
HP 64768

70433 Emulator
Softkey Interface

User’s Guide

HP Part No. 64768-97005
Printed in Japan
May 1995

Edition 3





Notice Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance,
or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1993,1995 Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the
prior written consent of Hewlett-Packard Company. The information
contained in this document is subject to change without notice.

HP is a trademark of Hewlett-Packard Company.

UNIX is a registered trademark in United States and other countries,
licenced exclusively through X/Open Company Limited. 

V55PI  is a trademark of NEC Electronics Inc.

InterTools  is a trademark of Intermetrics Microsystems Software, Inc.

Hewlett-Packard Company
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication,or disclosure by
the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software Clause at DFARS 252.227-7013. Hewlett-Packard Company,
3000 Hanover Street, Palo Alto, CA 94304 U.S.A. Rights for non-DOD
U.S.Government Departments and Agencies are as set forth in FAR
52.227-19(c)(1,2).



Printing History New editions are complete revisions of the manual.  The date on the
title page changes only when a new edition is published. 

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was issued.
Many product updates and fixes do not require manual changes and,
manual corrections may be done without accompanying product
changes. Therefore, do not expect a
one-to-one correspondence between product updates and manual
revisions.

Edition 1 64768-97001, March 1993

Edition 2 64768-97003, October 1993

Edition 3 64768-97005, May 1995



Using this Manual 

This manual shows you how to use the following emulators with the
Softkey Interface.

HP 64768 70433 emulator 

This manual:

Shows you how to use emulation commands by executing
them on a sample program and describing their results. 
Shows you how to use the emulator in-circuit (connected to a
target system).
Shows you how to configure the emulator for your
development needs.  Topics include: restricting the emulator
to real-time execution, selecting a target system clock source,
and allowing the target system to insert wait states.

This manual does not:

Show you how to use every Softkey Interface command and
option; the Softkey Interface is described in the Softkey
Interface Reference manual.

For the most part, the HP 647680A and HP 64768B emulators all
operate the same way.  Differences of between the emulators are
described where they exist. Both the HP 64768A and HP 64768B
emulators will be referred to as the "HP 64768 emulator" or "70433
emulator". 



Organization

Chapter 1 Introduction to the 64768 Emulator. This chapter briefly introduces you
to the concept of emulation and lists the basic features of the 64768
emulator.

Chapter 2 Getting Started. This chapter shows you how to use emulation
commands by executing them on a sample program. This chapter
describes the sample program and how to: load programs into the
emulator, map memory,display and modify memory, display registers,
step through program, run programs, set software breakpoins, search
memory for data, and use the analyzer. 

Chapter 3 "In-Circuit" Emulation. This chapter shows you how to install the
emulator probe into a target system and how to use "in-circuit"
emulation features.

Chapter 4 Configuring the Emulator. This chapter shows you how to: restrict the
emulator to real-time execution, select a target system clock source,
allow the target system to insert wait states, and select foreground or
background monitor.

Chapter 5 Using the Emulator. This chapter describes emulation topics which are
not covered in the "Getting Started" chapter. 

Appendix A Using the Foreground. This appendix describes the advantages and
disadvantages of foreground and background monitors and how to use
foreground monitor.

Appendix B Using the Format Converter. This appendix describes the usage of the
file format converter.



Conventions Example commands throughout the manual use the following
conventions:

bold Commands, options, and parts of command syntax. 

bold italic Commands, options, and parts of command syntax
which may be entered by pressing softkey.

normal User specified parts of a command.

$ Represents the HP-UX prompt. Commands which
follow the "$" are entered at the HP-UX prompt.

<RETURN> The carriage return key. 



Notes



Contents

1 Introduction to the 64768 Emulator

Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-1
Purpose of the Emulator  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-1
Features of the HP 64768 Emulator  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-3

Supported Microprocessors  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-3
Clock Speeds  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-3
Emulation memory  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-3
Analysis  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-4
Registers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-4
Single-Step  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-4
Breakpoints  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-4
Reset Support  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-4
Configurable Target System Interface  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-4
Foreground or Background Emulation Monitor  .  .  .  .  .  .  .  .  . 1-4
Real-Time Operation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-5
Easy Products Upgrades .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-5

Limitations, Restrictions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-6
Reset, Hold Request While in Background Monitor  .  .  .  .  .  .  . 1-6
User Interrupts While in Background Monitor  .  .  .  .  .  .  .  .  .  . 1-6
Interrupts While Executing Step Command  .  .  .  .  .  .  .  .  .  .  . 1-6
Unbreaking into the Monitor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-6
CLKOUT enable bit  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-6
DMA Support  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-7
Accessing SFR .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-7
Accessing Reserved Area of I/O Space  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-7
Evaluation Chip  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-7

2 Getting Started 

Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-1
Before You Begin .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-2

Prerequisites  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-2
A Look at the Demo Program  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-2
Compiling the Demo Program  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-7
Linking the Demo Program  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-7

Contents-1



Generate HP Absolute file  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-7
Entering the Softkey Interface  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-8

From the "pmon" User Interface  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-8
From the HP-UX Shell  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-9
Configure the Emulator for Examples  .  .  .  .  .  .  .  .  .  .  .  .  . 2-10

On-Line Help  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-11
Softkey Driven Help .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-11
Pod Command Help  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-12

Loading Absolute Files  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-13
Displaying Symbols  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-14

Global  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-14
Local  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-15
Source Lines  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-16

Displaying Memory in Mnemonic Format  .  .  .  .  .  .  .  .  .  .  .  .  . 2-17
Display Memory with Symbols  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-18
Display Memory with Source Code .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-19

Running the Program  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-20
From Transfer Address  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-20
From Reset .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-20

Displaying Memory  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-20
Using Symbolic Addresses  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-20

Modifying Memory .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-21
Breaking into the Monitor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-22
Using Software Breakpoints  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-23

Enabling/Disabling Software Breakpoints  .  .  .  .  .  .  .  .  .  .  . 2-24
Setting a Software Breakpoint .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-24
Displaying Software Breakpoints  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-25
Clearing a Software Breakpoint  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-27

Displaying Registers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-27
Stepping Through the Program .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-28
Using the Analyzer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-30

Source Line Referencing  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-30
Specifying a Simple Trigger  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-30
Display the Trace  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-31
Displaying Trace with No Symbol  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-32
Displaying Trace with Time Count Absolute  .  .  .  .  .  .  .  .  .  . 2-33
Displaying Trace with Compress Mode .  .  .  .  .  .  .  .  .  .  .  .  . 2-34
Reducing the Trace Depth .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-34
Using the Storage Qualifier  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-35
Trigger the Analyzer at an Instruction Execution State .  .  .  .  . 2-36
Emulator Analysis Status Qualifiers  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-37

2-Contents



For a Complete Description  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-37
Resetting the Emulator  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-38
Exiting the Softkey Interface  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-38

End Release System  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-38
Ending to Continue Later  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-38
Ending Locked from All Windows  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-38
Selecting the Measurement System Display 
or Another Module  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-39

3 In-Circuit Emulation Topics

Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-1
Prerequisites  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-1
Installing the Emulator Probe into a Target System  .  .  .  .  .  .  .  .  . 3-2

Pin Protector  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-3
Conductive Pin Guard  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-3
Installing into a PGA Type Socket  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-4
Installing into a QFP Type Socket  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-4

In-Circuit Configuration Options .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-6
Running the Emulator from Target Reset  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-6
Pin State in Background  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-8
Target System Interface  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-9

4 Configuring the Emulator 

Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-1
General Emulator Configuration  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-4

Micro-processor Clock Source? .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-4
Enter Monitor After Configuration?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-4
Restrict to Real-Time Runs?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-5

Memory Configuration  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-6
Monitor Type?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-6
Mapping Memory  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-9

Emulator Pod Configuration  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-11
Date bus size?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-11
Memory display mnemonic?   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-11
Segment Algorithm? .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-12
Reset value for the stack segment?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-13
Reset value for the stack pointer?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-13
Respond RESET from target system? .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-13
Respond NMI from target system?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-13
Respond READY from target system?  .  .  .  .  .  .  .  .  .  .  .  .  . 4-14
Respond to HLDRQ from target system  .  .  .  .  .  .  .  .  .  .  .  . 4-14

Contents-3



Target memory access size  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-15
Debug/Trace Configuration  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-16

Break Processor on Write to ROM? .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-16
Trace Background or Foreground Operation?  .  .  .  .  .  .  .  .  . 4-17
Trace Internal DMA cycles?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-17
Trace refresh cycles?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-17

Simulated I/O Configuration  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-18
Interactive Measurement Configuration  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-18
Saving a Configuration  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-18
Loading a Configuration  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-19

5 Using the Emulator 

Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-1
REGISTER CLASS and NAME  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-2
Hardware Breakpoints  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-10
Loading Program Option  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-10
Displaying Memory Option  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-11
Analyzer Topic  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-13
Features Available via Pod Commands  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-14
Accessing Internal RAM/SFR  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-15
Storing Memory Contents to an Absolute File  .  .  .  .  .  .  .  .  .  .  . 5-16
Coordinated Measurements .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-16

A Using the Foreground Monitor 

Comparison of Foreground and Background Monitors  .  .  .  .  .  .  . A-1
Background Monitors  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . A-1
Foreground Monitors  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . A-2

An Example Using the Foreground Monitor  .  .  .  .  .  .  .  .  .  .  .  .  . A-3
Modify EQU Statement  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . A-3
Assemble and Link the Monitor .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . A-4
Modifying the Emulator Configuration  .  .  .  .  .  .  .  .  .  .  .  .  .  . A-4
Load the Program Code  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . A-6
Tracing from Reset to Break  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . A-6
Tracing from Monitor to User Program .  .  .  .  .  .  .  .  .  .  .  .  .  . A-8
Tracing from User Program to Break  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . A-9
Single Step and Foreground Monitors  .  .  .  .  .  .  .  .  .  .  .  .  . A-10
Software Breakpoint and Foreground Monitor  .  .  .  .  .  .  .  .  . A-11

Limitations of Foreground Monitors  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . A-11
Synchronized MeasurementsCMB  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . A-11
Instruction Using BRK flag  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . A-11
Stepping  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . A-11

4-Contents



Break from Halt/Stop state  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . A-12

B Using the Format Converter

How to use the Converter .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . B-1
Restrictions and Considerations  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . B-2

Illustrations

Figure 1-1 HP 64768 Emulator for uPD70433 .  .  .  .  .  .  .  .  .  .  .  . 1-2
Figure 2-2 Linker Command File for "skdemo.lc" .  .  .  .  .  .  .  .  .  . 2-7
Figure 2-3 Softkey Interface Display .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-9
Figure 3-1 Installing into a 70433 PGA type socket  .  .  .  .  .  .  .  .  . 3-5

Contents-5



Notes

6-Contents



1

Introduction to the 64768 Emulator

Introduction The topics in this chapter include:

Purpose of the emulator

Features of the emulator

Limitations and Restrictions of the emulator

Purpose of the
Emulator

The 64768 emulator is designed to replace the 70433 microprocessor in
your target system to help you debug/integrate target system software
and hardware.  The emulator performs just like the processor which it
replaces, but at the same time, it gives you information about the bus
cycle operation of the processor. The emulator gives you control over
target system execution and allows you to view or modify the contents
of processor registers, target system memory, and I/O resources.

Introduction 1-1



Figure 1-1 HP 64768 Emulator for uPD70433

1-2 Introduction



Features of the HP
64768 Emulator

This section introduces you to the features of the emulator. The
chapters which follow show you how to use these features.

Supported
Microprocessors

The 132-pin PGA type of 70433 microprocessor is supported.The HP
64768 emulator probe has a 132-pin PGA connector.When you use
120-pin QFP type microprocessor, you must use with PGA to QFP
adapter; refer to the "In-Circuit Emulation Topics "chapter in this
manual. 

Clock Speeds The HP 64768A emulator runs with an internal clock speed of
12.5MHz (system clock), or with target system clocks from 4 to 25
MHz.

The HP 64768B emulator runs with an internal clock speed of
12.5MHz (system clock), or with target system clocks from 4 to 32
MHz.

Emulation memory The HP 64768 emulator is used with one of the following Emulation
Memory Cards.

HP 64726  128K byte Emulation Memory Card
HP 64727  512K byte Emulation Memory Card
HP 64728  1M byte Emulation Memory Card

You can define up to 16 memory ranges (at 256 byte boundaries and at
least 256 byte in length).  The monitor occupies 2K bytes leaving
126K,510K,1022K bytes of emulation memory which you may
use.You can characterize memory ranges as emulation RAM,
emulation ROM, target system RAM, target system ROM, or  guarded
memory.  The emulator generates an error message when accesses are
made to guarded memory locations.  You can also configure the
emulator so that writes to memory defined as ROM cause emulator
execution to break out of target program execution. 

Introduction 1-3



Analysis The HP 64768 emulator is used with one of the following analyzers
which allows you to trace code execution and processor activity.

HP 64704  80-channel Emulation Bus Analyzer
HP 64703  64-channel Emulation Bus Analyzer and
16-channel State/Timing Analyzer

The Emulation Bus Analyzer monitors the emulation processor using
an internal analysis bus.  The HP 64703 64-channel Emulation Bus
Analyzer and 16-channel State/Timing Analyzer allows you to probe
up to 16 different lines in your target system.

Registers You can display or modify the 70433 internal register contents.

Single-Step You can direct the emulation processor to execute a single instruction
or a specified number of instructions.

Breakpoints You can set up the emulator/analyzer interaction so that when the
analyzer finds a specific state, emulator execution will break to the
emulation monitor.

You can also define software breakpoints in your program. The
emulator uses the 70433 BRK 3 instruction to provide software
breakpoint. When you define a software breakpoint, the emulator
places a BRK 3 instruction at the specified address; after the BRK 3
instruction causes emulator execution to break out of your program, the
emulator replaces BRK 3 with the original opcode. 

Reset Support The emulator can be reset from the emulation system under your
control, or your target system can reset the emulation processor. 

Configurable Target
System Interface

You can configure the emulator so that it honors target system wait
requests when accessing emulation memory.

Foreground or
Background

Emulation Monitor

The emulation monitor is a program that is executed by the emulation
processor.  It allows the emulation controller to access target system
resources.  For example, when you display target system memory, it is
the monitor program that executes 70433 instructions which read the

1-4 Introduction



target memory locations and send their contents to the emulation
controller.

The monitor program can execute in foreground, the mode in which the
emulator operates as would the target processor.  The foreground
monitor occupies processor address space and executes as if it were
part of the target program. 

The monitor program can also execute in background. User program
execution is suspended so that emulation processor can be used to
access target system resources.  The background monitor does not
occupy any processor address space.

Real-Time Operation Real-time operation signifies continuous execution of your program
without interference from the emulator. (Such interference occurs when
the emulator temporarily breaks to the monitor so that it can access
register contents or target system memory or I/O.)

You can restrict the emulator to real-time execution. When the
emulator is executing your program under the real-time restriction,
commands which display/modify registers, display/modify target
system memory or I/O, or single-step are not allowed.

Easy Products
Upgrades

Because the HP 64700 Series development tools (emulator, analyzer,
LAN board) contain programmable parts, it is possible to reprogram
the firmware and some of the hardware without disassembling the HP
64700A Card Cage.  This means that you’ll be able to update product
firmware, if desired, without having to call an HP field representative
to your site.

Introduction 1-5



Limitations,
Restrictions

Reset, Hold Request
While in Background

Monitor

If you use background monitor, RESET and HLDRQ from target
system are ignored while in monitor.

User Interrupts While
in Background

Monitor

If you use the background monitor, NMI and INTP0-5 from target
system are suspended until the emulator goes into foreground
operation. Other interrupts are ignored.

Interrupts While
Executing Step

Command

While stepping user program with the foreground monitor used,
interrupts are accepted if they are enabled in the foreground monitor
program.  

While stepping user program with the background monitor used,
interrupts are ignored. 

Note You should not use step command in case the interrupt handler’s
punctuality is critical.

Unbreaking into the
Monitor 

The emulator can not break into the monitor if the microprocessor is in
hold state. The emulator will break into the monitor after hold state
because break request is suspended. 

The emulator can not break into the monitor if the microprocessor is in
reset state by RESET signal from target system.

CLKOUT enable bit CLKOUT signal can be enabled/disabled by ENCLK bit, which is bit 5
of PRC register. You must not clear ENCLK bit(ENCLK bit is "1" in

1-6 Introduction



reset). The emulator will not work properly if CLKOUT signal is
disabled

DMA Support Direct memory access to emulation memory by external DMA
controller is not permitted.

Accessing SFR When you access SFR(Special Function Registers), you must use reg
commands. If you access SFR with m commands, you will access to
the actual memory you mapped(as target system ROM or RAM,
emulation ROM or RAM). 

Accessing Reserved
Area of I/O Space

When you access reserved area of I/O space(0FF80h-0FFFFh) with
"io" commands in the background monitor, the emulator operates
exceptionally. When you display reserved area of I/O space,
theemulator displays "FFh" . When you modify reserved area of
I/Ospace, the emulator does not modify value.

Evaluation Chip Hewlett-Packard makes no warranty of the problem caused by the
Evaluation chip in the emulator.

Introduction 1-7



Notes

1-8 Introduction



2

Getting Started 

Introduction This chapter will lead you through a basic, step by step tutorial that
shows how to use the HP 64768 emulator (for the 70433
microprocessor) with the Softkey Interface.

This chapter will:

Tell you what must be done before you can use the emulator
as shown in the tutorial examples.

Describe the demo program used for this chapter’s examples.
This chapter will show you how to:

Start up the Softkey Interface.

Load programs into emulation and target system memory.

Enter emulation commands to view execution of the demo
program.

Getting Started 2-1



Before You Begin

Prerequisites Before beginning the tutorial presented in this chapter, you must have
completed the following tasks:

1.  Connected the emulator to your computer. The HP 64700
Series Installation/Service manual show you how to do this.

2.  Installed the Softkey Interface software on your computer.
Refer to the HP 64700 Series Installation/Service manual for
instructions on installing software.

3.  In addition, you should read and understand the concepts of
emulation presented in the Concepts of Emulation and
Analysis manual. The Installation/Service manual also covers
HP 64700 system architecture.  A brief understanding of these
concepts may help avoid questions later.

You should read the Softkey Interface Reference manual to
learn how to use the Softkey Interface in general. For the most
part, this manual contains information specific to the 70433
emulator.

A Look at the Demo
Program

The demo program  is listed in "C" and assembly in Figure 2-1. The
demo program is skdemo consisting of source program skdemo.c.

Where is the skdemo Software?

The demo program is shipped with the Softkey Interface and may be
copied from the following directory.

/usr/hp64000/demo/emul/hp64768                         

2-2 Getting Started



What Does the Program Do?

The program is designed to go into a continuous loop checking for a
new command (NEW_CMD).  The while loop skips the "if" statement
because semaphore is assigned the value of NO_CMD (’f’) and is never
equal to NEW_CMD (’t’).  Also, the switch statement’s expression
never matches the cases CMD_A, CMD_B, or CMD_C because the
switch statement evaluates the value (cmd_code) which is initially
assigned the value of NO_CMD (’f’).

As you progress through this tutorial, you will make the appropriate
changes to the data in memory to make this program step through each
branch of the program.  When semaphore signals a new command
(NEW_CMD):

1.  Semaphore is assigned the value of CMD_STARTED (’s’),

2.  The status "Command received       ", is displayed.

3.  The switch statement is executed.  If a command has NOT
been specified in cmd_code, the default command result
"Invalid command entered" is displayed.

Symbolic Constants

Symbolic constants can be used in different parts of the program to
make the program run, step, break, trace, or define memory ranges.
The symbols are truncated to 15 characters.  Symbolic names (local and
global) are labeled: 

Static Local Symbols
cmd_loop           main
await_comd        cmd_code
cmd_result         command_A
command_B         command_C
command_I          command_R
no_command        semaphore
status

Static Global Symbols
_cmd_loop          _main
_strcpy

Getting Started 2-3



cmd_code

The switch statement evaluates the value of cmd_code with the cases
within it.  You will change the cmd_code (to ’A’, ’B’, or ’C’) to match
each of the cases as you progress through the steps in this manual.  As
you enter into each branch of the switch statement:

If case CMD_A is satisfied, the cmd_result (Command ’A’
entered    ) is displayed.

If case CMD_B is satisfied, the cmd_result (Command ’B’
entered    ) is displayed.

If case CMD_C is satisfied, the cmd_result (Command ’C’
entered    ) is displayed.

When the case statement is completed, semaphore equals the
value of CMD_FINISHED (’f’).

semaphore

Semaphore is assigned the value of NO_CMD (0H).  You will change
the value of "semaphore" to NEW_CMD (’t’) to satisfy the "if"
statement.  This variable is used to synchronize commands.

2-4 Getting Started



/* "NEC V55PI DEMONSTRATION PROGRAM" */
/* "skdemo.c" */
#include <rcopy.h>

/* DEFINES */
#define TRUE 1
#define FALSE 0
#define NO_CMD ’f’
#define NEW_CMD ’t’
#define CMD_STARTED ’s’
#define CMD_FINISHED ’f’
#define CMD_A ’A’
#define CMD_B ’B’
#define CMD_C ’C’

extern void my_rompseg();

static unsigned char status     [] = "                           ";
static unsigned char cmd_result [] = "                           ";

static unsigned char semaphore = NO_CMD;
static unsigned char cmd_code = NO_CMD;
static unsigned char await_comd [] = "Awaiting command       ";
static unsigned char no_command [] = "No command entered     ";
static unsigned char command_R  [] = "Command received       ";
static unsigned char command_A  [] = "Command ’A’ entered    ";
static unsigned char command_B  [] = "Command ’B’ entered    ";
static unsigned char command_C  [] = "Command ’C’ entered    ";
static unsigned char command_I  [] = "Invalid Command entered";

/*****************************************************************/

main()
{
    /* To display symbolically:                                  */
    /* display local_symbol_in skdemo.c:                         */
    /* display memory status thru cmd_code repeatively bytes     */

    rcopy(my_rompseg);

    strcpy (status,await_comd);

    /* initialize control variables */

    semaphore = NO_CMD;
    cmd_code = NO_CMD;
    strcpy (cmd_result,no_command);

    /* Call command loop function */

Figure 2-1 C Source skdemo.c (Cont’d)

Getting Started 2-5



    cmd_loop ();

}   /* main_prog */

/****************************************************************/
cmd_loop (t)
{
    /* Stay in endless loop, checking for a new command         */
    /* When a new command is detected, it is executed           */
    /* New command can be entered using the following:          */

    /* Place the value ’B’ in cmd_code memory location          */
    /* modify memory cmd_code bytes to ’B ’                     */
    /* Place the value ’t’ in semaphore to indecate NEW_CMD     */
    /* modify memory semaphore bytes to ’t’                     */
    /* Display the result in cmd_result                         */
    /* display memory cmd_result blocked bytes                  */

    while (TRUE){
        if (semaphore == NEW_CMD){
            semaphore = CMD_STARTED;
            strcpy (status, command_R);
            switch (cmd_code){
                case CMD_A :
                    strcpy (cmd_result, command_A);
                    break;

                case CMD_B :
                    strcpy (cmd_result, command_B);
                    break;

                case CMD_C :
                    strcpy (cmd_result, command_C);
                    break;

                default :
                    strcpy (cmd_result, command_I);
            }   /* switch */

            semaphore = CMD_FINISHED;
        }   /* if (semaphore == NEW_CMD) body */
    }   /* while (TRUE) loop */
}   /* FUNCTION cmd_loop */

Figure 2-1 C Source skdemo.c (Cont’d)

2-6 Getting Started



Compiling the Demo
Program

The demo program is written for and compiled/linked with the
InterTools V20 Family C Compiler and Linking Locator.  The demo
program was compiled with the following command.

$ cv55  skdemo.c 
-S  /usr/local/itools/rtlibs/inc -d -do -sd
<RETURN>

Linking the Demo
Program

The following command was used to generate the absolute file. The
"skdemo.lc" linker command file is shown in figure 2-2.

$ llink  skdemo.ol -o  skdemo.ab -c  skdemo.lc
-b  _my_rompseg -rc  stsep -L
/usr/local/itools/rtlibs/cv55s/lm/libcv55s
<RETURN>

Generate HP
Absolute file 

To generate HP absolute file for the Softkey Interface, you need to use
"v55cnv" absolute file format converter. The v55cnv converter is
provided with the Softkey Interface. To generate HP absolute file, enter
the following command:

$ v55cnv  skdemo <RETURN>

You will see that skdemo.X, skdemo.L, and skdemo.A are generated.
The file skdemo.X contains the absolute code of the program.  The file
skdemo.L  contains the list of global symbols.  The files skdemo.A
contains the list of local symbols for the respective files.

Note The required executable files are included in the following directory.
/usr/hp64000/demo/emul/hp64768

LOCATE ( {code}     : #80000 );
LOCATE ( {constant} : #80500 );
LOCATE ( {stsep}    : #10000 );
LOCATE ( {data}     : #15000 );

Figure 2-2 Linker Command File for "skdemo.lc"

Getting Started 2-7



Entering the
Softkey Interface

If you have installed your emulator and Softkey Interface software as
directed in the HP 64700 Series Emulators Softkey Interface
Installation Notice, you are ready to enter the interface.  The Softkey
Interface can be entered through the pmon User Interface Software or
from the HP-UX shell.

From the "pmon"
User Interface

If /usr/hp64000/bin is specified in your PATH environment variable,
you can enter the pmon User Interface with the following command.

$ pmon <RETURN>
If you have not already created a measurement system for the 70433
emulator, you can do so with the following commands. First you must
initialize the measurement system with the following command.

MEAS_SYS msinit <RETURN>
After the measurement system has been initialized, enter the
configuration interface with the following command.

msconfig <RETURN>
To define a measurement system for the 70433 emulator, enter:

make_sys emv55 <RETURN>
Now, to add the emulator to the measurement system, enter:

add <module_number> naming_it  n70433 <RETURN>
Enter the following command to exit the measurement system
configuration interface.

end <RETURN>
If the measurement system and emulation module are named "emv55"
and "n70433" as shown above, you can enter the emulation session
with the following command:

emv55 default n70433 <RETURN>
If this command is successful, you will see a display similar to figure
2-3.  The status message shows that the default configuration file has
been loaded.  If the command is not successful, you will be given an
error message and returned to the pmon User Interface.  Error
messages are described in the Softkey Interface Reference manual.

For more information on creating measurements systems, refer to the
Softkey Interface Reference manual.

2-8 Getting Started



From the HP-UX Shell If /usr/hp64000/bin is specified in your PATH environment variable,
you can also enter the Softkey Interface with the following command.

$ emul700 -uskemul  <emul_name> <RETURN>
The "emul_name" in the command above is the logical emulator name
given in the HP 64700 emulator device table
(/usr/hp64000/etc/64700tab).

If this command is successful, you will see a display similar to figure
2-3.  The status message shows that the default configuration file has
been loaded.  If the command is not successful, you will be given an
error message and returned to the HP-UX prompt.  Error messages are
described in the Softkey Interface Reference manual.

                  HPB3067-19301 A.05.00 11Nov92 Unreleased
                         V55 SOFTKEY USER INTERFACE

                      A Hewlett-Packard Software Product
                      Copyright Hewlett-Packard Co. 1992

  All Rights Reserved. Reproduction, adaptation, or translation without prior
  written  permission  is prohibited, except as allowed under copyright laws.

                           RESTRICTED RIGHTS LEGEND

     Use , duplication , or disclosure  by the  Government is  subject to
     restrictions as set forth in subparagraph (c) (1) (II) of the Rights
     in Technical Data and Computer Software clause at  DFARS 52.227-7013.
     HEWLETT-PACKARD Company , 3000 Hanover St. , Palo Alto, CA 94304-1181

STATUS:   Starting new session__________________________________________...R....

  run     trace     step   display           modify   break     end    ---ETC--

Figure 2-3 Softkey Interface Display

#-------------+---------+--------------------+----+------+------+----+----+----
#             |         |                    |xpar| baud |parity|flow|stop|char
# logical name|processor|     physical       |mode| rate |      |    |bits|size
#  (14 chars) |  type   |      device        |    |      |      |XON |    |
#             |         |                    |OFF |      | NONE |RTS | 2  | 8
#-------------+---------+--------------------+----+------+------+----+----+----
#
v55PI           n70433    /dev/emulcom23      OFF    9600  NONE  XON   2    8

Getting Started 2-9



Configure the
Emulator for

Examples

To do operations described in this chapter (loading absolute program
into emulation memory, displaying memory contents, etc), you need to
configure the emulator as below.  For detailed description of each
configuration option (question), refer to the "Configuring the
Emulator" chapter.

To get into the configuration session of the emulator, enter the
following command.

modify  configuration <RETURN>

Answer to the series of questions as below.
Micro-processor clock source?  internal  <RETURN>

Enter monitor after configuration?  yes  <RETURN>

Restrict to real-time runs?  no  <RETURN>

Modify memory configuration?  yes  <RETURN>

Monitor type?  background  <RETURN>

Now you should be facing memory mapping screen. The address
ranges 0h thru 1f6ffh and fff00h thru fffffh are mapped as emulation
RAM by default. Three mapper terms must be specified for the demo
program. Enter the following lines to map the program code area as
emulation ROM, data area as emulation RAM.

    delete all  <RETURN>

    0h thru  0ffh emulation  ram  <RETURN>

    10000h thru  1ffffh emulation  ram  <RETURN>

    80000h thru  80fffh emulation  rom  <RETURN>

    0fff00h thru  0fffff emulation rom  <RETURN>

    end  <RETURN>

Modify emulator pod configuration?  no  
 

Modify debug/trace options?  no  <RETURN>

Modify simulated I/O configuration?  no  <RETURN>

Modify interactive measurement specification? no  <RETURN>

If you wish to save the configuration specified above, answer this
question as shown.

Configuration file name?  skdemo <RETURN>

Now you are ready to go ahead.  Above configuration is used through
out this chapter.

2-10 Getting Started



On-Line Help There are two ways to access on-line help in the Softkey Interface.  The
first is by using the Softkey Interface help facility.  The second method
allows you to access the firmware resident Terminal Interface on-line
help information.

Softkey Driven Help To access the Softkey Interface on-line help information, type either
"help" or "?" on the command line; you will notice a new set of
softkeys.  By pressing one of these softkeys and <RETURN>, you can
cause information on that topic to be displayed on your screen.  For
example, you can enter the following command to access "system
command" help information.

? system_commands <RETURN>

The help information is scrolled on to the screen.  If there is more than
a screenful of information, you will have to press the space bar to see
the next screenful, or the <RETURN> key to see the next line, just as
you do with the HP-UX more command.  After all the information on
the particular topic has been displayed (or after you press "q" to quit
scrolling through information), you are prompted to press <RETURN>
to return to the Softkey Interface.

---SYSTEM COMMANDS & COMMAND FILES---

?                         displays the possible help files
help                      displays the possible help files

!                         fork a shell (specified by  shell variable SH)
! <hell command>          fork a shell and execute a shell command

pwd                       print the working directory
cd <directory>            change the working directory

pws                       print the default symbol scope
cws <YMB>                 change the working symbol - the working symbol also
                          gets updated when displaying local symbols and
                          displaying memory mnemonic

forward <UI> "command"    send the command in the quoted string from this user
                          interface to another one.  Replace  with the name
                          of the other user interface as shown on the softkeys:

-More--(15%)

Getting Started 2-11



Pod Command Help To access the emulator’s firmware resident Terminal Interface help
information, you can use the following commands.

display pod_command <RETURN>
pod_command ’help cf’ <RETURN>

The command enclosed in string delimiters (", ’, or ^) is any Terminal
Interface command, and the output of that command is seen in the
pod_command display.  The Terminal Interface help (or ?) command
may be used to provide information on any Terminal Interface
command or any of the emulator configuration options (as the example
command above shows).

Note If you want to use the Terminal Interface command by entering from
keyboard directly, you can do it after entering the following command.

pod_command keyboard

Pod Commands
  Time                Command
14:42:14 help cf

  cf - display or set emulation configuration
    cf                - display current settings for all config items
    cf <item>         - display current setting for specified <item>
    cf <item>=<value> - set new <value> for specified <item>
    cf <item> <item>=<value> <item> - set and display can be combined
  help cf <item>    - display long help for specified 
  --- VALID CONFIGURATION <item> NAMES ---
    clk     - select clock source
    dsize   - select data bus width
    hold    - en/dis HLDRQ input from the target system
    mne     - select mnemonic for inverse assembly
    mon     - select foreground or background monitor
    nmi     - en/dis NMI from the target system
    rad     - select run address translation method

STATUS:   n70433--Running in monitor____________________________________...R....
pod_command ’help cf’

  run     trace     step   display           modify   break     end    ---ETC--

2-12 Getting Started



Loading Absolute
Files

The "load" command allows you to load absolute files into emulation
or target system memory.  If you wish to load only that portion of the
absolute file that resides in memory mapped as emulation RAM or
ROM, use the "load emul_mem" syntax.  If you wish to load only the
portion of the absolute file that resides in memory mapped as target
RAM, use the "load user_mem" syntax.  If you want both emulation
and target memory to be loaded, do not specify  "emul_mem" or
"user_mem".  For example:

load skdemo <RETURN>

Note When loading a program if the status line shows

"ERROR:      No absolute file, No database:
skdemo

, you may NOT be in the directory that your program is in.  To find out
what directory you are in, enter:

! pwd <RETURN>
The "!" allows you to use an HP-UX shell command. To move into the
correct directory, enter:

cd <directory path>  <RETURN>

You can also specify the pathname where your program resides. For
example, you could enter:

load /usr/hp64000/demo/emul/hp64768/skdemo
<RETURN>

Getting Started 2-13



Displaying
Symbols

When you load an absolute file into memory (unless you use the
"nosymbols" syntax), symbol information is also loaded.  Both global
symbols and symbols that are local to a source file can be displayed.

Global To display global symbols, enter the following command.

display global_symbols <RETURN>

Listed are address ranges associated with a symbol, the segment that
the symbol is associated with, and the offset of that symbol within the
segment.

Global symbols in skdemo.X
Static symbols
Symbol name ____________________ Address range __ Segment _____________ Offset
__DSX                        1500:002C                                     0000
__SSX                        1500:002E                                     0000
__iob                        1500:0040                                     0000
__main                       8000:00C2                                     0000
__term_putc                  8000:015B                                     0000
__xgetc                      8000:0110                                     0000
_cmd_loop                    8020:0081                                     0000
_errno                       1500:008E                                     0000
_getc                        8000:0072                                     0000
_main                        8020:0029                                     0000
_rcopy                       8010:00CB                                     0000
_stderr                      1500:008A                                     0000
_stdin                       1500:0082                                     0000
_stdout                      1500:0086                                     0000
_strcpy                      8010:00FA                                     0000

STATUS:   n70433--Running in monitor____________________________________...R....
display global_symbols

  run     trace     step   display           modify   break     end    ---ETC--

2-14 Getting Started



Local When displaying local symbols, you must include the name of the
source file in which the symbols are defined.  For example,

display local_symbols_in skdemo.c: <RETURN>

As you can see, the procedure symbols and static symbols in
"skdemo.c" are displayed.
To list the next symbols, press the <PGDN> or <Next> key.  the source
reference symbols in "skdemo.c" will be displayed.

Listed are: address ranges associated with a symbol, the segment that
the symbol is associated with, and the offset of that symbol within the
segment.

Symbols in skdemo.c:
Static symbols
Symbol name ____________________ Address range __ Segment _____________ Offset
await_comd                   1000:0090                                     0090
cmd_code                     1000:00A8                                     00A8
cmd_loop                     8020:0081                                     0058
cmd_result                   1000:00AC                                     00AC
command_A                    1000:0048                                     0048
command_B                    1000:0030                                     0030
command_C                    1000:0018                                     0018
command_I                    1000:0000                                     0000
command_R                    1000:0060                                     0060
main                         8020:0029                                     0000
no_command                   1000:0078                                     0078
semaphore                    1000:00AA                                     00AA
status                       1000:00C8                                     00C8

Source reference symbols

STATUS:   cws: skdemo.c:________________________________________________...R....
display local_symbols_in skdemo.c:

  run     trace     step   display           modify   break     end    ---ETC--

Getting Started 2-15



Source Lines To display the address ranges associated with the program’s source file,
you must display the local symbols in the file. For example:

display local_symbols_in skdemo.c: <RETURN>

And scroll the information down on the display with up arrow,or
<Next> key.

Symbols in skdemo.c:
Source reference symbols
Line range _____________________ Address range __ Segment _____________ Offset
#1-#34                       8020:0029 - 002C                              0000
#35-#40                      8020:002D - 0037                              0004
#41-#42                      8020:0038 - 004F                              000F
#43-#46                      8020:0050 - 0058                              0027
#47-#47                      8020:0059 - 0061                              0030
#48-#48                      8020:0062 - 0079                              0039
#49-#51                      8020:007A - 0080                              0051
#52-#56                      8020:0081 - 0084                              0058
#57-#70                      8020:0147                                     011E
#71-#71                      8020:0085 - 008F                              005C
#72-#72                      8020:0090 - 0098                              0067
#73-#73                      8020:0099 - 00B0                              0070
#74-#74                      8020:0123 - 013B                              00FA
#75-#76                      8020:00B4 - 00CB                              008B
#77-#77                      8020:00CC - 00CE                              00A3

STATUS:   n70433--Running in monitor____________________________________...R....
display local_symbols_in skdemo.c:

  run     trace     step   display           modify   break     end    ---ETC--

2-16 Getting Started



Displaying
Memory in
Mnemonic Format

You can display, in mnemonic format, the absolute code in memory.
For example to display the memory of the demo program,

display memory main mnemonic  <RETURN>

Notice that you can use symbols when specifying expressions. The
global symbol main is used in the command above to specify the
starting address of the memory to be displayed.

 Memory  :mnemonic :file = skdemo.c:
   address    data
  8020 0029  C8000000    PREPARE 0000,00
  8020 002D  680508      PUSH 0805
  8020 0030  680000      PUSH 0000
  8020 0033  9ACB001080  CALL FAR PTR 801CB
  8020 0038  0F363E1000  MOV DS3,IY,DWORD PTR 0010
  8020 003D  0F76        PUSH DS3/VPC
  8020 003F  57          PUSH IY
  8020 0040  0F3E160000  MOV DS2,DW,DWORD PTR 0000
  8020 0045  0F7E        PUSH DS2
  8020 0047  52          PUSH DW
  8020 0048  9AFA001080  CALL FAR PTR 801FA
  8020 004D  83C404      ADD SP,04
  8020 0050  0F363E0800  MOV DS3,IY,DWORD PTR 0008
  8020 0055  D6C60566    MOV DS3:BYTE PTR [IY],66
  8020 0059  0F3E1E0C00  MOV DS2,BW,DWORD PTR 000C
  8020 005E  63C60766    MOV DS2:BYTE PTR [BW],66

STATUS:   n70433--Running in monitor____________________________________...R....
display memory main mnemonic

  run     trace     step   display           modify   break     end    ---ETC--

Getting Started 2-17



Display Memory with
Symbols

If you want to see symbol information with displaying memory in
mnemonic format, the emulator Softkey Interface provides "set
symbols" command.  To see symbol information, enter the following
command.

set symbols on <RETURN>

As you can see, the memory display shows symbol information.

 Memory  :mnemonic :file = skdemo.c:
   address   label          data
  8020 0029     :_main     C8000000    PREPARE 0000,00R  8020 002D
680508      PUSH 0805
  8020 0030                680000      PUSH 0000
  8020 0033                9ACB001080  CALL FAR PTR :_rcopy
  8020 0038                0F363E1000  MOV DS3,IY,DWORD PTR 0010
  8020 003D                0F76        PUSH DS3/VPC
  8020 003F                57          PUSH IY
  8020 0040                0F3E160000  MOV DS2,DW,DWORD PTR 0000
  8020 0045                0F7E        PUSH DS2
  8020 0047                52          PUSH DW
  8020 0048                9AFA001080  CALL FAR PTR :_strcpy
  8020 004D                83C404      ADD SP,04
  8020 0050                0F363E0800  MOV DS3,IY,DWORD PTR 0008
  8020 0055                D6C60566    MOV DS3:BYTE PTR [IY],66
  8020 0059                0F3E1E0C00  MOV DS2,BW,DWORD PTR 000C
  8020 005E                63C60766    MOV DS2:BYTE PTR [BW],66

STATUS:   n70433--Running in monitor____________________________________...R....
set symbols  on

  run     trace     step   display           modify   break     end    ---ETC--

2-18 Getting Started



Display Memory with
Source Code

If you want to reference the source line information with displaying
memory in mnemonic format, the emulator Softkey Interface provides
"set source" command.  To reference the source line information in
inverse video, enter the following command:

set source on inverse_video on <RETURN>

To see the memory without source line referencing, enter the following
command:

set source off <RETURN>

 Memory  :mnemonic :file = skdemo.c:
   address   label          data
       1     /* "NEC V55PI DEMONSTRATION PROGRAM" */
       2     /* "skdemo.c" */
       3     #include <rcopy.h>
       4
       5     /* DEFINES */
       6     #define TRUE            1
       7     #define FALSE           0
       8     #define NO_CMD          ’f’
       9     #define NEW_CMD         ’t’
      10     #define CMD_STARTED     ’s’
      11     #define CMD_FINISHED    ’f’
      12     #define CMD_A           ’A’
      13     #define CMD_B           ’B’
      14     #define CMD_C           ’C’
      15
      16     extern void_rompseg();

STATUS:   n70433--Running in monitor____________________________________...R....
set source on inverse_video on

  run     trace     step   display           modify   break     end    ---ETC--

Getting Started 2-19



Running the
Program

The "run" command lets you execute a program in memory. Entering
the "run" command by itself causes the emulator to begin executing at
the current program counter address.  The "run from" command allows
you to specify an address at which execution is to start.

From Transfer
Address

The "run from transfer_address" command specifies that the emulator
start executing at a previously defined
"start address".  Transfer addresses are defined in assembly language
source files with the END assembler directive (i.e., pseudo instruction).
Enter:

run from transfer_address <RETURN>

From Reset The "run from reset" command specifies that the emulator begin
executing from reset vector as actual microprocessor does.

(See "Running From Reset" section in the "In-Circuit Emulation"
chapter).

Displaying
Memory

The demo program "skdemo.c" alters memory upon user commands.
User commands are entered by modifying the memory locations
cmd_code and semaphore.

Using Symbolic
Addresses

In the following display, the memory range is displayed using symbolic
addresses status and cmd_code.

The memory display window is periodically updated.  For example,
enter the following command:

display memory cmd_code thru  status+1fh
blocked bytes  <RETURN>

This command string is used to specify the range of memory from
cmd_code to status+1fh.

2-20 Getting Started



Modifying Memory This demo program simulates a primitive command interpreter.  In the
program, the command code memory location is set to a desired value
(initially 66H, ascii character "f").  Memory locations semaphore and
cmd_code correspond to memory address 1009:0044 hex and
1009:0045 hex respectivity. 

You can use the modify memory command to send commands to the
sample program. For example, to enter the command ’t’ at address
1009:0044 and enter command ’A’ at address 1009:0045: use the
following commands.

modify memory cmd_code string to  ’A’ <RETURN>
modify memory semaphore string to  ’t’
<RETURN>

After the memory location are modified, the memory display shows the
following 

 Memory  :bytes :blocked :update
   address       data       :hex                                :ascii
  1000 00A8-AF   66   00   66   00   4E   6F   20   63     f . f .  N o   c
  1000 00B0-B7   6F   6D   6D   61   6E   64   20   65     o m m a  n d   e
  1000 00B8-BF   6E   74   65   72   65   64   20   20     n t e r  e d
  1000 00C0-C7   20   20   20   00   20   20   20   00           .        .
  1000 00C8-CF   41   77   61   69   74   69   6E   67     A w a i  t i n g
  1000 00D0-D7   20   63   6F   6D   6D   61   6E   64       c o m  m a n d
  1000 00D8-DF   20   20   20   20   20   20   20   00                    .
  1000 00E0-E7   20   20   20   00   00   00   00   00           .  . . . .

STATUS:   n70433--Running user program__________________________________...R....
display memory cmd_code thru status+1fh  blocked  bytes

  run     trace     step   display           modify   break     end    ---ETC--

Getting Started 2-21



1Breaking into the
Monitor

The "break" command allows you to divert emulator execution from
the user program to the monitor.  You can continue user program
execution with the "run" command.  To break emulator execution from
the demo program to the monitor, enter the following command.

break <RETURN>

Notice that the current address is pointed out with inverse video in
displaying memory when the execution breaks to the monitor. 

 Memory  :bytes :blocked :update
   address       data       :hex                                :ascii
  1000 00A8-AF   41   00   66   00   43   6F   6D   6D     A . f .  C o m m
  1000 00B0-B7   61   6E   64   20   27   41   27   20     a n d    ’ A ’
  1000 00B8-BF   65   6E   74   65   72   65   64   20     e n t e  r e d
  1000 00C0-C7   20   20   20   00   20   20   20   00           .        .
  1000 00C8-CF   43   6F   6D   6D   61   6E   64   20     C o m m  a n d
  1000 00D0-D7   72   65   63   65   69   76   65   64     r e c e  i v e d
  1000 00D8-DF   20   20   20   20   20   20   20   00                    .
  1000 00E0-E7   20   20   20   00   00   00   00   00           .  . . . .

STATUS:   n70433--Running user program__________________________________...R....
modify memory semaphore string  to ’t’

  run     trace     step   display           modify   break     end    ---ETC--

2-22 Getting Started



Using Software
Breakpoints

Software breakpoints are handled by the 70433 BRK 3 instruction.
When you define or enable a software breakpoint, the emulator will
replace the opcode at the software breakpoint address with a breakpoint
interrupt instruction(BRK 3).

Caution Software breakpoints should not be set, cleared, enabled, or disabled
while the emulator is running user code. If any of these commands are
entered while the emulator is running user code and the emulator is
executing code in the area where the breakpoint is being modified,
program execution may be unreliable.

Note You must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data).  If a software
breakpoint is set at a memory location which is not an instruction
opcode, the software breakpoint instruction will never be executed.
Further, your program won’t work correctly.

Note NMI will be ignored, when software breakpoint and NMI occur at the
same time.

Note Because software breakpoints are implemented by replacing opcodes
with the breakpoint interrupt instruction, you cannot define software
breakpoints in target ROM. Them you can use software breakpoints.

Getting Started 2-23



When software breakpoints are enabled and the emulator detects the
BRK 3 interrupt instruction, it generates a break into the monitor. Since
the system controller knows the locations of defined software
breakpoints, it can determine whether the BRK 3 instruction in your
target program.

If the BRK 3 interrupt was generated by a software breakpoint,
execution breaks to the monitor, and the breakpoint interrupt
instruction(BRK 3) is replaced by original opcode. A subsequent run or
step command will execute from this address.

If the BRK 3 interrupt was generated by a BRK 3 interrupt instruction
in the target program, execution still breaks to the monitor, and an
"undefined breakpoint" status message is displayed. To continue
program execution, you must run or step from the target program’s
breakpoint interrupt vector address.

Enabling/Disabling
Software Breakpoints

When you initially enter the Softkey Interface, software breakpoints are
disabled.  To enable the software breakpoints feature, enter the
following command.

modify software_breakpoints enable <RETURN>

When software breakpoints are enabled and you set a software
breakpoint, the 70433 breakpoint interrupt instruction (BRK 3) will be
placed at the address specified.  When the breakpoint interrupt
instruction is executed, program execution will break into the monitor.

Setting a Software
Breakpoint

To set a software breakpoint at line 68 of "skdemo.c", enter the
following command.

modify software_breakpoints set line 70
<RETURN>

To see the address where the software breakpoint has been set, enter the
following command:

display memory line 70 mnemonic  <RETURN>
set source on inverse_video off <RETURN>

2-24 Getting Started



The asterisk (*) in left side of the address lists points out that the
software breakpoint has been set.  The opcode at the software
breakpoint address was replaced to the software breakpoint instruction
(BRK 3).

Displaying Software
Breakpoints

To display software breakpoints, enter the following command.

display software_breakpoints <RETURN>

 Memory  :mnemonic :file = skdemo.c:
   address   label          data
      70             if (semaphore == NEW_CMD){
* 8020 0085                CC          BRK 3
  8020 0086                363E0800    OR DS0:BYTE PTR [BW][IX],AL
  8020 008A                D6803D74    CMP DS3:BYTE PTR [IY],74
  8020 008E                7575        BNE/Z :itoo/skdemo.c:+000DC
      71                 semaphore = CMD_STARTED;
  8020 0090                0F3E1E0800  MOV DS2,BW,DWORD PTR 0008
  8020 0095                63C60773    MOV DS2:BYTE PTR [BW],73
      72                 strcpy (status, command_R);
  8020 0099                0F36161800  MOV DS3,DW,DWORD PTR 0018
  8020 009E                0F76        PUSH DS3/VPC
  8020 00A0                52          PUSH DW
  8020 00A1                0F363E0000  MOV DS3,IY,DWORD PTR 0000
  8020 00A6                0F76        PUSH DS3/VPC
  8020 00A8                57          PUSH IY
  8020 00A9                9AFA001080  CALL FAR PTR :_strcpy

STATUS:   n70433--Running in monitor____________________________________...R....
set  source  on  inverse_video  off

  run     trace     step   display           modify   break     end    ---ETC--

Getting Started 2-25



The software breakpoints display shows that the breakpoint is pending.
When breakpoints are hit they become inactivated.  To reactivate the
breakpoint so that is "pending", you must reenter the "modify
software_breakpoints set" command.

After the software breakpoint has been set, enter the following
command to cause the emulator to continue executing the demo
program.

run <RETURN>
A message on the status line shows that the software breakpoint has
been hit.  The status line also shows that the emulator is now executing
in the monitor.

The software breakpoint address is pointed out with inverse video in
displaying memory in mnemonic format.  To see the software
breakpoint with memory, enter the following command.

display memory line 70 mnemonic  <RETURN>

Notice that the original opcode was replaced at the address that the
software breakpoint has been set.

Software breakpoints  :enabled
   address          label                                          status
  8020 0085         skdemo.c:                           line   70  pending

STATUS:   n70433--Running in monitor____________________________________...R....
display software_breakpoints

  run     trace     step   display           modify   break     end    ---ETC--

2-26 Getting Started



Clearing a Software
Breakpoint

To remove software breakpoint defined above, enter the following
command.

modify software_breakpoints clear line 70
<RETURN>

The breakpoint is removed from the list, and the original opcode is
restored if the breakpoint was pending.

To clear all software breakpoints, you can enter the following
command.

modify software_breakpoints clear <RETURN>

Displaying
Registers

Enter the following command to display registers.  You can display the
basic registers, or an individual register.

display registers <RETURN>

Registers

Next_PC 8020:0085H
 PSW F083   [    s    c]
  PC 0085   SP 0FF4   IX 0000   IY 00AA   BP 0FF4
  PS 8020   SS 1500  DS0 1500  DS1 0000  DS2 0100   DS3 0100
  AW 0041   BW 00AC   CW 0000   DW 0000

STATUS:   n70433--Running in monitor      Software break: 08020:00085___...R....
display registers

  run     trace     step   display           modify   break     end    ---ETC--

Getting Started 2-27



Note To display or modify SFR(Special Function Register), you must use
"display/modify register" commands.

Refer to "REGISTER CLASS and NAME" section in "Using the
Emulator" chapter .

Stepping Through
the Program

The step command allows you to step through program execution an
instruction or a number of instructions at a time.  Also, you can step
from the current program counter or from a specific address.  To step
through the example program from the address of the software
breakpoint set earlier, enter the following command.

step <RETURN>, <RETURN>, <RETURN>, ...

You will see the inverse-video moves according to the step execution.
You can continue to step through the program just by pressing the
<RETURN> key; when a command appears on the command line, it
may be entered by pressing <RETURN>.

Registers

Step_PC 8020:0085H  MOV DS3,IY,DWORD PTR 0008
Next_PC 8020:008AH
 PSW F083   [    s    c]
  PC 008A   SP 0FF4   IX 0000   IY 00AA   BP 0FF4
  PS 8020   SS 1500  DS0 1500  DS1 0000  DS2 0100   DS3 0100
  AW 0041   BW 00AC   CW 0000   DW 0000

Step_PC 8020:008AH  CMP DS3:BYTE PTR [IY],74
Next_PC 8020:008EH
 PSW F083   [    s    c]
  PC 008E   SP 0FF4   IX 0000   IY 00AA   BP 0FF4
  PS 8020   SS 1500  DS0 1500  DS1 0000  DS2 0100   DS3 0100
  AW 0041   BW 00AC   CW 0000   DW 0000

STATUS:   n70433--Stepping complete_____________________________________...R....
step

2-28 Getting Started



You can step program execution by source lines, enter:

step source <RETURN>

Source line stepping is implemented by single stepping assembly
instructions until the next PC is outside of the address range of the
current source line. When source line stepping is attempted on
assembly code, stepping will complete when a source line is found. To
terminate stepping type <Ctrl>-C.

Note There are cases in which the emulator can not step.  Step command is
not accepted between each of the following instructions and the next
instruction. 
1) Instructions that manipulate sreg or xsreg: MOV sreg,reg16, 
     MOV sreg,mem16,  POP sreg, MOV xsreg,reg, 
     MOV xsreg, mem16, POP xsreg. 
2) Prefix instructions: PS:, SS:, DS0:, DS1:, DS2:, DS3:, IRAM,
     REPC, REPNC, REP, REPE, REPZ, REPNE, REPNZ,
     BUSLOCK. 
3) EI, DI,RETI, RETRBI. 
4) POP PSW.
5) FINT. 
6) BRKCS, BRK 3, BRK imm8, BRKV(V=1), 
     CHKIND(mem32>reg16 or (mem32+2)<reg16), FPO1 fp-op,
     FPO1 fp-op,mem;, FPO2 fp-op, FPO2 fp-op,mem;, TSKSW,
     MOVSPB, MOVSPA. 
7) RSTWDT. 
8) The first instruction of interrupt processing routine. 

Enter the following command to cause sample program execution to
continue from the current program counter.

run <RETURN>

Getting Started 2-29



Using the Analyzer HP 64700 emulators contain an emulation analyzer.  The emulation
analyzer monitors the internal emulation lines (address, data, and
status).  Optionally, you may have an additional 16 trace signals which
monitor external input lines.  The analyzer collects data at each pulse of
a clock signal, and saves the data (a trace state) if it meets a "storage
qualification" condition.

Source Line
Referencing

A trace may be taken and displayed using source line referencing.
Also, lines of the source program can be displayed with the trace list
where the trace occurred.

To display the trace with source code in inverse video, enter the
following command:

set source on inverse_video on  <RETURN>

Specifying a Simple
Trigger

Suppose you want you trace program execution after the point at which
the sample program read the byte value 74H(’t’) from the address
semaphore. The following command make this trace specification.

trace after semaphore data  0xx74h status
read  <RETURN>

Note that the analyzer is to search for a lower byte read of 74H because
the address is even.

The STATUS message shows "Emulation trace started."

When the memory location (semaphore) is modified, the trace is
completed, and the STATUS message shows "Emulation trace
complete."  The program acts upon the case statement where cmd_code
was changed in memory to ’A’.  Enter the following command:

modify memory semaphore string to  ’t’
<RETURN>

2-30 Getting Started



Display the Trace The trace listings which following are of program execution on the
70433 emulator. To see the trace list, enter the following command:

display trace <RETURN>

The trace list shows the trace after line
(semaphore = CMD_STARTED).

To list the next lines of the trace, press the <PGDN> or <NEXT> key.

Trace List                  Offset=0
Label:      Address       Data    Opcode or Status w/ Source Lines   time count
Base:       symbols       hex            mnemonic w/symbols           relative
after  skdemo:semaphore     FF74    xx74  read mem                      2.6   uS
+001   :skdemo.:+000065     FF74  BNE/Z :itoo/skdemo.c:+000DC         320     nS
+002   :skdemo.:+000067     3E0F    3E0F  fetch                         1.6   uS
+003   :skdemo.:+000069     081E    081E  fetch                         1.9   uS
      ##########skdemo.c - line    71 ##########################################
                  semaphore = CMD_STARTED;
+004   :skdemo.:+000067     081E  MOV DS2,BW,DWORD PTR 0008           320     nS
+005   :skdemo.:+00006B     6300    6300  fetch                         3.5   uS
+006   :skdemo.:+00006D     07C6    07C6  fetch                         1.9   uS
+007          015008        00AA    00AA  read mem                      1.9   uS
+008   :skdemo.:+00006F     0F73    0F73  fetch                         1.9   uS
+009          01500A        0100    0100  read mem                      1.9   uS
+010   :skdemo.:+00006C     0100  MOV DS2:BYTE PTR [BW],73            320     nS
+011   skdemo:semaphore     0073    xx73  write mem                     3.5   uS
+012   :skdemo.:+000071     1636    1636  fetch                         1.9   uS

STATUS:   n70433--Running user program    Emulation trace complete______...R....
display trace

  run     trace     step   display           modify   break     end    ---ETC--

Getting Started 2-31



Displaying Trace with
No Symbol

The trace listing shown above has symbol information because of the
"set symbols on" setting before in this chapter.  To see the trace listing
with no symbol information, enter the following command.

set symbols off <RETURN>

As you can see, the analysis trace display shows the trace list without
symbol information. 

Trace List                  Offset=0
Label:  Address   Data        Opcode or Status w/ Source Lines       time count
Base:     hex     hex                     mnemonic                    relative
after    0100AA     FF74    xx74  read mem                              2.6   uS
+001     08028E     FF74  BNE/Z 80305                                 320     nS
+002     080290     3E0F    3E0F  fetch                                 1.6   uS
+003     080292     081E    081E  fetch                                 1.9   uS
      ##########skdemo.c - line    71 ##########################################
                  semaphore = CMD_STARTED;
+004     080290     081E  MOV DS2,BW,DWORD PTR 0008                   320     nS
+005     080294     6300    6300  fetch                                 3.5   uS
+006     080296     07C6    07C6  fetch                                 1.9   uS
+007     015008     00AA    00AA  read mem                              1.9   uS
+008     080298     0F73    0F73  fetch                                 1.9   uS
+009     01500A     0100    0100  read mem                              1.9   uS
+010     080295     0100  MOV DS2:BYTE PTR [BW],73                    320     nS
+011     0100AA     0073    xx73  write mem                             3.5   uS
+012     08029A     1636    1636  fetch                                 1.9   uS

STATUS:   n70433--Running user program    Emulation trace complete______...R....
set symbols  off

  run     trace     step   display           modify   break     end    ---ETC--

2-32 Getting Started



Displaying Trace with
Time Count Absolute

Enter the following command to display count information relative to
the trigger state.

display trace count absolute <RETURN> 

If you want to see the relative time of the each states, enter the
following command.

display trace count relative <RETURN>

Trace List                  Offset=0
Label:  Address   Data        Opcode or Status w/ Source Lines       time count
Base:     hex     hex                     mnemonic                    absolute
after    0100AA     FF74    xx74  read mem                          ------------
+001     08028E     FF74  BNE/Z 80305                               + 320     nS
+002     080290     3E0F    3E0F  fetch                             +   1.9   uS
+003     080292     081E    081E  fetch                             +   3.8   uS
      ##########skdemo.c - line    71 ##########################################
                  semaphore = CMD_STARTED;
+004     080290     081E  MOV DS2,BW,DWORD PTR 0008                 +   4.16  uS
+005     080294     6300    6300  fetch                             +   7.68  uS
+006     080296     07C6    07C6  fetch                             +   9.60  uS
+007     015008     00AA    00AA  read mem                          +  11.5   uS
+008     080298     0F73    0F73  fetch                             +  13.4   uS
+009     01500A     0100    0100  read mem                          +  15.4   uS
+010     080295     0100  MOV DS2:BYTE PTR [BW],73                  +  15.7   uS
+011     0100AA     0073    xx73  write mem                         +  19.2   uS
+012     08029A     1636    1636  fetch                             +  21.1   uS

STATUS:   n70433--Running user program    Emulation trace complete______...R....
display trace count  absolute

  run     trace     step   display           modify   break     end    ---ETC--

Getting Started 2-33



Displaying Trace with
Compress Mode

If you want to see more executed instructions on a display, the 70433
emulator Softkey Interface provides compress mode for analysis
display.  To see trace display with compress mode, enter the following
command:

display trace compress on <RETURN>

As you can see, the analysis trace display shows the analysis trace lists
without fetch cycles.  With this command you can examine program
execution easily.

If you want to see all of cycles including fetch cycles, enter following
command:

display trace compress off <RETURN>

The trace display shows you all of the cycles the emulation analyzer
have captured.

Reducing the Trace
Depth

The default states displayed in the trace list is 256 states. To increase
the number of states, use the "display trace depth" command.

display trace depth 512 <RETURN>

Trace List                  Offset=0
Label:  Address   Data        Opcode or Status w/ Source Lines       time count
Base:     hex     hex                     mnemonic                    relative
after    0100AA     FF74    xx74  read mem                              2.6   uS
+001     08028E     FF74  BNE/Z 80305                                 320     nS
      ##########skdemo.c - line    71 ##########################################
                  semaphore = CMD_STARTED;
+004     080290     081E  MOV DS2,BW,DWORD PTR 0008                     3.8   uS
+007     015008     00AA    00AA  read mem                              7.36  uS
+009     01500A     0100    0100  read mem                              3.8   uS
+010     080295     0100  MOV DS2:BYTE PTR [BW],73                    320     nS
+011     0100AA     0073    xx73  write mem                             3.5   uS
      ##########skdemo.c - line    72 ##########################################
                  strcpy (status, command_R);
+013     080299     1636  MOV DS3,DW,DWORD PTR 0018                     2.6   uS
+015     015018     0060    0060  read mem                              5.12  uS
+017     01501A     0100    0100  read mem                              3.8   uS
+019     08029E     0F52  PUSH DS3/VPC                                  2.2   uS

STATUS:   n70433--Running user program    Emulation trace complete______...R....
display trace compress  on

  run     trace     step   display           modify   break     end    ---ETC--

2-34 Getting Started



Using the Storage
Qualifier

You can use storage qualifier to trace only states with specific
conditions. Suppose that you would like to trace only states which write
the message to the cmd_result area. To accomplish this, you can use the
"trace only" command like following.

trace after cmd_result only range  cmd_result
thru  +1fh status write  <RETURN>

Only write accesses to address cmd_result through cmd_result+1fh
will be stored in the trace buffer.

Modify the command input byte with the following command.

modify memory semaphore string to  ’t’
<RETURN>

The display shows that the message bytes are written to the location
cmd_result. You will find the status line still shows "Emulation trace
started" because the analyzer trace buffer is not filled up. As the length
of resulting message consists of 24 bytes, only 24 states are stored in
the trace buffer. If you want to stop the trace, enter the following
command.

stop_trace <RETURN>

The status line will shows "Emulation trace halted".

Trace List                  Offset=0
Label:  Address   Data        Opcode or Status w/ Source Lines       time count
Base:     hex     hex                     mnemonic                    relative
after    0100AC     0043    xx43  write mem                         ------------
+001     0100AD     6F00    6Fxx  write mem                            57.60  uS
+002     0100AE     006D    xx6D  write mem                            57.60  uS
+003     0100AF     6D00    6Dxx  write mem                            55.68  uS
+004     0100B0     0061    xx61  write mem                            57.60  uS
+005     0100B1     6E00    6Exx  write mem                            55.68  uS
+006     0100B2     0064    xx64  write mem                            55.68  uS
+007     0100B3     2000    20xx  write mem                            58.88  uS
+008     0100B4     0027    xx27  write mem                            57.60  uS
+009     0100B5     4100    41xx  write mem                            55.04  uS
+010     0100B6     0027    xx27  write mem                            57.60  uS
+011     0100B7     2000    20xx  write mem                            55.04  uS
+012     0100B8     0065    xx65  write mem                            57.60  uS
+013     0100B9     6E00    6Exx  write mem                            55.04  uS
+014     0100BA     0074    xx74  write mem                            57.60  uS

STATUS:   n70433--Running user program    Emulation trace started_______...R....
modify memory semaphore string  to ’t’

  run     trace     step   display           modify   break     end    ---ETC--

Getting Started 2-35



Trigger the Analyzer
at an Instruction
Execution State

The emulator analyzer can capture states of instruction execution. If
you want to trigger the analyzer when an instruction at a desired
address is executed, you should not set up the analyzer trigger
condition to detect only the address. If you do so, the analyzer will be
also triggered in case that the address is accessed to fetch the
instruction, or read the data from address. You should use the "exec"
status qualifier.Suppose that you want to trace the states of the
execution after the instruction at line 83 of the skdemo.c file, enter the
following command. The line 83 of the file skdemo.c is executed when
the memory location "cmd_code" is set ’C’ and "semaphore" is set ’t’.

trace after line 83 status exec  <RETURN>

The message "Emulation trace started" will appear on the status line.
To trigger the analyzer, enter the following commands.

modify memory cmd_code string to  ’C’ <RETURN>
modify memory semaphore string to  ’t’
<RETURN>

The status line now shows "Emulation trace complete".

The emulator has disassemble capability in trace listing. When the
emulator disassembles instructions in stored trace information, the fetch
cycles of each instruction are required. When you displayed the results
of analyzer trace, some lines which include "INSTRUCTION--opcode

Trace List                  Offset=0
Label:  Address   Data        Opcode or Status w/ Source Lines       time count
Base:     hex     hex                     mnemonic                    relative
after    0802EA     243E  INSTRUCTION--opcode unavailable           ------------
+001     0802EE     0F00    0F00  fetch                                 1.6   uS
+002     0802F0     5776    5776  fetch                                 1.9   uS
+003     015024     0018    0018  read mem                              1.9   uS
+004     0802F2     3E0F    3E0F  fetch                                 1.9   uS
+005     015026     0100    0100  read mem                              3.8   uS
+006     0802EF     0100  PUSH DS3/VPC                                320     nS
+007     0802F4     0416    0416  fetch                                 1.6   uS
+008     0802F1     0416  PUSH IY                                     320     nS
+009     015FF2     0100    0100  write mem                             1.6   uS
+010     0802F2     0100  MOV DS2,DW,DWORD PTR 0004                   640     nS
+011     015FF0     0018    0018  write mem                             1.3   uS
+012     0802F6     0F00    0F00  fetch                                 3.8   uS
+013     0802F8     527E    527E  fetch                                 1.9   uS
+014     015004     00AC    00AC  read mem                              1.9   uS

STATUS:   n70433--Running user program    Emulation trace complete______...R....
modify memory semaphore string  to ’t’

  run     trace     step   display           modify   break     end    ---ETC--

2-36 Getting Started



unavailable" message were displayed. Each line was instruction
execution cycle at the address in the left side of the displayed because
the fetch states for the instructions were not stored by the analyzer.

To display complete disassembles in the trace listing, you should
modify location of trigger state in trace list, referred to as the "trigger
position", to "about" instead of "after".

Emulator Analysis
Status Qualifiers

The following analysis status qualifiers may also be used with the
70433 emulator.

For a Complete
Description

For a complete description of using the HP 64700 Series analyzer with
the Softkey Interface, refer to the Analyzer Softkey Interface User’s
Guide.

Qualifier   Status bits                 Description
bg          0xxxxxxxxxxxxxxxx0xy        background
cpu         0x0000xx01xxx1xxxxy         cpu cycle
dma         0xx0000xx11xxx1xxxxy        DMA memory access
exec        0xxxx01xxxxxxxxxxxxy        execute instruction
fetch       0xx0000xx10xxx1xxxxy        program fetch
fg          0xxxxxxxxxxxxxxxx1xy        foreground
grd         0xxxx00xxxxxxx1x0xxy        guarded memory access
halt        0xx11xxxxxxxxx1xxxxy        halt
hold        0xxxxxxxxxxxxx0xxxxy        hold acknowledge
int         0xxxx10xxxxxxxxxxxxy        interrupt acknowledge
io          0xx0000xx01x001xxxxy        I/O access
mem         0x10000xxxxxxx1xxxxy        memory access
memio       0xx00000111xxx1xxxxy        memory to io
memsfr      0xx00000011xxx1xxxxy        memory to sfr
ms          01x0000xx01xxx1xxxxy        macro service
read        0xx0000xxx10xx1xxxxy        read
refresh     0xx0000xx001xx1xxxxy        refresh cycle
sfr         0xx0000xx01x111xxxxy        sfr access
stop        0xx10xxxxxxxxx1xxxxy        stop
write       0xx0000xxx11xx1xxxxy        write
wrrom       0xxxx00xxxxxxx10xxxy        write to rom

Getting Started 2-37



Resetting the
Emulator

To reset the emulator, enter the following command.

reset <RETURN>

Exiting the
Softkey Interface

There are several options available when exiting the Softkey Interface:
exiting and releasing the emulation system, exiting with the intent of
reentering (continuing), exiting locked from multiple emulation
windows, and exiting (locked) and selecting the measurement system
display or another module.

End Release System To exit the Softkey Interface, releasing the emulator so that other users
may use the emulator, enter the following command.

end release_system <RETURN>

Ending to Continue
Later

You may also exit the Softkey Interface without specifying any
options; this causes the emulator to be locked.  When the emulator is
locked, other users are prevented from using it and the emulator
configuration is saved so that it can be restored the next time you enter
(continue) the Softkey Interface.

end <RETURN>

Ending Locked from
All Windows

When using the Softkey Interface from within window systems, the
"end" command with no options causes an exit only in that window.
To end locked from all windows, enter the following command.

end locked <RETURN>

This option only appears when you enter the Softkey Interface via the
emul700 command.  When you enter the Softkey Interface via pmon
and MEAS_SYS, only one window is permitted.

Refer to the Softkey Interface Reference manual for more information
on using the Softkey Interface with window systems.

2-38 Getting Started



Selecting the
Measurement System

Display 
or Another Module

When you enter the Softkey Interface via pmon and MEAS_SYS, you
have the option to select the measurement system display or another
module in the measurement system when exiting the Softkey Interface.
This type of exit is also "locked"; that is, you can continue the
emulation session later.  For example, to exit and select the
measurement system display, enter the following command.

end select measurement_system <RETURN>

This option is not available if you have entered the Softkey Interface
via the emul700 command.

Getting Started 2-39



Notes

2-40 Getting Started



3

In-Circuit Emulation Topics

Introduction The emulator is in-circuit when it is plugged into the target system.
This chapter covers topics which relate to in-circuit emulation.

This chapter will:

Describe the issues concerning the installation of the emulator
probe into target systems.

Show you how to install the emulator probe.

Show you how to use features related to in-circuit emulation.

Prerequisites Before performing the tasks described in this chapter, you should be
familiar with how the emulator operates in general. Refer to the
Concepts of Emulation and Analysis manual and the "Getting Started"
chapter of this manual.

In-Circuit Emulation Topics 3-1



Installing the
Emulator Probe
into a Target
System

The 70433 emulator probe has a 132-pin PGA connector;
The emulator probe is also provided with a conductive pin protector to
protect the delicate gold-plated pins of the probe connector from
damage due to impact. Since the protector is non-conductive, you may
run performance verification with no adverse effects when the emulator
is out-of-circuit.

Caution Protect against static discharge. The emulator probe contains devices
that are susceptible to damage by static discharge. Therefore,
precautionary measures should be taken before handling the
microprocessor connector attached to the end of the probe cable to
avoid damaging the internal components of the probe by static
electricity.

Caution Make sure target system power is OFF. Do not install the emulator
probe into the target system microprocessor socket with power applied
to the target system. The emulator may be damaged if target system
power is not removed before probe installation.

Caution Make sure pin 1 of probe connector is aligned with pin 1 of the socket.
When installing the emulation probe, be sure that probe is inserted into
the processor socket so that pin 1 of the connector aligns with pin 1 of
the socket. Damage to the emulator probe will result if the probe is
incorrectly installed.

3-2 In-Circuit Emulation Topics



Caution Protect your target system CMOS components. If you target system
contains any CMOS components, turn ON the target system first, then
turn ON the emulator. Likewise, turn OFF your emulator first, then turn
OFF the target system.

Pin Protector The target system probe has a pin protector that prevents damage to the
prove when inserting and removing the probe from the target system
microprocessor socket. Do not use the probe without a pin protector
installed. If the target system probe is installed on a densely populated
circuit board, there may not be enough room to accommodate the
plastic shoulders of the probe socket. If this occurs, another pin
protector may be stacked onto the existing pin protector.

Conductive Pin Guard HP emulators are shipped with a conductive plastic or conductive foam
pin guard over the target system probe pins. This guard is designed to
prevent impact damage to the pins and should be left in place while you
are not using the emulator. However, when you do use the emulator,
either for normal emulation tasks, or to run performance verification on
the emulator, you must remove this conductive pin guard to avoid
intermittent failures due to the target system probe lines being shorted
together.

Caution Always use the pin protectors and guards as described above. Failure to
use these devices may result in damage to the target system probe pins.
Replacing the target system probe is expensive; the entire probe and
cable assembly must be replaced because of the wiring technology
employed.

 

In-Circuit Emulation Topics 3-3



Installing into a PGA
Type Socket

To connect the microprocessor connector to the target system,
proceeded with the following instructions.

Remove the 70433 microprocessor (PGA type) from the target
system socket.  Note the location of pin A1 on the
microprocessor and on the target system socket.

Store the microprocessor in a protected environment (such as
antistatic form).

Install the microprocessor connector into the target system
microprocessor socket.

Caution DO NOT use the microprocessor connector without using a pin
protector. The pin protector is provided to prevent damage to the
microprocessor connector when connecting and removing the
microprocessor connector from the target system PGA socket.

Installing into a QFP
Type Socket

To connect the 70433 emulator microprocessor connector to the NEC
EV-9200GD-120 socket on the target system, use the NEC
EV-95001GD-120 adapter.

3-4 In-Circuit Emulation Topics



Figure 3-1 Installing into a 70433 PGA type socket

In-Circuit Emulation Topics 3-5



In-Circuit
Configuration
Options

The 70136 emulator provide configuration options for the following
in-circuit emulation issues.  Refer to the chapter on "Configuring the
Emulator" for more information on these configuration options.

Using the Target System Clock Source

The default emulator configuration selects the internal 12.5 MHz
(system clock speed) clock as the emulator clock source. You should
configure the emulator to select an external target system clock source
for the "in-circuit" emulation.

Allowing the Target System to Insert Wait States

High-speed emulation memory provides no-wait-state operation.
However, the emulator may optionally respond to the target system
ready line while emulation memory is being accessed.

Enabling NMI, HLDRQ and RESET Input from the Target
System

You can configure whether the emulator should accept or ignore the
NMI, HLDRQ and RESET signals from the target system.

Running the
Emulator from
Target Reset

You can specify that the emulator begins executing from target system
reset.  When the target system RESET line becomes active and then
inactive, the emulator will start reset sequence (operation) as actual
microprocessor.

At First, you must specify the emulator responds to RESET signal by
the target system (see the "Enable RESET inputs from target system?"
configuration in "Configuring the Emulator" chapter  of this manual). 

3-6 In-Circuit Emulation Topics



To specify a run from target system reset, enter the follwing command:

run from reset <RESET>

The status now shows that the emulator is "Awaiting target reset".
After the target system is reset, the status line message will change to
show the appropriate emulator status.   

Note In the "Awaiting target reset" status(T>), you can not break into the
monitor. If you enter "r rst" in out-of-circuit or in the configuration that
emulator does not accepted target system reset(cf rst=dis), you must
reset the emulator.

The 70433 emulator supports power on reset. If you want program to
be executed by power on reset, execute the following process.

1) Enter "reset"

2) Turn OFF your target system

3) Enter "run from reset"

4) Turn ON your target system

Note When you enter "r from reset", you will see c> system prompt if you
use external clock. This status is the same as "Awaiting target reset"
status.

In-Circuit Emulation Topics 3-7



Pin State in
Background

While the emulator is running in the background monitor, probe pins
are in the following state.

Address Bus Same as foreground

Data Bus Always high impedance otherwise you direct the
emulator to access target memory. When accessing
target memory, I/O by background monitor, same
as foreground.

ASTB Same as foreground.

DEX Same as foreground

WRL,WRH Always high level. Except when accessing target
memory, I/O by background monitor, same as
foreground.

RD Same as foreground except for emulation memory
write. When accessing emulation memory, low.

Other Same as foreground

3-8 In-Circuit Emulation Topics



Target System
Interface

P1(0:6)
HLDRQ

These signals are connected to 74ACT14
through 51 ohm series register and 100K ohm
pull-down register.

P6(0:3) These signals are connected to 70433 emulation
processor and FET Switch through 1K ohm
register.

P0(0:7) P2(0:5)
P3(0:6) P4(0:7)
P5(0:2) P7(0:7)
P8(0:1)

These signals are connected to 70433 emulation
processor through 51 ohm register and 10K
ohm pull-up register.

In-Circuit Emulation Topics 3-9



RESET This signal is connected to 74ACT14 through
51 ohm register and 10K ohm pull-up register.

Other signals These signals are connected to 74FCT245 or
74FCT244 through 51 ohm register and 10K
ohm pull-up register.

3-10 In-Circuit Emulation Topics



4

Configuring the Emulator 

Introduction The 64768 emulator can be used in all stages of target system
development.  For instance, you can run the emulator out-of-circuit
when developing target system software, or you can use the emulator
in-circuit when integrating software with target system hardware.
Emulation memory can be used in place of, or along with, target system
memory.  You can use the emulator’s internal clock or the target
system clock.  You can execute target programs in real-time or allow
emulator execution to be diverted into the monitor when commands
request access of target system resources (target system memory,
register contents, etc.)

The emulator is a flexible instrument and it may be configured to suit
your needs at any stage of the development process. This chapter
describes the options available when configuring the 7330 emulator.

The configuration options are accessed with the following command.

modify configuration <RETURN>

After entering the command above, you will be asked questions
regarding the emulator configuration.  The configuration questions are
listed below and grouped into the following classes.

Configuring the Emulator 4-1



General Emulator Configuration:

– Specifying the emulator clock source.
(Internal/external.)

– Selecting monitor entry after configuration.

– Restricting to real-time execution.

Memory Configuration:

– Selecting the emulation monitor type.

– Specifying the monitor location.

– Mapping memory.

Emulator Pod Configuration:

– Selecting Date bus size.

– Selecting mnemonic type for memory display.

– Selecting algorithm for physical run addresses.

– Specifying Reset value for the stack segment.

– Specifying Reset value for the stack pointer.

– Enabling RESET inputs from target system.

– Enabling NMI inputs from target system.

– Enabling READY inputs from target system.

– Enabling HLDRQ inputs from target system.

– Selecting target memory access size.

Debug/Trace Configuration:

– Enabling breaks on writes to ROM.

– Specifying tracing of foreground/background cycles.

– Specifying tracing of internal DMA cycles.

4-2 Configuring the Emulator



– Specifying tracing of refresh cycles.

Simulated I/O Configuration: Simulated I/O is described in the
Simulated I/O reference manual.

External Analyzer Configuration: See the Analyzer Softkey
Interface User’s Guide.

Interactive Measurement Configuration: See the chapter on
coordinated measurements in the Softkey Interface Reference manual.

Configuring the Emulator 4-3



General Emulator
Configuration

The configuration questions described in this section involve general
emulator operation.

Micro-processor
Clock Source?

This configuration question allows you to select whether the emulator
will be clocked by the internal clock source or by a target system clock
source.

internal Selects the internal clock oscillator as the emulator
clock source.  The emulators’ internal clock speed
is 12.5 MHz (system clock).

external Selects an external target system clock source. In
the case of HP 64768A, the emulator runs with
target system clock from 4 to 25 MHz. And, in the
case of HP 64768A, the emulator runs with target
system clock from 4 to 25 MHz. And, 

Note Changing the clock source drives the emulator into the reset state.  If
you answer "yes" to the "Enter monitor after configuration?" question
that follows, the emulator resets (due to the clock source change) then
breaks into the monitor when the configuration is saved.

Enter Monitor After
Configuration?

This question allows you to select whether the emulator will be running
in the monitor or held in the reset state upon completion of the
emulator configuration.

How you answer this configuration question is important in some
situations.  For example, when the external clock has been selected and
the target system is turned off, reset to monitor should not be selected;
otherwise, configuration will fail. When an external clock source is
specified, this question becomes "Enter monitor after configuration
(using external clock)?" and the default answer becomes "no".

4-4 Configuring the Emulator



yes When reset to monitor is selected, the emulator will
be running in the monitor after configuration is
completed.  If the reset to monitor fails, the
previous configuration will be restored.

no After the configuration is complete, the emulator
will be held in the reset state.

Restrict to Real-Time
Runs?

This configuration allows to you specify whether program execution
should take place in real-time or whether commands should be allowed
to cause breaks to the monitor during program execution.

no All commands, regardless of whether or not they
require a break to the emulation monitor, are
accepted by the emulator.

yes When runs are restricted to real-time and the
emulator is running the user program, all commands
that cause a break (except "reset", "break", "run",
and "step") are refused.  For example, the following
commands are not allowed when runs are restricted
to real-time:

Display/modify registers.

Display/modify target system memory. 

Display/modify I/O.

Caution If your target system circuitry is dependent on constant execution of
program code, you should restrict the emulator to real-time runs.  This
will help insure that target system damage does not occur.  However,
remember that you can still execute the "reset", "break", and "step"
commands; you should use caution in executing these commands.

Configuring the Emulator 4-5



Memory
Configuration

The memory configuration questions allows you to select the monitor
type, to select the location of the monitor, and to map memory.  To
access the memory configuration questions, you must answer "yes" to
the following question.

Modify memory configuration?

Monitor Type? The monitor is a program which is executed by the emulation
processor.  It allows the emulation system controller to access target
system resources.  For example, when you enter a command that
requires access to target system resources (display target memory, for
example), the system controller writes a command code to a
communications area and breaks the execution of the emulation
processor into the monitor.  The monitor program then reads the
command from the communications area and executes the processor
instructions  which access the target system.  After the monitor has
performed its task, execution returns to the user program.  Monitor
program execution can take place in the "background" or "foreground"
emulator modes.

In the foreground emulator mode, the emulator operates as would the
target system processor.
In the background emulator mode, foreground execution is suspended
so that the emulation processor may be used for communication with
the system controller, typically to perform tasks which access target
system resources.

A background monitor  program operates entirely in the background
emulator mode; that is, the monitor program does not execute as if it
were part of the target program.  The background monitor does not take
up any processor address space and does not need to be linked to the
target program.  The monitor resides in dedicated background memory.

A foreground monitor program performs its tasks in the foreground
emulator mode; that is, the monitor program executes as if it were part
of the target program.  Breaks into the monitor always put the emulator
in the background mode; however, foreground monitors switch back to
the foreground mode before performing monitor functions. 

4-6 Configuring the Emulator



Note All memory mapper terms are deleted when the monitor type is
changed!

background The default emulator configuration selects the
background monitor. A memory overlay is created
and the background monitor is loaded into that area.

Note While running in background monitor, the 64768 emulator ignores
target system reset.

When the background monitor is selected, the execution of the  monitor
is hidden from the target system (except for background cycles).  When
you select the background monitor and the current monitor type is
"foreground", you are asked the next question. 

1. Reset map (change of monitor type requires map reset)? 

This question will be asked if you change the monitor type (in this case,
you have changed the monitor type from "foreground" to
"background").  This question reminds you that the map will be reset
and allows you to confirm your decision.

no The memory map is not reset, and the monitor type
is not changed.

yes This memory map is reset due to the change in
monitor type.

Configuring the Emulator 4-7



foreground When you select the foreground monitor, processor
address space is taken up.  The foreground monitor
takes up 2K bytes of memory.  When the
foreground monitor is selected, breaking into the
monitor still occurs in a brief background state, but
the rest of the monitor program, the saving of
registers and the dispatching of emulation
commands, is executed in foreground.

Note You must not use the foreground monitor if you wish to perform
coordinated measurements.

When you select the foreground monitor and the current monitor type
is "background", you are asked the next question. 

1. Reset map (change of monitor type requires map reset)?

This question will be asked if you change the monitor type (in this case,
you have changed the monitor type from "background" to
"foreground").  This question reminds you that the map will be reset
and allows you to confirm your decision.

no The memory map is not reset, and the monitor type
is not changed.

yes This memory map is reset due to the change in
monitor type.

2. Foreground monitor location? 

You can relocate the monitor to any 2K byte boundary.  The location of
a foreground monitor is important because it will occupy part of the
processor address space. Foreground monitor locations must not
overlap the locations of target system programs.  When entering
monitor block addresses, you must only specify addresses on 2K byte
boundaries; otherwise, the configuration will be invalid, and the
previous configuration will be restored.

4-8 Configuring the Emulator



Note You should not load the foreground monitor provided with the 70433
emulator at the base address 0 or 0ff800 hex; because the 70433
microprocessor’s vector table and SFR are located respectively.

3. Monitor filename?

This question allows you to specify the name of the foreground monitor
program absolute file.  Remember that you must assemble and link
your foreground monitor starting at the 2K byte boundary specified for
the previous "Foreground monitor location?" question.

The monitor program will loaded after you have answered all the
configuration questions.

Only the 2k bytes of memory reserved for the monitor are loaded at the
end of configuration; therefore, you should not link the foreground
monitor to the user program. If it is important that the symbol database
contain both monitor and user program symbols, you can create a
different absolute file in which the monitor and user program are
linked.  Then, you can load this file after configuration.

Using the Foreground Monitor. When using the foreground
monitor, your program  should set up a stack. The foreground monitor
assumes that there is a stack in the foreground program, and this stack
is used to save PS, PC, and PSW upon entry into the monitor.

Mapping Memory The emulation memory consists of 128k, 512k or 1M bytes, mappable
in 256 byte blocks.  However, you may use 126k,510k or 1022k bytes
of emulation memory for your target system, because 2k bytes of
emulation memory is occupied by the monitor. The emulation memory
system does not introduce wait states. 

Configuring the Emulator 4-9



Note You can insert wait states on accessing emulation memory.  Refer to
the "Enable READY input from the target system?" section in this
chapter.

The memory mapper allows you to characterize memory locations.  It
allows you specify whether a certain range of memory is present in the
target system or whether you will be using emulation memory for that
address range.  You can also specify whether the target system memory
is ROM or RAM, and you can specify that emulation memory be
treated as ROM or RAM.

When a foreground monitor selected, a 2k byte block is automatically
mapped at the address specified by the "Foreground monitor location?"
question.

Note Target system accesses to emulation memory are not allowed. Target
system devices that take control of the bus (for example, DMA
controllers) cannot access emulation memory. 

Blocks of memory can also be characterized as guarded memory.
Guarded memory accesses will generate "break to monitor" requests.
Writes to ROM will generate "break to monitor" requests if the "Enable
breaks on writes to ROM?" configuration item is enabled (see the
"Debug/Trace Configuration" section which follows).

Determining the Locations to be Mapped

Typically, assemblers generate relocatable files and linkers combine
relocatable files to form the absolute file.  The linker load map listing
will show what locations your program will occupy in memory.

4-10 Configuring the Emulator



Emulator Pod
Configuration

To access the emulator pod configuration questions, you must answer
"yes" to the following question.

Modify emulator pod configuration?

Date bus size? This configuration specifies which the data bus size microprocessor
operates with 8bit or 16bit.

16 Selecting 16bit data bus size specifies that the
microprocessor operates with 16bit data bus size. 

8 Selecting 8bit data bus size specifies that the
microprocessor operates with 8bit data bus size.

Note The 64768 emulator operates in accordance with this configuration
instead of D8/16 signal from target system. D/8/16 signal from target
system is ignored.

Note Changing the data bus size drives the emulator into the reset state.  If
you answer "yes" to the "Enter monitor after configuration?" question,
the emulator resets (due to the data bus size change) then breaks into
the monitor when the configuration is saved.

Memory display
mnemonic?  

This configuration specifies the type of mnemonic that are used by the
monitor program to display memory. When a command requests the
monitor to display memory, the monitor program will look at the
mnemonic type setting to determine whether uPD70433(V55PI) or
iAPX86/10(8086) mnemonic should be used. 

70433 Selecting the 70433 mnemonic type specifies that
the emulator will display memory in
uPD70433(V55PI) mnemonic. 

Configuring the Emulator 4-11



8086 Selecting the 8086 mnemonic type specifies that the
emulator will display memory in iAPX86(8086)
mnemonic. 

The default emulator configuration selects the 70433 mnemonic type at
power up initialization.

Note The instruction that is not include iAPX86/10 mnemonic is displayed
with uPD70433 mnemonic even if you specify this item is 8086.

Segment Algorithm? The run and step commands allow you to enter addresses in either
logical form (segment:offset, e.g., 0F000H:0000H) or physical form
(e.g., 0F0000H).  When a physical address (non-segmented) is entered
with either a run or step command, the emulator must convert it to a
logical (segment:offset) address.

minseg Specifies that the physical run address is converted
such that the low 16 bits of the address become the
offset value.  The physical address is right-shifted 4
bits and ANDed with 0F000H to yield the segment
value.

logical_addr = ((phys_addr >> 4) & 0xf000):(phys_addr & 0xffff)

maxseg Specifies that the low 4 bits of the physical address
become the offset.  The physical address is
right-shifted 4 bits to yield the segment value.

logical_addr =  (phys_addr >> 4):(phys_addr & 0xf)

curseg Specifies that the value entered with either a run or
step command (0 thru 0ffff hex) becomes the offset.
In this selecting, the current segment value is not
changed. 

logical_addr = (current segment):(entered value) 

If you use logical addresses other than the three methods which above,
you must enter run and step addresses in logical form. 

4-12 Configuring the Emulator



Reset value for the
stack segment?

This question allows you to specify the stack segment(SS) after the
emulation reset. This configuration is useful only if foreground monitor
is used.

Reset value for the
stack pointer? 

This question allows you to specify the stack pointer(SP) after the
emulation reset. This configuration is useful only if foreground monitor
is used.

Note When you are using the foreground monitor, the stack address should
be defined in an emulation memory or target system RAM area which
is not used by target program.

Respond RESET
from target system?

The 64768 emulator can respond or ignore target system reset while
running in user program or waiting for target system reset (refer to "run
from reset" command in the Softkey Interface Reference manual).
While running in background monitor, the 64768 emulator ignores
target system reset completely independent on this setting. 

yes Specify that, this is a default configuration, make
the emulator to respond to reset from target system.
In this configuration, emulator will accept reset and
execute from reset vector (0FFFF0 hex) as same
manner as actual microprocessor after reset is
inactivated. 

no The emulator ignores reset signal from target
system completely, even while in foreground
(executing user program). 

Respond NMI from
target system?

This question allows you to specify whether or not the emulation
processor accepts NMI signal generated by the target system. 

yes The emulator accepts NMI signal generated by the
target system.  When the NMI is accepted, the
emulator calls the NMI procedure as actual
microprocessor.  Therefore, you need to set up the

Configuring the Emulator 4-13



NMI vector table, if you want to use the NMI
interrupt. 

no The emulator ignores NMI signal from target
system completely.

Note
When target NMI signal is enabled, it is in effect while the emulator is
running the target program. While the emulator is running background
monitor, NMI will be suspended until the emulator goes into
foreground operation.

Respond READY
from target system?

High-speed emulation memory provides no-wait-state operation.
However, the emulator may optionally respond to the target system
ready line while emulation memory is being accessed.

yes When the ready relationship is locked to the target
system, emulation memory accesses honor ready
signals from the target system (wait states are
inserted if requested). 

no When the ready relationship is not locked to the
target system, emulation memory accesses ignore
ready signals from the target system (no wait states
are inserted). 

Respond to HLDRQ
from target system 

This configuration allows you to specify whether or not the emulator
accepts HLDRQ(Bus Hold Request) signal generated by the target
system.

yes The emulator accepts HLDRQ signal. When the
HLDRQ is accepted, the emulator will respond as
actual microprocessor. 

no The emulator ignore HLDRQ signal from target
system completely.

4-14 Configuring the Emulator



Target memory
access size

This configuration specifies the type of microprocessor cycles that are
used by the monitor program to access target memory or I/O locations.
When a command requests the monitor to read or write to target system
memory or I/O, the monitor program will look at the access mode
setting to determine whether byte or word instructions should be used.

Words Selecting the word access mode specifies that the
emulator will access target memory using word
cycles (one word at  a time) at an even address.
At an odd address, the emulator will access target
memory using byte cycles. 

Bytes Selecting the byte access mode specifies that the
emulator will access target memory using upper and
lower byte cycles (one byte at a time).

The default emulator configuration selects the byte access size at power
up initialization.  Access mode specifications are saved; that is, when a
command changes the access mode, the new access mode becomes the
current default.

Configuring the Emulator 4-15



Debug/Trace
Configuration

The debug/trace configuration questions allows you to specify breaks
on writes to ROM, enable/disable the software breakpoints feature, and
specify that the analyzer trace foreground/background execution.  To
access the debug/trace configuration questions, you must answer "yes"
to the following question.

Modify debug/trace options?

Break Processor on
Write to ROM?

This question allows you to specify that the emulator break to the
monitor upon attempts to write to memory space mapped as ROM.
The emulator will prevent the processor from actually writing to
memory mapped as emulation ROM; however, they cannot prevent
writes to target system RAM locations which are mapped as ROM,
even though the write to ROM break is enabled.

yes Causes the emulator to break into the emulation
monitor whenever the user program attempts to
write to a memory region mapped as ROM.

no The emulator will not break to the monitor upon a
write to ROM.  The emulator will not modify the
memory location if it is in emulation ROM.

Note The wrrom  trace command status option allows you to use "write to
ROM" cycles as trigger and storage qualifiers.  For example, you could
use the following command to trace about a write to ROM:

trace about status wrrom <RETURN>

4-16 Configuring the Emulator



Trace Background or
Foreground
Operation?

This question allows you to specify whether the analyzer trace only
foreground emulation processor cycles, only background cycles, or
both foreground or background cycles.

foreground Specifies that the analyzer trace only foreground
cycles.  This option is specified by the default
emulator configuration.

background Specifies that the analyzer trace only background
cycles.  (This is rarely a useful setting.)

both Specifies that the analyzer trace both foreground
and background cycles.  You may wish to specify
this option so that all emulation processor cycles
may be viewed in the trace display.

Trace Internal DMA
cycles? 

This question allows you to specify whether or not the analyzer trace
the 70433 emulation processor’s internal DMA cycles. 

yes Specifies that the analyzer will trace the 70433
internal DMA cycles.

no Specifies that the analyzer will not trace the 70433
internal DMA cycles.

Trace refresh cycles? This question allows you to specify whether or not the analyzer trace
the 64768 emulation processor’s refresh cycles. 

no Specifies that the analyzer will not trace the 70433
refresh cycles.

yes Specifies that the analyzer will trace the 70433
refresh cycles.

Configuring the Emulator 4-17



Simulated I/O
Configuration

The simulated I/O feature and configuration options are described in
the Simulated I/O reference manual. 

Interactive
Measurement
Configuration

The interactive measurement configuration questions are described in
the chapter on coordinated measurements in the Softkey Interface
Reference manual.  Examples of coordinated   measurements that can
be performed between the emulator and the emulation analyzer are
found in the "Using the Emulator" chapter. 

Saving a
Configuration 

The last configuration question allows you to save the previous
configuration specifications in a file which can be loaded back into the
emulator at a later time.

Configuration file name? <FILE>

The name of the last configuration file is shown, or no filename is
shown if you are modifying the default emulator configuration. 

If you press <RETURN> without specifying a filename, the
configuration is saved to a temporary file.  This file is deleted when
you exit the Softkey Interface with the "end  release_system"
command. 

When you specify a filename, the configuration will be saved to a file;
the filename specified with extensions of ".EA". .  The file with the
".EA" extension is the "source" copy of the file. 

Ending out of emulation (with the "end" command) saves the current
configuration, including the name of the most recently loaded
configuration file, into a "continue" file.  The continue file is not
normally accessed.

4-18 Configuring the Emulator



Loading a
Configuration 

Configuration files which have been previously saved may be loaded
with the following Softkey Interface command.

load configuration <FILE> <RETURN> 

This feature is especially useful after you have exited the Softkey
Interface with the "end release_system" command; it saves you from
having to modify the default configuration and answer all the questions
again.  To reload the current configuration, you can enter the following
command. 

load configuration <RETURN> 

Configuring the Emulator 4-19



Notes

4-20 Configuring the Emulator



5

Using the Emulator 

Introduction The "Getting Started" chapter shows you how to use the basic 

This chapter discuss: 

Register names and classes. 

Hardware breakpoint 

Features available via "pod_command". 

This chapter shows you how to: 

Access internal RAM/SFR. 

Store the contents of memory into absolute files. 

Make coordinated measurements. 

Using the Emulator 5-1



REGISTER CLASS
and NAME

Summary 70433 register designator. All available register class names and
register names are listed below.

<REG_CLASS>

<REG_NAME> Description

*(All basic registers)

AW, BW
CW, DW
BP, IX, IY
DS0, DS1, 
DS2, DS3
SS, SP
PC, PS, PSW

BASIC registers.

5-2 Using the Emulator



PORT(Port registers)

P0
P1
P2
P3
P4
P5
P6
P7
P8
PM0
PM2
PM3
PM4
PM5
PM7
PM8
PMC2
PMC3
PMC4
PMC5
PMC7
PMC8
PRDC

Port 0
Port 1                                                     (Read Only)
Port 2
Port 3
Port 4
Port 5
Port 6                                                     (Read Only)
Port 7
Port 8
Port 0 mode
Port 2 mode
Port 3 mode
Port 4 mode
Port 5 mode
Port 7 mode
Port 8 mode
Port 2 mode control
Port 3 mode control
Port 4 mode control
Port 5 mode control
Port 7 mode control
Port 8 mode control
Port read control

ROP(Real-time Output port registers)

RTPC
RTPD
P7L
P7H
RTP

Real-time output port control
Real-time output port display 
Port 7 buffer(Low)
Port 7 buffer(high)
Real-time output port

Using the Emulator 5-3



TIME(Timer registers)

TM0
TM1
TM2
TM3
CT00
CT01
CT00
CT10
CM00
CM01
CM10
CM11
CM20
CM21
CM22
CM23
CM30
CM31
TMC
TOC
STC
STMC

Timer 0
Timer 1
Timer 2
Timer 3
Timer capture 00
Timer capture 01
Timer capture 10
Timer capture 11
Timer compare 00
Timer compare 01
Timer compare 10
Timer compare 11
Timer compare 20
Timer compare 21
Timer compare 22
Timer compare 23
Timer compare 30
Timer compare 31
Timer control
Timer output control
Software timer counter                        (Read Only)
Software timer counter compare 

PWMU(PWM uint registers)

PWM
PMWC

PWM
PWM control

5-4 Using the Emulator



DMA(DMA registers)

DMAM0
DMAM1
DMAC0
DMAC1
TC0
TC1
TCM0
TCM1
MAR0
MAR1
UDC0
UDC1
DCM0
DCM1
DPTC0
DPTC1
DMAS

DMA mode 0
DMA mode 1
DMA  control 0
DMA control 1
Terminal counter 0
Terminal counter 1
Terminal counter modulo 0
Terminal counter modulo 1
DMA memory address 0
DMA memory address 1
DMA up/down counter 0
DMA up/down counter 1
DMA compare 0
DMA compare 1
DMA read/write pointer 0
DMA read/write pointer 1
DMA status

PI(Parallel I/F registers)

PAB
PAC0
PAC1
PAS
PAI0

PAI1 

Parallel interface buffer
Parallel interface control 1
Parallel interface control 2
Parallel interface status
Parallel interface acknowledge interval 0
                                                               (Write Only)
Parallel interface acknowledge interval 1
                                                               (Write Only)

Using the Emulator 5-5



AD(Analog-Digital conversion registers)

ADM
ADCR0
ADCR1
ADCR2
ADCR3

A/D convertor mode
A/D conversion result 0                      (Read Only)
A/D conversion result 1                      (Read Only)
A/D conversion result 2                      (Read Only)
A/D conversion result 3                      (Read Only)

UART(UART registers)

ASP
UARTM0
UARTM1
UARTS0
UARTS1
RXB0
RXB1
TXB0
TXB1
PRS0
PRS1
RXBRG0
RXBRG1
TXBRG0
TXBRG1

Protocol select
UART mode 0
UART mode 1
UART status 0
UART status 1
Receive buffer 0                                   (Read Only)
Receive buffer 1                                   (Read Only)
UART Transfer buffer 0                    (Write Only)
UART Transfer buffer 1                    (Write Only)
Prescaler 0
Prescaler 1
Receive baud rate generator 0
Receive baud rate generator 1
Transfer baud rate generator 0
Transfer baud rate generator 1

5-6 Using the Emulator



CSI(Clocked serial I/F registers)

ASP
CSIM0
CSIM1
SBIC0
SBIC1
RXB0
RXB1
SIO0
SIO1
PRS0
PRS1
TXBRG0
TXBRG1

Protocol select
Clocked serial interface mode 0
Clocked serial interface mode 1
SBI control 0
SBI control 1
Receive buffer 0
Receive buffer 1
Clocked serial I/O shift 0                   (Write Only)
Clocked serial I/O shift 1                   (Write Only)
Receive baud rate generator 0
Receive baud rate generator 1
Transfer baud rate generator 0
Transfer baud rate generator 1

PROC(Processor status registers)

STBC
PRC
PWC0
PWC1
RFM
MBC
WDM

Standby control
Processor control
Programmable wait control 0
Programmable wait control 1
Refresh mode
Memory block control
Watchdog timer mode

Using the Emulator 5-7



INTC(Interrupt control registers)

IMC
MK0
MK1
IC09
IC10
IC11
IC12
IC13
IC14
IC16
IC17
IC18
IC19
IC20
IC21
IC22
IC23
IC24
IC25
IC26
IC27
IC28
IC29
IC30
IC31
IC32
IC36
IC37
ISPR
INTM

Interrupt mode control
Interrupt mask flag 0
Interrupt mask flag 1
Interrupt demand control 09
Interrupt demand control 10
Interrupt demand control 11
Interrupt demand control 12
Interrupt demand control 13
Interrupt demand control 14
Interrupt demand control 16
Interrupt demand control 17
Interrupt demand control 18
Interrupt demand control 19
Interrupt demand control 20
Interrupt demand control 21
Interrupt demand control 22
Interrupt demand control 23
Interrupt demand control 24
Interrupt demand control 25
Interrupt demand control 26
Interrupt demand control 27
Interrupt demand control 28
Interrupt demand control 29
Interrupt demand control 30
Interrupt demand control 31
Interrupt demand control 32
Interrupt demand control 36
Interrupt demand control 37
In-service priority                                 (Read Only)
External interrupt mode

5-8 Using the Emulator



BANK (register bank)

PS_<N>
PC_<N>
PSW_<N>
AW_<N>
BW_<N>
CW_<N>
DW_<N>
SP_<N>
BP_<N>
IX_<N>
IY_<N>
DS0_<N>
DS1_<N>
DS2_<N>
VPC_<N>
SS_<N>

ps of register bank <N>
pc of register bank <N>
psw of register bank <N>
aw of register bank <N>
bw of register bank <N>
cw of register bank <N>
dw of register bank <N>
sp of register bank <N>
bp of register bank <N>
ix of register bank <N>
iy of register bank <N>
ds0 of register bank <N>
ds1 of register bank <N>
ds2 of register bank <N>
vpc of register bank <N>
ss of register bank <N>

Using the Emulator 5-9



Hardware
Breakpoints

The analyzer may generate a break request to the emulation processor.
To break when the analyzer trigger condition is satisfied, use the
"break_on_trigger" trace option.

Additionally, you can see the program states before the breakpoint in
trace listing. Specify the trigger position at the end of trace listing by
using "before" option.

When the trigger condition is found. the emulator execution will break
into the emulation monitor. Then you can also see the trace listing
mentioned above, enter the following commands.

trace before <QUALIFIER> break_on_trigger
<RETURN>

Without the trigger condition, the trigger will never occur and will
never break.

Loading Program
Option

You can load program any memory space with "offset_by" option.
When using this option, you must specify "nosymbols" option at same
time. This option is effective, when you use V Series AxLS
Assembler/Linker and V Series AxLS C Compiler, and load the file at
extended memory space.

To load program any memory space, enter following command:

load <file_name> nosymbols offset_by
<offset_addr>

<file_name> is the HP Absolute file(with .X suffix). <offset_addr> is
the value of offset address. You can load program at address that is
added offset address. For example, when you generate program to be
loaded at address 5000h and specify 10000h as offset address, the
program is loaded at address 15000h. 

But you can not treat symbols because you must specify "nosymbols"
option. 

5-10 Using the Emulator



Displaying
Memory Option

You can refer symbols in operand by using "with_data_segment"
option. This option is available when direct addressing mode is used in
the program and is effective when data segment register(DS0 or DS1)
does not be often changed in the program.

Suppose you generate the following program. In the following
program, direct addressing mode is used and data segment register DS0
does not be changed.

               COMN    SEGMENT PARA COMMON ’COMN’
3000                           DW      6FH DUP (?)
               Stk             LABEL   WORD
               COMN    ENDS

               DATA    SEGMENT PARA PUBLIC ’DATA’
2000 4141      SOU_A           DW      ’AA’
2002 4242      SOU_B           DW      ’BB’
2004 4343      SOU_C           DW      ’CC’
2006 ????      DES_A           DW      ?
2008 ????      DES_B           DW      ?
200A ????      DES_C           DW      ?
               DATA    ENDS

               CODE    SEGMENT PARA PUBLIC ’CODE’
               ASSUME  PS:CODE,DS0:DATA,SS:COMN

1000 B80002   Init:            MOV     AW,DATA
1003 8ED8                      MOV     DS0,AW
1005 8ED0                      MOV     SS,AW
1007 BCDE00                    MOV     SP,OFFSET Stk
100A 8B1E0000  Loop:           MOV     BW,[0000H]
100E 891E0600                  MOV     [0006],BW
1012 8B1E0200                  MOV     BW,[0002H]
1016 891E0800                  MOV     [0008],BW
101A 8B1E0400                  MOV     BW,[0004H]
101E 891E0A00                  MOV     [000AH],BW
1022 33C0      Clear:          XOR     AW,AW
1024 A30600                    MOV     [0006],AW
1027 A30800                    MOV     [0008],AW
102A A30A00                    MOV     [000AH],AW
102D EBDB                      BR      Loop
               CODE    ENDS
               END     Init

Using the Emulator 5-11



To display memory in mnemonic format, enter following commands.

display memory Init mnemonic  <RETURN>
set symbols on <RETURN>

As  you can see, you can not see symbols in operand because direct
addressing mode is used.

In this case, you can see symbols in operand by specifying data
segment value by "with_data_segment" option. Enter following
command.

display memory Init mnemonic
with_data_segment  200h <RETURN>

 Memory  :mnemonic :file = sample.asm:
   address   label          data
  0100 0000     :Init      B80002      MOV AW,0200
  0100 0003                8ED8        MOV DS0,AW
  0100 0005                8ED0        MOV SS,AW
  0100 0007                BCDE00      MOV SP,00DE
  0100 000A  sample.:Loop  8B1E0000    MOV BW,WORD PTR 0000
  0100 000E                891E0600    MOV WORD PTR 0006,BW
  0100 0012                8B1E0200    MOV BW,WORD PTR 0002
  0100 0016                891E0800    MOV WORD PTR 0008,BW
  0100 001A                8B1E0400    MOV BW,WORD PTR 0004
  0100 001E                891E0A00    MOV WORD PTR 000A,BW
  0100 0022  sample:Clear  33C0        XOR AW,AW
  0100 0024                A30600      MOV WORD PTR 0006,AW
  0100 0027                A30800      MOV WORD PTR 0008,AW
  0100 002A                A30A00      MOV WORD PTR 000A,AW
  0100 002D                EBDB        BR SHORT /sample.asm:Loop
  0100 002F                00D4        ADD AH,DL

STATUS:   n70433--Running in monitor____________________________________...R....
set symbols on

  run     trace     step   display           modify   break     end    ---ETC--

5-12 Using the Emulator



As you can see, the symbols in operand are displayed. This data
segment value is available until you specify another data segment value
or "with_dada_segment none" option.

Analyzer Topic The analyzer captures the data bus of the 70433 microprocessor. When
you specify a data in the analyzer trigger condition or store condition,
the ways of the analyzer data specification differ according to the data
size. 

To trigger the analyzer when the 70744 microprocessor accesses the
word data 1234H at address 1000H in 8bit data bus size. the data bus
activity of the cycles will be as follows.

Sequencer level Address bus  Data bus
                 1   1000H        xx34
             2   1001H        xx12

In this case, you need to use the analyzer sequential trigger capabilities.
We do not describe the detail about the sequential trigger feature. Only
how to trigger the analyzer at this example is described. To specify the
condition, enter:

 Memory  :mnemonic :file = sample.asm:
   address   label          data   :data segment = 0200
  0100 0000     :Init      B80002      MOV AW,0200
  0100 0003                8ED8        MOV DS0,AW
  0100 0005                8ED0        MOV SS,AW
  0100 0007                BCDE00      MOV SP,00DE
  0100 000A  sample.:Loop  8B1E0000    MOV BW,WORD PTR :SOU_A
  0100 000E                891E0600    MOV WORD PTR :DES_A,BW
  0100 0012                8B1E0200    MOV BW,WORD PTR :SOU_B
  0100 0016                891E0800    MOV WORD PTR :DES_B,BW
  0100 001A                8B1E0400    MOV BW,WORD PTR :SOU_C
  0100 001E                891E0A00    MOV WORD PTR :DES_C,BW
  0100 0022  sample:Clear  33C0        XOR AW,AW
  0100 0024                A30600      MOV WORD PTR :DES_A,AW
  0100 0027                A30800      MOV WORD PTR :DES_B,AW
  0100 002A                A30A00      MOV WORD PTR :DES_C,AW
  0100 002D                EBDB        BR SHORT /sample.asm:Loop
  0100 002F                00D4        ADD AH,DL

STATUS:   n70433--Running in monitor____________________________________...R....
display memory Init mnemonic with_data_segment 200h

  run     trace     step   display           modify   break     end    ---ETC--

Using the Emulator 5-13



trace find_sequence 1000h data  0xx34h
restart status exec trigger after  1001h data
0xx12h <RETURN>

The "restart" condition is specified to restart sequencer when any states
except for "exec" state are generated between sequencer level 1 and 2.

Features Available
via Pod
Commands

Several emulation features available in the Terminal Interface but not
in the Softkey Interface may be accessed via the following emulation
commands.

display pod_command <RETURN>
pod_command ’<Terminal Interface command>’
<RETURN>

Some of the most notable Terminal Interface features not available in
the Softkey Interface are:

Copying memory

Searching memory for strings or numeric expressions.

Sequencing in the analyzer.

Performing coverage analysis.

Refer to your Terminal Interface documentation for information on
how to perform these tasks.

5-14 Using the Emulator



Note Be careful when using the "pod_command".  The Softkey Interface,
and the configuration files in particular, assume that the configuration
of the HP 64700 pod is NOT changed except by the Softkey Interface.
Be aware that what you see in "modify configuration" will NOT reflect
the HP 64700 pod’s configuration if you change the pod’s
configuration with this command.  Also, commands which affect the
communications channel should NOT be used at all.  Other commands
may confuse the protocol depending upon how they are used.  The
following commands are not recommended for use with
"pod_command":

stty, po, xp - Do not use, will change channel operation and hang. 
echo, mac - Usage may confuse the protocol in use on the channel. 
wait - Do not use, will tie up the pod, blocking access. 
init, pv  - Will reset pod and force end release_system. 
t - Do not use, will confuse trace status polling and unload.

Accessing
Internal RAM/SFR

If you access to the 70433 microprocessor’s internal RAM, you can use
the "display or modify memory" commands and the "display or modify
register(s)" commands. When you designate address, you must use the
"fcode iram" option. To specify an address, add this option just before
an address expression. Enter the following commands:

display memory fcode iram <ADDRESS> blocked
words  <RETURN>

or 

display register BANK<N> <RETURN>

If you wish to access register in the current register bank, you must use
the "display or modify register(s)" commands. Otherwise you will
destroy the monitor program.

After you use the "fcode iram" option, you can access to the 70433
microprocessor’s internal RAM without using "fcode iram" option
until you use the "fcode none" option.

Using the Emulator 5-15



When you access SFR(Special Function Registers) of the 70433
microprocessor, you must use the "display or modify register(s)"
commands. You can access SFR regardless of memory mapping.

Storing Memory
Contents to an
Absolute File

The "Getting Started" chapter shows you how to load absolute files into
emulation or target system memory.  You can also store emulation or
target system memory to an absolute file with the following command.

store memory 800h thru  84fh to  absfile
<RETURN>

The command above causes the contents of memory locations
800H-84FH to be stored in the absolute file "absfile.X".  Notice that the
".X" extension is appended to the specified filename.

Coordinated
Measurements

For information on coordinated measurements and how to use them,
refer to the "Coordinated Measurements" chapter in the Softkey
Interface Reference manual.

5-16 Using the Emulator



A

Using the Foreground Monitor 

By using and modifying the optional foreground monitor, you can
provide an emulation environment which is customized to the needs of
a particular target system.

The foreground monitors are supplied with the emulation software and
can be found in the following path:

/usr/hp64000/monitor/ 

The monitor program is named fmon70433.s. 

Comparison of
Foreground and
Background
Monitors

An emulation monitor is required to service certain requests for
information about the target system and the emulation processor. For
example, when you request a register display, the emulation processor
is forced into the monitor.  The monitor code has the processor dump
its registers into certain emulation memory locations, which can then be
read by the emulator system controller without further interference.

Background Monitors A background monitor is an emulation monitor which overlays the
processor’s memory space with a separate memory region. 

Usually, a background monitor is easier to work with.  The monitor is
immediately available upon powerup, and you don’t have to worry
about linking in the monitor code or allocating space for the monitor.
No assumptions are made about the target system environment;
therefore, you can test and debug hardware before any target system
code has been written.  All of the processor’s address space is available
for target system use, since the monitor memory is overlaid on
processor memory, rather than subtracted from processor memory.

Using the Foreground Monitor A-1



Processor resources such as interrupts are not fully taken by the
background monitor. 

However, all background monitors sacrifice some level of support for
the target system.  For example, when the emulation processor enters
the monitor code to display registers, it will not respond to target
system interrupt requests.  This may pose serious problems for complex
applications that rely on the microprocessor for real-time, non-intrusive
support.  Also, the background monitor code resides in emulator
firmware and can’t be modified to handle special conditions.

Foreground Monitors A foreground monitor may be required for more  interrupt intensive
applications.  A foreground monitor is a block of code that runs in the
same memory space as your program.  Foreground monitors allow the
emulator to service real-time events, such as interrupts, while executing
in the monitor.  For most multitasking,  you will need to use a
foreground monitor.

You can tailor the foreground monitor to meet your needs, such as
servicing target system interrupts.  However, the foreground monitor
does use part of the processor’s address space, which may cause
problems in some applications.  You must also properly configure the
emulator to use a foreground monitor (see the "Configuring the
Emulator" chapter and the examples in this appendix).

You may link the foreground monitor with your code.  However, if
possible, linking the monitor separately is preferred.  This allows the
monitor to be downloaded before the rest of your program.  Linking
monitor programs separately is more work initially, but it should prove
worthwhile overall, since the monitor can then be loaded efficiently
during the configuration process at the beginning of a session.

A-2 Using the Foreground Monitor



An Example Using
the Foreground
Monitor

In the following example, we will illustrate how to use a foreground
monitor with the demo program from the "Getting Started" chapter.  By
using the emulation analyzer, we will also show how the emulator
switches from state to state using a foreground monitor.

For this example, we will locate the monitor at 1000H; the demo
program will be located at 10000H and 80000H.

$ cp  /usr/hp64000/monitor/fmon70433.s
<RETURN> 

Modify EQU
Statement

To use the monitor, you must modify the EQU statement near the top
of the monitor listing to point to the base address where the monitor
will be loaded.

$ chmod 644 fmon70433.s <RETURN>
$ vi  fmon70433.s <RETURN>

Modifying Location of the Foreground Monitor 

In this case, we will load the monitor at 1000H, so the modified EQU
statement looks like this:

MONSEGMENT     EQU   00100H 

You can load the monitor at any base address on a 2K byte boundary.

Note You should not load the foreground monitor provided with the 64768
emulator at the base address 0 or 0ff800 hex; the 70433
microprocessor’s vector table or SFR are located respectively.

Using the Foreground Monitor A-3



Assemble and Link
the Monitor

You can assemble, link and convert the foreground monitor program
with the following commands :

$ asmv55pi  fmon70433.s <RETURN>
$ llink  fmon70433.ol -o  fmon70433.ab <RETURN>
$ v55cov  fmon70433

If you haven’t already assembled and linked the demo program, do that
now.  Refer to the "Getting Started" chapter for instructions on
assembling and linking the demo program. 

Modifying the
Emulator

Configuration

The following assumes you are modifying the default emulator
configuration (that is, the configuration present after initial entry into
the emulator or entry after a previous exit using "end release_system").
Enter all the default answers except those shown below. 

Modify memory configuration? yes

You must modify the memory configuration so that you can select the
foreground monitor and map memory.

Monitor type? foreground

Specifies that you will be using a foreground monitor program. 

Reset map (change of monitor type requires map reset)? yes

You must answer this question as shown to change the monitor type to
foreground.

Monitor address? 1000h

Specifies that the monitor will reside in the 2K byte block from 1000H
through 17FFH.

Monitor file name? fmon70433

Enter the name of the foreground monitor absolute file.  This file will
be loaded at the end of configuration.

A-4 Using the Foreground Monitor



Mapping Memory for the Example

When you specify a foreground monitor and enter the monitor address,
all existing memory mapper terms are deleted and a term for the
monitor block will be added.  Add the additional term to map memory
for the demo program, and "end" out of the memory mapper.

0h thru  0ffh emulation ram  <RETURN>
10000h thru  1ffffh emulation ram  <RETURN>
80000h thru  80fffh emulation rom  <RETURN>
default  target  ram  <RETURN>
end  <RETURN>

Modify pod configuration? yes

You must answer this question as shown to access and modify the
question below.

Reset value for the stack segment? 1000h
Reset value for the stack pointer? 0f000h

When you use foreground monitor, the stack address should be defined
in emulation memory or a target system RAM because the foreground
monitor program use the user stack pointer.

Modify debug/trace options? yes

You must answer this question as shown to access and modify the
question below.

Trace background or foreground operation? both

Later in this chapter, trace examples show transitions from reset into
the foreground monitor, from the monitor to the user program, and
from the user program back into the monitor.  Since the foreground
monitor is actually entered via a few cycles in the emulator’s built-in
background monitor, we need to be able to view the background states.
Answering this configuration question as shown allows both
foreground and background emulation processor cycles to appear in the
trace. 

Using the Foreground Monitor A-5



Configuration file name? fmoncfg

If you wish to save the configuration specified above, answer this
question as shown.

Load the Program
Code

Now it’s time to load the demo program.  You can load the demo
program with the following command:

load skdemo <RETURN>

Tracing from Reset
to Break

We want to see the monitor’s transition from the reset state to running
in the foreground monitor.  First, put the emulator into its reset state
with the command:

reset <RETURN>

The 64768 emulator breaks to the foreground monitor via a few
background cycles.  You can see the transition between reset and
foreground monitor execution.  Enter following command.

trace <RETURN>

After entering the command above, the "Emulation trace started"
message appears on the status line.  Enter the following command to
break into the monitor.

break <RETURN>

The status line now shows that the emulator is "Running in monitor"
and that the "Emulation trace complete".  Enter the following command
to display the trace.

display trace <RETURN>

A-6 Using the Foreground Monitor



The trace listing shows that the processor began executing code; it
executed in background monitor.  The "BGM"s in the trace listing
indicate the background monitor cycles.

To see the transition from background monitor to the foreground
monitor, press the <NEXT> key to page down until the background
cycles go.

Trace List                  Offset=0
Label:  Address   Data                Opcode or Status               time count
Base:     hex     hex                     mnemonic                    relative
after    0FFFF2     0007    0007  fetch                  BGM        ------------
+001     000020     0000    0000  write mem              BGM            1.9   uS
+002     000022     FFFF    FFFF  write mem              BGM            1.9   uS
+003     000024     F002    F002  write mem              BGM            1.9   uS
+004     000008     0200    0200  read mem               BGM            3.8   uS
+005     0FFFF4     FE01    FE01  fetch                  BGM            1.9   uS
+006     00000A     0100    0100  read mem               BGM            1.9   uS
+007     001200     A32E    A32E  fetch                  BGM            2.9   uS
+008     001202     002C    002C  fetch                  BGM            3.8   uS
+009     001200     002C  MOV PS:WORD PTR 002C,AW                     320     nS
+010     001204     892E    892E  fetch                  BGM            1.6   uS
+011     00102C     F080    F080  write mem              BGM            1.9   uS
+012     001206     2E2E    2E2E  fetch                  BGM            1.9   uS
+013     001204     2E2E  MOV PS:WORD PTR 002E,BP                     320     nS
+014     001208     2E00    2E00  fetch                  BGM            3.5   uS

STATUS:   n70433--Running in monitor      Emulation trace complete______...R....
display trace

  run     trace     step   display           modify   break     end    ---ETC--

Using the Foreground Monitor A-7



You will see the transition from the background monitor to the
foreground monitor in the display.

Tracing from Monitor
to User Program

We can look at the transition from the foreground monitor to running
the user program by triggering the trace on a user program address.
Enter:

trace about __main <RETURN>

Because you’d like to see the states leading up to the transition from
monitor to user program, trace "about" so that states before the trigger
are captured.

Now, run the demo program:

run from transfer_address <RETURN>

Trace List                  Offset=0
Label:  Address   Data                Opcode or Status               time count
Base:     hex     hex                     mnemonic                    relative
+057     001000     0000    0000  read mem               BGM            1.9   uS
+058     001233     0000  illegal opcode, data = 0F 27                320     nS
+059     001236     0000    0000  fetch                  BGM            1.6   uS
+060     000024     F002    F002  read mem               BGM            1.9   uS
+061     000022     0100    0100  read mem               BGM            3.8   uS
+062     001238     0400    0400  fetch                  BGM            1.9   uS
+063     000020     0332    0332  read mem               BGM            1.9   uS
+064     001332     F62E    F62E  fetch                                 2.9   uS
+065     001334     1906    1906  fetch                                 3.8   uS
+066     001332     1906  TEST PS:BYTE PTR 0019,01                    320     nS
+067     001336     0100    0100  fetch                                 1.6   uS
+068     001338     C62E    C62E  fetch                                 1.9   uS
+069     00133A     1B06    1B06  fetch                                 1.9   uS
+070     001019     01FF    01xx  read mem                              1.9   uS
+071     001338     01FF  MOV PS:BYTE PTR 001B,02                     320     nS

STATUS:   n70433--Running in monitor      Emulation trace complete______...R....
display trace

  run     trace     step   display           modify   break     end    ---ETC--

A-8 Using the Foreground Monitor



The user program began execution at state 0.  Now, you will know the
processor executed the RETI  instruction to transfer execution to the
user program at state 0.

Tracing from User
Program to Break

You can trace the execution from the user program to the foreground
monitor due to a break condition.  Since the foreground monitor
occupies the address range from 1000h through 17ffh, we can simply
trigger on any access to that range.

trace about range 1000h thru  17ffh <RETURN> 

Satisfy the trigger condition by breaking the emulator into the monitor:

break <RETURN>

Trace List                  Offset=0
Label:  Address   Data                Opcode or Status               time count
Base:     hex     hex                     mnemonic                    relative
-007     001528     8BCF  RETI                                        960     nS
-006     00152A     140E    140E  fetch                               960     nS
-005     001016     0080    xx80  write mem                             1.9   uS
-004     01EFFA     00C2    00C2  read mem                              3.8   uS
-003     00152C     8E00    8E00  fetch                                 1.9   uS
-002     01EFFC     8000    8000  read mem                              1.9   uS
-001     01EFFE     F002    F002  read mem                              2.9   uS
about    0800C2     00B8    00B8  fetch                                 3.8   uS
+001     0800C2     00B8  MOV AW,1500                                 320     nS
+002     0800C4     8E15    8E15  fetch                                 1.6   uS
+003     0800C6     33D8    33D8  fetch                                 1.9   uS
+004     0800C5     33D8  MOV DS0,AW                                  320     nS
+005     0800C8     8EC0    8EC0  fetch                                 1.6   uS
+006     0800C7     8EC0  XOR AW,AW                                   320     nS
+007     0800CA     26C0    26C0  fetch                                 3.5   uS

STATUS:   n70433--Running user program    Emulation trace complete______...R....
run from transfer_address

  run     trace     step   display           modify   break     end    ---ETC--

Using the Foreground Monitor A-9



Now, the trace listing shows that the processor entered the background
state to make the transition.

Single Step and
Foreground Monitors

To use the "step" command to step through processor instructions with
the foreground monitor listed in this chapter, you must modify the
processor’s interrupt vector table.  The entry that you must modify is
the "BRK flag" interrupt vector, located at 4H thru 7H.  The "BRK
flag" interrupt vector must point to the identifier
SINGLE_STEP_ENTRY in the foreground monitor. The address of the
SINGLE_STEP_ENTRY is 300H plus the beginning of the foreground
monitor. To modify the "BRK flag" interrupt vector to point to the
SINGLE_STEP_ENTRY, enter the following command:

modify memory 4h words to  0300h,0100h
<RETURN> 

When you load the foreground monitor at the different base address,
you should modify the "BRK flag" interrupt vector to point to the
identifier SINGLE_STEP_ENTRY with same way. 

Trace List                  Offset=0
Label:  Address   Data                Opcode or Status               time count
Base:     hex     hex                     mnemonic                    relative
-007     08054E     FF29    FF29  fetch                                 1.6   uS
-006     000020     015C    015C  write mem              BGM            1.9   uS
-005     000022     803F    803F  write mem              BGM            1.9   uS
-004     000024     F283    F283  write mem              BGM            1.9   uS
-003     000008     0200    0200  read mem               BGM            3.8   uS
-002     080550     6300    6300  fetch                  BGM            1.9   uS
-001     00000A     0100    0100  read mem               BGM            1.9   uS
about    001200     A32E    A32E  fetch                  BGM            4.16  uS
+001     001202     002C    002C  fetch                  BGM            1.9   uS
+002     001200     002C  MOV PS:WORD PTR 002C,AW                     320     nS
+003     001204     892E    892E  fetch                  BGM            1.6   uS
+004     00102C     1009    1009  write mem              BGM            1.9   uS
+005     001206     2E2E    2E2E  fetch                  BGM            1.9   uS
+006     001204     2E2E  MOV PS:WORD PTR 002E,BP                     320     nS
+007     001208     2E00    2E00  fetch                  BGM            3.5   uS

STATUS:   n70433--Running in monitor      Emulation trace complete______...R....
 break

  run     trace     step   display           modify   break     end    ---ETC--

A-10 Using the Foreground Monitor



Software Breakpoint
and Foreground

Monitor

To use the software breakpoint with the foreground monitor listed in
this chapter, you must modify the processor’s interrupt vector table.
The entry that you must modify is the "BRK 3" interrupt vector,
located at 0CH thru 0FH. Enter the following command:

modify memory 0ch words to  1234h,5678h
<RETURN>

This address is not change even if you load the foreground monitor at
the different base address.

Limitations of
Foreground
Monitors

Listed below are limitations or restrictions present when using a
foreground monitor.

Synchronized
MeasurementsCMB 

You cannot perform synchronized measurements over the CMB when
using a foreground monitor.  If you need to make such measurements,
use the background monitor.

Instruction Using
BRK flag

If user program includes instruction using the BRK flag(in PSW
register), you can not use the foreground monitor because foreground
monitor uses the BRK flag in "step" command.

Stepping You can not use "step" command in the following instructions. 

HALT/STOP
POP PSW
BRK 3/BRK imm8/BRKV
CHKIND
FPO
TSKSW/BRKCS
RETRBI

Using the Foreground Monitor A-11



Break from Halt/Stop
state

When the processor is in halt or stop state, the program counter(PC)
indicates the next address of HALT or STOP instruction. If you use
commands which require temporary break(display/modify register, or
display/modify target system memory or I/O), the program will run
from the address that PC indicates

A-12 Using the Foreground Monitor



B

Using the Format Converter

Absolute files generated by InterTools language tool can not be loaded
into the 70433 emulator directly. Therefore, the 70433 Softkey
Interface provides a format converter.

How to use the
Converter

The format converter generates HP format files from InterTools format
files for 70433.

To execute the converter program, use the following command: 

$ v55cnv [options]  <file_name>

<file_name> is the name of InterTools format file(.abs) which is
created by the InterTools linking locator(llink). The converter program
will read the InterTools format file. It will generate the following HP
format files:

HP Absolute file(with .X suffix)

HP Linker symbol file(with .L suffix)

HP Assembler symbol file(with .A suffix)

The converter accepts the following options.

-x This option specifies to generate HP format
absolute file (with .X suffix).

-l This option specifies to generate HP format linker
symbol file (with .L suffix).

Using the Format Converter B-1



-a This option specifies to generate HP format
assembler symbol file for all of source module
information available in the <file_name>.  (with .A
suffix).

-A module This option specifies to generate HP assembler
symbol file specified. This option may appear as
many as required. If option -a, described above, is
used simultaneously, specifications by this option
takes precedence so that assembler symbols for
modules specified by this option are generated. 

-f module_list_fileThis option specifies to read a list of modules to
generate HP OMF assembler symbol files from
module_list_file. Assembler symbol files associated
to modules listed in module_list_file are generated.
No other assembler symbol files are not generated.
If option -a is used simultaneously, specifications
by this option takes precedence so that assembler
symbols for modules listed in module_list_file are
generated. 

-q Suppress warning messages.

-m anonymous Use anonymous module name anonymous instead
of default "zzzzlib"

Restrictions and
Considerations

Listed below are restrictions or considerations present when using the
format converter.

The converter can not generate symbols in more than 1M bytes
memory space.

The converter uses anonymous module(default: zzzzlib) when the
converter generates linker symbol files. When you load absolute file,
the emulator displays error message which means that there is not

B-2 Using the Format Converter



assembler symbol file(default: zzzzlib.A). But, this error will cause no
damage on your operation.

You can use the [a-z],[A-Z],[0-9] characters to indicate symbols. Any
other characters will be changed to "_".  Symbols are truncated to 15
characters.

You can not treat symbols which is defined with "EQU" directive in
assembler source file. 

As for local symbols of C source file, the converter generates the
symbols which are scoped on file.

Assuming that all files(source files and object files) exist in current
directory, the converter operates. Therefore, No two files shear the
same file name even if they exist in different directory, and if you want
to reference C source line, C source files must exist in current
directory.  

Using the Format Converter B-3



Notes

B-4 Using the Format Converter



Index

A absolute files
loading 2-13
storing 5-16

address
symbolic 2-20

algorithm, cur segment 4-12
algorithm, max segment 4-12
algorithm, min segment 4-12
analyzer

features of 1-4
sequencing 5-14
status qualifiers 2-37

analyzer, using the 2-30
assemblers 4-10
assembling foreground monitor A-4

B background 1-5, 4-6
background cycles

tracing 4-17
background monitor 4-6 - 4-7, 

A-1
pin state 3-8
things to be aware of 4-7

breaks
break command 2-22
guarded memory accesses 4-10
software breakpoints 2-23
write to ROM 4-16

C caution statements
real-time dependent target system circuitry 4-5
software breakpoint cmds. while running user code 2-23

cautions
installing the target system probe 3-2

characterization of memory 4-10
Clearing software breakpoints 2-27

Index -1



CLKOUT enable bit 1-6
clock source

external 3-6, 4-4
internal 3-6, 4-4

command
code, (cmd_code) 2-4

comparison of foreground/background monitors A-1
compiling the demo program 2-7
compress mode,trace display 2-34
configuration

example of using foreground monitor A-4
for running example program 2-10

configuration option
data bus size 4-11
mnemonic type 4-11

configuration options
accept target NMI 4-13
break processor on write to ROM 4-16
enable READY input 4-14
foreground monitor location 4-8
honor target reset 4-13
in-circuit 3-6
monitor filename 4-9
monitor type 4-6
segment algorithm 4-12
target memory access 4-15
trace background/foreground operation 4-17
trace internal DMA cycles 4-17
trace refresh cycles 4-17

coordinated measurements 4-18, 5-16
copy memory 5-14
coverage analysis 5-14
cur segment algorithm 4-12

D data bus size 4-11
demo program

description 2-2
device table file 2-9
display command

memory mnemonic 2-17
memory mnemonic with symbols 2-18
registers 2-27

2- Index



software breakpoints 2-25
symbols 2-14
with source code 2-19

DMA 1-7
external 4-10

E emul700, command to enter the Softkey Interface 2-9, 2-38
emulation analyzer 1-4
emulation memory

loading absolute files 2-13
note on target accesses 4-10
RAM and  ROM characterization 4-10
size of 4-9

emulation monitor
foreground or background 1-4

emulator
before using 2-2
configuration 4-1
configure the emulator for example 2-10
device table file 2-9
feature list 1-3
prerequisites 2-2
purpose of 1-1
running from target reset 3-6
supported 1-3

emulator configuration
break processor on write to ROM 4-16
clock selection 4-4
for example 2-10
loading 4-19
monitor entry after 4-4
restrict to real-time runs 4-5
saving 4-18
trace background/foreground operation 4-17
trace internal DMA cycles 4-17
trace refresh cycles 4-17

Emulator features
emulation memory 1-3

emulator probe
installing 3-2

ENCLK bit 1-6
END assembler directive (pseudo instruction) 2-20

Index -3



end command 2-38, 4-18
evaluation chip 1-7
execution state 2-36
exit, Softkey Interface 2-38
external clock source 4-4

F file extension
.EA, configuration file 4-18

files
skdemo.A 2-7
skdemo.L 2-7

foreground 1-5, 4-6
foreground  monitor

example of using A-3
foreground monitor 4-6, 4-8, 

A-2
assembling/linking A-4
configuration for demo program A-4
location 4-8
location of shipped files A-1
monitor program 4-9
relocating A-3
single-step processor A-10
software breakpoint A-11
things to be aware of 4-9
transition from monitor to user program A-8
transition from reset to break A-6
transition from user program to break A-9
using the A-1

foreground operation, tracing 4-17

G generate HP absolute file 2-7
getting started 2-1
global symbols 2-3, 2-17
globsl symbols

displaying 2-14
guarded memory accesses 4-10

H hardware breakpoints 5-10
help

on-line 2-11
pod command information 2-12

4- Index



softkey driven information 2-11
HLDRQ signal 3-6
hold request

during background monitor 1-6

I in-circuit configuration options 3-6
in-circuit emulation 3-1
installation 2-2

software 2-2
interactive measurements 4-18
internal clock source 4-4
interrupt

accepting NMI from target system 4-13
during background monitor 1-6
from target system 1-6, 3-6
while stepping 1-6

L linkers 4-10
linking foreground monitor A-4
linking the demo program 2-7
load map 4-10
loading absolute files 2-13
loading emulator configurations 4-19
loading:extended memory space 5-10
local symbols

displaying 2-15
static 2-3

location address
 foreground monitor 4-9, A-3

locked, end command option 2-38
logical run address, conversion from physical address 4-12

M mapping memory 4-9
max segment algorithm 4-12
measurement system 2-39

creating 2-8
memory

characterization 4-10
copying 5-14
mapping 4-9
mnemonic display 2-17
mnemonic display with symbols 2-18

Index -5



modifying 2-21
searching for strings or expressions 5-14
with source code 2-19

memory display mnemonic 4-11
min segment algorithm 4-12
mnemonic memory display 2-17
modify command

configuration 4-1
memory 2-21
software breakpoints clear 2-27
software breakpoints set 2-24

module 2-39
module, emulation 2-8
monitor

background 4-6 - 4-7,
A-1

breaking into 2-22
comparison of foreground/background A-1
description 4-6
foreground 4-6, 4-8,

A-2
foreground monitor file 4-9
foreground monitor location 4-8
selecting entry after configuration 4-4
using the foreground monitor A-1

N no fetch cycle in trace display 2-37
nosymbols 2-14
note

executable files are included 2-7
pod command from keyboard 2-12
status line error 2-13

notes
coordinated measurements require background. monitor 4-8
mapper terms deleted when monitor type is changed 4-7
pod commands that should not be executed 5-15
selecting internal clock forces reset 4-4
software breakpoints not allowed in target ROM 2-23
software breakpoints only at opcode addresses 2-23
step not accepted 2-29
target accesses to emulation memory 4-10
write to ROM analyzer status 4-16

6- Index



O on-line help 2-11

P PATH, HP-UX environment variable 2-8 - 2-9
physical run address, conversion to logical run address 4-12
Pin guard

target system probe 3-2
pin protector 3-3
pmon, User Interface Software 2-38
pod_command 2-12

features available with 5-14
help information 2-12

prerequisites for using the emulator 2-2

R RAM, mapping emulation or target 4-10
READY signal 4-14
READY signals on accesses to emulation memory 4-10
real-time execution

restricting the emulator to 4-5
register commands 1-4
registers

display/modify 2-27
release_system

end command option 2-38,
 4-18 - 4-19

relocatable files 4-10
relocating foreground monitor A-3
reset

during background monitor 1-6
reset (emulator)

running from target reset 2-20, 3-6
reset (reset emulator) command 2-38
RESET signal 3-6, 4-13
restrict to real-time runs

emulator configuration 4-5
permissible commands 4-5
target system dependency 4-5

ROM
mapping emulation or target 4-10
writes to 4-10

run address, conversion from physical address 4-12
run command 2-20
run from target reset 3-6, 4-13

Index -7



S saving the emulator configuration 4-18
semaphore 2-4
sequencer, analyzer 5-14
set

source on inverse video 2-30
SFR access

using reg command 1-7
using register command 2-28

simulated I/O 4-18
SINGLE_STEP_ENTRY, foreground monitor label A-10
softkey driven help information 2-11
Softkey Interface

entering 2-8
exiting 2-38
on-line help 2-11

software breakpoints 2-23
and NMI 2-23
clearing 2-27
displaying 2-25
enabling/disabling 2-24
setting 2-24

software installation 2-2
source line referencing 2-30
source lines

displaying 2-16
stacks

using the foreground monitor 4-9
status qualifiers 2-37
step command 2-28
stop_trace command 2-35
storage qualifier 2-35
string delimiters 2-12
symbolic

addresses 2-20
constants 2-3

symbols
displaying 2-14

synchronized measurement A-11
system overview 2-2

T target memory
loading absolute files 2-13

8- Index



RAM and ROM characterization 4-10
target reset

running from 3-6
target reset, running from 3-6
target system

dependency on executing code 4-5
interface 3-9

Target system probe
pin guard 3-2

terminal interface 2-12
trace

no fetch cycle 2-37
only 2-35
simple trigger 2-30

trace, displaying with time count absolute 2-33
trace, reducing the trace depth 2-34
trace,displaying with compress mode 2-34
tracing background operation 4-17
tracing internal DMA cycles 4-17
tracing refresh cycles 4-17
transfer address, running from 2-20
trigger position 2-37

U unbreak into the monitor 1-6
user (target) memory

 loading absolute files 2-13

W wait states, allowing the target system to insert 4-14
window systems 2-38
write to ROM break 4-16

Index -9



Notes

10- Index


	Using this Manual
	Contents
	Introduction to the 64768 Emulator
	Getting Started
	In-Circuit Emulation Topics
	Configuring the Emulator
	Using the Emulator
	Using the Foreground Monitor
	Using the Format Converter
	Index

