
64400-90901

E0488

ADVANCED INTEGRATION ENVIRONMENT

HP 64410 Emulation:

68020 Emulator Reference Manual

OesignCenter

68020 Emulation:
Reference Manual

F//09 HEWLETT
~/!a PACKARD

Edition 2

64400-90901
E0488
Printed in U.S.A. 04/88

Notice

Hewlett-Packard makes no warranty of any kind with
regard to this material, including, but not limited to, the im -
plied waITanties of merchant.ability and fitness for a par­
ticular purpose. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in
connection with the furnishing, performance, or use of this
material.

Hewlett-Packard assumes no responsibility for the use or
reliability of its software on equipment that is not furnished by
Hewlett-Packard.

©Copyright 1987,1988 Hewlett-Packard Company.

This document contains proprietary information, which is
protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to
another language without the prior written consent of Hewlett­
Packard Company. The information contained in this document is
subject to change without notice.

HP and HP-UX are trademarks of Hewlett-Packard Company.

UNIX is a registered trademark of AT&T.

Logic Systems Division
8245 North Union Boulevard
Colorado Springs, CO 80920, U.S.A.

Printing History

New editions are complete revisions of the manual. Update pack­
ages, which are issued between editions, contain additional and
replacement pages to be merged into the manual by the customer.
The dates on the title page change only when a new edition or a
new update is published.No information is incorporated into a
reprinting unless it appears as a prior update; the edition does not
change when as update is incorporated.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual or up­
date was issued. Many product updates and fixes do not require
manual changes and, conversely, manual corrections may be
done without accompanying product changes. Therefore, do not
expect a one to one correspondence between product updates and
manual updates.

Preliminary
Edition 1
Edition 2

02/87
01188
04/88

64400-90901
64400-90901
64400-90901

E0287
E0188
E0488

Certification and Warranty

Certification

Warranty

Hewlett-Packard Company certifies that this product met its
published specifications at the time of shipment from the factory.
Hewlett-Packard further certifies that its calibration measure­
ments are traceable to the United States National Bureau of Stan­
dards, to the extent allowed by the Bureau's calibration facility,
and to the calibration facilities of other International Standards
Organization members.

This Hewlett-Packard system product is warranted against
defects in materials and workmanship for a period of 90 days from
date of installation. During the warranty period, HP will, at its op­
tion, either repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer's
facility at no charge within HP service travel areas. Outside HP
service travel areas, warranty service will be performed at
Buyer's facility only upon HP's prior agreement and Buyer shall
pay HP's round trip travel expenses. In all other cases, products
must be returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall
prepay shipping charges to HP and HP shall pay shipping charges
to return the product to Buyer. However, Buyer shall pay all ship­
ping charges, duties, and taxes for products returned to HP from
another country. HP warrants that its software and firmware

Limitation of
Warranty

Exclusive Remedies

designated by HP for use with an instrument will execute its
programming instructions when properly installed on that instru­
ment. HP does not warrant that the operation of the instrument,
or software, or firmware will be uninterrupted or error free.

The foregoing warranty shall not apply to defects resulting from
improper or inadequate maintenance by Buyer, Buyer-supplied
software or interfacing, unauthorized modification or misuse,
operation outside of the environment specifications for the
product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically
disclaims the implied warranties of merchantability and fit­
ness for a particular purpose.

The remedies provided herein are buyer's sole and ex­
clusive remedies. HP shall not be liable for any direct, in­
direct, special, incidental, or consequential damages,
whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance
agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales
and Service Office.

Safety

Summary of Safe
Procedures

Ground The
Instrument

Do Not Operate In An
Explosive

Atmosphere

Keep Away From Live
Circuits

The following general safety precautions must be observed during
all phases of operation, service, and repair of this instrument.
Failure to comply with these precautions or with specific warn­
ings elsewhere in this manual violates safety standards of design,
manufacture, and intended use of the instrument. Hewlett-Pack­
ard Company assumes no liability for the customer's failure to
comply with these requirements.

To minimize shock hazard, the instrument chassis and cabinet
must be connected to an electrical ground. The instrument is
equipped with a three-conductor ac power cable. The power cable
must either be plugged into an approved three-contact electrical
outlet or used with a three-contact to two-contact adapter with the
grounding wire (green) firmly connected to an electrical ground
(safety ground) at the power outlet. The power jack and mating
plug of the power cable meet International Electro technical Com­
mission GEC) safety standards.

Do not operate the instrument in the presence of flammable gases
or fumes. Operation of any electrical instrument in such an en­
vironment constitutes a definite safety hazard.

Operating personnel must not remove instrument covers. Com­
ponent replacement and internal adjustments must be made by
qualified maintenance personnel. Do not replace components with

Do Not Service Or
Adjust Alone

Do Not Substitute
Parts Or Modify

Instrument

Dangerous Procedure
Warnings

Warning

Safety Symbols
Used In Manuals

the power cable connected. Under certain conditions, dangerous
voltages may exist even with the power cable removed. To avoid
injuries, always disconnect power and discharge circuits before
touching them.

Do not attempt internal service or adjustment unless another per­
son, capable of rendering first aid and resuscitation, is present.

Because of the danger ofintroducing additional hazards, do not in­
stall substitute parts or perform any unauthorized modification of
the instrument. Return the instrument to a Hewlett-Packard
Sales and Service Office for service and repair to ensure that
safety features are maintained.

Warnings, such as the example below, precede potentially
dangerous procedures throughout this manual. Instructions con­
tained in the warnings must be followed.

Dangerous voltages, capable of causing death, are present in
this instrument. Use extreme caution when handling, testing,
and adjusting.

The following is a list of general definitions of safety symbols used
on equipment or in manuals:

::P ..J...

Instruction manual symbol: the product is marked with this sym­
bol when it is necessary for the user to refer to the instruction
manual in order to protect against damage to the instrument.

Indicates dangerous voltage (terminals fed from the interior by
voltage exceeding 1000 volts must be marked with this symbol).

Protective conductor terminal. For protection against electrical
shock in case of a fault. Used with field wiring terminals to indi­
cate the terminal which must be connected to ground before
operating the equipment.

LI)W-noise or noiseless, clean ground (earth) terminal. Used for a
signal common, as well as providing protection against electrical
shock in case of a fault. A terminal marked with this symbol must
be connected to ground in the manner described in the installation
(operating) manual before operating the equipment.

Frame or chassis terminal. A connection to the frame (chassis) of
the equipment which normally includes all exposed metal struc­
tures.

Altematingcurrent(power line).

Direct current (power line).

Alternating or direct current (power line).

Note

Caution •
Warning

The Note sign denotes important information. It calls your atten­
tion to a procedure, practice, condition, or similar situation
which is essential to highlight .

The Caution sign denotes a hazard. It calls your attention to
an operating procedure, practice, condition, or similar situa­
tion, which, if not correctly performed or adhered to, could
result in damage to or destruction of part or all of the
product.

The Warning sign denotes a hazard. It calls your attention to a
procedure, practice, condition or the like, which, if not correctly
performed, could result in injury or death to personnel.

Using This Manual

Organization

Chapter 1

Chapter 2

Appendix A

This manual provides detailed reference for the 68020 emulator
commands. The detailed syntax descriptions apply to the
emulator functions only. See the Analysis Reference Manual for
32-Bit Microprocessors for detailed descriptions of analysis com­
mands.

Introducing 32-bit Emulation contains brief functional and
physical descriptions of the emulation system and descriptions of
basic emulation features. It also contains information on
transparency and real-time emulation mode considerations.

Emulation Command Syntax describes the emulation com­
mands in detail with command descriptions, command syntax
diagrams, and examples

User Interface/HP-UX Cross Reference translates the HP
64000-UX system softkeys into commands that can be entered
from the HP-UX prompt.

Appendix B

Understanding
The Examples

Using Control Characters And Other Commands describe
the use of control characters in the emulation session, and HP-UX
and HP 64000-UX system commands available in an emulation
session.

This manual assumes that you are using the User-Friendly Inter­
face Software (HP 64808S) which is activated by executing the HP
64000-UX pmon command. This means that the manual will
show you how to enter HP 64000-UX system commands (edit,
compile, assemble, link, msinit, msconfig, etc.) by telling you to
press various softkeys.

If you are not using "pmon", you will find the User Interface/HP­
UX CROSS REFERENCE appendix of the this manual especially
useful. The cross reference table will show you how the "pmon"
softkeys translate into commands that can be entered from the
HP-UX prompt.

The examples provided throughout this manual use the following
structure:

PRESS edit module.S

PRESS or press

edit

module.S

means you should enter a command by
selecting the softkeys and/or typing in any
file names or other variables which are
not provided in the softkey selections.

softkeys will appear in bold type. Usually
you will not be prompted to use the --­
ETC--- softkey to search for the ap­
propriate softkey template. Three softkey
templates are available at the HP 64000
system monitor level.

this is the name of a file which you must
type in. Softkeys are not provided for this

type of selection since it is variable.
However, a softkey prompt such as
<FILE> will appear as a softkey selec­
tion.

For most commands, you must press the Return key before the
command is actually executed.

Notes

Contents

Chapter 1 Introducing 32-bit Emulation

Introduction ... 1-1
What Is An Emulation System? 1-2

Physical Description 1-2
Functional Description 1-2

What Tasks Does The Emulator Do? 1-5
Does The Emulation System Run Interactively With Other
HP 64000-UX Modules? 1-6
What Effect Does The Emulator Have On Your Program? ... 1-6

Real-Time Mode Vs. Nonreal-Time Mode 1-7
Real-Time Mode Capabilities 1-7
Real-Time Mode Restrictions 1-7

What Is Happening While Your Program Is Running? 1-9
During Target Program Execution 1-9
During Emulation Monitor Program Control 1-9

How Does The Emulator Affect Your Microprocessor
System? ... 1-10
What Are The Steps To Using The Emulator? 1-11

Preparing The Software 1-11
Preparing The Emulator 1-11
Using The Emulator 1-11

Contents-1

Chapter 2 EMULATION COMMAND SYNTAX

Overview ... 2-1
Syntax Conventions 2-2
Command Summary 2-3
at_execution .. 2-5
break .. 2-7
copy .. 2-8
copy display .. 2-12
copy global_symbols 2-13
copy help ... 2-14
copy loc_sym 2-15
copy memory 2-16
copy registers 2-20
copy sw _breakpoints 2-22
copy trace .. 2-24
copy trace_specification 2-25
display .. 2-26
display global_symbols 2-28
display local_symbols 2-29
display memory 2-30
display registers 2-34
display simulated_io 2-36
display sw _breakpoints 2-37
display trace .. 2-39
display trace_specification 2-40
execute .. 2-41
--EXPR-- ... 2-43
halt ... 2-45
help ... 2-46
load ... 2-47
modify · 2-50
modify analysis 2-52
modify configuration 2-53
modify keyboard_ to _simio 2-54
modify memory 2-55
modify registers 2-59
modify sw _breakpoints 2-61
reset .. 2-64

2-Contents

run ... 2-65
step ... 2-67
store .. 2-69
--SYMB-- .. 2-72
trace .. 2-74
wait ... 2-75

Appendix A User Interface Software/HP-UX Cross Reference

Appendix B Using Control Characters And Other Commands

Using Control Characters . B-1
Other Control Characters And Commands You Can Use . . . B-2

Contents-3

Illustrations

Figure 1-1 Steps to Using the Emulator 1-12

Tables

Table 2-1. Emulation Command List 2-3
Table A-1. User Interface/HP-UX Cross Reference A-1

4-Contents

1

Introducing 32-Bit Emulation

Introduction This chapter answers the following questions:

• What is an emulation system?

• What does an emulator enable you to do?

• Does the emulator system run interactively with other HP
64000-UX Microprocessor Development Environment
modules

• Does using an emulator have an effect on your program?

• What is happening while your program is running?

• What does the emulator do to your microprocessor system?

• What are the steps in using the emulator?

Introducing 32-Bit Emulation 1-1

What Is An
Emulation System?

Physical Description

Functional
Description

The 32-bit emulation system is a separate functional module
within the HP 64000-UX Microprocessor Development Environ­
ment. The emulation system consists of several hardware
modules, the emulation software, and technical manuals. The fol­
lowing hardware modules make up a typical 32-bit emulation sys­
tem:

• The emulation subsystem for your microprocessor

• Integrated analysis board

• Integrated analysis expansion board

• Analysis interconnect board

• Processor specific analysis bus generator board

• Processor CPU cable

The emulation system may be used interactively with other HP
64000-UX emulation and analysis systems for more sophisticated
measurements.

The purpose of the emulator is to aid in the development of your
(target system) hardware and software design. You can use
emulation during development of your system to ensure that the
hardware and software being developed will work together. The
emulator can be used in-circuit, alone, or with other products to
debug your target system hardware and to integrate your
software program modules with your target system hardware as
you progress through the design phase.

1-2 Introducing 32-Bit Emulation

Emulator Transparency

To properly perform its function, the emulator must look like the
microprocessor which will eventually control your system, as seen
by your target system hardware. The function, signal quality, sig­
nal timing, loading, drive capacity, and other factors at the plug­
in connector should be indistinguishable from the same factors
that would be present if the actual processor were being used. This
characteristic is referred to as transparency.

Functional Transparency. Functional transparency refers to
the ability of the emulator to function in the same way as your
processor would when the emulator is connected to your target
system. Total functional transparency requires that the
emulator execute your program, generate outputs, and respond
to inputs exactly as the actual target processor would. At the
same time, the emulator must be able to give you complete and
immediate information about the clock-by-clock operation of
your target system. HP 64000-UX 32-bit emulators are designed
to perform their functions with minimum impact on functional
transparency.

Timing Transparency. Timing transparency refers to the
timing relationships between signals at your target system plug­
in. The timing relationships of signals at the emulation probe are
designed to be equivalent to or better than the microprocessor it
replaces in your system.

Electrical Transparency. Electrical transparency refers to the
electrical characteristics of the emulator target plug pins com­
pared to the pins of the actual target processor. These charac­
teristics include such things as rise and fall times, input loading,
output drive capacity, and transmission line considerations. The
electrical parameters at the emulation target plug pins are
designed to be equivalent to or better than those of the
microprocessor it replaces in your target system.

Introducing 32-Bit Emulation 1-3

Independent Operation

The emulation and analysis functions operate independent of the
HP 64000-UX operating system. That is, once the emulation and
analysis equipment has been configured and set into operation,
the equipment can operate without interaction from the operating
system. This is accomplished by using a multiprocessor system
for controlling the operation of the emulation system and the HP
64000-UX operating system.

Emulation Probe

The emulator allows you to replace the microprocessor in your tar­
get system with a device which performs like the microprocessor,
but which can be controlled by you from the development station.
This is done through the emulation pod and microprocessor con­
nector (probe) which is part of the cable extending from the emula­
tion pod. The pod contains the emulation microprocessor that
drives your target system. The microprocessor probe is plugged
into your target system microprocessor socket.

1-4 Introducing 32-Bit Emulation

What Tasks Does
The Emulator Do?

The tasks facilitated by an emulator are software debug,
hardware debug, and hardware and software integration. These
tasks are implemented by means of the following basic emulator
features:

• Program Loading and Execution. Your code developed on the
HP 64000-UX using the editor, compilers, assembler, and
linker, or valid code developed on other systems and trans­
ferred to the HP 64000-UX host can be loaded into memory by
means of the emulator and executed in the emulation environ­
ment.

• Run/Stop Controls. Programs may be run from address or
symbolic locations. Emulation can be stopped by breaking into
the emulation monitor or by resetting the microprocessor.

• Memory Display/Modification. You can display locations or
blocks of memory and modify any memory locations that can
be changed.

• Global and Local Symbols Display. You can display and find
the addresses associated with your program's global and local
symbols while in emulation.

• Internal Resource Display/Modification. Allows you to display
internal resources of the processor, such as registers, and to
modify them, if desired.

• Analysis (with optional integrated analyzer boards). Allows
you real time observation and display of activity on the emula­
tion processor bus.

• Program Stepping. Allows you to execute code instruction-by­
instruction, gaining access to the internal machine states be­
tween instructions.

• Resource Mapping. Allows you to use emulation memory, tar­
get memory, or both by defining the characteristics of the
blocks of memory.

• Memory Characterization. You can assign emulation memory
as ROM or RAM. You can test "ROM" code without using
ROM hardware.

Introducing 32-Bit Emulation 1-5

Does The
Emulation System
Run Interactively
With Other HP
64000-UX
Modules?

What Effect Does
The Emulator
Have On Your
Program?

• Breakpoint Generation. You can transfer program execution
to an emulation monitor routine on the occurrence of a par­
ticular machine state or range of states.

• Clock Source Selection. Provides internal clock generation,
which can be used in place of your target system clock.

The HP 64000-UX Microprocessor Development Environment al­
lows the use of emulation and analysis features in an interactive
manner between an emulator and other modules. These modules
can be other emulators or analyzers. Interaction allows the in­
tegration of development work on designs, more elaborate and
detailed analysis of a design, or both. The supported capabilities
include:

• simultaneous initiation of multiple measurements,

• using the results of one measurement to control another,

• and coordinating execution of a program with the initiation of
a measurement.

The effect that the emulator has on your program depends upon
the emulator operating mode you select for execution. The
emulator never permanently alters your program, but it may af­
fect the execution of your program.

1-6 Introducing 32-Bit Emulation

Real-Time Mode Vs.
Nonreal-Time Mode

Real-Time Mode
Capabilities

Real-Time Mode
Restrictions

Depending upon the emulator operation selected for execution,
the emulator operates in one of two modes: real-time or nonreal­
time. Real-time refers to the continuous execution of your target
system program without interference from the host (except as in­
structed by you, and then, only for specific operations).

Interference occurs when a break to the emulation monitor is in­
itiated either by you or automatically. The emulation monitor is a
program which enables you to access the internal registers and
memory of the microprocessor.

Whenever the emulator is running under control of the emulation
monitor, it is no longer executing your program in real time. The
emulation monitor for your emulator is described in the Emulator
Specifics manual for your emulator.

Features that typically can be performed in real-time mode are
listed below.

run, some display, some modify, specify,
execute, trace, load trace, stop_ trace

Some features cannot be performed in real-time mode. These fea­
tures require breaking into the emulation monitor. These fea­
tures are typically the following:

• Target Memory Accesses-display, copy, load, modify, and
store.

• Register Accesses--display, copy, and modify.

• Software Breakpoints--set and reset.

Introducing 32-Bit Emulation 1-7

CAUTION • DAMAGE TO TARGET SYSTEM CIRCUITRY. When the
emulator detects a guarded memory access or other illegal condi­
tion, or when you request an access to memory which causes the
emulator to break into the emulation monitor, the emulator
stops executing you application code and enters the monitor. If
you have circuitry that can be damaged because the emulator is
not executing your application code, you should exercise special
caution. ou should configure the emulator to be restricted to real­
time mode, and you should not break into the emulation monitor.

The above features can be accessed while the emulator is con­
figured for real-time mode by causing a break into the emulation
monitor. This happens when you press the break softkey and the
Return key, when you attempt to access guarded memory, or
when you execute a software break into the emulation monitor.

1-8 Introducing 32-Bit Emulation

What Is
Happening While
Your Program Is
Running?

During Target
Program Execution

During Emulation
Monitor Program

Control

During normal execution of your program, the emulation proces­
sor in the emulation pod generates address information for each
cycle. One function of this hardware differentiates between your
target system and emulation resources based on the address. If
the pod identifies a target system resource with the current ad­
dress, the data path buffers between your target system and the
emulator processor are enabled. If the address has been mapped to
emulation resource space, the data path buffers between the
emulation processor and the emulation bus resources are enabled.

As your program runs, the integrated analysis circuitry observes
the activity on the emulation analysis bus. Under your control,
the analyzer can be instructed to store this program flow. The in­
formation can be displayed later without interrupting the real­
time flow of the program.

The main emulation functions of the emulator are achieved by
seizing control of the emulation processor from your program and
transferring control to the emulation monitor so that it can ex­
tract the processor's internal information. The emulation monitor
program provides the link between the emulation processor and
the HP 64000-UX operating system.

The emulation monitor is actually constructed of a number of
separate routines. Some of these routines are executed automati­
cally whenever the monitor program is entered. These routines
extract the internal processor information that existed at the time
of entry. This information can then be displayed on the station
screen for examination by the operator. If, for instance, the
monitor program was entered after the execution of a program in-

Introducing 32-Bit Emulation 1-9

How Does The
Emulator Affect
Your
Microprocessor
System?

struction, the internal machine state that existed at that time
would be available.

The goal of the emulator is t-0 look just like the microprocessor
which will eventually control your system, as seen by your target
system hardware. At the same time, it must be capable of giving
you complete and immediate insight into the clock-by-clock opera­
tion of the system. The function, signal quality, signal timing,
loading, drive capacity, and other fact-Ors at the plug-in pins
should be indistinguishable from the same factors that would be
present if the actual processor were being used. This characteris­
tic is referred t-0 as transparency. The Emulator Specifics manual
for your microprocessor discusses emulation functions that may
affect your target system operation.

1-10 Introducing 32-Bit Emulation

What Are The
Steps To Using
The Emulator?

Preparing The
Software

Preparing The
Emulator

Using The Emulator

There are three steps to the emulation process (See figure 1-1):

• Preparing the Software.

• Preparing the Emulator.

• Using the Emulator.

Preparing the software consists of creating and entering a
program, assembling or compiling the program, and linking the
assembled or compiled modules. This process is not covered in this
manual. Refer to the appropriate Assembler/Linker or Compiler
Manual for more information.

Preparing the emulator consists of properly initializing and defm­
ing a measurement system to the HP 64000-UX operating
software. This task is covered in the HP 64000-UX Measurement
System Operating Manual. After the emulator is properly defmed,
you configure the emulator for your particular application. Con­
figuration is discussed in the 68020 Emulator Operating Manual.

Using the emulator consists ofloading your absolute code into the
emulator (provided when programs are linked), and then using
the features of the emulator to observe the program as it runs, dis­
play the contents of the registers and/or memory and to debug
your hardware and software. Using the emulator is covered in
this manual and the 68020 Emulator Operating Manual.

Introducing 32-Bit Emulation 1-11

1. PREPARING THE SOFTWARE 2. PREPARING THE EMULATOR

c:J} create end initialize and
enter a define a
program measurement

• system

• ASSEMBLER } form relocatable

OR code for the enter
COMPILER microprocessor emulation

• • 8} link the } not needed if

relocatable
load continuing o

programs
configuration previous measurement

• • clock source?

';+
real time runs?
mapper questions

absolute_ files • • •

• configuration

file

load obsolute_files
run

3. USING THE trace about <ADDRESS>
display memory

EMULATOR display registers

• • •

Figure 1-1 Steps to Using the Emulator

1-12 Introducing 32-Bit Emulation

2

Emulation Command Syntax

Overview This chapter:

• Describes the conventions used in the syntax diagrams in this
manual.

• Gives a summary of emulation commands.

• Gives a detailed description of each emulator command.

Emulation Command Syntax 2-1

Syntax
Conventions

The conventions used in the command syntax diagrams shown in
this chapter are as follows:

() This symbol indicates a command keyword entered
---- by pressing a softkey. The keyword is shown as it ap­

pears in the command line and may not be the same
as the softkey label.

0

Rectangular boxes contain either prompts indicat­
ing that parameters must be entered from the
keyboard or references to additional syntax
diagrams. Softkey prompts are enclosed by the "<"
and">" symbols and are shown exactly as they ap­
pear on the softkey label. --EXPR-- and --SYMB-­
are also prompts, but allow you to access "expres­
sion help" softkeys. You can return to the normal
set ofemulation softkeys bypressing--NORMAL-­
. Syntax diagrams for --EXPR-- and--SYMB-- are
included in this chapter.

Reference to additional syntax diagrams may be
shown in upper or lower case characters without
delimiters.

Circles are used to denote operators and delimiters
used in expressions and command lines.

Whenever keywords entered from softkeys appear in text or ex­
amples, they are shown in bold type, i.e. copy. Command
parameters entered from the keyboard are shown in standard
type.

2-2 Emulation Command Syntax

Command
Summary

at execution
break
copy memory
copy registers
copy sw breakpoints
copy trace*
copy display
copy global symbols
copy local symbols
copy trace-speci fi cation*
copy help_
display memory

A summary of ernula tion commands is given in table 2-1. Detailed
descriptions of each command are given in the remainder of this
chapter.

Table 2-1. Emulation Command List

display registers
display trace*
displaysw breakpoints
displayglobal symbols
display local symbols
displaytrace specification*
expressions
halt
help
load memory
load trace specification
load configuration

modify memory
modify registers
modify configuration
modifysw breakpoints
modify analysis
reset
run
step
store
symbol
trace*
wait

* These commands a re described in the Analysis Reference Manual for 32-Bit Microprocessors.

Emulation Command Syntax 2-3

NOTE Some command parameters shown in the following syntax
diagrams may not be available when you are running emulation.
What softkeys are available to you depends on how you configure
the emulator for your emulation session.

For example, if during memory mapping, you enter the com­
mand:

modify defined_ codes none

all softkey references to function codes will be removed during
your emulation session. Your answers to other emulation con­
figuration questions also affect the softkey labels available to
you. Only softkeys that are enabled for your emulation configura­
tion are displayed.

2-4 Emulation Command Syntax

at execution

Syntax

Function

run t---___,_._ < RETURN>

trace

At execution is used to prepare a run or trace command for ex­
ecution. This command is used in conjunction with the execute
command. If the processor is not reset, at execution run causes
a break from your program, and initializes the monitor to the
default address or to the specified address. An execute command
then causes the run to occur. Once an execution has occurred, the
run specification is removed and cannot be repeated without
respecifying the run.

at execution trace causes the trace hardware to be initialized
with the given trace specification. An execute command then
causes the trace to be executed. A trace specification is not
removed and can be reexecuted without another at_execution
trace command. at execution trace and at execution run
can be used with a single execute command initiating both the run
and the trace, and starting any other analyzers that are connected
t-0 the intermodule bus (IMB).

A trace command cancels an at_execution trace command. A run
or step command cancels a at_execution run command. The
at_ exec softkey label is displayed only with multiple module sys­
tems.

Default Value none

Emulation Command Syntax 2-5

Example

See Also:

at execution run from START
at-execution trace TRIGGER ON a= 1234h

• Execute syntax (In this chapter)

• Emulation configuration (Chapter 4 in the Emulator Proces­
sor Specifics manual).

• Operating In the Measurement System (in the HP 64000-UX
User's Guide).

2-6 Emulation Command Syntax

break

Syntax

(break)1------>j<RETURN>j

Function

Default Value

Example

Break causes the processor to be diverted from execution of your
program to the emulation monitor program.

The break softkey is not displayed if the emulation monitor is not
loaded.

none

break

Emulation Command Syntax 2-7

copy

Syntax

copy memory

registers 1-------~

sw _breakpoints 1-----

trace

display

global_ symbols i-----....

local _symbols

trace_ specification

help

noappend

UX CMD

2-8 Emulation Command Syntax

noheader

Function

Default Values

Parameters

The copy command copies selected information to your system
printer, to a listing file, or pipes it to an HP-UX filter.

Depending on what information is selected, defaults may be the
options selected for the previous execution of the display com­
mand.

display

<FILE>

global_ symbols

help

HP-UXCMD

display enables you to copy the informa­
tion currently displayed on the screen to
the selected destination.

<FILE> prompts you for the name of
the listing file where the specified inf or­
mation is to be copied.

global_symbols enables you to copy a list
of all global symbols in memory to the
selected destination.

help enables you to copy the contents of
the emulation help files to the selected
destination. The keyword "help" is not
available on the softkeys. It must be typed
in from the keyboard. After help is typed
in, the emulation help filenames are dis­
played on the softkeys.

HP-UX CMD represents an HP-UX filter
or pipe you wish to route the output of the
copy command to. HP-UXcommands
must be preceded by an exclamation point
(!). An exclamation point following the
HP-UX command causes command line
execution to be continued after execution
of the HP-UX command. Emulation is not
affected when using an HP-UX command
that is a shell intrinsic.

Emulation Command Syntax 2-9

local_sym­
bols_in

memory

noappend

no header

printer

registers

sw _breakpoints

to

trace

trace_ specifica­
tion

2-1 O Emulation Command Syntax

local symbols in enables you to copy
a list oflocal symbols in a specified source
file to the selected destination.

memory enables you to copy the contents
of memory to the selected destination.

noappend causes the copied information
to overwrite any existing file with the
same name specified by <FILE>. If
noappend is not specified, the default
operation is to append the copied informa­
tion to the end of an (existing) file.

noheader specifies that the information
be copied without headings.

printer specifies your system printer as
the destination device for the copy com­
mand. NOTE: Before you can specify
printer as the destination device, you
must first define PRINTER as a shell vari­
able.

$PRINTER= lp
$ export PRINTER

registers enables you to copy the contents
of the various register sets to the selected
destination.

software breakpoints enables you to
copy the current software breakpoint
table to the selected destination.

to enables you to specify the destination of
the copied information. to must be in­
cluded in the command line.

trace enables you to copy all of, or a por­
tion of, the current trace listing to the
selected destination.

trace specification enables you to copy
all of, or a portion of, the trace specifica­
tion to the selected destination.

The exclamation point is the delimiter for
HP-UX commands. @LABELTEXT =
An exclamation point must precede all
HP-UX commands. A trailing exclama­
tion point to return to command line ex­
ecution is optional.

If an exclamation point is part of the HP­
UX command, a backslash(\) must be
used to escape the exclamation point (\!).

Emulation Command Syntax 2-11

copy display

Syntax

display

Fun cti On The copy display command copies the information currently dis­
played on the screen.

Default Value none

Examples copydisplaytoprinter
copy display to trcfilel

2-12 Emulation Command Syntax

copy
global_ symbols

Syntax

Function

Default Value

Examples

----11:.-(global_symbols)1---

The copy global_symbols command copies the global symbols
defined for the current absolute file. Global symbols are those that
are declared to be global (XDEF) in the source file. They include
procedure names, variables, constants, and file names. When the
copy global _symbols command is used, the listing will include
the symbol name, logical address, segment containing the sym­
bol, and the symbol's offset from the start of the segment.

None

copy global symbols to printer
copy global symbols to symbols noheader

Emulation Command Syntax 2-13

copy help

Syntax

Function

Default Value

Examples

Parameters

help (?) 1----.i HELP FILE

The copy help command copies the contents of a specified help file.
The help command is not displayed on the softkeys. It must be
typed in from the keyboard. A question mark (?)may be sub­
stituted for the keyword help in the command string.

none

copy help system commands to printer
copy? trace to trc cmd

HELP_FILE HELP _FILE is the name of the help file
you wish to copy. After you type help
from the keyboard, the help file names
are available on the softkeys.

2·14 Emulation Command Syntax

copy loc_sym

Syntax

~local_symbols_in)---•-j --SYMB-- -1----

Function

Default Value

Example

Parameters

The copy local_symbols_in command copies the local symbols
in a specified source file or scope, their addresses, their relative
segment, and offset.

none

copy local _symbols_ in sample.s: to printer

--SYMB-- --SYMB-- represents the source file that
contains the local symbols to be listed. See
--SYMB-- syntax diagram.

Emulation Command Syntax 2-15

copy memory

Syntax

memory

to _memory

real

absolute

blocked

binary

Function

<ADDR>

fcode <FCODE> thru <ADDR>

ADDR <RETURN>

fcode <F CODE> -

short

long

word

byte

offset _by --EXPR--

The copy memory command copies the contents of the specified
memory location or series oflocations.

Memory can be copied to the system printer, to a listing file, to
another area of memory, or piped to an HP-UX filter. When copy­
ing to another area of memory, the destination memory locations
must be in target RA.i.\1 or emulation memory mapped as RAM or
ROM.

2-16 Emulation Command Syntax

Default Values

Examples

Parameters

The memory contents can be listed either in mnemonic, binary,
hexadecimal, or real number format. In addition, the memory ad­
dresses can be listed offset by a value which allows the informa­
tion to be easily compared to the program assembly listing.

Initial values are the same as specified by the command "display
memory 0 blocked words offset_ by O".

Defaults are to values specified in the previous display memory
command.

copy memory fcocle SUPER PROG START thru
ST ART+ 3fiH mnemonic to printer

copy memory fcocle SUPER DATA 0 thru lOOH, fcode
SUPER PROGSTART thru START+ 5 blocked long
tomemlist

copy memory fcocle SUPER PROG 1000 thru 13flh
to_ memory fcode USER_ PROG 2000h

absolute

<ADDR>

binary

blocked

fcode

absolute specifies that the memory list­
ing be formatted in a single column.

< ADDR > is a combination of numeric
values, symbols, operators, and paren­
theses specifying a memory address or of­
fset value. See --EXPR-- syntax diagram.

binary specifies that the contents of
memory locations be displayed as binary
values.

blocked specifies that the memory listing
be formatted in multiple columns.

fcocle enables you to specify a function
code along with the address expression as
part of the memory access specification.

Emulation Command Syntax 2-17

<F_CODE>

long

mnemonic

offset_by

real

short

thru

to_memory

words

2-18 Emulation Command Syntax

< F _CODE> is a prompt for the func­
tion code. The function code map be
specified as a number or as a defined func­
tion code mnemonic on the softkeys.

long specifies that the memory values be
copied as long word values.

When used with the real parameter, long
specifies that memory be copied in a 64-
bit real number format.

mnemonic causes the memory listing to
be formatted in assembly language in­
struction mnemonics with associated
operands. When specifying mnemonic for­
mat, you should specify a starting address
that corresponds to the first word of an op­
code to ensure that the listed mnemonics
are correct.

offset by enables you to specify an of­
fset that is subtracted from each of the ac­
tual absolute addresses before the addres­
ses and the corresponding memory con­
tents are listed. The value of the offset (-­
EXPR--) can be selected such that each
module in a program appears to start at
address OOOOH. The memory contents list­
ing will then appear similar to the as­
sembly or compiler listing.

real specifies that the memory values in
the listing be formatted as real numbers.

short is used with real to specify that
memory values be listed as 32-bit real
numbers.

thru enables you to specify that a range of
memory locations be copied.

to memory enables you to copy a block
of memory to another location in memory.

words specifies that the memory listing
be copied as word values.

A comma(,) appearing immediately after
memory in the command line will cause
the current copy memory command to be
appended to the preceding display
memory command, resulting in the data
specified in both commands being copied
to the specified destination in the current
command. The data will be formatted as
specified in the current command. The
comma is also used as a delimiter be­
tween values when specifying multiple
memory addresses.

Function codes are an important part of the memory access
specification, along with the address expression. The function
code (if stated explicitly) precedes the associated address expres­
sion, and may be specified as a number or one of the defined func­
tion code mnemonics (e.g., SUPER_PROG, USER_DATA).

Memory configuration allows different modes for function codes:
they may be enabled (full use offunction codes), disabled (no use
offunctioncodes),orpartiallydisabled(onlyPROGRAM/DATA
spaces are recognized). If the function codes are disabled (even par­
tially), the unused function code bits are masked off and ignored
during the memory access.

Emulation Command Syntax 2-19

copy registers

Syntax

~registers)1----.....---------..,..--.--------------------,,__-­

~ <REG_ SET>>--1' ~ffset_by)-"1--EXPR--~

Function

Default Values

Examples

The copy registers command copies the current contents of the
processor/coprocessor's various register sets. This process does
not occur in real time. The emulation system must be configured
for nonreal-time run mode if the registers are to be listed while
the processor is running.

The listed value of the CPU program counter can be offset from
the actual value by a number which allows the register informa­
tion to be easily compared to the assembled listing.

When a custom coprocessor is specified, the coprocessor register
set is appended to the CPU register

set listing.

Initially cpu registers with 0 offset; thereafter last copy registers
command specification.

copy registers fpu to reglist
copy registers cpu offset_ by lOfDh to printer

2-20 Emulation Command Syntax

Parameters --EXPR--

offset_by

<REG_SET>

--EXPR-- is a combination of numeric
values, symbols, operators, and paren­
theses specifying an offset value to be sub­
tracted from the program counter. See -­
EXPR-- syntax diagram.

offset by enables you to specify an of­
fset that is subtracted from the actual cpu
program counter address before the
program counter value is copied. The
value (--EXPR--) of the offset can be
selected such that the program counter ad­
dress will match the current instruction's
address in the assembler or compiler list­
ing.

<REG_SET> specifies the name of the
register set to be displayed. The
register set names may be selected from
softkeys. All custom coprocessor
names defined in your custom register
specification file are displayed. The name
cpu specifies that the 68020's internal
cpu registers be displayed. The name fpu
is reserved for the emulator's internal
68881 floating point processor, if used.

Emulation Command Syntax 2-21

copy
sw _breakpoints

Syntax

------1>-(s w _ b rea kp o i nts)i-----------------------......--

4f f set_ by ~~-<A_D_D_R_>~~

Function

Default Value

Examples

The copy sw _breakpoints command copies the currently defmed
software breakpoints and their status. If the emulation session is
continued from a previous session, then the listing includes any
previously defmed breakpoints. The column marked status indi­
cates whether the breakpoint is pending or inactivated. When in
the pending state, a breakpoint causes the processor to enter the
emulation monitor upon execution of that breakpoint. Break­
points that have been defined as one_shot are listed as inac­
tivated after they have been executed. Entries that show an inac­
tive status can be reactivated by executing the modify sw _break­
points set command.

none

copy sw breakpoints to printer
copy sw -breakpoints offset by OfOOOh to break.list
no header -

2-22 Emulation Command Syntax

Parameters <ADDR>

offset_by

<ADDR> is a combination of numeric
values, symbols, operators, and paren­
theses specifying an offset from the listed
software breakpoint address. See --EXPR-­
syntax diagram.

offset by allows you to offset the listed
software breakpoint address value from
the breakpoint's actual address. By sub­
tracting the offset value from the
breakpoint's actual address, the system
can cause the listed address to match that
given in the assembler or compiler listing.

Emulation Command Syntax 2-23

copy trace

Function The copy trace command enables you to copy all of, or a portion of
the current trace listing to the selected destination.

See the Analysis Reference Manual for 32-BitMicroprocessors for
a detailed description of the copy trace command

2-24 Emulation Command Syntax

copy
trace_ specification

Function The copy trace _specification command enables you to copy all of,
or a portion of your trace specification to the selected destination.

SeetheAnalysisReferenceManualfor32-BitMicroprocessorsfor
a detailed description of the copy trace_specification command.

Emulation Command Syntax 2-25

display

Syntax

display

Function

Default Values

memory 1------...,.---< RETURN>

registers ~-----'

trace

sw _breakpoints 1---

global_ symbols 1----

local_ symbols

trace_ specification

simulated io 1----

The display command displays selected information on your
workstation screen. You can use the UP and DOWN cursor keys,
The NEXT and PREV keys, and in some cases, the LEFT and
RIG HT cursor keys to view the displayed information.

Depending on what information is selected, defaults may be the
options selected for the previous execution of the display com­
mand.

2-26 Emulation Command Syntax

Parameters global_symbols

local_sym­
bols_in

memory

registers

simulated_io

sw _breakpoints

trace

trace_specifica­
tion

global symbols enables you to display
a list of all global symbols in memory.

local symbols in enables you to dis­
play a list oflocal symbols in a specified
source file.

memory enables you to display the con­
tents of memory.

registers enables you to display the con­
tents of the microprocessor registers.

simulated io enables you to display the
data being written to the simio display
buffer.

sw breakpoints enables you to display
the current software breakpoint table.

trace enables you to display the current
trace listing.

trace specification allows you to dis­
play your current trace specification,
starting at optionally defined points.

Emulation Command Syntax 2-27

display
global_ symbols

Syntax

-----1•-(global_symbols)1---

Fun cti On The display global_symbols command displays the global sym­
bols defined for the current absolute file. Global symbols are those
that are declared to be global (XDEF) in the source file. They in­
clude procedure names, variables, constants, and file names.
When the display global_symbols command is used, the listing
will include the symbol name, logical address, segment contain­
ing the symbol, and the symbol's offset from the start of the seg­
ment.

Default Value none

Example display global _symbols

2-28 Emulation Command Syntax

display
local_ symbols

Syntax

~local_symbols_in)i---->-1 --SYMB-- 1--1----

Function The display local_symbols_incommanddisplays the local sym­
bols in a specified source file or scope, their addresses, their rela­
tive segment, and offset.

Default Value none

Exa mp I e display local_ symbols_ in towers.c:

Parameters --SYMB-- --SYMB-- represents the source file that
contains the local symbols to be listed. See
--SYMB-- syntax diagram.

Emulation Command Syntax 2-29

display memory

Syntax

absolute

blocked

binary

Function

Default Values

fcode <F_CODE> thru <ADDR>

short

long

word

byte

offset_ by - -EXPR- - repetitively

The display memory command displays the contents of the
specified memory location or series oflocations. The memory con­
tents can be listed in mnemonic, binary, hexadecimal, or real
number format. In addition, the memory addresses can be listed
offset by a value which allows the information to be easily com­
pared to the program listing.

Initial values are the same as specified by the command "display
memory 0 blocked word offset_ by O".

2-30 Emulation Command Syntax

Examples

Parameters

Defaults are to values specified in previous display memory com­
mand.

Each of the memory access commands has a separate function
code default to be used when a function code is valid, but not ex­
plicitly specified.

display memory fcode SUPER PROG ST ART mnemonic
offset by lfOOh -

display memory fcode USER DATA 0 thru lOOH, fcode
USER PROGSTARTthruSTART+5blocked word

absolute

<ADDR>

binary

blocked

fcode

<F_CODE>

long

absolute specifies that the memory list­
ing be formatted in a single column.

<ADDR> is a combination of numeric
values, symbols, operators, and paren­
theses specifying a memory address or
memory offset value. See --EXPR-- syntax
diagram.

binary specifies that the contents of
memory locations be displayed as binary
values.

blocked specifies that the memory listing
be formatted in multiple columns.

fcode enables you to specify a function
code along with the address expression as
part of the memory access specification.

< F _CODE> is a prompt for the func­
tion code. The function code may be
specified as a number or as a defined func­
tion code mnemonic on the softkeys.

long specifies that the memory values be
displayed as long word values.

When used with the real parameter, long

Emulation Command Syntax 2·31

mnemonic

offset_by

real

repetitively

short

thru

words

2-32 Emulation Command Syntax

specifies that memory be displayed in a
64-bit real number format.

mnemonic causes the memory listing to
be formatted in assembly language in­
struction mnemonics with associated
operands. When specifying mnemonic for­
mat, you should specify a starting address
that corresponds to the first word of an op­
code to ensure that the listed mnemonics
are correct.

offset by enables you to specify an of­
fset that is subtracted from each of the ac­
tual absolute addresses before the addres­
ses and the corresponding memory con­
tents are listed. The value of the offset (-­
EXPR--) can be selected such that each
module in a program appears to start at
address OOOOH. The memory contents list­
ing will then appear similar to the as­
sembly or compiler listing.

real specifies that the memory values in
the listing be formatted as real numbers.

repetitively causes the system to repeti­
tively update the memory listing dis­
played on your screen.

short is used with real to specify that
memory values be listed as 32-bit real
numbers.

thru enables you to specify that a range of
memory locations be displayed. Only 16
lines of information can be displayed on
the screen at one time. Use the UP and
DOWN cursor keys, and the NEXT and
PREV keys to view additional memory
locations.

words specifies that the memory listing
be displayed as word values.

A comma (,) appearing immediately after
memory in the command line will cause
the current "display memory" command
to be appended to the preceding "display
memory" command, resulting in the data
specified in both commands being dis­
played. The data will be formatted as
specified in the current command.

The comma is also used as a delimiter be­
tween values when specifying multiple
memory addresses.

Function codes are an important part of the memory access
specification, along with the address expression. The function
code (if stated explicitly) precedes the associated address expres­
sion, and may be specified as a number or one of the defined func­
tion code mnemonics (e.g., SUPER_PROG, USER_DATA).

Memory configuration allows different modes for function codes:
they may be enabled (full use of function codes), disabled (no use of
function codes), or partially disabled (only PROGRAM/DATA
spaces are recognized). If the function codes are disabled (even par­
tially), the unused function code bits are masked off and ignored
during the memory access.

Emulation Command Syntax 2-33

display registers

Syntax

~registers)1----.,,---------..,,..---.....------------------,,....----

~ <REG_ SET>>--1 4ffset_by)_,--EXPR--~

Function

Default Values

Example

The display registers command displays the current contents of
the processor/coprocessor's various register sets. If a step has just
been executed, the mnemonic of the last instruction is also dis­
played. This process does not occur in real time. The emulation
system must be configured for nonreal-time run mode if the
registers are to be displayed while the processor is running.

The displayed value of the CPU program counter can be offset
from the actual value by a number which allows the register infor­
mation to be easily compared to the assembler listing.

When a custom coprocessor is specified, the coprocessor register
set is appended to the CPU register

set listing.

Offset is initially O; thereafter previous value.

display registers cpu

2-34 Emulation Command Syntax

Parameters --EXPR--

offset_by

<REG_SET>

--EXPR--is a combination of numeric
values, symbols, operators, and paren­
theses specifying an offset value to be sub­
tracted from the program counter. See -­
EXPR-- syntax diagram.

offset by enables you to specify an of­
fset that is subtracted from the actual cpu
program counter address before the
program counter value is displayed. The
value (--EXPR--) of the offset can be
selected such that the program counter ad­
dress will match the current instruction's
address in the assembler or compiler list­
ing.

<REG_SET> specifies the name of the
register set to be displayed. The
register set names may be selected from
softkeys. All custom coprocessor
names defined in your custom register
specification file are displayed. The name
cpu specifies that the 68020's internal
cpu registers be displayed. The name fpu
is reserved for the emulator's internal
68881 floating point processor, if used.

Emulation Command Syntax 2-35

display
simulated 10

Syntax

Function

Default Value

Example

------<::..-(simulated io)----

The display simulated_iocommand displays the information
being written to the simulated I/O display buffer on your screen.
Refer to the HP 64000-UX Simulated I/O Reference Manual and
chapter 8 of the 68020 Emulator Specifics Operating Manual for
detailed information about using simulated I/O.

none

display simulat.ed _ io

2-36 Emulation Command Syntax

display
sw _breakpoints

Syntax

--->(___ sw _ breakpoints)1--..,..-------------------,-­

~f fset _by)-1,.----<_A_D_DR->---.~

Function

Default Value

Examples

The display sw _breakpoints command displays the currently
defined software breakpoints and their status. If the emulation
session is continued from a previous session, then the listing in­
cludes any previously defined breakpoints. The column marked
status indicates whether the breakpoint is pending or inactivated.
When in the pending state, a breakpoint causes the processor to
enter the emulation monitor upon execution of that breakpoint.
Breakpoints that have been defined as one_shot are listed as in­
activated after they have been executed. Entries that show an in­
active status can be reactivated by executing the "modify
sw _breakpoints set" command.

none

display sw breakpoints
display sw breakpoints offset_ by lOOOH

Emulation Command Syntax 2-37

Parameters <ADDR>

offset_by

2-38 Emulation Command Syntax

<ADDR> is a combination of numeric
values, symbols, operators, and paren­
theses specifying an offset value for the
breakpoint address. See --EXPR-- syntax
diagram.

offset by allows you to offset the listed
software breakpoint address value from
the breakpoint's actual address. By sub­
tracting the offset value from the
breakpoint's actual address, the system
can cause the listed address to match that
given in the assembler or compiler listing.

display trace

Function The display trace command enables you to display all of, or a por­
tion of the current trace listing.

See the Analysis Reference Manual for 32-Bit Microprocessors for
a detailed description of the display trace command.

Emulation Command Syntax 2-39

display
trace_ specification

Function The display trace_specification command enables you to display
all of, or a portion of your trace specification.

See the Analysis Reference Manual for32-BitMicroprocessorsfor
a detailed description of the display trace _specification com­
mand.

2-40 Emulation Command Syntax

execute

Syntax

Function

Examples

The execute command starts a trace measurement. The execute
softkey label is replaced with the halt softkey label when a
measurement is in progress. If emulation is participating in a sys­
tem measurement through cross-triggered analysis or the emula­
tion start function (at_execution run or at_execution trace),
then the system measurement is initiated. Otherwise, the execute
command is not available.

A measurement can be executed repeatedly by issuing the ex­
ecute repetitively command. This restarts the current measure­
ment after each completion, until the user issues a halt command.
The execute command starts all modules participating in a sys­
tem measurement when issued from any one of the modules. If an
emulator is started as part of a measurement, it continues run­
ning and cannot be started again by subsequent executions unless
an at_ execution run command is again issued.

The execute softkey is displayed only when multiple modules are
present in a system and some IMB interaction is requested (cross­
triggered analysis or emulation start function).

execute
execute repetitively

Emulation Command Syntax 2-41

See Also: • At_ execution command (in this chapter)

• Emulation configuration (chapter 4 of the 68020 Emulation
Operating Manu.a[)

• The "Operating in the Measurement System" section of the
HP 64000-UX User's Guide.

2-42 Emulation Command Syntax

--EXPR--

Syntax

Function

Default Value

Examples

Parameters

<NUMBER>

-- -SYMB- -- i--...-------1

start

end

<OP>

An expression is a combination of numeric values, symbols,
operators, and parentheses specifying an address, data, status, or
any of several other value types used in the emulation commands.

none

05f:xh (not valid for all commands)
DISP_BUF+ 5
SYMB_TBL + (OFFSET/2)
START
prog.s: line 15end

<NUMBER> <NUMBER> is a numeric value in bi­
nary, octal, decimal, or hexadecimal base.

Emulation Command Syntax 2-43

<OP>

--SYMB--

start

end

()

2-44 Emulation Command Syntax

<OP> is an algebraic or logical operand.
<OP> maybe (inorderofprecedence):

mod (modulo)
* (multiple)
I (divide)
& (logical and)
+ (plus)

(minus)
(logical or)

--SYMB-- is a symbolic reference to an ad­
dress or address range, file, or other
value. Symbols may be HP-UX paths,
referenced line numbers in a file, file seg­
ments (prog, data, common), or global and
local symbols.

start specifies that the starting address of
the symbol range be used as the
referenced location in the command. This
parameter is useful with symbols that
reference an address range rather than a
single word value.

end specifies that the last address in a
symbol range be used as the referenced
location in the command. This parameter
is useful with symbols that reference an
address range rather than a single word
value.

Parentheses may be used in expressions.
For every opening parenthesis, a closing
parenthesis must exist.

Algebraic negation (minus)

logical negation (NOT)

halt

Syntax

(ha 1 t)!----------->/<RETURN >I
Function The halt command stops the measurement currently executing

and turns off the repetitively option. When the halt command is
executed, some or all of the systems involved may have completed
their measurement. The halt softkey is displayed only during a
trace, or during an execution (in the place of the execute softkey).

The halt command affects measurements caused by both trace
and execute commands. If emulation is entered with a measure­
ment in progress, the halt command will stop that measurement
even if emulation is not interacting in the measurement.

Example halt

Emulation Command Syntax 2-45

help

Syntax

--•-(help (?))----(HELP _FILE)i---•-1 <RETURN>

Function

Default Value

Examples

Parameters

The help command enables you to request information about sys­
tem and emulation features during your emulation session.
Typing "help" or"?" from the keyboard causes softkey labels to be
displayed, listing the areas on which you may receive help. Press
the softkey for the area you are interested in, and then press the
return key. The system will list the information to the screen
using the HP-UX more utility.

The help command is not displayed on the softkeys. It must be
typed in from the keyboard. A question mark (?) may be sub­
stituted for the keyword "help" in the command string.

none

help system commands
?trace -

HELP_FILE HELP _FILE is the name of the help file
you wish to display. After you type "help"
from the keyboard, the help file names
can be entered from the softkeys.

2-46 Emulation Command Syntax

load

Syntax

load r---..---.< memory r-..---------- <FILE>
.__ _ __. ~--~

emulation fcode <F _CODE>

target

at <ADDR> no_update

trace_specification ,__..,.---------,....-- <FILE> i----_.._~<RETURN>_ __ _.

with_ trace_ data

configuration 1--------------

Function The load memory command transfers absolute code from the host
system disc into target system RAM or emulation memory. The
destination of the absolute code is determined by the memory con­
figuration map which was set up during emulation configuration
and the address specified during linking.

You can force the absolute code to be loaded to a location in
memory other than the address specified during linking by using
the at < ADDR > parameter. When using at <ADDR >,the ab­
solute code is loaded in memory beginning at the specified addess.
For example, if you specify "at 2000h", you are effectively specify­
ing an offset of+ 2000h for your code.

Emulation Command Syntax 2-47

NOTE

Default Value

Examples

Parameters

This feature should not be used if your code uses absolute ad­
dressing. Absolute addresses and symbol values in your program
are not modified. This may result in run-time errors or unex­
pected behavior.

The load configuration command reloads an emulation configura­
tion that you saved previously.

The load trace _specification command reloads a trace specifica­
tion that you saved previously. If you saved the trace specification
with trace data, you can use the display command to access and
display the previously stored trace data. You can execute the pre­
viously stored trace specification using the trace again or execute
commands.

For the load memory command, all memory is in the default func­
tion code space.

load memory emulation sort
load configuration config3
load trace _specification trace3

at

emulation

at lets you load absolute code to a location
in memory other than the address
specified during linking.

emulation specifies that only the portions
of the absolute file mapped as emulation
memory will be loaded.

2-48 Emulation Command Syntax

fcode

<F_CODE>

memory

target

configuration

trace _specifica­
tion

<FILE>

noupdate

with_trace_dat
a

fcode enables you to specify a function
code along with the address expression as
part of the memory access specification.

< F _CODE> is a prompt for the func­
tion code. The function code map be
specified as a number or as a defined func­
tion code mnemonic on the softkeys.

memory specifies that an absolute file is
to be loaded into emulation or target
memory.

target specifies that only the portions of
the absolute file mapped as target
memory will be loaded.

configuration specifies that a configura­
tion file created by a modify configuration
command be loaded.

trace specification enables you to load
a specified trace file previously generated
using the store trace command.

<FILE> is the pathname of the absolute
file to be loaded from the system disk into
target system RAM, emulation memory,
or the trace memory (.TR files are as­
sumed) containing a previously stored
trace specification and trace listing.

noupdate suppresses rebuilding of the
symbol data base when loading an ab­
solute file newer than its associated sym­
bol data base. The default operation is to
rebuild the symbol database.

with trace data specifies that the
trace data be loaded along with the trace
specification, if the trace data was stored.

Emulation Command Syntax 2-49

modify

Syntax

modify

Function

Default Value

Parameters

memory --~~~~~-<RETURN>

registers

configuration,,_ __ _

sw _breakpoints i----

analysis

keyboard_ to_ simio

The modify command is used to review or edit the configuration,
to modify the contents of memory (as integers or as real numbers),
to modify the contents of the processor registers, and to modify the
analysis trace command or portions of the analysis trace specifica­
tion. You can also use the modify command to modify software
breakpoints.

none

configuration configuration enables you to review and
modify (if necessary) the current emula­
tion configuration.

2-50 Emulation Command Syntax

memory

registers

sw_breakpoints

analysis

trace_com­
mand

memory enables you to modify the con­
tents of selected memory locations.

registers is used to modify the contents of
one or more of the various register sets.

sw breakpoints sets or clears software
breakkpoints used with the emulator
break function.

analysis allows you to change any part of
your analysis trace specification, or trace
command.

trace command brings the last trace
command back to the command line for
editing.

Emulation Command Syntax 2-51

modify analysis

Function The modify analysis command lets you change any part of your
analysis trace specification or trace command.

See the Analysis Reference Manual for 32-Bit Microprocessors for
a detailed description of the modify analysis command.

2-52 Emulation Command Syntax

modify
configuration

Syntax

-----11>9<(con figuration)1-----

Function

Default Value

Example

The modify configuration command enables you to review and
edit the current emulation configuration. Each of the configura­
tion questions is presented with the response previously entered.
The prior response can be entered as displayed by pressing the
return key, or modified as necessary and then entered by press­
ing the return key.

none

modify configuration

Emulation Command Syntax 2-53

modify
keyboard_ to sim
10

Syntax

----->..i(keyboard_to_simio)i-----

Fun cti On The modify keyboard_ to _simio command activates the
keyboard to interact with your program through the HP 64000-
UX simulated I/O software. While the keyboard is activated for
simulated I/O, its normal interaction with emulation is disabled.
The emulation softkeys are blanked and the single softkey
suspend is displayed on your screen. Pressing suspend and then
the return key deactivates keyboard simulated I/O and returns
the keyboard to normal emulation mode. Refer to the HP 64000-
UX Simulatedl!O Reference Manual and chapter 8 of the 68020
Emulation Operating Manual for detailed information about
simulated I/O.

Default Value none

Example modifykeyboard_to_simio

2-54 Emulation Command Syntax

modify memory

Syntax

memory byte

word

long

<ADDR>

real

<ADDR>

Function

fcode <F CODE> -

thru <AODR>

long fcode <F _CODE>

short

thru <ADDR>

The modify memory command enables you to modify the contents
of selected memory locations. The command can modify the con­
tents of each memory location in a series to an individual value or
the contents of all of the locations in a memory block to a single or
repeated sequence of values.

Function codes are an important part of the memory access
specification, along with the address expression. The function
code (if stated explicitly) precedes the associated address expres­
sion, and may be specified as a number or one of the defined func­
tion code mnemonics (e.g. SUPER_ PROO, USER_DATA).

Emulation Command Syntax 2-55

NOTE

Default Values

Examples

Parameters

If the specified address range is too small to contain the new
data, the emulator will modify as many locations as is required
to contain the new data, beginning with the starting address you
specified.

New data value lists will be repeated as needed to fill up the
specified address ranges. Any left-over values will modify ad­
dress locations after the last address in the specified address
range.

Each of the memory access commands has a separate function
code default to be used when a function code is valid, but not ex­
plicitly specified.

modify memory word fcode SUPER DATA OOAOh to 1234h
modifymemorywordfcode USER DATADATAl to0E3h,
Olh, -

08h
modify memory real long TEMP to 0. 5532E-8

<ADDR>

byte

fcode

< ADDR > is a combination of numeric
values, symbols, operators, and paren­
theses specifying a memory address. See -­
EXPR-- syntax diagram.

byte specifies that the memory values be
modified as byte values.

fcode enables you to specify a function
code along with the address expression as
part of the memory access specification.

2-56 Emulation Command Syntax

Description

<F_CODE>

long

real

<REAL#>

short

thru

to

word

<F _CODE> isapromptforthefunc­
tion code. the function code map be
specified as a number or as a defined func­
tion code mnemonic on the softkeys.

long specifies that the memory values be
modified as long word values.

When used with the real parameter, long
specifies that memory be modified as a 64-
bit real number value.

real specifies that the memory values be
modified as real number values.

<REAL # > prompts you to enter a
value in real number format.

short is used with real to specify that
memory values be modified as 32-bit real
number values.

thru enables you to specify that a range of
memory locations be modified.

to enables you to specify the values to
which the selected memory locations will
be changed.

word specifies that the memory locations
be modified as word values.

commas (,) are used as delimiters between
values when modifying multiple memory
addresses.

A series of memory locations can be modified by specifying the ad­
dress of the first location in the series to be modified (--EXPR--)
and the list of the values (--EXPR--) to which the contents of that
location and the succeeding locations are to be changed. The first
value listed replaces the contents of the specified memory loca­
tion, the second value replaces the contents of the next location in
the series, and so on until the list has been exhausted. If only one
number or symbol is specified, only the single address indicated is

Emulation Command Syntax 2-57

modified. When more than one value is listed, the value repre­
sentations must be separated by commas.

An entire block of memory can be modified such that the contents
of each location in the block is changed to the single specified
value, or to a single or repeated sequence. This type of memory
modification is achieved by entering the limits of the memory
block to be modified (--EXPR-- thru --EXPR--) and the value or list
of values (--EXPR--, ... , --EXPR--) to which the contents of all loca­
tions in the block are to be changed.

Function codes are an important part of the memory access
specification, along with the address expression. The function
code (if stated explicitly) precedes the associated address expres­
sion, and may be specified as a number or one of the defined func­
tion code mnemonics(e.g., SUPER_PROG, USER_DATA).

Memory configuration allows different modes for function codes:
they may be enabled (full use offunction codes), disabled (no use of
function codes), or partially disabled (only PROGRAM/DATA
spaces are recognized). If the function codes are disabled (even par­
tially), then the unused function code bits are masked off and ig­
nored during the memory access.

2-58 Emulation Command Syntax

modify registers

Syntax

registers <REG> <VALUE> 1------

<REG SET>

Function

Default Value

Examples

Parameters

The modify register command is used to modify the contents of
one or more registers in the processor/corpocessor's register set.
The entry for <REG> determines which register is modified.

Register modification cannot be performed during real time run­
ning of the processor. A break must be performed to gain access to
the registers.

none

modify registers cpu DO to 9H
modifyregisterscpuAOto lOOlb, Al to 1023h

<REG> <REG> represents the name of the
register to be modified. The possible
entries for <REG> are displayed on
softkey labels.

Emulation Command Syntax 2-59

<REG_SET>

to

<VALUE>

2-60 Emulation Command Syntax

< REG_SET > specifies the name of the
register set to be displayed. The
register set names may be selected from
softkeys. All custom coprocessor
names defined in your custom register
specification file are displayed. The name
cpu specifies that the 68020's internal
cpu registers be displayed. The name fpu
is reserved for the emulator's internal
68881 floating point processor, if used.

to enables you to specify the values to
which the selected registers will be
changed.

<VALUE > is a combination of numeric
values, symbols, operators, and paren­
theses specifying an register value. See-­
EXPR-- syntax diagram.

modify
sw _breakpoints

Syntax

sw _breakpoints set oil

one_shot entry

l'----------.....-1 <ADDR>

clear f_code <F_CODE>

disable

one_shot 1-------'1

permanent 1-----------

Function

Default Values

Examples

Software breakpoints enables the emulator to "break on execu­
tion" of a specified address. Any valid address (number, label or
expression) may be specified as a breakpoint. Valid addresses
identify the first word of valid instructions.

Operation of the program can be resumed after the breakpoint by
either a run or step command.

none

modify sw breakpoints clearfcode USER PROG 1099h,
1234h - -
modify sw _breakpoints set fcode SUPER_ PROG

Emulation Command Syntax 2-61

Parameters

one shot
LOOPlEND, LOOP2END

modify sw breakpoints clear entry 1
modify sw _breakpoints disable entry 2

<ADDR>

all

clear

disable

<F_CODE>

one_shot

permanent

<ADDR> is a combination of numeric
values, symbols, operators, and paren­
theses specifying a software breakpoint
address. See --EXPR-- syntax diagram.

If used with the set parameter, all causes
all breakpoint entries to be reactivated
(set to pending). If used with the clear
parameter, all causes all entries to be
cleared and the memory locations are res­
tored to their original values. all also
enables you to disable all entries or to
change all entries to one-shot or per­
manent mode.

clear clears the specified breakpoint ad­
dress < ADDR > and restores the original
contents of the memory location.

disable deactivates the selected break­
point entry.

<F _CODE> isapromptforthefunc­
tion code. If used, the function code must
be specified using one of the defined func­
tion code mnemonics on the softkeys.

one shot causes the breakpoint to be set
for one execution. On execution, the
breakpoint is deactivated and the original
contents of the memory location is res­
tored. one shot is also used to modify
the mode of existing entries.

permanent causes the breakpoint to be
set until you clear or disable it. The break­
point can be repeatedly executed. per-

2-62 Emulation Command Syntax

set

manent is also used to modify the mode of
existing entries.

set enables you to set software break­
points in your program.

Commas (,) are used as delimiters be­
tween specified breakpoint values.

Emulation Command Syntax 2-63

reset

Syntax

(reset)t----------•l<RETURN>I

Function The reset command suspends target system operation and rees­
tablishes initial operating parameters, such as reloading control
registers. The reset signal is latched when the reset command is
executed and is released by the run command.

When the processor is released from reset by a run command, one
of two operations will occur, depending on the answer to the
reset_ to_ monitor question in configuration:

• Reset_to_monitor enabled: the processor will reset into the
monitor, ignoring any user-defined reset vector.

• Reset_to_monitor disabled: the processor will vector into
the reset handler defined by the user reset vector.

Default Value none

Example reset

2-64 Emulation Command Syntax

run

Syntax

~-~1-.......----------------.....,.---------------------...--.1<RETURN>

from i-.....~------ <ADDR> <F_CODE> <ADDR>

<F _CODE>

transfer_ address 1------'

Function If the processor is in a reset state, run will cause the reset to be
released, and if a "from" address is specified the processor will be
directed to that address. If the processor is running in the monitor,
the run command causes the processor to exit into your program.
The program can either be run from a specified address (--EXPR-­
), from the address currently stored in the processor's program
counter, or from a label specified in the program.

ill run until the until address is encountered and then break to the
monitor. The until "< ADDR >"specification also causes a
software breakpoint to be set up at the address requested.

cifications are not allowed.

Default Value If the address (--EXPR--) option is omitted, the emulator will
begin program execution at the current address specified by the
processor's program counter.

Examples run
run from 81 OH

Emulation Command Syntax 2-65

Parameters

run from USER STATE START until LOOP 1
run until SUPERVISOR STATE LOOP _1 -

<ADDR>

<F_CODE>

from

transfer_ad­
dress

until

<ADDR> is a combination of numeric
values, symbols, operators, and paren­
theses specifying a memory address. See -­
EXPR-- syntax diagram.

< F _CODE> is a prompt for the func'"
tion code. If used, the function code must
be specified using one of the defined func­
tion code mnemonics on the softkeys.

from is used to specify the address from
which program execution is to begin.

transfer address is the starting ad­
dress of the program you loaded into
emulation or target memory. The trans­
fer_address is defined in the linker map.

until is used in defining a software break­
point on which to break execution of your
program.

2-66 Emulation Command Syntax

step

Syntax

step

Function

Default Values

Examples

<F _CODE>

transfer_ address 1-------

The step command allows program instructions to be sequentially
analyzed by causing the emulation processor to execute a
specified number of instructions. The contents of the processor
registers, the contents of trace memory, and the contents of emula­
tion or target memory can be displayed after each step command
has been completed.

If no value is entered for <NUMBER> of times, only one instruc­
tion is executed each time the return key is pressed. Multiple in­
structions can also be executed by holding down the return key.

If the from address (--EXPR-- or transfer _address) option is
omitted, stepping begins at the next address.

step Return
stepfromfcodeSUPERVISOR STATE810h
step 20 from fcode USER_ STATE OAOh

Emulation Command Syntax 2-67

Parameters <ADDR>

<F_CODE>

from

<NUMBER>

transfer_ad­
dress

2-68 Emulation Command Syntax

<ADDR> is a combination of numeric
values, symbols, operators, and paren­
theses specifying a memory address. See -­
EXPR-- syntax diagram.

< F _CODE> is a prompt for the func­
tion code. If used, the function code must
be specified using one of the defined func­
tion code mnemonics on the softkeys.

from is used to specify the address from
which program stepping is to begin.

<NUMBER> determines how many in­
structions will be executed by the step
command. The number of instructions to
be executed can be entered in binary (B),
decimal (D), octal (0, or Q), or
hexadecimal (H) notation.

transfer address is the starting ad­
dress of the program you loaded into
emulation or target memory. The trans­
fer _address is defined in the linker map.

store

store

Syntax

memory 1--......._...,..------------,~ <ADDR> 1--..----------.....:........

fcode <F _CODE> thru <ADDR>

troce_specificotion 1--.-----------..,...-------"-~ to_file <FILE> <RETURN>

Function

Default Value

Examples

Parameters

with_ trace_ data

The store command is used to store the contents of specific
memory locations into an absolute file (.X file), or to store the
trace specification, with or without trace data, into a trace file (.TR
file).

None

store memory fcocle USER PROG 800h thru 20ffh to tile
temp2 - -
store trace_ specification to_ file trclst

--EXPR-- --EXPR-- is a combination of numeric
values, symbols, operators, and paren-

Emulation Command Syntax 2-69

Description

fcode

<F_CODE>

<FILE>

memory

thru

to_file

trace_specifica­
tion

with_trace _dat
a

theses specifying a memory address. See -­
EXPR-- syntax diagram.

fcode enables you to specify a function
code along with the address expression as
part of the memory access specification.

< F _CODE> is a prompt for the func­
tion code. The function code map be
specified as a number or as a defined func­
tion code mnemonic on the softkeys.

<FILE> is a prompt for the identifier for
the absolute file or trace file in which data
is to be stored.

memory specifies that the selected
memory locations be stored in the
specified file.

thru enables you to specify that memory
ranges be stored.

to file must be used in the store memory
command to separate the memory loca­
tion specifications from the file identifier
(<FILE>).

trace specification specifies that the
current trace specification data be stored
in the specified file.

with trace data specifies that the
trace data be stored along with the trace
specification.

Commas (,) are used to separate memory
expressions in the command line.

<FILE> determines the name under which the absolute or trace
file is to be stored. The store command creates a new file having
the specified name as long as there is no absolute file presently on
the disc with that name. In the case where a file represented by

2-70 Emulation Command Syntax

the <FILE> variable already exists, the system asks whether
the old file is to be deleted. If the response is yes, the new file
replaces the old one. If the response is no, then the store command
is canceled and no data is stored. The transfer address of the ab­
solute file is set to zero.

Emulation Command Syntax 2-71

--SYMB--

Syntax

--SYMS--

<FILE>

NOTE

Function

line <LINE>

segment i--~~~~-- <SEGMNT>

<SCOPE>

If no default file has been defined by executing the display
local symbols in or load memory commands, a source file
name(< FILE>)must be specified with the first local symbol in
a command line. The specified file is then used as the default file
for subsequent symbols in that command line until a new source
file name is specified. When the command is executed, the
default file name returns to the file name specified in the last dis­
play local symbols in command (if one has been executed)
or the last load memory command.

--SYMB-- is a symbolic reference to an address or address range,
file, or other value. Symbols may be HP-UX paths, referenced line
numbers in a file, file segments (prog, data, common), or global
and local symbols.

2-72 Emulation Command Syntax

Default Value

Examples

Parameters

Last file specified in a "rusplay local symbols in" command.
If display local symbols in has not been executed in the cur­
rent emulation session, default is the last file specified in a load
memory command, or none if a file has not been loaded.

module.S: line 5
keybd.S: scankeys.LOOPl
segment "DATA\"

<FILE>

line

<LINE>

<SCOPE>

segment

<SEGMNT>

<SYMBOL>

<FILE> is an HP-UX path specifying a
source file. If no file is specified, the
default file is assumed, if one exists.

line specifies that the following value is a
line number.

<LINE> prompts you to enter a line
number.

<SCOPE> prompts you to enter the
identifier of the portion of the program
where the specified symbol is defined or
active.

segment indicates that the following
string specifies a program segment (prog,
data, common) in the source file.

< SEGMNT > prompts you to enter a
program segment.

<SYMBOL> prompts you toentera
symbol name.

A colon (:) separates the HP-UX path
specifier from the line, segment or symbol
specifier. Ifno path specifier precedes:,
then the default file is assumed for line or
segment, and <SYMBOL> is assumed
to be a global symbol.

Emulation Command Syntax 2-73

trace

Function The trace command allows you to trace program execution using
theHP 64404A and 64405A Integrated Analyzers.

See the Analysis Reference Manual for 32-BitMicroprocessors for
a detailed description of the display trace command.

2-74 Emulation Command Syntax

wait

Syntax

wait

Function

Default Value

<TIMER> <RETURN>

measurement_ complete

<TIMER>

stepping_ complete

The wait command is a delay command. Delay commands are en­
hancements that allow flexible use of command files (although
delays are also available outside of command files). Command
delays give the emulation system and target processor time to
reach some condition or state before bringing in the next com­
mand. The delay commands may be included in command files.

The wait command is not displayed on the softkeys. You must
type the command from the keyboard. After you type "wait", the
wait command parameters are displayed on the softkeys.

WaitingforCtrl C

Emulation Command Syntax 2-75

NOTE

Examples

Parameters

if "set intr Ac" has not been executed on your system, replace Ctrl
c with the backspace key in the following examples and
parameter definitions.

wait

wait6

wait measure­
ment_ complete

wait measure­
ment_ com­
plete or 20

measure­
ment_complete

stepping_ com­
plete

emulator waits for Ctrl c before accepting
the next command.

emulator waits for Ctrl c or 6 seconds
before accepting the next command.

emulator waits for Ctrl c or for a pending
measurement to complete. If no measure­
ment is in progress, wait will be satisfied
immediately.

emulator waits for Ctrl c, for a pending
measurement to complete, or 20 seconds
(whichever occurs first) before accepting
the next command.

measurement complete causes the
system to wait for a measurement in
progress to complete before the next com­
mand is executed.

stepping complete causes the system
to wait for the currently executing step­
ping command to complete before execut­
ing another command.

2-76 Emulation Command Syntax

<TIME> <TIME> is the number of seconds you
insert for your delay.

Emulation Command Syntax 2-77

Notes

2-78 Emulation Command Syntax

A

User Interface Software/HP-UX Cross Reference

Table A-1. User lnterface/HP·UX Cross Reference

USER INTERFACE HP-UX
COMMAND OPTION COMMAND OPTION

edit Defined by the variable" EDITOR"

recover -r
Read only -R

compile comp

list -I
no list -n
expand -e
no code -t

xreT -x
output -0

verbose -v
list to >
print I $PRINTER

User lnterface/HP-UX Cross Reference A·1

Table A-1. User lnterface/HP-UX Cross Reference {Cont'd)

USER INTERFACE HP-UX
COMMAND OPTION COMMAND OPTION

assemble asm

list -I
no list -n
expand -e
no code -t
xreT -x
output -0

verbose -v
list to >
print I $PRINTER

link Ink

list to -I
print !$PRINTER
xref -x
output -0

no map -n
no ovlp -c

prom prg prom prg

list dir Is -
Filetype -F
time mod -t
use time -u -reverse -r
all -a
Recurse -R
anychar ?
anystrng *
list to >
print !$PRINTER
long -I

A·2 User lnterface/HP-UX Cross Reference

Table A-1. User lnterface/HP-UX Cross Reference {Cont'd)

USER INTERFACE HP-UX
COMMAND OPTION COMMAND OPTION

remove rm

anychar ?
anystrng *
force -f
recurse -r
interact _,

move mv

anychar ?
anystrng *
force -f

copy cp

anychar ?
anystrng *

cat cat

anychar ?
anystrng *

makedir mkdir

removdir rmdir

chng dir cd -
date&time date

opt test opt

manual man

keyword -k
list to >
print I $PRINTER

User lnterface/HP-UX Cross Reference A-3

Table A-1. User lnterface/HP-UX Cross Reference {Cont'd)

USER INTERFACE HP-UX
COMMAND OPTION COMMAND OPTION

log log commands -
to to
off off

shell !

tarchive tar

add r
update u
extract x
create c
table t
anychar ?
anystrng *
no dir 0

file/dev f <device>
verbose v
prsvmode p
marknow m

I if copy lifcp

binary -b
anychar ?
anystrng *
transl at -t
raw -r

lifremv lifrm

lifrenam lifrename

A-4 User lnterface/HP-UX Cross Reference

Table A-1. User lnterface/HP-UX Cross Reference {Cont'd)

USER INTERFACE HP-UX
COMMAND OPTION COMMAND OPTION

liflist lifls

long -I
list to >
print !$PRINTER

lifinit lifinit

vol name -n -
msinit msinit

search -s

msconfig msconfig

msstat msstat

<system name> <system name>
i~emul682K i.e. emul682K

User lnterface/HP-UX Cross Reference A-5

Notes

A-6 User lnterface/HP-UX Cross Reference

B

Using Control Characters And Other Commands

Using Control
Characters

The following control characters can be used in HP 64000-UX:

• CTRL b recalls commands starting from the first command
you entered. You can continue pressing these keys to observe
commands previously executed.

• CTRL c is an interrupt, and stops processing of the current
command. In Option Test, this has no effect (this is different
from most HP 64000-UX interfaces, and is set this way so that
the HP 64000-UX hardware is never left in an unknown
state).**

• CTRL d stops all tests and exits HP 64000-UX features.**

• CTRL e clears the command line from the cursor location to
the end of the line.

• CTRL frolls the diagram left while in emulation.

• CTRL g rolls the diagram right while in emulation.

• CTRL I refreshes (redraws) the display.

• CTRL q resumes scrolling of information on the screen (that
was stopped with CTRL s).

• CTRL r recalls commands from the previous command you
entered (scrolling through the commands toward the first com­
mand). You can continue pressing these keys to observe com­
mands previously executed.

Using Control Characters B-1

Other Control
Characters And
Commands You
Can Use

B-2 Using Control Characters

• CTRL s temporarily stops scrolling of information on the
screen (resume with CTRL q).

• CTRL u clears the command line.**

• CTRL \(backslash) stops all tests and exits HP 64000-UX fea­
tmes. **

• Tab moves the cursor to the next word on the command line.

• Shift Tab moves the cursor back one word on the command
line (this is for HP terminals only).

** Depends on actual stty settings.

Other control characters and commands you can use are listed
below:

• #is used to include comments in files. All characters after the
"#" are ignored when the file is executed.

• help or ? displays the possible help files.

• ! forks an HP-UX shell (using the $SHELL environment vari­
able).

• cd changes directory for the present HP-UX shell.

• <FILE> pl p2 p3 executes a command file and passes three
parameters.

• log commands to <FILE> puts commands you execute
intoa file that you specify.

• wait pauses a command file until you press CTRL c
(SIGnal_INTerrupt).

• wait measurement complete pauses a command file rmtil
the measurement is complete, or rmtil CTRL c (SIG_INT).

• wait <TIME> pauses a command file rmtil <TIME> (in
number of seconds) has passed, or rmtil CTRL c is pressed.

Using Control Characters B-3

Notes

B-4 Using Control Characters

Index

A analysis, 1-5
at_ execution syntax, 2-5

B break command syntax, 2-7
break syntax, 2-7
breakpoint generation, 1-6

C clock source selection, 1-6
command summary, emulation, 2-3
control characters, using, B-1
copy display command syntax, 2-12
copy global_symbols command syntax, 2-13
copy help command syntax, 2-14
copy local_symbols_in command syntax, 2-15
copy memory command syntax, 2-16
copy registers command syntax, 2-20
copy sw _breakpoints command syntax, 2-22
copy command syntax, 2-8
copytracecommand,2-24
copy trace_ specification command, 2-25

D damage to target system circuitry, 1-8
display command syntax, 2-26
display global_symbols command syntax, 2-28
display local_symbols_in command syntax, 2-29
display memory command syntax, 2-30
display registers command syntax, 2-34
display simulated_io command syntax, 2-36
display sw _breakpoints command syntax, 2-37
display trace command, 2-39
display trace_specification command, 2-40

E electrical transparency, 1-3
emulation probe, 1-4

lndex-1

2-lndex

emulation system, physical description, 1-2
emulator effects on user program, 1-6
execute command syntax, 2-41
expression syntax, 2-43

f functional description of emulator, 1-2
functional transparency, 1-3

H halt command syntax, 2-45
hardware modules, emulation system, 1-2
help command syntax, 2-46
how the emulator affects the target system, 1-10

interactive measurements, 1-6
interactive operation withothermodules, 1-6
internal processor resources display/modify, 1-5

L load command syntax, 2-47

M memory characterization, 1-5
memory display/modification, 1-5
nricroprocessorreplacementprobe, 1-4
modify analysis command, 2-52
modify command syntax, 2-50
modify configuration command syntax, 2-53
modify keyboard_ to _simio command syntax, 2-54
modify memory command syntax, 2-55
modify registers command syntax, 2-59
modify sw _breakpoints command syntax, 2-61

0 operational independence from host system, 1-4

P physical description, emulation system, 1-2
preparing the emulator, 1-11
preparing the software, 1-11
programloading,1-5
program stepping, 1-5

R real-time mode capabilities, 1-7
real-time mode restrictions, 1-7
real-time vs. non-real-time mode, 1-7

reset command syntax, 2-64
resource mapping, 1-5
run command syntax, 2-65
run/stopcontrols, 1-5

S step command syntax, 2-67
store command syntax, 2-69
symbol display, global and local, 1-5
symbolsyntax,2-72
syntax conventions, 2-2
systen commands available in emulation, B-2

T timing transparency, 1-3
trace command, 2-7 4
transparency, electrical, 1-3
transparency, functional, 1-3
transparency, timing, 1-3
transparency to target system, 1-3

U user interface/HP-DX cross reference, A-1
using the emulator, 1-11
using the emulator, steps to, 1-11

W wait command syntax, 2-75
whathappensduringprogramexecution, 1-9
what is an emulation system, 1-2

lndex-3

Notes

4-lndex

Fh:.HEWLETT
~~PACKARD

64400-90901
E0488
Printed In U.S.A. 04/88

11111111111111111111111111
64400-90901

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-60
	2-61
	2-62
	2-63
	2-64
	2-65
	2-66
	2-67
	2-68
	2-69
	2-70
	2-71
	2-72
	2-73
	2-74
	2-75
	2-76
	2-77
	2-78
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	I-01
	I-02
	I-03
	I-04
	xBack

