
HP 64732

H8/510 Emulator
PC Interface

User’s Guide

HP Part No. 6 4732-97004
Printed in U.S.A.
February 1993

Edition 2

Notice Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or
for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability
of its software on equipment that is not furnished by
Hewlett-Packard.

 Copyright 1991,1992,1993, Hewlett-Packard Company.

This document contains proprietary information, which is
protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to
another language without the prior written consent of
Hewlett-Packard Company. The information contained in this
document is subject to change without notice.

UNIX is a registered trademark of UNIX System Laboratories Inc.
in the U.S.A. and other countries.

Torx is a registered trademark of Camcar Division of Textron, Inc.

LCA is a trademark of Xilinx Inc.

Hewlett-Packard Company
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure
by the U.S. Government is subject to restrictions set forth in
subparagraph (C) (1) (ii) of the Rights in Technical Data and
Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA
94304 U.S.A. Right for non-DOD U.S. Government Department
and Agencies are as set forth in FAR 52.227-19(c)(1,2).

Printing History New editions are complete revisions of the manual. The date on
the title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was
issued. Many product updates and fixes do not require manual
changes, and manual corrections may be done without
accompanying product changes. Therefore, do not expect a
one-to-one correspondence between product updates and manual
revisions.

Edition 1 64732-97001, April 1991

Edition 2 64732-97004, February 1993

Using This Manual

This manual will show you how to use the HP 64732 H8/510
Emulator with the PC Interface.

This manual will:

Show you how to use emulation commands by executing
them on a sample program and describing their results.
Show you how to configure the emulator for your
development needs. Topics include: restricting the
emulator to real-time execution, and selecting a target
system clock source.
Show you how to use the emulator in-circuit (connected to
a target system).
Describe the command syntax which is specific to the
H8/510 emulator.

This manual does not:

Show you how to use every PC Interface command and
option; the PC Interface is described in the HP 64700
Emulators PC Interface: User’s Reference.

Organization

Chapter 1 Introduction to the H8/510 Emulator. This chapter lists the
H8/510 emulator features and describes how they can help you in
developing new hardware and software.

Chapter 2 Getting Started. This chapter shows you how to use emulation
commands by executing them on a sample program. This chapter
describes the sample program and how to use basic emulation
commands.

Chapter 3 In-Circuit Emulation. This chapter shows you how to plug the
emulator into a target system, and how to use the "in-circuit"
emulation features.

Chapter 4 Configuring the Emulator. You can configure the emulator to
adapt it to your specific development needs. This chapter describes
the options available when configuring the emulator and how to
save and restore particular configurations.

Chapter 5 Using the Emulator. This chapter describes emulation topics
which are not covered in the "Getting Started" chapter (for
example, coordinated measurements and storing memory).

Appendix A File Format Readers. This appendix describes how to use the HP
64869 Format Reader from MS-DOS, load absolute files into the
emulator, use global and local symbols with the PC Interface.

Contents

1 Introduction to the H8/510 Emulator

Introduction . 1-1
Purpose of the H8/510 Emulator 1-1
Features of the H8/510 Emulator 1-3

Supported Microprocessors . 1-3
Clock Speeds . 1-3
Emulation memory . 1-3
Analysis . 1-3
Registers . 1-4
Single-Step . 1-4
Target System Interface . 1-4
Breakpoints . 1-4
Reset Support . 1-4
Real-Time Operation . 1-4
Easy Products Upgrades . 1-5

Limitations, Restrictions . 1-5
DMA Support . 1-5
Sleep and Software Stand-by Mode 1-5
Watch Dog Timer in Background 1-5
Reset Output Enable Bit . 1-5

2 Getting Started

Introduction . 2-1
Before You Begin . 2-2

Prerequisites . 2-2
A Look at the Sample Program 2-2
Sample Program Assembly . 2-6
Linking the Sample Program 2-6

Starting Up the PC Interface . 2-7
Selecting PC Interface Commands 2-8
Emulator Status . 2-8

Modifying Configuration . 2-8
Defining the Reset Value for the Stack Pointer 2-8
Saving the Configuration . 2-8

Contents-1

Mapping Memory . 2-9
Which Memory Locations Should Be Mapped? 2-9

Loading Programs into Memory 2-12
File Format . 2-12
Memory Type . 2-13
Force Absolute File Read . 2-13
Absolute File Name . 2-13

Using Symbols . 2-14
Displaying Global Symbols 2-14
Displaying Local Symbols . 2-15
Transfer Symbols to the Emulator 2-17

Displaying Memory in Mnemonic Format 2-18
Stepping Through the Program 2-19

Specifying a Step Count . 2-20
Modifying Memory . 2-21
Running the Program . 2-22
Searching Memory for Data . 2-23
Breaking into the Monitor . 2-23
Using Software Breakpoints . 2-24

Defining a Software Breakpoint 2-25
Displaying Software Breakpoints 2-26
Setting a Software Breakpoint 2-26
Clearing a Software Breakpoint 2-26

Using the Analyzer . 2-27
Resetting the Analysis Specification 2-27
Specifying a Simple Trigger 2-27
Starting the Trace . 2-30
Displaying the Trace . 2-30
For a Complete Description 2-32

Using a Command File . 2-32
Resetting the Emulator . 2-33
Exiting the PC Interface . 2-34

2-Contents

3 In-Circuit Emulation

Prerequisites . 3-1
Installing the Target System Probe 3-2

Pin Guard . 3-3
Target Sytem Adaptor . 3-3
Pin Protector . 3-3
Installing the Target System Probe 3-3

Running the Emulator from Target Reset 3-5

4 Configuring the Emulator

Introduction . 4-1
Accessing the Emulator Configuration Options 4-2
Internal Emulator Clock? . 4-3
Enable Real-Time Mode? . 4-3
Enable Breaks on Writes to ROM? 4-5
Enable Software Breakpoints? . 4-6
Enable CMB Interaction? . 4-7
Enable Bus Arbitration? . 4-8
Drive Background Cycles to Target? 4-9
Enable NMI Input from Target? 4-10
Enable /RES Input from Target? 4-11
Drive Emulation Reset to Target? 4-12
Processor Operation Mode . 4-13
Trace Refresh Cycles? . 4-13
Memeory Data Access Width 4-14
Trace Bus Release Cycles? . 4-14
Reset Value for Stack Pointer? 4-15
Monitor Type . 4-15
Foreground Monitor Address 4-17
Storing an Emulator Configuration 4-17
Loading an Emulator Configuration 4-18

5 Using the Emulator

Introduction . 5-1
Making Coordinated Measurements 5-2

Running the Emulator at /EXECUTE 5-3
Breaking on the Analyzer Trigger 5-3

Storing Memory Contents to an Absolute File 5-5
Accessing Target System with E clock synchronous instruction . 5-5
Register Names and Classes . 5-6

Contents-3

A File Format Readers

Using the HP 64000 Reader . A-1
What the Reader Accomplishes A-1
Location of the HP 64000 Reader Program A-3
Using the Reader from MS-DOS A-4
Using the Reader from the PC Interface A-4
If the Reader Won’t Run . A-5
Including RHP64000 in a Make File A-6

Using the HP 64869 Reader . A-6
What the Reader Accomplishes A-6
Location of the HP 64869 Reader Program A-8
Using the HP 64869 Reader from MS-DOS A-8
Using the HP 64869 Reader from the PC Interface A-9
If the Reader Won’t Run A-10
Including RD64869 in a Make File A-10

Index

Illustrations

Figure 1-1. HP 64732 Emulator for the H8/510 Processor 1-2
Figure 2-1. Sample Program Listing 2-3
Figure 2-2. Linkage Editor Subcommand File 2-6
Figure 2-3. PC Interface Display 2-7
Figure 2-4. Sample Program Load Map Listing 2-10
Figure 2-5. Memory Configuration Display 2-11
Figure 2-6. Modifying the Trace Specification 2-29
Figure 2-7. Modifying the Pattern Specification 2-29
Figure 3-1. Installing the Target System Probe 3-4
Figure 4-1. H8/510 General Emulator Configuration 4-2
Figure 5-1. Cross Trigger Configuration 5-4

4-Contents

1

Introduction to the H8/510 Emulator

Introduction The topics in this chapter include:

Purpose of the H8/510 emulator.

Features of the H8/510 emulator.

Purpose of the
H8/510 Emulator

The H8/510 emulator is designed to replace the H8/510
microprocessor in your target system to help you debug/integrate
target system software and hardware. The emulator performs just
like the processor which it replaces, but at the same time, it gives
you information about the bus cycle operation of the processor.
The emulator gives you control over target system execution and
allows you to view or modify the contents of processor registers,
target system memory.

Introduction 1-1

Figure 1-1. HP 6 4732 Emulator for the H8/510 Processor

1-2 Introduction

Features of the
H8/510 Emulator

This section introduces you to the features of the emulator. The
chapters which follow show you how to use these features.

Supported
Microprocessors

HITACHI HD6415108F (H8/510) microprocessor is supported.
An adaptor is provided to connect the emulator probe to your
target system.

Clock Speeds Maximum clock speed is 10 MHz (system clock).

Emulation memory The HP 64732 H8/510 emulator is used with one of the following
Emualtion Memory Cards.

HP 64726A 128K byte Emulation Memory Card
HP 64727A 512K byte Emulation Memory Card
HP 64728A 1M byte Emulation Memory Card

The emulation memory can be configured into 256 byte blocks. A
maximum of 16 ranges can be configured as emulation RAM
(eram), emulation ROM (erom), target system RAM (tram), target
system ROM (trom), or guarded memory (grd). The H8/510
emulator will attempt to break to the emulation monitor upon
accessing guarded memory; additionally, you can configure the
emulator to break to the emulation monitor upon performing a
write to ROM (which will stop a runaway program).

Analysis The HP 64732 H8/510 emulator is used with one of the following
analyzers which allows you to trace code execution and processor
activity.

HP 64703 64-channel Emulation Bus Analyzer and
16-channel State/Timing Analyzer
HP 64704 80-channel Emulation Bus Analyzer

The Emulation Bus Analyzer monitors the emulation processor
using an internal analysis bus. The HP 64703 64-channel
Emulation Bus Analyzer and 16-channel State/Timing Analyzer
allows you to probe up to 16 different lines in your target system.

Introduction 1-3

Registers You can display or modify the H8/510 internal register contents.
This includes the ability to modify the program counter (PC) and
code page register (CP) so you can control where the emulator
begins executing a target system program.

Single-Step You can direct the emulation processor to execute a single
instruction or a specified number of instructions.

Target System
Interface

You can set the interface to the target system to be active or
passive during background monitor operation. (See the
"Configuring the Emulator" chapter for further details.)

Breakpoints You can set up the emulator/analyzer interaction so that when the
analyzer finds a specific state, emulator execution will break to the
background monitor.

You can also define software breakpoints in your program. The
emulator uses one of H8/510 undefined opcode (1B hex) as
software breakpoint interrupt instruction. When you define a
software breakpoint, the emulator places the breakpoint interrupt
instruction (1B hex) at the specified address; after the breakpoint
interrupt instruction causes emulator execution to break out of
your program, the emulator replaces the original opcode. Refer to
the "Using Software Breakpoints" section of "Getting Started"
chapter for more information.

Reset Support The emulator can be reset from the emulation system under your
control; or your target system can reset the emulation processor.

Real-Time Operation Real-time signifies continuous execution of your program without
interference from the emulator. (Such interference occurs when
the emulator temporarily breaks into the monitor so that it can
access register contents or target system memory.)

Emulator features performed in real time include: running and
analyzer tracing.

Emulator features not performed in real time include: display or
modify of target system memory; load/dump of any memory,
display or modification of registers, and single step.

1-4 Introduction

Easy Products
Upgrades

Because the HP 64700 Series development tools (emulator,
analyzer, LAN board) contain programmable parts, it is possible to
reprogram the firmware and some of the hardware without
disassembling the HP 64700A Card Cage. This means that you’ll
be able to update product firmware, if desired, without having to
call an HP file representative to your site.

Limitations,
Restrictions

DMA Support Direct memory access to H8/510 emulation memory is not
permitted.

Sleep and Software
Stand-by Mode

When the emulator breaks into the emulation monitor, H8/510
microprocessor sleep or software stand-by mode is released and
comes to normal processor mode.

Watch Dog Timer in
Background

Watch dog timer suspends count up while the emulator is running
in background monitor.

Reset Output Enable
Bit

The RSTOE (Reset output enable bit) is used to determine
whether the H8/510 processor outputs reset signal when the
processor is reset by the watchdog timer. However, the HP 64732
emulator ignores the configuration of the RSTOE, and works as it
is configured in the PC Interface.

Introduction 1-5

Notes

1-6 Introduction

2

Getting Started

Introduction This chapter leads you through a basic, step by step tutorial that
shows how to use the HP 64732 emulator with the PC Interface.

This chapter will:

Tell you what must be done before you can use the
emulator as shown in the tutorial examples.

Describe the sample program used for this chapter’s
examples.

Briefly describe how PC Interface commands are entered
and how emulator status is displayed.

This chapter will show you how to:

Start up the PC Interface from the MS-DOS prompt.

Define (map) emulation and target system memory.

Load programs into emulation and target system memory.

Enter emulation commands to view execution of the
sample program.

Getting Started 2-1

Before You Begin

Prerequisites Before beginning the tutorial presented in this chapter, you must
have completed the following tasks:

1. Connected the emulator to your computer. The HP 64700
Emulators: Hardware Installation and Configuration
manual shows you how to do this.

2. Installed the PC Interface software on your computer.
Software installation instructions are shipped with the
media containing the PC Interface software. The HP
64700 Emulators PC Interface: User’s Reference manual
contains additional information on the installation and
setup of the PC Interface.

3. In addition, it is recommended, although not required, that
you read and understand the concepts of emulation
presented in the HP 64700 Emulators: System Overview
manual. The System Overview also covers HP 64700 Series
system architecture. A brief understanding of these
concepts may help avoid questions later.

You should read the HP 64700 Emulators PC Interface:
User’s Reference manual to learn how to use the PC
Interface in general. For the most part, this manual
contains information specific to the H8/510 emulator.

A Look at the Sample
Program

The sample program used in this chapter is listed in Figure 2-1.
The program is a primitive command interpreter.

Using the various features of the emulator, we will show you how
to load this program into emulation memory, execute it, monitor
the program’s operation with the analyzer, and simulate entry of
different commands by using the "Memory Modify" emulation
command.

2-2 Getting Started

 .GLOBAL Init,Msgs,Cmd_Input
 .GLOBAL Msg_Dest

 .SECTION Table,DATA
Msgs
Msg_A .SDATA "Command A entered "
Msg_B .SDATA "Entered B command "
Msg_I .SDATA "Invalid Command "
End_Msgs

 .SECTION Prog,CODE
;***
;* Sets up the stack pointer.
;***
Init MOV:G.W #Stack,R7
;***
;* Clear previous command.
;***
Read_Cmd MOV:G.B #0,@Cmd_Input
;***
;* Read command input byte. If no command has
;* been entered, continue to scan for input.
;***
Scan MOV:G.B @Cmd_Input,R0
 BEQ Scan
;***
;* A command has been entered. Check if it is
;* command A, command B, or invalid.
;***
Exe_Cmd CMP:E.B #H’41,R0
 BEQ Cmd_A
 CMP:E.B #H’42,R0
 BEQ Cmd_B
 BRA Cmd_I
;***
;* Command A is entered. R1 = the number of
;* bytes in message A. R4 = location of the
;* message. Jump to the routine which writes
;* the messages.
;***
Cmd_A MOV:I.W #Msg_B-Msg_A-1,R1
 MOV:I.W #Msg_A,R4
 BRA Write_Msg
;***
;* Command B is entered.
;***
Cmd_B MOV:I.W #Msg_I-Msg_B-1,R1
 MOV:I.W #Msg_B,R4
 BRA Write_Msg

Figure 2-1. Sample Program Listing

Getting Started 2-3

Data Declarations

The "Table" section defines the messages used by the program to
respond to various command inputs. These messages are labeled
Msg_A, Msg_B, and Msg_I.

;***
;* An invalid command is entered.
;***
Cmd_I MOV:I.W #End_Msgs-Msg_I-1,R1
 MOV:I.W #Msg_I,R4
;***
;* Message is written to the destination.
;***
Write_Msg MOV:I.W #Msg_Dest,R5
Again MOV:G.B @R4+,R3
 MOV:G.B R3,@R5+
 SCB/EQ R1,Again
;***
;* The rest of the destination area is filled
;* with zeros.
;***
Fill_Dest MOV:G.B #0,@R5+
 CMP:I.W #Msg_Dest+H’20,R5
 BNE Fill_Dest
;***
;* Go back and scan for next command.
;***
 BRA Read_Cmd

 .SECTION Data,COMMON
;***
;* Command input byte.
;***
Cmd_Input .RES.B 1
 .RES.B 1
;***
;* Destination of the command messages.
;***
Msg_Dest .RES.W H’3E
Stack .RES.W 1 ; Stack area.
 .END Init

Figure 2-1. Sample Program Listing (Cont’d)

2-4 Getting Started

Initialization

The program instruction at the Init label initializes the stack
pointer.

Reading Input

The instruction at the Read_Cmd label clears any random data or
previous commands from the Cmd_Input byte. The Scan loop
continually reads the Cmd_Input byte to see if a command is
entered (a value other than 0 hex).

Processing Commands

When a command is entered, the instructions from Exe_Cmd to
Cmd_A determine whether the command was "A", "B", or an
invalid command.

If the command input byte is "A" (ASCII 41 hex), execution is
transferred to the instructions at Cmd_A.

If the command input byte is "B" (ASCII 42 hex), execution is
transferred to the instructions at Cmd_B.

If the command input byte is neither "A" nor "B", an invalid
command has been entered, and execution is transferred to the
instructions at Cmd_I.

The instructions at Cmd_A, Cmd_B, and Cmd_I each load register
R1 with the length of the message to be displayed and register R4
with the starting location of the appropriate message. Then,
execution transfers to Write_Msg which writes the appropriate
message to the destination location, Msg_Dest.

After the message is written, the instructions at Fill_Dest fill the
remaining destination locations with zeros. (The entire destination
area is 20 hex bytes long.) Then, the program branches back to
read the next command.

Getting Started 2-5

Sample Program
Assembly

The sample program is written for and assembled with the HP
64869 H8/500 Assembler/Linkage Editor. For example, the
following command was used to assemble the sample program.

C>h8asm cmd_rds.src /DEBUG <RETURN>
In addition to the assembler listing (cmd_rds.lis), the "cmd_rds.obj"
relocatable file is created.

Linking the Sample
Program

The sample program can be linked with following command and
generates an absolute file. The contents of "cmd_rds.k" linkage
editor subcommand file is shown in Figure 2-2.

C>h8lnk /SUBCOMMAND=cmd_rds.k <RETURN>
In addition to the linker load map listing (cmd_rds.map), the
"cmd_rds.abs" absolute file is created.

Note You need to specify DEBUG command line option to both
assembler and linker command to generate local symbol
information. The DEBUG option for the assembler and linker
direct to include local symbol information to the object file.

 debug
 input cmd_rds
 start Prog(1000),Table(1100),Data(0FC00)
 print cmd_rds
 output cmd_rds
 exit

Figure 2-2. Linkage Editor Subcommand File

2-6 Getting Started

Starting Up the PC
Interface

If you have set up the emulator device table and the HPTABLES
shell environment variable as shown in the HP 64700 Emulators PC
Interface: User’s Reference, you can start up the H8/510 PC
Interface by entering the following command from the MS-DOS
prompt:

pch8510 <emulname>

In the command above, pch8510 is the command to start the PC
Interface; "< emulname> " is the logical emulator name given in
the emulator device table. (To start version of the PC Interface that
supports external timing analysys, substitute pth8510 for pch8510
in this command.) If this command is successful, you will see the
display shown in figure 2-3. If this command is not successful, you
will be given an error message and returned to the MS-DOS
prompt.

Figure 2-3. PC Interface Display

Getting Started 2-7

Selecting PC
Interface Commands

This manual will tell you to "select" commands. You can select
commands or command options by either using the left and right
arrow keys to highlight the option and press the Enter key, or you
can simply type the first letter of that option. If you select the
wrong option, you can press the ESC key to move back up the
command tree.

When a command or command option is highlighted, a short
message describing that option is shown on the bottom line of the
display.

Emulator Status The status of the emulator is shown on the line above the
command options. The PC Interface periodically checks the status
of the emulator and updates the status line.

Modifying
Configuration

You need to set up the emulation configuration before using the
sample program. To access the emulation configuration display,
enter:

Config, General

Defining the Reset
Value for the Stack

Pointer

Even though the H8/510 emulator has a background monitor, it
requires you to define a stack pointer.

Use the arrow keys to move the cursorto the "Reset value for Stack
Pointer" field, type 0fc80 and press Enter.

The stack pointer value will be set to the stack pointer (SP) on
entrance to the emulation monitor initiated RESET state (the
"Emulation reset" status).

Saving the
Configuration

To save the configuration, use the Enter key to exit the field in the
last field. (The End key on Vectra keyboards moves the cursor
directly to the last field.)

2-8 Getting Started

Mapping Memory The H8/510 emulator contains high-speed emulation memory (no
wait states required) that can be mapped at a resolution of 256
bytes.

The memory mapper allows you to characterize memory locations.
It allows you specify whether a certain range of memory is present
in the target system or whether you will be using emulation
memory for that address range. You can also specify whether the
target system memory is ROM or RAM, and you can specify that
emulation memory be treated as ROM or RAM. You can include
function code information with address ranges to further
characterize the memory block.

Blocks of memory can also be characterized as guarded memory.
Guarded memory accesses will generate "break to monitor"
requests. Writes to ROM will generate "break to monitor"
requests if the "Enable breaks on writes to ROM?" configuration
item is enabled (see the "Configuring the Emulator" chapter).

The memory mapper allows you to define up to 16 different map
terms.

Which Memory
Locations Should Be

Mapped?

Typically, assemblers generate relocatable files and linkers
combine relocatable files to form the absolute file. The linker load
map listing will show what locations your program will occupy in
memory. A part of linker load map listing for the sample program
(cmd_rds.map) is shown in Figure 2-4.

Getting Started 2-9

From the load map listing, you can see that the sample program
occupies locations in three address ranges. The code area, which
contains the opcodes and operands which make up the sample
program, occupies locations 1000 hex through 1042 hex. The data
area, which contains the ASCII values of the messages the program
displays, is occupies locations 1100 hex through 1133 hex. The
destination area, which contains the command input byte and the
locations of the message destination and the stack, occupies
locations FC00 hex through FC7F hex.

Two mapper terms will be specified for the example program.
Since the program writes to the destination locations, the mapper
block containing the destination locations should not be
characterized as ROM memory.

To map memory for the sample program, select:

Config, Map, Modify

 *** LINKAGE EDITOR LINK MAP LIST ***

 SECTION NAME START - END LENGTH
 UNIT NAME MODULE NAME

 ATTRIBUTE : CODE NOSHR
 Prog H’0000:1000 - H’0000:1042 H’00000043
 cmd_rds cmd_rds
 * TOTAL ADDRESS * H’0000:1000 - H’0000:1042 H’00000043

 ATTRIBUTE : DATA NOSHR
 Table H’0000:1100 - H’0000:1133 H’00000034
 cmd_rds cmd_rds
 * TOTAL ADDRESS * H’0000:1100 - H’0000:1133 H’00000034

 ATTRIBUTE : DATA SHR
 Data H’0000:FC00 - H’0000:FC7F H’00000080
 cmd_rds cmd_rds
 * TOTAL ADDRESS * H’0000:FC00 - H’0000:FC7F H’00000080

Figure 2-4. Sample Program Load Map Listing

2-10 Getting Started

Using the arrow keys, move the cursor to the "address range" field
of term 1. Enter:

1000..1fff

Move the cursor to the "memory type" field of term 1, and press the
TAB key to select the erom (emulation ROM) type. Move the
cursor to the "address range" field of term 2 and enter:

0fc00..0fcff

Move the cursor to the "memory type" field of term 2, and press the
TAB key to select the eram (emulation RAM) type. To save your
memory map, use the Enter key to exit the field in the lower right
corner. (The End key on Vectra keyboards moves the cursor
directly to the last field.) The memory configuration display is
shown in Figure 2-5.

Figure 2-5. Memory Configuration Display

Getting Started 2-11

When mapping memory for your target system programs, you may
wish to characterize emulation memory locations containing
programs and constants (locations which should not be written to)
as ROM. This will prevent programs and constants from being
written over accidentally, and will cause breaks when instructions
attempt to do so.

Note The memory mapper re-assigns blocks of emulation memory after
the insertion or deletion of mapper terms. For example, if you
modified the contents of FC00 hex through FCFF hex above,
deleted term 1, and displayed locations FC00 hex through FCFF
hex, you would notice the contents of those locations are not the
same as they were before deleting the mapper term.

Loading Programs
into Memory

If you have already assembled and linked the sample program, you
can load the absolute file by selecting:

Memory, Load

File Format Enter the format of your absolute file. The emulator will accept
absolute files in the following formats:

HP 64869 absolute.
HP absolute.
Raw HP64000 absolute.
Intel hexadecimal.
Tektronix hexadecimal.
Motorola S-records.

The HP 64869 absolute file is generated with HP 64869 H8/500
Assembler/Linkage Editor. For this tutorial, choose the HP 64869
format.

2-12 Getting Started

HP 64869 Format: When you load HP 64869 format files, the PC
Interface creates files (whose base names are the same as the
absolute file) with the extensions ".HPA" and ".HPS". The ".HPA"
file is in a binary format that is compatible with the HP 64732
firmware. The ".HPS" file is an ASCII source file which contains
the symbols to address mappings used by the PC Interface. Refer
to "Using HP 64869 Format Reader" section in Appendix A for
more information.

HP64000 Format: Your language tool may generate Raw HP64000
format absolute files (with extension .X, .L, .A). You can load
these files by selecting "HP64000" or "Raw HP64000" as file format.
When you select "HP64000", the PC Interface creates .HPA
absolute file and .HPS symbol database. When you select "Raw
HP64000", the PC Interface doesn’t create these files.

Memory Type The second field allows you to selectively load the portions of the
absolute file which reside in emulation memory, target system
memory, or both.

Since emulation memory is mapped for sample program locations,
you can enter either "emulation" or "both".

Force Absolute File
Read

This option is only available for HP 64869 and HP64000 formats.
It forces the file format readers to regenarate the emulator
absolute file (.hpa) and symbol data base (.hps) before loading the
code. Normally, these files are only regenarated whenever the file
you specify (the output of your language tools) is newer than the
emulator absolute file and symbol data base.

For more information, refer to the "Using the HP 64869 Format
Reader" section in Appendix A.

Absolute File Name For most formats, you enter the name of your absolute file in the
last field. Type cmd_rds.abs, and press Enter to start the memory
load.

Getting Started 2-13

Using Symbols The following pages show you how to display global and local
symbols for the sample program. For more information on symbol
display, refer to the PC Interface Refernce.

Displaying Global
Symbols

When you load HP 64869 or HP64000 format absolute files into
the emulator, the corresponding symbol database is also loaded.

The symbols database can also be loaded with the "System Symbols
Global Load" command. This command is provided for situations
where multiple absolute files are loaded into the emulator; it
allows you to load the various sets of global symbols corresponding
to the various absolute files. When global symbols are loaded into
the emulator, information about previous global symbols is lost
(that is, only one set of global symbols can be loaded at a time).

After global symbols are loaded, both global and local symbols can
be used when entering expressions. Global symbols are entered as
they appear in the source file or in the global symbols display.

To display global symbols, select:

System, Symbols, Global, Display

The symbols window automatically becomes the active window as a
result of this command. You can press < CTRL>z to zoom the
window. The resulting display follows.

2-14 Getting Started

The global symbols display has two parts. The first parts lists all
the modules that were linked to produce this object file. These
module names are used by you when you want to refer to a local
symbol, and are case-sensitive. The second part of the display lists
all global symbols in this module. These names can be used in
measurement specifications, and are case-snesitive. For example, if
you wish to make a measurement using the symbol Cmd_Input ,
you must specify Cmd_Input . The strings cmd_input or
CMD_INPUT are not valid symbol names here.

Displaying Local
Symbols

To display local symbols, select:

System, Symbols, Local, Display

Enter the name of the module you want to specify (from the first
part of the global symbols display; in this case, cmd_rds) and press
Enter. The resulting display follows.

Getting Started 2-15

After you display local symbols with the “System Symbols Local
Display” command, you can enter local symbols as they appear in
the source file or local symbol display. When you display local
symbols for a given module, that module becomes the default local
symbol module.

If you have not displayed local symbols, you can still enter a local
symbol by including the name of the module:

module_name:symbol

Remember that the only valid module names are those listed in the
first part of the global symbols display, and are case-sensitive for
compatibility with other systems (such as HP-UX).

When you include the name of an source file with a local symbol,
that module becomes the default local symbol module, as with the
“System Symbols Local Display” command.

Local symbols must be from assembly modules that form the
absolute whose symbol database is currently loaded. Otherwise, no
symbols will be found (even if the named assembler symbol file
exists and contains information).

2-16 Getting Started

One thing to note: It is possible for a symbol to be local in one
module and global in another, which may result in some confusion.
For example, suppose symbol “XYZ” is a global in module A and a
local in module B and that these modules link to form the absolute
file. After you load the absolute file (and the corresponding symbol
database), entering “XYZ” in an expression refers to the symbol
from module A. Then, if you display local symbols from module B,
entering “XYZ” in an expression refers to the symbol from module
B, not the global symbol. Now, if you again want to enter “XYZ” to
refer to the global symbol from module A, you must display the
local symbols from module A (since the global symbol is also local
to that module). Loading local symbols from a third module, if it
was linked with modules A and B and did not contain an“XYZ”
local symbol, would also cause “XYZ” to refer to the global symbol
from module A.

Transfer Symbols to
the Emulator

You can use the emulator’s symbol-handling capability to improve
measurement displays. You do this by transferring the symbol
database information to the emulator. To transfer the global
symbol information to the emulator, use the command:

System, Symbols, Global, Transfer

Transfer the local symbol information for all modules by entering:

System, Symbols, Local, Transfer, All

You can find more information on emulator symbol handling
commands in the Emulator PC Interface Reference.

Getting Started 2-17

Displaying
Memory in
Mnemonic Format

Once you have loaded a program into the emulator, you can verify
that the program has indeed been loaded by displaying memory in
mnemonic format. To do this, select:

Memory, Display, Mnemonic

Enter the address range "1000..1029". (You could also specify this
address range using symbols, for example, "Init..Cmd_I" or
"Init..Init+ 29" .) The emulation window automatically becomes the
active window as a result of this command. You can press
< CTRL> z to zoom the emulation window. The resulting display
follows.

If you wish to view the rest of the sample program memory
locations,you can select "Memory Display Mnemonic" command
again and enter the range from "102a..1042".

2-18 Getting Started

Stepping Through
the Program

The emulator allows you to execute one instruction or a number of
instructions with step command. To begin stepping through the
sample program, select:

Processor, Step, Address

Enter a step count of 1, enter the symbol Init (defined as a global
in the source file), and press Enter to step from program’s first
address, 1000 hex. The executed instruction, the program counter
address, and the resulting register contents are displayed as shown
in the following listing.

Getting Started 2-19

Note You cannot display registers if the processor is reset. Use the
"Processor Break" command to cause the emulator to start
executing in the monitor.

You can display registers while the emulator is executing a user
program (if execution is not restricted to real-time); emulator
execution will temporarily break to the monitor.

To continue stepping through the program, you can select:

Processor, Step, Pc
After selecting the command above, you have an opportunity to
change the previous step count. If you wish to step the same
number of times, you can press Enter to start the step.

To save time when single-stepping, you can use the function key
macro < F1> , which executes the command,

Processor, Step, Pc, 1
For more information, see the Emulator PC Interface Reference
manual.

To repeat the previous command, you can press < CTRL>r .

Specifying a Step
Count

If you wish to continue to step a number of times from the current
program counter, select:

Processor, Step, Pc
The previous step count is displayed in the "number of
instructions" field. You can enter a number from 1 through 99 to
specify the number of times to step. Type 5 into the field, and press
Enter. The resulting display follows.

2-20 Getting Started

When you specify step counts greater than 1, only the last register
contents are displayed.

Modifying Memory The preceding step commands show the sample program is
executing in the Scan loop, where it continually reads the
command input byte to check if a command has been entered. To
simulate the entry of a sample program command, you can modify
the command input byte by selecting:

Memory, Modify, Byte
Now enter the address of the memory location to be modified, an
equal sign, and new value of that location, for example,
"Cmd_Input= 41". (The Cmd_Input label was defined as a global
symbol in the source file.)

To verify that 41 hex was indeed written to Cmd_Input (FC00 hex),
select:

Memory, Display, Byte

Getting Started 2-21

Type the symbol Cmd_Input , and press Enter. The resulting
display is shown below.

You can continue to step through the program as shown earlier in
this chapter to view the instructions which are executed when an
"A" (41 hex) command is entered.

Running the
Program

To start the emulator executing the sample program, select:

Processor, Go, Pc
The status line will show that the emulator is "Running user
program".

2-22 Getting Started

Searching
Memory for Data

You can search the message destination locations to verify that the
sample program writes the appropriate messages for the allowed
commands. The command "A" (41 hex) was entered above, so the
"Command A entered" message should have been written to the
Msg_Dest locations. Because you must search for hexadecimal
values, you will want to search for a sequence of characters which
uniquely identify the message, for example, " A " or 20 hex, 41 hex,
and 20 hex. To search the destination memory location for this
sequence of characters, select:

Memory, Find
Enter the range of the memory locations to be searched, FC02 hex
through FC21 hex, and enter the data 20 hex, 41 hex, and 20 hex.
The resulting information in the memory window shows you that
the message was indeed written as it was supposed to have been.

To verify that the sample program works for the other allowed
commands, you can modify the command input byte to "B" and
search for " B " (20 hex, 42 hex, and 20 hex), or you can modify the
command input byte to "C" and search for "d C" (64 hex, 20 hex,
and 43 hex).

Breaking into the
Monitor

To break emulator execution from the sample program to the
monitor program, select:

Processor, Break
The status line shows that the emulator is "Running in monitor".

While the break will occur as soon as possible, the actual stopping
point may be many cycles after the break request (dependent on
the type of instruction being executed and whether the processor is
in a hold state).

Getting Started 2-23

Using Software
Breakpoints

Software breakpoints are provided with one of H8/510 undefined
opcode (1B hex) as breakpoint interrupt instruction.
When you define or enable a software breakpoint, the emulator
will replace the opcode at the software breakpoint address with the
breakpoint interrupt instruction.

When software breakpoints are enabled and emulator detects the
breakpoint interrupt instruction (1B hex), it generates a break to
background request which as with the "processor break" command.
Since the system controller knows the locations of defined software
breakpoints, it can determine whether the breakpoint interrupt
instruction (1B hex) is a software breakpoint or opcode in your
target program.

If it is a software breakpoint, execution breaks to the monitor, and
the breakpoint interrupt instruction is replaced by the original
opcode. A subsequent run or step command will execute from this
address.

If it is an opcode of your target program, execution still breaks to
the monitor, and an "Undefined software breakpoint" status
message is displayed.

When software breakpoints are disabled, the emulator replaces the
breakpoint interrupt instruction with the original opcode. Up to
32 software breakpoints may be defined.

Note You must set software breakpoints only at memory locations which
contain instruction opcodes (not operands or data). If a software
breakpoint is set at a memory location which is not an instruction
opcode, the software breakpoint instruction will never be executed
and the break will never occur.

2-24 Getting Started

Note Because software breakpoints are implemented by replacing
opcodes with the undefined opcode (1B hex), you cannot define
software breakpoints in target ROM. You can, however, use the
Terminal Interface cim command to copy target ROM into
emulation memory (see the Terminal Interface: User’s Reference
manual for information on the cim command).

Note Software breakpoints should not be set, cleared, enabled, or
disabled while the emulator is running user code. If any of these
commands are entered while the emulator is running user code,
and the emulator is executing code in the area where the
breakpoint is being modified, program execution may be unreliable.

Defining a Software
Breakpoint

To define a breakpoint at the address of the Cmd_I label of the
sample program (1029 hex), select:

Breakpoints, Add
Enter the local symbol "Cmd_I". After the breakpoint is added, the
breakpoint window becomes active and shows that the breakpoint
is set.

You can add multiple breakpoints in a single command by
separating each one with a semicolon. For example, you could type
"1019;1021;1029" to set three breakpoints.

Getting Started 2-25

Run the program by selecting:

Processor, Go, Pc
The status line shows that the emulator is running the user
program. Modify the command input byte to an invalid command
by selecting:

Memory, Modify, Bytes
Enter an invalid command, such as "Cmd_Input= 75". The
following messages result:

ALERT: Software breakpoint: 001029
STATUS: H8/510--Running in monitor

To continue program execution, select:

Processor, Go, Pc

Displaying Software
Breakpoints

To view the status of the breakpoint, select:

Breakpoints, Display
The resulting display will show that the breakpoint has been
cleared.

Setting a Software
Breakpoint

When a breakpoint is hit, it becomes disabled. To re-enable the
software breakpoint, you can select:

Breakpoints, Set, Single
The address of the breakpoint you just added is still in the address
field; to set this breakpoint again, press Enter. As with the
"Breakpoints Add"command, the breakpoint window becomes
active and shows that the breakpoint is set.

Clearing a Software
Breakpoint

If you wish to clear a software breakpoint that does not get hit
during program execution, you can select:

Breakpoints, Clear, Single
The address of the breakpoint set in the previous section is still in
the address field; to clear this breakpoint again, press Enter.

2-26 Getting Started

Using the Analyzer The H8/510 emulation analyzer has 48 trace signals which monitor
internal emulation lines (address, data, and status lines).
Optionally, you may have an additional 16 trace signals which
monitor external input lines. The analyzer collects data at each
pulse of a clock signal, and saves the data (a trace state) if it meets
a "storage qualification" condition.

Note When you are using the emulator with HP 64703 analyzer,
Interna/External options are displayed after the commands in the
following examples. Enter Internal to execute the examples.

Resetting the
Analysis Specification

To be sure that the analyzer is in its default or power-up state,
select:

Analysis, Trace, Reset

Specifying a Simple
Trigger

Suppose you wish to trace the states of the sample program which
follow the read of a "B" (42 hex) command from the command
input byte. To do this, you must modify the default analysis
specification by selecting:

Analysis, Trace, Modify
The emulation analysis specification is shown. Use the right arrow
key to move the cursor to the "Trigger on" field. Type "a" and press
Enter.

You’ll enter the pattern expression menu. Press the up arrow key
until the addr field directly opposite the pattern a= is highlighted.
Type the address of the command input byte, using either the
global symbol Cmd_Input or address 0fc00, and press Enter.

The "Data" field is now highlighted. Type 42xx and press Enter. 42
is the value of the "B" command and the "x"s specify "don’t care"
values.

Getting Started 2-27

Notice that you need to specify the don’t care bits. When a byte
access is performed, the data appears on the upper 8 bits of
analyzer data bus.

H8/510 Analysis Status Qualifiers

Now the "Status" field is highlighted. Use the Tab key to view the
status qualifiers which may be entered. The status qualifiers are
defined as follows.

Select the read status and press Enter. Figure 2-6 and 2-7 show the
resulting analysis specification. To save the new specification, use
End Enter to exit the field in the lower right corner. You’ll return
to the trace specification. Press End to move to the trriger spec
field. Press Enter to exit the trace specification.

Note You need to specify the "exec" status qualifier to trigger the
anaylzer by an execution cycle.

Qualifier Status Bits (40..53) Description
--------- --------------------- ------------------------------
backgrnd 0x xxxx xxxx xxxxB Background cycle
brelease xx 111x xxxx xxxxB Bus release cycle
byte xx 110x xxxx xx1xB Byte access
cpu xx 110x xx1x xxxxB CPU cycle
data xx 110x xxxx x1xxB Data access
dtc xx 110x xx0x xxxxB Data transfer controller cycle
exec xx 101x xxxx xxxxB Instruction execution cycle
fetch xx 110x xx1x x001B Program fetch cycle
foregrnd 1x xxxx xxxx xxxxB Foreground cycle
grd xx 1100 xxx1 xxxxB Guarded memory access
io xx 110x xxx0 xxxxB Internal I/O access
memory xx 110x xxx1 xxxxB Memory access
read xx 110x xxxx xxx1B Read cycle
refresh xx 011x xxxx xxxxB Refresh cycle
word xx 110x xxxx xx0xB Word access
write xx 110x xxxx xxx0B Write cycle
wrrom xx 110x 0xx1 xxx0B Write to ROM cycle

2-28 Getting Started

Figure 2-6. Modifying the Trace Specification

Figure 2-7. Modifying the Pattern Specification

Getting Started 2-29

Starting the Trace To start the trace, select:

Analysis, Begin
A message on the status line will show you that the trace is
running. You do not expect the trigger to be found because no
commands have been entered. Modify the command input byte to
"B" by selecting:

Memory, Modify, Byte
Enter "Cmd_Input= 42". The status line now shows that the trace
is complete.

Displaying the Trace To display the trace, select:

Analysis, Display
You are now given two fields in which to specify the states to
display. Use the right arrow key to move the cursor to the "Ending
state to display" field. Type "60" into the ending state field, press
Enter, and use < CTRL>z to zoom the trace window.

Note If you choose to dump a complete trace into the trace buffer, it will
take a few minutes to display the trace.

Use the Home key to get the top of the trace. The resulting trace is
similar to the trace shown in the following display.

2-30 Getting Started

Line 0 in the trace list above shows the state which triggered the
analyzer. The trigger state is always on line 0. The other states
show the exit from the Scan loop and the Exe_Cmd instructions.

To list the next lines of the trace, press the PgDn or Next key.

Getting Started 2-31

The resulting display shows the Cmd_B instructions and the branch
to Write_Msg and the beginning of the instructions which move
the "THIS IS MESSAGE B" message to the destination locations.

For a Complete
Description

For a complete description of using the HP 64700 Series analyzer
with the PC Interface, refer to the HP 64700 Emulators PC
Interface: Analyzer User’s Guide.

Using a Command
File

You can use a command file to perform many functions for you,
without having to manually type each function. For example, you
might want to create a command file that modifies configuration,
maps memory and loads program into memory for the sample
program. To create such a command file:

System, Log, I nput, Enable
Enter command file name "cmd_rds.cmd", and press Enter. This
sets up a file to record all commands you execute. The commands
will be logged to the file cmd_rds.cmd in the current directory.
You can then use this file as a command file to execute these
commands automatically.

First, to set up the reset value for the stack pointer:

Config, General
Use the arrow keys to move the cursor to the "Reset value for
Stack Pointer" field, type 0fc80, and press End and Enter.

To map the memory:

Config, Map, Memory
Map 1000 hex through 1fff hex to erom and fc00 hex through fcff
hex to eram. (As shown in Figure 2-5.)

To load the program into memory:

Memory, Load
Enter file format, memory type, and absolute file name, and press
Enter.

Now we’re finished logging commands to the file. To disable
logging:

2-32 Getting Started

System, Log, I nput, Disable
The command file cmd_rds.cmd will no longer accept command
input.

Let’s execute the command file "cmd_rds.cmd".

System, Command_file
Enter "cmd_rds.cmd", press Enter. As you can see, the sequence of
commands you entered is automatically executed.

Resetting the
Emulator

To reset the emulator, select:

Processor, Reset, Hold
The emulator is held in a reset state (suspended) until a "Processor
Break", "Processor Go", or "Processor Step" command is entered.
A CMB execute signal will also cause the emulator to run if reset.

You can also specify that the emulator begin executing in the
monitor after reset instead of remaining in the suspended state. To
do this, select:

Processor, Reset, Monitor

Getting Started 2-33

Exiting the PC
Interface

There are different ways to exit the PC Interface. You can exit the
PC Interface using the "locked" option which specifies that the
current configuration will be present next time you start up the PC
Interface. You can select this option as follows.

System, Exit, Locked
Another way to exit the PC Interface is with the "unlocked" option
which presents the default configuration next time you start the PC
Interface. You can select this option with the following command.

System, Exit, Unlocked
Or, You can exit the PC Interface without saving the current
configuration using the command:

System, Exit, No_save

2-34 Getting Started

3

In-Circuit Emulation

Many of the topics described in this chapter involve the commands
which relate to using the emulator in-circuit, that is, connected to a
target system.

This chapter will:

Describe the issues concerning the installation of the
emulator probe into target systems.

Show you how to install the emulator probe.

We will cover the first topic in this chapter. For complete details
on in-circuit emulation configuration, refer to the "Configuring the
Emulator" chapter.

Prerequisites Before performing the tasks described in this chapter, you should
be familiar with how the emulator operates in general. Refer to
the HP 64700 Emulators: System Overview manual and the "Getting
Started" chapter of this manual.

In-Circuit Emulation 3-1

Installing the
Target System
Probe

Caution DAMAGE TO THE EMULATOR CIRCUITRY MAY RESULT IF
THESE PRECAUTIONS ARE NOT OBSERVED. The following
precautions should be taken while using the H8/510 emulator.

Power Down Target System. Turn off power to the user target
system and to the H8/510 emulator before inserting the user plug
to avoid circuit damage resulting from voltage transients or
mis-insertion of the user plug.

Verify User Plug Orientation. Make certain that Pin 1 of the target
system adaptor and Pin 1 of the user plug are properly aligned
before inserting the user plug in the socket. Failure to do so may
result in damage to the emulator circuitry.

Protect Against Static Discharge. The H8/510 emulator contains
devices which are susceptible to damage by static discharge.
Therefore, operators should take precautionary measures before
handling the user plug to avoid emulator damage.

Protect Target System CMOS Components. If your target system
includes any CMOS components, turn on the target system first,
then turn on the H8/510 emulator; when powering down, turn off
the emulator first, then turn off power to the target system.

3-2 In-Circuit Emulation

Pin Guard HP 64732 H8/510 emulator is shipped with a non-conductive pin
guard over the target system probe. This guard is designed to
prevent impact damage to the pins and should be left in place while
you are not using the emulator.

Target Sytem Adaptor The HP 64732 emulator is shipped with a target system adaptor.
The adaptor allows you to connect the emulation probe to your
target system which is designed for the QFP package of H8/510
microprocessor.

Pin Protector The HP 64732 emulator is shipped with a short pin protector that
prevents damage to the target system adaptor when inserting and
removing the emulation probe. Do not insert the probe without
using a short pin protector.

Installing the Target
System Probe 1. Attach the adaptor to your target system. You can use a

M2 screw to help attaching the adaptor to the target
system.

2. Install the emulation probe using the pin protector as
shown in Figure 3-1.

Note You can order additional target system adaptor and a short pin
protector with part No. 64732-61613 and 64732-61614,
respectively.

Note You can use optional parts; a long pin protector and a pin extender
to avoid conjunction with the emulation probe and target system
components. Part No. are 64732-61615 and 64732-61616,
respectively. Contact your local HP sales representative to
purchase optional parts.

In-Circuit Emulation 3-3

Figure 3-1. Installing the Target System Probe

3-4 In-Circuit Emulation

Running the
Emulator from
Target Reset

You can specify that the emulator begins executing from target
system reset. When the target system /RES line becomes active
and then inactive, the emulator will start reset sequence
(operation) as actual microprocessor.

At First, you must specify the emulator responds to /RES signal by
the target system (see the "Enable /RES input from Target"
configuration in Chapter 4 of this manual).

To specify a run from reset state, select:

Processor, Go, Reset
The status now shows that the emulator is "Awaiting target reset".

After the target system is reset, the status line message will change
to show the appropriate emulator status.

In-Circuit Emulation 3-5

Notes

3-6 In-Circuit Emulation

4

Configuring the Emulator

Introduction The H8/510 emulator can be used in all stages of target system
development. For instance, you can run the emulator
out-of-circuit when developing target system software, or you can
use the emulator in-circuit when integrating software with target
system hardware. Emulation memory can be used in place of, or
along with, target system memory. You can use the emulator’s
internal clock or the target system clock. You can execute target
programs in real-time or allow emulator execution to be diverted
into the monitor when commands request access of target system
resources (target system memory, register contents, etc.)

The emulator is a flexible instrument and it may be configured to
suit your needs at any stage of the development process. This
chapter describes the options available when configuring the
H8/510 emulator.

This chapter will:

Show you how to access the emulator configuration
options.

Describe the emulator configuration options.

Show you how to save a particular emulator configuration,
and load it again at a later time.

Configuring the Emulator 4-1

Accessing the
Emulator
Configuration
Options

To enter the general configuration menu, Select:

Config, General
The general configuration menu appers as follows:

When you position the cursor to a configuration item, a brief
description of the item appears at the bottom of the display.

Note It is possible to use the System Terminal window to modify the
emulator configuration. However, if you do this, some PC
Interface features may no longer work properly. We recommend
that you only modify the emulator configuration by using the
options presented in the PC Interface.

Figure 4-1. H8/ 510 General Emulator Conf iguration

4-2 Configuring the Emulator

Internal Emulator
Clock?

This configuration question allows you to select the emulator’s
clock source; you can choose either the internal clock source or the
target system clock source. The default emulator configuration
selects the internal clock.

yes Selects the internal clock oscillator as the
emulator clock source. The emulators’ internal
clock speed is 10 MHz (system clock).

no Selects the clock input to the emulator probe
from the target system. You must use a clock
input conforming to the specifications for the
H8/510 microprocessor. The maximum clock
speed is 10 MHz (system clock).

You should always select the external clock option when using the
emulator in-circuit to ensure that the emulator is properly
synchronized with your target system.

Note Changing the clock source drives the emulator into the reset state.

Enable Real-Time
Mode?

If it is important that the emulator execute target system programs
in real-time, you can enable the real-time emulator mode. In other
words, when you execute target programs (with the "Processor, Go"
command), the emulator will execute in real-time.

Configuring the Emulator 4-3

no The default emulator configuration disables the
real-time mode. When the emulator is executing
the target program, you are allowed to enter
emulation commands that require access to
target system resources (display/modify: registers
or target system memory). If one of these
commands is entered, the system controller will
temporarily break emulator execution into the
monitor.

yes If your target system program requires real-time
execution, you should enable the real-time mode
in order to prevent temporary breaks that might
cause target system problems.

Commands Not Allowed when Real-Time Mode is Enabled

When emulator execution is restricted to real-time and the
emulator is running user code, the system refuses all commands
that require access to processor registers or target system memory.
The following commands are not allowed when runs are restricted
to real-time:

Register display/modification.

Target system memory display/modification.

Internal I/O registers display/modification.

If the real-time mode is enabled, these resources can only be
displayed or modified while running in the monitor.

Breaking out of Real-Time Execution

The only commands which are allowed to break real-time
execution are:

Processor, Reset
Processor, Go
Processor, Break
Processor, Step

4-4 Configuring the Emulator

Enable Breaks on
Writes to ROM?

This question allows you to specify that the emulator break to the
monitor upon attempts to write to memory space mapped as
ROM. The emulator will prevent the processor from actually
writing to memory mapped as emulation ROM; however, they
cannot prevent writes to target system RAM locations which are
mapped as ROM, even though the write to ROM break is enabled.

yes Causes the emulator to break into the emulation
monitor whenever the user program attempts to
write to a memory region mapped as ROM.

no The emulator will not break to the monitor
upon a write to ROM. The emulator will not
modify the memory location if it is in emulation
ROM.

Note The wrrom analysis specification status option allows you to use
"write to ROM" cycles as trigger and storage qualifiers.

Configuring the Emulator 4-5

Enable Software
Breakpoints?

When you define or enable a software breakpoint to a specified
address, the emulator will replace the opcode with one of H8/510
undefined opcode (1B hex) as breakpoint interrupt instruction.
When the emulator detects the breakpoint interrupt instruction
(1B hex), user program breaks to the monitor, and the original
opcode will be replaced at the software breakpoint address. A
subsequent run or step command will execute from this address.

Refer to the "Getting Started" for information on using software
breakpoints.

no The software breakpoints feature is disabled.
This is specified by the default emulator
configuration, so you must change this
configuration item before you can use software
breakpoints.

yes The software breakpoints feature is enabled.
The emulator detects the breakpoint interrupt
instruction (1B hex), it generates a break to
background request which as with the "processor
break" command. Since the system controller
knows the locations of defined software
breakpoints, it can determine whether the
breakpoint interrupt instruction (1B hex) is a
software breakpoint or opcode in your target
program.

When you define (add) a breakpoint, software breakpoints are
automatically enabled.

4-6 Configuring the Emulator

Enable CMB
Interaction?

Coordinated measurements are measurements synchronously made
in multiple emulators or analyzers. Coordinated measurements
can be made between HP 64700 Series emulators which
communicate over the Coordinated Measurement Bus (CMB).

Multiple emulator start/stop is one type of coordinated
measurement. The CMB signals READY and /EXECUTE are
used to perform multiple emulator start/stop.

This configuration item allows you to enable/disable interaction
over the READY and /EXECUTE signals. (The third CMB signal,
TRIGGER, is unaffected by this configuration item.)

no The emulator ignores the /EXECUTE and
READY lines, and the READY line is not
driven.

yes Multiple emulator start/stop is enabled. If the

 P rocessor, CMB, Go, ...
command is entered, the emulator will start
executing code when a pulse on the /EXECUTE
line is received. The READY line is driven false
while the emulator is running in the monitor; it
goes true whenever execution switches to the
user program.

Note CMB interaction will also be enabled when the

 Processor, CMB, Execute

command is entered.

Configuring the Emulator 4-7

Enable Bus
Arbitration?

The bus arbitration configuration question defines how your
emulator responds to bus request signals from the target system
during foreground operation. The /BREQ signal from the target
system is always ignored when the emulator is running the
background monitor.

yes When bus arbitration is enabled, the /BREQ
(bus request) signal from the target system is
responded to exactly as it would be if only the
emulation processor was present without an
emulator. In other words, if the emulation
processor receives a /BREQ from the target
system, it will respond by asserting /BACK and
will set the various processor lines to tri-state.
/BREQ is then released by the target; /BACK is
negated by the processor, and the emulation
processor restarts execution.

Note DMA (direct memory access) devices is prohibited from accessing
to emulation memory.

no When you disable bus arbitration, the emulator
ignores the /BREQ signal from the target
system. The emulation processor will never
drive the /BACK line true; nor will it place the
address, data and control signals into the
tri-state mode.

Enabling and disabling bus master arbitration can be useful to you
in isolating target system problems. For example, you may have a
situation where the processor never seems to execute any code.
You can disable bus arbitration to check and see if faulty
arbitration circuitry in your target system is contributing to the
problem.

4-8 Configuring the Emulator

Drive Background
Cycles to Target?

This question allows you specify whether or not the emulator will
drive the target system bus on background cycles.
If you have selected to use a foreground monitor, emulator
foreground monitor cycles will appear at the target interface
exactly as if they were bus cycles caused by any target system
program.

yes Specifies that background cycles are driven to
the target system. Emulation processor’s
address and control strobes (except /HWR and
/LWR) are driven during background cycles.
Background write cycles won’t appear to the
target system.

no Background monitor cycles are not driven to the
target system. When you select this option, the
emulator will appear to the target system as if it
is between bus cycles while it is operating in the
background monitor.

Note Refresh cycles are always driven to the target system regardless of
this configuration

Note Changing this configuration drives the emulator into the reset state.

Configuring the Emulator 4-9

Enable NMI Input
from Target?

This configuration allows you to specify whether or not the
emulator responds to NMI(non-maskable interrupt request) signal
from the target system during foreground operation.

yes The emulator will respond to the NMI request
from the target system.

no The emulator will not respond to the NMI
request from the target system.

If you are using the background monitor, the emulator does not
accept any interrupt during background execution. All edge-sensed
interrupts (including NMI) are latched last one during in
background, and such interrupts will occur when context is
changed to foreground. All level-sensed interrupts and internal
interrupts are ignored during in background operation.

Note Changing this configuration drives the emulator into the reset state.

4-10 Configuring the Emulator

Enable /RES Input
from Target?

This configuration allows you to specify whether or not the
emulator responds to /RES and /STBY signals by the target system
during foreground operation.

While running the background monitor, the emulator ignores
/RES and /STBY signals except that the emulator’s status is
"Awaiting target reset".

yes The emulator will respond to /RES and /STBY
input during foreground operation.

no The emulator will not respond to /RES and
/STBY input from the target system.

Note Changing this configuration drives the emulator into the reset state.

Note If you specify that the emulator will drive the /RES signal to the
target system during emulation reset or by the overflow of Watch
Dog Timer, the emulator should be configured to respond to the
/RES input to the target system.

Configuring the Emulator 4-11

Drive Emulation
Reset to Target?

This configuration allows you to select whether or not the
emulator will drive the /RES signal to the target system during
emulation reset and reset by the Watchdog timer.

 no Specifies that the emulator will not drive the
/RES signal during emulation reset and reset by
the Watchdog timer.

yes The emulator will drive an active level on the
/RES signal to the target system during
emulation reset and reset by the Wachtdog timer.

This configuration option is effective only when the emulator is
configured to respond to the /RES input from the target system.
Refer to the "Enable /RES Input from Target?" configuration in
this chapter.

Caution If you intend to drive the reset signal to the target system, the
driver of reset signal on the target must be an open collector or
open drain. Otherwise, it may result in damage to target system or
emulation circuitry.

Note The RSTOE (Reset output enable bit) is used to determine
whether the H8/510 processor outputs reset signal when the
processor is reset by the watchdog timer. However, the HP 64732
emulator ignores the configuration of the RSTOE, and works as it
is configured in this configuration.

4-12 Configuring the Emulator

Processor
Operation Mode

This configuration defines operation mode in which the emulator
works.

ext The emulator will work using the mode setting
by the target system. The target system must
supply appropriate input to MD0, MD1 and
MD2. If you are using the emulator out of
circuit when "external" is selected, the emulator
will operate in mode 1.

1 The emulator will operate in mode 1.
(expanded minimum mode with 8 bit data bus)

2 The emulator will operate in mode 2.
(expanded minimum mode with 16 bit data bus)

3 The emulator will operate in mode 3.
(expanded maximum mode with 8 bit data bus)

4 The emulator will operate in mode 4.
(expanded maximum mode with 16 bit data bus)

Note Changing this configuration drives the emulator into the reset state.

Trace Refresh
Cycles?

You can direct the analyzer to trace refresh cycles or not.

yes The analyzer will trace refresh cycles.

no The analyzer will ignore refresh cycles.

Configuring the Emulator 4-13

Memeory Data
Access Width

This question allows you to specify the types of cycles that the
emulation monitor use when accessing target system memory.
When an emulation command requests the monitor to read or
write target system memory locations, the monitor will either use
byte or word instructions to accomplish the read/write.

bytes Specifies that the emulator will access target
system memory by byte access.

word Specifies that the emulator will access target
system memory by word access.

Trace Bus
Release Cycles?

You can direct the emulator to send bus release cycle data to
emulation analyzer or not to send it.

yes When you enable tracing bus release cycles, bus
release cycles will appear as one analysis trace
line.

no Bus release cycles will not appear on analysis
trace list (display).

4-14 Configuring the Emulator

Reset Value for
Stack Pointer?

This question allows you to specify the value to which the stack
pointer (SP) and the stack page register (TP) will be set on
entrance to the emulation monitor initiated RESET state (the
"Emulation reset" status).

The address specified in response to this question must be a 20-bit
hexadecimal even address.

You cannot set this address at the following location.

Odd address
Internal I/O register address

When you are using the foreground monitor, this address should be
defined in an emulation or target system RAM area which is not
used by user program.

Note We recommend that you use this method of configuring the stack
pointer and the stack page register. Without a stack pointer and a
stack page register, the emulator is unable to make the transition
to the run state, step, or perform many other emulation functions.
However, using this option does not preclude you from changing
the stack pointer value or location within your program; it just sets
the initial conditions to allow a run to begin.

Monitor Type

bg Specify monitor type as background monitor.
When you select background monitor,
configuration question of foreground monitor
address have no effect to emulator’s operation.

Configuring the Emulator 4-15

fg Specify monitor type as foreground monitor.
When you select foreground monitor, you must
specify correct foreground monitor start address
with next configuration question (foreground
monitor address). After you completed the
configuration setting, you need to load
foreground monitor program to the emulator
with "Memory Load" feature. The foreground
monitor program must already assembled and
linked with appropriate monitor start address
specification.

To use the foreground monitor, follow below steps.

1. Decide which location the foreground monitor should be
loaded.

2. Assemble and link the foreground monitor program along
with the location you decided.

3. Configure the emulator as described in this chapter.
(monitor type selection and monitor location).

4. Load the foreground monitor program into memory by
"Memory Load" feature.

Note Changing this configuration drives the emulator into the reset state.

4-16 Configuring the Emulator

Foreground
Monitor Address

You must specify foreground monitor start address when you select
"fg" by above configuration question "Monitor type". This address
specification must be same with the address specification when you
assemble the foreground monitor program.

The address must be specified in a 24-bit hexadecimal address, and
must be located on a 2K byte boundary other than 0 hex and 0f800
hex.

Storing an
Emulator
Configuration

The PC Interface lets you store a particular emulator configuration
so that it may be reloaded later. The following information is
saved in the emulator configuration.

Emulator configuration items.
Key macro specifications.
Memory map.
Break conditions.
Trigger configuration.
Window specifications.

To store the current emulator configuration, select:

Config, Store
Enter the name of file to which the emulator configuration will be
saved.

Configuring the Emulator 4-17

Loading an
Emulator
Configuration

If you have previously stored an emulator configuration and wish
to re-load it into the emulator, select:

Config, Load
Enter the configuration file name and press Enter. The emulator
will be re-configured with the values specified in the configuration
file.

4-18 Configuring the Emulator

5

Using the Emulator

Introduction In the "Getting Started" chapter, you learned how to load code into
the emulator, how to modify memory and view a register, and how
to perform a simple analyzer measurement. In this chapter, we will
discuss in more detail other features of the emulator.

This chapter shows you how to:

Making Coordinated Measurements.

Store the contents of memory into absolute files.

This chapter also discusses:

Display or Modify registers.

Using the Emulator 5-1

Making
Coordinated
Measurements

Coordinated measurements are measurements synchronously made
in multiple emulators or analyzers. Coordinated measurements
can be made between HP 64700 Series emulators which
communicate over the Coordinated Measurement Bus (CMB).
Coordinated measurements can also be made between an emulator
and some other instrument connected to the BNC connector.

This section will describe coordinated measurements made from
the PC Interface which involve the emulator. These types of
coordinated measurements are:

Running the emulator on reception of the CMB
/EXECUTE signal.

Using the analyzer trigger to break emulator execution
into the monitor.

Note You must use the background emulation monitor to perform
coordinated measurements.

Three signal lines on the CMB are active and serve the following
functions when enabled:

/TRIGGER Active low. The analyzer trigger line on the
CMB and on the BNC serve the same logical
purpose. They provide a means for the analyzer
to drive its trigger signal out of the system or for
external trigger signals to arm the analyzer or
break the emulator into its monitor.

READY Active high. This line is for synchronized,
multi-emulator start and stop. When CMB run
control interaction is enabled, all emulators are
required to break to background upon reception
of a false READY signal and will not return to
foreground until this line is known to be in a
true state.

5-2 Using the Emulator

/EXECUTE Active low. This line serves as a global interrupt
signal. Upon reception of an enabled
/EXECUTE signal, each emulator is to interrupt
whatever it is doing and execute a previously
defined process, typically, run the emulator or
start a trace measurement.

Running the Emulator
at /EXECUTE

Before you can specify that the emulator run upon receipt of the
/EXECUTE signal, you must enable CMB interaction. To do this,
select:

Config, General

Use the arrow keys to move the cursor to the "Enable CMB
Interaction? [n]" question, and type "y". Use the Enter key to exit
out of the lower right-hand field in the configuration display.

To specify that the emulator begin executing a program upon
reception of the /EXECUTE signal, select:

Processor, CMB, Go

At this point you may either select the current program counter, or
you may select a specific address.

The command you enter is saved and is executed when the
/EXECUTE signal becomes active. Also, you will see the message
"ALERT: CMB execute; run started".

Breaking on the
Analyzer Trigger

To cause emulator execution to break into the monitor when the
analyzer trigger condition is found, you must modify the trigger
configuration. To access the trigger configuration, select:

Config, Trigger

The trigger configuration display contains two diagrams, one for
each of the internal TRIG1 and TRIG2 signals.

Using the Emulator 5-3

To use the internal TRIG1 signal to connect the analyzer trigger to
the emulator break line, move the cursor to the highlighted
"Analyzer" field in the TRIG1 portion of the display, and use the
Tab key to select the "-----> > " arrow which shows that the analyzer
is driving TRIG1. Next, move the cursor to the highlighted
"Emulator" field and use the Tab key to select the arrow pointing
towards the emulator (< < -----); this specifies that emulator
execution will break into the monitor when the TRIG1 signal is
driven. The trigger configuration display is shown in figure 5-1.

Note If your emulator is configured with external analyzer, "Timing"
cross trigger options are displayed.

Figure 5-1. Cross Trigger Configuration

5-4 Using the Emulator

Storing Memory
Contents to an
Absolute File

The "Getting Started" chapter shows you how to load absolute files
into emulation or target system memory. You can also store
emulation or target system memory to an absolute file with the
following command.

Memory, Store

Note The first character of the absolute file name must be a letter. You
can name the absolute file with a total of 8 alphanumeric
characters, and optionally, you can include an extension of up to 3
alphanumeric characters.

Caution The "Memory Store" command writes over an existing file if it has
the same name that is specified with the command. You may wish
to verify beforehand that the specified filename does not already
exist.

Accessing Target
System with E
clock synchronous
instruction

You can access target system devices in synchronization with the E
clock. To do this, use the following commands:

Processor, I O, Display

Processor, I O, Modify

The emulator will access the device using the MOVFPE/MOVTPE
instruction.

Using the Emulator 5-5

Register Names
and Classes

The following register names and classes may be used with
"Register Display/Modify" commands.

Summary H8/510 register designators. All available register class names and
register names are listed below.

* (Basic) Class

Register name Description

pc
cp
sr
dp
ep
tp
br
r0
r1
r2
r3
r4
r5
r6
r7
r7
fp
sp
mdcr

Program counter
Code page register
Status register
Data page register
Extended page register
Stack page register
Base register
Register R0
Register R1
Register R2
Register R3
Register R4
Register R5
Register R6
Register R6
Register R7
Frame pointer
Stack pointer
Mode control register

5-6 Using the Emulator

sys Class System control registers

Register name Description

rfshcr
wcr
arbt
ar3t
mdcr
sbycr
brcr

Refresh control register
Wait control register
Byte are top register
3 state area top register
Mode control register
Software stand-by control register
Bus relaese control register

intc Class Interrupt control registers

ipra
iprab
iprc
iprd
nmicr
irqcr

Interrupt priority register A
Interrupt priority register B
Interrupt priority register C
Interrupt priority register D
NMI control register
IRQ control register

dtc Class Data transfer controller registers

dtea
dteb
dtec
dted

DT enable register A
DT enable register B
DT enable register C
DT enable register D

Using the Emulator 5-7

port Class I/O port registers

Register name Description

p1ddr
p2ddr
p3ddr
p4ddr
p5ddr
p6ddr
p8ddr
p1dr
p2dr
p3dr
p4dr
p5dr
p6dr
p7dr
p8dr

Port 1 data direction register
Port 2 data direction register
Port 3 data direction register
Port 4 data direction register
Port 5 data direction register
Port 6 data direction register
Port 8 data direction register
Port 1 data register
Port 2 data register
Port 3 data register
Port 4 data register
Port 5 data register
Port 6 data register
Port 7 data register
Port 8 data register

frt1 Class Free running timer 1 registers

frtcr1
frtcsr1
frc1
ocra1
ocrb1
icr1

Timer control register
Timer control/status register
Free running counter
Output compare register A
Output compare register B
Input capture register

5-8 Using the Emulator

frt2 Class Free running timer 2 registers

Register name Description

frtcr2
frtcsr2
frc2
ocra2
ocrb2
icr2

Timer control register
Timer control/status register
Free running counter
Output compare register A
Output compare register B
Input capture register

frt3 Class Free running timer 3 registers

frtcr3
frtcsr3
frc3
ocra3
ocrb3
icr3

Timer control register
Timer control/status register
Free running counter
Output compare register A
Output compare register B
Input capture register

tmr Class Timer registers

tcr
tcsr
tcora
tcorb
tcnt

Timer control register
Timer control/status register
Timer constant register A
Timer constant register B
Timer counter

wdt Class Watchdog timer registers

wdtcsr
wdtcnt
rstcsr

Timer control/status register
Timer counter
Reset control/status register

Using the Emulator 5-9

sci1 Class Serial communication interface 1 registers.

Register name Description

rdr1
tdr1
smr1
scr1
ssr1
brr1

Receive data register
Transmit data register
Serial mode register
Serial control register
Serial status register
Bit rate register

sci2 Class Serial communication interface 2 registers.

rdr2
tdr2
smr2
scr2
ssr2
brr2

Receive data register
Transmit data register
Serial mode register
Serial control register
Serial status register
Bit rate register

adc Class A/D converter registers

addra
addrb
addrc
addrd
adcsr
adcr

A/D data register A
A/D data register B
A/D data register D
A/D data register D
A/D control/status register
A/D control register

5-10 Using the Emulator

A

File Format Readers

Using the HP 64000
Reader

An HP 64000 “reader” is provided with the PC Interface. The HP
64000 Reader converts the files into two files that are usable with
your emulator. This means that you can use available language
tools to create HP 64000 absolute files, then load those files into
the emulator using the PC Interface.

The HP 64000 Reader can operate from within the PC Interface or
as a separate process. When operating the HP 64000 Reader, it
may be necessary to execute it as a separate process if there is not
enough memory on your personal computer to operate the PC
Interface and HP 64000 Reader simultaneously. You can also
operate the reader as part of a “make file.”

What the Reader
Accomplishes

Using the HP 64000 files (< file.X> , < file.L> , < scr1.A> ,
< scr2.A> , ...) the HP 64000 Reader will produce two new files, an
“absolute” file and an ASCII symbol file, that will be used by the
PC Interface. These new files are named: “< file> .hpa” and
“< file> .hps.”

The Absolute File

During execution of the HP 64000 Reader, an absolute file
(< file> .hpa) is created. This absolute file is a binary memory
image which is optimized for efficient downloading into the
emulator.

The ASCII Symbol File

The ASCII symbol file (< file> .hps) produced by the HP 64000
Reader contains global symbols, module names, local symbols, and,
when using applicable development tools such as a “C” compiler,

File Format Readers A-1

program line numbers. Local symbols evaluate to a fixed (static,
not stack relative) address.

Note You must use the required options for your specific language tools
to include symbolic (“debug”) information in the HP 64000 symbol
files. The HP 64000 Reader will only convert symbol information
present in the HP 64000 symbol files (< file.L> , < src1.A> ,
< src2.A> , ...).

The symbol file contains symbol and address information in the
following form:

 module_name1
 module_name2
 ...
 module_nameN
global_symbol1 address
global_symbol2 address
...
global_symbolN address
|module_name1|# 1234 address
|module_name1|local_symbol1 address
|module_name1|local_symbol2 address
...
|module_name1|local_symbolN address

Each of the symbols is sorted alphabetically in the order: module
names, global symbols, and local symbols.

Line numbers will appear similar to a local symbol except that
“local_symbolX” will be replaced by “#NNNNN” where NNNNN
is a five digit decimal line number. The addresses associated with
global and local symbols are specific to the processor for which the
HP 64000 files were generated.

Note When the line number symbol is displayed in the emulator, it
appears in brackets. Therefore, the symbol “MODNAME:
line 345” will be displayed as “MODNAME:[345]” in mnemonic
memory and trace list displays.

A-2 File Format Readers

The space preceding module names is required. Although
formatted for readability here, a single tab separates symbol and
address.

The local symbols are scoped. This means that to access a variable
named “count” in a source file module named “main.c,” you would
enter “main.c:count” as shown below.

Module Name Variable Name You Enter:

main.c count main.c:count

main.c line number 23 main.c: line 23

You access line number symbols by entering the following on one
line in the order shown:

module name
colon (:)
space
the word “line”
space
the decimal line number

For example:

main.c: line 23

Location of the
HP 64000 Reader

Program

The HP 64000 Reader is located in the directory named
\hp64700\bin by default, along with the PC Interface. This directory
must be in the environment variable PATH for the HP 64000
Reader and PC Interface to operate properly. The PATH is usually
defined in the “\autoexec.bat” file.

The following examples assume that you have “\hp64000\bin”
included in your PATH variable. If not, you must supply the
directory name when executing the Reader program.

File Format Readers A-3

Using the Reader
from MS-DOS

The command name for the HP 64000 Reader is RHP64000.EXE.
To execute the Reader from the command line, for example, enter:

RHP64000 [-q] <filename>

-q This option specifies the “quiet” mode, and
suppresses the display of messages.

< filename> This represents the name of the HP 64000 linker
symbol file (file.L) for the absolute file to be
loaded.

The following command will create the files “TESTPROG.HPA”
and “TESTPROG.HPS”

RHP64000 TESTPROG.L

Using the Reader
from the PC Interface

The PC Interface has a file format option under the “Memory
Load” command. After you select HP64000 as the file format, the
HP 64000 Reader will operate on the file you specify. After this
completes successfully, the PC Interface will accept the absolute
and symbol files produced by the Reader.

To use the Reader from the PC Interface:

1. Start up the PC Interface.

2. Select “Memory Load.” The memory load menu will
appear.

3. Specify the file format as “HP64000.”

4. Specify the name of an HP 64000 linker symbol file
(TESTFILE.L for example).

Using the HP 64000 file that you specify (TESTFILE.L, for
example), the PC Interface performs the following:

It checks to see if two files with the same base name and
extensions .HPS and .HPA already exist (for example,
TESTFILE.HPS and TESTFILE.HPA).

A-4 File Format Readers

If TESTFILE.HPS and TESTFILE.HPA don’t exist, the
HP 64000 Reader produces them. The new absolute file,
TESTFILE.HPA, is then loaded into the emulator.

If TESTFILE.HPS and TESTFILE.HPA already exist but
the create dates and times are earlier than the HP 64000
linker symbol file creation date/time, the HP 64000
Reader recreates them. The new absolute file,
TESTFILE.HPA, is then loaded into the emulator.

If TESTFILE.HPS and TESTFILE.HPA already exist but
the dates and times are later than the creation date and
time for the HP 64000 linker symbol file, the HP 64000
Reader will not recreate TESTFILE.HPA. The current
absolute file, TESTFILE.HPA, is then loaded into the
emulator.

Note Date/time checking is only done within the PC Interface.

When running the HP 64000 Reader at the MS-DOS command
line prompt, the HP 64000 Reader will always update the absolute
and symbol files.

When the HP 64000 Reader operates on a file, a status message
will be displayed indicating that it is reading an HP 64000 file.
When the HP 64000 Reader completes its processing, another
message will be displayed indicating the absolute file is being
loaded.

If the Reader Won’t
Run

If your program is very large, the PC Interface may run out of
memory while attempting to create the database file. If this occurs,
you will need to exit the PC Interface and execute the program at
the MS-DOS command prompt to create the files that are
downloaded to the emulator.

File Format Readers A-5

Including RHP64000
in a Make File

You may wish to incorporate the “RHP64000” process as the last
step in your “make file,” as a step in your construction process, to
eliminate the possibility of having to exit the PC Interface due to
space limitations describe above. If the files with “.HPA” and
“.HPS” extensions are not current, loading an HP 64000 file will
automatically create them.

Using the
HP 64869 Reader

A HP 64869 format "reader" is provided with the PC Interface. The
HP 64869 Reader converts a HP 64869 format file into two files
that are usable with the HP 64732 emulator. This means you can
use available language tools to create HP 64869 format absolute
files, then load those files into the emulator using the H8/510 PC
Interface.

The HP 64869 Reader can operate from within the PC Interface or
as a separate process. Operation from within the PC Interface is
available if there is enough memory on your personal computer to
run the PC Interface and HP 64869 Reader simultaneously.

You can also run the reader as part of a "make file."

What the Reader
Accomplishes

Using any HP 64869 format absolute file in the form
"< file> .< ext> ", the HP 64869 Reader will produce two new files,
an "absolute" file and an ASCII symbol file, that will be used by the
H8/510 PC Interface.

The Absolute File

During execution of the HP 64869 Reader, an absolute file
(< file> .HPA) is created. This absolute file is a binary memory
image which is optimized for efficient downloading into the
emulator.

The ASCII Symbol File

The ASCII symbol file (< file> .HPS) produced by the HP 64869
Reader contains global symbols, module names, local symbols, and,
when using applicable development tools like a "C" compiler,

A-6 File Format Readers

program line numbers. Local symbols evaluate to a fixed (static,
not stack relative) address.

Note You must use the required options for you specific language tools
to include symbolic ("debug") information in the HP 64869 format
absolute file.

The symbol file contains symbol and address information in the
following form:

 module_name1
 module_name2
 ...
 module_nameN
global_symbol1 address
global_symbol2 address
...
global_symbolN address
|module_name|local_symbol1 address
|module_name|local_symbol2 address
...
|module_name|local_symbolN address
|module_name|# 1234 address

Each of the symbols is sorted alphabetically in the order: module
names, global symbols, and local symbols.

Line numbers will appear similar to a local symbol except that
"local_symbolX" will be replaced by "#NNNNN" where NNNNN is
a five digit decimal line number. Line numbers should appear in
ascending order in both the line number itself and its associated
address.

Note When the line number symbol is displayed in the emulator, it
appears as a bracketed number. Therefore, the symbol
"modname:# 345" will be displayed as "modname:[345]" in
mnemonic memory and trace list displays

File Format Readers A-7

The space preceding module names is required. Although
formatted for readability here, a single tab separates symbol and
address.

The local symbols are scoped. When accessing the variable named
"count" in the source file module named "main.c", you would enter
"main:count". Notice that the module name of the source file
"main.c" is "main". see the following table.

Module Name Variable Name You Enter:

main count main:count

main line number 23 main: line 23

Location of the
HP 64869 Reader

Program

The HP 64869 Reader is located in the directory named
\hp64700\bin by default, along with the PC Interface. This
directory must be in the environment variable PATH for the
HP 64869 Reader and PC Interface to operate properly. This is
usually defined in "\autoexec.bat" file.

Using the HP 64869
Reader from MS-DOS

The command name for the HP 64869 Reader is RD64869.EXE.
You can execute the HP 64869 Reader from the command line
with the command:

C:\HP64700\BIN\RD64869 [-q] <filename>
<RETURN>

where:

[-q] specifies the "quiet" mode. This option
suppresses the display of messages.

< filename> is the name of the file containing the HP 64869
format absolute program.

The command

C:\HP64700\BIN\RD64869 TESTPROG.ABS

will therefore create the files "TESTPROG.HPA" and
"TESTPROG.HPS".

A-8 File Format Readers

Using the HP 64869
Reader from the PC

Interface

The H8/510 PC Interface has a file format option under the
"Memory, Load" command. After you select this option, the
HP 64869 Reader will operate on the file you specify. After this
completes successfully, the H8/510 PC Interface will accept the
absolute and symbol files produced by the Reader.

To use the Reader from the PC Interface, follow these steps:

1. Start up the H8/510 PC Interface.

2. Select "Memory, Load". The memory load menu will
appear.

3. Specify the file format as "HP64869". This will appear as
the default file format.

4. Specify a file in HP 64869 format ("TESTFILE.ABS", for
example,). The file extension can be something other than
".ABS", but cannot be ".HPA", ".HPT", or ".HPS".

Note The "< filename> .HPT" file is a temporary file used by the
HP 64869 Reader to process the symbols.

Using the HP 64869 format file that you specify (TESTFILE.ABS,
for example), the PC Interface performs the following:

Checks to see if two files with the same base name and
extensions .HPS and .HPA already exist (for example,
TESTFILE.HPS and TESTFILE.HPA).

If TESTFILE.HPS and TESTFILE.HPA don’t exist, the
HP 64869 Reader produces them. The new absolute file,
TESTFILE.HPA, is then loaded into the emulator.

If TESTFILE.HPS and TESTFILE.HPA already exist but
the create dates and times are earlier than the HP 64869
format file creation date/time, the HP 64869 Reader
recreates them. The new absolute file, TESTFILE.HPA, is
then loaded into the emulator.

File Format Readers A-9

If TESTFILE.HPS and TESTFILE.HPA already exist but
the dates and times are later than the creation date/time
for the HP 64869 format file, the current absolute file,
TESTFILE.HPA, is then loaded into the emulator.

Note Date/time checking is only done within the PC Interface. When
running the HP 64869 Reader at the MS-DOS command line
prompt, the HP 64869 Reader will always update the absolute and
symbol files.

When the HP 64869 Reader operates on a file, a status message
will be displayed indicating that it is reading a HP 64869 format
file. When the HP 64869 Reader completes its processing, another
message will be displayed indicating the absolute file is being
loaded.

If the Reader Won’t
Run

If your program is very large, then the PC Interface may run out of
memory while attempting to create the database file used. If this
condition occurs, you will need to exit the PC Interface and execute
the program at the command prompt to create the files that are
downloaded to the emulator.

Including RD64869 in
a Make File

You may wish to incorporate the "RD64869" process as the last
step in your "make" file, or as a step in your construction process,
so as to eliminate the possibility of having to exit the PC Interface
due to space limitations describe above. If the "-.HPA" and "-.HPS"
files are not current, the process of loading an HP 64869 format file
will automatically create them.

A-10 File Format Readers

Index

A absolute files
.HPA created by HP 64869 Reader A-6
< file> .hpa created by HP 64000 Reader A-1
loading 2-12
storing 5-5

analysis begin 2-30
analysis display 2-30
analysis specification

resetting the 2-27
saving 2-30
trigger condition 2-27

analyzer
status qualifiers 2-28
using the 2-27

ASCII symbol file (< file> .hps) A-1
ASCII symbol files

.HPS created by HP 64869 Reader A-6
assemblers 2-9
assembling the getting started sample program 2-6

B BNC connector 5-2
break command 2-20, 2-23, 2-33
break conditions 4-17
breakpoint interrupt instruction

software breakpoints 2-24
breakpoints

software 2-24
breaks 1-4

guarded memory accesses 2-9
on analyzer trigger 5-3
software breakpoints 1-4
write to ROM 4-5
writes to ROM 2-9

bus arbitration
using configuration to isolate target problem 4-8

Index-1

C cautions
filenames in the memory store command 5-5
installing the target system probe 3-2
target system requirement to drive reset to target 4-12

characterization of memory 2-9
cim, Terminal Interface command 2-25
clock source

external 4-3
internal 4-3

clock source selection, emulator configuration 4-3
CMB (coordinated measurement bus) 5-2

enabling interaction 4-7
execute signal while emulator is reset 2-33
signals 5-2

command file
creating and using 2-32

commands (PC Interface), selecting 2-8
Configuration

for sample program 2-8
reset value for stack pointer 2-8

configuration (emulator)
accessing 4-2
background cycles to target 4-9
break processor on write to ROM 4-5
clock selection 4-3
enable CMB interaction 4-7
enable NMI input 4-10
enable software breakpoints 4-6
enabling real-time runs 4-3
honor target reset 4-11
loading 4-18
monitor type) 4-15
processor mode 4-13
stack pointer 4-15
storing 4-17

configuration(hardware), installing the emulator 2-2

2-Index

coordinated measurements
break on analyzer trigger 5-3
definition 5-2
multiple emulator start/stop 4-7
run at /EXECUTE 5-3

count, step command 2-20

D device table, emulator 2-7
display command

registers 5-6
displaying the trace 2-30

E E clock) 5-5
emulation memory

RAM and ROM 2-9
size of 2-9

emulator
before using 2-2
device table 2-7
DMA support 1-5, 4-8
features of 1-3
limitations 1-5
memory mapper resolution 2-9
prerequisites 2-2
purpose of 1-1
reset 2-33
running from target reset 3-5
sleep mode 1-5
software stand-by mode 1-5
status 2-8
supported microprocessor package 1-3
target system 1-4
watch-dog timer 1-5

emulator configuration
bus arbitration 4-8

Emulator features
analyzer 1-3
clock speeds 1-3
emulation memory 1-3
supported microprocessors 1-3

emulator limitations
Reset Output Enable bit 1-5

Index-3

enable real-time runs
emulator configuration 4-3

eram, memory characterization 2-9
erom, memory characterization 2-9
EXECUTE

CMB signal 5-3
run at 5-3

executing programs 2-22
exiting the PC Interface 2-34
external clock source 4-3

F features of the emulator 1-3
file format

HP 64869 A-6
file formats

HP64000 A-4
find data in memory 2-23
foreground monitor address 4-17
function codes

memory mapping 2-9
function key macro 2-20

G getting started
prerequisites 2-2

global symbols 2-14, 2-19
grd, memory characterization 2-9
guarded memory accesses 2-9

H hardware installation 2-2
HP 64000 Reader A-1

 using with PC Interface A-4
HP 64000 Reader command (RHP64000.EXE) A-4
HP 64869 format 2-13

loading 2-13
HP 64869 Reader A-6

 using with PC Interface A-9
HP 64869 Reader command (RD64869.EXE) A-8
HP64000 file format A-4
HP64000 format 2-13
.HPA file 2-13
.HPS file 2-13
HPTABLES environment variable 2-7

4-Index

I in-circuit emulation 3-1, 4-1
installation

hardware 2-2
software 2-2

installing target system probe
See target system probe

internal clock source 4-3
internal I/O register display/modify 5-6
interrupt

NMI 4-10

L limitations of the emulator 1-5
line numbers 2-31
link the sample program 2-6
linkers 2-9
load map 2-9
loading absolute files 2-12
local symbols 2-15, 2-25, A-3, A-8
location of foreground monitor 4-17
locked, PC Interface exit option 2-34
logging of commands 2-32

M macro 2-20
make file A-1, A-6
mapping memory 2-9
memory

displaying in mnemonic format 2-18
mapping 2-9
modifying 2-21
re-assignment of emulation memory blocks 2-12
searching for data 2-23

memory characterization 2-9
memory mapping

function codes 2-9
ranges, maximum 2-9

microprocessor package 1-3
monitor type 4-15
MOVFPE instruction 5-5
MOVTPE instruction 5-5

N no_save
 PC Interface exit option 2-34

Index-5

non-conductive pin guard
target system probe 3-3

non-maskable interrupt 4-10
notes

"Timing" option only with external analyzer 5-4
absolute file names for stored memory 5-5
changing clock source forces reset 4-3
CMB interaction enabled on execute command 4-7
config. option for reset stack pointer recommended 4-15
date checking only in PC Interface A-5, A-10
displaying complete traces 2-30
DMA to emulation memory not supported 4-8
re-assignment of emul. mem. blocks by mapper 2-12
register command 2-20
RSTOE is not effective 4-12
setting software bkpts. while running user code 2-25
software breakpoint locations 2-24
software breakpoints and ROM code 2-25
terminal window to modify emul. config. 4-2
trigger the analyzer by an execution cycle 2-28
use required options to include symbols A-2, A-7
write to ROM analyzer status 4-5

O out-of-circuit emulation 4-1

P PC Interface
exiting the 2-34
HP 64000 Reader A-4
HP 64869 Reader A-9
selecting commands 2-8
starting the 2-7

pin protector 3-3
predefining stack pointer 4-15
prerequisites for getting started 2-2
processor operation mode 4-13
purpose of the emulator 1-1

Q qualifiers, analyzer status 2-28

R RAM, mapping emulation or target 2-9
Raw HP64000 format 2-13
reader

RD64869 A-6

6-Index

READY, CMB signal 5-2
real-time execution

commands not allowed during 4-4
commands which will cause break 4-4

real-time operation 1-4
real-time runs 4-3
register display/modify 2-20
registers 1-4, 5-6
relocatable files 2-9
reset 2-33
reset (emulator)

running from target reset 3-5
reset(emulator) 1-4
resetting the analyzer specifications 2-27
ROM

mapping emulation or target 2-9
writes to 2-9

run at /EXECUTE 5-3
run from target reset 3-5
running programs 2-22

S sample program, linking 2-6
sample programs

for getting started 2-2
saving analysis specifications 2-30
searching for data in memory 2-23
selecting PC Interface commands 2-8
simple trigger, specifying 2-27
single-step 1-4
software breakpoint

 H8/510 breakpoint interrupt instruction 4-6
software breakpoints 1-4, 2-24

clearing 2-26
defining (adding) 2-25
displaying 2-26
enabling 4-6
setting 2-26

software installation 2-2
specifications

Seeanalysis specification
stack pointer

reset value 2-8

Index-7

stack pointer,defining 4-15
starting the trace 2-30
status (analyzer) qualifiers 2-28
status line 2-8
status qualifiers, H8/510 2-28
step 2-19

count specification 2-20
supervisor stack pointer

required for proper operation 4-15
symbols 2-14

.HPS file format A-2, A-7
global 2-19
local 2-25, A-2, A-7

T target reset
running from 3-5

target system adaptor 3-3
target system probe

cautions for installation 3-2
installation 3-2
installation procedure 3-3
non-conductive pin guard 3-3

target system RAM and ROM 2-9
trace

analyzer signals 2-27
description of listing 2-31
displaying the 2-30
starting the 2-30

tram, memory characterization 2-9
TRIG1, TRIG2 internal signals 5-3
trigger 2-27

breaking into monitor on 5-3
specifying a simple 2-27

trigger state 2-31
TRIGGER, CMB signal 5-2
trom, memory characterization 2-9

U undefined software breakpoint 2-24
unlocked, PC Interface exit option 2-34
using the HP 64000 file reader A-1

V visible background cycles 4-9

8-Index

W write to ROM break 4-5

Z zoom, window 2-14, 2-18

Index-9

Notes

10-Index

	Using This Manual
	Contents
	Introduction to the H8/510 Emulator
	Getting Started
	In-Circuit Emulation
	Configuring the Emulator
	Using the Emulator
	File Format Readers
	Index

