
64410-90903

E0688

ADVANCED INTEGRATION ENVIRONMENT

HP 64410 Emulation:

68020 Emulator Operating Manual

OesignCenler

68020 Emulation:
Operating Manual

Ff/~ HEWLETT
~~ PACKARO

Edition 1

64410-90903
E0688
Printed in U.S.A. 06/88

Notice

Hewlett-Packard makes no warranty of any kind with
regard to this material, including, but not limited to, the im­
plied warranties of merchantability and fitness for a par·
ticular purpose. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in
connection with the furnishing, performance, or use of this
material.

Hewlett-Packard assumes no responsibility for the use or
reliability of its software on equipment that is not furnished by
Hewlett-Packard.

©Copyright 1987,1988 Hewlett-Packard Company.

This document contains proprietary information, which is
protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to
another language without the prior written consent ofHewlett­
Packard Company. The information contained in this document is
subject to change without notice.

HP and HP-UX are trademarks of Hewlett-Packard Company.

Torx is a registered trademark of the Camcor division of Textron,
Inc.

UNIX is a registered trademark of AT&T.

Logic Systems Division
8245 North Union Boulevard
Colorado Springs, CO 80920, U.S.A.

Printing History

New editions are complete revisions of the manual. Update pack­
ages, which are issued between editions, contain additional and
replacement pages to be merged into the manual by the customer.
The dates on the title page change only when a new edition or a
new update is published. No information is incorporated into a
reprinting unless it appears as a prior update; the edition does not
change when as update is incorporated.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual or up­
date was issued. Many product updates and fixes do not require
manual changes and, conversely, manual corrections may be
done without accompanying product changes. Therefore, do not
expect a one to one correspondence between product updates and
manual updates.

Edition 1 06/88 64410-90903 E0688

Certification and Warranty

Certification

Warranty

Hewlett-Packard Company certifies that this product met its
published specifications at the time of shipment from the factory.
Hewlett-Packard further certifies that its calibration measure­
ments are traceable to the United States National Bureau of
Standards, to the extent allowed by the Bureau's calibration
facility, and to the calibration facilities of other International
Standards Organization members.

This Hewlett-Packard system product is warranted against
defects in materials and workmanship for a period of 90 days from
date of installation. During the warranty period, HP will, at its op­
tion, either repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer's
facility at no charge within HP service travel areas. Outside HP
service travel areas, warranty service will be performed at
Buyer's facility only upon HP's prior agreement and Buyer shall
pay HP's round trip travel expenses. In all other cases, products
must be returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall
prepay shipping charges to HP and HP shall pay shipping charges
to return the product to Buyer. However, Buyer shall pay all ship­
ping charges, duties, and taxes for products returned to HP from
another country. HP warrants that its software and firmware

Limitation of
Warranty

Exclusive Remedies

designated by HP for use with an instrument will execute its
programming instructions when properly installed on that instru­
ment. HP does not warrant that the operation of the instrument,
or software, or firmware will be uninterrupted or error free.

The foregoing warranty shall not apply to defects resulting from
improper or inadequate maintenance by Buyer, Buyer-supplied
software or interfacing, unauthorized modification or misuse,
operation outside of the environment specifications for the
product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically
disclaims the implied warranties of merchantability and fit­
ness for a particular purpose.

The remedies provided herein are buyer's sole and ex­
clusive remedies. HP shall not be liable for any direct, in­
direct, special, incidental, or consequential damages,
whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance
agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales
and Service Office.

Radio Frequency Interference

What is Radio
Frequency
Interference?

All types of electronic equipment are potential sources of uninten­
tional electromagnetic radiation which may cause interference
with licensed communication services. Products which utilize
digital waveforms such as any computing device are particularly
characteristic of this phenomena and use of these products may re­
quire that special care be taken to ensure that Electromagnetic In­
terference (EMI) is controlled. Various government agencies regu­
late the levels of unintentional spurious radiation which may be
generated by electronic equipment. The operator of this product
should be familiar with the specific regulatory requirement in ef­
fect in his locality.

The HP 64120A Instrumentation Cardcage (ICC) and the HP
64000 Logic Development Station card cage (LDSCC) have been
designed and tested to the requirements of the U.S.A. Federal
Communications Commission Part 15, Subpart J (Class A), the
Federal Republic of Germany FTZ 1046/1984, and the Interna­
tional Electro technical Commissions' International Special Com­
mittee on Radio Interference (C.I.S.P.R) Publication 22. In addi­
tion, the ICC and LDSCC are registered with the Japanese Volun­
tary Control Council (VCCI). All of these specifications and the
laws of many other countries require that if emissions from these
products cause harmful interference with licensed radio com­
munications, that the operator of the interference source may be
required to cease operation of the product and correct the situa­
tion.

Reducing the Risk
Of EMI

Reducing
Interference

a. Ensure that the top cover of the ICC or LDSCC is
properly installed and that all screws are tight (do not
over tighten).

b. When using a feature set which includes cables that
egress from the chassis slot of the ICC or LSDCC, en­
sure that the knurled nuts and ferrels, or brackets that
ground the cable shields are clean and tight (Do not
overtighten). The EEPROM Programmer cable has an
exposed shield that must make contact with the cable
clamp.

c. During times ofinfrequent use, disconnect the
EEPROM Programmer and cables from the card cage
and the target system.

d. Use only shielded coaxial cables on the four external
BNC connectors on the rear of the ICC.

e. Use only the shielded IMB cable supplied with the ICC
or LSDCC for connection to additional ICC's or
LSDCC's.

f. Use only shielded cables on the IEEE 488 interface con­
nector to the host computer.

In the unlikely event that emissions from the ICC or LDSCC
result in electromagnetic interference with other equipment, you
may use the following measures to reduce or eliminate the inter­
ference.

Manufacturer's
Declarations

U.S.A. Federal
Communications

Commission

a. If possible, increase the distance between the ICC or
LDSCC and the susceptible equipment.

b. Rearrange the orientation of the chassis and cables of
the ICC system or LDSCC.

c. Plug the ICC or LDSCC into a separate power outlet
from the one used by the susceptible equipment (the two
outlets should be on different electrical circuits).

d. Plug the ICC or LDSCC into a separate isolation trans-
former or power line filter.

You may need to contact your local Hewlett-Packard sales office
for additional suggestions. Also, the U.S.A. Federal Communica­
tions Commission has prepared a booklet entitled How to Identify
and Resolve Radio -TV Interference Problems which may be help­
ful to you. This booklet (stock #004-000-00345-4) may be pur­
chased from the Superintendent of Documents, U.S. Government
Printing Office, Washington, D.C. 20402U.S.A.

Warning-This equipment generates, uses, and can radiate radio
frequency energy and if not installed and used in accordance with
the instructions manual, may cause interference to radio com­
munications. It has been tested and found to comply with the
limits for a class A computing device pursuant to subpart J of Part
15 of the FCC Rules, which are designed to provide reasonable
protection against such interference when operated in a commer­
cial environment. Operation of this equipment in a residential

Federal Republic of
Germany

Japan

area is likely to cause interference in which case the user at his
own expense will be required to take whatever measures may be
required to correct the interference.

Hiermit wird bescheinigt, daB dieses Gerates in
Ubereinstimmung mit den Bestimmungen der FTZ 1046/1984
funkentstort ist. Der Deutschen Bundespost wurde das In­
verkehrbringen dieses Gerates angezeigt und die Berechtingung
zur Uberprlliung der Serie aufEinhaltung der Bestimmungen
eingeraumt.

c. O"J ~ tWl ,l, ~ - ti{~*~ ti (rffi .I~ tth t.gt 1: ~ ~ 1 -c I~ ffl ~ n ~ r< ~ ·~~ ~~ ~ ~)

~~I•~~~O"J~~-~~~~§~tL~ffi~~~~~~•a•~~~m~

~ t,l ~ (V C C I) ~ * IC ii~ l -C ~ ~ 1: To

(;t -:i c , {1 :£; ii!!~ i t:.. Ii i" <D ~ ~ l t:.. i'tl! ~ c ~ ffi -9 6 .:: . 7 :/ :t , -T v e.·· /

Safety

Summary of Safe
Procedures

Ground The
Instrument

Do Not Operate In An
Explosive

Atmosphere

Keep Away From Live
Circuits

The following general safety precautions must be observed during
all phases of operation, service, and repair of this instrument.
Failure to comply with these precautions or with specific warn­
ings elsewhere in this manual violates safety standards of design,
manufacture, and intended use of the instrument. Hewlett-Pack­
ard Company assumes no liability for the customer's failure to
comply with these requirements.

To minimize shock hazard, the instrument chassis and cabinet
must be connected to an electrical ground. The instrument is
equipped with a three-conductor ac power cable. The power cable
must either be plugged into an approved three-contact electrical
outlet or used with a three-contact to two-contact adapter with the
grounding wire (green) firmly connected to an electrical ground
(safety ground) at the power outlet. The power jack and mating
plug of the power cable meet International Electro technical Com­
mission (IEC) safety standards.

Do not operate the instrument in the presence of flammable gases
or fumes. Operation of any electrical instrument in such an en­
vironment constitutes a definite safety hazard.

Operating personnel must not remove instrument covers. Com­
ponent replacement and internal adjustments must be made by
qualified maintenance personnel. Do not replace components with

Do Not Service Or
Adjust Alone

Do Not Substitute
Parts Or Modify

Instrument

Dangerous Procedure
Warnings

Warning

Safety Symbols
Used In Manuals

the power cable connected. Under certain conditions, dangerous
voltages may exist even with the power cable removed. To avoid
injuries, always disconnect power and discharge circuits before
touching them.

Do not attempt internal service or adjustment unless another per­
son, capable of rendering first aid and resuscitation, is present.

Because of the danger ofintroducing additional hazards, do not in­
stall substitute parts or perform any unauthorized modification of
the instrument. Return the instrument to a Hewlett-Packard
Sales and Service Office for service and repair to ensure that
safety features are maintained.

Warnings, such as the example below, precede potentially
dangerous procedures throughout this manual. Instructions con­
tained in the warnings must be followed.

Dangerous voltages, capable of causing death, are present in
this instrument. Use extreme caution when handling, testing,
and adjusting.

The following is a list of general definitions of safety symbols used
on equipment or in manuals:

Instruction manual symbol: the product is marked with this sym­
bol when it is necessary for the user to refer to the instruction
manual in order to protect against damage to the instrument.

Indicates dangerous voltage (terminals fed from the interior by
voltage exceeding 1000 volts must be marked with this symbol).

Protective conductor terminal. For protection against electrical
shock in case of a fault. Used with field wiring terminals to indi­
cate the terminal which must be connected to ground before
operating the equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a
signal common, as well as providing protection against electrical
shock in case of a fault. A terminal marked with this symbol must
be connected to ground in the manner described in the installation
(operating) manual before operating the equipment.

Frame or chassis terminal. A connection to the frame (chassis) of
the equipment which normally includes all exposed metal struc­
tures.

Alternating current (power line).

Direct current (power line).

Alternating or direct current (power line).

Note

Caution I

Warning G

The Note sign denotes important information. It calls your atten­
tion to a procedure, practice, condition, or similar situation
which is essential to highlight.

The Caution sign denotes a hazard. It calls your attention to
an operating procedure, practice, condition, or similar situa­
tion, which, if not correctly performed or adhered to, could
result in damage to or destruction of part or all of the
product.

The Warning sign denotes a hazard. It calls your attention to a
procedure, practice, condition or the like, which, if not correctly
performed, could result in injury or death to personnel.

Notice

Caution • CONDUCTIVE FOAM OR PLASTIC OVER EMULATOR PINS
MAY CAUSE ERRATIC OPERATION.

The emulator and preprocessor user assembly pins are covered at
the time of shipment with either a conductive foam wafer or a con­
ductive plastic pin protector. This is done for two reasons:

1) to protect the user interface circuitry within the emulator
or preprocessor from electro-static discharge (ESD),

2) to protect the delicate gold plated pins of the probe assemb-
ly from damage due to impact.

Both the foam and plastic protection devices are conductive. This
may cause erratic performance of the emulation or analysis sys­
tem during operation, and also during option_ test performance
verification. Therefore, it is recommended that the foam or plastic
device be removed before using the emulation or analysis system
or before running option_test performance verification.

When not using the emulator or preprocessor, the foam or plastic
assembly should be replaced to retain protection for the probe pins
and protection from ESD.

Notes

USING THIS MANUAL

Organization

Chapter 1

Chapter 2

Chapter 3

Chapter 4

lntrcxlucingThe68020 Emulator contains a brief description of
the 68020 emulator.

Installing Emulation Hardware contains information on in­
stalling your 68020 emulation system hardware into the in­
strumentation cardcage and making a measurement system.
This chapter also contains information on connecting the
emulator to your target system.

Getting Started steps you through the emulation process from
creating an example program to performing measurements on
the execution of that program in emulation.

The Getting Started chapter discusses preparing your program
modules and the.files that are generated by assembling, compil­
ing, and linking programs. See the appropriate cross as­
sembler/linker and compiler manuals for more detailed informa­
tion on preparing program modules for emulation.

Configuring Your Emulator shows how to access the emulation
configuration questions, describes the options available when con-

Chapter 5

Chapter 6

Chapter 7

<:;hapter 8

Chapter 9

Appendix A

figuring the emulator, and shows how to load configuration com­
mand files from a previous emulation session.

Using The Emulator provides guidelines for using the emulator
with a target system and provides information you need to know
about how the emulator interacts with your target system.

The Emulation Monitor Program provides a detailed descrip­
tion of the emulation monitor program and how to modify it for
your system requirements.

Using Custom Coprocessors describes how to make a custom
coprocessor register format file and how to modify the emulation
monitor so that your emulation system can display and modify
coprocessor registers.

Using Simulated 1/0 And Simulated Interrupts describes
how to set up your emulator to use host 1/0 resources to simulated
target system IJO and how to use the simulated interrupt features
of the emulator. .

How The Emulator Works provides a detailed description of
how many of the emulator features work. Understanding how the
emulator works helps you use the emulator more effectively and
helps you resolve problems you may encounter.

Emulation Error Messages contains descriptions of the most
serious error messages you may encounter and information on
how to correct the errors.

Appendix B

Appendix C

Understanding
The Examples

provide listings of the demonstration programs used in this
manual as a reference for you when working through the the ex­
amples.

Timing Comparisons lists timing comparisons between 68020
processors and the HP 64410 Emulator.

This manual assumes that you are using the User-Friendly Inter­
face Software (HP 64808S) which is activated by executing the HP
64000-UX pmon command. This means that the manual will
show you how to enter HP 64000-UX system commands (edit,
compile, assemble, link, msinit, msconfig, etc.) by telling you to
press various softkeys.

If you are not using "pmon", you will find the USER INTER-
F ACE/HP-UX CROSS REFERENCE appendix of the 68020
Emulation Reference Manual especially useful. The cross
reference table shows you how the "pmon" softkeys translate into
commands that can be entered from the HP-UX prompt.

The examples provided throughout this manual use the following
structure:

PRESS edit module.S

PRESS or press

edit

means you should enter a command by
selecting the softkeys and/or typing in any
file names or other variables which are
not provided in the softkey selections.

softkeys will appear in bold type. Usually
you will not be prompted to use the --­
ETC--- softkey to search for the ap­
propriate softkey template. Three softkey

module.S

templates are available at the HP 64000
system monitor level.

this is the name of a file which you must
type in. Softkeys are not provided for this
type of selection since it is variable.
However, a softkey prompt such as
<FILE> will appear as a softkey selec­
tion.

For most commands, you must press the Return key before the
command is actually executed.

Contents

Chapter 1 Introducing The 68020 Emulator

Overview ... 1-1
Safety Considerations 1-1
Emulator Description 1-2
Manual Coverage 1-3

Chapter 2 Installing Your Emulator

Overview ... 2-1
Introduction ... 2-1
Safety Considerations 2-3
Preinstallation Inspection 2-4
Installing Your Emulation System Hardware 2-5

Installation Instructions 2-5

fil Installing The Emulation Probe Into The Target System ... 2-10

Install Software · 2-13
Installing 68020 Emulation Software Updates 2-13
Turning On The HP 64120A 2-13

Contents-1

Chapter 3 Getting Started

Overview 3-1
Introduction ... 3-1
Emulation System Used For Examples 3-2
Making A Subdirectory For Your 68020 Project 3-2
Initializing And Configuring Your Measurement System 3-4
Preparing Your Program Modules 3-7

Copying The Demonstration Programs To Your
Subdirectory 3-8

Compiling and Linking the Program Modules 3-9
Preparing The Emulation System 3-12

Accessing The Emulation System 3-12
Modifying The Default Emulation Configuration 3-12
Loading Emulation Memory 3-16

Using The Emulator 3-17
Displaying Global Symbols 3-18
Displaying Local Symbols 3-19
Displaying Memory 3-20
Modifying Memory 3-21
Running from the Transfer Address 3-22
Displaying Registers 3-23
Using The Step Function 3-24
Tracing Processor Activity 3-26
Using Software Breakpoints 3-29
Using Simulated I/O 3-31
Ending The Emulation Session 3-33

Using Command Files 3-33

2-Contents

Chapter 4 Answering Emulation Configuration Questions

Overview ... 4-1
Introduction ... 4-1
Running Emulation 4-2
Modifying The Configuration File 4-3

Selecting Real-Time/ Nonreal-Time Run Mode 4-3
Enabling Emulator Monitor Functions 4-5
Resetting Into The Monitor 4-6
Enabling Emulator Use of Software Breakpoints 4-7
Selecting The Software Breakpoint Instruction Number .. 4-7
Enabling The Internal 68881 FPU 4-8
Specifying The FPU Coprocessor ID 4-9
Using Custom Coprocessors 4-9
Specifying The Custom Coprocessor File4-10
Modifying a Memory Configuration 4-10
Modifying The Emulation Pod Configuration 4-26
Configuring Simulated 1/0 4-31
Configuring Simulated Interrupts 4-32
Naming The Configuration File4-32

Configuration Switch 4-33
Cl .. 4-33
C2 (DSACKO) And C3 (DSACKl)4-35

Chapter 5 Using The Emulator

Overview ... 5-1
Installing 68020 Emulation Software Updates 5-2
Emulation And Target System Dsack Signals 5-2

Interlocking Emulation Memory DSACK and Target
DSACK Signals 5-2

Contents-3

DSACK Signal Problems In Target Systems 5-4
Using The Vector Base Register 5-6
Using The Internal 68020 Cache 5-7

Cache Control 5-7
Analysis with Cache 5-8
Using Breakpoints With Cache Enabled 5-8

Using Function Codes For Displaying And Modifying Reserved
Address Space 5-10

Enabling/disabling BERR 5-11
UsingDMA .. 5-12
Using The Run From ... Until Command 5-16
UsingThe Emulation Monitor 5-18

Loading the Emulation Monitor 5-18
Resetting Into The Monitor 5-20

Systems With Memory Management Units (MMU's) 5-22
Memory Access Timing Issues 5-23
Loading An Absolute File 5-24

, If All Else Fails 5-26

Chapter 6 The Emulation Monitor Program

Overview ... 6-1
Introduction ... 6-2
The Break Function And The Emulation Monitor 6-3
Emulation Monitor Description 6-3

The Exception Vector Table 6-3
Emulation Monitor Entry Point Routines 6-4
Emulation Command Scanner 6-6
Emulation Command Execution Modules 6-6

Customizing The Emulation Monitor 6-7
Modifying The Exception Vector Table. 6-9
Continuing Target System Interrupts While In The Emula-
tion Monitor 6-11

4-Contents

Sending Messages From the User Program To the Emulator
Display .. 6-12

Emulation Monitor Memory Requirements For The 68020 .. 6-14
Linking The Emulation Monitor 6-15
Loading The Emulation Monitor 6-15
Emulation Monitor Flowchart 6-17

Chapter 7 Using Custom Coprocessors

Overview ... 7-1
Introduction ... 7-2
The Custom Register Format File 7-3

Address specification 7-4
Size Specification 7-4
Name Specification 7 -4
Register Set Display Specification 7 -5
Using the Internal FPU 7-5

Emulation Monitor Changes 7-9
Defining a Coprocessor Register Buffer 7-9
Modifying The MON_ALT_BUFFER Table 7-10
Modifying The MON_ALT_REGISTERSTable 7-11
Writing Coprocessor Copy Routines 7 -11

Answering Emulation Coprocessor Configuration Questions 7-13

Contents-5

Chapter 8 Using Simulated 1/0 And Simulated lnterrrupts

Configuring Simulated I/O 8-1
Restrictions On Simulated I/O 8-3

Simulated Interrupts 8-4
How Does A Simulated Interrupt Function? 8-4
Simulated Interrupts Versus Real Interrupts 8-7
Simulated Interrupt Configuration 8-7

Modifying The Monitor To Use Simulated Interrupts 8-10

Chapter 9 How The Emulator Works

Overview ... 9-1
Introduction ... 9-2
Are You There Function? 9-3
The Run Command 9-4

Run From Command 9-4
Run Until Command 9-5
Run From ... Until Command 9-5

Software Breakpoints 9-7
Setting A Software Breakpoint 9-7
Executing A Software Breakpoint 9-8
Executing A Run Command After Executing A Software

Breakpoint 9-8
Single Stepping 9-10
Target Memory Transfers 9-12

Displaying Target Memory 9-15
Copying from Target System Memory 9-16 ~
Modifying Target Memory 9-17
Copying to Target System Memory 9-18

6-Contents

Appendix A

Appendix B

Displaying CPU Registers 9-19
Modifying The CPU Registers 9-20

Emulation Error Messages

68020 Emulation Error Messages . A-1
cannot break into monitor . A-1
monitor did not respond to exit request A-2
slow dev at a= XX.XX (YY) . A-3
no memory cycles . A-4
(no DSACK) message in tracelist . A-4
running in monitor A-4
running . A-5
Reset (with capital "R'~ A-5
reset (with lower case "r") . A-5
Attempt to write guarded memory, addr = XXXX A-5
Attempt to read guarded memory, addr = XXXX A-5
Could not enable breakpoint at address XXXX A-5
Could not disable breakpoint at address XXXX A-6
No breakpoint exists at address XXXX A-6

Source Files For Getting Started Examples

Introduction .. B-1
Source File For towers.c . B-2
Source File For simint.c . B-9

Contents-7

Appendix C

8-Contents

Timing Comparisons

Introduction .. C-1
MC68020RC12/HP 64410 Timing Comparisons C-3
MC68020RC16/HP 64410 Timing Comparisons C-7
MC68020RC20/HP 64410 Timing Comparisons C-11
MC68020RC25/HP 64410 Timing Comparisons C-15

Illustrations

Figure 2-1. HP 64120A Instrumentation Cardcage Features . 2-2
Figure 2-2. Removing the Cardcage Access Cover 2-6
Figure 2-3. ABG Protective Plastic Cable Cover 2-8
Figure 2-4. Board Installation Into Cardcage 2-9
Figure 2-5. Installing Emulator Probe Into PGA Socket 2-12

Figure 3-1. Towers.k Linker Command File 3-11

Figure 4-1. Default Memory Map Display 4-13
Figure 4-2. Overlay Addressing Within Physical Blocks 4-19
Figure 4-3. Sample Overlay Mapping #1 4-20
Figure 4-4. Sample Overlay Mapping #2 4-21
Figure 4-5. Setting Configuration Switches 4-34

Figure 5-1. Memory Access Timing, No DSACK Interlock ... 5-3
Figure 5-2. DMA Bus Request/Bus Grant Timing 5-12
Figure 5-3. Circuit For DMA Transfers 5-14
Figure 5-4. DMA Timing Diagram, DMA Disabled 5-15
Figure 5-5. Example Stack Frame 5-16

Figure 6-1. Monitor Message Routine 6-13

Figure 7-1. Sample Custom Register Specification File 7-6
Figure 7-1. Sample Custom Register Spec. File (Cont'd) 7-7
Figure 7-2. Custom Reg. Spec. Include File fpu_spec 7-7
Figure 7-3. Custom Reg. Spec. File Using Include Files 7-8

Figure 8-1. Simulated Interrupt Test Program 8-6

Figure 9-1. Monitor Operation At Start Of Transfer 9-13
Figure 9-2. Monitor Operation At End Of Transfer 9-14

Contents-9

Notes

1 O·Contents

1

Introducing The 68020 Emulator

Overview

Safety
Considerations

This chapter provides the following information:

• Safety considerations for your emulator

• A general description of your emulator

• What information is given in this manual

The HP 64000-UX Microprocessor Development Environment,
along with the HP 64410SC/SD Emulation Subsystems, is a Class
1 instrument (provided with a protective earth terminal) and
meets safety standard IEC 348, "Safety Requirements for
Electronic Measuring Apparatus". This Class I instrument meets
Hewlett-Packard Safety Class I and has been shipped in a safe
condition. Review both the instrument and the manual for safety
markings and instructions before operation. Read and become
familiar with the "Safety Summary", which follows the Certifica­
tion/Warranty page of this manual, in addition to the items listed
in chapter 2.

Introduction 1-1

Emulator
Description

1·2 Introduction

The HP 64410SC/SD Real-Time Emulator for 68020 microproces­
sors is a powerful tool for both software and hardware designers.
Using the HP 64410SC/SD Emulator's emulation memory (up to
512k bytes), software debugging can be done without functional
target system memory. Measurements can be made using the
emulator's internal 16.7 MHz clock or an external 25 MHz clock
with no wait states.

Symbolic debugging lets you debug programs using the same
symbols that you defined in your source code. You can control
program flow using software breakpoints, single-stepping by op­
code, and run-from and run-until commands.

The 68020 emulator has an internal 20 MHz MC68881 Floating
Point Coprocessor. You can use this internal coprocessor or an ex­
ternal coprocessor in your target system. The MC68881 instruc­
tions can be disassembled in trace displays. You can also display
and modify the floating point coprocessor registers.

Dual-ported memory allows you to display or modify emulation
memory without halting the processor.

Flexible memory mapping lets you define address ranges
referencing emulation memory or target system memory in 256-
byte blocks. Blocks can be defined as emulation, target, guarded
access, RAM, or ROM over the entire 4 Gbyte address range of the
68020. Since the 68020 supports devices with different memory
widths on the data bus, each emulation memory block can be
defined as 8, 16, or 32bits wide.

The HP 6441 OSC/SD emulator supports the use of 68020 function
codes. Emulation memory can be mapped to any of the functional
address spaces (CPU, supervisor or user, program or data, or un­
defined). Function codes can be used as an additional specification
when referencing memory.

The integrated emulation bus analyzer provides real-time
analysis of all bus-cycle activity. You can define break conditions
based on address and data bus cycle activity. In addition to
hardware break, software breakpoints can be used for execution
breakpoints. You can select any one of the eight 68020 software
breakpoint instructions to be used by the emulator.

Manual Coverage

Analysis functions include trigger, storage, count, and context
directives. The analyzer can capture up to 204 7 events, including
all address, data, and status lines.

Commands for the HP 64410SC/SD emulator and HP 64404A
and HP 64405A integrated analyzers have been integrated into
one softkey package, making it easy to make both emulation and
analysis measurements.

The HP 64410SC/SD emulator can be used for both out-of-circuit
emulation and in-circuit emulation. The emulation can be used in
multiple emulation systems using other HP 64000-UX
Microprocessor Development Environment emulators.

This manual provides detailed information on operating the HP
64410SC/SD emulator for the 68020 processor. The information
in this manual gives 68020 processor specific information. The
68020 Emulation Reference Manual provides additional informa­
tion about using 32-bit emulation, including detailed syntactical
descriptions of the emulation commands. Detailed operating in­
formation for the HP 64404 and HP 64405 integrated analyzers
is given in the Analysis Reference Manual for 32-BitMicroproces­
sors and the 68020 Analysis Specifics manual.

Introduction 1-3

Notes

1·4 Introduction

2

Installing Your Emulator

Overview

Introduction

This chapter:

• Reviews the safety considerations for installation.

• Provides preinstallation inspection instructions.

• Shows you how to configure boards in the HP 64120A In­
strumentation Cardcage.

• Shows you how to install the emulation system hardware.

• Shows you how to connect the emulation probe cable to your
target system.

• Shows you how to turn on the HP 64120A Instrumentation
Cardcage.

If you are installing your HP 64000-UX components as a new in­
stallation, refer to the HP 64000-UX Installation and Configura­
tion Manual for instructions concerning the installation of the HP
64120A Instrumentation Cardcage. Also, refer to the preinstalla­
tion instructions given in this section. After you have done these,
install the emulation system as instructed later in this section.

Installation 2-1

Figure 2-1 identifies some key features of the HP 64120A In­
strumentation Cardcage. The identifying labels used in this
figure are used throughout this manual. Note the location of the
power switch. For more information on the hardware configura­
tion, refer to the Installation and Configuration Manual.

c::::::J

--""":"'~
l> y -~

•• --------------1;bJ
p~--t-- '@ ?© '@ '@ I rn

'------' lL2J

EXTERNAL LOAO AOORESS HP-18 CONNECTOR

SELF TESTS PASSED
INDICATORS

POWER ON INDICATOR

POWER SWITCH

POWER CONNECTOR

~USE

VOL TACE SELECT

Figure 2-1. HP 64120A Instrumentation Cardcage Features

2·2 Installation

Safety
Considerations

Warning

Warning G

The HP 64000-UX Microprocessor Development Environment
along with the HP 64410SC/SD Emulation System isa Class 1 in­
strument (provided with a protective earth terminal) and meets
safety standard IEC 348, "Safety Requirements for Electronic
Measuring Apparatus". This Class I instrument also meets
Hewlett-Packard Safety Class I requirements and has been
shipped in a safe condition.

The user should review both the instrument and manual for
safety markings and instructions before operation. Read and be­
come familiar with the "Safety Summary", printed following the
Certification/Warranty page of this manual, and the additional
items listed below.

SHOCK HAZARD! DO NOT ATTEMPT TO DISRUPT PROTECTIVE
GROUND! Any interruption of the power cord protective con­
ductor (third prong of power cord plug) inside or outside the HP
64120A Instrumentation Cardcage or disconnection of the
protective earth terminal in the power source (wall outlet) is
likely 10 make the HP 64000-UX Microprocessor Development
Environment DANGEROUS! Intentional interruption of the
power cord protective conductor is prohibited.

SHOCK HAZARD! ONLY QUALIFIED PERSONNEL SHOULD SER·
VICE. Any adjustment, maintenance, or repair of the opened in­
strument must ONLY be carried out by QUALIFIED PERSONNEL
aware of the HAZARDS involved.

Installation 2-3

Warning

Preinstallation
Inspection

2-4 Installation

SHOCK HAZARD! DO NOT USE IF SAFETY FEATURES HAVE
BEEN IMPAIRED. If the safety features of the instrument have
been damaged or defeated, the instrument shall not be used
until repairs are made which restore the safety features. The
safety features of the instrument could be disabled in the fol­
lowing instances:

1. The instrument shows visible damage.

2. The instrument fails to perform correct measurements.

3. The instrument has been shipped or stored under un­
favorable environmental conditions. Refer to the Service Supple­
ment portion of this manual for information on the environmen­
tal specifications of storage and shipment.

Unpack all of the emulation system circuit boards, cables, pod,
and related equipment. Carefully inspect the equipment for
damage that may have occurred during shipping. If any damage
is found, please contact your nearest Hewlett-Packard Sales/Ser­
vice Office as soon as possible.

Verify that all of the items that you ordered have been shipped. If
any equipment is missing, please contact your nearest Hewlett­
Packard Sales/Service Office as soon as possible.

Installing Your
Emulation System
Hardware

Warning

Installation
Instructions

Warning

Caution I

This section tells you how to install your emulation hardware into
the HP 64120A Instrumentation Cardcage.

SHOCK HAZARD! INSTALLATION SHOULD ONLY BE PER·
FORMED BY QUALIFIED PERSONNEL. Any installation, servicing,
adjustment, maintenance, or repair of this product must be per­
formed only by qualified personnel. Make sure power is off
prior to performing any of the installation instructions given
below.

Proceed as follows to install the Emulation System and related
equipment:

SHOCK HAZARD! HAVE YOU READ THE SAFETY SUMMARY?
Read the safety summary at the front of this manual before in­
stallation or removal of the Emulation Subsystem.

DAMAGE TO CARDS AND CAGE! Power to the HP 64120A In­
strumentation Cardcage must be removed before installation
or removal of option cards (emulation, etc.) to avoid damage
to the option cards and the development environment.

Installation 2-5

2-6 Installation

Turn Off Power

Turn OFF power to the HP 64120A Instrumentation Cardcage
(see figure 2-1 for the location of the power switch on the HP
64120A Instrumentation Cardcage).

Remove The Card Cage Cover

The HP 64120A Instrumentation Cardcage access cover is held
in place by four screws on the top of the instrumentation card cage
as seen in figure 2-2. Loosen the four screws, and remove the ac­
cess cover.

Figure 2-2. Removing the Cardcage Access Cover

Connect The Emulator Pod Cables To The Emulator Boards

There are six cables from the emulation pod that must be con­
nected to various cards in the card cage. Connect these cables as
follows:

1 . Connect the two 44-conductor cables from the pod to the
Emulator Control Board (HP Part Number 64410-66506).
There are no color dots to follow because it does not matter
which of the 44-conductor cables are connected to each of
the 44-pin connectors.

2. Connect the 50-conductor cable from the pod to the
Emulator Control Board (HP Part Number 64410-66506).

3. Connect the three 64-conductor cables from the pod to the
Analysis Bus Generator board (HP Part Number 64411-
66502) following the yellow, red, and brown color dots for
proper connections.

The pod cables connected to the ABG board (6441 lA) are
protected by a plastic cover. After connecting the three 64 JX>Sition
cables to the ABG board, secure the plastic cable cover to the ABG
board by connecting four screws as shown in figure 2-3. Use a
Tone® TX 6 screwdriver.

Installation 2-7

Caution

2-8 Installation

Figure 2-3. ABG Protective Plastic Cable Cover

•

Install Boards Into The Card Cage

Installation of the circuit boards is accomplished by sliding each
circuit board into the circuit board guide slots. As you face the
front of the HP 64120A Instrumentation Cardcage, the com­
ponent side of the boards should face the right side of the in­
strumentation cardcage. Align the connector at the bottom of the
board with the motherboard connector at the bottom of the card
cage, then apply a downward pressure until the board is seated in
the motherboard connector. Be sure the ejector handles are in
their full horizontal position when the board has reached its full
downward travel.

POSSIBLE CABLE DAMAGE! Be careful to avoid scraping the
cables or individual wires with the backs of the printed cir­
cuit boards. This will strip insulation from the cables and
cause short circuits.

HIGHEST SLOT NO.

NEXT SLOT

NEXT SLOT

LOWEST SLOT NO.

Four adjacent card cage slots are required for the circuit boards.
Install the boards as follows:

1. Install the boards in the card cage in the order shown in
figure 2-4.

2. Install the ABG Interconnect board across the three
analysis boards as shown by the "xxxxxx" in figure 2-4.

3. Install the power bus cable between the analysis bus gener­
ator and emulator control board as shown by the "oo" in
figure 2-4. This bus is not essential, but will improve
reliability of the emulator/analyzer system .

.------ ABG INTERCONNECT
64406-66XXX

--------------xxxxxxxxx--- ANALYSIS EXPANDER
xxxxxxxxx 64405-66XXX
xxxxxxxxx

--------------xxxxxxxxx--- INTERNAL ANALYSIS
xxxxxxxxx . 64404-66XXX
xxxxxxxxx

-00-----------xxxxxxxxx--- ANALYSIS BUS GEN.
oo 64411-66XXX
00

-00----------------------- EMULATOR CONTROL
64410-66XXX

Figure 2-4. Board Installation Into Cardcage

Installation 2-9

Installing The
Emulation Probe
Into The Target
System

Caution •

2-10 Installation

Secure The Pod Cables

Each pod cable has a metal ferrule for strain relief. Snap the fer­
rule into one of the cable clamps on the instrumentation card cage.
If your instrumentation card cage does not have cable clamps, you
can order them from Hewlett-Packard Co.

Reinstall Card Cage Access Cover

Reinstall the card cage access cover and secure in place with the
hold-down screws.

PROTECT AGAINST STATIC DISCHARGE! The emulation
probe contains devices that are susceptible to damage by
static discharge. Therefore, precautionary measures should
be taken before handling the microprocessor connector at'.'
tached to the end of the cable from the emulation probe to
avoid damaging the internal components of the probe by
static electricity.

Caution

Caution

•
&

•

POSSIBLE DAMAGE TO EMULATION POD! Do not install the
emulation probe into the processor socket with power ap­
plied to the target system. The pod may be damaged if
power is not removed before installation.
When installing the emulation probe, be sure the probe is in­
serted into the processor socket so that pin 1 of the emula­
tion probe aligns with pin 1 end of the processor socket.
Damage to the emulation equipment may result if the probe
is incorrectly installed .

PROTECT YOUR CMOS TARGET SYSTEM COMPONENTS! If
your system includes any CMOS components--turn on the tar­
get system first, then turn on the HP 64120A Instrumentation
Cardcage; likewise, turn off the development environment
first, then the target system.

The emulation probe is provided with a pin protector that
prevents damage to the probe when not in use (see figure 2-4). DO
NOT use the probe without a pin protector installed. If the emula­
tion probe is being installed on a densely loaded circuit board,
there may not be enough room to accommodate the plastic
shoulders of the probe. If this occurs, another pin protector may be
stacked onto the existing pin protector.

To install the microprocessor connector in a target system with a
Pin Grid Array (PGA) socket (see figure 2-5), proceed as follows:

1. Remove the 68020 processor from the target system proces­
sor PGA socket.

2. Store the 68020 processor in a protected environment.
Note the location of pin 1 on both the microprocessor con­
nector and the target system socket.

Installation 2-11

PIN A1

3. Install the probe cable connector into the target system
processor socket.

Figure 2-5. Installing Emulator Probe Into PGA Socket

Caution

2-12 Installation

• PROTECT PGA PINS FROM DAMAGE! To avoid damaging the
PGA (Pin Grid Array) probe connector pins, use an inser­
tion/extraction tool (such as Augat P/N TX 8136-13) for
removing the PGA probe connector.

Install Software

Installing 68020
Emulation
Software Updates

Turning On The
HP 64120A

Caution •

Refer to the Installation Notice that you received with your HP
64000-UX media for complete software installation instructions.

After installing a new copy of the 68020 Emulation Software on a
system, cycle the power off and then back on for all HP 64120
cardcages containing 68020 emulators. This updates and initial­
izes all emulation software data structures.

When installing a different revision of the 68020 emulator
software, remake all existing configuration files. Configuration
file names are suffixed by" .EA" and" .EB". The simplest method
is to delete the ".EB" file before loading the configuration file.

The power switch for the HP 64120A Instrumentation Cardcage
is identified in figure 2-1.

PROTECT YOUR CMOS TARGET SYSTEM COMPONENTS! If
your system includes any CMOS components--turn on the tar­
get system first, then turn on the HP 64120A Instrumentation
Cardcage; likewise, turn off the instrumentation cardcage
first, then the target system. ·

Installation 2-13

2-14 Installation

Turn the HP 64120A Instrumentation Cardcage power on.

Three green LED's are visible from the front of the HP 64120A In­
strumentation Cardcage as seen in figure 2-1. All three should be
illuminated to indicate proper operation of the development en­
vironment. If all three LED's do not light up, refer to the HP
64120A Instrumentation Cardcage Service Manual for informa­
tion on correcting any problems.

Getting Started

Overview

Introduction

This chapter describes how to do the following tasks:

• Create a subdirectory in which you can store your 68020 re­
lated files.

• Initialize and define a measurement system.

• Assemble, compile, and link the emulation monitor and
demonstration programs.

3

• Access the emulation system from the monitor level softkeys.

• Modify the default emulation configuration and map memory.

• Run an emulation session.

This chapter gives an operational overview of the emulation
process. The chapter leads you ste}>-by-step through the tasks you
must do to prepare your system for emulation and leads you
through an emulation session. Emulation features are not ex­
plained in depth in this chapter. Its purpose is to familiarize you
with the emulation process. Read the entire chapter and go
through all exercises in the order presented. This will give you an
understanding of the basic operation of the emulator.

Getting Started 3-1

Emulation System
Used For Examples

Making A
Subdirectory For
Your 68020 Project

3-2 Getting Started

The examples given in this chapter (and throughout this manual)
were developed with an emulation system including the com­
ponents listed below.

• HP 64410SD Emulation System

• HP 648708 Cross Assembler/Linker for MC68020

• HP 649038 68020 C Cross Compiler

Before you start a new project, make a subdirectory for the
project. This enables you to keep your files for each project
separate from other files. Follow the rules listed below when you
make your subdirectory.

• Give the subdirectory a name consisting of from one to four­
teen characters. If more than fourteen characters are used, all
characters after the fourteenth character are truncated.

• Any characters may be used in the name. A void conflict with
special characters used in the HP-UX system software by
restricting your subdirectory names to alphanumeric charac­
ters and the underscore (_) character.

• Upper and lower case alphabetic characters are significant,
i.e., "FILENA.i"1E" is a different name than "filename".

Note The path /usr/hp64000/bin must be added to the PATH
parameter in your ".profile" file in order to execute HP 64000-
UX commands as given in the examples in this manual. Other­
wise, you must type the entire path name for HP 64000-UX com­
mands, e.g., /usr/hp64000/bin/pmon instead of pmon.

Do the following steps to make a subdirectory for your 68020
project:

1 . Log in to the system using your login and password.

2. Enter pmon Return. This accesses the HP 64000-UX sys­
tem monitor. The HP 64000-UX system monitor is softkey
driven. You should see softkey labels displayed on your
screen.

3. Press the ---ETC--- softkey repetitively until the makedir
softkey appears as an option on the softkey label line.

4. Press the makedir softkey and type in the name you wish
to use for your directory (the name em68020 is used
throughout this manual). Press the Return key on the
keyboard.

makedir em68020 Return

You now have a subdirectory named em68020.

Whenever you log in to your system to work on the 68020 project,
you should change to this directory (using the chng dir softkey).
If you do most of your work on the 68020 project, youC"an modify
your". profile" file to change to this directory whenever you log in.
If the permissions are set so that you can alter your own" .profile"
file, add the line "cd $HOME/em68020" to your ".profile" file. You
will then be in the new subdirectory each time that you log in. If
the permissions are set so that you cannot modify your ".profile"

Getting Started 3-3

Initializing And
Configuring Your
Measurement
System

Note

3-4 Getting Started

file, see your HP-UX system administrator. The examples in this
manual use the chng_ dir command to change directories.

If you have already initialized the instrumentation cardcage and
defined your measurement system, skip this section and go to
the next section titled "Preparing Your Program Modules".

Refer the Measurement System manual for the HP 64000-UX
Microprocessor Development Environment for detailed informa­
tion on initializing and configuring measurement systems. The
following procedure gives you a brief overview of the initializa­
tion and configuration process.

To initialize your HP 64120A Instrumentation Cardcage and con­
figure your 68020 emulation system, do the following steps:

Note

1. Press MEAS SYS.

The MEAS SYS softkey is displayed after you enter the HP
64000-UX system monitor by executing the pmon command.

You are now in the measurement_system application.
The softkeys displayed at this level enable you to initialize
and configure your measurement system.

2. Press msinit Return.

If you have only one system in your instrumentation
cardcage, the softkey label line will disappear and the mes­
sage ''Working" will appear on the STATUS line. After a
few seconds, the message "Hit return to continue" will ap­
pear under the STATUS line. Press Return. The message
will disappear and the softkey labels will return.

If you have more than one system in your instrumentation
cardcage, the softkey label line will disappear and the mes­
sage ''Working" will appear on the STATUS line. After a
short time, a list of boards in the card cage may be dis­
played on the screen. Messages may appear on screen as­
king you to identify the boards in the different systems.
After you have identified any boards requested by the sys­
tem, the message "Hit return to continue" will appear
under the STATUS line. Press Return. The message will
disappear and the softkey labels will return.

3. Press msconfig Return.

The screen now displays the module(s) available to be as­
signed (top of the screen) to a measurement system (middle
of the screen).

Getting Started 3-5

3-6 Getting Started

4. Enter make_ sys emul682k Return.

5. Press add. If your 68020 emulator is the only system in
the instrumentation cardcage, it will be assigned as
module 0 as shown at the top of the display. If more than
one system is installed in the instrumentation cardcage,
the 68020 system module number may be different from 0.
Identify the module number of the 68020 emulator shown
at the top of the display and type it in from the keyboard.
Press name it, type in em68020 from the keyboard, and
press Returll.

add 0 naming_ it em68020 Return.

6. Press end Return.

This command causes the system to exit the measurement
configuration mode and return to the measurement system
level.

7. Press -GO BACK- to exit the measurement system level
and return to the HP 64000-UX system monitor.

The 68020 Emulation module is now be defined as module
em68020 in the measurement system (shown in the center of the
screen).

Preparing Your
Program Modules

Program modules must be assembled or compiled, linked, and
then mapped to emulation or target memory before the absolute
code can be loaded into the emulator. The memory mapping proce­
dure is described briefly in this chapter and is described in detail
in chapter 4. The assembly and compile procedures are not
described in this manual. Refer to your as­
sembler/linker/librarian and compiler manuals for detailed in­
structions on these processes.

The following procedures require the HP 64870S As­
sembler/Linker/Librarian for 68000/10/20 and the HP 64903S
68020 C Cross Compiler. If you have these products on your sys­
tem, go to the the section titled "Copying the Demonstration
Programs to Your Subdirectory".

If you do not have these products on your system, you can still per­
form the demonstration emulation procedures in this manual. A
complete set of files required to perform the emulation examples
in this manual are provided on the media with your emulation
software. The file set is located in directory
/usr/hp64000/demo/emul32/hp64410.

You must change to the directory containing the demonstration
files in order to run the emulation examples. To change direc­
tories, press the chng clir softkey and enter the directory path­
name /usr/hp64000/demo/emul32/hp64410. The command line
should appear as follows:

cd /usr/hp64000/demo/emul32/hp64410

Press the Return key. You should now be in the 68020 demo sub­
directory. You can verify this by executing the HP-UX pwd
(present working directory) command.

Go to the section titled "Preparing The Emulation System".

Getting Started 3-7

Note

Copying The
Demonstration

Programs To Your
Subdirectory

3-8 Getting Started

The README file in the demo directory contains more informa­
tion on the demonstration files. To read the README file, enter
the command:

!more /usr/hp64000/demo/emul32/hp6441 O/README

The demonstration programs used in this manual are provided on
the media shipped with your 68020 emulation system in directory
/usr/hp64000/demo/emul32/hp64410. The programs are:

simint.c

towers.c

Simulated interrupt routines for the
demonstration program.

The demonstration program. This
program solves the popular "Towers of
Hanoi" brain teaser puzzle. The program
demonstrates many features of the
emulator, including simulated I/O and
simulated interrupts.

Listings of the demonstration programs are included in appendix
C of this manual.

Enter the following commands to copy the programs to your sub­
directory.

copy /usr/hp64000/demo/emul32/hp6441 O/simint.c simint.c
Return

copy /usr/hp64000/demo/emul32/hp64410/towers.c towers.c
Return

Compiling and
Linking the Program

Modules

The following sections give examples of how to compile user
programs, and link the user programs and emulation monitor into
a single executable file. Refer to your compiler manuals for
detailed information on these processes.

Compiling The Demonstration Programs.

Enter the following command to compile the demonstration
program towers.c:

!cc68020 -hLc towers.c Return.

When the message "Hit return to continue" is displayed, Press
Return and enter the following command to compile the simu­
lated interrupt routine simint.c:

!cc68020 -hLc simint.c Return.

When the message "Hit return to continue" is displayed, press
Return. Your demonstration program files are now compiled.

The-L assembler option causes a listing file to be generated.

The-h option causes an HP 64000 format assembler symbol file
(.A extension) to be generated for debugging purposes. This file is
used by the emulator for symbolic debugging.

The -c option suppresses automatic linking of the programs (ob­
ject files are generated).

Enter the following command:

list dir Return.

Note that four filetype extensions are listed for each compiled file:

c: source file
o: relocatable object file
A: assembler symbols file
0: compiler listing file.

Linking Modules

After you have compiled your source programs, they must be
linked, together with the emulation monitor and any required
library routines, into an executable module. 68020 emulation en­
vironment dependent routines and library routines needed for the

Getting Started 3-9

3-10 Getting Started

demonstration program are provided with the HP 649038 68020
Ccompiler.

The environment dependent routines provide for program setup,
dynamic memory allocation, and program input and output in the
68020 emulation environment. These routines are found in direc­
tory /usr/hp64000/env/hp64410. See the HP 649038 68020 C
Compiler manuals for detailed information on environment de­
pendent routines.

The linker can be used interactively or with a command file to
link your programs.

A linker command file that will work with the demonstration
program is provided with the HP 64410 demonstration software.
The file is named towers.k. Copy the file into your subdirectory
using the command:

copy /usr/hp64000/demo/emul32/hp64410/towers.k towers.k
Return

You can view the command file on your screen by entering the
command:

!more towers.k Return

The program shown in figure 3-1 should be listed on your screen.

Note that the linker command file links a modilled version of the
emulation monitor from the compiler environment directory.
This modified monitor supports the emulator features required by
the demonstration programs. See your HP 64903 C compiler
manual for detailed information.

**
* LSD:@(#)
* @(mkt id)
* * This is a modified version default linker command file for the
* HP 64903 Advanced 68020 C Cross Compiler to be used with the HP 64410
* 68020 Emulator/Analyzer demonstration software. It should be used
* along the emulator configuration file config.EA.
* * NOTE: Revisions 2.00 of the HP64903 Compiler and 1.20 of the HP64870
* Assembler/Linker or later are required.
**
CHIP 68020
SECT env=$400 * Load address for program/canst sections
ORDER env,prog,simint,const, lib,libc,libm
SECT mon=$20000 * Load address for emulation monitor sections
ORDER mon,mondata
SECT stack=$7FFF8000 * Load address for stack section
SECT envdata=$FFFEAOOO * Load address for data sections
ORDER envdata,data, libdata,libcdata,libmdata,heap
**
* Set register A5 to the beginning address of the data section + 32k
* so that the AS-relative address mode may be used. If this directive
* is omitted ?A5 has an undefined value.
**
INDEX ?A5,data,$8000
LOAD /usr/hp64000/env/hp64410/crt0.o
LOAD /usr/hp64000/lib/68020/libc.a
LOAD /usr/hp64000/lib/68020/lib.a
LOAD /usr/hp64000/env/hp64410/monitor.o
LOAD /usr/hp64000/env/hp64410/env.a
END

Figure 3-1. Towers.k Linker Command File

Enter the following command to link your program modules:

!ld68k -Lh-c towers.k-o towers.X simint.o towers.o >
towers.MAP Return

After a few seconds, the message "Hit return to continue" will ap­
pear under the STATUS line. Press Return. The message will
disappear and the softkey labels will return.

You will use the information contained in the linker listing file
towers.MAP when you map emulation memory in the next sec­
tion.

. Getting Started 3-11

Preparing The
Emulation System

Accessing The
Emulation System

Modifying The
Default Emulation

Configuration

3-12 Getting Started

Preparing the emulation system consists of the following steps:

1. Plugging the emulator probe into your target system (for
in-circuit emulation).

2. Accessing the emulator through the MEAS_SYS applica­
tion.

3. Modifying the default emulation configuration to match
your system requirements.

4. Loading your user program into emulation or target sys-
tem memory.

The following procedures use the emulator in out-of-circuit mode
(no target system). Target system plug-in issues are discussed in
detail in chapter 5 of this manual.

Access your emulation system as follows:

1. Press MEAS_ SYS.

2. Press emul682k em68020 Return.

You are now in the emulation system application. The emulation
softkeys are displayed at the bottom of your screen.

You accessed the emulator through the use of the default emula­
tion configuration file supplied with your system. You will need to
modify this default emulation configuration according to your
specific needs. You may need to map memory according to ORG
statements in you program or addresses you have specified
during the linking process.

Modify the answers to the emulation configuration questions as
shown below in order to have the demonstration program run
properly. To modify to the emulation configuration questions,
enter the command:

modify configuration Return

The first emulation configuration question should be displayed. If
not, return to the previous section titled" Accessing the Emula­
tion System" and repeat the steps described there.

Answer the emulation configuration questions as follows.

Getting Started 3-13

Emulation Configuration Question

Restrict to real-time runs? no
(Enable the emulation system to break to the emulation monitor)

Disable breaks into monitor? no
(Enable all emulation functions)

Reset into the monitor? yes
(A reset command, followed by a run command, will cause
theJJrocessor to begin executing the emulation monitor)

Enable emulator use of software breakpoints? yes
(Enable emulator software breakpoints)

Software BKPT instruction number (0 .. 7)? 7
(Set the emulation software breakpoint number to 7)

Enable internal 68881 FPU? no
(Enable emulator use of the internal 68881 FPU in the emulation pod)

FPU coprocessor ID (1 .. 7)? 1
(Use the default coprocessor ID of 1)

Your Answer

Return

Return

Return

Return

Return

yes Return

Return

Name of custom register format file? /usr/hp64000/inst/emul32/0400/0001/custom spec
(Use the default coprocessor format specification file) Return

Modify memory configuration? no
(Modify the emulation memory map)

Break processor on write to ROM? yes

yes Return

Return
(Break to the emulation monitor if the processor attempts
to write to memory mapped as emulation or target ROM)

Enter the following memory map commands.

3-14 Getting Started

delete all Return
(Delete all user defined entries)

Modify default guarded Return
(Map all unassigned memory locations as guarded,

i.e., not accessible to the processor)

Modify defined codes none Return
(Disable emulator use onunction code lines)

map 0 thru 01efffh emulation rom width32 Return
(Map memory locations for the program and

constants sections of the demonstration module)

Emulation Configuration Question (Continued) Your Answer

map 020000h thru 022fffh emulation ram width32 Return
(Map memory locations for the emulation monitor)

map 07fff8000h thru 07fffffffh emulation ram width32 Return
(Map memory locations for the program stack)

map OfffeaOOOh thru Offffffffh emulation ram width32 Return
(Map memory locations for the data sections of the demonstration module)

Modify emulator pod configuration? no
(Use the default emulation pod configuration)

end Return
(End memory configuration)

Return

Modify simulated 1/0 configuration? no yes Return
(Modify the simulated 110 configuration)

Enable polling for simulated 1/0? no yes Return
(Enable the emulation software to read the simulated 110 control address to
determine if the demonstration program has requested any simulated 110 commands)

Function code data space? none Return
(Use the default value)

Sirnio control address 1? SIMIO CA ONE systemio buf Return
(Specify the control address defined in the demonstration program)

Sirnio control address 2 .. 6? SIMIO CA XXX Return
(Select the default value for the remaining simio control address questions)

File used for standard input? /dev/simio/keyboard Return
(Select the host keyboard for simulated 110 input)

File used for standard output? /dev/simio/display Return
(Select the host display for simulated 110 output)

File used for standard error? /dev/simio/display Return
(Select the host display as the simulated 110 error output)

Modify simulated interrupt configuration? no yes Return
(Modify the default simulated interrupt configuration)

Enable polling for simulated interrupts? no yes Return
(Enable the emulation software to read the simulated interrupt control address to
determine if the demonstration program has requested any simulated interrupt com­
mands)

Getting Started 3-15

Emulation Configuration Question (Continued) Your Answer

Function code data space? none Return
(Select the default value)

Simulated interrupt control address? SIMINT CA sim int ca Return
(Specify the control address defined in the demonstration program)

Maximum delay (in milliseconds) for simulated interrupt? 25 3000Return
(Specify 3000 milliseconds)

Configuration file name? democonfig Return
(Name the configuration file democonfig)

Note

Loading Emulation
Memory

3-16 Getting Started

When the emulator is finished loading the memory mapper, the
STATUS line will indicate that the emulation processor is Reset.
The emulator is ready to be used.

You now have two configuration files named democonfig in
your directory. The .EB file extension is a binary file used by the
emulator. The .EA file extension is an ASCII file that you can
edit using an editor residing on your host system. The emulation
configuration file provides you with an easy method to recon­
figure your emulator upon entry to the emulation application.
Upon reentry to the emulator, enter the command:

load configuration democonfig Return

The emulation configuration will be restored to that which you
defined in the configuration session you just completed.

You are now at the beginning of an emulation session. Before per­
forming emulation, you must load emulation memory with the ab­
solute file created when you linked your program modules. To
load emulation memory, enter the following command:

load memory emulation towers Return.

Using The
Emulator

Note

This section demonstrates the use of some of the basic emulator
commands. Work through the examples in the sequence given in
this section. Otherwise, the displays you get on your workstation
screen may not be the same as those shown in the manual. After
you have worked through the examples in this section, you may
then execute other commands to gain a better understanding of
the emulator's operation. See the 68020 Analysis Specifics
manual and theReferenceManualfor 16-and32-Bitlnternal
Analysis for detailed information on using the emulator's analysis
features.

The displays you obtain on your system for the examples in the
following sections of this chapter may vary from those shown in
this manual, depending on the type of terminal or workstation
you are using.

Getting Started 3·17

Displaying Global
Symbols

The display global symbols command displays global (exter­
nally defined) symbols in the program modules you have loaded
into emulation or target memory. To display global symbols,
enter the following command:

display global_ symbols Return.

You should see a display similar to the following display on your
screen

Global symbols in
Procedure symbols

towers

Procedure name Address range Return Segment
_startup ~--o~o~o~o'"""o5AO- 00000111 ----00000110 - COMM
clear screen 00000970- 000009AB 000009AA PROG
close- 00000828- 00000863 00000862 PROG
disable int 00001822- 00001838 00001834 PROG
enable Tnt 00001804- 00001821 0000181A PROG
exec cmd 000009F6- OOOOOAB5 OOOOOAB4 PROG
initsimio 000007AO- 000007CD 000007CC PROG
kill OOOOOAB6- OOOOOAF9 OOOOOAF8 PROG
lseek OOOOOB4A- OOOOOBF1 OOOOOBFO PROG
main 000010A8- 00001189 00001182 PROG
open 000007CE- 00000827 00000826 PROG
pos_cursor 000009AC- 000009F5 000009F4 PROG
read 00000864- 000008F3 000008F2 PROG
unlink OOOOOAFA- 00000849 00000848 PROG
wait_for_io 00000788- 0000079F 0000079E PROG

Off set
-----..-00000000

000001E8
OOOOOOAO
0000001E
00000000
0000026E
00000018
0000032E
000003C2
00000000
00000046
00000224
OOOOOODC
00000372
00000000

STATUS: M68020--Reset......---------------------· .. R
display global_symbols

3-18 Getting Started

You can use the UP and DOWN cursor keys and the NEXT and
PREV keys to scroll or page through the global symbols listing.

Displaying Local
Symbols

You can view local symbols within a file or module using the dis­
play local symbols in command. To view local commands in
the demonstration program, enter the following command:

display local_ symbols_ in towers.c: Return.

Symbols in towers.c:
Procedure symbols
Procedure name Address range
ask for number ---o.,...,o o"""o...,..118A- 00001389
init_display 00001688- 00001761
main 000010A8- 00001189
move_disc 00001604- 00001687
pause 000013BA- 0000140F
place_disc 0000159A- 00001603
remove disc 00001538- 00001599
show dTscs 00001410- 00001537
towers 00001762- 00001801

Static symbols

Return Segment Offset
----00001382 - PROG ---..,..OOOOOOE2

0000175A PROG 000005EO
00001182 PROG 00000000
00001680 PROG 0000055C
00001408 PROG 00000312
000015FC PROG 000004F2
00001592 PROG 00000490
00001530 PROG 00000368
000017FA PROG 000006BA

Symbol name ------ Address range ------ Segment __ ___,,, Offset
0String1 000018E4 COMM 00000084
0String10 00001A3E COMM 000001DE
0String11 00001A40 COMM 000001ED

STATUS: M68020--Reset _____________________ ... R
display local_symbols_in towers.c:

Note that the ".c" file extension is used to specify C language files
and the ".s" file extension is used to specify assembly language
files.

Getting Started 3-19

Displaying Memory

Memory :mnemonic
address data

10A8 4E560000
10AC 2F08
10AE 2FOA
1080 247CFFFE+
1086 267COOOO+
108C 4289FFFE+
10C2 60FFOOOO+
10C8 4E71
10CA 7001
10CC 2040
10CE 4850
1000 4EB90000+
1006 588F
1008 4289FFFE+
!ODE 7000
10EO 2040

The display memory command enables you to view the contents of
either emulation or target memory locations. Enter the command:

LINK. W
MOVE.L
MOVE.L
MOVEA.L
MOVEA.L
CLR.L
BRA.L
NOP
MOVEQ
MOVEA.L
PEA
JSR
ADDQ.L
CLR.L
MOVEQ
MOVEA.L

display memory main mnemonic Return

A6,#$0000
A3,-{A7)
A2,-(A7)
#$FFFEA1B4,A2
#$000013BA,A3
$FFFEA180
$00001158

#$00000001,DO
DO,AO
{AO)
$00000970
#4,A7
$FFFEA188
#$00000000,DO
DO,AO

STATUS: M68020--Reset ___ ,__ ________________ ... R
display memory main mnemonic

3-20 Getting Started

The first address listed in the display is 1 OA8h, the address cor­
responding to the local symbol main in the local symbols display
of the towers program. Use the UP and DOWN cursor keys and
the NEXT and PREV keys to scroll or page through the memory
display.

Modifying Memory You can modify emulation memory locations mapped as either
RAM or ROM. The speed of the towers demonstration program is
controlled by the variable loc delay. We will set the value of
loc delay to 0 so that the program runs at maximum speed. In
order to watch the memory display change as the variable is
modified, we will display an area in memory repetitively and then
modify the memory. Enter the following command:

Memory :long
address

1860-6F
1870-7F
1880-8F
1890-9F
18AO-AF
18BO-BF
18CO-CF
1800-DF
18EO-EF
18FO-FF
1900-0F
1910-lF
1920-2F
1930-3F
1940-4F
1950-5F

display memory loc_delay long repetitively Return

You should see a display similar to the following on your worksta­
tion screen.

words :blocked :repetitively
data : hex

000001F4 20202020 2020207C 7C202020
20202020 20202020 2020317C 7C312020
20202020 20202020 2032327C 7C323220
20202020 20202020 3333337C 7C333333
20202020 20202034 3434347C 7C343434
34202020 20203535 3535357C 7C353535
35352020 20363636 3636367C 7C363636
36363620 37373737 3737377C 7C373737
37373737 09095075 7A7A6C65 20776974
68202564 20646973 63732063 616E2062
6520736F 6C766564 20696E20 25642060
6F766573 2E202020 20200AOO OAOA4578
65637574 65202760 6F646966 79206865
79626F61 72645F74 6F5F7369 60696F27
20746865 6E20656E 74657220 6F6E6520
6F662074 68652066 6F6C6C6F 77696E67

:ascii

4
4 55
55 666
666 7777
7777 .. Pu
h %d dis
e solved
aves.
ecute 'm
yboard_t

then en
of the f

d 1122
333 333
444 i444
555 555

666 I 66
777 1777
zzle wit
cs can b

in %d m
.•.• Ex

odify ke
o simio'
ter one
allowing

STATUS: M68020--Reset ... R dis p 1 ay memory 1 oc_ d-e 1..-a-y-..... l o-n-g--re_p_e__,.t__,.i..,....t ..,....i v-e l_y __________ _

Getting Started 3-21

Memory :long
address

1860-6F
1870-7F
1880-8F
1890-9F
18AO-AF
1880-8F
18CO-CF
1800-0F
18EO-EF
18FO-FF
1900-0F
1910-lF
1920-2F
1930-3F
1940-4F
1950-5F

Enter the command:

modify memory long loc_ delay to 0 Return

Note that the first long word in the display (memory location
loc _delay) now shows a longword value ofOOOOOOOOh.

words :blocked :repetitively
data :hex

00000000 20202020 2020207C 7C202020
20202020 20202020 2020317C 7C312020
20202020 20202020 2032327C 7C323220
20202020 20202020 3333337C 7C333333
20202020 20202034 3434347C 7C343434
34202020 20203535 3535357C 7C353535
35352020 20363636 3636367C 7C363636
36363620 37373737 3737377C 7C373737
37373737 09095075 7A7A6C65 20776974
68202564 20646973 63732063 616E2062
6520736F 6C766564 20696E20 25642060
6F766573 2E202020 20200AOO OAOA4578
65637574 65202760 6F646966 79206865
79626F61 72645F74 6F5F7369 60696F27
20746865 6E20656E 74657220 6F6E6520
6F662074 68652066 6F6C6C6F 77696E67

:ascii

4
4 55
55 666
666 7777
7777 .. Pu
h %d dis
e solved
oves.
ecute 'm
yboard_t

then en
of the f

1II1
22 22

333 333
444 444
555 555
666 1666
777 777
zzle wit
cs can b

in %d m
.... Ex

odify ke
o simio'
ter one
allowing

STATUS: M68020--Reset ... R
modify memory 1 on g ":'"'l o_c ___ d:-e-=-l-ay-...,.t-o-0,.-----------------

Running from the
Transfer Address

3-22 Getting Started

Now that you have used some of the display and modify features
of the emulator, it is time to M.F1 the demonstration program and
use some of the run time features of the emulation system. Enter
the following command:

run from transfer address Return

The STATUS line displays "M68020-· Running". This indicates
that the demonstration program is executing.

Displaying Registers

M68020 Registers

The display registers command enables you to look at the con­
tents of the 68020's CPU registers and the contents of the 68881
floating point coprocessor registers. Enter the following command:

display registers cpu Return

The contents of the following 68020 CPU registers are displayed
on the screen:

program counter (PC)
source function code register (SFC)
destination function code register (DFC)
data registers (DO--D7)
address registers (AO-A 7)
user stack pointer (USP)
vector base register (VBR)
cache address register (CAAR)
master stack pointer (MSP)
interrupt stack pointer (ISP)
status register (STATUS)
cache control register (CACR)

NextPC 00000792 SFC 0 MOT RSVO OFC 0 MOT RSVD
D0-07 00000000 00000092 000003FC 00003248 OOOOOOFF 00000000 00000064 00000000
AO-A6 OOOOOOFF FFFEA037 FFFEA698 FFFEA78C FFFEA034 FFFF21A8 7FFFFF02

USP 00020060 VBR 00000000 CAAR 00000000
MSP 00020060 <tl to s m i x n z v c> <f e>

*ISP 7FFFFF02 STATUS 2704 0 0 1 0 7 0 0 1 0 0 CACR 0 0 0

STATUS: M68020--Runni ng ___________________ ... R
display registers cpu

Getting Started 3-23

M68020 Registers

Press the break softkey, then press Return.

The registers display is updated and the status line now reads
"STATUS: M68020--Runninginmonitor". If a display
registers command has been executed in the current emulation
session, the registers display is updated whenever a break to the
emulation monitor program occurs.

NextPC 00000792 SFC 0 MOT RSVD DFC 0 MOT RSVD
00-07 00000000 00000092 000003FC 00003248 OOOOOOFF 00000000 00000064 00000000
AO-A6 OOOOOOFF FFFEA037 FFFEA698 FFFEA78C FFFEA034 FFFF21A8 7FFFFF02

USP 00020060 VBR 00000000 CAAR 00000000
MSP 00020060 <tl tO s m i x n z v c> <f e>

*ISP 7FFFFF02 STATUS 2704 0 0 1 0 7 0 0 1 0 0 CACR 0 0 0

NextPC 00000790 SFC 0 MOT RSVD DFC 0 MOT RSVD
D0-07 00000092 00000092 000003FC 00003248 OOOOOOFF 00000000 00000064 00000000
AO-A6 OOOOOOFF FFFEA037 FFFEA698 FFFEA78C FFFEA034 FFFF21A8 7FFFFF02

USP 00020060 VBR 00000000 CAAR 00000000
MSP 00020060 <tl tO s m i x n z v c> <f e>

*ISP 7FFFFF02 STATUS 2704 0 0 1 0 7 0 0 1 0 0 CACR 0 0 0

STATUS: M68020--Running in monitor ... R break ~~~~~~~~~~~~~~-

Using The Step
Function

3-24 Getting Started

The step function enables you to step through your program op­
code by opcode. Each time the step command is executed, one
program instruction is executed. Enter the command:

step from transfer_ address Return

The register display is updated each time a step is executed. In the
last entry on the display an additional line is displayed. The ad­
dress of the instruction executed by the step command and the ex­
ecuted instruction are displayed on the first line of the new
register display entry. The step feature is a powerful tool for
debugging programs because it enables you to watch the register
activity for each executed instruction

M68020 Registers

*ISP 7FFFFF02

Next PC 00000790
00-07 00000092
AO-A6 OOOOOOFF

USP 00020060
MSP 00020060

*ISP 7FFFFF02

PC 000004E4
NextPC 000004EA
00-07 00000092
AO-A6 OOOOOOFF

USP 00020060
MSP 00020060

*ISP 7FFFFF02

STATUS 2704 0 0 1 0 7 0 0 1 0 0 CACR 0 0 0

SFC 0 MOT RSVO DFC 0 MOT RSVO
00000092 000003FC 00003248 OOOOOOFF 00000000 00000064 00000000
FFFEA037 FFFEA698 FFFEA78C FFFEA034 FFFF21A8 7FFFFF02

VBR 00000000 CAAR 00000000
<tl to s m i x n z v c> <f e>

STATUS 2704 0 0 1 0 7 0 0 1 0 0 CACR 0 0 0

Opcode
SFC

00000092
FFFEA037

VBR

STATUS

MOVE.L A7,$7FFFFFFC 23CF7FFF
OFC 0 MOT RSVO 0 MOT RSVD

000003FC 00003248
FFFEA698 FFFEA78C

OOOOOOFF 00000000 00000064 00000000
FFFEA034 FFFF21A8 7FFFFF02

00000000
<tl

2700 0

CAAR 00000000
to s m i x n z v c>
0 1 0 7 0 0 0 0 0

<f e>
CACR 0 0 0

STATUS: M68020--Running in monitor _______________ ... R
step from transfer_address

Enter the command:

step Return

Note that the emulator executes the instruction stored in the
N extPC memory location. Press Return repetitively. The
emulator executes one instruction each time you press Return.

The step instruction enables you to specify a number of steps. This
is useful when stepping through program structures such as delay
loops. Enter the command:

step 25 Return

Notice that the screen is updated with register information each
time a program step is executed. While the step command is being
executed, the status line displays the message "MC68020--Steps
left #n" where n is the number of steps remaining. You can use
the NEXT and PREV keys and the UP and DOWN keys to look
at register information that has scrolled off of the screen.

Getting Started 3-25

Tracing Processor
Activity

3-26 Getting Started

The trace function (with analyzer present) enables you to watch
each cycle on the processor bus as it occurs. The following ex­
amples illustrate some simple uses of the trace function. For more
information on the trace function, refer to the Analysis Reference
Manual for 32-Bit Microprocessors and the 68020 Analysis
Specifics manual.

Enter the command:

trace TRIGGER_ ON a= long_ aligned main Return

This sets up a trace of all activity of the bus for 2k bus cycles
before and 2k bus cycles after the address labeled main occurs.
The STATUS line will indicate "Trace in process". Enter the com­
mand:

run from main Return

After the STATUS line indicates ''Trace complete", enter the com­
mand:

display trace Return

The trace list is displayed on the screen with the trigger state dis­
played in the center of the screen. Notice the lines prior to the trig­
ger state. The address field shows that these lines represent
emulation monitor execution and stack accesses. User program
activity is displayed starting with the trigger state (000010A8h).

Trace List
Label: Address Opcode or Status time count
Base: hex mnemonic relative
-0007 7FFFFFC4 $2708xxxx supr data word wr

;~ml
0.20us

-0006 000206F4 $36390002 supr p rgm 1 ong rd 0.24us
-0005 00020DCC $0000xxxx supr data word wr ds32 0.24us
-0004 7FFFFFC4 $2708xxxx supr data word rd ds32 0.16us
-0003 7FFFFFCA $xxxx2024 sup r data word rd ds32 0.20us
-0002 7FFFFFC6 $xxxx0000 supr data 1 ong rd

rs32l
0.16us

-0001 7FFFFFC8 $10A8xxxx supr data word rd ds32 0.20us
trig~er 000010A8 $4E560000 supr p rgm 1 ong rd ds32 0.40us
+00 000010AC $2FOB2FOA supr prgm 1 ong rd ds32 0.24us
+0002 7FFFFFCC $00000000 supr data 1 ong wr !ds32l 0.32us
+0003 OOOOlOBO $247CFFFE supr p rgm 1 ong rd ds32 0.16us
+0004 7FFFFFC8 $FFFEAF94 supr data 1 ong wr ds32 0.32us
+0005 000010B4 $A1B4267C supr prgm 1 ong rd ds32 0.16us
+0006 7FFFFFC4 $FFFEA034 supr data 1 ong wr ~ds32~ 0.16us
+0007 000010B8 $000013BA supr prgm 1 ong rd ds32 0.20us

STATUS: M68020--Running Trace complete ... R
display trace

The address and data values in the default trace list are displayed
as hexadecimal numbers. The emulator can also display values in
assembly language mnemonics. Enter the command:

Trace List
Label: Address
Base: hex
trigger 000010A8 LINK.W
+0001 000010AC MOVE.L

+0002
+0003
+0004
+0005
+0006
+0007
+0008
+0009
+0010
+0011
+0012

=000010AE MOVE.L
7FFFFFCC $00000000
OOOOlOBO MOVEA.L
7FFFFFC8 $FFFEAF94

=000010B6 MOVEA.L
7FFFFFC4 $FFFEA034
000010B8 $000013BA
000010BC CLR.L

=000010C2 BRA.L
000010C4 $00000094
FFFEA1BO $00000000
00001158 PEA

=0000115A JSR

display trace disassemble_ from_ line_ numberO Return

Opcode or Status
mnemonic

A6,#$0000
A3,-(A7)
A2,-(A7)

supr data long wr (ds32)
#$FFFEA1B4,A2

supr data long wr (ds32)
#$000013BA,A3

supr data long wr (ds32)
supr prgm long rd (ds32}

$FFFEA1BO
$00001158

supr prgm long rd
supr data long wr

(A2)
$0000118A

(ds32)
(ds32}

time count
relative
0.40us
0.24us

0.32us
0.16us
0.32us
0.16us
0.16us
0.20us
0.32us
0.28us
0.32us
0.24us
0.16us

STATUS: M68020--Running Trace complete~~~~~~~·· .R
display trace disassemble_from_line_number O

Getting Started 3-27

Note that in the updated trace display, the trigger line (line O) is
the first line in the trace display. Address 00001 OA8h corresponds
to the main label in the demonstration program. The instruction
MOVE.Lon the trigger line is the frrst instruction in the ex­
ample program.

You can also display the source program lines corresponding to
the traced assembly level code in the trace list. Enter the com­
mand:

display trace source on inverse_ video on Return

The display is updated with the source code line displayed in in­
verse video immediately before the related traced assembly level
code.

Trace List
Label: Address Opcode or Status w/ Source Lines time count

relative
126 ##############################

Base: hex
##########towers.c - line
static void towers();

mnemonic
1 th ru

static int ask_for_number();

main()
{

trigger 000010A8 LINK.W
+0001 000010AC MOVE.L

+0002
+0003
+0004
+0005
+0006
+0007

=000010AE MOVE.L
7FFFFFCC $00000000

00001080 MOVEA.L
7FFFFFC8 $FFFEAF94

=00001086 MOVEA.L
7FFFFFC4 $FFFEA034
00001088 $000013BA

A6,#$0000
A3,-(A7)
A2,-(A7)

supr data long wr (ds32)
#$FFFEA184,A2

supr data long wr {ds32)
#$000013BA,A3

supr data long wr {ds32)
supr prgm long rd {ds32)

0.40us
0.24us

0.32us
0.16us
0.32us
0.16us
0.16us
0.20us

STATUS: M68020--Running Trace complete _______ ... R
display trace source on inverse_video on

3-28 Getting Started

You can use the UP and DOWN cursor keys or the NEXT and
PREV keys to scroll or page through the entire trace listing. You
can copy the trace list to the printer or a file as well.

Using Software
Breakpoints

Memory :mnemonic
address data

118A 484F
118C 000048E 7
1190 3C38247C
1194 FFFE
1196 A698
1198 267COOOO+
119E 287COOOO+
11A4 24360961+
llAA 4AB9FFFE+
1180 66FFOOOO+
1186 7001
1168 2040
11BA 4850
11BC 4EB90000+
11C2 588F
11C4 7007

The set sw _breakpoints command lets you set software break­
points in your program code. This useful feature lets you break ex­
ecution of your program at the point you select. You can then use
the many display and modify commands available in the
emulator to examine and debug your code. The emulator replaces
the code at the memory location you specify with a 68020 BKPT
instruction. You select the appropriate BKPT instruction when
answering the emulation configuration questions. Enter the com­
mand:

break Return

You are now running in the emulator monitor program. Enter the
command:

modify sw breakpoints set one shot
-towers.c:ask_for_number Return

This command causes the emulator to replace the instruction at
the address reference by the symbol ask for number
(0000118AH) with a BKPT 7 instruction. The address specified in
the command must be the first address of an opcode. Enter the fol­
lowing command

display memory
towers.c:ask_for _number mnemonic Return

The display shows a BKPT 7 instruction at address 0000118AH.

BKPT #7
ORI.B #$E7,00
MOVE.W $0000247C,06
rsvd coproc instr type
Reserved Instruction: $A698
MOVEA.L #$00006214,A3
MOVEA.L #$00006264,A4
MOVE.L (r$0008,A6]),02
TST.L $FFFEA1BO
BNE.L $0000139E
MOVEQ #$00000001,00
MOVEA.L 00,AO
PEA (AO)
JSR $00000970
ADOQ.L #4,A7
MOVEQ #$00000007,00

STATUS: M68020--Running in monitor Trace complete _______ ... R
display memory towers.c:ask_for number mnemonic

Getting Started 3-29

Memory :mnemonic
address data

118A 4E560000
118E 48E 73C38
1192 247CFFFE+
1198 267COOOO+
119E 28 7COOOO+
11A4 24360961+
11AA 4A89FFFE+
1180 66FFOOOO+
1186 7001
1188 2040
11BA 4850
118C 4E890000+
11C2 588F
11C4 7007
11C6 2040
11C8 4850

Enter the command:

run from transfer address Return

The demonstration program runs from the transfer_address
L main) until the BKPr instruction is executed. The BKPr in­
struction causes the emulator to break into the emulation
monitor and the message "STATUS: Software breakpoint hit
at address = 118A" is displayed on the status line.

The emulator's ability to let you set software breakpoints
provides you with a method of stopping program execution at a
specified point in your program. You can then examine register
values, display or modify memory locations, and perform other
operations before continuing execution of your program.

Enter the command:

display memory towers.c:ask_for_number Return

Note that the instruction LINK.Wis now displayed at address
118AH in the memory listing. After breaking into the emulation
monitor, the emulator replaces the BKPr instruction with the
original contents of the memory location (LINK. W instruction).

LINK. W
MOVEM.L
MOVEA.L
MOVEA.L
MOVEA.L
MOVE.L
TST.L
8NE.L
MOVEQ
MOVEA.L
PEA
JSR
ADDQ.L
MOVEQ
MOVEA.L
PEA

A6,#$0000
rm=$3C38,-{A7)
#$FFFEA698,A2
#$00006214,A3
#$00006264,M
([$0008,A6]),D2
$FFFEA180
$0000139E
#$00000001,DO
DO,AO
(AO)
$00000970
#4,A7
#$00000007,00
DO,AO
(AO)

STATUS: M68020--Running in monitor Trace complete _______ ... R
display memory towers.c:ask_for_number

3·30 Getting Started

Using Simulated 1/0

Simulated I/O display
display is open

To continue execution of your program from the point the break
occurred, enter the command:

run Return

Notice that the status line now reads "M68020--Running".

Refer to chapter 9 for a description ofhow the software breakpoint
function is implemented in the 68020 emulator. See chapter 2 of
the 68020 Emulation Reference Manual for the software break­
point command syntax.

The demonstration program uses simulated VO for both entering
parameters and displaying the solution to the towers of Hanoi
problem. To display the simulated I/O screen, enter the command:

display simulated _io Return

Your screen should appear as shown in the following display.

Simulated I/O command: read
Return code: OOH

Execute 'modify keyboard_to_simio' then enter one of the following:
Number of discs to use [1-7]
'O' to exit program
'C' to run continuously using last number entered

?

STATUS: M68020--Running
display simulated_io

Trace complete _______ ... R

Getting Started 3-31

Simulated I/O display
display is open

333 333
4444 4444

555551155555
666666 666666

7777777 7777777

Peg 0

The keyboard must be assigned to simulated I/O before it can be
used to specify the number of discs to be used in the program.
Enter the command:

modify keyboard_ to_ simio Return

The keyboard is now assigned to simulated I/O and is accessible to
the demonstration program. Enter the number 7 and press
Return.

The program then uses simulated I/Oto display the solution to the
problem on the screen as shown in the following display.

Simulated I/O command: write
Return code: OOH

Peg 1 Peg 2

Solution for Towers with 7 discs.
Move #3: Move disk 1 from peg 2 to peg 1

STATUS: M68020--Running

3-32 Getting Started

Trace complete _______

To return control of the keyboard to the host system, press the
suspend softkey. The normal emulation softkeys will be restored.

For more information on using simulated I/O, see chapter 4 and
the Simulated I/O Operating Manual supplied with your HP
64000-UX system.

Ending The
Emulation Session

Using Command
Files

To end the emulation session, enter the command:

end release_ syst.em Return

The system will return to the MEAS_ SYS application level.

This completes your introduction to the 68020 emulation system.
You have assembled and compiled program modules, linked your
program modules, and used a few of the basic features of the
emulation system. For more detailed operational information,
refer to the information contained in the other chapters of this
manual and the 68020 Emulation Reference Manual. See the
Analysis Reference Manual for 32_BitMicroprocessors and the
68020 Analysis Specifics manuals for detailed information on the
analysis features provided in the emulator.

A command file is a file that lists a series of commands that must
be performed to accomplish a particular function. Command files
are ideal for setting up, and accessing, the emulation system.
Once the file is created, all you need to do is type the file name and
press Return. The commands in the file will be executed, allow­
ing you to easily enter your emulation session. Refer to the "Creat­
ing and Using Command Files" chapter of the HP 64000-UX
User's Guide for detailed information on command files.

Getting Started 3-33

Notes

3-34 Getting Started

4

Answering Emulation Configuration Questions

Overview

Introduction

This chapter:

• Explains each of the emulation configuration questions.

• Describes how to configure the emulator for compatibility
with your 68020 target system.

• Describes how to map your 68020 system memory to emula­
tion and target system memory resources.

The 68020 emulator is configured from within the emulation ap­
plication. When you run emulation for the first time, a default con­
figuration file is loaded. You can modify this file to match your
particular system needs by answering a series of emulation con­
figuration questions displayed on your workstation display. After
modifying the emulation configuration, you can save it to a file
which you can then load each time you enter emulation.

Your answers to the emulation configuration questions define
how your 68020 emulator is configured, how resources are shared
between the emulator and your target system, how the emulator
and target system interact, and what operations are enabled in
the emulation environment.

Configuring The Emulator 4-1

Running
Emulation

4-2 Configuring The Emulator

The configuration questions enable you to do the following emula­
tion configuration tasks:

• Selecting real time or nonreal-time run mode.

• Enabling breaks to the emulation monitor.

• Selecting whether to reset into the emulation monitor or to
use the user reset exception vector.

• Enabling and selecting the software breakpoint instruction.

• Enabling the internal emulation FPU.

• Configuring custom coprocessor functions.

• Configuring memory.

• Configuring the emulator pod.

• Configuring simulated I/O and interrupts.

• Naming your emulation configuration command file.

The command sequence to run emulation depends on how you
configured your emulation system and what you named it. In this
chapter, the example names from chapter 3, Getting Started, are
used. To run emulation, do the following steps:

1. Press MEAS SYS.

2. Press emul682k em68020 Return.

Modifying The
Configuration File

Note

Selecting Real-Time/
Nonreal-Time Run

Mode

To modify the configuration, enter the following command:

modify configuration Return

A series of questions are displayed on your workstation screen.
Your answers to these emulation configuration questions specify
the configuration of the emulation hardware and software for a
specific application. Each question is displayed with a default
response. Additional options are shown in this chapter in paren­
theses. The default response is selected by pressing the Return
key. Other responses are selected by pressing the appropriate
softkey or by typing in an appropriate response, and then pressing
Return. If you are modifying an emulation configuration file
which you previously made, the default responses are those
responses stored in that configuration file.

If you need to return to a question you have already answered,
press the RECALL softkey. Each time you press RECALL, the
emulator backs up to the configuration question that was dis­
played prior to the question currently displayed. You may then
make any corrections needed.

Real-time refers to the continuous execution of your 68020
program without interference from the development environment
except as specified by you. All commands which cause momentary
breaks to the emulation monitor are disabled. Momentary breaks
are breaks asserted by the emulation software which momentari­
ly diverts 68020 execution to the emulation monitor and then
resumes execution of your program. In real-time run mode, you
can execute any command which does not cause a break to the
emulation monitor. Commands requiring target memory or
register accesses are disabled when a user program is running.
These commands can only be executed while running in the

Configuring The Emulator 4-3

Caution •

4-4 Configuring The Emulator

emulation monitor. An attempt to execute a run/step from
< ADDR > command while executing the user program in real
time causes a break to the emulation monitor.

If the emulator is not restricted to real-time run mode, all selected
emulation functions are enabled. Commands requiring access to
target memory or registers cause a break to the emulation
monitor if a user program is running.

Features which require emulation monitor interaction interfere
with real-time operation more than features which require only
emulation memory interaction. A major portion ofreal-time inter­
ference can be avoided by disabling the emulation monitor func­
tions. You can select this option later in the configuration ques­
tions.

no

yes

Restrict to real-time runs? no (yes)

All selected emulator functions are
enabled. The emulation system is enabled
to break to the emulation monitor when­
ever a command requiring breaks to the
emulation monitor is executed.

Target memory and register accesses are
disabled when a user program is running .

POSSIBLE DAMAGE TO CIRCUITRY! When the emulator
detects a guarded memory access or other illegal condition,
or when you execute a command that causes the emulator to
break into the emulation monitor, the emulator stops execut­
ing the user program and enters the emulation monitor. If
you have circuitry in your target system that can be damaged
because the emulator is not executing your code, you should
use caution. Restrict the emulator to run in real-time mode
only. Do not execute commands that cause breaks to the
emulation monitor.

Enabling Emulator
Monitor Functions

The next question asks you if you want to disable breaks into the
emulation monitor. If you answer no, all emulation commands
and features implemented by the emulation monitor are enabled.
If you answer yes, configuration questions that refer to functions
requiring the emulation monitor will not be asked. They will be
set to the following default values:

Reset into the monitor? no
Enable emulator use of software breakpoints? no
Break processor on write to ROM? no

If the emulation monitor is not loaded, all emulation functions
that require the monitor for execution will be disabled and their
associated softkeys turned off. The functions that require the
emulation monitor are:

• automatic reset to monitor

• break

• copy target memory

• copy registers

• display target memory

• display registers

• emulator use of software breakpoints

• load target memory

• modify target memory

• modify registers

• run from/until < ADDR >
• set break_on

• step

• store target memory

Configuring The Emulator 4-5

Resetting Into The
Monitor

Note

4-6 Configuring The Emulator

no

yes

Disable breaks into monitor? no (yes)

All emulation commands and features im­
plemented with the emulation monitor
are enabled.

Configuration questions that refer to func­
tions requiring the emulation monitor are
not asked. If no emulation monitor is
loaded, all commands and features requir­
ing the emulation monitor are disabled
and their associated softkeys are turned
off.

If you answered yes to the previous question, the following ques­
tion will not be displayed on your screen.

The next question lets you select whether the emulation reset
command causes the processor to be reset into the emulation
monitor or to the memory location specified by the user reset ex­
ception vector. This question only affects reset commands entered
from the workstation keyboard or processor reset on entry to the
emulation module. It has no effect on reset signals generated
within the user's target system.

yes

Reset into the monitor? yes (no)

The emulation reset command causes the
processor to be reset into the emulation
monitor. The user-defined reset vector
and initial stack pointer are ignored.

Enabling Emulator
Use of Software

Breakpoints

Selecting The
Software Breakpoint

Instruction Number

Note

no The emulation reset command causes the
processor to fetch the user-defined reset
vector and begin execution from that ad­
dress.

The next question lets you specify whether or not the emulator
can use the 68020 BKPr instructions to do software breaks from
the user program into the emulation monitor. The modify
sw breakpoints set and run until commands are disabled if
youanswer no to this question. You should answer no only if your
target system must use all eight 68020 BKPT instructions.

yes

no

Enable emulator use of software breakpoints? yes (no)

The emulator software breakpoint func­
tions are enabled.

Emulator use of software breakpoints is
disabled.

The following question lets you specify which of the eight 68020
BKPr instructions the emulator uses to execute software breaks
into the emulation monitor.

If you answered no to the previous question, this question will
not be displayed on your screen.

Software BKPrinstruction number (0_ 7)? 7 (<number>)

Configuring The Emulator 4-7

Enabling The Internal
68881 FPU

Note

4-8 Configuring The Emulator

See chapter 7, "Using Custom Coprocessors", of this manual for
detailed information about using coprocessors with the 68020
emulator.

The next question lets you select whether or not the emulator's
68881 FPU is used during emulation. If your target system will
eventually have an FPU, but it is currently not available, answer­
ing yes to this question enables the emulator's FPU to be used. If
your target system has an FPU or if you do not want to use an
FPU, answering no to this question disables the emulator's inter­
nal FPU.

yes

no

Enable internal 68881 FPU? no (yes)

The emulator uses the internal 68881
FPU in the emulation pod. If external
clock is selected, the maximum clock fre­
quency is 20 MHz.

You can use both the internal FPU and
other coprocessors during the emulation
session. If you are using other coproces­
sors and want to be able to modify and dis­
play coprocessor registers, you must
modify the emulation monitor and custom
coprocessor format file as described in
chapter7.

Use of the internal FPU coprocessor is dis­
abled.

Specifying The FPU
Coprocessor ID

Note .;

Using Custom
Coprocessors

Note

If your answered no to the previous question, this question will
not be displayed on your screen.

This question asks you to specify the FPU coprocessor ID code.
The default value is 1. The code is used by the 68020 processor to
determine which coprocessor it is accessing for each coprocessor
instruction. Note that the value 0 is not available. This value is
reserved for the memory management unit (MMU), if used.

FPU coprocessor ID (1.. 7)? 1

If you answered yes to the question "Enable internal 68881
FPU?, this question will not be displayed on your screen. The for­
mat file specified for the internal FPU must contain all the infor­
mation relating to custom coprocessors, if any are used.

The 68020 emulator has the capability to access floating point
processors, memory management units, and other coprocessors in
your target system. You can both display and modify coprocessor
register sets. In order to use custom coprocessors with the
emulator, you must provide a custom register format file defining

Configuring The Emulator 4-9

Specifying The
Custom Coprocessor

File

Note

Modifying a Memory
Configuration

4-10 Configuring The Emulator

the coprocessor register set and modify the emulation monitor
program as described in chapter 7 of this manual. This must be
done prior to modifying the emulation configuration.

yes

no

Any custon:i coprocessors? no (yes)

The emulator is enabled to access the cus­
tom coprocessors that you have defined in
you custom register formatfile.

Use of custom coprocessors is disabled.

If you answered yes to the question "Enable internal 68881
FPU?" or "Any custom coprocessors?", the following question
will be displayed on your screen.

Name of custom regist.erformatfile?
/usr/hp64000illtst/emul3210400/0001/custom _spec

The default answer to the question is the name of the custom
register format file provided with your emulation software for use
with the emulator's internal FPU. If you are using other custom
coprocessors, you must enter the full pathname of the custom
register format file that you made for these coprocessors.

When you begin your initial emulation session you must con­
figure (map) the memory space you will be using. The configura­
tion you need is based on your user program requirements and on
the configuration of your target system, if one is available. As you
progress with your program development, your memory map re-

quirements will probably change. As your requirements change,
you will need to modify your configuration file.

The following questions let you review and modify the memory
configuration stored in the emulation configuration file.

Modify memory configuration? no (yes)

yes Allows memory mapping tD be modified.
The current memory map is displayed.
Memory configuration is explained in the
following sections.

no Allows you to skip memory configuration
if you do not want to change memory
usage. A no response causes the memory
to be configured as specified by the cur­
rent emulation configuration file. Ifno is
entered, the next question is "Modify
emulator pod configuration?".

Break processor on writ.e to ROM? yes (no)

yes A break to the emulation monitor occurs
if the processor attempts to write to a
memory location mapped as emulation or
target ROM.

no Breaks are not generated when the
processor attempts to write to memory
locations mapped as emulation ROM.

If write operations to emulation memory mapped as ROM are at­
tempted during program execution, the contents of emulation
memory are not modified. Write operations resulting from
emulator commands that modify memory (e.g., load and modify)
will modify the contents of emulation memory locations mapped
as ROM.

Write operations to target memory mapped as ROM may or may
not alter memory contents, depending on your target system
hardware.

Configuring The Emulator 4-11

Mapping Memory

After you answer the question "Break processor on write to
ROM?", the emulation memory map is displayed. The 68020
processor memory space required for your applications must be
mapped to emulation memory, target memory, or guarded
memory. Emulation memory is memory that is physically located
in the emulation pod. Target memory is memory that is physical­
ly located in your target system. Memory mapped as guarded is
memory that, under normal conditions, should not be accessed by
your target system. Any reference to the address space mapped as
guarded memory will result in an emulation memory break and
the display of the error message:

STATUS: 68020--Running in monitor Guarded access a= <ADDR> (<FC>)

4·12 Configuring The Emulator

where < FC > is a two letter mnemonic describing the
function code of <ADDR >.

The memory mapper must be properly programmed to cor­
respond to emulation memory and target system memory resour­
ces in order for emulation to work correctly. The memory mapper
allows yrn 1 to divide the processor's address space into blocks that
can be individually configured to have any of the following at­
tributes:

• Emulation memory; RAM or ROM; 8-bit, 16-bit, or 32-bit
width

• Target memory; RAM or ROM

• Guarded memory

During emulation, the memory mapper monitors the address bus
and provides the attributes for the address present at any given
time. This information is used by the emulator hardware to con­
trol the flow of data and code between the emulation processor
and the memory resources.

Memory Map Display Organization. The default memory
map display is shown in figure 4-1. Each entry line shows the
entry number, address range starting value, address range en-

Mapping memory:
ENTRY START

1 OH
2 OH

ding value, function code of the address range, attributes of the
entry, and overlay definition. The overlay definition shows the
number of the entry being overlaid, and the address in the
memory map entry being overlaid that corresponds to the start­
ing address of the overlay entry.

Softkey labels are displayed for the commands available in the
memory mapper. You can specify individual map entries, overlay
existing map entries, modify existing entries (including the
default mapping attributes), delete currently defined entries, or
end the map definition session. These commands are described in
the following sections.

Function codes = OFF
ENO ATTRIBUTES OVERLAY

ff ff ffffH TARGET RAM
3ffffH EMUL RAM [32 bits]

CPU_SPACE

STATUS:
end

Mapping emulation memory, default mapping: guarded ____ ... R

_ _......m"""'ap __ map ayer modify delete end

Figure 4-1. Default Memory Map Display

Memory Map Definition. The memory map partitions the
processor address range into blocks defined as emulation RAM
or ROM, target RAM or ROM, or guarded (illegal) space. Each
entry defines a particular address range as one of the five pos­
sible memory types.

Emulation and target memory entries can be further defined by
function code. Emulation memory can also be assigned data port

Configuring The Emulator 4-13

Note

4-14 Configuring The Emulator

widths of8-bit, 16-bit, or 32-bit. Based on the width assignment,
emulation memory returns the appropriate DSACK signals to
the 68020 processor.

Any address range not defined by an entry is mapped to the
memory default. The addresses entered are logical addresses at
the appropriate 68020 pins. Adjustments may be necessary if a
mapping is used in the target system.

The memory mapper has a resolution of 256 (fill) bytes. Once the
mapper software processes the inputs, the entry range is rounded
to integral multiples of256 bytes. The final range includes all of
the specified memory space, plus the remainder of any 256-byte
blocks which were partially specified. Any parts of the 68020 ad­
dress range not defined by an entry are mapped to the memory
default.

If the end address of a specified address range is the same as the
first address of a 256-byte memory block (e.g. lOOh, xx:xxxxOOh,
etc), the end address value is rounded down one byte (e.g. to Oflh,
xxxxxxffh, etc.)

This can cause a problem if you attempt to specify an address
range with the same start and end address corresponding to the
first address of a 256-byte memory block. If your enter the com­
mand:

map lOOh thru lOOh emulation ram Return

the error message "ERROR: Lower address in range greater
than upper address" is displayed. This command is not al­
lowed by the emulator because the ending address (when
rounded down to Ofih) is less than the starting address (lOOh).

All emulation memory is displayed and loaded directly by the
emulation software by way of the memory port assigned to the
host processor. Any attempt by the 68020 CPU to write to
memory mapped as emulation ROM will not change the contents
of that memory location.

When target memory is specified for a given address range, all
memory cycles using that address range access the target sys­
tem. All memory load and display operations for your target sys­
tem are done via the emulation monitor.

Multiple processor address ranges can be overlaid onto the same
physical emulation memory by using the map_overlay com­
mand. Overlaying applies only to emulation memory. The
emulator has no control over your target system memory resour­
ces.

Emulation Monitor Program Memory Requirements. You
need to know certain information about the emulation monitor
(delivered as part of your emulator software package) prior to
linking the monitor program and mapping memory space. Chap­
ter 6 gives a detailed description of the emulation monitor, in­
cluding memory requirements for the program. Refer to the
paragraphs titled "Emulation Monitor Memory Requirements"
in chapter 6 for a full description of the emulation monitor
memory requirements.

Using The Map Command

All memory map entries are made up of an address range and at­
tributes which specify the type of memory accessed by the
specilied address range. In addition, a specilic function code and
address width (port size) can be assigned to a memory map entry.
Memory mapping is done using the map command.

Configuring The Emulator 4-15

map

fcode

emulation

target

guarded

4-16 Configuring The Emulator

Mapper blocks are entered using the following command syntax:

<F CODE> -

ram

rom

ram

rom

where:

target

emulation

guarded

<ADDR> thru <ADDR>

<RETURN>

width8

width 1 6

width.32

designates memory supplied by your tar­
get system. Mapping an address range to
target space requires no emulation
memory.

designates memory supplied by the
emulation system.

designates an address range which is not
expected to be accessed. Any processor ac­
cess to a location within such a range will
result in a break of the program execu­
tion. No emulation memory is used when
an address range is specified as guarded.

fcode

rom

ram

<ADDR>

widths

width16

width32

lets you assign a function code to a
memory map entry. The function codes
enabled for your particular configuration
are displayed on softkeys after you press

the fcode key. If you specify modify
defined codes none, the f code at­
tribute is disabled and the softkey is not
displayed. You can specify user-defined
function codes by typing in the numeric
value of the function. See the section in
this chapter on the modify defined_ codes
command for more information on func­
tion codes.

designates memory which cannot be
modified by the 68020 processor. Emula­
tion memory that is actually RAM but is
mapped as ROM performs as ROM during
emulation. The host can read and write to
ROM.

designates memory which can be read
from or written to without restriction.

defines a bit pattern of up to 32 bits which
specifies a particular location in memory.
That bit pattern can be entered as a bi­
nary, octal, hexadecimal, or decimal num­
ber.

defines the memory map entry to be an 8-
bit data port.

defines the memory map entry to be a 16-
bit data port.

defines the memory map entry to be a 32-
bit data port.

The first < ADDR > of a range specification should be the start­
ing address of a block boundary. If an address inside a memory
block area is entered, the system converts this address to the start­
ing address of the block prior to its mapping. Leading zeros may
be deleted as long as the most significant digit is numeric.

Configuring The Emulator 4-17

The minimum map entry size is 256 bytes. The maximum size is
the number of available blocks.

Using The Map_ overlay Command

When making a mamory map, you can enter "overlay" addresses
in emulation memory hardware blocks. With this feature, you
can cause a single block to function as if it were several different
blocks, each esponding to a different set of addresses. Memory
overlaying applies only to emulation memory. The emulator has
no control over target system resources. Map overlays are entered
using the following command syntax:

mop_overloy i--..,.----------~ <ADOR> thru <ADDR>

\x x x x

<F_COOE>

over i--..:----------~ <AODR> <RETURN>

fcode <F _CODE>

Map_overlay command parameters have the same definitions
as those listed for the map command parameters.

There are some restrictions imposed on the map overlay function
by the physical structure of emulation memory. Emulation
memory is physically made up of 4K byte blocks of memory as
shown in figure 4-2. The memory mapper hardware has a resolu­
tion of256 bytes, the minimum map entry size.

When specifying a memory address, the two least significant
digits in a hexadecimal address specify the address within the 256
byte entry. The third least significant digit specifies one of the 16
256-byte entries within the 4K byte physical memory block. See
the following diagram

X I [~ Address Location within 256 Byte Block

Location of 256 Byte Block within
4K Physical Memory Block

Address of 4K Physical Memory Block

4-18 Configuring The Emulator

4K BYTE

MEMORY

BLOCK

PHYSICAL

BLOCK

0

1

2

3

. .
•

c
D

E

F

} 256 BYTES

- VALID OVERLAY -

ILLEGAL OVERLAY --

OVERLAY

ADDRESS

0

1

2

3

.
• .
c
0

E

F

Address of overlay and address to be overlaid must be

mapped to the same 256 byte block.

Figure 4-2. Overlay Addressing Within Physical Blocks

When overlaying memory, the address of the memory overlay
and the address of the memory location must be mapped to the
same 256 byte block in the 4K byte physical memory block, e.g.,
the third least significant hexadecimal digit in the specified ad­
dresses must be identical. For example, the command:

map overlayfcode SUPER DATA 0f00f800h thru OfOOIBflh
rom overfcode SUPER PROO 0002800h Return

is a valid command. However the command:

map overlayfcode SUPER DATA 0f00f800h thru OfOOIBflh
rom overfcode SUPER PROG0002a00h Return

is not a valid command. An attempt to execute the last command
would cause the error message "Offset for overlay does not match
emulation address" to be displayed.

Configuring The Emulator 4-19

Memory Mapping Example

The following example shows how to map memory in a system
made up of a target system with some memory installed and the
68020 emulator. This example shows how to use the the map and
map_overlay commands. Before defining the new memory map,
delete all entries in the current map. Enter the following com­
mands:

delete all Return
modlly defined_ codes all Return

The memory map display will appear as shown in figure 4-3.
Note that one entry is still displayed. The CPU _SPACE map­
ping to target RAM cannot be deleted by the user. This address
space map is required for vectored exception processing.
CPU _SP ACE must be mapped to target memory so that vec­
tored exceptions will not interfere with emulation functions.

Mapping memory: Function codes = ON
ENTRY START ENO FlJNCTION COPES ATTRIBUTES OVERLAY

1 OH ff ff ff f fH CPU_SPACE TARGET RAM

STATUS:
end

Mapping emulation memory, default mapping: guarded ____ ... R

_....wm....,ap~- map ayer modify delete end

Figure 4-3. Sample Overlay Mapping #1

Type the following entries into the memory map.

4-20 Configuring The Emulator

Mapping
ENIBl'.

1
2
3
4
5
6
7

STATUS:
end

map fcode USER_DATA 0 thru Offfih emulation ram Return

map fcode USER PROO 18000000h thru 1800fffih emulation
romReturn -

map fcode SUPER_ DATA 0 thru 3ffh targetrom Return

map fcode SUPER_ PROO 0 thru 3ffh targetrom Return

map fcode SUPER PROG OfDOOOOOh thru OfDOOffih
emulation ram Return

map overlayfcode SUPER DATA OfDOOOOOh thru OillOOffih
ramoverfcode SUPER PROOOillOOOOOh Return

memory: Function codes = ON
SI8BI ENQ FUNCIIQN CQQES 8IIBIBUIES Q~EBL8l'.

OH ff ff H USER DATA EMUL RAM f 32 bitsj
18000000H 1800f ff fH USER-PROG EMUL ROM 32 bits

OH 3f fH SUPER-DATA TARGET ROM
f OOOOOOH f OOOf f fH SUPER-DATA EMUL RAM [32 bits] f OOOOOOh (6)

OH 3f fH SUPER-PROG TARGET ROM
f OOOOOOH f OOOf ffH SUPER-PROG EMUL RAM [32 bits] f OOOOOOH

OH f ffff ff fH CPU_SPACE TARGET RAM

Mapping emulation memory, default mapping: guarded ____ ... R

_....wm....,ap __ map oyer modify delete end

Figure 4-4. Sample Overlay Mapping #2

The memory map resulting from these commands is shown in
figure 4-4. The entries in the memory map correspond to the fol­
lowing address spaces:

Configuring The Emulator 4-21

4-22 Configuring The Emulator

1. User application data space

2. User application program space

3. Exception vector table space

4. Emulation monitor data space

5. Exception vector table space

6. Emulation monitor program space

7. CPU space

The emulation monitor data space (entry 4) has been overlaid
onto the emulation monitor program space, This enables the
68020 processor to access data locations in the emulation monitor.
The overlay is indicated in the OVERLAY column of the memory
map display for entry 4. The"(6)" indicates that entry 4 is overlaid
onto entry 6. The address fDOOOOOH is the address in entry 6 that
corresponds to the starting address of entry 4. This memory map
shows you a typical 68020 memory map.

Using The Modify Command

The modify command lets you modify the memory map. The
modify defined_ codes command lets you selectively enable or dis­
able the 68020 function code signals (FCO through FC2). The
modify <ENTRY> command lets you modify the range, at­
tributes, fcode, and overlay parameters of a memory map entry.
The modify default command lets you change the default memory
parameters.

Modify Defined Codes. The modifydefined_codescom­
mand lets you selectively enable or disable the 68020 function
code signals. The command syntax is shown in the following
diagram:

modify i----- defined codes 1----...----- all r---~--<RETURN>

where:

all

none

...._ __ __
none

prog _data

enables the memory mapper to use all
three function code lines (FCO through
FC2) in mapping memory. If all is
selected, you can specify any of the eight
function code states except
CPU _SP ACE. The function codes
SUPER_PROG, SUPER_DATA,
USER_PROG, AND USER_ DATA can
be entered from softkeys. The remaining
function cod.es must be entered as
numeric values. Function code 3 is user
definable. Function codes 0 and 4 are
reserved for use by the processor manufac­
turer. Function code 7 specifies CPU ad­
dress space. If you enter fcode 3,
USER RSVD is displayed in the
FUNCTION CODES column of the
memory display. If you enter fcode 0 or 4,
MOT RSVD is displayed in the FUNC­
TIONCODES column.

disables all three function code lines.
when none is selected, the emulator
memory mapper ignores the function code
lines and monitors only the 32-bit address
bus during emulation. With none
selected, the fcode parameters are not
available in the emulation commands.
The FUNCTION CODES column is
deleted from the memory map display.

Configuring The Emulator 4-23

modify <ENTRY> range

attributes

fcode

overlay

4-24 Configuring The Emulator

prog_ data enables the memory mapper to monitor
only function code lines FCl and FCO.
These lines determine whether address
space is defined to be program address
space or data address space. With
prog_data selected, you can only specify
the function code to be program or data
address space. The function codes PROG
or DATA can be entered from softkeys.

Modify< ENTRY>. The modify <ENTRY> command lets
you modify the range, attributes, fcode, and overlay parameters
of a existing memory map entry. The command syntax is shown
in the following diagram:

<ADDR>

emulation

target

guarded

<F CODE> -
remove

fcode <F

where:

range

attributes

-

thru <ADDR> <RETURN>

rom

rom width8

CODE>

width16

width32

<ADDR>

lets you specify a new range for the
memory map entry (<ADDR> thru
<ADDR>).

lets you change the entry to:

modify default

fcode

overlay

emulation memory, RAM or ROM, with a
data port width of 8-bits, 16-bits, or 32 bits

target memory, RAM or ROM

guarded

lets you modify the function code address
mapping for the entry. The selections
available to you depend the definition of
the defined _codes parameter.

lets you remove an overlay from an entry,
e.g., the entry is converted to the physical
address corresponding to address
specified in the entry, or it lets you change
the function code or address range of the
address space being overlaid.

Modify Default. Any address ranges which are not mapped
when the mapping session is terminated are assigned the
memory attribute specified as the default. The default attribute
can be set up to be target RAM, target ROM, or guarded by using
the modify default command. Initially, the system assigns all un­
mapped memory to guarded memory. The command syntax is
shown in the following diagram:

target

guarded

where:

target

guarded

ram

rom

designates memory supplied by your tar­
get system.

designates an address range which is not
expected to be accessed. Any processor ac-

Configuring The Emulator 4-25

Modifying The
Emulation Pod
Configuration

4-26 Configuring The Emulator

cess to a location within such a range will
result in a break of the program execu­
tion.

Deleting Memory Map Entries

Any one or all of the memory map entries can be removed by
using the delete command with the exception of the default
CPU _SP ACE entry. The syntax for the delete command is
shown in the following diagram:

delete all

Ending The Mapping Session

The memory map configuration session is exited by pressing the
end softkey followed by Return.

The following question asks you whether or not you want to
modify the current emulation pod configuration.

Modify emulator pod configuration? no (yes)

no The emulation pod configuration ques­
tions are skipped and the emulation
module uses the current pod configura­
tion. The emulator will skip to the end of
the configuration session and ask you for
the emulation configuration file name.
The default pod configuration is as follows:

Note

Enable DMA transfers yes
Enable DMA transfers into emulation memory no
CPU clock source internal
Interlock emulation memory DSACK with user DSACK no
Enable emulator use ofIN17 yes
Enable targetIPEND line during emulator breaks no
Block target BERR during emulation memory cycles yes
Enable on-chip cache no

yes You must answer the following emulator
pod configuration questions in order to
reconfigure the emulator pod.

Enable DMA transfers? no (yes)

no Bus requests are blocked to the processor
and the analyzer does not capture DMA
activity. The processor ignores the BR
and BGACK input signals and does not
respond with BG.

yes Bus requests are admitted to the proces­
sor. If the AS, address, and data lines are
active at the processor pins during DMA
cycles, the analyzer will capture those
states. The processor responds normally
to the assertion of the BR (Bus Request)
and BGACK (Bus Grant ACKnowledge)
signals.

Enable DMA transfers into emulation memory? no (yes)

If you answered no to the previous question, this question is not
displayed on your screen.

Configuring The Emulator 4-27

4-28 Configuring The Emulator

no DMA transfers to memory addresses
mapped as emulation memory are dis­
abled.

yes DMA transfers to memory addresses
mapped as emulation memory are
enabled. The DMA device must generate
all required control signals (AS, DS, WW,
SIZ, etc.) and meet the 68020 timing
specifications.

CPU clock source? internal (external)

internal

external

The internal clock must be used when the
emulator is running out-of-circuit, i.e.,
with no target system.

You may use the internal clock when run­
ning in-circuit emulation, i.e., with your
target system connected to the emulator
if the target system does use its own CPU
clock. You do not need to disable your tar­
get system clock when the internal clock
is selected. However, the internal clock is
not driven out to the target system. There­
fore, if your target system needs a clock to
operate, the external clock must be
selected.

The internal CPU clock runs at 16.667
MHz.

An external clock is normally used when
the emulator is connected to your target
system. Your target system clock must
meet the specifications for the CPU CLK
input to the microprocessor in order to be
reliably used with the 68020 emulator.

The emulator operates with clock rates up
to 25 MHz, except when the internal FPU
is enabled. Then, the maximum clock rate
is 20MHz.

Note

CPU clock rate greater than 20MHz? no (yes)

If you answered internal to the previous question, this question
is not displayed on your screen.

no

yes

If the external clock rate is less than or
equal to 20MHz, all emulation memory
accesses will occur with no wait-states.

If the external clock rate is greater than
20MHz, one wait-state will be inserted for
emulation memory and target memory ac­
cesses.

Add wait states to target accesses? no (yes)

no The 68020 emulator will not force wait
states for target memory accesses. If the
target system automatically generates
wait states, these wait states will still be
present for target memory accesses

yes The 68020 emulator will ensure that
there is at least one wait state for target
memory accesses. If the target system al­
ready meets this requirement, the
emulator will have no effect on accesses to
target memory.

Interlock emulation memory DSACK with user DSACK?·
no(yes)

no DSACKs for emulation memory accesses
are generated by the emulator, according
to the mapped size of that memory. Tar­
get system DSACKs are used for all tar­
get memory accesses.

Configuring The Emulator 4-29

4-30 Configuring The Emulator

yes The target system DSACKs are used for
all memory accesses. You must ensure
that the mapped size of emulation
memory matches the target system
DSACK signals. This feature can be used
to keep the emulator synchronized to the
target system while accessing emulation
memory.

In most cases, DSACKS should be inter­
locked when the emulator is plugged into
a target system. Refer to chapter 5,
"Using the Emulator", for a detailed dis­
cussion of emulation and target sytem
DSACK signals. Note that the emulator
does not interlock DSACK signals during
the level 7 interrupt jamming process
that occurs during the emulation break
function.

Enable emulator use ofINT7? yes (no)

The emulation breakfunction uses the level 7 interruptautovec­
tor (INTI) processor resource to force the user program to be inter­
rupted and the emulation monitor program to be entered. This
question lets you enable or disable the emulation break function,
as required for your target system. If your target system cannot
share INT7 with the emulator, you need to answer no to this ques­
tion.

yes All selected emulation functions are avail­
able.

no All emulation break signals to the proces­
sor are disabled. The only ways to enter
the monitor program are:

• user program jumps to the monitor

• executed exception vector points to the monitor

• software breakpoint is executed

• reset command with reset-to-monitor function enabled

Enable t.argetlPEND line during emulator breaks? no (yes)

Configuring
Simulated 1/0

no

yes

The interrupt pending signal (IPEND) is
blocked (driven high) for ALL interrupts,
both emulator and target system
generated interrupts.

Any interrupt sends the interrupt pend­
ing signal (IPEND) to the target system.

Block target BERR during emulation memory cycles? yes (no)

yes Bus errors (BERR) that occur during
emulation memory cycles are blocked.
This allows the monitor or other user
program to run in a memory space not
usually allowed by the target system
hardware.

no All bus error signals (BERR) are trans­
mitted to the processor.

Enable on-chip cache? no (yes)

no

yes

The processor is forced to always access
external memory. You must answer no in
order to use all of the analysis features.

The processor executes the instruction in
the cache, if the required word is stored
there. A yes answer improves system per­
formance but much analysis capability is
lost.

The enable (E) bit of the CPU CACR
register must be set by the target software
for the cache to be enabled.

Refer to chapter 5, "Using the Emulator", for more information
regarding the on-chip cache.

The simulated 1/0 subsystem must be set up by answering a
series of configuration questions. These questions deal with ena­
bling simulated I/O, setting the control addresses, and defining
files used for standard I/O.

Configuring The Emulator 4-31

Configuring
Simulated Interrupts

Naming The
Configuration File

4-32 Configuring The Emulator

Configure Simulated I/O? no (yes)

Answering yes to this question causes a series of simulated I/O
questions to be asked. For information on how to answer these
questions to configure your system, refer to chapter 8 of this
manual. For additional information about simulated I/O, refer to
the Simulatedl!O Reference Manual.

Answering no to this question bypasses all other simulated I/O
questions.

Simulated interrupts are enabled by answering a series of con­
figuration questions.

Modify simulat;ed interrupt configuration? no (yes)

If you answer yes, the simulated interrupts questions will be
asked. If you answer no, the questions will be skipped. Simulated
interrupts enable you to write and test software which depends
upon the occurrence of preemptive interrupts using an emulator
that is out of circuit. Information describing how to configure your
system for simulated interrupts is contained in chapter 8 of this
manual.

This question lets you name an emulation configuration file con­
taining the emulation configuration information you have just
entered. The configuration file is stored on disc and can be called
up for use during a future emulation session.

Configuration file name?

Type in the filename you want and press Return.

If you press Return without entering a name, the current emula­
tion session will be configured as you specified in your answers
and the information will be saved as the new default configura­
tion of the emulator. To restore the original default file provided
with the emulation software, you must reinitialize the HP
64120A Cardcage.

Note

Note

Configuration
Switches

C1

If you assign a new name to the configuration file and you are
using a command file to enter your emulation session, remember
to modify your command file to change the name of your emula­
tion configuration file (refer to the HP 64000-UX User's Guide
for more information relating to command files).

Emulator configuration files are slot dependent. Use of a given
configuration file on one emulator and subsequent reuse on an
emulator in another cardcage slot will result in the message
"Bad Module File". This message indicates that the configura­
tion file specified was not associated with the current emulator.
The message is displayed as a warning only. The emulator
software will automatically rebuild the configuration file with
correct cardcage slot information for the current emulator.

See Figure 4-1. There are three switches located on the emulation
processor board in the pod. They allow you to select some infre­
quently changed hardware options. These switches are described
in in the following paragraphs:

Selects either a buffered or unbuffered clock.

1 . Default setting: The target clock signal is buffered by a
7 4F241 before it is sent to the 68020 microprocessor in the

Configuring The Emulator 4-33

C3} C2
C1

Figure 4-5. Setting Configuration Switches

4-34 Configuring The Emulator

SHOWN IN
DEFAULT
SETTINGS

C2 {DSACKO) And C3
{DSACK1)

emulation pod. The shape of the clock signal is improved
with this buffering technique.

2. Switched Setting: The target clock signal is sent directly to
the 68020 microprocessor in the pod. The clock signal is not
buffered by the emulator. Use this setting only if the clock
skew (which results from buffering the signal) causes
timing problems when plugged into your target system.

Selects either buffered or unbuffered DSACK signals.

1. Default Setting: This imputs the target DSACK signals to
a PAL before they are sent to the 68020 microprocessor in
the pod. These switches must be set to default during nor­
mal emulator operations.

2. Switched Setting: Use this setting only as a troublesetting
tool for trying to isolate target plug-in problems. In this
mode, the target system DSACKs are sent directly to the
68020 microprocessor in the pod, bypassing all of the
emulator DSACK logic. This improves the emulator
timing specification pertaining to the DSACK signals
(spec. number 28), but reduces other emulator
functionality. Functions that use the emulation monitor or
the internal FPU are not operational in this mode! The
emulator basically functions only as a preprocessor. All
memory should be mapped to target. Only the analyzer fea­
tures should be used in this mode.

Configuring The Emulator 4-35

Notes

4-36 Configuring The Emulator

5

Using The Emulator

Overview This chapt.er provides information on the appropriate use of the
following emulator and processor features when the emulator is
used with a target system (in-circuit emulation):

• Installing emulation software updates

• Emulation and target system DSACK signals

• Vector base register

• The internal 68020 cache

• Using function codes for displaying and modifying reserved ad-
dress space

• Enabling/disabling the bus error signal (BERR)

• UsingDMA

• Using the run from ... until command

• Using the emulation monitor

• Target systems with memory management units (MMU's)

• Memory access timing issues

• Loading absolute files.

Read this chapter before attempting to operate the emulator with
your target system.

Using The Emulator 5-1

Installing 68020
Emulation
Software Updates

Emulation And
Target System
DSACK Signals

Interlocking
Emulation Memory
DSACK and Target

DSACK Signals

5-2 Using The Emulator

After installing a new copy of the 68020 Emulation Software on a
system, cycle the power off and then back on for all HP 64120
cardcages containing 68020 emulators. This updates and initial­
izes all emulation software data structures.

When installing a different revision of the 68020 emulator
software, remake all existing configuration files. Configuration
file names are sufiixed by ".EA" and" .EB". The easiest method to
make a new configuration file is to delete the .EB file and then
reload the configuration file. The system will take the parameters
specified in the .EA file and make a new .EB file that is com­
patible with the new emulation software.

If your target system memory requires wait states, you should in­
terlock the emulation memory DSACK signal with the target sys­
tem DSACK signal. This causes accesses to emulation memory
and accesses to target memory to properly reflect system perfor­
mance when the emulator is removed. Since emulation memory
has zero wait states up to 20 MHz, accesses are much faster than
when the emulator is removed from the target system and the
same accesses are made to target system memory that has wait
states.

AS
.3

Target
4

DSACK

Emulation

Memory

2
DSACK

1 An access to emulation memory.
2 Emulation memory DSACKs terminate cycle

properly.
3 Access to target memory.
4 Target DSACKs from emulation memory accesses

(1) prematurely terminate the cycle before correct
data is available from target memory.

Figure 5-1. Memory Access Timing, No DSACK Interlock

Note When operating the emulator at 25 MHz, one wait state will be
added EVEN if the target system responded with a zero-wait­
state termination during interlock operation.

If target system memory requires wait states, the first target
memory access after an emulation memory access may fail if
DSACKs are not interlocked. See the timing diagram in
figure 5-1.

Using The Emulator 5-3

DSACK Signal
Problems In Target

Systems

5-4 Using The Emulator

The following rules should be used to determine whether or not to
interlock DSACK signals.

1. If the target system generates DSACK signals for all
emulation memory address ranges, DSACK signals should
be interlocked.

2. If the target system does not generate DSACK signals for a
range of emulation memory, DSACK signals must not be
interlocked.

3. If there is no target system (i.e. out-of-circuit emulation),
DSACK signals cannot be interlocked.

To interlock emulation memory DSACK signals with target sys­
tem DSACK signals, answer yes to the emulation configuration
question "Interlock emulation memory DSACK with user
DSACK?".

Many target systems violate 68020 DSACK signal specifications.
These violations are usually marginally acceptable to the 68020
CPU in the target system, but cause problems when the emulator
is plugged in. These specification violations usually result in im­
proper data fetches from memory and cause target system failure
with the emulator installed.

Use Of Open Collector Drivers

One of the most common problems is associated with the use of
open-collector drivers on the DSACK lines. DSACK lines often
have pull up resistors that pull the DSACK signals high at the ter­
mination of a memory cycle. Improper values for pullup resistors
can cause DSACK signals not to be pulled up fast enough and
may interfere with the next cycle. This occurs when the pullup
resistor value is too large to return DSACK to a pro~r high level
before the next cycle begins. In this case, the still low DSACK sig­
nal causes a premature termination of the second cycle, resulting
in improper data fetches by the CPU.

Note

Early Removal Of DSACK Signals

Some target system desi@s do not adhere to the 68020 specifica­
tion which states that the DSACK signals must not be removed
prior to the negation (low to high transition) of the address strobe
at the end of a cycle. In the simplest case, this results in "no
DSACK" messages appearing in the trace list, which in turn
causes inverse assembly failure. More seriously, the emulator
may completely malfunction depending on how early the DSACK
signal is removed prior to address strobe transition.

Isolating The DSACK Problem

If you suspect that your target system may HA VE either of the
preceding problems, use a timing analyzer to help isolate the
problem. Take a trace of the CPU clock, address strobe, data
strobe, and the DSACK signals during the failing cycle (use the
BNC's on the back of the HP 64120 cardcage to drive the trigger, if
possible). Examine the results and compare your findings to the
electrical specifications of the 68020 processor and the HP
64410SC/SD emulator.

HP 64120 BNC port operation is available only with HP
64410SC/SD software version 1.10 and later versions.

Using The Emulator 5-5

Using The Vector
Base Register

5-6 Using The Emulator

The 68020 CPU gets exception vectors from the exception vector
table located at the address contained in the Vector Base Register
(VBR).

The 68020 emulator uses ajamming technique for breaks and
software breakpoints. Therefore, the value of the VBR is not
needed to perform most monitor functions. This implies that the
vector table may be located anywhere without adversely affecting
emulator operation.

The single-step feature does require the use of the trace exception
vector (VBR + 24H). If the single-step feature is to be used, you
must make sure that the trace exception vector always points to
the monitor (MONITOR_ ENTRY).

The monitor can handle various exceptions by displaying a status
message, entering a loop within the monitor, and then waiting for
user intervention. These exceptions include Bus Error, Address
Error, Divide by zero, etc. If you use these exceptions, you must
maintain the exception vector table so that the vectors in use al­
ways point to the appropriate monitor location.

Using The Internal
68020 Cache

Cache Control

Using the internal 68020 cache affects several functions of the
68020 emulator. The following sections discuss use of the internal
cache and its effect on emulator operation.

When the emulator is operating out-of-circuit, the "Enable
Cache?" configuration question has a different interpretation
than when plugged into a target system. When using the
emulator out-of-circuit, a "yes" answer to the "Enable Cache?"
configuration question forces the CDIS signal high within the pod.
When using the emulator in-circuit, a "yes" answer connects the
target system CDIS signal to the emulator CPU's CDIS input, al­
lowing the emulator to track target system CDIS. In both cases, a
"no" answer forces CDIS low within the emulator.

Recall also that the target system CDIS must be high, and bit zero
of the Cache Control Register must be set to 1 for the cache to be
enabled.

If the target system uses the internal 68020 cache, the cache must
be enabled by answering "yes" to the "Enable Internal Cache?"
configuration question.

When the CDIS signal from the target system is set to 1, the cache
still is not enabled until bit 0 of the cache control register (CACR)
is set to 1, as shown in the following example:

MOVEQ.L #1,DO
MOVEC DO,CACR ;software enable cache

Enabling the cache affects analysis trigger, store, count, and
Global Context functions. Additionally, some program read states
may be missing from the trace list.

The cache is not frozen on entry to the monitor. This results in
overwriting the cache contents.

If a breakpoint is set for an address currently contained in cache,
the breakpoint will not be recognized until the CPU fetches from
that address in main memory again. The run until command is
similarly affected since breakpoints are used in the command im­
plementation.

Using The Emulator 5-7

Analysis with Cache

Using Breakpoints
With Cache Enabled

The 32-bit internal analyzer can capture any cycle that occurs ex­
ternal to the 68020 CPU. When cache is enabled, program read
cycles may occur only internal to the CPU. This is the general
case with tight program loops and with high performance code
segments that are frequently locked in cache. Since the analyzer
cannot capture internal cycles, it has no way to display these
cycles in the tracelist. This can result in missing trace data and
high-level source lines, and even improper disassembly. The
analyzer will also miss the occurrence of trigger, store, count, se­
quence or context patterns if they occur only as internal cycles.

With cache enabled, all non-program-read cycles occur external­
ly, since the 68020 cache is implemented as an "instruction only"
cache. In general, any program segment that executes from cache
will generate some external cycles, the major exception being
timing loops. In these cases, you may be able to select trigger and
store patterns that correspond to external cycles. If no external
cycles are normally generated, you may be able to place
"markers" in the cached code such that the code will generate an
external cycle for analysis purposes when executed.

Since the analyzer contains a high precision cycle-to-cycle timer,
you can usually examine the tracelist to determine where cache
execution occurred.

You may see situations where breakpoints do not appear to be
functioning properly when the cache is enabled. This can happen
when you are using the "run until" command as well as break­
point commands.

Consider the following segment of code (a simple software timing
loop), and assume that the cache is enabled:

Address Code

5-8 Using The Emulator

1000
1002
1004
1006
1008
100A
100C

RELOOP NOP
NOP
NOP
NOP
NOP
SUBQ.L #1,DO
BNE RE LOOP

decrement loop counter
reloop if not 0

Because cache is enabled, no external memory cycles are
generated for addresses lOOOH thru lOOCH after their initial load
into cache. Breakpoints set at any cache resident address may
never be encountered. This situation occurs when the CPU does
not generate an external program read cycle to memory and
therefore never "sees" the breakpoint that was set.

Target Memory Breakpoints

Breakpoints set in target system memory differ from those set in
emulation memory. If the breakpoint address is mapped to target
system memory, the monitor must intervene in order to set the
breakpoint. Execution of the monitor overwrites cache locations
previously occupied by the user program. When the emulation
monitor is exited, the user program is fetched again from
memory, breakpoint included. This results in normal breakpoint
behavior.

Emulation Memory Breakpoints

This problem is worse when the breakpoint address is mapped to
emulation memory. Due to the dual-port nature of the memory
system, the host sets breakpoints in emulation memory without
requiring execution of the emulation monitor. In this case, the
mechanism of setting breakpoints does not clear cache and force a
re fetch of the newly specified breakpoint.

For breakpoints to function properly out ofemulation memory,
you need to clear the cache before setting or resetting the break­
point. Do the following steps before setting a breakpoint:

1. Break to the emulation monitor program.

2. Display CPU registers.

3. Modify CACR bit C to 1 and then to 0.

4. Set the breakpoint or enter the run until command.

5. Exit the monitor by executing a run command.

Using The Emulator 5-9

Using Function
Codes For
Displaying And
Modifying
Reserved Address
Space

5-10 Using The Emulator

When the breakpoint is hit, you can remove it from cache by ad­
ding 68020 instructions to the emulation monitor that will set and
clear the CACR C bit.

The preceding comments apply to setting software breakpoints as
well as disabling software breakpoints.

When the use offunction codes is enabled during a memory map­
ping session, the display and modify commands use the function
codes specified in the command. When function codes are dis­
abled, function code 0 is used for all memory reference commands.

Some target systems do not use function codes to differentiate be­
tween user and supervisor space or program and data space, but
do decode the "reserved" address spaces (function codes 0, 3 and 4)
to generate interrupts or inhibit DSACK generators. In these
cases, the emulation monitor may be customized to allow the use
of a non-zero function code for the display, modify, load, and store
emulator commands.

This modification requires changing two assembly statements in
the monitor "COPY" routine as shown in the following listing:

»>
>»
»>
>»

**
* * COMMANDS 3 & 4 ACCESS USER MEMORY
*
**

COPY
MOVE.W
MOVEA.L
MOVEA.L
MOVE.W
move.w
MOVEC
MOVE. W
move.w
MOVEC
CMPI.L

BYTE COUNT,D3
SRC ADDR,AO GET MEMORY SOURCE ADDRESS.
DST-ADDR,A1 GET MEMORY DESTINATION ADDRESS.
DST-FC,D2 GET DESTINATION FUNCTION CODE
#5,d2 force supr data function code
D2,DFC
SRC FC,D2 GET SOURCE FUNCTION CODE
#2,d2 force user data function code
D2,SFC
#3,MON_COMMAND IS THIS A READ_MEMORY COMMAND?

Modifications to the emulation monitor code for non-zero function
code access to target system memory include adding the two new
source lines shown in lower-case and commenting out 2 lines as
shown in the listing. The added and modified lines are indicated
by arrows(>>>).

En ab Ii n g/ di sa b Ii n g
BERR

The 68020 emulator allows the bus error (BERR) signal to be
received or not received during accesses to emulation memory.

If the target system generates bus errors for emulation memory
address ranges, the reception ofBERR should be disabled. This
would normally occur ifDSACKs are not generated for emulation
memory accesses.

If the target system generates DSACKs for emulation memory ac­
cesses, then it probably does not generate BERR for these cycles.
In this case, BERR actually indicates a failure, and should be
enabled in the emulator.

Using The Emulator 5·11

Using OMA

BR

BG

If any devices share the 68020 bus and are able to perform DMA,
then DMA should normallic_be enabled. This enables the CPU to
receive the Bus Request (BR) signal, generate a Bus Grant (BG)
response signal, and receive the Bus Grant Acknowledge
(BGACK) response from the bus requester. The handshake se­
quence for DMA transfers is shown in figure 5-2.

2

BGACK -----.
3 4 .-----

1) External device requests the bus.
2) The 68020 indicates that the bus wi 11 be granted.
3) External device indicates that the bus is in use.
4) External device relinquishes the bus.

Figure 5-2. OMA Bus Request/Bus Grant Timing

IfDMA is disabled, the CPU will not receive the bus request sig­
nal, and will not allow DMA cycles. This would be desirable in
order to characterize system performance in a situation where
DMA could not occur.

If the target has an MMU (any type), bus arbitration will normal­
ly occur during some types of address translation cycles. Thus, if
an MMU is present, DMA should usually be enabled for proper
system operation.

The user who has enabled DMA has a secondary option of ena­
bling or disabling DMA to/from emulation memory.

5-12 Using The Emulator

If DMA t.o emulation memory is enabled, the DMA hardware has
access t.o read from or write to emulation memory. IfDSACKs are
interlocked, the DSACKs for these accesses are supplied by the
target system. The DMA master must generate cycles that con­
form to 68020 timing requirements.

IfDSACKs are NOT interlocked, then no DSACKs are returned
to the target system. This would cause the DMA hardware to
hang ifDSACKs are required for cycle termination. To provide
maximum flexibility, the emulator makes DSACK signals avail­
able on an external connector, and in addition presents a signal
differentiating target and emulation memory cycles:

External Connector Label

CDO
CD1
USR

Meaning

CPU DSACKO
CPU DSACK1
USER(TARGEn MEM = 0,

EMULMEM = 1

CDO-CDl are DSACK indications from emulation memory when
USR= 1. IfUSR= 0, CDO-CDl reflect target memory DSACKs.
Using these signals, the circuit in figure 5-3 is needed to perform
DMA t.o/from emulation memory under the following conditions:

1. DMA enabled (DMA t.o emulation memory enabled or dis­
abled).

2. Interlocking DSACKs is disabled.

3. DMA hardware requires DSACKs.

4. Target system does not generate DSACKs for emulation
memory accesses.

Using The Emulator 5-13

Ground -

USR -

Target DSACK0 -
CD0 -

Target DSACK 1
CD1

t:::::,., En

G1

:i
A

8

A

8

A

8

A
8

'ALS157

r:
MUX

y - To OMA hardware DSACK0

y - To OMA hardware DSACK 1

y

y

Figure 5-3. Circuit For OMA Transfers

5-14 Using The Emulator

If the option to DMA to/from emulation memory has been DIS­
ABLED, the DMA cycle will still be allowed to occur, but no infor­
mation will be written to, or read from emulation memory. See
the timing diagram in figure 5-4.

BR

2
BG

BGACK -------. 3

AS

target

memory
write

1 DMA device requests the bus.

emulation emulation target

memory memory memory
read write read

2 The 68020 indicates that bus wi 11 be relinquished.
3 DMAdevice indicates that the bus is in use.

8

4 OMAdevicegeneratesawritewith atarget memory address. This cycle occurs
normally.

5 OMA device generates a read with an emulation memory address. This cycle does
not return valid data since OMA to emulation memory is disabled.

6 OMA device generates a write with an emulation memory address. This cycle
does not modify emulation memory since DMA to emulation memory is disabled.

7 OMA device generates a read with a target memory address. This cycle occurs
normally.

8 OMA transaction is complete.

Figure 5-4. OMA Timing Diagram, OMA Disabled

Using The Emulator 5-15

Using The Run
From ... Until
Command

The run command must be used properly to a void serious, stack
related problems in the software being executed.

One of the main causes of target system "failure" while using the
run command is the stack not being setup and/or restored proper­
ly by the software being executed. One common situation is for
parameters to be placed on the stack prior to calling a procedure.
(Parameter stacking code including the actual procedure call is
usually referred to as the "calling sequence.") Assume for ex­
ample that a procedure, PROCl expects the stack frame shown in
figure 5-5.

Return Address 1 FF0H (A7) 1---- Stock Pointer

Parameter C 1FF4H (A7+4)

Parameter B 1FF8H (A7+8)

Parameter A 1FFCH (A7+12)

2000H

Uninitialized Area

(data values unknown)

~ 2020H

Figure 5-5. Example Stack Frame

5-16 Using The Emulator

Often, PROCl will access the stacked parameters by referencing
parameter requests to the stack pointer. This means that
parameter "A" can be found at address A 7 + 12, parameter "B" at
address A 7 + 8, etc.

If the parameters are not stacked, and/or the return address is not
present, then the usual parameter references A 7 + 12, A 7 + 8, etc.
may reference uninitialized stack areas. Also, the return address
used by PROCl will be incorrect. This will usually result in a
software failure both within PROCl (because the parameter
values are wrong) and on exit from PROCl (because the return ad­
dress was not set properly). Depending on emulator memory map­
ping, the "stack" areas referenced by A 7 + 12, etc. may actually
fall within guarded memory area, resulting in a guarded memory
access message.

Executing the command "run from PROCl" prior to stacking the
parameters and setting the return address is one case where this
could happen. Problems also occur if a "run from <address>"
command is executed and CPU registers, or memory locations are
not properly initialized for the code to be executed at <address>.

Using the command "run until" can also cause problems. This
case is different from the "run from" case in that software
problems may occur on a subsequent "run" command after the
"until" condition is satisfied. If a "run" command is executed after
executing the "until" breakpoint, no problems should result, be­
cause the CPU will continue executing the user program from the
point where it left off. If a "run from" command is executed after
the "until" breakpoint, the stack, CPU registers and memory loca­
tions may be improperly set for the code to be executed at the "run
from" address.

These situations cannot be corrected within the feature set of the
emulator. You must be aware of your software requirements, and
the mechanism used to implement the run commands. A detailed
explanation of how the run command works is given in chapter 9.

Using The Emulator 5-17

Using The
Emulation Monitor

Note

Loading the
Emulation Monitor

5-18 Using The Emulator

This manual supports version 2.xx of the 68020 emulation
software. Several important changes have been made to the
emulation monitor. These changes correct defects or add new fea­
tures to the monitor. Make sure that you are using the latest ver­
sion of the emulation monitor in your system.

The following rules must be followed when loading the emulation
monitor:

1 . The emulation monitor must be mapped to emulation
RAM.

Both program and data spaces of the monitor must be
mapped to emulation RAM as opposed to ROM. The
monitor transfer buffer, as well as many monitor
"housekeeping" variables must be read and write acces­
sible, and must therefore be mapped to emulation RAM.

In addition, portions of the monitor must write to other
monitor program locations for self configuration to a par­
ticular FPU coprocessor ID. Since writes to emulation
ROM are always blocked, the program section, as well as
the data section, of the monitor must be mapped to emula­
tion RAM.

2. If all function codes are used, the monitor space in emula­
tion memory must be overlaid with supervisor program
space and supervisor data space.

The emulation monitor is executed in response to a level 7
interrupt. Therefore, it is al ways executed within super­
visor space and must be located in supervisor space. If the
supervisor/user function code bit is not in use, this restric­
tion does not apply.

3. If only program and data function codes are used, the
monitor space in emulation memory must be overlaid with
program and data space.

The emulation software recognizes only program symbols. In the
case of the monitor, the symbol addresses are assumed to be as­
sociated with the SUPR_PROGfunction code (since the monitor
is basically an interrupt routine). Thus, when the host writes con­
trol information to, or reads information from the monitor, it must
use the SUPR_PROG function code.

During monitor execution, the 68020 CPU accesses several of
these same locations using the SUPR_DATA function code. This
requires that the host generated SUPR_PROG, and the monitor
generated SUPR_DATA accesses refer to the same memory loca­
tions. This requires that SUPR_PROG space and
SUPR_DATA space be overlaid in the address range where the
monitor is located. Thisoverlayschemeusesonly 1 of the 15 avail­
able mapping definitions as shown in the following example:

mapfcode SUPR PROGOthru OFFFH emulation RAM
Return -

map overlayfcode SUPR DATA Othru OFFFH RAM over
fcode SUPR PROG 0 Return

Using The Emulator 5-19

Resetting Into The
Monitor

5-20 Using The Emulator

The "reset into monitor" facility of the emulator makes use of in­
ternal jamming circuitry to supply both an initial stack pointer
and an initial program counter to the CPU. These values cor­
respond to the values of monitor symbols SP _TEMP and
RESET_ENTRYrespectively.Jammingfromresetappearsasa
sequence of eight, byte reads. The first four bytes supply the stack
pointer value. The remaining four bytes provide the program
counter information.

Jamming from reset occurs only if the emulator caused the reset
via the "reset" softkey. If the target system asserts the CPU reset
signal, the jamming circuitry is disabled and startup from reset
occurs normally, with stack pointer and program counter values
being supplied from memory system addresses 0-7.

The setting of the initial stack pointer value is critical to proper
system operation. Since SP_ TEMP is only provided as a small
temporary stack for use with the monitor, the stack may be easily
overflowed once a "run from ... 11 command is given, and the target
system program begins execution. Portions of the monitor may be
overwritten if the SP_ TEMP stack overflows.

To ensure proper operation, be sure to either extend the
SP_ TEMP stack to meet target system requirements, or modify
the SP _TEMP value to point to the usual target system stack.
This can be done by including an appropriate "equate" statement
in the monitor, while commenting out the normal SP_ TEMP
label in the monitor.

SP_TEMP EQU <target system stack address>

Another approach is to be certain that software execution as a
result of the "run from ... " command properly initializes the stack
pointers to values appropriate to the target system.

When the emulator is in a reset condition, one of two messages ap­
pears on the emulator status line above the softkeys. If the word
"Reset" appears, the present reset condition occurred as a result
of the emulator. The presence of a lower case "reset" indicates
that the target system is presently asserting the CPU reset sig­
nal. The 68020 emulator can be instructed to enter the emulation
monitor when a "run" command is issued after "Reset" (jamming
only occurs if the reset signal is asserted by the emulator). This
causes the initial program counter and initial stack pointer vector

to be ignored. Instead, the jamming circuitry supplies these
values based on the current location of the monitor.

A possible difficulty exists if the target system performs some
hardware and/or software initializations on reset. If "reset into
monitor" is used, these initializations are not performed before
monitor execution is begun.

Using The Emulator 5-21

Systems With
Memory
Management
Units (MMU's)

5-22 Using The Emulator

MMU's present additional challenges to successfully plugging the
emulator into your target system. Understanding their operation­
al characteristics will enhance your ability to determine the best
approach to your plug-in.

The MC68851 User's Manual provided by the manufacturer in­
cludes good reference material in section 2 that can be applied con­
ceptually to nearly any MMU environment. Section 1 contains a
specific overview of the MMU.

Read the user's manual before attempting to connect the
emulator to a target system with an MMU.

Since emulation memory is connected to the logical bus (as op­
posed to the physical bus), the monitor must be resident in a logi­
cal address range that is otherwise never used.

The emulation monitor must never be swapped out oflogical
space and another program loaded in its place, not even tem­
porarily. If this occurs, the host (thinking that the monitor is still
present) will corrupt certain memory locations causing user
program failure. Thejam circuit, when reacting to a request for a
monitor function, will cause a jump to an address that is not in the
monitor, also resulting in user program failure.

If an operating system is present in the target system, it is normal
to expect that at least part ofit must remain in logical address
space at all times. A good place for the monitor is to include it with
the portions of the operating system that are permanently resi­
dent.

DMA is almost always present in systems with MMU's. On the
physical bus, DMA is used to load programs from disc to main
memory, or to perform swapping between main and secondary
memory. MMU's may need to use the logical bus to perform ad­
dress translation functions, or to suspend CPU operation while
address translation is performed. DMA should generally be
enabled while working with MMU oriented systems.

If translation tables are kept in logical memory (not usually the
case), and if the tables are in emulation memory, DMA must be
enabled to/from emulation memory.

Memory Access
Timing Issues

Access time is the time interval during a 68020 microprocessor
read cycle beginning when the 68020 microprocessor places an ad­
dress on the address bus and ending when valid data is present on
the microprocessor's data pins.

Appendix C contains tables listing timing comparisons between
the MC68020RC12, MC68020RC16, MC68020RC20, and
MC68020RC25 processors and the HP 64410C/D emulator.

For a 25 MHZ 68020 microprocessor running at maximum speed
and with no wait states,

Access Time = 2.5 clocks - specification 6- specification 27

Spec. 6 = Clock High to Address/FC/Size/RMC Valid
= 25 ns. (max),

Spec. 27 = Data-in Valid to Clock Low (Data Setup)
= 5ns. (min),

Cycle Time= 40ns. (min),
Clock Pulse Width = 20 ns. (min).

Therefore:

Access Time (max) = 2(40) ns. + 20 ns.-25 ns.-5 ns. = 70 ns.

For the HP 64410SC/SD 68020 emulation system, the emulator
adds the following delays:

1. Address lines buffered with a 7 4ALS245 = 10 ns. (max)
2. Data lines buffered wiht a 74ALS245 = 10 ns. (max)
3. Cable adds a 5 ns. round trip delay
One wait state at 25 MHz

An easy way to calculate the maximum access time allowed by
the emulator is to use the timing comparison tables provide in ap­
pendix C of this manual. The relevant worst case specifications for
the emulator are as follows:

Spec. 6 = 39 ns. (max)
Spec. 27 = 5 ns. (min)
Cycle Time = 40 ns. (min)
Clock Pulse Width = 20 ns. (min)

Using The Emulator 5·23

Loading An
Absolute File

5-24 Using The Emulator

Therefore:

Access Time (max) = 3(40 ns.) + 20 ns.-39 ns.-15 ns. = 86 ns.

This is better than the 70 ns access time required by the zero-wait
state target memory. However, the target system must be able to
function properly with one wait state added by the emulator.

When an absolute file is generated, it frequently is composed of
various "sections" containing code or data:

0000Hl
0FFFH

1000H

2FFFHf
3000H

3FFFH

CODE

DATA

CODE

Absolute File Test.X

A memory map resembling that shown below might normally be
generated:

Addr. Range Attribute

OOOOH -OFFFH EMUL RAM
1000H -2FFFH EMUL RAM
3000H -3FFFH EMUL RAM

Function Code

SUPR PROG
SU PR-DATA
USER-PROG

default = guarded

Note that upon execution of the following command, a guarded ac­
cess will occur:

load memory Test.X fcode SUPR _ PROG Return

This is due to the fact that the "load" mechanism attempts to load
the entire file using the SUPR_PROGfunction code. In the case
ofTest.X (with the memory map above), address range OOOOH -
OFFFH is mapped to emulation memory when the function code is
SUPR_PROG. The remaining address ranges ofTest.X are ac­
tually mapped to GU ARD ED memory when the function code is
SUPR_PROG. This is because the default is set to GUARDED,
and because there are no mapping definitions for SUPR_PROG
covering the remaining address ranges ofTest.X.

Similar symptoms would be observed with either of the following
commands:

load memory Test.X fcode SUPR DATA
load memory Test.X fcode USER PROG

The "load memory ... "command is defined as a vehicle to "load
all memory areas" present in a given absolute file. (Guarded, as
well as target and emulation memory.)

The "load memory emulation ... "command is used to "load only
areas mapped to emulation memory" ina particular absolute file.

Thus, to properly load Test.X, the following three commands
would be issued:

load memory emulation Test.X fcode SUPR PROG
load memory emulation Test.X fcode SUPR-DATA
load memory emulation Test.X fcode USER_ PROG

The "load memory target ... "command is provided to "load only
areas mapped to target memory" in a given absolute file.

Using The Emulator 5-25

If All Else Fails ...

5·26 Using The Emulator

If the emulator is configured properly, and the target progrnm
and monitor are loaded, unexplained behavior may still exist.
This is frequently due to monitor interaction with the target
software and/or hardware.

In the software category, check that it is appropriate to disable in­
terrupts while in the monitor. Some systems with delta-time-in­
terrupt structures for real-time clocks, operating system func­
tions, etc., will crash if the delta-time-interrupt is not serviced
within a preset time limit. The monitor can be customized to
enable or disable interrupts as required. See the "Continuing Tar­
get System Interrupts While In The Emulation Monitor" section
of chapter 6.

It is possible to "disable" the normal target system function of the
level 7 (NMI) interrupt thru vector table modifications, and a
small amount of additional monitor code.

Ensure that the program being executed is not accidentally over­
writing the monitor or vice versa.

Use of the analyzer to examine software behavior is an effective
means to solve emulation problems.

Obtain a listing of the monitor and the program being executed,
and use the analyzer to verify proper operation of both.

Set the analyzer to trigger on the monitor entry point
(MONITOR_ ENTRY), with the trigger position set to the center
of the trace. This will allow you to examine CPU activity sur­
rounding the monitor entry. Your can observe the stacking ac­
tivity of the level 7 interrupt, as well as emulator generated jam
cycles. This will enable you to determine if the monitor is being in­
itiated properly.

Ensure that the monitor exits and returns to the normal program
properly. Set the analyzer to trigger on the monitor exit point
(EXIT_MON), and observe the unstacking as a result of the RTE
instruction. Be sure that the stack contents have not been cor­
rupted, and that the program returns to the expected location.

Remember that the use of any monitor function will affect the
timing of executing programs, and may be the cause of hardware
and software anomalies.

Using The Emulator 5-27

Notes

5-28 Using The Emulator

6

The Emulation Monitor Program

Overview This chapter:

• Describes the emulation monitor program.

• Provides information on modifying the monitor to use
software breakpoints.

• Provides information for customizing the emulation monitor.

• Describes the emulation monitor memory requirements.

• Describes the emulation monitor linking requirements.

• Provides a flowchart of the emulation monitor program.

See chapter 5, Using the Emulator, and chapter 9, How the
Emulator Works, for additional information about the emulation
monitor and its interactions with the host computer and your tar­
get system.

Emulation Monitor 6-1

Introduction

6-2 Emulation Monitor

The emulation monitor program is the means by which many of
the emulator functions are implemented. Functions implemented
with the emulation monitor are:

• Read/write target memory

• Display/modify 68020 registers

• Display/modify 68881 FPU registers

• Execute user program

• Break from user program by:

- analyzer generated break

- keyboard break

- software breakpoint

- jump from user program

- memory access violation break

• Reset into monitor

• Single step by opcode

A standard emulation monitor source file is supplied with each
emulation system. This file must be assembled and linked by the
user before using. Typically, the emulation monitor is assembled
and then linked with the user program to form one software
module. This module is then loaded into memory. The loaded
monitor program enables emulation system functions to operate
properly.

You can modify the emulation monitor to accommodate a par­
ticular target system or to expand the emulation monitor's
capabilities. Comment delimiters must be removed from some
functions in the monitor before they can function. If you modify
the emulation monitor, the basic communication protocol be­
tween the emulation monitor and the emulation software must be
maintained. A detailed description of the communication protocol
and the standard emulation monitor is given in this chapter. A
flowchart of the standard emulation monitor is also given.

The Break
Function And The
Emulation Monitor

Emulation
Monitor
Description

The Exception Vector
Table

The emulation break circuitry uses the NMI (INTI) resource of
the processor to force the user program to be interrupted and the
emulation monitor to be entered. A break can be generated for an
illegal memory reference, a bus condition that the analysis card
detects, a request by the emulation software, or from the
keyboard.

The emulation monitor is made up of the following major sections:

• the processor exception vector look-up table.

• the entry points into the monitor.

• the emulation command scanner.

• the command execution modules.

Each of these sections is discussed in the following paragraphs.

The emulation monitor is entered through processor exceptions.
The emulation monitor program contains pseudo instructions
that load the vector table with the addresses of the emulation
monitor exception handlers. The emulation monitor exception
table defines 68020 exception vectors for the convenience of the
user.

The emulation monitor program is shipped from the factory with
all of the exception vectors (except RESET and MONITOR
SINGLE STEP) contained in comment fields. This is done to allow
you to supply the addresses for your own exception routines. If you
have not written any exception handlers, you should remove the

Emulation Monitor 6-3

Note

Emulation Monitor
Entry Point Routines

6-4 Emulation Monitor

comment delimiters(*) from those provided in the monitor. This
enables the processor to use the exception vector lookup table
provided with the monitor program.

If the user application has its own RESET handler, the reset vec­
tor in the monitor must be mooified to point to the user reset hand­
ler. Also, the reset-to-monitor function must be disabled. This is
done by modifying the emulation configuration. You must answer
no to the configuration question "Reset into the monitor?". See
chapter 4 for detailed information.

The portion of the monitor defining the exception vector table is
ORGed to OH, and is not relocatable as is the rest of the monitor.
When configuring the emulator, be sure to map the first block of
memory (OH) to supervisor_ data emulation ram. Otherwise, lo­
cate the vector table in ROM in the target system. Refer to the
section in this chapter titled "LOADING THE EMULATION
MONITOR" for a detailed on mapping the emulation monitor
into memory.

The emulation monitor entry point routines provide input hand­
ler routines for the various entry paths. Six separate paths are
defmed for monitor entry. Each path is distinguished from the
others by means of a unique ENTRY _ID code which is stored
upon entry into the monitor. The emulation monitor entrypoint
routines are MONITOR_ ENTRY, SPECIAL_ENTRY,
SWBK_ENTRY,JSR_ENTRY,RESET_ENTRY,andEX­
CEPTION_ENTRY.

Monitor_ entry

MONITOR_ ENTRY is the entry point into the emulation
monitor for breaks from the user's program. On a break to
MONITOR_ ENTRY, the 68020 PC and status register should
be placed on the stack as is normally done when an exception oc-

curs. On entry to the monitor, the processor's registers are saved
and the interrupt mask is restored (if you have modified your
monitor to enable this function). The emulation monitor then ex­
ecutes the command scanner routines.

Special_ entry

SPECIAL_ENTRY is the entry point into the monitor when the
68020 processes either a bus error or an address error exception.
The only difference between this entry and MONITOR_ENTRY
is that the additional words unique to the exception are taken off
the stack and saved in variables.

Swbk_entry

SWBK_ENTRY is the entry point into the emulation monitor
when a software breakpoint (i.e., a BKPT instruction inserted in
your code by the HP 64000-UX system) is processed.

Jsr _entry

JSR_ ENTRY is the entry point into the emulation monitor that
should be used if the user wants to jump directly to the emulation
monitor. If running in supervisor mode, you can use the instruc­
tion "JSR JSR_ENTRY" to jump to the emulation monitor. If the
68020 processor is running in user mode, a trap exception should
be used. The trap vector should point to MONITOR_ENTRY.

Reset_ entry

RESET _ENTRY is the entry point into the emulation monitor
when the 68020 processes the reset exception. RESET_ENTRY
sets up a default stack and sets the processor's registers to default
values.

Exception_ entry

A set of exception entry points are provided to give status mes­
sages for the ten exception vectors after reset. These exception
vectors are provided for the convenience of the user and may be

Emulation Monitor 6-5

Emulation Command
Scanner

Emulation Command
Execution Modules

6-6 Emulation Monitor

deleted or modified. For more information on the exception vector
entry points, see the emulation monitor source program and the
section in this chapter entitled "Modifying The Exception Vector
Table".

The emulation command scanner normally rests in an idle loop
labeled MONITOR_ LOOP. The system global
MONITOR_ CONTROL is repetitively examined. Ifbit 15 is set
to zero, the idle loop is resumed. If bit 15 is set to one, a command
is present and the program branches to the appropriate command
routine.

Bit 15 of MONITOR_ CONTROL is set by the Host and cleared
by the monitor program. The lower byte of MONITOR_ CON­
TROL contains a command number against which the command
table is compared. If a match is found, a command entry point will
be retrieved from the table and the command will be executed. If a
match is not found, the program will return to the idle loop. The
command is considered complete when bit 15 of
MONITOR_CONTROL is set to zero.

The Emulation Monitor command execution modules are
ARE_THERE, EXIT_MON, COPY, COPY_ALT_REG, and
FIX_FPU _CODE.

Are there

ARE_ THERE is used by the host (the HP 64000-UX) to deter­
mine whether the processor is executing in the monitor or in the
target system code. It can also pass an ASCII message to be dis­
played on the host system status line.

Exit mon

EXIT_MON reloads the processor registers from the variables
that they were stored in prior to entering the monitor. The
program will then exit the monitor and return to the target sys­
tem code.

Customizing The
Emulation Monitor

Copy

COPY moves data between the monitor parameter block areas
and target system memory. This command is used to modify and
display target system memory.

Copy_ alt_reg

COPY_ALT_REGreadsfromandwritestocoprocessor
registers.

Fix _fpu _code

FIX_FPU _CODE modifies the FPU instructions in the monitor
FPU _ 881 _COPY routine to access the proper ID_ CODE, as
identified in the emulation configuration session. This is neces­
sary only for the internal FPU.

The emulation monitor supplied with your emulator enables all
emulation features to operate in most systems. Some systems,
however, require modification to the emulation monitor program
in order to maximize the e:ffecti veness of the emulator. For this
reason, the source program for the monitor has been provided and
is thoroughly commented. Within the code, each of the standard
routines has been described to enable you to easily make your
modifications.

Emulation Monitor 6-7

Caution •

Note

6-8 Emulation Monitor

SYSTEM MAY BECOME UNUSABLE. Your customized portion
of the emulation monitor must not exit the monitor
program. Exiting the monitor will cause the entire system to
become unsynchronized and, therefore, unusable.

You should not make any changes to portions of the monitor
other than those described in the following paragraphs.
Changes in other sections of the monitor may cause some fea­
tures to stop working due to modifications on the stack, or
because the information that is passed to and from the
various sections has been affected.

If you have not copied the 68020 emulation monitor source
program to your subdirectory, you should copy it to your sub­
directory before making any modifications. To copy the emula­
tion monitor, execute the following command:

cp /usr/hp64000/monitor/mon_ 68020.s mon _ 68020.s

You must execute the command "chmocl 666" on the file before
you modify it. It is shipped with "read-only" permissions.

You should now modify the copy in your subdirectory.

After modifying the monitor, be sure to reassemble and relink
the monitor program.

Modifying The
Exception Vector

Table.

Find the following program block in the emulation monitor:

ORG 0 ---RESET--­
DC. L SP TEMP
DC.L RESET ENTRY

* ORG 8 ----BUS ERROR---
* DC.L BE ENTRY
* ORG $0C ---ADDRESS ERROR---
* DC.L AE ENTRY
* ORG $10 ---ILLEGAL INSTRUCTION---
* DC.L II ENTRY
* ORG $14 ---ZERO DIVIDE---
* DC.L ZD ENTRY
* ORG $18 - ---CHK INSTRUCTION---
* DC.L CI ENTRY
* ORG $1C ---TRAPV INSTRUCTION---
* DC.L TI ENTRY
* ORG $20 ---PRIVILEGE VIOLATION---
* DC.L PV ENTRY

ORG $24 - MONITOR SINGLE-STEP ENTRY
DC.L MONITOR ENTRY

* ORG $24 ~--TRACE---
* DC.LT ENTRY
* ORG $28 - ---1010 EMULATOR---
* DC.LEA ENTRY
* ORG $2C - ---1111 EMULATOR---
* DC.L FE ENTRY
* ORG $34 - ---CP PROTOCOL VIOLATION---
* DC.L CPV ENTRY
* ORG $38 - --- FORMAT ERROR
* DC.L FT ENTRY
* ORG $3C ---UNINITIALIZED INTERRUPT---
* DC.LUI ENTRY
* ORG $CO ---FPCP UNORDERED CONDITION---
* DC.L FBUC ENTRY
* ORG $C4 ---FPCP INEXACT RESULT---
* DC.L FIR ENTRY
* ORG $C8 - ---FPCP ZERO DIVIDE---
* DC.L FZD ENTRY
* ORG $CC - ---FPCP UNDERFLOW---
* DC.L FU ENTRY
* ORG $DO - ---FPCP OPERAND ERROR---
* DC.L FOE ENTRY
* ORG $D4 ---FPCP OVERFLOW---
* DC.L FO ENTRY
* ORG $08 - ---FPCP SIGNALING NAN---
* DC.L FNAN ENTRY
* ORG $EO - ---PMMU CONFIGURATION---
* DC.L PMC ENTRY
* ORG $E4 - ---PMMU ILLEGAL OPERATION---
* DC.L PMIO ENTRY
* ORG $E8 - ---PMMU ACCESS VIOLATION---
* DC.L PMAV_ENTRY

Emulation Monitor 6-9

ORG 0 ---RESET--­
DC. L SP TEMP
DC.L RESET ENTRY

Now, using your editor, remove the comment delimiters (*) from
the start of each line of code (except the second ORG $24 state­
ment) to make your program look as follows:

ORG 8 ----BUS ERROR---
DC. L BE ENTRY

ORG $0C - ---ADDRESS ERROR---
DC. L AE ENTRY

ORG $10 - ---ILLEGAL INSTRUCTION---
DC. L II ENTRY

ORG $14 - ---ZERO DIVIDE---
DC. L ZD ENTRY

ORG $18 - ---CHK INSTRUCTION---
DC. L CI ENTRY

ORG $1C - ---TRAPV INSTRUCTION---
DC. L TI ENTRY

ORG $20 - ---PRIVILEGE VIOLATION---
DC. L PV ENTRY

ORG $24 - MONITOR SINGLE-STEP ENTRY
DC.L MONITOR ENTRY

* ORG $24 ~--TRACE---
* DC.LT ENTRY

ORG $28 - ---1010 EMULATOR---
DC . L EA ENTRY

ORG $2C - ---1111 EMULATOR---
DC .L FE ENTRY

ORG $34 - ---CP PROTOCOL VIOLATION---
DC. L CPV ENTRY

ORG $38 - --- FORMAT ERROR
DC. L FT ENTRY

ORG $3C - ---UNINITIALIZED INTERRUPT---
DC. LUI ENTRY

ORG $CO - ---FPCP UNORDERED CONDITION---
DC. L FBUC ENTRY

ORG $C4 - ---FPCP INEXACT RESULT---
DC. L FIR ENTRY

ORG $C8 - ---FPCP ZERO DIVIDE---
DC. L FZD ENTRY

ORG $CC - ---FPCP UNDERFLOW---
DC. L FU ENTRY

ORG $DO - ---FPCP OPERAND ERROR---
DC. L FOE ENTRY

ORG $D4 - ---FPCP OVERFLOW---
DC. L FO ENTRY

ORG $D8 - ---FPCP SIGNALING NAN---
DC. L FNAN ENTRY

ORG $EO - ---PMMU CONFIGURATION---
DC. L PMC ENTRY

ORG $E4 - -~-PMMU ILLEGAL OPERATION---
DC. L PMIO ENTRY

ORG $E8 - ---PMMU ACCESS VIOLATION---
DC. L PMAV_ENTRY

6-10 Emulation Monitor

End out of your edit session, making sure that you save your chan­
ges.

By removing the comment delimiters from this section of the
monitor, you have made the exception vector table usable. The
table provides all addresses that the monitor needs to operate.

Continuing Target
System Interrupts

While In The
Emulation Monitor

The processor interrupt mask can be restored to its pre break
value to enable target system interrupts while in the monitor.
You must edit the monitor program if you want to enable the in­
terrupts while running in the emulation monitor.

Under the JUMP _ENTRY label, you will find a commented sec­
tion that describes re-enabling the interrupts.

* * IN ORDER TO KEEP USER INTERRUPTS ENABLED THE FOLLOWING SEGMENT
* WILL RESTORE THE INTERRUPT MASK TO ITS PRE-BREAK STATE.
* * USER INTERRUPT ROUTINES ARE EXPECTED TO PRESERVE ALL REGISTERS
* IF INTERRUPTS ARE TO BE ENABLED WHILE IN THE EMULATION MONITOR.
* ***

BRA
MOVE.W
ORI .W
MOVE.W
ANO.W
MOVE.W

SKIP INT ENABLE ; DEFAULT IS NOT RE-ENABLE INTERRUPTS
PSTATUS,TIO ; GET COPY OF PRE-BREAK STATUS REG.
#$0F8FF,OO ; COVER ALL BITS EXCEPT INTERRUPT
SR,Dl MASK.
01,00
DO,SR RESTORE INTERRUPT MASK.

Comment the instruction "BRA SKIP _INT_ENABLE" to
use the interrupts while in the monitor. Be sure to save your chan­
ges.

Emulation Monitor 6-11

Sending Messages
From the User

Program To the
Emulator Display

6-12-Emulation Monitor

The PUT_MONITOR_MSGroutine in the emulation monitor
gives you a way to send messages to the display status line. In
order to use this feature, you must do the following steps:

1. Define the message in your user code.

2. Set a trap vector to point to the PUT_MONITOR_MSG
routine.

3. Initiate the appropriate trap. This will cause a "message
breakpoint" and leave the processor running in the emula­
tion monitor.

4. If you want to continue execution of your user program,
your program should pop one long word off the stack to
clean up the stack after the trap.

An example program implementing the "message breakpoint" is
shown in figure 6-1.

CHIP 68020

**
* The following program segment demonstrates how to pass a monitor *
* message to the emulator. The user program should jump to FINISH *
* when it has completed, and the message "End of program " will then *
*appear on the emulation STATUS line. *
**

XDEF FINISH ; global declaration

XREF PUT MONITOR MSG ; external declaration
**
* Note that the TRAP vector for TRAP #0 ($80) has been set up in this *
* example program. If this program were to reside in user space, or *
*were not linked to the emulation monitor, you would want to put the *
* TRAP vector in the emulation monitor. *
***********(***

ORG
DC.L

$80
PUT_MONITOR_MSG ; TRAP #0 vector

**
* The following segments are relocatable. *
**

SECT PROG

FINISH PEA MESSAGE push addr of message onto the stack
TRAP #0 trap #0 sends the monitor message,

and leaves us running in the monitor.

TST.L (SP)+ clean up the stack (pop a long word)
LOOP BRA LOOP

**
* Messages MUST be in supervisor/user data space (if function codes *
*are meaningful in your application); usually, this means being in *
* a different section than the code is in. *
**

SECT DATA

MESSAGE DC. B
DC.B

MSG END DC.B

END

MSG END-MESSAGE-1
'End of program '
0

size of message (up to 30 chars)
body of message
NULL terminator

Figure 6-1. Monitor Message Routine

Emulation Monitor 6-13

Emulation
Monitor Memory
Requirements For
The 68020

The memory available in the emulation hardware is divided into
256-byte blocks of address space by the emulation system. Each
256-byte block begins on an even address multiple ofl OOH.

MODULE SUMMARY

MODULE

monitor

The relocatable program area of the emulation monitor requires
approximately 4200 bytes of memory. You can determine this if
you look at the MODULE SUMMARY section of the linker list­
ing file (figure 6-2). You can see, in this example, that the emula­
tion monitor begins at address 20000H and ends at address
21071H. The program takes up OAFS hexadecimal locations of
memory. The value 1071H is approximately 4200 decimal. There­
fore, the emulation monitor can be mapped into 17 256-byte
blocks of memory.

These memory requirements assume that the blocks each start on
a 256-byte boundary and that the standard emulation monitor is
being loaded. To check the memory requirements for the emula­
tion monitor being used, the linker listing file should be checked.

SECTION: START

:00000000

:OOOOOOCO
mon_prog:00020000
mon_data:00020880

SECTION: END

:0000002F

:00000008
mon_prog:0002087D
mon_data:00021071

FILE

/usr/hp64000/env/hp64410
/mon_68020.o

Figure 6-2. Example Mon_ 68020 Listing File

6-14 Emulation Monitor

Linking The
Emulation Monitor

Loading The
Emulation
Monitor

The monitor program must reside in supervisor space in emula­
tion RAM. The monitor must be mapped as overlaid supervisor
program and supervisor data spaces. See the section "Loading
The Emulation Monitor" in this chapter for details.

The emulation monitor must be assembled and linked before it
can be used by the emulation system. It can be linked with the tar­
get system code to produce one absolute file or it can be linked by
itself.

It is possible, using the options to the "load" command, to load the
monitor into emulation memory, then load your target system
code into the target system. You first "load memory emulation
<FILE>" and then "load memory target <FILE>".

The following rules must be followed when loading the emulation
monitor:

1. The emulation monitor must be mapped to emulation
RAM.

Both program and data spaces of the monitor must be
mapped to emulation RAM as opposed to ROM. The
monitor transfer buffer, as well as many monitor
"housekeeping" variables must be read and write acces­
sible, and must therefore be mapped to emulation RA.iVi.

Emulation Monitor 6-15

6·16 Emulation Monitor

In addition, portions of the monitor must write to other
monitor program locations for self configuration to a par­
ticular FPU coprocessor ID. Since writes to emulation
ROM are always blocked, the program section, as well as
the data section, of the monitor must be mapped to emula­
tion RAM.

2. If all function codes are used, the monitor space in emula­
tion memory must be overlaid with supervisor program
space and supervisor data space.

The emulation monitor is executed in response to a level 7
interrupt. Therefore, it is al ways executed within super­
visor space and must be located in supervisor space. If the
supervisor/user function code bit is not in use, this restric­
tion does not apply.

3. If only program and data function codes are used, the
monitor space in emulation memory must be overlaid with
program and data space.

The emulation software recognizes only program symbols. In the
case of the monitor, the symbol addresses are assumed to be as­
sociated with the SUPR_PROGfunction code (since the monitor
is basically an interrupt routine). Thus, when the host writes con­
trol information to, or reads information from the monitor, it must
use the SUPR_PROG function code.

During monitor execution, the 68020 CPU accesses several of
these same locations using the SUPR_DATAfunction code. This
requires that the host generated SUPR_PROG, and the monitor
generated SUPR_DATA accesses refer to the same memory loca­
tions. This requires that SUPR_PROG space and
SUPR_DATA space be overlaid in the address range where the
monitor is located. Thisoverlayschemeusesonly 1 of the 15 avail­
able mapping definitions as shown in the following example:

mapfcode SUPR PROGO thru OFFFH emulation RAM
map overlayfcode SUPR DATA Othru OFFFH RAM over

fcodeSUPR PROGO-

Emulation The emulation monitor flowchart is given in figure 6-3.

Monitor Flowchart

Emulation Monitor 6-17

RESET
EXCEPTION

ENTRY

COPY STACK
POINTER TO A

TEMP. LOCATION

RETURN

USER
ENTRY

YES

TARGET SYSTEM CODE

BREAK
ENTRY

llONITOR_ENTRY

.. OPTIONAL•.,

SOFTWARE
BREAKPOINT

ENTRY

SET SOFTWARE

BREAKPOINT F'l.A<l

EXCEPTION
ENTRY

EXCEPTION_ ENTRY'

TARGET SYSTEM CODE

Figure 6-3. Emulation Monitor Flowchart

6·18 Emulation Monitor

YES

RETURN

MONITOR_ENTRY

CHECK TO SEE

Ir ALREADY

IN MONITOR

OEF'AULT

NO

CLEAR_ SOFTWARE

BREAKPOINT F'LAG

SAVE PROCESSOR

STATUS AND

PROGRAM COUNTER

SAVE ALL REGISTERS

TO "PREGS"

SAVE USER

STACK POINTER

EXCEPTION _ENTRY

LOAD APPROPRIATE

EXCEPTION ENTRY

MESSAGE

}

NOTE:
STACK IS NOW AS IT
WAS BEFORE BREAK

SWBK_ENTRY

SET SOl'TWARE

BREAKPOINT F'LAG

}

USER MAY COMMENT THE DEFAULT
INSTRUCTION "BRA SKIP _PRIV _INST"
TO RE-ENABLE INTERRUPTS
WHILE IN THE MONITOR.
DEFAULT IS TO NOT RE-ENABLE.

~--~-}_o_N_L Y-IF BRANCH IS REMOVED

RETRIEVE

PRE-BREAK STATUS

RESTORE

INTERRUPT MASK

Figure 6-3. Emulation Monitor Flowchart (Cont'd)

Emulation Monitor 6-19

JSR_ENTRY

PUSH STATUS

ONTO STACK

SPECIAL_ENTRY

SAVE EXCEPTION

STATUS

SAVE ACCESS

ADDRESS

SAVE INSTRUCTION

REGISTER

{

ACCESSED ONLY WHEN AN
"ADDRESS ERROR" OR "BUS ERROR"
EXCEPTION OCCURS

Figure 6-3. Emulation Monitor Flowchart (Cont'd)

6-20 Emulation Monitor

NO

RESET_ EN TRY

CLEAR

MONITOR_MESSAGE

SET ENTRY TO ZERO

ANO INCREMENT PRINTER

PUT LEGAL VALUE IN

STACK POINTER REGISTERS

INITIALIZE PROGRAM

COUNTER

CLEAR SOFTWARE

BREAKPOINT FLAG

Figure 6-3. Emulation Monitor Flowchart (Cont'd)

Emulation Monitor 6-21

INCREMENT

POINTER

CLEAR

MONITOR_ CONTROL

MASK COMMAND

NUMBER

LOAD ADDRESS

POINTER TO

COMMAND TABLE

LOOP_ REENTRY

CLEAR MONITOR

CONTROL

GET POINTER

TO ADDRESS

LOAD ADDRESS

JUMP TO
COMMAND

c

YES

{

ARE_ THERE

EXIT_MON

COPY

COPY_ALT_REG

FIX_FPU_CODE

Figure 6-3. Emulation Monitor Flowchart {Cont'd)

6-22 Emulation Monitor

INDICATE

MESSAGE WAITING

STATUS

GET

MESSAGE

ADDRESS

LOAO
MESSAGE

ADDRESS

"COMMAND 0"

ARE_ THERE

TEST F'OR

SOFTWARE

BREAKPOINT

INDICATE

SOFTWARE BREAK

IN

MONITOR CONTROL

"COMMAND 1"

EXIT_MON

LOAD STATUS

REGISTER

CLEAR
MONITOR

MESSAGE

RESTORE:

USER STACK

ANO REGISTERS

SAVE

PROGRAM

COUNTER

SAVE

PROCESSOR

STATUS

CLEAR
COMMAND

NUMBER

TARGET SYSTEM CODE

Figure 6-3. Emulation Monitor Flowchart (Cont'd)

Emulation Monitor 6-23

NO

"COMMANDS 3 & 4"

COPY

GET BYTE_COUNT

AND

MEMORY ADDRESS

GET

2nd MEMORY ADDRESS

MOVE DATA AND

INCREMENT POINTER

DECREMENT

BYTE_ COUNT

BYTE_ COUNT

=0?

{

SOURCE

ADDRESS

{

DESTINATION

ADDRESS

Figure 6-3. Emulation Monitor Flowchart (Cont'd)

6-24 Emulation Monitor

NO

INCREMENT
BIT INDEX

END OF
BIT MAP

?

+ YES

8

"COMMANDS 6 & 7"

(COPY_ALT_REG)

NO

GET BIT INDEXED
INTO COPROCESSOR

ACCESS MAP

BIT

SET
?

YES GET BASE ADDRESS
FOR TABLE OF
COPROCESSOR

ACCESS ROUTINES

ADD IN THE
TABLE OFFSET

LOAD ADDRESS
OF COPROCESSOR
ACCESS ROUTINE

(JUMP TO ROUTINE)

Figure 6-3. Emulation Monitor Flowchart (Cont'd)

Emulation Monitor 6-25

0 YES

"COMMAND 8"

(FIX_FPU_COOE)

GET ADDRESS IN

TABLE OF FPU
INSTRUCTION TO

MODIFY

END ~
OF ~ABLE/

LOAD FPU

INSTRUCTION

MODIFY ITS
COPROCESSOR

IO_COOE

STORE FPU
INSTRUCTION

ADVANCE TABLE

INDEX

Figure 6-3. Emulation Monitor Flowchart (Cont'd)

6-26 Emulation Monitor

7

Using Custom Coprocessors

Overview This chapter provides the following information:

• A discussion of the requirements for using custom coproces­
sors.

• A detailed description of the custom coprocessor format file.

• A detailed description of how to modify the emulation monitor
for use with custom coprocessors.

• A description of the emulation configuration questions related
to custom coprocessors.

Custom Coprocessors 7-1

Introduction

7-2 Custom Coprocessors

The 68020 emulator has the capability to access floating point
coprocessors, memory management units, and other coprocessors
in your target system. You can both display and modify coproces­
sor register sets. A floating point coprocessor (FPU) is provided in
the 68020 emulation pod.

In order to use custom coprocessors with the emulator, you must:

• provide a custom register format file defining the coprocessor
address, size, and name and defining the register display for­
mat.

• modify the emulation monitor program to include a storage
buffer for the coprocessor registers, read/write routines to ac­
cess coprocessor registers, and a pointer to the coprocessor
read/write routines.

• specify the custom register format file to the emulator during
emulation configuration.

A default custom register format file is provided with your emula­
tion software for use with the emulator's internal FPU.
Read/write routines for the internal FPU are provided in the
emulation monitor program. If you are using only the internal
FPU coprocessor, answer "yes" to the emulation configuration
question "Enable Internal 68881 FPU?" and select the default
custom register file. This file is named
/usr/hp64000fmst/emul32/0400/0001/custom _spec.

When the internal FPU is used along with other coprocessors, the
pointer in the emulation monitor to the internal FPU read/write
routines is set up programmatically by the emulation software.

The Custom
Register Format
File

A custom register format file must specify the internal FPU (if
used) and any other coprocessor you want to use with emulation.
This file specifies:

• which coprocessors should be used,

• which coprocessor space the coprocessors should be located in,

• how large the register buffer should be for transfers,

• what the display should look like for each coprocessor,

• and what register names there are for register modifies.

This file is read when the emulation configuration file is
processed. The custom register format specification is fairly
simple. For each coprocessor register set defined in the file, the fol­
lowing items must appear in the order specified:

1 . the coprocessor address

2. the coprocessor size

3. the coprocessor name

4. the display spec

You may place comments in C language format (enclosed by"/*"
and"*/'') or blank lines before or after any register set, as well as
between the specification fields. You can specify C language for­
mat include files using a control line of the form:

#include "filename"
or

#include <filename>

where the register set description could be placed in the include
file. Filename must be the full pathname for the include file.

Using include files simplifies your custom register specification
file and allows you to easily remove a register set from the
specification file, if necessary.

A listing of a sample custom register specification file is shown in
figure 7-1 at the end of this section. Figures 7-2 and 7-3 shows how

Custom Coprocessors 7-3

Address specification

Size Specification

Name Specification

7-4 Custom Coprocessors

the same file could be written using a sample include file and in­
clude command lines.

The address specification is of the form:

ADDR=n

where n is the coprocessor identification code that defines the
coprocessor space. The address must be a number between 0 and
7, inclusive. If two register sets in the format file have the same
address, only the last specified register set is used. The first
register set is ignored. AD DR 0 is reserved for an MMU, if
present. The address specified for the "fpu" coprocessor must
match the internal FPU coprocessor identification code if the in­
ternal FPU is used.

The size specification is of the form:

SIZE=n

where n is the size (in bytes) of the register set transfer buffer. The
transfer buffer is used to transfer the register contents between
the emulation monitor and the host system. This number must be
between 0 and 1020, inclusive.

The coprocessor name specification is of the form:

NAME= "string"

where string is a unique name for the coprocessor. If the name is
not unique, any previous register specs with the same name will
be ignored. The string must only contain alphanumeric charac­
ters. Register set names are available on softkeys during display,
copy, and modify commands. Register set names are also placed
in the header of the register display if the coprocessor set is active
during the display. The name "fpu" is reserved for the internal
FPU, if used.

Register Set Display
Specification

Using the Internal
FPU

The register set display specification is enclosed by two lines as fol­
lows:

DISPLAY_START
<display specification>

DISPLAY_END

The DISPLA Y_START and the DISPLA Y_END lines cannot
have any trailing blanks. Any statements within these lines are
used to generate the register display. These lines also provide in­
formation to the emulator for setting up register names for the
modify command. Register specifications have the form:

NAME %OFFSET.WIDTH

where NAME is the name that the register should be
referenced by during display and modify commands.

OFFSET is the index into the register buffer
(in bytes) to the location of the register contents.

WIDTH is the register width (in bytes).

All other text and white space in the register specification is
presented in the display exactly as specified in the format file.

The internal FPU is a special case of the coprocessor registers.
There must be an entry for it in the coprocessor register format
file if the internal FPU is enabled. This entry must have the
coprocessor name "fpu" and the address must match the coproces­
sor id specified for the internal FPU during configuration.

Custom Coprocessors 7-5

!***/
I* *I
I* COPROCESSOR DISPLAY FORMAT SPECIFICATIONS */
I* *I
!***/

I* This file contains the display format specifications for all coprocessors */
I* conf gured for this system. It will always contain the display spec for*/
I* the nternal 68881 fpu, but may also contain up to 7 other coprocessor */
I* spec fications. */
I* *I
I* The entry below describes the format for the 68881 fpu, and may be used */
I* as an example. There are several pieces of data which MUST be supplied */
I* for each specification: */
I* *I
I* ADDR=n, where n is in the range 0-7. This is the coprocessor id-code *I
I* for the current entry. Please note that ADDR=O is reserved for*/
I* an MMU (if present}, and that all ADDR designations should */
I* appear only once in this file. */
I* *I
I* SIZE=n, where O < n < 1020 bytes. SIZE describes the number of bytes *I
I* in the monitor register buffer the user has defined for this */
I* coprocessor. */
I* *I
I* NAME="string", where "string" is the UNIQUE name of the current*/
I* coprocessor. The name is made up of alphanumeric characters */
I* only. This name will show up on a softkey when */
I* attempting to display/modify registers within emulation. *I
I* *I
I* DISPLAY_START marks the start of the display format spec for the */
I* current coprocessor. */
I* *I
I* DISPLAY_END marks the end of the display spec, and also the end *I
I* of the information for the current coprocessor. A new speci- */
I* fication may follow each DISPLAY_END. */
I* *I
I* Within the bounds of DISPLAY START and DISPLAY END is the information */
I* needed to generate the display for each coprocessor. Each register */
I* description contains a name field and a register format field. The format *I
I* field is in the form: */
I* *I
I* %0FFSET.WIDTHr, where OFFSET is the index into the register buffer*/
I* defined in the monitor (in bytes), and WIDTH is the width of *I
I* the register (also in bytes). All other text, white space, *I
I* etc, are preserved in the display. */

Figure 7-1. Sample Custom Register Specification File

7-6 Custom Coprocessors

/************************************/
I* *I
I* INTERNAL 68881 FPU SPECIFICATION */
I* *I
/************************************!

ADDR=l
SIZE=108
NAME="fpu"

I* the fpu id-code (special: set by configuration) */
I* number of bytes in the fpu register buffer */
I* name of the fpu coprocessor (do not change) */

DISPLAY START
FP0-%00.12r
FP2 %24.12r
FP4 %48.12r
FP6 %72.12r

DISPLAY_END

FP1 %12.12r FPCR %96.4r
FP3 %36.12r FPSR %100.4r
FP5 %60.12r FPIAR %104.4r
FP7 %84.12r

I* Other custom coprocessor display formats follow ... *I

Figure 7-1. Sample Custom Register Spec. File (Cont'd)

!************************************!
!* *I
I* INTERNAL 68881 FPU SPECIFICATION */
I* *I
/************************************/
ADDR=l /* the fpu id-code (special: set by configuration) */
SIZE=108 /* number of bytes in the fpu register buffer */
NAME="fpu" /* name of the fpu coprocessor (do not change) */

DISPLAY START
FP0-%00.12r
FP2 %24.12r
FP4 %48. 12 r
FP6 %72.12r

DISPLAY_END

FP1 %12.12r FPCR %96.4r
FP3 %36.12r FPSR %100.4r
FP5 %60.12r FPIAR %104.4r
FP7 %84.12r

Figure 7-2. Custom Reg. Spec. Include File fpu _spec

Custom Coprocessors 7-7

!***!
I* COPROCESSOR DISPLAY FORMAT SPECIFICATIONS */
I* *I
!***!

I* This file contains the display format specifications for all coprocessors */
I* conf gured for this system. It will always contain the display spec for */
I* the nternal 68881 fpu, but may also contain up to 7 other coprocessor */
I* spec fications. */
I* *I
I* The entry below describes the format for the 68881 fpu, and may be used */
I* as an example. There are several pieces of data which MUST be supplied */
I* for each specification: */
I* *I
I* ADDR=n, where n is in the range 0-7. This is the coprocessor id-code*/
I* for the current entry. Please note that ADDR=O is reserved for */
I* an MMU (if present), and that all ADDR designations should */
I* appear only once in this file. */
I* *I
I* SIZE=n, where O < n < 1020 bytes. SIZE describes the number of bytes *I
I* in the monitor register buffer the user has defined for this */
I* coprocessor. *I
I* *I
I* NAME="string", where "string" is the UNIQUE name of the current*/
I* coprocessor. The name is made up of alphanumeric characters */
I* only. This name will show up on a softkey when */
I* attempting to display/modify registers within emulation. */
I* *I
I* DISPLAY_START marks the start of the display format spec for the */
I* current coprocessor. */
I* *I
I* DISPLAY_END marks the end of the display spec, and also the end */
I* of the information for the current coprocessor. A new speci- *I
I* fication may follow each DISPLAY_END. */
I* *I
I* *I
I* Within the bounds of DISPLAY START and DISPLAY END is the information */
I* needed to generate the display for each coprocessor. Each register */
I* description contains a name field and a register format field. The format */
I* field is in the form: */
I* *I
I* %0FFSET.WIDTHr, where OFFSET is the index into the register buffer*/
I* defined in the monitor (in bytes), and WIDTH is the width of *I
I* the register (also in bytes). All other text, white space, */
I* etc, are preserved in the display. */

#include "/users/em68020/custom_spec/fpu_spec"
#include "/users/em68020/custom_spec/mmu_spec"

Figure 7-3. Custom Reg. Spec. File Using Include Files

7-8 Custom Coprocessors

Emulation
Monitor Changes

Defining a
Coprocessor Register

Buffer

In order to access coprocessor register sets, you must make some
minor changes to the emulation monitor. You must declare a
register buffer for storing the coprocessor register values, modify
two table entries, and provide register buffer read/write routines
for each coprocessor register set that the emulation monitor will
access.

A coprocessor register buffer must be allocated in the emulation
monitor for each custom coprocessor you use with the emulator.
The emulator uses this buffer for storing register values read from
or written to the custom coprocessor. A buffer
(FPU _881_REGS) for the internal FPU is provided with the
emulation monitor program. This buffer is declared in the emula­
tion monitor as follows:

FPU 881 REGS
FP 0 7 -
FPCRT
FPS RT
FPIART
FPU_881 END

DS.L
DC.L
DC.L
DC.L

24
0
0
0

Locate this declaration in the emulation monitor program and in­
sert your custom coprocessor register buff er declarations im­
mediately following it in the emulation monitor. For example, if
you are using an MC68851 Memory Management Unit in your
target system, you might add the following register buffer declara­
tion:

MMU 851 REGS
MMUCPR -
MMUDMA
MMUSRP
MMUTC
MMUPCSR
MMUPSR
MMUCAL
MMUVAL
MMUSCC
MMUAC
MMUBDO 7
MMUBC0-7
MMU_85T_END

DS.L
DS.L
DS.L
DC.L
DC.W
DC.W
DC.B
DC.B
DC.B
DC.W
DC.L
DC.L

2
2
2
0
0
0
0
0
0
0
4
4

Custom Coprocessors 7-9

Modifying The
MON_ALT_BUFFER

Table

7-10 Custom Coprocessors

After declaring your register buffers, you need to modify the
MON_ALT_BUFFER table. This table has entries labeled
"COPROC _ REG_n", where n is the coprocessor identification
number. The coprocessor identification numbers specified in the
format file must have their corresponding table entry set to point
to a buffer that will be used to transfer the register data to and
from the monitor. These are the buffers that you declared in the
previous section. The default MON_ALT_BUFFER table
provided with your emulation monitor is shown in the following
listing:

MON_ ALT _BUFFER

COPROC REG 0 DC.L 0
COPROCREG-1 DC.L 0
COPROCREG-2 DC.L 0
COPROCREG-3 DC.L 0
COPROCREG-4 DC.L 0
COPROCREG-5 DC.L 0
COPROCREG-6 DC.L 0
COPROCREG=7 DC.L 0

For example, if you want to an MMU in your target system, you
might want to modify the the MON _ALT _BUFFER table as
follows:

MON_ALT_BUFFER

DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L

MMU 851 REGS
0 - -
0
0
0
0
0
0

Note that the MMU coprocessor should be assigned identification
numberO.

Modifying The
MON_AL T_REGISTER

S Table

Writing Coprocessor
Copy Routines

The second table you must change is under the symbol
"MON_ALT_REGISTERS". This table has entries labeled
"COPROC _LOAD _n", where n is the coprocessor identification
number. These entries p0int to a coprocessor's read/write routine.
A read/write routine (FPU _ 881 _COPY) is provided in the
emulation monitor for use with the internal FPU. The default
MON_ALT_REGISTERS table provided with your emulation
monitor is shown in the following listing:

MON_ALT_REGISTERS

COPROC LOAD 0
COPROCLOAD-1
COPROCLOAD-2
COPROCLOAD-3
COPROCLOAD-4
COPROCLOAD-5
COPROCLOAD-6
COPROC::JOAD::::7

DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L

0
0
0
0
0
0
0
0

If you want to use an MMU in your target system as in the pre­
vious example, you would modify the the MON _ALT _BUFF­
ER table as follows:

MON_ALT_REGISTERS

DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L

MMU 851 COPY
0 - -
0
0
0
0
0
0

where MMU _851_COPY is the copy routine you have written
for your MMU registers.

The coprocessor copy routine must both read from and write to the
coprocessor registers. If the emulation monitor symbol
"MON_ COMMAND" contains the value "6", then the routine
should perform a read into the register data buffer specified
above. If the symbol = 7, the routine should write the register set
using the values in the register data buff er.

The internal FPU read/write routine (FPU _881 _COPY) is
shown in the following listing. For the example given in the pre-

Custom Coprocessors 7-11

vious section, you would need to write a copy routine for your
MMU labeled MMU 851 COPY. The internal FPU copy
routine provides you with a good example of how to write your
copy routine.

* * FPU 881 COPY IS A SYSTEM GLOBAL ROUTINE THAT TRANSFERS THE FPU
* REGISTERS TO/FROM THE FPU 881 REGS DATA AREA. IT IS ALWAYS
* PRESENT SINCE THE INTERNAL 881 FPU REQUIRES IT.
* * FPU 881 COPY MAY BE USED AS AN EXAMPLE LOAD/UNLOAD ROUTINE FOR
* OTHER COPROCESSORS.
*

FPU_881_COPY
* * FOR COPROCESSOR LOAD/UNLOAD ROUTINES THE VARIABLE MON COMMAND
* WILL CONTAIN A '6' TO INDICATE A READ REGS COMMAND, OR A '7'
* FOR A WRITE REGS COMMAND. -
* CMPI.L
BEQ

#6,MON COMMAND
FPU_88T_READ

IS THIS A READ ALT REGS COMMAND?
YES, GO DO THE-READ

FPU 881 WRITE * - -
* LOCAL COPY OF FPU DATA --> FPU
*

FPU 881 REGS.AO
FSAVE - -(SP)
FMOVEM.X (AO)+,FPO-FP7
FMOVEM.L (AO)+,FPCR/FPSR/FPIAR
FRESTORE (SP)+

LOOP_REENTRY

FPU_881_READ
*
*
*

FPU --> LOCAL COPY OF FPU DATA
LEA FPU 881 END,AO
FSAVE -(SP) -
FMOVEM.L FPCR/FPSR/FPIAR,-(AO)
FMOVEM.X FPO-FP7,-(AO)
FRESTORE (SP)+

LOOP _REENTRY

GET PTR TO THE FPU REG DATA
; SAVE FPU CONTEXT
; WRITE OUT THE FPU DATA REGS
; WRITE OUT THE FPU CONTROL REGS
; RESTORE FPU CONTEXT

RETURN TO MONITOR CMD LOOP

GET PTR TO END OF FPU DATA
SAVE FPU CONTEXT
READ THE FPU CONTROL REGS
READ THE FPU DATA REGISTERS

; RESTORE FPU CONTEXT
RETURN TO MONITOR CMD LOOP

*
*
*
*
*
*
*

CUSTOM COPROCESSOR REGISTER LOAD/UNLOAD ROUTINES (IF ANY) SHOULD
BE INSERTED INTO THE MONITOR HERE. PLEASE NOTE THAT THE DEFAULT
COPROCESSOR ID FOR THE ASSEMBLER IS 1. IN ORDER FOR THE ASSEMBLER
TO GENERATE THE CORRECT CODE FOR OTHER IDs, THE ASSEMBLER FLAG
"FOPT ID=n", n=l-7, SHOULD BE USED APPROPRIATELY.

7-12 Custom Coprocessors

Answering
Emulation
Coprocessor
Configuration
Questions

After modifying the emulation monitor, you must reassemble the
emulation monitor and relink your emulation monitor with your
user file.

The final step in setting up your 68020 emulator to use custom
coprocessors is to answer the emulation configuration questions
relating to custom coprocessors. In the default emulation con­
figuration, you will be asked the question:

Enableintemal68881 FPU?

If you answer yes, you can use both the internal FPU and other
coprocessors during the emulation session. The emulator will
prompt you for the coprocessor identification number you want to
use for the FPU.

If you are using only the internal FPU, you do not need to make
any modifications to the default custom register file or to the
emulation monitor.

If you answer no, the next question the emulator asks is:

Any custom coprocessors?

Answer yes to enable use of custom coprocessors.

If you answered "yes" to either of the above questions, the next
question will be:

Name of custom register format file?

Enter the full pathname of your custom register format file.

Complete the remainder of the emulation configuration questions
and save your changes to a configuration file. You are now ready
to run emulation using custom coprocessors.

A complete and detailed description of the emulation configura­
tion questions is given in chapter 4.

Custom Coprocessors 7-13

Notes

7-14 Custom Coprocessors

8

Using Simulated 1/0 And· Simulated lnterrrupts

Configuring
Simulated 1/0

The simulated I/O subsystem must be set up by answering a
series of configuration questions. Your answers to these questions
enable simulated I/O, set the control addresses, and define files
used for standard I/O.

Detailed information on using simulated I/O with the emulator is
provided in the HP 64000-UX Simufuted 110 Reference Manual.

Modify simulated 1/0 configuration? yes (no)

no Answering no causes the simulated I/O
questions to be skipped. The current simu­
lated I/O configuration is not modified.

yes Answering yes enables you to modify the
simulated I/O configuration. The follow­
ing questions are asked.

Enable polling for simulated 1/0? no (yes)

no Prevents the emulation software from .
reading the control address for simulated
IJO commands. Answering no to this ques­
tion enables you to disable simulated I/O
while maintaining the current simulated
IJO configuration. Later, when you need to
enable simulated I/O, you can do so
without having to re-enter control addres­
ses or the file names for standard input,
standard output, and standard error out-

Simulated 1/0 & Interrupts 8-1

8·2 Simulated 1/0 & Interrupts

yes

put. Answering no also causes the remain­
ing simulated I/O questions to be skipped.

Causes the emulation software to fre­
quently read the control address to deter­
mine if the user program has requested
any simulated I/O commands. Answering
yes causes the following questions to be
asked.

Function code data space? none (SUP _DATA)
(USR_DATA)

This question asks you to specify the data space where the simio
control addresses are located.

If during memory configuration, you specified modify
defined codes none, you should use the default answer (none)
here. -

If you specified modify defined codes all, you should select
SUP_ DATA or USR _DATA as appropriate for your system.

If you specified modify defined codes prog data, you
should select USR DATA. - -

Sirnio control address 1? SIMIO CA ONE (<Addr>)
Sirnio control address Z! SIMIO-CA -TWO (<Addr >)
Sirnio control address 3? SIMIO-CA -THREE (<Addr >)
Sirnio control address 4? SIMIO-CA -FOUR (<Addr >)
Sirnio control address 5? SIMIO-CA -FIVE (<Addr >)
Sirnio control address 6? SIMIO-CA -SIX (<Addr >) - -
The symbol SIMIO _CA_ ONE is the default symbol associated
with the first simulated I/O Control Address. The default symbol
may be replaced with any valid symbol or an absolute address. If a
symbol is specified, polling of that control address will not begin
until a file containing that symbol is loaded. If an absolute address
is specified, polling of that address will begin immediately.

The control address must be loaded into memory space assigned
as RAM. User programs will run faster if the control address is lo­
cated in emulation memory. Using target RAM causes the
emulator to break into the monitor program every time the con­
trol address is polled for simulated I/O commands or data.

Restrictions On
Simulated 1/0

The following questions relate to the files associated with the
three reserved file names "st.din", "stdout", and "stderr".

File used for standard in put? /dev/simiolkeyboard (< F1LE >)
File used for standard output? /dev/simio/display (<FILE>)
File used for standard eITOr? /dev/simio/display (<FILE>)

The default answers for these questions are
"/dev/simio/keyboard", "/dev/simio/display", and "/dev/simio/dis­
play" respectively.

These files are not opened until Open (90H) is called with the file
names "st.din", "stdout", and "stderr". These files are provided to
allow easy redirection of input and output from the keyboard or
display to a file or device without modifying the user program.
(The compiler standard I/O libraries may open some or all of these
reserved files automatically if simulated 1/0 is used. For more
details, seethe documentation on the simulated I/O libraries for
the compiler you are using.)

The two restrictions on the use of simulated I/Oare:

• There is a limit of 12 open files at any one time.

• There can only be four active simulated I/O processes at any
one time.

Since any simulated 1/0 file that is opened is associated with a file
descriptor, opened files are independent of the control address.Up
to 12 files can be opened with a single control address (CA). A total
of six control addresses are allowed so that you can execute simu­
lated 1/0 commands concurrently. Remember, a maximum of 12
simulated 1/0 files (between the six control addresses) may be
open at any one time.

Simulated 1/0 & Interrupts 8-3

Simulated
Interrupts

How Does A
Simulated Interrupt

Function?

8-4 Simulated 1/0 & Interrupts

Simulated interrupts enable you to test software which depends
upon the occurrence of preemptive interrupts using out-of-circuit
emulation. The simulated interrupt facility is enabled by writing
a value of Ofih to the simulated interrupt control address. The con­
trol address is defmed during the emulation configuration ses­
sion. The simulated interrupt facility, when enabled, generates
approximately six interrupts per second, depending on what other
emulation activities are occurring concurrently, i.e., simulated
IJO and display updates.

The simulated interrupt facility can be used to test applications
such as a preemptive scheduler in a multitasking system or inter­
rupt driven I/O. Interrupt driven I/O can be simulated by execut­
ing simulated I/O commands when a simulated interrupt occurs.

An interrupt is a request by an external device that causes the
processor to temporarily suspend normal execution in order to
service the interrupting device. Normal execution resumes after
the device has been serviced. Interrupts are asynchronous to nor­
mal execution. To simulate this action out of circuit, the emula­
tion software running on the host system acts as the external
device requesting service.

There are only two ways that the emulation software can inter­
rupt the emulator. The first is to reset the processor in the
emulator. Since a reset causes the current instruction counter to
be lost, continuation of program execution is not possible. There­
fore, reset is not usable for simulated interrupts. The second way
to interrupt the emulator is to break to the foreground monitor.
This is the method used to implement simulated interrupts.
Therefore, the emulation monitor must be loaded in order to use
simulated interrupts.

The simulated interrupt begins when a value of Oflh is written
into the simulated interrupt control address. The emulation
software polls this address just as it polls simulated I/O control ad­
dresses. When emulation finds the value Ofih at the simulated in­
terrupt control address, it causes a break to the emulation
monitor. The emulation monitor saves all registers as a normal

Note

part of the monitor entry sequence. The emulation monitor then
loops, waiting for a command. The emulation software then sends
a simulated interrupt command to the emulation monitor. The
simulated interrupt command is a user defined command. The
emulation monitor supplied with the emulator contains only a
stub which immediately indicates completion.

You must modify this command to perform whatever action is re­
quired when an interrupt occurs. A typical action is a TRAP in­
struction which vectors to your interrupt handler. See the ex­
ample program given in figure 8-1. This feature is not available
without modifying the monitor. For information on modifying
the monitor for simulated interrupts, refer to the section of this
chapter entitled "Modifying the Monitor to Use Simulated Inter­
rupts".

Finally, emulation sends the exit monitor command to the emula­
tion monitor. The exit monitor command restores the registers
that were saved upon entry to the monitor which causes execution
to continue at the point where it was interrupted.

Simulated 1/0 & Interrupts 8-5

* This is a simulated interrupt test program. The vector for
* TRAP #14 is pointed to INT_HANDLER. The SIM_INTERRUPT command
* of the monitor must be modified to execute a TRAP #14. Notice
* that the SMIINT_CA is enabled, then a delay loop is executed,
* then SIMINT CA is disabled. INT HANDLER increments the location
*COUNTER to provide a count of the number of interrupts tha occurred.
* NOTE
* Simulated interrupts must be enabled in the emulator configuration
* and the control address must be set to SIMINT CA. To observe the
* number of interrupts occuring, use the follow1ng command:
*

*
*
*
*
*
*
*
*
*
*
* * display memory COUNTER thru COUNTER+7 blocked long repetitively *

**

SIMINT_CA

COUNTER

START

LOOP

END1

INT_HANDLER

CHIP 68020

XDEF START,END1,INT HANDLER
XDEF LOOP,SIMINT_CA~COUNTER

SECTION INTR_DATA

DC. L

DC.L

ORG
DC. L

0

0

038H
INT_HANDLER

SECTION INTR_PROG

MOVE.L

MOVE.B
MOVE.L
SUBQ.L
BNE
MOVE.B
BRA.B

ADDQ.L
RTE
END START

#0 ,COUNTER

#OFFH,SIMINT CA
#OFFFFFFFH,DO
#1,DO
LOOP
#0,SIMINT CA
END1 -

#1,COUNTER

;Set up a memory location to
, be the control address.
;Set up a memory location that
; the program writes to.

; TRAP #14
;Notice that the address of the

interrupt handler routine is
; contained in the vector address
; for a TRAP #14.

;Clear the contents of the counter
, address.
;Enable simulated interrupts.
;Set up a delay counter value.
;Delay for a while.

;Disable simulated interrupts now.
;Continuous loop.

;This is the interrupt handler
, routine.
;Increment the contents of COUNTER.
;Return from exception.
;Define the transfer address so that

you may run or step from
transfer_address.

Figure 8-1. Simulated Interrupt Test Program

8-6 Simulated 1/0 & Interrupts

Simulated Interrupts
Versus Real Interrupts

Simulated Interrupt
Configuration

There are some important differences between simulated inter­
rupts and real interrupts. A simulated interrupt handler must
return within a fixed amount of time. Part of the simulated inter­
rupt configuration is the specification of the maximum amount of
time that emulation should wait for an interrupt handler to com­
plete execution. If the interrupt handler does not complete within
the specified time, emulation forces a break to the monitor and
reports a failure to terminate. It is not possible to wait for simu­
lated I/Oto complete an interrupt handler.

While the emulation software may appear to be doing several
things concurrently, e.g., polling up to six simulated I/O control
addresses, polling a simulated interrupt control address, and up­
dating a display, it is in fact only a single HP-UX task performing
each of these emulation tasks sequentially. This means that the
simulated interrupt must complete before any of the other tasks
can begin. That is a motivation for limiting the execution of a
simulated interrupt handler to a very short period.

If the handler is permitted to execute for an indefinite period of
time, it is possible for the entire emulation program to be 'locked
up' by an interrupt handler that is waiting for an event that never
occurs.

The final difference between simulated interrupts and real inter­
rupts is that it is not possible for a simulated interrupt to occur
while a simulated interrupt is being handled or while the
emulator is executing in the monitor.

The simulated interrupt facility is not available in real time
mode. If real time mode is enabled, the simulated interrupt con­
figuration questions are not asked. When real-time mode is not
enabled, the command line displays the following question:

Modify simulated interrupt configuration? no (yes)

Press Return for the default (no) response.

Press yes Return to modify the simulated interrupt configura­
tion.

Simulated 1/0 & Interrupts 8-7

8-8 Simulated 110 & Interrupts

If you answer yes, the simulated interrupt questions will be
asked. If you answer no, the questions will be skipped. The first
question is:

Enable polling for simulated interrupts? no (yes)

no

yes

if no is selected, emulation does not poll a
simulated interrupt control address and
never causes a simulated interrupt to
occur.

if yes is entered, the configuration ques­
tions are asked:

Function code data space ?none (SUP _DATA) (USR_DAT.A

This question asks you to specify the data space where the simu­
lated interrupt control address is located.

If during memory configuration, you specified modify
defined codes none, you should use the default answer (none)
here. -

If you specified modify defined codes all, you should select
SUP_ DATA or USR _DATA as appropriate for your system.

If you specified modify defined codes prog data, you
should select USR DATA. - -

Simulatedinterruptcontrolacldress?SIMINT _CA(<Addr)

Enter the value of the simulated control address in response to
this question. The value may be a symbolic value or a numeric
value. The default is the symbolic value SIMINT_CA.

If you are not linking the emulation monitor program with your
target system program, you must be careful when using a sym­
bolic control address such as SIMINT _CA.

The monitor program will store the location of the control address
each time that it executes. If you modify your program, and then
reload the program without loading the monitor, there is a chance
that the symbolic control address will have changed. The monitor
program will not recognize a change unless you reload it.

If you do not reload the monitor each time that you load the target
system program, you must ORG the control address to a specific
location. If you ORG the address, make sure that you modify the

"Simulated interrupt control address" configuration question
to point to the new address.

Another solution is to link the monitorprogram with your
program. This causes the monitor to recognize any new address
because it loads with your program.

A similar consideration occurs if you modify the control address
configuration question. If you are running your program, and
then modify the configuration, you must reload your program
(and the monitor). Otherwise, the system software does not recog­
nize the new control address and may write to an unknown ad­
dress.

Maximum delay (in milliseconds) for simulateclint.errupt? 25
(<NlJMB>)

The final simulated interrupt configuration question requests the
time, in milliseconds, to allow a simulated interrupt handler to ex­
ecute before assuming that execution of the handler has failed
and generates a break to the monitor.

The default time is 25 milliseconds. The default time is ap­
proximately equal to the time required to initiate a simulated in­
terrupt and check for its completion on an HP 9000. Even though
the resolution of this specification is one millisecond, because of
the time that is required to check for completion, the effective
resolution is approximately 15 milliseconds. For example, chang­
ing the maximum delay from 25 milliseconds to 26 milliseconds
probably has no effect on execution. Emulation does not always
wait for the maximum delay to pass. If the interrupt handler com­
pletes any time before the maximum delay time, emulation forces
an immediate return to the interrupted code.

The input to this question is limited to the range of 1 through
10000. Therefore, the maximum delay is 10 seconds. This upper
limit was chosen to prevent 'locking up' emulation by an interrupt
handler that fails to terminate.

If the user's interrupt handler routine exceeds the maximum
delay allowed, the following error message appears on the status
line: "ERROR: Simulat.edinterruptfailecl to complete".

Simulated 1/0 & Interrupts 8-9

Modifying The
Monitor To Use
Simulated
Interrupts

The user defined simulated interrupt function allows you to im­
plement interrupt driven code on an emulator which is out of cir­
cuit. This command will typically cause a branch to your inter­
rupt handler by means of a TRAP instruction. This command
must set the boolean variable SIM_INTS _ENABLED to TRUE
and copy the control address to SIM_INT _CA so that the
monitor can disable simulated interrupts on entry. If simulated
interrupts are not disabled on entry to the monitor, the break
softkey will not function.

The monitor program must be modified before you can use the
simulated interrupt feature. Find the following block of code
shown in figure 8-2 in the monitor program.

The TRAP #14 instruction will cause the interrupt routine to be
serviced. You must uncomment the instruction or ,if you wish to
use a different instruction, you must provide the instruction in the
same area of the monitor as the TRAP# 14 instruction. If you use
another TRAP or different instruction, you must be sure that the
routine will be found by the monitor. For example, if you use the
TRAP #14 instruction, you must make sure that the address in­
formation for your exception routine is in the vector table at ad­
dress 038h.

When you are finished editing the emulation monitor, be sure to
save your changes. It will be necessary to re-assemble and relink
the monitor in order to use the simulated interrupts feature.

8-10 Simulated 1/0 & Interrupts

* * COMMAND 9 ... USER DEFINED SIMULATED INTERRUPT FUNCTION
* * THE USER DEFINED SIMULATED INTERRUPT FUNCTION ALLOWS THE USER TO
* IMPLEMENT INTERRUPT DRIVEN CODE ON AN EMULATOR WHICH IS OUT OF
* CIRCUIT. THIS COMMAND WILL TYPICALLY CAUSE A BRANCH TO THE USERS
* INTERRUPT HANDLER VIA A TRAP INSTRUCTION. THIS COMMAND MUST SET
* THE BOOLEAN SIM INTS ENABLED TO TRUE AND COPY THE CONTROL ADDRESS
* TO SIM INT CA SO THE-MONITOR CAN DISABLE SIMULATED INTERRUPTS ON
* ENTRY.- IF-SIMULATED INTERRUPTS ARE NOT DISABLED ON ENTRY TO THE
* MONITOR, THE break SOFTKEY WILL NOT WORK.
* * THE 64000 WILL SET UP MONITOR CMD BUF; SCR ADDR TO Simulated
* interrupt control address and issue COMMAND 8009H.
* * WHEN THE COMMAND IS COMPLETE, THE 64000 EXPECTS THE PROCESSOR
* TO BE IN MONITOR.
* SIM_INTERRUPT

* A NON-ZERO VALUE INDICATES THAT SIMULATED INTERRUPTS ARE ENABLED
MOVE.B #OFFH,SIM_INTS_ENABLED

* STORE OFFH AT SIM INT CONTENTS TO KEEP SIMULATED INTERRUPTS ENABLED
MOVE.B #OFFH~SIM=INT_CONTENTS

* STORE THE INTERRUPT CONTROL ADDRESS THAT WAS PASSED BY THE 64000
MOVE.L SRC ADDR,DO
MOVE.L DO,SIM_INT_CA

* INSTRUCTIONS TO BRANCH TO THE USERS INTERRUPT HANDLER GO HERE
* THIS WILL TYPICALLY BE A TRAP INSTRUCTION.

* TRAP #14

JMP LOOP_REENTRY

Simulated 1/0 & Interrupts 8-11

Notes

8-12 Simulated 1/0 & Interrupts

How The Emulator Works

Overview This chapter describes how the following emulator functions
work:

• The are_you_there monitor function

• The run command

• Software breakpoints

• Single Stepping

• Target memory transfers

• Displaying target memory

• Copying from target memory

• Modifying target memory

• Copying to target memory

• Displaying CPU registers

• Modifying CPU registers

9

How Emulation Works 9-1

Introduction

9-2 How Emulation Works

The information provided in this chapter will give you a better un­
derstanding of how the emulator works and how the emulator in­
teracts with your target system. This information, along with the
information provided in chapter 5, UsingtheEmulator, should
help you use the emulator more effectively and avoid problems
that can occur when the emulator is used with a target system (in­
circuit emulation mode).

Are You There
Function?

The "are__you_there" monitor function is the means by which
the host computer determines whether or not the 68020 CPU is
executing the monitor at a particular time. It is used primarily to
display the "rururing" and "running in monitor" status line mes­
sages.

It also performs the important function of checking to see that a
break request (level 7 interrupt) resulted in a successful entry to
the monitor. The host computer issues break requests for all
emulation functions requiring the use of the monitor. If the break
fails, the host computer is unable to complete the user specified
command, and issues a "cannot break into monitor" message.

The following algorithm describes how the are you there
function works. - -

1. The host computer writes the value 8000h (bit 15 = 1) to
the emulation memory location MONITOR_ CONTROL.

2. If the emulation monitor is executing, and has completed a
previous command, it executes an idle loop. In the idle loop,
the monitor is waiting for a user command or for the host to
make an "exit monitor" request.

If the idle loop is executing and MONITOR CONTROL
is set to 8000h by the host, the monitor responds by clear­
ing bit 15 (MONITOR CONTROL = 0), and returning
to the idle loop. -

If the 68020 CPU is executing in the user program, bit 15 is
not cleared, leaving MONITOR CONTROL set to
8000h. -

3. The host computer reads emulation memory location
MONITOR CONTROL.

Ifbit 15ofMONITOR CONTROL= 0, the monitor is executing.
Ifbit15ofMONITOR CONTROL= 1, theuserprogramisexecut­
ing.

How Emulation Works 9-3

The Run Command

Run From Command

9-4 How Emulation Works

The run command starts execution of your user program. The
command allows you to run from a specified address, run until a
specified address is executed, or run from a start address until a
specified address. The following algorithms describe how the run
command is implemented.

When you execute the command "run from {SUPER-
VISOR STATE I USER STATE} <address>", thefollow­
ingalgorithmisexecuted. -

1. The host computer initiates a break to the monitor (level 7
interrupt).

2. The host verifies that the 68020 CPU is executing in the
emulation monitor. If the monitor is not executing, the
error message "cannot break into monitor" is displayed.

3. The host modifies the monitor copy of the return address
obtained on entry to the monitor from the level 7 interrupt.
It sets the return address to the value specified in the run
command.

4. The host modifies the monitor copy of the CPU status
register obtained on entry to the monitor from the level 7
interrupt.

a. If the command specifies "SUPERVISOR_STATE",
the host sets the SUPERVISOR/USER bit to 1 (super­
visor) so that the 68020 CPU will execute in supervisor
mode on exit from the monitor.

b. If the command specifies "USER_ STATE", the host
sets the SUPERVISOR/USER bit to 0 (user) so that the
CPU 68020 will execute in user mode on exit from the
monitor.

Run Until Command

Run From ... Until
Command

5. The host initiates a return (RTE) to the user program from
the monitor by writing the "exit monitor" command (value
8001H) to monitor variable MONITOR_ CONTROL.

6. The host verifies that the 68020 CPU has exited the
monitor. If the emulator monitor is still executing, the
error message "monitor did not respond to exit request" is
displayed.

Whenyouexecutethecommand "run until <address>", the fol­
lowing algorithm is executed.

1. The host computer initiates a break to the monitor (level 7
interrupt).

2. The host verifies that the 68020 CPU is executing in the
emulation monitor. If the monitor is not executing, the
error message "cannot break into monitor" is displayed.

3. The host computer reads the 16-bit word at <address>
and saves it internally.

4. The host inserts a BKPT instruction at <address>. The
breakpoint is marked internally as a one-shot breakpoint.

5. The host initiates a return (RTE) to the user program from
the monitor by writing the "exit monitor" command (value
8001H) to MONITOR_ CONTROL.

6. The host verifies that the 68020 CPU has exited the
monitor. If the emulator monitor is still executing, the
error message "monitor did not respond to exit request" is
displayed.

When you execute the command "run from {SUPER-
VISOR STATE I USER STATE} <addressl >until <ad­
dress2 >'\the following algorithm is executed.

How Emulation Works 9-5

9-6 How Emulation Works

1. The host computer initiates a break to the monitor Oevel 7
interrupt).

2. The host verifies that the 68020 CPU is executing in the
emulation monitor. If the monitor is not executing, the
error message "cannot break into monitor" is displayed.

3. The host computer reads the 16-bit word at <address2>
and saves it internally.

4. The host inserts a BKPT instruction at < address2 >. The
breakpoint is marked internally as a one-shot breakpoint.

5. The host modifies the monitor copy of the return address
obtained on entry to the monitor from the level 7 interrupt.
It sets the return address to the value < addressl >
specified in the run command.

6. The host modifies the monitor copy of the CPU status
register obtained on entry to the monitor from the level 7
interrupt.

a. If the command specifies "SUPERVISOR_STATE",
the host sets the SUPERVISOR/USER bit to 1 (super­
visor) so that the 68020 CPU will execute in supervisor
mode on exit from the monitor.

b. If the command specifies "USER_STATE",then the
host sets the SUPERVISOR/USER bit to 0 (user) so that
the CPU 68020 will execute in user mode on exit from
the monitor.

7. The host initiates a return (RTE) to the user program from
the monitor by writing the "exit monitor" command (value
8001H) to MONITOR_ CONTROL.

8. The host verifies that the 68020 CPU has exited the
monitor. If the emulator monitor is still executing, the
error message "monitor did not respond to exit request" is
displayed.

Software
Breakpoints

Note

Setting A Software
Breakpoint

The following sections describe how the software breakpoint func­
tion is implemented in the 68020 emulator. Software breakpoints
enable you to enter software breaks into your user program as an
aid in debugging your user software. Software breakpoints are
also used in the implementation of the run until command.

The exception vector table is referenced only in the case of per­
manent breakpoints, which make use of the trace exception vec­
tor (VER+ 24h). If one-shot breakpoints are working correctly,
but permanent breakpoints fail, verify that the trace exception
vector properly references the monitor (memory location
MONITOR_ ENTRY).

When you execute the command "modify sw breakpoint set
{permanent I oneshot} <bkpt_addr >",the system executes
the following algorithm.

1 . The host computer initiates a break to the monitor (level 7
interrupt).

2. The host computer detects that we actually got to the
monitor, issuing an error message "cannot break into
monitor" if not.

3. The host gets the 16-bit word at <bkpt_addr> and saves
it in ORIG_ INST in host system memory.

4. The host inserts the BKPr instruction at < bkpt_addr >.

5. The host initiates a return (RTE) to the user program from
the monitor.

6. Host verifies that the emulation monitor was exited, and is­
sues an error message if not.

How Emulation Works 9-7

Executing A
Software Breakpoint

Note

Executing A Run
Command After

Executing A
Software Breakpoint

9-8 How Emulation Works

When the emulator executes the BKPT instruction specified
during emulation configuration, the following events occur:

1 . Emulation circuitry detects the occurrence of a BKPr in­
struction and responds by jamming into the emulation
monitor at SWBK ENTRY.

Only the BKPT instruction specified during emulator configura­
tion is recognized by the emulator.

2. The host detects that a breakpoint was executed and issues
the message ''breakpoint hit at address XXXX."

3. The host restores the original instruction saved in
ORIG_INSTto <bkpt_addr>.

4. The emulation monitor enters the idle loop, waiting for a
user command.

When you specify a run command after executing a software
breakpoint, the following events occur:

"run"

1 . The host computer determines if the last BKPr instruction
detected is permanent or one-shot.

2. If the breakpoint is one-shot, the emulation monitor
returns (RTE) to the user program to begin execution at ad­
dress BKPT_ADDR.

3. If the breakpoint is permanent, the 68020 CPU is in­
structed to single-step the instruction at BKPT_ADDR
return to the monitor.

4. The host resets the breakpoint and returns (RTE) to the
user program as described in steps 2 through 6 of the "Set­
ting A Software Breakpoint" section.

"run from ADDR"

1 . The host computer determines if the last BKPr instruction
executed was permanent or one shot.

2. If the breakpoint is oneshot, the emulation monitor
returns* (RTE) to the user program and begins execution
at address ADDR.

3. If the breakpoint is permanent and the "run from" address
is set equal to the breakpoint address BKPT_ADDR, the
68020 CPU is instructed to single-step the instruction at
BKPT_ADDR and return to the emulation monitor.

4. the host resets the breakpoint as described in steps 2
through 4 of the "Setting A Software Breakpoint" section
and then returns* (RTE) to the user program. User
program execution begins at ADDR.

*The returns to the user program are accomplished by
modifying the stack so that the RTE instruction in the
monitor will return to address ADDR, rather than the
address originally contained on the stack.

How Emulation Works 9-9

Single Stepping

9-10 How Emulation Works

The following algorithm describes how the single-stepping func­
tion is implemented. The single-step function uses the trace excep­
tion vector in the exception vector table. If this vector (VBR + 24h)
is set incorrectly, single stepping will fail.

When the user executes a step command, the following events
occur:

1 . The host computer initiates a break to the emulation
monitor program by means of a level 7 interrupt.

2. The host computer reads the emulation monitor variable
MONITOR CONTROL to verify that the emulator is
executing theemulation monitor. If the emulator is not ex­
ecuting in the monitor, the message "cannot break into
monitor" is displayed and the step command is aborted.

3. The host instructs the monitor to set the trace bits in the
68020 microprocessor status register (Tl= 1, TO= 0). This
enables the 68020 trace function.

4. If the user specified a "from <address>" the host sets the
program counter value on the return stack to <address>
so that, upon returning from the monitor to the user
program, program execution will begin at <address>.

5. The host initiates a return (RTE) to the user program from
the monitor.

6. The 68020 CPU executes a single instruction, and takes
the trace exception which reenters the monitor at
MONITOR_ENTRY. Note that the trace exception vector
(VBR+ 24h) must reference MONITOR_ ENTRY for this
to function correctly.

7. The host verifies that the emulator is executing in the
monitor as described in step 2.

8. The host instructs the monitor to clear the trace bits in the
68020 microprocessor status register (Tl = 0, TO = 0).
This disables the 68020 trace function.

9. The emulation monitor enters an idle loop, waiting for a
user command.

How Emulation Works 9-11

Target Memory
Transfers

9-12 How Emulation Works

The following section describes the process the emulator uses to
transfer data to and from target memory. The emulation monitor
al ways attempts to longword align the transfer. Due to the
dynamic bus sizing facility of the 68020, this alignment improves
total transfer time with 8 and 16-bit memory systems, but is most
effective with 32-bit memory systems. This algorithm can be
tuned to meet specific target system requirements.

1. At the beginning of the transfer, the monitor examines the
lower two bits of the initial target system address to be
read from or written to.

a. If bit 0 of this address is 1, the monitor transfers a single
byte to or from the target system using a MOVES.Bin­
struction. Following this, the target system address is
incremented by one to reflect the next address to be
transferred.

b. If bit 0 of the initial target system address is 0, the byte
transfer and address increment does not occur.

This first step causes the target system address to be
aligned to a word address, where bit 0 of the address is 0.

2. The monitor examines bit 1 of the target system address.

a. Ifbit 1 of this address is 1, the monitor transfers a single
word to or from the target system using a MOVES.W
instruction. Then, the target system address is incre­
mented by two to reflect the next address to be trans­
ferred.

b. Ifbit 1 of the initial target system address is 0, the word
transfer and address increment does not occur.

This step aligns the target system address to a longword
address, where bits 1and0 of the address are 0.

3. The target system address is now longword aligned, i.e., ad­
dress bits 1 and 0 are both 0. The bulk of the transfer is

Starting Addr
Bits 1and0

1 0

0 1

0 0

then carried out using longword transfers. The operation of
the transfer up to this point is summarized in figure 9-1.

Transfer Description

a. Copy a byte to longword align
b. Increment target address by 1
c. Copy a I ongword
d. Increment target address by 4
e. Repeat steps 11 c11 and 11 d 11

a. Copy a word to longword align
b. Increment target address by 2
c. Copy a I ongword
d. Increment target address by 4
e. Repeat steps 11 c11 and 11 d"

a. Copy a byte to word align
b. Increment target address by 1
c. Copy a word to longword align
d. Increment target address by 2
e. Copy a longword
f. Increment target address by 4
g. Repeat steps "e 11 and "f 11

a. Copy a longword
b. Increment target address by 4
c. Repeat steps 11 a 11 and 11 b 11

Figure 9-1. Monitor Operation At Start Of Transfer

4. After each longword transfer, the monitor examines the
number of bytes remaining in the transfer. If the number is
0, the transfer is complete, and the monitor returns to the
idle loop. If the number of bytes remaining to be copied is
less than 4 prior to a longword transfer, longword transfers
are no longer used, and control passes to monitor code that

How Emulation Works 9-13

Number of Bytes
Remaining

4

3

2

0

finishes up the remaining bytes (3, 2or1) of the transac­
tion.

a. If 3 bytes remain, a word transfer followed by a byte
transfer is executed.

b. If 2 bytes remain, a single word transfer is performed.

c. If a single byte remains, a byte transfer is used. This
monitor function is summarized in figure 9-2.

Transfer Description

a. Copy a I ongword
b. Increment target address by 4
c. Return to monitor idle loop

a. Copy a word
b. Increment target address by 2
c. Copy a byte
d. Increment target address by 1
e. Return to monitor idle loop

a. Copy a word
b. Increment target address by 2
c. Return to monitor idle loop

a. Copy a byte
b. Increment target address by 1
c. Return to monitor idle loop

a. Return to monitor idle loop

Figure 9-2. Monitor Oper.ation At End Of Transfer

9-14 How Emulation Works

Note

Displaying Target
Memory

The use of the parameters byte, word or long with the display
memory command does not alter the target memory transfer al­
gorithm, but provides display formatting control. Similarly, the
use of byte, word or long with the modify memory command al­
ters how data is interpreted, but not how the monitor performs
the transfer.

When you execute a display memory command with an address
range mapped to target system memory, the emulation monitor
reads the specified areas of target memory and copies the memory
locations to an internal monitor buffer for transfer to the host com­
puter. This process is described in the following steps:

1 . The host computer initiates a break to the monitor (level 7
interrupt).

2. The emulation monitor enters the idle loop, waiting for a
host command. The idle loop is located at monitor program
symbol MONITOR_LOOP.

3. The host computer detects that the 68020 CPU is executing
in the emulation monitor. If the CPU is not executing in
the monitor, the host issues the error message "cannot
break into monitor".

4. The host computer writes the memory transfer parameters
to designated monitor locations as listed below:

Description

a. Number of bytes to read
b. Starting address of target system read
c. Function codes for target system read
d. Starting address of monitor data buffer write
e. Function codes for monitor data buffer write

Monitor
Location

BYTE COUNT
SRC ADDR
SRC-FC
DST-ADDR
DST-FC

How Emulation Works 9-15

Copying from Target
System Memory

9-16 How Emulation Works

The monitor data buffer begins at monitor data symbol
MON XFR BUF and is always referenced with the SUPER­
VISOR DATAfunctioncode.

5. The host writes the "read user memory" command (8003H)
to MONITOR CONTROL. This causes the monitor to
exit the idle loop and begin execution at monitor program
symbol COPY.

6. The monitor sets up the transfer according to the five
parameters listed above, and begins to copy target system
memory values to the monitor data buffer using the algo­
rithm described in the previous section. See the emulation
monitor listing for additional details. Look at the monitor
code following monitor program symbol COPY.

7. The host computer detects that the transfer has completed
by observing a value ofOOOOH in MONITOR CON­
TROL. The host then reads and displays the information
in the monitor data buffer. If the display memory com­
mand requested a display of more data bytes than t}:ie
monitor transfer buffer can hold, the host computer sets up
a new transfer for the remaining inf orrnation by repeating
the steps beginning with step 4.

8. The host computer initiates a return (RTE) to the user
program from the monitor. This occurs as a result of the
host writing the "exit monitor" command (8001H) to
MONITOR CONTROL. This operation does not occur
if the display memory command was issued while execut­
ing in the emulation monitor.

The algorithm for copying data from target memory is identical to
that used when displaying target memory.

Modifying Target
Memory

When you execute a modify memory command with an address
mapped to target system memory, the emulation monitor writes
to the specified areas of target memory, copying data from the
emulation monitor data buffer. The data in the emulation monitor
buffer is put there by the host computer. The process for modifying
target memory is described. in the following steps:

1. The host computer initiates a break to the emulation
monitor (a level 7 interrupt).

2. The monitor enters the idle loop, waiting for a command
from the host computer. The idle loop is located at monitor
program symbol MONITOR_ LOOP. .

3. The host computer detects that the 68020 CPU is execut­
ing in the emulation monitor. If the CPU is not executing
in the monitor, the host issues the error message "cannot
break into monitor".

4. The host writes the memory transfer parameters to desig­
nated monitor locations as listed below:

Description

a. Number of bytes to write
b. Starting address of monitor data buffer read
c. Function codes for monitor data buffer read
d. Starting address of target system write
e. Function codes for target system write

Monitor
Location

BYTE COUNT
SRC ADDR
SRC-FC
DST-ADDR
DST-FC

The monitor data buffer begins at monitor data symbol
MON XFR BUF and is always referenced with the SU­
PERVISOR-DATA function code.

5. The host writes the "write user memory" command
(8004H) to MONITOR CONTROL. This causes the
monitor to exit the idle loop and begin execution at monitor
program symbol COPY.

6. The monitor sets up the transfer according to the five
parameters listed above, and begins to copy monitor data

How Emulation Works 9-17

Copying to Target
System Memory

9-18 How Emulation Works

buffer values to the target system memory using the target
memory transfer algorithm described previously. See the
emulation monitor listing for additional details. Look at
the monitor code following monitor program symbol
COPY.

7. the host determines that the transfer has completed by ob­
serving a value of OOOOH in MONITOR CONTROL. If
the modify memory command requested a modify of more
data bytes than could be held by the monitor transfer buff­
er, the host sets up a new transfer for the remaining inf or­
mation by repeating the steps beginning with step 4.

8. The host initiates a return (RTE) to the user program from
the monitor. This results from the host writing the "exit
monitor" command (8001H) to MONITOR CONTROL.
This operation does not occur if the modify memory com­
mand was issued while executing in the emulation monitor.

The algorithm for copying data to target system memory is identi­
cal to that used when modifying target memory.

Displaying CPU
Registers

When you execute a display registers cpu command, the follow­
ing algorithm is executed:

1. The host computer initiates a break to the monitor (a level
7 interrupt).

2. The emulation monitor enters the idle loop, waiting for a
command from the host computer. The idle loop is located
at monitor program symbol MONITOR_ LOOP.

3. The host detects that the 68020 CPU is executing in the
emulation monitor. If the CPU is not executing in the
monitor, the host issues the error message "cannot break
into monitor". The "are__you_there?" function is used to
determine whether or not the monitor is executing.

4. The host reads and displays the register image save area
that was constructed on entry into the monitor (i.e. the
monitor data area starting with symbol PCH and ending
withDFCT).

5. The host initiates a return (RTE) to the user program from
the emulation monitor. This results from the host writing
the "exit monitor" command (8001H) to
MONITOR CONTROL. This operation does not occur
if the display registers cpu command was issued while ex­
ecuting in the emulation monitor.

How Emulation Works 9-19

Modifying The
CPU Registers

9-20 How Emulation Works

When you execute a modify registers cpu < regname > to
<value> command, the following algorithm is executed:

1. The host computer initiates a break to the emulation
monitor (a level 7 interrupt).

2. The monitor enters the idle loop, waiting for a command
from the host computer. The idle loop is located at monitor
program symbol MONITOR_ LOOP.

3. The host detects that the 68020 CPU is executing in the
monitor. If the CPU is not executing in the emulation
monitor, the host issues the error message "cannot break
into monitor". The "are_you_there?" function is used to
determine whether or not the emulation monitor is execut­
ing.

4. The host writes the modified register value to the cor­
responding location in the register image save area con­
structed on entry to the monitor (i.e. the monitor data area
starting with symbol PCH and ending with DFCT).

5. The host initiates a return (RTE) to the user program from
the emulation monitor. This results from the host writing
the "exit monitor" command (8001H) to
MONITOR CONTROL. This operation does not occur
if the modify registers cpu command was issued while the
CPU was executing in the monitor.

6. When exiting the monitor, the register image save area is
read to reload all CPU registers with their original values
on initial entry to the monitor (see monitor program sym­
bol RTN3). Since the modify registers command changes
values in the register image save area, these new values
are loaded in the CPU registers on exit from the monitor.

A

Emulation Error Messages

68020 Emulation
Error Messages

cannot break into
monitor

This appendix contains a list of 68020 emulation error messages
with descriptions of the error and information on how to correct
the error, when appropriate. This list describes the most serious
emulation errors that you may encounter.

This message is displayed when the host expects to find the CPU
executing the monitor, but the "are _you_ there?" function indi­
cates otherwise. This message occurs after issuing a command
that normally causes a break to the monitor.

If SUPERVISOR_PROG and SUPERVISOR_ DATA areas are
notoverlayedfor the emulation monitor, the "are_you_there?"
function cannot function properly, resulting in this error message.
If function codes are not in use, mapping over lays are not required.

To determine the cause of the failure, setup an analysis trace to
trigger on the acknowledge cycle for the level 7 interrupt:

trace trigger_ on a= OfffiifHh s = fcode CPU_ SP ACE

If the analyzer does not trigger, then it is likely that no level 7 in­
terrupt was generated by the emulator. Check that the "Enable
emulator use ofINT7?" configuration question has been answered
"yes". If so, a hardware error has occurred or the CPU is in a
Reset, halt or DMA state (in which case the CPU will not respond
to the level 7 interrupt in a timely manner.

Error Messages A-1

monitor did not
respond to exit

request

A-2 Error Messages

The tracelist should show four, 8-bit, emulator generated jam
cycles. MONITOR_ ENTRY should be the address supplied by
these cycles. Compare the tracelist of the monitor entry point to a
monitor listing. Determine that the monitor has not been inadver­
tently overwritten. Be sure that the monitor area is overlayed
with SUPERVISOR_ DATA and SUPERVISOR_ PROGRAM
space (not necessary if function codes are turned ofi).

Check to see that the monitor enters, and stays in the monitor idle
loop. If interrupts are enabled in the monitor, an external inter­
rupt routine may be exiting the monitor and not returning proper­
ly. Or, if there are frequent interrupts being processed, the
"are_you_there?" function may be simply timing out.

Next, setuptheanalyzertotriggeron the "are_you_there?"
monitor command:

trace trigger on a= MONITOR_ CONTROL
d = 8000xxxxH s = access READ

The address and data specifications may differ, depending on the
address of MONITOR_ CONTROL, and the width of the memory
system being referenced.

Determine that the "are_you_there?"functionin the monitor
(ARE_ THERE) is functioning properly by observing the trace
after capturing the condition where MONITOR_ CONTROL is
read as 8000H. Compare this trace to the monitor listing.

This message is displayed when the host expects to find the CPU
executing somewhere other than in the monitor, but the
"are_you_there" monitor function indicates otherwise. This
message occurs after issuing a command that results in a return
to the user program from the monitor (i.e. display registers while
the user program is executing, or "run" while in the monitor, etc.).

IfSUPERVISOR_PROG and SUPERVISOR_ DATA areas are
not overlayed for the emulation monitor, the "are_you_ there?"
function cannot function properly, resulting in this error message. 1

If function codes are not in use, mapping over lays are not required.

slow dev at a = XXXX
(YY)

To determine the cause of the failure, setup an analysis trace to
trigger on the "exit monitor" command. This can be done with the
following trace specification:

trace trigger ona= MONITOR_CONTROL
d = 8001xxxxH s = access READ

Note that the address and data specifications may cliff er, depend­
ing on the address of MONITOR_ CONTROL, and the width of
the memory system being referenced.

If the monitor is not executing (i.e. in an interrupt routine or else­
where) at the time of an "exit monitor" command, the command
cannot be recognized and this error message will result after a
timeout.

Observe the exit mechanism from the monitor, and compare the
acquired trace to the monitor listing. Be certain that the monitor
has not been overwritten inadvertently.

Once the monitor is exited, check that the user program executes
properly. If the user program returns to the monitor immediately
after the "exit monitor" command is issued, this message appears.

This status line message indicates that the CPU is presently at­
tempting to run a bus cycle, but the cycle has not completed after
approximately 25 ms. This means that although the CPU as­
serted address strobe (set it low), the addressed memory (I/0
device, etc.) has not yet returned DSACKs, BERR and/or HALT
as appropriate.

The XXXX field above indicates the address of the attempted
cycle, and the YY field indicates the function code applied to the
cycle according to the following table:

SD = Supervisor Data
SP = Supervisor Program
UD = User Data
UP = User Program
RO = Reserved Address Space 0
R3 = Reserved Address Space 3

Error Messages A-3

no memory cycles

(no DSACK) message
in tracelist

running in monitor

A-4 Error Messages

R4 = Reserved Address Space 4
CS = CPU Space

Note that this message is simply a warning that the current cycle
is taking an unusually long time to complete.

This status line message indicates that the emulator has not
received a low-to-high or high-to-low transition on address strobe
for at least 25-30 ms. This message most often appears when ex­
ecuting from cache, ifthere are no external cycles for long periods
of time.

Any device that drives address strobe will inhibit the message, in­
cluding the emulator 68020, DMA devices, and coprocessors. If a
DMA mechanism, for example does not drive address strobe, this
message may appear after the specified timeout. (Note that bus
cycles where address strobe is not driven cannot be captured by
the analyzer.)

This message is simply a warning that address strobes are infre­
quent.

This message normally indicates that a particular CPU cycle was
terminated by LBERR or LHALT instead of the usual termina­
tion by DSACKs.

This message can also be a clue that the target system is violating
the MC68020 specification which specifies that the DSACK sig­
nals must not be negated before address strobe is negated by the
CPU. This is the case because the analyzer usesaderivativeofad­
dress strobe as an analysis clock. If DSACKs are high prior to the
low-to-high transition of address strobe, a "no DSACK" message
can result.

After writing the value 8000H to MONITOR_ CONTROL, the
host subsequently read MONITOR_ CONTROL and received a
value of OOOOH.

running

Reset (with capital
II R II}

reset (with lower
case 11 r 11

}

Attempt to write
guarded memory,

addr = XXXX

Attempt to read
guarded memory,

addr = XXXX

Cou Id not enable
breakpoint at
address XXXX

After writing the value 8000H to MONITOR_ CONTROL, the
host subsequently read MONITOR_ CONTROL and received a
value of 8000H.

This message indicates that the CPU is being reset due to the use
of the reset softkey in the emulation software.

This message indicates that the CPU is being reset by target sys­
tem hardware.

This message appears when an attempt is made to modify a
memory location mapped as "guarded" via the "modify memory"
command. The offending address is displayed in the XXXX field.

This message appears when an attempt is made to display a
memory location mapped as "guarded" via the "display memory"
command. The offending address is displayed in the XXXX field.

This message normally results from attempting to set a break­
point in target system memory, but for some reason, the emulator
could not break into the monitor in order to set the breakpoint.
This message also occurs when attempting to set a breakpoint in
target ROM, but does not occur when setting a breakpoint in
emulation RAM or ROM. Trying to set a breakpoint in a guarded
area of memory will also result in this error message.

Error Messages A-5

Could not disable
breakpoint at
address XXXX

No breakpoint exists
at address XXXX

A-6 Error Messages

This message normally results from attempting to clear a break­
point in target system memory, but for some reason, the emulator
could not break into the monitor in order to clear the breakpoint.

This message is emitted if the user attempts to clear a breakpoint
at an address for which no breakpoint was previously specified.
The emulation system is only a ware of breakpoints set by the
"modify sw _breakpoints set ... "command. If a "modify memory
... "command was used to set the breakpoint, or if the breakpoint
existed in the absolute code loaded into the emulator, it is not pos­
sible to clear such breakpoints using "modify sw _breakpoints
clear ... " commands.

B

Source Files For Getting Started Examples

Introduction This appendix contains the listings of the "towers.c" and
"simint.c" source files. These two source files were compiled and
linked with the emulation monitor program to form the towers.X
absolute file which was used in all the examples in this manual
that show the internal analyzer making trace measurements. The
towers.c source listing is first in this appendix. The simint.c
source listing is last.

Demonstration File Sources B-1

Source File For
towers.c

LSD:@(#)
@(mktid)

I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*

*I
This program demonstrates the solution to the popular */
"Towers of Hanoi" brain teaser puzzle. The puzzle consists */
of 3 pegs and a number of discs of different diameters which */
fit over the pegs. The discs are ordered by their diameter, */
largest on the bottom, on one peg, The object is to move */
all of the discs from one peg to another such that they end */
up in the same order on the new peg using the minimum number */
of moves. Only one disc can be moved at a time, and a larger*/
disc may never be placed on top of a smaller disc. */

The solution can be visualized using "display simulated_io"
command. The number of discs is selected by responding to
the input request using the "modify keyboard_to_simio"
command and entering a number between 1 and 7. Multiple
numbers separated by spaces can be entered before hitting
return to get multiple executions of the program, and "C"
may be entered to run the program continuously.

The speed of the program can be modified in real time with
the variable loc_delay and the "modify memory" command.

NOTE: This file has been designed with the use of "ifdef"
to allow it to be compiled and run on the host as well as
cross compiled for the emulator.

#include <stdio.h>

#define TRUE 1
#define FALSEO
#define NOVALIDENTRY 1
#define STDOUT 1
#define FIRSTCOLO
#define LEFT O
#define MIDDLE 1
#define RIGHT 2

#defineMAX DISC 7
#define MAX CHARS 16
#define MAX-TOWERS 3
#defineREPEAT 99

*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I

I* If not the AxLS 68020 C compiler, then probably notan ANSI compiler */
I* so we must remove the const, volatile, andvoid keywords. */
#ifndef m68020
#defineconst
#define volatile
#define void
#end if

B-2 Demonstration File Sources

typedef struct {
char disc_char[MAX_CHARS];

} DISC;
typedef DISC TOWER[MAX_DISCJ;

static intrun continuous;
static int num discs = 4; I* we will use 4 discs asthe default */
static int move num;
static intfree_TevelrMAX TOWERS];
static int disc leveTrMAX DISC];
staticTOWER display[MAX_TOWERS];

I* This variable may be modified duringemulation to change
I* the speed of the program.
canst int loc_delay = 500;

static const DISCblank_disc =
{ 1 1' 1 I' I I' I I' I I' I ',' , , 'I',' I',, ',' ', '','

static const TOWER disc_word = {

*/
*I

, ,
'

, ,
'

, ,
' '};

[I I' I I' I I' I I' I I' I I' I 1'' I I' I I' I 1'' I I' I I' I I' I I' I I' I '}'

f
> ',' ',' ',' ',' ','2','2',' ' ','2','2',' ',' ',' ' ' 1

},

, ',' ',' ',' ','3','3','3',' ',' ','3','3','3',' ',' ',' ',''},
, ',' ',' ','4','4','4','4',' ',' ','4','4','4','4',' ',",' '},
{' ','','5','5','5','5','5','l','l','5','5','5','5','5',' ',' ·~·
}'','6','6','6','6','6','6',' ',' ','6','6','6','6','6','6',' , '

{ 7','7','7','7','7','7','7',' ',' ','7','7','7','7','7','7','7'
} ;
I* Enabling an analysis trace on activity within a function */
I* may not perform properly if the processor prefetches */
I* the function return (RTS) due to a previous branch. */
I* Version 2.0 of the HP64903 C Compiler provides a debug */
I* capability that adds NOP instructions to prevent this */
I* condition {default options, or -OG should be used). */
I* *I
I* A less desirable alternative would be to modify the */
I* source using a dummy statement to provide the padding. */
I* As an example, a write to the variable "rts_prefetch" */
I* just before the function return could be used. *I
I* Because the prefetch can be up to 3 words long, we want */
I* the access address mode to be absolute long and will org */
I* it outside of base page, thus forcing a 3 word opcode. */

#ifdef m68020

#ifndef DEBUGG
#pragma SECTIONDATA=Ox22ff0

int rts_prefetch;
#pragma SECTIONUNDO
#end if

#else

#end if
intrts_prefetch;

#ifdef INTERRUPTS
#pragma SECTIONPROG=simint
extern void enable int();
extern voiddisable=int();
extern int sim_ints_serviced;

Demonstration File Sources B-3

extern intsim int ca;
#pragma SECTION UNDO
#end if
I* for local forward referencing */
static void pause();
static void show_discs();
static void init_display();
static void towers();
static int ask_for_number();

main()
{
#ifdef INTERRUPTS

enable_ int();
#end if

run_continuous = FALSE;

while (ask_for_number(&num_discs)
#ifdef m68020

#end if
clear_screen(STDOUT);

move num =O;
init=display(LEFT);
show_discs();
pause();

TRUE) {

towers(num_discs,LEFT,RIGHT,MIDDLE);

show_discs();

I* ANSI supports concatenated strings, AxLS simiohas cursor control */
#if def m68020

#else

#end if

}

}

pos_cursor(STDOUT, FIRSTCOL, num_discs+5);
printf("\t\tPuzzle with %d discs can be solved in "

"%d moves. \n",num_discs,move_num);

printf("\n\t\tPuzzle with %d discs can", num""'"discs);
printf(" be solved in %d moves. \n", move_num);

pause();
pause();

return(O);

!***** Towers routines *****/

static intask_for_number(num)
int *num;
{

charerr char1,err char2;
int last_num,ret_val;

last_num = *num;

if (run_continuous FALSE) {

B-4 Demonstration File Sources

#if def m68020

#else

#end if

*I

*I

*I

will be */

>MAX_DISC)

ber ! ");

clear screen(STDOUT);
printf("\n\n~xecute 'modify keyboard_to_simio' then enter"

" one of the following:"
"\n\tNumber of discs to use [1-%d]"
"\n\t'O'to exit program"

"\n\t'C' to run continuouslyusing last number entered\n\n"
, MAX_DISC);

printf("\n\nEnter one of thefollowing:");
printf("\n\tNumber of discs to use [1-%d]",MAX_DISC);
printf("\n\t'O' to exitprogram");

printf("\n\t'C' to run continuously usinglast number entered\n\n");

while (NOVALIDENTRY) {

printf("?");
I* scanf will return one of thefollowing three values:

I* 1) "O"indicates a scanning error

I* 2) "1" indicates valid input

/* 3) "EOF"

ret_val = scanf("%d",num);

switch (ret_val) {
case 0:

err_charl= getchar();
err_char2 =getchar();

I* If a "C" is entered, the last number

I* used forever {if it was valid). */
if (err_charl == 'C') {

if ((last_num < 1) I I (last_num

else {

}
}

puts(" invalid repeat num-

*num = last num·
run continu~us ' TRUE;
return (TRUE);

*/

I* If the user hits the "suspend" softkey, as a */

*I

to */

*I

(err_char2 , 1,))

I* courtesy the emulator sends an escape 1

I* character sequence allowing the program

I* detect that the inputwas suspended.

else if ((err_char1 == '\033') &&

puts(" input suspended!");

else puts(" input error, re-enter line!");

Demonstration File Sources B·S

case 1:

fflush(stdin);
I* try again!*/
break;

if (*num == 0) {

}

printf(" exiting!\n");
return(FALSE);

else if ((*num < 0) I l(*num > MAX_DISC))
printf(" %d is not a valid num-

ber! \n", *num);

}

else

break;

I* try again! */

return (TRUE);

case EOF:
return(FALSE);
break;

} /* end switch ret_val*/

} /*while no valid entry */

} /* if not run continuous */

return (TRUE);

static void pause()
{

int i,j;

for (i = O;i < loc_delay; i++)
for (j =0; j < loc_delay; j++) {
}

#ifndef DEBUGG
rts_prefetch O;

#end if
}

static void show_discs()
{

DISC *disc_ptr;
char *string, *p;
int disc,tower, ch;

if (p = string = (char*) malloc(BUFSIZ)) ==NULL) {
fputs("malloc failed\n",stderr);
exit{1);

}

#ifdef m68020

#end if
pos_cursor(STDOUT, FIRSTCOL,1);

for (disc = O; disc < num_discs; disc++) {
for (tower = O; tower < MAX~TOWERS; tower++) {

*p++ = '\t';

B-6 Demonstration File Sources

}

disc ptr =&displayltowerlldisc];
for ~ch = 0; ch <MAX_CHA~S; ch++)

*p++ =disc_ptr-)disc_char[ch];

*p++ ='\n';
}

fwrite(string,1,(int)(p-string),stdout);

free(string);

#if def m68020
if (move num == 0)

printf("\t----------------\t----------------\t----------------"
"\n\t Peg O \t Peg 1 \t Peg 2\n"

"\n\t\tSolution for Towers with %ddiscs.\n",num_discs);
#else

printf("\t----------------\t----------------\t----------------\n");
printf("\t Peg 0 \t Peg 1 \t Peg 2\n");

#end if

if (move_num == 0)
printf("\n\t\tSolution forTowers with %d discs.\n\n",

num_discs);

}

static void remove_disc(disc,from_peg)
register intdisc,from_peg;
{

}

disc--;
display[from_peg][disc_levelldisc]l = blank_disc;
free_level[from_peg] = disc_Tevel[aisc];

static voidplace_disc(disc,on_peg)
register int disc,on_peg;
{

disc--;
display[on peg][free_level[on peg]] =disc_word[disc];
disc_level[disc] = free_level[on_peg];

free_level[on_peg]--;

}

static void move_disc(i,from,to)
int i,from,to;
{

move_num++;

show_discs();

printf("\n\n\n\n\t\tMove #%d: Move disk %d from peg %d to" ,move_num, i, from);
printf("peg %d \n",to);

#if def INTERRUPTS

#endif

if (sim_int ca== -1)
printf("\t\t%d simulated interrupts have been serviced.\n"

· ,sim_ints_serviced);
else

printf("\t\tSimulated interrupts have been disabled. \n");

Demonstration File Sources B-7

remove_disc(i,from);

place_disc(i,to);

pause();

#ifndef DEBUGG
rts_prefetch O;

#end if
}

static voidinit_display(start_tower)
int start_tower;
{

inttower,disc;

I* initialize the display array to be blank*/
for (tower = O; tower < MAX_TOWERS; tower++) {

for (disc = O; disc < MAX_DISC; disc++)
display[tower][disc] = blank_disc;

}
free_level[tower] =num_discs - 1;

I* place num discs on the
specified tower */

}

for (disc = O; disc < num_discs; disc++){
display[start_tower][disc] = disc_word[disc];

disc_level[disc] = disc;
}

free_level[start_tower] = 0;

static void towers(n,from_peg,to_peg,aux_peg)
register int n,from_peg,to_peg,aux_peg;
{

}

if (n == 1)
move_disc(1,from_peg,to_peg);

else {

}

towers(n-1,from_peg,aux_peg,to_peg);
move_disc(n,from_peg,to_peg);
towers(n-1,aux_peg,to_peg,from_peg);

B-8 Demonstration File Sources

Source File For
simint.c

I*
I*
I*
I*
I*
I*

LSD:@(#) 0.04 88/01/19
@(mktid) Unreleased(02.10 05May88)

This file contains some very simple examples of routines to
use with the simulated interrupt mechanism of the emulator.

*I
*I
*I
*I

I* If not the AxLS 68020 C compiler, then probably not an ANSI compiler */
I* so we must remove the canst, volatile, and void keywords. */
#ifdef m68020
#pragma SECTION PROG=simint DATA=data CONST=simint
#else
#define canst
#define volatile
#define void
#end if

I* This variable records the number of serviced simulated interrupts. */
int sim_ints_serviced = O;

I* This variable will be used to control simulated interrupts and is */
I* specified in the emulator configuration file. The host and the */
I* monitor watch this "control address" to decide whether to perform */
I* the interrupt function or not. Simulated interrupts will be */
I* enabled when the control address flag is set to -1 and disabled */
I* if it is set to 0. The "modify memory" command can be used to */
I* enable and disable interrupts in real time once the program has */
I* has been started. */

I* Remember that using the "volatile" keyword restricts the compiler's */
I* optimization for the entire file, but guarantees proper access of *I
I* variable. */

volatile int sim_int_ca = -1;

void enable_int()
{

I* enable simulated interrupts from emulator*/
sim_int_ca = -1;

}

void disable_int()
{

I* disable simulated interrupts from emulator */
sim_int_ca = 0;

}

#ifdef m68020
#pragma INTERRUPT
static void sim_int_handler()

Demonstration File Sources B-9

{

}

I* service simulated interrupts from emulator */
sim_ints_serviced++;

I* Initialize the interrupt vector table to point to our routine. */
#pragma SECTION DATA=Oxb8
void (*trap14)() = sim_int_handler;
#pragma SECTION UNDO
#end if

B-10 Demonstration File Sources

Timing Comparisons

Introduction The following tables list timing comparisons between the
MC68020RC12, MC68020RC16, MC68020RC20, and
MC68020RC25 processors, and the HP 64410C/D emulator.

c

Timing Comparisons C-1

This Page Intentionally Blank

C-2 Timing Comparisons

MC68020RC12/HP 64410 Timing Comparisons

10.5 AC ELECTRICAL SPECIFICATIONS-- CLOCK INPUT

12.S MHz HP64410

Num Characteristic Min Max Min Max Unit

Fr~uenc;_y_of O_Q_eration 8 12.5 12.5 25 MHz

1 Ci'._cle Time 80 125 40 80 ns

2,3 Clock Pulse Width 32 87 15 59 ns

4,5 Rise and Fall Times --- 5 --- 4 ns

MC68020 electrical specifications reprinted courtesy Motorola, Inc.

10.6 AC ELECTRICAL SPECIFICATIONS -- READ AND WRITE CYCLES

(Vee= 5.0Vdc ±5%;GND = OVdc; TA= Oto70C)

12.S MHz HP64410

Num Characteristic Min Max Min Max Unit

6 Clock High to Address Valid 0 40 10* 46* ns

Clock Hl.9.h to FC/Size/RMC Valid 0 40 11 * 47* ns
--

6A Clock Hl.9.h to ECS, OCS Asserted 0 30 9.5* 35* ns
--

7 Clock High to Address/Data/FC/RMC/Size 0 80 6.5* 50* ns

H!.g_h lm_.e.edance

8 Clock High to Address Invalid 0 --- 9.5* --- ns

Clock H!.g_h to FC/Size/RMC Invalid 0 --- 10* --- ns
--

9 Clock LowtoAS, DS Asserted 3 40 14* 41* ns

9A1 - -
AS to DS Assertion (Read) (Skew) -20 20 -8 -12 ns
-

10 ECS Width Asserted 25 --- 22 --- ns

10A OCS Width Asserted 25 --- 22 --- ns

10B7
ECS, OCS Width Negated 20 -- 17 --- ns

11 6 Address Valid to AS 20 --- 15 --- ns
-

Asserted (and DS Asserted, Read)
-- -

FC/Size/RMC Valid to AS 20 --- 14 --- ns
-

Asserted (and DS Asserted, Read)

12 Clock Low to AS, DS Negated 0 40 11 * 41 * ns

12A Clock Low to ECS/OCS Negated 0 40 11 * 41* ns

Timing Comparisons C-3

10.6 AC ELECTRICAL SPECIFICATIONS -- READ AND WRITE CYCLES (Cont'd)

(Vee= 5.0Vdc ±5%;GND = OVdc; TA= Oto70C)

12.SMHz HP 64410

Num Char a cte ristic Min Max Min Max
--

13 AS, DS N~ated to Address Invalid 20 --- 0 ---
-- --
AS, DS Negated to FC/Size/RMC Invalid 20 --- 0 ---
- -

14 AS (and DS, Read) Width Asserted 120 --- 137 ---
-

14A DS Width Asserted, Write 50 --- 57 ---
15 AS, DS Width Ne_g_ated 50 --- 60 ---

15A8 - -
DS Ne_g_ated to AS Asserted 45 --- 51 ---

16 Clock High to AS/DS/RW/DBEN --- 80 --- 61*

Hl.g_h lm_.12._edance

176 -
AS,DS N~ated to RW Hl.g_h 20 --- 17 ---

-·
18 Clock Hig_h to RW High 0 40 10* 41*

-
20 Clock High to RW Low 0 40 10* 41 *

21 6 - -
RW High to AS Asserted 20 --- 18 ---

226 RW Low to DS Assertedl_Writel 90 --- 98 ---

23 Clock H[.g_h to Data Out Valid --- 40 --- 45*

256 -
AS,DS Ne_g_ated to Data Out Invalid 20 --- 15 ---

25A
9 - --

DS Ne_g_ated to DBEN Ne_g_ated (Write) 20 --- 15 ---
266 DATAO = ValidtoDSAssertedl_Write} 20 --- 13 ---
27 Data-In Valid to Clock Lowl_Data Setu_Ql 10 --- 10** ---

--
27A Late BERR Asserted to Clock Low (Setup Time) 25 --- 15** ---

Late HALT Asserted to Clock Low (Setu_.12._ Time) 25 --- 8 ---
-- -----

28 AS, DS Negated to DSACKx/BERR Negated 0 110 0 115
-- --
AS, DS Negated to HALT Negated 0 110 0 125
-- --
AS, DS Ne_g_ated to AVEC N~ated 0 110 0 97
-

29 DS Ne_g_ated to Data-In Invalid (Data-In Hold Time) 0 --- 6 ---

29A DS Ne_g_ated to Data-lnl_Hj_g_h lm_Qedancel --- 80 --- 46

31
2 ---

DSACKx Asserted to Data-In Valid --- 60 --- 75

31A3 --- ---
DSACKx Asserted to DSACKx Valid --- 20 --- 7

(DSACKx Asserted Skew)
--

32 RESET ln_.12._ut Transition Time --- 1.5 --- 1.5

33 Clock Low to BG Asserted 0 40 0 42*

34 Clock Low to BG Negated 0 40 0 44*

C-4 Timing Comparisons

Unit

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns I

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

Clks

ns

ns

10.6 AC ELECTRICAL SPECIFICATIONS-- READ AND WRITE CYCLES (Cont'd)

(Vee= 5.0Vdc ±5%;GND = OVdc; TA= Oto70C)

12.5 MHz HP 64410

Num Characteristic Min Max Min Max
- - --

35 BR Asserted to BG Asserted (RMC Not Asserted) 1.5 3.5 1.5 3.5
--- -

37 BGACK Asserted to BG Ne_g_ated 1.5 3.5 1.5 3.5
--- -

37A BGACK Asserted to BR Negated 0 1.5 0 1 .5

39 BG Width Ne_g_ated 120 --- 57 ---
-

39A BG Width Asserted 120 --- 57 ---
40 Clock Hi_g_h to DBEN Assertedi_Readl 0 40 10* 41*

--
41 Clock Low to DBEN Ne_g_ated (Read) 0 40 10* 41*

--
42 Clock Low to DBEN Asserted (Write) 0 40 10* 41*

43 Clock Hig_h to DBEN Ne_gatedi_Writel 0 40 10* 41*

446 - --
R/WD Low = to DBEN Asserted (Write) 20 --- 18 ---

45 5 DBEN Width Asserted (Read) 80 --- 97 ---
--
DBEN Width Asserted (Write) 160 --- 177 ---

46 R/W Width Asserted_{_Write or Readl 180 --- 217 ---
--

47a Asynchronous Input Setup Time (HALT) 10 --- 7 ---

Asynchronous Input Setup Time (BERR, DSACKx) 10 --- 17 ---
-

Asynchronous ln_Q_ut Setu_Q_ Time (IPLx) 10 --- 29 ---
--

47b Asynchronous Input Hold Time (HALT) 20 --- 12 ---

Asynchronous Input Hold Time (BERR, DSACKx) 20 --- 22 ---
A~nchronous lnj:>_ut Hold Time (IPLx) 20 --- 34 ---

48
4 --- --

DSACKx = Asserted to BERR Asserted --- 35 --- 10
--- --
DSACKx Asserted to HALT Asserted --- 35 --- 18

53 Data Out Hold from Clock Hig_h 0 --- 7* ---
-

55 RW Asserted to Data Bus lm_Qedance Change 40 --- 17 ---
56 RESET Pulse Width (Reset Instruction) 512 --- 512 ---
57 BERR Ne_g_ated to HALT Ne_g_atedi_Rerunl 0 --- -3 ---

5810 ---
BGACK = Ne_g_ated to Bus Driven 1 --- 1 ---

5910 -
BG = Negated to Bus Driven 1 --- 1 ---

MC68020 electrical specifications reprinted courtesy Motorola, Inc.

Unit

Clks

Clks

Clks

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

Clks

ns

Clks

Clks

Timing Comparisons C·S

NOTES:

1. This number can be reduced to 5 nanoseconds if strobes have equal loads.

2. If the asynchronous setup time (#47) requirements are satisfied, the DSACKx low to data setup time (#31)
and DSACKx low to BERR lowsetuptime (#48)can be ignored. The data must only satisfy the data-in to
clock low setup time (#27) forthe following clock cycle, SERR mustonlysatisfythe late BERR low to clock
low setup time (#27 A) forthe following clock cycle.

3. This parameter specifies the maximum allowable skew between DSACKOto DSACK1 asserted or DSACK1
to DSACKO asserted, specification #47 must be met by DSACKO or DSACK1.

4. In the absence of DSACKx, BERR is an asynchronous input using the asynchronous input setup time (#47).

5. DBEN may stay asserted on consecutive write cycles.

6. Actual valuedependsontheclock inputwaveform.

7. This isa new specification that indicates the minimum high time for ECS and OCS in the event of an
internal cache hit followed immediately by a cache miss or operand cycle.

8. This isa new s~cification that guarantees operation with the MC68881, which specifies a minimum time for
DS negated to AS asserted (specification #13A). Without this specification, incorrect interpretation of
specifications #9A and #15 would indicate that the MC68020 does not meetthe MC68881 requirements.

9. This isa new specification thatallowsa system designed to guarantee data hold times on the output side
of data buffers that have output enable signa Is generated with DBEN.

10. These a re new specifications that a I low system designers tog ua ra ntee that an alternate bus master has
stopped driving the bus when the MC68020 regains control of the bus after an arbitration sequence.

HP 64410C/D NOTES:

1. A"*" following a timing value means that the value can be reduced by 2.5 ns if it is a Min spec, or reduced
by 6 ns if it isa Max spec if the target clock input into the emulator is not buffered. Timing values followed
by"**" can be reduced by 5 ns if the input clock is not buffered. A switch setting inside the emulation pod
selects whether the buffered version of the input clock is used by the emulation CPU.

C-6 Timing Comparisons

MC68020RC16/HP 64410 Timing Comparisons

10.5 AC ELECTRICAL SPECIFICATIONS -- CLOCK INPUT

16.67 MHz HP64410

Num Characteristic Min Max Min Max Unit

Fre_g_uenc;y_ of O_Q_eration 8 16.67 12.5 25 MHz

1 (y_cle Time 60 125 40 80 ns

2,3 Clock Pulse Width 24 95 15 59 ns

4,5 Rise and Fall Times -- 5 --- 4 ns

MC68020 electrical specifications reprinted courtesy Motorola, Inc.

10.6 AC ELECTRICAL SPECIFICATIONS -- READ AND WRITE CYCLES

(Vee = 5.0 Vdc ± 5%;GND = 0 Vdc; TA= Oto 70 C)

16.67 MHz HP64410

Num Characteristic Min Max Min Max Unit

6 Clock High to Address Valid 0 30 10* 46* ns
--

Clock Hl.9.h to FC/Size/RMC Valid 0 30 11 * 47* ns
--

6A Clock Hl.9.h to ECS, OCS Asserted 0 2'0 10* 35* ns
--

7 Clock High to Add ress/Data/FC/RMC/Size 0 60 7* 50* ns

Hi_g_h lm_Q_edance

8 Clock High to Address Invalid 0 --- 10* --- ns

Clock Hi_g_h to FC/Size/RMC Invalid 0 --- 11 * --- ns
--

9 Clock Low to AS, DS Asserted 3 30 13* 41* ns

9A1 AS to DS Assertion_{_ReadlJ..SkewJ -15 15 -8 -12 ns
-

10 ECS Width Asserted 20 --- 12 --- ns

10A OCS Width Asserted 20 --- 1 2 --- ns

10B7 --
ECS, OCS Width Ne_g_ated 15 --- 7 --- ns

11 6 -
Address Valid to AS 15 --- 5 --- ns

-
Asserted (and DS Asserted, Read)

-- -
FC/Size/RMC Valid to AS 15 --- 4 --- ns

-
Asserted (and DS Asserted, Read)

--
1 2 Clock Low to AS, DS Ne_g_ated 0 30 10* 41* ns

--
12A Clock Low to ECS/OCS Negated 0 30 10* 41* ns

Timing Comparisons C-7

10.6 AC ELECTRICAL SPECIFICATIONS -- READ AND WRITE CYCLES (Cont'd)

(Vee= 5.0Vdc ±5%;GND = OVdc; TA= Oto70C)

16.67 MHz HP64410

Num Characteristic Min Max Min Max Unit
--

13 AS, DS Negated to Address Invalid 15 --- 0 --- ns

AS, DS Ne_g_ated to FC/Size/RMClnvalid 15 --- 0 --- ns
- -

14 AS (and DS, Read) Width Asserted 100 --- 97 --- ns
-

14A DS Width Asserted, Write 40 --- 37 --- ns

15 AS, DS Width Ne_g_ated 40 --- 40 --- ns

15A8 - -
DS N~ated to AS Asserted 35 --- 31 --- ns

16 Clock High to AS/DS/RW/DBEN --- 60 --- 61* ns

Hi_g_h lm_12_edance

176
-

AS, DS Ne_g_ated to RW Hi_g_h 15 --- 7 --- ns
-

18 Clock Hi_g_h to RW High 0 30 10* 41* ns
-

20 Clock Hi_g_h to RW Low 0 30 10* 41* ns

21 6 - -
RW Hi_g_h to AS Asserted 15 --- 8 --- ns

226 RW Low to DS Asserted{Writel 75 --- 68 --- ns

23 Clock Hi_g_h to Data Out Valid --- 30 --- 45* ns

256 AS, DS N~ated to Data Out Invalid 15 --- 5 --- ns

25A9 - --
DS Ne_g_ated to DBEN Ne_g_ated (Write) 15 --- 5 --- ns

266 Data Out Valid to DS Asserted (Writel 15 --- 3 --- ns

27 Data-In Valid to Clock Lowi_Data SetuQ}_ 5 --- 10* --- ns

27A Late BERR Asserted to Clock Low (Setu_Q_ Time) 20 --- 15** --- ns
--

Late HALT Asserted to Clock Low (Setup Time) 20 --- 8 --- ns
-- -----

28 AS, DS Ne_g_ated to DSACKx/BERR N~ated 0 80 0 75 ns
-- --
AS, DS Ne_g_ated to HALT N~ated 0 80 0 85 ns
-- --
AS, DS Ne_g_ated to AVEC Ne_g_ated 0 80 0 57 ns
-

29 DS Ne_g_ated to Data-In Invalid (Data-In Hold Time) 0 --- 6 --- ns

29A DS Ne_g_ated to Data-lni_Hi_g_h Impedance) --- 60 --- 46 ns

31 2 ---
DSACKx Asserted to Data-In Valid --- 50 --- 55 ns

31A3 --- ---
DSACKx Asserted to DSACKx Valid --- 15 --- 7 ns

(DSACKx Asserted Skew)

--
32 RESET ln_12_ut Transition Time --- 1.5 --- 1.5 Clks

33 Clock Low to BG Asserted 0 30 0 42* ns

34 Clock Low to BG Negated 0 30 0 44* I ns

C-8 Timing Comparisons

10.6 AC ELECTRICAL SPECIFICATIONS -- READ AND WRITE CYCLES (Cont'd)

(Vee = 5.0 Vdc ± 5%; GND = 0 Vdc; TA= Oto 70 C)

16.67 MHz HP64410

Num Characteristic Min Max Min Max

35 BR Asserted to BG Asserted_(RMC Not Assertedl 1.5 3.5 1.5 3.5
-

37 BGACK Asserted to BG N~ated 1.5 3.5 1 .5 3.5
-

37A BGACK Asserted to BR Ne__g_ated 0 1.5 0 1.5

39 BG Width Ne__g_ated 90 --- 57 ---
-

39A BG Width Asserted 90 --- 57 ---
40 Clock High to DBEN Asserted_(Readl 0 30 10* 41*

--
41 Clock Low to DBEN Ne__g_ated (Read) 0 30 10* 41*

42 Clock Low to DBEN Asserted (Write) 0 30 10* 41*

43 Clock H[g_h to DBEN Ne__g_atedJ_Writel 0 30 10* 41*

446 RW Low to DBEN Asserted1Writel 15 --- 8 ---

45 5 DBEN Width Asserted (Read) 60 --- 67 ---
--
DBEN Width Asserted (Write) 120 --- 127 ---

46 RW Width Asserted(_Write or Read_}_ 150 --- 157 ---
47a Asynchronous Input Setup Time (HALT) 5 --- 7 ---

Asynchronous Input Setup Time (SERR, DSACKx) 5 --- 17 ---

-
A~chronous ln_Q_ut Setu_Q_ Time (IPLx) 5 --- 29 ---

--
47b Asynchronous Input Hold Time (HALT) 15 --- 12 ---

Asynchronous Input Hold Time (SERR, DSACKx) 15 --- 22 ---
As_ynchronous ln_Q_ut Hold Time (IPLx) 15 --- 34 ---

484 --- --
DSACKx Asserted to SERR Asserted --- 30 --- 10
--- --
DSACKx Asserted to HALT Asserted --- 30 --- 18

53 Data Out Hold from Clock H[g_h 0 --- 7* ---

55 RW Asserted to Data Bus lm_Q_edance Chan__g_e 30 --- 17 ---
--

56 RESET Pulse Width (Reset Instruction) 512 --- 512 ---
57 SERR Ne_g_ated to HALT Ne_g_ated(_Rerunl 0 --- -3 ---

5810 ---
BGACK Ne_g_ated to Bus Driven 1 --- 1 ---

5910 -
BG Negated to Bus Driven 1 --- 1 ---

MC68020 electrical specifications reprinted courtesy Motorola, Inc.

Unit

Clks

Clks

Clks

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

Clks

ns

Clks

Clks

Timing Comparisons C-9

NOTES:

1. This number can be reduced to 5 nanoseconds if strobes have equal loads.

2. If the asynchronous setup time (#47) requirements are satisfied, the DSACKx low to data setup time (#31)
and DSACKx low to SERR low setup time (#48) can be ignored. The data must only satisiY.1b_e data-in to
clock low setup time (#27) for the following clock cycle, SERR mustonlysatisfythe late SERR low to clock
low setup time (#27 A) for the following clock cycle.

3. This parameter specifies the maximum allowable skew between DSACKOto DSACK1 asserted or DSACK1
to DSACKO asserted, specification #47 must be met by DSACKO or DSACK1.

4. In the absence of DSACKx, SERR is an asynchronous input using the asynchronous input setup time (#47).

5. DBEN may stay asserted on consecutive write cycles.

6. Actual valuedependsontheclock inputwaveform.
- -

7. This isa new specification that indicates the minimum high time for ECS and OCS in the event of an
internal cache hit followed immediately by a cache miss or operand cycle.

8. Thi~a new specification that guarantees operation with the MC68881, which specifies a minim um time
for DS negated to AS asserted (specification #13A). Withoutthisspecification, incorrect interpretation of
specifications #9Aand #15 would indicate thatthe MC68020 does not meetthe MC68881 requirements.

9. This is a new specification that allows a system designed to guarantee data hold times on the output side
of data buffers that have output enable signals generated with DBEN.

10. These are new specifications that allow system designers to guarantee that an alternate bus master has
stopped driving the bus when the MC68020 regains control of the bus after an arbitration sequence.

HP644100DNOTES:

1. A"*" following a timing value means that the value can be reduced by 2.5 ns if it is a Min spec, or reduced
by 6 ns if it isa Max spec if the target clock input into the emulator is not buffered. Timing values followed
by"**" can be reduced by 5ns ifthe input clock is not buffered. A switch setting inside the emulation pod
selects the buffered or unbuffered version of the target clock to be used by the emulation CPU.

C-10 Timing Comparisons

MC68020RC20/HP 64410 Timing Comparisons

10.5 AC ELECTRICAL SPECIFICATIONS-- CLOCK INPUT

20MHz HP64410

Num Characteristic Min Max Min Max Unit

Fre_g_uenc;_y_of O_Qeration 12.5 20 12.5 25 MHz

1 C_y_cle Time 50 80 40 80 ns

2,3 Clock Pulse Width 20 54 15 59 ns

4,5 Rise and Fall Times --- 5 --- 4 ns

MC68020 electrical specifications reprinted courtesy Motorola, Inc.

10.6AC ELECTRICAL SPECIFICATIONS-- READ AND WRITE CYCLES

(Vee= 5.0Vdc ±5%;GND = OVdc; TA= Oto70C)

20MHz HP64410

Num Characteristic Min Max Min Max Unit

6 Clock High to Address Valid 0 25 10* 46* ns

Clock Hi_g_h to FC/Size/RMC Valid 0 25 11* 47* ns
--

6A Clock HLg_h to ECS, OCS Asserted 0 15 9* 35* ns
--

7 Clock High to Address/Data/FC/RMC/Size 0 50 6* 50* ns

High lm_Qedance

8 Clock High to Address Invalid 0 --- 10* --- ns

Clock H!_g_h to FC/Size/RMC Invalid 0 --- 11* --- ns
--

9 Clock Low to AS, DS Asserted 3 25 13* 41* ns

9A1 AS to DS Assertioni_Read_l_(Skewl -10 10 -8 -12 ns
-

10 ECS Width Asserted 15 --- 7 --- ns
-

10A OCS Width Asserted 15 --- 7 --- ns

1087 --
ECS, OCS Width Ne_g_ated 10 --- 2 --- ns

11 6 -
Address Valid to AS 10 --- 0 --- ns

-
Asserted (and DS Asserted, Read)

-- -
FC/Size/RMC Valid to AS 10 --- 0 --- ns

-
Asserted (and DS Asserted, Read)

12 Clock Low to AS, DS Ne_g_ated 0 25 11* 41* ns
--

12A Clock Low to ECS/OCS Negated 0 25 11* 41* ns

Timing Comparisons C-11

10.6 AC ELECTRICAL SPECIFICATIONS -- READ AND WRITE CYCLES (Cont'd)

(Vee= 5.0Vdc ±5%;GND = OVdc; TA= Oto70C)

20MHz HP64410

Num Characteristic Min Max Min Max
--

13 AS, DS Negated to Address Invalid 10 --- 0 ---
-- --
AS, DS Ne_g_ated to FC/Size/RMC Invalid 0 --- 0 ---
- -

14 AS (and DS, Read) Width Asserted 85 --- 77 ---
-

14A DS Width Asserted, Write 38 --- 27 ---

15 AS, DS Width Ne_g_ated 38 --- 30 ---

15A8 - -
DS Ne_g_ated to AS Asserted 30 --- 23 ---

16 Clock High to AS/DS/RW/DBEN --- 50 --- 61*

High lm~edance

176 -
AS, DS Ne_g_ated to RW Hig_h 10 --- 2 ---

-
18 Clock Hig_h to RW Hig_h 0 25 10* 41*

-
20 Clock Hl.g_h to RW Low 0 25 10* 41*

21
6 - -

RW Hl.g_h to AS Asserted 10 --- 3 ---
226 RW Low to DS Assertedi_Writel 60 --- 53 ---
23 Clock Hig_h to Data Out Valid --- 25 --- 45*

256 --
AS, DS Negated to Data Out Invalid 10 --- 0 ---

25A9 - --
DS Ne_Qated to DBEN Ne_gated (Write) 10 --- 0 ---

266
Data Out Valid to DS Assertedi_Writel 10 --- 0 ---

27 Data-In Valid to Clock Low (Data Setu..Q)_ 5 --- 10** ---
--

27A Late BERR Asserted to Clock Low (Setup Time) 15 --- 15** ---

Late HALT Asserted to Clock Low (Setu_Q_ Time) 15 --- 8 ---
-- -----

28 AS, DS Negated to DSACKx/BERR Negated 0 65 0 55
-- --
AS, DS Negated to HALT Negated 0 65 0 65
-- --
AS, DS Ne_g_ated to AVEC Negated 0 65 0 47
-

29 DS Negated to Data-In Invalid (Data-In Hold Time) 0 --- 6 ---
29A DS Ne_g_ated to Data-ln_{.Hig_h lm..Q.edanctl --- 50 --- 46

31 2 ---
DSACKx Asserted to Data-In Valid --- 43 --- 45

31A3 ---
DSACKx Asserted to DSACKx Valid --- 10 --- 7

(DSACKx Asserted Skew)
--

32 RESET ln_g_ut Transition Time --- 1 .5 --- 1.5

33 Clock Low to BG Asserted 0 25 0 42*

34 Clock Low to BG Negated 0 25 0 44*

C-12 Timing Comparisons

Unit

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

Clks

ns

ns

10.6 AC ELECTRICAL SPEC! FICATIONS -- READ AND WRITE CYCLES (Cont'd)

(Vee= 5.0Vdc ±5%;GND = OVdc; TA= Oto70C)

20 MHz HP64410

Num Characteristic Min Max Min Max

35 BR Asserted to BG Assertedl.RMC Not Assertedl 1.5 3.5 1.5 3.5
-- -

37 BGACK Asserted to BG Ne_g_ated 1.5 3.5 1.5 3.5
-- -

37A BGACK Asserted to BR Ne_g_ated 0 1.5 0 1.5

39 BG Width Ne_g_ated 75 --- 57 ---
-

39A BG Width Asserted 75 --- 57 ---
40 Clock Hig_h to DBEN Asserted_(Readl 0 25 10* 41*

41 Clock Low to DBEN Ne_g_ated (Read) 0 25 10* 41*
--

42 Clock Low to DBEN Asserted (Write) 0 25 10* 41*

43 Clock Hig_h to DBEN N~ated_(Writel 0 25 10* 41*

446 RW Low to DBEN AssertedJ.Writel 10 --- 3 ---
45 5 DBEN Width Asserted (Read) 50 --- 42 ---

--
DBEN Width Asserted (Write) 100 --- 92 ---

46 RW Width Asserted_(Write or Readl 125 --- 127 ---
--

47a Asynchronous Input Setup Time (HALT) 5 --- 7* ---

Asynchronous Input Setup Time (BERR, DSACKx) 5 --- 17 ---
-

A~nchronous ln_Q_ut Setu_Q_ Time (IPLx) 5 --- 29 ---
--

47b Asynchronous Input Hold Time (HALT) 15 --- 12 ---

Asynchronous Input Hold Time (BERR, DSACKx) 15 --- 22 ---
A~nchronous ln_Q_ut Hold Time (IPLx) 15 --- 34 ---

484 --- --
DSACKx Asserted to BERR Asserted --- 20 --- 10
--- --
DSACKx Asserted to HALT Asserted --- 20 --- 18

53 Data Out Hold from Clock Hig_h 0 --- 7 ---
-

55 RW Asserted to Data Bus lm_Q_edance Chan_g_e 25 --- 17 ---
56 RESET Pulse Width (Reset Instruction) 512 --- 512 ---
57 BERR Ne_g_ated to HALT Ne_g_ated_(RerunJ 0 --- -3 ---

5810 ---
BGACK N~ated to Bus Driven 1 --- 1 ---

5910 -
BG Negated to Bus Driven 1 --- 1 ---

MC68020 electrical specifications reprinted courtesy Motorola, Inc.

Unit

Clks

Clks

Clks

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

Clks

ns

Clks

Clks

Timing Comparisons C-13

NOTES:

1. This number can be reduced to 5 nanoseconds if strobes have equal loads.

2. If the asynchronous setup time (#47) requirements are satisfied, the DSACKx low to data setup time (#31)
and DSACKx low to BERR lowsetuptime (#48) can be ignored. The data must only satisfy the data-in to
clock low setup time (#27) for the following clock cycle, BERR must only satisfy the late BERR low to clock
low setup time (#27A) for the following clock cycle.

3. This parameterspecifiesthe maximum allowable skew between DSACKOto DSACK1 asserted or DSACK1
to DSACKO asserted,specification #47 must be met by DSACKO or DSACK1.

4. In the absence of DSACKx, BERR is an asynchronous input using the asynchronous input setup time (#47).

5. DBEN may stay asserted on consecutive write cycles.

6. Actual value depends on the clock inputwaveform.

7. This isa new specification that indicates the minimum high time for ECS and OCS inthe event of an
internal cache hit followed immediately by a cache miss or operand cycle.

8. This isa new s~cification that guarantees operation with the MC68881, which specifies am inimum time for
DS negated to AS asserted (specification #13A). Withoutthisspecification, incorrect interpretation of
specifications #9Aand #15 would indicate that the MC68020 does not meetthe MC68881 requirements.

9. Th is is a new specification that a I lows a system designed tog uara ntee data hold ti mes on the output side
of data buffers that have output enable signals generated with DBEN.

10. These are new specifications that allow system designers to guarantee that an alternate bus master has
stopped driving the bus when the MC68020 regains control of the bus after an arbitration sequence.

HP 6441000 NOTES:

1. A"*" following a timing value means that the value can be reduced by 2.5ns if it isa Min spec, or reduced by
6ns if it isa Max spec if the target clock input to the emulator is not buffered. Timing values followed by
"**"can be reduced by 5ns if the input clock is not buffered. A switch setting inside the emulation pod
selects whether the buffered or unbuffered version of the target clock is used by the emulation CPU.

C-14 Timing Comparisons

MC68020RC25/HP 64410 Timing Comparisons

10.5 AC ELECTRICAL SPECIFICATIONS-- CLOCK INPUT

25MHz HP64410***

Num Characteristic Min Max Min Max Unit

Fr~uenc;y_of O_Q_eration 12.5 25 12.5 25 MHz

1 <:;ycle Time 40 80 40 80 ns

2,3 Clock Pulse Width 15 59 15 59 ns

4,5 Rise and Fall Times --- 4 --- 4 ns

MC68020 electrical specifications reprinted courtesy Motorola, Inc.

10.6 AC ELECTRICAL SPECIFICATIONS -- READ AND WRITE CYCLES

(Vee= 5.0Vdc ±5%;GND = OVdc; TA= Oto70C)

25MHz HP64410***

Num Characteristic Min Max Min Max Unit

6 Clock High to Address Valid 0 25 10* 46* ns
--

Clock Hl.9.h to FC/Size/RMC Valid 0 25 11 * 47* ns
--

6A Clock Hl.9.h to ECS, OCS Asserted 0 15 10* 35* ns
--

7 Clock High to Address/Data/FC/RMC/Size 0 40 7* SO* ns

H~h lm_.12_edance

8 Clock High to Address Invalid 0 --- 10* --- ns

Clock Hl.9.h to FC/Size/RMC Invalid 0 --- 11* --- ns
--

9 Clock Low to AS, DS Asserted 3 20 14* 41* ns

9A1 AS to DS Assertionl_Read_liSkew_l -10 10 -8 -12 ns
-

10 ECS Width Asserted 10 --- 7 --- ns
-

10A OCS Width Asserted 10 --- 7 --- ns

1087 --
ECS, OCS Width N~ated 5 --- 2 --- ns

11 6 -
Address Valid to AS 5 --- 0 --- ns

-
Asserted (and DS Asserted, Read)

-- -
FC/Size/RMC Valid to AS 5 --- 0 --- ns

-
Asserted (and DS Asserted, Read)

--
12 Clock Low to AS, DS Ne_g_ated 0 20 11 * 41* ns

--
12A Clock Low to ECS/OCS Negated 0 20 11 * 41* ns

Timing Comparisons C-15

10.6 AC ELECTRICAL SPECIFICATIONS -- READ AND WRITE CYCLES (Cont'd)

(Vee= 5.0Vdc ±5%;GND = OVdc; TA= Oto70C)

25MHz HP64410***

Num Characteristic Min Max Min Max
--

13 AS, DS Negated to Address Invalid 5 --- 0 ---
-- --
AS, DS N~ated to FC/Size/RMC Invalid 5 --- 0 ---
- -

14 AS (and DS, Read) Width Asserted 65 --- 102 ---
-

14A DS Width Asserted, Write 30 --- 67 ---

15 AS, DS Width Ne_g_ated 30 --- 27 ---
15A8 - -

DS Ne_g_ated to AS Asserted 25 --- 23 ---

16 Clock High to AS/DS/RW/DBEN --- 40 --- 61*

Hig_h l~edance

176 -
AS, DS Ne~ated to RW Hlg_h 5 --- 2 ---

-
18 Clock Hlg_h to RW Hj_g_h 0 20 10* 41 *

-
20 Clock Hlg_h to RW Low 0 20 10* 41*

21 6 - -
RW H lg_h to AS Asserted 5 --- 2 ---

226 RW Low to DS Assertedi_Writaj_ 45 --- 42 ---
23 Clock High to Data Out Valid --- 25 --- 45*

256 AS, DS Ne_g_ated to Data Out Invalid 5 --- 0 ---
25A9 - --

DS Ne_g_ated to DBEN Ne~ated (Write) 5 --- 0 ---

266 Data Out Valid to DS Asserted_{_Writel 5 --- 0 ---

27 Data-In Va I id to Clock Low j_Data Setu_Q}_ 5 --- 10** ---
--

27A Late BERR Asserted to Clock Low (Setup Time) 10 --- 15** ---

Late HALT Asserted to Clock Low (Setu_Q_ Time) 10 --- 8 ---
-- -----

28 AS, DS Negated to DSACKx/BERR Negated 0 50 0 75
-- --
AS, DS Negated to HALT Negated 0 50 0 85
-- --
AS, DS Ne_g_ated to AVEC Ne_g_ated 0 50 0 57
-

29 DS Ne_g_ated to Data-In Invalid (Data-In Hold Time) 0 --- 6 ---

29A DS Ne_g_ated to Data-ln_{_Hlg_h lm_Q_edancel --- 40 --- 46

31 2 ---
DSACKx Asserted to Data-In Valid --- 32 --- 27

31A3 --- ---
DSACKx Asserted to DSACKx Valid --- 10 --- 7

(DSACKx Asserted Skew)
--

32 RESET Input Transition Time --- 1.5 --- 1.5

33 Clock Low to BG Asserted 0 20 0 42*

34 Clock Low to BG Negated 0 20 0 44*

C-16 Timing Comparisons

Unit

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

Clks

ns

ns

10.6 AC ELECTRICAL SPECIFICATIONS -- READ AND WRITE CYCLES (Cont'd)

(Vee= 5.0Vdc ±5%;GND = OVdc; TA= Oto70C)

25MHz HP64410***

Num Characteristic Min Max Min Max

35 BR Asserted to BG Asserted_{_RMC Not Asserted_2. 1.5 3.5 1.5 3.5
--- -

37 BGACK Asserted to BG Ne_g_ated 1.5 3.5 1.5 3.5
--- -

37A BGACK Asserted to BR Ne_g_ated 0 1.5 0 1.5

39 BG Width Negated 60 --- 57 ---

39A BG Width Asserted 60 --- 57 ---
40 Clock H[g_h to DBEN Asserted_{.Read_2. 0 20 10* 41 *

41 Clock Low to DBEN Ne_g_ated (Read) 0 20 10* 41*
--

42 Clock Low to DBEN Asserted (Write) 0 20 10* 41 *

43 Clock H[g_h to DBEN N~ated_{_Write) 0 20 10* 41*

446 RW Low to DBEN Asserted{Writel 5 --- 3 ---
45 5 DBE N Width Asserted (Read) 40 --- 77 ---

DBEN Width Asserted (Write) 80 --- 117 ---
46 RW Width Assertedj_Write or Read_2. 100 --- 137 ---

47a Asynchronous Input Setup Time (HALT) 5 --- 7 ---

Asynchronous Input Setup Time (BERR, DSACKx) 5 --- 17 ---
-

As~nchronous ln_Q_ut Setu_Q_ Time (IPLx) 5 --- 29 ---
--

47b Asynchronous Input Hold Time (HALT) 10 --- 12 ---

Asynchronous Input Hold Time (BERR, DSACKx) 10 --- 22 ---

A~nchronous ln_Q_ut Hold Time (IPLx) 10 --- 34 ---
484 --- --

DSACKx Asserted to BERR Asserted --- 15 --- 10
--- --
DSACKx Asserted to HALT Asserted --- 15 --- 18

53 Data Out Hold from Clock Hl.g_h 0 --- 7* ---
-

55 RW Asserted to Data Bus lm_Q_edance Chan_g_e 20 --- 17 ---
--

56 RESET Pulse Width (Reset Instruction) 512 --- 512 ---
57 BERR Ne_g_ated to HALT Ne_g_ated_{_Rerunl 0 --- -3 ---

5810 ---
BGACK Ne_g_ated to Bus Driven 1 --- 1 ---

5910 -
BG Negated to Bus Driven 1 --- 1 ---

MC68020 electrical specifications reprinted courtesy Motorola, Inc.

Unit

Cl ks

Cl ks

Cl ks

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

Cl ks

ns

Cl ks

Cl ks

Timing Comparisons C-17

NOTES:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

This number can be reduced to 5 nanoseconds if strobes have equal loads.

If the asynchronous setup time (#47) requirements are satisfied, the DSACKx low to data setup time (#31)
and DSACKx low to BERR low setup time (#48) can be ignored. Thedata must only satisfy the data-into
clock low setup time (#27) for the following clock cycle, BERR mustonlysatisfythe late BERR low to clock
low setup time (#27 A) for the following clock cycle.

--- ---
This parameter specifies the maximum allowable skew between DSACKOto DSACK1 asserted or DSACK1
to asserted, specification #47 must be met by DSACKO or DSACK1.

In the absence of DSACKx, BERR is an asynchronous input using the asynchronous input setup time (#47).

DBEN may stay asserted on consecutive write cycles.

Actual valuedependsontheclock inputwaveform.

This isa new specification that indicates the minimum high time for ECS and OCS in the event ofan
internal cache hit followed immediately by a cache miss or operand cycle.

Thi~a new specification that guarantees operation with the MC68881, which specifies a minimum time
for DS negated to AS asserted (specification # 13A). Without th is specification, incorrect interpretation of
specifications #9A and #15 would indicate thatthe MC68020 does not meetthe MC68881 requirements.

This is a new specification that allows a system designed to guarantee data hold times on the output side
of data buffers that have output enable sig na Is generated with DBE N.

These are new specifications that allow system designers to guarantee that an alternate bus master has
stopped driving the bus when the MC68020 regains control of the bus after an arbitration sequence.

HP 6441 OOD NOTES:

1. A"*" following a timing value means that the value can be reduced by 2.5ns if it isa Min spec, or reduced by
6ns if it isa Max spec if the target clock input into the emulator is not buffered. Timing values followed by
"**"can be reduced by Sns if the input clock is not buffered. A switch setting inside the emulation pod
selects whether the buffered or unbuffered version of the target clock is used by the emulation CPU.

When the emulator is operated with a target clock of 25Mhz, the emulation hardware guarantees that one
wait-state gets added into the emulation CPU's bus cycle. The timing values in the above tables reflect this
additional wait-state.

C-18 Timing Comparisons

Index

A absolute files, loading 5-24
accessing the emulation system 3-12
address range overlays 4-15
address specification, custom register 7-4
analysis with cache enabled 5-8
are you there function, how it works 9-3

B BERR, enabling/disabling 5-11
block size 4-14
blocking target BERR during emulation memory cycles 4-30
break function, breaking into the monitor 6-3

C cache control 5-7
cache, usingthe 5-7
card cage access cover, removing the 2-6
clock rates, CPU 4-29
command file, emulation configuration sample 3-16
command modules, emulation monitor 6-6
command scanner 6-6
compiling and linking the program modules 3-9
compiling the demonstration programs 3-9
configuration file name 4-32
configuring simulated I/O 8-1
connecting the emulator pod to your target system 2-10
continuing target system interrupts while in the emulation
monitor 6-11
controlling flow of data and code 4-12
coprocessor configuration questions 7 -13
coprocessor copy routine 7-11
coprocessor register buffer, emulation monitor 7-9
copying from target memory, how it works 9-16
copying the demonstration programs to your subdirectory 3-8
copying to target system memory, how it works 9-18
CPU clock rates greater than 20 MHz 4-29

Index 1-1

1-2 Index

cpu clock source, selecting 4-28
cpu registers, modifying, how it works 9-20
custom coprocessor, register set display specification 7-5
custom coprocessors, modifying configuration for 4-9
custom register address specification 7-4
custom register format file 7-3
custom register format file, specifying 4-10
custom register name specification 7-4
custom register size specification 7-4
custom registers, emulation monitor changes 7-9
custom registers, internal FPU 7-5
customizing the emulation monitor 6-7

D default response to emulation configuration questions 4-3
deleting memory map entries 4-26
displaying cpu registers, how it works 9-19
displaying global symbols 3-18
displaying local symbols, example 3-19
displaying memory 3-20
displaying registers 3-23
displaying target memory, how it works 9-15
dividing the processor address space 4-12
DMA enable/disable 5-12
DMA transfers into emulation memory 4-27
DMA transfers, enabling 4-27
DSACK signal problems,

early removal ofDSACK signals 5-5
isolating the problem 5-5
open collector drivers on DSACK line 5-4
target system 5-4

DSACK signals, using 5-2
DSACK, interlocking emulation memory and target 5-2
DSACK, interlocking emulation with target 4-29

E emulation configuration questions 3-14
emulation memory 4-15
emulation memory breakpoins with cache enabled 5-9
emulation memory display operations 4-15
emulation memory load operations 4-15
emulation monitor description 6-3
emulation monitor entry point routines 6-4

emulation monitor changes for custom coprocessors 7-9
emulation monitor flowchart 6-17
emulation monitor functions, enabling 4-5
emulation monitor memory requirements 4-15
emulation monitor, coprocessor register buffer 7-9
emulation monitor, loading 5-18, 6-15
emulation pod configuration, modifying 4-26
emulation system components, example system 3-2
emulator pod cables, connecting to the emulator boards 2-7
emulator pod, connecting to the target system 2-10
emulator use ofINT7,enabling 4-30 ,
emulator use of software breakpoints, enabling 4-7
enabling the internal 68881 FPU 4-8
ending the emulation session 3-33
ending the mapping session 4-26
entering mapper blocks 4-15
entering mapper blocks, syntax 4-16
entry point routines, emulation monitor 6-4
error messages A-1
examples, emulation system used for 3-2
exception vector table 6-3
EXCEPrION_ENTRY emulation monitor routine 6-5
executing a software breakpoint, how it works 9-8
external clock 4-28
external hardware features of the instrumentation cardcage 2-2

F FPU coprocessor id, selecting 4-9

G guarded access messages, unexpected 5-19
guarded memory access 4-4

H hardware installation instructions 2-5
how does a simualted interrupt function 8-4

IJO operations 4-15
illegal conditions 4-4
initializing and configuring your measurement system 3-4
inspecting the equipment 2-4
installing boards into the card cage 2-8
installing hardware, instructions 2-5
installing software 2-13

Index 1-3

1-4 Index

installing software updates 2-13, 5-2
installing your emulation system hardware 2-5
instructions on installing hardware 2-5
interlocking emulation memory DSACK and target DSACK 5-2
intemalcpuclock 4-28
internal FPU, custom registers 7-5
ipend, enabling target line during emulator breaks 4-30

J JSR_ENTRY emulation monitor routine 6-5

L leading zeros 4-17
linker listing file, example 6-14
linking modules 3-9
linking the emulation monitor 6-15
loading emulation memory 3-16
loading the emulation monitor 5-18, 6-15

M making a subdirectory for your 68020 project 3-2
mapper blocks, syntax for entering 4-16
mappingdisplaysoftkey labels 4-13
mapping memory 4-12
maximum clock rate 4-28
memory access timing issues 5-23
memory configuration modification 4-11
memory configuration review 4-11
memory default 4-14
memory management units, systems with 5-22
memory map definition 4-13
memory map display entries 4-12
memory map example 4-20
memory requirements, emulation monitor 6-14
mmu MMU's, systems with 5-22
modify default memory 4-25
modifydefined_codes 4-22
Modify memory configuration? 4-11
modifying a memory configuration 4-10
modifying memory 3-21
modifying target memory, how it works 9-17
modifying the configuration file 4-3
modifying the cpu registers, how it works 9-20

modifying the default emulation configuration 3-12
modifying the emulation monitor exception vector table 6-9
modifying the emulation monitor to use simulated interrupts 8-10
modifying the memory map 4-22
modifying the MON_ALT_BUFFER table 7-10
modifyingtheMON_ALT_REGISTERStable 7-11
monitor message routine, example 6-12
MONITOR_ ENTRY emulation monitor routine 6-4

N name specification, custom register 7-4
naming the configuration file 4-32
NMI 6-3

0 on-chip cache enabling 4-31
operational overview 3-1

P partitioning the processor address space 4-13
pod cable, securing 2-10
preinstallation inspection 2-4
preparing the emulation system 3-12
preparing your program modules, getting started 3-7

R real-time/nonreal-time run mode, selecting 4-3
register set display specification, custom coprocessor 7-5
removing development environment card cage access cover 2-6
reserved address space, using function codes with 5-10
RESET_ENTRY emulation monitor routine 6-5
resetting into the monitor 4-6
resetting into the monitor 5-20
restoring the processor interrupt mask 6-11
run command after a soft.ware breakpoint, how it works 9-8
run command, how it works 9-4
run from ... until command, how it works 9-5
run from ... until command, using 5-16
run from command, how it works 9-4
run until command, how it works 9-5
running emulation 4-2
running from the transfer address 3-22

Index 1-5

1-6 Index

S safety considerations 1-1, 2-3
sample emulation configuration command file 3-16
securing the pod cable 2-10
sending messages from user program to emulator display 6-12
simint.c source file B-9
simulated I/O restrictions 8-3
simulatedl/O, configuring 8-1
simulated interrupts 8-4
simulated interrupts, modifying the monitor to use 8-10
single stepping, how it works 9-10
size specification, custom register 7-4
software breakpoint instruction number selection 4-7
software breakpoint, setting 9-7
software breakpoints 9-7
software breakpoints, using 3-29
SPECIAL_ENTRY emulation monitor routine 6-5
starting address of a block boundary 4-17
stepfunction, using 3-24
SWBK_ENTRYemulationmonitorroutine 6-5

T target memory 4-15
target memory accesses, wait states for 4-29
target memory breakpoints with cache enabled 5-9
target memory display operations 4-15
target memory load operations 4-15
target memory transfers, how it works 9-12
target memory, copying from, how it works 9-16
target memory, modifying, how it works 9-17
target system memory, copying to, how it works 9-18
target system program interrupt 6-3
target system, connecting to the emulator pod 2-10
timing issues, memory access 5-23
towers.c source file B-2
tracing processor activity 3-26
transfer address, running from 3-22

U unpacking the equipment 2-4
using breakpoints with cache enabled 5-8
using command files 3-33
using simulated I/O, example 3-31
using the emulation monitor 5-18
using the emulator 3-17
using the modify memory map command 4-22

V vector base register,use of 5-6

W wait states for target memory accesses 4-29
writing coprocessor copy routines 7-11

Index 1-7

Notes

1-8 Index

Fh:.IHEWLETT
~~PACKARD

64410-90903
E0688
Printed In U.S.A. 06/88

11111111111111111111111111
64410-90903

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	xBack

