display captured trace data withdtsplay trace command. The
available options to thdisplay trace command are described in the "Modifying
the Trace Display" section later in this chapter.

To display the trace:
display trace <RETURN>

0ffzet=0 Mare data of f screen

Label: Address Opcade or Status w/ Source Lines time count

relative
1 thru

mhemonic umbol

f# simulate an interrupt */
i¥ 3 ii array and calls combs

code|main.main P: stos g7, tags|mai.main. c: Li 248 nS
ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂfu5rfhp54@@@fdemofdebug envfhp54?58fmaln c - line 37 BRtHAnag

init_sys e | '_:

+0A4 co|maintABBAAEAE P: call init.init_system 15.i.e 528 nS

BEERBHBEAR usr/hpB4BBB/ demo/ debug_erv/hpE476@/main.c - line 35 HuBEARny
proc_spec_init{);

+088 co|main+ABEEEEAC F: bal .proc_spec_ini t+HEABEAR 17.i.e Z4d n3

+0888 tags|mai.main.c: write short 4463 1l.i.e 368 nS

BHREAREREE osr/hpB4EAE/ dema/ debug_erv/hpB4766/ init_system.c - line 1t

void init_wval_arri{l;

The first column on the trace list contains the line number. The trigger is always on
line O (labeled "after" above).

The second column contains the address information associated with the trace
states. Addresses in this column may be locations of instruction opcodes on fetch
cycles, or they may be sources or destinations of operand cycles.

The third column contains the data information associated with the trace states.

204

Chapter 6: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

The fourth column shows mnemonic information about the emulation bus cycle.
The disassembled instruction mnemonics are prefixed with a "P:" to show that
these are prefetches. When execution messages are set, the disassembled
instruction mnemonics associated with the execution message state are prefixed
with "E:". An execution message that corresponds to a breakpoint event is prefixed
with "E:*".

The additional information at the right edge of the mnemonic field is defined as
follows.

Characters Description

(from left to right)

0 through e Number of wait states.

* Greater than or equal to 15 wait states.

1 through 4 Size of the butst

1 through 4/8 Number of the transfer within the burst
80960Kx/80960Sx.

bor. BADAC asserted or not

cor. CACHE asserted or fot

lor. LOCK asserted or not.

ior. One or more interrupt pins asserted or not.

hor. HOLD asserted or not.

Eore Emulation ROM or RAM.

Tort Target ROM or RAM.

G Guarded memory.

b Background memory.

X Execution message.

Mhis information is not present when using the HP 64761 80960SA/SB emulator

and the HP 64704 analyzer.

For execution messages, only the last three columns are shown. The other columns
are irrelevant for execution message states.

205

Chapter 6: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

The fifth column shows the time count information. The trace list header indicates
each count is "relative" to the previous state.

You can use the <NEXT> and <PREV> keys to scroll through the trace list a page
at a time. The <Up arrow> and <Down arrow> keys will scroll through the trace
list a line at a time. You can also display the trace list centered around a specific
line number (for examplelisplay trace 100 <RETURNS. Refer to the

"Modifying the Trace Display" section for more information on the trace list
display.

Note that when a trigger condition is found but not enough states are captured to fill
trace memory, the status line will show the trace is still running. You can display

all but the last captured state in this situation; you must halt the trace to display the
last captured state.

To position the trace display on screen

Use the scroll bar or the <Up arrow>, <Down arrow>, <PREV>, <NEXT>,
<CTRL>f, and <CTRL>g keys.

The trace display command can display up to 1024 states, not all of which can
appear on the screen at the same time. However, you can reposition the display on
the screen with the keys described below.

The <Up arrow> and <Down arrow> (or roll up and roll down) keys move the
display up or down on the screen one line at a time.

The <PREV> and <NEXT> (or page up and page down) keys allow you to move
the display up or down a page at a time.

The <CTRL>f and <CTRL>g keys allow you to move the display left or right,
respectively. These keys are used when the width of the address or
mnemonic/absolute columns is increased so that not all the trace display data can be
displayed across the screen.

206

Chapter 6: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

To change the trace depth

Using the command line, enter ttiisplay trace depthcommand.

Thedisplay trace depthcommand allows you to specify the number of states that
are displayed. By reducing the trace depth, you can shorten the time it takes for the
Softkey Interface to upload the trace information. You can increase the trace depth
to view more states of the current trace.

The maximum number of trace states is 1024. When using the HP 64704 analyzer
and counting is turned on, the maximum number of trace states is 512. The
minimum trace depth is 9.

If you wish to reduce the number of states that are displayedisgiiay trace
depth command must be entered beforetthee command. You cannot use this
command to reduce the number of states displayed in the current trace.

To modify the last trace command entered

Chooselrace - Trace Specand use the dialog box to select and edit a trace
command.

Using the command line, enter tinace modify_commandcommand.

The Trace Specification Selection dialog box contains a list of trace specifications
executed during the emulation session as well as any predefined trace specifications
present at interface startup.

You can predefine trace specifications and set the maximum number of entries for
the dialog box by setting X resources (see the "Setting X Resources" chapter).

Thetrace modify_commandcommand recalls the last trace command. The
advantage of this command over command recall is that you do not have to move
forward and backward over other commands to find the last trace command,; also,
the last trace command is always available, no matter how many commands have
since been entered.

207

Chapter 6: Using the Emulation Analyzer
Using Execution Messages for Program Measurements

Using Execution Messages for Program
Measurements

The execution message feature of the 80960 emulator provides a powerful tool for
measuring program activity. The 80960 processor has an internal instruction cache
that is filled in 16-byte cache line prefetches. The analyzer can only measure bus
activity external to the processor. By observing prefetch activity, it is possible to
infer where the processor is executing code, but once instructions have been placed
in the cache, no further external bus cycles are generated. With data items stored in
the large register set of the processor, it is likely that the few external data cycles
may not provide enough information to infer what the execution path is.

The execution message feature causes the 80960 bondout emulation processor to
generate additional bus cycles that contain information about instruction execution.
This information can be selectively emitted for various classes of instructions. The
instruction classes correspond directly to the "Trace Modes" of the 80960
processor. Enabling execution messages results in execution performance
degradation for the 80960 due to the additional bus cycles generated, as well as the
internal bondout execution time caused by the message. Time critical systems may
not be able to handle the execution speed penalty.

The execution messages appear on the L-bus using an 80960 bondout strobe signal.
To the target system, these cycles appear as Idle (Ti) cycles. Each message is
composed of two parts: the address of the executed instruction (AT) along with
status describing the type of instruction, and the address of the next instruction to

be executed (TO).

The trace status messages are presented to the analyzer as two separate events with
a status bit indicating an AT or TO message.

Note that execution messages cannot be enabled, disabled, or displayed if the
emulator is restricted to real-time runs and is executing the user program.

This section describes how to:

e Set (turn ON) execution messages.

» Display execution message settings.

e Clear (turn OFF) execution messages.

» Disable the execution trace message feature.

208

Chapter 6: Using the Emulation Analyzer
Using Execution Messages for Program Measurements

» Enable the execution trace message feature.

« Capture execution messages with the analyzer.

To set execution trace messages

» Choosaviodify - Execution Messages Set All.

* Using the command line, enter tmedify execution_messages sebmmand.

This command turns ON execution messages for all instructions.

You can use the command line to turn ON execution messages for specific
execution events.

Examples To turn ON the default execution messages:

modify execution_messages set <RETURN>

To turn ON execution messages for call and return events:

modify execution_messages set call return <RETURN>

209

Chapter 6: Using the Emulation Analyzer
Using Execution Messages for Program Measurements

Examples

To display execution trace messages

ChooseDisplay - Execution Messages

Using the command line, enter tiisplay execution_messagemmmand.

The information displayed with thiisplay execution_messagemmmand shows
the execution message settings and whether execution messages are enabled or
disabled.

To display execution message settings:

display execution_messages <RETURN>

Execution messages

execution trace messages enabled:

instr set
branch set
call set
return set
preret clear
super set
brkpt clear

210

Chapter 6: Using the Emulation Analyzer
Using Execution Messages for Program Measurements

To clear execution trace messages

» ChooseaModify - Execution Messages Clear All.

» Using the command line, enter tmedify execution_messages cleaommand.

This command turns OFF all execution messages.

You can use the command line to turn OFF execution messages for specific events.

Examples To turn OFF all execution messages:

modify execution_messages clear <RETURN>

To turn OFF execution messages for branch events:

modify execution_messages clear branch <RETURN>

211

Chapter 6: Using the Emulation Analyzer
Using Execution Messages for Program Measurements

To disable the execution trace message feature

* Using the command line, enter tmedify execution_messages disabt®mmand.

To enable the execution trace message feature

» Using the command line, enter tmedify execution_messages enabtemmand.

. To capture execution messages with the analyzer

1 Set execution messages.
2 Trace program execution, storing execution messages.

3 Display the trace.

When execution messages are enabled, they are included in the trace list.
Execution messages in the trace list can be disassembled to indicate the opcode of
the instruction executed. To accomplish this, the disassembler may need to access
memory to get the instruction’s opcode information. Consequently, there may be
additional processor cycles due to the execution message display.

212

Examples

Using Execution Messages for Program Measurements

Chapter 6: Using the Emulation Analyzer

To capture the analyzer demo program’s function calling sequence:

break

<RETURN>

modify execution_messages clear <RETURN>
modify execution_messages set call <RETURN>
trace only status call <RETURN>
run from reset <RETURN>
display trace <RETURN>

Maore data off
Label: Address Opcode or Status w/ Source Lines time count
bBa=e: umnbol mrnemonic w/symbol relative
checksum|startup read short 326808 11,1, E -~
+681 startup+tHHAEE1CH call to code|startuptdEEEEZ0A i.Wo 758, us
+BA3 startuptBAEEBALDC call to code|startuptHABAEERZBA ive 152, us
+HB5 c|entrytBBAEEE1C call to code|entrytB00E0EEZ4 i.K 35.84 U5
+887 c|entry+BB0EEES4 call to code|_memset ik 3.88 wuS
+B683 c|entry+BAEHEEEEC call to code|csys. _START ik 453, us
+@11 | _START+@0a88824 call to si.initSimioForC ik 3.56 uS
+813 si.initSimioForC call to |simio.initsimio ik 18. 1 us
+H15 initIim+AA0EEE 14 call to code|_fopen ich 414, m3
+B817 «f open+BEHEEE 1M call to code|strlen. If ik 13.3 uS
+613 «f opentBEHEE134 call to code|simic.open i.e 35.3 U5
+621 co|opentBBARBEA 15 call to code|strlen. If ik 8.88 uS
+H23 co| opentBBAEEE4E call to code |memmove. 1f i.m 13.3 ug
+825 oo | opentBHEEEE4S call to request_io_and_w i.® 34.2 us
+B27 initSim+AEEEEE2E call to code|_faopen i.W 3Ed. m3
+623 | xf oper+BRAAEE10 call to code|strlen. If iuh 4.2 u5

213

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Qualifying Trigger and Store Conditions

This section describes tasks relating to the qualification of trigger and storage states.

You can trigger on, or store, specific states or specific values on a set of trace
signals (which are identified by trace labels).

Also, you carprestorestates. The prestore qualifier is a second storage qualifier
used for storing states that occur before the normally stored states. Prestore is
useful for capturing entry points to procedures or for identifying where global
variables are accessed from.

This section describes how to:

* Qualify the trigger state and the trigger position in the trace.
e Trigger on a number of occurrences of some state.

* Qualify states stored in the trace.

» Prestore states before qualified store states.

» Change the count qualifier.

» Trace until the analyzer is halted.

» Cause the emulator to break into the monitor when the analyzer triggers.

Expressions in Trace Commands

When modifying the analysis specification, you can enter expressions which consist
of values, symbols, and operators.

Values Values are numbers in hexadecimal, decimal, octal, or binary. These
number bases are specified by the following characters:

Bb Binary (example: 10010110b).
QgOo Octal (example: 3770 or 3770).
D d (default) Decimal (example: 2048d or 2048).

214

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Hh Hexadecimal (example: Oa7fh).
You must precede any hexadecimal number that begins
with an A, B, C, D, E, or F with a zero.

Don't care digits may be included in binary, octal, or hexadecimal numbers and
they are represented by the letdérer x. A zero must precede any numerical value
that begins with an "X".

Symbols A symbol database is built when the absolute file is loaded into the
emulator. Both global and local symbols can be used when entering expressions.
Global symbols are entered as they appear in the global symbols display. When
specifying a local symbol, you must include the name of the module ("main.c") as
shown below.

main.c:combsort

Operators Analysis specification expressions may contain operators. All
operations are carried out on 32-bit, two’s complement integers. (Values whic
not 32 bits will be sign extended when expression evaluation occurs.)

The available operators are listed below in the order of evaluation precedence.
Parentheses are also allowed in expressions to change the order of evaluation.

, = Unary two’s complement, unary one’s complement. The
unary two's complement operator is not allowed on
constants containing don't care bits.

* 1, % Integer multiply, divide, and modulo. These operators are
not allowed on constants containing don't care bits.

+, - Addition, subtraction. These operators are not allowed on
constants containing don't care bits.

& Bitwise AND.

| Bitwise inclusive OR.

Values, symbols, and operators may be used together in analysis specification
expressions. For example, if the local symbol exists, the following is a valid
expression:

module.c:symb+0b67dh&O0fff00h

215

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

However, you cannot add two symbols unless one of them is an EQU type symbol.

HP 64760 Emulation Analyzer Trace Signals

When you qualify states, you specify values that should be found on the analyzer
trace signals. The emulation analyzer trace signals are described in the table that

follows.

HP 64760 Emulation Analyzer Trace Signals
Trace | Signal Signal
Signals | Name Description
310 Data[31:0] For normal bus activity, these signals contain the data from the ward
wide data transfer on the data bus.
For execution trace messages, these signals are meaningless. The bytes
in the data field are qualified by the byte enable status bits.
63:32 Addr[31:0] For normal bus activity, this address corresponds to the lowest addressed
byte for the current data item being accessed.
For execution trace messages, this address corresponds to the word
address of either the from address or the to address. The status field
contains from/to flag.
68 ByteEnable[0] Each word that is accessed is accompanied by a set of byte enables that
69 ByteEnable[1] control what bytes in the word are accessed. The processor requires that
70 ByteEnable[2] only adjacent byte enables be asserted so patterns such as 1001 are
71 ByteEnable[3] illegal whereas patterns such as 0110 are valid. These enables are active
low. For example:
0000 - entire word
0111 - single byte
0011 - half word

216

Chapter 6: Using the Emulation Analyzer

Qualifying Trigger and Store Conditions

HP 64760 Emulation Analyzer Trace Signals

Trace | Signal Signal
Signals | Name Description
72 Bstsize[0] The indicated size of the current burst transfer. Each memory
73 Bstsize[1] transaction on the 80960 bus starts with a burst count. This count
indicates the number of words that are contained in the current burst
transaction. The actual data size in each word of the burst is indicated by
AccessSize[1:0] trace signals (81:80).
00 - Single word
01 - dual word
10 - triple word
11 - quad word/cache line
74 Bstcount[0] Shows which data transfer of a burst is associated with the current p
75 Bstcount[1] cycle. It progresses from 0 to 3. Non-burst cycles will always show
A burst consists of an address cycle followed by a number of data aycles.
Each data cycle is stored in the analyzer as it occurs along with the
properly determined address and burst count. This count field indicates
the position of this analysis cycle in a burst transaction.
00 - Data was 1st data cycle
01 - Data was 2nd data cycle
10 - Data was 3rd data cycle
11 - Data was 4th data cycle
76 Waitcnt[0] A count of how many wait states proceeded the completion of this bus
77 Waitcnt[1] cycle. Each data cycle may be delayed by some number of wait states
78 Waitcnt[2] before the data is read/written. This counter runs from 0 to 15.
79 Waitcnt[3]

217

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

HP 64760 Emulation Analyzer Trace Signals

Trace
Signals

Signal
Name

Signal
Description

80
81

AccessSize[0]
AccessSize[1]

Indicates the size of the current access. Each data cycle has a data size

based on the byte enables. Since various patterns of enables repre

sent

the same data size, this field gives a single pattern to determine data size.

00 = Byte

01 = Halfword
10 =triplebyte
11 =Word

83

Cache

The processor CACHE signal, which is active high, for the current
transfer.

0 = current burst is not cacheable
1 = current burst is cacheable

bus

84

BusLock

The processor LOCK signal, which is active low, for the current bu
transfer.

0 = current cycle locked
1 = current cycle unlocked

85

Write/Read

The processor W/R signal for the current bus transfer.

0 = Read
1 = Write

218

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

HP 64760 Emulation Analyzer Trace Signals

Trace | Signal Signal

Signals | Name Description

86 IntOFlg These flags indicate that the interrupt pins on the 80960 have been jactive
87 Int1Flg since the last analysis state. The processor requires that the interrypt

88 Int2Flg inputs be active for only one bus cycle, so these flags save the actiyity

89 Int3Flg until an analysis state is generated. The pins can be programmed for

different configurations which may change the users view of the pins,
but these flags only indicate that the pin has been active, not that an
interrupt has been requested/detected.

All flags active high.
IntOFIg - 1 = Detected active low at the processor
IntlFlg - 1 = Detected active high at the processor
Int2Flg - 1 = Detected active high at the processor
Int3Flg - 1 = Detected active low at the processor

91 ForeGround Indicates that the processor is running in foreground or that the bus cycle
is an execution trace message. When using the raw analysis clock, this
signal is meaningless (refer to the AnalValid trace signal (95)).

1 = Foreground memory cycle or execution trace message cycle

92 HoldAck Indicates that processor has entered a bus hold since the last analysis
state. Itis possible that no analysis states were generated or stored
during the hold, so this bit indicates that the hold has occurred.

0 = no hold occurred
1 = a hold has occurred

93 Failure The processor Failure signal. This processor signal is active low. |t
indicates that the processor has failed initialization. The bit is deasserted
after RESET, but then asserted during selftest, then deasserted, and only
then reasserted if the IMI checksum fails.

0 = processor failure is asserted
1 = processor failure is not asserted

219

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

HP 64760 Emulation Analyzer Trace Signals

Trace
Signals

Signal
Name

Signal
Description

94

Resetlst

This signal will remain low until the first foreground user cycle occ
after reset. It will then remain asserted.

0 = No user foreground cycles seen since reset
1 = First user foreground cycle and all subsequent cycles

95

AnalValid

This status bit indicates that data stored by the analyzer is a valid §
processor information cycle. Information cycles are generated for
normal Td cycles of the processor as well as for execution trace me
Td cycles. Refer to the bus state diagram for the processor to unde
the bus states. When clocking the analyzer with the raw processor
(cf aclk=all), many analysis states will result from Ti, Tr, Tw, Th bus
cycles, and these states contain no valid bus information.

Valid states are marked by this bit being a 1

0960

ssage
rstand
clock

96

BadAccess

The processor BADAC signal is sampled after the last data cycle
burst. This signal will be asserted on the last data transfer of bad b
This bit is active low like the processor input BADAC.

The analyzer holds this bit inactive during data cycles that are not the

last of the burst (BstSize != BstCount).

0 = bus transaction had unrecoverable error
1 = no error occurred

of a
urst.

220

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

HP 64760 Emulation Analyzer Trace Signals

Trace | Signal Signal
Signals | Name Description
97 InstructionTrace | These hits are the processor event flags generated during an execution
98 BranchTrace trace message.
99 CallTrace
100 ReturnTrace Bit 7 is the AT/TO flag generated by the analyzer during execution frace
101 PrereturnTrace messages. The execution address will be marked AT=1 and the next
102 SupervisorTrace | address will be marked TO=0.
103 BreakpointTrace
104 EmsgAt/To 7-AT/TO
1=AT
0=TO

6 - Breakpoint
5 - Supervisor
4 - Prereturn
3 - Return

2 -Call

1 - Branch

0 - Instruction

221

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

HP 64760 Emulation Analyzer Trace Signals

Memstat[1] = rom access

Trace | Signal Signal
Signals | Name Description
105 NormalBusFlg These flags are mutually exclusive and indicate the cause of the cufrent
106 MonitorFlg bus cycle. Only one flag will be active (1) at a time.
107 ExecutionFlg
The NormalBusFlg indicates a foreground bus cycle. This bus cycle
may be caused by either the user program, or by the monitor performing
a foreground access. To determine the cause of a NormalBusFlg marked
cycle the ImodeFlg must be examined.
NormalBusFlg =1 & ImodeFIg=1 User cycle
NormalBusFIlg = 1 & ImodeFIg=0 Monitor Foreground cycle
The ExecutionFlg indicates that the current cycle is an execution trace
message cycle. When this flag is set the EventFlgs[7:0] are valid. The
from/to flag will indicate which address of the message this is. The
event flags are available in the status field.
The MonitorFlg indicates that the current cycle is a background cycle.
Execution trace messages are written to background memory, but will
use the ExecutionFlag, therefore the MonitorFlag will be valid for
monitor code/data.
108 ImodeFlg Indicates that the processor is in background mode.
1 = inactive
0 = active
109 Memstat[0] These bits represent the attribute of the memory cycle generated.
110 Memstat[1]
111 Memstat[2] Memstat[0] = guarded access

Memstat[2] = low target memory access

222

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

HP 64760 State Qualifiers

Whenever a state can be specified in the trace command (trigger state, storage state,
prestore state, etc.), you will see the following softkeys that allow you to qualify the
state:

accsize The value following this softkey is searched for on the lines
over which the size of the current access is passed to the
analyzer.

address The value following this softkey is searched for on the lines that

monitor the emulation processor’s address bus.

bstsize The value following this softkey is searched for on the lines
over which bus burst size information is passed to the analyzer.

data The value following this softkey is searched for on the lines
monitor the emulation processor’s data bus.

memmap The value following this softkey is searched for on the lines
which monitor the memory map status.

status The value following this softkey is searched for on the lines that
monitor other emulation processor signals.

waitcnt The value following this softkey is searched for on the lines
over which the number of wait states that preceded the
completion of the bus cycle is passed to the analyzer.

When a value is specified without one of these softkeys it is assumed to be an
address value.

Predefined Values for HP 64760 State Qualifiers When you specify access

size, burst size, memory mapper, or status qualifiers for analyzer states (by pressing
theaccsize bstsize memmap, or status softkeys), you will be given the following
softkeys which are predefined values for the qualifiers.

223

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Predefined Values for State Qualifiers - HP 64760

Trace Label | Equate | Value Description
accsize byte oOh 8-Bit byte.
short 1h Two bytes.
three 2h Three bytes.
word 3h Four bytes.
bstsize single oOh One word.
double 1h Two words.
triple 2h Three words.
quad 3h Four words.
memmap target | 00xx x001b Target memory access.
emul 01xx x001b Emulation memory access.
rom 0x1x x001b ROM access.
ram 0x0x x001b RAM access.
guarded | 0001 x001b Guarded memory access.

224

Chapter 6: Using the Emulation Analyzer

Qualifying Trigger and Store Conditions

Predefined Values for State Qualifiers - HP 64760

Trace Label | Equate | Value Description

status read 0XX XXOX XXXX XXXX XXLX XXXX XXXX OXXXb Data read.
write OXX XXOX XXXX XXXX XXX XXX XXXX 1xxxb Data write.
cycle 0xX XX00 1X3XX XXXX XX1X XX1X XXXX XXXXb Bus cycle.
exec 0xX XX10 0XXX XXXX XX1X XXX XXXX XXXXbD Execution message.
valid DXX XXX XXXX XXXX XXLX XXXX XXX XXxxb Address/data valid.
lock 0XX XX00 1XXX XXXX XX1X XX1X XXXX XOXxb Bus lock.
cache 0xX XX00 LXK XXXX XX1X XX1X XxxX Xx1xb Cacheable.
badac 0XX XX00 1X3X XXXX XO1X XXX XXXX XXXXb Bad access.
bgnd 0XX XXO1 0XXX XXXX XX1X XXOX XXXX XXXXb Background cycle.
exec_at | 0xx xx10 01XX XXXX XX1X XXLX XXXX XXXXb Execution at message.
exec_to | Oxx xx10 00XxX XXXX XX1X XXLX XXXX XXXXb Execution to message.
instr 0XX XX10 0X3X XXXX 1X1X XXX XXXX XXXXb Instruction message.
branch 0XX XX10 0X3xX XXX1 XXLX XXX XXXX XXXXb Branch message.
call 0xx XX10 0X3X XX1X XX1X XXLX XXXX XXXXb Call message.
return 0xx XX10 OXXX XLIXX XXLX XXI1X XXXX XXXXb Return message.
preret 0xx Xx10 0XXX IXXX XX1X XXX XXXX XXXXD Prereturn message.
super 0xx Xx10 OXXL XXXX XXLX XXX XXXX XXXXD Supervisor message.
brkpt 0xX XX10 OX1X XXXX XX1X XXX XXXX XXXXb Breakpoint message.
int0 OXX XXXX XXXX XXXX XXXX XXXX XXXL Xxxxb Interrupt pin 0.
intl OXX XXXX XXXX XXXX XXXX XXXX XX1X Xxxxb Interrupt pin 1.
int2 OXX XXXX XXXX XXXX XXXX XXXX XLXX XXXXb Interrupt pin 2.
int3 OXX XXXX XXXX XXXX XXXX XXXX LXK Xxxxb Interrupt pin 3.
hold DXX XXX XXXX XXXX XXXX XLXX X0k Xxxxb Bus hold.

These predefined values may be used as other values would be used. For example:

trace after status write

is the same as:

trace after status

OXXXXOXXXXXXXXXXX LXXXXXXXXX LXXXD

225

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

HP 64761 Emulation Analyzer Trace Signals

When you qualify states, you specify values that should be found on the analyzer
trace signals. The emulation analyzer trace signals are described in the table that

follows.

HP 64761 Emulation Analyzer Trace Signals

Trace | Signal Signal

Signals | Name Description

31.0 Addr[31:0] For normal bus activity, this address corresponds to the lowest addressed
byte for the current data item being accessed.
For execution trace messages, this address corresponds to the word
address of either the from address or the to address. The status field
contains from/to flag.

47:32 Data[15:0] For normal bus activity, these signals contain the data from the shprt
wide data transfer on the data bus.
For execution trace messages, these signals are meaningless. The bytes
in the data field are qualified by the byte enable status bits.

48 Waitcnt[0] A count of how many wait states proceeded the completion of this bus

49 Waitent[1] cycle. Each data cycle may be delayed by some number of wait states

50 Waitcnt[2] before the data is read/written. This counter runs from 0 to 15.

51 Waitcnt[3]

226

Chapter 6: Using the Emulation Analyzer

Qualifying Trigger and Store Conditions

HP 64761 Emulation Analyzer Trace Signals

Trace | Signal Signal

Signals | Name Description

52 Bstcount[0] Shows which data transfer of a burst is associated with the current pus

53 Bstcount[1] cycle. It progresses from 0 to 7. Non-burst cycles will always show 0.

54 Bstcount[2]

A burst consists of an address cycle followed by a number of data aycles.
Each data cycle is stored in the analyzer as it occurs along with the
properly determined address and burst count. This count field indicates
the position of this analysis cycle in a burst transaction.

000 - Data was 1st data cycle

001 - Data was 2nd data cycle

010 - Data was 3rd data cycle

011 - Data was 4th data cycle

100 - Data was 5th data cycle

101 - Data was 6th data cycle

110 - Data was 7th data cycle

111 - Data was 8th data cycle

55 Blast The processor BLAST signal. This processor signal is active low. |t
indicates the last data cycle of a burst access.

56 AccessSize Indicates the size of the current access. Each data cycle has a data size
based on the byte enables. Since various patterns of enables represent
the same data size, this field gives a single pattern to determine data size.

0 = Byte
1 = HalfWord
57 BusLock The processor LOCK signal, which is active low, for the current bus

transfer.

0 = current cycle locked
1 = current cycle unlocked

227

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

HP 64761 Emulation Analyzer Trace Signals

Trace
Signals

Signal
Name

Signal
Description

58

HoldAck

Indicates that processor has entered a bus hold since the last analysis

state. It is possible that no analysis states were generated or stored

during the hold, so this bit indicates that the hold has occurred.

0 = no hold occurred
1 = a hold has occurred

59
60
61
62

IntOFIg
Int1Flg
Int2Flg
Int3Flg

These flags indicate that the interrupt pins on the 80960 have been

active

since the last analysis state. The processor requires that the interrypt

inputs be active for only one bus cycle, so these flags save the acti

until an analysis state is generated. The pins can be programmed for

different configurations which may change the users view of the pin

but these flags only indicate that the pin has been active, not that an

interrupt has been requested/detected.

All flags active high.
IntOFIg - 1 = Detected active low at the processor
IntlFlg - 1 = Detected active high at the processor
Int2Flg - 1 = Detected active high at the processor
Int3Flg - 1 = Detected active low at the processor

ity

S!

66

ImodeFlg

Indicates that the processor is in background mode.

1 = inactive
0 = active

64

FG_H

High marks foreground cycles.

228

Chapter 6: Using the Emulation Analyzer

Qualifying Trigger and Store Conditions

HP 64761 Emulation Analyzer Trace Signals

Trace
Signals

Signal
Name

Signal
Description

65
66
67

NormalBusFlg
MonitorFlg
ExecutionFlg

These flags indicate the cause of the current bus cycle.

The NormalBusFlg indicates a foreground bus cycle. This bus cycle

may be caused by the user program, the foreground monitor progra
by the background monitor performing a foreground access. To
determine the cause of a NormalBusFlg marked cycle the ImodeFIg
be examined.

NormalBusFlg =1 & ImodeFIg=1 User cycle
NormalBusFIlg = 1 & ImodeFIg=0 Monitor Foreground cycle

The MonitorFlg indicates that the current cycle is a monitor cycle.

Execution trace messages are written to background memory, but wi

use the ExecutionFlag, therefore the MonitorFlag will be valid for
monitor code/data.

The ExecutionFlg is an active low flag that indicates that the curren
cycle is an execution trace message cycle. When this flag is set the
EventFlgs[7:0] are valid. The from/to flag will indicate which addres

the message this is. The event flags are available in the status field.

m, or

must

s of

68

Write/Read

The processor W/R signal for the current bus transfer.

0 = Read
1 = Write

69
70
71

Memstat[0]
Memstat[1]
Memstat[2]

These bits represent the attribute of the memory cycle generated.

Memstat[0] = High indicates guarded or ROM cycle

Memstat[1] = Low=target memory cycle, High=emulation memo
cycle

Memstat[2] = High=cycle came from default map term

y

229

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

HP 64761 Emulation Analyzer Trace Signals

Trace | Signal Signal

Signals | Name Description

72 EmsgAt/To These bits are the processor event flags generated during an execution
73 InstructionTrace | trace message.

74 BranchTrace

75 CallTrace Bit 0 is the AT/TO flag generated by the analyzer during execution frace
76 ReturnTrace messages. The execution address will be marked AT=1 and the next
77 PrereturnTrace address will be marked TO=0.

78 SupervisorTrace

79 BreakpointTrace 7 - Breakpoint

6 - Supervisor

5 - Prereturn

4 - Return

3-Call

2 - Branch

1 - Instruction

0 - AT/TO
1=AT
0=TO

230

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

HP 64761 State Qualifiers

Whenever a state can be specified in the trace command (trigger state, storage state,
prestore state, etc.), you will see the following softkeys that allow you to qualify the
state:

accsize The value following this softkey is searched for on the lines
over which the size of the current access is passed to the
analyzer.

address The value following this softkey is searched for on the lines that

monitor the emulation processor’s address bus.

data The value following this softkey is searched for on the lines that
monitor the emulation processor’s data bus.

memmap The value following this softkey is searched for on the lines
which monitor the memory map status.

status The value following this softkey is searched for on the lines that
monitor other emulation processor signals.

waitcnt The value following this softkey is searched for on the lines
over which the number of wait states that preceded the
completion of the bus cycle is passed to the analyzer.

When a value is specified without one of these softkeys it is assumed to be an
address value.

Predefined Values for HP 64761 State Qualifiers When you specify access

size, burst size, memory mapper, or status qualifiers for analyzer states (by pressing
theaccsize memmap or status softkeys), you will be given the following softkeys
which are predefined values for the qualifiers.

Predefined Values for State Qualifiers - HP 64761

Trace Equate | Value Description

Label

accsize byte oOh 8-Bit byte.
short 1h Two bytes.

231

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Predefined Values for State Qualifiers - HP 64761
Trace Equate | Value Description
Label
memmap | emul 01x x101b Emulation memory access.
eram 010 x101b Emulation RAM access.
erom 011 x101b Emulation ROM access.
targ 10x x101b Target memory access.
status at OXXXX XXXL XXXX 0001 XXXX XXXX XXXX XXXXD Execution at message.
bgmon OXXKX XXXK XXX 1100 XXXX XXXX XXXX XXXXD Background monitor cycle.
branch 0X30KX X1XX 300K 0001 XXXX XXXX XXXX XXXXD Branch execution message.
brkpt 0LXXX XXXX XXX 0001 XXXX XXXX XXXX XXXXD Breakpoint exec. message.
call 03X 1XX 300K 0001 XXXX XXXX XXXX XXXXD Call execution message.
cycle OXXKX XXXK XXX LOLL XXXX XXXX XXXX XXXXD Bus cycle.
exec OXXXX XXXX XXXX 0001 XXXX XXXX XXXX XXXXD Execution message.
fgmon 0XXKX XXXK XXX 1111 XXXX XXXK XXXX XXXXD Foreground monitor cycle.
hold OXXKX XXXK XXX XXXX XXX XLXX XXX XXxxD Bus hold.
instr 0XXKX XX1X XXX 0001 XXXX XXXX XXXX XXXXbD Instruction execution message.
int0 OXXKX XXXK XXX XXXX XXX 1XXK XXX XXxxD Interrupt pin 0.
intl OXXKX XXXK XXX XXXX XXXL XXXK XXXX XXXXD Interrupt pin 1.
int2 OXXKX XXXK XXX XXXX XXX XXXK XXXX XXXXD Interrupt pin 2.
int3 OXXXX XXXX XXXX XXXX XXX XXXX XXXX XXXXD Interrupt pin 3.
lock OXXXX XXXX XXX LOLL Xxxx XXOX XXXX XXXXb Bus lock.
preret OXXLX XXXX XXXX 0001 XXXX XXXX XXXX XXXXD Prereturn execution message.
read OXXXX XXXK XXXO LXXX XXXX XXXX XXXX XXXXD Data read.
return OXXX1 XXXX XXXX 0001 XXXX XXXX XXXX XXXXD Return execution message.
super OXIXX XXXX XXXX 0001 XXXX XXXX XXXX XXXXD Supervisor execution message.
to OXXXX XXX0 XXXX 0001 XXXX XXXX XXXX XXXXD Execution to message.
write OXXXX XXXK XXX LXXX XXXX XXXX XXXX XXXXD Data write.

These predefined values may be used as other values would be used. For example:

trace after memmap target

is the same as:

trace after memmap 10xx101b

232

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

To qualify the trigger state and position

Enter a trigger state specification in the entry buffer; then, chioase - After (),
Trace— About (), or Trace - Before ().

When displaying memory in mnemonic format, position the mouse pointer over the
source line where you want to set the trace trigger, press and heédatinouse

button and choosErace After, Trace Before or Trace About from the popup

menu.

Using the command line, enter tinace after, trace about, ortrace before
commands.

Tracing after the trigger state says states that occur after the trigger state sho
saved; in other words, the trigger is positioned at the top of the trace.

Tracing before the trigger state says states that occur before the trigger state should
be saved; in other words, the trigger is positioned at the bottom of the trace.

Tracing about the trigger state says states that occur before and after the trigger
state should be saved; in other words, the trigger is positioned at the center of the
trace.

The actual trigger position is within +/- 3 states of the number specified. When
using the HP 64704 analyzer and counting is turned on, the actual trigger position
is within +/- 1 state of the number specified.

Usually, when you enterteace aboutcommand, the trigger state (line 0) is

labeled "about". However, if there are three or fewer states before the trigger, the
trigger state is labeled "after". Likewise, if there are 3 or fewer states after the
trigger, the trigger state is labeled "before".

The state you define aftace after, trace about, ortrace beforeis the state that
will trigger the analyzer and cause states to be stored.

233

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Examples

Suppose you want to look at the execution of the demo program after the call of the
"update_system()" function (main.c: line 102) occurs.

To turn ON the call execution message, enter the following command.
modify execution_messages clear <RETURN>
modify execution_messages set call <RETURN>

To trigger on the call of the "update_system()" function, enter:

trace after address main."main.c": line 102 status call
<RETURN>
set source on inverse_video on symbols on <RETURN>

display trace <RETURN>

0ffset=0 More data off scree
Label: Address Opcgode or Status w/ Source Lines time count
: umnbaol mnemonic w/symbal relative
co|main+@@@@@@l@ call to up.update_system i.w 1.3 us
BHH B HAEE 0sr/hpB4EBBE/ dema/ debug_serw/hpB4 768/ update_sys.c - line 43 #f
int limit_short = ARGS;
+862 update_+HBABBEGIE P: lda ABABA3ES, r5 1l.i.e 2.2 us

BHERBHBEAR usr/hpB4BB8/ demo/ debug_env/hpE4768/ update_sys.c - line 58 th

int counter;

/% get new target

get_targe arget_temp, &target_humid);

+084 update_+ABEAEE14 F: lda ecs|_target_temp, gd 13.i.e 288 n3
+888 update_+HAAREAIC F: lda ec|_target_humid,gl 17.i.e 438 nS
+018 update_sy.updat: write short 2460 1l.i.e 4d8 nS
+A13 update_+AAABEEZ4 F: call upda.get_targets 13.1i.e 486 n3

BHHEASHEE S osr/hpB4E8B/ demo/ debug_erv/hpB4 760/ update_sys.c - line 54 th

lead the envirorment conditions. */

In the preceding trace list, line 0 (labeled "after") shows the beginning of the
program loop.

234

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Examples

To trigger on a number of occurrences of some
state

Use theoccurs <#TIMES> after specifying the trigger state.

When specifying a trigger state, you can include an occurrence count. The
occurrence count specifies that the analyzer trigger on the Nth occurrence of some
state.

The default base for an occurrence count is decimal. You may specify occurrence
counts from 1 to 65535.

To trigger on the 20th occurrence of the call of the "update_system()" function
(main.c: line 102):

modify execution_messages clear <RETURN>
modify execution_messages set call <RETURN>
trace after address main."main.c": line 102 status call

occurs 20 <RETURN>

235

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Examples

To qualify states stored in the trace

Enter a storage state specification in the entry buffer; then, chicase- Only ().

Using the command line, use thiely option in thetrace command.

By default, all captured states are stored; however, you can qualify which states get
stored with thérace command’only option.

When the emulator is running the demo program, to stuyeaccesses of the
"target_temp" variable:

trace only target_temp <RETURN>

Offset=0H data off screen
Label: Address Opcode or Status w/ Source Lines time count
Base: umbial mremanic wisynbol relative
read_co+BEBEEZ 14 read short ceez 13.i.e ———————————-
+@d1 ecs|_target_temp read short BB46 Il.i.e 2.2 m3
+HEZ ecs|_target_temp read short B84E Il.i.e BH.2 w3
+HA3 ecs|_target_temp read short HAA4B ll.i.e 3.8 us
+d64 ecs|_target_temp read short BB46 Il.i.e 1.8 us
+BAS ecs|_target_temp read short B84E Il.i.e 2.5 u§
+HAE ecs|_target_temp read short HAA4B 11.i.e 285. mS
+@67 ecs|_target_temp write short BE40 Il.i.e 446 n3
+BA5 ecs|_target_temp read short B840 Il.i.e 248 nS
+HA3 ecs|_target_temp read short AR40 ll.i.e 16.8 m5
+@16 ecs|_target_temp read short BE40 Il.i.e §1.3 mS5
+H811 sos|_target_temp read short B840 Il.i.e 3.8 us
+012 ecs|_target_temp read short AR40 1l.i.e 1.§ uS
+d13 ecs|_target_temp read short BE40 Il.i.e 2.5 us
+B14 ecs|_target_temp read short B840 Il.i.e 37.8 w3
+H15 ecs|_target_temp write short AR4F 1l.i.e 448 nS

Notice the trigger state (line 0, labeled "after") is included in the trace list; trigger
states are always stored.

236

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Examples

To prestore states before qualified store states

Enter a storage state specification in the entry buffer; then, clicasze- Only ()
Prestore.

Use theprestore option in therace command.

Prestore allows you to save up to two states which precede a normal store state.
Prestore is turned off by default. However, you can usiabe command’s
prestore option to specify a prestore qualifier.

Prestore is useful when you want to find the cause of a particular state. For
example, if a variable is accessed from many different places in the program, you
can qualify the trace so that only accesses of that variable are stored. Then,

turn on prestore to find out where accesses of that variable originate from.

States which satisfy the prestore qualifier and the storage qualifier at the sam
are stored as normal states.

To storing only write accesses to the variable "target_temp" and prestore the two
previous states:

trace only target_temp status write
prestore anything <RETURN>

237

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Offset=0H More data off scre

Label: Address Opcade or Status w/ Source Lines time count
bBa=e: umbaol mnemonic w/symbol relative
proc_sp+HHAAEZ 24 read short 4361 13.i.8 ————=——————-
pstore get_tar+HABEAZ4E read short 32RB 18.i.e

pstore ecs|_target_temp read short AR41 1l.i.e

+HA3 ecs|_target_temp write short AA43 1l.i.e 18.8 m5
pstore get_tar+HABEEZ4E read short japal ol 183.i.e

pstore ecs|_target_temp read short 843 Il.i.e

+HEAE ecs|_target_temp write short 2845 Il.i.e 134, mS
pstore get_tar+HARBAZ4E read short 32AB 18.i.e

pstore ecs|_target_temp read short BB45 Il.i.e

+BA3 ecs|_target_temp write short BE47 Il.i.e 134. m3
pstore get_tar+HABEAZ4E read short 32RB 18.i.e

pstore ecs|_target_temp read short AR47 1l.i.e

+dlz ecs|_target_temp write short BB43 Il.i.e 131. m3
pstore get_tar+HABEEZ4E read short japal ol 183.i.e

pstore ecs|_target_temp read short B843 Il.i.e

+015 ecs|_target_temp write short H84B 1l.i.e 288. mS

To change the count qualifier (HP 64704 Only)

» Use thecounting option in therace command.

After initializing the analyzer, the default count qualifier is "time", which means
that the time between states is saved. When time is counted, up to 512 states can be
stored in the trace.

When you count states, the counter is incremented each time the state is captured
(not necessarily stored) by the analyzer. When a state is counted, up to 512 states
can be stored in the trace.

When you turn OFF counting, up to 1024 states can be stored in the trace.

238

Examples

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Suppose you want to know how many loops of the program occur between calls of
the "do_sort" function. To change the count qualifier to count a state that occurs
once for each loop of the program, enter:

modify execution_messages clear <RETURN>
modify execution_messages set call <RETURN>

trace only do_sort status call

counting state main."main.c": line 102 status call
<RETURN>

race List [fset=F More data of f screen
Label: Address Opcode or Status w/ Source Lines state count
Base: umnbol mnemonic w/symbal relative
proc_sp+tHBAREZ 24 read short 4861 13.i.e ——————---—~
+HA 1 cod|main. do_sort call to cod|main.do_sort i.n 1
+HAZ cod|main. do_sort call to cod|main.do_sort i.m 4
+HRAZ cod|main. do_sort call to cod|main. do_sort i.m 4
+884 cod|main. do_sort call to cod|{main.do_sort iR 4
+885 cod|main. do_sort call to cod|{main.do_sort i.® 4
+H8B8E cod|main. do_sort call to cod|{main. do_sort i.M 4
+EB7 cod|main. do_sort call to cod|{main. do_sort ive 4
+HAG cod|main. do_sort call to cod|main.do_sort i.n 4
+HAT cod|main. do_sort call to cod|main.do_sort i.n 4
+E 1R cod|main. do_sort call to cod|main.do_sort i.m 4
+811 cod|main. do_sort call to cod|{main. do_sort i.® 4
+812 cod|main. do_sort call to cod|{main.do_sort iR 4
+813 cod|main. do_sort call to cod|{main.do_sort i.M 4
+H14 cod|main. do_sort call to cod|{main. do_sort ive 4
+815 cod|main. do_sort call to cod|{main. do_sort i.e 4

The trace listing above shows that the program loops 4 times for each call of the
"do_sort" function.

239

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

To trace until the analyzer is halted

Chooselrace - Until Stop.

Using the command line, enter tinace on_haltcommand.

Thetrace on_haltcommand allows you to prevent triggering. In other words, the
trace runs until you enter tistop_tracecommand. Th&ace on_haltcommand
is the same as tracihgfore a state that never occurs.

Thetrace on_haltcommand is useful, for example, when you wish to trace the
states leading up to a break into the monitor. Suppose your program breaks on an
access to guarded memory. To trace the states that lead up to the break, enter the
trace on_haltcommand, and run the program. When the break occurs, the
emulator is running in the background monitor, and the analyzer is no longer
capturing states. To display the states leading up to the break, estepttieace
command (and thdisplay trace command if traces are not currently being
displayed).

When theon_halt option is used in a trace command, the trigger condition (and
position) options, as well as thepetitively andbreak_on_trigger options, cannot
be included in the command.

Also, note that this does not work the same when using a foreground monitor
because the analyzer continues to capture states when the break to monitor occurs
(unless the code that causes the break also causes processor to halt). In this case,
you can use the command line to enter a trace command that stores only states
outside the range of the foreground monitor program (for exatrgde, only not

range <mon_start_addr> thru <mon_end_addr> on_haljt

240

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

To break emulator execution on the analyzer
trigger

» Enter a trigger state specification in the entry buffer; then, chioase - Until ().

* When displaying memory in mnemonic format, position the mouse pointer over the
program line which you wish to trace before, press and hokkethetmouse
button and choosErace Until from the popup menu.

» Using the command line, use tieak_on_trigger option to therace command.

Thebreak_on_trigger option to thérace command allows you to cause the
emulator to break when the analyzer finds the trigger state.

Note that the actual break may be several cycles after the analyzer trigger.

Examples To trace before source line 102 and cause the emulator to break into the monitor
when the analyzer triggers:
modify execution_messages clear <RETURN>
modify execution_messages set call <RETURN>
trace before address main."main.c": line 102 status
call break_on_trigger <RETURN>

241

Chapter 6: Using the Emulation Analyzer
Using the Sequencer

Using the Sequencer

When you use the analyzer’'s sequencer, you can specify traces that trigger on a
series, or sequence, of states. You can specify a state which, when found, causes
the analyzer to restart the search for the sequence of states. Also, the analyzer’s
sequencer allows you to trace "windows" of code execution.

This section describes how to:

» Trigger on a sequence of states.

» Specify a global restart state.

» Trace "windows" of program execution.

The sequencing and windowing capabilities from within the Softkey Interface are
not as powerful or flexible as they are from within the Terminal Interface. For
example, in the Terminal Interface, you can specify different restart states for each
sequence term and you can set up a windowing trace specification where the trigger
does not have to be in the window. If you do not find the sequencing flexibility

you need from within Softkey Interface, refer to 8860 Emulator User's Guide

for the Terminal Interface

To trigger after a sequence of states

» Use thdrace find_sequenceommand.

The analyzer's sequencer has several levels (also saliegnce terms Each
state in the series of states to be found before triggering, as well as the trigger state,
is associated with a sequence term.

The sequencer works like this: The analyzer searches for the state associated with
the first sequence term. When that state is captured, the analyzer starts searching
for the state associated with the second term, and so on. The last sequence term
used is associated with the trigger state. When the trigger state is captured the
analyzer is triggered. Up to seven sequence terms and an optional occurrence count
for each term are available.

242

Chapter 6: Using the Emulation Analyzer
Using the Sequencer

Examples In the demo program, suppose you wish to trigger on the following sequence of
events: the "save_points" function, the "interrupt_sim" function, and finally the
"do_sort" function. Also, suppose you wish to store only call execution messages
to show function entry addresses.

To set up the sequencing trace specification, enter the following trace command.

modify execution_messages clear <RETURN>
modify execution_messages set call <RETURN>
trace find_sequence save_points status call and exec_to
then interrupt_sim status call and exec_to
trigger about do_sort status call and exec_to
only status call and exec_to <RETURN>

0ffset=H
Label: Address Opcode or Status w/ Source Lines time count
bBa=e: umnbol mrnemonic w/symbol relative
-H5% up.update_system call to up.update_system i.m 8.2 m3
-#54 upda.get_targets call to upda.get_targets i.H 8.72 ul
-H53 .read_conditions call to .read_conditions i.M 12.8 mS
-85z upda. set_outputs call to upda. set_outputs i.K 18.2 mS
-A51 updat.write_hdwr call to updat.write_hdur i.m 73.7 m3
sq adv upda.save_points call to upda.save_points i.H 42,8 m5
-B49 |___F10atSidF.1F call to |___F10atsidF.1F i.M 268.8 mS
-A45 Co|___r0unddF5F2 call to CD|___r0unddF5F2 i.m 14.8 us
-A47 code|___divsF3 call to code|___divsF3 i.8 18.6 us
-B4E |___FloatsidF.lF call to |___FloatsidF.1F i.m 91.E us
-B45 co|___r0unddF5F2 call to co|___r0unddF5F2 i.M 8.84 uS
-A44 code|___div5F3 call to code|___div5F3 i.m 18.4 us
sq adv ma.interrupt_sim call to ma. interrupt_sim i.K 38.6 u3
-B42 proc_spt+HEAEEAEES call to p.proc_specifictBHBEAERE 1.8 1.79 mS
-841 up.update_system call to up.update_system i.e 13.2 m5
-B48 upda.get_targets call to upda.get_targets ive 8.68 u3

Notice the states that contain "sq adv" in the first column (you may have to press
<PREV> in order to see the states captured prior to the trigger). These are the
states associated with (or captured for) each sequence term. Just as the trigger state
is always stored in trace memory, the states captured in the sequence are always
stored if the trace buffer is deep enough.

243

Chapter 6: Using the Emulation Analyzer

Using the Sequencer

Examples

To specify a global restart state

Use theaestart option to thérace command.

When using the analyzer's sequencer, an additional sequence restart term is also
allowed. This restart is a "global restart"; that is, it applies to all the sequence terms.

The restart term is a state which, when captured before the analyzer has found the
trigger state, causes the search for the sequence of states to start over. You can use
the restart term to make certain some state does not occur in the sequence that
triggers the analyzer.

In the demo program, suppose you wish to trigger on the following sequence of
events: the "save_points" function, the "interrupt_sim" function, and the "do_sort"
function. However, you only want to trigger when the "interrupt_sim" calls the
"do_sort" function. In other words, if the "proc_specific" function is entered before
the "do_sort" function is entered, you know "interrupt_sim" did not call "do_sort"
this time, and the analyzer should start searching again from the beginning.

Again, suppose you wish to store only call execution messages.
To set up this sequencing trace specification, enter the following trace command.

modify execution_messages clear <RETURN>
modify execution_messages set call <RETURN>

trace find_sequence save_points status call and exec _to
then interrupt_sim status call and exec _to

restart proc_specific+8 status call and exec_to

trigger about do_sort status call and exec_to

only status call and exec_to <RETURN>

244

Chapter 6: Using the Emulation Analyzer
Using the Sequencer

0ffset=0 More data off scre

Label: Address Opcade or Status w/ Source Lines time count

Basze: ymbal mnemonic wfsymbol relative

sq adv ma.interrupt_sim call to ma.interrupt_sim i.K .6 S
sq adv proc_sp+HABEAEGET call to p.proc_specific+dBBEAEEEG 1. 359. us
-813 up.update_system call to up.update_system i.e 18.2 m5
-812 upda.get_targets call to upda.get_targets i.e 8.68 u5
-B11 .read_conditions call to .read_conditions i.M 12.8 mS
-818 upda.set_outputs call to upda.set_outputs i.e 18.2 m5
-BH3 updat.write_hdwur call to updat.write_hdur i.e 9.7 mS
sq adv upda.save_points call to upda.save_points i.e 42,8 mS5
-Ba7 |_F10atsidF.1F call to |_F10atsidF.lF i.M 268.8 mS
-BEE co|_r0unddF5F2 call to co|_r0unddF5F2 i.M 14.8 usS
-BE5 code|_div5F3 call to code|_divsF3 i.M 18.6 usS
-AA4 |_FloatsidF.1F call to |_FloatsidF.lF i.M 91.6 us
-AA3 c0|_r0unddF5F2 call to c0|_r0unddF5F2 i.M 8.68 uS
-AAZ code|_di\f5F3 call to code|_div5F3 i.M 18. 4 us
sq adv ma.interrupt_sim call to ma.interrupt_sim ive 3|6 s
c0d|main.d0_50‘r‘t call to c0d|main.d0_50‘r‘t i.M 579, us

Notice in the preceding trace (you may have to press <PREV> in order to see
states captured prior to the trigger) that, in addition to states captured in the
sequence, "sqg adv" is also shown next to states which cause a sequencer restart.

To trace "windows" of program execution

Use theenableanddisable options to thérace command.

Windowing refers to the analyzer feature that allows you to turn on, or enable, the
capturing of states after some state occurs then to turn off, or disable, the capturing
of states when another state occurs. In effect, windowing allows you capture
"windows" of code execution.

Windowing is different than storing states in a rangedttg range option in the

trace command syntax) because it allows you to capture execution of all states in a
window of code whereas storing states in a range won't capture the execution of
subroutines that are called in that range or reads and writes to locations outside that
range.

When you use the windowing feature of the analyzer, the trigger state must be in
the window or else the trigger will never be found.

245

Chapter 6: Using the Emulation Analyzer

Using the Sequencer

Examples

If you wish to combine the windowing and sequencing functions of the analyzer,
there are some restrictions:

» Up to four sequence terms are available when windowing is in effect.
* Global restart is not available when windowing is in effect.

« Occurrence counts are not available.

To trace only the demo program execution from the call of the "update_system"
function to the call of the "get_targets" function, you would set up the sequencer
specification so that the call to the "update_system" function is the window enable
term and the return at the call to the "get_targets" function is the window disable
term.

modify execution_messages clear <RETURN>
modify execution_messages set call <RETURN>

trace enable update_system status call and exec_to

disable get_targets status call and exec_to <RETURN>
0ffset=H
Label: Address Opcode or Status w/ Source Lines time count
Basze: ymnbol mremonic wfsymbol relative
+B631 get_tar+HOAEEEEC F: mow gl,r5 17.i.e 2408 nS
+633 update_+BHHAEEZ4 call to upda.get_targets ik 2.8 uS
sq adv up.update_system call to up.update_system i.e 194. m3
Bt HAR LR usr/ hpB40AE/ dema/ debug_erv/hpB4766E/ update_sys.c - line 49 it
int limit_short = ARGS;
+A36 update_+DHBEABIA P: lda HBEBEE3ER, r5 1l.i.e 2.8 uS
BHfHARHERR usr/ hpB40AE/ dema/ debug_erv/hpB47668/ update_sys.c - line SH th

int counter;

/% get ne

get_targe target_temp, &Starget_humid);
+038 update_+AHERAE14 F: lda ecs|_target_temp, gl 13.i.e 2408 nS
+A42 update_+HBAREAIC F: lda ec|_target_humid,gl 17.i.e 528 nS
+H44 update_sy.updat: write short EdBR 11.i.e 3608 n3
+847 update_+ABBRAAEZ4 P: call upda.get_targets 13.i.e 5208 n3

Bt H S usr hpE4BAE/ demo/ debug_erv/hpB4766/ update_sys.c - line 54 th

Notice in the resulting trace (you have to press the <NEXT> key) that the enable
and disable states have the "sq adv" string in the line number column. This is
because the windowing feature uses the analyzer's sequencer.

246

Chapter 6: Using the Emulation Analyzer
Modifying the Trace Display

Modifying the Trace Display

This section describes the options available when displaying trace lists.

This section describes how to:

Display the trace about a line number.

Display the trace, disassembling from a line number.
Display the trace in absolute format.

Display the trace in mnemonic format.

Display the trace with high-level source lines.

Display the trace with symbol information.

Change the column widths in the trace display.

Display time counts in absolute or relative format.

Display the trace with address information offset by a value.
Return to the default trace display.

Display the external analyzer information.

247

Chapter 6: Using the Emulation Analyzer
Maodifying the Trace Display

To display the trace about a line number

» Use the<LINE #> option to thalisplay trace command.

The<LINE #> trace display option allows you to specify the line number to be
centered in the display.

Examples To display the trace about line humber 160:

set default <RETURN>
display trace 160 <RETURN>

Label: HAddress Opcode or Status time count

Base: he mremonic relative

+146 BB10ACD4 instr ik 4.64 uS5
+148 BB187535 write short BEAB 1l.i.e 2.3 us
+143 BB1B753A write short BBEAEB 12.i.e 128 nS
+158 BE1BACFA P: mov aa, 6 1l.i.e 248 nS
+152 BE1BECF4 P: =t rB, BB18765C 13.i.e 248 nS
+156 BBE1BECFC P: stos g7, kR 17.i.e 5208 nS
+158 Be1BeCDs instr ioH 1.2 u5
+1668 BB1BADIA P: stos g7, AB1858C24 l.i.e 2.4 us
+164 BB1RAD1E P: mov aa, r3 15.i.e 528 nS
+166 Be18aDIC P: lda AREABAZE, gA 17.i.e 248 nS
+168 B818802A P: cmpibge r3,gH,BE1BAD7A 11.i.e 3668 nS
+178 BB188024 P: mulo 12,r3, g1 13.i.e 248 nS
+172 BB1BADZ2E P: lda AREABA4 1, g2 15.i.e 2808 nS
+174 BE18E02C P: stis g2, B8 1 1A0BE (g1} 17.1i.e 244 nS
+176 BBH1BECEA call to ABLBBE01H iuh 1.8 uS
+178 BBlBREC24 write short BBEAB 1l.i.e 2.3 us

248

Chapter 6: Using the Emulation Analyzer
Modifying the Trace Display

Examples

To display the trace in absolute format

Use theabsoluteoption to thedisplay trace command.

Theabsolutetrace display option allows you to display status information in
absolute format (binary, hex, or mnemonic). @hsolute status mnemonic
display is the same as default mnemonic display, except that opcodes are not
disassembled.

To display the trace in absolute format with the status information as binary values:

display trace absolute status binary <RETURN>

Label: Address Data Absolute Status time count
Base: he he binary relative
+146 BHEA1EBC04 AA1A PAEPAE]11EA1EEA11111A6] 1 1HARE 1AH 4.36 uS
+147 BE1EBCOS AA1A PAEPAE1ALEA1EEAL 1AL 1AE] 1AHAA1BAE 248 n3
+148 BEA1E7538 AAEER PABRAE1AARLAL11A111111A6]1 1HAREARL 2.1 u3
+143 BA1E753A AAEE PABPAE1AARLAL11A111111A6] 1AEA1EAR] 126 n3
+158 HA1EBCFB 1EAR ABRAER1ABIAEIAL116] 16611 1AREARE] 246 nS
+151 B8 1BACF2 SC38 DRHDAE1AE1E81811181188]11 10816881 128 nS
+152 BH1EBCF4 36EE BAEBAE1ARLIAAIAI1IAL1AE] 1 1HIAHEA] 126 nS
+153 BH1EBCFE 92368 DAEBAE1AALAAIAILIIAL1AE]L11H] 1HAA]L 166 nS
+154 BH1EBCFSE 7BEC DAEBAE1AALAAIAI11A11AE]111AAEARL 126 nS
+155 BH1BBCFA BA1A DAEBAE1AALIAAIAI1IAL1AE]L111A1EAA] 126 nS
+156 BEIBBCFC 36EE DAEBAE1AALAAIAIL1IAL1AEL11]1AEAR] 126 n3
+157 BBI1EBCFE BAEZ BAEBAE1AALAAIAI1IAL1AE]L 1AL 1HAA] 126 n3
+158 BE1EBCOS AA1E BABEAE]11EA1EEAL1AL1AE]] 1HARE 1AH 1.1 u3
+153 BA1EBCER AA1A PAEPAE1ALEA1EEAL 1AL 1AE] 1AHAA1BAE 248 n3
+168 HR1EB01A J6EE PAEPAE1AALAAIA111111A6]1 1HAREARL 2.2 u3
+161 AR1BADLZ BABS PABPAE1AARLAAIAI11111A6]11HALIEARA] 126 n3

249

Chapter 6: Using the Emulation Analyzer
Maodifying the Trace Display

To display the trace in mnemonic format

» Use thannemonicoption to thelisplay trace command.

Themnemonictrace display option allows you to display the trace information in
mnemonic format (that is, opcodes and status). The default trace display is in
mnemonic format, with prefetches disassembled and execution messages presented

as status.
Examples To display the trace in mnemonic format:
display trace mnemonic <RETURN>

race List =1

Label: HAddress Opcode ar Status time count

Base: he mnemonic relative

+146 BE1AECO4 instr iuk 4.64 uS
+148 BA1A7538 write short £la]=]e] 1l.i.e 2.3 uS
+143 BA18753A write shart u]a]E]e] 12.i.e 128 nS
+1568 BA1EABCFA P: mow aa, r6 1l.i.e 248 nS
+152 BALAECF4 P: st rG, BA18765C 13.i.e 248 nS
+156 BALABCFC P stos Q7 EEEEEE 17.i.e 5208 nS
+158 @E148C0g instr ik l.2 uS
+168 BAlAE0lA P: stos g7, Ba188C24 1l.i.e 2.4 us
+164 BA1EB0O1G P: mow Aa, r3 15.i.e 528 nS
+166 BA18B0OIC P: lda ABBEBEEZE, gB 17.i.e 248 nS
+168 @@188028 PF: cmpibge r3,gl, BH1EB07E 1l.i.e 3608 nS
+178 BA188024 P: mulo 12,r3, g1 13.i.e 248 n3
+172 BA188025 P: lda ABABaE41, g2 15.i.e 2868 nS
+174 BE1AEDZC P stis q2, 881 1R0ER(g1} 17.i.e 248 nS
+176 ©E1HQECER call to BA188018 ik 1.8 uS
+178 BA1ABC24 write shart u]a]E]e] 1l.i.e 2.3 us

To display the trace in mnemonic format with only execution messages
disassembled:

display trace mnemonic option
disassemble_execution_messages <RETURN>

250

Chapter 6: Using the Emulation Analyzer
Modifying the Trace Display

T

Label: Address Opcode ar Status time count

Base: he mnemnonic relative

+146 BE1EBCO4 E: mow a8, r4 i.¥ 4.64 uS
+148 BE1A7538 write short BEGAE 1l.i.e 2.3 uS
+143 BE1A753A write short BHEA 12.i.e 128 nS
+158 BE1EBCFA read short LEAB 1l.i.e 248 nS
+151 BE1EBCFZ read short 5C308 12.i.e 128 nS
+152 BE1BBCF4 read short 3860 13.i.e 128 nS
+153 BE1EBECFE read short 3230 l4.i.e 164 nS
+154 BEIBBCFE read short 7B5C 15.i.e 128 nS
+155 BE1EBCFA read short @818 16.i.e 128 nS
+156 BE1BBCFC read short 3068 17.i.e 128 nS
+157 BEIEECFE read short BABS 18.i.e 124 nS
+158 BE18BCOS8 E: st r4,B88187538 i.H 1.1 U5
+168 BE18B01A read short 30608 1l.i.e 2.4 us
+161 BeElEB01Z2 read short BRABS 12.i.e 128 nS
+162 BE1aedl4 read short BC24 13.i.e 124 nS
+163 BE18B016 read short @818 l4.i.e 128 nS

To display the trace in mnemonic format with prefetches and execution mess
disassembled:

display trace mnemonic option disassemble _both <RETURN>
Label: HAddress Opcode or Status time count

Base: he mnemonic relative

+146 BB1BACDY E: mov Aa, r4 ik 4.64 uS5
+148 BB187535 write short BEAB 1l.i.e 2.3 us
+143 BB1B753A write short BBEAEB 12.i.e 128 nS
+158 BE1BACFA P: mov aa, 6 1l.i.e 248 nS
+152 BE1BECF4 P: =t rB, BB18765C 13.i.e 248 nS
+156 BBE1BECFC P: stos g7, kR 17.i.e 5208 nS
+158 BE18ECDE E: st r4, BE8187538 ik l.2 uS
+1668 BB1BADIA P: stos g7, AB1858C24 l.i.e 2.4 us
+164 BB1RAD1E P: mov aa, r3 15.i.e 528 nS
+166 Be18aDIC P: lda AREABAZE, gA 17.i.e 248 nS
+168 B818802A P: cmpibge r3,gH,BE1BAD7A 11.i.e 3668 nS
+178 BB188024 P: mulo 12,r3, g1 13.i.e 248 nS
+172 BB1BADZ2E P: lda AREABA4 1, g2 15.i.e 2808 nS
+174 BE18E02C P: stis g2, B8 1 1A0BE (g1} 17.1i.e 244 nS
+176 BBIBECEA E: call AR 18E014 iuh 1.8 uS
+178 BBlBREC24 write short BBEAB 1l.i.e 2.3 us

To display the trace in mnemonic format with neither prefetches nor execution
messages disassembled:

display trace mnemonic option disassemble_neither
<RETURN>

251

Chapter 6: Using the Emulation Analyzer
Maodifying the Trace Display

“: ist

Label: Address Opcode or Status time count

ba=e: he mnemonic relative

+146 B01BBCO4 instr i.K 4.64 uS
+148 BE1B7538 write short BHAB 1l.i.e 2.3 uS
+143 BE1E753A write short BHGA 12.i.e 124 nS
+158 BH1BBCFA read shart LEAB 1l.i.e 248 nS
+151 B8lBBCFZ read short 5SC38 12.i.e 128 nS
+152 BU1BBCF4 read short 3EBE 13.i.e 128 nS
+153 BH1EBECFE read short 3230 l4.i.e 164 nS
+154 BH1BBCFE read short 7G5C 15.i.e 128 nS
+155 BH1BBCFA read short BALE 16.i.e 128 nS
+156 BE1BBCFC read short 3EBE 17.i.e 128 nS
+157 BEIEECFE read short BABS 18.i.e 124 nS
+158 B81BBCDA instr iuH 1.1 U5
+1668 B9lee01a read short 36BE 1l.i.e 2.4 us
+161 B8lBe012 read short BABS 12.i.e 128 nS
+162 B9lBe014 read short BLC24 13.i.e 128 nS
+163 B1BB016 read short BHIA l4.i.e 128 nS

To display the trace in mnemonic format with only prefetches disassembled:

display trace mnemonic option disassemble_prefetch

<RETURN>
race List

Label: Address Opcode or Status time count
Base: he mremonic relative
+146 BA1ABCO4 instr i.H 4.64 u3
+148 BA1A7538 write shart ala]=]d] Il.i.e 2.3 u3
+143 BE18753A write shart ala]=]5] 12.i.e 128 n3
+1568 BEIABCFA P: mow aa, r& Il.i.e 248 nS
+152 BALAECF4 P: st rG, BA18765C 13.i.e 248 n3
+156 BALABCFC P: stos g7, ErEE Rk 17.1i.e 5zA n3
+158 BE188C08 instr i.e 1.2 5
+168 BA1AE01A P: stos g7, BE188C24 Il.i.e 2.4 ul
+164 BA18B018 P: mow Aaa, r3 15.i.e 528 n3
+166 BE18B0IC P: lda ABEEaE2E, gb 17.i.e 248 n3
+168 BE1AE028 P: cmpibge r3,gd, BE1EB07E 1l.i.e 3EA nS
+178 BA18E024 F: mulo 12,r3,91 13.i.e 248 n3
+172 BA188025 F: lda ARABaE41, g2 15.i.e Z8A n3
+174 BE1AEDZC P: stis g2, 881 1R0EE (g1} 17.1.e 248 nS
+176 BE1AECEA call to BALBAEDIB i.m 1.8 u5
+178 BA18BC24 write shart ala]=]d] Il.i.e 2.3 u3

252

Chapter 6: Using the Emulation Analyzer
Modifying the Trace Display

Examples

To display the trace with high-level source lines

Use theset sourcecommand.

To include high-level source lines in the trace display, you must usetthe
command. Theetcommand allows you to include symbolic information in trace,
memory, register, and software breakpoint displays. s€eb@mmand affects all
displays for the current window.

Theset source on/off/onlycommand allows you to include source file information
in the trace list or memory mnemonic display. $herce onlyoption specifies
that only the source file information will be displayed.

When source lines are included, comments that contain file and line information
appear before the source lines.

Also, when source lines are turned on, three additional options are available i
set command: inverse video, tabs are, and number of source lines.

Theinverse_videooption allows you to display source lines in inverse video.

Thetabs_areoption allows you to specify the number of spaces between tab stops
so that the appropriate number of spaces can be inserted for source lines. The
default value is eight. Values from two to 15 can be entered.

Typically, there are lines in the source file that are not associated with actual
instructions (declarations, comments, etc.). filn@ber_of_source_linesoption

allows you to specify the number of these source lines to be displayed for every
source line that is associated with an actual instruction. Only source lines up to the
the previous source line that corresponds to actual code will be displayed. The
default value is five. Values from one to 50 can be entered.

To display the trace with high-level source lines:

set source on <RETURN>
display trace <RETURN>

253

Chapter 6: Using the Emulation Analyzer
Maodifying the Trace Display

0f =
Label: Address Opcode or Status w/ Source Lines time count
Base: he mnemnonic relative
B, . S deboug_er/RpB4YER init_system.c - line BE thru B8 e
Returns: Mothing.
K o K K K KK K K K KK KK K K K K K K K K K K K K R K K R K K K 2K K K K K K R K Rk R R K K 2K oK K K K K K K R K R K K K K K K K K Kk

wvoid
init_wal_arri}
!
+168 HElEB0l8 P: stos g7, AB188C24 1l.i.e 2.4 us

BUHBRGHRES. . . S debug_er/hpB47ER init_system.c - line 81 thru 82 HitH
int cur_el;
for (cur_el = B; cur_el < NUM_OF_OLD; cur_el++l

+164 BE186015 F: mov a8, r3 15.i.e 526 n3
+166 B8188DIC P: lda ARAABAZE, gH 17.i.e 248 n3
+1668 BE1BBDZA F: cmpibge r3,gH, BE1BED7A 1l1.i.e 368 n3
BHtERHERLE. . S deboug_erv/RpB4YER init_system.c - line 83 thru a4 e

{

old_datalour_ell.temp = MIN_TEMP;

To set the number of source lines to be displayed at 12:

set source on number_of _source_lines 12 <RETURN>
display trace <RETURN>

race 1 0
Label: Address Opcode or Status w/ Source Lines time count
Base: he mnemnonic relative
B, . S deboug_er/RpB4YER init_system.c - line BE thru B8 e
*
[Oescription: This code initializes the wal_arr data structure.
*
* Farameters: none
*
* References: Mone.
*
* Returns: Mothing.
KKK KKK K KKK KK KKK KK KKK KK KK K KKK KK KK KK KK KK KKK KK KK
wvaid
init_wal_arr{}
{
+168 BE1BEE01A P: stos q7,B8188C24 1l.i.e 2.4 uS

Bt AL, .. S debug_er/hpB4YEE init_system.c - line gl thru g2 e

int cur_sl;

254

Chapter 6: Using the Emulation Analyzer

Modifying the Trace Display

Examples

To display the trace with symbol information

Theset symbols on/oftommand allows you to specify that address information be
displayed in terms of program symbols.

To display the trace with symbol information:

set source off symbols on
display trace

<RETURN>

<RETURN>

Address Opcode or Status time count

umnbaol mnemonic w/symbal relative
ini.init_val_arr P: stos g7, init_syste.ini:+BBE 1l.i.e 2.4 us
init_wvat@AAAAEAS F: mov HA, r3 15.1i.e 5268 n3
init_watAHBAABAC P: lda AABAREZA, gA 17.1i.e 248 nS
init_wa+ABEEEE1R F: cmpibge r3,g@,co|init_val_arr+ 1l.i.e 36H n3
imit_va+BAABBEEA14 P: mulo 12,r3, 9l 13.i.e 248 n3
init_wa+ARBAEELE P: lda AEEBEAE4 1, g2 15.i.e 2BB nS
init_watAHBEEEIC P: stis g2, B8 1 1A0BAT gL} 17.1i.e 248 nS
init_sy+AHBAREZA call to ini.init_wval_arr icH 1.6 us
init_sy+ABBAREAY write short BABE 1l.i.e 2.3 us
ini.init_wval_arr instr i.A4 2.4 us
init_wva+BAABERZ4 P: mulo 12,r3,a3 13.i.e 2.7 us
init_wva+ABBREEZE P: lda BEEBEEZT, g4 15.i.e 2BB ns
init_wva+ABBAAEZC P:r stis g4, 881 1R0B2(g3) 17.1i.e 248 ns
init_va+BEABEEEE instr icH 1.4 us
init_vat+BBEBBBEC instr i.M 4,68 uS
init_wvat+tHAAABRBA1A instr icH 4.84 uS

255

Chapter 6: Using the Emulation Analyzer
Maodifying the Trace Display

Examples

To change column widths in the trace display

Use theset width command.

Theset width command allows you to change the width of the address and
mnemonic (or absolute) columns in the trace list. Values from one to 80 can be

entered.

When address information is being displayed in terms of symbols (in other words,
symbols on), you may wish to increase the width of the address column to display

more of the symbol information.

When trace information is displayed in mnemonic format, you can additionally

specify the width of symbols in the "Opcode or Status" column.

To display the trace with the address column width set to 30 characters:

set width label 30 <RETURN>
display trace <RETURN>

race List More data off s
Label: Address Opcode or Status
Base: ymbol mnemonic w/synbol
+1E68 C:Dde|init_sgstem.init_\fal_arr P: stos g7, init_syste.ini:+@8E 11.i.
+164 code|init_wal_arr+BEEAABBE P: mowv 66, »3 15.1i.
+1EE code|init_wal_arr+BEARBAAC P: lda AEEBEEZE, g8 17.1.
+1E68 code|init_wal_arr+HOAHBALE F: cmpibge ‘r‘3,g8,co| init_wval_arr+ 11.i.
+178 code|init_wal_arr+BBBBAB14 P: mulo l2,r3,gl 13.14.
+172 code|init_wal_arr+BEEBABLE P: lda AEEERE4 1, g2 15.14.
+174 code|init_wval_arr+BEBEABIC P: stis g2, B8 1 1A0BAT g1} 17.1.
+176 code| init_system+HHAHEAEH call to ini.init_val_arr i.
+178 init_syste. init_syst:+HH0BEEGE4 write short BARER 11,4,
+1739 code| init_system.init_wal_arr instr i.
+183 code|init_wal_arr+BAAAAAZ4 P: mulo l2,r3,a3 13.1.
+185 code|init_wal_arr+BEAABAZE P: lda ARERRE23, g4 15.1.
+187 code|init_wal_arr+BBAABAZC P: =tis g4, BR1IADBZ (g3} 17.1.
+183 code|init_wal_arr+BHAAARAS instr i.
+1391 code|init_wal_arr+BHAAARAC instr i.
+1393 code|init_wal_arr+BHAAAR LA instr i.

256

Chapter 6: Using the Emulation Analyzer
Modifying the Trace Display

To display time counts in absolute or relative
format

» Use thecount option to thalisplay trace command.

Count information may be displayed two ways: relative (which is the default), or
absolute. When relative is selected, count information is displayed relative to the
previous state. When absolute is selected, count information is displayed relative to
the trigger condition.

Thecount absolute/relativetrace display option is not available when counting is
turned off in the trace command.

Examples To display the trace with absolute time counts:

set default <RETURN>

display trace count absolute <RETURN>
race List

Label: HAddress Opcode or Status time count
Base: he mnemonic absolute
+1668 BB1BADIA P: stos g7, Ba188C24 1l.i.e + 113. us
+164 B818E01E P: mov Aaa, r3 15.i.e + 114. us
+166 B818AD0IC P: 1da ABABEEZE, gB 17.i.e + 114. us
+168 BE1AE0Z8 P: cmpibge r3,gd, BE1EB07E ll.i.e + 114. us
+178 B8188024 P: mulo 12,r3,ql 13.i.e + 114. us
+172 BE1BEDZ2E P: 1da ABEBAE4 1, g2 15.i.e + 115. us
+174 @a18802C F: stis g, 881 1R0ER(g1} 17.i.e + 115, us
+176 BB1BAECEA call to BA1BEDIG i.m o+ 116, us
+178 BBlBREC24 write short BHEBA 11.i.e + 118. us
+173 Belee0la instr ik o+ 121, us
+183 B8198034 P: mulo 12,r3,93 13.i.e + 123. us
+185 BE18ED3E P: lda ABEBEEZS, g4 15.i.e + 124. us
+187 BB1BED3C P: stis g4, B811R0EZ(g3} 17.i.e + 124. us
+1583 @@10e8018 instr i+ 125, us
+131 Belee0lC instr i+ 136, us
+133 BBl1eE0D2A instr i+ 135, us

257

Chapter 6: Using the Emulation Analyzer
Maodifying the Trace Display

Examples

To display the trace with addresses offset

Use theoffset_by option to thalisplay trace command.

Theoffset_bytrace display option allows you to cause the address information in
the trace display to be offset by the amount specified. The offset value is subtracted
from the instruction’s physical address to yield the address that is displayed.

If code gets relocated and therefore makes symbolic information obsolete, you can
use theoffset_byoption to change the address information so that it again agrees
with the symbolic information.

You can also specify an offset to cause the listed addresses to match the addresses
in compiler or assembler listings.

To display the trace with addresses offset by 100000H:

display trace offset_by 100000h <RETURN>
race List

Label: Address Opcode or Status time count
Base: he mnemonic absolute
+1668 BEAREDIA P: stos g7, BaEAEC24 1l.i.e + 113, us
+164 BEARED1E P: mov A8, r3 15.i.e + 114, us
+166 BeApeDIC P: lda FFFaBEza, ga 17.i.e + 114, us
+168 BEBEEDZE P: cmpibge r3, gd, BEABADTE ll.i.e + 114, us
+178 BEAREDZ24 P: mulo 12,r3,al 13.i.e + 114, us
+172 BEABEDZ2E P: 1da FFFaaE41, g2 15.i.e + 115, us
+174 BEEEE0DZC P stis gc, @81 1R0EA (g1} 17.i.e + 115. uS
+176 BUEBBCEA call to BABAEDI1AG i.M+ 11B. us
+178 BoAREC24 write short BHEGAE 1l.i.e + 118. us
+173 Boapgen1a instr iKW+ 121, us
+183 B0apE034 P: mulo 12,r3,93 13.i.e + 123. us
+185 BEABRED33 P: lda FFFBaE23, g4 15.i.e + 124. us
+187 BUABED3C P stis g4, 881 1R0BZ(g3} 17.i.e + 124, us
+183 BoEBE018 instr i.W o+ 125, us
+131 Be@Eellc instr i.H o+ 136, uS
+133 BuEBRB0Z2A instr i+ 135, us

258

Chapter 6: Using the Emulation Analyzer
Modifying the Trace Display

Examples

To return to the default trace display
Use theset defaultcommand.

Theset defaultcommand allows you to return to the default display.

To return to the default trace display:

set default <RETURN>

race List

Label: Address Opcode or Status time count

Base: he mremonic relative

+168 @A18B01A F: stos g7, Ba188C24 Il.i.e 2.4 us
+164 BA18B018 P: mow Aaa, r3 15.i.e 5268 nS
+166 BA18B0OIC P: lda ABBEBEEZE, gB 17.i.e 248 nS
+168 BA188028 PF: cmpibge r3,gH, BE1EBA07E 11.i.e 3608 nS
+178 BA188024 P: mulo 12,r3,gl 13.i.e 248 nS
+172 BA188028 P: lda ABABAE4 1, g2 15.i.e 2808 nS
+174 BA18B02C F: stis g2, B811R0BEA(g1} 17.i.e 2408 nS
+176 BE186CEA call to BA18E018 ik 1.8 uS
+178 BA1ABC24 write short £la]=]e] 1l.i.e 2.3 uS
+173 B@a1ae0l1a instr iuh 2.4 us
+1583 BA188034 F: mulo 12,r3,93 13.i.e 2.7 us
+185 BA188038 P: lda ABABEEZS, g4 15.i.e 2808 nS
+187 BA18B03C F: stis g4, B811R0EZ (g3} 17.i.e 2408 nS
+183 ©A1868018 instr i.k 1.4 uS
+1591 BB 1880 1C instr iuK 4.68 uS
+133 BAlasbza instr ik 4.84 uS

259

Chapter 6: Using the Emulation Analyzer
Maodifying the Trace Display

Examples

To display external analyzer information
(HP 64705 Only)

Use theexternal option to thalisplay trace command.

Theexternal trace display option allows you to include data from the external
analyzer in the trace list. External bits are displayed by default. If you do not wish
to have the external bits information in the display, you can turn them off.

The bits associated with the external analyzer labels may be displayed in binary or
hexadecimal format. Labels must be defined in the external analyzer configuration
(and prior to trace command entry) before they appear as softkey selections when
displaying the trace. Refer to the "To define labels for the external analyzer
signals" description in the "Using the External State Analyzer" chapter.

Note that theexternal option to thealisplay trace externalis also used to change
the number bases of thetsize memmap, andwaitcnt internal trace labels.

To display the "xbits" column in binary format:

display trace external xbits binary <RETURN>

race List More data off =
Label: Opcode or Status time count =bits
Base: mnemonic relative binary
+843 perand BA1A7658 l44.c.1.e 128 nS BABEEEOEEEEEDEDA0
+858 te ward J4la]5la]s]]=]e] 11l.c.i.e ZEH nS BABEEE0EEEEERED A0
+851 +te ward J4la]5la]s]]=]e] 11l.c.i.e 248 nS BABEEE0EEEEERED A0
+A52 a8, rb 14l.c.i.e ZEH nS BABEEENEEEEEEED A
+B53 rB, BA1A7EEC 42.c.1.e 128 nS BABEEEEEEEEDED A0
+854 perand BA1A7ESC 143.c.i.e 128 nS BABBEHEEEHEDED A0
+855 = g7, ko 44.c.1.e 144 nS BABEEEOEEEEEREREE
+856 = g7, Ba188C24 14l.c.i.e 248 nS BABEEEEEHEERERER
+857 perand BA1AGCZ24 l42.c.1.e 128 nS BABEEEOEEEEEDEDA0
+A58 a8, r3 143.c.1.e 148 nS BABEEE0EEEEERED A0
+853 ABABABZE, gB l44.c.i.e 128 nS BABEEENEEEEEEED A
+BEB te short xxxxEBED 11l.c.i.e 248 nS BABEEEEEEEEDED A0
+B61 ibge r3,q@,E68186078 14l.c.i.e ZEH nS BABEEEEEEEEDED A0
+AE6Z2 o 12,r3,4ql 42.c.i.e 128 nS BABBEHEEEHEDED A0
+B63 BRaagE41, g2 143.c.1.e 124 nS BABEEEOEEEEEREREE
+864 = gc, Ba11R0EA(g 1) l44.c.1.e 148 nS BABEEEEEHEERERER

260

Chapter 6: Using the Emulation Analyzer
Saving and Restoring Traces

Saving and Restoring Traces

The emulator/analyzer interface allow you to save trace commands and trace lists.
You can restore trace commands in order to set up the same trace specification.
You can restore traces in order to view trace data captured in the stored trace.

This section describes how to:
e Save trace commands.

e Restore trace commands.
e Save traces.

* Restore traces.

To save trace commands

* ChooseFile - Store— Trace Spec

* Using the command line, enter thtere trace_specommand.

You can save a trace command to a "trace specification” file and reload it at a later
time.

The trace command is saved in a file named "tspecfile.TS" in the current directory.
The extension ".TS" is appended to trace specification files if no extension is
specified in thestore trace_specommand.

Examples To store the current trace command:

store trace_spec tspecfile <RETURN>

261

Chapter 6: Using the Emulation Analyzer
Saving and Restoring Traces

To restore trace commands

* ChooseFile - Load - Trace Spec

* Using the command line, enter tbad trace_specommand.

Trace commands that are restored will always work, even if symbols have been
changed; however, once you modify the trace command, it may no longer work.

Loading a trace specification does not start the trace; to do this, you must enter the
trace command either by selecting it from the Trace Specification Selection dialog
box or by using th&race — Again pulldown menu item.

Examples To bring back the trace command saved in "tspecfile. TS" and perform a trace
measurement using it:

load trace_spec tspecfile <RETURN>

trace again <RETURN>

262

Chapter 6: Using the Emulation Analyzer
Saving and Restoring Traces

To save traces

* ChooseFile - Store— Trace Data

* Using the command line, enter thtere tracecommand.

You can save a trace to a trace file and reload it at a later time.

The trace is saved in a file named "trcfile. TR" in the current directory. The
extension ".TR" is appended to trace files if it is not specified isttre trace
command.

Examples To store the current trace:

store trace trcfile <RETURN>

263

Chapter 6: Using the Emulation Analyzer
Saving and Restoring Traces

Examples

To restore traces

ChoosedFile - Load - Trace Data

Using the command line, enter tload trace command.

The restored trace depth is the depth specified when the trace was stored and cannot
be increased. You may want to increase the trace depth before storing traces.

When a trace is loaded, the trace command is not restoredcefagainor trace

modify command will use the last trace command entered, not the command which
resulted in the loaded trace. Also, the trace status shown Oigfiey status

command does not reflect the loaded trace.

To restore the "trcfile.TR" trace file:
load trace trcfile <RETURN>

The trace information stored in "trcfile. TR" is restored. You can view the trace as
you would any other trace.

264

Making Software Performance
Measurements

265

Making Software Performance
Measurements

The Software Performance Measurement Tool (SPMT) is a feature of the Softkey
Interface that allows you to make software performance measurements on your
programs.

The SPMT allows you to make some of the measurements that are possible with the
HP 64708 Software Performance Analyzer and its Graphical User Interface
(HP B1487).

The SPMT post-processes information from the analyzer trace list. When you end
a performance measurement, the SPMT dumps the post-processed information to a
binary file, which is then read using tberf32 report generator utility.

Two types of software performance measurements can be made with the SPMT:
activity measurements, and duration measurements.

This chapter describes tasks you perform while using the Software Performance
Measurement Tool (SPMT). These tasks are grouped into the following sections:

» Activity performance measurements.
» Duration performance measurements.

* Running performance measurements and creating reports.

266

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

Activity Performance Measurements

Activity measurements are measurements of the number of accesses (reads or
writes) within an address range. The SPMT shows you the percentage of analyzer
trace states that are in the specified address range, as well as the percentage of time
taken by those states. Two types of activity are measured: memory activity, and
program activity.

Memory activity is all activity that occurs within the address range.

Program activity is the activity caused by instruction execution in the address
range. Program activity includes opcode fetches and the cycles that result from the
execution of those instructions (reads and writes to memory, stack pushes, etc.).

For example, suppose an address range being measured for activity contains an
opcode that causes a stack push, which results in multiple write operations to the
stack area (outside the range). The memory activity measurement will count only
the stack push opcode cycle. However, the program activity measurement wil
count the stack push opcode cycle and the write operations to the stack.

By comparing the program activity and the memory activity in an address rang

you can get an idea of how much activity in other areas is caused by the code being
measured. An activity measurement report of the code (prog), data, and stack
sections of a program is shown below.

Label

prog
Address Range ADEH thru 1261H

Memory Activity
State Percent Rel = 57.77 Abs = 57.77
Mean = 295.80 Sdv = 26.77
Time Percent Rel = 60.97 Abs = 60.97

Program Activity
State Percent Rel = 99.82 Abs = 99.82
Mean =511.10 Sdv = 0.88
Time Percent Rel = 99.84 Abs = 99.84

data
Address Range 6007AH thru 603A5H

Memory Activity
State Percent Rel = 30.51 Abs = 30.51
Mean = 156.20 Sdv = 31.87
Time Percent Rel = 28.09 Abs = 28.09

267

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

Program Activity
State Percent Rel= 0.18 Abs= 0.18
Mean = 0.90 Sdv= 0.88
Time Percent Rel= 0.16 Abs= 0.16

stack
Address Range 40000H thru 43FFFH

Memory Activity
State Percent Rel= 11.72 Abs = 11.72
Mean = 60.00 Sdv = 29.24
Time Percent Rel = 10.94 Abs = 10.94

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv= 0.00
Time Percent Rel= 0.00 Abs = 0.00

Graph of Memory Activity relative state percents >= 1

prog 57.77%
data 30.5100 **rkrkrkkikkkikk
stack 11.729p *k*
Graph of Memory Activity relative time percents >= 1
prog 60.97%
data 28.090f *¥kxkxkkdkikkkk
stack 10.94% *xxxxx

Graph of Program Activity relative state percents >=1
prog 99.82%

Graph of Program Activity relative time percents >=1
prog 99.84%

Summary Information for 10 traces

Memory Activity
State count

Relative count 5120

Mean sample 170.67

Mean Standard Dv 29.30

95% Confidence 12.28% Error tolerance
Time count

Relative Time - Us 2221.20

Program Activity
State count
Relative count 5120
Mean sample 170.67
Mean Standard Dv 0.58
95% Confidence 0.24% Error tolerance
Time count
Relative Time - Us 2221.20
Absolute Totals

268

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

Absolute count - state 5120
Absolute count - time - Us 2221.20

This section describes how to:
» Set up the trace command for activity measurements.
» Initialize activity performance measurements.

» Interpret activity measurement reports.

To set up the trace command for activity
measurements

1 Turn on instruction execution messages.

2 Specify the maximum trace display depth with counting turned on (this is 512
using the 80960SA/SB emulator with the HP 64704 analyzer or 1024 when us
the 80960KA/KB/MC emulator with the HP 64705 analyzer).

3 Trace after any state, store all states, and count time.

Before you initialize and run performance measurements, the current trace
command (in other words, the last trace command entered) must be properly set up.

In general, you want to give the SPMT as many trace states as possible to
post-process, so you should increase the trace depth to the maximum number, as
shown in the following command.

If you wish to measure activity as a percentage of all activity, the current trace
command should be the default (in other wordge <RETURN>). The default

trace command triggers on any state, and all captured states are stored. Itis
important that time be counted by the analyzer; otherwise, the SPMT measurements
will not be correct. Also, since states are stored "after" the trigger state, the
maximum number of captured states appears in each trace list.

You can qualify trace commands any way you like to obtain specific information.
However, when you qualify the states that get stored in the trace memory, your

269

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

Examples

SPMT results will be biased by your qualifications; the percentages shown will be
of only those states stored in the trace list.

To turn ON instruction execution messages:

modify execution_messages clear <RETURN>

modify execution_messages set instruction <RETURN>
To specify a trace depth of 512:

display trace depth 512 <RETURN>

To trace after any state, store all states, and count time:

trace counting time <RETURN>

To initialize activity performance measurements

Use theperformance_measurement_initializecommand.

After you set up the trace command, you must tell the SPMT the address ranges on
which you wish to make activity measurements. This is done by initializing the
performance measurement. You can initialize the performance measurement in the
following ways:

» Defaultinitialization (using global symbols if the symbols database is loaded).
+ Initialize with user-defined files.

» Initialize with global symbols.

» Initialize with local symbols.

* Restore a previous performance measurement (if the emulation system has
been exited and reentered).

270

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

Default Initialization

Entering theperformance_measurement_initializecommand with no options

specifies an activity measurement. If a valid symbolic database has been loaded,
the addresses of all global procedures and static symbols will be used; otherwise, a
default set of ranges that cover the entire processor address range will be used.

Initialization with User Defined Ranges

You can specifically give the SPMT address ranges to use by placing the
information in a file and entering the file name in the
performance_measurement_initializecommand.

Address range files may contain program symbols (procedure name or static), user
defined address ranges, and comments. An example address range file is shown
below.

Any line which starts with a # is a comment.

All user’s labels must be preceded by a "|".

|users_label 10H 1000H
program_symbol

A program symbol can be a procedure name or a static. In the case of a pro-
cedure name the range of that procedure will be used.

|users_label2 program_symboll -> program_symbol2

"->" means thru. The above will define a range which starts with symboll
and goes thru symbol2. If both symbols are procedures then the range will
be defined as the start of symbol1 thru the end of symbol2.

dirl/dir2/source_file.s:local_symbol

The above defines a range based on the address of local_symbol.

Initialization with Global Symbols

When theperformance_measurement_initializecommand is entered with no

options or with thegylobal_symbolsoption, the global symbols in the symbols

database become the address ranges for which activity is measured. If the symbols
database is not loaded, a default set of ranges that cover the entire processor address
range will be used.

The global symbols database contains procedure symbols, which are associated
with the address range from the beginning of the procedure to the end, and static
symbols, which are associated with the address of the static variable.

271

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

Initialization with Local Symbols

When theperformance_measurement_initializecommand is entered with the
local_symbols_inoption and a source file name, the symbols associated with that
source file become the address ranges for which activity is measured. If the
symbols database is not loaded, an error message will occur telling you that the
source filename symbol was not found.

You can also use thecal_symbols_inoption with procedure symbols; this allows
you to measure activity related to the symbols defined in a single function or
procedure.

Restoring the Current Measurement

Theperformance_measurement_initialize restoreommand allows you to
restore old performance measurement data frompetieut file in the current
directory.

If you have not exited and reentered emulation, you can add traces to a performance
measurement simply by entering anotberformance_measurement_run

command. However, if you exit and reenter the emulation system, you must enter
the performance_measurement _initialize restoreommand before you can add

traces to a performance measurement. When you restore a performance
measurement, make sure your current trace command is identical to the command
used with the restored measurement.

Therestore option checks the emulator software version and will only work if the
perf.out files you are restoring were made with the same software version as is
presently running in the emulator. If you ran tests using a former software version
and savegberf.out files, then updated your software to a new version number, you
will not be able to restore ofuerf.out measurement files.

272

Examples

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

Suppose the "addr_ranges" file contains the names of all the functions in the "ecs"
demo program loop:

combsort
do_sort
gen_ascii_data
get_targets
graph_data
interrupt_sim
proc_specific
read_conditions
save_points
set_outputs
strcpy8
update_system
write_hdwr

Since these labels are program symbols, you do not have to specify the address
range associated with each label; the SPMT will search the symbol database for the
addresses of each label.

An easy way to create the "addr_ranges" file is to usediiyeglobal_symbols
command to copy the global symbols to a file named "addr_ranges"; then, for
shell to UNIX (by entering "! <RETURN>" on the Softkey Interface command
line) and edit the file so that it contains the procedure names shown above. E
<CTRL>d at the UNIX prompt to return to the Softkey Interface.

To initialize the activity measurement with a user-defined address range file:

performance_measurement _initialize addr_ranges <RETURN>

273

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

To interpret activity measurement reports

* View the performance measurement report.

Activity measurements are measurements of the number of accesses (reads or
writes) within an address range. The reports generated for activity measurements
show you the percentage of analyzer trace states that are in the specified address
range, as well as the percentage of time taken by those states. The performance
measurement must include four traces before statistics (mean and standard
deviation) appear in the activity report. The information you will see in activity
measurement reports is described below.

Memory Activity All activity found within the address range.
Program Activity All activity caused by instruction execution in the address
range. Program activity includes opcode fetches and the cycles that result from the

execution of those instructions (reads and writes to memory, stack pushes, etc.).

Relative With respect to activity in all ranges defined in the performance
measurement.

Absolute With respect to all activity, not just activity in those ranges defined in
the performance measurement.

Mean Average number of states in the range per trace. The following equation is
used to calculate the mean:

states in_range
mean =
toral states

274

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

Standard Deviation Deviation from the mean of state count. The following
equation is used to calculate standard deviation:

i=1

N
std dev = ’\/Nl__f X 3 Ssumq — N (mean)2

Where:

N Number of traces in the measurement.

mean Average number of states in the range per trace.
Ssumgq Sum of squares of states in the range per trace.

Symbols Within Range Names of other symbols that identify addresses or
ranges of addresses within the range of this symbol.

Additional Symbols for Address Names of other symbols that also identify
this address.

Note that some compilers emit more than one symbol for certain addresses. For
example, a compiler may emit "interrupt_sim" and "_interrupt_sim" for the first
address in a routine named interrupt_sim. The analyzer will show the first symbol

it finds to represent a range of addresses, or a single address point, and it will show
the other symbols under either "Symbols within range" or "Additional symbols for
address", as applicable. In the "interrupt_sim" example, it may show either
“interrupt_sim" or "_interrupt_sim" to represent the range, depending on which
symbol it finds first. The other symbol will be shown below "Symbols within

range" in the report. These conditions appear particularly in default measurements
that include all global and local symbols.

Relative and Absolute Counts Relative count is the total number of states
associated with the address ranges in the performance measurement. Relative time
is the total amount of time associated with the address ranges in the performance
measurement. The absolute counts are the number of states or amount of time
associated with all the states in all the traces.

275

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

Examples

Error Tolerance and Confidence Level An approximate error may exist in
displayed information. Error tolerance for a level of confidence is calculated using
the mean of the standard deviations and the mean of the means. Error tolerance
gives an indication of the stability of the information. For example, if the error is
5% for a confidence level of 95%, then you can be 95% confident that the
information has an error of 5% or less.

The Student’'s "T" distribution is used in these calculations because it improves the
accuracy for small samples. As the size of the sample increases, the Student’s "T"
distribution approaches the normal distribution.

The following equation is used to calculate error tolerance:

error pct, = m‘ x 100

Where:

Om Mean of the standard deviations.

t Table entry in Student’s "T" table for a given confidence
level.

N Number of traces in the measurement.

Pm Mean of the means (i.e., mean sample).

Consider the following activity measurement report (generated with the commands
shown):

modify execution_messages clear <RETURN>

modify execution_messages set instruction <RETURN>
display trace depth 512 <RETURN>

trace counting time <RETURN>

performance_measurement _initialize addr_ranges <RETURN>

performance_measurement_run 20 <RETURN>
performance_measurement_end <RETURN>
Iperf32 | more

276

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

Label

set_outputs
Address Range 1013COH thru 1016CFH

Memory Activity
State Percent Rel = 30.05 Abs = 30.00
Mean = 153.60 Sdv = 240.72
Time Percent Rel = 28.75 Abs = 28.73

Program Activity
State Percent Rel = 26.22 Abs = 24.38
Mean = 124.80 Sdv = 198.84
Time Percent Rel = 24.20 Abs = 22.29

write_hdwr
Address Range 1016DOH thru 101973H

Memory Activity
State Percent Rel = 30.05 Abs = 30.00
Mean = 153.60 Sdv = 240.72
Time Percent Rel = 30.82 Abs = 30.80

Program Activity
State Percent Rel = 25.64 Abs = 23.83
Mean = 122.00 Sdv = 195.83
Time Percent Rel = 25.75 Abs = 23.72

proc_specific
Address Range 102060H thru 10229BH

Memory Activity
State Percent Rel = 24.87 Abs = 24.82
Mean = 127.10 Sdv = 225.86
Time Percent Rel = 25.42 Abs = 25.40

Program Activity
State Percent Rel = 19.13 Abs = 17.78
Mean = 91.05 Sdv = 164.45
Time Percent Rel= 18.89 Abs = 17.40

do_sort
Address Range 1009BOH thru 100C57H

Memory Activity
State Percent Rel = 10.02 Abs = 10.00
Mean = 51.20 Sdv =157.59
Time Percent Rel= 10.32 Abs = 10.32

Program Activity
State Percent Rel= 6.56 Abs = 6.09
Mean = 31.20 Sdv = 96.17
Time Percent Rel= 6.32 Abs= 5.82

get_targets

277

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

Address Range 100E40H thru 10111FH

Memory Activity
State Percent Rel= 5.01 Abs= 5.00
Mean = 25.60 Sdv =114.49
Time Percent Rel= 4.69 Abs = 4.69

Program Activity
State Percent Rel= 3.97 Abs= 3.69
Mean = 18.90 Sdv = 84.52
Time Percent Rel= 3.46 Abs= 3.19

combsort
Address Range 1006DOH thru 1009ABH

Memory Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

gen_ascii_data
Address Range 100380H thru 1006C3H

Memory Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

Program Activity
State Percent Rel= 4.20 Abs= 3.91
Mean = 20.00 Sdv = 61.78
Time Percent Rel= 4.87 Abs = 4.49

graph_data
Address Range 101D10H thru 101E17H

Memory Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

Program Activity
State Percent Rel= 1.41 Abs= 1.31
Mean = 6.70 Sdv = 29.96
Time Percent Rel= 1.63 Abs= 150

interrupt_sim
Address Range 100060H thru 100107H

Memory Activity

278

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

read_conditions
Address Range 101120H thru 1013B7H

Memory Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

Program Activity
State Percent Rel= 6.82 Abs= 6.34
Mean = 32.45 Sdv = 65.27
Time Percent Rel= 7.90 Abs= 7.28

save_points
Address Range 101980H thru 101DO03H

Memory Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

strcpy8
Address Range 100110H thru 10037BH

Memory Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

Program Activity
State Percent Rel= 6.05 Abs = 5.62
Mean = 28.80 Sdv = 57.61
Time Percent Rel= 6.98 Abs = 6.43

update_system
Address Range 100D80H thru 100E3FH

Memory Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

279

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

Graph of Memory Activity relative state percents >= 1

set_outputs 30.0500 *rFrEkrEk*RHIAAK
write hdwr 30.05%p *kkkkkkkkkkkkkok
proc_specific D487V FrkkkkAKIKIAE
do_sort 10.02%p *xrxx
get_targets 5.01% ***

Graph of Memory Activity relative time percents >= 1

set_outputs 28.750 **krkkrkkxkkxkk
write hdwr 30,820 Fkkkk ko
prOC__speCiﬁC 25,4204 *kkkkkkkkkikk
do_sort 10.320p *rrxx
get_targets 4.69% ***

Graph of Program Activity relative state percents >= 1

set_outputs 26.22% rrrrkikkdiixk
write_hdwr 25.64% *rikkkkkkrkhk
proc_specific 19.13% *rrrkkkkkk
do_sort 6.56% ****
get_targets 3.97% **
gen_ascii_data 4.20% **
graph_data 1.41% *
read_conditions 6.829p ****
strcpy8 6.05% ***

Graph of Program Activity relative time percents >=1

set_outputs 24,200 *rrkrrkkkrix
write_hdwr D5.750p *rkkkkkkkiak
proc_specific 18.80904 rkkkkkrrk
do_sort 6.32% ***
get_targets 3.46% **
gen_ascii_data 4.87% ***
graph_data 1.63% *
read_conditions 7.90% ****
Stl’prS 6.980p **x*

Summary Information for 20 traces

Memory Activity
State count

Relative count 10222

Mean sample 39.32

Mean Standard Dv 75.34

95% Confidence 89.72% Error tolerance
Time count

Relative Time - Us 20210.20

280

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

Program Activity
State count
Relative count 9518
Mean sample 36.61
Mean Standard Dv 73.42
95% Confidence 93.91% Error tolerance
Time count
Relative Time - Us 18632.80
Absolute Totals
Absolute count - state 10240
Absolute count - time - Us 20222.60

The measurements for each label are printed in descending order according to the
amount of activity. You can see that the set_outputs function has the most activity.
Also, you can see that no activity is recorded for several of the functions. The
histogram portion of the report compares the activity in the functions that account
for at least 1% of the activity for all labels defined in the measurement.

281

Chapter 7: Making Software Performance Measurements
Duration Performance Measurements

Duration Performance Measurements

Duration measurements provide a best-case/worst-case characterization of code
execution time. These measurements record execution times that fall within a set of
specified time ranges. The analyzer trace command is set up to store only the entry
and exit states of the module to be measured (for example, a C function or Pascal
procedure). The SPMT provides two types of duration measurements: module
duration, and module usage.

Module duration measurements record how much time it takes to execute a
particular code segment (for example, a function in the source file).

Module usage shows how much of the execution time is spent outside of the
module (from exit to entry). This measurement gives an indication of how often
the module is being used.

When using the SPMT to perform duration measurements, there should be only two
addresses stored in the trace memory: the entry address, and the exit address.
Recursion can place several entry addresses before the first exit address, and/or
several exit addresses before the first entry address. Duration measurements are
made between the last entry address in a series of entry addresses, and the last exit
address in a series of exit addresses (see the figure below). All of the entry and exit
addresses which precede these last addresses are assumed to be unused prefetches,
and are ignored during time measurements.

START - assumed prefetch

START - assumed prefetch

START - assumed prefetch

START - last ENTRY address -

END - assumed prefetch

END - assumed prefetch Measure duration
END - assumed prefetch

END - last EXIT address -

START - assumed prefetch

START - assumed prefetch Measure duration
START - assumed prefetch

START - last ENTRY address -

END - assumed prefetch

END - assumed prefetch

When measuring a recursive function, module duration will be measured between
the last recursive call and the true end of the recursive execution. This will affect
the accuracy of the measurement.

282

Chapter 7: Making Software Performance Measurements
Duration Performance Measurements

If a module is entered at the normal point, and then exited by a point other than the
defined exit point, the entry point will be ignored. It will be judged the same as any
other unused prefetch, and no time-duration measurement will be made. Its time
will be included in the measure of time spent outside the procedure or function.

If a module is exited from the normal point, and then reentered from some other
point, the exit will also be assumed to be an unused prefetch of the exit state.

Note that if you are making duration measurements on a function that is recursive,
or one that has multiple entry and/or exit points, you may wind up with invalid
information.

This section describes how to:
» Set up the trace command for duration measurements.
» Initialize duration performance measurements.

* Interpret duration measurement reports.

To set up the trace command for duration
measurements

Turn on only call and return execution messages.

Specify the maximum trace display depth with counting turned on (this is 512 when
using the 80960SA/SB emulator with the HP 64704 analyzer or 1024 when using
the 80960KA/KB/MC emulator with the HP 64705 analyzer).

Trace after and store only function start and end addresses.

For duration measurements, the trace command must be set up to store only the
entry and exit points of the module of interest. Since the trigger state is always
stored, you should trigger on the entry or exit points. For example:

trace after symbol_entry or symbol_exit only
symbol_entry or symbol_exit counting time <RETURN>

283

Chapter 7: Making Software Performance Measurements
Duration Performance Measurements

CAUTION

Examples

The previous command depends on the generation of correct exit address symbols
by the software development tools.

Or:

trace after module_name start or module_name end only
module_name start or module_name end counting time
<RETURN>

Where "symbol_entry" and "symbol_exit" are symbols from the user program. Or,
where "module_name" is the name of a C function or Pascal procedure (and is
listed as a procedure symbol in the global symbol display).

To turn ON call and return execution messages:

modify execution_messages clear <RETURN>

modify execution_messages set call return <RETURN>
To specify a trace display depth of 512:

display trace depth 512 <RETURN>

To set up the trace command for duration measurements on the interrupt_sim
function:

trace after interrupt_sim start status call and exec _to
or interrupt_sim end status return and exec_at only
interrupt_sim start status call and exec _to or
interrupt_sim end status return and exec_at counting

time <RETURN>

The trace specification sets up the analyzer to capture only the states that contain
the start address of the interrupt_sim function or the end address of the
interrupt_sim function. Since the trigger state is also stored, the analyzer is set up
to trigger on the entry or exit address of the interrupt_sim function. With these
states in memory, the analyzer will derive two measurements: time from start to
end of interrupt_sim, and time from end to start of interrupt_sim.

284

Chapter 7: Making Software Performance Measurements
Duration Performance Measurements

To initialize duration performance measurements

» Use theperformance_measurement_initializecommand with thduration
option.

After you set up the trace command, you must tell the SPMT the time ranges to be
used in the duration measurement. This is done by initializing the performance
measurement. You can initialize the performance measurement in the following
ways:

* Initialize with user-defined files.

* Restore a previous performance measurement (if the emulation system has
been exited and reentered).

Initialization with User Defined Ranges

You can specifically give the SPMT time ranges to use by placing the informat]
in a file and entering the file name in ferformance_measurement_initialize
command.

Time range files may contain comments and time ranges in units of microseconds
(us), milliseconds (ms), or seconds (s). An example time range file is shown below.

Any line which starts with a # is a comment.

1 us 20 us
10.1 ms 100.6 ms
355s 6.77s

us microseconds
ms milliseconds
s seconds

#

The above are the only abbreviations allowed. The space between the number
and the units abbreviation is required.

285

Chapter 7: Making Software Performance Measurements
Duration Performance Measurements

Examples

When no user defined time range file is specified, the following set of default time
ranges are used.

1 us 10 us

10.1 us 100 us
100.1 us 500 us
500.1 us 1 ms
1.001 ms 5 ms
5.001 ms 10 ms
10.1 ms 20 ms
20.1 ms 40 ms
40.1 ms 80 ms
80.1 ms 160 ms
160.1 ms 320 ms
320.1 ms 640 ms
640.1ms1.2s

Restoring the Current Measurement

Theperformance_measurement_initialize restoreommand allows you to
restore old performance measurement data frompetieut file in the current
directory.

If you have not exited and reentered emulation, you can add traces to a performance
measurement simply by entering anotberformance_measurement_run

command. However, if you exit and reenter the emulation system, you must enter
the performance_measurement _initialize restoreommand before you can add

traces to a performance measurement. When you restore a performance
measurement, make sure your current trace command is identical to the command
used with the restored measurement.

Therestore option checks the emulator software version and will only work if the
perf.out files you are restoring were made with the same software version as is
presently running in the emulator. If you ran tests using a former software version
and savegberf.out files, then updated your software to a new version number, you
will not be able to restore ofgerf.out measurement files.

To initialize the duration measurement:

performance_measurement_initialize duration <RETURN>

286

Chapter 7: Making Software Performance Measurements
Duration Performance Measurements

To interpret duration measurement reports

View the performance measurement report.

Duration measurements provide a best-case/worst-case characterization of code
execution time. These measurements record execution times that fall within a set of
specified time ranges. The information you will see in duration measurement
reports is described below.

Number of Intervals Number of "from address" and "to address" pairs (after
prefetch correction).

Maximum Time The greatest amount of time between the "from address" to the
"to address".

Minimum Time The shortest amount of time between the "from address" to the
"to address".

Average Time Average time between the "from address" and the "to address
The following equation is used to calculate the average time:

amount of time for all intervals

mean = :
number of intervals

287

Chapter 7: Making Software Performance Measurements

Duration Performance Measurements

Standard Deviation

Deviation from the mean of time. The following equation

is used to calculate standard deviation:

_ 1
std dev = /\/NTf

Where:
N
mean

Ssumgq

N 2
X ¥ Ssumq — N (mean)
i=1

Number of intervals.
Average time.

Sum of squares of time in the intervals.

Error Tolerance and Confidence Level An approximate error may exist in
displayed information. Error tolerance for a level of confidence is calculated using
the mean of the standard deviations and the mean of the means. Error tolerance
gives an indication of the stability of the information. For example, if the error is
5% for a confidence level of 95%, then you can be 95% confident that the
information has an error of 5% or less.

The Student’'s "T" distribution is used in these calculations because it improves the
accuracy for small samples. As the size of the sample increases, the Student’'s "T"
distribution approaches the normal distribution.

The following equation is used to calculate error tolerance:

Where:

Om

error pct, = m‘ x 100

Mean of the standard deviations in each time range.

Table entry in Student’s "T" table for a given confidence
level.

Number of intervals.

288

Chapter 7: Making Software Performance Measurements
Duration Performance Measurements

Pm Mean of the means (i.e., mean of the average times in each
time range).
Examples Consider the following duration measurement report (generated with the commands
shown):
modify execution_messages clear <RETURN>
modify execution_messages set call return <RETURN>
display trace depth 512 <RETURN>
trace after interrupt_sim start or interrupt_sim end
only interrupt_sim start or interrupt_sim end counting
time <RETURN>
performance_measurement_initialize duration <RETURN>

performance_measurement_run 10 <RETURN>
performance_measurement_end <RETURN>
Iperf32 | more

Time Interval Profile

From Address 100060
File main(module)."/usr’hp64000/demo/debug_env/hp64760/main.c"
Symbolic Reference at main.interrupt_sim

To Address 100104
File main(module)."/usr’hp64000/demo/debug_env/hp64760/main.c"
Symbolic Reference at interrupt_sim+A4

Number of intervals 2550

Maximum Time 227983.360 us

Minimum Time 23.160 us

Avg Time 31746.513 us

Statistical summary - for 10 traces
Stdv 59321.86
95% Confidence 7.25% Error tolerance

Graph of relative percents
1us 10 us 0.00%
10.1 us 100 us 14.98%p ***wkkax
100.1 us 500 us 15.06%p *¥wkwex
500.1us 1 ms 15.02% *xxkkkk
1.001 ms 5 ms 30.08% *rrxxxkdkkkkknn
5.001 ms 10 ms 0.00%
10.1 ms 20 ms 0.00%
20.1 ms 40 ms 0.00%
40.1 ms 80 ms 4.98% ***
80.1 ms 160 ms 14.94% *rrrrrrx

289

Chapter 7: Making Software Performance Measurements
Duration Performance Measurements

160.1 ms 320 ms 4.94% ***
320.1 ms 640 ms 0.00%
640.1ms1.2s 0.00%

From Address 100104
File main(module)."/usr’hp64000/demo/debug_env/hp64760/main.c"
Symbolic Reference at interrupt_sim+A4

To Address 100060
File main(module)."/usr’hp64000/demo/debug_env/hp64760/main.c"
Symbolic Reference at main.interrupt_sim

Number of intervals 2550

Maximum Time 192102.400 us

Minimum Time 190300.160 us

Avg Time 190741.179 us

Statistical summary - for 10 traces
Stdv 774.96
95% Confidence 0.02% Error tolerance

Graph of relative percents
1us 10 us 0.00%
10.1 us 100 us 0.00%
100.1 us 500 us 0.00%
500.1 us 1 ms 0.00%
1.001 ms 5 ms 0.00%
5.001 ms 10 ms 0.00%
10.1 ms 20 ms 0.00%
20.1 ms 40 ms 0.00%
40.1 ms 80 ms 0.00%
80.1 ms 160 ms 0.00%
160.1 ms 320 ms 100.00%
320.1 ms 640 ms 0.00%
640.1 ms1.2s 0.00%

Two sets of information are given in the duration measurement report: module
duration and module usage.

The first set of information in the duration measurement report is the "module
duration" measurement. The module duration report shows that the amount of time
it takes for the interrupt_sim function to execute varies from 23 microseconds to
228 milliseconds. The average amount of time it takes for the interrupt_sim module
to execute is roughly 31.7 milliseconds.

The second set is the "module usage" measurement. Module usage measurements
show how much time is spent outside the module of interest; they indicate how
often the module is used. The information shown in the second part of the duration
report above shows that the average amount of time spent outside the interrupt_sim
function is about 190 milliseconds.

290

Chapter 7: Making Software Performance Measurements
Running Measurements and Creating Reports

Running Measurements and Creating Reports

Several performance measurement tasks are the same whether you are making
activity or duration measurements.

This section describes how to:
¢ Run performance measurements.
e End performance measurements.

. Create a performance measurement report.

To run performance measurements

Use theperformance_measurement_rurcommand.

Theperformance_measurement_rurcommand processes analyzer trace data.

When you end the performance measurement, this processed data is dumped to the
binary "perf.out” file in the current directory. Tperf32 report generator utility is

used to read the binary information in the "perf.out" file.

If the performance_measurement_rurcommand is entered without a count, the
current trace data is processed. If a count is specified, the current trace command is
executed consecutively the number of times specified. The data that results from
each trace command is processed and combined with the existing processed data.
The STATUS line will say "Processing trace <NO.>" during the run so you will

know how your measurement is progressing. The only way to stop this series of
traces is by usingCTRL>c (sig INT).

The more traces you include in your sample, the more accurate will be your results.
At least four consecutive traces are required to obtain statistical interpretation of
activity measurement results.

291

Chapter 7: Making Software Performance Measurements
Running Measurements and Creating Reports

Examples

To run the performance measurement, enter the following command:
performance_measurement_run 20 <RETURN>
The command above causes 20 traces to occur. The SPMT processes the trace

information after each trace, and the number of the trace being processed is shown
on the status line.

Examples

To end performance measurements

Use theperformance_measurement_endommand.

Theperformance_measurement_endommand takes the data generated by the
performance_measurement_runcommand and places it in a file nanpexif.out

in the current directory. If a file named "perf.out" already exists in the current
directory, it will be overwritten. Therefore, if you wish to save a performance
measurement, you must renamepbd.out file before performing another
measurement.

Theperformance_measurement_endommand does not affect the current
performance measurement data which exists within the emulation system. In other
words, you can add more traces later to the existing performance measurement by
entering anothguerformance_measurement_runcommand.

Once you have entered therformance_measurement_endommand, you can
use theperf32 report generator to look at the data saved ipéneout file.

Note that the "perf.out" file is a binary file. Do not try to read it with the UNIX
more or cat commands. Thperf32 report generator utility (described in the
following section) must be used to read the contents of the "perf.out" file.

To cause the processed trace information to be dumped to the "perf.out” file:

performance_measurement_end <RETURN>

292

Chapter 7: Making Software Performance Measurements
Running Measurements and Creating Reports

To create a performance measurement report

Use theperf32 command at the UNIX prompt.

Theperf32 report generator utility must be used to read the information in the
"perf.out" file and other files dumped by the SPMT (in other words, renamed
"perf.out" files). Theperf32 utility is run from the UNIX shell. You can fork a
shell while in the Softkey Interface and nperf32, or you can exit the Softkey
Interface and ruperf32.

Options to "perf32"

A default report, containing all performance measurement information, is generated
when theperf32 command is used without any options. The options available with
perf32 allow you to limit the information in the generated report. These options

are described below.

-h Produce outputs limited to histograms.

-S Produce a summary limited to the statistical data.

-p Produce a summary limited to the program activity.

-m Produce a summary limited to the memory activity.
-f<file> Produce a report based on the information contained in

<file> instead of the information contained in perf.out.

For example, the following commands save the current performance measurement
information in a file called "perfl.out", and produce a histogram showing only the
program activity occupied by the functions and variables.

mv perf.out perfl.out <RETURN>
perf32 -hpf perfl.out <RETURN>

Options-h, -s, -p, and-m affect the contents of reports generated for activity
measurements. These options have no effect on the contents of reports generated
for duration (time interval) measurements.

293

Chapter 7: Making Software Performance Measurements
Running Measurements and Creating Reports

Examples Now, to generate a report from the "perf.out"” file, type the following on the
command line to fork a shell and run fhef32 utility:

Iperf32 | more

294

Using the External State Analyzer

295

Using the External State Analyzer

The HP 64705A Option 001 analyzer (used with the HP 64760 80960KA/KB/MC
emulator) provides an external analyzer with 16 external trace channels. These
trace channels allow you to capture activity on signals external to the emulator,
typically other target system signals. The external analyzer may be configured as
an extension to the emulation analyzer, as an independent state analyzer, or as an
independent timing analyzer.

When the external analyzer is configured as an independent state analyzer, the
emulator/analyzer interface does not control the external analyzer. However, you
can use pod commands to control the independent state analyzer via the terminal
interface. Refer to the0960 Emulator User’s Guide for the Terminal Interféme
information on using the external analyzer when it is configured as an independent
state analyzer.

When the external analyzer is configured as an independent timing analyzer, you
must use a special Timing Analyzer Interface program. Refer Trttieg

Analyzer Interface User’s Guider information on using the external analyzer
when it is configured as an independent timing analyzer.

The tasks you perform with the external analyzer are grouped into the following
sections:

e Setting up the external analyzer.

» Configuring the external analyzer.

296

Chapter 8: Using the External State Analyzer
Setting Up the External Analyzer

Setting Up the External Analyzer

This section assumes you have already connected the external analyzer probe to the
HP 64700 Card Cage.

Before you can use the external analyzer, you must:

» Connect the external analyzer probe to the target system.
» Specify threshold voltages of external trace signals.

» Label the external trace signals.

» Select the external analyzer mode.

297

Chapter 8: Using the External State Analyzer
Setting Up the External Analyzer

To connect the external analyzer probe to the
target system

connector, and firmly press the connectors together.

1 Assemble the Analyzer Probe. The analyzer probe is a two-piece assembly, consisting of ribb
and 18 probe wires (16 data channels and the J and K clock inputs) attached to a connector. Eit
the ribbon cable may be connected to the 18 wire connector, and the connectors are keyed so th
only be attached one way. Align the key of the ribbon cable connector with the slot in the 18 wire

bn cable
ner end of
ey may

RIBBON CABLE

18 WIRE
CONNECTOR

298

Chapter 8: Using the External State Analyzer
Setting Up the External Analyzer

2 Attach grabbers to probe wires. Each of the 18 probe wires has a signal and a ground connecfion.
Each probe wire is labeled for easy identification. Thirty-six grabbers are provided for the signal and
ground connections of each of the 18 probe wires. The signal and ground connections are attached to the
pin in the grabber handle.

CONNECTING PIN

GRABBER HANDLE

299

Chapter 8: Using the External State Analyzer
Setting Up the External Analyzer

CAUTION Turn OFF target system power before connecting analyzer probe wires to the target

system. The probe grabbers are difficult to handle with precision, and it is

extremely easy to short the pins of a chip (or other connectors which are close

together) with the probe wire while trying to connect it.

3 You can connect the grabbers to pins, connectors, wires, etc., in the target system. Pull the hi
grabber towards the back of the grabber handle to uncover the wire hook. When the wire hook ig
the desired pin or connector, release the hilt to allow the grabber spring tension to hold the conne

t of the
around
ction.

HP PART NO. 10024A
- G CUP

300

Chapter 8: Using the External State Analyzer
Configuring the External Analyzer

Configuring the External Analyzer

After you have assembled the external analyzer probe and connected it to the
emulator and target system, the next step is to configure the external analyzer.

The external analyzer is a versatile instrument, and you can configure it to suit your
needs. For example, you can specify threshold voltage levels on the external
analyzer channels, and you can operate the external analyzer in several different
modes.

The default configuration specifies that the external analyzer is aligned with the
emulation analyzer. TTL level threshold voltages are defined, as well as an
external label named "xbits" which contains all 16 channels.

This section describes how to:

» Specify whether the emulation emulator/analyzer interface should control the
external analyzer.

» Specify the threshold voltages for the external channels.
» Select the external analyzer mode.

» Specify the slave clock mode when configured as an independent state
analyzer.

» Define labels for the external analyzer channels.

301

Chapter 8: Using the External State Analyzer
Configuring the External Analyzer

To control the external analyzer with the
emulator/analyzer interface

Enter themodify configuration command.
Answer "yes" to the "Modify external analyzer configuration?" question.

Answer the "Should emulation control the external bits?" question.

Answer "yes" if the emulation emulator/analyzer interface should control the
external analyzer. You must answer "yes" to access the remaining external
analyzer configuration questions. At the end of the configuration process the
external analyzer mode and threshold voltages will be set; existing labels will be
deleted, and only the labels specified in response to the questions below will be
defined.

Answer "no" if the emulation emulator/analyzer interface shouldn’t control the
external analyzer. If emulation does not control the external bits, the external
analyzer configuration will not be modified in any way by the emulation interface.

302

Chapter 8: Using the External State Analyzer
Configuring the External Analyzer

To specify the threshold voltage

1 Enter themodify configuration command.

2 Answer "yes" to the "Modify external analyzer configuration?" question.

3 Answer "yes" to the "Should emulation control the external bits?" question.
4 Answer the "Threshold voltage for bits 0-7 and J clock?" question.

5 Answer the "Threshold voltage for bits 8-15 and K clock?" question.

The external analyzer probe signals are divided into two groups: the lower byte
(channels 0 through 7 and the J clock), and the upper byte (channels 8 through 15
and the K clock). You can specify a threshold voltage for each of these groups.

The default threshold voltages are specified ®s which translates to 1.40 volts.

Voltages may be in the range from -6.40 volts to 6.35 volts (with a 0.05V
resolution). You may also speciBMOS (which translates to 2.5 volts), BCL
(which translates to -1.3 volts).

303

Chapter 8: Using the External State Analyzer
Configuring the External Analyzer

To specify the external analyzer mode

1 Enter themodify configuration command.
2 Answer "yes" to the "Modify external analyzer configuration?" question.
3 Answer "yes" to the "Should emulation control the external bits?" question.

4 Answer the "External analyzer mode?" question.

The default configuration selects the "emulation” external analyzer mode. In this
mode, you have 16 external trace signals on which data is captured synchronously
with the emulation clock.

The external analyzer may also operate as an independent state analyzer, or it may
operate as an independent timing analyzer if a host computer interface program is
used.

Answer "emulation” to select the emulation mode. In this mode, the external
analyzer becomes an extension of the emulation analyzer. In other words, they
operate as one analyzer. The external bits are clocked with the emulation clock.
External labels may be used in trace commands to qualify trigger, storage, prestore,
or count states. External labels may be viewed in the trace display.

Answer "state" to select the independent state mode of the external analyzer. The
external bits are not available for use from the emulation interface. You can,
however, use pod commands to control the external state analyzer in its
independent mode.

Answer "timing" to select the timing mode of the external analyzer. The external
bits are not available for use from the emulation interface. Because the pod
commands for the timing analyzer dump information in binary format, you will
need to use Timing Analyzer Interface, or other interface program, to capture the
timing analyzer data.

304

Chapter 8: Using the External State Analyzer
Configuring the External Analyzer

To specify the slave clock mode

1 Enter themodify configuration command.

2 Answer "yes" to the "Modify external analyzer configuration?" question.

3 Answer "yes" to the "Should emulation control the external bits?" question.
4 Answer "state" to the "External analyzer mode?" question.

5 Answer the "Slave clock mode for external bits?" question.

There are two modes of demultiplexing that can be set for the 16 channels of the
external analyzer: mixed clocks and true demultiplexing.

Answer "off" to turn slave clocks OFF. If the slave clock is "off", all 16 external
bits are clocked with the emulation clock.

Answer "mixed" to specify the mixed clock demultiplexing mode. In this mode
the lower eight external bits (0-7) are latched when the slave clock (as specifi
your answers to the next four questions) is received. The upper eight bits and
latched lower eight are then clocked into the analyzer when the emulation clo
received (see the figure below).

305

Chapter 8: Using the External State Analyzer
Configuring the External Analyzer

16 TRACE SIGNALS

|
IS
|
J
SLAVE CLOCK > SLAVE LATCH
) P
~— N~
® s
MASTER CLOCK [A4 AV MASTER (POD)
LATCH

If no slave clock has appeared since the last master clock, the data on the lower 8
bits of the pod will be latched at the same time as the upper 8 bits. If more than one
slave clock has appeared since the last master clock, only the first slave data will be
available to the analyzer (see the figure below).

MASTER
CLOCK m

o 4 L LT L
CLOCK

DATA LATCHED ON FOLLOWING SLAVE
FIRST SLAVE CLOCK CLOCKS IGNORED
AFTER LAST MASTER

CLOCK

306

Chapter 8: Using the External State Analyzer
Configuring the External Analyzer

Answer "demux" to specify the true demultiplexing mode. In this mode, only the
lower eight external channels (0-7) are used. The slave clock (as specified by your
answers to the next four questions) latches these bits and the emulation clock
samples the same channels again. The latched bits show up as bits 0-7 in the trace
data, and the second sample shows up as bits 8-15 (see the figure below).

8 TRACE SIGNALS

]
~]
|
S
SLAVE CLOCK > SLAVE LATCH
N
I
MASTER CLOCK [MASTER (POD) .
LATCH

EXAMPLE TIMING:

AD-AD ADDRESS DATA

SLAVE CLOCK }

MASTER CLOCK)

307

Chapter 8: Using the External State Analyzer
Configuring the External Analyzer

If no slave clock has appeared since the last master clock, the data on the lower 8
bits of the pod will be the same as the upper 8 bits. If more than one slave clock
has appeared since the last master clock, only the first slave data will be available to
the analyzer.

If the "mixed" or "true demultiplexing" slave clock modes are selected, answer the
"Edges of J (K,L,M) clock used for slave clock?" questions.

These four questions are asked when you select either the "mixed" or "demux"
slave clock mode. They allow you to define the slave clock. You can specify
rising, falling, both, or neither (none) edges of the J, K, L, and M clocks. When
several clock edges are specified, any one of the edges clocks the trace.

Clocks J and K are the external clock inputs of the external analyzer probe. The L
and M clocks are generated by the emulator. Typically, the L clock is the
emulation clock derived by the emulator and the M clock is not used.

To define labels for the external analyzer signals

Enter themodify configuration command.
Answer "yes" to the "Modify external analyzer configuration?" question.
Answer "yes" to the "Should emulation control the external bits?" question.

For each defined external label (there can be up to 8), answer the "name?", "start
bit?", "width?", and "polarity?" questions.

You can define up to eight labels for the 16 external data channels in the
configuration. These external analyzer labels can be used in trace commands, and
the data associated with these labels can be displayed in the trace list. One external
analyzer label, "xbits", is defined by the default configuration and is included in the
default trace list.

External labels can be defined with bits in the range of 0 through 15. The start bit
may be in the range 0 through 15, but the width of the label must not cause the label

308

Chapter 8: Using the External State Analyzer
Configuring the External Analyzer

to extend past bit 15. Thus, the sum of the start bit number plus the width must not
exceed 16.

The "polarity?" question allows you to specify positive or negative logic for the
external bits. In other words, positive means high=1, low=0. Negative means
low=1, high=0.

Once external labels are defined, they may be used in trace commands to qualify
events (if the emulation controls the external analyzer). Also, you can modify the
trace display to include data for the various trace labels.

Note that the Timing Analyzer Interface does not use the external labels defined in
the emulator/analyzer interface. You maintain labels for the timing analyzer within
the Timing Analyzer Interface itself.

309

310

Making Coordinated Measurements

311

Making Coordinated Measurements

When HP 64700 Card Cages are connected together via the Coordinated
Measurement Bus (CMB), you can start and stop up to 32 emulators at the same
time.

You can use the analyzer in one HP 64700 to arm (that is, activate) the analyzers in
other HP 64700 Card Cages or to cause emulator execution in other HP 64700 Card
Cages to break into the monitor.

You can use the HP 64700’s BNC connector (labeled TRIGGER IN/OUT on the
lower left corner of the HP 64700 rear panel) to trigger an external instrument (for
example, a logic analyzer or oscilloscope) when the analyzer finds its trigger
condition. Also, you can allow an external instrument to arm the analyzer or break
emulator execution into the monitor.

The coordinated measurement tasks you can perform are grouped into the
following sections:

» Setting up for coordinated measurements.

» Starting and stopping multiple emulators.

» Driving trigger signals to the CMB or BNC.

» Stopping program execution on trigger signals.

* Arming analyzers on trigger signals.

312

CMB Connector ——_| (B oty

BNC Connector

The location of the CMB and BNC connectors on the HP 64700 rear panel is
shown in the following figure.

I @ Trigger r/out
®

©

=) (@) ® N - e UU

DITIOTE) 000000 © - U U U U
/ AWARN\NE‘ AW \JU @ U

Ny
~ @ - Line
V2300 Atoronging
~ ~ 600 VA Mox 4763 Iz

64700E20

Signal Lines on the CMB

There are three bi-directional signal lines on the CMB connector on the rear panel
of the emulator. These CMB signals are:

TRIGGER The CMB TRIGGER line is low true. This signal can be driven or
received by any HP 64700 connected to the CMB. This signal can be used to
trigger an analyzer. It can be used as a break source for the emulator.

READY The CMB READY line is high true. It is an open collector and performs
an ANDing of the ready state of enabled emulators on the CMB. Each emulator on
the CMB releases this line when it is ready to run. This line goes true when all
enabled emulators are ready to run, providing for a synchronized start.

313

When CMB is enabled, each emulator is required to break to background when
CMB READY goes false, and will wait for CMB READY to go true before

returning to the run state. When an enabled emulator breaks, it will drive the CMB
READY false and will hold it false until it is ready to resume running. When an
emulator is reset, it also drives CMB READY false.

EXECUTE The CMB EXECUTE line is low true. Any HP 64700 on the CMB

can drive this line. It serves as a global interrupt and is processed by both the
emulator and the analyzer. This signal causes an emulator to run from a specified
address when CMB READY returns true.

BNC Trigger Signal

The BNC trigger signal is a positive rising edge TTL level signal. The BNC trigger
line can be used to either drive or receive an analyzer trigger, or receive a break
request for the emulator.

Comparison Between CMB and BNC Triggers The CMB trigger and BNC
trigger lines have the same logical purpose: to provide a means for connecting the
internal trigger signals (trigl and trig2) to external instruments. The CMB and
BNC trigger lines are bi-directional. Either signal may be used directly as a break
condition.

The CMB trigger is level-sensitive, while the BNC trigger is edge-sensitive. The
CMB trigger line puts out a true pulse following receipt of EXECUTE, despite the
commands used to configure it. This pulse is internally ignored.

Note that if you use the EXECUTE function, the CMB TRIGGER should not be
used to trigger external instruments, because a false trigger will be generated when
EXECUTE is activated.

314

Chapter 9: Making Coordinated Measurements
Setting Up for Coordinated Measurements

Setting Up for Coordinated Measurements

This section describes how to:
e Connect the Coordinated Measurement Bus.

» Connect the rear panel BNC.

To connect the Coordinated Measurement Bus
(CMB)

Caution Be careful not to confuse the 9-pin connector used for CMB with those used by
some computer systems for RS-232C communications. Applying RS-232C signals
to the CMB connector is likely to result in damage to the HP 64700 Card Cage.

To use the CMB, you will need one CMB cable for the first two emulators and one additional cablge for
every emulator after the first two. The CMB cable is orderable from HP under product number
HP 64023A. The cable is four meters long.

You can build your own compatible CMB cables using standard 9-pin D type subminiature connegtors
and 26 AWG wire.

Note that Hewlett-Packard does not ensure proper CMB operation if you are using a self-built calﬂ)le!

315

Chapter 9: Making Coordinated Measurements
Setting Up for Coordinated Measurements

1 Connect the cables to the HP 64700 CMB ports.

(FEMALE)
(NC)

TWO EMULATORS

THREE EMULATORS, ETC

(FEMALE
(NO)

64700E14

316

Chapter 9: Making Coordinated Measurements
Setting Up for Coordinated Measurements

Number of HP 64700 Series Maximum Total Length of Restrictions on the CMB
Emulators Cable Connection

2108 100 meters None.

9to 16 50 meters None.

9to 16 100 meters Only 8 emulators may have rear

panel pullups connected. *

17 to 32 50 meters Only 16 emulators may have rear
panel pullups connected. *

* A modification must be performed by your HP Customer Engineer.
Emulators using the CMB must use background emulation monitors.

At least 3/4 of the HP 64700-Series emulators connected to the CMB must be powered up before proper
operation of the entire CMB configuration can be assured.

To connect to the rear panel BNC

Caution The BNC line on the HP 64700 accepts input and output of TTL levels only. (
levels should not be less than 0 volts or greater than 5 volts.) Failure to observe
these specifications may result in damage to the HP 64700 Card Cage.

317

Chapter 9: Making Coordinated Measurements
Setting Up for Coordinated Measurements

1 Connect one end of a 50 ohm coaxial cable with male BNC connectors to the HP 64700 BNC
receptacle and the other end to the appropriate BNC receptacle on the other measuring instrument.

0

ALIGN SLOTS ON
SIDES OF PLUG
WITH TABS ON
SIDES OF JACK

119
PUSH TOGETHER
AND TURN UNTIL
CONNECTORS LOCK

64700C15

The BNC connector is capable of driving TTL level signals into a 50 ohm load. (A positive rising g£dge is
the trigger signal.) It requires a driver that can supply at least 4 mA at 2 volts when used as a regeiver.
The BNC connector is configured as an open-emitter structure which allows for multiple drivers to be
connected. It can be used for cross-triggering between multiple HP 64700Bs when no other
cross-measurements are needed. The output of the BNC connector is short-circuit protected ang
protected from TTL level signals when the emulator is powered down.

S

318

Chapter 9: Making Coordinated Measurements
Starting/Stopping Multiple Emulators

Starting/Stopping Multiple Emulators

When HP 64700 Card Cages are connected together via the Coordinated
Measurement Bus (CMB), you can start and stop up to 32 emulators at the same
time. These are called synchronous measurements.

This section describes how to:
» Enable synchronous measurements.
e Start synchronous measurements.

» Disable synchronous measurements.

To enable synchronous measurements

Enter thespecify run command.

You can enable the emulator’s interaction with the CMB by usingptbeify run
command. When the EXECUTE signal is received, the emulator will run at the
current program counter address or the address specifiedsieitigy run
command.

Note that when the CMB is being actively controlled by another emulatateine
command does not work correctly. The emulator may end up running in user code
(NOT stepping). Disable CMB interaction (see "To disable synchronous
measurements” below) while stepping the processor.

Note that enabling CMB interaction does not affect the operation of analyzer
cross-triggering.

You can use thepecify tracecommand to specify that an analyzer measurement
begin upon reception of the CMB EXECUTE signal.

The trace measurement defined bydpecify tracecommand will be started when
the EXECUTE signal becomes active. When the trace measurement begins, you
will see the message "CMB execute; emulation trace started".

319

Chapter 9: Making Coordinated Measurements
Starting/Stopping Multiple Emulators

Examples

When you enter a normtthce command, trace at execute is disabled, and the
analyzer ignores the CMB EXECUTE signal.

To enable synchronous measurements:
specify run from 1e8h <RETURN>

To trace when synchronous execution begins:

specify trace after address main <RETURN>

To start synchronous measurements

Enter thecmb_executecommand.

Thecmb_executecommand will cause the EXECUTE line to be pulsed, thereby
initiating a synchronous measurement. CMB interaction does not have to be
enabled in order to use either of these commands. (When you enable CMB
interaction, you only specify how the emulator will react to the CMB EXECUTE
signal.)

All emulators whose CMB interaction is enabled will break into the monitor when
any one of those emulators breaks into its monitor.

To disable synchronous measurements

Enter thespecify run disablecommand.

You can disable the emulator's interaction with the CMB by usinggheify run
disablecommand. When interaction is disabled, the emulator ignores the CMB
EXECUTE and READY lines.

320

Chapter 9: Making Coordinated Measurements
Using Trigger Signals

Using Trigger Signals

The HP 64700 contains two internal lines, trigl and trig2, over which trigger
signals can pass from the emulator or analyzer to other HP 64700s on the
Coordinated Measurement Bus (CMB) or other instruments connected to the BNC
connector.

You can configure the internal lines to make connections between the emulator,
analyzer, external analyzer (if its configured as an independent state or timing
analyzer), CMB connector, or BNC connector. Measurements that depend on these
connections are callédteractive measurements coordinated measurements

To configure the internal trigl and trig2 lines, you must entemtiaify
configuration command and then answer "yes" to the "Modify interactive
measurement specification?" question. When you do this, the following display
appears.

Interactive Measurement Specification
BN <4=P7-3> ——-% BMC €<=77-33 —=-
CMBT <<-?7-2» ——- CMBT <<-77-3> —-——
Trigl Trigz
Emulator <{-—=-=-= -—- Emulator <<-77--- --—-
Analyzer —————- Bro——=f Analyzer «<-77-3F ——
External Analyzer <<-77-¥r ——=/
NOTES:
1. The connections marked "77" are set up here in configuration.
2. driwve = ----Fr receive = <{i{---— (The display won"t change, howewer.}
3. The External Analyzer question is only asked when the External Analyzer
mode is state or timing.

This display illustrates the possible connections between the internal lines (trigl
and trig2) and the emulator, analyzer, and external devices.

Note that the "External Analyzer" option for "Trig2" only appears if you have
selected "state" or "timing" for the external analyzer mode.

Notice that the analyzer always drives trigl, and the emulator always receives trigl.
This provides for thbreak_on_trigger syntax of thérace command.

321

Chapter 9: Making Coordinated Measurements

Using Trigger Signals

You can use the trigl or trig2 line to make a connection between the analyzer and
the CMB connector or BNC connector so that, when the analyzer finds its trigger
condition, a trigger signal is driven on the HP 64700’s Coordinated Measurement
Bus (CMB) or BNC connector. This can also be done for the external analyzer
when it is configured as an independent state or timing analyzer.

You can use the trigl or trig2 line to make a connection between the emulator break
input and the CMB connector, BNC connector, analyzer, (or external analyzer

when configured as an independent state or timing analyzer) so that program
execution can break when a trigger signal is received from the CMB, BNC, or
analyzer.

You can use the trig2 line to make a connection between the analyzer and the CMB
connector or BNC connector so that the analyzer can be armed (that is, enabled)
when a trigger signal is received from the CMB or BNC connector. This can also
be done for the external analyzer when it is configured as an independent state or
timing analyzer.

You can use the trigl and trig2 lines to make several type of connections at the
same time. For example, when the analyzer finds its trigger condition, a signal is
driven on the trigl line. This signal may be used to stop user program execution,
but the trigger signal may also be driven on the CMB and BNC connectors.

Also, it's possible for signals to be driven and received on the CMB or BNC
connectors. So, for example, while the analyzer’s trigger signal can be driven on
the CMB and BNC connectors, signals can also be received from the CMB and
BNC connectors and used to stop user program execution. In this case, the
emulator will break into the monitor on either the analyzer trigger or on the
reception of a trigger signal from the CMB or BNC.

You can disable connections made by the internal trigl and trig2 lines by
answering "neither" or "no" to the appropriate interactive measurement
configuration question.

322

Chapter 9: Making Coordinated Measurements
Using Trigger Signals

This section shows you how to:

» Drive the emulation analyzer trigger signal to the CMB.

» Drive the emulation analyzer trigger signal to the BNC connector.
» Drive the external analyzer trigger signal to the CMB.

» Drive the external analyzer trigger signal to the BNC connector.
» Break emulator execution on signal from CMB.

» Break emulator execution on signal from BNC.

» Break emulator execution on external analyzer trigger.

» Arm the emulation analyzer on signal from CMB.

* Arm the emulation analyzer on signal from BNC.

* Arm the emulation analyzer on external analyzer trigger.

» Arm the external analyzer on signal from CMB.

* Arm the external analyzer on signal from BNC.

» Arm the external analyzer on emulation analyzer trigger.

To drive the emulation analyzer trigger signal to
the CMB

Enter themodify configuration command.
Answer "yes" to the "Modify interactive measurement specification?" question.

Answer "receive" to the "Should CMBT drive or receive Trigl?" question.

You could also drive the emulation analyzer trigger to the CMB over the trig2
internal line by specifying that the CMBT should receive trig2 and that the
emulation analyzer should drive trig2.

323

Chapter 9: Making Coordinated Measurements
Using Trigger Signals

To drive the emulation analyzer trigger signal to
the BNC connector

1 Enter themodify configuration command.
2 Answer "yes" to the "Modify interactive measurement specification?" question.

3 Answer "receive" to the "Should BNC drive or receive Trigl?" question.

You could also drive the emulation analyzer trigger to the BNC over the trig2
internal line by specifying that the BNC should receive trig2 and that the emulation
analyzer should drive trig2.

To drive the external analyzer trigger signal to
the CMB

1 Enter themodify configuration command.
2 Answer "yes" to the "Modify interactive measurement specification?" question.
3 Answer "receive" to the "Should CMBT drive or receive Trig2?" question.

4 Answer "drive" to the "Should External Analyzer drive or receive Trig2?" question.

324

Chapter 9: Making Coordinated Measurements
Using Trigger Signals

To drive the external analyzer trigger signal to
the BNC connector

Enter themodify configuration command.
Answer "yes" to the "Modify interactive measurement specification?" question.
Answer "receive" to the "Should BNC drive or receive Trig2?" question.

Answer "drive" to the "Should External Analyzer drive or receive Trig2?" question.

To break emulator execution on signal from CMB
Enter themodify configuration command.

Answer "yes" to the "Modify interactive measurement specification?" question..
Answer "drive" to the "Should CMBT drive or receive Trigl?" question.
You could also break emulator execution on a trigger signal from the CMB over the

trig2 internal line by specifying that the CMB should drive trig2 and that the
emulator break should receive trig2.

325

Chapter 9: Making Coordinated Measurements

Using Trigger Signals

1

2

3

To break emulator execution on signal from BNC

Enter themodify configuration command.
Answer "yes" to the "Modify interactive measurement specification?" question.

Answer "drive" to the "Should BNC drive or receive Trigl?" question.

You could also break emulator execution on a trigger signal from the BNC over the
trig2 internal line by specifying that the BNC should drive trig2 and that the
emulator break should receive trig2.

To break emulator execution on external analyzer
trigger

Enter themodify configuration command.
Answer "yes" to the "Modify interactive measurement specification?" question.
Answer "yes" to the "Should Emulator break receive Trig2?" question.

Answer "drive" to the "Should External Analyzer drive or receive Trig2?" question.

When an emulator break occurs due to the analyzer trigger, the analyzer will stop
driving the internal signal that caused the break. Therefore, if trig2 is used both to
break and to drive the CMB TRIGGER (for example), TRIGGER will go true

when the trigger is found and then will go false after the emulator breaks.
However, if trigl is used to cause the break and trig2 is used to drive the CMB
TRIGGER, TRIGGER will stay true until the trace is halted or until the next trace
starts.

326

Chapter 9: Making Coordinated Measurements
Using Trigger Signals

To arm the emulation analyzer on signal from
CMB

Enter themodify configuration command.

Answer "yes" to the "Modify interactive measurement specification?" question.
Answer "drive" to the "Should CMBT drive or receive Trig2?" question.
Answer "receive" to the "Should Analyzer drive or receive Trig2?" question.

Use thearm_trig2 option to thérace command.

To arm the emulation analyzer on signal from
BNC

Enter themodify configuration command. .

Answer "yes" to the "Modify interactive measurement specification?" question.

Answer "drive" to the "Should BNC drive or receive Trig2?" question.
Answer "receive" to the "Should Analyzer drive or receive Trig2?" question.

Use thearm_trig2 option to thérace command.

327

Chapter 9: Making Coordinated Measurements

Using Trigger Signals

To arm the emulation analyzer on external
analyzer trigger

Enter themodify configuration command.

Answer "yes" to the "Modify interactive measurement specification?" question.
Answer "receive" to the "Should Analyzer drive or receive Trig2?" question.
Answer "drive" to the "Should External Analyzer drive or receive Trig2?" question.

Use thearm_trig2 option to thérace command.

To arm the external analyzer on signal from CMB

Enter themodify configuration command.
Answer "yes" to the "Modify interactive measurement specification?" question.
Answer "drive" to the "Should CMBT drive or receive Trig2?" question.

Answer "receive" to the "Should External Analyzer drive or receive Trig2?"
guestion.

328

Chapter 9: Making Coordinated Measurements
Using Trigger Signals

To arm the external analyzer on signal from BNC

Enter themodify configuration command.
Answer "yes" to the "Modify interactive measurement specification?" question.
Answer "drive" to the "Should BNC drive or receive Trig2?" question.

Answer "receive" to the "Should External Analyzer drive or receive Trig2?"
guestion.

To arm the external analyzer on emulation
analyzer trigger

Enter themodify configuration command.
Answer "yes" to the "Modify interactive measurement specification?" question..
Answer "drive" to the "Should Analyzer drive or receive Trig2?" question.

Answer "receive" to the "Should External Analyzer drive or receive Trig2?"
guestion.

329

330

10

Setting X Resources

331

Setting X Resources

The Graphical User Interface is an X Window System application which means it is
aclientin the X Window System client-server model.

The X server is a program that controls all access to input devices (typically a
mouse and a keyboard) and all output devices (typically a display screen). Itis an
interface between application programs you run on your system and the system
input and output devices.

An X resourcecontrols an element of appearance or behavior in an X application.
For example, in the graphical interface, one resource controls the text in action key
pushbuttons as well as the action performed when the pushbutton is clicked.

By modifying resource settings, you can change the appearance or behavior of
certain elements in the graphical interface.

When the graphical interface starts up, it reads resource specifications from a set of
configuration files. Resources specifications in later files override those in earlier
files. Files are read in the following order:

1 The application defaults file. For example,
{usr/lib/X11/app-defaults/HP64_Softkey in HP-UX or
{usr/openwin/lib/X11/app-defaults/HP64_Softkey in SunOS.

2 The $XAPPLRESDIR/HP64_Softkey file. (The XAPPLRESDIR environment
variable defines a directory containing system-wide custom application
defaults.)

3 The server's RESOURCE_MANAGER property. (Kndb command loads
user-defined resource specifications into the RESOURCE_MANAGER

property.)

If no RESOURCE_MANAGER property exists, user defined resource settings
are read from the $SHOME/. Xdefaults file.

4 The file named by the XENVIRONMENT environment variable.

If the XENVIRONMENT variable is not set, the SHOME/.Xdefaulitsstfile
(typically containing resource specifications for a specific remote host) is read.

332

Chapter 10: Setting X Resources

Resource specifications included in the command line witkxthe option.
System scheme files in directory /usr/hp64000/lib/X11/HP64_schemes.

System-wide custom scheme files located in directory
$XAPPLRESDIR/HP64_schemes.

User-defined scheme files located in directory SHOME/.HP64_schemes (note
the dot in the directory name).

Scheme filegroup resource specifications for different displays, computing
environments, and languages.

This chapter shows you how to:

Modify the Graphical User Interface resources.
Use customized scheme files.

Set up custom action keys.

Set initial recall buffer values.

Set up demos or tutorials.

Refer to the "X Resources and the Graphical Interface" section in the "Concepts"
chapter for more detailed information.

333

Chapter 10: Setting X Resources
To modify the Graphical User Interface resources

To modify the Graphical User Interface resources

You can customize the appearance of an X Windows application by modifying its
X resources. The following tables describe some of the commonly modified
application resources.

Application Resources for Schemes

Resource Values Description

HP64_Softkey.platformScheme HP-UX | Names the subdirectory for platform
SunOS specific schemes. This resource should he
(custom) set to the platform on which the X server is

running (and displaying the Graphical User
Interface) if it is different than the platform
where the application is running.

HP64_Softkey.colorScheme BW Names the color scheme file.
Color
(custom)

HP64_Softkey.sizeScheme Small Names the size scheme file which defineg
Large the fonts and the spacing used.
(custom)

HP64_Softkey.labelScheme Label Names to use for labels and button text.
$LANG The default uses the SLANG environment

(custom) variable if it is set and if a scheme file
named Softkey.$LANG exists in one of th
directories searched for scheme files;
otherwise, the default is Label.

D

HP64_Softkey.inputScheme Input Specifies mouse and keyboard operation
(custom)

334

Chapter 10: Setting X Resources

To modify the Graphical User Interface resources

Commonly Modified Application Resources

Resource Values Description
HP64_Softkey.lines 24 Specifies the number of lines in the main
(min. 18) display area.
HP64_Softkey.columns 100 Specifies the number of columns, in
(min. 80) characters, in the main display area.
HP64_Softkey.enableCmdline True Specifies whether the command line area|is
False displayed when you initially enter the
Graphical User Interface.
*editFile (example) vi| Specifies the command used to edit files.
%s
*editFileLine (example) vi| Specifies the command used to edit a file|at
+%d %s a certain line number.
*<proc>*actionKeysSub.keyDefs (paired list| Specifies the text that should appear on the
of strings) | action key push buttons and the commangs
that should be executed in the command |ine
area when the action key is pushed. Refer
to the "To set up custom action keys"
section for more information.
*<proc>*dirSelectSub.entries (list of Specifies the initial values that are placed|in
strings) theFile — Context— Directory popup recall
buffer. Refer to the "To set initial recall
buffer values" section for more information.
*<proc>*recallSub.entries (list of Specifies the initial values that are placed|in
strings) the entry buffer (labeled "():"). Refer to the

"To set initial recall buffer values" section
for more information.

335

Chapter 10: Setting X Resources
To modify the Graphical User Interface resources

The following steps show you how to modify the Graphical User Interface’s X
resources.

1 Copy part or all of the HP64_Softkey application defaults file to a temporary file.

The HP64_Softkey file contains the default definitions for the graphical interface
application’s X resources.

For example, on an HP 9000 computer you can use the following command to copy
the complete HP64_Softkey file to HP64_Softkey.tmp (note that the HP64_Softkey
file is several hundred lines long):

cp /usr/lib/X11/app-defaults/HP64_Softkey HP64_Softkey.tmp

NOTE: The HP64_Softkey application defaults file is re-created each time
Graphical User Interface software is installed or updated. You can use the UNIX
diff command to check for differences between the new HP64_Softkey application
defaults file and the old application defaults file that is saved as
/usr/hp64000/lib/X11/HP64_schemes/old/HP64_Softkey.

2 Modify the temporary file.

Modify the resource that defines the behavior or appearance that you wish to
change.

For example, to change the number of lines in the main display area to 36:
vi HP64_Softkey.tmp

Search for the string "HP64_Softkey.lines". You should see lines similar to the
following.

! The lines and columns set the vertical and horizontal dimensions of the
! main display area in characters, respectively. Minimum values are 18 lines
I'and 80 columns. These minimums are silently enforced.

| Note: The application cannot be resized by using the window manager.

IHP64_Softkey.lines:

24

IHP64_Softkey.columns: 85

336

Chapter 10: Setting X Resources
To modify the Graphical User Interface resources

Edit the line containing "HP64_Softkey.lines" so that it is uncommented and is set
to the new value:

|
! The lines and columns set the vertical and horizontal dimensions of the

! main display area in characters, respectively. Minimum values are 18 lines
I'and 80 columns. These minimums are silently enforced.

|

| Note: The application cannot be resized by using the window manager.

HP64_Softkey.lines: 36
IHP64_Softkey.columns: 85

Save your changes and exit the editor.

3 If the RESOURCE_MANAGER property exists (as is the case with HP VUE — if
you're not sure, you can check by enteringxtai -query command), use the
xrdb command to add the resources to the RESOURCE_MANAGER property. For
example:

xrdb -merge -nocpp HP64_Softkey.tmp

Otherwise, if the RESOURCE_MANAGER property does not exist, append the
temporary file to your SHOME/. Xdefaults file. For example:

cat HP64_Softkey.tmp >> $HOME/.Xdefaults
4 Remove the temporary file.

5 Start or restart the Graphical User Interface.

After you have completed the above steps, you must either start, or restart by
exiting and starting again, the Graphical User Interface. Starting and exiting t
Graphical User Interface is described in the "Starting and Exiting HP 64700
Interfaces" chapter.

337

Chapter 10: Setting X Resources
To use customized scheme files

To use customized scheme files

Scheme files are used to set platform specific resources that deal with color, fonts
and sizes, mouse and keyboard operation, and labels and titles. You can create and
use customized scheme files by following these steps.

Create the $SHOME/.HP64_schemes/<platform> directory.

For example:

mkdir SHOME/.HP64_schemes
mkdir SHOME/.HP64_schemes/HP-UX

Copy the scheme file to be modified to the SHOME/.HP64_schemes/<platform>
directory.

Label scheme files are not platform specific; therefore, they should be placed in the
$HOME/.HP64_schemes directory. All other scheme files should be placed in the
$HOME/.HP64_schemes/<platform> directory.

For example:

cp /usr/hp64000/lib/X11/HP64_schemes/HP-UX/Softkey.Color
$HOME/.HP64_schemes/HP-UX/Softkey.MyColor

Note that if your custom scheme file has the same name as the default scheme file,
the load order requires resources in the custom file to explicitly override resources
in the default file.

Modify the $SHOME/.HP64_schemes/<platform>/Softkey.<scheme> file.

For example, you could modify the
"$HOME/.HP64_schemes/HP-UX/Softkey.MyColor" file to change the defined
foreground and background colors. Also, since the scheme file name is different
than the default, you could comment out various resource settings to cause general
foreground and background color definitions to apply to the Graphical User
Interface. At least one resource must be defined in your color scheme file for it to
be recognized.

338

Chapter 10: Setting X Resources
To use customized scheme files

4 If your custom scheme file has a different name than the default, you must modify
the scheme resource definitions.

The Graphical User Interface application defaults file contains resources that
specify which scheme files are used. If your custom scheme files are named
differently than the default scheme files, you must modify these resource settings so
that your customized scheme files are used instead of the default scheme files.

For example, to use the "$SHOME/.HP64_schemes/HP-UX/Softkey.MyColor" color
scheme file you would set the "HP64_Softkey.colorScheme" resource to
"MyColor":

HP64_Softkey.colorScheme: MyColor

Refer to the previous "To customize Graphical User Interface resources” section for
more detailed information on modifying resources.

339

Chapter 10: Setting X Resources
To set up custom action keys

Examples

To set up custom action keys

Modify the "actionKeysSub.keyDefs" resource.

The "actionKeysSub.keyDefs" resource defines a list of paired strings. The first
string defines the text that should appear on the action key pushbutton. The second
string defines the command that should be sent to the command line area and
executed when the action key is pushed.

A pair of parentheses (with no spaces, that is "()") can be used in the command
definition to indicate that text from the entry buffer should replace the parentheses
when the command is executed.

Action keys that use the entry buffer should always include the entry buffer
symbol, "“()", in the action key label as a visual cue to remind you to place
information in the entry buffer before clicking the action key.

Shell commands can be executed by using an exclamation point prefix. A second
exclamation point ends the command string and allows additional options on the
command line.

Also, command files can be executed by placing the name of the file in the
command definition.

Finally, an empty action (") means to repeat the previous operation, whether it
came from a pulldown, a dialog, a popup, or another action key.

To set up custom action keys when the graphical interface is used with 80960
emulators, modify the "*i80960*actionKeysSub.keyDefs" resource:

*i80960*actionKeysSub.keyDefs: \

"Make"

"Load Pgm"
"Run Pgm"
"Trace after ()"
"Step Source"

"Again"

"cd /users/project2/960; !make! in_browser" \
"load configuration config.EA; load program2" \
"run from reset" \
"trace after (); display trace" \
"set source on; display memory mnemonic; step source" \

Refer to the previous "To modify Graphical User Interface resources" section for
more detailed information on modifying resources.

340

Chapter 10: Setting X Resources
To set initial recall buffer values

To set initial recall buffer values

* Modify the "entries" resource for the particular recall buffer.

There are six popup recall buffers present in the Graphical User Interface. The
resources for these popup recall buffers are listed in the following table.

The window manager resource "*transientDecoration" controls the borders around
dialog box windows. The most natural setting for this resource is "title."

Popup Recall Buffer Resources

Recall Popup Resources Description
File - Context- Directory ... | *dirSelect.textColumns The default number of text
*dirSelect.listVisibleltemCount columns in the popup is 50.

*dirSelectSub.entries

The default number of visible

File - Context— Symbols ... | *symSelect.textColumns lines in the popup is 12.

*symSelect.listVisibleltemCount

*symSelectSub.entries The "entries” resource is

defined as a list of strings (see

Trace- Trace Spec ... *modtrace.textColumns -
the following example).

*modtrace.listVisibleltemCount
*modtraceSub.entries

Up to 40 unique values are

Entry Buffer (): *recall.textColumns saved in each of the recall
*recall.listVisibleltemCount buffers (as specified by the
*recallSub.entries resource settings

"*XcRecall.maxDepth: 40" and

Command Line command *recallCmd.textColumns "X cRecall.onlyUnique: True")

recall *recallCmd.listVisibleltemCount
*recallCmdSub.entries

Command Line pod/simio *recallKbd.textColumns
recall *recallKbd.listVisibleltemCount
*recallKbdSub.entries

341

Chapter 10: Setting X Resources
To set initial recall buffer values

Examples

To set the initial values for the directory selection dialog box when the Graphical
User Interface is used with 80960 emulators, modify the

"*{80960*dirSelectSub.entries" resource:
*i80960*dirSelectSub.entries: \

"$HOME" \

oy

"lusers/projectl" \

"lusers/project2/960"

Refer to the previous "To modify the Graphical User Interface resources" section
for more detailed information on modifying resources.

342

Chapter 10: Setting X Resources
To set up demos or tutorials

To set up demos or tutorials

You can add demos or tutorials to the Graphical User Interface by modifying the
resources described in the following tables.

Demo Related Component Resources

Resource Value Description
*enableDemo False Specifies whethédtelp - Demo
True appears in the pulldown menu.

*demoPopupSub.indexFile

/Xdemo/Index-topics

Specifies the file containing thie list

of topic and file pairs.

*demoPopup.textColumns 30 Specifies the width, in characters,
of the of the demo topic list popup.
*demoPopup.listVisibleltemCount 10 Specifies the length, in lines, of|the

demo topic list popup.

*demoTopic

About demos

Specifies the default topic in the
demo popup selection buffer.

343

Chapter 10: Setting X Resources
To set up demos or tutorials

Tutorial Related Component Resources
Resource Value Description
*enableTutorial False Specifies whether
True Help - Tutorial appears in the

pulldown menu.

*tutorialPopupSub.indexFile JXtutorial/Index-topics Specifies the file containing|the
list of topic and file pairs.

*tutorialPopup.textColumns 30 Specifies the width, in
characters, of the of the tutorial
topic list popup.

*tutorialPopup.listVisibleltemCount 10 Specifies the length, in lines,|of
the tutorial topic list popup.

*tutorialTopic About tutorials Specifies the default topic in the
tutorial popup selection buffer.

The mechanism for providing demos and tutorials in the graphical interface is
identical. The following steps show you how to set up demos or tutorials in the

Graphical User Interface.

Create the demo or tutorial topic files and the associated command files.

Topic files are simply ASCII text files. You can use "\I' to produce inverse video
in the text, "\U" to produce underlining in the text, and "\N" to restore normal text.

Command files are executed when the "Press to perform demo (or tutorial)" button
(in the topic popup dialog) is pushed. A command file must have the same name as
the topic file with ".cmd" appended. Also, a command file must be in the same

directory as the associated topic file.

344

Chapter 10: Setting X Resources
To set up demos or tutorials

2 Create the demo or tutorial index file.

Each line in the index file contains first a quoted string that is the name of the topic
which appears in the index popup and second the name of the file that is raised
when the topic is selected. For example:

"About demos" Jusers/guest/gui_demos/general

"Loading programs" /users/guest/gui_demos/loadprog

"Running programs" /users/guest/gui_demos/runprog

You can use absolute paths (for example, /users/guest/topicl), paths relative to the
directory in which the interface was started (for example, mydir/topic2), or paths
relative to the product directory (for example, ./Xdemo/general where the product
directory is something like /usr/hp64000/inst/emul/64760A).

3 Set the "*enableDemo" or "*enableTutorial" resource to "True".

4 Define the demo index file by setting the "*demoPopupSub.indexFile" or
"*tutorialPopupSub.indexFile" resource.

For example:
*demoPopupSub.indexFile: /users/guest/gui_demos/index

You can use absolute paths (for example, /users/guest/Index), paths relative to the
directory in which the interface was started (for example, mydir/indexfile), or paths
relative to the product directory (for example, ./Xdemo/Index-topics where the
product directory is something like /usr/hp64000/inst/emul/64760A).

5 If you wish to define a default topic to be selected, set the "*demoTopic" or
"*tutorialTopic" resource to the topic string.

For example:
*demoTopic: "About demos"

Refer to the previous "To customize Graphical User Interface resources” section for
more detailed information on modifying resources.

345

346

Part 3

Reference

Descriptions of the product in a dictionary or encyclopedia format.

347

Part 3

348

11

Emulator/Analyzer Interface
Commands

349

Chapter 11: Emulator/Analyzer Interface Commands

Emulator/Analyzer Interface Commands

This chapter describes the emulator/analyzer interface commands in alphabetical
order. First, the syntax conventions are described and the commands are
summarized.

How Pulldown Menus Map to the Command Line

The following table shows the items available in the pulldown menus and the
command line commands to which they map.

350

Chapter 11: Emulator/Analyzer Interface Commands

Pulldown

Command Line

File - Context- Directory

File - Context— Symbols

File - Load - Emulator Config
File - Load - Executable

File - Load - Program Only
File - Load - Symbols Only
File - Store— Trace Data

File - Store— Trace Spec

File - Store— BBA Data

File - Copy - Display

File - Copy - Memory

File - Copy - Data Values
File - Copy - System Table
File . Copy - Trace

File » Copy - Registers

File - Copy - Breakpoints

File » Copy - Status

File » Copy - Global Symbols
File -~ Copy - Local Symboils ()
File » Copy - Pod Commands
File -~ Copy - Error Log

File -~ Copy - Event Log

File - Log — Playback

File - Log — Record

File - Log — Stop

File - Emul700- High-Level Debugger
File - Emul700- Performance Analyzer

File - Emul700- Emulator/Analyzer
File - Emul700- Timing Analyzer
File - Edit - File

File - Edit — At () Location

File - Edit -~ At PC Location

File -~ Term

File - Exit - Window (save session)

cd

CWS

load configuration

load <abs_file>

load <abs_file> nosymbols
load symbols

store trace

store trace_spec

bbaunload

copy display to

copy memory to

copy data to

copy table to

copy trace to

copy registers to

copy software_breakpoints to
copy status to

copy global_symbols to

copy local_symbols_in --SYMB-- to
copy pod_command to

copy error_log to

copy event_log to
<command file>
log_commands to
log_commands off

N/A

N/A

N/A

N/A

Ivi <file> ! no_prompt_before_exit

I vi +<line> <file> ! no_prompt_before_exit
I vi +<line> <file> ! no_prompt_before_exit

I
end

File - Exit — Locked (all windows, save sessiongnd locked

File - Exit — Released (all windows, release

emulator)

end release_system

351

Chapter 11: Emulator/Analyzer Interface Commands

Pulldown Command Line
Display— Context pwd, pws
Display— Memory display memory

Display— Memory - Mnemonic ()
Display— Memory - Mnemonic at PC
Display— Memory - Mnemonic Previous
Display— Memory - Hex () - bytes
Display— Memory - Hex () »words
Display— Memory - Hex () long
Display— Memory - Real ()- short
Display— Memory - Real ()- long
Display— Memory - At ()

Display - Memory - Repetitively
Display - Data Values

Display - Data Values- New ()- <type>
Display - Data Values- Add () - <type>
Display - System Table- Processor Control
Block

Display - System Table- System Address
Display - System Table- System Procedure
Display - System Table- Trace Procedure
Display - System Table- Fault

Display - System Table- Interrupt
Display - Execution Messages

Display- Trace

Display - Registers

Display - Breakpoints

Display - Status

Display - Simulated 10

Display - Global Symbols

Display— Local Symbols ()

Display— Pod Commands

Display— Error Log

Display— Event Log

display memory --EXPR-- mnemonic
display memory mnemonic at_pc
display memory mnemonic previous_display
display memory --EXPR-- blocked bytes
display memory --EXPR-- blocked words
display memory --EXPR-- blocked long
display memory --EXPR-- real short
display memory --EXPR-- real long
display memory --EXPR--

display memory repetitively

display data

display data --EXPR-- <type>

display data, --EXPR-- <type>

display table processor_control_block

display table system_address
display table system_procedure
display table trace_procedure
display table fault

display table interrupt

display execution_messages
display trace

display registers

display software_breakpoints
display status

display simulated_io

display global_symbols

display local_symbols_in --SYMB--
display pod_command

display error_log

display event_log

352

Chapter 11: Emulator/Analyzer Interface Commands

Pulldown Command Line

Modify — Emulator Config modify configuration

Modify - Memory modify memory

Modify — Memory at () modify memory --EXPR--

Modify — Register modify register

Modify — Execution Messages Set All modify execution_messages set
Modify — Execution Messages Clear Al modify execution_messages clear
Execution— Run - from PC run

Execution— Run - from () run from --EXPR--

Execution- Run - from Transfer Address run from transfer_address
Execution- Run - from Reset run from reset

Execution— Run - until () run until --EXPR--

Execution- Step Source- from PC step source

Execution- Step Source-from () step source from --EXPR--
Execution- Step Source- from Transfer step source from transfer_address
Address

Execution- Step Instruction - from PC step

Execution- Step Instruction - from () step from --EXPR--

Execution- Step Instruction - from Transfer step from transfer_address
Address

Execution- Init Processor init_processor

Execution- Break break

Execution- Reset reset

Breakpoints - Display display software_breakpoints

Breakpoints— Enable modify software_breakpoints enable/disable

Breakpoints— Permanent () modify software_breakpoints set --EXPR--
permanent

Breakpoints— Temporary () modify software_breakpoints set --EXPR--
temporary

Breakpoints - Set Al modify software breakpoints set

Breakpoints - Clear () modify software_breakpoints clear --EXPR--

Breakpoints - Clear All modify software_breakpoints clear

353

Chapter 11: Emulator/Analyzer Interface Commands

Pulldown

Command Line

Trace - Display
Trace- Trace Spec
Trace - After ()
Trace - Before ()
Trace - About ()
Trace- Only ()
Trace- Only () Prestore
Trace - Again
Trace - Repetitively
Trace - Everything
Trace - Until ()
Trace - Until Stop
Trace - Stop

display trace

N/A (browses recall buffer for trace commands)
trace after STATE

trace before STATE

trace about STATE

trace only STATE

trace only STATE prestore anything
trace again

<previous trace spec> repetitively
trace

trace before STATE break_on_trigger
trace on_halt

stop_trace

Settings— Source/Symbol Modes, Absolute
Settings— Source/Symbol Modes. Symbols
Settings— Source/Symbol Modes. Source
Mixed

Settings— Source/Symbol Modes. Source
Only

Settings— Display Modes- Source Only
Settings— Pod Command Keyboard
Settings- Simulated 10 Keyboard
Settings—» Command Line

set source off symbols off
set source off symbols on
set source on inverse_video on symbols on

set source only inverse_video off symbols on

set

display pod_command; pod_command keyboard
display simulated_io; modify keyboard_to_simio
N/A (toggles the command line)

354

Chapter 11: Emulator/Analyzer Interface Commands

How Popup Menus Map to the Command Line

The following tables show the items available in the popup menus and the
command line commands to which they map.

Mnemonic Memory Display Popup

Command Line

Set/Clear Breakpoint
Edit Source

Run Until

Trace After

Trace Before

Trace About

Trace Until

modify software_breakpoints set/clear --EXPR--
I'vi +<line> <file> ! no_prompt_before_exit

run until --EXPR--

trace after STATE

trace before STATE

trace about STATE

trace before STATE break _on_trigger

Breakpoints Display Popup

Command Line

Set/Inactivate Breakpoint

Clear (delete) Breakpoint
Enable/Disable Software Breakpoints
Set All Breakpoints

Clear (delete) All Breakpoints

modify software_breakpoints set/deactivate --EXPR--

modify software_breakpoints clear --EXPR--
modify software_breakpoints enable/disable
modify software_breakpoints set

modify software_breakpoints clear

Symbols Display Popup

Command Line

Display Local Symbols
Display Parent Symbols

Cut Full Symbol Name
Edit File Defining Symbol

display local_symbols_in --SYMB--

display local_symbols_in --SYMB--, display
global_symbols

N/A

Ivi +<line> <file> ! no_prompt_before_exit

355

Chapter 11: Emulator/Analyzer Interface Commands

Status Line Popup

Command Line

Remove Temporary Message
Display Error Log

Display Event Log

Command Line On/Off

N/A

display error_log
display event_log
(toggles command line)

Command Line Popup

Command Line

Position Cursor, Replace Mode
Position Cursor, Insert Mode
Execute Command

Clear to End of Line

Clear Entire Line

Command Line Off

<INSERT CHAR> key (when in insert mode)
<INSERT CHAR> key

<RETURN> key

<CTRL>e

<CTRL>u

(toggles command line)

356

Chapter 11: Emulator/Analyzer Interface Commands

Syntax Conventions

Conventions used in the command syntax diagrams are defined below.

Oval-shaped Symbols

Oval-shaped symbols show options available on the softkeys and other commands
that are available, but do not appear on softkeys (suoly_asommandsandwait).
These appear in the syntax diagrams as:

<g\ob0\,symbo\s>

Rectangular-shaped Symbols

Rectangular-shaped symbols contain prompts or references to other syntax
diagrams. Prompts are enclosed with angle brackets (< and >). References to other
diagrams are shown in all capital letters. Also, references to expressions are shown
in all capital letters, for example --EXPR-- and --SYMB-- (see those syntax
diagrams). These appear in the following syntax diagrams as:

<RECISTERS> — EXPR—-—

Circles

Circles indicate operators and delimiters used in expressions and on the command
line as you enter commands. These appear in the syntax diagrams as:

)

The -NORMAL- Key

The softkey labeleeNORMAL- allows you exit the --SYMB-- definition, and
access softkeys that are not displayed when defining expressions. You can press
this key after you have defined an expression to view other available options.

357

Chapter 11: Emulator/Analyzer Interface Commands

Commands

Emulator/analyzer interface commands are summarized in the table below and

described in the following pages.

IUNIX_COMMAND
bbaunload

break

cd (change director§/)
cmb_execute
<command file2

copy datd

copy display

copy error_log

copy event_log

copy global_symbols
copy help

copy local_symbols_in
copy memorﬁ‘/

copy pod_command
copy registe

copy software_breakpoints
copy status

copy table

copy trace
cws(change working symb8l)
display dat

display error_log
display event_log

display execution_messaées
display global_symbols
display local_symbols_in
display memory

display pod_command
display registe

display simulated_?o

display software_breakpoints
display status

display table

display trace

end

forward

help®

init_processor

load <absolute_file>

load configuration

load emul_mem

load trace

load trace_spec

load user_memory
log_comman

modify configuration

modify execution_messades

L This option is not available in real-time mode.

2 This is only available when simulated 1/O is defined.
3 These commands are not displayed on softkeys.

4 This option is not available in real-time mode if addresses are in user memaory.

modify keyboard_to_sim?o
modify memor

modify registe

modify software breakpoin]ts
name_of _modu
performance_measurement_enc
performance_measurement_init
performance_measurement_run
pod_command

pwd (print working director)?)
pws (print working symbo?”)
reset

run

set

specify

step

stop_trace

store memory

store trace

store trace_spec

trace

wait>

358

Chapter 11: Emulator/Analyzer Interface Commands
break

break

break <RETURN>

This command causes the emulator to leave user program execution and begin
executing in the monitor.

The behavior obreak depends on the state of the emulator:

running Break diverts the processor from execution of your
program to the emulation monitor.

reset Break releases the processor from reset, and diverts
execution to the monitor.

running in monitor Théreak command does not perform any operation while
the emulator is executing in the monitor.

If the emulator in unable to break when execution messages are set, clear the
execution messages and look at the "trace-enable" flag in the Process Controls
Register. This flag is cleared (disabled) as a part of the processor’s initialization
procedure, and it should be left this way to avoid taking trace faults in your
program. If you find the "trace-enable" flag is set, edit your program and make
sure there are no "modpc" instructions that set this flag.

See Also Thereset, run, andstep commands.

359

Chapter 11: Emulator/Analyzer Interface Commands

bbaunld

See Also

bbaunld

This command is available when the HP Branch Validator product is installed.
This basis branch analyzer (BBA) product is used to analyze the testing of your
programs, create more complete test suites, and quantify your level of testing.

The HP Branch Validator records branches executed in a program and generates
reports that provide information about program execution during testing. It uses a
special C preprocessor to add statements that write to a data array when program
branches are taken. After running the program in the emulator (using test input),
you can use thisbaunload command to store the BBA information to a file. Then,
you can generate reports based on the stored information.

Refer to theHP Branch Validator (BBA) User’s Guider complete details on the
bbaunload command syntax.

360

Chapter 11: Emulator/Analyzer Interface Commands
cmb_execute

cmb_execute

cmb _execute <RETURN>

Thecmb_executecommand causes the emulator to emit an EXECUTE pulse on its
rear panel Coordinated Measurement Bus (CMB) connector. All emulators
connected to the CMB (including the one sending the CMB EXECUTE pulse) and
configured to respond to this signal will take part in the measurement.

See Also Thespecify run andspecify tracecommands.

361

Chapter 11: Emulator/Analyzer Interface Commands
copy

copy

- data to —~
\F’{ MEMORY
% TRACE
¥>{ REGISTERS
%oftworeibreokpomts
(G /
L{ LOCAL_SYMBOLS _IN ‘ ~
¥»< help)»{ <HELP FI_E> }—/
~—={ display

error_log

event log

R
= status
= table

Iy

UNIX CMD

| <RETURN>

printer

<FILE>

Use this command with various parameters to save or print emulation and analysis
information.

362

data

display
error_log
event_log

<FILE>

global_symbols

help

<HELP_FILE>

UNIX CMD

local_symbols_in

memory

noappend

Chapter 11: Emulator/Analyzer Interface Commands
copy

The copy command copies selected information to your system printer or listing
file, or directs it to an UNIX process.

Depending on the information you choose to copy, default values may be options
selected for the previous execution of diplay command. For example, if you
display memory locations 10h through 20h, then issug® memory to myfile
command, myfile will list only memory locations 10h through 20h.

The parameters are as follows:

This allows you to copy a list of memory contents formatted in various data types
(see display data).

This allows you to copy the display to a selected destination.
This allows you to copy the most recent errors that occurred.
This allows you to copy the most recent events that occurred.

This prompts you for the name of a file where you want the specified information
to be copied. If you want to specify a file name that begins with a number, you
must precede the file name with a backslash. For exaogpe display to \12.10
<RETURN>

This lets you copy a list of global symbols to the selected destination.

This allows you to copy the contents of the emulation help files to the selected
destination.

This represents the name of the help file to be copied. Available help file names are
displayed on the softkey labels.

This represents an UNIX filter or pipe where you want to route the output of the
copy command. UNIX commands must be preceded by an exclamation point
An exclamation point following the UNIX command continues Softkey Interfac
command line execution after the UNIX command executes. Emulation is not
affected when using an UNIX command that is a shell intrinsic.

This lets you copy all the children of a given symbol to the selected destination.
See the-SYMB-- syntax page and tt&ymbolic Retrieval Utilities User’'s Guide
for information on symbol hierarchy.

This allows you to copy a list of the contents of memory to the selected destination.

This causes any copied information to overwrite an existing file with the same
name specified by <FILE>. If this option is not selected, the default operation is to

363

Chapter 11: Emulator/Analyzer Interface Commands

copy
append the copied information to the end of an existing file with the same name
that you specify.

noheader This copies the information into a file without headings.

pod_command This allows you to copy the most recent commands sent to the HP 64700 Series
emulator/analyzer.

printer This option specifies your system printer as the destination device tmphe
command. Before you can specify the printer as the destination device, you must
define PRINTER as a shell variable. For example, you could enter the text shown
below after the "$" symbol:
$ PRINTER=Ip
$ export PRINTER
If you don’t want the print message to overwrite the command line, execute:
$ set PRINTER ="Ip -s"

registers This allows you to copy a list of the contents of the emulation processor registers to
the selected destination.

software This option lets you copy a list of the current software breakpoints to a selected

_breakpoints destination.

status This allows you to copy emulation and analysis status information.

to This allows you to specify a destination for the copied information.

trace This lets you copy the current trace listing to the selected destination.

table Copies the the most recently displayed 80960 table to the destination.

! An exclamation point specifies the delimiter for UNIX commands. An exclamation
point must precede all UNIX commands. A trailing exclamation point should be
used if you want to return to the command line and specify noheader. Otherwise,
the trailing exclamation point is optional. If an exclamation point is part of the
UNIX command, a backslash (\) must precede the exclamation point.

364

Chapter 11: Emulator/Analyzer Interface Commands
copy

Examples See the following pages on variaegpy syntax diagrams.

See Also See the following pages on varicepy syntax diagrams.

365

Chapter 11: Emulator/Analyzer Interface Commands
copy local_symbols_in

copy local_symbols_in

(copy ~{local_symbols_in) ~ To output of | LOCAL_SYMBOLS_IN
——SYMB-— on COPY diagram

--SYMB--

Examples

See Also

This command lets you copy local symbols contained in a source file and relative
segments (program, data, or common) to the selected destination.

Local symbols are symbols that are children of the particular file or symbol defined
by --SYMB--, that is, they are defined in that file or scope.

For additional information on symbols, refer to tH#&YMB-- syntax pages and the
Symbolic Retrieval Utilities User's Guide

--SYMB-- is the current working symbol.
The parameters are as follows:

This option represents the symbol whose children are to be listed. See the
--SYMB-- syntax diagram and ti&mbolic Retrieval Utilities User’'s Guidier
information on symbol hierarchy.

copy local_symbols_in mod_name to printer <RETURN>

copy local_symbols_in mod_name: fo linenumfile <RETURN>

Thedisplay local_symbols_ircommand.

366

Chapter 11: Emulator/Analyzer Interface Commands
copy memory

copy memory

< copy Hmemory)D

Vv
@

To output of MEMORY
on CoPry diagram

——EXPR——

This command copies the contents of a memory location or series of locations to
the specified output.

The memory contents are copied in the same format as specified in the last display
memory command.

Contents of memory can be displayed if program runs are not restricted to
real-time. Memory contents are listed as an asterisk (*) under the following
conditions:

1 The address refers to guarded memory.

2 Runs are restricted to real-time, the emulator is running a user program, a
the address is located in user memory.

Values in emulation memory can always be displayed.

Initial values are the same as those specified by the conusgolay memory 0
blocked bytes offset_by 0

Defaults are to values specified in the previdisplay memory command.

367

Chapter 11: Emulator/Analyzer Interface Commands

copy memory

--EXPR--

Examples

See Also

The parameters are as follows:

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a memory address or offset value. See the EXPR syntax
diagram.

A comma used immediately afteremory in the command line appends the
currentcopy memorycommand to the precedidgsplay memorycommand. The

data specified in both commands is copied to the destination specified in the current
command. Data is formatted as specified in the current command. The comma is
also used as a delimiter between values when specifying multiple memory
addresses.

copy memory start to printer <RETURN>

copy memory 0 thru 100h, start thru +5, 500H ,
target2 fo memlist <RETURN>

copy memory 2000h thru 204fh to memlist <KRETURN>

Thedisplay memory, modify memory, andstore memorycommands.

368

Chapter 11: Emulator/Analyzer Interface Commands
copy registers

copy registers

< copy)—{reg'\sters

To output of | REGISTERS
<CLASS> \ on COPY diagram
} <REG\STER>H .<FIELD>

This command copies the contents of the processor registers to a file or printer.

Thecopy registerprocess does not occur in real-time. The emulation system must
be configured for nonreal-time operation to list the registers while the processor is
running.

Refer to the "Accessing Registers" section in the "Using the Emulator" chapter for
a list of the 80960 register classes, names, and control register field names.

With no options specified, the basic register class is copied. This includes the local
and global registers.

The parameters are as follows:

<CLASS> Specifies a particular class of the emulator registers.
<REGISTER> Specifies the name of an individual register or control register field.
<FIELD> Specifies the name of a field within a control register.

Examples

copy registers global to printer <RETURN>

copy registers to reglist <RETURN>

See Also Thedisplay registersandmodify registers commands.

369

Chapter 11: Emulator/Analyzer Interface Commands
copy trace

copy trace

Coom e)

fromi\meimumbeb—% <LINE #> }—ﬁ%rui\meinumber}% <LINE #> }—)

()

= To output of TRACE

on COPY diagram

This command copies the contents of the trace buffer to a file or to the printer.

Trace information is copied in the same format as specified in the last display trace
command.

Initial values are the same as specified by theliaptay trace command.
The parameters are as follows:
from_line_number This specifies the trace list line number from which copying will begin.

<LINE#> Use this withfrom_line_number andthru_line_number to specify the starting
and ending trace list lines to be copied.

thru_line_number Specifies the last line number of the trace list to include in the copied range.

Examples
copy trace to tlist <RETURN>
copy trace from_line_number 0 thru_line_number 5
to longtrac <RETURN>

See Also Thedisplay trace andstore trace commands.

370

Chapter 11: Emulator/Analyzer Interface Commands
display

display

4 DATA % <RETURN>
N cLowaL_svMBOLS |

\—{executionimessegesp

This command displays selected information on your screen.

You can use the <Up arrow>, <Down arrow>, <PREV>, and <NEXT> keys to

view the displayed information. For software_breakpoints, data, memory, and trace
displays you can use the <CTRL>g and <CTRL>f keys to scroll left and right if the
information goes past the edge of the screen.

Depending on the information you select, defaults may be the options selected for
the previous execution of tligsplay command.

371

Chapter 11: Emulator/Analyzer Interface Commands

display

data

error_log

event_log

execution
_messages

global_symbols

local_symbols_in

memory

pod_command

registers

simulated_io

software
_breakpoints

status
trace

table

Examples

The parameters are as follows:

This allows you to display a list of memory contents formatted in various data types
(see thalisplay datapages for details).

This option displays the recorded list of error messages that occurred during the
emulation session.

This option displays the recorded list of events.

Displays whether execution messages are enabled or disabled and whether the
individual execution messages are set, cleared, or inactivated.

This option lets you display a list of all global symbols in memory.

This option lets you display all the children of a given symbol. SeeSN&/B--
syntax page and tt&ymbolic Retrieval Utilities User's Guider details on symbol
hierarchy.

This option allows you to display the contents of memory.

This option lets you display the output of previously executed emulator pod
commands.

This allows you to display the contents of emulation processor registers.

This lets you display data written to the simulated 1/O display buffer after you have
enabled polling for simulated 1/0O in the emulation configuration.

This option lets you display the current list of software breakpoints.

This displays the emulator and trace status.
This displays the current trace list.

Displays the contents of the 80960 tables in memory. Selisghlay tablespages
for details.

display event_log <RETURN>

display local_symbols_in mod_name <RETURN>

372

Chapter 11: Emulator/Analyzer Interface Commands
display

See Also The copy command description and the following pages which describe the various
display commands.

373

Chapter 11: Emulator/Analyzer Interface Commands

display data

display data

(display }—{ data

—~

to <RETURN> on
display diagram

;{ ——EXPR—- |
o o)

]

R

byte
short
word
int8
int16
int32
u_int8
u_int16

u_int32

char

(e
N

Thedisplay datacommand can display the values of simple data types in your

program. Using this command can save you time; otherwise, you would need to
search through memory displays for the location and value of a particular variable.

The address, identifier, and data value of each symbol may be displayed. You must

issue the commarskt symbols orto see the symbol names displayed.

In the first display data command after you begin an emu

lation session, you must

supply at least one expression specifying the data item(s) to display.

Thereatfter, the display data command defaults to the expressions specified in the
last display data command, unless new expressions are supplied or appended (with

a leading comma).

374

~EXPR--

thru --EXPR--

<TYPE>

byte
short

word

int8
int16
int32
u_int8
u_intlé
u_int32

char

Chapter 11: Emulator/Analyzer Interface Commands
display data

Symbols are normally set off until you give the commseidsymbols on
Otherwise, only the address, data type, and value of the data item will be displayed.

The parameters are as follows:

A leading comma allows you to append additional expressions to the previous
display data command.

Commas between expression/data type specifications allow you to specify multiple
variables and types for display with the current command.

Prompts you for an expression specifying the data item to display. The expression
can include various math operators and program symbols. See the --EXPR-- and
--SYMB-- syntax pages for more information.

Allows you to specify a range of addresses for which you want data display.
Typically, you use this to display the contents of an array. You can display both
single-dimensioned and multi-dimensioned arrays. Arrays are displayed in the
order specified by the language definition, typically row major order for most
Algol-like languages.

Specifies the format in which to display the information. (Data type information is
not available from the symbol database, so you must specify.)

Hex display of one 8 bit location.
Hex display of one 16 bit location.
Hex display of one 32 bit location.

Note that byte ordering in word and long displays is determined by the conventions
of the processor in use.

Display of one 8 bit location as a signed integer using two’s complement notatj
Display of two bytes as a signed integer using two’'s complement notation.
Display of four bytes as a signed integer using two’s complement notation.
Display of one byte as an unsigned positive integer.

Display of two bytes as an unsigned positive integer.

Display of four bytes as an unsigned positive integer.

Displays one byte as an ASCII character in the range 0 through 127. Control
characters and values in the range 128 through 255 are displayed as a period (.).

375

Chapter 11: Emulator/Analyzer Interface Commands

display data

Examples
display data Msg_A thru +17 char , Stack long <RETURN>
set symbols on <RETURN>
set width label 30 <RETURN>
display data ,Msg_B thru +17 char ,Msg_Dest thru +17
char <RETURN>

See Also Thecopy dataandsetcommands.

376

Chapter 11: Emulator/Analyzer Interface Commands
display global_symbols

See Also

display global _symbols

display =~ global_symbols = To | <RETURN> | on
DISPLAY diagram

This command displays the global symbols defined for the current absolute file.

Global symbols are symbols declared as global in the source file. They include
procedure names, variables, constants, and file names. Wiisplag
global_symbolscommand is used, the listing will include the symbol name and its
logical address.

Thecopy global_symbolzommand.

377

Chapter 11: Emulator/Analyzer Interface Commands
display local_symbols_in

--SYMB--

Examples

See Also

display local_symbols_in

< display)—E’Qooo\ symbols_ m/ <RETURN> on
M —=SYMB—— M D\SPLAY diagram

Displays the local symbols in a specified source file and their relative segment
(program, data, or common).

Local symbols of-SYMB-- are the ones which are children of the file and/or scope
specified by-SYMB--. That is, they are defined in that file or scope.

See the-SYMB-- syntax pages and tl&ymbolic Retrieval Utilities User’'s Guide
for further explanation of symbols.

Displaying the local symbols sets the current working symbol to the one specified.
The parameters are as follows:

This option represents the symbol whose children are to be listed. See the
--SYMB-- syntax diagram and ti&mbolic Retrieval Utilities User’s Guidier
more information on symbol hierarchy and representation.

display local_symbols_in mod_name <RETURN>

display local_symbols_in mod_name:main <RETURN>

Thecopy local_symbols_ircommand.

378

Chapter 11: Emulator/Analyzer Interface Commands
display memory

display memory

< display >—~(memory

/

—EXPR--

~ repefitively ~—={ real J
)

absolufe

Dy
previous_display

Ta <RETURN> | on
oﬁsetbyH——EXPR—— DISPLAY dagram

This command displays the contents of the specified memory location or series of
locations.

\\'CWHEWDWC

379

Chapter 11: Emulator/Analyzer Interface Commands

display memory

absolute
at_pc
blocked
bytes
--EXPR--

long

The memory contents can be displayed in mnemonic, hexadecimal, or real number
format. In addition, the memory addresses can be listed offset by a value, which
allows the information to be easily compared to the program listing.

When displaying memory mnemonic and stepping, the next instruction that will

step is highlighted. The memory mnemonic display autopages to the new address if
the next PC goes outside the currently displayed address range. This feature works
even if stepping is performed in a different emulation window than the one
displaying memory mnemonic.

Pending software breakpoints are shown in the memory mnemonic display by an
asterisk (*) in the leftmost column of the assembly instruction or source line that
has a pending breakpoint.

A label column (symbols) may be displayed for all memory displays except
blocked mode. Memory mnemonic may be displayed with source and assembly
code intermixed, or with source code only. Symbols also can be displayed in the
memory mnemonic string. (See the set command.)

Initial values are the same as specified by the command:

display memory 0 blocked bytes offset_by 0

Defaults are values specified in a previdisplay memory command.
The symbols and source defaults are:

set source off symbols off

The parameters are as follows:

Formats the memory listing in a single column.

Displays the memory at the address pointed to by the current program counter value.
Formats the memory listing in multiple columns.

Displays the absolute or blocked memory listing as byte values.

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a memory address or memory offset value. See the EXPR
syntax diagram.

Displays memory in a 64-bit real number format.

380

Chapter 11: Emulator/Analyzer Interface Commands
display memory

mnemonic This causes the memory listing to be formatted in assembly language instruction
mnemonics with associated operands. When specifying mnemonic format, you
should include a starting address that corresponds to the first byte of an operand to
ensure that the listed mnemonics are correcetl§ource onlyis on, you will see
only the high level language statements and corresponding line numbers.

offset_by This option lets you specify an offset that is subtracted from each of the absolute
addresses before the addresses and corresponding memory contents are listed. You
might select the offset value so that each module appears to start at address 0000H.
The memory contents listing will then appear similar to the assembler or compiler
listing.

This option is also useful for displaying symbols and source lines in dynamically
relocated programs.

previous_display Returns to display associated with the previous mnemonic memory display
command.

real Formats memory values in the listing as real numbers. (NaN in the display list
means "Not a Number.")

repetitively Updates the memory listing display continuously. You should only use this to
monitor memory while running user code, since it is very CPU intensive. To allow
updates to the current memory display whenever memory is modified, a file is
loaded, software breakpoint is set, etc., ussehepdatecommand.

short Formats the memory list as 32-bit real numbers.
shorts Displays the absolute or blocked memory listing as 16-bit short values.
thru This option lets you specify a range of memory locations to be displayed. Use the

<Up arrow>, <Down arrow>, <NEXT>, and <PREV> keys to view additional
memory locations.

words Displays the memory listing as 32-bit word values.

, A comma aftememory in the command line appends the curdisplay memory
command to the precedidisplay memorycommand. The data specified in both
commands is displayed. The data will be formatted as specified in the current
command. The comma is also a delimiter between values when specifying multiple
addresses.

381

Chapter 11: Emulator/Analyzer Interface Commands

display memory

Examples

See Also

Since the 80960 is "little endian”, the size determines the ordering of bytes for the
memory display when using the absolute or blocked format. For example, consider
the following displays with different sizes:

display memory 2000h thru 200fh blocked bytes <RETURN>
00 11 22 3344 55 66 77 99 AA BB CC DD EE FF

display memory 2000h thru 200fh blocked shorts <RETURN>
1100 3322 5544 7766 9988 BBAA DDCC FFEE

display memory 2000h thru 200fh blocked words <RETURN>
33221100 77665544 BBAA9988 FFEEDDCC

You can also display memory in real number and mnemonic formats:

display memory 2000h thru 202fh, 2100h real long
<RETURN>

display memory 400h mnemonic <RETURN>

set symbols on <RETURN>
set source on <RETURN>
display memory main mnemonic <RETURN>

Thecopy memory, modify memory, set andstore memorycommands.

382

Chapter 11: Emulator/Analyzer Interface Commands
display registers

display registers

(; display :>~ﬂ><; registers

To | <RETURN> | on

<CLASS> \
<REGISTER> H _<FIELD>

This command displays the current contents of the emulation processor registers.

If a stepcommand just executed, the mnemonic representation of the last
instruction is also displayed, if the current display is the register display. This
process does not occur in real-time. The emulation system must be configured for
nonreal-time operation to display registers while the processor is running. Symbols
also may be displayed in the register step mnemonic stringgssgmbol3.

Refer to the "Accessing Registers" section in the "Using the Emulator" chapter for
a list of the 80960 register classes, names, and control register field names.

With no options specified, the basic register class is displayed as the default. This
includes the local and global registers.

The parameters are as follows:

<CLASS> This allows you to display a particular class of emulation processor registers.
<REGISTER> This displays an individual register or control register field.
<FIELD> This displays an individual field of a control register.

383

Chapter 11: Emulator/Analyzer Interface Commands
display registers

Examples
display registers <RETURN>
display registers control <RETURN>
display registers pctl <RETURN>
See Also Thecopy registers modify registers, set andstepcommands.

384

Chapter 11: Emulator/Analyzer Interface Commands
display simulated_io

display simulated io

display > simulated o >—>To <RETURN> | on
DISPLAY diagram

This command displays information written to the simulated 1/O display buffer.

After you have enabled polling for simulated 1/0 during the emulation
configuration process, six simulated 1/0 addresses can be defined. You then define
files used for standard input, standard output, and standard error.

For details about setting up simulated 1/O, refer t&Siheulated I/O User’'s Guide

Examples
display simulated_io <RETURN>

See Also Themodify configuration andmodify keyboard_to_simiocommands.

385

Chapter 11: Emulator/Analyzer Interface Commands
display software_breakpoints

display software_breakpoints

(display)—*(softwore_breokpoints) <RETURN> on
L(offset by)——[——ExPR——}j DISPLAY diagram

~-EXPR--

offset_by

Examples

See Also

This command displays the currently defined software breakpoints and their status.

If the emulation session is continued from a previous session, the listing will
include any previously defined breakpoints. The column marked "status" shows
whether the breakpoint is pending, inactivated, or unknown.

A pending breakpoint causes the processor to enter the emulation monitor upon
execution of that breakpoint. Executed breakpoints are listed as inactivated.
Entries that show an inactive status can be reactivated by executmgdifie
software_breakpoints secommand.

A label column also may be displayed for addresses that correspond to a symbol.
See thesetcommand for details.

The parameters are as follows:

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying an offset value for the breakpoint address. See the
--EXPR-- syntax diagram.

This option allows you to offset the listed software breakpoint address value from
the actual address of the breakpoint. By subtracting the offset value from the
breakpoint address, the system can cause the listed address to match that given in
the assembler or compiler listing.

display software_breakpoints <RETURN>

display software_breakpoints offset_by 1000H <RETURN>

Thecopy software_breakpoints modify software_breakpoints andset
commands.

386

Chapter 11: Emulator/Analyzer Interface Commands
display table

fault
interrupt

processor_control
_block

system_address
system_procedure

trace_procedure

Examples

See Also

display table

< display >——< table /processoricontro\ib\ock To | <RETURN> | on
system _address DISPLAY diagram
={ system _procedure

={ trace_ procedure

interrupt

Displays contents of 80960 tables in memory.

Thedisplay table command gives you a formatted display of the 80960 processor
control block, the system tables, and the interrupt and fault tables.

If no table name is specified, the prcb is displayed.
The parameters are as follows:

Displays the fault table.

Displays the interrupt table.

Displays the processor control block.

Displays the system address table.
Displays the system procedure table.

Displays the trace procedure table.

display table <RETURN>

display table system_address <RETURN>

Thecopy tablecommand.

387

Chapter 11: Emulator/Analyzer Interface Commands
display trace

display trace

(display)—-(troce

depth)——] <DEPTH#> }

-

<LINE #>

~

disassemble _from _ Iine_numbex)——|

“—=(mnemonic }

\

dissussemble_execution_messcge%

dissassemble _prefetch
dissossemble_ both
dissassemble_ neither

“—(absolute }

mhemonic

o)/

external*

binary

external _label

‘ binary '
h

X

-

N~(offset_by = --EXPR-- })

N
<LINE #> |—\

-

To | <RETURN> | on
DISPLAY diogram

+ aovoilable when external laobels are

in use

388

absolute
count

absolute

relative

depth
<DEPTH#>

Chapter 11: Emulator/Analyzer Interface Commands
display trace

This command displays the contents of the trace buffer.

Captured information can be presented as absolute hexadecimal values or in
mnemonic form. The processor status values captured by the analyzer can be listed
mnemonically or in hexadecimal or binary form.

Addresses captured by the analyzer are physical addresses.

Theoffset_byoption subtracts the specified offset from the addresses of the
executed instructions before listing the trace. With an appropriate entrjsketr
each instruction in the listed trace will appear as it does in the assembled or
compiled program listing.

Thecount parameter lists the time associated with a trace event either relative to
the previous event in the trace list or as an absolute count measured from the trigger
event.

Thesourceparameter allows display of source program lines in the trace listing,
enabling you to quickly correlate the trace list with your source program.

Initial values are the same as specified by the command:

display trace mnemonic count relative offset_by 0
<RETURN>

The parameters are as follows:

Lists trace information in hexadecimal format, rather than mnemonic opcodes.

This lists the time count for each event of the trace as the total time measured from
the trigger event.

This lists the time count for each event of the trace as the time measured relat
the previous event.

This defines the number of states to be uploaded by the Softkey Interface.

Note that after you have changed the trace depth, execute the comaitand
measurement_completdefore displaying the trace. Otherwise the new trace states
will not be available.

389

Chapter 11: Emulator/Analyzer Interface Commands

display trace

-EXPR--

external
binary

<external
_label>

hex
off

then

<LINE#>

mnemonic

offset_by

An expression is a combination of nhumeric values, symbols, operators, and
parentheses, specifying an offset value to be subtracted from the addresses traced
by the emulation analyzer. See the EXPR syntax diagram.

Displays the external analyzer trace list in binary format.

This option displays a defined external analyzer label.

Displays the external analyzer trace list in hexadecimal format.
Use this option to turn off the external trace list display.

This allows you to display multiple external analysis labels. This option appears
when more than one external analyzer label is in use.

This prompts you for the trace list line number to be centered in the display. Also,
you can use <LINE#> witisassemble_from_line_number<LINE#> prompts

you for the line number from which the inverse assembler attempts to disassemble
data in the trace list.

Lists trace information with opcodes in mnemonic format.

This option allows you to offset the listed address value from the address of the
instruction. By subtracting the offset value from the physical address of the
instruction, the system makes the listed address match that given in the assembler
or compiler listing.

This option is also useful for displaying symbols and source lines in dynamically
relocated programs.

Note that when using theet source onlycommand, the analyzer may operate more
slowly than when using theet source orcommand. This is an operating
characteristic of the analyzer:

When you use the commaset source onand are executing only assembly
language code (not high-level language code), no source lines are displayed.
The trace list will then fill immediately with the captured assembly language
instructions.

When usingset source onlyno inverse assembled code is displayed.
Therefore, the emulation software will try to fill the display with high-level
source code. This requires the emulation software to search for any captured
analysis data generated by a high-level language statement.

390

Chapter 11: Emulator/Analyzer Interface Commands
display trace

In conclusion, you should not set the trace listbsource onlywhen tracing
assembly code. This will result in optimum analyzer performance.

option
disassemble Specifies that execution messages should be disassembled in the trace display.
_execution
_messages
disassemble Specifies that instruction prefetches should be disassembled in the trace display.
_prefetch
disassemble Specifies that both execution messages and instruction prefetches should be
_both disassembled in the trace display.
disassemble Turns off disassembly and causes only mnemonic status information to be
_neither displayed.
status
binary Lists absolute status information in binary form.
hex Lists absolute status information in hexadecimal form.
mnemonic Lists absolute status information in mnemonic form.
Examples
display trace count absolute <RETURN>
display trace absolute status binary <RETURN>
display trace mnemonic <RETURN>
See Also Thecopy trace store trace andsetcommands.

391

Chapter 11: Emulator/Analyzer Interface Commands

end

locked

measurement
_system

<MODNAME>

N <RETURN>

locked

release system

select

=~ measurement system

<MODNAME>

This command terminates the current emulation session.

You can end the emulation session and keep the emulator in a locked state. The
current emulation configuration is stored, so that you can continue the emulation
session on reentry to the emulator. You can select another measurement system
when ending the current session. You also can release the emulation system when
ending the session so that others may use the emulator.

Note that pressing <CTRL>d performs the same operation as presding
<RETURN>. Pressing <CTRL>\ or <CTRL>| performs the samenals
release_system <RETURN>

When the emulation session ends, control returns to the UNIX shell without
releasing the emulator.

The parameters are as follows:

This option allows you to stop all active instances of an emulator Softkey Interface
session in one or more windows and/or terminals. This option is not available
when operating the emulator in the measurement system.

This is used with theelectoption, and represents another emulation system in the
HP 64000-UX measurement system. This option is only available when operating
the emulator in the measurement system.

Choose this option witkelectto enter another module in the measurement system
after ending the current one. <MODNAME> appears when other measurement
system modules are defined in the HP 64000-UX measurement system. This
option is only available when operating the HP 64700 in the measurement system.

392

Chapter 11: Emulator/Analyzer Interface Commands
end

release_system This option stops all instances of the Softkey Interface in one or more windows or
terminals. The emulation system is released for other users. If you do not release
the emulation system when ending, others cannot access it.

select This option lets you choose another defined emulation measurement system when
you end the current emulation session. One or more different measurement systems
must be active for this option to appear.

Examples
end <RETURN>
end release_system <RETURN>
See Also The "Exiting the Softkey Interface" section in the "Using the Softkey Interface"

chapter.

393

Chapter 11: Emulator/Analyzer Interface Commands

-EXPR--

--EXPR--

*\\¥% <DON'T CARE NUMBER>}
<NUMBER>

DON'T CARE
NUMBER

--NORMAL--

<0OP>

=y
d

en

An expression is a combination of humeric values, symbols, operators, and
parentheses used to specify address, data, status, executed address, or any other
value used in the emulation commands.

The function of an expression (--EXPR--) is to let you define the address, data,
status, or executed address expression that fits your needs. You can combine
multiple values to define the expression.

Certain emulation commands will allow the option of <+EXPR> after pressing a
thru softkey. This allows you to enter a range without retyping the original base
address or symbol. For example, you could specify the address range

disp_buf thru disp_buf + 25

as

disp_buf thru +25

The parameters are as follows:

You can include "don’t care numbers" in expressions. These are indicated by a
number containing an "x." These numbers may be defined as binary, octal, decimal,
or hexadecimal. For example: 1fxxh, 17x70, and 011xxx10b are valid.

Note that "Don’t care numbers" are not valid for all commands.

This appears as a softkey label to enable you to return +&£tKER-- key. The
--NORMAL-- label can be accessed whenever defining an expression, but is only

394

<NUMBER>

<OP>

--SYMB--

end

start

<UNARY>

()

Chapter 11: Emulator/Analyzer Interface Commands
--EXPR--

valid when "C" appears on the status line, which indicates a valid expression has
been defined.

This can be an integer in any base (binary, octal, decimal, or hexadecimal), or can
be a string of characters enclosed with quotation marks.

This represents an algebraic or logical operand and may be any of the following (in
order of precedence):

mod modulo

* multiplication

/ division
logical AND

+ addition

- subtraction

| logical OR

This allows you to define symbolic information for an address, range of addresses,
or afile. See theSYMB-- syntax pages and ti&ymbolic Retrieval Utilities
User’s Guidefor more information on symbols.

This displays the last location where the symbol information may be located. For
example, if a particular symbol is associated with a range of addrersdes||
represent the last address in that range.

This displays first memory location where the symbol you specify may be located.
For example, if a particular symbol is associated with a range of addstases,
will represent the first address in that range.

This defines either the algebraic negation (minus) sign (-) or the logical negation
(NOT) sign ().

Parentheses may be used in expressions to enclose numbers. For every ope
parenthesis, a closing parenthesis must exist.

Note that when "C" appears on the right side of the status line, a valid expression
exists. The-NORMAL-- key can be accessed at any time, but is only valid when
"C" is on the command line.

Note that when thru softkey has been entered, a <+ EXPR> prompt appears.
This saves you from tedious repeated entry of long symbols and expressions. For
example:

395

Chapter 11: Emulator/Analyzer Interface Commands
--EXPR--

disp_buf thru +25

is the same as

disp_buf thru disp_buf + 25

Examples
05fxh

Offffh

disp_buf +5
symb_thl + (offset/ 2)
start

mod_name: line 15 end

See Also The SYMB syntax description.

396

Chapter 11: Emulator/Analyzer Interface Commands
forward

forward

<COMMAND>%4# <RETURN>

debug
H. Ce
~Co]
o

This command lets you forward commands to other HP 64700 interfaces that use
the "emul700dmn" daemon process to coordinate actions between the interfaces.

bms Sends messages to the Broadcast Message Server or BMS.

<COMMAND> An ASCII string, enclosed in quotes, that is the command to be forwarded to the
named interface.

debug Forwards command to the high-level debugger interface.

emul Forwards command to the emulator/analyzer interface.

perf Forwards commands to the software performance analyzer interface.

<UINAME> Forwards commands to a user interface name other than those available on the
softkeys.

Examples To send the "Program Run" command to the debugger:

forward debug "Program Run" <RETURN>

To send the "profile" command to the software performance analyzer:

forward debug "profile" <RETURN>

See Also TheUser’s Guidéor the interface to which you are forwarding commands.

397

Chapter 11: Emulator/Analyzer Interface Commands

help

help
= <HELP_ FILE> <RETURN>

Displays information about system and emulation features during an emulation
session.
Typing help or ? displays softkey labels that list the options on which you may
receive help. When you select an option, the system will list the information to the
screen.
Thehelp command is not displayed on the softkeys. You must enter it into the
keyboard. You may use a question mark in pladelgfto access the help
information.
The parameters are as follows:

<HELP_FILE> This represents one of the available options on the softkey labels. You can either
press a softkey representing the help file, or type in the help file name. If you are
typing in the help file name, make sure you use the complete syntax. Not all of the
softkey labels reflect the complete file name.

Examples

help system commands <RETURN>

? run <RETURN>

This is a summary of the commands that appear on the softkey labels when you
typehelp or pres:

system_commands
run

trace

step

break

display

modify
execution_messages

398

load

store

copy

reset

stop_trace

end
software_breakpoints
registers

expressions (--EXPR--)
symbols (--SYMB--)
specify

cmb

cmb_execute

map

set

wait

pod _command
init_processor
bbaunload

coverage

Chapter 11: Emulator/Analyzer Interface Commands
help

performance_measurement_initialize
performance_measurement_run
performance_measurement_end

399

Chapter 11: Emulator/Analyzer Interface Commands

init_processor

init_processor

init_processor <RETURN>

Theinit_processorcommand causes the processor to execute a continue
initialization IAC message.

If the processor enters the monitor directly out of reset, your program’s
environment is not yet initialized. Therefore, commands that depend on that
environment, such as displaying the processor’s registers, are not meaningful. If
you enter such a command, the emulator will issue the following error message:

ERROR 184: You must do a processor initialization first

Theinit_processorcommand allows you to initialize your programming
environment and re-enter the monitor. First, the eight check-sum words in the
program’s initial memory image (IMI) are read to verify that they will compute to a
valid checksum. Then the PRCB in the IMI is read to determine if it is valid. If the
IMI verification passes, the monitor issues a continue initialization IAC message.
This causes the processor to carry out the initialization procedure that follows the
processor self test, ending just before the first user instruction is executed. The
monitor is then re-entered in an initialized state.

If arun command is entered before the processor is initialized, the emulator will do
the initialization, re-enter the monitor, and then run. If the check-sum words in the
IMI are not valid, the processor FAILURE pin will be asserted and the processor
will enter the stopped state.

The continue initialization IAC message clears the trace controls register which the
emulator uses to establish execution messages and breakpoints. Therefore, the
init_processorcommand forces the monitor to be re-entered in order to restore the
previous setting of the trace controls register.

However, a continue initialization IAC message issued by YOUR program does not
cause the monitor to be entered. If your program executes a continue initialization
IAC message, portions of your debug environment will be disabled until a
subsequent break occurs.

400

Chapter 11: Emulator/Analyzer Interface Commands
init_processor

This is similar to the situation that can occur if you run out of reset directly into
your program without first entering the monitor. For more information, see the
"Enter monitor from reset?" question in the configuration menu.

401

Chapter 11: Emulator/Analyzer Interface Commands

load
load
(oms e | [<reToR |

]

- { o |

—={ configuration f

<FILE> } / noupdote}/
This command transfers absolute files from the host computer into emulation or
target system RAM. With other parameters, the load command can load emulator
configuration files, trace records, trace specifications, or symbol files.
The absolute file contains information about where the file is stored. The memory
map specifies that the locations of the file are in user (target system) memory or
emulation memory. This command also allows you to access and display
previously stored trace data, load a previously created configuration file, and load
absolute files with symbols.
Note that any file specified by <FILE> cannot be named "configuration”,
"emul_mem", "user_mem", "symbols", "trace", or "trace_spec" because these are
reserved words, and are not recognized by the HP 64000-UX system as ordinary
file names.
The absolute file is loaded into emulation memory by default.
The parameters are as follows:

configuration This option specifies that a previously created emulation configuration file will be

loaded into the emulator. You can follow this option with a file name. Otherwise
the previously loaded configuration will be reloaded.

402

Chapter 11: Emulator/Analyzer Interface Commands

load

<FILE> This represents the absolute file to be loaded into either target system memory,
emulation memory (.X files are assumed), or the trace memory (.TR files are
assumed).

<memory_type> This indicates the type of memory that you choose for the load operation. The
memory type can be emulation or user memory. You also can load a background
monitor file.

noabort This option allows you to load a file even if part of the file is located at memory
mapped as "guarded" or "target ROM" (trom).

nosymbols This option causes the file specified to be loaded without symbols.

noupdate This option suppresses rebuilding of the symbol data base when you load an

absolute file. If you load an absolute file, end emulation, then modify the file (and
relink it), the symbol database will not be updated upon reentering emulation and
reloading the file. The default is to rebuild the database.

symbols This option causes the file specified to be loaded with symbols.
trace This option allows you to load a previously generated trace file.
trace_spec This option allows you to load a previously generated trace specification.

Note that the current trace specification will be modified, but a new trace will not
be started. To start a trace with the newly loaded trace specificatiortracaer
again or specify trace again(nottrace). If you specifytrace, a new trace will

begin with the default trace specification, not the one you loaded.

Examples
load sortl <RETURN>
load configuration config3 <RETURN>
load trace trace3 <RETURN>

See Also Thedisplay trace command.

403

Chapter 11: Emulator/Analyzer Interface Commands

log_commands

<FILE>

off

to

Examples

See Also

log_commands

This command allows you to record commands that are executed during an
emulation session.

Commands executed during an emulation session are stored in a file until this
feature is turned off. This is a handy method for creating command files.

To execute the saved commands after the file is closed, type the filename on the
command line.

Commands are not logged (stored) in a file.
The parameters are as follows:

This represents the file where you want to store commands that are executed during
an emulation session.

This option turns off the capability to log commands.

This allows you to specify a file for the logging of commands.

log_commands to logfile <RETURN>

log_commands off <RETURN>

Thewait command.

404

Chapter 11: Emulator/Analyzer Interface Commands
modify

modify

MEMORY <RETURN>

REGISTER

CONFIGUIRATION

EXECUTION MESSAGES I

\

SO-TWARE BREAKPOINTS

(((f(!

KEYBOARD TO SIMIO -

This command allows you to observe or change information specific to the
emulator.

Themodify command is used to:

Modify contents of memory (as integers, strings, or real numbers).
Modify the contents of the processor registers.

View or edit the current emulation configuration.

Modify the execution message settings.

Modify the software breakpoints table.

The following pages contain detailed information about the vanmasfy syntax
diagrams.

405

Chapter 11: Emulator/Analyzer Interface Commands

modify configuration

Examples

See Also

modify configuration

< modify >—>€omﬂgur0t'\om To | <RETURN>

on MODIFY

diagram

This command allows you to view and edit the current emulation configuration

items.

The configuration questions are presented in sequence with either the default
response, or the previously entered response. You can select the currently
displayed response by pressing <RETURN>. Otherwise, you can modify the

response as you desire, then press <RETURN>.

The default responses defined on powerup are displayed.

modify configuration <RETURN>

Theload configuration command.

406

Chapter 11: Emulator/Analyzer Interface Commands
modify execution_messages

enable

modify execution_messages

(modify }@xecutionimessoges enable > To | <RETURN> | on
MODIFY diagram

disable

= instruction

= clear

= branch

call

:

- return

= prereturn

supervisor

i

breakpoint

The 80960 executes out of an instruction cache that cannot be disabled. Therefore,
it is not possible to determine the execution trace by looking at normal bus activity.
An instruction may be prefetched into the cache once and then executed man
times. Other instructions may be prefetched but never executed.

The execution message feature provides a way to accurately trace execution

while the processor is executing instructions contained in the cache. If you "set
execution messages, the emulator will emit a message on the processor bus for
specific execution events. This message can then be captured by the analyzer and
displayed by the disassembler.

The parameters are as follows:

Enables the execution message feature.

407

Chapter 11: Emulator/Analyzer Interface Commands
modify execution_messages

disable

set

clear

instruction
branch
call

return
prereturn
supervisor

breakpoint

Examples

Deactivates any execution messages that have been set, and disables the execution
message feature. When you reenable the execution message feature, any execution
messages that were deactivated when disabled will be set again.

When no options follow, all execution messages except prereturn and breakpoint
are set; otherwise, the options that follow turns on specific execution messages.
When you set an execution message, the execution messages feature is
automatically enabled.

Turns off specific execution messages.

When no options follow, all execution messages are turned off; otherwise, the
options that follow turns off specific execution messages.

Turn ON or OFF instruction execution messages.
Turn ON or OFF branch execution messages.
Turn ON or OFF call execution messages.

Turn ON or OFF return execution messages.
Turn ON or OFF pre-return execution messages.
Turn ON or OFF supervisor execution messages.

Turn ON or OFF breakpoint execution messages.

modify execution_messages set <RETURN>

modify execution_messages clear instruction <RETURN>
modify execution_messages set call return <RETURN>
modify execution_messages disable <RETURN>

Setting execution messages will cause a significant performance penalty because
the messages take up bus bandwidth. To reduce the performance degradation, you
may choose to only set execution messages for a subset of events. For example,
you could set execution messages for call events and return events. Note, however,

408

Chapter 11: Emulator/Analyzer Interface Commands
modify execution_messages

that this does not allow the inverse assembler to completely recreate the execution
history.

When execution messages are enabled, they are included in the trace list.
Execution messages in the trace list can be disassembled. To accomplish this, the
disassembler may need to access memory to get the instruction’s opcode
information. Consequently, there may be additional processor cycles due to the
execution message.

Note that execution messages cannot be enabled, disabled, or displayed if the
emulator is restricted to real-time runs and is executing the user program.

See Also Thedisplay execution_messagemdtrace commands.

409

Chapter 11: Emulator/Analyzer Interface Commands
modify keyboard_to_simio

See Also

modify keyboard _to_simio

(modify }»@eyboarditoisimio To output of

‘ KEYBOARDiTOiS\M\O‘

on MODI=Y diagram

This command allows the keyboard to interact with your program through the
simulated I/O software.

When the keyboard is activated for simulated 1/O, its normal interaction with
emulation is disabled. The emulation softkeys are blank and the softkey labeled
"suspend" is displayed on your screen. Pressisgend <RETURN>will

deactivate keyboard simulated 1/0 and return the keyboard to normal emulation
mode. For details about setting up simulated I/O, refer tBithelated 1/0 User's
Guide

Thedisplay simulated_iocommand.

410

Chapter 11: Emulator/Analyzer Interface Commands
modify memory

modify memory

< modify >—>< memory H EXPRB

(X
o

\—>< thru H ——EXPR——

to

reo\ to <REAL#>
Short
\omg J

% string H) »{<STR\NG> £<<RETURN>
on MODIFY diagram

This command lets you modify the contents of selected memory locations.

You canmodify the contents of individual memory locations to individual value
Or, you can modify a range of memory to a single value or a sequence of valu

Modify a series of memory locations by specifying the address of the first location
in the series to be modified, and the values to which the contents of that location
and successive locations are to be changed. The first value listed will replace the
contents of the first memory location. The second value replaces the contents of
the next memory location in the series, and so on, until the list is exhausted. When
more than one value is listed, the value representations must be separated by
commas. (See the examples for more information.)

411

Chapter 11: Emulator/Analyzer Interface Commands

modify memory

bytes
--EXPR--

long

real
<REAL#>
short
shorts
string

<STRING>

A range of memory can be modified such that the content of each location in the
range is changed to the single specified value, or to a single or repeated sequence.
This type of memory madification is done by entering the limits of the memory
range to be modified (--EXPR-- thru --EXPR--) and the value or list of values
(--EXPR--, ... , --EXPR--) to which the contents of all locations in the range are to
be changed.

Note that if the specified address range is not large enough to contain the new data,
only the specified addresses are modified.

If the address range contains an odd number of bytes and a word operation is being
executed, the last word of the address range will be modified. Thus the memory
modification will stop one byte after the end of the specified address range.

If an error occurs in writing to memory (to guarded memory or target memory with
no monitor) the modification is aborted at the address where the error occurred.

For integer memory modifications, the default is to the current display memory
mode, if one is in effect. Otherwise the default is to "byte."

For real memory modifications, the default is to the current display memory mode,
if one is in effect. Otherwise the default is "short.”

The parameters are as follows:
Modify memory in byte values.

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a memory address. See the EXPR syntax diagram.

Modify memory values as 64-bit real values.

Modify memory as real number values.

This prompts you to enter a real number as the value.

Modify memory values as 32-bit real numbers.

Modify memory values as 16-bit values.

Modify memory values to the ASCII character string given by <STRING>.
Quoted ASCII string including special characters as follows:

null \0
newline \n

412

Chapter 11: Emulator/Analyzer Interface Commands
modify memory

horizontal tab \t

backspace \b

carriage return \r

form feed \f

backslash \

single quote \

bit pattern \ooo (where 000 is an octal number)
thru This option lets you specify a range of memory locations to be modified.
to This lets you specify values to which the selected memory locations will be

changed.

words Modify memory locations as 32-bit values.

, A comma is used as a delimiter between values when modifying multiple memory
addresses.

Examples
modify memory datal bytesto OE3H,01H, 08H <RETURN>
modify memory datal thru DATA100 to OFFFFH <RETURN>
modify memory 0675H realto -1.303 <RETURN>
modify memory temp real long to 0.5532E-8 <RETURN>
modify memory buffer string to "This is a test \n\0"
<RETURN>

See Also Thecopy memory, display memory, andstore memorycommands.

413

Chapter 11: Emulator/Analyzer Interface Commands
modify register

modify register

C modify }e{ register > <REGISTER>
= <CLASS>

< {(to HffEXPRff}—Q To | <RETURN>

om‘ MODIFY ‘diagmm

This command allows you to modify the contents of the emulation processor
internal registers.

The entry you specify for <REGISTER> determines which register is modified.
Individual fields of control registers may be modified.

Register modification cannot be performed during real-time operation of the
emulation processor. Break command or condition must occur before you can
modify the registers.

Refer to the "Accessing Registers" section in the "Using the Emulator" chapter for
a list of the 80960 register classes, hames, and control register field names.

The parameters are as follows:

--EXPR-- An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a register value. For the floating-point registers, the value
is interpreted as a decimal real number. SeeE)XPR-- description.

<REGISTER> This represents the name of a register.
<FIELD> This represents the name of a control register field.
to Allows you to specify the values to which the selected registers will be changed.

414

Chapter 11: Emulator/Analyzer Interface Commands
modify register

Examples
modify register r3 to 41H <RETURN>
modify register pctl.pri to 1FH <RETURN>
See Also Thecopy registers display registers andmodify registers commands.

415

Chapter 11: Emulator/Analyzer Interface Commands
modify software_breakpoints

modify software_breakpoints

< modify)——Gmﬂwqrebreokpum%

/

clear - ~ per nanent

~—={ enable

QTO <R_TURN=>
an MODIFY diagram

This command changes the specification of software breakpoints.

Software breakpoints provide a way to accurately stop the execution of your
program at one or more instruction locations. When a software breakpoint is set,
the instruction that is normally at that location is replaced with an "fmark"
instruction. When the software breakpoint is executed, control is passed to the
emulator’s monitor program, and the original instruction is restored in the user
program. Thus, execution is interrupted before the instruction at the specified
address is executed.

Operation of the program can be resumed after the breakpoint is encountered, by
specifying either aun or stepcommand.

If you modify software breakpoints while the memory mnemonic display is active,
the new breakpoints are indicated by &ih the leftmost column of the instruction
containing the breakpoint.

The software breakpoint facility may be completely disabled or enabled via the
"modify software_breakpoints" command. The default is "enabled".

416

clear

disable
enable

--EXPR--

permanent

set

temporary

Examples

Chapter 11: Emulator/Analyzer Interface Commands
modify software_breakpoints

The parameters are as follows:

This option erases the specified breakpoint address. If no breakpoints are specified
in the command, all currently specified breakpoints are cleared.

This option turns off the software breakpoint capability.
This option allows you to modify the software breakpoint specification.

An expression is a combination of humeric values, symbols, operators, and
parentheses, specifying a software breakpoint address. See the EXPR syntax
diagram.

Sets a permanent breakpoint. The software breakpoint instruction remains in the
program until the breakpoint is inactivated or removed.

This option allows you to activate software breakpoints in your program. If no
breakpoint addresses are specified in the command, all breakpoints that have been
inactivated (executed) are reactivated.

Sets a temporary breakpoint. When the break occurs, the original opcode is
replaced in the program.

A comma is used as a delimiter between specified breakpoint values.

modify software_breakpoints enable <RETURN>

modify software_breakpoints set loopl end , loop2 end ,
OE40H <RETURN>

modify software_breakpoints clear <RETURN>
modify software_breakpoints set <RETURN>

The emulator will enter the monitor to set or clear software breakpoints whether the
specified address is mapped as emulation or target memory. This is done to assure
that the "fmark" instruction is brought into the processor’s instruction cache.

In order to successfully set a software breakpoint, the emulator must be able to
write to the memory location specified. Therefore software breakpoints can not be
set in target ROM. You should use the "run until" command to break on code in

417

Chapter 11: Emulator/Analyzer Interface Commands
modify software_breakpoints

See Also

target ROM. Please note that breakpoints set with the "run until" command cause
the monitor to be entered AFTER the instruction has executed.

Alternatively, you may use the "break on trigger" feature of the analyzer. Please
note, however, that analyzer breakpoints are not precise. There is some delay
between the time the trigger event occurs and the time the break occurs.

Thecopy software_breakpoints display memory mnemoni¢ anddisplay
software_breakpointscommands.

418

Chapter 11: Emulator/Analyzer Interface Commands
performance_measurement_end

performance_measurement_end

<performomce7mecsurememtiemd> <RETURN>

This command stores data previously generated by the
performance_measurement_runcommand, in a file named "perf.out" in the
current working directory.

The file named "perf.out" is overwritten each time this command is executed.
Current measurement data existing in the emulation system is not altered by this
command.

Examples
performance_measurement_end <RETURN>

See Also Theperformance_measurement_initializeandperformance_measurement_run
commands.

Refer to the "Making Software Performance Measurements" chapter for examples
of performance measurement specification and use.

419

Chapter 11: Emulator/Analyzer Interface Commands
performance_measurement_initialize

activity

performance_measurement_initialize

(performomceimeosurementimitiaﬁze\ > <RETURN>

(e

/ o
activity
\ |

~—={ duration

~—= restore

~—={ local symbols_in)—/\

——SYMB—— activity)}
\
k><g\ob<1\isymbo\s)

This command sets up performance measurements.

The emulation system will verify whether a symbolic database has been loaded. If

a symbolic database has been loaded, the performance measurement is set up with
the addresses of all global procedures and static symbols. If a valid database has not
been loaded, the system will default to a predetermined set of addresses, which
covers the entire emulation processor address range.

The measurement will default to "activity" mode.

Default values will vary, depending on the type of operation selected, and whether
symbols have been loaded.

The parameters are as follows:

This option causes the performance measurement process to operate as though an
option is not specified.

420

duration

<FILE>

global_symbols

local_symbols_in

restore

--SYMB--

Examples

See Also

Chapter 11: Emulator/Analyzer Interface Commands
performance_measurement_initialize

This option sets the measurement mode to "duration.” Time ranges will default to a
predetermined set (unless a user-defined file of time ranges is specified).

This represents a file you specify to supply user-defined address or time ranges to
the emulator.

This option specifies that the performance measurement will be set up with the
addresses of all global symbols and procedures in the source program.

This causes addresses of the local symbols to be used as the default ranges for the
measurement.

This option restores old measurement data so that a measurement can be continued
when using the sanieace command as previously used.

This represents the source file that contains the local symbols to be listed. This also
can be a program symbol name, in which case all symbols that are local to a
function or procedure are used. See the SYMB syntax diagram.

performance_measurement _initialize <RETURN>
performance_measurement _initialize duration <RETURN>

performance_measurement_initialize local_symbols_in
mod_name <RETURN>

Theperformance_measurement_rurandperformance_measurement_end
commands.

Refer to the "Making Software Performance Measurements" chapter for exam
of performance measurement specification and use.

421

Chapter 11: Emulator/Analyzer Interface Commands
performance_measurement_run

<COUNT>

Examples

See Also

performance_measurement_run

QaerformomceimeoSurememtiruMJ (<RETURN>
¥!—{ <COUNT> }4

This command begins a performance measurement.

This command causes the emulation system to reduce trace data contained in the
emulation analyzer, which will then be used for analysis by the performance
measurement software.

The default is to process data presently contained in the analyzer.
The parameters are as follows:

This represents the number of consecutive traces you specify. The emulation
system will execute the trace command, process the resulting data, and combine it
with existing data. This sequence will be repeated the number of times specified by
the COUNT option.

Note that thérace command must be set up correctly for the requested
measurement. For an activity measurement, you can use the tlatault
commandtface <RETURN>).

For a duration measurement, you must set up the trace specification to store only
the points of interest. To do this, for example, you could enter:

trace only <symbol_entry> or <symbol_exit>

performance_measurement_run 10 <RETURN>

performance_measurement_run <RETURN>

Theperformance_measurement_en@ndperformance_measurement_initialize
commands.

422

Chapter 11: Emulator/Analyzer Interface Commands
performance_measurement_run

Refer to the "Making Software Performance Measurements" chapter for examples
of performance measurement specification and use.

423

Chapter 11: Emulator/Analyzer Interface Commands

pod_command

pod _command

= <PODCMD> <RETURN>

keyboard

Allows you to control the emulator through the direct HP 64700 Terminal Interface.

The HP 64700 Card Cage contains a low-level Terminal Interface, which allows
you to control the emulator’s functions directly. You can access this interface
usingpod_command The options tpod_commandallow you to supply only

one command at a time. Or, you can select a keyboard mode which gives you
interactive access to the Terminal Interface.

There are certain commands that you should avoid while using the Terminal
Interface througipod_command

D

stty Do not use. These commands will change the operation of th
» PO, Xp S .

communications channel, and are likely to hang the Softkey
Interface and the channel.

echo, mac Using these may confuse the communications protocols in use on
the channel.

wait Do not use. The pod will enter a wait state, blocking access hy the
Softkey Interface.

init, pv These will reset the emulator pod and force an end release_system
command.

t Do not use. The trace status polling and unload will become
confused.

To see the results of a particutend_command(the information returned by the
emulator pod), you usdisplay pod_command

Refer to the80960 Emulator User’s Guide for the Terminal Interféare
information on using the Terminal Interface to control the emulator.

424

keyboard

<POD_CMD>

suspend

Examples

See Also

Chapter 11: Emulator/Analyzer Interface Commands
pod_command

The parameters are as follows:

Enters an interactive mode where you can simply type Terminal Interface
commands (unquoted) on the command line. digglay pod_commandto see
the results returned from the emulator.

Prompts you for a Terminal Interface command as a quoted string. Enter the
command in quotes and press <RETURN>.

This command is displayed once you have entered keyboard mode. Select it to stop
interactive access to the Terminal Interface and return to the Softkey Interface.

This example shows a simple interactive session with the Terminal Interface.

display pod_command <RETURN>
pod_command keyboard <RETURN>

cf <RETURN>

tsq <RETURN>

tcqg <RETURN>

Entersuspendto return to the Softkey Interface.

Thedisplay pod_commandcommand.

Also see th&0960 Emulator User’s Guide for the Terminal Interfacd the
Terminal Interface on-line help information.

425

Chapter 11: Emulator/Analyzer Interface Commands
QUALIFIER

QUALIFIER

From

TRACE

diagram

on TRACE diagram

TheQUALIFIER parameter is used witrace only, trace prestore and
TRIGGER to specify states captured during the trace measurement.

You may specify a range of states (RANGE) or specific states (STATE) to be
captured. You can continue to "or" states until the analyzer resources are depleted.
You can use only one RANGE statement in the etri@e command.

You can include "don’t care numbers." These contain an "x" preceded and/or
followed by a number. Some examples include 1fxxh, 17x70, and 011xxx10b.
"Don’t care numbers" may be entered in binary, octal, or hexadecimal base.

The default is to qualify on all states.
The parameters are as follows:

or This option allows you to specify multiple states (STATE) to be captured during a
trace measurement. See the STATE syntax diagram.

RANGE This allows you to specify a range of states to be captured during a trace
measurement. See the RANGE syntax diagram.

STATE This represents a unigue state that can be a combination of address, data, status, and
executed address values. See the STATE syntax diagram.

Examples
trace only address mod_name:read_input <RETURN>

trace only address range mod_name:read_input thru
output <RETURN>

426

Chapter 11: Emulator/Analyzer Interface Commands

QUALIFIER
trace only address range mod_name:clear thru read_input
<RETURN>

See Also Thetrace command.

427

Chapter 11: Emulator/Analyzer Interface Commands

RANGE
RANGE
From
. Cromse R
on K
C.{ ——EXPR—— H thru H**EXPR** %’ To output of
The RANGE parameter allows you to specify a condition for the trace
measurement, made up of one or more values.
Therange option can be used for state qualifier labREsngecan only be used
once in a trace measurement.
Refer to the "Qualifying Trigger and Store Conditions" section in the "Using the
Emulation Analyzer" chapter for a list of the predefined values that can be assigned
to the accsize, bstsize, memmap, waitcnt, and status state qualifiers.
Expression types are "address" when none is chosen.
The parameters are as follows:
accsize The value following this softkey is searched for on the lines over which the size of

the current access is passed to the analyzer.

428

address

bstsize

data

-EXPR--

<external_label>

memmap

not

range

status

thru

waitent

Examples

See Also

Chapter 11: Emulator/Analyzer Interface Commands
RANGE

The value following this softkey is searched for on the lines that monitor the
emulation processor’s address bus.

The value following this softkey is searched for on the lines over which the bus
burst size is passed to the analyzer.

The value following this softkey is searched for on the lines that monitor the
emulation processor’s data bus.

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying an address, data, status, or executed address value. See the
EXPR syntax diagram for details.

This represents a defined external analyzer label.

The value following this softkey is searched for on the lines which monitor the
memory map status.

This specifies that the analyzer search for the logical "not" of the specified range
(this includes any addresses not in the specified range).

This indicates a range of addresses to be specified (--EXPR-- thru --EXPR--).

The value following this softkey is searched for on the lines that monitor other
emulation processor signals.

This indicates that the following address expression is the upper address in a range.

The value following this softkey is searched for on the lines over which the number
of wait states that preceded the completion of the bus cycle is passed to the analyzer.

See thdrace command examples.

Thetrace command and the QUALIFIER syntax description.

429

Chapter 11: Emulator/Analyzer Interface Commands

reset
reset
This command suspends target system operation and reestablishes initial emulator
operating parameters, such as reloading control registers.
The reset signal is latched when the reset command is executed and released by
either therun or break command.

See Also Thebreak andrun commands.

430

Chapter 11: Emulator/Analyzer Interface Commands
run

run

<RETURN>

from T

 transfer address

- reset

address H**EXPR** }7 { or }\
o)

o)

This command causes the emulator to execute a program.

If the processor is in a reset staiteg) will cause the reset to be released. If the
emulator is configured to enter the monitor from reset, the monitor will be entered
long enough to restore the setting of execution messages and breakpoints before
running your program.

If the emulator is configured to run directly into user code out of reset, the mo
will not be entered and part of your debug environment may be temporarily
disabled. A subsequent break into the monitor will restore it. See the "Enter
monitor from reset?" question in the configuration menu for more information.

If the from parameter and an address is specified, the processor will start running
your program at that address. Otherwise, the run will occur from the address
currently stored in the processor’s program counter.

A run from reset command will reset the processor and then allow it to run. Itis
equivalent to enteringr@setcommand followed by min command.

431

Chapter 11: Emulator/Analyzer Interface Commands

run

address

branch

call

~-EXPR--

from

prereturn

reset

return

If the emulator is configured to participate in the READY signal on the CMB, then
this emulator will release the READY signal so that it will go TRUE if all other

HP 64700 emulators participating on that signal are also ready. See the
cmb_executecommand description.

Qualifying a run command with amtil parameter allows you to break into the
monitor immediately AFTER a particular execution event. These break conditions
are implemented by setting bits in the processor’s trace control register and by
setting the processor’s on chip breakpoint registers. Unlike setting a software
breakpoint, memory does not have to be modified to set a breakpoint register. This
allows you to set a breakpoint in target ROM.

PLEASE NOTE that a software breakpoint occurs immediately before executing
the instruction at the specified address, whereas antil break condition occurs
after the instruction has executed.

If you omit the address option (--EXPR--), the emulator begins program execution
at the current address specified by the emulation processor program counter. If an
absolute file containing a transfer address has just been loaded, execution starts at
that address.

The parameters are as follows:

Specifies an address for a temporary register breakpoint that will be programmed
into one of the processor’s two breakpoint registers. Up to two addresses may be
specified.

Specifies a specialized break condition to the emulator which will halt program
execution after any branch instruction.

Specifies a specialized break condition to the emulator which will halt program
execution after any call instruction.

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a memory address. See the EXPR syntax diagram.

This specifies the address from which program execution is to begin.

Specifies a specialized break condition to the emulator which will halt program
execution before any return instruction.

This option resets the processor prior to running.

Specifies a specialized break condition to the emulator which will halt program
execution after any return instruction.

432

Chapter 11: Emulator/Analyzer Interface Commands
run

supervisor Specifies a specialized break condition to the emulator which will halt program
execution after any supervisor call instruction.

transfer_address This represents the starting address of the program loaded into emulation or target
memory. The transfer address is defined in the linker map and is part of the symbol
database associated with the absolute file.

until Specifies execution conditions that will cause the program to stop running and the
monitor to be entered.

The "run until" command will not cause a break when the address contains certain
instructions. For example, if you set a breakpoint register on an IAC instruction or
a return from interrupt, the break will not occur.

If you run until an instruction that explicitly modifies the fp register (for example,
Ida 2600,fp), the break will occur; however, all local registers except the rip will be
lost.

Examples
run <RETURN>

run from 810H <RETURN>

run from COLD_START <RETURN>

run until return <RETURN>

run from reset until address 910H <RETURN>

run from reset until address 910H oraddress 920H or
branch or call <RETURN>

See Also Thestepcommand.

433

Chapter 11: Emulator/Analyzer Interface Commands
SEQUENCING

SEQUENCING

From trace
syntax diagram

: - QUALIFIER H occurs H <#TIMES> b

QUALIFIER i—

Lets you specify complex branching activity that must be satisfied to trigger the
analyzer.

Sequencing provides you with parameters fotridee command that let you
define branching conditions for the analyzer trigger.

You are limited to a total of seven sequence terms, including the trigger, if no
windowing specification is given. If windowing is selected, you are limited to a
total of four sequence terms.

The analyzer default is no sequencing terms. If you select the sequencer using the
find_sequence parameter, you must specify at least one qualifying sequence term.

The parameters are as follows:

find_sequence Specifies that you want to use the analysis sequencer. You must enter at least one
qualifier.

QUALIFIER Specifies the address, data, status, or executed address value or value range that will
satisfy this sequence term if looking for a sequence (find_sequence), or will restart
at the beginning of the sequence (restart). See the QUALIFIER syntax pages for
further information.

434

occurs

<#TIMES>

then

restart

Examples

See Also

Chapter 11: Emulator/Analyzer Interface Commands
SEQUENCING

Selects the number of times a particular qualifier must be found before the analyzer
proceeds to the next sequence term or the trigger term. This option is not available
when trace windowing is in use. SeeWENDOW syntax pages.

Prompts you for the number of times a qualifier must be found.

Allows you to add multiple sequence terms, each with its own qualifier and
occurrence count.

Selects global restart. If the analyzer finds the restart qualifier while searching for a
sequence term, the sequencer is reset and searching begins for the first sequence
term.

trace find_sequence Caller_3 then Write_Num restart
"anly.c"."anly.c": line 57 trigger after Results+0c4h
<RETURN>

Thetrace command and the QUALIFIER and WINDOW syntax descriptions.

435

Chapter 11: Emulator/Analyzer Interface Commands
set

set

<ENV_VAR> (= o <vaLuE-]

defoult

langinfo) e C Y
ADA

~

CJEE@QSJ

source

={ inverse_videa

L~

\oGubs,ore H <TABS> t

\‘Gumber,of,source,unes <NUMSRC>

label H <WIDTH> })
\

mnemonic

\

| <WIDTH= ‘
L A

symbols H <WIDTH> }\

source >——< <WIDTH=> }

To | <RETURN=> ‘on‘ DISPLAY ‘d\ugrum

436

default

<ENV_VAR>

inverse video
off

on

Chapter 11: Emulator/Analyzer Interface Commands
set

Controls the display format for the data, memory, register, software breakpoint, and
trace displays.With the set command, you can adjust the display format results for
various measurements, making them easier to read and interpret. Formatting of
source lines, symbol display selection and width, and update after measurement can
be defined to your needs.

The display command uses the set command specifications to format measurement
results for the display window. Another option to the set commddy VAR>

= <VALUE>, allows you to set and export system variables to the UNIX
environment.

The default display format parameters are the same as those set by the commands:

set update
set source off symbols off

You can return the display format to this state by entering:

set default

The parameters are as follows:
This option restores all the set options to their default settings.
Specifies the name of a UNIX environment variable to be set.

The equals sign is used to equate the <ENV_VAR> parameter to a particular value
represented by <VALUE>.

This displays source lines in normal video.

This highlights the source lines on the screen (dark characters on light backgr
to differentiate the source lines from other data on the screen.

437

Chapter 11: Emulator/Analyzer Interface Commands

set

langinfo

ADA

C_IEE695

Note

memory

noupdate

number_of _
source_lines

In certain languages, you may have symbols with the same names but different
types. For example, in IEEE695, you may have a file named main.c and a
procedure named main. SRU would identify these as main(module) and
main(procedure). The commadigplay local_symbols_in mainvould cause an

error message to appear (Ambiguous symbol: main(procedure, module)). Users of
C tend to think the procedure is important and users of ADA tend to think the
module is important. By entering "langinfo" and "C", SRU will interpret the above
command to benain(procedure). With langinfo ADA, SRU will interpret the

above command to lmeain(module).

Identifies ANSI C as the language so SRU can use the C hierarchy to disambiguate
symbols.

Identifies ADA as the language so SRU can use the ADA hierarchy to
disambiguate symbols.

Identifies C_IEEE-695 as the language so SRU can use the C_IEEE-695 hierarchy
to disambiguate symbols.

An alternate method for making the langinfo specification is to use the environment
variable, HP64SYMORDER. By making the following entry in yquiofile, the
langinfo setting will always be C, for example.

$ HP64SYMORDER=C # | want to use the C disambiguating
hierarchy
$ export HP64SYMORDER # let children processes know
about it

Sets update option for memory displays only.

When using multiple windows or terminals, and specifying this option, the display
buffer in that window or terminal will not update when a new measurement
completes. Displays showing memory contents are not updated when a command
executes that could have caused the values in memory to change (modify memory,
load, etc.).

This allows you to specify the number of source lines displayed for the actual
processor instructions with which they correlate. Only source lines up to the
previous actual source line will be displayed. Using this option, you can specify
how many comment lines are displayed preceding the actual source line. The
default value is 5.

438

Chapter 11: Emulator/Analyzer Interface Commands

set
<NUMSRC> This prompts you for the number of source lines to be displayed. Values in the
range 1 through 50 may be entered.
source
off This option prevents inclusion of source lines in the trace and memory mnemonic
display lists.
on This option displays source program lines preceding actual processor instructions
with which they correlate. This enables you to correlate processor instructions with
your source program code. The option works for both the trace list and memory
mnemonic displays.
only This option displays only source lines. Processor instructions are only displayed in
memory mnemonic if no source lines correspond to the instructions. Processor
instructions are never displayed in the trace list.
symbols
off This prevents symbol display.
on This displays symbols. This option works for the trace list, memory, software
breakpoints, and register step mnemonics.
high Displays only high level symbols, such as those available from a compiler. See the
Symbolic Retrieval Utilities User's Guidler a detailed discussion of symbols.
low Displays only low level symbols, such as those generated internally by a compiler,
or an assembly symbol.
all Displays all symbols.
tabs_are This option allows you to define the number of spaces inserted for tab characters in
the source listing.
<TABS> Prompts you for the number of spaces to use in replacing the tab character.
in the range of 2 through 15 may be entered.
trace Sets update option for trace displays only.
update When using multiple windows or terminals, and specifying this option, the display

buffer in that window or terminal will be updated when a new measurement
completes. This is the default. Note that for displays that show memory contents,
the values will be updated when a command executes that changes memory
contents (such as modify memory, load, and so on).

439

Chapter 11: Emulator/Analyzer Interface Commands

set

<VALUE>

width

source

label

mnemonic

symbols

<WIDTH>

Examples

See Also

Specifies the logical value to which a particular UNIX environment variable is to
be set.

This allows you to specify the width (in columns) of the source lines in the memory
mnemonic display. To adjust the width of the source lines in the trace display,
increase the widths of the label and/or mnemonic fields.

This lets you specify the address width (in columns) of the address field in the trace
list or label (symbols) field in any of the other displays.

This lets you specify the width (in columns) of the mnemonic field in memory
mnemonics, trace list and register step mnemonics displays. It also changes the
width of the status field in the trace list.

This lets you specify the maximum width of symbols in the mnemonic field of the
trace list, memory mnemonic, and register step mnemonic displays.

This prompts you for the column width of the source, label, mnemonic, or symbols
field.

Note that <CTRL>f and <CTRL>g may be used to shift the display left or right to
display information which is off the screen.

set source on inverse_video on tabs_are 2 <RETURN>
set symbols on width label 30 mnemonic 20 <RETURN>
set PRINTER ="Ip -s" <RETURN>

set HP64KSYMBPATH="filel:procl
file2:proc2:code_block 1" <RETURN>

Thedisplay data, display memory, display software_breakpoints anddisplay
trace commands.

440

Chapter 11: Emulator/Analyzer Interface Commands
specify

specify

run <RETURN=>

disable

--EXPR--

~{ fransfer_address

\—{ TRACE

This command preparesn ortrace command for execution, and is used with
thecmb_executecommand.

When you precederan or trace command withspecify, the system does not
execute your command immediately. Instead, it waits until until an EXECUTE
signal is received from the Coordinated Measurement Bus or until you enter a
cmb_executecommand.

If the processor is reset and no address is specifidb aexecutecommand will
run the processor from the "reset" condition.

Note that theun specification is active until you entgpecify run disable The
trace specification is active until you enter anottese command without the
specify prefix.

The emulator will run from the current program counter address if no address is
specified in the command.

The parameters are as follows:

disable This option turns off the specify condition of thum process.

441

Chapter 11: Emulator/Analyzer Interface Commands
specify

from

--EXPR-- This is used with thepecify run from command. An expression is a combination
of numeric values, symbols, operators, and parentheses, specifying a memory
address. See the EXPR syntax diagram.

This is used with thepecify run from command, and represents the address from
transfer_address which the program will begin running.

run This option specifies that the emulator will run from either an expression or from
the transfer address when a CMB EXECUTE signal is received.

TRACE This option specifies that a trace measurement will be taken when a CMB
EXECUTE signal is received.

until Specifies an address where program execution is to stop. The emulator will set a
software breakpoint at this address and stop execution of your program when it
reaches this address and enter the monitor.

Examples

specify run from START <RETURN>

specify trace after address 1234H <RETURN>
See Also Thecmb_executecommand.

442

Chapter 11: Emulator/Analyzer Interface Commands
STATE

STATE

From
STATE on
To output of STATE

QUALIFIER | diagram
] on | QUALIFIER | diagram

——EXPR——
(_asaress

= data

@

- bstsize

accsize

memmap

waitent

i

=~ <external label>

status not <STATUS>

= ——EXPR——

7‘ <STATUS>
\{ ——EXPR——

and

ﬁ

H

This parameter lets you specify a trigger condition as a unique combination of
address, data, status, and executed address values.

The STATE option is part of the QUALIFIER parameter totthee command,
and allows you to specify a condition for the trace measurement.

443

Chapter 11: Emulator/Analyzer Interface Commands

STATE

accsize

address

and

bstsize

data

~EXPR--

<external_label>

memmap

not

status

<STATUS>

waitent

Refer to the "Qualifying Trigger and Store Conditions" section in the "Using the
Emulation Analyzer" chapter for a list of the predefined values that can be assigned
to the accsize, bstsize, memmap, waitcnt, and status state qualifiers.

The default STATE expression type is address.
The parameters are as follows:

The value following this softkey is searched for on the lines over which the size of
the current access is passed to the analyzer.

This specifies that the expression following is an address value. This is the default,
and is therefore not required on the command line when specifying an address
expression.

This lets you specify a combination of status and expression valuestahesis
specified in the state specification.

The value following this softkey is searched for on the lines over which the bus
burst size is passed to the analyzer.

The value following this softkey is searched for on the lines that monitor the
emulation processor’s data bus.

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying an address, data, status, or executed address value. See the
EXPR syntax diagram.

This represents a defined external analyzer label.

The value following this softkey is searched for on the lines which monitor the
memory map status.

This specifies that the analyzer will search for the logical "not" of a specified state
(this includes any address that is not in the specified state).

The value following this softkey is searched for on the lines that monitor other
emulation processor signals.

This prompts you to enter a status value in the command line. Status values can be
entered from softkeys or typed into the keyboard. Numeric values may be entered
using symbols, operators, and parentheses to specify a status value. See the EXPR
syntax diagram.

The value following this softkey is searched for on the lines over which the number
of wait states that preceded the completion of the bus cycle is passed to the analyzer.

444

Examples

See Also

Chapter 11: Emulator/Analyzer Interface Commands

STATE
trace before status write memmap rom <RETURN>
trace about address 1000H bstsize quad accsize word
<RETURN>

See thdrace command examples.

Thetrace command and the QUALIFIER syntax description.

445

Chapter 11: Emulator/Analyzer Interface Commands
step

step

step f
<NUMBER> \‘<_>J
<RETURN>
= ——EXPR—— = silently
= transfer_address

Thestepcommand allows sequential analysis of program instructions by causing
the emulation processor to execute a specified number of assembly instructions or
source lines.

You can display the contents of the processor registers, trace memory, and
emulation or target memory after eatbpcommand.

Source line stepping is implemented by single stepping assembly instructions until
the next PC is beyond the address range of the current source line. When
attempting source line stepping on assembly code (with no associated source line),
stepping will complete when a source line is found. Therefore, stepping only
assembly code may step forever. To abort stepping, press <CTRL>c.

When displaying memory mnemonic and stepping, the next instruction that will

step is highlighted. The memory mnemonic display autopages to the new address if
the next PC goes outside of the currently displayed address range. This feature
works even if stepping is performed in a different emulation window than one
displaying memory mnemonic.

If no value is entered for <NUMBER> times, only atepinstruction is executed

each time you press <RETURN>. Multiple instructions can be executed by holding
down the <RETURN> key. Also, the default step is for assembly code lines, not
source code lines.

If the from address option (defined by --EXPR-- or transfer_address) is omitted,
stepping begins at the next program counter address.

446

-EXPR--

from

<NUMBER>

silently

transfer_address

source

Examples

See Also

Chapter 11: Emulator/Analyzer Interface Commands
step

If you step on an instruction that explicitly modifies the fp register (for example,
Ida 2600,fp), all local registers except the rip will be lost.

The parameters are as follows:

An expression is a combination of numeric values, symbols, operators, and
parentheses specifying a memory address. See the EXPR syntax diagram.

Use this option to specify the address from which program stepping begins.

This defines the number of instructions that will be executed bstédpeommand.
The number of instructions to be executed can be entered in binary (B), octal (O or
Q), decimal (D), or hexadecimal (H) notation.

This option updates the register step mnemonic only after stepping is complete.
This will speed up stepping of many instructions. The default is to update the
register step mnemonic after each assembly instruction (or source line) executes (if
stepping is performed in the same window as the register display).

This represents the starting address of the program you loaded into emulation or
target memory. The transfer_address is defined in the linker map.

This option performs stepping on source lines.

step <RETURN>

step from 810H <RETURN>
step 20 from OAOH <RETURN>
step 5 source <RETURN>
step 20 silently <RETURN>

step 4 from main <RETURN>

Thedisplay registers display memory mnemonic andset symbolscommands.

447

Chapter 11: Emulator/Analyzer Interface Commands
stop_trace

stop_trace

stop_trace <RETURN>

This command terminates the current trace and stops execution of the current
measurement.

The analyzer stops searching for trigger and trace states. If trace memory is empty
(no states acquired), nothing will be displayed.

See Also Thetrace command.

448

Chapter 11: Emulator/Analyzer Interface Commands
store

~-EXPR--

<FILE>

memory

thru

store

<FILE> <RETURN>

trace

= memaory

——EXPR-— = to ;
thru HEXPRM

s e
S

)

This command lets you save the contents of specific memory locations in an
absolute file. You also can save trace memory contents in a trace file.

Thestore command creates a new file with the name you specify, if there is not
already an absolute file with the same name. If a file represented by <FILE>
already exists, you must decide whether to keep or delete the old file. If you
respond withyesto the prompt, the new file replaces the old one. If you respond
with no, thestore command is canceled and no data is stored.

The transfer address of the absolute file is set to zero.
The parameters are as follows:

This is a combination of numeric values, symbols, operators, and parentheses|
specifying a memory address. See the EXPR syntax diagram.

This represents a file name you specify for the absolute file identifier or trace fi
where data is to be stored. If you want to name a file beginning with a number, you
must precede the file name with a backslash (\) so the system will recognize it as a
file name.

This causes selected memory locations to be stored in the specified fileXvith a
extension.

This allows you to specify that ranges of memory be stored.

449

Chapter 11: Emulator/Analyzer Interface Commands

store

to

trace

trace_spec

Examples

See Also

Use this in thestore memorycommand to separate memory locations from the file
identifier.

This option causes the current trace data to be stored in the specified fileWdth a
extension.

This option stores the current trace specification in the specified file vith a
extension.

A comma separates memory expressions in the command line.

store memory 800H thru 20FFH to TEMP2 <RETURN>
store memory EXEC thru DONE to \12.10 <RETURN>
store trace TRACE <RETURN>

Store trace_spec TRACE <RETURN>

Thedisplay memory, display trace andload commands.

450

Chapter 11: Emulator/Analyzer Interface Commands
--SYMB--

--SYMB--

—-SYMB--
4{ <SYMB>
w*(iwﬂﬁj
enfry _exif r@nge)—/
text_range

N S <segmemH <SEG_NAME> }—/
-4 FLE \‘{ line H <LINE s> }—/

FILE
}<+wENAME>}Aw<:>A>
<FILENAME>
SCOPE
<SYMB>

.<FLFNAME> I'
SCOPE ‘
SCOPE

4{ <IDENTIFIER>

(O <vees qpf/

451

Chapter 11: Emulator/Analyzer Interface Commands
--SYMB--

This parameter is a symbolic reference to an address, address range, file, or other
value.

Note that if no default file was defined by executing the comrdapday
local_symbols_in --SYMB-; or with thecwscommand, a source file name
(<FILE>) must be specified with each local symbol in a command line.

Symbols may be:

» Combinations of paths, filenames, and identifiers defining a scope, or
referencing a particular identifier or location (including procedure entry and
exit points).

» Combinations of paths, filenames, and line numbers referencing a particular
source line.

» Combinations of paths, filenames, and segment identifiers identifying a
particular PROG, DATA or COMN segment or a user-defined segment.

The Symbolic Retrieval Utilities (SRU) handle symbol scoping and referencing.
These utilities build trees to identify uniqgue symbol scopes.

If you use the SRU utilities to build a symbol database before entering the
emulation environment, the measurements involving a particular symbol request
will occur immediately. If you then change a module and reenter the emulation
environment without rebuilding the symbol database, the emulation software
rebuilds the changed portions of the database in increments as necessary.

Further information regarding the SRU and symbol handling is available in the
Symbolic Retrieval Utilities User’'s Guidé\lso refer to that manual for
information on thedP64KSYMBPATH environment variable.

The last symbol specified indisplay local_symbols_in --SYMB-<command, or
with thecwscommand, is the default symbol scope. The default is "none" if no
current working symbol was set in the current emulation session.

You also can specify the current working symbol by typing the cws command on
the command line and following it with a symbol name. file command
displays the current working symbol on the status line.

Display memory mnemonic also can modify the current working symbol.

452

<FILENAME>

line

<LINE#>
<IDENTIFIER>
SCOPE

segment

<SEG_NAME>
(<TYPE>)

filename

module

procedure

static

task

Chapter 11: Emulator/Analyzer Interface Commands
--SYMB--

The parameters are as follows:

This is an UNIX path specifying a source file. If no file is specified, and the
identifier referenced is not a global symbol in the executable file that was loaded,
then the default file is assumed (the last absolute file specified by a display
local_symbols_in command). A default file is only assumed when other parameters
(such adine) in the--SYMB-- specification expect a file.

This specifies that the following numeric value references a line number in the
specified source file.

Prompts you for the line number of the source file.
Identifier is the name of an identifier as declared in the source file.

Scope is the name of the portion of the program where the specified identifier is
defined or active (such as a procedure block).

This indicates that the following string specifies a standard segment (such as
PROG, DATA, or COMN) or a user-defined segment in the source file.

Prompts you for entry of the segment name.

When two identifier names are identical and have the same scope, you can
distinguish between them by entering the type (in parentheses). Do not type a space
between the identifier name and the type specification. The type will be one of the
following:

Specifies that the identifier is a source file.

These refer to module symbols. For Ada, they are packages. Other language
systems may allow user-defined module names.

Any procedure or function symbol. For languages that allow a change of scop|
without explicit naming, SRU assigns an identifier and tags it with type proced

Static symbols, which includes global variables. The logical address of these
symbols will not change.

Task symbols, which are specifically defined by the processor and language system
in use.

A colon is used to specify the UNIX file path from the line, segment, or symbol
specifier. When following the file name with a line or segment selection, there
must be a space after the colon. For a symbol, there must not be a space after the
colon.

453

Chapter 11: Emulator/Analyzer Interface Commands
--SYMB--

Examples The following short C code example should help illustrate how symbols are
maintained by SRU and referenced in your emulation commands.

File /users/dave/control.c:

int *port_one;
main ()

int port_value;

port_ptr = port_one;
port_value = 10;

process_port (port_ptr, port_value);
} /* end main */

File /system/projectl/porthand.c:
#include "utils.c"

void process_port (int *port_num, int port_data)

static int i;
static int i2;

for (i=0;i<=64; i++) {
i2=i*2;
*port_num = port_data + i2;
delay();
{

static int i;
i=3;

port_’data = port_data + i;
} /* end of process_port */

File /system/projectl/utils.c:
delay()

intij;
int waste_time;

for (i = 0; i <= 256000; i++)
for (j = 0; j <= 256000; j++)
waste_time = 0O;
} /* end delay */

454

Chapter 11: Emulator/Analyzer Interface Commands
--SYMB--

The symbol tree as built by SRU might appear as follows, depending on the object
module format and compiler used:

/users/dave/control.c
(filename)
port_one (static) main (procedure)

ENTRY TEXTRANGE
procspecial) (procspecial
/system/ project1/porthand.c
(filename)
EXIT
{procspecial

process_port /system/project1/ utils.c
(procedure) filename)

delay

ENTRY TEXTRANGE
procspecial) (procspecial
ENTRY BLOCK 1
procspecial) (procedure) -
{procspecial

{procspecial

EXIT
(procspecial

@ TEXTRANGE

Note that SRU does not build tree nodes for variables that are dynamically
allocated on the stack at run-time, such as i and j within the delay () procedure.

455

Chapter 11: Emulator/Analyzer Interface Commands

--SYMB--

SRU has no way of knowing where these variables will be at run time and therefore
cannot build a corresponding symbol tree entry with run time address.

Here are some examples of referencing different symbols in the above programs:

control.c:main
control.c:port_one
porthand.c:utils.c:delay

The last example above only works with IEEE-695 object module format; the HP
object module format does not support referencing of include files that generate
program code.

porthand.c:process_port.i
porthand.c:process_port.BLOCK_1.i

Notice how you can reference different variables with matching identifiers by
specifying the complete scope. You also can save typing by specifying a scope with
cws. For example, if you are making many measurements involving symbols in the
file porthand.c, you could specify:

cws porthand.c:process_port

Then:
i
BLOCK 1.i

are prefixed with porthand.c: process_port before the database lookup.

If a symbol search with the current working symbol prefix is unsuccessful, the last
scope on the current working symbol is stripped. The symbol you specified is then
retested with the modified current working symbol. Note that this does not change
the actual current working symbol.

For example, if you set the current working symbol as

cws porthand.c:process_port.BLOCK 1

456

Chapter 11: Emulator/Analyzer Interface Commands
--SYMB--

and made a reference to symbol i2, the retrieval utilities attempt to find a symbol
called

porthand.c:process_port.BLOCK_1.i2
which would not be found. The symboal utilities would then strip BLOCK_1 from
the current working symbol, yielding

porthand.c:process_port.i2

which is a valid symbol.

You also can specify the symbol type if conflicts arise. Although not shown in the
tree, assume that a procedure called port_one is also defined in control.c. This
would conflict with the identifier port_one which declares an integer pointer. SRU
can resolve the difference. You must specify:

control.c:port_one(static)

to reference the variable, and

control.c:port_one(procedure)

to reference the procedure address.

See Also Thecopy local_symbols_iranddisplay local_symbols_incommands.

Also refer to theSymbolic Retrieval Utilities User’s Guider further information
on symbols.

457

Chapter 11: Emulator/Analyzer Interface Commands

trace

trace

trace
- WINDOW - SEQUENCING

\>C again <RETURN>

4
k{ only } QUALIFIER }—/

\{prestore } QUALIFIER }—/

-

This command allows you to trace program execution using the emulation analyzer.

Note that the options shown can be executed once fotreaelcommand. Refer
to the TRIGGER and QUALIFIER diagrams for details on setting up a trace.

You can perform analysis tasks either by starting a program run and then specifying
the trace parameters, or by specifying the trace parameters first and then initiating
the program run. Onceti@ce begins, the analyzer monitors the system busses of
the emulation processor to detect the states specified tideecommand.

When the trace specification is satisfied and trace memory is filled, a message will
appear on the status line indicating the trace is complete. You can then use display
trace to display the contents of the trace memory. If a previous trace list is on

458

Chapter 11: Emulator/Analyzer Interface Commands
trace

screen, the current trace automatically updates the display. If the trace memory
contents exceed the page size of the display, the <NEXT>, <PREV>, <Up arrow>,
or <Down arrow> keys may be used to display all the trace memory contents. You
also can press <CTRL>f and <CTRL>g to move the display left and right.

You can set up trigger and storage qualifications usingpéefy tracecommand.
The analyzers will begin tracing whecrab_executecommand executes, which
causes an EXECUTE signal on the Coordinated Measurement Bus.

The analyzer will trace any state by default.
The parameters are as follows:

again This option repeats the previous trace measurement. It also begins a trace
measurement with a newly loaded trace specification. (Using without the
again parameter will start a trace with the default specification rather than the
loaded specification.)

anything This causes the analyzer to capture any type of information.

arm_trig2 This option allows you to specify the external trigger as a trace qualifier, for
coordinating measurements between multiple HP 64700s, or an HP 64700 and
another instrument.

Before arm_trig2 can appear as an option, you must modify the emulation

configuration interactive measurement specification. When doing this, you must
specify that either BNC or CMBT drive trig2, and that the analyzer receive trig2.
See the chapter on "Making Coordinated Measurements" for more information.

break_on_trigger This stops target system program execution when the trigger is found. The
emulator begins execution in the emulation monitor. When using this option, the
on_halt option cannot be included in the command.

modify_command This recalls the last trace command that was executed.

on_halt When using this option, the analyzer will continue to capture states until the
emulation processor halts or untdtap_tracecommand is executed. When this
option is used, thiereak_on_trigger, repetitively, andTRIGGER options cannot
be included in the command.

only This option allows you to qualify the states that are stored, as defined by
QUALIFIER .
prestore This option instructs the analyzer to save specific states that occur prior to states

that are stored (as specified with the "only" option).

459

Chapter 11: Emulator/Analyzer Interface Commands

trace

QUALIFIER

repetitively

SEQUENCING

TRIGGER

WINDOW

Examples

See Also

This determines which of the traced states will be stored or prestored in the trace
memory for display upon completion of the trace. Events can be selectively saved
by usingtrace only to enter the specific events to be saved. When this is used,
only the indicated states are stored in the trace memory. See the QUALIFIER
syntax.

This initiates a new trace after the results of the previous trace are displayed. The
trace will continue until atop_traceor a newtrace command is issued. When
using this option, you cannot use tre _halt option.

Allows you to specify up to seven sequence terms including the trigger. The
analyzer must find each of these terms in the given order before searching for the
trigger. You are limited to four sequence terms if windowing is enabled. See the
SEQUENCING syntax pages for more details.

This represents the event on the emulation bus to be used as the starting, ending, or
centering event for the trace. SeeTRGGER syntax diagram. When using this
option, you cannot include tloa_halt option.

Selectively enables and disables analyzer operation based upon independent enable
and disable terms. This can be used as a simple storage qualifier. Or, you may use
it to further qualify complex trigger specifications. SeevMHBIDOW syntax

pages for details.

trace after 1000H <RETURN>
trace only address range 1000H thru 1004H <RETURN>

trace after address 1000H occurs 2 only address range
1000H thru 1004H break on_trigger <RETURN>

Thecopy trace display trace, load trace, load trace_spegspecify trace store
trace, andstore trace_specommands.

460

Chapter 11: Emulator/Analyzer Interface Commands
TRIGGER

TRIGGER

From

TRACE

diagram = after

=y

before

QUALIFIER

To output of TRIGGER
occurs H <#TIMES> M on TRACE diagram

This parameter lets you define where the analyzer will begin tracing program
information during a trace measurement.

A trigger is a QUALIFIER. When you include thecursoption, you can specify
the trigger to be a specific number of occurrences of a QUALIFIER (see the
QUALIFIER syntax diagram).

The default is to trace after any state occurs once.

The parameters are as follows:

about This option captures trace data leading to and following the trigger qualifier. The
trigger is centered in the trace listing.

after Trace data is acquired after the trigger qualifier is found.

before Trace data is acquired prior to the trigger qualifier.

occurs This specifies a number of qualifier occurrences of a range or state on which the
analyzer is to trigger.

QUALIFIER This determines which of the traced states will be stored in trace memory.

<#TIMES> This prompts you to enter a number of qualifier occurrences.

461

Chapter 11: Emulator/Analyzer Interface Commands

TRIGGER

Examples
trace after MAIN <RETURN>
trace after 1000H thendata 5 <RETURN>
Also see thérace command examples.

See Also Thetrace command.

Also, refer to the "Making Coordinated Measurements" chapter.

462

Chapter 11: Emulator/Analyzer Interface Commands
wait

measurement
_complete

or

wait

= <RETURN>

<TIME> Qsecomds /f—@ measurement complete
measurement complete <TIME>

This command allows you to present delays to the system.

Thewait command can be an enhancement to a command file, or to normal
operation at the main emulation level. Delays allow the emulation system and
target processor time to reach a certain condition or state before executing the next
emulation command.

Thewait command does not appear on the softkey labels. You must typaithe
command into the keyboard. After you typait, the command parameters will be
accessible through the softkeys.

The system will pause until it receives a <CTRL>c signal.

Note that ifset intr <CTRL>c was not executed on your system, <CTRL>c
normally defaults to the backspace key. See your UNIX system administrator
more details regarding keyboard definitions.

The parameters are as follows:

This causes the system to pause until a pending measurement completes (a trace
data upload process completes), or until a <CTRL>c signal is received. If a
measurement is not in progress,wet command will complete immediately.

This causes the system to wait for a <CTRL>c signal or for a pending measurement
to complete. Whichever occurs first will satisfy the condition.

463

Chapter 11: Emulator/Analyzer Interface Commands

wait
seconds

<TIME>

Examples

This causes the system to pause for a specific number of seconds.
This prompts you for the number of seconds to insert for the delay.

Note that avait command in a command file will cause execution of the command
file to pause until a <CTRL>c signal is received, if <CTRL>c is defined as the
interrupt signal. Subsequent commands in the command file will not execute while
the command file is paused. You can verify whether the interrupt signal is defined
as <CTRL>c by typingetat the system prompt.

wait <RETURN>

wait 5; wait measurement_complete <RETURN>

464

Chapter 11: Emulator/Analyzer Interface Commands
WINDOW

disable

enable

QUALIFIER

Examples

WINDOW

From ftrace
syntax diagram

{ enable H QUALIFIER } -
disable H QUALIFIER M

Lets you select which states are stored by the analyzer.

WINDOW allows you to selectively toggle analyzer operation. When enabled, the
analyzer will recognize sequence terms, trigger terms, and will store states. When
disabled, the analyzer is effectively off, and only looks for a particular enable term.

You specify windowing by selecting an enable qualifier term; the analyzer will
trigger or store all states after this term is satisfied. If the disable term occurs after
the analyzer is enabled, the analyzer will then stop storing states, and will not
recognize trigger or sequence terms. You may specify only one enable term and
one disable term.

The analyzer defaults to recognizing all states. If you specify enable, you must
supply a qualifier term. If you then specify disable, you must specify a qualifier
term.

The parameters are as follows:

Allows you to specify the term which will stop the analyzer from recognizing states
once the enable term has been found.

Allows you to specify the term which will enable the analyzer to begin monitori
states.

Specifies the actual address, data, status value or range of values that cause
analyzer to enable or disable recognition of states. Note that the enable qualifier
can be different from the disable qualifier. Refer to the QUALIFIER syntax pages
for further details on analyzer qualifier specification.

trace enable _rand disable 0Oecch <RETURN>

465

Chapter 11: Emulator/Analyzer Interface Commands
WINDOW

See Also Thetrace command and the SEQUENCING and QUALIFIER syntax descriptions.

466

12

Status and Error Messages .

467

Status and Error Messages

This chapter contains a list of status and error messages that may occur while
operating the emulator and analyzer.

Theerror log records error messages received during the emulation session. You
may want to display the error log to view the error messages. Sometimes several
messages will be displayed for a single error to help you locate a problem quickly.
To prevent overrun, the error log purges the oldest messages to make room for the
new ones.

To display the error log:
display error_log <RETURN>

Status and error messages are grouped into the following categories:
» 80960 Emulation Status Messages

» Graphical/Softkey Interface Messages - Unnumbered

» Graphical/Softkey Interface Messages - Numbered

* Terminal Interface Messages

Note that Terminal Interface messages are passed along to the Graphical User
Interface (or Softkey Interface) and appear, with numbers, in the error log display.

468

80960 Emulation Status Messages

960Sx--No target power

The emulator is unable to detect power in the target system. If you are using the
demo target system that comes with the emulator, you must connect the +5 Volt
power cable from the front panel of the card cage to the J1 connector on the demo
board.

960Sx--No processor clock

The emulator is unable to detect CLK2 in the target system.

960Sx--Emulation reset

The emulator is holding the 80960 processor in reset.

960Sx--Awaiting target reset

The emulator is waiting for a high level at the target system 80960 socket before

the emulator hardware will allow the processor out of the reset state. This means
that the emulator has been configured to synchronize to the target system reset. For
more information, see the "Configuring the Emulator Pod" section in the

"Configuring the Emulator" chapter.

960Sx--Awaiting target run

The target system is holding the 80960 processor in reset. This means that the reset
pin at the target system 80960 socket is high.

960Sx--Processor FAILURE

The 80960 processor has asserted the FAILURE pin. The most likely cause o
status is that your program has a bad Initial Memory Image that has caused th
processor to fail its initialization sequence out of reset. If this is the case, you
want to enter a processor initialization command from the emulator. This will
check certain critical parts of your IMI and indicate if they are not valid. If you
believe that your program is not being loaded into memory successfully, you may
want to check your memory map configuration. See the "Mapping Memory"
section in the "Configuring the Emulator" chapter for more information.

469

Chapter 12: Status and Error Messages
80960 Emulation Status Messages

960Sx--No READY: <address>

A memory bus cycle is hung waiting for a READY from the target memory system.
A particular instance of this may occur is if you attempt to service an interrupt
before establishing a valid interrupt control register. In this case you may get status
960Sx--No READY:0ff000010. This is because the value in the interrupt control
register after the processor is initialized is FFO00000. For the 80960KA/KB, this
configures the INTO vector for external IAC messages. For the 80960SA/SB, this
establishes INTO as an interrupt with priority O which is illegal.

960Sx--Bus Grant

This indicates that the processor has asserted HLDA to grant control of the bus to
an external bus master.

960Sx--No bus cycles

The bus has not been granted, and there is no ADS strobe on the L-bus. You may
see this status if your program is running a loop which is entirely in the cache, and
is not accessing memory.

960Sx--Waiting for CMB ready

This status occurs when you have connected HP 64700 card cages together via the
Coordinated Measure Bus (CMB). This allows you to start and stop emulators at
the same time. This message means that the emulator is waiting for other emulators
on the CMB before starting to run user code. For more information, see the

"Making Coordinated Measurements" chapter.

960Sx--Running in monitor

The emulator is running in the monitor program waiting to execute an emulation
command. For more information, see the "Selecting the Emulation Monitor
Program" section in the "Configuring the Emulator" chapter.

960Sx--Running user program

The emulator is running your user program, and your user program is creating some
bus activity. If your program is entirely in the cache, and it is not executing any
memory loads or stores, you will see the status "No bus cycles" rather than
"Running user program".

470

Chapter 12: Status and Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Graphical/Softkey Interface Messages -
Unnumbered

Address range too small for request - request truncated
Cause: Too small of an address range is specified in a modify memory command.

Action: Specify a larger memory range.

Cannot create module file:
Cause: Insulfficient disk space for the module file.

Action: Check disk space under /usr/hp64000.

Cannot start. Ending previous session, try again

Cause: The host system could not start a new emulation session, and is ending the
previous session.

Action: After the previous session has ended, try starting a new emulation session.
If that fails, try "emul700 -u <logical name>" to unlock the emulator and cycle
power, if needed.

Cannot start. Pod initialization failed

Cause: The host system could not start a new emulation session because it could
not initialize the emulator.

Action: Cycle power on the emulator; verify that there are no red lights on the front
of the emulator. You may need to run the Terminal Interface "pv" command to
verify that the emulator is functioning properly before starting a new session.

Configuration not valid, restoring previous configuration
Configuration not valid, restoring default configuration

Cause: The modifications you tried to make to the emulator configuration are not
valid, so the host system restored the previous configuration.

Action: See the "Configuring the Emulator" chapter for more information about the
emulator configuration items and their settings.

471

Chapter 12: Status and Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Configuration process QUIT

Cause: The configuration process ended because <CTRL>"\" (SIGQUIT signal)
was encountered. This is an easy way to exit configuration without saving any
changes.

Action: Try starting the emulation session again. If the problem persists, you may
need to cycle power on the emulator.

Connecting to <LOGICAL NAME>

Cause: This is a status message. The host system is making a communication
connection to the emulator whose logical name is defined in
/usr/hp64000/etc/64700tab.net or /usr/hp64000/etc/64700tab.

Continue load failed

Cause: The host system could not continue the previous emulation session because
it could not load the continue file.

Action: Try again. If the failure continues, call your HP Service Representative.

Continuing previous session, continue file loaded

Cause: This is a status message. An emulation session which was ended earlier
with theend command has been restarted. The host system reported that the session
was continued (using settings from the previous session) and that the continue file
loaded properly.

Continuing previous session, user interface defaulted

Cause: The previous emulation session was continued and the Softkey Interface
was set to the default state.

Could not create default configuration

Cause: The host system could not create a default configuration for the emulation
session.

Action: Check disk space under /usr/hp64000 and verify proper software
installation.

472

Chapter 12: Status and Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Could not create <CONFIGURATION BINARY FILENAME>
Cause: The system could not create a binary emulation configuration file (file.EB).

Action: Check the file.EB write permission and verify that the specified directory
exists and is writeable.

Could not exec configuration process

Cause: The host system could not fork the configuration process or could not
execute the configuration process.

Action: Make sure that the host system is operating properly, and that all Softkey
Interface files were loaded properly during the installation process. Try starting the
emulation session again.

Could not load default configuration
Cause: The host system could not load the default configuration into the emulator.

Action: Cycle power on the emulator and run the Terminal Interface "pv"
(performance verification) command on the emulator to verify that it is functioning
properly. Also, verify proper software installation. If loading default configuration
still fails, then call your HP 64000 representative.

<CONFIGURATION FILENAME> does not exist

Cause: The configuration file you are trying to load does not exist.

Action: Try theload configuration command again using a valid configuration file
name.

Don'’t care number unexpected

Cause: While defining an expression in your command, you included a don't care
number (a binary, octal, decimal, or hexadecimal number containing "x"), whic
was not expected. Don’t care numbers are not valid for all commands. See th
EXPR command syntax for more information about expressions.

Emulation analyzer defaulted to delete label

Cause: Analyzer trace labels were changed or modified while labels were in use in
the trace specification.

473

Chapter 12: Status and Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Action: Enter the previous trace specification and try again.

Emul700dmn continuation failed

Cause: Communication between the emulator and the host system to continue the
emulation session failed.

Action: Check the data communication switch settings on the rear panel of the HP
64700 series emulator. If necessary, refer té1B&4700 Installation/Service
Guide

Emul700dmn executable not found

Cause: The emulation session could not begin because the host system could not
locate the HP 64700 emulator daemon process executable.

Action: Make sure that software installation is correct. Then try starting the
emulator again.

Emul700dmn failed to start

Cause: The emulation session could not begin because the host system could not
start the HP 64700 emulator daemon process.

Action: Make sure there is sufficient disk space under /usr/hp64000. Make sure the
host system is operating properly, that all Softkey Interface software has been
loaded correctly, and the data communication switch settings on the emulator rear
panel match the settings in the /usr/hp64000/etc/64700tab.net (or 64700tab) file.

Emul700dmn message too large

Emul700dmn message too small

Emul700dmn queue and/or semaphores missing
Emul700dmn queue failure

Emul700dmn error in file operation

Emul700dmn queue full

Cause: The HP 64700 emulator daemon process command was too large for the
host system to process.

Action: You must presend_release_systeno exit this emulation session

completely; then start a new session. Make sure the host system is operating
properly, that all Softkey Interface software has been loaded correctly, and the data
communication switch settings on the emulator rear panel match the settings in the

474

Chapter 12: Status and Error Messages
Graphical/Softkey Interface Messages - Unnumbered

/usr/hp64000/etc/64700tab.net (or 64700tab) file. You may have to cycle power
and usemul700 -u ,logical nameo unlock the system.

Emul700dmn sem op failed, perhaps kernel limits too low

Cause: The host system could not start the emulation session; there may be too
many processes running on the host system.

Action: Make sure the host system is operating properly, and is not overloaded with
currently executing processes. Stop or remove some processes on the system. Also,
verify that the semaphore capabilities have been installed in the UNIX kernel. Then
try starting the emulation session again.

Emul700dmn version incompatible with this product

Cause: The emulation session could not begin because the version of the HP 64700
emulator daemon executable on host system is not compatible with the version of
the Softkey Interface you are using.

Action: Make sure the software has been properly installed. Then try starting the
emulator again.

<LOGICAL NAME>: End, continuing

Cause: This is a status message. The emulation session is being exitedemith the
command. When you restart the emulation session later, it will continue using the
same settings as in the session you just ended. The emulator logical name is located
in the /usr/hp64000/etc/64700tab.net (or 64700tab) file.

<LOGICAL NAME>: End, released

Cause: This is a status message. The emulation session is being exitedemith the
release_systencommand. When the session has ended, the emulator is released,
meaning that others can access and use it. When you restart the emulation session
later, the new session will use all default settings. The emulator logical name i
located in the /usr/hp64000/etc/64700tab.net (or 64700tab) file.

Ending released

Cause: This is a status message. The emulation session is being exitedemith the
release_systemThe emulator will be released for others to access and use it.

475

Chapter 12: Status and Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Error: display size is <LINES> lines by <COLUMNS> columns. It must be at
least 24 by 80.

Cause: You tried to specify an incorrect window size.

Action: Set the window size accordingly, then start the emulation session. The size
of the window must be a minimum of 24 lines (rows) by 80 columns to operate an
emulation session.

Error in configuration process
Error starting configuration process
Cause: Unexpected configuration error.

Action: Verify proper software installation and call your HP 64000 representative.

Fatal error from function <ADDRESS OF FUNCTION>

Cause: This is an unexpected fatal system error.

Action: Cycle power on the emulator and start again. If this is a persistent problem,
call your HP 64000 representative.

File could not be opened

Cause: You tried to store or load trace data to a file with incorrect permission. Or
the analyzer could not find the file you specified, or else there were already too
many files open when you entered your command.

Action: Check the directory and file for correct read and write permission. Specify
a file that is accessible to the analyzer. Close the other files that are presently open.
File perf.out does not exist

Cause: You tried to execute the "restore" command to continue a previous software
performance measurement, and the SPMT software found that no
"performance_measurement_end" command was previously executed to create a
file from which "restore" could be performed.

Action: Execute a new SPMT measurement.

476

Chapter 12: Status and Error Messages
Graphical/Softkey Interface Messages - Unnumbered

File perf.out not generated by measurement software

Cause: The file named perf.out exists in the current directory, but it was not created
by the "performance_measurement_end" command.

Action: Rename the old "perf.out" file, or move it to another directory.

HP64700 1/0 channel semaphore failure: <string>
Cause: Semaphore (ipc) facility not installed.

Action: Reconfigure the kernel to add ipc facility.

HP 64700 1/O error; communications timeout
Cause: This is a communication failure.

Action: Check power to the emulator and check that all cables are connected
properly. If you are using LAN and heavy LAN traffic is present, try setting the
environment variable to HP64700TIMEOUT="30" (or larger if needed). The value
is the number of seconds before timeout occurs. Then try running again.

HP64700 1/O error; connection timed out
Cause: A user abort occurred while attempting to connect via LAN.

Action: Possibly connecting to an emulator many miles away, be patient.

HP 64700 /O error; power down detected
Cause: The emulator power was cycled.

Action: Do not do this during a user interface session; this may force the user
interface to end immediately.

HP64700 1/0O channel busy; communications timed out

Cause: The communications channel is in use for an unusually long period of
by another command.

Action: try again later.

477

Chapter 12: Status and Error Messages
Graphical/Softkey Interface Messages - Unnumbered

lllegal status combination

Cause: You tried to specify combinations of status qualifiers in expressions
incorrectly when entering commands.

Action: Refer to the "Emulator/Analyzer Interface Commands" chapter for
information about syntax of commands.

lllegal symbol name

Cause: You tried to specify incorrect symbol names when entering commands.

Action: Specify correct symbol names. To see global symbol names, use the
display global_symbolscommand. To see local symbol names, use the
display local_symbols_in <SYMB>command.

Initialization failed
Cause: The emulator could not be initialized.

Action: Make sure your data communication switch settings are correct, and that all
Softkey Interface software has been loaded properly. Cycle power on the emulator,
then try starting up the emulation session again.

Initialization load failed

Cause: The emulator could not be initialized.

Action: Make sure your data communication switch settings are correct, and that all
Softkey Interface software has been loaded properly. Cycle power on the emulator,
then try starting up the emulation session again.

Initializing emulator with default configuration

Cause: This is a status message. The host system started the emulation session and
initialized the emulator using the default configuration. The emulator is probably
operating correctly.

Initializing user interface with default config file

Cause: This is a status message. The host system started the emulation session and
Softkey Interface using the default configuration file. The emulator is probably
operating correctly.

478

Chapter 12: Status and Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Insufficient emulation memory, memory map may be incomplete

Cause: You can map only the amount of emulation memory available in your
emulator. Trying to map additional unavailable memory may cause information to
be missing from your memory map.

Action: Modify your configuration and update the memory map to correctly reflect
the amount of emulation memory available.

Invalid answer in <CONFIGURATION FILENAME> ignored

Cause: You must provide acceptable responses to questions in the configuration file
(file.EA). The emulator ignored the incorrect response. Incorrect responses may
appear in configuration files when you have saved the configuration to a file, edited
it later, and tried reloading it into the emulator. This may also occur if you have
loaded a configuration file that you created while using another emulator, and the
response differs from the response required for this emulator.

Action: Examine your configuration file to check for inappropriate responses to
configuration file questions.

Inverse assembly file <INVERSE ASSEMBLER FILENAME> could not be
loaded

Inverse assembly file <INVERSE ASSEMBLER FILENAME> not found,
<filename>

Inverse assembly not available

Cause: The file does not exist.

Action: Reload your interface and/or real-time operating system software.

Inverse assembly not available
Cause: The inverse assembler for your emulator is missing.

Action: Verify proper software installation.

Joining session already in progress, continue file loaded

Cause: This is a status message. When operating the emulator in multiple
windows, a new emulation session is "joined" to a current session. In this case, the
new session was able to continue because the continue file loaded properly.

479

Chapter 12: Status and Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Joining session already in progress, user interface defaulted

Cause: When operating the emulator in multiple windows, a new emulation session
is "joined" to a current session. In this case, the new session used the user interface
default selections.

Load aborted

Cause: While loading a file into the emulator, an event occurred that caused the
host system to stop the load process.

Action: Use thalisplay error_log command to view any errors. If the problem
persists, make sure the host system and emulator are operating properly, and that
you are trying to load an acceptable file. See the "Emulator/Analyzer Interface
Commands" chapter for information about lieed command.

Load completed with errors

Cause: While loading a file into the emulator, one or more events occurred that
caused errors during the load process.

Action: Use thalisplay error_log command to view any errors. You may need to
modify the configuration and map memory before you load the file again. If the
problem persists, make sure the host system and emulator are operating properly,
and that you are trying to load an acceptable file.

Measurement system not found

Cause: You tried to end the current emulation session and select another
measurement system module which could not be located by the host system.

Action: Either try theend select measurement_systecommand again or end and
release the emulation session.

Memory allocation failed, ending released

Cause: This is a fatal system error because the emulation session was unable to
allocate memory.

Action: You may need to reconfigure your UNIX kernel to increase the per process
maximum memory limit and available swap space. Reboot your UNIX system and
try starting a new session again.

480

Chapter 12: Status and Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Memory block list unreadable

Memory range overflow
Cause: A modify memory command is attempted that would cross physical 0.

Action: Limit the modify memory command to not overflow physical O or break
the command into two separate modify commands.

No address label defined

Cause: The address trace label was somehow removed in the terminal interface
using thetlb command.

Action: End session and start again.

No more processes may be attached to this session

Cause: You can operate an emulator in four windows. Each time you start the
emulator in another window, a new process is attached to the current session.

Action: Do not try to use more than four windows. Once you have started the
emulator in four windows, you have reached the maximum number of processes
allowed for that emulator.

Not an absolute file
No absolute file: <file>
No absolute file, No database: <file>

Cause: You tried to load a file into the emulator that is not an executable or
absolute file, so the host system stopped the load process.

Action: Try your command again, and make sure you specify a valid absolute file
name to be loaded.

No symbols loaded
Cause: You tried to step through lines in the source file before symbols are lo

Action: Load symbols and try again, or use step with the "source" option (i.e. step
assembly language program).

481

Chapter 12: Status and Error Messages
Graphical/Softkey Interface Messages - Unnumbered

No valid trace data
Cause: You tried to store trace data before a trace was completed.

Action: Wait until valid trace data is available before attempting to store a trace.

Not a valid trace file - load aborted
Cause: You tried to load a file.TR that was not created by the emulation session.

Action: Only load trace data files that were created by the emulator.

Not compatible trace file - load aborted
Cause: You tried to load a file.TR that was created by another type of emulator.

Action: Only load trace data files that were created by the same type of emulator.

Number of lines not in range: 1 <= valid lines <= 50
Cause: You tried to enter a number of lines that was outside the range from 1 to 50.

Action: Try entering the command again using a valid number of lines.

Number of spaces not in range: 2 <= valid spaces <= 15
Cause: You tried to enter a number of spaces outside the range from 2 to 15.

Action: Try entering the command again using a valid number of spaces.

opcode extends beyond specified address range
Cause: Memory disassembly is attempted on an address range that is too small.

Action: Display memory mnemonic using a large address range, or no address
range at all.

Perfinit - Absolute file (database) must be loaded line <LINE NUMBER>

Cause: No symbolic data base has been opened (or exists) for the target file when
you executed the "performance_measurement initialize" command.

Action: Make sure a data base has been loaded for the target file.

482

Chapter 12: Status and Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Perfinit - error in input file line <LINE NUMBER> invalid symbol

You included a "label" file name with your "performance_measurement_initialize"
command, and that file contains an invalid symbol.

Action: Edit the file and correct the invalid symbol.

Perfinit - error in input file line <NUMBER>

Cause: You included an input file name with your
"performance_measurement_initialize" command, and that file contains a syntax
error.

Action: Edit the file and correct the syntax error.
Perfinit <—-EXPR— ERROR> line <LINE NUMBER>

Perfinit - File could not be opened

Cause: You specified a file as an option to "performance_measurement_initialize",
and the file you specified could not be found or opened by SPMT software.

Action: Make sure you entered the correct file name.

Perfinit - No events in file

Cause: You specified a file along with your "performance_measurement'initialize"
command that contained no events. Any measurement displayed from this file will
have NULL results.

Action: Either edit the file to add events, or use the default setup to start a new
measurement.

perf.out file could not be opened - created

Cause: The performance analyzer failed to open or create a file named "perf.o
response to your "performance_measurement_end" command.

Action: Free up some file space or correct the write permissions in your curren
working directory.

483

Chapter 12: Status and Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Performance tool must be initialized

Cause: You tried to make a performance measurement when the Software
Performance Measurement Tool (SPMT) was not initialized.

Action: The Software Performance Measurement Tool (SPMT) must be initialized
before making performance measurements on your software. Use the
performance_measurement_initializecommand to initialize the SPMT.

Performance tool not initialized

Cause: The Software Performance Measurement Tool (SPMT) has not been
initialized.

Action: To make accurate activity or duration measurements on current data, use
the performance_measurement_initializecommand to initialize the SPMT before
running a performance measurement.

Question file missing or invalid
Cause: Some of the Softkey User Interface files are missing or are corrupted.

Action: Reinstall the host software and try starting the emulation session again.

Range crosses segment boundary

Cause: On a segment offset processor, an address range is specified that would
cross different segments.

Action: Break the memory command into multiple commands so that the address
ranges start and end in the same segment.
Read memory failed at <PHYSICAL ADDRESS> - store aborted

Cause: While storing memory from the emulator to a file, a read memory error
occurred.

Action: Use thalisplay error_log command to view any errors. You may need to
modify the configuration and map memory before storing the file again.

Session aborted

Cause: This will only happen when running multiple emulation windows and a
fatal system error occurs.

484

Chapter 12: Status and Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Action: Find the window that caused the error and see the error message that it
displayed. All the additional windows will simply state "session aborted". Cycle
power on the emulator and enéenul700 -u <logical name=o make sure the
emulator is unlocked.

Session cannot be continued, ending released

Cause: The emulation session is ending automatically because it could not be
continued from the previous session. When the session has ended the emulator will
be released, meaning that others can access and use it.

Action: When you restart the emulation session later, the new session will use all
default settings.

Slave clock requires at least one edge

Cause: The analyzer has an invalid clock specification.

Action: Modify your configuration and try your command again.

Starting address greater than ending address
Cause: You specified a starting address that is greater than the ending address.

Action: Specify a starting address that is less than or equal to the ending address.

Starting new session, continue file loaded

Cause: This is a status message. The emulator was started using a new emulation
session, and the continue file loaded properly.

Starting new session, user interface defaulted

Cause: The emulator was started using a new emulation session, and the user
interface was set to default selections.

Action: Call your HP Service Representative.

Status unknown, run "emul700 -| <LOGICAL NAME>"
Cause: The host system cannot determine the status of the emulator.

Action: To verify communication between the emulator and the host system, and
display the emulator status, enter ¢éneul700 -I <logical name>ommand. The

485

Chapter 12: Status and Error Messages
Graphical/Softkey Interface Messages - Unnumbered

emulator logical name is located in the /usr/hp64000/etc/64700tab.net (or
64700tab) file.

Stepping aborted; number steps completed: <STEPS TAKEN>

Cause: Stepping aborted because <CTRL>c or software breakpoint was hit,
guarded memory was accessed, or some other kind of error occurred.

Action: See the error log display for any abnormal errors. Correct those errors and
then step again.

Stepping complete

Cause: Stepping was completed successfully.

Step count must be 1 through 999
Cause: You tried to use a step count greater than 999.

Action: Use a step count less than 1000.

Symbols not accessible, symbol database not loaded

Cause: You specified a trace list with values expressed using symbols defined in
the source code modules, such as source on, and the database file has not been
loaded into emulation. Example: display trace symbols on.

Timeout in emul700dmn communication

Cause: The host system could not start the emulation session because the HP 64700
emulator process ran out of time before the emulator could start.

Action: You must presend_release_systeno exit this emulation session

completely; then start a new session. Make sure the host system is operating
properly, that all Softkey Interface software has been loaded correctly, and the data
communication switch settings on the emulator rear panel match the settings in the
/usr/hp64000/etc/64700tab.net (or 64700tab) file.

Trace file not found
Cause: You tried to load trace data file that does not exist.

Action: Find the correct name and path of the trace data file and try again.

486

Chapter 12: Status and Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Unexpected message from emul700dmn

Cause: The host system could not start the emulation session because of an
unexpected message from the HP 64700 emulator process command.

Action: You must pressnd_release_systeno exit this emulation session

completely; then start a new session. Make sure the host system is operating
properly, that all Softkey Interface software has been loaded correctly, and the data
communication switch settings on the emulator rear panel match the settings in the
/usr/hp64000/etc/64700tab.net (or 64700tab) file.

Unknown expression type

Cause: While entering your command, you included an unknown expression type.
Action: See the EXPR command syntax for more information about expressions.
Then try entering your command again with a known expression type.

Unload trace data failed

Cause: An unexpected error occurred while waiting for a trace to be completed.

Action: End and release the session, and then try again.

Wait time failure, could not determine system time
Cause: The system call failed.

Action: Verify that 'date’ executes correctly from the UNIX prompt.

Warning: at least one integer truncated to 32 bits
Warning: at least one integer truncated to 16 bits
Warning: at least one integer truncated to 8 bits

Cause: The number entered was too large for the currently specified display or
access size.

Action: Try entering the command again using the correct size of number.

Width not in range: 1 <= valid width <= 80
Cause: You tried to specify the width of the field outside the range from 1 to 80.

Action: Try entering the command again using a valid number for the width.

487

Chapter 12: Status and Error Messages
Graphical/Softkey Interface Messages - Numbered

Graphical/Softkey Interface Messages - Numbered

These numbered messages can occur because of various problems with the
emulator/analyzer.

10315 Logical emulator name unknown; not found in 64700tab file

Cause: This message may occur while trying to start up the emulator. It indicates
that the emulator name specified could not be found in the 64700tab.net or
/etc/hosts files.

Action: Specify the name in one of these files.

10326 Emulator locked by another user

Cause: This message occurs when you try to start an emulation interface, but your
attempt failed because the emulator is being used by someone else.

Action: The current user must release the emulator.

10327 Cannot lock emulator; failure in obtaining the accessid
Cannot lock emulator; failure in <ERRNO MSG>

10328 Cannot unlock emulator; emulator not locked
Cause: You have issued a command to unlock an emulator that is not locked.

Action: The emulator is available now. You can start the interface.

10328 Cannot unlock emulator; lock file missing
10328 Cannot unlock emulator; semaphore missing

Cause: Lock semaphore missing.

Action: Verify existence and permissions of /usr/hp64000 directory. Cycle
emulator power and usenul700 -u <logical name>

10328 Cannot unlock emulator; emulator in use by user: <USER NAME>
Cause: The emulator is already in use by the named user.

Action: Current user must release the emulator.

488

Chapter 12: Status and Error Messages
Graphical/Softkey Interface Messages - Numbered

10329 Emulator locked by user: <USER NAME>

Cause: You tried to start an emulator interface, but your attempt failed because the
emulator is already in use by someone else.

Action: Current user must release the emulator.

10330 Emulator locked by another user interface

Cause: You tried to start an emulator interface, but your attempt failed because the
emulator is already in use by someone else.

Action: Current user must release the emulator.

10331 HP64700 1/O channel in use by emulator: <LOGICAL NAME>

Cause: You tried to start an emulator interface, but your attempt failed because the
emulator is already in use by someone else.

Action: Current user must release the emulator.

10332 Cannot default emulator; already in use

Cause: You tried to start an emulator interface, but your attempt failed because the
emulator is already in use by someone else.

Action: Current user must release the emulator.

10350 Cannot interpret emulator output

Cause: There may be characters dropped in the information returned from the
emulator.

Action: Ignore this message unless it becomes frequent. If it becomes frequent, you
may have a fatal error; call your HP 64700 representative.

10351 Exceeded maximum 64700 command line length
Cause: Your command is longer than 240 characters.

Action: Shorten the command.

10352 Incompatible with 64700 firmware version

Cause: The installed interface firmware combination is incorrect or incompatible.

489

Chapter 12: Status and Error Messages
Graphical/Softkey Interface Messages - Numbered

10360

10371

Action: Upgrade the interface software of product firmware.

Analyzer limitation; all range resources in use
Analyzer limitation; all pattern resources in use
Analyzer limitation; all expression resources in use

Cause: Your trace specification would use more than the maximum number of
resources available to the analyzer.

Action: Simplify the trace specification.

64700 command aborted

Cause: User abort occurred due to emulator being monopolized by another
command.

Action Don’t issue an abort.

490

Chapter 12: Status and Error Messages
Terminal Interface Messages

21

40

61

Terminal Interface Messages

This section contains descriptions of error messages that can occur while using the
Terminal Interface. The error messages are listed in numerical order, and each
description includes the cause of the error and the action you should take to remedy
the situation.

The emulator can return messages to the display only when it is prompted to do so.
Situations may occur where an error is generated as the result of some command,
but the error message is not displayed until the next command (or a carriage return)
is entered.

A maximum number of 8 error messages can be displayed at one time. If more
than 8 errors are generated, only the last 8 are displayed.

Emulator Messages

Insufficient emulation memory
Cause: You have attempted to map more emulation memory than is available.

Action: Reduce the amount of emulation memory that you are trying to map.

Restricted to real time runs

Cause: While the emulator is restricted to real-time execution, you have attempted
to use a command that requires a temporary break in execution to the monitor. The
emulator does not permit the command and issues this error message.

Action: You must break the emulator’s execution into the monitor before you can
enter the command.
Emulator is in the reset state

Cause: You have entered a command that requires the emulator to be runnin
the monitor (for example, displaying registers).

Action: Enter thdoreak command to cause the emulator to run in the monitor, and
enter the command that caused the error again.

491

Chapter 12: Status and Error Messages
Terminal Interface Messages

100

140

141

151

152

No response from monitor

Cause: The major cause of this error message is when the target system does not
assert the ADS signal for target memory accesses.

Action: Investigate the reason there are no ADS responses on target memory
accesses.
Instruction address must be aligned on word boundary

Cause: You have attempted to run, step, or set a breakpoint at an address that is not
word-aligned.

Action: Since the addresses specified in these commands are instruction addresses,
they must be aligned on word (4-byte) boundaries.
Breakpoint registers are disabled

Cause: You have attempted to userthreuntil address command when
breakpoints are disabled.

Action: Enable breakpoints. Note that the breakpoints break condition applies to
software breakpoints and breakpoint registers.
Prior emulation memory access pending; request aborted

Cause: When emulation memory accesses are synchronized to the target system
READY signal, this message occurs when a prior emulation memory access is
pending because there is no READY.

Action: Re-enter the command. If the problem persists, you may need to find out
why there is no READY signal for the prior emulation memory access.
Monitor timeout while executing command

Cause: The emulation controller gives the monitor up to one second to complete a
command. This message occurs, for example, when the bus has been granted to
some other device during the execution of a monitor command.

Action: Re-enter the command.

492

153

154

155

156

157

158

159

Chapter 12: Status and Error Messages
Terminal Interface Messages

Can not run from <address> out of reset

Cause: When the emulator is configured to restrict entry into the monitor from
reset, the emulator cannot run from an address out of reset.

Action: Modify the configuration to allow breaks into the monitor when the
emulator is released from reset.

Unable to display execution message settings

Unable to modify execution message settings

Cause: You have attempted to display or modify execution message settings while
the emulator is restricted to real-time runs and is running the user program.

Action: When the emulator is restricted to real-time runs, you must break
execution into the monitor program or reset the emulator before you can display or
modify execution message settings.

Unable to display processor break conditions

Unable to configure processor break condition

Cause: You have attempted to display, enable, or disable the branch, call, return,
preret, super, or modtc processor break conditions while the emulator is restricted
to real-time runs and is running the user program.

Action: When the emulator is restricted to real-time runs, you must break
execution into the monitor program or reset the emulator before you can display,
enable, or disable the branch, call, return, preret, super, or modtc processor break
conditions.

Unable to display breakpoint registers

Unable to modify breakpoint registers

Cause: You have attempted to display or modify breakpoint registers while th
emulator is restricted to real-time runs and is running the user program.

Action: When the emulator is restricted to real-time runs, you must break
execution into the monitor program or reset the emulator before you can display or
modify breakpoint registers.

493

Chapter 12: Status and Error Messages
Terminal Interface Messages

162

163

164

165

166

Unable to initialize processor

Cause: This message occurs in response foithprocessorcommand and
usually occurs with other messages.

Action: Refer to the descriptions for the accompanying error messages.

Processor LPN configured as secondary bus master

Cause: This status message occurs when the emulator comes out of reset and
indicates that LPN was sampled as 0 which means the emulator should not act as
the initializing processor. The emulation processor will not be released from reset
if this is the case.

Action: The emulator should always act as the initializing processor. You may
need to investigate why LPN is being sampled as a 0 during initialization instead of
al.

Unable to display table

Cause: You have used ttlisplay table command to display one of the 80960
tables in memory while the emulator is reset, while the emulator is running in the
monitor but before the emulation processor has been initialized, or while the
emulator is restricted to real-time runs and is running the user program.

Action: The emulation processor must be initialized before you can display the
80960 tables in memory. If the emulator is restricted to real-time runs, you must
break execution into the monitor program before you can display tables in memory.
Monitor program failure; forcing processor reset

Cause: Itis possible for target system noise to modify the background memory
which contains the emulation monitor program. This may make it impossible for
the monitor to continue running. In that case, the emulator will force a processor
reset and reload the monitor program.

Action: Reduce target system noise.

Bus hung: %s; no target READY

Cause: This message occurs during a target system memory access when there is
no READY response.

Action: Investigate the reason there is no READY response.

494

167

180

181

182

183

Chapter 12: Status and Error Messages
Terminal Interface Messages

Processor FAILURE asserted

Cause: This status message indicates that the FAILURE output remains asserted.
The emulation prompt status character is "s". FAILURE remains asserted if the
emulation processor fails its self test during initialization. This is most likely due to
an invalid Initial Memory Image in your program.

Action: Fix the program’s Initial Memory Image.

Monitor unable to execute command

Cause: This message is displayed if an error was generated by the monitor but
none of the other errors from 180 through 189 are appropriate.

Action: Refer to any error messages that accompany this message. Otherwise, retry
the command.
BADAC asserted on memory access: %s

Cause: A command that causes target system memory accesses results in BADAC
being asserted on the access.

Action: Re-enter the command. If the problem persists, investigate the cause of
the BADAC assertion.
Invalid command sent to monitor

Cause: This message should not occur; if it does, it indicates a problem with the
emulator.

Action: Write down the sequence of commands which caused the error. Cycle
power on the emulator and re-enter the commands. If the error repeats, call your
local HP Sales and Service office for assistance.

Initial Memory Image would fail checksum

Cause: This message occurs duringn@anprocessorcommand and indicates thal
the sum of the eight checksum words in the Initial Memory Image does not eq

Action: The problem relates to the processor’s reading of the 8 words beginning at
address 0.

495

Chapter 12: Status and Error Messages
Terminal Interface Messages

184

185

186

187

188

You must do a processor initialization first

Cause: You have entered a command that requires the emulation processor to be
initialized.

Action: Enter annit_processorcommand and then reenter the command.

Fault occurred in monitor: %s

Cause: Itis possible for target system noise to modify the background memory
which contains the emulation monitor program. This may cause a fault to occur in
the monitor.

Action: Reduce target system noise.

Guarded memory access: %s

Cause: A command that requires access to target system resources caused the
monitor to access a location that is mapped as guarded memory. For example, this
message might occur if the Initial Memory Image, Processor Control Block,

System Address Table, or interrupt or fault tables are at locations mapped as
guarded memory.

Action: Make sure that the data structures mentioned above are not in locations
mapped as guarded memory.
Write to ROM: %s

Cause: A command that requires access to target system resources caused the
monitor to access a location that is mapped as ROM. For example, this message
might occur if the scratch space of the Processor Control Block or the interrupt
table are thought to be at locations mapped as ROM.

Action: Make sure that the data structures mentioned above are not in locations
mapped as ROM.
User stack not writeable; fp = %s

Cause: If the user stack is not writable, a run command will cause this message to
be displayed. The emulator will remain in the monitor.

Action: Make sure the user stack area is in RAM and is mapped as RAM.

496

189

193

195

196

197

199

Chapter 12: Status and Error Messages
Terminal Interface Messages

Offset %d of PRCB is not valid

Cause: This error message may occur in respongaitoocessorcommand
which verifies portions of the user’s Initial Memory Image before initializing the
80960 processor. This message indicates that a field in the user’s Processor
Control Block contains an illegal value.

Action: Investigate the cause of the illegal value in the Processor Control Block.

HP64761 i960Sx emulation probe not connected

Cause: This status message indicates that the i960Sx emulator probe is not properly
connected to the cable coming from the emulator control card in the frame. This
renders the emulator completely unuseable.

Execution messages temporarily disabled

Cause: This message occurs when execution messages are enabled, the emulator is
configured to restrict entry into the monitor from reset, and the emulator is run from
reset.

Action: None. This message serves as a reminder that you must break into the
monitor before execution messages can be enabled.

Breakpoints temporarily disabled

Cause: This message occurs when breakpoints are enabled, the emulator is
configured to restrict entry into the monitor from reset, and the emulator is run from
reset.

Action: None. This message serves as a reminder that you must break into the
monitor before breakpoints can be enabled.

Bus hung: %s; forcing READY to enter monitor

Cause: This message occurs in response to the break command after the bu
hung due to the lack of a target system READY signal.

Action: None. This is an informational status message.

Range too large - reduced to 0..0fffffffb

Cause: You have specified an address range larger than the processor address
space.

497

Chapter 12: Status and Error Messages
Terminal Interface Messages

204

205

208

206

318

400

Action: None. The address range is truncated to O..Offfffffb.

General Emulator and System Messages
FATAL SYSTEM SOFTWARE ERROR
FATAL SYSTEM SOFTWARE ERROR

FATAL SYSTEM SOFTWARE ERROR
Cause: The system has encountered an error from which it cannot recover.

Action: Write down the sequence of commands which caused the error. Cycle
power on the emulator and reenter the commands. If the error repeats, call your
local HP Sales and Service office for assistance.

Incompatible compatibility table entry

Cause: The emulation firmware (ROM) is not compatible with the analysis or
system firmware in your HP 64700 system.

Action: The ROMs in your emulator must be compatible with each other for your
emulation system to work correctly. Contact your Hewlett-Packard Representative.
Count out of bounds: %s

Cause: You specified an occurrence count less than 1 or greater than 65535.

Action: Re-enter the command, specifying a count value from 1 to 65535.

Record checksum failure

Cause: During ransfer operation, the checksum specified in a file did not agree
with that calculated by the HP 64700.

Action: Retry thedransfer operation. If the failure is repeated, make sure that both
your host and the HP 64700 data communications parameters are configured
correctly.

498

Chapter 12: Status and Error Messages
Terminal Interface Messages

401 Records expected: %s; records received: %s

Cause: The HP 64700 received a different number of records than it expected to
receive during &ransfer operation.

Action: Retry theransfer. If the failure is repeated, make sure that the data
communications parameters are set correctly on the host and on the HP 64700.
Refer to the "Installation" chapter for details.

410 File transfer aborted

Cause: Aransfer operation was aborted due to a break received, most likely a
<CTRL>c from the keyboard.

Action: If you typed <CTRL>c, you probably did so because you thought the
transfer was about to fail. Retry the transfer, making sure to use the correct
command options. If you are unsuccessful, make sure that the data
communications parameters are set correctly on the host and on the HP 64700, then
retry the operation.

411 Severe error detected, file transfer failed
Cause: An unrecoverable error occurred duritvgrasfer operation.

Action: Retry the transfer. If it fails again, make sure that the data
communications parameters are set correctly on the host and on the HP 64700.
Also make sure that you are using the correct command options, both on the
HP 64700 and on the host.

412 Retry limit exceeded, transfer failed

Cause: The limit for repeated attempts to send a record durggséer operation
was exceeded, therefore the transfer was aborted.

Action: Retry the transfer. Make sure you are using the correct command options
for both the host and the HP 64700. The data communications parameters n

be set correctly for both devices. Also, if you are in a remote location from the
host, it is possible that line noise may cause the failure.

413 Transfer failed to start
Cause: Communication link or transfer protocol incorrect.

Action: Check link and transfer options.

499

Chapter 12: Status and Error Messages
Terminal Interface Messages

415 Timeout, receiver failed to respond
Cause: Communication link or transfer protocol incorrect.

Action: Check link and transfer options.

600 Adjust PC failed during break
Cause: System failure or target condition.

Action: Run performance verification (Terminal Interfpeecommand), and
check target system.

602 Break failed
Cause: Théreak command was unable to break the emulator to the monitor.

Action: Determine why the break failed, then correct the condition and retry the
command. See message 608.

603 Read PC failed during break
Cause: System failure or target condition.

Action: Try again.

604 Disable breakpoint failed: %s
Cause: System failure or target condition.

Action: Run performance verification (Terminal Interfpeecommand), and
check target system.

605 Undefined software breakpoint: %s

Cause: The emulator has encountered a software breakpoint in your program that
was not inserted with theodify software_breakpoints secommand.

Action: Remove the "fmark" instructions in your code before assembly and link.

606 Unable to run after CMB break

Cause: System failure or target condition.

500

608

610

611

Chapter 12: Status and Error Messages
Terminal Interface Messages

Action: Run performance verification (Terminal Interfpeecommand), and
check target system.

Unable to break

Cause: This message is displayed if the emulator is unable to break to the monitor
because the emulation processor is reset, halted, or is otherwise disabled.

This message can occur when the "trace-enable" flag in the Process Controls
Register is set. This flag is cleared (disabled) as a part of the processor’s
initialization procedure, and it should be left this way to avoid taking trace faults in
your program.

Action: First, look at the emulation prompt and other status messages displayed to
determine why the processor is stopped. If reset by the emulation controller, use
thebreak command to break to the monitor. If reset by the emulation system,
release that reset. If halted, tegetandbreak to get to the monitor. If thereis a

bus grant, wait for the requesting device to release the bus before retrying the
command. If there is no clock input, perhaps your target system is faulty. It's also
possible that you have configured the emulator to restrict to real time runs, which
will prohibit temporary breaks to the monitor.

If the emulator cannot break because the "trace-enable" flag in the Process Controls
Register is set, edit your program and make sure there are no "modpc" instructions
that set this flag.

Unable to run

Cause: System failure or target condition.

Action: Run performance verification (Terminal Interfpeecommand), and
check target system.

Break caused by CMB not ready

Cause: This status message is printed during coordinated measurements if t
CMB READY line goes false. The emulator breaks to the monitor. When CM
READY is false, it indicates that one or more of the instruments participating i
measurement is running in the monitor.

Action: None, information only.

501

Chapter 12: Status and Error Messages
Terminal Interface Messages

612

613

614

615

616

617

618

Write to ROM break

Cause: This status message will be printed if you have enabled breaks on writes to
ROM and the emulation processor attempted a write to a memory location mapped
as ROM.

Action: None (except troubleshooting your program).

Analyzer Break

Cause: Status message.

Guarded memory access break

Cause: This message is displayed if the emulation processor attempts to read or
write memory mapped as guarded.

Action: Troubleshoot your program; or, you may have mapped memory incorrectly.

Software breakpoint: %s

Cause: This status message will be displayed if a software breakpoint is
encountered during a program run. The emulator is broken to the monitor. The
string %s indicates the address where the breakpoint was encountered.

BNC trigger break

Cause: This status message will be displayed if you have configured the emulator
to break on a BNC trigger signal and the BNC trigger line is activated during a
program run. The emulator is broken to the monitor.

CMB trigger break

Cause: This status message will be displayed if you have configured the emulator
to break on a CMB trigger signal and the CMB trigger line is activated during a
program run. The emulator is broken to the monitor.

trigl break

Cause: This status message will be displayed if you ugedlk _on_trigger
syntax of thérace command and the analyzer has found the trigger condition while
tracing a program run. The emulator is broken to the monitor.

502

Chapter 12: Status and Error Messages
Terminal Interface Messages

619 trig2 break

Cause: This status message will be displayed if you have used the tnig2nal
line to connect the analyzer or external analyzer trigger output to the emulator
break input and the analyzer has found the trigger condition. The emulator is
broken to the monitor.

620 Unexpected software breakpoint

Cause: If you have enabled software breakpoints, this message is displayed if a
software breakpoint instruction is encountered in your program that was not
inserted by anodify software_breakpoints secommand and is therefore not in
the breakpoint table.

Action: Remove the "fmark" instructions in your code before assembly and link,
and use thenodify software_breakpoints seicommand to reinsert them after the
program is loaded into memory.

621 Unexpected step break
Cause: System failure.

Action: Run performance verification (Terminal Interfpgecommand).

622 %s

Cause: Monitor specific message.

623 CMB execute break

Cause: This message occurs when coordinated measurements are enabled and an
EXECUTE pulse causes the emulator to run; the emulator must break before
running.

Action: This is a status message; no action is required.

624 Configuration aborted
Cause: Occurs when a <CTRL>c is entered while emulator configuration items are
being set.

626 Configuration failed; setting unknown: %s=%s

Cause: Target condition or system failure.

503

Chapter 12: Status and Error Messages
Terminal Interface Messages

628

628

628

628

628

628

Action: Check target system, and run performance verification (Terminal Interface
pv command).

Processor initialization break

Cause: This status message occurs when a continue initialization IAC message is
executed while the emulator is executing the user program.

Action: None. This message is to inform you of the cause of the break.

modtc break: %s"

Cause: This status message indicates that the emulator encountered a "modtc"
instruction in the user program.

Action: Generally, the trace controls word is used by the emulator to provide
debugging capabilities, and user programs should not contain these instructions.

Guarded memory break: %s"

Cause: A memory access to a location mapped as guarded memory has occurred
during execution of the user program.

Action: Investigate the cause of the guarded memory access by the user program.

Write to ROM break: %s"

Cause: When the emulator is configured to break on writes to ROM, a memory
write access to a location mapped as ROM has occurred during execution of the
user program.

Action: Investigate the cause of the write to ROM by the user program. You can
configure the emulator so that it does not break on writes to ROM.

Branch break: %s"

Cause: When running until a "branch" trace event, a branch has been taken during
execution of the user program.

Call break: %s"

Cause: When running until a "call" trace event, a call or branch-and-link
instruction has been executed in the user program.

504

628

628

628

628

628

630

631

632

Chapter 12: Status and Error Messages
Terminal Interface Messages

Return break: %s"

Cause: When running until a "return” trace event, a "ret" instruction has been
executed in the user program.

Prereturn break: %s"

Cause: When running until "preret" and "call" trace events and the prereturn-trace
flag in rO is set, a "ret" instruction is about to be executed in the user program.

Supervisor break: %s"

Cause: When running until a "supervisor" trace event, a call-system instruction or
a "ret" from supervisor mode instruction has been executed in the user program.

Breakpoint register: %s"

Cause: When running until an address, this status message indicates the instruction
at the address in the breakpoint register has been executed.

Target reset break

Cause: This status message indicates the cause of the break into the monitor was a
target system reset.

Register access aborted

Cause: Occurs when a <CTRL>c is entered during register display.

Unable to read registers in class: %s
Cause: The emulator was unable to read the registers you requested.

Action: To resolve this, you must look at the other status messages displayed.
Most likely, the emulator was unable to break to the monitor to perform the regy
read. See message 608.

Unable to modify register: %s=%s

Cause: The emulator was unable to modify the register you requested.

505

Chapter 12: Status and Error Messages
Terminal Interface Messages

634

636

637

640

650

Action: To resolve this, you must look at the other status messages displayed. It's
likely that emulator was unable to break to the monitor to perform the register
modification. See message 608.

Display register failed: %s
Cause: The emulator was unable to display the register you requested.

Action: To resolve this, you must look at the other status messages displayed. It's
likely that emulator was unable to break to the monitor to perform the register
display. See message 608.

Register not writable: %s
Cause: This error occurs when you attempt to modify a read only register.

Action: If this error occurs, you cannot modify the contents of the register with the
modify register command.

Register class cannot be modified: %s
Cause: You tried to modify a register class instead of an individual register.

Action: You can only modify individual registers. Refer todiplay registers
command description for a list of register names.

Unable to reset
Cause: Target condition or system failure.

Action: Check target system, and run performance verification (Terminal Interface
pv command).

Unable to configure break on write to ROM

Cause: The emulator controller is unable to configure for breaks on writes to
ROM, possibly because the emulator was left in an unknown state or because of a
hardware failure.

Action: Initialize the emulator or cycle power. Then reenter the command. If the
same failure occurs, call your HP sales and service office.

506

Chapter 12: Status and Error Messages
Terminal Interface Messages

651 Unable to configure break on software breakpoints

Cause: The emulator controller cannot enable breakpoints, possibly because the
emulator is in an unknown state or because of a hardware failure.

Action: Initialize the emulator or cycle power, then re-enter the command. If the
same failure occurs, call your HP sales and service office.

653 Break condition configuration aborted
Cause: Occurs when <CTRL>c is entered during the configuration of break
conditions.

661 Software breakpoint break condition is disabled

Cause: You have attempted to set or clear a software breakpoint when software
breakpoints are disabled.

Action: You must enable software breakpoints before you can set them.

663 Specified breakpoint not in list: %s

Cause: You tried to clear a software breakpoint that was not previously set. The
string %s prints the address of the breakpoint you attempted to clear.

Action: You must first set a software breakpoint before it can be cleared.

664 Breakpoint list full; not added: %s

Cause: The software breakpoint table is already reached the maximum of 32
breakpoints. The breakpoint you just requested, with address %s, was not inserted.

Action: Clear breakpoints that are no longer in use. Then, set the new breakpoint.

665 Enable breakpoint failed: %s
Cause: System failure or target condition.

Action: Check memory mapping and configuration questions.

666 Disable breakpoint failed: %s
Cause: System failure or target condition.

Action: Check memory mapping and configuration questions.

507

Chapter 12: Status and Error Messages
Terminal Interface Messages

667

668

669

670

671

680

684

Breakpoint code already exists: %s

Cause: You attempted to insert a breakpoint; however, there was already a
software breakpoint instruction at that location which was not already in the
breakpoint table.

Action: Your program code is apparently using "fmark" instructions. Remove the
“fmark" instructions from your program code and usenbdify
software_breakpoints secommand to insert them.

Breakpoint not added: %s

Cause: You tried to insert a breakpoint in a memory location which was not
mapped or was mapped as guarded memory.

Action: Insert breakpoints only within memory ranges mapped to emulation or
target RAM or ROM.

Breakpoint remove aborted

Cause: Occurs when <CTRL>c is entered when clearing a software breakpoint.

Breakpoint enable aborted

Cause: Occurs when <CTRL>c is entered when setting software breakpoints.

Breakpoint disable aborted

Cause: Occurs when <CTRL>c is entered when disabling software breakpoints.

Stepping failed
Cause: Stepping has failed for some reason.

Action: Usually, this error message will occur with other error messages. Refer to
the descriptions of the accompanying error messages to find out more about why
stepping failed.

Failed to disable step mode

Cause: System failure.

Action: Run performance verification (Terminal Interfpgecommand).

508

Chapter 12: Status and Error Messages
Terminal Interface Messages

6386 Stepping aborted; number steps completed: %d

Cause: This message is displayed if a break was received dategrammand
with a step count greater than zero. The break could have been due to any of the
break conditions or a <CTRL>c break. The number of steps completed is displayed.

688 Step display failed
Cause: System failure or target condition.

Action: Check memory mapping and configuration questions.

689 Break due to cause other than step

Cause: An activity other tharstepcommand caused the emulator to break. This
could include any of the break conditions or a <CTRL>c break.

692 Trace error during CMB execute
Cause: System failure.

Action: Run performance verification (Terminal Interfpgecommand).

693 CMB execute; run started

Cause: This status message is displayed when you are making coordinated
measurements. The CMB /EXECUTE pulse has been received; the emulation
processor started running at the address specified pdledy run command.

Action: None; information only.

694 Run failed during CMB execute
Cause: System failure or target condition.

Action: Run performance verification (Terminal Interfpeecommand), and
check target system.

700 Target memory access failed

Cause: This message is displayed if the emulator was unable to perform the
requested operation on memory mapped to the target system.

509

Chapter 12: Status and Error Messages
Terminal Interface Messages

Action: In most cases, the problem results from the emulator’s inability to break to
the monitor to perform the operation. See message 608.

702 Emulation memory access failed
Cause: System failure.

Action: Run performance verification (Terminal Interfpgecommand).

707 Request access to guarded memory: %s

Cause: The address or address range specified in the command included addresses
within a range mapped as guarded memory. When the emulator attempts to access
these during command processing, the above message is printed, along with the
specific address or addresses accessed.

Action: Re-enter the command and specify only addresses or address ranges within
emulation or target RAM or ROM. Or, you can remap memory so that the desired
addresses are no longer mapped as guarded.

710 Memory range overflow

Cause: Accessing a word or short word, for examigiglay memory Offffffff
blocked word will cause a rounding error that overflows physical memory.

Action: Reduce memory display request.

725 Unable to load new memory map; old map reloaded
Cause: There is not enough emulation memory left for this request.

Action: Reduce the amount of emulation memory requested.

726 Unable to reload old memory map; hardware state unknown
Cause: System failure.

Action: Run performance verification (Terminal Interfpgecommand).

754 Memory modify aborted; next address: %s

Cause: This message is displayed if a break occurs during processigdifya
memory command. The break could result from any of the break conditions
(except a software breakpoint) or could have resulted from a <CTRL>c break.

510

901

902

903

904

911

912

913

Chapter 12: Status and Error Messages
Terminal Interface Messages

Action: Retry the operation. If breaks are occurring continuously, you may wish to
disable some of the break conditions.

Invalid firmware for emulation subsystem

Cause: This error occurs when the HP 64700 system controller determines that the
emulation firmware (ROM) is invalid.

Action: This message is not likely to occur unless you have upgraded the ROMs in
your emulator. Be sure that the correct ROM is installed in the emulation controller.

Invalid analysis subsystem; product address: %s

Cause: This error occurs when the HP 64700 system controller determines that the
analysis firmware (ROM) is invalid.

Action: This message is not likely to occur unless you have upgraded the ROMs in
your emulator. Be sure that the correct ROMs are installed in the analyzer board.

Invalid ET subsystem; product address: %s

Cause: Detects an invalid ET. Used only internally.

Invalid auxiliary subsystem; product address: %s

Cause: For future products.

Lab firmware for emulation subsystem

Cause: This message should never occur. It shows that you have an unreleased
version of emulation firmware.

Lab firmware analysis subsystem; product address: %s

Cause: This message should never occur. It shows that you have an unrelea
version of analysis firmware.

Lab firmware subsystem; product address: %s

Cause: This message should never occur. It shows that you have an unreleased
version of system controller firmware.

511

Chapter 12: Status and Error Messages
Terminal Interface Messages

914

1105

1106

1107

1108

Lab firmware auxiliary subsystem; product address: %s

Cause: This message should never occur. It shows that you have an unreleased
firmware version of the auxiliary subsystem.

Analyzer Messages

Unable to delete label; used by emulation analyzer: <label>

Cause: This error occurs when you attempt to delete an emulation trace label
which is currently being used as a qualifier in the emulation trace specification or is
currently specified in the emulation trace format.

Action: You stop the trace or must change the trace command before you can
delete the label.
Unable to delete label; used by external state analyzer: <label>

Cause: This error occurs when you attempt to delete an external trace label which
is currently being used as a qualifier in the external state trace specification or is
currently specified in the external trace format.

Action: You stop the trace or must change the trace command before you can
delete the label.
Unable to delete label; used by external timing analyzer: <label>

Cause: This error occurs when you attempt to delete an external trace label which
is currently being used as a qualifier in the external timing trace specification.

Action: Remove the label from the external timing analyzer specifications, and
then delete the label.

Unable to redefine label; used by emulation analyzer: <label>

Cause: This error occurs when you attempt to redefine an emulation trace label
which is currently used as a qualifier in the emulation trace specification.

Action: You stop the trace or must change the trace command before you can
redefine the label.

512

1109

1110

1301

1304

1305

2021

Chapter 12: Status and Error Messages
Terminal Interface Messages

Unable to redefine label; used by external state analyzer: <label>

Cause: This error occurs when you attempt to redefine an external trace label
which is currently used as a qualifier in the external state trace specification.

Action: You stop the trace or must change the trace command before you can
redefine the label.

Unable to redefine label; used by external timing analyzer: <label>

Cause: This error occurs when you attempt to redefine an emulation or external
trace label which is currently being used as a qualifier in the external timing trace
specification.

Action: Remove the label from the external timing analyzer specifications, and
then redefine the label.

External label in use: <label>

Cause: This error occurs when you attempt to select the external analyzer's
independent state mode while an external trace label is currently used as a qualifier
in the emulation analyzer trace specification.

Action: Remove any external trace label qualifiers from emulation trace
specifications before selecting the external analyzer’s independent state mode.
Analyzer trace running

Cause: This error occurs when you attempt to change the external analyzer mode
while a trace is in progress.

Action: Halt the trace before changing the external analyzer mode.

CMB execute; emulation trace started

Cause: This status message informs you that an emulation trace measureme
started as a result of a CMB execute signal (as specified bpebiy trace
command).

Period not in 1/2/5 sequence: <period>

Cause: This error message occurs when the external timing sample period is not in
a 1/2/5 sequence; for example, 10ns, 20ns, 50ns, 100ns, 200ns, 500ns, 1us, 2us,

513

Chapter 12: Status and Error Messages
Terminal Interface Messages

2022

2030

2031

2032

2042

5us, etc. Some examples of invalid sample period specifications are: 12ns, 18ns,
25ns, 60ns, 80ns, etc.

Action: Use a number in the 1/2/5 sequence when specifying the external timing
sample period.
Sample period out of bounds: <bounds>

Cause: The external timing sample period must be between 10 ns and 50 ms (in a
1/2/5 sequence).

Action: Re-enter the command with the sample period between the bounds shown.

Negated patterns not allowed in timing

Cause: This error occurs when you attempt to specify a "not equals" expression
when defining the external timing trigger. You can only specify labels which equal
patterns (of 1's, 0's, or X's).

Action: Do not attempt to specify negated timing patterns.

Invalid trigger duration: <duration>

Cause: This error occurs when you attempt to specify an external timing trigger
duration which is in the valid range but is not a multiple of 10 ns.

Action: Re-enter the command with the trigger duration as a multiple of 10 ns.

Trigger duration out of bounds: <bounds>

Cause: This error occurs when you attempt to specify an external timing trigger
duration outside the valid range. A "greater than" duration must fall within the
range of 30 ns to 10 ms (and must be a multiple of 10 ns). A "less than" duration
must fall within the range 40 ns to 10ms (and must be a multiple of 10 ns).

Action: Re-enter the command with the trigger duration within the bounds shown.

Trigger delay out of bounds: <bounds>

Cause: This error occurs when you attempt to specify an external timing trigger
delay outside the valid range. The external timing trigger delay must be between 0
and 10 ms (in 10 ns increments).

Action: Re-enter the command with the trigger delay within the bounds shown.

514

Part 4

Concept Guide

Topics that explain concepts and apply them to advanced tasks.

515

Part 4

516

13

Concepts

517

Concepts

This chapter provides conceptual information on the following topics:
e Target system design considerations.
» The effects of the emulation processor on target system execution.

» Xresources and the Graphical User Interface.

518

Chapter 13: Concepts
Target System Design Considerations

Target System Design Considerations

The emulator requires an external clock signal and power supply in order to run.
Therefore, a target system is required in order to use the emulator, and the
minimum target system must provide a clock and a power source. The 80960 demo
target system that is shipped with the emulator is one such minimum target system.

Resetting the Target System

When theesetcommand is issued, the emulation processor will enter the reset
state. This will not cause the target system to be reset because the 80960 RESET
signal is not bi-directional. To allow the target hardware to be reset whesséhe
command is issued, a SYS_RESET lead is provided. The signal polarity of
SYS_RESET can be selected during configuration. SYS_RESET is an open
collector driver with no pull-up provided by the emulator probe. SYS_RESET
should be synchronized to CLK2 in the target system. For more information, refer
to "To synchronize to target system reset" in the "Configuring the Emulator”
chapter.

Access for Emulator Probe

There must be enough clearance in the target system to allow the emulation probe
to be plugged in and the cable routed from the target system to the emulator control
box. Refer to the "Specifications and Characteristics" chapter 80868

Emulator Terminal Interface User’s Guidler probe dimensions and pin

orientation.

Probe Power Requirements and Processor Signal
Considerations

Refer to the "Specifications and Characteristics” chapter iB0®@0 Emulator
Terminal Interface User's Guider information on the electrical characteristics of
the emulator’s active probe.

519

Chapter 13: Concepts
The Effects of the Emulation Processor on Target Execution

The Effects of the Emulation Processor on Target
Execution

The following emulator features affect target system execution as described below.
» The execution messages feature.
» Debug features that use the emulation processor’s trace controls register.

» Background monitor execution.

Execution Messages

The execution message feature of the 80960 emulator provides a powerful tool for
measuring program activity. The 80960 processor has an internal instruction cache
that is filled in 16-byte cache line prefetches. The analyzer can only measure bus
activity external to the processor. By observing prefetch activity, it is possible to
infer where the processor is executing code, but once instructions have been placed
in the cache, no further external bus cycles are generated. With data items stored in
the large register set of the processor, it is likely that the few external data cycles
may not provide enough information to infer what the execution path is.

The execution message feature causes the 80960 bondout emulation processor to
generate additional bus cycles that contain information about instruction execution.
This information can be selectively emitted for various classes of instructions. The
instruction classes correspond directly to the "Trace Modes" of the 80960
processor. Enabling execution messages results in execution performance
degradation for the 80960 due to the additional bus cycles generated, as well as the
internal bondout execution time caused by the message. Time critical systems may
not be able to handle the execution speed penalty.

The execution messages appear on the L-bus using an 80960 bondout strobe signal.
To the target system, these cycles appear as Idle (Ti) cycles. Each message is
composed of two parts: the address of the executed instruction (AT) along with
status describing the type of instruction, and the address of the next instruction to

be executed (TO).

The trace status messages are presented to the analyzer as two separate events with
a status bit indicating an AT or TO message.

When execution messages are enabled, they are included in the trace list.
Execution messages in the trace list can be disassembled to indicate the opcode of

520

Chapter 13: Concepts
The Effects of the Emulation Processor on Target Execution

the instruction executed. To accomplish this, the disassembler may need to access
memory to get the instruction’s opcode information. Consequently, there may be
additional processor cycles due to the execution message display.

Trace Controls

The emulator uses the processor’'s Trace Controls Register and the on-chip
breakpoint registers to establish portions of your debug environment. User
programs should not access these registers (that is, your programs should not
contain "modtc"” instructions, Continue Initialization IAC messages, or Set
Breakpoint Register IAC messages).

If your program modifies the trace controls or breakpoint register, your debug
environment will temporarily be changed. A subsequent break into the monitor
will restore these registers to their previous values.

User programs should not attempt to take a trace fault. The "trace-enable" flag in
the Process Controls Register is cleared (disabled) as a part of the processor’s
initialization procedure. It should be left this way to avoid taking trace faults in
your program. Similarly, the "trace-enable" bit in the System Procedure Table
should be clear to avoid taking trace faults on system calls.

Initial Memory Image

In order to execute a program on the 80960 processor, a valid Initial Memory
Image (IMI) must be presentin memory. If you do not have a valid IMI, your
program will not run correctly. In addition, if certain critical fields within the IMI
are not valid, this may change the behavior of the bondout processor that the
emulator uses to implement some debug features of the product.

If you enter annit_processorcommand, the emulator will read the critical fields

of your IMI and verify that they are valid before initializing the processor. This

may be a useful command when you are first trying to run some code in your target
system.

Background Monitor Execution

When the emulator enters the monitor, it appears to the target system that the

no bus cycles running. Actually, the address, data, and W/R signals will be
toggling, but ALE, ADS, and DEN will not be asserted unless the monitor accesses
the target system.

521

Chapter 13: Concepts
The Effects of the Emulation Processor on Target Execution

External interrupts are not recognized while the emulator executes in the monitor.
Interrupts must be asserted until the monitor returns to the user code.

522

Chapter 13: Concepts
X Resources and the Graphical User Interface

X Resources and the Graphical User Interface

This section contains more detailed information about X resources and scheme files
that control the appearance and operation of the Graphical User Interface. This
section:

» Describes the X Window concepts surrounding resource specification.

» Describes the Graphical User Interface’s implementation of scheme files.

X Resource Specifications

An X resource specification is a resource name and a value. The resource name
identifies the element whose appearance or behavior is to be defined, and the value
specifies how the element should look or behave. For example, consider the
following resource specification:

Application.form.row.done.background: red

The resource name is "Application.form.row.done.background:" and the value is
"red"_

Resource Names Follow Widget Hierarchy

A widgetis an OSF/Motif graphic device from which X applications are built. For
example, pushbuttons and menu bars are Motif widgets. Applications are built
using a hierarchy of widgets, and the application’s X resource names follow this
hierarchy. For example:

Application.form.row.done.background: red

In the resource name above, the top-level widget is named after the application.
One of the top-level widget’s children is a form widget, one of the form widget's
children is a row-column manager widget, and one of the row-column manager
widget's children is a pushbutton widget. Resource names show a path in the
widget hierarchy.

Each widget in the hierarchy is a member of a widget class, and the particular
instance of the widget is named by the application programmer.

523

Chapter 13: Concepts
X Resources and the Graphical User Interface

Class Names or Instance Names Can Be Used

When specifying resource names, you can use either instance names or class names.
For example, a "Done" pushbutton may have an instance name of "done" and a

class name of "XmPushButton". To set the background color for a hypothetical
"Done" pushbutton, you can use:

Application.form.row.done.background: red

Or, you can use:

Application.form.row.XmPushButton.background: red

Applications also have class and instance names. For example, an application may
have an instance name of "applic1" and a class name of "Application". To set the
background color for a hypothetical "Done" pushbutton only in the "applic1"
application, you can use:

applicl.form.row.done.background: red

Note that instance names are more specific than class names. That is, class names
may apply to many instances of the widget.

The class and instance names for the widgets in the Graphical User Interface can be
displayed by choosingelp - X Resource Namesnd clicking on the "All names"
button.

Wildcards Can Be Used

A wildcard may be used to match a resource specification to many different
widgets at once. For example, to set the background color of all pushbuttons, you
can use:

Application*XmPushButton.background: red

Note that resource names with wildcards are more general than those without
wildcards.

524

Chapter 13: Concepts
X Resources and the Graphical User Interface

Specific Names Override General Names

A more specific resource specification will override a more general one when both
apply to a particular widget or application.

The names for the application and the main window widget in HP64_Softkey
applications have been chosen so that you may specify custom resource values that
apply in particular situations:

1 Apply to ALL HP64_Softkey applications:
HP64_Softkey*<resource>: <value>
2 Apply to specific types of HP64_Softkey applications:

emul*<resource>: <value> (for the emulator)
perf*<resource>: <value> (for the performance analyzer)

3 Apply to all HP64_Softkey applications, but only when they are connected to a
particular type of microprocessor:

i80960<resource>: <value> (for the 80960)
m68020<resource>: <value> (for the 68020)

4 Apply to a specific HP64_Softkey application connected to a specific
processor:

perf.i80960*<resource>: <value> (for the 80960 perf. analyzer)
emul.m68020*<resource>: <value> (for the 68020 emulator)

If all four examples above are used for a particular resource, #3 will override #2 for
all applications connected to a 80960 emulator, and #4 will override #2, but only
for the specifically mentioned type of microprocessor.

When modifying resources, your resource paths must either match, or be more
specific than, those found in the application defaults file.

How X Resource Specifications are Loaded

When the Graphical User Interface starts up, it loads resource specifications fi
set of configuration files located in system directories as well as user-specific
locations.

525

Chapter 13: Concepts
X Resources and the Graphical User Interface

Application Default Resource Specifications

Default resource specifications for an application are placed in a system directory:
HP-UX {usr/lib/X11/app-defaults

SunOS /usr/openwin/lib/X11/app-defaults

The name of the Graphical User Interface application defaults file is HP64_Softkey
(same as the application class name). This file is well-commented and contains
information about each of the X resources you can modify. You can easily view
this file by choosingelp - Topic and selecting the "X Resources: App Default

File" topic. Do not modify the application defaults file; any changes to this file will
affect the appearance and behavior of the application for all users.

User-Defined Resource Specifications

User-defined resources (for any X application) are located in the X server's
RESOURCE_MANAGER property or in the user's 3HOME/.Xdefaults file.

Load Order

Resource specifications are loaded from the following places in the following order:

5 The application defaults file. For example,
{usr/lib/X11/app-defaults/HP64_Softkey when the operating system is HP-UX
or /usr/openwin/lib/X11/app-defaults/HP64_Softkey when the operating
system is SunOS.

6 The $XAPPLRESDIR/HP64_Softkey file. (The XAPPLRESDIR environment
variable defines a directory containing system-wide custom application
defaults.)

7 The server's RESOURCE_MANAGER property. (Kngb command loads
user-defined resource specifications into the RESOURCE_MANAGER

property.)

If no RESOURCE_MANAGER property exists, user defined resource settings
are read from the $HOME/.Xdefaults file.

526

Chapter 13: Concepts
X Resources and the Graphical User Interface

8 The file named by the XENVIRONMENT environment variable.

If the XENVIRONMENT variable is not set, the $SHOME/.Xdefaultsstfile
is read (typically contains resource specifications for a specific remote host).

9 Resource specifications included in the command line witkxthe option.

When specifications with identical resource names appear in different places, the
latter specification overrides the former.

Scheme Files

Several of the Graphical User Interface’s X resources idesdtifgme fileshat
contain additional X resource specifications. Scheme files group resource
specifications for different displays, computing environments, and languages.

Resources for Graphical User Interface Schemes
There are five X resources that identify scheme files:

HP64_Softkey.labelScheme:

Names the scheme file to use for labels and button text. Values can be: Label,
$LANG, or a custom scheme file name. The default uses the $LANG
environment variable if it is set and if a scheme file named Softkey.$LANG
exists in one of the directories searched for scheme files; otherwise, the default
is Label.

HP64_Softkey.platformScheme:

Names the subdirectory for the platform specific color, size, and input scheme
files. This resource should be set to the platform on which the X server is
running (and displaying the Graphical User Interface) if it is different than the
platform where the application is running. Values can be: HP-UX, SunOS,
pc-xview, or a custom platform scheme directory name.

HP64_Softkey.colorScheme:

Names the color scheme file. Values can be: Color, BW, or a custom scheme
file name.

527

Chapter 13: Concepts
X Resources and the Graphical User Interface

HP64_Softkey.sizeScheme:
Names the size scheme file which defines the fonts and the spacing used.
Values can be: Large, Small, or a custom scheme file name.
HP64_Softkey.inputScheme:
Names the input scheme file which specifies mouse and keyboard operation.
Values can be: Input, or a custom scheme file name.

The actual scheme file names take the form: "Softkey.<value>".

Scheme File Names

There are six scheme files provided with the Graphical User Interface. Their names
and brief descriptions of the resources they contain follow.

Softkey.Label Defines the labels for the fixed text in the interface. Such
things as menu item labels and similar text are in this file.
If the $3LANG environment variable is set, the scheme file
"Softkey. SLANG" is loaded if it exists; otherwise, the file
"Softkey.Label" is loaded.

Softkey.BW Defines theolor scheméor black and white displays. This
file is chosen if the display cannot produce at least 16
colors.

Softkey.Color Defines theolor scheméor color displays. This file is

chosen if the display can produce 16 or more colors.

Softkey.Large Defines theize schemghat is, the window dimensions
and fonts) for high resolution displays (1000 pixels or more
vertically).

Softkey.Small Defines theize schemghat is, the window dimensions
and fonts) for low resolution displays (less than 1000 pixels
vertically).

Softkey.Input Defines thimput scheméthat is, the button and key
bindings for the mouse and keyboard).

528

Chapter 13: Concepts
X Resources and the Graphical User Interface

Load Order for Scheme Files

Scheme files are searched for in the following directories and in the following order:
10 System scheme files in directory /usr/hp64000/lib/X11/HP64_schemes.

11 System-wide custom scheme files located in directory
$XAPPLRESDIR/HP64_schemes.

12 User-defined scheme files located in directory $HOME/.HP64_schemes (note
the dot in the directory name).

Custom Scheme Files

You can modify scheme files by copying them to the directory for user-defined
schemes and changing the resource specifications in the file. For example, if you
wish to modify the color scheme, and your platform is HP-UX, you can copy the
/usr/hp64000/lib/X11/HP64_schemes/HP-UX/Softkey.Color file to
$HOME/.HP64_schemes/HP-UX/Softkey.Color and maodify its resource
specifications.

You can create custom scheme files by modifying the X resource for the particular
scheme and by placing the custom scheme file in the directory for user-defined
schemes. For example, if the following resource specifications are made:

HP64_Softkey.platformScheme: HP-UX
HP64_Softkey.colorScheme: MyColor
The custom scheme file would be:

$HOME/.HP64_schemes/HP-UX/Softkey.MyColor

529

530

Part 5

Installation Guide

Instructions for installing and configuring the product.

531

Part5

532

14

Installation

533

Installation at a Glance

Before you can use the Graphical User Interface, you may need to install emulator
hardware, and you have to install the interface software. You also need to verify
the installation of the interface software and understand how to start the Graphical
User Interface for the first time.

This chapter is not intended to be a complete installation guide for all of the
just-mentioned tasks. This chapter concentrates on information, not found in other
places, that is necessary for the installation or operation of the interface.

Installation Overview for HP 9000 Hosted Systems

Users of HP 9000 hosted systems should follow the instructions in the section titled
"Installation for HP 9000 Hosted Systems". Briefly, those instructions tell you to do
the following:

1 If necessary, install emulator, analyzer, or memory cards in the HP 64700
Series Cardcage according to the instructions found B0®&0 Emulator
User’s Guide for the Terminal Interfacganual.

2 Connect the emulator to your computer system and configure the emulator to
communicate via the LAN (or RS-422 or RS-232) with the HP 9000 according
to instructions found in thidP 64700 Series Installation/Service Guide

3 Install the Graphical User Interface and supporting HP 64700 Series software
according to instructions found in this chapter. Alternatively, you may install
the Softkey Interface and choose not to install the Graphical User Interface.

4 Verify the software installation according to instructions given in the
"Installation for HP 9000 Hosted Systems" section of this chapter.

5 Start the interface according to instructions given in the "Installation for
HP 9000 Hosted Systems" section of this chapter.

6 Exitthe interface and go on to other chapters in this book.

Minimum HP 9000 Hardware and System Requirements

The following is a set of minimum hardware and system recommendations for
operation of the Graphical User Interface on HP 9000 Series 300/400 and Series
700 workstations.

534

Chapter 14: Installation
Installation at a Glance

HP-UX For Series 9000/300 and Series 9000/400 workstations, the minimum
supported version of the operating system is 7.03 or later. For Series 9000/700
workstations, the minimum supported version of the operating system is version
8.01.

MotifflOSF For Series 9000/700 workstations, you must also have the Motif 1.1
dynamic link libraries installed. They are installed by default, so you do not have
to install them specifically for this product, but you should consult &utJX
documentation for confirmation and more information.

Hardware and Memory Any workstation used with the Graphical User
Interface should have a minimum of 16 megabytes of memory. Series 300
workstations should have a minimum performance equivalent to that of a
HP 9000/350. A color display is also highly recommended.

From here, you should proceed to the section titled "Installation for HP 9000
Hosted Systems" for instructions on how to install, verify, and start the Graphical
User Interface on HP 9000 systems.

535

Chapter 14: Installation
Installation at a Glance

Installation Overview for Sun SPARCsystems

Users of Sun SPARCsystems should follow the instructions in the section titled
"Installation for Sun SPARCsystems". Briefly, those instructions tell you to do the
following:

7 If necessary, install emulator, analyzer, or memory cards in the HP 64700
Series Cardcage according to the instructions found B0®&0 Emulator
User’s Guide for the Terminal Interfacganual.

8 Connect the emulator to your computer system and configure the emulator to
communicate via the LAN with the hosted workstation according to
instructions found in thelP 64700 Series Installation/Service Guide

9 Install the Graphical User Interface and supporting HP 64700 Series software
according to instructions found in this chapter. Alternatively, you may install
the Softkey Interface and choose not to install the Graphical User Interface.

10 Verify the software installation according to instructions given in the
"Installation for Sun SPARCsystems" section of this chapter.

11 Start the interface according to instructions given in the "Installation for Sun
SPARCsystems" section of this chapter.

12 Exit the interface and go on to other chapters in this book.

Minimum Sun SPARCsystem Hardware and System Requirements

The following is a set of minimum hardware and system recommendations for
operation of the Graphical User Interface on Sun SPARCsystem workstations.

SunOS The Graphical User Interface software is designed to run on a Sun
SPARCsystem with SunOS version 4.1 or 4.1.1 or greater. The tape uses the
QIC-24 data format.

Hardware and Memory Any workstation used with the Graphical User
Interface should have a minimum of 16 megabytes of memory. A color display is
also highly recommended.

From here, you should proceed to the section titled "Installation for Sun
SPARCsystems" for instructions on how to install, verify, and start the Graphical
User Interface on SPARCsystem workstations.

536

Chapter 14: Installation
Installation for HP 9000 Hosted Systems

Installation for HP 9000 Hosted Systems

Follow these instructions to install the Graphical User Interface on HP 9000
workstations. You can also follow these instructions through Step 4 to find out
how not to install the Graphical User Interface if you want to use just the Softkey
Interface.

Step 1. Install the hardware in the HP 64700
Series Cardcage

Turn to theB0960 Emulator User’s Guide for the Terminal Interface follow the
instructions for installing emulator, memory, or analyzer cards in the HP 64700
Series Cardcage. It may be that you already have installed the cards in the cardcage
or your cardcage came with cards already installed.

If you have already installed the hardware and software and connected the emulator
to your host system, skip to Step 5 to verify the software installation. Otherwise,
continue with Step 2 of these instructions.

Step 2. Configure the emulator for the
communication channel
Turn to theHP 64700 Series Installation/Service Guatal follow the instructions

for configuring the emulator to communicate via LAN, RS-422, or RS-232.
(RS-422 and RS-232 are only supported on HP 9000 Series 300/400 machines.)

When you have configured the emulator to communicate via the channel you have

chosen, continue with Step 3 of these instructions.

537

Chapter 14: Installation
Installation for HP 9000 Hosted Systems

Step 3. Connect the emulator to your system

Turn to theHP 64700 Series Installation/Service Guate follow the instructions
for connecting the emulator to your system. You can connect the emulator via
LAN, RS-422, or RS-232.

When you have connected the emulator to your host system, continue with Step 4
of these instructions.

Step 4. Install the software

The tape that contains the Graphical User Interface software may contain several
products. Usually, you will want to install all of the products on the tape.

However, to save disk space, or for other reasons, you can choose to install selected
filesets.

If you plan on using the Softkey Interface instead of the Graphical User Interface,
you can save about 3.5 megabytes of disk space by not installing the XUI suffixed
filesets in the "64700 Operating Environment" and "<processor-type> Emulation
Tools" partitions. (Also, if you choose not to install the Graphical User Interface,
you will not have to use a special command line option to start the Softkey
Interface.)

Refer to the information on updating HP-UX in your HP-UX documentation for
instructions on viewing partitions and filesets and marking filesets that should not
be loaded.

The following sub-steps assume that you want to install all products on the tape.

1 Become the root user on the system you want to update.

2 Make sure the tape’s write-protect screw points to SAFE.

538

Chapter 14: Installation
Installation for HP 9000 Hosted Systems

Put the product media into the tape drive that will besthugce devicéor the
update process.

Confirm that the tape drive BUSY and PROTECT lights are on. If the PROTECT
light is not on, remove the tape and confirm the position of the write-protect screw.
If the BUSY light is not on, check that the tape is installed correctly in the drive
and that the drive is operating correctly.

When the BUSY light goes off and stays off, start the update program by entering
/etc/lupdate

at the HP-UX prompt.

When the HP-UX update utility main screen appears, confirm that the source and
destination devices are correct for your system. Refer to the information on
updating HP-UX in your HP-UX documentation if you need to modify these values.

Select "Load Everything from Source Media" when your source and destination
directories are correct.

To begin the update, press the softkey <Select Iltem>. At the next menu, press the
softkey <Select Item> again. Answer the last prompt with

y

It takes about 20 minutes to read the tape.

When the installation is complete, read /tmp/update.log to see the results of the
update.

539

Chapter 14: Installation
Installation for HP 9000 Hosted Systems

Step 5. Verify the software installation

A number of new filesets were installed on your system during the software
installation process. This and following steps assume that you chose to load the
Graphical User Interface filesets.

You can use this step to further verify that the filesets necessary to successfully
start the Graphical User Interface have been loaded and that customize scripts have
run correctly. Of course, the update process gives you mechanisms for verifying
installation, but these checks can help to double-check the installation process.

Verify the existence of thdP64_Softkeyfile in the/usr/lib/X11/app-defaults
subdirectory by entering
Is /usr/lib/X11/app-defaults/HP64_Softkeyat the HP-UX prompt.

Finding this file verifies that you loaded the correct fileset and also verifies that the
customize scripts executed because this file is created from other files during the
customize process.

Examine/usr/lib/X11/app-defaults/HP64_Softkeynear the end of the file to
confirm that there are resources specific to your emulator.

Near the end of the file, there will be resource strings that contain references to
specific emulators. For example, if you installed the Graphical User Interface for
the 80960 emulator, resource name strings will ig8@60embedded in them.

After you have verified the software installation, you must start the X server and an
X window manager (if you are not currently running an X server). If you plan to

run the Motif Window Manager (mwm), or similar window manager, continue with
Step 6a of these instructions. If you plan to run HP VUE, skip to Step 6b of these
instructions.

540

Chapter 14: Installation
Installation for HP 9000 Hosted Systems

Step 6a. Start the X server and the Motif Window

Manager (mwm)

If you are not already running the X server and a window manager, do so now. The
X server is required to use the Graphical User Interface because it is an X Windows

application. A window manager is not required to execute the interface, but, as a
practical matter, you must use some sort of window manager with the X server.

Start the X server by enterind1start at the HP-UX prompt.

Consult the X Window documentation supplied with the HP-UX operating system
documentation if you do not know about using X Windows and the X server.

After starting the X server and Motif Window Manager, continue with step 7 of
these instructions.

Step 6b. Start HP VUE

If you are running the X server under HP VUE and have not started HP VUE, do so
now.

HP VUE is a window manager for the X Window system. The X server is
executing underneath HP VUE. Unlike the Motif Window Manager, HP VUE
provides a login shell and is your default interface to the HP 9000 workstation.

541

Chapter 14: Installation
Installation for HP 9000 Hosted Systems

Step 7. Set the necessary environment variables

The DISPLAY environment variable must be set before the Graphical User
Interface will start. Also, you should modify the PATH environment variable to
include the "/usr/hp64000/bin" directory, and, if you have installed software in a
directory other than "/", you need to set the HP64000 environment variable.

The following instructions show you how to set these variables at the UNIX
prompt. Modify your ".profile" or ".login" file if you wish these environment
variables to be set when you log in. The following instructions also assume that
you're using "sh" or "ksh"; if you're using "csh", environment variables are set
using the "setenv <VARIABLE> <value>" command.

Set the DISPLAY environment variable by entering

DISPLAY=<hostname>:<server_number>.<screen_number>
export DISPLAY

For example:

DISPLAY=myhost:0.0; export DISPLAY

Consult the X Window documentation supplied with the UNIX system
documentation for an explanation of the DISPLAY environment variable.

Set the HP64000 environment variable.

For example, if you installed the HP 64000 software relative to the root directory,
“I", you would enter

HP64000=/usr/hp64000; export HP64000

If you installed the software relative to a directory other than the root directory, it is
strongly recommended that you use a symbolic link to make the software appear to
be under /usr’hp64000. For example, if you installed the software relative to
directory /users/team, you would enter

In -s /users/team/usr/hp64000 /usr/hp64000

If you do not wish to establish a symbolic link, you can set the HP64000 variable to
the full path that contains the HP 64000 software. Again, if you installed relative to
/users/team, you would enter

542

Chapter 14: Installation
Installation for HP 9000 Hosted Systems

HP64000=/users/team/usr/hp64000; export HP64000

Set the PATH environment variable to includeusghp64000/bindirectory by
entering

PATH=$PATH:$HP64000/bin; export PATH

Includingusr/hp64000/binin your PATH relieves you from prefixing HP 64700
executables with the directory path.

Set the MANPATH environment variable to include tise’hp64000/manand
usr/hp64000/contrib/mandirectories by entering

MANPATH=3MANPATH:$HP64000/man:$HP64000/contrib/man
export MANPATH

Including these directories in your MANPATH variable lets you access the on-line
"man" page information included with the software.

543

Chapter 14: Installation
Installation for HP 9000 Hosted Systems

Step 8. Determine the logical name of your
emulator

Thelogical nameof an emulator is a label associated with a set of communications
parameters in theHP64000/etc/64700tab.ndile. The 64700tab.net file is placed
in the directory as part of the installation process.

1 Display the 64700tab.net file by entering
more /usr/hp64700/etc/64700tab.nett the HP-UX prompt.

2 Page through the file until you find the emulator you are going to use.

This step will require some matching of information to an emulator, but it should
not be difficult to determine which emulator you want to address.

Examples A typical entry for an 80960 emulator connected to the LAN would appear as
follows:

#.

Channel| Logical | Processor | Remainder of Information for the Channel
Type | Name | Type | (IP address for LAN connections)
#

lan: em80960 80960 21.17.9.143

A typical entry for an 80960 emulator connected to an RS-422 port would appear as

follows:
#
| | | |Xpar|Parity|Flow|Stop|Char
Channel| Logical | Processor | Host | Physical |Mode| | |Bits|Size
Type | Name | Type |Name| Device | | |XON| |
| | | |OFF | NONE |RTS |2 |8
#

“serial: em80960 80960 myhost /deviemcom23 OFF NONE RTS 2 8

544

Chapter 14: Installation
Installation for HP 9000 Hosted Systems

Step 9. Start the interface with the emul700
command

Apply power to the emulator you wish to access after making sure the emulator is
connected to the LAN or to your host system.

On the HP 64700 Series Emulator, the power switch is located on the front panel
near the bottom edge. Push the switch in to turn power on to the emulator.

Wait a few seconds to allow the emulator to complete its startup initialization.
Choose a terminal window from which to start the Graphical User Interface.

Start the Graphical User Interface by enteringetinel700command and giving
the logical name of the emulator as an argument to the command, as in

$HP64000/bin/emul700 <logical_name> &

or
emul700 <logical name> &

if $HP64000/binis in you path.

If you are running the X server, if the Graphical User Interface is installed, and if
your DISPLAY environment variable is set, graul700command will start the
Graphical User Interface. Otherwiseul700starts the Softkey Interface.

You should include an ampersand ("&") with the command to start the Graphical
User Interface as a background process. Doing so frees the terminal window where
you started the interface so that the window may still be used.

Optionally start additional Graphical User Interface windows into the same
emulation session by repeating the previous step.

You can also choose to use the Softkey Interface under X Windows, but you must
include a command line argumenetmul 700to override the default Graphical
User Interface. Start the Softkey Interface by entering

545

Chapter 14: Installation
Installation for HP 9000 Hosted Systems

Example

emul700 -u skemul <logical name>

Suppose you have discovered that the logical name for a 80960 emulator connected
to the LAN is "em80960". To start the Graphical User Interface and begin
communicating with that emulator, enter (assuming your $PATH includes
$HP64000/bir

emul700 em80960

After a few seconds, the Graphical User Interface Emulator/Analyzer window
should appear on your screen. The window will be similar to the following:

File Display Modify Execution Breakpeints Trace Settings Help

Action keys: | <Demo> | Disp Sre () | Trace() | Run | Step Source
< Your Key > | iMake | Disp Sre Prev |Run Resetto () | Break | Step Asm

():imain [Recan

546

Chapter 14: Installation
Installation for HP 9000 Hosted Systems

Step 10. Exit the Graphical User Interface

Position the mouse pointer over the pulldown menu named "File” on the menu bar
at the top of the interface screen.

Press and hold treammand selechouse button until the File menu appears.

While continuing to hold the mouse button down, move the mouse pointer down
the menu to the "Exit" menu item.

Display the Exit cascade menu by moving the mouse pointer to the right edge of
the Exit menu choice. There is an arrow on the right edge of the menu item.

Choose "Released" from the cascade menu.

The interface will terminate and release the emulator for use by others.

547

Chapter 14: Installation
Installation for Sun SPARCsystems

Installation for Sun SPARCsystems

Follow these instructions to install the Graphical User Interface on Sun
SPARCsystem workstations. You can also follow these instructions through Step 4
to find out how to prevent installation of the Graphical User Interface if you only
plan to use the Softkey Interface.

Step 1. Install the hardware in the HP 64700
Series Cardcage

Turn to theB0960 Emulator User’s Guide for the Terminal Interface follow the
instructions for installing emulator, memory, or analyzer cards in the HP 64700
Series Cardcage. It may be that you already have installed the cards in the cardcage
or your cardcage came with cards already installed.

If you have already installed the hardware and software and connected the emulator
to your host system, skip to Step 5 to verify the software installation. Otherwise,
continue with Step 2 of these instructions.

Step 2. Configure the emulator for the
communication channel
Turn to theHP 64700 Series Installation/Service Guatal follow the instructions

for configuring the emulator to communicate via LAN. (RS-422 and RS-232 are
only supported on HP 9000 Series 300/400 machines.)

When you have configured the emulator to communicate via LAN, continue with
Step 3 of these instructions.

548

Chapter 14: Installation
Installation for Sun SPARCsystems

Step 3. Connect the emulator to your system

Turn to theHP 64700 Series Installation/Service Guate follow the instructions
for connecting the emulator to your system. You can connect the emulator via LAN.

When you have connected the emulator to your host system, continue with Step 4
of these instructions.

Step 4. Install the software

The tape that contains the Graphical User Interface software may contain several
products. Usually, you will want to install all of the products on the tape.

However, to save disk space, or for other reasons, you can choose to install selected
filesets.

If you plan on using the Softkey Interface instead of the Graphical User Interface,
you can save about 3.5 megabytes of disk space by not installing the XUI suffixed
filesets. (Also, if you choose not to install the Graphical User Interface, you will
not have to use a special command line option to start the Softkey Interface.)

Refer to theSoftware Installation Notictor software installation instructions.
After you are done installing the software, return here.

549

Chapter 14: Installation
Installation for Sun SPARCsystems

Step 5. Start the X server and OpenWindows

If you are not already running the X server, do so now. The X server is required to
run the Graphical User Interface because it is an X application.

 Start the X server by enteritigsr/openwin/bin/openwinat the UNIX prompt.

Consult the OpenWindows documentation if you do not know about using
OpenWindows and the X server.

Step 6. Set the necessary environment variables

The DISPLAY environment variable must be set before the Graphical User
Interface will start. Also, you should modify the PATH environment variable to
include the "usr/hp64000/bin" directory, and, if you have installed software in a
directory other than "/*, you need to set the HP64000 environment variable.

The following instructions show you how to set these variables at the UNIX
prompt. Modify your ".profile" or ".login" file if you wish these environment
variables to be set when you log in. The following instructions also assume that
you're using "csh"; if you're using "sh", environment variables are set in the
"<VARIABLE>=<value>; export <VARIABLE>" form.

1 The DISPLAY environment variable is usually set byahenwin startup script.
Check to see that DISPLAY is set by entering

echo $DISPLAY
If DISPLAY is not set, you can set it by entering

setenv DISPLAY=<hostname>:<server_number>.<screen_number>

550

Chapter 14: Installation
Installation for Sun SPARCsystems

For example:
setenv DISPLAY=myhost:0.0

Consult the OpenWindows documentation for an explanation of the DISPLAY
environment variable.

Set the HP64000 environment variable.

For example, if you installed the HP 64000 software relative to the root directory,
“I", you would enter

setenv HP64000 /usr/hp64000

If you installed the software relative to a directory other than the root directory, it is
strongly recommended that you use a symbolic link to make the software appear to
be under /usr’hp64000. For example, if you installed the software relative to
directory /users/team, you would enter

In -s /users/team/usr/hp64000 /usr/hp64000

If you do not wish to establish a symbolic link, you can set the HP64000 variable to
the full path that contains the HP 64000 software; also set the
LD_LIBRARY_PATH variable to the directory containing run-time libraries used

by the HP 64000 products. Again, if you installed relative to /users/team, you
would enter

setenv HP64000 /users/team/usr/hp64000
setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${HP64000}/lib

Set the PATH environment variable to includeubghp64000/bindirectory by
entering

setenv PATH ${PATH}:${HP64000}/bin

Includingusr/hp64000/binin your PATH relieves you from prefixing HP 64700
executables with the directory path.

551

Chapter 14: Installation
Installation for Sun SPARCsystems

4 Set the MANPATH environment variable to include tise’hp64000/manand

usr/hp64000/contrib/mandirectories by entering

setenv MANPATH ${MANPATH}:${HP64000}/man
setenv MANPATH ${MANPATH}.${HP64000}/contrib/man

Including these directories in your MANPATH variable lets you access the on-line
"man" page information included with the software.

If the Graphical User Interface is to run on a SPARCsystem computer that is not
running OpenWindows, include the /usr/openwin/lib directory in
LD_LIBRARY_PATH.

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:/ust/openwin/lib

Step 7. Verify the software installation

A number of product filesets were installed on your system during the software
installation process. Due to the complexity of installing on NFS mounted file
systems, a script that verifies and customizes these products was also installed.
This stand alone script may be run at any time to verify that all files required by the
products are in place in the file system. If required files are not found, this script
will attempt to symbolically link them from the $HP64000 install directory to their
proper locations.

* Run the scripgHP64000/bin/envinstall

552

Chapter 14: Installation
Installation for Sun SPARCsystems

Step 8. Map your function keys

If you are using the Softkey Interface, map your function keys by following the
steps below.

Copy the function key definitions by typing:

cp $HP64000/etc/ttyswrc ~/.ttyswrc

This creates key mappings in the .ttyswrc file in your SHOME directory.

Remove or comment out the following line from your .xinitrc file:

xmodmap -e 'keysym F1 = Help’

If any of the other keys F1-F8 are remapped using xmodmap, comment out those
lines also.

Add the following to your .profile or .login file:

stty erase "H
setenv KEYMAP sun

The erase character needs to be set to backspace so that the Delete key can be used
for "delete character."

If you want to continue using the F1 key for HELP, you can use use F2-F9 for the
Softkey Interface. All you have to do is set the KEYMAP variable. If you use
OpenWindows, type:

setenv KEYMAP sun.2-9

If you use xterm windows (the xterm window program is located in the directory
/usr/openwin/demo), type:

setenv KEYMAP xterm.2-9

Reminder: If you are using OpenWindows, add /usr/openwin/bin to the end of the
$PATH definition, and add the following line to your .profile:
setenv OPENWINHOME /usr/openwin

After you have mapped your function keys, you must start the X server and an
window manager (if you are not currently running an X server).

553

Chapter 14: Installation
Installation for Sun SPARCsystems

Examples

#.

Step 9. Determine the logical name of your
emulator

Thelogical nameof an emulator is a label associated with a set of communications
parameters in theHP64000/etc/64700tab.ndile. The 64700tab.net file is placed
in the directory as part of the installation process.

Display the 64700tab.net file by entering
more $HP64000/etc/64700tab.nett the UNIX prompt.

Page through the file until you find the emulator you are going to use.

This step will require some matching of information to an emulator, but it should
not be difficult to determine which emulator you want to address.

A typical entry for an 80960 emulator connected to the LAN would appear as
follows:

Channel| Logical | Processor | Remainder of Information for the Channel
Type | Name | Type | (IP address for LAN connections)
#

lan:

em80960

i80960 21.17.9.143

554

Chapter 14: Installation
Installation for Sun SPARCsystems

Step 10. Start the interface with the emul700
command

Apply power to the emulator you wish to access after making sure the emulator is
connected to the LAN.

On the HP 64700 Series Emulator, the power switch is located on the front panel
near the bottom edge. Push the switch in to turn power on to the emulator.

Wait a few seconds to allow the emulator to complete its startup initialization.
Choose a terminal window from which to start the Graphical User Interface.

Start the Graphical User Interface by enteringetinel700command and giving
the logical name of the emulator as an argument to the command, as in

$HP64000/bin/emul700 <logical_name> &

or
emul700 <logical name> &

if $HP64000/binis in your path.

If you are running the X server, if the Graphical User Interface is installed, and if
your DISPLAY environment variable is set, graul700command will start the
Graphical User Interface. Otherwiseul700starts the Softkey Interface.

You should include an ampersand ("&") with the command to start the Graphical
User Interface as a background process. Doing so frees the terminal window where
you started the interface so that the window may still be used.

Optionally start additional Graphical User Interface windows into the same
emulation session by repeating the previous step.

You can also choose to use the Softkey Interface in a terminal emulation window,
but you must include a command line argumeintall700to override the default
Graphical User Interface. Start the Softkey Interface by entering

555

Chapter 14: Installation
Installation for Sun SPARCsystems

emul700 -u skemul <logical name>

Example Suppose you have discovered that the logical name for a 80960 emulator connected
to the LAN is "em80960". To start the Graphical User Interface and begin
communicating with that emulator, enter (assuming your $PATH includes
$HP64000/bir

emul700 em80960

After a few seconds, the Graphical User Interface Emulator/Analyzer window
should appear on your screen.

556

Chapter 14: Installation
Installation for Sun SPARCsystems

Step 11. Exit the Graphical User Interface

Position the mouse pointer over the pulldown menu named "File” on the menu bar
at the top of the interface screen.

Press and hold treammand selechouse button until the File menu appears.

While continuing to hold the mouse button down, move the mouse pointer down
the menu to the "Exit" menu item.

Display the Exit cascade menu by moving the mouse pointer to the right edge of
the Exit menu choice. There is an arrow on the right edge of the menu item.

Choose "Released" from the cascade menu.

The interface will terminate and release the emulator for use by others.

557

558

15

Installing/Updating Emulator
Firmware

559

Installing/Updating Emulator Firmware

If you ordered the HP 64761A 80960SA/SB emulator probe and the HP 64748C
emulation control card together, the control card contains the correct firmware for
the HP 64761A.

However, if you ordered the HP 64761A and the HP 64748C separately, or if you
are using a HP 64748C that has been used previously with a different emulator
probe, you must download the correct firmware into the emulation control card.

The 80960SA/SB emulator firmware is included with the emulator/analyzer
interface software, and the program that downloads emulator firmware is included
with the HP B1471 64700 Operating Environment product.

(The firmware, and the program that downloads it into the control card, are also
included with the 80960SA/SB emulator probe on an MS-DOS format floppies.
The floppies are for users that do not have hosted interface software.)

Before you can update emulator firmware, you must have already installed the
emulator into the HP 64700, connected the HP 64700 to a host computer or LAN,
and installed the emulator/analyzer interface and HP B1471 software as described
in the "Installation" chapter.

This chapter describes how to:
* Update firmware with the "progflash" command.

» Display current firmware version information.

560

Chapter 15: Installing/Updating Emulator Firmware
To update emulator firmware with "progflash”

To update emulator firmware with "progflash" .

Enter theprogflash -v <emul_name> <products ...2ommand.

Theprogflash command downloads code from files on the host computer into
Flash EPROM memory in the HP 64700.

The-v option means "verbose". It causes progress status messages to be displayed
during operation.

The <emul_name> option is the logical emulator name as specified in the
/usr/hp64000/etc/64700tab.net file.

The <products> option names the products whose firmware is to be updated.

If you enter theorogflash command without options, it becomes interactive. If you
don't include the <emul_name> option, it displays the logical names in the
/usr/hp64000/etc/64700tab.net file and asks you to choose one. If you don't
include the <products> option, it displays the products which have firmware update
files on the system and asks you to choose one. (In the interactive mode, only one
product at a time can be updated.) You can abort the interpatiyash

command by pressing <CTRL>c.

progflash will print "Flash programming SUCCEEDED" and return O if it is
successful; otherwise, it will print "Flash programming FAILED" and return a
nonzero (error).

You can verify the update by displaying the firmware version information.

561

Chapter 15: Installing/Updating Emulator Firmware
To update emulator firmware with "progflash”

Examples To update the emulator firmware in the HP 64700 that contains the "em80960"
emulator:

$ progflash <RETURN>

HPB1471-19309 A.05.00 03Jan94
64700 SERIES EMULATION COMMON FILES

A Hewlett-Packard Software Product
Copyright Hewlett-Packard Co. 1988

All Rights Reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under copyright laws.

RESTRICTED RIGHTS LEGEND

Use , duplication , or disclosure by the Governmentis subject to

restrictions as set forth in subparagraph (c) (1) (Il) of the Rights

in Technical Data and Computer Software clause at DFARS 52.227-7013.
HEWLETT-PACKARD Company , 3000 Hanover St. , Palo Alto, CA 94304-1181

Logical Name Processor
1 em68k m68000
2 em68340 m68340
3 em80960 i80960

Number of Emulator to Update? (intr (usually cntl C or DEL) to abort)
To update firmware in the HP 64700 that contains the 80960 emulator, enter "3".

Product
164700
2 64703/64704/64706/64740
364744
4 64760
564761

Number of Product to Update? (intr (usually cntl C or DEL) to abort)

To update the HP 64761A 80960SA/SB emulator firmware, enter "5".

Enable progress messages? [y/n] (y)

To enable status messages, enter "y".

562

Chapter 15: Installing/Updating Emulator Firmware
To update emulator firmware with "progflash”

Checking System firmware revision...
Mainframe is a 64700B

Reading configuration from '/usr/hp64000/inst/update/64761.cfg’
ROM identifier address = 2FFFFOH

Required hardware identifier = 1IFF3H

Control ROM start address = 280000H

Control ROM size = 40000H

Control ROM width = 16

Programming voltage control address = 2FFFFEH

Programming voltage control value = FFFFH

Programming voltage control mask = OH

Rebooting HP64700...

Checking Hardware id code...

Erasing Flash ROM

Downloading ROM code: /usr/hp64000/inst/update/64761.X
Code start 280000H (should equal control ROM start)
Code size 3FA4BH (must be less than control ROM size)

Finishing up...

Rebooting HP64700...
Flash programming SUCCEEDED
$

You could perform the same update as in the previous example with the following
command:

$ progflash -v em80960 64761 <RETURN>

563

Chapter 15: Installing/Updating Emulator Firmware
To display current firmware version information

To display current firmware version information

* Use the Terminal Interfaceer command to view the version information for
firmware currently in the HP 64700.

When using the Graphical User Interface or Softkey Interface, you can enter
Terminal Interface commands with thed_commandcommand. For example:

display pod_command <RETURN>
pod_command "ver" <RETURN>

Examples The Terminal Interfaceer command displays information similar to:

Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under copyright laws.

HP64700B Series Emulation System
Version: B.01.00 20Dec93
Location: Flash
System RAM:1 Mbyte

HP64761A (PPN: 64760A) Intel 80960SA/SB Emulator
Version: A.00.00 18Aug92
Control: HP64748C ABG Control Board
Speed: 16.0 MHz
Memory: 2048 KBytes
Bank 0: HP64171B 1 MByte Memory Module
Bank 1: HP64171B 1 MByte Memory Module

HP64740 Emulation Analyzer
Version: A.02.02 13Mar91

564

Chapter 15: Installing/Updating Emulator Firmware
If there is a power failure during a firmware update

If there is a power failure during a firmware .
update

If there is a power glitch during a firmware update, some bits may be lost during
the download process, possibly resulting in an HP 64700 that will not boot up.

[J Repeat the firmware update process.

L] If the HP 64700 is connected to the LAN in this situation and you are unable to
connect to the HP 64700 after the power glitch, try repeating the firmware update
with the HP 64700 connected to an RS-232 or RS-422 interface.

565

566

Glossary

access mode Specifies the types of cycles used to access target system memory
locations. For example a "byte" access mode tells the monitor program to use
load/store byte instructions to access target memory.

analyzer An instrument that captures data on signals of interest at discreet
periods.

background The emulator mode in which foreground operation is suspended so
the emulation processor can be used for communication with the emulation
controller. The background monitor does not occupy any processor address space.

background emulation monitor ~ An emulation monitor program that does not
execute as part of the user program, and therefore, operates in the emulator’s
background mode.

background memory Memory space reserved for the emulation processor
when it is operating in the background mode. Background memory does not take
up any of the microprocessor’'s address space.

display mode When displaying memory, this mode tells the emulator the size of
the memory locations to display. When modifying memory, the display mode tells
the emulator the size of the values to be written to memory.

embedded microprocessor system The microprocessor system which the
emulator plugs into.

emulation bus analyzer The internal analyzer that captures emulator bus cycle
information synchronously with the processor’s clock signal.

emulation monitor program A program that is executed by the emulation
processor which allows the emulation controller to access target system resources.
For example, when you display target system memory locations, the monitor
program executes microprocessor instructions that read the target memory locations
and send their contents to the emulation controller.

567

Glossary

emulator An instrument that performs just like the microprocessor it replaces, but
at the same time, it gives you information about the operation of the processor. An
emulator gives you control over target system execution and allows you to view or
modify the contents of processor registers, target system memory, and 1/0
resources.

foreground The mode in which the emulator is executing the user program. In
other words, the mode in which the emulator operates as the target microprocessor
would.

foreground emulation monitor ~ An emulation monitor program that operates
in the foreground emulator mode, and therefore, executes as if it were part of the
user program.

global restart When the same secondary branch condition is used for all terms in
the analyzer's sequencer, and secondary branches are always back to the first term.

prestore The analyzer feature that allows up to two states to be stored before
normally stored states. This feature is useful when you want to find the cause of a
particular state. For example, if a variable is accessed from many different places in
the program, you can qualify the trace so that only accesses of that variable are
stored and turn on prestore to find out where accesses of that variable originate
from.

primary sequencer branch Occurs when the analyzer finds the primary branch
state specified at a certain level and begins searching for the states specified at the
primary branch’s destination level.

real-time Refers to continuous execution of the user program without
interference from the emulator. (Such interference occurs when the emulator
temporarily breaks into the monitor so that it can access register contents or target
system memory or 1/0.)

secondary sequencer branch ~ Occurs when the analyzer finds the secondary
branch state specified at a certain level before it found the primary branch state and
begins searching for the states specified at the secondary branch’s destination level.

sequence terms Individual levels of the sequencer. The HP 64705A analyzer
provides 8 sequence terms.

568

Glossary

sequencer The part of the analyzer that allows it to search for a certain sequence
of states before triggering.

sequencer branch Occurs when the analyzer finds the primary or secondary
branch state specified at a certain level and begins searching for the states sp
at another level.

target system The microprocessor system which the emulator plugs into.

trace A collection of states captured on the emulation bus (in terms of the
emulation bus analyzer) or on the analyzer trace signals (in terms of the external
analyzer) and stored in trace memory.

trigger The captured analyzer state about which other captured states are stored.
The trigger state specifies when the trace measurement is taken.

569

570

Index

80960 demo target systeB1,9
80960 tables
displaying,180

about, trigger position specificatia?33
absolute count, in the trace displagy
absolute files402
loading,133
loading without symbols,34
storing memory contents intb34
absolute status, in the trace disp249
access modéd,26, 567
accsize (analyzer state qualifier softk@g3, 231, 428, 444
predefined values fog23, 231
action keys28
custom,340
operation,/5
with command files340
with entry buffer,73, 75
activity measurements (SPMBR67-281
additional symbols for addresx/5
confidence leveR76
error tolerance?276
interpreting report74
mean 274
relative and absolute coungs5
standard deviatiol275
symbols within range275
trace command setup69
address (analyzer state qualifier softk@23, 231, 429, 444
address qualifierg23, 231
address range file format (SPMT measuremefry),
ADS signal, on emulation memory accesiés, 127
after, trigger position specificatio33
analyzers67
arming other HP 64700 Series analyzbrs,

571

Index

breaking emulator execution into the monitor,

breaking execution of other HP 64700 Series emuld&gors,

count qualifiers238

definition, 4

general descriptior,

occurrence coung35

prestore qualifier237

state qualifiers223, 231

storage qualifier36

trace at EXECUTE319

trigger condition233

using the,198
analyzer probe

assembling298

connecting to the target systes®0
analyzer status

occurrence left informatior202

sequence term informatio202
app-defaults directory

HP 9000 computer$26

Sun SPARCsystem computes26
application resource

SeeX resource
arm information201
arm_trig2, in trace commandl59

B backgroundl12-113, 567
emulation monitor567
memory,567

background monitor13-114, 521
selecting112-116
bases (hnumber214
bbaunload command, synt®60
before, trigger position specificatiad33
BGND output line114
binary numbers214
blocks (emulation memory), size 4f.8
BNC
connectorb, 312
trigger signal 314
break command,51
syntax,359

572

Index

break on guarded memory accezt)

breakpoints37
screen to file192

breaks on write to ROM,28

bstsize (analyzer state qualifier softke333, 429, 444
predefined values fog23

cables, emulator probe, dimensidb9
cascade menB6
cautions
BNC accepts only TTL voltage level 7
CMB 9-pin port is NOT for RS-232@315
real-time dependent target system circuitdQ
changing
directory context in configuration windodQ7
directory context in emulator/analyzer windd#4
symbol context145
characterization of memorg19
class name, X applicatiors?24
client, X,332
clock source, external27, 519
clocks
See alsslave clocks
CMB (coordinated measurement big)?2
EXECUTE line,314, 361
HP 64700 connectio15
READY line,313
signals 313
TRIGGER line,313
cmb_execute commang?0, 361
color scheme334, 338, 528
column width, trace display optio256
columns in main display area35
command button®9
command files404
other things to know abo0
passing parametei&9
command line29
Command Recall dialog boR0
Command Recall dialog box, operatigd,
copy-and-paste to from entry bufféd
editing entry area with popup merd3

573

Index

editing entry area with pushbuttoB2,
entering commands§1
entry area29
executing commands8l
help,84
keyboard use 085-87
on-line help87
recalling commands with dialog bd3¢
turning on or off80, 335
command paste mouse butt8t,
Command Recall dialog box operati@s,
command select mouse butt84i,
commands85
combining on a single command lifgs,
completion85
editing in command line entry aré®-83
entering in command lin&1
executing in command lin81
keyboard entry85
line erase86
recall,86
recalling with dialog box84
summary 358
word selection86
comparison of foreground/background monitads}
configuration context, displayind08
configuration, emulator
exiting the interfacel 09
loading from file, 109
modifying a section104
monitor selection]12-116
starting the interfacd,02
storing,106
context
changing directory in configuration windoQ7
changing directory in emulator/analyzer winddw4
changing symbol1 45
displaying directory from configuration windoQ8
displaying directory from emulator/analyzer winddwi4
displaying symbol144
coordinated measuremer21

574

Index

break_on_trigger syntax of the trace comm&z2d,
definition, 312

copy
breakpoints screen to fil&92
data values screen to filE91
display area to filel91
emulator status screen to filk92
error log to file, 192
event log to file192
global symbols to file192
local symbols to file192
memory to file,191
pod commands screen to fil92
registers to file192
system tables screen to fil91
trace listing to file,191

copy command362-365
data,363
display,363
error_log,363
event log363
global symbols363
help,363
local_symbols_in366
memory,367-368
pod_command364
registers 369
software breakpoint864
status 364
trace, 370

copy-and-paste
addresseg]1
from entry buffer,74
multi-window, 71, 74
symbol width,71
to entry buffer,70

count absolute/relative, trace display opt@ii/

count information in trace listin@06
count qualifiers238

count, occurrenc&35

cursor buttons30

575

Index

D data
copy command363
display command374-376
data (analyzer state qualifier softke323, 231, 429, 444
data valuesl 78-179
adding items to the existing display;9
clearing the display and adding a new it&9
copying screen to file}91
displaying41, 178
decimal number14
default trace comman@p0
default trace display04
returning to259
demo target systerb19
demos, setting uf343-345
demultiplexing, using slave clocks f&05
demux, slave clock modaQ7
depth of the trac&07
design considerations (target systesip
device table file34, 55-56
dialog box,75
Command Recall, operatiorg, 84
Directory Selection144
Directory Selection, operatior5, 78
Entry Buffer Recall, operatioir3, 76
File Selection, operatio@6-77
Trace Specification Selection, operatigfy
directory context
changing in configuration windowt07
changing in emulator/analyzer windo¥44
displaying from configuration windowt,08
displaying from emulator/analyzer windot4
Directory Selection dialog box operatiath, 78
display area?9
columns 335
lines,335-336
screen to file191
display command371-373
data,374-376
error_log,372
event_log372

576

global_symbols377
local_symbols_in378
memory,379-382
memory mnemonic35, 173
pod_command372
registers166-171, 383-384
simulated 0,193, 385
software_breakpoint886
status200, 372
symbols,135
table,387
trace,204, 388-391
display mode567
display trace247-260
about line numbeg48
absolute forma49
count absolute/relativ@s7
default,259
mnemonic format250
offset by,258
positioning, left/right206
positioning, up/dowrn206
source line inclusior253
symbol information inclusior55
width of columns256
displaying
simulated io screeri95
displays, copying363
don't care digits215
downloading absolute file§, 133
dual-port emulation memorg11
duration measurements (SPMZ32-290
average time287
confidence leve288
error tolerance?88
interpreting report87
maximum time 287
minimum time,287
number of intervals287
recursion consideration232
selecting 285

Index

577

Index

standard deviatior288
trace command setup83

E edit
command line entry area with popup mesI,
command line entry area with pushbutt@,
file, 188
file at address] 88
file at program countef,88
file at symbol from symbols screet88
file from memory display screeh88
editing
file, 335
file at address335
embedded microprocessor syst&gi/
emul700, command to start the emulator/analyzer intef$&ce,
emulation bus analyzes67
emulation memoryl17
block size 118
dual-port,111
loading absolute file4,33
size of,117
target ADS, synchronizing witli,19
emulation monitor567
foreground or backgroundi12-116
function of,113
emulation session, exitin§2
emulation, external analyzer mo@@4
emulator 568
configuring the 98
device table file34, 55-56
error messaged91
general descriptior,
multiple start/stop5, 319-320
running from target reset49
status lines, predefined values 223, 231
using the 132
emulator configuration
background monitor]14
break processor on write to ROIR8
exiting the configuration interfac&D9
foreground monitor1 15

578

foreground monitor priority] 15
load command402
loading from file,109
modify command406
modifying a configuration sectioip4
monitor entry from resef,29
reset synchronizatiod23
restrict to real-time rung,10
starting the configuration interfack)2
storing,106
synchronize emulation memory accesses to tatgét,
target memory access sii26
target system clock spee®7
target system reset polarity23
emulator probe
access to target systefi9
dimensions519
pin orientation519
power requirement$19
emulator status, displayin§92
emulator/analyzer interface
exiting, 50, 61-62
running in multiple windows;5
starting,55-58
end command0, 62, 392-393
entry
pod command®4
simulated i0]194
entry buffer,29
address copy-and-paste 14,
clearing,70
copy-and-paste fronT4
copy-and-paste ta,0
Entry Buffer Recall dialog box229
Entry Buffer Recall dialog box, operatior
multi-window copy-and-paste frormi4
multi-window copy-and-paste t@1
operation/3
recall button29
recalling entries/3
symbol width and copy-and-paste 14,

Index

579

Index

text entry,70

with action keys73, 75

with pulldown menus/?3
Entry Buffer Recall dialog box operatiorg
ENTRY/EXIT symbols 36
environment variables (UNIX)

HP64KPATH,92

HP64KSYMBPATH,452

PATH, 55

Softkey Interface, setting while ih85
eram, memory characterizatidri,9
erom, memory characterizaticii9
error messaged68

analyzerb12

emulator491

general and system error/stat@8

Terminal Interface491
error_log

copy command] 92, 363

display command372
event_logh9

copy command] 92, 363

display command372
EXECUTE

CMB signal,314

tracing at319
execution message&)8-213, 520

modify command407-409
exit

emulation sessiolt2

emulator/analyzer windows, 61-62
expression14

--EXPR-- syntax394-396
external analyzer

configuration,301-309

general descriptior,

labels, 302, 308

mode,304
should emulation control302
using,296

580

Index

F file
breakpoints screen th92
data values screen t91
display area tal91
editing,188
editing at addres4,.88
editing at program countet88
editing at symbol from symbols screé88
editing from memory display screet88
emulator configuratior],06
emulator configuration load,09
emulator status screen 492
error log t0,192
event log to192
global symbols ta]192
local symbols t0192
memory t0,191
pod commands screen 92
registers t0192
system table screen 91
trace listing to191
file extensions
.EA and .EB, configuration file406
file formats
address ranges for SPMT measurements,
time ranges for SPMT measureme8&5
File Selection dialog box operatiorg-77
firmware updatesy, 560
firmware version564
foreground112-113, 568
emulation monitor568
foreground monitor]13, 115
advantages/disadvantagé4
customizing,113
emulator modes when usirnt,3
priority, 115
selecting112-116
formal parameters (command file89
forward command, syntag97
function calling sequence, storing in analyzer trat8,
functions, step ovef,73

581

Index

global restart qualifiei244, 568
global symbols35, 215, 377
copy command363
display commandl 36, 377
initializing the SPMT measurement wifi/1
to file, 192
grabbers, connecting to analyzer prc&tg9
guarded memory access#$9, 240

halfbright,81-82
halt, trace203
hand pointer29, 69
hardware
HP 9000 memory needs35
HP 9000 minimum performancg35
HP 9000 minimums overvievB34
SPARCsystem memory nee@86
SPARCsystem minimum performan&86
SPARCsystem minimums overvieb36
help
command line84
copy command363
help index,79
on-line,87
softkey driven informatiorg7
help command398-399
help index, displaying;9
hexadecimal numbergl5
HP 9000
700 series Motif librarie§35
HP-UX minimum version535
installing software537-547
minimum system requirements overviég4
HP 98659 RS-422 Interface Caid,
HP-UX, minimum version535
HP64KPATH, UNIX environment variable2
HP64KSYMBPATH environment variablé52

IEEE-695 absolute file format,33
init_processor command0-401
initial memory image521

input

582

Index

pod command$4
simulated i0]194
input scheme334, 528
installation
at a glance534-536
HP 9000 overviews34
HP 9000 specific instructions37-547
SPARCSsystem specific instructiofgl8-557
SPARCsystems overvie®36
instance name, X applicatiors3-524
interactive measuremeng21
interface
exiting, 62
interface, emulator configuration
exiting, 109
modifying a section104
starting,102
interrupts, 114
inverse video
graphical interface demo/tutorial file}4
source line display optio253

keyboard
accelerators8
choosing menu item8§y7
focus policy 68
pod command®4
simulated i0]194
keyboard_to_simio, modify commanti,0

label scheme334, 338, 528
labels

configuration file 309
LANG environment variables28
LD_LIBRARY_PATH environment variabl&52
libraries, Motif for HP 9000/70%35
line numbers (source file), symbol displag,/
line numbers (trace?04
line numbers (trace), displaying abd438
lines in main display ared@35-336
list, trace, 204
load command402-403

583

Index

absolute files133
configuration 402
trace,263-264, 403
trace_spe@62, 403

local symbols215, 378

copy command366

display command, 37, 378

initializing the performance measurement w2
to file, 192

locked, end command optios2
log_commands commardi4

mapping memoryl17-122
memmap (analyzer state qualifier softk@p3, 231, 429, 444

predefined values foR23, 231

memory,367-368

activity measurements (SPMBG7, 274
characterization 0,19

contents listed as asterisk (367

copy command367-368

display command379-382
displaying,172

displaying at an addresk/6

displaying repetitivelyl77

dual-port emulation] 11

loading programs intd,33
mapping,117-122

mnemonic format display,73

modify command411-413

modifying, 177

re-assignment of emulation memory blocks in map,
store commandi49

to file, 191

memory mapper, resolutiohl7
memory recommendations

HP 9000535
SPARCsysten36

memory refrestQ9
menus

editing command line with popuf3
hand pointer means popg$, 69
pulldown operation with keyboar@y

584

pulldown operation with mousés-67
messages
status498
Terminal Interface errod91
mixed, slave clock mod&05
mnemonic information in trace listing05, 250
mnemonic memory displagb, 173
mnemonic memory display, setting the source/symbol maées,
modes, source/symbdi82
modify command405
configuration 406
execution_messaget()7-409
keyboard_to_simio410
memory,411-413
register,171, 414-415
software_breakpointg,16-418
modify _command, trace command optiafy
module duration measurements (SPNVZB2
module usage measurements (SPNZ8BR,
monitor (emulation)
comparison of foreground/backgroudd4
entry from reset]29
foreground or backgroundi12-116
function of,113
selecting112-116
Motif
HP 9000/700 requirement35
mouse
buttons,31
choosing menu item86-67
multi-window
copy-and-paste from entry buffé4
copy-and-paste to entry bufférl
multiple commands35
multiple emulator start/stop,

name_of module commant36
nesting command file§8
NORMAL key, 357, 394
nosymbols135
notes

"perf.out" file is in binary forma92

Index

585

Index

breakpoint locations must contain opcodés3, 160
CMB EXECUTE and TRIGGER signal314
external timing analyzer does not use configuration laBeg,
measurement errors on recursive/multiple entry rout?@&s,
re-assignment of emulation memory blocks by map2,
some compilers emit more than one symbol for an ad@&ss,
step command doesn’t work when CMB enabB4®
trigger found but trace memory not fille2)6

number base®14

number of source lines, trace display opt2B3

numerical value214

occurrence count35, 242
octal numbers214
offset by, trace display optio@58
on-line help87
on_halt, trace command optid@40
only, trace command storage qualifiZBg
operating system
HP-UX minimum version535
SunOS minimum versios36
operators215
output line, BGND;114
overview
HP 9000 installatiorf34
installation,534-536
SPARCsystems installatiob36

parameter passing in command filgg,
parent symbol
displaying from symbols screet%1
paste mouse butto81
PATH, UNIX environment variablé&5
perf.out, SPMT output filey72, 286, 291-293, 419
perf32, SPMT report generator utili®66, 291-292
interpreting report74, 287
options,293
using the293
performance measurements
Seesoftware performance measurements
performance_measurement_end commamhé,
performance_measurement_initialize commaéaiz®;421

586

Index

performance_measurement_run commd2@;423
pin orientation (emulator probéy19
platform

HP 9000 memory needs35

HP 9000 minimum performancg35

SPARCsystem memory nee886

SPARCsystem minimum performan&86
platform scheme334, 527
pod commandg}24-425

copy command364

display command372

display screer4

keyboard input94

screen to file192
popup menus

command line editing witl83

hand pointer indicates presen2®, 69
positioning the trace display left/rigl206
positioning the trace display up/dovaq6
power

emulator probe requirements of target systl8,
power failure during firmware update65
powered down target, run from reskt9
prestore qualifier37, 568
primary branches (analyzer sequencet
priority, foreground monitor] 15
processor typ&6
progflash examplés62
program activity measurements (SPMA9/, 274
program counter

mnemonic memory displagb

running from,148
pulldown menus

choosing with keyboard7

choosing with mous&6-67
pushbutton select mouse butt8,

QUALIFIER, in trace commandi26-427
qualifiers,223, 231

count,238

prestore237

simple trigger233

587

Index

slave clock305
storage236

R RAM, mapping emulation or targeit]9
RANGE, in trace command28-429
READY (target system) synchronize emulation memory accesskarto,
READY, CMB signal, 313
real-time runs568

commands not allowed duriniy] 0
restricting the emulator t4,10
recall buffer29
columns 341
initial content 341-342
lines,341
recalling entries/3
recall command
trace specifications dialog baxQ7
recall, command6
dialog box,84
recursion in SPMT measuremeri82
registers
copy command369
display command383-384
display/modify,166-171
displaying,42, 168
modify commandl71, 414-415
to file, 192
relative count, in the trace displ@g7
relative display of count informatioB06
release_system, end command opthiy,62, 106
repetitive display of memory,77
reset
target systenb19
reset (emulator)
commands which cause exit frohs3
monitor entry from129
polarity of SYS RESET]23
running from target reset49
synchronization]123
reset commandi30
resolution, memory mappetr17
resource

588

Index

SeeX resource
RESOURCE_MANAGER propert26
restart term242, 244
restrict to real-time runs

emulator configuratior], 10

permissible command$10

target system dependendi0
ROM

mapping emulation or targeit]9

writes 10,119
RS-422, host computer interface cdid,
run commandl48, 431-433

from reset,149

scheme files (for X resource8j33, 527
color scheme334, 338, 528
custom,338-339, 529
input scheme334, 528
label scheme334, 338, 528
platform scheme334, 527
size scheme334, 528

scroll bar,29

secondary branch expressié68

select mouse butto;1

selecting emulation monitot12-116

sequencer (analyzef69
branch 569
terms,242, 568
using the242-246

SEQUENCING, in trace commani34-435

server, X332, 526

set command}36-440

shell variables90

sig INT, 291

signals, CMB313

simulated 1/098, 410
display command385
displaying screer1, 93, 195
keyboard input194

size scheme334, 528

slave clocks305

softkey driven help informatio7

589

Index

softkey pushbutton29
softkeys 85
software
installation for HP 900(B37-547
installation for SPARCsystems48-557
software breakpointd4,54-165
clearing,163
clearing all, 165
copy command364
deactivating,160
display command386
enable/disablel 56
modify command416-418
opcode locationd, 58, 160
permanent, setting58
re-activating,161
setting,159
setting all, 160
software breakpoints list, displayinths
software performance measureme€8, 267-294
absolute informatior274
activity measurement267-281
adding trace272, 286
duration,282-290
end,419
ending,292
how they are mad@66
initialize, 420-421
initializing, 270, 285
initializing, default,271
initializing, duration measuremenf85
initializing, user defined range®71, 285
initializing, with global symbol271
initializing, with local symbols272
memory activity 267, 274
module duration282
module usage&82
program activity267, 274
recursion 282
relative information274
restoring the current measurememz, 286

590

Index

run,422-423
running,291
trace command setup69
trace display deptt269
source lines
set command}39
symbol display 137
trace display253
trace display, number 53
source/symbol modes, settirig2
SPARCsystems
installing software548-557
minimum system requirements overvié8p
SunOS minimum versios36
specify command}41-442
SPMT (Software Performance Measurement Tool)
Seesoftware performance measurements
sq adv, captured sequence stai&
SRU (Symbolic Retrieval UtilitiesB6, 452-453
state, external analyzer mo@64
STATE, in trace command43-445
status
copy command364
copy screen to filel92
display command200, 372
status (analyzer state qualifier softke393, 231, 429, 444
predefined values fo23, 231
status line29, 59
step command38, 151-152, 446-447
step overl73
stop_trace commangd3, 448
storage qualifier36
store command}49-450
absolute files133-134
store trace commang63-264
store trace_spec comma2é,1
summary of command358
SunOS, minimum versiob36
switching
directory context in configuration windodQ7
directory context in emulator/analyzer windd#4

591

Index

symbol context145
--SYMB-- syntax451-457
symbol context
changing 145
displaying,144
symbol file, loading 135
symbols 135, 215
displaying,135
displaying parent from symbols scretdl
global to file,192
local to file,192
set command439
--SYMB-- syntax451-457
trace display255
synchronous measuremergs9
syntax convention857
SYS_RESET line from emulator prold®3-124, 519
polarity,123
system requirements
HP 9000 overview534
HP-UX minimum version535
OSF/Motif HP 9000/700 requiremenil5
SPARCsystem overvieB36
SunOS minimum versios36
system tables, copy screen to fil®1

T t(start trace) commangp0
tables (80960), display commari®0, 387
tabs are, source line display opti@s3
target memory
access sizd,26
loading absolute file4,33
ROM, symbols for135
target powered down, run from reset duritgp
target reset, running frorh49
target systen(69
access for emulator prokl9
clock speed]27
contents (minimum)%19
dependency on executing cod&p
design considerationS19
probe power requirements]9

592

Index

processor signal consideratiob49
RAM and ROM,119
READY, synchronize emulation memory accesse$2a@,
reset polarity 123
terminal emulation window, opening92
TEXTRANGE symbols36
threshold voltage302-303
time range file format (SPMT measuremer28h
timing
external analyzer modap4
trace,569
at EXECUTE,319
copy command370
depth of 207
display command388-391
displaying the204
halting the 203
listing the, 204
listing to file,191
load command403
loading,263-264
on_halt,240
prestore qualifier237
recalling trace specificationgQ7
starting the200
stopping the203
storage qualifier236
storage qualifier with prestor237
store commandi50
storing,263-264
Trace Specification Selection dialog b8/
trigger position233
trace commandi58-460
default,200
loading and storing261-262
setting up for SPMT measuremert69
trace controls521
trace display247-260
about line number248
absolute forma49
count absolute/relativ@b7

593

Index

default,259

depth, SPMT measuremeri69

description of defaulg04

external data260

mnemonic format250

offset by,258

positioning, left/right206

positioning, up/down206

source line inclusiorg53

source/symbol mode$82

symbol information inclusior255

width of columns256
trace signals (emulation analyzet)6, 226
trace status displag00
trace_spec

load command403

store commandi50
tram, memory characterizatiatil9
transfer addres448
trigger,569

condition,233

position,233

specifying a simple233

stop driving on breal326
trigger position, accuracy 133
TRIGGER, CMB signal313
TRIGGER, in trace command61-462
trom, memory characterizatiohl9
TTL (softkey for specifying threshold voltage3)3
tutorials, setting ui343-345

U uploading memons
user (target) memory, loading absolute fil%3
user progrant,68

V values214
predefined for analyzer state qualifi223, 231
version, firmware564
voltages, threshol®03

W wait command463-464
command files, using 188

594

Index

waitcnt (analyzer state qualifier softke®p3, 231, 429, 444
watchdog timer99
widget resource
SeeX resource
width of columns, trace display optid266
WINDOW, in trace command65-466
windows
exiting emulator/analyze61
opening additional emulator/analyzg®,
running the emulator/analyzer interface in multipk,
terminal emulation, opening92
workstation
HP 9000 memory needs35
HP 9000 minimum performancg35
SPARCsystem memory nee@86
SPARCsystem minimum performan&86
write to ROM break128

X client, 332

X resource332
$XAPPLRESDIR directory526
$XENVIRONMENT variable 527
Xdefaults file,526
/usr/hp64000/lib/X11/HP64 schem&29
app-defaults file526
class name for applicatiorsR4
class name for widgets24
command line option§27
commonly modified graphical interface resour@ss}
defined,523
general form523
instance name for applicatiori24
instance name for widges23
loading order526
modifying resources, generall334-337
RESOURCE_MANAGER propert$26
scheme file system directoy29
scheme files, Graphical User Interfas2y
scheme files, namefi28
schemes, forcing interface to use certaity,
Softkey.BW,528
Softkey.Color528

595

Index

Softkey.Input528
Softkey.Label 528
Softkey.Large528
Softkey.Small528
wildcard characte§24
xrdb, 526

xrm command line optiorg27
X server,332, 526
X Window System55

xbits, external analyzer lab&08

596

Certification and Warranty

Certification

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard further
certifies that its calibration measurements are traceable to the United States
National Bureau of Standards, to the extent allowed by the Bureau’s calibration
facility, and to the calibration facilities of other International Standards
Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in materials and
workmanship for a period of 90 days from date of installation. During the warranty
period, HP will, at its option, either repair or replace products which prove to be
defective.

Warranty service of this product will be performed at Buyer's facility at no charge
within HP service travel areas. Outside HP service travel areas, warranty service
will be performed at Buyer’s facility only upon HP’s prior agreement and Buyer
shall pay HP’s round trip travel expenses. In all other cases, products must be
returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping
charges to HP and HP shall pay shipping charges to return the product to Buyer.
However, Buyer shall pay all shipping charges, duties, and taxes for products
returned to HP from another country. HP warrants that its software and firmware
designated by HP for use with an instrument will execute its programming
instructions when properly installed on that instrument. HP does not warrant that
the operation of the instrument, or software, or firmware will be uninterrupted or
error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,
unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance agreements are
available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

Safety

Summary of Safe Procedures

The following general safety precautions must be observed during all phases of
operation, service, and repair of this instrument. Failure to comply with these
precautions or with specific warnings elsewhere in this manual violates safety
standards of design, manufacture, and intended use of the instrument.
Hewlett-Packard Company assumes no liability for the customer’s failure to
comply with these requirements.

Ground The Instrument

To minimize shock hazard, the instrument chassis and cabinet must be connected to
an electrical ground. The instrument is equipped with a three-conductor ac power
cable. The power cable must either be plugged into an approved three-contact
electrical outlet or used with a three-contact to two-contact adapter with the
grounding wire (green) firmly connected to an electrical ground (safety ground) at
the power outlet. The power jack and mating plug of the power cable meet
International Electrotechnical Commission (IEC) safety standards.

Do Not Operate In An Explosive Atmosphere

Do not operate the instrument in the presence of flammable gases or fumes.
Operation of any electrical instrument in such an environment constitutes a definite
safety hazard.

Keep Away From Live Circuits

Operating personnel must not remove instrument covers. Component replacement
and internal adjustments must be made by qualified maintenance personnel. Do not
replace components with the power cable connected. Under certain conditions,
dangerous voltages may exist even with the power cable removed. To avoid
injuries, always disconnect power and discharge circuits before touching them.

WARNING

Do Not Service Or Adjust Alone

Do not attempt internal service or adjustment unless another person, capable of
rendering first aid and resuscitation, is present.

Do Not Substitute Parts Or Modify Instrument

Because of the danger of introducing additional hazards, do not install substitute
parts or perform any unauthorized modification of the instrument. Return the
instrument to a Hewlett-Packard Sales and Service Office for service and repair to
ensure that safety features are maintained.

Dangerous Procedure Warnings

Warnings, such as the example below, precede potentially dangerous procedures
throughout this manual. Instructions contained in the warnings must be followed.

Dangerous voltages, capable of causing death, are present in this instrument. Use
extreme caution when handling, testing, and adjusting.

Safety Symbols Used In Manuals

The following is a list of general definitions of safety symbols used on equipment
or in manuals:

Instruction manual symbol: the product is marked with this symbol when it is
necessary for the user to refer to the instruction manual in order to protect against
damage to the instrument.

Indicates dangerous voltage (terminals fed from the interior by voltage exceeding
1000 volts must be marked with this symbol).
.

Protective conductor terminal. For protection against electrical shock in case of a
OR fault. Used with field wiring terminals to indicate the terminal which must be
connected to ground before operating the equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal common,

—;— as well as providing protection against electrical shock in case of a fault. A terminal
marked with this symbol must be connected to ground in the manner described in
the installation (operating) manual before operating the equipment.

“rame or chassis terminal. A connection to the frame (chassis) of the equipment
| OR I thich normally includes all exposed metal structures.

Alternating current (power line).

Direct current (power line).

V4

Alternating or direct current (power line).

4

Caution The Caution sign denotes a hazard. It calls your attention to an operating procedure,
practice, condition, or similar situation, which, if not correctly performed or
adhered to, could result in damage to or destruction of part or all of the product.

Warning The Warning sign denotes a hazard. It calls your attention to a procedure, practice,
condition or the like, which, if not correctly performed, could result in injury or
death to personnel.

	80960 Emulation and Analysis
	80960 Emulator Differences
	In This Book
	Contents
	Quick Start Guide
	Getting Started

	User’s Guide
	Starting and Exiting HP 64700 Interfaces
	Entering Commands
	Configuring the Emulator
	Using the Emulator
	Using the Emulation Analyzer
	Making Software Performance Measurements
	Using the External State Analyzer
	Making Coordinated Measurements
	Setting X Resources

	Reference
	Emulator/Analyzer Interface Commands
	Status and Error Messages

	Concept Guide
	Concepts

	Installation Guide
	Installation
	Installing/Updating Emulator Firmware

	Glossary
	Index
	Certification and Warranty
	Safety

