
HP 64147

7750/51 Emulator
Terminal Interface

User’s Guide

HP Part No. 64147-97000
Printed in Japan
April 1995

Edition 1

Notice Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1995, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the
prior written consent of Hewlett-Packard Company. The information
contained in this document is subject to change without notice.

HP is a trademark of Hewlett-Packard Company.

UNIX is a registered trademark in United States and other countries,
licenced exclusively through X/Open Company Limited.

MELPS is a registered trademark of Mitsubishi Electric Corporation.

Hewlett-Packard Company
P.O.Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHT LEGEND. Use, duplication, or disclosure
by the U.S. Government is subject to restrictions as set forth in
subparagraph (C) (1) (ii) of the Rights in Technical Data and Computer
Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304
U.S.A. Rights for nonDOD U.S.Government Departments and
Agencies are as set forth in FAR 52.227-19(C)(1,2)

Printing History New editions are complete revisions of the manual. The date on the
title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was issued.
Many product updates and fixes do not require manual changes, and
manual corrections may be done without accompanying product
changes. Therefore, do not expect a one-to-one correspondence
between product updates and manual revisions.

Edition 1 64147-97000, April 1995

Using This Manual

This manual is designed to give you an introduction to the HP64147A
7750/51 Series Emulator. This manual will also help define how these
emulators differ from other HP 64700 Emulators.

This manual will:

give you an introduction to using the emulator

explore various ways of applying the emulator to accomplish
your tasks

show you emulator commands which are specific to the
7750/51 Series Emulator

This manual will not:

tell you how to use each and every emulator/analyzer
command (refer to the User’s Reference manual)

Organization

Chapter 1 An introduction to the HP 64147A 7750/51 Series emulator features
and how they can help you in developing new hardware and software.

Chapter 2 A brief introduction to using the HP 64147A 7750/51 Series Emulator.
You will load and execute a short program, and make some
measurements using the emulation analyzer.

Chapter 3 How to plug the emulator probe into a target system.

Chapter 4 Configuring the emulator to adapt it to your specific measurement
needs.

Appendix A Using a foreground monitor program; advantages and disadvantages.

Appendix B HP 64147A 7750/51 Series Emulator Specific Command Syntax

Contents

1 Introduction to the 7750/51 Series Emulator

Introduction . 1-1
Purpose of the 7750/51 Series Emulator 1-1

Supported Microprocessors 1-3
Features of the 7750/51 Series Emulator 1-3

Clock Speed . 1-3
Emulation memory . 1-4
Analysis . 1-4
Foreground or Background Emulation Monitor 1-5
Register Display and Modification 1-5
Single-Step . 1-6
Breakpoints . 1-6
Real Time Operation . 1-6
Coverage Measurements . 1-6
Reset Support . 1-6
Watch Dog Timer . 1-6
Easy Products Upgrades . 1-6

Limitations, Restrictions . 1-7
Clock Speed . 1-7
Access to Internal RAM . 1-7
Trace Internal RAM . 1-7
Step Command to Internal RAM 1-7
DMA Support . 1-7
Watch Dog Timer in Background 1-7
Step Command with Foreground Monitor 1-7
Step Command and Interrupts 1-8
Emulation Commands in Stop/Wait Mode 1-8
RDY/HOLD Input in Background Cycles 1-8
Accessing External Memory Area in SFR 1-8
High Speed Bus Mode . 1-8
RMPA Instruction . 1-8
Stack Address . 1-8
Evaluation Chip . 1-8

Contents-1

2 Getting Started

Introduction . 2-1
Before You Begin . 2-2
A Look at the Sample Program . 2-3
Using the Help Facility . 2-6

Becoming Familiar with the System Prompts 2-7
Initializing the Emulator . 2-8
Set Up the Proper Emulation Configuration 2-9

Set Up Emulation Conditions 2-9
Map Memory . 2-12

Transfer Code into Emulation Memory 2-13
From a Terminal in Standalone Configuration 2-13
Transparent Configuration 2-14

Looking at Your Code . 2-17
Familiarize Yourself with the System Prompts 2-19
Running the Sample Program 2-20
Stepping Through the Program 2-22
Easy Command Entry . 2-23

Using Macros . 2-23
Command Recall . 2-24

Tracing Program Execution . 2-24
Using Software Breakpoints . 2-27

Displaying and Modifying the Break Conditions 2-28
Defining a Software Breakpoint 2-28

Searching Memory for Strings or Numeric Expressions 2-29
Making Program Coverage Measurements 2-30
Trace Analysis Considerations 2-31

Restriction of the Analyzer 2-31

3 Using the 7750/51 Series Emulator In-Circuit

Installing the Target System Probe 3-2
Installing the Target System Probe 3-3

Running the Emulation from Target Reset 3-5

4 Configuring the 7750/51 Series Emulator

Types of Emulator Configuration 4-1
Emulation Processor to Emulator/Target System 4-1
Commands Which Perform an Action or Measurement 4-1
Coordinated Measurements . 4-2
Analyzer . 4-2

2-Contents

System . 4-2
Emulation Processor to Emulator/Target System 4-3

cf . 4-3
Memory Mapping . 4-16
Break Conditions . 4-19

Limitations and Considerations 4-21
Clock Speed . 4-21
Access to Internal RAM . 4-21
Trace Internal RAM . 4-21
Step Command to Internal RAM 4-21
DMA Support . 4-21
Watch Dog Timer in Background 4-21
Step Command with Foreground Monitor 4-21
Step Command and Interrupts 4-22
Emulation Commands in Stop/Wait Mode 4-22
RDY/HOLD Input in Background Cycles 4-22
Accessing External Memory Area in SFR 4-22
High Speed Bus Mode . 4-22
RMPA Instruction . 4-22
Stack Address . 4-22
Evaluation Chip . 4-22

A Using the Optional Foreground Monitor

Comparison of Foreground and Background Monitors A-1
Background Monitors . A-1
Foreground Monitors . A-2

An Example Using the Foreground Monitor A-3
Modify Location Declaration Statement A-3
Modify Chip Name Statement A-4
Configure the Emulator . A-4
Set a Stack Pointer . A-5
Load the Program Code . A-5

Limitations of Foreground Monitors A-6
Step Command . A-6
cim Command . A-6
Synchronized measurements A-6

B 7750/51 Series Emulator Specific Command Syntax

CONFIG_ITEMS . B-2
Summary . B-2
Syntax . B-2

Contents-3

Description . B-3
Examples . B-4
Related information . B-4

DISPLAY_MODE . B-5
Summary . B-5
Syntax . B-5
Description . B-5
Defaults . B-5
Related Information . B-6

ACCESS_MODE . B-6
Summary . B-6
Syntax . B-6
Description . B-6
Defaults . B-6
Related Information . B-6

ADDRESS . B-7
Summary . B-7
Syntax . B-7
Description . B-7
Examples . B-7

REGISTERS . B-8
Summary . B-8
<REG_NAME> . B-8
Related Commands . B-8

mx Command . B-9
Syntax . B-9
Summary . B-9

Illustrations

Figure 1-1. HP 64147 Emulator for MELPS 7750/51 Series 1-2
Figure 2-1. Connecting the Emulation Pod 2-2
Figure 2-2. Sample Program Listing 2-5
Figure 3-1. Installing the Probe to LCC80 Socket 3-3
Figure 3-2. Installing the Probe to SDIP64 Socket 3-4

4-Contents

1

Introduction to the 7750/51 Series Emulator

Introduction The topics in this chapter include:

Purpose of the 7750/51 Series Emulator

Features of the 7750/51 Series Emulator

Purpose of the
7750/51 Series
Emulator

The HP 64147A 7750/51 Series Emulator is designed to replace the
MELPS 7700/50/51 Series microprocessor in your target system so you
can control operation of the processor in your application hardware
(usually referred to as the target system). The emulator performs just
like the MELPS 7700/50/51 Series microprocessor, but is a device that
allows you to control the MELPS 7700/50/51 Series directly. These
features allow you to easily debug software before any hardware is
available, and ease the task of integrating hardware and software.

Note In this manual, MELPS 7700/50/51 Series is referred to as 7750/51
Series.

Introduction 1-1

Figure 1-1. HP 64147 Emulator for MELPS 7750/51 Series

1-2 Introduction

Supported
Microprocessors

To emulate processors of 7750/51 Series, you need to purchase
appropriate emulation pod and/or emulation processor. The HP 64147A
7750/51 Series emulator is provided with the following items.

HP 64146-61002 emulation pod with M37702S1BFP
emulation processor
SDIP64 socket

The HP 64147A 7750/51 Series emulator can emulate M37702M2/4/6,
M37703M2/4/6, M37702S1/4, M37703S1/4 and M37702M6L
processors by using default emulation pod, HP 64146-61002. This
emulation pod can be used with clock up to 25 MHz.

To emulate other processors by the HP 64147A 7750/51 emulator, you
need to purchase appropriate emulation pod and/or emulation
processor. Refer to the Processor Support List for HP MELPS
emulators to determine if your microprocessor is supported or not.

The HP 64147A #001 emulator is provided with no emulation pod.
You need to purchase appropriate emulation pod and emulation
processor.

To purchase emulation pod or emulation processor, contact the address
listed in the manual provided with your emulation pod.

Features of the
7750/51 Series
Emulator

This section introduces you to the features of the HP 64147A 7750/51
Series emulator. The chapters which follow show you how to use these
features.

Clock Speed The HP 64147A 7750/51 Series emulator can run with no wait state up
to 25 MHz. When clock is faster than 16 MHz, you can use the
emulator with one of the following methods.

Insert one wait state by the RDY signal. The emulator can be
configured to generate the RDY signal. Also, the emulator
accepts RDY signal from the target system.

Introduction 1-3

Use the high speed access mode of the emulator. The emulator
can run with no wait state up to 25MHz. However, there is a
limitation in the mapping of the emulation memory in this
mode. Refer to Chapter 4 of this manual for more detail.

The HP 64146-61002 emulation pod generate internal clock of
1/8/16/25 MHz. This emulation pods can be used with target system
clock from 1 up to 25 MHz.

Emulation memory The HP 64147A 7750/51 Series emulator is used with one of the
following Emulation Memory Cards.

HP 64726A 128K byte Emulation Memory Card
HP 64727A 512K byte Emulation Memory Card
HP 64728A 1M byte Emulation Memory Card
HP 64729A 2M byte Emulation Memory Card

The emulation memory can be configured into 256 byte blocks. A
maximum of 16 ranges can be configured as emulation RAM (eram),
emulation ROM (erom), target system RAM (tram), target system
ROM (trom), or guarded memory (grd). The HP 64147A 7750/51
Series emulator will attempt to break to the emulation monitor upon
accessing guarded memory; additionally, you can configure the
emulator to break to the emulation monitor upon performing a write to
ROM (which will stop a runaway program).

Analysis The HP 64147A 7750/51 Series emulator is used with one of the
following analyzers which allows you to trace code execution and
processor activity.

HP 64706 48-channel Emulation Bus Analyzer
HP 64704 80-channel Emulation Bus Analyzer
HP 64703 64-channel Emulation Bus Analyzer and
16-channel State/Timing Analyzer
HP 64794A/C/D 80-channel 8K/64K/256K Emulation Bus
Analyzer

The Emulation Bus Analyzer monitors the emulation processor using
an internal analysis bus. The HP 64703 64-channel Emulation Bus
Analyzer and 16-channel State/Timing Analyzer allows you to probe
up to 16 different lines in your target system.

1-4 Introduction

Foreground or
Background

Emulation Monitor

When you power up the emulator, or when you initialize it, the
background monitor is used by default. You can also configure the
emulator to use a foreground monitor. Before the background and
foreground monitors are described, you should understand the function
of the emulation monitor program.

The Function of the Monitor Program

The monitor program is the interface between the emulation system
controller and the target system. The emulation system controller uses
its own microprocessor to accept and execute emulation system, and
analysis commands. The monitor program is executed by the
emulation processor.

The monitor program makes possible emulation commands which
access target system resources. (The only way to access target system
resource is through the emulation processor.) For example, when you
enter a command to modify target system memory, it is the execution
of monitor program instructions that cause the new values to be written
to target system memory.

The Background Monitor

On emulator power-up, or after initialization, the emulator uses the
background monitor program. The background monitor does not
occupy processor address space.

The Foreground Monitor

You can configure the emulator to use a foreground monitor program.
When a foreground monitor is selected it executes in the foreground
emulator mode. The foreground monitor occupies processor memory
space and executes as if it were part of your program.

Register Display and
Modification

You can display or modify the 7750/51 Series internal register
contents. This includes the ability to modify the program counter (PC)
and the program bank register (PG) values so you can control where the
emulator starts a program run.

Introduction 1-5

Single-Step When you are using the background monitor, you can direct the
emulation processor to execute a single instruction or a specified
number of instructions.

Breakpoints You can set the emulator/analyzer interaction so the emulator will
break to the monitor program when the analyzer finds a specific state or
states, allowing you to perform post-mortem analysis of the program
execution. You can also set software breakpoints in your program.
This feature is realized by inserting BRK instructions into user
program. Refer to the "Using Software Breakpoints" section of
"Getting Started" chapter for more information.

Real Time Operation Real-time signifies continuous execution of your program at full rated
processor speed without interference from the emulator. (Such
interference occurs when the emulator needs to break to the monitor to
perform an action you requested, such as displaying target system
memory.) Emulator features performed in real time include: running
and analyzer tracing. Emulator features not performed in real time
include: display or modify of target system memory; load/dump of
target memory, display or modification of registers, and single step.

Coverage
Measurements

Coverage memory is provided for the processor’s external program
memory space. This memory allows you to perform coverage
measurements on programs in emulation memory.

Reset Support The emulator can be reset from the emulation system under your
control; or your target system can reset the emulation processor.

Watch Dog Timer You can configure the emulator to disable the watch dog timer.

Easy Products
Upgrades

Because the HP 64700 Series development tools contain programmable
parts, it is possible to reprogram the firmware and some of the
hardware without disassembling the HP 64700B Card Cage. This
means that you’ll be able to update product firmware, if desired,
without having to call an HP field representative to your site.

1-6 Introduction

Limitations,
Restrictions

Clock Speed Maximum clock speed of HP 64147A 7750/51 emulator is 25MHz.
This emulator does not support any operation with clock faster than
25MHz.

Access to Internal
RAM

Modifying internal RAM or SFR suspends user program execution.

Trace Internal RAM Read data from the internal RAM or SFR is not traced correctly by the
emulation analyzer.

Note Write data is also not traced correctly, when the following conditions
are met:

The emulator is used with the M37780/81/82/83/85/95/96
emulation pod.
The processor is operating in the memory expansion or
microprocessor mode with 8 bit external bus.

Step Command to
Internal RAM

Step command to internal RAM area is not available.

DMA Support Direct memory access to emulation memory is not allowed.

Watch Dog Timer in
Background

Watch dog timer suspends count down while the emulator is running in
background monitor.

Step Command with
Foreground Monitor

Step command is not available when the emulator is used with a
foreground monitor.

Introduction 1-7

Step Command and
Interrupts

When an interrupt occurs while the emulator is running in monitor, the
emulator fails to do the first step operation. The emulator will display
the mnemonic of the instruction which should be stepped, but the
instruction is not actually executed. The second step operation will
step the first instruction of the interrupt routine.

Emulation
Commands in

Stop/Wait Mode

When the microprocessor is in the stop or wait mode, emulation
commands which access memory or registers will fail. In the case of
using M37782/83/85 emulation pod, you need to reset the emulator to
release stop or wait mode. And, in the case of using other emulation
pod, you need to break the the emulator.

RDY/HOLD Input in
Background Cycles

The 64147A M37750/51 emulator does not accept RDY/HOLD input
while in background monitor. However, when you use
M37780/81/82/83/85/95/96 emulation pod, M37750/51 emulator
accepts RDY/HOLD input while in background monitor.

Accessing External
Memory Area in SFR

When operation mode is memory expansion or microprocessor mode,
there is external memory area in SFR. However, accessing to this area
is not allowed.

High Speed Bus
Mode

Always set bus mode as low speed bus mode, when you use M37751
emulation pod. HP 64147A 7750/51 emulator does not support high
speed bus mode. Note that bus mode is automatically configured as
high speed bus mode when you do r rst (run from target reset)
command. Then, you need to re-configure bus mode as low speed bus
mode before accessing SFR area.

RMPA Instruction Disassembling in trace list may not be correct for next instruction of
RMPA instruction. This failure will occur when RMPA instruction is
repeated over about fifty times.

Stack Address In some versions of 7720 microprocessor, the stack can be located in
Bank FF. However, the HP 64147A 7750/51 Series emulator does not
support the feature. The stack must be located in Bank 0.

Evaluation Chip Hewlett-Packard makes no warranty of the problem caused by the
Evaluation chip in the emulator.

1-8 Introduction

2

Getting Started

Introduction This chapter will lead you through a basic, step by step tutorial that
shows how to use the HP 64147A emulator for the 7750/51 Series
microprocessor. When you have completed this chapter, you will be
able to perform these tasks:

Set up an emulation configuration for out of circuit emulation
use

Transfer a small program into emulation memory

Use run/stop controls to control operation of your program

Use memory manipulation features to alter the program’s
operation

Use analyzer commands to view the real time execution of
your program

Getting Started 2-1

Before You Begin Before beginning the tutorial presented in this chapter, you must have
completed the following tasks:

1. Completed Hardware installation

Complete hardware installation of the HP 64700 emulator in
configuration you intend to use for your work:

– Standalone configuration
– Transparent configuration
– Remote configuration

References: The HP 64700 Series Installation/Service manual

2. Connected the emulation pod to the emulator

Connect the emulation pod to the emulator as shown in Figure
2-1.

Caution Turn off power of the emulator before inserting the cable to the
emulation pod to avoid circuit damage.

Figure 2-1. Connecting the Emulation Pod

2-2 Getting Started

If you have properly completed steps above, you should be able to hit
<RETURN> (or <ENTER> on some keyboards) and get a prompt on
your terminal screen.

If you do not see any prompt, retrace your steps through the hardware
and software installation procedures outlined in the manuals above,
verifying all connections and procedural steps. In any case, you must
have a command prompt on your terminal screen before proceeding
with the tutorial.

A Look at the
Sample Program

The sample program "COMMAND_READER" used in this chapter is
shown Figure 2-2. The program emulates a primitive command
interpreter.

Note This sample program is written for Mitsubishi RASM77 Assembler.

Data Declarations

INPUT_POINTER and OUTPUT_POINTER define the address
locations of an input area and an output area to be used by the program.
MESSAGE_A, MESSAGE_B and INVALID_INPUT are the messages
used by the program to respond to various command inputs.

Initialization

First, the INIT routine set up the stack pointer. Next, locations of the
input area is cleared by the CLEAR_INPUT routines.

READ_INPUT

This routine continuously reads the byte at location 100 hex until it is
something other than a null character (00 hexadecimal); when this
occurs, the CLEAR_OUTPUT routine clears the output area, and the
PROCESS_COMM routine is executed.

Getting Started 2-3

 1 .DP 0
 2 .DT 0
 3
 4 .SECTION BUFFER
 5 .ORG 100H
 6 (000100) 1H BYTE INPUT_POINTER: .BLKB 1
 7 .ORG 200H
 8 (000200) 1H BYTE OUTPUT_POINTER: .BLKB 1
 9
 10 .SECTION TABLE
 11 .ORG 0D000H
 12 00D000 544849532049 MESSAGE_A: .BYTE ’THIS IS MESSAGE A’
 00D006 53204D455353
 00D00C 4147452041
 13 00D011 544849532049 MESSAGE_B: .BYTE ’THIS IS MESSAGE B’
 00D017 53204D455353
 00D01D 4147452042
 14 00D022 494E56414C49 INVALID_INPUT: .BYTE ’INVALID COMMAND’
 00D028 4420434F4D4D
 00D02E 414E44
 15
 16 .SECTION SAMPPROG
 17 .DATA 8
 18 .INDEX 16
 19 .ORG 0C000H
 20 00C000 A27F02 INIT: LDX #27FH
 21 00C003 9A TXS
 22 00C004 F8 SEM
 23 00C005 42A900 CLEAR_INPUT: LDA B,#00H
 24 00C008 428D0001 L STA B,DT:INPUT_POINTER
 25 00C00C AD0001 L READ_INPUT: LDA A,DT:INPUT_POINTER
 26 00C00F C900 CMP A,#00H
 27 00C011 F0F9 L BEQ READ_INPUT
 28
 29 .INDEX 8
 30 00C013 E210 SEP X
 31 00C015 A200 CLEAR_OUTPUT: LDX #00H
 32 00C017 A020 LDY #20H
 33 00C019 429D0002 L CLEAR_LOOP: STA B,DT:OUTPUT_POINTER,X
 34 00C01D E8 INX
 35 00C01E 88 DEY
 36 00C01F D0F8 L BNE CLEAR_LOOP
 37
 38 .INDEX 16
 39 00C021 C210 CLP X
 40 00C023 C941 PROCESS_COMM: CMP A,#41H
 41 00C025 F006 L BEQ COMMAND_A
 42 00C027 C942 CMP A,#42H
 43 00C029 F009 L BEQ COMMAND_B
 44 00C02B 800E L BRA UNRECOGNIZED
 45 00C02D A911 COMMAND_A: LDA A,#11H
 46 00C02F A200D0 L LDX #MESSAGE_A
 47 00C032 800C L BRA OUTPUT
 48 00C034 A911 COMMAND_B: LDA A,#11H
 49 00C036 A211D0 L LDX #MESSAGE_B
 50 00C039 8005 L BRA OUTPUT

Figure 2-2. Sample Program Listing (Cont’d)

2-4 Getting Started

PROCESS_COMM

Compares the input byte (now something other than a null) to the
possible command bytes of "A" (ASCII 41 hex) and "B" (ASCII 42
hex), then jumps to the appropriate set up routine for the command
message. If the input byte does not match either of these values, a
branch to a set up routine for an error message is executed.

COMMAND_A, COMMAND_B, UNRECOGNIZED

These routines set up the proper parameters for writing the output
message: the number of bytes in the message is moved to accumulator
A and the base address of the message in the data area is moved to
index register X.

OUTPUT

First, the base address of the output area is moved to index
register Y. Finally, the proper message is written to the output area by
the MVN instruction. When done, OUTPUT jumps back to
CLEAR_INPUT and the command monitoring process begins again.

Using the various features of the emulator, we will show you how to
load this program into emulation memory, execute it, monitor the
program’s operation with the analyzer, and simulate entry of different
commands utilizing the memory access commands provided by the HP
64700 command set.

 51 00C03B A90F UNRECOGNIZED: LDA A,#0FH
 52 00C03D A222D0 L LDX #INVALID_INPUT
 53 00C040 A00002 L OUTPUT: LDY #OUTPUT_POINTER
 54 00C043 540000 MVN 0,0
 55 00C046 80BD L BRA CLEAR_INPUT
 56
 57 .END

Figure 2-2. Sample Program Listing

Getting Started 2-5

Using the Help
Facility

If you need a quick reference to the Terminal Interface syntax, you can
use the built-in help facilities. For example, to display the top level
help menu, type:

R> help
 help - display help information

 help <group> - print help for desired group
 help -s <group> - print short help for desired group
 help <command> - print help for desired command
 help - print this help screen

 --- VALID group NAMES ---
 gram - system grammar
 proc - processor specific grammar

 sys - system commands
 emul - emulation commands
 hl - highlevel commands (hp internal use only)
 trc - analyzer trace commands
 * - all command groups

You can type the ? symbol instead of typing help. For example, if you
want a list of commands in the emul command group, type:

R> ? emul
 emul - emulation commands

 b......break to monitor dump...dump memory r......run user code
 bc.....break condition es.....emulation status reg....registers
 bp.....breakpoints io.....input/output rst....reset
 cf.....configuration load...load memory rx.....run at CMB execute
 cim....copy target image m......memory s......step
 cmb....CMB interaction map....memory mapper ser....search memory
 cov....coverage mo.....modes
 cp.....copy memory mx.....mx

To display help information for any command, just type help (or ?) and
the command name. For example:

R> help load

2-6 Getting Started

 load - download absolute file into processor memory space

 load -i - download intel hex format
 load -m - download motorola S-record format
 load -t - download extended tek hex format
 load -S - download symbol file
 load -h - download hp format (requires transfer protocol)
 load -a - reserved for internal hp use
 load -e - write only to emulation memory
 load -u - write only to target memory
 load -o - data received from the non-command source port
 load -s <str> - send a character string out the other port
 load -b - data sent in binary (valid with -h option)
 load -x - data sent in hex ascii (valid with -h option)
 load -q - quiet mode
 load -p - record ACK/NAK protocol (valid with -imt options)
 load -c <file> - data is received from the 64000. file name format is:
 <filename>:<userid>:absolute

Becoming Familiar
with the System

Prompts

A number of prompts are used by the HP 64700 Series emulators. Each
of them has a different meaning, and contains information about the
status of the emulator before and after the commands execute. These
prompts may seem cryptic at first, but there are two ways you can find
out what a certain prompt means.

Using "help proc" to View Prompt Description

The first way you can find information on the various system prompts
is to look at the proc help text.

R>help proc
 --- Address format ---
 Address format is XXXXXX[@i], where XXXXXXX is a 24 bit address.
 Option @i indicates to access internal ram (iram)fresh controller cycle
 read - read hold - bus hold
 write - write fg - foreground
 byte - byte bg - background
 word - word mx - m or x bit

 --- Emulation Status Characters ---
 R - emulator in reset state c - no target system clock
 U - running user program r - target system reset active
 M - running monitor program b - no bus cycles
 W - waiting for CMB to become ready T - waiting for target reset
 g - bus grant ? - unknown state

 --- Equates for Analyzer Label stat ---
 exec - instruction execution cpu - cpu cycle
 fetch - program fetch dma - dma controller cycle
 data - data access ref - refresh controller cycle
 read - read hold - bus hold
 write - write fg - foreground
 byte - byte bg - background
 word - word mx - m or x bit

Getting Started 2-7

Using the Emulation Status Command (es) for Description
of Current Prompt

When using the emulator, you will notice that the prompt changes after
entering certain commands. If you are not familiar with a new prompt
and would like information about that prompt only, enter the es
(emulation status) command for more information about the current
status.

U>es
M37750/51--Running user program

Initializing the
Emulator

If you plan to follow this tutorial by entering commands on your
emulator as shown in this chapter, verify that no one else is using the
emulator. To initialize the emulator, enter the following command:

R>init
Limited initialization completed

The init command with no options causes a limited initialization, also
known as a warm start initialization. Warm start initialization does not
affect system configuration. However, the init command will reset
emulator and analyzer configurations. The init command:

Resets the memory map.

Resets the emulator configuration items.

Resets the break conditions.

Clears software breakpoints.

The init command does not:

Clear any macros.

Clear any emulation memory locations; mapper terms are
deleted, but if you respecify the same mapper terms, you will
find that the emulation memory contents are the same.

2-8 Getting Started

Set Up the Proper
Emulation
Configuration

Set Up Emulation
Conditions

To set the emulator’s configuration values to the proper state for this
tutorial, do this:

1. Type:

R> cf

You should see the following configuration items displayed:
cf chip=7702M2
cf isfr=0..07f
cf iram=080..27f
cf irom=0c000..0ffff
cf ipmr=05e
cf mode=single
cf mon=bg
cf clk=int
cf int=en
cf rdy=dis
cf rush=dis
cf wdog=dis
cf rsp=27f
cf rrt=dis
cf dmdt=dis
cf tdma=dis
cf trfsh=dis
cf thold=dis

Note The individual configuration items won’t be explained in this example;
refer to Chapter 4 of this manual and the User’s Reference manual for
details.

2. You need to select chip you emulate. You can select chip with
the following command:

R> cf chip=<chip_name>

Getting Started 2-9

You must enter appropriate <chip_name> to your processor.
Valid <chip_name> are listed in Processor Support List for
HP MELPS emulators. The default <chip_name> 7702M2 is
applied to M37702M2 and M37703M2 processors.

Note Refer to the Processor Support List for HP MELPS emulators to know
chip name and support processors. If you would like to know whether
your microprocessor is supported or not in latest version of Terminal
Interface, contact your local HP sales representative.

3. Now, set up reset value for the stack pointer.
R> cf rsp=27f

Note Without a stack pointer, the emulator is unable to make the transition to
the run state, step, or perform many other emulation functions.

4. Let’s go ahead and set up the proper break conditions .
Type:

R> bc

You will see:
bc -d bp #disable
bc -d rom #disable
bc -d bnct #disable
bc -d cmbt #disable
bc -d trig1 #disable
bc -d trig2 #disable

For each break condition that does not match the one listed,
use one of the following commands:

2-10 Getting Started

To enable break conditions that are currently disabled, type:
R> bc -e <breakpoint type>

To disable break conditions that are currently enabled, type:
R> bc -d <breakpoint type>

For example, if typing bc gives the following list of break
conditions:

bc -d bp #disable
bc -e rom #enable
bc -d bnct #disable
bc -d cmbt #disable
bc -e trig1 #enable
bc -e trig2 #enable

(items in bold indicate improper values for this example)

Type the following commands to set the break conditions
correctly for this example:

R> bc -d rom

(this enables the write to ROM break)
R> bc -d trig1 trig2

(this disables break on triggers from the analyzer)

5. To avoid problems later while modifying and displaying
memory locations, type:

R> mo -ab -db

This sets the access and display mode for memory operation
byte.

Getting Started 2-11

Map Memory The emulation memory can be configured as you desire. You can
define emulation memory as emulation RAM, emulation ROM, target
RAM, target ROM or guarded memory.

We will use the default mapping for this sample program. To see the
default mapping, type:

R> map

You will see similar display to the following:
remaining number of terms : 15
remaining emulation memory : 1b800h bytes
map 000c000..000ffff erom # term 1
map other tram

Note You don’t have to map the internal RAM area, since the emulator uses
the internal RAM of emulation processor to perform emulation. If your
processor has no internal RAM, map address 100 hex through 2ff hex
with the following command for this tutorial.

R> map 100..2ff eram

2-12 Getting Started

Transfer Code
into Emulation
Memory

From a Terminal in
Standalone

Configuration

To transfer code into emulation memory from a data terminal running
in standalone mode, you must use the modify memory commands.
This is necessary because you have no host computer transfer facilities
to automatically download the code for you (as if you would if you
were using the transparent configuration or the remote configuration.)
To minimize the effects of typing errors, you will modify only one row
of memory at a time in this example. Do the following:

Enter the data information for the program by typing the following
commands:

R> m 0d000..0d00f=54,48,49,53,20,49,53,20,4d,45,53,53,41,47,45,20
R> m 0d010..0d01f=41,54,48,49,53,20,49,53,20,4d,45,53,53,41,47,45
R> m 0d020..0d02f=20,42,49,4e,56,41,4c,49,44,20,43,4f,4d,4d,41,4e
R> m 0d030=44

You could also type the following line instead:
R> m 0d000="THIS IS MESSAGE ATHIS IS MESSAGE BINVALID COMMAND"

You should now verify that the data area of the program is correct by
typing:

R> m 0d000..0d030

You should see:
000d000..000d00f 54 48 49 53 20 49 53 20 4d 45 53 53 41 47 45 20
000d010..000d01f 41 54 48 49 53 20 49 53 20 4d 45 53 53 41 47 45
000d020..000d02f 20 42 49 4e 56 41 4c 49 44 20 43 4f 4d 4d 41 4e
000d030..000d030 44

If this is not correct, you can correct the errors by re-entering only the
modify memory commands for the particular rows of memory that are
wrong.

For example,if row d000..d00f shows these values:
000d000..000d00f 54 48 49 53 20 20 49 53 20 4d 45 53 53 41 47 45

Getting Started 2-13

you can correct this row of memory by typing:
R> m 0d000..0d00f=54,48,49,53,20,49,53,20,4d,45,53,53,41,47,45,20

Or, you might need to modify only one location, as in the instance
where address d00f equals 22 hex rather than 20 hex. Type:

R> m 0d00f=20

Enter the program information by typing the following commands:

R> m 0c000..0c00f=0a2,7f,02,9a,0f8,42,0a9,00,42,8d,00,01,0ad,00,01,0c9
R> m 0c010..0c01f=00,0f0,0f9,0e2,10,0a2,00,0a0,20,42,09d,00,02,0e8,88,0d0
R> m 0c020..0c02f=0f8,0c2,10,0c9,41,0f0,06,0c9,42,0f0,09,80,0e,0a9,11,0a2
R> m 0c030..0c03f=00,0d0,80,0c,0a9,11,0a2,11,0d0,80,05,0a9,0f,0a2,22,0d0
R> m 0c040..0c047=0a0,00,02,54,00,00,80,0bd

(note the hex letters must be preceded by a digit)

You should now verify that the program area is correct by typing:

R> m 0c000..0c047

You should see:
000c000..000c00f a2 7f 02 9a f8 42 a9 00 42 8d 00 01 ad 00 01 c9
000c010..000c01f 00 f0 f9 e2 10 a2 00 a0 20 42 9d 00 02 e8 88 d0
000c020..000c02f f8 c2 10 c9 41 f0 06 c9 42 f0 09 80 0e a9 11 a2
000c030..000c03f 00 d0 80 0c a9 11 a2 11 d0 80 05 a9 0f a2 22 d0
000c040..000c047 a0 00 02 54 00 00 80 bd

If this is not correct, you can correct the errors by re-entering only the
modify memory commands for the particular rows of memory that are
wrong.

Transparent
Configuration

If your emulator is connected between a terminal and a host computer,
you can down load programs into memory using the load command
with the -o (from other port) option.

First, you must establish communications with your host computer
through the transparent mode link provided in the HP 64700. Type:

R> xp -e

If you then press <RETURN> a few times, you should see:
login:
login:
login:

2-14 Getting Started

This is the login prompt for an HP-UX host system. (Your prompt may
differ depending on how your system manager has configured your
system.) Log in to your host system. Disable the transparent mode so
that your terminal will talk directly to the emulator. Type:

$ <ESC>g xp -d

The "<ESC>g" sequence temporarily toggles the transparent mode so
that the emulator will accept commands; "xp -d" then fully disables the
transparent mode.

The succeeding procedure is different depending on the format you
yare going to download.

HP Absolute

If you have a Softkey Interface, a file format converter is provided with
it. The converter can convert MELPS 7700 Hex format files into HP
Absolute files. (Refer to the Softkey Interface User’s Guide for more
details.) Downloading the HP Absolute requires the transfer protocol.
The example below assumes that the transfer utility has been installed
on the HP 9000/700 host computer.

R> load -hbo <RETURN>
transfer -rtb cmd_rds.X <ESC>g
##########
R>

Intel Hex format

The example which follow shows how to download the Intel
hexadecimal files.

R> load -io <RETURN>
cat cmd_rds.hex<ESC>g
###########
 Data records received = 00009
R>

Note The emulator can load the MELPS 7700 Hex format files with
load -i command when the program is located address fffff hex or less.

Getting Started 2-15

At this point you should examine a portion of memory to verify that
your code was loaded correctly.

Type:

R> m 0c000..0c047

You should see:
000c000..000c00f a2 7f 02 9a f8 42 a9 00 42 8d 00 01 ad 00 01 c9
000c010..000c01f 00 f0 f9 e2 10 a2 00 a0 20 42 9d 00 02 e8 88 d0
000c020..000c02f f8 c2 10 c9 41 f0 06 c9 42 f0 06 80 0e a9 11 a2
000c030..000c03f 00 d0 80 0c a9 11 a2 11 d0 80 05 a9 0f a2 22 d0
000c040..000c047 a0 00 02 54 00 00 80 bd

2-16 Getting Started

Looking at Your
Code

Now that you have loaded your code into emulation memory, you can
display it in mnemonic format. Before displaying memory in
mnemonic format, you need to tell the emulator what value of M flag
and X flag should be used to disassemble the memory contents. This is
needed because the length of operand is variable according to M flag
and X flag. Type:

R> mx -m0 -x0

To display memory in mnemonic format, type:

R> m -dm 0c000..0c047

You will see:
 000c000 - LDX #027fH
 000c003 - TXS
 000c004 - SEM
 000c005 - LDA B,#00H
 000c008 - STA B,DT:0100H
 000c00c - LDA A,DT:0100H
 000c00f - CMP A,#00H
 000c011 - BEQ 00c00cH
 000c013 - SEP #10H
 000c015 - LDX #00H
 000c017 - LDY #20H
 000c019 - STA B,DT:0200H,X
 000c01d - INX
 000c01e - DEY
 000c01f - BNE 00c019H
 000c021 - CLP #10H
 000c023 - CMP A,#41H
 000c025 - BEQ 00c02dH
 000c027 - CMP A,#42H
 000c029 - BEQ 00c034H
 000c02b - BRA 00c03bH
 000c02d - LDA A,#11H
 000c02f - LDX #d000H
 000c032 - BRA 00c040H
 000c034 - LDA A,#11H
 000c036 - LDX #d011H
 000c039 - BRA 00c040H
 000c03b - LDA A,#0fH
 000c03d - LDX #d022H
 000c040 - LDY #0200H
 000c043 - MVN 00H,00H
 000c046 - BRA 00c005H

Getting Started 2-17

When the inverse assembler encounters the following instruction, the
mx command is set up automatically.

SEM
CLM
SEP X
CLP X
SEP M
CLP M

In the above example, the mx command is set up as following:

SEM (0c004) mx -m1 -x0
SEP X (0c013) mx -m1 -x1
CLP X (0c021) mx -m1 -x0

When you display memory in mnemonic format without specifying the
mx command, the last setting is used to disassemble the memory
contents. Type:

R> m 0c015..0c02f
 000c015 - LDX #a000H
 000c018 - JSR PG:9d42H
 000c01b - BRK
 000c01d - INX
 000c01e - DEY
 000c01f - BNE 00c019H
 000c021 - CLP #10H
 000c023 - CMP A,#41H
 000c025 - BEQ 00c02dH
 000c027 - CMP A,#42H
 000c029 - BEQ 00c034H
 000c02b - BRA 00c03bH
 000c02d - LDA A,#11H
 000c02f - LDX #d000H

As you can see, the memory contents is not disassembled correctly. To
see the correct mnemonic, set up the mx command:

R> mx -x1
R> m 0c015..0c02f

2-18 Getting Started

 000c015 - LDX #00H
 000c017 - LDY #20H
 000c019 - STA B,DT:0200H,X
 000c01d - INX
 000c01e - DEY
 000c01f - BNE 00c019H
 000c021 - CLP #10H
 000c023 - CMP A,#41H
 000c025 - BEQ 00c02dH
 000c027 - CMP A,#42H
 000c029 - BEQ 00c034H
 000c02b - BRA 00c03bH
 000c02d - LDA A,#11H
 000c02f - LDX #d000H

Familiarize
Yourself with the
System Prompts

Note The following steps are not intended to be complete explanations of
each command; the information is only provided to give you some idea
of the meanings of the various command prompts you may see and
reasons why the prompt changes as you execute various commands.

You should gain some familiarity with the HP 64700 emulator
command prompts by doing the following:

Ignore the current command prompt. Type:

*> rst

You will see:

R>

The rst command resets the emulation processor and holds it in the
reset state. The "R>" prompt indicates that the processor is reset.

Getting Started 2-19

Type :

R> r 0c000

You will see:

U>

The r command runs the processor.

Type:

U> b

You will see:

M>

The b command causes the emulation processor to "break" execution of
whatever it was doing and begin executing within the emulation
monitor. The "M>" prompt indicates that the emulator is running in the
monitor.

Running the
Sample Program

Type:

M> r 0c000

The emulator changes state from background to foreground and begins
running the sample program from location 0c000 hex.

Note The default number base for address and data values within HP 64700
is hexadecimal. Other number bases may be specified. Refer to the HP
64700 User’s Reference manual for further details.

2-20 Getting Started

Let’s look at the registers to verify that the stack pointer was properly
initialized. Type:

U> reg

You will see:
reg pg=00 pc=c00c ps=0023 dt=00 sp=027f a=ff00 b=0000 x=027f y=0017 dpr=0000

Notice that sp contains 27f hex.

Verify that the input area command byte was cleared during
initialization.

Type:

U> m -db 100

You will see:
0000100..0000100 00

The input byte location was successfully cleared.

Now we will use the emulator features to make the program work.
Remember that the program writes specific messages to the output area
depending on what the input byte location contains. Type:

U> m 100=41

This modifies the input byte location to the hex value for an ASCII
"A". Now let’s check the output area for a message.

U> m 200..21f

You will see:
0000200..000020f 54 48 49 53 20 49 53 20 4d 45 53 53 41 47 45 20
0000210..000021f 41 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

These are the ASCII values for MESSAGE_A.

Repeat the last two commands twice. The first time, use 42 instead of
41 at location 100 and note that MESSAGE_B overwrites
MESSAGE_A. Then try these again, using any number except 00, 41,
or 42 and note that the INVALID_INPUT message is written to this
area.

Getting Started 2-21

Note When you modify/display internal RAM or SFR, the emulator breaks
into the monitor, and the monitor program reads the contents of
memory. This is because the emulator uses internal RAM and SFR of
emulation processor to perform emulation. Note that user program
execution is suspended to modify/diplay internal RAM or SFR.

Note You can configure the emulator so that data write cycles are performed
to both internal RAM (or SFR) and emulation memory. In this case,
you can display the data written to emulation memory without
suspending user program execution. Refer to chapter 4 of this manual
for more details.

Stepping Through
the Program

You can also direct the emulator processor to execute one instruction or
number of instructions. Type:

M> s 1 0c000;reg

This command steps 1 instruction from address 0c000 hex, and
displays registers. You will see:

000c000 - LDX #027fH
PC = 000c003
reg pg=00 pc=c003 ps=0021 dt=00 sp=027f a=ff00 b=0000 x=027f y=0021 dpr=0000

To step one instruction from present PC, you only need to type s at
prompt. Type:

M> s;reg

2-22 Getting Started

You will see:
000c003 - TXS
PC = 000c004
reg pg=00 pc=c004 ps=0021 dt=00 sp=027f a=ff00 b=0000 x=027f y=0021 dpr=0000

Note When the you use the s command, the disassembled mnemonic
displayed may not be accurate. You need to set up mx command
before using the s command to see the correct mnemonic.

Note When the emulator performs single step execution with s command, all
memory access is performed by byte access.

Easy Command
Entry

Using Macros Suppose you want to continue stepping through the program,
displaying registers after each step. You could continue entering "s"
commands followed by "reg" commands, but you may find this
tiresome. It is easier to use a macro to perform a sequence of
commands which will be entered again and again.

Macros allow you to combine and store commands. For example, to
define a macro which will display registers after every step, enter the
following command.

M> mac st={s;reg}

Once the "st" macro has been defined, you can use it as you would any
other command.

M> st
000c004 - SEM
 PC = 000c005
 reg pg=00 pc=c005 ps=0021 dt=00 sp=027f a=ff00 b=0000 x=027f y=0021 dpr=0000

Getting Started 2-23

Command Recall The command recall feature is yet another, easier way to enter
commands again and again. You can press <CTRL>-r to recall the
commands which have just been entered. If you go past the command
of interest, you can press <CTRL>-b to move forward through the list
of saved commands. To continue stepping through the sample
program, you could repeatedly press <CTRL>-r to recall and
<RETURN> to execute the "st" macro.

Tracing Program
Execution

Note For this example, you will be using the analyzer in the easy
configuration, which simplifies the process of analyzer measurement
setup. The complex configuration allows more powerful measurements,
but requires more interaction from you to set up those measurements.
For more information on easy and complex analyzer configurations and
the analyzer, refer to the HP 64700 Analyzer User’s Guide and the
User’s Reference manual.

Now let’s use the emulation analyzer to trace execution of the program.
Suppose that you would like to start the trace when the analyzer begins
writing data to the message output area. You can do this by specifying
analyzer trigger upon encountering write status to address 200 hex.
Furthermore, you might want to store only the data written to the
output area. This can be accomplished by modifying what is known as
the "analyzer storage specification".

Now let’s set the trigger specification. Type:

M> tg addr=200 and stat=write

To store only the accesses to the address range 200 hex through 21f
hex, type:

M> tsto addr=200..21f

2-24 Getting Started

Let’s change the data format of the trace display so that you will see the
output message writes displayed in ASCII format:

M> tf addr,h data,a mne count,r seq

Start the trace by typing:

M> t

You will see:
Emulation trace started

To start the emulation run, type:

M> r 0c000

Now, you need to have a "command" input to the program so that the
program will jump to the output routines (otherwise the trigger will not
be found, since the program will never access address 200 hex). Type:

U> m 100=41

To display the trace list, type:

U> tl 0..10

You will see:
 Line addr,H data,A M37750/51 Mnemonic,H count,R seq
 ----- ------ ------ ------------------------------------ --------- ---
 0 000200 .. xx00H data write mx --- +
 1 000201 .. 00xxH data write mx 56.00 uS .
 2 000202 .. xx00H data write mx 56.00 uS .
 3 000203 .. 00xxH data write mx 56.00 uS .
 4 000204 .. xx00H data write mx 56.00 uS .
 5 000205 .. 00xxH data write mx 56.00 uS .
 6 000206 .. xx00H data write mx 56.00 uS .
 7 000207 .. 00xxH data write mx 56.00 uS .
 8 000208 .. xx00H data write mx 56.00 uS .
 9 000209 .. 00xxH data write mx 56.00 uS .
 10 00020a .. xx00H data write mx 56.00 uS .

The above list shows the execution of the CLEAR_OUTPUT routine
which cleared the output area. To see the states that the program wrote
the message to the output area, type:

U> tl 30..40

Getting Started 2-25

 Line addr,H data,A M37750/51 Mnemonic,H count,R seq
 ----- ------ ------ ------------------------------------ --------- ---
 30 00021e .. xx00H data write mx 56.00 uS .
 31 00021f .. 00xxH data write mx 56.00 uS .
 32 000200 HT 4854H data write mx 134.0 uS .
 33 000202 SI 5349H data write mx 18.00 uS .
 34 000204 I. 4920H data write mx 18.00 uS .
 35 000206 .S 2053H data write mx 18.00 uS .
 36 000208 EM 454dH data write mx 18.00 uS .
 37 00020a SS 5353H data write mx 18.00 uS .
 38 00020c GA 4741H data write mx 18.00 uS .
 39 00020e .E 2045H data write mx 18.00 uS .
 40

If you look at the last lines of the trace listing, you will notice that the
analyzer seems to have stored only part of the output message, even
though you specified more than the full range needed to store all of the
message. The reason for this is that the analyzer has a storage pipeline,
which holds states that have been acquired but not yet written to trace
memory. To see all of the states, halt the analyzer by typing:

U> th

You will see:
Emulation trace halted

Now display the trace list:

U> tl 30..40

You will see:
 Line addr,H data,A M37750/51 Mnemonic,H count,R seq
 ----- ------ ------ ------------------------------------ --------- ---
 30 00021e .. xx00H data write mx 56.00 uS .
 31 00021f .. 00xxH data write mx 56.00 uS .
 32 000200 HT 4854H data write mx 134.0 uS .
 33 000202 SI 5349H data write mx 18.00 uS .
 34 000204 I. 4920H data write mx 18.00 uS .
 35 000206 .S 2053H data write mx 18.00 uS .
 36 000208 EM 454dH data write mx 18.00 uS .
 37 00020a SS 5353H data write mx 18.00 uS .
 38 00020c GA 4741H data write mx 18.00 uS .
 39 00020e .E 2045H data write mx 18.00 uS .
 40 000210 TA xx41H data write mx 16.00 uS .

As you can see, all of the requested states have been captured by the
analyzer.

2-26 Getting Started

Predefined Status Equates

Common values for the status trace signals have been predefined. One
of these equates "write" was used in the above example. You can see
these equates with the following command.

U> equ
Equates
equ bg=0x1xxxxxxy
equ byte=0xx1x1x1xy
equ cpu=0xx11xxxxy
equ data=0xx1x10xxy
equ dma=0xx10xxxxy
equ exec=0xx1101xxy
equ fetch=0xx1111x1y
equ fg=0x0xxxxxxy
equ hold=0xx01xxxxy
equ mx=1xxxxxxxy
equ read=0xx1x1xx1y
equ ref=0xx00xxxxy
equ word=0xx1x1x0xy
equ write=0xx1x1xx0y

Using Software
Breakpoints

You can stop program execution at specific address by using bp
(software breakpoint) command. When you define a software
breakpoint to a certain address, the emulator will replace the opcode
with BRK instruction as software breakpoint instruction. When the
emulator detects the BRK instruction, user program breaks to the
monitor, and the original opcode will be placed at the breakpoint
address. A subsequent run or step command will execute from this
address.

If the BRK instruction was not inserted as the result of bp command (in
other words, it is part of the user program), the "Undefined software
breakpoint" message is displayed.

Note You can set software breakpoints only at memory locations which
contain instruction opcodes (not operands or data). If a software
breakpoint is set at a memory location which is not an instruction
opcode, the software breakpoint instruction will never be executed and
the break will never occur.

Getting Started 2-27

Note Because software breakpoints are implemented by replacing opcodes
with the software breakpoint instruction, you cannot define software
breakpoints in target ROM. You can, however, copy target ROM into
emulation memory by cim command when you are using the
background monitor. (Refer to HP 64700 Terminal Interface User’s
Reference manual.)

Note When internal RAM is mapped as emulation memory, defining
software breakpoints in this area is not allowed.

Displaying and
Modifying the Break

Conditions

Before you can define software breakpoints, you must enable software
breakpoints with the bc (break conditions) command. To view the
default break conditions and change the software breakpoint condition,
enter the following commands.

M> bc
bc -d bp #disable
bc -d rom #disable
bc -d bnct #disable
bc -d cmbt #disable
bc -d trig1 #disable
bc -d trig2 #disable

M> bc -e bp

Defining a Software
Breakpoint

Now that the software breakpoint is enabled, you can define software
breakpoints. Enter the following command to break on the address of
the OUTPUT label.

M> bp 0c040

Run the program and verify that execution broke at the appropriate
address.

M> r 0c000
U> m 100=41

!ASYNC_STAT 615! Software break point: 000c040

2-28 Getting Started

M> reg
reg pg=00 pc=c040 ps=00a1 dt=00 sp=027f a=0011 b=0000 x=d000 y=0000 dpr=0000

Notice that PC contains c040.

When a breakpoint is hit, it becomes disabled. You can use the -e
option to the bp command to reenable the software breakpoint.

M> bp
###BREAKPOINT FEATURE IS ENABLED###
bp 000c040 #disabled

M> bp -e 0c040
M> bp

###BREAKPOINT FEATURE IS ENABLED###
bp 000c040 #enabled

M> r 0c000
U> m 100=41

!ASYNC_STAT 615! Software breakpoint: 000c040

M> bp
###BREAKPOINT FEATURE IS ENABLED###
bp 000c040 #disabled

Searching
Memory for
Strings or
Numeric
Expressions

The HP 64700 Emulator provides you with tools that allow you to
search memory for data strings or numeric expressions. For example,
you might want to know exactly where a string is loaded. To locate the
position of the string "THIS IS MESSAGE A" in the sample program.
Type:

M> ser 0c000..0dfff="THIS IS MESSAGE A"
pattern match at address: 000d000

You can also find numeric expressions. For example, you might want
to find all of the BEQ instructions in the sample program. Since a BEQ
instruction begins with f0 hex, you can search for that value by typing:

Getting Started 2-29

M> ser -db 0c000..0c047=0f0

pattern match at address: 000c011
pattern match at address: 000c025
pattern match at address: 000c029

Making Program
Coverage
Measurements

In testing your program, you will often want to verify that all possible
code segments are executed. With the sample program, we might want
to verify that all of the code is executed if a command "A", command
"B", and an unrecognized command are input to the program.

To make this measurement, we must first reset the coverage status.

M> cov -r

Note You should always reset the coverage status before making a coverage
measurement. Any emulator system command which accesses
emulation memory will affect the coverage status bit, resulting in
measurement errors if the coverage status is not reset.

Now, run the program and input the following commands:

M> r 0c000
U> cov 0c000..0c047

percentage of memory accessed: % 30.6

U> m 100=41
U> cov 0c000..0c047

percentage of memory accessed: % 81.9

U> m 100=42
U> m 100=43
U> cov 0c000..0c047

percentage of memory accessed: % 100.0

2-30 Getting Started

Trace Analysis
Considerations

Restriction of the
Analyzer

There is a restriction on the function of the emulation analyzer. It
cannot trace the data which is read from internal RAM or SFR area.
Such data always appears ff hex in the trace listing. This is because the
emulator uses the internal RAM and SFR of emulation processor to
perform emulation. Data read from internal RAM or SFR doesn’t
appear on the analyzer data bus.

As an example, trace the accesses to the INPUT_POINTER.

To initialize the analyzer, type:

U> tinit

Set up the trigger condition and perform the trace:

U> tg addr=0c00c and stat=exec
U> t
U> tl 0..20

 Line addr,H M7750/51 Mnemonic,H count,R seq
----- ------ ------------------------------------ --------- ---
 0 00c00c LDA A,DT:0100H 2.000 uS +
 1 00c00e c901H opcode fetch mx 6.000 uS .
 2 000100 xxffH data read mx 4.000 uS .
 3 00c00f CMP A,#00H 2.000 uS .
 4 00c010 f000H opcode fetch mx 6.000 uS .
 5 00c011 BEQ 00c00cH 2.000 uS .
 6 00c012 e2f9H opcode fetch 6.000 uS .
 7 00c014 a210H opcode fetch 8.000 uS .
 8 00c00c 00adH opcode fetch 8.000 uS .
 9 00c00c LDA A,DT:0100H 2.000 uS .
 10 00c00e c901H opcode fetch mx 6.000 uS .
 11 000100 xxffH data read mx 4.000 uS .
 12 00c00f CMP A,#00H 2.000 uS .
 13 00c010 f000H opcode fetch mx 6.000 uS .
 14 00c011 BEQ 00c00cH 2.000 uS .
 15 00c012 e2f9H opcode fetch 6.000 uS .
 16 00c014 a210H opcode fetch 8.000 uS .
 17 00c00c 00adH opcode fetch 8.000 uS .
 18 00c00c LDA A,DT:0100H 2.000 uS .
 19 00c00e c901H opcode fetch mx 6.000 uS .
 20 000100 xxffH data read mx 4.000 uS .

As you can see in line 2 of the listing above, data read from internal
RAM (which should be 00 hex) appears ff hex.

Getting Started 2-31

Notes

2-32 Getting Started

3

Using the 7750/51 Series Emulator In-Circuit

When you are ready to use the HP 64147A 7750/51 Series Emulator in
conjunction with actual target system hardware, there are some special
considerations you should keep in mind.

installing the emulator probe

properly configure the emulator

We will cover the first topic in this chapter. For complete details on
in-circuit emulation configuration, refer to Chapter 4.

In-Circuit Emulation 3-1

Installing the
Target System
Probe

Caution The following precautions should be taken while using the HP 64147A
7750/51 Series Emulator. Damage to the emulator circuitry may result
if these precautions are not observed.

Power Down Target System. Turn off power to the user target system
and to the HP 64147A 7750/51 Series Emulator before inserting the
user plug to avoid circuit damage resulting from voltage transients or
mis-insertion of the user plug.

Verify User Plug Orientation. Make certain that Pin 1 of the target
system microprocessor socket and Pin 1 of the user plug are properly
aligned before inserting the user plug in the socket. Failure to do so
may result in damage to the emulator circuitry.

Protect Against Static Discharge. The HP 64147A 7750/51 Series
Emulator contains devices which are susceptible to damage by static
discharge. Therefore, operators should take precautionary measures
before handling the user plug to avoid emulator damage.

Caution You target system must have a clock generation circuit. The emulation
pod cannot generate clock signal using a ceramic (or quartz crystal)
resonator.

3-2 In-Circuit Emulation

Installing the Target
System Probe 1. Set up the switches inside the emulation pod. When you are

using the HP 64146-61002 emulation pod, refer to the 7750/51
Series Emulation Pod User’s Guide. When you are using an
other emulation pod, refer to the manual provided with your
emulation pod.

2. Remove the 7750/51 Series microprocessor from the target
system socket. Note the location of pin 1 on the processor and
on the target system socket.

3. Store the microprocessor in a protected environment (such as
antistatic foam).

4. Install the target system probe into the target system
microprocessor socket. (See figure 3-1.)

5. Turn on power of your target system, and then, turn on the
emulator.

Figure 3-1. Installing the Probe to LCC80 Socket

In-Circuit Emulation 3-3

When your target system uses 64 pin shrink DIP socket, use the adapter
as shown in figure 3-2.

Figure 3-2. Installing the Probe to SDIP64 Socket

3-4 In-Circuit Emulation

Running the
Emulation from
Target Reset

You can specify that the 7750/51 emulator begins execution from target
system reset. To specify a run from target system reset, enter the
following command:

R>r rst

Now, you can see T> system prompt. When the target system RESET
line becomes active and then inactive, the 7750/51 emulator will start
reset sequence as actual microprocessor.

Note In the "Awaiting target reset" status(T>), you can not break into the
monitor. If you want to exit this status, you need to enter rst command.

In-Circuit Emulation 3-5

3-6 In-Circuit Emulation

4

Configuring the 7750/51 Series Emulator

In this chapter, we will discuss:

how to configure the HP 64700 emulator for 7750/51 Series
microprocessor to fit your particular measurement needs.

some restrictions of HP 64700 emulator for 7750/51 Series
microprocessor.

Types of Emulator
Configuration

Emulation Processor
to Emulator/Target

System

These are the commands which are generally thought of as
"configuration" items in the context of other HP 64000 emulator
systems. The commands in this group set up the relationships between
the emulation processor and the target system, such as determining how
the emulator responds to requests for the processor bus. Also, these
commands determine how the emulation processor interacts with the
emulator itself; memory mapping and the emulator’s response to
certain processor actions are some of the items which can be configured.

These commands are the ones which are covered in this chapter.

Commands Which
Perform an Action or

Measurement

Several of the emulator commands do not configure the emulator; they
simply start an emulator program run or other measurement, begin or
halt an analyzer measurement, or allow you to display the results of
such measurements.

Configuring the Emulator 4-1

These commands are covered in the examples presented in earlier
manual chapters; they are also covered in the HP 64700 Terminal
Interface: User’s Reference manual.

Coordinated
Measurements

These commands determine how the emulator interacts with other
measurement instruments, such as external analyzers, or other HP
64700 emulators connected via the CMB (Coordinated Measurement
Bus).

These commands are covered in the HP 64700 CMB User’s Guide and
in the HP 64700 Terminal Interface: User’s Reference manual.

Analyzer The analyzer configuration commands are those commands which
actually specify what type of measurement the analyzer is to make.

Some of the analyzer commands are covered earlier in this manual.
You can also refer to the HP 64700 Terminal Interface: Analyzer
User’s Guide and the HP 64700 Terminal Interface: User’s Reference
manual.

System This last group of commands is used by you to set the emulator’s data
communications protocol, load or dump contents of emulation
memory, set up command macros, and so on.

These commands are covered earlier in this manual and in the manual
titled HP 64700 Terminal Interface: User’s Reference manual.

4-2 Configuring the Emulator

Emulation
Processor to
Emulator/Target
System

As noted before, these commands determine how the emulation
processor will interact with the emulator’s memory and the target
system during an emulation measurement.

cf The cf command defines how the emulation processor will respond to
certain target system signals. It also defines the type of emulation
monitor to be used and optionally defines the location of that monitor
in emulation memory.

To see the default configuration settings defined by the cf command,
type:

M> cf

You will see:
cf chip=7702M2
cf isfr=0..07f
cf iram=080..27f
cf irom=0c000..0ffff
cf ipmr=05e
cf mode=single
cf mon=bg
cf clk=int
cf int=en
cf rdy=dis
cf rush=dis
cf wdog=dis
cf rsp=27f
cf rrt=dis
cf dmdt=dis
cf tdma=dis
cf trfsh=dis
cf thold=dis

Let’s examine each of these emulator configuration options, with a
view towards how they affect the processor’s interaction with the
emulator.

Configuring the Emulator 4-3

cf chip

The chip configuration item defines the chip you emulate. This
command looks a prepared table, and set up the isfr , iram , irom and
rsp configuration items. The rsp configuration item is set to the end of
internal RAM area.

M> cf chip=<chip_name>

Processors supported by this command and their <chip_name> are
listed in Processor Support List for HP MELPS emulators.

M> cf chip=other

You need to select "other" for this item, if your processor is listed in the
Processor Support List for HP MELPS emulators but is not found in ?
cf chip command. In this case, you should set up proper value for cf
isfr , cf iram, cf irom, cf ipmr , and cf rsp by yourself.

Note Executing this command will drive the emulator into the reset state.

cf isfr

The isfr (internal Special Function Register:SFR) configuration item
defines the location of SFR area.

Note This item is automatically set up by cf chip command. Therefore, you
don’t have to set up this item when your processor can be specified by
cf chip command. If your processor is not supported by cf chip
command (when you select "other" for the configuration item), you
need to set up proper value for cf isfr command.

M> cf isfr=<address>..<address>
[,<address>..<address>]

You can specify the start address and end address of SFR area by above
command. The start address and end address of this area can be
defined on 16 byte boundaries.

M> cf isfr=none

4-4 Configuring the Emulator

When there is no SFR in your processor, you should select "none" to
this configuration item.

Note Executing this command will drive the emulator into the reset state.

cf iram

The iram (internal RAM) configuration item defines the location of
internal RAM area.

Note This item is automatically set up by cf chip command. Therefore, you
don’t have to set up this item when your processor can be specified by
cf chip command. If your processor is not supported by cf chip
command (when you select "other" for the configuration item), you
need to set up proper value for cf iram command.

M> cf iram=<address>..<address>
 [,<address>..<address>]

You can specify the start address and end address of internal RAM area
by above command. The start address and end address can be defined
on 16 byte boundaries.

M> cf iram=none

When there is no internal RAM in your processor, you should select
"none" to this configuration item.

Note Executing this command will drive the emulator into the reset state.

Configuring the Emulator 4-5

cf irom

The irom (internal ROM) configuration item defines the location of
internal ROM area.

Note This item is automatically set up by cf chip command. Therefore, you
don’t have to set up this item when your processor can be specified by
cf chip command. If your processor is not supported by cf chip
command (when you select "other" for the configuration item), you
need to set up proper value for cf irom command.

M> cf irom=<address>..<address>

You can specify the start address and end address of internal ROM area
by above command. The start address and end address can be defined
on 16 byte boundaries.

M> cf irom=none

When there is no internal ROM in your processor, you should select
"none" to this configuration item.

Note Executing this command will drive the emulator into the reset state.

cf ipmr

The ipmr (processor mode register) configuration item defines the
location of the processor mode register.

Note This item is automatically set up by cf chip command. Therefore, you
don’t have to set up this item when your processor can be specified by
cf chip command. If your processor is not supported by cf chip
command (when you select "other" for the configuration item), you
need to set up proper value for cf ipmr command.

4-6 Configuring the Emulator

M> cf ipmr=<address>

You can specify the address of processor mode register by above
command.

Note This configuration item is needed to manage the processor mode. Note
that the address is correctly specified, when you set up this
configuration item by yourself.

Note Executing this command will drive the emulator into the reset state.

cf mode

The mode (cpu operation mode) configuration item defines operation
mode of the processor and data bus width.

M> cf mode=<mode>

Valid <mode> are following:

<mode> Description

single The emulator will operate in single chip mode.

ext8 The emulator will operate in memory expansion
mode with 8 bits external data bus width.

ext16 The emulator will operate in memory expansion
mode with 16 bits external data bus width.

proc8 The emulator will operate in microprocessor mode
with 8 bits external data bus width.

proc16 The emulator will operate in microprocessor mode
with 16 bits external data bus width.

Configuring the Emulator 4-7

Note You may need to set up a switch inside the emulation pod in addition to
this configuration. Refer to the manual provided with your emulation
pod.

Note Executing this command will drive the emulator into the reset state.

cf mon

The mon (monitor) configuration item allows you to choose between a
foreground monitor supplied by you or the background monitor
supplied with the emulator.

The emulation monitor is the program that handles communication
between the emulation controller and the emulation processor. For
example, when you ask for a register display, the processor is broken to
the monitor, executes some code to store its register contents in an
array of memory locations, then returns to executing your program.

The background monitor provided with the emulator offers the greatest
degree of transparency to your target system (that is, your target system
should generally be unaffected by monitor execution). However, in
some cases you may require an emulation monitor tailored to the
requirements of your system. In this case, you will need to use a
foreground monitor linked into your program modules. See Appendix
A of this manual for more information on foreground monitors.

M> cf mon=bg

You select the use of the built-in background monitor through the
above command. A memory overlay is created and the background
monitor is loaded into that area.

M> cf mon=fg..XXXX

You select the use of your foreground monitor using this command.

4-8 Configuring the Emulator

XXXX defines an 16 bits hex address where the monitor will be
located. (Note: this will not load the monitor, it only specifies its
location). You can define the location on a 2K byte boundary (address
ending in 000 hex or 800 hex). You can not locate the monitor at
internal RAM area or Special Function Register area.

Remember that you must assemble and link your foreground monitor
starting at the 2K byte boundary specified in the command above. You
must also load the monitor into emulation memory.

Note If you intend to use a foreground monitor, the monitor must be loaded
before attempting to load any information into target system memory.

A memory mapper term is automatically created when you execute the
cf mon=fg command to reserve 2K bytes of memory space for the
foreground monitor.

The memory map is reset any time cf mon=fg is entered. It is only
reset when cf mon=bg if the emulator is not already configured to use
the background monitor.

Note Executing this command will drive the emulator into the reset state.

cf clk

The clk (clock) option allows you to select whether the emulation
processor’s clock will be sourced by your target system or by the
emulation pod.

M> cf clk=int

You can select the emulator’s internal clock using the above command.
The clock is provided from the circuit in the emulation pod. In the case
of HP 64146-61002 emulation pod, the internal clock speed is
1/8/16/25 MHz. When you use an emulation pod with clock faster than

Configuring the Emulator 4-9

16 MHz, you need to enable the cf rush configuration or insert one
wait state.

M> cf clk=ext

You can specify that the emulator should use the clock input to the
emulator probe from the target system as the system clock. The HP
64147A 7750/51 emulator can only operate rightly with clock input
from 1 up to 25MHz. And you must use a clock input conforming to
the specifications for the 7750/51 Series microprocessor. When clock
is faster than 16 MHz, you need to enable the cf rush configuration or
insert one wait state.

Note You can insert a wait state with one of the following methods.
Providing the /RDY from the target system.
Configuring the emulator to generate the /RDY signal. Refer
to the section describing the cf rdy command

Note When the external clock is selected, your target system must have a
clock generation circuit. The emulation pod cannot generate clock
signal using a ceramic (or quartz crystal) resonator.

Note Executing this command will drive the emulator into the reset state.

cf int

The int configuration item determines whether or not the emulator
responds to interrupt signals from the target system during foreground
operation.

M> cf int=en

Using the above command, you can specify that the emulator will
respond to interrupts from the target system.

4-10 Configuring the Emulator

M> cf int=dis

The emulator won’t respond to interrupts from the target system.

If you are using the background monitor, the emulator does not accept
any interrupt during background execution. Edge sensed interrupts
occurred during in background is latched only the last one, and this
interrupt will occur when context is changed to foreground. Level
sensed interrupts are ignored during in background operation.

Note You may need to set up switches inside the pod to accept interrupts
from the target system. Refer to the manual provided with your
emulation pod.

Note Executing this command will drive the emulator into the reset state.

cf rdy

The rdy configuration item defines whether or not the emulator
introduces /RDY input when it accesses any memory. This feature is
used to run the emulator with clock faster than 16 MHz.

M> cf rdy=dis

You can disable the /RDY input by the emulator with above command.
When clock is equal or slower than 16 MHz, always use the emulator
with cf rdy=dis.

M> cf rdy=en

When enabled, the emulator activate /RDY input for one clock cycle,
every time the emulator accesses memory.

Note Executing this command will drive the emulator into the reset state.

Configuring the Emulator 4-11

cf rush

The rush configuration item enables/disables the high speed access
mode of the emulator.

M> cf rush=dis

You can disable the high speed access mode with the above command.

When you disable the high speed access mode:

You can define up to 16 different map terms which can be
placed wherever you like. (Refer to the "Memory Mapping"
section in this chapter.)
The emulator can run with no wait state, up to 16 MHz.
The emulator can run with one wait state, up to 25 MHz.

M> cf rush=en

You can enable the high speed access mode with the above command.

When you enable the high speed access mode:

The emulator can access emulation memory with no wait
state, up to 25 MHz.
You can map the emulation memory only to the following
location.

Memory Monitor Available location
128K Background 000000-01F7FF
128K Foreground 000000-01FFFF
512K Background 000000-07F7FF
512K Foreground 000000-07FFFF
1M Background 000000-0FF7FF
1M Foreground 000000-0FFFFF
2M Background 000000-1FF7FF
2M Foreground 000000-1FFFFF

cf wdog

The wdog (watch dog timer) configuration item defines whether the
watch dog timer is enabled or not.

M> cf wdog=dis

You can disable the watch dog timer with above command.

M> cf wdog=en

4-12 Configuring the Emulator

You can enable the watch dog timer with above command.

cf rsp

The rsp (reset stack pointer) configuration item allows you to specify a
value to which the stack pointer and stack page register will be set upon
the transition from emulation reset into the emulation monitor.

Note This item is automatically set up by cf chip command. The cf chip
command set up rsp to the end of internal RAM. When you select a
processor which has no internal RAM, rsp is set to FFF hex.

R> cf rsp=XXXX

where XXXX is a 16 bits address, will set the stack pointer to that
value upon entry to the emulation monitor after an emulation reset.
When the emulator breaks to the background monitor, the monitor
program needs 5 bytes of stack.

For example, to set the stack pointer to 27f hex, type:

R> cf rsp=27f

Now, if you break the emulator to monitor using the b command, the
stack pointer will be modified to the value 27f hex.

Caution Without a stack pointer, the emulator is unable to make the transition to
the run state, step, or perform many other emulation functions.

Configuring the Emulator 4-13

cf rrt

The rrt (restrict to real time) option lets you configure the emulator so
that commands which cause the emulator to break to monitor and
return to the user program will be rejected by the emulator command
interpreter.

M> cf rrt=en

You can restrict the emulator to accepting only commands which don’t
cause temporary breaks to the monitor by entering the above command.
Only the following emulator run/stop commands will be accepted:

rst (resets emulation processor)

b (breaks processor to background monitor until you enter another
command)

r (runs the emulation processor from a given location)

s (steps the processor through a piece of code -- returns to monitor after
each step)

Commands which cause the emulator to break to the monitor and
return, such as reg, m (for target memory display), and others will be
rejected by the emulator.

Caution If your target system circuitry is dependent on constant execution of
program code, you should set this option to cf rrt=en . This will help
insure that target system damage doesn’t occur. However, remember
that you can still execute the rst, b and s commands; you should use
caution in executing these commands.

M> cf rrt=dis

When you use this command, all commands, regardless of whether or
not they require a break to the emulation monitor, are accepted by the
emulator.

cf dmdt

This configuration item is reserved for use by the Softkey Interface.

4-14 Configuring the Emulator

cf tdma

The tdma (trace DMA cycles) configuration item defines whether or
not the emulator traces DMA cycles.

M> cf tdma=en

When you enable this item with the above command, each time DMA
performed, one emulation analyzer state will be generated to recognize
the DMA cycle.

M> cf tdma=dis

When disabled, no analyzer state will be generated at the occurrence of
DMA. Therefore, any DMA cycle will be ignored by the analyzer.

cf trfsh

The trfsh (trace bus release cycles) configuration item defines whether
or not the emulator traces refresh cycles.

M> cf trfsh=en

When you enable this item with the above command, refresh cycles are
traced by the emulation analyzer.

M> cf trfsh=dis

When disabled, refresh cycles are not traced by the analyzer.

cf thold

The thold (trace hold cycles) configuration item defines whether or not
the emulator traces hold cycles.

M> cf thold=en

When you enable this item with the above command, the emulation
analyzer will trace hold cycles.

M> cf thold=dis

When disabled, hold cycles are not traced by the emulation analyzer.

Memory Mapping Before you begin an emulator session, you must specify the location
and type of various memory regions used by your programs and your
target system (whether or not it exists). You do this for several reasons:

Configuring the Emulator 4-15

the emulator must know whether a given memory location
resides in emulation memory or in target system memory. This
allows the emulator to properly orient buffers for the given
data transfer.

the emulator needs to know the size of any emulation memory
blocks so it can properly reserve emulation memory space for
those blocks.

the emulator must know if a given space is RAM (read/write),
ROM (read only), or doesn’t exist. This allows the emulator to
determine if certain actions taken by the emulation processor
are proper for the memory type being accessed. For example,
if the processor tries to write to a emulation memory location
mapped as ROM, the emulator will not permit the write (even
if the memory at the given location is actually RAM). (You
can optionally configure the emulator to break to the monitor
upon such occurrence with the bc -e rom command.) Also, if
the emulation processor attempts to access a non existent
location (known as "guarded"), the emulator will break to the
monitor.

You use the map command to define memory ranges and types for the
emulator. The HP 64147A 7750/51 Series emulator memory mapper
allows you to define up to 16 different map terms; each map term has a
minimum size of 256 bytes. If you specify a value less than 256 byte,
the emulator will automatically allocate an entire block. You can
specify one of five different memory types (erom, eram, trom, tram,
grd).

4-16 Configuring the Emulator

For example, you might be developing a system with the following
characteristics:

input port at 500 hex

output port at 580 hex

program and data in external ROM from c000 through
dfff hex

Suppose that the only thing that exists in your target system at this time
are input and output ports and some control logic; no memory is
available. You can reflect this by mapping the I/O ports to target
system memory space and the rest of memory to emulation memory
space. Type the following commands:

R> map -d *
R> map 500..580 tram
R> map 0c000..0dfff erom
R> map

remaining number of terms : 14
remaining emulation memory : 7df00h bytes
map 0000500..00005ff tram # term 1
map 000c000..00dfff eram # term 2
map other tram

As you can see, the mapper rounded up the second term to 256 bytes
block, since those are minimum size blocks supported by the HP
64147A 7750/51 Series emulator.

Note When you use background monitor, the emulator occupies 2K byte,
which is used for background monitor program, leaving 122K, 506K,
1018K, 2042K byte of emulation memory which you may use.

Note When you emulate the internal ROM area, you must map the address
to emulation memory.

Configuring the Emulator 4-17

Note You cannot map internal RAM and SFR as guarded (grd).

Note You should map all memory ranges used by your programs before
loading programs into memory. This helps safeguard against loads
which accidentally overwrite earlier loads if you follow a map/load
procedure for each memory range.

Internal RAM and SFR

The emulator uses internal RAM of emulation processor to emulate
user program. When you direct the emulator to display the contents of
internal RAM (or SFR) area, the emulator breaks to the monitor and the
monitor program reads the contents of memory. Therefore, execution
of user program is suspended to perform your direction. However, you
can configure the emulator so that write cycles are performed to both
internal RAM (or SFR) and emulation memory. In this case, you can
see the data written to emulation memory without suspending program
execution.

To use this feature, you need to map these area to emulation RAM
(eram). When you do this, you can display the contents of emulation
memory with m command without suspending user program execution.
You still can display the contents of internal RAM by appending "@i"
to address specification in m command.

For example, to see the content of address 100 hex in internal RAM,
you can do both of the following:

M> m 100 (This command accesses emulation
 memory)
M> m 100@i (This command accesses internal
 RAM of emulation processor.)

When you don’t map the internal RAM and SFR area to emulation
RAM, you can access the internal RAM and SFR without appending
"@i".

4-18 Configuring the Emulator

Note The contents of emulation memory is updated only when user program
writes data to internal RAM or SFR. Therefore, the contents of
emulation memory may be different from the actual value of internal
RAM or SFR. Especially, you should pay a close attention when
seeing flags of SFR.

Note When you modify memory, the emulator breaks to the monitor, and
writes data to internal RAM or SFR. Therefore, user program is
suspended when modifying internal RAM or SFR.

For further information on mapping, refer to the examples in earlier
chapters of this manual and to the HP 64700 Terminal Interface User’s
Reference manual.

Break Conditions The bc command lets you configure the emulator’s response to various
emulation system and external events.

Write to ROM

If you want the emulator to break into the emulation monitor whenever
the user program attempts to write to a memory region mapped as
ROM, enter:

M> bc -e rom

You can disable this function by entering:

M> bc -d rom

When disabled, the emulator will not break to the monitor upon a write
to ROM; however, it will not modify the memory location if the
memory at that location is actually RAM.

Configuring the Emulator 4-19

Software Breakpoints

The bp command allows you to insert software traps in your code
which will cause a break to the emulation monitor when encountered
during program execution. If you want to enable the insertion and use
of software breakpoints by the bp command, enter:

M> bc -e bp

To disable use of software breakpoints, type:

M> bc -d bp

Any breakpoints which previously existed in memory are disabled, but
are not removed from the breakpoint table.

Trigger Signals

The HP 64700 emulator provides four different trigger signals which
allow you to selectively start or stop measurements depending on the
signal state. These are the bnct (rear panel BNC input), cmbt (CMB
trigger input), trig1 and trig2 signals (provided by the analyzer).

You can configure the emulator to break to the monitor upon receipt of
any of these signals. Simply type:

M> bc -e <signal>

For example, to have the emulator break to monitor upon receipt of the
trig1 signal from the analyzer, type:

M> bc -e trig1

(Note: in this situation, you must also configure the analyzer to drive
the trig1 signal upon finding its trigger by entering tgout trig1).

4-20 Configuring the Emulator

Limitations and
Considerations

Clock Speed Maximum clock speed of HP 64147A 7750/51 emulator is 25MHz.
This emulator does not support any operation with clock faster than
25MHz.

Access to Internal
RAM

Modifying internal RAM or SFR suspends user program execution.

Trace Internal RAM Read data from the internal RAM or SFR is not traced correctly by the
emulation analyzer.

Note Write data is also not traced correctly, when the following conditions
are met:

The emulator is used with the M37780/81/82/83/85/95/96
emulation pod.
The processor is operating in the memory expansion or
microprocessor mode with 8 bit external bus.

Step Command to
Internal RAM

Step command to internal RAM area is not available.

DMA Support Direct memory access to emulation memory is not allowed.

Watch Dog Timer in
Background

Watch dog timer suspends count down while the emulator is running in
background monitor.

Step Command with
Foreground Monitor

Step command is not available when the emulator is used with a
foreground monitor.

Configuring the Emulator 4-21

Step Command and
Interrupts

When an interrupt occurs while the emulator is running in monitor, the
emulator fails to do the first step operation. The emulator will display
the mnemonic of the instruction which should be stepped, but the
instruction is not actually executed. The second step operation will
step the first instruction of the interrupt routine.

Emulation
Commands in

Stop/Wait Mode

When the microprocessor is in the stop or wait mode, emulation
commands which access memory or registers will fail. In the case of
using M37782/83/85 emulation pod, you need to reset the emulator to
release stop or wait mode. And, in the case of using other emulation
pod, you need to break the the emulator.

RDY/HOLD Input in
Background Cycles

The 64147A M37750/51 emulator does not accept RDY/HOLD input
while in background monitor. However, when you use
M37780/81/82/83/85/95/96 emulation pod, M37750/51 emulator
accept RDY/HOLD input while in background monitor.

Accessing External
Memory Area in SFR

When operation mode is memory expansion or microprocessor mode,
there is external memory area in SFR. However, accessing to this area
is not allowed.

High Speed Bus
Mode

Always set bus mode as low speed bus mode, when you use M37751
emulation pod. HP 64147A 7750/51 emulator does not support high
speed bus mode. Note that bus mode is automatically configured as
high speed bus mode when you do r rst (run from target reset). Then,
you need to re-configure bus mode as low speed bus mode before
accessing SFR area.

RMPA Instruction Disassembling in trace list may not be correct for next instruction of
RMPA instruction. This failure will occur when RMPA instruction is
repeated over about fifty times.

Stack Address In some versions of 7720 microprocessor, the stack can be located in
Bank FF. However, the HP 64147A 7750/51 Series emulator doesn’t
support the feature. The stack must be located in Bank 0.

Evaluation Chip Hewlett-Packard makes no warranty of the problem caused by the
Evaluation chip in the emulator.

4-22 Configuring the Emulator

A

Using the Optional Foreground Monitor

By using and modifying the optional Foreground Monitor, you can
provide an emulation environment which is customized to the needs of
a particular target system.

Comparison of
Foreground and
Background
Monitors

An emulation monitor is required to service certain requests for
information about the target system and the emulation processor. For
example, when you request a register display, the emulation processor
is forced into the monitor. The monitor code has the processor dump
its registers into certain emulation memory locations, which can then be
read by the emulator system controller without further interference.

Background
Monitors

A background monitor is an emulation monitor which overlays the
processor’s memory space with a separate memory region. Entry into
the monitor is normally accomplished by jamming the monitor
addresses onto the processor’s address bus.

Usually, a background monitor will be easier to work with in starting a
new design. The monitor is immediately available upon powerup, and
you don’t have to worry about linking in the monitor code or allocating
space for the monitor to use the emulator. No assumptions are made
about the target system environment; therefore, you can test and debug
hardware before any target system code has been written. All of the
processor’s address space is available for target system use, since the
monitor memory is overlaid on processor memory, rather than
subtracted from processor memory. Processor resources such as
interrupts are not taken by the background monitor.

However, all background monitors sacrifice some level of support for
the target system. For example, when the emulation processor enters

Using A Foreground Monitor A-1

the monitor code to display registers, it will not respond to target
system interrupt requests. This may pose serious problems for complex
applications that rely on the microprocessor for real-time, non-intrusive
support. Also, the background monitor code resides in emulator
firmware and can’t be modified to handle special conditions.

Foreground Monitors A foreground monitor may be required for more complex debugging
and integration applications. A foreground monitor is a block of code
that runs in the same memory space as your program. You link this
monitor with your code so that when control is passed to your program,
the emulator can still service real-time events, such as interrupts or
watchdog timers. For most multitasking, interrupt intensive
applications, you will need to use a foreground monitor.

You can tailor the foreground monitor to meet your needs, such as
servicing target system interrupts. However, the foreground monitor
does use part of the processor’s address space, which may cause
problems in some target systems. You must also properly configure the
emulator to use a foreground monitor (see Chapter 4 and the examples
in this appendix); and, you must link the monitor with your other
program code.

A-2 Using A Foreground Monitor

An Example Using
the Foreground
Monitor

In the following example, we will illustrate how to link a foreground
monitor with the sample program from Chapter 2. By using the
emulation analyzer, we will also show how the emulator switches from
state to state using a foreground monitor.

Note Two foreground monitor programs are provided with HP 64147A
7750/51 emulator. fm7750.a77 is written for Mitsubishi RASM77
Assembler, and fm7750.src is for MRI ASMM77 Assembler.

Modify Location
Declaration
Statement

Monitor Address

To use the monitor, you may need to modify the .EQU statement just
after the first comment section of the monitor program listing. You
should see the line below:

LOCATE_ADRS .EQU 0B800H ;start monitor on 2k boundary in bank 0
 ;rather than sfr/iram area
PROCMODEREG .EQU 0005EH ;processor mode register’s address

You can specify the monitor location by modifying this label
LOCATE_ADRS. For example, if you want locate the monitor
program at a000 hex, make above line to as below:

LOCATE_ADRS .EQU 0A000H ;start monitor on 2k boundary in bank 0
 ;rather than sfr/iram area
PROCMODEREG .EQU 0005EH ;processor mode register’s address

You can load the foreground monitor on a 2k byte boundary of bank 0
(except internal RAM area and SFR area). In this example, we will
locate the monitor at b800 hex. Therefore, you don’t have to modify the
LOCATE_ADRS label.

Using A Foreground Monitor A-3

Processor Mode Register Address

You may need to modify the .EQU statement at the PROCMODEREG
label. This value defines the location of processor mode register. If
your processor has processor mode register at address other than 5e
hex, modify this value to appropriate value.

Modify Chip Name
Statement

Chip Name

To use the monitor with 7751 microprocessor, you need to modify the
chip name section of foreground monitor. Default setting is following.

CHIP7751 .WORD 0 ; OTHER_THAN_7751

You can specify 7751 microprocessor by modifying this section like
below.

CHIP7751 .WORD 1 ; 7751

Configure the
Emulator

Before configuring the emulator, you should initialize the emulator to a
known state. Type:

R> init

Select processor you are going to emulate. Type:

R> cf chip=<chip_name>

You need to tell the emulator that you will be using a foreground
monitor and allocate the memory space for the monitor. This is all
done with one configuration command. To locate the monitor on a 2k
boundary starting at b800 hex, type:

R> cf mon=fg..0b800

To see the new memory mapper term allocated for the foreground
monitor, type:

R> map
remaining number of terms : 15
remaining emulation memory : 7f800h bytes
map 000b800..000bfff eram # term 1
map other tram

Notice that a 2k byte block from b800 through bfff hex was mapped.

A-4 Using A Foreground Monitor

Now, you need to map memory space for the sample program. Type:

R> map 0c000..0dfff erom

If you are going to emulate a processor which has no internal RAM,
map 100 hex through 2ff hex as emulation RAM.

Set a Stack Pointer You need to set up the stack pointer for use by the foreground monitor.
The foreground monitor use the stack when transit from foreground
monitor to user program. You can use the cf rsp command to define
the stack pointer location; the stack pointer will be initialized on each
transition from emulation reset to the monitor. Type:

R> cf rsp=27f

Load the Program
Code

Now it’s time to load the sample program and monitor. Assemble and
link the monitor program.

In the example shown, we’re loading the program from a host with the
emulator in Transparent Configuration. If you’re using the standalone
configuration with a data terminal, you will need to enter the data using
the m command. (You can get the data from your assembly listings.)
See Chapter 2 for information.

Load the sample program by typing:

R> load -ios "cat cmd_rds.hex"

Load the monitor program by typing:

R> load -ios "cat fm7750.hex"

Before we forget, let’s initialize the stack pointer by breaking the
emulator out of reset:

R> b

Now you can run the sample program.

M> r 0c0000

Using A Foreground Monitor A-5

Limitations of
Foreground
Monitors

Step Command Step command (s command) is not available when you are using the
foreground monitor.

cim Command cim command is not available when you are using the foreground
monitor.

Synchronized
measurements

You cannot perform synchronized measurements over the CMB when
using a foreground monitor. If you need to make such measurements,
set the foreground/background configuration option to cf mon=bg.

A-6 Using A Foreground Monitor

B

7750/51 Series Emulator Specific Command
Syntax

The following pages contain descriptions of command syntax specific
to the 64147A 7750/51 Series emulator. The following syntax items
are included (several items are part of other command syntax):

<CONFIG_ITEMS>. May be specified in the cf (emulator
configuration) and help cf commands.

<DISPLAY_MODE>. May be specified in the mo (display
and access mode), m (memory), and ser (search memory for
data) commands. The display mode is used when memory
locations are displayed or modified.

<ADDRESS>. May be specified in emulation commands
which allow addresses to be entered.

<REG_NAME>. May be specified in the reg (register)
command.

Specific Command Syntax B-1

CONFIG_ITEMS

Summary 7750/51 Series emulator configuration items.

Syntax

B-2 Specific Command Syntax

Description The 64147A 7750/51 Series emulator has several dedicated
configuration items which allow you to specify the emulator’s
interaction with the target system and the rest of the emulation system.
These items are:

chip Select chip to be emulated.

isfr Define the location of Special Function Register.

iram Define the location of internal RAM.

irom Define the location of internal ROM.

ipmr Define the address of processor mode register

mode Select operation mode of the processor.

rush Enable/disable high speed access mode.

mon Select background or foreground monitor.

clk Select internal/external clock source.

int Enable/disable interrupts from target system.

rdy Enable/disable /RDY input by the emulator.

wdog Enable/disable the Watch Dog Timer.

rsp Specify reset value of the stack pointer.

rrt Restrict emulator to real time runs

tdma Enable/disable tracing DMA cycles.

trfsh Enable/disable tracing refresh cycles.

thold Enable/disable tracing hold cycles.

Complete explanations of all configuration items are given in chapter 4
of this manual.

Specific Command Syntax B-3

Examples To select an external clock, type:

M> cf clk=ext

You can obtain the status of configuration items by typing the item
name without a value. You can also specify multiple configuration
items on the same line. Type:

M> cf mon=fg..08000 rrt=dis clk
cf clk=int

Here, we changed to a foreground monitor located at address 8000 hex,
disabled the real-time runs restriction, and ask processor clock source.
Notice that items which are changed do not have status printed; you
could explicitly request the new status by repeating the configuration
item on the command line after the change but without a value. For
example:

R> cf mon=fg..2000 mon
cf mon=fg..2000

Related information Refer to the cf syntax pages in the User’s Reference manual. Also,
refer to chapter 4 of this manual for complete information about each
configuration item.

B-4 Specific Command Syntax

DISPLAY_MODE

Summary Specify the memory display mode

Syntax

Description The <DISPLAY_MODE> specifies the format of the memory display
or the size of the memory which gets changed when memory is
modified.

 b Byte. Memory is displayed in a byte format, and
when memory locations are modified, bytes are
changed.

w Word. Memory is displayed in a word format, and
when memory locations are modified, words are
changed.

m Mnemonic. Memory is displayed in mnemonic
format; that is, the contents of memory locations are
inverse-assembled into mnemonics and operands.
When memory locations are modified, the last
non-mnemonic display mode specification is used.
You cannot specify this display mode in the ser
(search memory for data) command.

Defaults The <DIPLAY_MODE> is b at power up initialization. Display mode
specifications are saved; that is, when a command changes the display
mode, the new display mode becomes the current default.

Related Information Refer to the mo syntax information in the Terminal Interface Reference
manual for more details on mode command.

Specific Command Syntax B-5

ACCESS_MODE

Summary Specify the memory access mode

Syntax

Description Access mode defines how the emulator accesses target system memory.
The 64147A 7750/51 Series emulator allows the following access
modes:

b - byte access mode

w - word access mode

The emulator monitor uses the access mode to determine whether to
use byte or word instructions during target system memory accesses,
such as memory modification or display. (note that it does not affect
how that data is displayed on screen, which is controlled by the display
mode.)

Defaults The <ACCESS_MODE> is b at power up initialization. Display mode
specification are saved; that is, when a command changes the access
mode, the new access mode becomes the current default.

Related Information Refer to the mo syntax information in the Terminal Interface Reference
manual for more details on mode command.

B-6 Specific Command Syntax

ADDRESS

Summary Address specification used in emulation commands.

Syntax

Description The <ADDRESS> parameter used in emulation commands is specified
in 24 bits address information.

The @i specification is needed to access internal RAM or SFR when
you map these area to emulation RAM. When you map these area to
emulation RAM, data write cycles are performed to both internal RAM
(or SFR) and emulation memory. Therefore, you can display the data
written to emulation memory without suspending user program
execution. To display internal RAM or SFR, you need to specify @i
after address expression.

When you don’t map internal RAM and SFR to emulation memory,
you can access the actual RAM or SFR without specifying @i after
address expression.

Examples m 1000
m 20000..200ff
m 100=41

Specific Command Syntax B-7

REGISTERS

Summary 7750/51 Series register designators.

<REG_NAME> Following registers are available:

pg Program Bank Register

pc Program Counter

ps Processor Status Register

dt Data Bank Register

sp Stack Pointer

a Accumulator A

b Accumulator B

x Index Register X

y Index Register Y

dpr Direct Page Register

Related Commands reg (register display/modify)

B-8 Specific Command Syntax

mx Command

Syntax

Summary The 7750/51 Series microprocessors have M flag and X flag which
determine data length and index register length. The inverse assembler
of emulator needs to know the value of these flags to disassemble the
memory contents. The mx command tells the emulator the value of M
flag and/or X flag.

The -c option can be specified to set the current value of M and X flag
in processor status register.

Specific Command Syntax B-9

Notes

B-10 Specific Command Syntax

Index

A adaptor 3-4
ADDRESS syntax B-7
Analyzer

configuration 2-24
halting 2-26
pipeline 2-26
predefined status equates 2-27
restrictions 2-31
storage specification 2-24
trace list display 2-25
trace list format 2-25
triggering the 2-24

Analyzer trace
starting 2-25

B b Command 2-20
Background monitor A-1
bc Command 2-10, 2-28, 4-19
Before using the emulator 2-2
bp Command 4-20
Break

write to ROM 4-19
Break condition 2-28
break conditions

after initialization 2-8
breakpoints 2-8

C cf chip Command 4-4
cf Command 2-9
cf ipmr Command 4-6
cf iram Command 4-5
cf irom Command 4-6
cf isfr Command 4-4
cf map Command 4-12
cf mode Command 4-7
cf rdy command 4-11

Index-1

cf thold Command 4-15
cf trfsh Command 4-15
cfchip Command 2-9
cim Command 2-28
clock

internal clock 4-10
Comfiguration

enable/disable mapper 4-12
Command prompts 2-19
Commandhelp 2-6
Commands

b 2-20
bc 2-10, 2-28, 4-19
bp 2-27, 4-20
cf 2-9
cf chip 2-9
cf map 4-12
cf rdy 4-11
cf rsp 4-13
cf thold 4-15
cf trfsh 4-15
cim 2-28
configuration 4-1
cov 2-30
equ 2-27
help 2-6
m 2-13, 2-21
map 2-12, 4-16
measurement 4-1
mx 2-17
r 2-20
recalling 2-24
reg 2-21
rst 2-19
s 2-22
t 2-25
tf 2-25
tg 2-24
th 2-26
tl 2-25
tsto 2-24

2-Index

xp 2-14
Comparison of foreground/background monitors A-1
CONFIG_ITEMS syntax B-2
Configuration

analyzer 4-2
breaks 4-19
clock selection 4-9
enable/disable target interrupts 4-10
enable/disable to trace DMA cycles 4-15
enable/disable to trace hold cycles 4-15
enable/disable to trace refresh cycles 4-15
for getting started 2-9
introducing RDY input 4-11
memory mapping 4-16
processor to emulator/target system 4-3
system 4-2
types of 4-1

Coordinated measurement commands 4-2
cov Command 2-30
Coverage measurement 2-30

D Displaying
configuration 4-3
registers 2-21
trace list 2-25

DT register 4-15

E emulation memory
after initialization 2-8
mapping internal RAM and SFR area 4-18

Emulation pod
ordering information 1-3

Emulation processor
ordering information 1-3

Emulator
configuration 2-9
purpose 1-1

emulator configuration
after initialization 2-8

Emulator features
analyzer 1-4
breakpoints 1-6

Index-3

coverage measurements 1-6
emulation memory 1-4
foreground and background monitor 1-5
processor reset control 1-6
register display/modify 1-5
restrict to real-time runs 1-6
single-step processor 1-6

Emulator limitations 1-7
Access to Internal RAM 1-7
accessing external memory in SFR area 1-8
clock speed 1-7
displaying memory 4-19
DMA support 1-7
emulation command fails in stop/wait mode 1-8
high speed bus mode 1-8
modify/display internal RAM 2-22
RDY/HOLD input in background cycles 1-8
RMPA instruction 1-8
stack pointer 1-8
step command to Interanl RAM 1-7
step command with foreground monitor 1-7
step fails when an interrupt exists 1-8
trace internal RAM 1-7
watch dog timer 1-7

Emulator specific command syntax B-1
equ Command 2-27
es(emulator status) command 2-8
evaluation chip 1-8, 4-22

F Foreground monitor
address requirements 4-9
cim command is unavailable A-6
defining chip name A-4
defining monitor address A-3
defining processor mode register address A-4
limitations A-6
s command is unavailable A-6

Foreground monitors A-2
example of using A-3

Function codes
memory mapping 4-16

4-Index

H Halting the analyzer 2-26
Help 2-6
help information on system prompts 2-7
helpCommand 2-6
high speed access mode 1-3
high speed bus mode 1-8, 4-22
Hold cycles

enable/disable tracing hold cycles 4-15

I Information help 2-6
init (emulator initialization) command 2-8
initialization, emulator 2-8

warm start 2-8
Installing target system probe

target system probe 3-2
internal RAM 4-18

L limitations
Access to Internal RAM 4-21
accessing external memory in SFR area 4-22
clock speed 4-21
DMA support 4-21
emulation command fails in stop/wait mode 4-22
high speed bus mode 4-22
RDY/HOLD input in background cycles 4-22
RMPA instruction 4-22
stack pointer 4-22
step command to Interanl RAM 4-21
step command with foreground monitor 4-21
step fails when an interrupt exists 4-22
trace internal RAM 4-21
watch dog timer 4-21

Loading programs
for Transparent Configuration 2-14
transfer utility 2-14

Loadingprograms 2-13
for Standalone Configuration 2-13

M m Command 2-13
mac Command 2-23
macros

after initialization 2-8

Index-5

map Command 2-12, 4-16
Memory Display

mnemonic format 2-17
setting up M flag andX flag 2-17

memory map
after initialization 2-8

Memory mapping 4-16
defining memory type to emulator 4-16
for getting started program 2-12
function codes 4-16
internal ROM 4-17
memory for monitor program 4-17
sequence of map/load commands 4-18

Memory search 2-29
Mnemonic display format 2-17
Monitor

select foreground/background monitor 4-8
monitor program 1-5

background 1-5
foreground 1-5

Monitors
background A-1
comparison of foreground/background A-1

mx Command 2-17

N notes
foreground monitor is written for RASM77 A-3

P Prerequisites for using the emulator 2-2
Program loads 2-13
prompts 2-7

emulator command 2-19
help information on 2-7
using "es" command to describe 2-8

Purpose of the Emulator 1-1

R r Command 2-20
Refresh cycles

enable/disable tracing refresh cycles 4-15
reg Command 2-21
Register Display 2-21
REGISTERS syntax B-8

6-Index

Restrict to real time runs
permissible commands 4-14
target system dependency 4-14

Restrictions
Analyzer 2-31

rst Command 2-19
run from reset 3-5

S s Command 2-22
unavailable with foreground monitor A-6

Sample programs
for getting started 2-3

SFR 4-18
displaying without suspending user program 2-22

Shrink DIP package 3-4
single step 2-22

disassembled mnemonic and mx command 2-23
limitation 2-23

software breakpoints 4-20
after initialization 2-8
defining in internal RAM 2-28
defining in target ROM 2-28

stack pointer 1-8, 4-22
Starting a trace 2-25
Storage qualifier 2-24
supported microprocessors 1-3
Syntax (command), specific to 7750/51 Series emulator B-1

T t Command 2-25
Target system dependency on executing code 4-14
Target system probe

cautions for installation 3-2
installation 3-2
installation procedure 3-3

target system reset
run from reset 3-5

tf Command 2-25
tg Command 2-24
th Command 2-26
tl Command 2-25
Trace list display 2-25
Trace list format 2-25

Index-7

Tracing program execution 2-24
Transfer utility 2-14
Transparent mode 2-14
Trigger signals

break upon 4-20
tsto Command 2-24
Types of configuration 4-1

W wait mode 1-8, 4-22
warm start initialization 2-8
watch dog imer

enable/disable 4-12

X xp Command 2-14

8-Index

	Using This Manual
	Contents
	Introduction to the 7750/51 Series Emulator
	Getting Started
	Using the 7750/51 Series Emulator In-Circuit
	Configuring the 7750/51 Series Emulator
	Using the Optional Foreground Monitor
	7750/51 Series Emulator Specific Command Syntax
	Index

