User’'s Guide

HP B3080A
Real-Time OS Measurement
Tool for pSOS+

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and

fitness for a particular purpose.Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software
on equipment that is not furnished by Hewlett-Packard.

© Copyright 1992, 1994, Hewlett-Packard Company.

This document contains proprietary information, which is protected by copyright.
All rights are reserved. No part of this document may be photocopied, reproduced
or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject
to change without notice.

Microtec is a registered trademark of Microtec Research Inc.
pSOS+ and pROBE+ are trademarks of Integrated Systems Inc.

SunOS, SPARCsystem, OpenWindows, and SunView are trademarks of Sun
Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.

Hewlett-Packard

P.O. Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c) (1)(ii) of the
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304 U.S.A.
Rights for non-DOD U.S. Government Departments and Agencies are as set forth
in FAR 52.227-19(c)(1,2).

Printing History

New editions are complete revisions of the manual. The date on the title page
changes only when a new edition is published.

A software code may be printed before the date; this indicates the version level of
the software product at the time the manual was issued. Many product updates and
fixes do not require manual changes, and manual corrections may be done without
accompanying product changes. Therefore, do not expect a one-to-one
correspondence between product updates and manual revisions.

Edition 1 B3080-97000, August 1992

Edition 2 B3080-97001, September 1994

£

e Display Modify bxecution Brsgkpolnts Irace Settings

Measurements for the pSOS+
Real-Time Operating System

Hewlett Packard Emulator/Analyzer: em68302 (mB8302

ewlett Packard Emulator/Analyzer: em68302 (m68302)

Actionkeys: [«Demo» [DispSre (3 I Tvacety I Run

File Display Modify Execution Breakpoints Trace Settings Help i

| e YourKey » Make Disp Sre Previ|BunRierio{) I Break

Actionkeys: | Track OScalls | Track OS +stack i Track Everything [Help RTOS
() imain | Only Task X Only Tsk W,X,Y,Z i| Tasks & Queues Tasks & Events | Tasks & Semaphrs
S:mzizzefslégeilsblau | Only Call X Only Calls X & Y Only Queues Only Events Only Semaphores
| Task switch A->B {|Tsk A msg->Que Xi| Tsk A <- Event X Task A: FuncX Task A: Varx
Name o Frio Mede Status Susp? Paranerers | Stack Usage Before SPA trig2 Trace before Err ? Task: FuncX ? Task: VarX
“IDLE” -4#BBB16BBE B8 ZBEB Ready Memory Usage

‘ROOT” -#O0B200E8 FF @AE1 Ready YES

“iotk” -#0000B0BE OC @66 Wkafter

‘recr’ -HODBEAOOE A3 @PEE Ready VYES

‘paal’ -#OD@FBEBEE BA @BABE Evwait EVENTS = @809088a1

Disable SPA trg2 Break to Probe Disp RTOS Trace {|Disp NonRTOS Treii:

‘s1lk’ -#001086G0 B3 0EB6 Quait 0= ‘cssl’ -#EE04 Real Time Uperating Sustem A
‘bose” -#00118806 B3 BEBE Quait 0 = ‘“csho’ -#BBES with aumbol
‘phx’ -#08126000 B 0006 walt 4= ‘ocsph’ -#0BEE NON-RTOS: addr=prog|node_ph+?6 dats=8BBB7832
losa” -#B0136608 @9 BEB6 Quait 0 = “phla” -#0083 rr_createlname="kell’, staddr=0B03E6AE
‘prod’ -#08140000 B8 0886 Ready length=AABBABFB, unit_size=AARBEAZE,
‘cosp’ -#00150000 68 @66 Running flags=BlHaitQ=FIFO, delete override=OFF}
idlp’ -#D0168B08 @7 BO84 Ready +B11 <= rn_creats(rn_id=00240080, alloc_size=BBPBAAER) 235. S
+817 -> rn_getseg(rn_id-00240068, sizc=00000830 25.8 u$
PROBE+> , NOHAIT)
- - +B25 - ¢ ddr=0083BBAE} 147. S
|| STATUS: HG8302--Running user progrom Emulation trace compl|fpo; [;i;gisfg?diggﬁgnaaz:'phla', 247 o
msq - [BOO00EAZ, ABBDDEGZ, BAABEED 1, BAA3BAAE])
erformance Analyzer: € +B41 - qiﬁend() 155, us
File Display Events Profile Settings +843 > g_receive(qid=BOB6000E: "csph’ WAIT, FOREYER) 43.88 u$
i . - - +B51 STACK BYTES LEFT ON EXIT: Supr B8A@G1BB User GBBBBIRS 134. us
Action keys: Initialize Time Tasks +853 ---Exiting Task : ’phnx’ 8.76 uS
[suspend : ¥ +B861 ---ENTERING TASK: “losa’ 1.1 s
Command: FunctionDuration | TaskX: Servealls Count Tasks +B63 STACK BYTES LEFT ON ENTRY: Supr BEBBOLEE User BBEEEIBD 2.8 u§
- " the T looll] STATUS: MBB302--Running user program Emulation trace complete “lr ;
Histogram: Interval Duration Run Time: 24:46 Stabi lity: 3997
Mame (sart? timel Tine 4oy £ 12 18 4 oy A
> 18 Task_paal 375.8 =| 25.z2| I
11 05_Time 378.9 s| 24.54| I
4 Task_prod 388.6 =| 20.75|
5 Task_cosp 271.9 s| 16.260 | I
6 Task_bose 149.2 s| 10. 03| N
9 Task_losa 125.8 s| 6. 46| I
8 Task_phnx 111.3 5| 7.45|
3 Task_idlp 64.8 ¢| 4.30| NN
12 Measure_Ovrhd 58.3 5| 3.592| NN
7 Task_sllk 49.7 5| 3.34| A
1 Task_iotk 199.4ms| 0.01
2 Task_R0OOT 0.0us| 0.08
Undefined Addr 2 2
Totals Absolute 1.49E3s| 100% 0% [33 121 18% 24%
STATUS: H68302--Running user program Heasurement in process i

The RTOS Measurement Tool is a collection of files that are used with your
real-time OS application and the HP 64700 emulation/analysis system to view
program execution in the context of the real-time OS. For example, you can view
service calls and their parameters, task switches, clock ticks, and dynamic memory
usage.

By linking your real-time OS application with an "instrumented” service call
library (an interface library with instructions that write to a data table), you can
capture writes to the data table with the HP 64700 emulation bus analyzer. A
special inverse assembler decodes the captured information and displays it in an
easy-to-read format. You can also use the software performance analyzer to
measure time taken by tasks.

Command files are provided for common RTOS measurements, and you can run
them by clicking on action keys. You can also create custom command files and
action keys for your own RTOS measurements.

With an Emulation Bus Analyzer, You Can ...

* View problems at the task level.

* Use one button point-and-click commands (or run command files in the
command line).

» Display the real-time OS trace with the native service call mnemonics of your
OsS.

» Track all OS service calls and display entry parameters and return values.

» Capture task switches caused by OS service calls or system clock ticks.

» Understand how interrupts are affecting your high level task flow.

» Stop program execution if any OS service call ever fails.

» Identify which tasks access a shared function or variable.

» Trigger when a certain message is sent to a specified mailbox.

» Capture activity after task A switches into task B in sequence.

» Detect attempts to free invalid memory segments.

» Display size and location of local stacks.

e Track all dynamic memory allocation and freeing.

e Trigger on stack overflow.

With the Software Performance Analyzer, You Can ...

» Perform time profiling of task durations in your application.

* Measure time spent in OS kernel versus application tasks.

» Measure the percentage of time spent in each application task.
e Stop program execution if a task exceeds a maximum time.

» Find out how often each OS service call is invoked.

In This Book

This book describes the HP B3080A Real-Time Operating System Measurement
Tool for the pSOS+ Operating System from Integrated Systems Inc.

This book assumes you are familiar with the Emulator/Analyzer interface, whether
it be the graphical interface or the terminal emulation based softkey interface.

This book is organized into three parts whose chapters are described below.

Part 1. User’s Guide

Chapter 1 explains how to prepare your application to use the RTOS
measurement tool.
Chapter 2 describes how to make RTOS measurements in the emulator/analyzer

interface.

Chapter 3 describes how to make RTOS measurements in the Software
Performance Analyzer interface.

Chapter 4 describes how to access the pROBE+ OS Debugger through a
simulated I/O window in the emulator/analyzer interface.

Chapter 5 shows you how to customize the RTOS Measurement Tool.

Part 2. Concept Guide
Chapter 6 describes how the RTOS measurement tool works.

Part 3. Installation Guide

Chapter 7 shows you how to install the RTOS emulation product on HP 9000
Series 300/400/700 computers and on Sun SPARCsystem computers.

Contents

Part 1

User’s Guide

Preparing Your Application for RTOS Measurements

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Step 6:
Step 7:
Step 8:

Make a new source directory 16

Retrieve the RTOS source files 17

Add the RTOS measurement files to your application 19
Build the new application file 20

Open the RTOS emulation window 21

Configure the emulator and load the application 22
Test the RTOS measurement tool 23

Test the Software Performance Analyzer 24

Making RTOS Measurements withthe Emulator/Analyzer

Tracking the Flow of OS Activity 27

To track all service calls (including device calls) 29
To track all service calls plus the stack activity 30
To track all OS calls before an error occurs 31

To track everything 32

Tracking Particular OS Service Calls 33

To track all queue calls 34

To track all queue calls (include task switches) 35
Totrack all event calls 36

To track all event calls (include task switches) 37

To track all semaphore calls 38

To track all semaphore calls (include task switches) 39
To track a single service call 40

To track two service calls 41

Tracking Particular Tasks 42
To track a single task and all OS activity within it 43

Contents

To track four tasks and all OS activity within them 44

To track about a specific task switch 45

To track about a specific task sending a message to a specific queue 46
To trace before an event is received by a specific task 47

To track activity after a function is reached 48

To track activity about the access of a variable by a specific task 49

Tracking Accesses to Functions or Variables 50

To track which tasks access a specific function 51
To track which tasks access a specific variable 52

Tracking Dynamic Memory Usage 53

To track only stack data 54
To track all memory calls (include task switches) 56

Displaying Traces 57

To switch to a normal trace display 58
To switch to the RTOS trace display 59

Making RTOS Measurements withthe SPA

Making Time Profile Measurements 64

To define SPA events for tasks, service calls, and user events 64
To display a time histogram of task events 65

To show a table of SPA events 66

To display a count histogram of task events 67

To measure only data from a specific task 68

To show a table of service call invocations 69

To show a normal function duration histogram 70

To show a histogram of task and user events 71

Coordinating Measurements with the Emulator 72

To break on task time overflow 72
To disable the SPA trig2 73

Handling Multiple Projects on One Machine 74
To set up unique SPA windows for multiple projects 74

4

Contents

Accessing pROBE+ through Simulated I/0O

To prepare your application for simulated 1/0 access of pPROBE+ 77
To break pSOS+ execution and enter pPROBE+ 80
To exit pPROBE+ and return to RTOS measurements 81

Customizing the RTOS Measurement Tool

Creating Your Own RTOS Measurements 85

Data Table Description 85

Data Table Contents 89

To set up trace commands to capture RTOS information 91
To place your measurements in command files 95

To place your measurements on action keys 96

Limiting the Intrusion Caused by Instrumented Service Calls

To comment out Level 5 (Id-to-name translation) 99

To comment out Level 4 (Stack tracking) 99

To comment out Level 3 (SPA support) 99

To comment out Level 2 (Overhead, intrusion and error returns) 100
To comment out Level 1 (Task entry/exit and service calls) 100

Part 2

Concept Guide

How the RTOS Measurement Tool Works

Instrumented Code for Real-Time OS Tracking 105

Service Call Tracking 105

Task Switch Tracking 107

Clock Ticks 107

Selective Tracking 108

OS Overhead Tracking 108
Task and Queue Naming 108
Stack and Memory Tracking 109
User-Defined Areas 109

RTOS Symbol Names 110

98

Contents

The Data Table 111
Extra Memory Locations 112

How OS Service Calls are Captured and Displayed

Inverse Assembler 113

Instrumented Library Writes to the Data Table 113
Data Table Writes Captured by Analyzer 114
Parameters Displayed with Mnemonics 114
Service Call Entry and Exit and Task Switches 115
Inverse Assemblers are Tailored to the OS 115

113

Part 3

Installation Guide

Installation

To install HP 9000 software 121
To install Sun SPARCsystem software 123

10

Part 1

User’s Guide

A complete set of task instructions and problem-solving guidelines, with a few
basic concepts.

11

Part 1

12

Preparing Your Application for RTOS
Measurements

13

Preparing Your Application for RTOS Measurements

Before preparing your application for RTOS measurements, you should have
already:

¢ Installed the emulator, emulation bus analyzer, and Graphical User Interface as
described in theiser's Guidemanuals. The emulator/analyzer interface
software must be version C.05.00 or greater.

* Installed the HP B3080 Real-Time Operating System Measurement Tool as
outlined in the "Installation" chapter of this manual.

If you wish to make profile measurements on RTOS tasks and service calls, you
should have already:

* Installed the HP 64708A Software Performance Analyzer and its interface
software (HP B1487) as described in 8wdtware Performance Analyzer
User’'s Guide

It's helpful if you are already familiar with your emulator, the software
performance analyzer, and their interfaces before preparing your multi-tasking
application for real-time operating system measurements. It's best if you have
already loaded and run the application under the emulator.

With the emulator/analyzer interface already running, you should see two new
entries under theile - Emul700 pulldown menuPSOS+ RTOS Measurement

Tool ...andSPA for pSOS+ ... If you do not see these new entries, review the
installation procedure to make sure it was done correctly, and make sure the
/system/B3080/customize script was run. If you still do not see these new entries,
contact your Hewlett-Packard representative.

14

Chapter 1: Preparing Your Application for RTOS Measurements

To prepare your application for real-time operating system measurements wit
emulation bus analyzer and the software performance analyzer, take the follo
steps:

1
2
3
4
5
6
7
8

Make a new source directory.

Retrieve the RTOS measurement source files.

Add the RTOS measurement files to your application.
Build the new application file.

Start the emulator.

Configure the emulator and load the application.
Test the RTOS measurement tool.

Test the Software Performance Analyzer.

The remainder of this chapter describes these steps in detail.

15

Chapter 1: Preparing Your Application for RTOS Measurements

. Step 1: Make a new source directory

* Make a new directory, for example ".../hprtos_src", to hold the instrumented code
which needs to be linked to your existing application.

Create the directory somewhere convenient for linking its files to your application.

16

Chapter 1: Preparing Your Application for RTOS Measurements

Step 2: Retrieve the RTOS source files

If you have already installed the RTOS Measurement Tool, source files will be
found under the $HP64000/rtos/B3080A directory. If you haven't installed the
product, refer to the "Installation" chapter.

During installation, you set the environment variable HP64000 to the directory in
which the HP 64000 software has been installed. This directory is "/usr/hp64000"
unless you installed the software in a directory other than the root directory.

Copy the product files into the directory that was created in Step 1. The files are
found under $HP64000/rtos/B3080A. You must copy the following file:

track_os.s

While in the directory created in Step 1, run the $HP64000/bin/rtos_edit_psos
script.

Doing so creates your application specific "tables.s" file. This assembly language
file will contain information that customizes the RTOS tool for your application.
This file will be assembled and linked in with your application code. The
“rtos_edit_psos" tool asks you whether you wish to edit the file for 16-bit or 32-bit
microprocessors.

The "rtos_edit_psos" tool also asks you for the task and queue names in your
application. Enter the four letter names of the tasks and message queues you use in
your application. These are the names that are defined as parameters to the
following OS service calls:

t create() Create a named task.

g_create() Create a named message queue.

Tables.s allows a "bucket" to be created in memory for each task and message
gueue entry you define. Information is written to the buckets when task switches
and message queue accesses occur.

The "rtos_edit_psos" script also creates a file called "s_init". This is a command
file that customizes the Software Performance Analyzer system to your application.

The "rtos_edit_psos" script may be run anytime you wish to add or delete task or
gueue name information.

17

Chapter 1: Preparing Your Application for RTOS Measurements

3 If you want to access pROBE+ from a simulated 1/0O window in the
emulator/analyzer interface, copy the following files:

io_drivers.c
probe_io.c
And, copy the following files from the $HP64000/rtos/B3080A/include directory:
simio.h
psos.h

18

Chapter 1: Preparing Your Application for RTOS Measurements

Step 3: Add the RTOS measurement files to your
application

Add "track_os.s" and "tables.s" into your makefile and linker files.

"Track_o0s.s" contains assembly language code that allows a user to call the pSOS+
OS service call routines from a high-level "C" language. This file also contains
special code that writes out RTOS information to the analyzer anytime an OS
service call is invoked.

This file mustreplace the pSOS+-to-"C" language interface code previously used in
the application.

The data table that resides in "track_os.s" and spans from the symbol
"HP_RTOS_TRACK_START" through "HP_RTOS_TRACK_END" only needs to

be in an address range that is writeable. Because the data table is never read from,
the values written to it don’t have to be stored; therefore, no real physical memory
is needed.

The pSOS+-t0"C" language interface routines in the file "track_os.s" have been
validated with the HP AXLS and the Microtec Research "C" compilers. To use this
product with a different compiler, you should edit the "track_os.s" file to match the
parameter passing protocol of the desired compiler.

If you want to make pROBE+ accessible from a simulated 1/0 window, add
"probe_io.c" and "io_drivers.c" to your makefile and use the include files "simio.h"
and "psos.h"Don't forget to change pROBE+ drivers to use the routines in
"probe_io.c". For more information, refer to the "Accessing pROBE+ through
Simulated I/0" chapter.

Change your pSOS+ configuration table so the task switching callout field,
KC_SWITCHCO, has a pointer to the "HPOS_SWITCH_CALLOUT" routine and
the task start callout field, KC_STARTCO, has a pointer to
"HPOS_START_CALLOUT" routine. (Both routines are defined in "track_os.s".)
Refer to your pSOS+ manual for more information on pSOS+ configuration tables.

19

Chapter 1: Preparing Your Application for RTOS Measurements

. Step 4: Build the new application file

* Rebuild your application with the new files. The service routines in "track_o0s.s"
have been defined according to the pSOS+ standard so your application should
require no changes.

20

Chapter 1: Preparing Your Application for RTOS Measurements

Step 5: Open the RTOS emulation window

With the emulator/analyzer interface already running, you can open the RTOS
emulation window by choosing tlréle -~ Emul700- PSOS+ RTOS
Meaoupepevt TooA pulldown menu item.

If the emulator/analyzer interface is not already running, you can start the RTOS
emulation window using the "emulrtos_psos" script found in "$HP64000/bin".
This is a simple script which sets up a few things before caltimg700with your
given emulator name. The syntax for using this script is:

emulrtos_psos [-c <command_file>] PROCESSOR <emulator_name>

The PROCESSOR type of your emulator (for example, 68302 or 68020) is needed
to run the "emulrtos_psos" script. You can either enter it on the command line or
let the script prompt you for it. If you don’t want to enter the processor or be
prompted for it every time, you may edit the script and assign a value to the
variable PROCESSOR.

Opening the RTOS emulation window does several things:
1 Action keys are defined for easy "one click" measurements.

2 Environment variables are set so the command files related to the action keys
are found.

3 The PATH variable is set so shell scripts nheeded by command files will be
found.

21

Chapter 1: Preparing Your Application for RTOS Measurements

Step 6: Configure the emulator and load the
application

Now, load an emulator configuration and your application program into the
emulator.

A few notes on the configuration:

1 You MAY set the emulator to be restricted to real-time runs. The RTOS
measurements are done without breaking into the emulation monitor.

2 You may use either a foreground or background monitor.

You are now ready to test your application.

22

Chapter 1: Preparing Your Application for RTOS Measurements

Step 7: Test the RTOS measurement tool .

1 Click theTrack OS callsaction key.

2 Start your application running from its start address (assuming the start address has
initialization code and starts your "ROOT" task).

You should now see a trace display of your "ROOT" task setting up application
tasks and performing any other initializations.

If you page down the display, you will see all of the "ROOT" task’s OS activity
and possibly the start of your application’s tasks.

3 Click theTrack OS callsaction key again to see a "running snapshot" of what
your application is currently doing.

The action keys for RTOS measurements are described in the "Making RTOS
Measurements with the Emulator/Analyzer” chapter.

23

Chapter 1: Preparing Your Application for RTOS Measurements

Step 8: Test the Software Performance Analyzer

If your HP 64700 emulation system includes a Software Performance Analyzer,
you can test it by performing the following steps.

Bring up SPA window by choosing tiie - Emul700- SPA for PSOS+
pulldown menu item.

If you wish to make cross-trigger measurements between SPA and the emulation
system, make sure the emulation configuration has the following question and
answer:

Should Analyzer drive or receive Trig2? receive

Refer to your emulator/analyzeser’s Guidefor information on modifying the
emulator configuration.

In Step 2, when you ran the "rtos_edit_psos" tool, a command file "s_init" should
also have been created. If not, rerun "rtos_edit_psos", request only the "s_init" file
to be created, and enter the exact task names as given the first time the tool was run.

Click thelnitialize action key in SPA to define the events that correspond to each
task. This uses the command file "s_init" that you just created.

Click theTime Tasksaction key to see a dynamic histogram of the currently
running tasks.

If your application isn’t running, start it running from the emulation window either
before or after the action key is pressed.

If you have multiple projects on one machine, you'll need to set up unique SPA
windows for each project. For more information, refer to the "Handling Multiple
Projects on One Machine" section of the "Making RTOS Measurements with the
SPA" chapter.

24

Making RTOS Measurements with
the Emulator/Analyzer

25

Making RTOS Measurements with the Emulator/Analyzer

Action keys for
RTOS

measurements.
File Display Modify Execution Breakpoints Trace 3Settings Help
Action keys: | Track O3 calls | Track O3 +stack | Track Everything | Help RTOS
Only Task X | Only Tsk W.XY.Z | Tasks & Queues | Tasks & Events |Tasks & Semaphrs
. Only Call X Only Calls X & Y Only Queues Only Events Only Semaphores
Clock tick. Y [Onty [_onty I 4 [Only Semap

Stack Usage || Before SPAtrig2 || Trace before Err {[2 Task: FuneX i| 2 Task: VarX
Memory Usage | Disable SPA trg2 | Break to Probe | Disp RTQOS Trace |Disp MonRTOS Tre

I
I
| Task switch A—=B |Tsk Amsg—=CGue X | Tsk A <— Event X | Task A: Funex | Task A: VarX
I
I

Service call entry.

Service call exit.

More data of f screen

Real Time Operating System
with symbal
NON-RTOS: addr=2EF98 data=BEHAAREE
USER DATA #1: data=BBEBBEA3Z ascii=iBBEBBBE3Z

++ <CLOCK TICK>
USER DATA #2: data=BBRERAA3Z ascii=HAEAOAA3Z
Task switch. -» g_send((id=ABAGEEEE: ‘bopa’,

msg = [BHBBADE3, BEAOAABS, OBARGAR |, ABB3A 1661}
<- g_send()
-» ev_send(Tid=BEAFBEAH: "paal”,
events=B: BAB1)
STACK BYTES LEFT OM ERXIT: Supr BEEEE16E User HOBEAIEC

+H34 —-——Exiting Task : “bose”
+H36 —-——ENTERING THSK: “pasl”
Parameters +H38 STACK BYTES LEFT OM ENTRY: Supr BEEEA1EE User HAOBA1AS
. +H46 <{— ev_receivelevents=B:8A8A1)
(decoded if +B58 —> g _receivelqid=BEEFEEEE: “slpa’, NOWAIT?
pOSSIbIe) +B58 <= q_rw “fr ‘slpa’r

STATUS: H68302--Runnixg user program Emulation trace complete

RTOS measurerfents are easy to set up and use. To set up a measurement you
simply point and click on the appropriate action key (which runs a command file),
and the setup is done automatically. If parameters are required, you are prompted
for them. In the graphical interface, these prompts appear as dialog boxes in which
you can either type or cut-and-paste the required parameters.

You can modify the provided command files and set up action keys for your own
RTOS measurements (refer to the "Creating Your Own RTOS Measurements"
chapter for more information).

26

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking the Flow of OS Activity

Interpreting the measurement output is also very easy. All OS service calls are
displayed just as they appear in the OS vendor's manual. Input parameters and
return values are decoded into their English language equivalents wherever
possible. And, OS specific resources such as task names and mailbox name
decoded into their user-defined ASCII equivalents wherever possible.

Real-time OS measurements in the emulator/analyzer interface are made usi
HP 64700 series emulation bus analyzers. The analyzer traces real-time OS
activity such as service calls, task switches, and dynamic memory usage.

Each state stored in the trace has a time stamp that shows relative or absolute time.
This is useful for verifying the system clock tick interval, measuring non-running
time of tasks, and understanding the timing needs of various communications
mechanisms such as sending a message or responding to an event.

The RTOS Measurement Tool comes with a default set of measurements that
appear as action keys and are grouped into the following sections:

¢ Tracking the flow of OS activity.

* Tracking particular OS service calls.

* Tracking particular tasks.

¢ Tracking accesses to functions or variables.
* Tracking dynamic memory usage.

¢ Displaying traces.

Additional measurements exist as command files and can be put on action keys or
run directly from the command line. A complete list of these measurements can be
found in the files $HP64000/rtos/B3080A/CMDLIST16 or CMDLIST32

(depending on whether a 16- or 32-bit processor is being used).

Tracking the Flow of OS Activity

The HP 64700 series emulation bus analyzer can measure the real-time task flow
that is occurring in your system. As your application calls into the real-time OS
kernel through OS service calls, the emulation bus analyzer captures the activity
including the value of input and output parameters and the return value. If the OS
switches context into another task, the analyzer can also capture this information.
One simple measurement monitors the service call return values while tracking OS

27

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking the Flow of OS Activity

activity and stops if a failure is ever detected; this helps designers guard against
unchecked return values.

This section shows you how to:

* Track all service calls (including device calls).
¢ Track all service calls plus the stack activity.
* Track all OS calls before an error occurs.

* Track everything.

28

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking the Flow of OS Activity

To track all service calls (including device calls)

¢ Click on theTrack OS callsaction key (or run the_trkcalls command file by
entering it on the command line).

This command takes a trace of all OS service calls and task switches.

race List t
Label: Real Time Operating System time count
Bas=e: with suymbol relative
af ter MON-RTOS: addr=5026 dats=BEABZA4Z 000000000 —m——m——————-
. |+BAd1 —— - rn_create(name="kell’, staddr=0HB3E06M G27. ug
Service call entry.] length=ARAAARFA, unit_size=ARAAAAZE,
flags=ALkait(=FIF0, delete override=0FF}
+811 {- rr_crea rr_id=BB1BBABA, 5l loc_siz==HRABBBEE 234. us
M =¥ rn seglrrn_id=HH1BHOAH, size=HEAEEASD 25.8 uJ5
WAIT?)
H i +B25 rn_getseqlseg_addr=0AR3BAARAY 147. us
Service call exit + - g_send([]i d=BEBSABEA: "phla”, 23.7 U5
msg = [DEOBAREZ, ABBARARZ, PHEBAGE 1, ARA3BEAE])
+B841 <= qg_send(} 155. us
+A43 - q_receive(qid=BABEBRBAB: “csph”,WAIT, FOREVER) 43.84 S
===Exiting Task : phnx B it 142. us
Parameters +853 " -—-ENTERING TASK: losa’ R 11.1 uj
(decoded if +65 <- qg_receivel <from “phla’> 38.7 U5
. msg=[HABABEAZ , PBAREARZ, BABEEGEA 1, ABA3EAAA])
possible).
Task switch. Return value. Time stamp.

Note that there are entry and exit arrows on the left of the screen to show when a
service call is entered and, on a separate line, to show when a service call is exited.
This is important since an OS service call may switch to another task while in the
OS anchotreturn to the calling service call for a long time, if ever.

As much of the trace information as possible is decoded. The OS service calls are
decoded into the same mnemonics that appear in the OS manual. The parameters
and return values that are associated with service calls are displayed. The
parameter variable names also appear as they do in the OS manual decoded into
their English mnemonics. Some of the parameter values and all return values are
also decoded whenever there are a finite number of responses as listed in the OS
manual. If the return value at a service call is zero (0), meaning the call was
successful, no return value is printed. Any non-zero return values are printed with
their English decoding.

29

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking the Flow of OS Activity

To track all service calls plus the stack activity

¢ Click on theTrack OS +stackaction key (or run the_trk_stack command file by
entering it on the command line).

race List 0ffset=E More data off screen
Label: Real Time Operating System time count
Bas=e: with suymbol relative
af ter HOW-RTOS: addr=prog|node_l=+B8 data=BBBAAGSEE 00 6———---—————-
+861 - g_send([]id=HABABEED: “ lapa”, 2.38 mS
msg = [HOEBEBER, BABAEAGES, DHBEBEGE 1, BBA3BERE]
+6813 <= qg_send(} 157. ug
+815 -» ev_send(Tid=BEEFBABD: "paal”, 16.68 ug
events=B: BEHE 1)
+821 STACK BYTES LEFT ON EXIT: Supr BEOQEALIGE User BHBOEBDLICE 143. uS
+623 -—-Exiting Task : "lasa’ —mm e 8.72 us
+831 ---ENTERING TASK: “paal’ mmmmmmmm—m——————— e 11.1 us
+833 STACK BYTES LEFT ON ENTRY: Supr BEBEBA1BE User BEBEO1AS 2.8 us
+H41 <= ev_receivelevents=0B:AAAL) 96.8 us
+645 =¥ g_receivelqid=HBRYEEAR: "slpa”, NOWAIT: 27.3 us
+B53 “- qg_receivel <fram “slpa’> 131. us
msq=[BAEHEBED, DABABARA, DEBABE4 2, BBARAEE1 1)
ok Return code=35: NO PEMDIMG MESSAGE
+HE5 -* g_receivelqid=HEB3ERAR: "bopa”, MOWAIT: 61.36 uS

This measurement is useful not only if you want to see the stack usage as you enter
and exit tasks but also if you want to see what service calls may have changed the
stack usage. It will give you all service call activity plus show you when the task
switches occur and how much stack is left on entering and exiting each task.

For more information on stack activity measurements, see the "Tracking Dynamic
Memory Usage" section that follows.

30

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking the Flow of OS Activity

To track all OS calls before an error occurs

Click on theTrace before Err action key (or run the_before_errcommand file
by entering it on the command line).

One common problem for software developers is the habit of not checking return
values from system service calls that "should" never fail. Unfortunately, when one
does fall it then can become very difficult to locate.

This command lets you use the analyzer to continuously monitor the system and
check if any service call ever fails, even if the developer is not checking that return
value.

When the trace completes, you can see the activity that occurred before the failed
service call, and the error return value itself is decoded into an easily readable error
message as described in the OS kernel manual.

Note: The trace may be modified to break emulator execution on any error
occurrence by adding "break_on_trigger" to the end of the trace specification either
on the command line or in the command file.

0ffset=H Mare data of f screen
Label: Real Time Operating System time count
Basze: with sumbol relative
-B56 <= sm_ident{SHid=0EBECHERA) 124. us
-B52 - =sm_v{5Mid=0BACAEERE) 12.8 S
-A56E <= am_wil 166. us
-B48 - g_send([]id=HAE3EEEE: "bopa”, 3.18 mS
msq = [BHEBEOEE, BABABAES, DHBEDEGE], BEA3A1BE])
-H36 <- qgq_send(} 158. us
-B34 -* ev_send{Tid=HEEFBAED: "pasl”, 16.8 us
events=B: BBA 1)
-Hz28 -—-Exiting Task : “baose” Bt 1558, us
-B26 ---ENTERING TASK: “paal’ mmmmmmmm—m——————— e 11.1 u§
-A24 <= ev_receivelevents=0B:AAAL) 98,7 us
-8za =¥ qg_receivelqid=HBR7YEEAR: "slpa”, NOWAIT: 27.8 U
-a12 “- g_receivel <from "slpa’* 134, us
msg=[HEE0EEEE, DAREAEAEE, DHBHBE4Z, ABARAEE1 1)
#% Return code=55: NO PENDIMG MESSAGE
ERROR CHECK: 55: WO PEMDING MESSAGE 22.4 U

31

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking the Flow of OS Activity

To track everything

¢ Click on theTrack Everything action key (or run the_trkall command file by
entering it on the command line).

Label:
Base:
+B@1
+B@83
+B84
+B86
+BE8
+816

+B28
+H36
+H35
+B4H
+B45

+HGH
+AG2

race List

Real Time Operating System

Mare data

of f scre
time count

with sumbol relative

HOM-RTOS: addr=lib| lscale+f data=@EBBCACI 0 0————-m—--——-

USER DATA #1: data=BOBEEIF4 ascii=HE0EOEIF4 2.34 mS
++ <CLOCK TICK> l.2 uS

USER DATA #2: data=BBEBEIF4 ascii=HEBEBE1F4 58.68 U5
=¥ tm_get(} 1.18 m5
<- tm_get{1332 February 14 16:33:14, ticks=2312 38.8 5
-* g_send{(]id=HEBEHBRAH: “c=sph”, 48. 88 U5

msg = [BHBEOAEA, DEARBEGES, BEAEAEA], BEBDAEAET)

STACK BYTES LEFT ON EXIT: Supr 80808108 User BEBEE1SC 145. us
-—-Exiting Task : “cosp” - - 8.76 uS
-—-ENTERING TASK: “phnx’ -—- -—- 11.1 uS§

STACK BYTES LEFT ON ENTRY: Supr BEBEB1BE User BEBEALIARE 2.8 uS
‘- g_receivel <from “csph’: 3E.8 U5

m=g=[0HBHBEEA, BHARAEGES, ADAUAEE |, BRRADAEAE])

USER DATA #1: data=BEEOHIF4 ascii=#E0EEEIF4 1.18 m5
++ <CLOCK TICK> 1.3 uS

This action key is used so that service calls, task switches, clock ticks, stack
activity, and user-defined events are all tracked and displayed in the trace.

32

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

Tracking Particular OS Service Calls

There are also RTOS measurements provided to track particular types of serv
call activity or OS resources such as events, messages, or semaphores. You
also track individual service calls.

This section shows you how to:

Track all queue calls.

Track all queue calls (include task switches).
Track all event calls.

Track all event calls (include task switches).
Track all semaphore calls.

Track all semaphore calls (include task switches).
Track a single service call.

Track two service calls.

33

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

To track all queue calls

¢ Click on theOnly Queuesaction key (or run the_onlygscommand file by
entering it on the command line).

) 0ffset=8 More data off screen
Label: Real Time Operating System time count
H with suymbol relative
af ter HOW-RTOS: addr=prog|producer+4f dats=BBAEESEE 00 0o-———---—————-
+861 - g_send([id=HAE3B0EE: "pZcs”, Bz2. us
msg = [BHEBHEEZ, BABAGAEZ, DHBEOEG], BEARBEBE]
+B813 <= qg_send(} 343. us
+815 - g_send([id=BAB3BHEE: "pZcs”, 1.26 m5
msg = [BHEBEOEZ, BABABAEZ, DHBEDEG], BEAEBEBE]
+H27 <- g_send(} 157, us
+823 - g_send{id=HAB3B0E0: "pZcs”, 1.45 m5
msg = [BOEBEOEZ, BABARAAEZ, DHBEBEG], BBARBEBA]
+@d41 <= g_send(} 136. us
* % Return code=53: QUEUE FULL
+B843 i- qg_receivel <from "pZes’r 243. us
msq=[BAEEHEEE], DABABAA], DEBABEG 1, ABARAEGEET)
+855 - g_send((id=HAE4E0EE: "css1”, 558, uS
msg = [HOEBEOE], BABAEAGR], BHBEBEE], ABARBEBAT
+BE7 <- g_receivel <from “cssl’¥ 264. us

This action key is used if you are interested in all queue activity. No other types of
calls are tracked (neither are task switches).

34

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

To track all queue calls (include task switches)

¢ Click on theTasks & Queuesaction key (or run the_trackqscommand file by
entering it on the command line).

Real Time Operating System time count
with suymbol relative
HOW-RTOS: addr=prog|producer+4f dats=BBAEESEE 00 0o-———---—————-
=¥ g_sendi(id=BEB3EE6E: "pfes”, 76.36 u5
msg = [BHEBHEEZ, BABAGAEZ, DHBEOEG], BEARBEBE]
+B813 <= qg_send(} 157. us
+815 - g_send([id=BAB3BHEE: "pZcs”, 1.45 w5
msg = [BHEBEOEZ, BABABAEZ, DHBEDEG], BEAEBEBE]
+H27 <- g_send(} 136. us
** Return code=53: QUEUE FULL
+H823 -—-Exiting Task : “prod’ ittt 133. us
+831 ---ENTERING TASK: “cosp’ mmmmmmmm—m——————— e 11.2 S
+B833 <= qg_receivel <“from “pZocs’y 38.7 S
msq=[BEEEEEE], DABABAGD], BEBEBED 1, BEBEAEBE])
+845 - g_send([]id=HAE4BHEE: "css1”, B49. us
msg = [HOEEEGE], BABEEAE], DHBEEEE], ABARBEEE]
+H57 -—-Exiting Task : "cosp” —mm e 154. us
+853 ---ENTERING TASK: “sl1lk’ mmmmmmmm—m——————— e 11.1 S

This action key is used if you are only interested in queue activity but want to
know the task context also.

35

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

To track all event calls

¢ Click on theOnly Eventsaction key (or run the_onlyevscommand file by
entering it on the command line).

race List 0ffzet=0 More data off screen

Label: Real Time Operating System time count

Base: with symbol relative

WOW-RTOS: addr=ZEF9A datz=HEBAZAFE —mmmm—— -

+HE1 -* ev_send{Tid=EBEEFBAEDE, 457, us
events=B: BEHE 1)

+8685 {- ev_receivelevents=H: BAAL) 268. us

+8689 -* gv_receivel{evs=HB: 8881, 2.33 mS
WAIT/AMO, FOREYER:

+815 4— gv_send(} 239. usS

+H17 -* ev_send(Tid=HEEFBALEGD, 2.47 m3
events=0: BAE 1}

+A21 <- gv_receivel{events=H: AAAL) 268. us

+A25 -* gv_receivel{evs=HB:AAA], 1.49 mS
HAIT/AND, FOREYER)

+A31 <— ev_send{} 431. us

+H33 -* ev_send(Tid=HARFBALERD, 5.85 m5
events=B: BEE 1)

+H37 i- ev_receivelevents=0:AAA1) 268. us

This action key is used if you are interested in all event activity. No other types of
calls are tracked (neither are task switches).

36

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

To track all event calls (include task switches)

¢ Click on theTasks & Eventsaction key (or run the_trackevscommand file by
entering it on the command line).

race List 0ffset=H
Label: Real Time Operating System time count
Base: with symbol relative
NOW-RTOS: addr=lib| lscale+8 data=@88BCECI 0 0————mmm--——-
+681 -—-Exiting Task : “prod” -—= --= 33.3 mS
+BA3 ---ENTERING TASK: ‘cosp” -—- -—- 11.1 us
+BA5 -—-Exiting Task : "cosp” -—= --= 2.45 mS
+BE7 ---ENTERING TASK: “s1lk” -—- -—- 11.1 us
+B86839 -* ev_send(Tid=HEAFBAED: "pasl”, 838. us
events=B:EBE 1)
+H15 -—-Exiting Task : "sllk” -—= -—= 153. u5
+H17 -—--ENTERING TASK: “paal” --= --= 11.2 uS
+819 {- ev_receivelevents=H: 8881 98.7 us
+823 -* gv_receivelevs=H: 8881, Z2.EE mS
WAIT/AMD, FOREVER?
+623 -—-Exiting Task : "paal” -—= --= 125, us
+B31 ---ENTERING TASK: “sl1lk’ --= --= 11.1 us
+H33 <— gv_ssnd{} 38.5 us
+H35 -—-Exiting Task : "sllk” -—= --= 135. us

The command above traces only events and task switches so you can see what
tasks use events and how they effect system flow.

The display shows that task 'paal’ is receiving event signals from the other tasks.

37

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

To track all semaphore calls

¢ Click on theOnly Semaphoresaction key (or run the_onlysmscommand file by
entering it on the command line).

ace il +=8 More data off screen
Label: Real Time Operating System time count
Base: with symbol relative
af ter WOW-RTOS: addr=ZEAAS datz=HEBARES9A 00 -
+8681 - =m_ident{name="seml’, node=BBBBBBE0) 3.28 mS
+HAS 4— =m_ident{SMid=HEBCEEAR} 124, us
+HAS -> =sm_p{5SMid=BEECHELRAE, NOWRIT) 19.2 U5
+615 <= sm_pll 111. us
* ik Return code=G66: SEMAPHORE MOT AvAILABLE
+817 - sm_ident{name="seml’, node=0BBBB000) 8.85 mS
+B21 <~ sm_ident{SHid=HEECHEAR} 124, us
+H25 =* am_p{5Mid=ARECAEEA, NOWAIT 13.2 u5
+B31 <= am_pll 111. us
* ik Return code=66: SEMAFHORE MOT AYAILABLE
+A33 - am_ident{name="seml’, node=BBBEBEEEAA) 4.27 mS
+H37 <— sm_ident{5SHid=RAERCEBAR) 124, us
+H41 =* =m_pi5Mid=0RECAEEA, NOWAIT 19.2 u5
+847 <= am_pi) 111. us
LE Return code=66: SEMAPHORE MOT AYAILABLE

This action key is used if you are interested in all semaphore activity. No other
types of calls are tracked (neither are task switches).

38

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

To track all semaphore calls (include task
switches)

Click on theTasks & Semaphrsaction key (or run the_tracksmscommand file
by entering it on the command line).

Real Time Operating System
with suymbol relative

HOW-RTOS: addr=lib| lscaletC data=@8BB2842 0 06———--mm————-
+@d1 -—-Exiting Task : “paal’ ittt 478, us
+8683 ---ENTERING TASK: “bose’ R e Tt 11.1 u§
+BA5 -—-Exiting Task : "haose” —mm e 298. us
+867 -—-ENTERING TASK: “cosp’ e 11.2 S
+6a3 -—-Exiting Task : "cosp” —mm e 1.87 mS
+@11 ---ENTERING TASK: “=sl1lk’ mmmmmmmm—m——————— e 11.1 u§
+H13 -—-Exiting Task : "sllk” —mm e 627, us
+815 ---ENTERING TASK: “paal’ mmmmmmmm—m——————— e 11.2 S
+A17 -» am_ident{name="seml”, node=ARABARRR) 517. us
+821 <= sm_ident{SHid=0BBCHEEA) 124. us
+825 -> sm_p{5SMi d=BEECHEDAE, NOWRIT) 13.2 4§
+631 <= sm_pll 111. us

#% Return code=66: SEMAPHORE MOT AYAILABLE

+H33 -—-Exiting Task : "paal’ —mm e 652, us
+835 ---ENTERING TASK: “sl1lk’ mmmmmmmm—m——————— e 11.1 S

This action key is used if you are only concerned about semaphore calls and the
task context.

39

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

To track a single service call

¢ Click on theOnly Call X action key (or run the_onecallicommand file by
entering it on the command line).

You are prompted for the name of the service call you wish to track. Enter the
service call name in all lower-case characters.

t More data off =
Label: Real Time Operating System time count
Baze: with symbol relative
HOM-RTOS: addr=2F608 dats=HEHRERAGE 0 o———————————o
+dd1 <= g_send(} 1.57 m3
+063 - g_send(id=BHAB460E0, 3.84 m3
msg = [BHBEDEEE, DBARBEGS, BEAEEEA], BEADAEAET)
+813 - g_send{lid=BAE7E0EA, 1.86 m5
msg = [OHBHEAEE, QHARBEGS, AUAEEEE 1, BOADAEAE])
+623 <- g_send() 157. us
+H25 <- g_send() 7.42 mS
+827 - g_send(]id=HABEEAEA, 2.84 m3
msg = [BEBEBAES, BEAEBED], BEAEEEE |, BEABEEEET)
+837 -> g_send(lid=BBAEIEEEE, 3.43 m3
msg = [BHBEOEES, BEAEBED], BEBEEEE |, BEASBEAET)
+047 {= g_send(} 155. ug
+843 - g_send(id=HBABAEAEA, 3.58 m3
msg = [BHBEDEES, BEAEBED], BHAEEEE], BEA3BEAET)
+H53 <= g_send(} 157. ug

This action key is used if you have a specific service call you want to track and
have no need of the context in which the calls are made.

40

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

To track two service calls

¢ Click on theOnly Calls X & Y action key (or run the_twocallscommand file by
entering it on the command line).

You are prompted for the names of the two service calls you wish to track. Enter
the service call names in all lower-case characters.

t=H More data off =]
Label: Real Time Operating System time count
Base: with symbol relative
sq adv *- g_receiwvel 264. us
msq=[BHEEEBEZ , BABABAGRS, DEBEBED 1, BEAEAEBEE])
sq adv -* g_send([id=BEH7AERA, 316, uS
msg = [BHEBEOEZ, BABABAES, DHBEDEG], BEAEBEBE]
sq adv <- g_send(} 157, us
sq adv -% g_receive(gid=HEE7AEEA, NOWAIT? 444, us
sq adv <- g_receivel 146. us
msg=[HEEE0EEEZ, DAREAEAAS, DHBHBEG], ABARAEEE])
sq adv -% g_receive(gid=RAAB4AHBA,AIT, FOREVER) 1.53 mS
sq adv <- g_send(} 263, us
sq adv -* g_receivel(gid=RAAB3AEGA,AIT, FOREVER? 27.4 U5
sq adv <- g_receivel 145. us
msg=[BEAEOEBEY, BABABAAS, DABEBEG 1, ABARARGBET)
sq adv - g_send([id=HEEGEAAA, 2.13 m5
msg = [BOEBEOE4, BABAEAAES, DHBEBEG], BBARBEBA]
sq adv - g_receivel 264, u3

You may track just the relationship between two service calls with this action key.
For example, the above trace shows who is sending messages with "q_send" and
who is receiving them with "q_receive".

41

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

Tracking Particular Tasks

Using the powerful sequence triggering capability of the HP 64700 series

emulation bus analyzers, several RTOS measurements allow you to capture a very
specific sequence of events or very rare events. For example, one point-and-click
measurement watches for a user-defined message being sent to a specific mailbox;
this could help detect a very rare message occurrence. Another point-and-click
sequence measurement triggers only when 4 (or less) specific tasks are switched
into and out of in any order.

This section shows you how to:

* Track a single task and all OS activity within it.

* Track four tasks and all OS activity within them.

* Track about a specific task switch.

* Track about a specific task sending a message to a specific queue.
* Trace before an event is received by a specific task.

* Track activity after a function is reached.

¢ Track activity about the access of a variable by a specific task.

42

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

To track a single task and all OS activity within it

Click on theOnly Task X action key (or run the_trk1ltask command file by
entering it on the command line).

You are prompted for the name of the task that you want to trace. You can type in
the four letter name of the task you are interested in, or in the graphical interface,
by using the cut buffer, you can cut and paste a task name from the screen into the
dialog box.

0ffset=H
Label: Real Time Operating System time count
Basze: with symbol relative
+681 ‘- g_receivel <from “pZcs’d 38.7 U5
msg=[BHBEBEG 1, BEBEBEEG 1, BEAEEEE |, BHEBEEELET)
+613 =¥ tm_getl(} SH3. us
+615 <- tm_get{1332 February 14 16:4H:22, ticks=3872 38.8 S
+823 - g_send((id=HEEEEREE: "c=ph”, 47,76 U5
msg = [OHBEEAE], QHAEBEG], BUAEEEE 1, BEADEAEEE])
+B35 -—-Exiting Task : "cosp” -—= -—= 154, u5
sq adv -——--ENTERING TRASK: “cosp’ -—= -—= 5.73 w5
+H33 <- g_send(} 38.5 5
+841 - g_receivelqid=BEB30A08: "p2cs” ,WAIT, FOREVER? 27.4 U5
+H43 <- g_receiwvel <from “pos’¥ 145, us
m=g=[OHBEGBEGE 1, DBBRARGE 1, BEAEAEA |, BEBDAEAGET)
+B61 -* tm_geti} 563. us
+HE3 <— tm_get({ 1332 February 14 16:46:22, ticks=303} 35.8 ug
+871 - g_send{id=BAB5BBEE: "csbo”, 47.64 U5
msg = [BHBEDEE], BEARBEG], BEAEEEA |, BEBDAEAET)

Notice that the time stamp on the right hand side of the screen gives a useful
indication of the time between task exit and the next entry into this same task. In
this example, the elapsed time was 5.73 milliseconds.

43

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

To track four tasks and all OS activity within them

Click on theOnly Tsk W,X,Y,Z action key (or run the_trk4task command file
by entering it on the command line).

0ffset=H Mare data of f screen
Label: Real Time Operating System time count
Base: with sumbol relative
+@d1 <= g_send(} 35.3 us
+863 - g_receive(qid=HB03080A: "p2cs”,WAIT, FOREVER) 27.4 us
+A11 <- g_receivel <from "ples’’ 143, us
msg=[BHE0EBEG, DABABAAS, DABHBEG 1, AEARARBAT)
+H23 -* tm_get!) 2,38 mS
+B25 <- tm_get{1332 February 14 1B:42:27,ticks=84) 38.8 S
+833 - g_send{[]id=HAE4BHEE: "css1”, 48.88 S
msg = [BHEBEOEE, BABABAES, DHBEDEG], BEARBEBE]
+645 -—-Exiting Task : “cosp” —mm e 154. us
sq adw ——--ENTERIMNG TRSK: "paal’ Bt 1.44 m5
+H43 <— ev_receivelevents=B:AARAL) 98.7 usS
+H53 -» g_receivelqid=BEB7ABEA: “s1pa”, NOWRIT) 27.9 us
+d61 <= g_receivel “from “slpa’> 146. us
msg=[0HE0EEEE, DABARAAS, DABHBEG 1, ABBRARBET)
+073 -» am_ident{name="seml”, node=ARABARRR) 51.52 uS
+877 <= sm_ident{SHid=ABECHERA) 124. us

You can use this command to track OS activity within up to four tasks. One, two,

or three tasks can also be tracked by entering duplicate names. For example, if you
wanted to track only tasks "cosp" and "bose", enter "cosp" in the first dialog box
and "bose" in the remaining dialog boxes.

You can also edit the command file to create two new command files which would
be used specifically for tracking two or three tasks.

44

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

To track about a specific task switch

Click on theTask switch A->B action key (or run the_AthenB command file by
entering it on the command line).

This measurement will trace when the kernel switches from one desired task
immediately into another desired task. The dialog box first prompts for the task
that is being switched out of.

When the trace completes, you can see the activity before and after the task switch
occurred. This type of measurement may lead you to a problem surrounding a task
switch.

race List 0ffset=H More data off

Label: Feal Time Operating System time count

Baze: with symbal relative

-B13 - g_send({(id=HEAB3BBEE: "pZecs”, B56. us
msg = [BHBEDEE], BEAEBED], BEBEEEE |, BEADAEEE])

-Ba7 <= g_send(} 136. u3

EEd Return code=53: QUELUE FULL

-AAS =» tm_mkafteriticks=HAAARRALZ} 16.5 us

sq adv ---Exiting Task : "praod’ -—= -—= 122. u5

sq adv -——--ENTERING TRASK: “cosp’ -—= -—= 11.2 u5

+HE1 ‘- g_receivel <from "pZcs’d 38.7 uS
msg=[BHBEBEET, BHBEBEGES, BEAEEEE |, BHEBEEELET)

+613 =¥ tm_get(} 4.54 m5

+B15 <- tm_get{1332 February 14 16:43:37, ticks=2H8) 38.8 S

+823 -> g_send((id=BABEEBREE: “c=sph”, 48.88 U5
msg = [BHBEDEEI, BEAEBEGES, BEAEEEE |, BEEEEEEET)

+Hd35 -—-Exiting Task : “cosp” -—= -—- 154, ug

+837 ---ENTERING TASK: “phnx’ --= --= 11.1 us

+H33 <- g_receiwvel <from “csph’* 35.8 ug

45

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

To track about a specific task sending a message
to a specific queue

¢ Click on theTsk A msg->Que Xaction key (or run the_tsk2queuecommand file
by entering it on the command line).

You are prompted first for the task name and then for the queue name to which the
task sends a message.

Label: Real Time Operating System time count
Baze: with symbol relative
sq adv -—-ENTERIMNG TRASK: “cosp” -—= -—= 1.1 u3
-A3z <= g_send(} 38.5 u3
-B38 - g_receivelqid=HEB30AB8: "p2ecs” ,WAIT, FOREVER? 27.4 U
-Bz2z <- g_receiwvel <from "pleos’* 145, u3
m=g=[OHBEBEGEE, 0BORARGES, BEAEAEA |, BEADAEAGET)
-81a =¥ tm_geti? 4.84 m3
-HE3 <- tm_get{1332 February 14 16:45:18, ticks=233) 38.8 5
-* q_send{(id=HHBEHEAH: “c=ph”, 47.88 uS
msg = [BHBEBEEE, BEAEBEGES, BUAEEEE |, BHEBEEEET)
+612 -—-Exiting Task ! “cosp” -—= --= 154. us
+814 -—-ENTERING TASK: “phnx’ -—- -—- 11.1 us
+H16 <- g_receiwvel <from “csph’> 35.8 us
msg=[0HBHBEEE, BEBEEEES, BBAEEEE |, BEAEAEAET)
+H28 -* rn_createlname="kell”, staddr=AEA3EAAR 4.17 mS
length=0EBEEAFE, unit_size=HHEBBEAZA,
flags=BLHait0=FIF0, delete override=0FF}

This measurement is useful if you have a task that sends a message to a specific
gueue intermittently and you either want to verify that the message gets sent or you
want to see the service call context under which the message is sent.

46

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

To trace before an event is received by a specific
task

Click on theTsk A <- Event X action key (or run the_tskrcv_evcommand file
by entering it on the command line).

You are prompted first for the task name and then for the numeric value
designating the event(s). The event number may be entered in decimal,
hexadecimal, or binary, the latter two being followed by "h" and "b", respectively.
These numeric entries may also include don't care values such as 10XX0X11b.

t More data off =
Label: Real Time Operating System time count
Basze: with symbol relative
msg = [BHEBEBDET, BABAAAGES, DABEDEG], BBA3A1BE])
-A15 <- qgq_send(} 157, us
-B13 -* ev_send(Tid=HEHEFBAED: "pasl”, 16.8 uS
events=H: BAH 1}
-HE7 -—-Exiting Task : "baose” Bt 158. us
sq adw ——--ENTERIMNG TASK: “paal’ Bt 11.1 us
-BE3 {- gv_receivelevents=H: 8881} 98.7 us
+HE1 -* g_receivelqid=HEO7HEAH: "slpa”, NOWAIT: 226, us
+Ba3 <- g_receivel <from "slpa’* 131. us

m=g=[BEEHEEAR, BEEREARE, HOBHAE42, AREREAE1 T}
#% Return code=55: NO PENDING MESSAGE

+621 -* g_receivelqid=HEB3ERAR: "bopa”, MOWAIT: 61.36 uS

+623 <- qg_receivel <from “bopa’* 146. us
msg=[HABABEAT, PBADBARS, BABEGEA 1, ABA3ALEAT)

+A41 - am_ident{name="seml’, node=BBBEBEEEAA) 51.52 uS

+A45 <= sm_ident{5Mid=HABCOBARA) 124. us

T

his measurement allows you to view the context under which a specific event is
received by a specific task. In the above example, we have captured a trace when
task "paal" received event 0001.

47

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

To track activity after a function is reached

Click on theTask A: FuncX action key (or run the_afterfunc command file by
entering it on the command line).

The normal "C" source code tracing is still available whenever you need to see
your actual application code. In fact you can use an RTOS trigger point to then
capture source code activity.

This command will trace into a source code function but only when it has been

called from a certain task. You are first prompted for the calling task and then the
desired function.

0f 1=k Mare data off s
Label: Source Lines Only time count
Base: relative
Bt/ lsd/rtos/psosidema_appl/root.c - line 3603 thru 3158 # 248 ns
int node;
ELTS
/% A function to be called by each node.
S f
{
+613 Bt/ lsd/rtos/psoss/dema_appliroot.c - line 313 thru 321 # 4.76 u3
static int 1 = B,j = B,k = H,1 = B,m = 8;
if (node == CS_NODE)
+H22 Bt/ lsd/rtosfpsos/dema_appl/root.c - line 326 thro 327 # 888 nS
if (node == SL_NODE}
+H26 Bt/ lsd/rtos/psasidema_appl/root.c - line 332 thru 333 f 1.4 U
if (node == BO_NODE}

You can easily return to the RTOS trace display by clicking oDigeRTOS
Trace action key (or by entering thiisplay trace real_time_oscommand on the
command line) and making another RTOS measurement.

48

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

To track activity about the access of a variable by
a specific task

Click on theTask A: VarX action key (or run the_aftervar command file by
entering it on the command line).

You are prompted first for the task name and then for the variable name which the
task accesses.

race List 0f +=8 More data of f screen
Label: Address Opcode or Status w/ Source Lines time count
H umnbol mnemonic w/symbal relative

BRtHAHHRERS l=sd/ rtos/ psos/demo_applinode_bo.c - line GH thru G2 HEHHE

ing by »
alto_tid _TO_DEST);

p|node_bo+BEEAF4 uprog rd ward
-8E3 p|node_botHEEEFG 2648 uprog rd word 248 nS
-B8Y p|node_bo+BEBEFE PER.L CAE] 526 nS
-AAE p|node_botBAABBAFA MOVER. L da|_paloalt0_tid,ﬁ8 248 nS
-BA5 p |node_bot+BBBEEFC ABEA uprog rd word 246 n3
-8B+ AZEF35 ABEA udata wr word 246 n3
-8B83 AZEF3A ABE1 udata wr word 286 n3
-HEZ p|node_bot+BEEEFE BE42 uprog rd waord 248 nS
-BH1 p|node_bo+BAB1AE PEA.L CABE] 2408 nS
da|_paloalto_tid BEBF udata rd word 248 nS
+0d1 _paloaltotdd@anz ABAA udata rd word 2868 nS
+AB82 p|n0de_bo+@88182 JSR Codel_ev_send 248 nS

This measurement allows you to see when a specific variable is accessed by a
specific task and the source code context under which the variable is accessed.

49

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Accesses to Functions or Variables

Tracking Accesses to Functions or Variables

Another useful RTOS measurement identifies which tasks are accessing a shared
global variable or calling a shared function.

This section shows you how to:
* Track which tasks access a specific function.

* Track which tasks access a specific variable.

50

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Accesses to Functions or Variables

To track which tasks access a specific function

¢ Click on the? Task: FuncX action key (or run the_gtskfunccommand file by
entering it on the command line).

You are prompted for the function name.

0ffset=8
: Real Time Operating System

Bas=e: with suymbol relative
HOW-RTOS: addr=probe.pio_consts dats=BAAE4ESE 0 ———---m——-
+AA 1 NOW-RTOS: addr=. common_function data=AHAR4ESE 413. us
pstore —--—ENTERIMG TASK: “losa” e

+EEH4 WOM-RTOS: addr=. common_function data=AHER4ESE 4.687 mS
pstore ——-ENTERING TRSK: “phnx’ Bt

+887 NOWN-RTOS: addr=. common_function dat==BBBE4ESE 2.74 mS
pstore -——--ENTERIMG TRASK: “losa’ Bt

+818 NOWN-RTOS: addr=. common_function dats=ABBAE4ESE 4.26 mS
pstore -———ENTERING TASK: “"bose” B Rt

+H13 NOW-RTOS: addr=. common_function data=AHAR4ESE 5.38 mS
pstore ---ENTERING TASK: “s1lk’ B ittt

+81E MNON-RTOS: addr=. common_function datz=BBBE4ESE 3.41 mS
pstore ——--ENTERIMNG TASK: "bose’ Bt

+819 MNOWN-RTOS: addr=. common_function datz=BBBB4ESE 5.321 mS
pstore -——--ENTERIMG TRSK: "s11k’ Bt

+A22 NOWN-RTOS: addr=. common_function dats=ABBAE4ESE 3.41 mS

All tasks that call a specific function can be tracked with this measurement.

51

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Accesses to Functions or Variables

To track which tasks access a specific variable

* Click on the? Task: VarX action key (or run the_gtskvarcommand file by
entering it on the command line).

You are prompted for the variable name.

t More data of]

Label: Feal Time Operating System time count
Baze: with symbal relative
HOM-RTOS: addr 11b| lscale+C data=@BEBZBE4Z2 000 ———————-eeeo
pstore ——-ENTERIMNG TRASK: “cosp” -—=

+H63 NOM-RTOS: addr data| _pZcs_ qld data=000HEEAS .62 m3
pstore ——-ENTERING TRASK: “cosp” -- -—=

+HBE NOM-RTO3: addr data| _pZ2cs_ qld dat a=HHEHEERES 23.7 m3
pstore -——--ENTERING TASK: “cosp’ -—=

+B83 HOW-RTOS: addr data| _pdes_ qld data HEEEEHET 12.9 w5
pstore ——--ENTERING TRASK: “cosp’ -—=

+H12 HOW-RTOS: addr‘ data| _pdes_qid data AHAHEEES 17.9 mS5
pstore ——--ENTERING TRASK: “cosp’ - -—=

+B15 HON-RTOS: addr=data|_pZcs_ qld data AHEEEEES 23.4 mS
pstore -—--ENTERIMNG TRSK: “praod” -

+d18 NOM-RTOS: addr=data|_pZcs_gid data—@@@ﬁ@@@B G.32 m3
+813 HOM-RTOS: addr=data|_pfcs_gid data=00A0EEAES 6.18 m5
+828 HOM-RTOS: addr=data|_pfcs_gid data=00A0EEAES 6.18 m5
+821 HOW-RTOS: addr=data|_pccs_gid data=B0ABEAEAS g1z, us

All tasks that access a specific variable can be tracked with this measurement.

52

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Dynamic Memory Usage

Tracking Dynamic Memory Usage

Tracking dynamic memory usage has always been difficult in an embedded d
With these new real-time operating system measurement tools, however, eve
these debugging headaches become easy to solve.

The basic measurement set displays the size and location of a memory segment
whenever the system allocates a new block of memory. The system also reports
whenever a previously allocated block of memory is freed and gives an error if a
corrupt pointer is ever detected. This allows you to detect memory allocation
problems.

Stack allocation information (that is, size and stack pointer) are also provided.
With this information, you can use the analyzer to monitor for stack overflow
conditions.

This section shows you how to:
* Track only stack data.

* Track all memory calls (include task switches).

53

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Dynamic Memory Usage

To track only stack data

¢ Click on theStack Usageaction key (or run the_stackcommand file by entering
it on the command line).

You can enter this command before you run your application from its startup
address to capture the initialization of the application which shows you where each
local stack is allocated and how large it is.

race List 0ffset=8 More data off screen
Label: Real Time Operating System time count
H with suymbol relative
af ter HOW-RTOS: addr=1EFFE dats=BEBBE1EGA = ——m—mmmm———o
+861 STACKS: "IOLE” Supr base=0HE33FBE User base=FFFFFFFF 776, m3
size=HEHEEBED size=HEEBABAD
+811 STACKS: "ROOT” Supr base=HEBE3SFCA User base=HHBE3IFCC 482. us
=ize=HHEBEDED size=HHEBADAD
+821 STACK BYTES LEFT ON EXIT: Supr BEBEBAEBE User BEBEBEGAE 122. us
+823 ---Exiting Task : “ROOT’ mmmmmmmm—m——————— e 3.76 wuS
+831 ---ENTERING TASK: “ROOT’ mmmmmmmm—m——————— e 11.1 S
+833 STACK BYTES LEFT ON ENTRY: Supr BEBEBAEBE User BEBEBEOA 2.8 us
+841 STACKS: "iotk” Supr base=0HE36BFCA User base=HHE3EECC 3.53 mS
=ize=BEHEE 168 size=HEEBAZAD
+B51 STACKS: "recr” Supr base=BHE3HCCA User base=HBHE3HECC 815. us
=ize=HHEHE 160 size=HHED 1560
+B61 STACKS: "paal’ Supr base=HBHZFECA User base=HHBZFSCC 755, us
=ize=HEHEE 160 size=HHERAZAD
+871 STACKS: “s11k” Supr base=BBBZF3CA User base=HBAEZFZCC §38. us

54

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Dynamic Memory Usage

If you perform this same measurement while the application is running, you see the
amount of stack remaining every time a task switch occurs. This gives you a quick
indication of potential stack usage problems.

More data of en

Real Time Operating System time count

Base: with symbol relative
af ter NOM-RTOS: addr=9|psos_58k+5EE data=BBEBAREIEC 00000 -
+861 STACK BYTES LEFT ON EXIT: Supr BEBEA1BE User BEBEE1IC G2.88 uS
+BA3 -—-Exiting Task : "cosp” Bt 8.76 u5
+811 -—-ENTERING TASK: ‘“phnx’ e 11.1 us
+813 STACK BYTES LEFT ON ENTRY: Supr BEBEA1BE User BEBEE1AG 2.7 us
+821 STACK BYTES LEFT ON EXIT: Supr BEBEA1BE User BEBEOLAS 2,18 mS
+623 -——Exiting Task : “phnx’ —mm e 8.76 wuS
+831 -—-ENTERING TASK: “losa’ e 11.1 us
+833 STACK BYTES LEFT ON ENTRY: Supr BEBEA1BE User BEBED1EA 2.8 us
+841 STACK BYTES LEFT ON EWIT: Supr BE0EA18E User BEBEDOICE 1.93 mS
+643 -—-Exiting Task : "laosa” —mm e 8.76 wuS
+851 ---ENTERING TASK: “paal’ e 11.1 us
+853 STACK BYTES LEFT ON ENTRY: Supr BEBEA1BE User BEBEO1AS 2.8 us
+B61 STACK BYTES LEFT ON EXIT: Supr BE8EB168 User BEBEB1AS 2.77 mS
+6E3 -—-Exiting Task : "paal’ —mm e 8.76 wuS
+871 ---ENTERING TASK: “losa’ mmmmmmmm—m——————— e 11.1 us

55

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Dynamic Memory Usage

To track all memory calls (include task switches)

¢ Click on theMemory Usageaction key (or run the_memorycommand file by
entering it on the command line).

=t t=H More data off screen
Label: Real Tlme Operating System time count
bBa=e: with symbaol relative
NOM-RTOS: addr=prog|mainr0u‘te+?8 data=BBEA4ET] 0 o———mmmm———ee
+BH81 -—-Exiting Task : “caosp” —mm e 1.53 mS
+863 -—-ENTERING TASK: “bose’ -———-—————————————————mmmmm 11.1 u§
+HAS -* pt_create{name="harn”, Paddr= BBB3HBBB 162. us

Laddr=0HABEABH, length=BABE 18688, buf_si=z=A00EH 106
flags=Alexport=LOCAL, d=lete owverride=0I5ABLEI}

+817 - pt_create(PTid=B0178080, Nbuf=0BEBHEGF) 271. us
+823 -> pt_getbuf (PTid=HEB178888) 18.2 w3
+825 <= pt_getbuF(BuF_addr=BBB3HIBB) 118. u3
+B623 -—-Exiting Task : "bose” ettt bt 3.29 mS
+831 -—-ENTERING TASK: “paal’ e 11.1 uS
+H33 -* pt_ident{name="horn’, node= BBBQQQBB) ge2. us
+837 <- pt_ident{FTid=6B170608) 124. u3
+841 - pt_retbuf (PTid=B8178688, Buf_addr=BBA3A160A) 15.8 us
+645 “- pt_retbuf () 124, us
+847 -* pt_delete(PTid=08178000) 3.76 uS

This command simply tracks all service calls for regions or patrtitions, giving you
an idea of general memory usage.

56

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Displaying Traces

Displaying Traces

The normal "C" source code tracing is still available whenever you need to se
your actual application code. You can switch between the normal "C" source
display and the RTOS measurements display with a simple click of an action
or by entering aisplay trace command.

This section shows you how to:
¢ Switch to a normal trace display.

¢ Switch to the RTOS trace display.

57

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Displaying Traces

To switch to a normal trace display

¢ Click on theDisp NonRTOS Trcaction key (or run the_normtrace command
file by entering it on the command line, or enterdtsplay trace mnemonic
command on the command line).

Mare data off

Opcode or Status w/ Source Lines time count

umnbol mrnemonic w/symbol relative
HFOS_T_ERIT_STAC AdA? sdats wr word 0 —mmm——— e
+681 HFOS_T_ERx+BAERRZ E4CA =data wr ward 246 nS
+6A8 HFOS_T_STRACK_WAR ABRZ sdata wr waord 1.8 u5
+BA3 HPOS_T_ST+HAAEAZ E3CA sdata wr ward 246 nS
B84 HPOS_T_STRACK_VAR AR sdata wr waord 2.5 ui
+885 HPOS_T_ST+H@eHaz E3683 sdata wr word 248 nS
Writes to the data \ |+8#E HPDS_T_STACK_VAR BBBZ sdata wr word 1.6 uS
table +BHEAY HPOS_T_ST+HBEEEZ EICC sdata wr word 240 nS
' +HA8 HP_RTOS_TRACK_ST B3EF sdata wr word 1.8 5
HP_RTOS_T+BBEEERZ 7378 sdata wr word 248 nS
| HPOS_TASK_EMTRY B2EF sdata wr word 8.9 uS
HPOS_TASKE+BEERAZ 7365 =zdata wr word 240 n5
HFOS_T_EMNTREY_STA BERZ =sdata wr word 2.5 us
HFOS_T_EN+HRAEEZ FEHCA =sdata wr word 248 n3
HFOS_T_STACK_YAR ARRZ? sdata wr word 1.8 us
HFOS_T_ST+HAAAEHZ EFCA =sdata wr word 2468 n3

58

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Displaying Traces

To switch to the RTOS trace display

¢ Click on theDisp RTOS Traceaction key (or enter thgisplay trace
real_time_oscommand on the command line).

race List 0ffset=H
Label: Real Time Operating System time count
Base: with sumbol relative
STACK BYTES LEFT ON EWIT: Supr 888868108 User BBBRALISC --—---------
[+B88 -—-Exiting Task : “cosp’ -—= -—= 8.76 uS
Task switch. = |+918 ---ENTERING TASK: “bose’ -—= -—= 11.1 uS
+A12 STACK BYTES LEFT ON ENTRY: Supr BEBEB1BE User BEBEE1IAR4 2.8 us
+A28 USER DATA #1: data=BBABHEEEE ascii=f#g 97.2 J5
+822 ++ <CLOCK TICK> l.2 uS
+823 USER DOATA #2: data=0O00O0HEEE ascii=H#d 58.64 S
. +B25 <- g_receiwvel <from “csha’¥ 131, us
Service call entry: msg=[HEEAORES, BAEARRES, APRREAN |, AEAPABERT)
+H37 - pt_createlname="horn”, Paddr=HEB3ABEA 63.48 uS
Laddr=0BEEEEEE, length=B0E8 1668, buf _siz=B0HEE 168
flags=Blexport=LOCAL, delete owerride=0I5ABLEI}
) o ——|+B43— <~ pt_createlPTid=0AZ2A0EE, NouF=REEEREEF) 271. us
Service call exit. +B55 > pr_ge Tid=0E22008E) 8.2 u§
+A57 <= _pt_getbuf (Buf _addr=A083A184) 118. us
+HE - =m_ident{nams=" 5/&1’{1 *, node=AEBAEAAAR 26.4 us
Parameters
(decoded if
possible). Return value. Time stamp.

Note that there are entry and exit arrows on the left of the screen to show when a
service call is entered and, on a separate line, to show when a service call is exited.
This is important since an OS service call may switch to another task while in the
OS and NOT return to the calling service call for a long time, if ever.

As much of the trace information as possible is decoded. The OS service calls are
decoded into the same mnemonics that appear in the OS manual. The parameters
and return values that are associated with service calls are displayed. The
parameter variable names also appear as they do in the OS manual decoded into
their English mnemonics. Some of the parameter values and all return values are
also decoded whenever there are a finite number of responses as listed in the OS
manual.

You may have noticed that the line numbers in the first column of the display are
not sequential. This is because several trace states may be disassembled for each
line in the RTOS trace display.

59

60

Making RTOS Measurements with
the SPA

61

Making RTOS Measurements with the SPA

Action keys for
RTOS
measurements.

Hewlett Packard Performance Analyzer: em68302 (m6830

File Display Events Profile Settings Help

Action keys: | Initialize | Time Tasks |Count Srve Calls | Trig2 on Overflw

|FunctionDuration | TaskX: Servcalls | Count Tasks |Tsk & User Evnts | Disable Trig2

()% To customize the initial list of entries look for the X resource IRecaII

Histogram: Interwval Duration Run Time: 1:16:58 Stability: 34%
MName (sort? time) Time # E: E: E: 187 29 36
> 18 Task_paal 1.15E3s

11 05_Time 1.26E3s
Task_praod 345.
Task_cosp 856,
Task_bose 458,
Task_losa 385,
Task_phnx 346,
Task_idlp 135.
Measure_Owrhd 178.
Task_s11lk 152.
Task_iotk 1.
Task_ROOT 22.
Undefined Addr
Totals Absalute

4
3
5}
3
g
3
2
7
1
2

L0 o= Q0 =1 M 00 Q) — 000

E]
=J oo

I
o
m
[ai}
o

STATUS: M68302--Running user program Heasurement in process

Is called can be displayed, providing valuable information on system "thrashing".
Also, the number of times each OS service call is invoked from your application
can be tracked, helping to isolate bottlenecks from over-utilized system features.

The Software Performance Analyzer can also detect when a task has exceeded a
maximum preset time duration. When combined with the cross triggering
capabilities of the emulation system, you are able to capture a historical trace
showing the sequence of events leading up to the overflow and/or the system can
be halted to allow browsing through the current state of the system.

If you have multiple projects on one machine, you'll need to set up unique SPA
windows for each project.

These tasks are grouped into the following sections:

62

Chapter 3: Making RTOS Measurements with the SPA

* Making time profile measurements.
¢ Coordinating measurements with the emulator.

¢ Handling multiple projects on one machine.

63

Chapter 3: Making RTOS Measurements with the SPA
Making Time Profile Measurements

Making Time Profile Measurements

By measuring the time between writes made to task entry and exit locations, the
Software Performance Analyzer (SPA) can provide time interval measurements for
the tasks in your application as well as for the OS.

The time duration of each task can be displayed in an easy to read histogram.
Cumulative, maximum, and minimum time spent in each task can be displayed in a
table.

This section shows you how to:

¢ Define SPA events for tasks, service calls, and user events.
* Display a time histogram of task events.

¢ Show a table of SPA events.

* Display a count histogram of task events.

* Measure only data from a specific task.

* Show a table of service call invocations.

¢ Show a normal function duration histogram.

¢ Show a histogram of task and user events.

To define SPA events for tasks, service calls, and
user events

Click on thelnitialize action key (or run the_init command file by entering it on
the command line).

These instructions assume you have edited tiret command file by running the
tool "rtos_edit_psos".

64

Chapter 3: Making RTOS Measurements with the SPA
Making Time Profile Measurements

To display a time histogram of task events

* Click on theTime Tasksaction key (or run the_timetaskscommand file by
entering it on the command line).

Histogram: Interval Ouration Run Time: 1:17:48 Stability: 34%
_Meme (sort? time) Time A 5, 12: 18: 24 ey,
> 18 Task_pasl 1. 16E3s| 24. 34| NG

11 05_Time 1.21E3s| 25. 34| I

4 Task_prod 956.4 =| 20.52 | I

5 Task_cosp g96. 1 =| 19. 23 N

§ Task_bose 463.2 5| 9.94| I

9 Task_losa 389.6 5| 6.36| NN

8 Task_phnx 344.6 = 7. 39| I

3 Task_idlp 197.4 | 4.23| N

12 Measure_Ovrhd 189.2 =| 3.57(

7 Task_sllk 153.5 =| 2.29(/ 1

1 Task_iotk 1.1 s A, @82

2 Task_R0OT 22.9ms| ©.88
Undefined Bddr 2 ri

N
(=]
o
m
(S5}
o

—
=
=
ey
=
2

Totals Absolute 5% 12% 18% 24% 4

You see that the task names are listed in SPA, and a histogram showing the amount
of time each task is taking is being displayed. This is very useful for detecting
system bottlenecks.

Note that one line of the histogram is labeled "OS_Time". This indicates how
much time the application is spending in the OS kernel itself. This OS overhead
measurement has some limitations however. Refer to the "OS Overhead Tracking"
section in the "How the RTOS Measurement Tool Works" chapter for more
information.

Another line is labeled "Measure_Ovrhd". This indicates how much intrusion is
caused by the RTOS measurement tool routines. The amount of time spent in
measurement overhead caused by the RTOS tool is typically around 1%. The
intrusion percentage is controllable by commenting out code in the "track_os.s" file
(refer to the "Limiting Intrusion Caused by Instrumented Service Calls" section of
the "Customizing the RTOS Measurement Tool" chapter). The example above
displays an extreme case where our demo code uses about 4% measurement
intrusion overhead time.

65

Chapter 3: Making RTOS Measurements with the SPA
Making Time Profile Measurements

To show a table of SPA events

* Choose th®isplay - Table pulldown menu item (or enter téesplay table
command on the command line).

A raw numbers view of the accumulated data is displayed.

Table: Interval Ouration Run Time: 1:18:27 Stability: 34%
_HName {sart? timel Call Time Time ¥ HMa Min Mean |S+d Qe
» 18 Task_paal 4868683 1. 17E3=s 24.394| 12.4ms| 154. 4us 2. 9ms 1. 7ms
11 05 _Time 1.11EA7| 1.22E3s| 25.94| 53.5 =| 37.4us|1B3.59us| 16. Ilm=s
4 Task_prod 38E38| 966.Z s| ZB.52| BH.Zms|154.4us| Z25.Bms| 14.5ms
5 Task_cosp 444736 4.8 = 13.22| 53.5 =|154.4us| 2.Bwms| 8H. Ims
6 Task_bose 2391643 467.3 = 3.94| 12.6ms| 154. 4us 1. Ems= 1.8ms
3 Task_loza 256626 393.6 s G3.36| 11.6ms|154.4us 1.5ms 1.6ms
8 Task_phn=x 128384 348.2 = 7,48 11.8ms | 218, HBus| 2. 7ms 1. 5m=s
3 Task_idlp 2632 1939.5 = 4. 24| 183, Zm= | FEE. Sus| 74, Ims| 17.8ms
12 Measure_Dvrhd 7.13EBG| 182.6 = 3.88|283. 4us 7.2us| 25.6us| 2B.Bus
7 Task_s1lk 2646758| 155.6 = 3.38| 3. 3ms|154.4us|587.8us 377, Fus
1 Task_iotk 2345 1.1 = B.82|198. Bws | 2EE. Bus [472, Yus 5. 8Bms
2 Task_ROOT 2 22.9ms B.88 11.%5ws| 11.S5ms| 11.Sms| 21.5us
Undefined Addresse 7 7 7
Totals Absolute Z.81EB7| 4.71E3= 188%

66

Chapter 3: Making RTOS Measurements with the SPA
Making Time Profile Measurements

To display a count histogram of task events

¢ Click on theCount Tasksaction key (or run the_counttaskscommand file by
entering it on the command line).

Histogram: Interwal Ouratiaon Run Time: 1:35 Stability: 37%
_Mame {sort? calls) Call AR, Y, 183 157 20 257
* 5§ Task_cosp 323z| z4. 19| I

18 Task_pasl g465| zz. 15| NI

E Task_bose sazz| 15. 77 | I

7 Task_s1lk 5455) 14. 36 | NG

9 Task_losa s384| 14. 10 | I

8 Task_phnx 2697 7. o6 | I

4 Task_prod 793 265 | Il

3 Task_idlp 54| B.14

1 Task_iotk 43| B.11

2 Task_ROOT Al @.@a
Tatals 38167| 18@% e 5% 18% 15% 2a% 251

The histogram shows the the number of times each task is entered (and exited).
This can be very useful for detecting system "thrashing" between tasks.

67

Chapter 3: Making RTOS Measurements with the SPA
Making Time Profile Measurements

To measure only data from a specific task

¢ Click on theTaskX: Servcallsaction key (or run the_taskwindowcommand file
by entering it on the command line).

Histogram: Interval Ouration Run Time: B:35 Stability: BX
_Mame (sort? calls) Call i 5} iy 14 217 23 353
> 41 Srvccall_g_receive g3za| 3z. oo | I

51 Srvccall_sm_p 3167| 16. 43| NN

43 Srwccall_ev_receiv 3166 16. 47 | NI

48 Srvecall_sm_ident 3167 | 16. 46 | I

38 Srvccall_pt_ident 1135 5.91| N

31 Srvocall_pt_delete 1135 5.91|

33 Srveocall_pt_retbuf 1135 5.91|

13 Srvecall_t_create A 6. 686

14 Srveocall_t_ident A G, 88

15 Srveocall_t_start A A, BE

16 Srvecall_t_restart A A. BE

17 Srveccall_t_delete 5] A, A8

18 Srwvecall_t_suspend 5] A, A8

13 Srwveocall_t_resume 5] A, AE

28 Srveocall_t_setpri A 6. 688

21 Srvecall t _mode a A, 8l

Totals 13213| la8% ax 7E 14% 21% 28% 35%

This displays a histogram of the number of times each service call is invoked from
a single task.

68

Chapter 3: Making RTOS Measurements with the SPA
Making Time Profile Measurements

To show a table of service call invocations

¢ Click on theCount Srvc Callsaction key (or run the_countsrvclscommand file
by entering it on the command line).

Histogram: Interwal Ouratiaon Run Time: H:38 Stability: B
_HName {sort? calls? Call ; 5 5 16 15 26 257
> 54 Srvocall_tm_get 12647| z21.z7 | I

41 Srvcecall_g_receive 11171] 18, 79| I

38 Srwccall_g_send 5113| 13. 54| I

48 Srvceall_sm_ident 4557 7. 66| N

42 Srvecall_ev_send 3369| 5.67| I

81 Srveocall_sm_p 3369 &.67 I

43 Srwvccall_ev_receiv 3368 & _ 66 | I

58 Srvccall_sm_w 1188 2.0 |l

29 Srvocall_pt_create 1189 2.00| Il

32 Srvccall_pt_getbuf 1153 2.e0| N

38 Srwecall_pt_ident 1153 2.e0| N

31 Srwecall_pt_delete 1166 2.00| 1

33 Srweeall_pt_retbuf 1189 2,00 |l

24 Srveoccall_rn_create 1882 1.5z | HH

25 Srvecall_rr_ident 1682 1.52 |0

26 Srvoecall rn_delete 1aga 1.52 |l

Totals 593453| 1868% 8% 5% 183 15% 26% 255

This displays a histogram of the number of times each service call is invoked from
all tasks.

69

Chapter 3: Making RTOS Measurements with the SPA
Making Time Profile Measurements

To show a normal function duration histogram

¢ Click on theFunctionDuration action key (or run the_funcdur command file by
entering it on the command line).

Histogram: Function Ouration exclude calls Run Time: 1:86 Stability: 16BY
_MHame (sort? time! Time Z): L 27 2 4% Y,
> 184 pio_consts 1.1 s 72 |

76 atof

77 strtod

78 _dbl_to_str
73 paloalta

88 _doprnt

81 _doscan .Bus
82 clear_simio_scresn . Bus

2

1
A a
A a
] A
] A
A A
2] a
2 A

83 fill_response_stri B. Bus A, BE

A a
A a
] A
] A
A A
2 A
Q A
B a

L Aus
. Bus
. Bus
. Bus
.Bus

B84 input .Bus
85 read_uwrite . Hus
86 close_driver . Hus
87 nopl . Aus
88 nopl . Aus
83 open_driver
I8 read driver
Totals Absolute B

. Aus
Ay
.45 1

A% ax 1% 2% 3% 4% 5%

This performs a normal function duration profile measurement.

70

Chapter 3: Making RTOS Measurements with the SPA
Making Time Profile Measurements

To show a histogram of task and user events

Click on theTsk & User Evnts action key (or run the_tasknusercommand file
by entering it on the command line).

Histogram: Interval Ouration Run Time: B:42 Stability: 97%
_Name (sort? time) Time i 5} =¥ 12 187 243 28
> 18 Task_pasl 18.8 5| 25.55| I

4 Task_prod 8.9 =| 2L 85| I

5 Task_co=p 7.6 =| l6.57 | I

5 Task_bose 4.3 5| 16.z7 | I

9 Task_losa 3.6 5| 8. 46 (I

& Task_phnx 3.2 | 7.5z I

7 Task_sllk 1.4 s| 3.40(

3 Task_idlp 1.8 | 4.29| N

78 Userlntr_1 321, 9ms 2,15/l

1 Task_iotk 5. EBms A.A1

2 Task_ROOT B.Hus| ©.084

71 Userlntr_2 H.Aus A, A8

72 Userlntr_3 B.Aus A, AE

73 Userlntr_4 B.Bus 6. 686

74 Userlntr_ & B.Bus 6. 688

75 Userlntr B B, By &, He
Totals Absclute 42.3 =| lERY 8% G 12% 18% 24% 38%

This measurement includes any user-defined events you may have set up. The
example above shows that user event "Userintr_1" uses greater than 1% of the
system time.

71

Chapter 3: Making RTOS Measurements with the SPA
Coordinating Measurements with the Emulator

Coordinating Measurements with the Emulator

During a Software Performance Analyzer duration measurement, the SPA can
generate a trig2 signal if the event being measured executes for too long a period of
time. This signal can be used by the emulator to stop the application program, or it
can be used by the emulation analyzer to trace activity up to that point.

This combination of events allows you to stop the application program when a task
exceeds a certain amount of continuous execution time and/or track activity that
leads up to the break.

This section shows you how to:
* Break on task time overflow.

¢ Disable the SPA trig2.

To break on task time overflow

You can also set up a coordinated measurement between the software performance
analyzer and the emulation bus analyzer. For example, you might like to capture a
trace and then break into the emulation monitor if a certain task ever takes longer
than a specified maximum time. Tracing before the time overflow will show a
history of what led up to the time overrun.

In the emulation window, click on thigefore SPA trig2action key.

Or (in the emulation window), run tlee spatrigcommand file by entering it on the
command line.

You have now set up the analyzer to capture a trace when a signal is received from
SPA. Note that the trace has started but has not completed because it is waiting for
the trig2 signal as its trigger point.

2 In the SPA window, click on thErig2 on Overflw action key.

72

Note

Chapter 3: Making RTOS Measurements with the SPA
Coordinating Measurements with the Emulator

You can now set up SPA to detect the time overflow and then send the appropriate

signal to the emulation window. The dialog box again prompts you for specific
information. The first box prompts you for a task name.

In the dialog box, type the name of the task; then, click the "OK" pushbutton.

Another dialog box now appears asking you for the maximum time limit to be
watching for. Type in the number of milliseconds that is the maximum time yo
want the given task to ever continuously execute.

In the dialog box, type in the limit; then, click the "OK" pushbutton.

After a while you see that the emulator is running in monitor due to a time

overflow break from SPA. The status line of the emulation window shows a "trig2
break" which came from SPA. The trace has completed and shows you a historical
trace of what led up to the time overflow. Notice that the application has just
entered the task which you specified.

To disable the SPA trig2

In the SPA window, click on thBisable Trig2 action key.

This action key must be pressed whenever cross-trigger measurements to the
emulator are no longer desired.

Until the trig2 signal from SPA is disabled, the signal will be continually sent to the
emulation system. This may result in unexpected behavior such as continually
breaking into the monitor or traces being started but not completing.

73

Chapter 3: Making RTOS Measurements with the SPA
Handling Multiple Projects on One Machine

Handling Multiple Projects on One Machine

In order to run multiple sessions—one for each unique application—of the RTOS
product on one machine, a couple of changes need to be made. These changes are
required because a command file for the Software Performance Analyzer contains
application specific commands that set up intervals for each task.

To set up unique SPA windows for multiple
projects

If more than one project is using the RTOS Measurement Tool, you need to make
sure thdnitialize action key calls a command file specific to your currently loaded
application.

There is a semi-automated way to have unique SPA windows which run
application specific command files:

Re-run the $HP64000/bin/rtos_edit_psos script.

Answer "y" only to the question "Do you want to create a new 's_init’ file?".

Enter your task names from your application.

1
2
3
4 Answer "y" to the question "Do you need to customize the SPA environment?".
5 Enter a short unique string (your initials are suggested) for a suffix.

6

You must set the environment variable RTOS_UNIQUE to the unique string
you just entered. When this environment variable is set, the RTOS tools know
to use the specific command file that has been created.

Don't forgetto always have RTOS_UNIQUE set in any window in which you run
the RTOS product.

74

Accessing pROBE+ through
Simulated 1/0

75

Accessing pROBE+ through Simulated 1/0

A pSOS+ compatible static OS debugger, called pROBE+, is also available from
Integrated Systems, Inc. Supplied with the RTOS product is a connection library
that allows you to run pPROBE+ through the simulated I/O window in the
emulator/analyzer interface, thereby eliminating the need for a separate hardware
I/O device to connect to pROBE+.

pROBE+ is a static debugger that is a complementary product with the real-time
"dynamic" RTOS measurement tools. With the real-time debugger you can capture
flow-of-information in a dynamic, real-time mode. The static OS debugger can be
used to browse through the internal OS resource lists such as mailbox contents or
task status lists when running in the OS-resident debug monitor.

To help you access pROBE+ from a simulated I/O window, the files "io_drivers.c"
and "probe_io.c" (found in the $HP64000/rtos/B3080A directory) are included
with the RTOS measurement tool.

The "io_drivers.c" file contains routines for using simulated 1/O in the
emulator/analyzer interface.

The "probe_io.c" file contains user-supplied initialization and console procedures
that must be linked in with the application and identified in pPROBE+'s
configuration table.

You also need the include files "simio.h" and "psos.h" (found in the
$HP64000/rtos/B3080A/include directory).

This chapter shows you how to:
* Prepare your application for simulated I/O access of pPROBE+.
* Break pSOS+ execution and enter pPROBE+.

¢ Exit pROBE+ and return to RTOS measurements.

76

Chapter 4: Accessing pROBE+ through Simulated 1/0
To prepare your application for simulated 1/0O access of pPROBE+

To prepare your application for simulated I/O
access of pPROBE+

To integrate pROBE+ into your application and have it be available through
through the simulated 1/0 window, you must do the following:

1 Put the simulated I/O drivers into the application’s 1/0 jump table.

For example:

XDEF _DRVR_TBL
_DRVR_TBL:
XREF _simio_init
XREF _open_driver
XREF _close_driver
XREF _read_driver
XREF _write_driver
XREF _simio_clear_screen

DC.L _simio_init ;init
DC.L _open_driver ;open
DC.L _close_driver ;close
DC.L _read_driver ;read
DC.L _write_driver ;write
DC.L _simio_clear_screen ;cntrl
DC.L O ;reserved
DC.L O ;reserved

2 Have a pointer to the 1/0O jump table within pSOS+’s configuration table; in other
words, set the KC_IOJTABLE to the address of your 1/O jump table.

3 Include "probe_io.c" and "io_drivers.c" in your application.

77

Chapter 4: Accessing pROBE+ through Simulated 1/0
To prepare your application for simulated 1/0O access of pPROBE+

4 Initialize pPROBE’s configuration table to have pointers to the initialization and
console procedures found in "probe_io.c".

For example:
static struct s_rc rom_rc =
{PROBE_CODE, /* Address of pROBE code */
(INT32)&probe_data[0x800], /* Adress of pROBE data */
(INT32)pio_init, /* Address of I/O init procedure */
(INT32)pio_consts, /* Address of console status
procedure */
(INT32)pio_conin, /* Address of console input
procedure */
(INT32)pio_conout, /* Address of console output
procedure */
(INT32)0, /* Address of host status procedure */
(INT32)0, /* Address of host input procedure */
(INT32)0, /* Address of host output procedure */

O0x4EA41, /* Breakpoint opcode */

5 Define a simulated 1/O buffer.

For example:

SECTION iobuf,,D

XDEF _systemio_buf
_systemio_buf

DS.B 512
END

78

Chapter 4: Accessing pROBE+ through Simulated 1/0
To prepare your application for simulated 1/0O access of pPROBE+

Rebuild your application.

After completing the above tasks, your application will have pROBE+ available in
a simulated 1/0 window. Start your task running within the emulator and
depending on how you have the RC_SMODE value setin pROBE+'s
configuration, you will now be able to access pROBE+.

1 If RC_SMODE is set to "0" (meaning normal start-up), you can just enter:
display simulated_io
modify keyboard_to_simia

2 IfRC_SMODE is set to "1" (meaning silent start-up), your application will

running with continuous checks by the kernel for console status. Enter th
following commands:

modify memory break_to_probe to 1
display simulated_io
modify keyboard_to_simio

You will now see the "pROBE+>" prompt in the simulated 1/O display. Enter
commands as you normally would to pROBE+. When done, presashend
softkey and you will return to normal emulator control.

79

Chapter 4: Accessing pROBE+ through Simulated 1/0
To break pSOS+ execution and enter pROBE+

To break pSOS+ execution and enter pROBE+

1 Click on theBreak to Probeaction key.

Or, run thee_brk2probe command file by entering it on the command line.

2 In the simulated I/O window, enter theodify keyboard_to_simiocommand
using the command line.

You have now broken into the pROBE+ monitor. Any command can now be given
to pROBE+, and the output will appear in the simulated 1/0O window. For example,
you can query the task status list by typing in the pROBE+ "qt" command on the
command line and pressing <RETURN>.

Simulated I/0 display
display i= open

Name TIO Prio Mode Status Susp? Parameters Ticks

“I0LE” -#PER1EAEA ©BE ZAEBR Ready
“ROOT” -#BBRZEAHA FF 681 Ready YES

“iotk” -#EBAOBAEE BC BABE Wkafter BAEEAZ 16
“recr’ -#HEBEBEEE B BHEE Ready YES

“paal’ -#HOAFOEHE A BEEE Evwait EVENTS = BHHEEHE1 farever
“s1lk” -#EB1ABARE B3 BABE Quait 0= ‘oss1" -#BBA4BARE forever
“bose” -HHA110AAA ©HI BEAG Qwait 1l = “csho” -RABESAAGER forever
“phnx” -HBA1Z00B8 @I BEEG (Quait 0 = “ceph” -#OBEGEEEE forever
“losa” -#HB13EAEE B3 BABE Quait 0 = “phla” -#BABIBAEE forever

“prod” -#EB14EEEE B3 BEBE Running
“cosp” -HBA15EAHAE BE BHAE Ready
“idlp” -H#E01GEEEE HY BEE84 Ready

pROBE+>

You see that the query task command browses through the internal OS kernel and
displays the status of each task. Note that the task names are the same as you see in
the emulation window.

If you try to take a real-time trace, for example by clicking orTtiaek OS calls

action key, you see that the status line indicates "Emulation trace started", but the
trace does not complete because the application is in the pROBE+ monitor with no
application tasks running.

80

Chapter 4: Accessing pROBE+ through Simulated 1/0
To exit pPROBE+ and return to RTOS measurements

To exit pPROBE+ and return to RTOS
measurements

In the simulated 1/0 window, type in "go" on the command line, and press
<RETURN>.

After issuing the "go" command to pROBE+, the application tasks begin runni
again.

If you started a trace while in pPROBE+, the trace becomes complete.

If your application uses the simulated I/O feature of the emulator/analyzer
interface, the simulated 1/0 window returns to displaying the application output
instead of the pROBE+ prompt.

81

82

Customizing the RTOS Measurement
Tool

83

Customizing the RTOS Measurement Tool

You can customize the RTOS Measurement Tool to create your own RTOS
measurements. You can set up your own trace commands that capture particular
writes to the data table, put these commands in command files, and set up action
keys that run these command files.

Though the level of intrusion introduced by the "instrumented" service call library
is very limited, you can customize the RTOS Measurement Tool to further limit the
intrusion if it becomes a problem.

These tasks are grouped into the following sections:
¢ Creating your own RTOS measurements.

¢ Limiting the intrusion caused by instrumented service calls.

84

Chapter 5: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

Creating Your Own RTOS Measurements

Real-time OS measurements in the emulator/analyzer interface are made by using
the emulation bus analyzer to capture writes made to a data table. Assembly
language instructions in the "instrumented" service call library write values to the
data table when:

Tasks start.
Tasks switch.
Service calls are entered and exited.

Any states captured by the emulation bus analyzer outside the range of the d
table are interpreted as non-RTOS states.

When you display the RTOS trace, the inverse assembler looks at the inform
written to the data table, and, since it knows how these locations are defined, it
interprets the information and presents it in an easy to read form on the trace
display.

In order to understand how to make your own RTOS measurements, you must
understand what writes to each of the locations in the data table mean. Once you
understand this, you will be able to enter your own trace commands to capture the
RTOS information you're looking for.

If your measurements will be made often, you can create your own command files
and add your own action keys to the emulator/analyzer interface.

Data Table Description

The data table reserves space for information saved when tasks start, when tasks
switch, and when service call functions are entered or exited.

There are also locations for device service call, stack, user-defined, clock tick, and
error checking information.

The part of the "track_os.s" source file that reserves space for the data table is
shown below.

85

Chapter 5: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

* -=- THIS DATA TABLE MUST NOT BE CHANGED IN ANY WAY -=-
* -=- The interpretation of 'traced’ data is dependent -=-

* -=- on the relative offsets of symbols -=- *
HPOS_Start Ovrhd DS.W 1 ;Start of OS interval for SPA
HPOS_Stop_Ovrhd DSW 1 ;End of OS interval for SPA
HPOS_Start_Intrusion DS.W 1 ;Start interval for measuring intrusion
HPOS_Stop_Intrusion DS.W 1 ;End interval for measuring intrusion

; The name of this symbol MUST NOT CHANGE!!!
HP_RTOS_TRACK_START ; Itis required that the interface find this

; symbol and pass its value to the Interpreter

; so the beginning of this table is known.

HPOS_TASK_EXIT DS.L 1
HPOS_TASK_ENTRY DSL 1

HPOS_t_create_Entry DS.L 5

HPOS_t_create_Exit DS.L 2
HPOS_t_ident_Entry DS.L 2
HPOS_t_ident_Exit DS.L 2
HPOS_t_start_Entry DS.L 7

HPOS_t_start_Exit DS.L 1
HPOS_t_restart_Entry DS.L 5
HPOS_t_restart_Exit DS.L 1
HPOS_t delete Entry DS.L 1
HPOS_t_delete_Exit DS.L 1
HPOS_t suspend_Entry DS.L 1
HPOS_t_suspend_Exit DS.L 1
HPOS_t_resume_Entry DS.L 1
HPOS_t_resume_Exit DS.L 1
HPOS_t_setpri_Entry DS.L 2
HPOS_t_setpri_Exit DS.L 2
HPOS_t_mode_Entry DS.L 2
HPOS_t mode_Exit DS.L 2
HPOS_t_getreg_Entry DS.L 2
HPOS_t_getreg_Exit DS.L 2
HPOS_t_setreg_Entry DS.L 4
HPOS_t_setreg_Exit DS.L 1

HPOS_T_TRANS_TID DS.L 1
HPOS_TTRANS_ERR DS.L 1
L

HPOS_TASK_BKT_UNDEF DS.L 1

HPOS_rn_create_Entry DS.L 5
HPOS_rn_create_Exit DS.L 3
HPOS_rn_ident_Entry DS.L 1
HPOS_rn_ident_EXxit DS.L 2
HPOS_rn_delete_Entry DS.L 1
HPOS_rn_delete_Exit DS.L 1
HPOS_rn_getseg_Entry DS.L 4
HPOS_rn_getseg_Exit DS.L 2
HPOS_rn_retseg_Entry DS.L 2
HPOS_rn_retseg_Exit DS.L 1

86

HPOS_pt_create_Entry
HPOS_pt_create_Exit
HPOS_pt_ident_Entry
HPOS_pt_ident_Exit

HPOS_pt_delete_Entry
HPOS_pt_delete_Exit

HPOS pt_getbuf_Entry
HPOS_pt_getbuf_Exit
HPOS_pt_retbuf Entry
HPOS_pt_retbuf_Exit

DS.L 6
DS.L 3
DS.L 2
DS.L 2
DSL 1
DS.L 1

DS.L 1
DS.L 2
DS.L 2
DS.L 1

HPOS_pt_sgetbuf_Entry DS.L 1

HPOS_pt_sgetbuf_Exit

HPOS_q_create_Entry
HPOS_q_create_Exit
HPOS_q_ident_Entry
HPOS_q_ident_Exit
HPOS_q_delete_Entry
HPOS_q_delete_Exit
HPOS_q_send_Entry
HPOS_q_send_Exit
HPOS_q_urgent_Entry
HPOS_q_urgent_Exit

DS.L 3

DS.L 3
DS.L 2
DS.L 2
DS.L 2
DS.L 1
DS.L 1
DS.L 5
DS.L 1

DS.L 5
DS.L 1

HPOS_q_broadcast_Entry DS.L 5

HPOS_q_broadcast_Exit

DS.L 2

HPOS_q_receive_Entry DS.L 3

HPOS_q_receive_Exit

HPOS_Q_TRANS_QID
HPOS_QTRANS_ERR

HPOS_ev_send_Entry
HPOS_ev_send_Exit

DS.L 5

DS.L 2
DS.L 1

Chapter 5: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

HPOS_ev_receive_Entry DS.L 3

HPOS_ev_receive_Exit DS.L 2

* -=- THIS DATA TABLE MUST NOT BE CHANGED IN ANY WAY -=- *
-=- The interpretation of 'traced’ data is dependent -=-

* -=- on the relative offsets of symbols -=-

HPOS_as_catch_Entry DS.L 2

HPOS_as_catch_Exit DS.L 1

HPOS_as_send_Entry DS.L 2

HPOS_as_send_Exit DS.L 1

HPOS_as_return_Entry DS.L 1

HPOS_as_return_Exit DS.L 1

HPOS_sm_create_Entry DS.L 3

HPOS_sm_create_Exit DS.L 2

HPOS_sm_ident_Entry DS.L 2

HPOS_sm_ident_Exit DS.L 2

HPOS_sm_delete_Entry DS.L 1

HPOS_sm_delete_Exit™ DS.L 1

HPOS_sm_v_Entry DS.L 1

HPOS_sm_v_Exit DS.L 1

HPOS_sm_p_Entry DS.L 3

Chapter 5: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

HPOS_sm_p_Exit DS.L 1
HPOS_tm_tick_Entry DS.L 1
HPOS_tm_tick_Exit DS.L 1
HPOS_tm_set_Entry DS.L 3
HPOS_tm_set_Exit DS.L 1
HPOS_tm_get_Entry DS.L 1
HPOS_tm_get_Exit DS.L 4

HPOS_tm_wkafter_Entry DS.L 1
HPOS_tm_wkafter_Exit DS.L 1
HPOS_tm_wkwhen_Entry DS.L 3
HPOS_tm_wkwhen_Exit DS.L 1
HPOS_tm_evafter Entry DS.L 2
HPOS_tm_evafter Exit DS.L 2
HPOS_tm_evevery_Entry DS.L 2

HPOS_tm_evevery_Exit DS.L 2
HPOS_tm_evwhen_Entry DS.L 4
HPOS_tm_evwhen_Exit DS.L 2

HPOS_tm_cancel_Entry DS.L 1

HPOS_tm_cancel_Exit DS.L 1
HPOS_k_fatal_Entry DS.L 2
HPOS_i_return_Entry DS.L 1

HPOS_m_ext2int_Entry DS.L 1

HPOS_m_ext2int_Exit

DS.L 2

HPOS_m_int2ext_ Entry DS.L 1

HPOS_m_int2ext_Exit

HPOS_SERVICE_CALLS

DS.L 2

; Label to make tracing easier

HPOS_de_init_Entry DS.L 2
HPOS_de_init_Exit DS.L 3
HPOS_de_open_Entry DS.L 2
HPOS_de_open_Exit DS.L 2
HPOS_de_close_Entry DS.L 2
HPOS_de_close_EXxit DS.L 2
HPOS_de_read_Entry DS.L 2
HPOS_de_read_EXxit DS.L 2
HPOS_de_write_Entry DS.L 2
HPOS_de_write_Exit DS.L 2
HPOS_de_cntrl_Entry DS.L 2
HPOS_de_cntrl_Exit DS.L 2

HPOS_SRVC_DEVICES

HPOS_T_START_NAME
HPOS_T_ENTRY_STACK
HPOS_T_EXIT_STACK
HPOS_T_STACK_VAR1
HPOS_T_STACK_VAR2
HPOS_T_STACK_VAR3
HPOS_T_STACK_VAR4

HPOS_SRVC_DEV_STACK

HPOS_USER_DEFENTRY1
HPOS_USER_DEFEXIT1

; Label to make tracing easier

; Label to make tracing easier

1 ; data entries to be used for
; either SPA intervals or

88

Chapter 5: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

HPOS_USER_DEFENTRY2 DS.L 1 ; for general program tracking
HPOS_USER_DEFEXIT2 DS.L 1
HPOS_USER_DEFENTRY3 DSL 1
HPOS_USER_DEFEXIT3 DS.L 1
HPOS_USER_DEFENTRY4 DSL 1
HPOS_USER_DEFEXIT4 DS.L 1
HPOS_USER_DEFENTRY5 DSL 1
HPOS_USER_DEFEXIT5 DS.L 1
HPOS_USER_DEFENTRY6 DSL 1
HPOS_USER_DEFEXIT6 DS.B 3
HP_RTOS_TRACK_END ;End of list indicator

HPOS_END_OF DATA_AREA DSB 1
HPOS_CLOCK_TICK DS.L 1

HPOS_CHECK_ERRORS DS.L 1

* -=- THIS DATA TABLE MUST NOT BE CHANGED IN ANY WAY -=- *
* -=- The interpretation of 'traced’ data is dependent -=-
* -=- on the relative offsets of symbols -=- *

Data Table Contents
The types of values that are written to the data table are:

HPOS_TASK_EXIT
HPOS_TASK_ENTRY

The four character ASCII name of the task being exited or entered is written to
these locations. By triggering on specific data values written to these
locations, you can trigger on a particular task’s entry or exit.

HPOS_<svc_call_sym>_Entry
HPOS_<svc_call_sym>_Exit

The parameters passed to, or returned from, a service call are written to these
locations.

When creating your own RTOS trace commands, be sure to store writes
through the full range of the symbol; once the inverse assembler sees the first
word written to these locations, it expects an exact number of subsequent
writes to follow.

89

Chapter 5: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements
HPOS_T_ <stack_info_sym>
Stack information is written to these locations by the task start and task switch
callout routines.

When including stack information in the RTOS trace, store writes to the entire
range identified by the T_ symbols.

HPOS_CLOCK_TICK
This location is written to as system clock ticks are sent into the OS kernel.
You have to instrument your clock interrupt service routine (ISR) to see this
functionality.

HPOS_CHECK_ERRORS
Error return codes are written to this location when service calls exit.

HPOS_USER_DEF[ENTRY|EXIT]n

These locations are reserved for tracking user-defined activity. For more
information, refer to the "How the RTOS Measurement Tool Works" chapter.

90

Chapter 5: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

To set up trace commands to capture RTOS
information

Use the "only" syntax of the trace command to specify the storage qualifier.

The most basic thing to realize about capturing RTOS information with the
emulation bus analyzer is that you only want to store writes to the data table. Any
other stored state will be displayed in the RTOS trace display as a non-RTOS state.

Virtually all the trace commands you enter to capture RTOS information will
specify that "only" a range of locations in the data table or "only" a range and
specific locations in the data table are to be stored in the trace. (If you wish to
at all code execution you will store all states.)

One exception to this guideline is the ability to capture both writes to the data table
and your application code execution excluding execution of the actual pSOS+ code
itself. This can usually be accomplished by storing all activity not in the range of
the pSOS+ code (that isace only address not range<pSOS_startthru
<pSOS_end>). Once the analyzer has captured this data, you may find it helpful to
use two emulation windows simultaneously: one to display the normal source code
trace, and the other to display the RTOS trace.

Use the "after”, "about”, or "before" syntax of the trace command if you wish to
trigger the analyzer on a certain event or occurrence in your program. The option
you choose specifies the position of the trigger point in trace memory.

Use the "find_sequence" syntax of the trace command if you wish to trigger the
analyzer on a certain sequence of events or occurrences in your program.

Use the "enable" and "disable" syntax of the trace command to capture only certain
parts (in other words, windows) of program execution.

When using data qualifiers to identify the entry or exit of a particular task,
remember the emulation bus analyzer captures 16 bits of data per state when used
with 16-bit processors and 32 bits of data per state when used with 32-bit
processors. Because 4 ASCII character (32-bit) task names are written to
HPOS_TASK_ENTRY and HPOS_TASK_EXIT, you must capture the write of

the high-order word or low-order word to identify a particular task when using a

91

Chapter 5: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

Examples

16-bit processor. (This is the reason the first two and last two characters must be
made unique when naming your tasks in the "tables_16.s" file.)

To track only queue and event service calls

trace only address range HPOS_q_create_Entry thru
HPOS_as_catch_entry-1 <RETURN>

This captures all writes to the data table that correspond to any event or queue
service calls.

To track only queue and event service calls including task switches (for 16-bit
processors)

trace only address range HPOS_q_create_Entry thru
HPOS_as_catch_entry-1 or HPOS_TASK_EXIT or
HPOS_TASK_EXIT+2 or HPOS_TASK_ENTRYor
HPOS_TASK_ENTRY+2 <RETURN>

This captures the same data table writes as the previous command and also the task
entries and exits.

To track only queue and event service calls including task switches (for 32-bit
processors)

trace only address range HPOS_q_create_Entry thru
HPOS_as_catch_entry-1 or HPOS_TASK_EXIT or
HPOS_TASK_ENTRY <RETURN>

This captures the same data table writes as the previous command, but it is for
32-bit processors.

92

Chapter 5: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

To track only the "cosp" task and queue service calls (for 16-bit processors)
(note that the hex value for "co" is 636fh and the hex value for "sp" is 7370h):

trace enable address HPOS _TASK ENTRYdata 636fth disable
address HPOS_TASK_EXIT+2 data 7370h only address range
HPOS_g_create_Entry thru HPOS_ev_send_Entry-1 <RETURN>

This trace starts or resumes capturing data when "co" (636FH) is written to the first
word of the task entry location and halts data capturing when "sp" (7370H) is
written to the task exit location. While enabled to capture data, the only states
captured are the data table accesses that correspond to queue service calls.

To track only the "cosp" task and queue service calls (for 32-bit processors)
(note that the hex value for "cosp" is 636f7370h):

trace enable address HPOS_TASK ENTRYdata 636f7370h
disable address HPOS_TASK_EXIT data 636f7370h only
address range HPOS_(q_create_Entry thru
HPOS_ev_send_Entry-1 <RETURN>

This is the same as the previous command, except the starts and halts are done on
data of "cosp" since the full 32-bit name is written in one cycle for 32-bit
processors.

To trigger before an error return in task "cosp" (for 16-bit processors)

trace find_sequence HPOS_TASK ENTRYdata 636fh restart
HPOS_TASK_EXIT+2 data 7370h trigger before
HPOS_CHECK_ERRORfta not 0 only address range
HP_RTOS_TRACK_STARThru HPOS_TRACK_END <RETURN>

Starting (enabling) and halting (disabling) are done the same way as in previous
commands, but now instead of capturing data, a specific event (in this case, a write
of something other than zero (0) to HPOS_CHECK_ERRORYS) is looked for as the
trigger to complete the trace.

93

Chapter 5: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

To trigger before an error return in task "cosp" (for 32-bit processors}

trace find_sequence HPOS_TASK ENTRYdata 636f7370h
restart HPOS_TASK_EXIT data 636f7370h trigger before
HPOS_CHECK_ERRORfta not 0 only address range
HP_RTOS_TRACK_STARThru HPOS_TRACK_END <RETURN>

This is the same as the previous command, but it is for 32-bit processors.

94

Examples

Chapter 5: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

To place your measurements in command files

1 If your measurement is similar to a measurement that already exists on the action

keys (and therefore in a command file), the best way to create the new command
file is to copy and modify the similar command file.

Add the directory that contains your custom command files to the HP64KPATH
environment variable.

Suppose you want to create a command file for an RTOS measurement that t
a particular task and all the queue service calls that occur during the task. No
that this is similar to the provided RTOS measurement that tracks only task X,
except that you want to limit the service calls that are stored in the trace to jus
gueue service calls.

First copy the existing command file.

$ cp $HP64000/rtos/B3080A/act_keys 302/e_trk1ltask
e_trkltskngs <RETURN>

The storage qualifier part of the command you wish to create is:

... only address range HPOS_g_create_Entry thru
HPOS_ev_send_Entry-1 <RETURN>

So, edit the "e_trk1tskngs" command file so that only writes to the locations above
are stored in the trace.

If your command file is placed in the $SHOME/rtoscmdf directory, you should set
the HP64KPATH environment variable as follows:

If you're using "sh" or "ksh":

$ HP64KPATH=$HPB64KPATH:$HOME/rtoscmdf; export HP64KPATH
<RETURN>

If you're using "csh":
$ setenv HP64KPATH ${HP64KPATH}:$HOME/rtoscmdf <RETURN>

95

Chapter 5: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

Examples

To place your measurements on action keys

The easiest way to include an RTOS measurement on an action key is to first place
the measurement in a command file; then, edit the "emulrtos_psos" script to add an
action key label and the name of the command file.

When you open the RTOS emulation window (either by choosing the

File - Emul700- PSOS+ RTOS Measurement Togbulldown menu item in the
emulator/analyzer interface or by using the "$HP64000/bin/emulrtos_psos" script),
theemul700command is issued with therm option to set the X resource that
defines action keys.

The "actionKeysSub.keyDefs" X resource defines a list of paired strings. The first
string defines the text that appears on the action key pushbutton. The second string
defines the command or, in the case of the RTOS measurement tool, the command
file that should be sent to the command line area and executed when the action key
is pushed.

The command files associated with action keys typically set up trace commands
that capture real-time OS activity. If parameters are required, the command files
prompt you for them. Also, some command files have commands that extract
information from memory.

Suppose you wish to create an action key for the command file created in the
previous "To place your measurements in command files" section.

Edit the "emulrtos_psos" script.

vi $HP64000/bin/femulrtos_psos <RETURN>

Add a line that defines the action key label "Tsk X & Queues" and the location of
the command file. In this case, add the line:

\"Tsk X & Queues\" \"e_trkltskngs\"\
as part of the "keyDefs" resource definition.

You may also set the "actionKeys.numColumns" resource to manage the number of
rows of action keys.

96

Chapter 5: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

The next time you start the emulator/analyzer interface using the modified script,
the new action key will appear. Clicking on the new action key will cause the
associated command file to be run.

97

Chapter 5: Customizing the RTOS Measurement Tool
Limiting the Intrusion Caused by Instrumented Service Calls

Limiting the Intrusion Caused by Instrumented
Service Calls

Within the "track_os.s" file, some sections/statements are labeled as being at a
certain "level". The level indicates certain groupings of measurements that can be
made. Even within levels, some subsets of measurement data could possibly be
divided up but the levels keep similar measurements together for easier editing and
understanding.

Level 1 Service call tracking (entry and return), task switching, clock
ticks.
Level 2 Operating System overhead tracking, Intrusion measurement,

Tracking Service call error returns

Level 3 SPA support - real time histogram of tasks
Level 4 Stack tracking - creation and dynamic sizes of stacks
Level 5 Task and queue id-to-name translation.

There are approximately 300 total lines of assembly code added within the service
call functions and another 150 lines of support routine code. This may be cut down
to about 100 lines in the service calls and only two lines of support routine code
which will still show all service calls and task switching.

To reduce the amount of intrusion (and correspondingly the amount of
measurement data), you may remove any of the levels. When levels are removed
(generally by commenting out the relevant code), you should remove complete
levels and you may only remove a level when all the levels "ranked" above it are
removed. For example, if you don’'t want the intrusion imposed by the level 3
routines (in other words, task and queue naming), you must also remove levels 4
and 5. This is the recommended method, but you may find other ways which work
for you.

This section shows you how to comment out the various levels of RTOS
measurement support. Different variations on commenting out the instrumentation
code may work but they will not be supported.

98

Chapter 5: Customizing the RTOS Measurement Tool
Limiting the Intrusion Caused by Instrumented Service Calls

To comment out Level 5 (Id-to-name translation)

Comment out the call to _SAVE_QUEUE_INFO in the g_create service call.

Comment out all calls to WRITE_TASK_NAME in all service calls. The affected
calls are t_restart, t delete, t suspend, t_resume, t_setpri, t_getreg, t_setreg,
ev_send, and as_send.

Comment out all calls to HPOS_WRITE_Q_NAME in all queue service calls. The
affected calls are q_delete, g_send, g_urgent, q_broadcast, and q_receive (2 calls).

To comment out Level 4 (Stack tracking)

Comment out the call to SAVE_STACK_INFO inthe " _t create" service call.

Comment out all instructions in the _ HPOS SWITCH_CALLOUT routine labeled
with comments as "HP-RTOS-Level-4".

Comment out all instructions in the HPOS START_CALLOUT routine within
the section labeled as "HP-RTOS-Level-4".

To comment out Level 3 (SPA support)

Comment out all instructions in the _ HPOS_ SWITCH_CALLOUT routine
EXCEPT the 2 instructions labeled as "HP-RTOS-Level-1" and the 4 instructions
labeled as "HP-RTOS-Level-2".

Remove the HPOS_START_CALLOUT entry from your configuration table so it
is no longer invoked when "t_start()" is called.

99

Chapter 5: Customizing the RTOS Measurement Tool
Limiting the Intrusion Caused by Instrumented Service Calls

To comment out Level 2 (Overhead, intrusion and
error returns)

¢ Comment out all instructions in "track_o0s.s" which are commented by the string
"HP-RTOS-Level-2".

To comment out Level 1 (Task entry/exit and
. service calls)

1 Remove the HPOS_SWITCH_CALLOUT entry from your configuration table so
it is no longer invoked when a task switch is done.

2 Comment out all instructions in "track_0s.s" which are commented by the string
"HP-RTOS-Level-1".

3 Ifinstrumented, remove any writes to the data area from your application code.

100

Part 2

Concept Guide

Topics that explain concepts and apply them to advanced tasks.

101

Part 2

102

How the RTOS Measurement Tool
Works

103

How the RTOS Measurement Tool Works

The RTOS measurement tool lets you perform a real-time trace of all calls and
returns between your application and a Real-Time Operating System (RTOS). The
RTOS measurement tool works with the HP 64700 series emulation bus analyzer
and includes a specially developed inverse assembler. The trace display is easily
readable and includes a fully interpreted display of all parameters passed into and
returned from the RTOS along with possibly other pertinent data.

The following topics are discussed in this chapter:
* Instrumented code for real-time OS tracking.

* How OS service calls are captured and displayed.

104

Chapter 6: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

Instrumented Code for Real-Time OS Tracking

In order to make RTOS measurements, a few instructions must be added to the
application program. The level of intrusion introduced by these instructions is very
limited. The simplest level of RTOS measurements require only two MOVEM
assembly language instructions for each service call and a two-instruction task
switch callout routine.

Additional RTOS measurements like stack tracking, measurements that include
clock ticks, and real-time (no sampling) software performance analysis can be
provided by adding a few more instructions to the application program. The level
of intrusion is still quite minimal.

If the intrusion introduced becomes a problem, you can comment out some of the
added instructions (in the "track_os.s" file) to find the right balance between
intrusion and debugging capabilities (see the "Limiting the Intrusion Caused b
Instrumented Service Calls" section in the "Customizing the RTOS Measurem
Tool" chapter).

Service Call Tracking

Tracking of service calls takes advantage of the fact that there is usually an
interface librarywhich allows a high-level language application to call an

assembly language based RTOS. This library is a set of functions that correspond
directly to each routine available from the RTOS. We will refer to these functions
asservice callof the RTOS.

Each function in the library is accessible via a normal high-level subroutine call.
The function is responsible for taking parameters off the stack and placing values
into proper registers. A "trap" instruction is then executed to pass control to the
RTOS which interprets the registers and determines which of its own functions
needs to be run. (The DO register is usually set in the interface function to arbitrate
which function in the RTOS is being requested.)

In order to track service calls, code has been added to each service call in the
interface library. This code writes the contents of the registers that are used to
specific known locations within a defined data table. The data table has defined
offsets within it for each parameter of each function. (For pSOS+, the data table
requires about 1000 bytes.)

105

Chapter 6: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

So for each function, any register that has been set with a specific value to be
passed to the RTOS has its value written to a location unique to that function and
parameter. This is accomplished through a simple MOVEM instruction which
writes all registers that have been assigned values by the service call to a specific
memory location in the data area. One MOVEM is done right before the "trap"
instruction and one is done upon return.

When running an application that uses the "instrumented" interface library (that is,
the interface library to which code has been added for RTOS measurements),
tracing the address range of the defined data table captures all data being passed
into and returned from each and every service call.

When trace information is captured, a RTOS specific inverse assembler decodes
the information and displays the intimate details of the interaction between an
application and a RTOS.

The data table needed for a specific RTOS relates directly to the number of
functions available from a RTOS and the number of parameters passed to and
returned from such a RTOS. For each function, there is a set of long words
associated with the call to the function and a set for the return from the function.

For instance, in the pSOS+ RTOS, there is a function called "t_create()" which
creates atask. There are 6 registers which are assumed to be set before trapping to
the kernel and 2 output registers which are set by the kernel before it returns. One
of the 6 input registers is DO whose contents, as noted above, specify the function
pSOS+ should execute. Because the function is already identified by the data table
locations being written to, it is not necessary to write out the value of DO.
Consequently, only 5 long words are reserved for register values written when the

"t _create" function is called. Upon return, both registers contain information

specific to the call; therefore, 2 long words are reserved for the "t_create" return
values.

The portion of the code in the "instrumented" interface library for the "t_create"
call would look like:

MOVEM.L D1-D5,HPOS t create_Entry ;write out input data
TRAP #SVCTRAP ; trap to the kernel
MOVEM.L DO-D1,HPOS_t create Exit ;write out return data

and the respective data area declarations would look like:

HPOS_t_create_Entry DS.L 5
HPOS_t_create_Exit DS.L 2

Notice that a single MOVEM instruction can move multiple register values to the
data area.

106

Chapter 6: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

Instructions added for service call tracking represent the most minimal intrusion
while giving you almost complete knowledge of the interaction between your
application and the RTOS kernel. The information that's missing is knowledge
about the tasks running and when task switches take place. You can add task
information by writing a "task switch callout" routine.

Task Switch Tracking

Thetask switch calloutoutine is a hook provided by the RTOS vendor. It allows a
user to define a routine to be called every time a task switch occurs. Upon calling
the routine, two registers are set with pointers to the task control blocks of the task
exiting and the task being entered.

For the simplest task switch tracking, the callout routines need only consist of two
instructions: one writing out the task name of the task being exited, one writing the
task name of the task being entered. This means the data area must have tw
positions for task entry and exit.

For software performance analysis support, a little more needs to be done. The
software performance analyzer needs separate memory locations for the start and
end of each interval it is measuring. Since each task needs to be measured, each
task must have its own unigque start and end memory locations. The callout routine
must write to these unique locations depending on which tasks are switching. In
the callout routine, the task ID is used as an index to a special tabkickdts

area where there is a unique location for every task’s exit and entry. This data area
is application dependent and must be modified with the application’s task names.
The "rtos_edit_psos" script creates the file "tables.s" which defines these task
buckets.

Clock Ticks

There are two methods for tracking clock ticks. First, if the application uses the
TM_TICK OS service call, clock tick information is automatically available since
this service call is instrumented.

However, some applications may choose not to use the "C" interface function for
this feature and may write the associated interrupt service routine (ISR) directly in
assembly language code for speed reasons. In this case, the interrupt service
routine should be instrumented with a simple MOVE.W Dx,HPOS_CLOCK_TICK
instruction before the trap to pSOS+. (Make sure it is a word write to the
HPOS_CLOCK_TICK location.) The memory location corresponding to

107

Chapter 6: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

Note

CLOCK_TICK is placed at the end of the data table so it may be simply included
or excluded from the range of memory accesses stored in the trace.

Selective Tracking

With the data area for service calls defined, it is possible to selectively trace certain
functions. The only limiting factors are the resources of the emulation bus analyzer
which allow you to track any range (of any size) along with any 8 distinct memory
locations. The 8 locations may be consecutive which, in essence, provides another
range for needed cases.

OS Overhead Tracking

In order to get some idea of how efficient an application is, that is, to see how
much time is spent switching tasks as opposed to executing them, the software
performance analyzer can display a dynamic histogram of the time spent in the OS
kernel.

This is done, as is the service call tracking, by adding simple MOVE instructions to
the service call routines. The first MOVE instruction, executed just before the trap
to the kernel, writes to a location that represents the start of the OS interval. The
second MOVE instruction, executed just after the return from the trap, writes to a
location that represents end of the OS interval. The software performance analyzer
measures the time between these writes as time spent in the OS kernel.

Using this method, some kernel time may be missed due to clock ticks. The time
spent processing clock ticks is minimal and consistent, so this time is of little
consequence. Additional kernel time is missed when task switches occur because
the task has used up its time slice. If excessive timeouts occur, the measurement of
the kernel’'s accumulated time will be slightly low.

Task and Queue Naming

Tasks and queues are created with ASCIl names but mostly referenced with
numbers. If a little more information is written out on each service call, these
numbers can be translated into names when displayed in the trace. After the
register values are written via the MOVEM instruction (for service call tracking), a
short subroutine that translates the ID number into a 32-bit name may be called.

108

Chapter 6: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

This translation is possible because information was stored earlier when the item
was created. When a "<t|q>_create" service call is made, the name of the item is
written to a table indexed by the ID number. With the name stored, it's easy (and
quick) to reference any name if the ID number is known.

If the "translation" routine is called, it will index into the appropriate table and

write out the 32-bit name to a designated location. If this location is traced, the
RTOS inverse assembler can decode the data and output a name "xyzz" instead of
just "id=00030000".

Stack and Memory Tracking

Stack information such as size, pointers, and bytes left on stack can be tracked
dynamically as an application runs. The necessary data is mostly written out
during the task switch callout routine. For this to work, there are several things that
must be done before the application is running and switching tasks:

1 The "bucket" table must be filled with all the names of the application’s ta
This creates a data area that will be used to save the task’s stack values.

2 The "t _create" service call is instrumented to call a routine that will save each
task’s two stack sizes in the appropriate bucket.

3 The "t_start" service call is instrumented to call a routine that will save several
data items: the task ID number, the memory locations in the Task Control
Block that hold the stack pointer values, the limit for each stack, and the task
bucket’s address. Also, data is written to a special area in the general data area
so the stack creation information can be captured and seen in the trace display
at startup time.

Once the application is switching tasks, the task switch callout routine uses the
previously saved data to keep track of stacks. In the callout routine, the task being
pre-empted and the task being started running are found by indexing via the task ID
to the saved task bucket's address. This address is used to access stack data. The
stack data can then be written out and interpreted by the RTOS inverse assembler
to display the stack bytes left on exit from a task and entry to a task.

User-Defined Areas

At the bottom of the general data table is a set of user-definable locations. There
are twelve locations which an application can use in any way. These locations are
intended to allow you to track other parts of an application while simultaneously
following the kernel activity.

109

Chapter 6: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

Note

A good example use of this facility would be to instrument the entry and exit of
your application’s interrupt service routines. By doing this, you could get a
histogram in SPA of the time spent in any interrupt service routine.

If a write is done to any of these locations, the captured data is displayed as a hex
number and, if possible, translated to ASCII characters. This allows easier
debugging since seeing "Loop" in a display easily reminds you what part of the
application you just executed versus seeing "0x4c6f6f70" and trying to mentally
translate a number to a location of code.

If you are capturing on a range that includes any of the 12 user-defined locations,
all of these locations must be written to with longword writes in order for the trace
display to work correctly.

RTOS Symbol Names

When your application includes the instrumented service calls, the data area
included has many global symbols names. In order to keep these names from
conflicting with your application’s symbol names, the symbols all have one of
three standard prefixes: "HPOS ", "HP_RTOS "or" HPOS_". The most
common standard prefix for the data area symbols is "HPOS_". Only four (4)
symbols do not use that prefix: HP_RTOS_TRACK_START,
HP_RTOS_TRACK_END, HPOS_START_CALLOUT, and
_HPOS_SWITCH_CALLOUT.

110

Chapter 6: How the RTOS Measurement Tool Works

The Data Table

Task Entry (1 long word)
Task Exit (1 long word)
Service Call 1 Entry (nl longs)
Service Call 1 Exit (n1’ longs)
Service Call 2 Entry (n2 longs)
Service Call 2 Exit (n2' longs)
Service Call 3 Entry (n3 longs)
Service Call 3 Exit (n3' longs)

Service Call N Entry (nN longs)
Service Call N Exit (nN’ longs)

Clock Tick (1 word)
Task Name (1 long)
Queue Name (1 long)
Semaphore Name (1 long)
Region Name (1 long)

Stack Task Name (1 long)
Stack Supr Size (1 long)
Stack Supr Ptr (1 long)
Stack User Size (1 long)
Stack User Ptr (1 long)

User Numeric (1 long)
User Numeric (1 long)
User Numeric (1 long)
User Numeric (1 long)
User Numeric (1 long)
User Numeric (1 long)
User Ascii (1 long)
User Ascii (1 long)
User Ascii (1 long)
User Ascii (1 long)
User Ascii (1 long)
User Ascii (1 long)

Instrumented Code for Real-Time OS Tracking

111

Chapter 6: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

Extra Memory Locations

Kernel Overhead Start (1 word)
Kernel Overhead End (1 word)
Task Buckets (created by macro)

Task_abcd "abed’
Enter_Task_abcd (1 long word) ;SPA interval starting address
Exit_Task_abcd (1 long word) ;SPA interval ending address

MStack_Siz_abcd (1 long word) ;Master stack size
MStack_Ptr_abcd (1 long word) ;Master stack ptr
MStack_Lmt_abcd (1 long word) ;Master stack limit
UStack_Siz_abcd (1 long word) ;User stack size
UStack_Ptr_abcd (1 long word) ;User stack ptr
UStack_Lmt_abcd (1 long word) ;User stack limit

Tid_abcd (1 long word) ;Task id number
Task_name_abcd EQU ’'name’ ;task name symbol
Task_cdef ‘cdef’

Enter_Task_cdef (1 long word) ;SPA interval starting address
Taél.(_name_cdef EQU ‘’cdef ;task name symbol
Task_efgh ‘efgh’

Enter_Task_efgh (1 long word) ;SPA interval starting address

Taék_name_xyzz EQU 'xyzz' ;task name symbol

112

Chapter 6: How the RTOS Measurement Tool Works
How OS Service Calls are Captured and Displayed

How OS Service Calls are Captured and Displayed

The RTOS Measurement Tool uses the emulation bus analyzer and software
performance analyzer to capture operating system software activity in real-time.
The captured data is actually a series of memory writes to a data table. These
writes can contain encoded information about an OS service call that was just
executed or a task switch that just occurred.

When an RTOS action key is pressed in the emulator/analyzer interface, a
command file sets up the analyzer to capture the writes to the data table. By setting
up the analyzer to capture only writes to selected areas of the data table, you can
track specific OS activity or look for a specific sequence of activity.

Inverse Assembler

In the same way that bus cycle information is decoded into assembly languag
mnemonics in a normal trace display, writes to the data table are decoded int
service call mnemonics in the RTOS trace display. The software mechanism that
decodes information captured by the emulation bus analyzer is calleccese
Assemble(lA).

A short example should help. First, let's assume the segment of a user’s
application that makes an OS service call looks as follows:

mailbox = 2;

message = 1234,

priority = URGENT;

return_value = g_send(mailbox, message, priority);

The function "q_send()" is an OS service call that sends a message to a specific
mailbox.

Instrumented Library Writes to the Data Table

Because the user has substituted our instrumented interface library in place of the
original OS interface library, the call to "g_send" causes additional code to execute.
This code simply writes information to the data table that identifies the OS service
call being executed, the parameters being passed into it, and upon return, writes out
the return value from the OS kernel.

113

Chapter 6: How the RTOS Measurement Tool Works
How OS Service Calls are Captured and Displayed

Data Table Writes Captured by Analyzer

By clicking on an action key (or running a command file), the emulation bus
analyzer is automatically set up to capture memory writes to the data table. The
captured data represents the flow of activity into and out of the OS kernel through
OS service calls. For the example above, the inverse assembler would decode the
captured data and display it as:

> g_send(mbox=2, msg=1234, prio=URGENT)
<- g_send()

Parameters Displayed with Mnemonics

Using the example above, a few more details of inverse assembly can be described.
First, you can see that the actual parameter values were captured by the analyzer
and are displayed in the trace. Note further that each parameter is preceded by a
mnemonic that indicates what the parameter is. The mailbox parameter value of 2
is preceded with a "mbox=". These are the same parameter mnemonics that the OS
vendor uses in their OS manual. This allows very easy interpretation of the trace
parameters without needing to reference the OS manual.

Also notice that the parameter indicating message priority, "prio=" does not have a
numeric value but displays the word "URGENT". Since many OS service call
parameters have a finite number of valid input values, we have decoded these
parameters directly into their English language equivalents to again make it easy to
read the trace without referencing the OS manual.

114

Chapter 6: How the RTOS Measurement Tool Works
How OS Service Calls are Captured and Displayed

Service Call Entry and Exit and Task Switches

Another point of interest is the entry (->) and exit (<-) arrows. This is where an
RTOS trace most greatly differs from a normal source code trace.

Since areal-time OS is used in part to manage application execution at a higher
level, it has the capability to switch execution from one task to another whenever
any OS service call is executed. This may happen for any number of reasons based
on changing task priorities, the sending and waiting for messages at mailboxes, or a
task using up a given time slice.

Given this behavior, application code that evokes an OS service call may not
immediately return from that service call but may instead begin executing code in
another task. For example, when the "g_send()" OS service call in the previous
trace example sent a message to the mailbox, if another task of higher priority was
waiting for a message at that same mailbox, then that task would now resume
executing and the trace would look something like the following:

-> g_send(mbox=2, msg=1234, prio=URGENT)
--- Exiting Task 'TSK1’ -------------

--- Entering Task 'TSK2’ ------------

<- g_receive(msg=1234)

You can see that task 'TSK1’, which sent the message has now exited and task
'TSK2', which had been waiting for a message with the "g_receive()" OS service
call, has now started up again. You can also see in the return parameter of the

"g_receive()" call that it did indeed receive the same message that was sent.

Inverse Assemblers are Tailored to the OS

Note that the examples above use the inverse assembler for the pSOS+ real-time
0OS. Each RTOS Measurement Tool has a unique inverse assembler that is tailored
to the particular real-time OS.

115

116

Part 3

Installation Guide

Instructions for installing and configuring the product.

117

Part 3

118

Installation

119

Installation

This chapter describes the installation of RTOS emulation software that runs on
UNIX workstations.

The RTOS emulation product is an extension to the HP 64700 Series emulator and
Graphical User Interface (or Softkey Interface) products.

If you have ordered the emulator, interface, and RTOS emulation products together
(or just the interface product and the RTOS emulation product), the software
products are on the same media. In this case, refer to the installation instructions in
your Graphical User Interfadéser’s Guide

If you have ordered the emulator interface and RTOS emulation products
separately, install the emulator interface first. Then, install the RTOS emulation
product using the instructions in this chapter.

This chapter shows you how to:
¢ Install HP 9000 software.

¢ Install Sun SPARCsystem software.

When the Real-Time OS Measurement Tool is installed, you will have an enhanced
emulation window with two additional entries available infiie - Emul700

pulldown menuPSOS+ RTOS Measurement Tool .andSPA for PSOS+ ...

These two entries will, respectively, bring up a new emulation window and bring

up a Performance Analyzer window, each with RTOS action keys defined. You
can do anything in these windows that you would normally do.

120

Chapter 7: Installation
To install HP 9000 software

To install HP 9000 software

Perform the following steps to install HP 64700 Series software on the HP 9000
Workstation:

Check the HP-UX operating system version

HP 64700 Series software requires an HP-UX operating system version of 7.03 or
greater. To determine the version of your HP-UX operating system, enter the
command:

uname -a <RETURN>

If the version number of the HP-UX operating system is less than 7.03, you must
update the operating system to 7.03 or higher before you can use the RTOS
emulation product.

Refer to the "Updating HP-UX" chapter of tH®-UX System Administration
Tasksmanual for detailed information on updating your system.

Become the root user on the system you want to update.
Make sure the tape’s write-protect screw points to SAFE.

Put the "HP 64700 Series Products" update tape in the tape drive that will be the
"source device".

Be sure that the tape drive BUSY and PROTECT lights are on. If either the
PROTECT or BUSY light is off, check the tape’s write-protect screw or the tape
drive for proper operation. The tape drive will condition the tape for about three
minutes or less for shorter tapes.

When the BUSY light stays off for at least 10 seconds, start the update program by
typing:

letc/update

When the HP-UX Update Utility Main Menu screen appears, make sure that the
source and destination devices are correct. The defaults are:

121

Chapter 7: Installation
To install HP 9000 software

/dev/update.src (for Series 300 and 400 Workstations)

/ (for the destination directory)

8 If you do not use the defaults, change the "source device" and/or "destination
directory" as appropriate.

9 SelectLoad Everything from Source Media when your source and
destination directories are correct.

10 To begin the update, press the softk&glect tem> . At the next menu, press
the softkey<Select Item> again. Answer the last prompt with

y

and press <RETURN>. It takes about 10 minutes to read the tape.

11 When the installation is complete, read /tmp/update.log to see the results of the
update.

122

Chapter 7: Installation
To install Sun SPARCsystem software

To install Sun SPARCsystem software

Refer to theSoftware Installation Guideperating notice (included with this
binder) for instructions on installing software on Sun SPARCsystem computers.

If you are installing a Graphical User Interface product, refer to the Graphical User
InterfaceUser’s Guidefor additional software installation instructions.

If you are installing a Softkey Interface product, refer tatbe to Use the Softkey
Interface on Your SPARCsysteperating notice for additional software
installation instructions.

123

124

Glossary

bucket a portion of a memory area to which information about a particular task
or queue is saved.

callout routine a mechanism provided by the real-time OS that allows you to
execute a routine at certain points in the application, for example, when a task
starts or when a task switch occurs.

data table the table to which real-time OS information is written while the
application executes in real time. The emulation bus analyzer captures writes to
the data table and decodes the stored trace information in an easy-to-read display.

device call a service call that communicates with an 1/O device.

emulation bus analyzer the analyzer that captures information on the
processor bus as programs execute. This analyzer is used to capture writes t
data table which are then decoded to provide RTOS measurement informatio

instrumented service call library an interface library with callout routines
and instructions that write to the data table and save information in task and queue
buckets.

interface library a library of assembly language routines which allow a
high-level language application to call an assembly language based real-time
operating system.

inverse assembler software that decodes hexadecimal machine code values
into mnemonics that are easy to read. In the case of the RTOS measurement tool,
writes to the data table are decoded into real-time OS mnemonics.

task an independent program or process that executes under the real-time
operating system.

service call a call, made by a task, to a function in the real-time OS kernel.

125

Glossary

software performance analyzer an instrument that records information about
events that occur during program execution. The software performance analyzer is
used to compare time spent in different program modules.

126

Index

about, trace command optid,

action keys96
actionKeys.numColumns, X resour&é,
actionKeysSub.keyDefs, X resour&,
after, trace command optio®il

background emulation monitd@?2
before, trace command optid1,
break_on_trigger (in trace commangl},
bucket,17, 109, 125

buckets,107

bytes left on stack,09

callout routine125
callout routines

task start19

task switch19, 105, 107, 109
clock ticks,32, 85, 90, 105, 107-108
command files95
configuration table, pPROBE¥6
console procedures, pROBEAG
coordinated measurement®;-73
count histogram display of task ever@ig,
custom RTOS measuremer85;97
customize scriptl4

data bus width91

data tablel9, 85, 105, 111, 125
description85

device call[125

device calls29

disable, trace command opti®{,

duration (function), show histogram)

dynamic memory usage, trackirkf-56

emul700 comman@1
-Xrm option,96

127

emulation bus analyzes, 14, 26, 72, 85, 114, 125
resources ofl 08
emulation monitor22
emulrtos_psos, emulator startup scrdt, 96
enable, trace command opti@1],
environment variableg1
HP6400017
HP64KPATH,95
PATH, 21
PROCESSOR21
RTOS_UNIQUE,74
error checking informatiorg5, 90
error return31
commenting out]00
event calls36-37
event numberg7
event, received by specific tagk,
events (SPA)
defining for taskst4
table display66
events (task)
count histogram displag,7
time histogram displayg5

F files

io_drivers.c18, 76

probe io.c18, 76

psos.h18, 76

RTOS sourcel7

simio.h,18, 76

tables.s17, 19

tables 16.92

track_os.s17, 19, 65, 85, 98, 105
find_sequence, trace command opt@h,
foreground emulation monitc22
function

any task using &1

specific task using @8
function duration histogram, show norméb,

G (glossary125-126

128

Index

histogram
normal function duratior¥,0
task events71
user events/1
histogram display of task events
count,67
time, 65
HP64000 environment variablE?
HP64KPATH environment variables

ID-to-name translation, commenting 099,
initialization procedures, pROBE#6
installation,120

HP 9000 softwarel,21-122

Sun SPARCsystem23
instrumented service call librarg5, 98-100, 106, 113, 125
interface library105, 113, 125
intrusion,98-100, 105
inverse assembleB5, 104, 106, 109, 113, 115, 125
invocations (service call), show tabs,
io_drivers.c file,18, 76

levels of RTOS measuremeris,

Measure_Ovrhd in SP&5
memory calls56
memory usagel09
memory usage, tracking3-56
memory, extra location§,12
message queues
Seequeues
message, from specific task to specific qudée,
mnemonics in RTOS trace displdy,4
monitor, emulation22

names, for tasks and queutd3
non-RTOS states§5, 91

only, trace command optioil
operating system versions supportezi]
OS overhead tracking00, 108
OS_Time in SPAG5

overflow, task time72

129

Index

overhead (OS) trackind08
commenting out100

PATH environment variabl@1
prepare for RTOS measuremerit$,
pROBE+,18-19, 76

probe_io.c file 18, 76

PROCESSOR environment varial®4,
processor type&1

psos.h file 18, 76

queue calls34-35

gueue namingl08

queues
defining,17
naming,17

real-time runs, emulator restrictid2g
requirementsl4
RTOS information, trace commands to capt@de,
RTOS measurement tool

how it works,104

overview,4

testing,23
RTOS measurements

creating your owng5-97

emulator/analyze6

preparing forl4

software performance analyzég,
RTOS source files,7
RTOS symbol name§,10
rtos_edit_psos script,7, 74
RTOS_UNIQUE environment variabié4

scripts
customize 14
rtos_edit psod,7, 74
selective trackingl 08
semaphore call§8-39
service call library (instrumented5, 98-100
service calls?9, 32, 85, 105, 108, 113-115, 125
commenting outl00
entry and exit115

130

Index

parameters39
show table of invocation§9
single call tracking40
two call tracking41
simio.h file,18, 76
simulated /018, 76
software performance analyzbr,14, 62, 105, 107-108, 126
testing,24
software versiong, 21
source files, RTOS,7
SPA events
Seeevents (SPA)
SPA support, commenting 099
stack activity 30, 32
commenting out99
stack information85, 90
stack pointers]09
stack size109
stack usageq4, 105, 109
storage qualifiers in trace commangs,
supported system versiorig1
symbol names] 10

t _create service call09
t_create() functiori.06
t_start service call,09
table display of SPA evens6
table of service call invocation89
tables.s file17, 19
tables_16.s file92
Task Control Block109
task events histograrml
task naming108
task start callout routind9, 85
task switch callout routind,9, 85, 105, 107, 109
task switches32, 89, 107-108, 115
commenting outl00
in event call tracking37
in memory call trackingh6
in queue call trackin35
in semaphore call tracking9
specific task switch trackingb

131

Index

task time overflowy2
tasks 125

defining,17

four task tracking44

naming,17

single task tracking}3

SPA data for specific task8

SPA event definition64

time interval measurement}-71
time histogram display of task ever@s,
time interval measuremen}-71
time overflow, task72
time slice,108
time stamp27
trace commands

about option91

after option91

before option91

disable option91

enable option91

find_sequence optio81

only option,91

storage qualifier91
trace commands to capture RTOS informatiin,
trace display

mnemonics in114

normal,58

RTOS,59
traces, displayingg7-59
track_os.s filel7, 19, 65, 85, 98, 105
tracking

memory,109

OS overhead, 08

OS overhead, commenting o0

selective 108

stack,109
translation (ID to name) routin2D9
trig2 break,73
trig2 signal 24, 72

disabling,73
type of processopl1

132

Index

user events histograml
user-defined areas in data talll@9
user-defined data table locatioB88, 90

variable
any task accessing 22
specific task accessing49

X resources
actionKeys.numColumn86
actionKeysSub.keyDef86

133

Index

134

Certification and Warranty

Certification

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard further
certifies that its calibration measurements are traceable to the United States
National Bureau of Standards, to the extent allowed by the Bureau'’s calibration
facility, and to the calibration facilities of other International Standards
Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in materials and
workmanship for a period of 90 days from date of installation. During the warranty
period, HP will, at its option, either repair or replace products which prove to be
defective.

Warranty service of this product will be performed at Buyer’s facility at no charge
within HP service travel areas. Outside HP service travel areas, warranty service
will be performed at Buyer’s facility only upon HP's prior agreement and Buyer
shall pay HP’s round trip travel expenses. In all other cases, products must be
returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping
charges to HP and HP shall pay shipping charges to return the product to Buyer.
However, Buyer shall pay all shipping charges, duties, and taxes for products
returned to HP from another country. HP warrants that its software and firmware
designated by HP for use with an instrument will execute its programming
instructions when properly installed on that instrument. HP does not warrant that
the operation of the instrument, or software, or firmware will be uninterrupted or
error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,
unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance agreements are
available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

	Measurements for the pSOS+ Real-Time Operating System
	In This Book
	Contents
	User’s Guide
	Preparing Your Application for RTOS Measurements
	Making RTOS Measurements with the Emulator/Analyzer
	Making RTOS Measurements with the SPA
	Accessing pROBE+ through Simulated I/O
	Customizing the RTOS Measurement Tool

	Concept Guide
	How the RTOS Measurement Tool Works

	Installation Guide
	Installation

	Glossary
	Index
	Certification and Warranty

