HP 64730

H8/570 Emulator
Softkey Interface

User’'s Guide

HEWLETT
[ﬁﬁ] PACKARD
HP Part No. 6 4730-97005

Printed in U.S.A.
February 1993

Edition 2






Notice

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability and fitness for a particuprrpose.

Hewlett-Packard shall not be liable for errors contained herein or
for incidental or consequential damagesanrection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability
of its software on equipment that is not furnished by
Hewlett-Packard.

Copyright 1992,1993, Hewlett-Packard Company.

This document contains proprietary information, which is
protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to
another language without the prior written consent of
Hewlett-Packard Company. The information contained in this
document is subject to change without notice.

UNIX is a registered trademark of UNIX System Laboratories Inc.
in the U.S.A. and other countries.

Torxis a registered trademark of Camcarifion of Textron, Inc.

LCA is a trademark of Hinx Inc.

Hewlett-Packard Company

P.O. Box 2197

1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure
bythe U.S. Government is subject to restrictions set forth in
subparagraph (C) (1) (ii) of the Rights in Technical Data and
Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA
94304 U.S.A. Right fonon-DOD U.S. Government Department
and Agencies are as set forth in FAR 52.227-19(c)(1,2).



Printing History

New editions are complete revisions of the manual. The date on
the title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was
issued. Manproduct updates and fixes do not require manual
changes, and manual corrections may be done without
accompanying product changes. Therefore, do not expect a
one-to-one correspondence between product updates and manual
revisions.

Edition 1 64730-97002, May 1992

Edition 2 64730-97005, February 1993



Using This Manual

This manual will show you how to use the HP 64730 H8/570
Emulator with the Softkey Interface. This manual will also help
define how these emulators differ from other HP 64700 Emulators.

This manual will:

s Showyou howto use emulation commands by executing
them on a sample program and describing their results.

s Showyou howto configure the emulator for your
development needs. Topics include: restricting the
emulator to real-time execution, and selecting a target
system clock source.

s Showyou howto use the emulator in-circuit (connected to
a target system).

This manual will not:

a Showyou howto use every Softkey Interface command
and option; the Softkey Interface is described in the
Softkey Interface Reference.



Organization

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Appendix A

Introduction to the H8/570 Emulator. This chapter briefly
introduces you to the concept of emulation and lists the basic
features of the H8/570 emulator.

Getting Started. This chapter shows you how to use emulation
commands by executing them on a sanglagram. This chapter
describes the sample program and how to: load programs into the
emulator, map memory, display and modify memory, display
registers, step through programs, run programs, set software
breakpoints, search memory for data, and use the analyzer.

Debugging ISP Functions. This chapter shows you how to use the
emulator to debug your ISP functions. This chapter describes how
to: load ISP functions into the emulator, display ISP memory,
display ISP registers, step through ISP functions, run ISP functions,
and use the analyzer.

"In-Circuit" Emulation. This chapter shows you how to install the
emulator probe into a target system and how to use the "in-circuit"
emulation features.

Configuring the Emulator. This chapter shows you how to restrict
the emulator to real-time execution, select a target system clock
source, allow background cycles to be seen by the target system.

Using the Emulator. This chapter describes emulation topics
which are not covered in the "Getting Started" chapter.

H8/570 Softkey Interface Specific Syntax. This appendix describes
specific syntaxto the H8/570 Softkey Interface.



Conventions

Example command&toughout the manual use the following

conventions:

bold

bold italic

normal

$

<RETURN>

Commands, options, and parts of command
syntax.

Commands, options, and parts of command
syntax which may be entered by pressing softkeys.

User specified parts of a command.
Represents the HP-UX prompt. i@mands
which follow the "$" are entered at the HP-UX
prompt.

The carriage return key.



Notes



Contents

Introduction to the H8/570 Emulator

Introduction . . . . .. ... 1-1
Purpose ofthe HB7O Emulator . . . . . .. ... ... .. ... 1-1
Features of the H8/570 Emulator . . . . .. ... ... ...... 1-3
Supported Microprocessors. . . . . . . . ..o 1-3
ClockSpeeds . . . ... .. .. . . . . . . . 1-3
Emulation memory . . .. .. ... ... . 0o 1-3
Analysis . . . . .. 1-3
Registers . . . . . . . e 1-4
Single-Step . . . . .. 1-4
Target System Interface . . . . . . . ... ... ... ...... 1-4
Breakpoints . . . . . .. ... 1-4
Reset Support . . . . . . .. L 1-4
Real-Time Execution . . . . ... ... ... .. ........ 1-4
EasyProductsUpgrades . . . . .. .. .. ... ... ...... 1-5
FeaturesforISPdebug .. ... ... .. ... ......... 1-5
Limitations, Restrictions . . . . . .. . ... ... .. .. ..... 1-6
DMA Support . . . . . . e 1-6
Sleep and Software Stand-byMode . . . . ... ... ... .. 1-6
Watch Dog Timer in Background . . . .. ... ........ 1-6
ISP Microprogram Modify . . . .. ... ... ......... 1-6
Symbolic Information for ISP Functions . . . . ... ... .. 1-6
RAMEnableBit . . . .. ... ... ... ... ... .. ..., 1-6

Getting Started

Introduction . . . . ... 2-1

Before YouBegin . . . . .. .. ... . ... .. 2-2
Prerequisites . . . . . . . . . ... .. 2-2
A Look at the Sample Program . . . . .. ... ... ..... 2-2
Sample Program Assembly . . . . ... .. ... ... ..... 2-6
Linking the Sample Program . . . . . .. .. ... ... .... 2-6
Generate HP Absolutefile . . . .. ... ... .. ... .... 2-6

Entering the SoftkeyInterface . . . . . . ... ... ... ..... 2-7
From the "pmon"User Interface . . . . . .. .. ... ... .. 2-7

Contents-1



2-Contents

Fromthe HP-UX Shell . . . . . .. ... .. ... ....... 2-8

Using the Default Configuration . . . . .. .. .. ... .... 2-9
On-LineHelp . .. ... .. . . . . . . . 2-9
SoftkeyDrivenHelp . . . . . . . . .. ... . o 2-9
Pod CommandHelp . . . . ... ... ... ....... 2:10.
Loading Absolute Files . . . . . . .. ... ... ... .. ..., 2-11
DisplayingSymbols . . . . . .. ... ... ... .. .. 0. 2-12
Global . . . . . .. 2-12
Local . . . . . . . . e 2-13
Displaying Memoryin Mnemonic Format . . . . .. ... ... 2-14
Display Memory with Symbols . . . . . .. ... ... .... 2-15
Runningthe Program . . . . . . . ... ... .. ...... 2-15.
From Transfer Address . . . . . .. ... ... .. ...... 2-16
FromReset . . . . . . . . . 2-16
Displaying Memory Repetitively . . . . ... ... ... .... 2-16
ModifyingMemory . . . . . ... e 2-16
Breakinginto the Monitor . . . . . . .. ... .. ... ..... 2-17
Using Software Breakpoints . . . . ... .. ... ........ 2-18
Enabling/Disabling Software Breakpoints . . . ... .. .. 2-19
Setting a Software Breakpoint . . . . ... .. ... ..... 2-20
Displaying Software Breakpoints. . . . . ... ... .. ... 2-20
Clearing a Software Breakpoint . . . ... ... ....... 2-21
Running the Program to A Specified Address . . . . . . . 2-22.
Displaying Registers . . . . . . . . . . ... .. ... ... ... 2-22
Stepping Through the Program . . . . .. ... .. .. .. 2:23.
Usingthe Analyzer . . . .. . .. .. .. ... ... ....... 2-24
Specifying a Simple Trigger . . . . . . . . ... .. ... ... 2-24
Displayingthe Trace . . . . . .. . .. . ... ... ...... 2-25
Displaying Trace with Time Count Absolute . . . . . .. 2:27
Displaying Trace with CompressMode . . . .. ... .. .. 2-28
Changingthe Trace Depth . . . . .. .. .. ... ...... 2-29
For a Complete Description . . . . .. .. ... ... .... 2-29
Exiting the SoftkeyInterface . . . . . . ... ... ... ... .. 2-29
End Release System . . . . .. ... ... .. ......... 2-29
Endingto Continue Later . . . . .. ... ... ........ 2-29
Ending Locked from AllWindows . . . . . . .. ... .... 2-30
Selecting the Measurement System Display or
AnotherModule . . . .. ... ... ... ... . 2-30



3 Debugging ISP Functions

Sample Program with Small ISP Functions . . .. ... ... .. 3-2
Sample Program Locations . . . . . ... ... ... ...... 3-5
Assembling the Sample Program . . . . . ... ... ...... 3-6
Assembling the Sample ISP Functions . . . . . ... ... .. 3-6
Converting Your ISP Functions . . . .. .. ... ....... 3-6

Entering the SoftkeyInterface . . . . . . ... ... ... ... .. 3-7

Loading Absolute Files . . . . . . .. ... ... ... .. ... . 3-7

Lookingat YourISPCode . . . . . . .. ... ... .. ...... 3-8

Controlling ISP Execution . . . . . ... ... ... ....... 3-10

Stepping ISP Function . . . . ... .. ... ... ... ... 3-11

Displaying/Modifying ISP Registers . . . . . . ... .. ... .. 3-12

Using the Analyzer to Debug ISP Functions . . . . . ... ... 3-13
Tracing ISP Execution . . . . . ... ... .. .. ....... 3-13
Tracing CPU/ISP Execution . . . .. ... ... ....... 3-15

In-Circuit Emulation

Prerequisites . . . . . . . . .. e 4-1
Installing the Target System Probe . . . .. ... ... ...... 4-2
Target System Adaptor . . . . . ... ... ... ... ..., 4-3
Pin Protector . . . . . . . . .. ... 4-3
Installing the Target System Probe . . . . ... .. ... .. .. 4-3
Optional Pin Extender. . . . . . ... .. ... .. ....... 4-3
Target System Interface . . . . . .. ... .. ... ... ...... 4-4
In-Circuit Configuration Options . . . . .. ... ... ...... 4-5
Running the Emulator from TargetReset . . . . .. ... .. .. 4-6

Configuring the Emulator

Introduction . . . . . ... 5-1
General Emulator Configuration . . . . ... ... ........ 5-3
Micro-processor clock source? . . . . .. ... .. ... .. .. 5-3
Enter monitor after configuration? . . .. ... ... .. ... 5-3
Restrict to real-timeruns? . . . .. ... ... ... .. ..., 5-4
Memory Configuration . . . . . .. .. ... .. ... ... .... 5-6
MappingMemory . . . . . .. o 5-6
Emulator Pod Configuration . . . . . . . ... ... ... ..... 5-8
Processor operationmode? . . . . . . ... ... o 5-8
Enable bus arbitration? . . . ... .. ... ... ... ... .. 5-9
Enable NMI input from the target system? . . . . . .. 5-10
Enable /RES input from the target system? . . . . . .. 5-10

Contents-3



4-Contents

Drive background cycles to the target system? . . . .. 5-11.
Break ISP into halt state on CPU break? . . . ... ... .. 5-12
Reset value for stack pointer? . . . ... ... ... ..... 5-12
Debug/Trace Configuration . . . .. .. ... ... ....... 5-13
Break processor on write to ROM? . . . ... .. ... 5-13
Trace CPU or ISP operation by emulation analyzer . . . . . 5-14
Trace background or foreground operation? . . . . . . 5-16.
Tracerefreshcycles? . . . . . .. ... ... ... ... .... 5-17
Trace busreleasecycles? . .. ... .. ... ... ...... 5-17
Simulated I/0 Configuration . . . . .. .. ... ... .. .... 5-17
Interactive Measurement Configuration . . . . ... ... 5-17
External Analyzer Configuration . . . .. ... ... ...... 5-18
Saving a Configuration . . . . .. ... ... ... ........ 5-18
Loading a Configuration . . . . .. .. ... ... ........ 5-19

Using the Emulator

Introduction . . . . . ... 6-1
Features Available via Pod Commands . . . . . ... .. ... .. 6-2
UsingaCommandFile . . . .. ... ... ............. 6-3
DebuggingC Programs . . . . . . . . . . ... e 6-4
Displaying Memorywith C Sources . . . ... ... ...... 6-4
Displaying Trace with C Sources . . . . . . .. ... ... ... 6-4
Stepping C SoUrces . . . . . . . . 6-5
E clock synchronous instructions . . . . .. ... ... ...... 6-5
Limitations, Restrictions . . . . . . . .. .. ... ... ... ... 6-6
DMA Support . . . . . . 6-6
Sleep and Software Stand-by Mode
Watchdog Timer . . . . . . . . . .. .. ... ... .. ..., 6-6
Address Error and Register Values . . . .. ... ... .. .. 6-6
ISP Microprogram Modify . . . .. ... ... ......... 6-6
Symbolic Information for ISP Functions . . . . ... .. ... 6-6
RAMEnableBit . . . .. .. ... ... ... ... ... ..., 6-6
Storing Memory Contents to an Absolute File . . . .. ... .. 6-7
Coordinated Measements . . . . . .. ... .. ... ...... 6-7
Register NamesandClasses . . . . .. .. ... ... ....... 6-8
Using the Format Converter . . . . . .. .. ... ... ..... 6-14



A HB8/570 Softkey Interface Specific Syntax

break . . . . . . . A-2
displayisp_memory . . . . . . . . ... A-4
displaytrace . . . . . . . . . . .. ... A-6
FUN . o e e A-8
Step . .. A-9
lllustrations

Figure 1-1. HP 64730 Emulator for the H8/570 Emulator . . . .1-2
Figure 2-1. Sample Program Listing. . . . . ... ... ... ... 2-3
Figure 2-2. Linkage Etior Subconmand File . . . . . .. .. .. 2-6
Figure 2-3. Softkey Interface Display . . . . .. ... .. .. ... 2-8
Figure 3-1. Sample Programwith ISP . . . . . . ... .. ... .. 3-3
Figure 3-2. Sample ISP Function . . . . .. ... ... ...... 3-5
Figure 4-1. Installing the Emulation Probe . . . . . . .. ... .. 4-4

Contents-5



Notes

6-Contents




'

Introduction to the H8/570 Emulator

Introduction The topics in this chapter include:
a Purpose of the HB70 emulator.

a Features of the H8/570 emulator.

Purpose of the The H8/570 emulator is designed to replace the H8/570
microprocessor in your target system to help you debug/integrate

H8/570 Emulator target system software and hardware. The emulator performs just
like the processor which it replaces, but at the same time, it gives
you information about the bus cycle operation of the processor.
The emulator gives you control over target system execution and
allows you to view or modify the contents of processor registers,
target system memory.

Introduction 1-1



RS—232/R5—422
Connection

!

Green
Status Right

‘\\Probe Cable

Target System —— p

(typically contains memory,
CPU, and I/0 circuitry)

Emulator Probke

Figure 1-1. HP 6 4730 Emulator for the H8/570 Emulator

1-2 Introduction



Features of the
H8/570 Emulator

Supported
Microprocessors

Clock Speeds

Emulation memory

Analysis

This section introduces you to the features of the emulator. Th
chapters which follow show you how to use these features.

HITACHI HD6475708F (H8/570) mioprocessor is supported.

Maximum external clock speed is 12 MHz (system clock). Internal
clock of the emulator is 10 MHz.

The HP 64730 H8/570 emulator is used with one of the following
Emulation Memory Cards.

s HP 64726 128K byte Emulation Memory Card
s HP 64727 512K byte Emulation Memory Card
s HP 64728 1M byte Emulation Memory Card

The emulator uses 4K bytes of emulation memory, and the rest of
emulation memory is available for user program. You can define
up to 15 memoryranges (at 128 byteibdaries and at least 128

byte in length). You can characterize memory ranges as emulation
RAM, emulation ROM, target system RAM, target system ROM,
or as guarded memory. The emulator generates an error message
when accesses are made to guarded memory locations. You can
also configure the emulator so that writes to memory defined as
ROM cause emulator execution to break out of target program
execution.

The HP 64730 H8/570 emulator is used with one of the following
analyzers which allows you to trace code execution and processor
activity.

s HP 64703 64-channel Emulation Bus Analyzer and

16-channel State/Timing Analyzer
s HP 64704 80-channel Emulation Bus Analyzer

The Emulation Bus Analyzer monitors the emulation processor
using an internal analysis bus. The HP 64703 64-channel

Introduction 1-3



Registers

Single-Step

Target System
Interface

Breakpoints

Reset Support

Real-Time Execution

1-4 Introduction

Emulation Bus Analyzer and 16-channel State/Timing Analyzer
allows you to probe up to 16 different lines in your target system.

You can display or modify the H8/570 internal register contents.
This includes the ability to modify therogram counter (PC) and
code page register (CP) so you can control where the emulator
begins executing a target system program.

You can direct the emulation processor to execute a single
instruction or a specified number of instructions.

You can set the interface to the target system to be active or
passive during backgund monitor operation. (See the
"Emulator Pod Configuration" section of the

"Configuring the Emulator" chapter for further details.)

You can set the emulator/analyzer interaction so that when the
analyzer finds a specific state, emulator execution will break out of
the user program into the monitor.

You can also define software breakpoints in your program. The
emulator uses one of H8/570 undefined opcode (1B hex) as
software breakpoint interrupt instruction. When you define a
software breakpoint, the emulator places the breakpoint interrupt
instruction (1B hex) at the specified address; after the breakpoint
interrupt instruction causes emulator execution to break out of
your program, the emulator replaces the original opcode. Refer to
the "Using Software Breakpoints" section of "Getting Started"
chapter for more information.

The emulator can be reset from the emulation system under your
control; or your target system can reset the emulation processor.

Real-time execution signifies continuous execution of your
program without interference from the emulator. (Such
interference occurs when the emulator temporarily breaks into the
monitor so that it can access register contents or target system
memory.) Emulator features performed in real time include:
running and analyzer tracing.



Easy Products
Upgrades

Features for ISP
debug

Emulator features not performed in real time include: display o
modify of target system memory; load/dump of any memory,
display or modification of registers, and single step.

Because the HP 64700 Series development tools (emulator,
analyzer, LAN board) contain pragnmable parts, it is [ssible to
reprogram the firmware and some of the hardware without
disassembling the HP 64700A Card Cage. Tigans that you'll

be able to update product firmware, if desired, without having to
call an HP file representative to your site.

The ISP (Intelligent Sytrocessor) is a progmmable internal
peripheral device of the H8/5T0ocessor. The HB4730A
emulator provides useful features to debug ISP functions.

ISP Function Load

You can load your ISP functions into the microprograemory
and SCM (Sequence Control Matrix) of the emulator.

Execution Control

You can direct the ISP to run, halt, or execute a specified number
of instructions.

Memory Display

You can display the contents of ISP microprograemory in
mnemonic format.

Register Display

You can display/modify the contents of H8/570 ISP registers.

Analysis

You can direct the emulator to monitor the execution of CPU
program or ISP functions, or both of them.

Introduction 1-5



Limitations,
Restrictions

DMA Support

Sleep and Software
Stand-by Mode

Watch Dog Timer in
Background

ISP Microprogram
Modify

Symbolic Information
for ISP Functions

RAM Enable Bit

1-6 Introduction

Direct memory access to H8/570 emulatrnamory is not
permitted.

When the emulator breaks into the emulation monitor, H8/570
microprocessor sleep or software stand-by mode is released and
comes to normal processor mode.

Watch dog timer suspends count up while the emulator is running
in background monitor.

The contents of ISP microprogramemory cannot be modified by
emulation commands. To modifgyr ISP program, you need to
re-assemble/link your program, and load it into the emulator.

The H8/570 Softkey Interface does napport symbolic
information for ISP functions. No symbolic information for ISP
functions is dispalyed in ISP memory display and trace listing.

The internal RAM of H8/51@rocessor can be enabled/disabled by
RAME (RAM enable bit). However, the H8/570 emulator
accesses emulation RAM even if the internal RAM is disabled by
RAME.



Getting Started .

Introduction This chapter will lead yothrough a basic, step by step tutorial
designed to familiarize you with the use of the HP 64730 emulator
with the Softkey Interface.

This chapter will:

a Tell you what must be done before you can use the
emulator as shown in the tutorial examples.

a Describe the sample program used for this chapter’s
example.

This chapter will show you how to:
a Start up the Softkey Interface.
a Load programs into emulation and target syste@mory.

s Enter emulation commands to view execution of the
sample program.

Getting Started 2-1



Before You Begin

Prerequisites

A Look at the Sample
Program

2-2 Getting Started

Before beginning the tutorial presented in this chapter, you must
have completed the following tasks:

1. Connected the emulator to your computer. FIR€54700
Series Installation/Serviseanual show you how to do this.

2. Installed the Softkey Interface software on your computer.
Refer to theHP 64700 Series Installation/Serviceanual
for instructions on insting software.

3. In addition, you should read and understand the concepts
of emulation presented in ti@oncepts of Emulation and
Analysismanual. Thénstallation/Servicenanual also
covers HP 64700 system architecture. A brief
understanding of these concepts may help avoid questions
later.

You should read th8oftkey Interface Refereneenual to
learn how to use the Softkey Interface in general. For the
most part, this manual contains information specific to the
H8/570 emulator.

The sample program used in this chaptdisied in Figure 2-1.

The program emulates a primitiverosmand intepreter. The
sample program is shipped with the Softkey Interface and may be
copied from the following location.

/usr/hp64000/demo/emul/hp64730/cmd_rds.src

Data Declarations

The '"Table" section defines the messages used by the program to
respond to various comand nputs. These messages are labeled
Msg_AMsg_B, andMsg_|I.



.GLOBAL Init, Msgs, Cmd_Input
.GLOBAL Msg_Dest

WCR .EQU H'FF48

.SECTION Table,DATA
Msgs
Msg_A .SDATA  "Command A entered"
Msg_B .SDATA  "Entered B command"
Msg_| .SDATA  "Invalid Command"
End_Msgs

.SECTION Prog,CODE

;* Sets up the stack pointer and the Wait-state
;* controller.

Init MOV.W  #Stack,R7
MOV.B  #H'f0,@WCR

;* Clear previous command.

Read Cmd  MOV.B  #0,@Cmd_Input

5* Read command input byte. If no command has
;* been entered, continue to scan for input.

Scan MOV.B  @Cmd_Input,RO
BEQ Scan

5* A command has been entered. Check if it is
;* command A, command B, or invalid.

Exe_Cmd CMP.B  #H41,RO0
BEQ cmd_A
CMP.B  #H42,RO
BEQ cmd_B
BRA cmd_|

;* Command A is entered. R1 = the number of
;* bytes in message A. R4 = location of the

;* message. Jump to the routine which writes
;* the messages.

bmd_A MOV.W #Msg_B-Msg_A-1,R1
MOV.W #Msg_A,R4
BRA Write_Msg

;* Command B is entered.

bmd_B MOV.W #Msg_l-Msg_B-1,R1
MOV.W #Msg_B,R4
BRA Write_Msg

* An invalid command is entered.

Figure 2-1. Sample Program Listing

Getting Started 2-3



Cmd_I MOV.W #End_Msgs-Msg_I-1,R1
MOV.W #Msg_I,R4

;* Message is written to the destination.

Write_Msg MOV.W #Msg_Dest,R5
Again MOV.B @R4+,R3

MOV.B R3,@R5+

SCB/EQ R1,Again

5* The rest of the destination area is filled
;* with zeros.

Fil_Dest MOV.B  #0,@R5+
CMP.W  #Msg_Dest+H'20,R5
BNE Fill_Dest

* Go back and scan for next command.

BRA Read_Cmd
.SECTION Data, COMMON

;* Command input byte.

Cmd_Input .RES.B H1
RESB  H1

5* Destination of the command messages.

Msg_Dest .RES.B HS3E
.RES.W  H'80 ; Stack area.
Stack

.END Init

Figure 2-1. Sample Program Listing (Cont'd)

Initialization

The program instructions at thmt label initializes the stack
pointer and the wait state controller.

Reading Input

The instruction at thRead_Cmdlabel clears any random data or
previous commands from ti&nd_Input byte. TheScanloop
continually reads th€md_Input byte to see if a command is
entered (a value other than 0 hex).

2-4 Getting Started



Processing Commands

When a command is entered, thetinstions fromExe_Cmdto
Cmd_Adetermine whether the command was "A", "B", or an
invalid command.

If the commandriput byte is "A" (Al 41 hex), execution is
transferred to the instructions@mnd_A.

If the commandriput byte is "B" (A€Il 42 hex), execution is
transferred to the instructions@mnd_B.

If the commandriput byte is neither "A" nor "B", an invalid
command has been entered, and execution is transferred to the
instructions atCmd 1.

The instructions a€md_A, Cmd_B, andCmd_| each load register

R1 with the length of the message to be displayed and register R4
with the starting location of the appropriate message. Then,
execution transfers td/rite_Msg which writes the appropriate
message to the destination locatibsg_Dest

After the message is written, the instructionilit Dest fill the
remaining destination locations with zeros. (The entire destination
area is 20 hex bytes long.) Then, the program branches back to
read the next command.

The Destination Area

The "Data" section declares memory storage for timencand
input byte, the destination area, and the stack area.

This program emulates a primitiveramand intepreter.

Getting Started 2-5



Sample Program
Assembly

Linking the Sample
Program

debug
input cmd_rds

The sample program is written for and assembled with the HP
64869 H8/500 Assembler/Linkage Eali. The sample program

was assembled with the following command below(which assumes
that/usr/hp64000/binis defined in the PATH environment
variable).

$ h8asm -debug cmd_rds.src <RETURN>

The sample program can be linked with followingnenand and
generates the absolute file. The contents of "emd_rds.k" linkage
editor subcexmand file is shown in figurg-2.

$ h8Ink -subcommand=cmd_rds.k <RETURN>

start Prog(1000), Table(2000), Data(OFCO00)

outpur cmd_rds
print cmd_rds
exit

Figure 2-2. Linkage Editor Subcommand File

Generate HP
Absolute file

Note ﬂ

2-6 Getting Started

To generate HP Absolute file for the Softkey Interface, you need to
use'h8cnvhp" absolute file format converter program. To generate
HP Absolute file, enter following command:

$ h8cnvhp cmd_rds <RETURN>

You will see that cmd_rds.X, cmd_rds.L, and cmd_rds.A are
generated.

Refer to Chapter 6 of this manual for more detai&dnvhp
converter.

You need to specify "debug" command line option to both
assembler and linker command to generate local symbol
information. The "debug"option for the assembler and linker
direct to include local symbol information to the object file.




Entering the If you have installed your emulator and Softkey Interface software

as directed in thelP 64700 Series Emulators Softkey Interface
SOﬂkey Interface Installation Noticeyou are ready to enter the interface. The
Softkey Interface can be entered throughpgimen User Interface
Software or from the HP-UX shell.

From the "pmon"” If /usr/hp64000/binis specified in your PATH environment
User Interface variable, you can enter thpenon User Interface with the following
command.

$ pmon <RETURN>

If you have not already created a measurement system for the
H8/570 emulator, you can do so with the followingnecnands.
First you must initialize the measurement system with the
following command.

MEAS_SYS msinit <RETURN>

After the measurement system has been initialized, enter the
configuration interface with the following command.

msconfig <RETURN>

To define a measurement system for theSd8/emulator, enter:
make_sys emh8 <RETURN>

Now, to add the emulator to the measurement system, enter:
add <module_number>  naming it h8 <RETURN>

Enter the following command to exit the measurement system
configuration interface.

end <RETURN>

If the measurement system and emulation module are named
"emh8"and "h8" as shown above, you can enter the emulation
system with the following command:

emh8 default h8 <RETURN>

Getting Started 2-7



If this command is successful, youllwee a display similar to figure
2-3. The status message shows that the default configuration file
has been loaded. Ifthe command is not successful, jiduew

given an error message and returned topthen User Interface.
Error messages are described in Sodtkey Interface Reference
manual.

For more information on creating measurements systems, refer to
the Softkey Interface Referencenual.

From the HP-UX Shell If /Jusr/hp64000/binis specified in your PATH environment
variable, you can also enter the Softkey Interface with the following
command.

$ emul700 <emul_name> <RETURN>
The "emul_name"in the command above is the logical emulator

name given in the HB4700 emulator device table
(lusr/hp64000/etc/64700tab).

HPB3059-19301 A.04.00 15June92
H8/570 SOFTKEY USER INTERFACE

A Hewlett-Packard Software Product
Copyright Hewlett-Packard Co. 1992

All Rights Reserved. Reproduction, adaptation, or translationwithout prior
written permission is prohibited, except as allowed undercopyright laws.

RESTRICTED RIGHTS LEGEND
Use, duplication , or disclosure by the Government is subject to
restrictions as set forth in subparagraph (c) (1) (Il) ofthe Rights

in Technical Data and Computer Software clause at DFARS52.227-7013.
HEWLETT-PACKARD Company , 3000 Hanover St. , Palo Alto, CA94304-1181

STATUS: Loaded configuration file R

run trace step display modify break end ---ETC--

Figure 2-3. Softkey Interface Display

2-8 Getting Started



If this command is successful, youllwee a display similar to figure
2-3. The status message shows that the default configuration file
has been loaded. Ifthe command is not successful, jiduew

given an error message and returned to the HP-UX prompt. Error
messages are described in 8aftkey Interface Referencenual.

Using the Default The default emulator configuration is used with the following
Configuration examples.

The address range 0 hexthrough 7FFF hexis mapped as emulation
ROM, and F680 hexhtrough FE7F hex as emulation RAM. The
emulator operates in mode 1.

On-Line Help There are two ways to access on-line help in the Softkey Interface.
The first is by using the Softkey Interface help facility. The second
method allows you to access the firmware resident Terminal
Interface on-line help information.

Softkey Driven Help To access the Softkey Interface on-line help information, type
either "help" or "?" on the command line; yoill wotice a new set
of softkeys. By pressing one of these softkeys and < RETURN>,
you can cause information on that topic to be displayed on your
screen. For example, you can enter the following command to
access "system command" help information.

? system_commands <RETURN>

The help information is scrolled on to the screen. If there is more
than a screenful of information, you will have to press the space bar
to see the next screenful, or the <RETURN> keyto see the next
line, just as you do with the HP-Uidore command. After all the
information on the particular topic has been displayed (or after

you press "g"to quit scrollingitough information), you are

prompted to press < RETURN> to return to the Softkey Interface.

Getting Started 2-9



?
help

!

I<shell cmd>

cd <directory>

--More--(22%)

---SYSTEM COMMANDS & COMMAND FILES---

pwd print the working directory
cws <SYMB> change the working symbol - the working symbol also
gets updated when displaying local symbols and
displaying memory mnemonic
pws print the working symbol
<FILE> pl p2 p3 ... execute a command file passing parameters p1, p2, p3
log_commands to <FILE> logs the next sequence of commands to file <FILE>
log_commands off discontinue logging commands
name_of_module get the "logical" name of this module (see 64700tab.net)

displays the possible help files
displays the possible help files

fork a shell (specified by shell variable SH)
fork a shell and execute a shell command

change the working directory

Pod Command Help To access the emulator’s firmware resident Terminal Interface help

information, you can use the following commands.
display pod_command <RETURN>
pod_command 'help m’ <RETURN>

The command enclosed in string delimiters (*,’, or * ) is any
Terminal Interface command, and the output of that command is
seen in the pod_command display. The Terminal Interface help
(or ?) canmand may be used pyovide information on any
Terminal Interface command or any of the emulator configuration
options (as the example command above shows).

2-10 Getting Started



Pod Commands
Time Command
10:00:00 help m

m - display or modify processor memory space
m <addr> - display memory at address
m -d<dtype> <addr> - display memory at address with display option
m <addr>..<addr> - display memory in specified address range
m -dm <addr>..<addr> - display memory mnemonics in specified range
m <addr>.. - display 128 byte block starting at address A
m <addr>=<value> - modify memory at address to <value>
m -d<dtype> <addr>=<value> - modify memory with display option
m <addr>=<value>,<value> - modify memory to data sequence
m <addr>..<addr>=<value>,<value> - fill range with repeating sequence
--- VALID <dtype> MODE OPTIONS ---
b - display size is 1 byte(s)
w - display size is 2 byte(s)
m - display processor mnemonics

STATUS: H8/570--In monitor ISP halted .R....

pod_command ’help m’

run trace step display

modify break end ---ETC--

Loading Absolute
Files

The "load" command allows you to load absolute files into
emulation or target system memory. If you wish to load only that
portion of the absolute file that residestiemory mapped as
emulation RAM or ROM, use the "load emul_mem" syntax. If you
wish to load only the portion of the absolute file that resides in
memory mapped as target RAM, use the "load user_mem" syntax.
If you want both emulation and target memoryto be loaded, do not
specify "emul_mem"or "user_mem". For example:

load cmd_rds <RETURN>
Normally, you will configure the emulator and meyggmory before

you load the absolute file; however, the default configuration is
sufficient for the sample program.

Getting Started 2-11



Displaying When you load an absolute file into memory (unless you use the
Svmbols “nosymbols" option), symbol information is loaded. Both global
y symbols and symbols that are local to a source file can be displayed.

Global To display global symbols, enter the following command.
display global_symbols <RETURN>

Listed are: address ranges associated with a symbol and the offset
of the symbol within the minimum value of these global symbols.

Global symbols in cmd_rds
Static symbols

Symbol name Address range  Contents Segment Offset

Cmd_Input OFCO00 0000

Init 01000 0000

Msg_Dest O0FCO02 0002

Msgs 02000 0000

Filename symbols

Filename

cmd_rds.src

STATUS: H8/570--In monitor ISP halted R

display global_symbols

run trace step display modify break end ---ETC--

2-12 Getting Started



Local When displaying local symbols, you must include the name of the
source file in which the symbols are defined. For example,

display local_symbols_in cmd_rds.src:
<RETURN>

Listed are: address ranges associated with a symbol and the off
of that symbol within the start address of the section that the
symbol is associated with.

Symbols in cmd_rds.src:
Static symbols
Symbol name Address range  Contents Segment Offset
Again 01036
Cmd_A 0101D 0019
Cmd_B 01025 0021
Cmd_| 0102D 0029
Cmd_Input O0FCO00 0000
Data OFCO00 0000
End_Msgs 00002031
Exe_Cmd 01013 000F
Fill_Dest 0103D 0039
Init 01000 0000
Msg_A 02000 0000
Msg_B 02011 0012
Msg_Dest 0FC02 0002
Msg_| 02022 0024
Msgs 02000 0000
STATUS: cws: cmd_rds.src: R
display local_symbols_in cmd_rds.src:

run trace step display modify break end ---ETC--

Getting Started 2-13



Displaying You can display, in mnemonic format, the absolute code in

Memorv in memory. For example to display the memory of the "cmd_rds"
ry . program,
Mnemonic Format
display memory Init mnemonic <RETURN>

Notice that you can use symbols when specifying expressions. The
global symbolnit is used in the command above to specify the
starting address of the memory to be displayed.

Memory :mnemonic :file = cmd_rds.src:
address data

01000 5FFD40  MOV:L.W #FD40,R7
01003 15FF4806F0 MOV:G.B #F0,@FF48
01008 15FC000600 MOV:G.B #00,@FC00
0100D 15FC0080 MOV:G.B @FC00,RO
01011 27FA BEQ 0100D

01013 4041 CMP:E.B #41,R0

01015 2706 BEQ 0101D

01017 4042 CMP:E.B #42,R0

01019 270A BEQ 01025

0101B 2010 BRA 0102D

0101D 590010 MOV:L.W #0010,R1
01020 5C2000 MOV:.W #2000,R4
01023 200E BRA 01033

01025 590010 MOV:L.W #0010,R1
01028 5C2011 MOV:.W #2011,R4
0102B 2006 BRA 01033

STATUS: H8/570--In monitor ISP halted R
display memory Init mnemonic

run trace step display modify break end ---ETC--

2-14 Getting Started



Display Memory with
Symbols

If you want to see symbol information with displaying memoryin
mnemonic format, the H8/570 emulator Softkey Interfacavides
"set symbols" command. To see symbol information, enter the
following command.

set symbols on <RETURN>

As you can see, the memory display shows symbol information.

Memory :mnemonic :file = cmd_rds.src:

address label data

01000 :Init  5FFD40

01011 27FA BEQ cmd_rds.src:Scan
01013 cmd_:Exe_Cmd 4041 CMP:E.B #41,R0
01015 2706 BEQ cmd_rds.sr:Cmd_A
01017 4042 CMP:E.B #42,R0

01019 270A BEQ cmd_rds.sr:Cmd_B
0101B 2010 BRA cmd_rds.sr:Cmd_|

0101D cmd_rd:Cmd_A 590010
MOV:I.W #2000,R4

01023 200E BRA cmd_rd:Write_Msg
01025 cmd_rd:Cmd_B 590010

01020 5C2000

01028 5C2011 MOV:L.W #2011,R4
0102B 2006 BRA cmd_rd:Write_Msg
STATUS: H8/570--In monitor ISP halted ..R....

set symbols on

run trace step display

MOV:L.W #FD40,R7

01003 15FF4806F0 MOV:G.B #F0,@FF48

01008 cmd:Read_Cmd 15FC000600 MOV:G.B #00,@FC00
0100D cmd_rds:Scan 15FC0080 MOV:G.B @FCO00,RO

MOV:I.W #0010,R1

MOV:L.W #0010,R1

modify break end ---ETC--

Running the
Program

The "run" canmand lets you executepaogram inmemory.

Entering the "run" command by itself causes the emulator to begin
executing at the current program counter address. The "run from
command allows you to specify an address at which execution is to
start.

Getting Started 2-15



From Transfer
Address

From Reset

The "run from transferaddress” command specifies that the
emulator start executing at a previously defined "start address".
Transfer addresses are defined in assembly language source files
with the .END assembler directive (i.e., pseudo instruction). For
example, the sample program defines the address of thdn#bel

as the transfer address. The following commaiticause the
emulator to execute from the address ofltfielabel.

run from transfer_address <RETURN>

The "run from reset” anmand specifies that the emulator begin
executing from target system reset(see "Running From Reset"
section in the "In-Circuit Emulation” chapter).

Displaying
Memory
Repetitively

You can display memory locations repetitively so that the
information on the screen is constantly updated. For example, to
display theMsg_Destlocations of the sample program repetitively
(in blocked byte format), enter the following command.

display memory Msg_Dest repetitively blocked
bytes <RETURN>

Modifying Memory

2-16 Getting Started

The sample program simulates a primitivencoand intepreter.
Commands are sent to the sampiegram through a byte sized
memory location labele@md_Input. You can use the modify
memory feature to send a command to the sapwuigram. For
example, to enter the command "A" (41 hex), use the following
command.

modify memory Cmd_Input bytesto  41h <RETURN>

Or:

modify memory Cmd_Input strings to A
<RETURN>



After the memory location is modified, the repetitive memory
display shows that the "Command A entered" message is written to

the destination locations.

Memory :bytes :blocked :repetitively

address data :hex :ascii

OFE02-09 43 6F 6D 6D 61 6E 64 20 Comm and
OFEOA-11 41 20 65 6E 74 65 72 65 A entere
OFE12-19 64 00 00 00 00 00 00 OO d.......
OFE1A-21 00 00 00 00 00 00 00 OO0 ........
OFE22-29 00 00 00 00 00 00 00 00 ........
OFE2A-31 00 00 00 00 00 00 00 00 ........
OFE32-39 00 00 00 00 00 00 00 00 ........
OFE3A-41 00 00 00 00 00 00 00 00 ........
OFE42-49 00 00 00 00 00 00 00 00 ........
OFE4A-51 00 00 00 00 00 00 00 00 ........
OFE52-59 00 00 00 00 00 00 00 00 ........
OFE5A-61 00 00 00 00 00 00 00 00 ........
OFE62-69 00 00 00 00 00 00 00 00 ........
OFE6A-71 00 00 00 00 00 00 00 00 ........
OFE72-79 00 00 00 00 00 00 00 00 ........
OFE7A-81 00 00 00 00 00 00 00 00 ........

STATUS: H8/570--Running user program

modify memory Cmd_Input bytes to 41h

run trace step display modify break end ---ETC--

Breaking into the

The "break” command allows you to divert emulator execution

; from the user program to the monitor. You can continue user
Monitor AN o
program execution with the "run"gomand. To break emulator
execution from the sample program to the monitor, enter the

following command.
break <RETURN>

Getting Started 2-17



Using Software
Breakpoints

Note

2-18 Getting Started

Software breakpoints are provided with one of$¥8/undefined
opcode (1B hex) as breakpoint interrupt instruction. When you
define or enable a software breakpoint, the emulator will replace
the opcode at the software breakpoint address with the breakpoint
interrupt instruction.

When software breakpoints are enabled and emulator detects the
breakpoint interrupt instruction (1B hex), it generates a break to
background request which as with the "processor breahtand.
Since the system controller knows the locations of defined software
breakpoints, it can determine whether the breakpoint interrupt
instruction (1B hex) is a software breakpoint or opcode in your
target program.

If it is a software breakpoint, execution breaks to the monitor, and
the breakpoint interrupt instruction is replaced by the original
opcode. A subsequent run or stemeooand vill execute from this
address.

If it is an opcode of your target program, executialhtsteaks to
the monitor, and an "Undefined software breakpoint" status
message is displayed.

When software breakpoints are disabled, the emulator replaces the
breakpoint interrupt instruction with the original opcode.

Up to 32 software breakpoints may be defined.

You must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data). If a software
breakpoint is set at a memory location which is not an instruction
opcode, the software breakpoint instructiah mever be executed
and the break will never occur.




Note # Because software breakpoints are implemented by replacing
opcodes with the undefined opcode (1B hex), you cannot define
software breakpoints in target ROM. You can, however, use the
Terminal Interfaceim command to copytarget ROM into
emulation memory (see tierminal Interface: User's Reference
manual for information on them command).

Note # Software breakpoints should not be set, cleared, enabled, or
disabled while the emulator is running user code. If any of these
commands are entered while the emulatouming user code,
and the emulator is executing code in the area where the
breakpoint is being modified, program execution may be unreliable.

Enabling/Disabling When you initially enter the Softkey Interface, software
Software Breakpoints breakpoints are disabled. To enable the software breakpoints
feature, enter the following command.

modify software_breakpoints enable <RETURN>

When software breakpoints are enabled and you set a software
breakpoint, the breakpoint interrupt instruction (1B hel)be

placed at the address specified. When the special code is executed,
program execution dbreak into the morbpr.

Getting Started 2-19



Setting a Software
Breakpoint

Displaying Software
Breakpoints

2-20 Getting Started

To set a software breakpoint at the address o€thé | label,
enter the following command.

modify software_breakpoints set Cmd_|
<RETURN>

After the software breakpoint has been set, enter the following
command to cause the emulator to continue executing the sample
program.

run <RETURN>

Now, modify the commandput byte to an invalid comand for
the sample program.

modify memory Cmd_Input bytesto  75h <RETURN>

A message on the status line shows that the software breakpoint
has been hit. The status line also shows that the emulator is now
executing in the monitor.

To display software breakpoints, enter the following command.

display software_breakpoints <RETURN>

The software breakpoints display shows that the breakpoint is
inactivated. When breakpoints are hit they become inactivated.
To reactivate the breakpoint so that is "pending", you must reenter
the "modify software_breakpoints set" command.



Software breakpoints :enabled
Address label status
00102D cmd_rd:Cmd_| inactivated

STATUS: H8/570--In monitor ISP halted Software break: 000102d .R....
display software_breakpoints

run trace step display modify break end ---ETC--

Clearing a Software To remove software breakpoint defined above, enter the following
Breakpoint ~ command.

modify software_breakpoints clear Cmd_|
<RETURN>

The breakpoint is removed from the list, and the original opcode is
restored if the breakpoint was pending.

To clear all software breakpoints, you can enter the following
command.

modify software_breakpoints clear <RETURN>

Getting Started 2-21



Running the Enter the following command twn the program and break into

Program to A monitor before execution of the instruction at fgain label.
Specified Address

run until Again <RETURN>

An message on the emulator status line shows that a software
breakpoint has been hit. The status line also shows that the

emulator is executing in the monitor.

This command is realized by setting a software breakpoint to the
specified address. Therefore, you need to notice that the same
limitations as the software breakpints are applied to this command.

Displaying Enter the following command to display registers. You can display

Registers the basic registers class, or an individual register.

display registers <RETURN>

Registers

Next_PC 001036

CPO0O TPOO DPO0O EPOO SRO0708< > MDCRC1

PC 1036 SP FD40 FP 0000 BR 00

RO 0075 R1 000E R2 0000 R3 0064 R4 2022 R5FC02 R6 0000 R7 FD40

STATUS: H8/570--In monitor ISP halted Software break: 0001036 ..R....
display registers

run trace step display modify break end ---ETC--

2-22 Getting Started



You can use 'register class" and "register name" to display registers.
Refer to "Register Names and Classes" section in chapter 5.

Stepping Through
the Program

The step command allows you to stepaugh program execution
an instruction or a number of instructions at a time. Also, you ¢
step from the current program counter or from a specific address.
To step through the example program from the address of the
software breakpoint set earlier, enter the following command.

step <RETURN>, <RETURN>, <RETURN>, ...
You can continue to step through the program just bygimg the
<RETURN> key, when a command appears on the command
line, it may be entered by pressing< RETURN>.

Registers

Next_PC 001038

Next_PC 00103A

Next_PC 001036

step

CP00 TPOO DPO0 EPO0O SRO700< > MDCRC1

PC 1038 SP FD40 FP 0000 BR 00

RO 0075 R1 000E R2 0000 R3 0049 R4 2023 R5FC02 R6 0000 R7 FD40
Step_PC 001038 MOV:G.B R3,@R5+

CP0O0 TPOO DPO0 EPO0 SRO0701< > MDCRC1

PC 103A SP FD40 FP 0000 BR 00

RO 0075 R1 000E R2 0000 R3 0049 R4 2023 R5 FC03 R6 0000 R7 FD40
Step_PC 00103A SCB/EQ R1,cmd_rds.sr:Again

CP0O0 TPOO DPO0 EPOO0 SRO0701< > MDCRC1

PC 1036 SP FD40 FP 0000 BR 00

RO 0075 R1 000E R2 0000 R3 0049 R4 2023 R5FC03 R6 0000 R7 FD40

STATUS: HB8/570--Stepping complete R

run trace step display

modify break end ---ETC--

Enter the following command to cause sanpriegram execution
to continue from the current program counter.

run <RETURN>

Getting Started 2-23



Using the Analyzer

Specifying a Simple
Trigger

2-24 Getting Started

HP 64700 emulators contain an emulation analyzer. The
emulation analyzer monitors the internal emulation lines (address,
data, and status). Optionally, you may have an additional 16 trace
signals which monitor external input lines. The analyzer collects
data at each pulse of a clock signal, and saves the data (a trace
state) if it meets aterage qualification" condition.

Suppose you want to trace program execution after the point at
which the sample program reads the "B" (42 hergywand from
the commandniput byte. To do this, you would trace after the
analyzer finds a state in which a value of 42xxh is read from the
Cmd_Input byte. The following command makes this trace
specification.

trace after Cmd_Input data 42xxh  status read
<RETURN>

The message "Emulation trace started” will appear on the status
line. Now, modify the commandput byte to "B" with the
following command.

modify memory Cmd_Input bytesto  42h <RETURN>

The status line now shows "Emulation trace complete".

Notice that the data was specified with the don't care kxs (
When a byte access is performed, the data appears on the upper 8
bit of analyzer data bus.

H8/570 Analysis Status Qualifiers

The status qualifier "read" was used in the example trace command
used before in this chapter. The following analysis status qualifiers
may also be used with the H8/570 emulator.



Qualifier Description

Status Bits (36..63)

backgrnd Background cycle
brelease Bus release cycle

byte
cpu
data
dtc
exec
fetch

Byte Access
CPU cycle

Data access

DTC cycle
Instruction execution cycle
Program fetch cycle

foregrnd Foreground cycle

grd

io

isp
ispexec

memory

read
refresh
word
write
wrrom

Displaying the Trace

Guarded memory access
Internal 1/0 access
Memory cycle by ISP

XXXX XXXX XXXX XXXO OXXX XXXX XXXXB
XXXX XXXX XXXX XXXO XL1X XXXX XXXXB
XXXX XXXX XXXX XXX0 XL10X XXXX XX1XB
XXXX XXXX XXXX XXX0 X101 1xxx XXXxB
XXXX XXXX XXXX XXX0 XL10X XXXX X1xXB

XXXX XXXX XXXX XXX0 X101 Oxxx XxxXxB

XXXX XXXX XXXX XXXO0 XOLX XXXX XXXXB
XXXX XXXX XXXX XXX0 X101 1xxx x001B
XXXX XXXX XXXX XXXO LXXX XXXX XXXXB
XXXX XXXX XXXX XXX0 X10x X011 xxxxB
XXXX XXXX XXXX XXX0 X10X XXX0 XXxxB
XXXX XXXX XXXX XXX0 XX00 1xxX XXXXB

ISP instruction execution cycle — XXXX XXXX XXXX XOXX XXXX XXXX XXXXB

Memory access
Read cycle
Refresh cycle
Word Access

Write cycle

Write to ROM cycle

Note ﬂ

XXXX XXXX XXXX XXX0 X10X XXX1 XXXXB
XXXX XXXX XXXX XXX0 XLO0X XXXX XXX1B
XXXX XXXX XXXX XXX0 X000 1xxx XxxXxB
XXXX XXXX XXXX XXX0 X10X XxXX XXOxB

XXXX XXXX XXXX XXX0 X10X XxXX XxxX0B

XXXX XXXX XXXX XXX0 X10x x101 xxx0B

You need to specify theXec¢ status qualifier to trigger the
analyzer by an execution cycle.

The trace listings which follow are pfogram execution on the
H8/570 emulator. To displaythe trace, enter:

display trace <RETURN>

Trace List Offset=0

Label:  Address Data Opcode or Status time count

Base: symbols hex mnemonic w/symbols relative

after :Cmd_Input 4240 42xx read mem byte 200 nS

+001 :cmd_rds.:+00011 F2FF INSTRUCTION--opcode unavailable 120 nS
+002 :cmd_rds.:+00014 4127 4127 fetch mem 80. nS

+003 cmd_rds.:Exe_Cmd FBFF CMP:E.B #41,R0 120 nS

+004 :cmd_rds.:+00016 0640 0640 fetch mem 200 nS

+005 :cmd_rds.:+00015 F6FF BEQ cmd_rds.sr:Cmd_A 80. nS
+006 :cmd_rds.:+00018 4227 4227 fetch mem 120 nS

+007 :cmd_rds.:+00017 F2FF CMP:E.B #42,R0 80. nS

+008 :cmd_rds.:+0001A 0A20 O0A20 fetch mem 200 nS

+009 :cmd_rds.:+00019 FAFF BEQ cmd_rds.sr:Cmd_B 120 nS
+010 :cmd_rds.:+0001C 1059 1059 fetch mem 80. nS

+011 cmd_rds.sr:=Cmd_B O0E59 xx59 fetch mem 400 nS

+012 :cmd_rds.:+00026 0010 0010 fetch mem 200 nS

+013 cmd_rds.sr:=Cmd_B F2FF MOV:I.W #0010,R1 120 nS
+014 :cmd_rds.:+00028 5C20 5C20 fetch mem 80. nS
STATUS: HB8/570--Running user program Emulation trace complete R

display trace

run

trace step display

modify break end ---ETC--

Getting Started 2-25




Line O (labeled "after”) in the trace list above shows the state which
triggered the analyzer. The trigger state is always on line 0. The
other states show the exit from t8eanloop and théexe_Cmd
andCmd_Binstructions. Tdist the next lines of the trace, press

the <PGDN> or < NEXT> key.

The resulting display shov@&nd_B instructions, the branch to
Write_Msg and the beginning of the instructions which move the
"Entered B command " message to the destination locations.

To list the previous lines of the trace, pressthe <PGUP> or
<PREV> key.

Trace List Offset=0
Label:  Address Data Opcode or Status time count
Base: symbols hex mnemonic w/symbols relative
+015 :cmd_rds.:+00028 FEFF MOV:I.W #2011,R4 120 nS
+016 :cmd_rds.:+0002A 1120 1120 fetch mem 80. nS
+017 :cmd_rds.:+0002C 0659 0659 fetch mem 200 nS
+018 :cmd_rds.:+0002B F6FF BRA cmd_rd:Write_Msg 120 nS
+019 :cmd_rds.:+0002E 00OE O0O0OE fetch mem 80. nS
+020 cmd_rd:Write_Msg 225D xx5D fetch mem 400 nS
+021 :cmd_rds.:+00034 FCO02 FCO02 fetch mem 200 nS
+022 cmd_rd:Write_Msg FEFF MOV:L.W #FC02,R5 120 nS
+023 cmd_rds.sr:Again  C483 C483 fetch mem 80. nS
+024 cmd_rds.sr:Again  FAFF MOV:G.B @R4+,R3 120 nS
+025 :cmd_rds.:+00038 C593 (€593 fetch mem 80. nS
+026 :cmd_rds.:+0003A 07B9 07B9 fetch mem 400 nS
+027 cmd_rds.sr:Msg_B 0745 xx45 read mem byte 200 nS
+028 :cmd_rds.:+00038 F7FF MOV:G.B R3,@R5+ 120 nS
+029 :cmd_rds.:+0003C F9C5 F9C5 fetch mem 400 nS
STATUS: H8/570--Running user program Emulation trace complete
display trace

run trace step display modify break end ---ETC--

2-26 Getting Started




Displaying Trace with No Symbol

The trace listing shown above has symbol information because of
the 'set symbols ohsetting before in this chapter. To see the trace
listing with no symbol information, enter the followingnemand.

set symbols off

As you can see, the analysis trace display shows the trace list
without symbol information.

Trace List Offset=0
Label: Address Data Opcode or Status time count
Base: hex hex mnemonic relative
after OFCO0 4240 42xx read mem byte 200 nS
+001 01011 F2FF INSTRUCTION--opcode unavailable 120 nS
+002 01014 4127 4127 fetch mem 80. nS
+003 01013 FBFF CMP:E.B #41,R0 120 nS
+004 01016 0640 0640 fetch mem 200 nS
+005 01015 F6FF BEQ 0101D 80. nS
+006 01018 4227 4227 fetch mem 120 nS
+007 01017 F2FF CMP:E.B #42,R0 80. nS
+008 0101A 0A20 0A20 fetch mem 200 nS
+009 01019 FAFF BEQ 01025 120 nS
+010 0101C 1059 1059 fetch mem 80. nS
+011 01025 OE59 xx59 fetch mem 400 nS
+012 01026 0010 0010 fetch mem 200 nS
+013 01025 F2FF MOV:L.W #0010,R1 120 nS
+014 01028 5C20 5C20 fetch mem 80. nS
STATUS: H8/570--Running user program Emulation trace complete R
set symbols off

run trace step display modify break end ---ETC--

Displaying Trace with Enter the following command to displayunt information relative
Time Count Absolute to the trigger state.

display trace count absolute <RETURN>

Getting Started 2-27



Trace List Offset=0

Label: Address Data Opcode or Status time count

Base: hex hex mnemonic absolute

after OFCOO0 4240 42xx read membyte ~ ---memeeeeee

+001 01011 F2FF INSTRUCTION--opcode unavailable +120 nS

+002 01014 4127 4127 fetch mem +200 nS

+003 01013 FBFF CMP:E.B #41,R0 +320 nS

+004 01016 0640 0640 fetch mem +520 nS

+005 01015 F6FF BEQ 0101D +600 nS

+006 01018 4227 4227 fetch mem +720 nS

+007 01017 F2FF CMP:E.B #42,R0 +800 nS

+008 0101A 0A20 0A20 fetch mem + 1.0 usS

+009 01019 FAFF BEQ 01025 + 1.1 uS

+010 0101C 1059 1059 fetch mem + 1.2 uS

+011 01025 OE59 xx59 fetch mem + 1.6 uS

+012 01026 0010 0010 fetch mem + 18 usS

+013 01025 F2FF MOV:L.W #0010,R1 + 1.9 uS

+014 01028 5C20 5C20 fetch mem + 2.0 uS

STATUS: H8/570--Running user program Emulation trace complete R

display trace count absolute

run trace step display modify break end ---ETC--
Displaying Trace with If you want to see more executed instructions on a display, the

Compress Mode H8/570 emulator Softkey Interfageovidescompress moddor
analysis display. To see trace display with compress mode, enter
the following command:

display trace compress on <RETURN>

Trace List Offset=0

Label: Address Data Opcode or Status time count
Base: hex hex mnemonic absolute

after OFCOO0 4240 42xx read membyte ~  --memoeeeee
+001 01011 F2FF INSTRUCTION--opcode unavailable +120 nS
+003 01013 FBFF CMP:E.B #41,R0 +320 nS
+005 01015 F6FF BEQ 0101D +600 nS
+007 01017 F2FF CMP:E.B #42,R0 +800 nS
+009 01019 FAFF BEQ 01025 + 1.1 uS
+013 01025 F2FF MOV:L.W #0010,R1 + 1.9 uS
+015 01028 FEFF MOV:I.W #2011,R4 + 2.1 uS
+018 0102B F6FF BRA 01033 + 25 uS
+022 01033 FEFF MOV:L.W #FC02,R5 + 3.3 uS
+024 01036 F4FF MOV:G.B @R4+,R3 + 3.5 uS
+027 02011 0745 xx45 read mem byte + 4.20 uS
+028 01038 F7FF MOV:G.B R3,@R5+ + 4.32 uS
+030 OFC02 4545 45xx write mem byte + 4.92 uS
+031 0103A F5FF SCB/EQ R1,01036 + 5.00 uS
STATUS: HB8/570--Running user program Emulation trace complete R
display trace compress on

run trace step display modify break end ---ETC--

2-28 Getting Started



Changing the Trace
Depth

For a Complete
Description

As you can see, the analysis trace display shows the analysis trace
lists without fetch cycles. With this comand you can examine
program execution ady.

If you want to see all of cycles including fetch cycles, enter
following command:

display trace compress off <RETURN>

The trace display shows you all of the cycles the emulation anal
have captured.

The default states displayed in the trace list is 256 states. To
change the number of states, use the "display trace depth"
command.

display trace depth 512 <RETURN>

Now the states displayed in the trace list is changed to 512 states.

For a complete description of using the HP 64700 Series analyzer
with the Softkey Interface, refer to tihenalyzer Softkey Interface
User's Guide

Exiting the
Softkey Interface

End Release System

Ending to Continue
Later

There are several options available when exiting the Softkey
Interface: exiting and releasing the emulation system, exiting with
the intent of reentering (continuing), exiting locked from multiple
emulation windows, and exiting (locked) and selecting the
measurement system display or another module.

To exit the Softkey Interface, releasing the emulator so that other
users may use the emulator, enter the following command.

end release_system <RETURN>

You may also exit the Softkey Interface without specifying any
options; this causes the emulator to be locked. When the emulator
is locked, other users are prevented from using it and the emulator

Getting Started 2-29



Ending Locked from
All Windows

Selecting the
Measurement System
Display or Another
Module

2-30 Getting Started

configuration is saved so that it can be restored the next time you
enter (continue) the Softkey Interface.

end <RETURN>

When using the Softkey Interface from within window systems, the
"end" command with no options causes an exit only in that window.
To end locked from all windows, enter the following command.

end locked <RETURN>
This option only appears when you enter the Softkey Interface via
theemul700command. When you enter the Softkey Interface via
pmon andMEAS_SYS, only one window is permitted.

Refer to theSoftkey Interface Referencenual for more
information on using the Softkey Interface with window systems.

When you enter the Softkey Interface praon andMEAS_SYS,

you have the option to select the measurement system display or
another module in the measurement system when exiting the
Softkey Interface. This type of exit is also "locked"; that is, you can
continue the emulation session later. For example, to exit and
select the measurement system display, enter the following
command.

end select measurement_system <RETURN>
This option is not available if you have entered the Softkey
Interface via themul700command.



Debugging ISP Functions

The HP 64730 H8/570 emulator is equipped witmotands for
debugging ISP functions. You can direct the ISP to run, halt, or
execute a specified number of instructions. The analyzer allow:
you to monitor the execution of your program, or ISP functions,
both of them.

In this chapter, we use a sample program and learn how to use the
emulator to debug the ISP functions. When you have completed
this chapter, you will be able to perform these tasks:

a Load ISP functions into the emulator

a Use run/stop controls to control operation of your ISP
functions

a Use register display command to view the contents of ISP
registers

s Use analyzer commands to view the real time execution of
your ISP functions

Debugging ISP Functions 3-1



Sample Program
with Small ISP
Functions

3-2 Debugging ISP Functions

In the "Getting Started" chapter, we looked at a sample program
which functioned as a primitive command irgeeter. It wrote
various messages to an output buffer, depending on the character
you inserted in the input buffer.

In this chapter, we use a modified version of the "Getting Started"
program. It stl performs the same function, but works with a

small ISP function. The ISP function takes charge of the transfer

of the messages. Once a command is written tonthet ibuffer,

the sample program determines the message to be written and pass
the source address to an ISP register. The ISP function starts to
transfer the message when an ISP flag is cleared by the program.
When the transfer is finished, the program goes back to read the
next command. Figurg-1 lists the samplprogram and Figure 3-2

lists the sample ISP functions.

Processing Commands

The instructions aEmd_A, Cmd_B, andCmd_| each load ISP data
register 2 with the length of the message to be written and ISP data
register 0 with the starting location of the message. Then,
execution transfers tdfite_Msg which loads the destination

address into the ISP data register 1.

The ISP starts transferring a message by clearing an ISP flag. The
program vill wait the completion of the transfer.

ISP Function O

ISP function 0 performs data transfer from a specified address to a
destination address. ISP data register 0 is used to contain the
source address. ISP data register 1 is used to contain the
destination address. When the ISFL (Interrupt Status Flag) O is
cleared, the function starts transferring data.

ISP Function 1 and 2

Function 1 and 2 are dummy functions.



.GLOBAL Init,Msgs,Cmd_Input
.GLOBAL Msg_Dest

WCR .EQU H'FF48

ISP_DRO .EQU H'FECO
ISP_DR1 .EQU H'FEC2
ISP_DR2 .EQU H'FEC4

ISP_ISFL .EQU H'FEB1
ISP_ICSR .EQU H'FF19

.SECTION Table,DATA

Msgs

Msg_A .SDATA  "Command A entered"
Msg_B .SDATA  "Entered B command"
Msg_| .SDATA  ‘"Invalid Command"
End_Msgs

.SECTION Prog,CODE

5* Sets up the stack pointer and the Wait-state
;* controller. Enables the ISP.

Init MOV.W  #Stack,R7
MOV.W  #H'f0,@WCR
BCLR.B  #5@ISP_ICSR

;* Clear previous command.

Read Cmd  MOV.B  #0,@Cmd_Input

5* Read command input byte. If no command has
;* been entered, continue to scan for input.

Scan MOV.B  @Cmd_Input,RO
BEQ Scan

;* A command has been entered. Check if it is
;* command A, command B, or invalid.

Exe_Cmd CMP.B  #H41,RO0
BEQ cmd_A
CMP.B  #H42,RO
BEQ cmd_B
BRA cmd_|

;* Command A is entered. R1 = the number of
;* bytes in message A. R4 = location of the

;* message. Jump to the routine which writes
;* the messages.

bmd_A MOV.W #Msg_B-Msg_A,@ISP_DR2
MOV.W #Msg_A,@ISP_DRO
BRA Write_Msg

;* Command B is entered.

Figure 3-1. Sample Program with ISP

Debugging ISP Functions 3-3




Cmd_B MOV.W #Msg_l-Msg_B,@ISP_DR2
MOV.W #Msg_B,@ISP_DRO
BRA Write_Msg

* An invalid command is entered.

bmd_l MOV.W #End_Msgs-Msg_I|,@ISP_DR2
MOV.W #Msg_l,@ISP_DRO

5* Message is written to the destination.

Write_Msg MOV.W #Msg_Dest,@ISP_DR1

* Clear ISFLO to start the DMA.

BCLR.B  #0,@ISP_ISFL
Wait_ISP BTST.B  #0,@ISP_ISFL
BEQ Wait_ISP

;* The rest of the destination area is filled
;* with zeros.

Fill_Dest MOV.W @ISP_DR1,R5

Fill_Loop MOV.B #0,@R5+
CMP.W #Msg_Dest+H'20,R5
BNE Fill_Loop

* Go back and scan for next command.

BRA Read_Cmd
.SECTION Data, COMMON

;* Command input byte.

Cmd_lnput .RES.B H1
RESB  H1

;* Destination of the command messages.

Msg_Dest .RES.B H'3E
.RES.W  H'80 ; Stack area.
Stack

.END Init

Figure 3-2. Sample Program with

3-4 Debugging ISP Functions

ISP (Cont'd)



.program sample;

.SCM;
funcO/R, funcl/R, funcO/R, func2/R;

.end;

/* Function O
*  drO: source address
*  drl: destination address
* dr2: loop counter
*  isflo: DMA starts when CPU sets this flag to 0 */
.function funcO, ar0;
init: out() 1, isflO;
next (isfl0) $, label;
label: next() loop;
loop: read.b drO, mab next(!c) $, labelS;
labelS: add.w 0, #1, dr0;
write.b drl, mab next(!c) $, labelD;
labelD: add.w 0, #1, dr1,
sub.w 0, #1, dr2 next(!z) loop2, exit;
loop2: next() loop;
exit: next() init;
.end;

function funcl, arl;
loopl: mov.w #3, dr3;
mov.w #0, dr3;
next() loopl;
.end;

function func2, ar2;

loop2: mov.w #4, dr4;
mov.w #0, dr4;
next() loop2;

.end;

.end;

Figure 3-2. Sample ISP Function

Sample Program The sample program is written for the 18#869 H8/500

Locations Assembler/Linkage Editor. The sample ISP function is written for
Hitachi ISP Assembler. The sample programs are shipped with the
Softkey Interface, and may be copied from the following locations.

/usr/hp64000/demo/emul/hp64730/cmd_rds2.src
/usr/hp64000/demo/emul/hp64730/ispsamp.mar

Debugging ISP Functions 3-5



Assembling the
Sample Program

debug
input cmd_rds2

You can assemble and link the sample program with the following
commands:

$ h8asm -debug cmd_rds2.src <RETURN>
$ h8Ink -subcommand=cmd_rds2.k <RETURN>
$ h8cnvhpcmd_rds2 <RETURN>

In the above commandmd_rds2.kis a linkage editor camand
file, and its contents is as follows:

start Prog(1000), Table(2000), Data(OFCO00)

output cmd_rds2
print cmd_rds2
exit

Assembling the
Sample ISP Functions

Converting Your ISP
Functions

3-6 Debugging ISP Functions

You can assemble the sample ISP functions by HITACHI ISP
Assembler. Refer to the manual provided with the tool for
information on the usage of the ISP assembler.

The HITACHI ISP Assembler generates absolute file in
Motorola-S records. To load the file into the emulator, you need
to convert the file format with thdate utility provided with the
Softkey Interface. The utility converts the Mobla format into

HP format which can be consumed by the Softkey Interface.

Suppose that you assembled the sample ISP function with the
HITACHI ISP Assembler, and got an absolute file with filename
"ispsamp.mot. To convert the file format, enter the following
command:

$ xlate -tmot ispsamp.mot <RETURN>

An HP absolute filéspsamp.Xis generated.



Entering the Start the Softkey Interface with the following command:
Softkey Interface

$ emul700 <emul_name> <RETURN>
If you have been working with the emulator and the Softkey
Interface is already running, pleasad releaséthe interface and
restart it. You should follow the steps to ensure that the emulator
will work as described in the examples below.

Loading Absolute Load the sample program with the followinghwmand:
Files

load cmd_rds2 <RETURN>
To load ISP functions, the ISP must be in the halt state. Halt the
ISP with the following command:

break with_isp <RETURN>
Load the sample ISP function:

load isp_memory ispsamp <RETURN>

Note # The only way to modify ISP microprogramemory is loading ISP
functions with thdoad command. You agmot modify thememory
with any emulation commands.

Debugging ISP Functions 3-7



Looking at Your

Now that you have loaded the sample ISP function into the

emulator, you can display it in mnemonic format. To display the
ISP Code : :
ISP microprogranmemory from address 0, type:
display isp_memory 0 <RETURN>
You will see:
ISP memory

address func mnemonic

000 00 OUT () 1,ISFLO
NEXT () 004
01 MOV.W #0003,DR3
NEXT () 00E
02 MOV.W #0004,DR4
NEXT () 010
?? NEXT () 000
00 NEXT (ISFLO) 004,005
00 NEXT () 006
00 READ.B DRO,MAB
NEXT (!C) 006,007
00 ADD.W 0,#0001,DR0O
NEXT () 008
00 WRITE.B DR1,MAB
NEXT (!C) 008,009
00 ADD.W 0,#0001,DR1

001
002
003
004
005
006
007
008

009
display isp_memory 0
run

trace step display

STATUS: H8/570--In monitor ISP halted

modify break end ---ETC--

3-8 Debugging ISP Functions

The contents of ISP microprogramemory is displayed in
mnemonic format. The first column shows the address in the
microprogranmemory. The second column is the number of the
function to which each instruction belongs. If this field shows "??",
the address is not used by any functions defined in the SCM. The
third column is the instruction at the address.

You can also display instructions which belong to a specified
function. For example, to see onlyinstructions of function 0, enter:

display isp_memory function 0 <RETURN>



ISP memory :function
address func mnemonic
000 00 OUT () 1,ISFLO
NEXT () 004
004 00 NEXT (ISFLO) 004,005
005 00 NEXT () 006
006 00 READ.B DRO,MAB
NEXT (!C) 006,007
007 00 ADD.W 0,#0001,DRO
NEXT () 008
008 00 WRITE.B DR1,MAB
NEXT (!C) 008,009
009 00 ADD.W 0,#0001,DR1
NEXT () 00A
00A 00 SUB.W 0,#0001,DR2
NEXT (!Z) 00C,00D
00C 00 NEXT () 006
00D 00 NEXT () 000

STATUS: H8/570--In monitor ISP halted___ ..
display isp_memory function O

run trace step display modify break end ---ETC--

Note # The H8/570 Softkey Interface doest support symbolic
information for ISP functions. Symbolic information for ISP
functions is not displayed in memory display and trace listing.

Debugging ISP Functions 3-9



Controlling ISP
Execution

STATUS: H8/570--Running in monitor

Reset the emulator with the following command:

reset <KRETURN>
Run the ISP with the following command:

run isp <RETURN>
The status message will be displayed as follows:

The ISP started execution from current ISP address bythe
command. The emulator breaks into the nb@mivhen the
command is used while the emulator is in the reset state.
Halt the ISP with the following command:

break with_isp <RETURN>

STATUS: H8/570--In monitor ISP halted

Thebreak with_isp command breaks the emulator into the
monitor, and halts the ISP.

Run the sample program from thwt label:

run from Init <RETURN>
The ISP is enabled by the sample program, and starts execution.
Now break the execution into the monitor:

break <RETURN>

STATUS: H8/570--In monitor ISP halted

3-10 Debugging ISP Functions

By default, the ISP is halted when the emulator breaks into the
monitor. You can configure the emulator not to halt the ISP on
emulation break. Refer to Chapter 5 of this manual.



Stepping ISP
Function

You can direct the emulator to execute one or specified number of
ISP instructions. Before you step through the ISP function, display
the ISP memory from address O:

display isp_memory 0 <RETURN>
Now, step the sample ISP function. Type:

step isp <RETURN>, <RETURN>, <RETURN>,...
You will see a similar display to the following:

ISP memory
address func mnemonic
000 00 OUT () 1,ISFLO
NEXT () 004
001 01 MOV.W #0003,DR3
NEXT () O0OE
> 002 02 MOV.W #0004,DR4
NEXT () 010
003 ?? NEXT () 000

005 00 NEXT () 006

006 00 READ.B DRO,MAB
NEXT (IC) 006,007

007 00 ADD.W 0,#0001,DR0
NEXT () 008

008 00 WRITE.B DR1,MAB
NEXT (IC) 008,009

009 00 ADD.W 0,#0001,DR1

step isp
run

trace step display

< 004 00 NEXT (ISFLO) 004,005

STATUS: H8/570--In monitor ISP halted

modify break end ---ETC--

You will see a left bracket (<) at the beginning of a line in the
memory display. This shows that the instruction at the line was
executed by the step command. You may also see a right bracket
(>) at an another line. This shows that the instruction at the line
will be executed next.

You can also step through instructions of a specified function.

For example, to step through the function 1, enter:

stepisp  function 1 <RETURN>, <RETURN>,
<RETURN>,....
Every time you enter the above command, the emulatimnw

the ISP until an instruction of the specified function is executed.

Debugging ISP Functions 3-11



Displaying/

You can display/modify ISP registers. Registers are grouped in

0 several "register classes." For example, to display ISP data
MOd_Ifymg ISP registers, use thiSPDR register class as follows:
Registers

display register ISPDR <RETURN>
Registers

display register ISPDR

run trace step display

ISPDR DRO 2011 DR1 FC13 DR2 0000 DR3 0003
DR4 0000 DR5 FF7F DR6 FFFF DR7 FFFF
DR8 FFFF DR9 FFFF DR10 FFFF DR11 FFFF
DR12 FFFF DR13 FFFF DR14 FFFF DR15 FFFF
DR16 FFFF DR17 FFFF DR18 FFFF DR19 FFFF
DR20 FFFF DR21 FFFF DR22 FFFF DR23 FFFF
DR24 FFFF DR25 FFFF DR26 FFFF DR27 FFFF
DR28 FFFF DR29 FFFF DR30 FFFF DR31 FFFF

STATUS: H8/570--In monitor ISP halted___ ...

modify break end ---ETC--

Note ﬂ

You can use the "register name" to display/modify registers. For
example, to modify ISP data register 31, useDR&1 register
name as follows:

modify register DR31 to 0 <RETURN>

Modifying registers in théSPSCM register class is not allowed
while the ISP is running. Displaying and modifying registers in the
ISPDR register class is not allowed while the ISP is running.

Refer to the Chapter 6 of this manual for the list of register classes
and names.

3-12 Debugging ISP Functions



Using the
Analyzer to Debug
ISP Functions

Tracing ISP Execution You can configure the emulator to trace execution of the CPU, or
ISP, or both of them. To configure the emulator to trace only
execution of ISP, type:

modify configuration <RETURN>
Answer the configuration questions as follows:

Micro-processor clock source? internal

Enter monitor after configuration? yes

Restrict to real-time runs? no

Modify memory configuration? no

Modify emulator pod configuration? no

Modify debug/trace options? yes

Break processor on write to ROM? yes

Trace CPU or ISP operation by emulation analyzer? isp
Trace refresh cycles by emulation analyzer? no
Modify simulated 1/O configuration? no

Modify interactive measurement specification? no
Configuration file name? trace_isp

To start the trace when the instruction at ISP address 6 hex, enter
the following command:

trace after ispaddr 6 <RETURN>
Run the sample program:

run from Init <RETURN>
Modify memoryto let the ISP function jump to the address
specified by therace command.

modify memory Cmd_Input bytesto  41h <RETURN>
Now display the trace list:

display trace <RETURN>

set symbols on <RETURN>
You will see a display similar to the following:

Debugging ISP Functions 3-13



Trace List Offset=0  More data off screen (ctrl-F, ctrl-G)

Label:  Address Data Opcode or Status time count

Base: symbols hex mnemonic w/symbols relative

after F2FF 006 00 READ.B DRO,MAB ~  ------------
NEXT (!C) 006,007

+001 FA1D 01102 NEXT () 002 120 nS

+002 FA1D 007 00 ADD.W 0,#0001,DR0O 80. nS
NEXT () 008

+003 FAFF 00101 MOV.W #0003,DR3 120 nS
NEXT () O0E

+004 431D 008 00 WRITE.B DR1,MAB 80. nS
NEXT (!C) 008,009

+005 :Msgs 431D 43xx isp read mem byte 120 nS

002 02 MOV.W #0004,DR4

NEXT () 010

+006 FBFB 008 00 WRITE.B DR1,MAB 80. nS
NEXT (!C) 008,009

+007 0000 OOE 01 MOV.W #0000,DR3 120 nS

STATUS: H8/570--Running user program Emulation trace complete_ ........

display trace

run trace step display modify break end ---ETC--

The first column in the mnemonic field shows address of ISP
microprogranmemory. The second column is function number of

the instruction. The third column is the mnemonic of the
instruction executed.

As you can see in the above trace listing. the analyzer was triggered

by an instruction at address 6.

You also can use ISP function number for trace specification. For

example, to trace only execution of ISP function 0, enter:

trace after ispaddr 6 only ispfunc 0 <RETURN>
modify memory Cmd_Input bytesto  41h <RETURN>

3-14 Debugging ISP Functions



Trace List Offset=0  More data off screen (ctrl-F, ctrl-G)

Label:  Address Data Opcode or Status time count

Base: symbols hex mnemonic w/symbols relative

after FA1ID 006 00 READ.B DRO,MAB 200 nS
NEXT (!C) 006,007

+001 FAFA 007 00 ADD.W 0,#0001,DR0O 200 nS
NEXT () 008

+002 0000 008 00 WRITE.B DR1,MAB 200 nS
NEXT (!C) 008,009

+003 4300 008 00 WRITE.B DR1,MAB 200 nS
NEXT (!C) 008,009

+004 F3FF 008 00 WRITE.B DR1,MAB 200 nS
NEXT (!C) 008,009

+005 FEC2 009 00 ADD.W 0,#0001,DR1 200 nS
NEXT () 00A

+006  :Msg_Dest 4343 43xx isp write mem byte 200 nS

00A 00 SUB.W 0,#0001,DR2
NEXT (1Z) 00C,00D

STATUS: HB8/570--Running user program Emulation trace complete
trace after ispaddr 6 only ispfunc 0

run trace step display modify break end ---ETC--

As you can see, only instructions of ISP function O were traced.

Tracing CPU/ISP  To trace execution of both CPU and ISP, configure the emulator as
Execution follows:

modify configuration <RETURN>

Micro-processor clock source? internal

Enter monitor after configuration? yes

Restrict to real-time runs? no

Modify memory configuration? no

Modify emulator pod configuration? no

Modify debug/trace options? yes

Break processor on write to ROM? yes

Trace CPU or ISP operation by emulation analyzer? both
Trace refresh cycles by emulation analyzer? no
Modify simulated 1/O configuration? no

Modify interactive measurement specification? no
Configuration file name? trace_both

To trace all states after the instructiontte_Msg label is
executed, enter:

trace after cmd_rds2.src:Write_Msg status
exec <RETURN>

modify memory Cmd_Input bytesto  41h <RETURN>

Debugging ISP Functions 3-15



Trace List Offset=0  More data off screen (ctrl-F, ctrl-G)

Label:  Address Data Opcode or Status time count

Base: symbols hex mnemonic w/symbols relative

after cmd_rd:Write_Msg FEFF INSTRUCTION--opcode unavailable  80. nS
004 00 NEXT (ISFL0) 004,005

+001 07FC 011 02 NEXT () 002 120 nS
+002 :cmd_rds2:+0004A 07FC O07FC fetch mem 80. nS
004 00 NEXT (ISFL0) 004,005
+003 F7FF 00101 MOV.W #0003,DR3 120 nS
NEXT () 00E
+004 0215 004 00 NEXT (ISFLO) 004,005 80. nS
+005 :cmd_rds2:+0004C 0215 0215 fetch mem 120 nS
002 02 MOV.W #0004,DR4
NEXT () 010
+006 F2FF 004 00 NEXT (ISFLO) 004,005 80. nS
+007 FFFF OOE 01 MOV.W #0000,DR3 120 nS
NEXT () 00F
+008 FEB1 004 00 NEXT (ISFL0O) 004,005 80. nS

STATUS: HB8/570--Running user program Emulation trace complete
trace after cmd_rds2.src:Write_Msg status exec

run trace step display modify break end ---ETC--

The examples in this chapter is not complete description of each

ISP debug commands. Refer to Appendix A of this manual for
more detalil.

3-16 Debugging ISP Functions



INn-Circuit Emulation

Many of the topics described in this chapter involve the commands
which relate to using the emulator in-circuit, that is, connected to a
target system.

This chapter will:

a Describe the issues concerning the installation of the
emulator probe into target systems.

a Showyou howto install the emulator probe.
We will cover the first topic in this chapter. For complete details

on in-circuit emulation configuration, refer to the "Configuring the
Emulator” chapter.

Prerequisites

Before performing the tasks described in this chapter, you should
be familiar with how the emulator operates in general. Refer to
theHP 64700 Emulators: Concept of Emulation and Analysis
manual and the "Getting Started" chapter of this manual.

In-Circuit Emulation 4-1



Installing the
Target System
Probe

Caution '

4-2 In-Circuit Emulation

DAMAGE TO THE EMULATOR CIRCUITRY MAY RESULT
IF THESE PRECAUTIONS ARE NOT OBSERVED. The
following precautions should be taken while using the H8/570
emulator.

Power Down Target System.Turn off power to the user target
system and to the H8/570 emulator before inserting the user plug
to avoid circuit damage resulting from voltage transients or
mis-insertion of the user plug.

Verify User Plug Orientation. Make certain that Pin 1 of the target
system adaptor and Pin 1 of the user plug are properly aligned
before inserting the user plug in the socket. Failure to do so may
result in damage to the emulator circuitry.

Protect Against Static Discharge.The H8/570 emulator contains
devices which are susceptible to damage by static discharge.
Therefore, operators should take precautiomaggsures before
handling the user plug to avoid emulator damage.

Protect Target System CMOS Componentslf your target system
includes any CMOS components, turn on the target system first,
then turn on the HB70 emulator; when powering dowmirh off

the emulator first, then turn off power to the target system.




Target System The HP 64730 emulator is shipped with a target system adaptor.
Adaptor The adaptor allows you to connect the emulation probe to your
target system which is designed for the QFP package of H8/570
microprocessor.

Pin Protector The HP 64730 emulator is shipped withh@g pin protector that
prevents damage to the target system adaptor when inserting and
removing the emulation prob&o notinsert the probe without
using a short pin protector.

Installing the Target
System Probe 1. Attach the adaptor to your target system. You can use a
M2 screw to help attaching the adaptor to the target
system.

2. Install the emulation probe using the pin protector as
shown in Figure 4-1.

Note You can order additional target system adaptor and short pin
ﬂ protector with part numbe§4732-61613 and 64732-61614,
respectively. Contact your local HP sales representative to
purchase additional adaptor and protector.

Optional Pin Extender If the target system probe is installed on a densely populated circuit
board, there may not be a enough room to accommodate the
plastic shoulders of the probe. Ifthis occurs, you can use optional
long pin protector and pin extender to avoid the conjunction with
the target system components. Order the long pin protector and
the pin extenders with part number 64732-61615 and 64732-61616,
respectively.

In-Circuit Emulation 4-3



Hlign the mark with pin 1 of
the target system adaptor

Short pin protector

‘///Target system adaptor

~——Pin | of the adaptor

Figure 4-1. Installing the Emulation Probe

Target System Refer to theH8/570 Terminal Interface User's Guidter
Interface information on the target system interface of the emulator.

4-4 In-Circuit Emulation



In-Circuit
Configuration
Options

The H8/570 emulatoprovides configuration options for the
following in-circuit emulation issues. Refer to Chapter 5 for more
information on these configuration options.

Using the Target System Clock Source

You can configure the emulator to use the external target system
clock source.

Enabling Bus Arbitration

You can configure the emulator to enable/disable bus arbitration.

Enabling NMI from the Target

You can configure the emulator to accept/ignore NMI from the
target system.

Enabling /RES from the Target

You can configure the emulator to accept/ignore /RES from the
target system.

Enabling /RES Output to the Target

You can configure the emulator to drive the /RES on emulation
reset or watchdog timer reset.

Selecting Visible/Hidden Background Cycles

Emulation processor activity while executing in background can
either be visible to target system (cycles are sent to the target
system probe) or hidden (cycles are not sent to the target system
probe).

In-Circuit Emulation 4-5



Running the
Emulator from
Target Reset

4-6 In-Circuit Emulation

You can specify that the emulator begins executing from target
system reset. When the target system /RES line becomes active
and then inactive, the emulator will start reset sequence
(operation) as actual microprocessor.

At First, you must specify the emulator responds to /RES signal by
the target system (see the "Enable /RES input from the target
system?" configuration in Chapter 4 of this manual).

To specify a run from target system reset, select:
run from reset <RESET>

The status now shows that the emulator is "Awaiting target reset".
After the target system is reset, the status line message will change
to show the appropriate emulator status.



Configuring the Emulator

Introduction The H8/570 emulator can be used in all stages of target system
development. For instance, you can run the emulator
out-of-circuit when developing target system software, or you can
use the emulator in-circuit when integrating software with target
system hardware. Emulation memory can be used in place of, or
along with, target system memory. You can use the emulator’s
internal clock or the target system clock. You can execute target
programs in real-time or allow emulator execution to be diverted
into the monitor when comands request access of target system
resources (target systamemory, register contents, etc.)

The emulator is a flexible instrument and it may be configured to
suit your needs at any stage of the development process. This
chapter describes the options available when configuring the
H8/570 emulator.

The configuration options are accessed with the following
command.

modify configuration <RETURN>
After entering the command above, yolll be asked questions
regarding the emulator configuration. The configuration questions
are listed below andrguped into the following classes.

General Emulator Configuration;

— Specifying the emulator clock source
(internal/external).

— Selecting monitor entry after configuration.

— Restricting to real-time execution.

Configuring the Emulator 5-1



5-2 Configuring the Emulator

Memory Configuration:

Mapping memory.

Emulator Pod Configuration:

Selecting the processor operation mode.

Enabling emulator bus arbitration.

Enabling NMI input from the target system.

Enabling /RES input from the target system.
Enabling driving emulation reset to the target system.

Allowing the emulator to drive background cycles to
the target system.

Allowing the emulator to halt the ISP on emulation
break.

Selecting the reset value for the stack pointer.

Debug/Trace Configuration:

Enabling breaks on writes to ROM.

Selecting the trace mode.

Specifying tracing of foreground/background cycles.
Enabling tracing refresh cycles.

Enabling tracing bus release cycles.

Simulated I/O Configuration:  Simulated 1/O is described in the
Simulated I/Oreference manual.

Interactive Measurement Configuration: See the chapter on
coordinatedneasurements in thgoftkey Interface Reference

manual.

External Analyzer Configuration: See theAnalyzer Softkey
Interface User's Guide



General Emulator
Configuration

Micro-processor
clock source?

Note ﬂ

Enter monitor after
configuration?

The configuration questions described in this section involve
general emulator operation.

This configuration question allows you to select whether the
emulator will be clocked by the internal cloakusce or by a target
system clock source.

internal Selects the internal clock oscillator as the
emulator clock source. The emulators’internal
clock speed is 10 MHz (system clock).

external Selects the clock input to the emulator probe
from the target system. You must use a clock
input conforming to the specifications for the
H8/570 micoprocessor. The maximum external
clock speed is 12 MHz (system clock).

Changing the clock source drives the emulator into the reset state.
The emulator may later break into the monitor depending on h

the following "Enter monitor after configuration?" question is
answered.

This question allows you to select whether the emulator will be
running in the monitor or held in the reset state upon completion
of the emulator configuration.

How you answer this configuration question is important in some
situations. For example, when the external clock has been selected
and the target system is turned off, reset to monitor should not be
selected; otherwise, configuration will fail.

When an external clock source is specified, this question becomes
"Enter monitor after configuration (using external clock)?" and the
default answer becomes "no".

Configuring the Emulator 5-3



Restrict to real-time
runs?

5-4 Configuring the Emulator

yes When reset to monitor is selected, the emulator
will be running in the monitor after
configuration is complete. If the reset to
monitor fals, the previous configuration will be
restored.

no After the configuration is complete, the
emulator will be held in the reset state.

If it is important that the emulator execute target system programs
in real-time, you can restrict to real-time runs. In other words,
when you execute target programs (with thum" command), the
emulator will execute in real-time.

no The default emulator configuration disables the
real-time mode. When the emulator is executing
the target program, you are allowed to enter
emulation commands that require access to
target system resources (display/modify: registers
or target system memory). If one of these
commands is entered, the system controller will
temporarily break emulator execution into the
monitor.

yes If your target system program requires real-time
execution, you should enable the real-time mode
in order to prevent temporary breaks that might
cause target system problems.



Commands Not Allowed when Real-Time Mode is Enabled

When emulator execution is restricted to real-time and the
emulator is running user code, the system refusesmalinands
that require access to processor registers or target systemory.
The following commands are not allowed whems are restricted

to real-time:
a Register display/modification.
a Target system memory display/modification.
a Internal I/O registers display/modification.

a Load/store target systememory.
If the real-time mode is enabled, these resources can only be
displayed or modified while running in the monitor.

Breaking out of Real-Time Execution

The only commands which are allowed to break real-time
execution are:

reset

run

break

step

Configuring the Emulator 5-5



Memory
Configuration

Mapping Memory

Note #

5-6 Configuring the Emulator

The memory configuration questions allows you to map memory.
To access the memory configuration questions, you must answer
"yes" to the following question.

Modify memory configuration?

The H8/570 emulator contains high-speed emulati@mory (no
wait states required) that can be mapped at a resolution of 128
bytes.

The memory mapper allows you to characterize memory locations.
It allows you specify whether a certain range of memory is present
in the target system or whether you will be using emulation
memory for that address range. You can also specify whether the
target system memoryis ROM or RAM, and you can specify that
emulation memory be treated as ROM or RAM.

Blocks of memory can also be characterized as guarded memory.
Guarded memory accesses will generate "break totmdni
requests. Writes to ROM will generate "break to nani

requests if the "Enable breaks on writes to ROM?" configuration
item is enabled (see the "Debug/Trace Configuration" section
which follows).

The memory mapper allows you to define up to 16 different map
terms.

Target system accesses to emulation memory are not allowed.
Target system devices that take control of the bus (for example,
DMA controllers) cannot access emulatimemory.




Note

Note

Note

The default emulator configuration maps location 0 hex through
7FFF hexas emulation ROM, and location F680 heaugh

FE7F hexas emulation RAM. You cannot delete the term for the
internal RAM (F680 hextrough FE7F hex).

The emulator uses 4K bytes of emulation memory, and the rest of
the emulation memory is available for user program.

When mapping memory for your target system programs, you may
wish to characterize emulation memory locations containing
programs and constants (locations which should not be written to)
as ROM. This will prevenprograms and constants from being
written over accidentally, and will cause breaks whetrirtsions
attempt to do so.

You should map allhemory ranges used by your prograrefore
loading programs intmemory. This helps safeguard against loa
which accidentally overwrite earlier loads if you follownap/load
procedure for eactnemory range.

Configuring the Emulator 5-7



Emulator Pod
Configuration

Processor operation
mode?

5-8 Configuring the Emulator

To access the emulator pod configuration questions, you must
answer "yes"to the following question.

Modify emulator pod configuration?

This configuration defines operation mode in which the emulator
works.

external The emulator will work using the mode setting
by the target system. The target system must
supply appropriate input to MDO, MD1 and
MD2. If you are using the emulator out of
circuit when "external” is selected, the emulator
will operate in mode 1.

When mode_1 through mode_6 is selected, the emulator will

operate in selected mode regardless of the mode setting by the

target system.

Selection Description

mode_1 The emulator will operate in mode 1. (expanded
minimum mode with 16 bit data bus)

mode_3 The emulator will operate in mode 3. (expanded
maximum mode with 16 bit data bus)

mode_4 The emulator will operate in mode 4. (expanded
minimum mode with 8 bit data bus)

mode_5 The emulator will operate in mode 5. (expanded
maximum mode with 16 bit data bus)

mode_6 The emulator will operate in mode 6. (expanded
maximum mode with 8 bit data bus)



Enable bus  The bus arbitration configuration question defines how your

arbitration? emulator responds to bus request signals from the target system
during foreground operation. The /BREQ signal from the target
system is always ignored when the emulator is running the
background monitor. This configuration item is only available for
the H8/570 emulator.

yes When bus arbitration is enabled, the /BREQ
(bus request) signal from the target system is
responded to exactly as it would be if only the
emulation processor was present without an
emulator. In other words, if the emulation
processor receives a /IBREQ from the target
system, it will repond by asserting /BACK and
will set the variouprocessor lines toitstate.
/BREQ is then released by the target; /BACK is
negated by the processor, and the emulation
processor restarts execution.

Note # You cannot perform DMA (direanemory access) transfers
between your target system and emulatitemory by using DMA
controller on your target system; the HB) emulator does not
support such a feature.

no When you disable bus arbitration, the emulator
ignores the /BREQ signal from the target
system. The emulation processalt mever
drive the /BACK line true; nor Mvit place the
address, data and control signals into the
tri-state mode.
Enabling and disabling bus master arbitration can be useful to you
in isolating target system problems. For example, you may have a
situation where the processor never seems to execute any code.
You can disable bus arbitration to check and see if faulty
arbitration circuitry in your target system is contributing to the
problem.

Configuring the Emulator 5-9



Enable NMI input
from the target
system?

Enable /RES input
from the target
system?

Note #

5-10 Configuring the Emulator

This configuration allows you to specify whether or not the
emulator responds to NMI (non-maskable interrupt request) signal
from the target system while user program is running.

yes The emulator will rggond to the NMI request
from the target system.

no The emulator will not rgond to the NMI
request from the target system.

The emulator does not accept any interrupt while it is running in

monitor. NMI is latched last one during in monitor, and such

interrupt wil occur when context is changed to upeogram.

/IRQO and internal interrupts are ignored during in monitor

operation.

This configuration allows you to specify whether or not the
emulator responds to /RES and /STBY signals by the target system
during foreground operation.

While running the background monitor, the emulator ignores
/RES and /STBY signals except that the emulator’s status is
"Awaiting target reset". (see the "Running the Emulation from
Target Reset" section in the "In-Circuit Emulation" chapter).

yes The emulator will rggnd to /RES and /STBY
input during foreground operation.

no The emulator will not rgond to /RES and
/STBY input from the target system.

If you specify that the emulator will drive the /RES signal to the
target system during emulation reset or by the overflow of
Watchdog Timer, the emulator should be configured to respond to
the /RES input to the target system.




Drive emulation reset This question is asked when you answer "yes" to the previous

to the target system? question. This configuration allows you to select whether or not
the emulator will drive the /RES signal to the target system during
emulation reset and reset by the Watchdog timer.

no Specifies that the emulator will not drive the
/RES signal during emulation reset and reset by
the Watchdog timer. The configuration of
RSTOE (Reset output enable bit) is ignored.

yes The emulator will drive an active level on the
/RES signal to the target system during
emulation reset and reset by the Watchdog timer.
This configuration option is meaningful only when the emulator is
configured to respond to the /RES input to the target system.
Refer to the "Enable /RES Input from Target?" configuration in
this chapter.

Caution ' To drive the reset signal to the target system, the driver of reset
signal on your target systemust be an open collector or open
drain. Otherwise, answering "yes"to this configuration may result
in damage to target system or emulation circuitry.

Drive background This configuration allows you specify whether or not the emulator
cycles to the target will drive the target system bus on baakgnd cycles.

system?

no Background monitor cycles are not driven to the
target system. When you select this option, the
emulator will appear to the target system as if it
is between bus cycles while it is operating in the
background monitor.

yes Specifies that background cycles are driven to
the target system. Emulation processor’s
address and control strobes (except HWR and
/LWR) are driven during background cycles.

Configuring the Emulator 5-11



Note #

Break ISP into halt
state on CPU break?

Reset value for stack
pointer?

5-12 Configuring the Emulator

Background write cycles wont appear to the
target system.

Memory cycles by the ISP are driven to the target system while the
emulator is in the monitor.

This configuration allows you to select whether the emulator halts
the ISP when the emulator breaks into the monitor.

yes The emulator halts the ISP when thredk"
command isssued.

no The emulator doesn't halt the ISP when the
"break” command isssued. You can halt the
ISP by specifying thewith_isp" syntaxin the
"break" command.

This question allows you to specify the value to which the stack
pointer (SP) and the stack page register (TP) will be set on
entrance to the emulation monitor initiated RESET state (the
"Emulation reset" status).

The address specified in response to this question mu24bbéia
hexadecimal even address.

You cannotset this address at the following location.

a Odd address
a Internal I/O register address



Note ﬂ

We recommend that you use this method of configuring the stack
pointer and the stack page register. Without a stack pointer and a
stack page register, the emulator is unable to make the transition
to the run state, step, or perform many other emulation functions.
However, using this optiodoes notpreclude you from changing

the stack pointer value or location within your program; it just sets
the initial conditions to allow a run to begin.

Debug/Trace
Configuration

Break processor on
write to ROM?

The debug/trace configuration questions allows you to specify
breaks on writes to ROM, and specify that the analyzer trace
foreground/background execution, and bus release cycles. To
access the trace/debug configuration questions, you must answer
"ves"to the following question.

Modify debug/trace options?

This question allows you to specify that the emulator break to t
monitor upon attempts to write tnemory space mapped as

ROM. The emulator will prevent thgrocessor from actually

writing to memory mapped as emulation ROM; however, they
cannot prevent writes to target system RAM locations which are
mapped as ROM, even though the write to ROM break is enabled.

yes Causes the emulator to break into the emulation
monitor whenever the user program attempts to
write to a memory region mapped as ROM.

no The emulator will not break to the monitor
upon a write to ROM. The emulatoilvaot
modify the memory location if it is in emulation
ROM.

Configuring the Emulator 5-13



Note # Thewrrom trace command status options allow you to use "write
to ROM" cycles as trigger and storage qualifiers. For example, you
could use the following command to trace about a write to ROM:
trace about status wrrom< RETURN>

Trace CPU or ISP  This configuration allows you to select the trace mode. The
operation by emulation analyzer can trace execution of CPU or ISP or both of

emulation analyzer ~ them.
cpu The emulation analyzer doesn't trace ISP
execution. The following is a sample trace
listing of this trace mode.
Trace List Offset=0
Label: Address Data Opcode or Status time count
Base: hex hex mnemonic relative
after 01016 F2FF INSTRUCTION--opcode unavailable ~  ------------
+001 0101A 2706 2706 fetch mem 320 nS
+002 01012 15FC 15FC fetch mem 400 nS
+003 01012 F5FF MOV:G.B @FCO00,R0O 80. nS
+004 01014 0080 0080 fetch mem 200 nS
+005 01016 27FA 27FA fetch mem 320 nS
+006 01018 4041 4041 fetch mem 280 nS
+007 OFCO0 0041 00xx read mem byte 200 nS
+008 01016 F2FF BEQ 01012 120 nS
+009 0101A 2706 2706 fetch mem 280 nS
+010 01012 15FC 15FC fetch mem 400 nS
+011 01012 F5FF MOV:G.B @FCO00,R0O 120 nS
+012 01014 0080 0080 fetch mem 200 nS
+013 01016 27FA 27FA fetch mem 280 nS
+014 01018 4041 4041 fetch mem 320 nS
STATUS: HB8/570--Running user program Emulation trace complete__ ........
display trace
run trace step display modify break end ---ETC--
isp The emulation analyzer traces only ISP

execution and memory cycles by the ISP. The
following is a sample listing of this trace mode.

5-14 Configuring the Emulator



Trace List Offset=0  More data off screen (ctrl-F, ctrl-G)

Label: Address Data Opcode or Status time count

Base: hex hex mnemonic relative

after 0600 00000 OUT () 1,ISFLO  —m-mmeeeee
NEXT () 004

+001 0600 00101 MOV.W #0003,DR3 120 nS
NEXT () 00E

+002 F6FF 004 00 NEXT (ISFLO) 004,005 80. nS

+003 15FC 002 02 MOV.W #0004,DR4 120 nS
NEXT () 010

+004 15FC 004 00 NEXT (ISFLO) 004,005 80. nS

+005 F5FF O00OE 01 MOV.W #0000,DR3 120 nS
NEXT () 00F

+006 FFFF 004 00 NEXT (ISFLO) 004,005 80. nS

+007 0080 01002 MOV.W #0000,DR4 120 nS
NEXT () 011

+008 0080 004 00 NEXT (ISFLO) 004,005 80. nS

STATUS: HB8/570--Running user program Emulation trace complete_ ........

display trace

run trace step display modify break end ---ETC--

The first column in the mnemonic field shows
address of ISP microprogramemory. The
second column is function number of the
instruction. The third column is the mnemonic
of the ISP instruction executed.

both The emulation analyzer traces both CPU and

ISP execution. The following is a sample listin
of this trace mode.

Configuring the Emulator 5-15



Trace List

Base: hex
after

display trace

run trace

Offset=0

Label: Address Data

hex

More data off screen (ctrl-F, ctrl-G)
Opcode or Status
mnemonic
FFFF 004 00 NEXT (ISFLO) 004,005

004 00 NEXT (ISFLO) 004,005

FFFF 004 00 NEXT (ISFLO) 004,005

15FC 001 01 MOV.W #0003,DR3

004 00 NEXT (ISFLO) 004,005

0080 004 00 NEXT (ISFLO) 004,005

step display

F5FF MOV:G.B @FCO00,RO

+001 2706 0O0F 01 NEXT () 001
+002 0101A 2706 2706 fetch mem
+003 F7FF 01102 NEXT () 002
+004
+005

NEXT () 00E
+006 01012 15FC 15FC fetch mem
+007 01012

002 02 MOV.W #0004,DR4

NEXT () 010
+008
+009 01014 0080 0080 fetch mem

STATUS: H8/570--Running user program Emulation trace complete

modify break

end --—-ETC--

time count
relative

80. nS
120 nS

Trace backgr ound or

5-16 Configuring the Emulator

foreground
operation?

This question is asked when you ansvepu” or "both" to the

previous question. This question allows you to specify whether the
analyzer trace only foreground emulation processor cycles, only
background cycles, or both foreground or background cycles.
When background cycles are stored in the trace, all but mnemonic
lines are tagged as background cycles.

foreground

background

both

Specifies that the analyzer trace only foreground
cycles. This option is specified by the default
emulator configuration.

Specifies that the analyzer trace only background
cycles. (Thisis rarely a useful setting.)

Specifies that the analyzer trace both foreground
and background cycles. You may wish to specify

this option so that all emulation processor cycles
may be viewed in the trace display.



Trace refresh cycles?

Trace bus release

You can direct the emulator to trace refresh cycles or not.

yes When you enable tracing refresh cycles, the
analyzer will trace refresh cycles.

no The analyzer will not trace refresh cycles.

You can direct the emulator to send bus release cycle data to

cycles? emulation analyzer or not to send it.
yes When you enable tracing bus release cycles, bus
release cycles will appear as one asialirace
line.
no Bus release cycles will not appear on analysis
trace list (display).
Simulated 1/O The simulated I/O feature and configuration options are descri
Configuration in theSimulated 1/0 referenamanual.
Interactive The interactive measurement configuration questions are
described in the chapter on coordinategiasurements in the
Meag.urem.ent Softkey Interface Refereneenual. Examples of coordinated
Conflguratlon measurements that can be performed between the emulator and

the emulation analyzer are found in the "Using the Emulator"
chapter.

Configuring the Emulator 5-17



External Analyzer

The external analyzer configuration options are described in the

Configuration Analyzer Softkey Interface User's Guide
Saving a The last configuration question allows you to save the previous
Configuration configuration specifications in a file which can be loaded back into

5-18 Configuring the Emulator

the emulator at a later time.

Configuration file name? < FILE>

The name of the last configuration file is shown, or no filename is
shown if you are modifying the default emulator configuration.

If you press < RETURN> without specifying a fikeme, the
configuration is saved to a temporaryfile. This file is deleted when
you exit the Softkey Interface with the "end release_system"
command.

When you specify a filename, the configuratioiti be saved to two
files; the filename specified with extensions of "“EA"and ".EB".
The file with the ".EA" extension is the "source" copy of the file,
and the file with the ".EB" extension is the "binary" or loadable
copy of the file.

Ending out of emulation (with the "end" command) saves the
current configuration, including theame of the most recently
loaded configuration file, into a "continue"file. The continue file is
not normally accessed.



Loading a Configuration files which have been previously saved may be
Configuration loaded with the following Softkey Interface command.

load configuration <FILE> <RETURN>
This feature is especially useful after you have exited the Softkey
Interface with the "end release_system" command; it saves you
from having to modify the default configuration and answer all the
guestions again.

To reload the current configuration, you can enter the following
command.

load configuration <RETURN>

Configuring the Emulator 5-19



Notes

5-20 Configuring the Emulator




Using the Emulator

Introduction In the "Getting Started” chapter, you learned how to load code into
the emulator, how to modify memory and view a register, and how
to perform a simple analyzer measurement. In this chapter, we will
discuss in more detail other features of the emulator.

This chapter discusses:
a Features available via "pod_command".
a Limitations and restrictions of the emulator.
a Register classes and names.
a Debugging C Programs

a Accessing target system devices using E clock

synchronous instruction.
This chapter shows you how to:

a Store the contents aiemory into absolute files.
s Make coordinatedneasurements.
a Use a command file.

a Use the file format converter.

Using the Emulator 6-1



Features Available Several emulation features available in the Terminal Interface but

: not in the Softkey Interface may be accessed via the following
via Pod !
emulation commands.
Commands
display pod_command <RETURN>
pod_command '<Terminal Interface command>’
<RETURN>
Some of the most notable Terminal Interface features not available
in the softkey Interface are:
s Copying memory.
m Searching memory for strings or numeric expressions.
a Performing coverage analysis.
Refer to your Terminal Interface documentation for information
on how to perform these tasks.
Note # Be careful when using the "pod_command". The Softkey Interface,

and the configuration files in particular, assume that the
configuration of the HP 64700 pod is NOT changed except by the
Softkey Interface. Be aware that what you see in

"modify configuration" will NOT reflect the HP 64700 pod’s
configuration if you change the pod’s configuration with this

command. Also, commands which affect the communications

channel should NOT be used at all. Othenowands may confuse
the protocol depending upon how they are used. The following
commands are not recommended for use with "pod_command":

stty, po, xp- Do not use, will change channel operation and hang.
echo, macUsage may confuse the protocol in use on the channel.
wait -Do not use, will tie up the pod, blocking access.

init, pv -Will reset pod and force end release_system.

t - Do not use, will confuse trace status polling and unload.

6-2 Using the Emulator



Using a Command
File

load configuration cmd_rds
load cmd_rds

You can use a command file to perform many functions for you,
without having to manually type each function. For example, you
might want to create a command file that loads configuration,
loads program intonemory and displays memory.

To create such a command file, type "log" and press TAB key. You
will see a conmand line "log_commands" appears in the command
field. Next, select "to"in the softkey label, and enter the command
file name "sample.cmd”. This set up a file to record all commands
you execute. The commandsle logged to the file sample.cmd

in the current directory. You can use this file asmmand file to
execute these commands automatically.

Suppose that your configuration file and program amaed
“emd_rds". To the load configuration:

load configuration cmd_rds <RETURN>
To load the program intmemory:

load cmd_rds <RETURN>
To display memory 1000 hekitough1020 hex in mnemonic
format:

display memory 1000h thru 1020h mnemonic
Now, to disable logging, type "log" and press TAB key, select "off",
and press Enter. The command file you created looks like this:

display memory 1000h thru 1020h mnemonic

If you would like to modify the command file, you can use anyte
editor on your host computer.

To execute this command file, type "sample.cmd", and press Enter.

Using the Emulator 6-3



Debugging C
Programs

Displaying Memory
with C Sources

Displaying Trace with
C Sources

6-4 Using the Emulator

Softkey Interface has following functions to debug C programs.

a Including C source lines imemory mnemonic display
m Including C source lines in tradisting
a Stepping C sources

The following section describes such features.

You can display memory in mnemonic format with C source lines.
For example, to display memory in mnemonic format from address

_main with source lines, enter the followingramnands.

display memory _main mnemonic <RETURN>

set source on <RETURN>
You can display source lines highlighted with the following
command.

set source on inverse_video on <RETURN>
To display only source lines, use the followingnsoand.

set source only <RETURN>

Specifying Address with Line Numbers

You can specify addresses with line numbers of C source program.
For example, to set a breakpoint to line 20 of "main.c" program,
enter the following command.

modify software_breakpoints set main.c: line
20 <RETURN>

You can include C source information in trdiséing. You can use

the same command as the case of memory display. For example, to
display trace listing withaurce lines highlighted, enter the

following command.

display trace <RETURN>
set source on inverse_video on <RETURN>



Stepping C Sources You can direct the emulator to execute a line or a number of lines
at atime. For example, to step one line from address _main, enter
the following command.

step source from _main <RETURN>
To step 1 line from the current line, enter the followinmorand.

step source <RETURN>
You can specify the number of lines to be executed. To step 5 lines
from the current line, enter the followingrammand.

step5 source <RETURN>

E clock You can access target system devices in synchronization with the
synchronous E clock. To do this, use the following commands:

instructions

display io_port
modify io_port

The emulator will access the device using the MOVFPE/MOVTPE
instruction.

Using the Emulator 6-5



Limitations,
Restrictions

DMA Support

Sleep and Software
Stand-by Mode

Watchdog Timer

Address Error and
Register Values

ISP Microprogram
Modify

Symbolic Information
for ISP Functions

RAM Enable Bit

6-6 Using the Emulator

Direct memory access to H8/570 emulatrnamory is not
permitted.

When the emulator breaks into the monitor
(foreground/background), the F5/0 sleep or software stand-by
mode is released and comes to normal processor mode.

When the emulator breaks into background, the emulation
processor’s watchdog timer suspends count up in background
cycles.

In operation of the H8/570 nmriaprocessor, the Stack Pointer must
always contain an even value. Ifthe Stack Pointer is odd, you will
see the following error message when you breaks into the monitor.

Address error occurred while in monitor

In this case, the values of the following registers wilubeeliable.

a Stack Pointer (SP)
a Code Page Register (CP)
s Status Register (SR)

The contents of ISP microprogramemory cannot be modified by
emulation commands. To modifgyr ISP program, you need to
re-assemble/link your program, and load it into the emulator.

The H8/570 Softkey Interface does napport symbolic
information for ISP functions. No symbolic information for ISP
functions is dispalyed in ISP memory display and trace listing.

The internal RAM of H8/51@rocessor can be enabled/disabled by
RAME (RAM enable bit). However, the H8/570 emulator
accesses emulation RAM even if the internal RAM is disabled by
RAME.



Storing Memory The "Getting Started"” chapter shows you how to load absolute files

into emulation or target system memory. You can also store
Contents t(_) an emulation or target system memory to an absolute file with the
Absolute File following command.

store memory 1000h thru 1042h to absfile
<RETURN>
The command above causes the contents of memory loca060s
hexthroughl042 hexto betered in the absolute file "absfile.X".
Notice that the ".X" extension is appended to the specified

filename.
Coordinated For information on coordinatadeasurements and how to use
Measurements them, refer to the "Coordinated Measorents" chapter in the

Softkey Interface Referencenual.

Using the Emulator 6-7



Register Names The following register names and classes may be used with
and Classes display/modify registers" commands.

Summary H8/570 register designators. All available register classes and
register names atisted below.

BASIC Class

Register name  Description

PC Program counter

CP Code page register
SR Status register

DP Data page register
EP Extended page register
TP Stack page register
BR Base register

RO Register RO

R1 Register R1

R2 Register R2

R3 Register R3

R4 Register R4

R5 Register R5

R6 Register R6

R7 Register R6

R7 Register R7

FP Frame pointer

SP Stack pointer

MDCR Mode control register

6-8 Using the Emulator



SYS Class  System control registers

Register name  Description

WCR Wait control register

MDCR Mode control register

SBYCR Software stand-by control register
RAMCR RAM control register

SYSCR1 System control register 1

INTC Class Interrupt control registers

IPRA Interrupt priority register A
IPRAB Interrupt priority register B
IPRC Interrupt priority register C
IPRD Interrupt priority register D

DTC Class Data transfer controller registers

DTEA DT enable register A
DTEB DT enable register B
DTEC DT enable register C
DTED DT enable register D

ADC Class  A/D converter registers

ADDRA A/D data register A
ADDRB A/D data register B
ADDRC A/D data register D
ADDRD A/D data register D
ADCSR A/D control/status register
ADCR A/D control register

Using the Emulator 6-9



PORT Class

PWM Class

6-10 Using the Emulator

I/O port registers

Register name

P1DDR
P5DDR
P6DDR
P8DDR
PODDR
P10DDR
P11DDR
P12DDR

P1DR
P5DR
P6DR
P7DR
P8DR
PODR
P10DR
P11DR
P12DR

Description

Port 1 data direction register
Port 5 data direction register
Port 6 data direction register
Port 8 data direction register
Port 9 data direction register
Port 10 data direction register
Port 11 data direction register
Port 12 data direction register

Port 1 data register
Port 5 data register
Port 6 data register
Port 7 data register
Port 8 data register
Port 9 data register
Port 10 data register
Port 11 data register
Port 12 data register

PWM timer registers

TCR
TSR
ODL
ODRO
ODR1
ODR2
OCRO
OCR1
OCR2
TMR

Timer control register
Timer status register
Output data latch

Output data register 0
Output data register 1
Output data register 2
Output compare register 0
Output compare register 1
Output compare register 2
Timer



WDT Class  Watchdog timer registers

Register name  Description

WDTCSR Timer control/status register
WDTCNT Timer counter
RSTCSR Reset control/status register

SCI Class  Serial communication interface registers.

RDR Receive data register
TDR Transmit data register
SMR Serial mode register
SCR Serial control register
SSR Serial status register
BRR Bit rate register

ADC Class  A/D converter registers

ADDRA A/D data register A
ADDRB A/D data register B
ADDRC A/D data register C
ADDRD A/D data register D
ADCSR A/D control/status register
ADCR A/D control register

Using the Emulator 6-11



ISPSCM Class

ISPDR Class

ISPF Class

6-12 Using the Emulator

ISP SCM

Register name

ARO
AR1
AR2

AR9
AR10
AR11

Description

ISP address register 0
ISP address register 1
ISP address register 2

ISP address register 9
ISP address register 10
ISP address register 11

ISP data registers

DRO
DR1
DR2
DR3

DR30
DR31

ISP flags

ICF
IOFO
IOF1
IOF2
EGF
ISF

ISP data register 0
ISP data register 1
ISP data register 2
ISP data register 3

ISP data register 30
ISP data register 31

Interconnction flag
Input/output flag 0
Input/output flag 1
Input/output flag 2
Edge flag

Interrupt status flag



ISPC Class ISP control registers

Register name  Description

IEF Interrupt enable flag

IOIEF I/O interrupt enable flag
CLE Clear enable register
EVER Event enable register

IPR ISP page register

ICSR ISP control status register
REDGE Rising edge enable register
FEDGE Falling edge enable register
SYSCRS8 System control register 8
SYSCR9 System control register 9
SYSCR10 System control register 10

Using the Emulator 6-13



Using the Format
Converter

Description The format converter is a program that generates HP format files
from a HP 64869 format file. Thimeans you can use available
language tools to create HP 64869 format file, then load the file
into the emulator.

Synopsis To execute the converter program, use the followimgroand:
$ h8cnvhp [options] <file_name>
< file_name> is the name of HF2869 format file wihout suffix.

The converter programilvread the HP 64869 format file (with
.abs suffix). It will generate the following HP format files:

a HP Absolute file (with .X suffix)
a HP Linker symbol file (with .L suffix)
a HP Assembler symbol file (with .A suffix)

Options THe following options are available:

-X create the absolute file

-l create the linker symbol file

-a create the assembler symbols files. The HP
64869 format file must contain local symbol
information.

Example Suppose that you have the following file:
sample.abs (HP 64869 format file)

You can generate HP format files from this file with the following
command:

$ h8cnvhp sample <RETURN>

6-14 Using the Emulator



H8/570 Softkey Interface Specific Syntax

This appendix describes specific syntax of H8/570 Softkey Interface.

Items explained in this appendix includes:
a Syntaxoforeak command
a Syntaxofdisplay isp_memorycommand
s Syntaxofdisplay trace command
s Syntaxofrun command

s Syntaxofstepcommand

The explanation in this appendix is addendum toSbikey
Interface Referenamanual. Refer to the manual for complete
description of each command.

H8/570 Specific Syntax A-1



break

Syntax

Function

Parameters

A-2 HB/570 Specific Syntax

This command causes the emulator to leave pisEgram
execution and begin executing in the monitor.

break ‘1 <RETURN>
o)

1 isp

The behavior obreak depends on the state of the emulator:

running

reset

running in monitor

In monitor ISP halted

Break diverts the processor from
execution of your program to the
emulation monitor. The ISP execution
is halted if you specify theith_isp

syntax, or you configure the emulator to
halt the ISP on break.

Break releases the processor from reset,
and diverts execution to the monitor.
The ISP is held at the halt state.

Théreak command does not perform
any operation to the processor. The ISP
is halted if you specify theith_isp
syntax, or you configure the emulator to
halt the ISP on break.

Thereak command does not perform
any operation.

with_isp This allows you to halt the ISP. By default,
you don't have to specify this parameter to
halt the ISP. When you configure the
emulator not to halt the ISP on emulation
break, you need to specify this parameter to
halt the ISP.



Example

Related Commands

break <RETURN>
break with_isp <RETURN>

help break

modify configuration
run

step

H8/570 Specific Syntax A-3



display
ISp_memory

Syntax

Displays the contents of the ISP microprognagemory in
mnemonic format.

<jdwsp1a;jFAF{iwspimemory = To | <RETURN> | on

Function

Note #

Parameters

Examples

A-4 HB/570 Specific Syntax

» <SP ADD=>
fun=tion H <CFUNC #>

display isp_memory can display the contents of the ISP
microprogranmmemory in mnemonic format. You can specify a
function number to display instructions of an ISP function.

<DISPLAY> | diagram

No symbolic information is displayed in ISP memory display.

<ISP_ADDR> The start address to be displayed.
function This allows you to specify a function number
to be displayed.

display isp_memory 0 <RETURN>
The result of this command may resemble:



ISP memory
address func mnemonic

000
001
002
003
004
005
006
007
008

009

00 OUT () 1,ISFLO
NEXT () 004

01 MOV.W #0003,DR3
NEXT () 00E

02 MOV.W #0004,DR4
NEXT () 010

2? NEXT () 000

00 NEXT (ISFLO) 004,005
00 NEXT () 006

00 READ.B DRO,MAB
NEXT (IC) 006,007

00 ADD.W 0,#0001,DR0O
NEXT () 008

00 WRITE.B DR1,MAB
NEXT (IC) 008,009

00 ADD.W 0,#0001,DR1

STATUS: H8/570--In monitor ISP halted
display isp_memory 0

run

trace step display modify break

end

—-ETC--

H8/570 Specific Syntax A-5




display trace

Syntax

~{ mnemonic

This command displays the contents of the trace buffer.

absolute

isp_cycles only :>444444444
thHicycles>7
disassemble by memory contents :}4\\
disassemble_by trace data j}‘4‘\

kinary

mnemon ic

external %

» binary

hex

\(oﬁfsetiby H ——EXPR--

J
To | <RETURN> | on
<DISPLAY>| diagram

A-6 HB/570 Specific Syntax

* available when external labels are in use




Note

Function You can specify to display CPU instruction or ISP instructions or

Parameters

both of them.

cpu_cycles_only

isp_cycles_only

both_cycles

When you configure the emulator to trace
both of CPU and ISP cycles, the display may
too complexto find information you need.

In this case, you can display only CPU cycles
by specifying this option.

displays ISP cycles only.

displays both of CPU cycles and ISP cycles.

disassemble_by memory_contents

Use data in memoryto disassemble the trace
data. By default, the emulator disassembles
by data in the trace buffer to display the
trace listing. Therefore, if you specify the
execstatus for the store condition, the
emulator cannot disassemble the trace data.
When this option is specified, the emulator
can disassemble the trace even iféRecis
specified for store condition. This would be
useful when you don't have to see any
memory cycles.

disassemble by trace_data

Use data in the trace buffer to disassemble.

When you specify thdisassemble_by _memory_contentsyntax,
the emulator may need to suspend user program execution to
the contents of target memory.

H8/570 Specific Syntax A-7



This command causes the emulator to execytmgram or ISP
function.

run

Syntax

B (RETURN>

-—EXPR—— until >—> -—EXPR-

& transfer_address
H

until H <1SP_ADDR> }—j

Function Therunisp command causes the ISP to start execution.

Parameters
isp Allows you to cause the ISP to start execution.
until Allows you to cause the ISP to start execution,
and halts the execution after the instruction at
the specified address is executed.
Examples
run isp

run isp until 12

A-8 HB/570 Specific Syntax



step Thestepcommand allows you sequential arsédyofprogram
instructions by causing the emulation processor or ISP to execute a
specified number of instructions.

Syntax

< step B <(RETURN>

1sp
~{ function %‘ <FUNC =#>

& ——EXPR——
H

Function You can step ISP instructions. You also can step through
instructions of a specified ISP function.

Parameters
isp Allows you to step ISP instructions.

function Allows you to step through instructions of a
specified ISP functions. When you specify
this option, the emulator runs the ISP until
an instruction of the specified function is
executed. Instructions of other functions a
also executed until the emulator halts ISP
after an instruction of the specified function
is executed.

H8/570 Specific Syntax A-9



Notes

A-10 H8/570 Specific Syntax




Index

A  absolute file, loading-11
absolute files
storing6-7
address errog-6
analyzer
configuring the externd-18
features ofl-3
status qualifierg-24
using the2-24
assemble
ISP function3-6
assembling the getting started sample progeen

B  background cycles
tracing5-16
blocked byte memory displ&y16
break command
ISP 3-10
breakpoint interrupt instruction
software breakpoint3-18
breaksl-4
break comman@-17, A-2
guarded memory accesse$
software breakpoints-4, 2-18
write to ROM5-13
writes to ROMb5-6
bus arbitration
using configuration to isolate target problém

C C program
debugginggs-4
displaying in mnemonic memory displéy
displaying in trace listing-4
cautions

installing the target systeprobe4-2
characterization of memofBy6
cim, Terminal Interface commard19

Index-1




clearing software breakpoin?s21
clock source
externals-3
internal5-3
command file
creating and using-3
compress mode,trace disp228
configuration options
background cycles to targgtll
drive emulation reset to targgtll
enable /BREQ inpu$-9
enable NMI inpu-10
honor target reséi-10
in-circuit 4-5
processor modg-8
trace bus release cyclgsl7
trace refresh cycles17
convert SYSROF absolute file to HP Absol2té
converter, h8cnvhg-6
coordinatedneasurements-17, 6-7
copy memorp-2
coverage analys&-2

D dataregisters

ISP3-12

Debugging C progrant-4

device table fil2-8

display command
ISP A-4
ISP memorys-8
ISP register§-12
memory mnemonig-14
memory mnemonic with symbos15
memory repetitivel2-16
register-22, 6-8
software breakpoint3-20
symbols2-12
trace2-25, A-6

drive emulation reset to targetll

2-Index



E clock6-5
emul700, conmand to enter the Softkey Interfaz®, 2-30
emulation analyzet-3, 2-24
emulation memory
loading absolute fileg-11
note on target accesse$
RAM and ROM5-6
size of5-6
emulator
before usin@-2
device table file2-8
DMA supportl-6, 5-9
features of-3
ISP microprogram modif¢-6, 6-6
limitations1-6, 6-6
memory mapper resoluticsr6
prerequisite®-2
purpose ofl-1
RAM enable bitl-6
running from target resét6
sleep modd.-6, 6-6
software stand-by mode6, 6-6
supported microprocessor packdga
Symbolic Information for ISP Functioris6, 6-6
target systemi-4
watch-dog timed-6
emulator configuratio2-9
break processor on write to ROBAL3
clock selectiorb-3
loading5-19
monitor entry afte6-3
restrict to real-time runs-4
saving5-18
stack pointeb-12
trace background/foreground operatimi6
Emulator features
clock speed§-3
emulation memorg-3
supported microprocessots3

emulator limitations
DMA support6-6

Index-3




4-Index

RAM enable bit6-6
watchdog timeB-6
END assembler directive (pseudo instructi@n)6
end comman@-29, 5-18
exit, Softkey Interfac@-29
external analyze2-24
configuration5-18
external clock sourcgé-3

features of the emulatdr3
file extensions
.EA and .EB, configuration file5-18
file format
converting3-6
foreground operation
tracing5-16
function numbeB-8, 3-11

getting starte@-1
prerequisite®-2

global symbol-14
displaying2-12

grd, memory characterizatidi6

guarded memory accesse$

h8cnvhp, converte2-6
halt
ISP 3-10
hardware installatio2-2
help
on-line2-9
pod command informatio®-10
softkey driven informatio2-9

in-circuit configuration optiond-5
in-circuit emulatiord-1, 5-1
installation

hardware?-2

software2-2
installing target systemrobe

Seetarget system probe
interactive measuremenisl?
internal clock sourcé-3



internal 1/O register display/modi68
interrupt
NMI 5-10
ISP1-5
assemble8-6
converting file formaB-6
data register8-12
debugging-1
display memory-4
function numbeB-8
halt3-10, A-2
halting on CPU break-12
memory display-8
registers3-12
run3-10, A-8
SCM 3-8, 3-12
step3-11, A9
symbols3-9
trace3-13, 5-14
ISP assemble3-6
ISP function
step3-11

limitations of the emulatot-6, 6-6

linking the getting started sample prograr
loading absolute file2-11

loading emulator configuratiorts19

local symbols, displaying-13

locked, end command optida30

logging of commandé-3

mapping memorg-6
measurement syste30
creating2-7
initialization 2-7
memory
characterizatio®-6
copying6-2
ISP 3-8
mappings-6
mnemonic displag-14
mnemonic display with C sourcés4

Index-5




6-Index

0]

mnemonic display with symbo#s15

modifying2-16

repetitively display-16

searching for strings or expressi@ig
memory characterizatiob-6
memory mapping

ranges, maximurb-6

sequence of map/load commarids
microprocessor packade3
mnemonic memory displa&d+14
modify command

configuration5-1

ISP register8-12

memory2-16

software breakpoints cle@r21

software breakpoints s@t20
module2-30
module, emulatior2-7
monitor

breaking into2-17
MOVFPE instructiors-5
MOVTPE instruction6-5

non-maskable interrugg-10
nosymbol2-12
notes

"debug" option must need to generate local symbol informa&ién

config. option for reset stack pointer recommengiei
default mapping of memoB7

DMA to emulation memory not support&ed
map memory before loading prograBig

pod commands thaheuld not be executedt2
refresh cycles are always driven to targei2
selecting internal clock forces re$e8

setting software bkpts. while running user c@dE9
software breakpoint locatior?s18

software breakpoints and ROM co2d 9

target accesses to emulation memm6/

write to ROM analyzer statis14

on-line help2-9
out-of-circuit emulatiorb-1



PATH, HP-UX environment variabl2-6/2-8
pin extende#-3
pin protecto4-3
pmon, User Interface SoftwaPe7, 2-30
pod_comman@-10

features available witB-2

help information2-10
predefining stack pointes-12
prerequisites for using the emulat2
processor operation mo&es
purpose of the emulatdrl

RAM, mapping emulation or targét6
real-time executioi-4
commands not allowed durirbgs
commands which iV cause breals-5
restricting the emulator t6-4
register display/modifg-22
registersl-4, 6-8
classe-22
ISP3-12
release_system
end command optio®-29, 5-18/5-19
repetitive display of memor3r16
reset (emulator)
running from target resét6
reset(emulator)-4
reset(emulator), running from target re2€t6
restrict to real-time runs
emulator configuratio®-4
ROM
mapping emulation or targét6
writes t05-6
run canmand2-15
ISP 3-10, A-8
run from target reset-6

sample program
description2-2
sample program, linking-6
saving the emulator configuratical8
SCM 3-8, 3-12

Index-7



simulated 1/05-17
single-stepl-4
softkey driven help informatio®-9
Softkey Interface
entering2-7
exiting2-29
on-line help2-9
software breakpoints-4, 2-18
clearing2-21
displaying2-20
enabling/disablin@-19
setting2-20
software installatior2-2
stack pointe6-6
required for proper operatidi13
stack pointer,defining-12
status qualifier@-24
step
ISP3-11
step comman@&-23, 3-11
ISP A-9
with C progran6-4
string delimiter2-10
symbols
ISP 3-9
symbols, displaying@-12
system overvie\g-2

T  target memory, loading absolute filzd 1
target reset
running from4-6
target system adaptdr3
target system probe
cautions for installatiod-2
installation4-2
installation proceduré-3
Terminal Interface-10
trace
background operatiob-16

bus release cyclés17
depth2-29
display2-25, A-6

8-Index



display with C source line&-4
display with compress mod28
display with time count absolu&27
ISP3-13
mode3-13
refresh cycles-17
trace modé-14
transfer address, running fro2nl6
trigger state2-26

trigger, specifyin@-24

undefined software breakpoift18
user (target) memory, loading absolute fze1

visible backgound cycle$-11

window system®-30
write to ROM brealbs-13

xlate utility 3-6

Index-9



Notes

10-Index




	Using This Manual
	Contents
	Introduction to the H8/570 Emulator
	Getting Started
	Debugging ISP Functions
	In-Circuit Emulation
	Configuring the Emulator
	Using the Emulator
	H8/570 Softkey Interface Specific Syntax
	Index

