/A cackars

User’s Guide for the PC Interface

MC68040/EC040/LC040
Emulator/Analyzer
(HP 64783A/B)

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and

fitness for a particular purpose.Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software
on equipment that is not furnished by Hewlett-Packard.

© Copyright 1993, 1994, Hewlett-Packard Company.

This document contains proprietary information, which is protected by copyright.
All rights are reserved. No part of this document may be photocopied, reproduced
or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject
to change without notice.

HP is a trademark of Hewlett-Packard Company.

UNIX is a registered trademark of UNIX System Laboratories Inc. in the U.S.A.
and other countries.

SunOS, SPARCsystem, Open Windows, and Sun View are trademarks of Sun
Microsystems, Inc.

Microtec is a registered trademark of Microtec Research, Inc.

Hewlett-Packard Company

P. O. Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901-2197, U.S.A

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by the U.S.
Government is subject to restrictions set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304 U.S.A.
Rights for non-DOD U.S. Government Departments and Agencies are as set forth
in FAR 52.227-19(c)(1,2).

Printing History

New editions are complete revisions of the manual. The date on the title page
changes only when a new edition is published.

A software code may be printed before the date; this indicates the version level of
the software product at the time the manual was issued. Many product updates and
fixes do not require manual changes, and manual corrections may be done without
accompanying product changes. Therefore, do not expect a one-to-one
correspondence between product updates and manual revisions.

Edition 1 64783-97001, April 1993
Edition 2 64783-97003, October 1993
Edition 3 64783-97005, January 1994

Safety and Certification and Warranty

Safety information and certification and warranty information can be found at the
end of this manual on the pages before the back cover.

The HP 64783A/B Emulator

m
o
fin}
m
©
~
3
]

I
7 [a)
o Z @[- < = m
© g o @ < U @ 4
JTEo n N g g <«
v <@ n 3 r TR)
© - = 0 W w g w u © =z
2z xr = =2 0 >
o> o< 0 < a < O 3 3 4
T W ou o T wao =0 [

(INCLUDED WITH ACTIVE PROBE)

CABLES-1000
36",37",38"

(P/0 HP 64748C0)

HP 64783A/B PROBE
SRAM OPTIONAL
DEMO BOARD

iv

gen_ascii_data
gen_ascii_data

Symbols Display got_targots

hdwr_encode

Enulation

Emulation Memory PARRRRSA8 main:[1271 MOVE.W D3,D8
Displ 8800085 - EXT.L Da
Isplay---------====="n=----- > |lameeansac - MOVEQ #$99080820 , D1
BBAABASae - JSR _lren
finalysis
. X Line addr,H 68848 Mnemonic
Analysis Trace Display--->
a main JSR init_system
.) . 1 =ain:[981 JSR update_system
Status line g|VeS active 2 BEBPAS3ES SEPABAASA sprog long read
information """""""" > ETATUS . M68A4Aunming user program Emulation trace complete

LY System Register Processor Breakpointz Memory Config Analysis

. Active Delete Erase Load Open Store Utility Zoom
Command selection area
activates the function with

your input
An Example of the PC Interface in Use

Vi

The HP 64783A/B Emulator

Description

The HP 64783A/B emulator supports the Motorola 68040, 68EC040, and 68LC040
microprocessors operating at clock speeds up to 33 MHz (HP 64783A) or 40 MHz
(HP 64783B). Differences between the three microprocessors are shown in the

table below:
Motorola Processor Includes MMU Includes FPU
68040 yes yes
68EC040 no no
68LC040 yes no

The emulator uses an MC68040 microprocessor and is pin-for-pin compatible with
the MC68EC040 and MC68LC040 microprocessors. Refer to the end of the
chapter titled "Using the Emulator" for special considerations when using the
emulator in target systems designed with the MC68EC040 or MC68LC040.

Throughout this manual, the microprocessor will be referred to as the MC68040,
except where the three versions must be discussed separately.

The emulators plug into the modular HP 64700 instrumentation card cage and offer
80 channels of processor bus analysis with the HP 64704A emulation-bus analyzer.
Flexible memory configurations are offered from zero through two megabytes of
emulation memory. High performance download is achieved through the use of a
LAN or RS-422 interface. An RS-232 port and a firmware-resident interface allow
debugging of a target system at remote locations.

For software development the HP AXCASE environment is available on SUN
SPARCsystems and HP workstations. This environment includes an ANSI standard
C compiler, assembler/linker, a debugger that uses either a software simulator or
the emulator for instruction execution, the HP Software Performance Analyzer that
allows you to optimize your product software, and the HP Branch Validator for test
suite verification.

vii

If your software development platform is a personal computer, support is available
from several third party vendors. This capability is provided through the HP
64700’s ability to consume several industry standard output file formats.

Ada language support is provided on HP 9000 workstations by third party vendors
such as Alsys and Verdix. An Ada application developer can use the HP emulator
and any compiler that generates HP/MRI IEEE-695 to do exhaustive, real-time
debugging in-circuit or out-of-circuit.

Features

HP 64783A/B Emulator

» 16 to 33 MHz active probe emulator (HP 64783A)
e 20 to 40 MHz active probe emulator (HP 64783B)
* Supports MC68040, MC68EC040, and MC68LC040
e Supports burst and synchronous bus modes
* Symbolic support
* Number of breakpoints available:
— If specified at RAM addresses: unlimited;
— If specified at ROM addresses: eight.
e 36 inch cable and 219 mm (8.8") x 102 mm (4") probe, terminating in PGA
package
» Background and foreground monitors
» Simulated I/0O with workstation interfaces
» Consumes IEEE-695, HP-OMF, Motorola S-Records, and Extended Tek Hex
File formats directly. (Symbols are available with IEEE-695HReEOMF
formats.)
e Multiprocessor emulation
— synchronous start of 32 emulation sessions
— cross triggerable from another emulator, logic analyzer, or oscilloscope
» Demo board and self test module included

viii

Emulation-bus analyzer

80-channel emulation-bus analyzer, which uses the static deMMUer of the
MC68040 emulator

Post-processed dequeued trace with symbols

Eight events, each consisting of address, status, and data comparators
Events may be sequenced eight levels deep and can be used for complex
trigger qualification and selective store

Emulation memory

256 Kbyte, 512 Kbyte, 1 Mbyte, 1.25 Mbyte and 2 Mbyte memory
configurations available

4 Kbytes of dual-ported memory available if you use the background monitor.
Mapping resolution is 256 bytes

No wait states required by the emulator for processor speeds up to 25 MHz
One wait state required in all accesses above 25 MHz

In This Book

This book covers the HP 64783A/B emulator. All information in the manual
applies to the three versions of the emulated microprocessor, unless it is marked
with the processor name (MC68040, MC68EC040, or MC68LC040).

Part 1, “Quick Start Guide,” is designed to quickly familiarize you with the
emulator. It outlines the major steps required to install the emulator hardware and
PC Interface software, and explains how to use the main emulator features.

Part 2, “User Guide,” provides detailed explanations on how to use the PC Interface
commands to operate the emulator and analyzer. It also explains how to to
configure the emulator to make measurements in your target system, and how to
solve problems you may encounter when using the emulator.

Part 3, “Reference,” gives detailed information on such things as menu hierarchies,
command syntax, data file formats, demo program information, and specifications.
You will probably find this part of the book most helpful after you have become
comfortable with your emulator.

Part 4, "Installation and Service Guide," shows you how to install and maintain the
emulator.

Contents

Part 1

Quick Start Guide

The Emulation Process 2

Develop Your Programs 2
Configure the Emulator 2
Use the Emulator 2

In This Part 3

Getting Started

The 68040 Emulator — At a Glance 6

Step 1. Copy the demo program files 8

Step 2. Start the PC Interface 9

Step 3. Learn how to select commands 10

Step 4. Configure the emulator for the demo program
Step 5. Map memory for the demo program 12
Step 6. Load the demo program absolute file 14
Step 7. Transfer symbols to the emulator 16
Step 8. Display the demo program in memory 17
Step 9. Run the demo program 18

Step 10. Trace demo program execution 19

Step 11. Stop (break from) program execution 23
Step 12. Display processor registers 24

Step 13. Step through program execution 25
Step 14. Reset the emulator 26

11

Xi

Contents

2

Solving Quick Start Problems

If the PC interface won't start 28

If the emulator starts, but won’t respond to commands 29
If you can't load the demo program 30

If you can't display the program 31

If the emulator won't run the program 31

If you can't break to the monitor 31

If the emulator won't reset 32

Part 2

Using the Emulator

Making Measurements 34
In This Part 34

Using the PC Interface

What are PC Interface forms? 36

Running the PC Interface and Composing Commands

To use the PC Interface with your emulator 37
To apply power 38

To start the PC Interface 39

To compose commands in the command line 40
To view the emulator status 41

To exit the PC Interface 41

37

Xii

Contents

Using Windows 42

To create a new user window 43

To delete a user window 44

To make a window the active window 45
To hide a window 45

To view a window 46

To erase the contents of a window 46

To load a file into a window 47

To store the contents of a window to a file 48
To search a window for a string 49

To zoom a window 50

To change window parameters 51
To change window colors 52

To move around in a window 53

Defining and Using Function Key Macros 54

Nesting and Chaining Macros 54

Keystroke Representations 55

Organizing the Macros 55

To create a function key macro 56

To execute a function key macro 58

To edit a function key macro 58

To delete a function key macro 59

To save and restore function key macros 60

Building Command Files 61

To create a command file using an editor 62

To create a command file by logging commands 63
To use a command file 63

To add delays during command execution 64

Using Configuration Files 65

To load a configuration file 66
To store a configuration file 66

Accessing the Terminal Interface 67

To access the Terminal Interface 67
To get help on Terminal Interface commands 69

Xiii

Contents

Accessing the Operating System 70

To enter a single MS-DOS command 70
To enter multiple MS-DOS commands 71

4 Using the Emulator

Preparing the Emulator for Use 74
To configure the emulator 74

Loading and Storing Programs 75

To build programs 75

To prepare programs for the PC Interface 77
To load a program 79

To store a program 82

Using Symbols 83

What is symbol scoping? 83

To load a symbol database 85

To display global symbols 85

To display local symbols 86

To transfer global symbols to the emulator 87

To remove global symbols from the emulator 87
To transfer local symbols to the emulator 88

To display transferred local symbols 88

To remove local symbols from the emulator 89

Accessing Processor Memory Resources 90

To display memory as byte values 90

To display memory as word values 91

To display memory as long-word values 91

To display memory as instruction mnemonics 92
To display memory repetitively 92

To modify memory by bytes 93

To modify memory by words 95

To modify memory by long words 95

To copy memory 96

To search memory 98

Xiv

Contents

Using Processor Run Controls 100

To run a program 100

To break to monitor 101

To step the processor 102

To change the step function display 104
To reset the processor 105

Using Registers 106

To display registers 106
To modify registers 107

Using Execution Breakpoints 109

Adding or setting execution breakpoints in RAM 109

Adding or setting execution breakpoints in ROM 110

Execution breakpoints in ROM when the MMU manages memory 110
To add an execution breakpoint 111

To set an execution breakpoint 112

To set a ROM breakpointin RAM 113

To clear an execution breakpoint 114

To remove an execution breakpoint 115

To display execution breakpoints 115

Using the Emulator In-Circuit 116

To install the emulator probe in the target system 117
To power-on the emulator and target system 117

To shutdown the emulator and target system 118

To probe target system sockets 118

Using The MC68040 Emulator With MMU Enabled 119

To enable the processor memory management unit 119

To view the present logical-to-physical mappings 121

To see translation details for a single logical address 123

To see details of a translation table used to map a selected logical address

124

Using an FPU with an MC68EC040 or MC68LCO040 Target System

125

XV

Contents

5 Using the Analyzer

Making Basic Analyzer Measurements 129

To begin a trace measurement 129

To halt a trace measurement 130

To view the trace status 130

To display the trace list 130

To define a simple trigger qualifier 131
To define a simple storage qualifier 132
To set the trigger position 133

Displaying the Trace List 134

To change the trace format 134
To display the trace list 136
To change the trace depth 138

Analyzing Program Execution When The MMU Is Enabled

To program the deMMUer in a static memory system 139
To store a deMMUer setup file 140

To load the deMMUer from a deMMUer setup file 141

To trace program execution in physical address space 141

Making Complex Measurements 142

To insert a sequence term 143
To remove a sequence term 144
To assign the trigger term 145
To reset the analyzer 146

To define a qualifier 146

To create a numeric expression 148

To define trace patterns 149

To define arange 152

To set the storage qualifier 155

To define a primary branch term 161
To define a global restart term 162

To define a secondary branch term 167

Setting Analyzer Clocks 168

To trace user/background code execution 168
To configure the analyzer clock 169

139

XVi

Contents

Using Other Analyzer Features 171

To define a prestore qualifier 171
To count states or time 172

Making Coordinated Measurements

To start a simultaneous program run on two emulators 176
To trigger one emulation-bus analyzer with another 178
To break to the monitor on an analyzer trigger signal 182

Configuring the Emulator

Configuring and Mapping Memory 188

To assign memory map terms 189

To assign the memory map default 194

To check the memory map 195

To delete memory map terms 196

To reset the memory map 196

To enable one wait state 197

To enable the memory management unit 198

Using the Emulation Monitor 200

What is the background monitor? 201

What is the foreground monitor? 201

To select the emulation monitor 202

To set the monitor base address 204

To interlock emulator and target cycle termination signals for monitor cycles
205

To set foreground monitor interrupt priority 206

To set the background monitor keep-alive address 207

To preset the interrupt stack pointer and program counter 208

To enable break on write to ROM 210

Setting Other Configuration Items 211

To restrict to real-time runs 211

To enable the processor cache memories 212
To enable target system interrupts 213

To enable CMB interaction 214

To set the memory access size 215

XVil

Contents

Configuring the Triggers 216

To drive analyzer trigger signals to the CMB or BNC 216

To break emulator execution on trigger signals 218

To arm analyzers on trigger signals 220

To drive and receive CMB or BNC trigger signals at the same time 221

Providing MMU Address Translations for the Foreground Monitor
223

Locating the Foreground Monitor using the MMU Address Translation Tables
225

Solving Problems

If the emulator appears to be malfunctioning 228

If the trace listing opcode column contains only the words "dma long write (retry)"
repeatedly 228

If the analyzer fails to trigger on a program address 229

If the analyzer triggers on a program address when it should not 229

If trace disassembly appears to be partially incorrect 230

If there are unexplained states in the trace list 231

If the analyzer won't trigger 231

If the analyzer fails to trigger on a program label address 232

If you see multiple guarded memory accesses 232

If you suspect that the emulator is broken 232

If you have trouble mapping memory 233

If emulation memory behavior is erratic 234

If you're having problems with DMA 234

If you're having problems with emulation reset 234

If the deMMUer runs out of resources during the loading process 235

If you only see physical memory addresses in the analyzer measurement results
236

If the deMMUer is loaded but you still get physical addresses for some of your
address space 236

If you can't break into the monitor after you enable the MMU 237

Xviii

Contents

Part 3 Reference

Emulator Features 240
In This Part 240

9 Using Memory Management

Understanding Emulation and Analysis Of The Memory
Management Unit 242

Terms And Conditions You Need To Understand 242

Logical vs Physical 242

What are logical addresses? 243

What are physical addresses? 243

Static and dynamic system architectures 243

Static system example 243

Non-paged dynamic system example 244

Paged dynamic system example 244

Where Is The MMU? 245

Using supervisor and user privilege modes 246

How the MMU is enabled 246

Hardware enable 246

Software enable 247

Restrictions when using the emulator with the MMU turned on 247
How the MMU affects the way you compose your emulation commands 248

Seeing Details of MMU Translations 249

How the emulator helps you see the details of the MMU mappings 249
Supervisor/user address mappings 251

Translation details for a single logical address 252

Address mapping details 252

Status information 253

Table details for a selected logical address 254

XiX

Contents

Using the DeMMUer 255

What part of the emulator needs a deMMUer? 255

What would happen if the analyzer didn’t get help from the deMMUer? 255
How does the deMMUer serve the analyzer? 255

Reverse translations are made in real time 256

DeMMUer options 256

What the emulator does when it loads the deMMUer 257

Restrictions when using the deMMUer 258

Keep the deMMUer up to date 258

The target program is interrupted while the deMMUer is being loaded 258
The analyzer must be off 258

Expect strange addresses if you analyze physical memory with multiple logical
mappings 258

Resource limitations 260

Example to show resource limitations 261

The Emulation Memory Map Can Help 261

Dividing the deMMUer table between user and supervisor address space 263

Solving Problems 264

Using the "Processor MMU Mappings" command to overcome plug-in problems
264

Use the analyzer with the deMMUer to find MMU mapping problems 265

Failure caused by access to guarded memory 265

Failure due to system halt 266

Execution breakpoint problems 267

A "can't break into monitor" example 268

10 Emulator Commands

Analysis Commands 273
Analysis Begin 273
Analysis CMB 274
Analysis Display 274
Analysis Format 276
Analysis Halt 278
Analysis Trace 278
Breakpoint Commands 282
Breakpoints Add 283
Breakpoints Clear 284
Breakpoints Display 284
Breakpoints Remove 284

XX

Contents

Breakpoints Set 284
Configuration Commands 285
Config General 286
Config Key_Macro 290
Config Load 290
ConfigMap 291

Config Store 292

Config Trigger 292
Memory Commands 294
Memory Copy 294
Memory Display 294
Memory Find 295

Memory Load 296
Memory Modify 297
Memory Store 298
Processor Commands 299
Processor Break 300

Processor CMB 300
Processor Go 300

Processor MMU 301
Processor Reset 308

Processor Step 309
Register Commands 311
311
Register Display 311
Register Modify 311
System Commands 313
System Command 314
System Exit 314
System MS-DOS 314
System Log 314
System Symbols 315
System Terminal 316
System Wait 316
Window Commands 318
Window Active 318
Window Delete 318
Window Erase 319
Window Load 319
Window Open 319
Window Store 321

XXi

Contents

Window Utility 322
Window Zoom 324

11 Expression Syntax

ADDRESS 326

Expressions 328

Analyzer Pattern Expressions 335
Complex Expressions Description 336
STATUS 340

12 Emulator Error Messages

Error Messages 344

13 Data File Formats

The Absolute File 400

The ASCII Symbol File 400

Command File 401

Configuration File 402

Function Key Macro Configuration File 403

14 Specifications and Characteristics

Processor Compatibility 406

Electrical 406

Motorola JTAG 406

HP 64783A/B Maximum Ratings 407

HP 64783A/B Electrical Specifications 408

HP 64783A/B Clock AC Timing Specifications 410
HP 64783A/B Output AC Timing Specifications 411
HP 64783A/B Input AC Timing Specifications 413
Physical 416

Environmental 417

BNC, labeled TRIGGER INJOUT 417
Communications 418

XXii

Contents

Part 4

15

Installation and Service Guide

In This Part 420

Connecting the Emulator to a Target System

Plugging The Emulator Into A Target System 422

Understanding an emulator 422

Equivalent circuits 424

Obtaining the terminal interface 426

Connecting the emulator to the target system 427

Verifying Operation Of The Emulator In Your Target System 429

Running the emulator configured like the processor 430

To verify operation of the target system 431

Interpreting the trace list 440

Fixing timing problems 442

Installing the emulator in a target system without known good software 443

Installing Emulator Features 445

Evaluating the reset facilities 445

Installing the background monitor 447

Resetting into the background monitor 447

Dealing with keep-alive circuitry while using the background monitor 449
Testing memory accesses with the background monitor 450

Running a program from the background monitor 451

Breaking into the background monitor 454

Exiting the background monitor 455

Software breakpoint entry into the background monitor 456

Stepping with the background monitor 458

Installing the foreground monitor 461

Resetting into the foreground monitor 462

Dealing with keep-alive circuitry by using the custom foreground monitor 464
Testing memory access with the foreground monitor 465

Running a program from the foreground monitor 466

Breaking into the foreground monitor 468

Exiting the foreground monitor 470

Software breakpoint entry into the foreground monitor 470

xXxiii

Contents

Stepping with the foreground monitor 473
Installing emulation memory 475

16 Installation and Service
Installation 478

Installing Hardware 479

Step 1. Connect the Emulator Probe Cables 481

Step 2. Install Boards into the HP 64700 Card Cage 484

Step 3. Install emulation memory modules on emulator probe 496
Step 4. Connect the emulator probe to the demo target system 500
Step 5. Apply power to the HP 64700 502

To verify the performance of the emulator 506

What is pv doing to the Emulator? 508

Troubleshooting 508

To ensure software compatibility 509

Parts List 510
What is an Exchange Part? 510

17 Installing/Updating Emulator Firmware

Step 1. Connect the HP 64700 to a PC host computer 515
Step 2: Install the firmware update utility 517
Step 3: Run "progflash” to update emulator firmware 519

Glossary

Index

XXiV

Part 1

Quick Start Guide

Part 1: Quick Start Guide
The Emulation Process

The Emulation Process

The emulator is a powerful tool that can help you debug and integrate your target
system hardware and software. There are three steps to the emulation process:

Develop Your Programs

Before you can use the emulator to debug your target system, you must have a
target program to analyze. This may be developed on a host computer and
programmed into target system ROM. Or, you can download programs into
emulation memory, which allows testing, debugging and modification before the
code is committed to hardware. When first learning how the emulator operates, you
may want to use the demo program supplied with the emulator, rather than
developing your own program, so you can get started quickly.

Configure the Emulator

Each target system has different resource requirements for memory and 1/O
locations. Also, there may be variations in system bus usage or chip configuration.
The emulator configuration controls allow you to adapt the emulator to match the
needs of your target system hardware and software. You usually define this
configuration once; then change it only as your target system design definition
changes.

Use the Emulator

After you configure the emulator, you can load the programs you want to test, run
them, and make various measurements to verify their functionality. The emulator
allows you to control program runs, display and modify memory and registers, and
record program execution.

Part 1: Quick Start Guide
The Emulation Process

In This Part

Chapter 1, “Getting Started,” tells how to set up the emulator and how to begi
making simple measurements. The chapter is organized as a practice tutorial.
can use the supplied demo program of the emulator to learn about emulator
operation.

Chapter 2, “Troubleshooting,” contains tips on solving some of the more com
problems that you may find when you begin using the emulator.

Part 1 of this book is designed to get you started using the major features of t
emulator, as quickly as possible. Once you have familiarized yourself with bas
operation of the emulator, Part 2 explains how to perform many common task
using the PC Interface commands. Part 3 contains detailed reference informat
such as a complete list of all commands, and a list of error messages. Part 4
provides installation and service information.

Getting Started

Chapter 1: Getting Started
The 68040 Emulator — At a Glance

The 68040 Emulator — At a Glance

PC Interface

Emulati

fiddress Symbol Mnenonic

pABaABS 38 nain JSR init_system

PABAABS 36 nain: [98] JSR update_system

pABanes 3c main:[99] ADDQ.L #1,num_checks

pABaABS4Z nain:[188] PEA num_checks

PABAABS 48 - JSR (interrupt_sin,PC)
pABaReS4c - NOP

il - ADDQ.L #4,A7

pABAABSSa naini[96] BRA.B main:[98]

PABAABS5Z nain: [182] RIS

pABaRes54 interrupt_sim MOVEM.L DZ2-D4/AZ,-(A7)

pABAABSSE - MOUEA.L (50014,A7),A2

PABAABS5C nain: [128] MOVE.L (A2),08

PAARARS Se - MOVEQ #5908BBABA, D1

pABaRes6a - JSR _lren

BBABES6E - MOVE.L D@,-(A7)

PABAABS68 - MOVE.L (A2),08

pABaReS6a - MOVEQ 1#$0008008A, D1

ISTATUS : M6BB4B—Runming in monitor Emulation trace halted
Window S8ystem Register Processor Breakpoints jEingY Config Analysis HP 64783 68040

Display Modify Load Store Copy Find Emulator

with an 80-Channel
Emulation-Bus
Analyzer

HP 64700
Card Cage

64749E02

IBM PC AT compatible. Probe Cable

Chapter 1: Getting Started
The 68040 Emulator — At a Glance

The tutorial examples presented in this chapter make the following assumptio
* The HP 64700 emulation card cage is connected to the personal compute

» The hardware has been installed in the card cage as described in the
"Installation and Service" chapter of this manual.

» The emulation probe assembly is connected to the demo board assembly as
shown in the "Installation and Service" chapter of this manual.

* The PC Interface software has been installed as described in the
"Installing/Updating Emulator Firmware" chapter.

» The emulator contains emulation memory (at least one 256-Kbyte memory
module in BankO of the emulation probe).

Chapter 1: Getting Started
Step 1. Copy the demo program files

. Step 1. Copy the demo program files

The demo program and the associated output files, including the IEEE-695 format
absolute file, are provided with the 68040 PC Interface.

» Copy files from \HP64700\DEMO\64783.

For example:

C> MKDIR DEMOO040 <Enter>
C> CD DEMOO040 <Enter>
C> COPY \HP64700\DEMO\64783*.*. <Enter>

Chapter 1: Getting Started
Step 2. Start the PC Interface

Step 2. Start the PC Interface

If you have set up the emulator device table antHPIEABLES shell
environment variable as shown in the "Installation" chapter, you are ready to start
up the PC Interface.

Enter the PCM040 command at the MS-DOS prompt.
For example:
C:\DEMO040\> PCM040 EMUL_COM1 <Enter>

The EMUL_COM1 in the command above is the logical emulator name given in
the HP 64700 emulator device table file \HP64700\TABLES\64700TAB).

If the PC Interface starts successfully, you will see a display similar to the
following.

ode

mulation

fmalysis

[STATUS: M6B8A48—Enulation reset Enulation trace halted
Syztem Register Processor Breakpointz Memory Config #Analysis
fictive Delete Erase Load Open Store Utility Zoonm

Chapter 1: Getting Started
Step 3. Learn how to select commands

Step 3. Learn how to select commands

Use the the left and right arrow keys to highlight the command or option and press
the <Enter> key.

Or:

Type the first letter of the command or option.

If you select the wrong option, you can press the <ESC> key to move back up the
command tree.

When a command option is highlighted, either the next level of options or a short
message describing the option is shown on the bottom line of the display.

Many PC Interface commands present fields in which to specify command
parameters.

10

Chapter 1: Getting Started
Step 4. Configure the emulator for the demo program

Step 4. Configure the emulator for the demo
program

In the emulation configuration, you will set up the emulator to use its background
monitor. This is the most simple monitor.

You will also define the address to be used as the initial stack pointer, and the
address to be installed in the program counter.

To obtain the emulation configuration form, enter the command:

Config General

Use the arrow keys to place the cursor in the "Monitor type" field, and press the
<Tab> key to select "background".

Move the cursor to the "Initial stack pointer?" field and type in 07F00.
Move the cursor to the "Initial program counter?" field and type in O.

To save your configuration, press the <Enter> key while the cursor is in the field in
the lower right corner of the form.

G al Emulation Configuration
Monitor type Target system keep alive? disabled

Is clock rate greater than 25MHz? [EH Enable interrupts from target? [y 1]
Enable breaks on writes to ROM? [E¥ Enable software breakpoints? [y 1]
Restrict to real-time runs? []] Enable CMB interaction? [1]
Memory data access width? Initial stack pointer?

Initial program counter? NG

€tl+:Interfield movement Ctrle+:Field editing TAB:Scroll choices [ysml

: MG6EA4A——Enulation reset Emulation trace halted
the value loaded into the pc register after a "Processor/Reset/Monitor"

or a "Processor/Reset/Hold” followed by a "Processor/Break". The value
an even address.

11

Chapter 1: Getting Started
Step 5. Map memory for the demo program

Step 5. Map memory for the demo program

Because the emulator can use target system memory or emulation memory (or
both), it is necessary to map ranges of memory so that the emulator knows where to
direct its accesses. You can map up to eight memory ranges with 256-byte
resolution (beginning on 256-byte boundaries and at least 256 bytes in length).

You can characterize memory ranges as emulation RAM, emulation ROM, target
system RAM, target system ROM, or as guarded memory.

The "ecs" demo program occupies ROM locations from 0 through 2C66H and
RAM locations from 6000H through OFFFFH. (You can see this by looking at the
linker load map output listing that was generated when compiling the demo
program.) Note that the ecs.x demo program was developed for the MC68331/332
emulator. It will work well for the MC68040 emulator.

Select theConfig MapModify command to enter the memory map configuration
screen.

To select th€onfig MapM odify command: Press the "c" key, then press the "m"
key, and finally press the "m" key again. The shorthand form used to describe this
sequence is:

Config Map Modify

Using the arrow keys, move the cursor to the "address range" field of term 1. Enter:
0..02fff

Move the cursor to the "type" field of term 1, and press the <Tab> key to select the
"erom" (emulation ROM) type. Next, move the cursor to the "address range" field
of term 2. Enter:

6000..0ffff

Move the cursor to the "type" field of term 2, and press the <Tab> key to select the
"eram" (emulation RAM) type. The memory configuration display follows.

12

Chapter 1: Getting Started
Step 5. Map memory for the demo program

Memory Map Conf iguration

Unnapped memory: Tupe By Attribute

fiddress Range Attribute

+1l» Interfield movement Ctrl ¢+ [Field editing TAB :Scroll choices

[STATUS : M68A4A—Enulation reset Enulation trace halted

Use the TAB and Ehift-TAB keysz to pick memory type for mapped range.

The "Unmapped memory type" field in the memory map specifies that unmapped
memory ranges are treated as target system RAM by default.

To save your memory map, use the <Enter> key to exit the field in the lower right
corner. (The <End> key on PC keyboards moves the cursor directly to the last
field.)

Chapter 1: Getting Started
Step 6. Load the demo program absolute file

Step 6. Load the demo program absolute file

Some 68000 software development tools generate IEEE-695 format absolute files.
The PC Interface provides an IEEE-695 format absolute file reader. However, you
can also load absolute files in the following formats: HP absolute, Intel
hexadecimal, Extended Tektronix hexadecimal, and Motorola S-records.

Select theMemoryL oad command.

For example, you can load the demo program’s absolute file by selecting:

Memory Load
Memory Load Conf iguration
File Format IEEE-695 |
Target memory type for memory load
Force the absolute file to be read no |

Delete a leading underscore character from symbol names ¥EE

File name

+1l» Interfield movement Ctrl ¢+ [Field editing TAB :Scroll choices

[STATUS: M68A48—Enulation reset

Emulation trace halted

[Enter the name of an IEEE-695 absolute file (ex. test.out).

The "ECS.X" absolute file is an IEEE-695 format file, so use the <Tab> key to
select "IEEE-695".

The next field (again, use the arrow keys to move the cursor from field to field)
allows you to selectively load the portions of the absolute file which reside in
emulation memory, target system memory, or both emulation and target system
memory. Since emulation memory is mapped for demo program locations, you can
enter either "Emulation” or "Both".

The next field allows you to force the file format reader to be run before memory is
loaded. For this example, enter "no".

14

Chapter 1: Getting Started
Step 6. Load the demo program absolute file

Next, you can specify whether you want the IEEE-695 reader to strip leading
underscores from symbols. For this example, enter "yes".

Finally, enter the name of your absolute file ("ECS.X" in this example) in the la
field, and press <Enter> to start the memory download.

15

Chapter 1: Getting Started
Step 7. Transfer symbols to the emulator

Step 7. Transfer symbols to the emulator

When you load memory with IEEE-695 or HP64000 format absolute files, global
symbols are automatically loaded. However, before you can view symbols in
mnemonic memory and trace displays, you must transfer them to the emulator.

To transfer global symbols into the emulator, selecByséemSymbolsGlobal
Transfer command.

For example, you can transfer global symbols from the demo program to the
emulator by selecting:

System Symbols dobal Transfer

To transfer local symbols into the emulator, selecBtstemSymbolsL ocal
Transfer command.

For example, to transfer local symbols from all modules to the emulator, select:
System Symbols Local Transfer All

16

Chapter 1: Getting Started
Step 8. Display the demo program in memory

Step 8. Display the demo program in memory

Once you have loaded a program into the emulator, you can view the program in
memory by displaying memory in mnemonic format. This causes the contents of
memory locations to be disassembled and displayed in assembly language
mnemonic format.

Select theM emoryDisplay M nemonic command.

For example:

Memory Display Mhemonic

Enter the address range "main.." and press <Enter>. The emulation window
automatically becomes the active window as a result of this command. You can

press <CTRL>z to zoom the window and <Home> to see the beginning of the
range.

Address Sunmbol Mnemonic

AEABAAS 38 main JSR init_system
REABARS 26 main:[981] JSR update_systen
ARBRAAS 3C main:[991 ADDY . L #1,nun_checks
AEABAAS42 main:[16881 PEA num_checks
alalalala ot o) - JSR Cinterrupt_sin,PC)
alalalala[5tot Pod - NOP

ABABBRS1e - ADDY . L #4,A7
ARARARS5A main:[96] BRA.B main:[981]
ABABBAS52 main:[1621 RIS

ARARARS54 interrupt_sim MOVEM. L D2-D4/A2,— (A7)
ARABARS5S - MOVUEA .L (50814,A47),02
ABABBASSC main:[1281] MOVE .L (Az2),Dha
HBABABRSSe - MOVEQ #SeapaeaaA, D1
ARABRRS6A JSR _lren
ABABBRS6G MOVE . L DA, —-(A?)
ABABARSLE MOUE.L (Az2),Dha
ABABBBRSGA MOVEQ 15pARARAAA, D1

[ETATUS : M68A48—Running in monitor Emulation trace halted
Window System Register Proceszor Breakpoints gt Config Analysis
Display Modify Load Store Copy Find

As with any window, you can use the <UpArrow>, <DownArrow>, <PgUp>, and
<PgDn> keys to scroll the information in the window.

17

Chapter 1: Getting Started
Step 9. Run the demo program

Step 9. Run the demo program

Select théProcessofGo Address command.

TheProcessofGo Address command causes the emulator to run from a specified
address.

For example, to start the emulator executing the demo program from the ENTRY
address, select:

Processor Go Address

Enter "ENTRY" in the address field and press <Enter>.

The status line will show that the emulator is "Running user program".

18

Chapter 1: Getting Started
Step 10. Trace demo program execution

Step 10. Trace demo program execution

When you start a trace measurement, the analyzer looks at the data on the
emulation processor’s bus and control signals at each bus cycle. The information
seen at a particular bus cycle is called a state.

When one of these states matches the "trigger state" you specify, the analyzer stores
states in trace memory. When trace memory is filled, the trace is said to be
"complete."

Select theAnalysisTraceM odify command to modify the trace specification.
TheAnalysisTraceM odify command provides one screen (with one subscreen)

from which you make a complete trace specification.

For example, to modify the trace specification so that the analyzer triggers on the
address "main”, select:

Analysis Trace Modify

Move the cursor to the "Trigger on" field of the first sequence term. Use the <Tab>
key to select pattern "a".

Internal State Trace Specification

While storing
Trigger on times
8 store
Branches Count Prestore Trigger position
of 1824
+1l» Interfield movement Ctrl ¢+ [Field editing TAB :Scroll choices

[ETATUS | M6EA48—PRunning user progran Emulation trace halted

TAB zelects a pattern or press ENTER to modify thiz field and the pattern values

Chapter 1: Getting Started
Step 10. Trace demo program execution

Press <Enter>. You are now presented a screen in which you assign values to
patterns. Move the cursor to the "addr" column of pattern "a". Then type in the
symbolic value "main" beside "Enter ->".

Internal State Trace Specification

Set 1
Range (r) Label SFEFJEN - thru
Pat addr data stat
a L main
b
c
da

Set 2
e
£
9
h
arm

Expression

Expressions have the form: <{setl} andsor <{set2}. Where setl consists of <a,
b,c,d,r,tr> and setZ conzizts of <e,f,g,h,arm>. Patterns within a set can be
Joined with i{or) or “"(norl), but not both. Example! *r " aore | £f I g i h
Pattern Expression:

[ETATUS | M68A48—Running user programn Emulation trace halted
Enter—> [EBQ]

Enter an expression including don’t cares.

Press the <Enter> key to see the symbol "main" appear in the addr column beside
a=.

Press the <End> key and then press the <Enter> key to exit the patterns and
expressions screen and save your assigned values.

Press the <End> key and then press the <Enter> key to exit the trace specification
screen and save your changes.

Transfer emulator execution from running the user program to running the monitor.
This will allow you to restart the user program after the analyzer has started its
trace. More about tHerocessoBreak command later in this chapter. Enter the
command:

Processor Break
Select theAnalysisBegin command to start the trace measurement.

You can start the trace by selecting:

Analysis Begin

20

Chapter 1: Getting Started
Step 10. Trace demo program execution

Notice that the status line shows "Emulation trace running”. In this case, this

means the analyzer has not found the trigger state, but you will also see this s
when the analyzer has found the trigger state but not captured enough states
trace memory.

Select theProcessof50 Address command to run the demo program from its
ENTRY address.

Processor Go Address

Enter "ENTRY" in the address field and press <Enter>.

Notice that the status line now shows "Emulation trace complete”. This means the
trigger state has been found and trace memory has been filled with states.

Select theAnalysisDisplay command to obtain a form that lets you select the
desired trace display.

To obtain the trace display form, select:

Analysis Display

The "States available" shows the number of states available for display in the trace
list.

The "Dequeuing" field lets you select "off" for a trace display that shows all bus
cycles that were captured, or "on" for a more readable trace list that eliminates
unused prefetch cycles and aligns opcodes and operands. Select "on".

You are given two fields in which to specify the states to display. Type the number
of the first state you want to display in the "Start" field, and press <Enter>. Type in
the number of the last state you want to display. For this trace list, select "-2" for
Start, and "100" for End.

The "Cycles" field allows you to specify either display of "all" cycles, or only the
cycles that contain program instructions ("instr only"). Select "all".

The "Address mode" field allows you to specify whether addresses, symbols, or
both are shown in the address column of the trace. Select "both".

The "Start on" field lets you specify whether to start trace disassembly on the high
word or low word of the long word at the address you specify. Instruction opcodes
may be contained in the high word, low word, or both words of the long words

21

Chapter 1: Getting Started
Step 10. Trace demo program execution

captured by the analyzer. Trace disassembly must begin on an instruction opcode.
For this disassembly, select "high word".

To display the trace list according to your specifications, press <End> and then
<Enter>.

Press <CTRL>z to zoom the analysis display window. An example trace display is
shown below. Press the <Home> key to see the start of the trace.

addr ,H 68848 Mnemonic

AEAA1154 ORI.B #5088, A4

asae7fec $ARAAARAA sdata long write
main JER init_systen

=08887f e4 stk sdata write: SA0000536
151515 g fote) SAARR1152 sdata long write
t_system MOVE.U #50049 , target_tenp
=get_tenp d=st sdata write: 58849
=sys:[341 MOVE.UW #5882D , target_hunid
=et_humid d=t sdata write: $88ZD
=sys:[381 MOVE.W #50044 , current_temp
—ent_temp dst sdata urite: 58844
=ys:[39]1 HOVE.U #506029 , current_humid
=nt_humid dst sdata write: 58829
=sy=:[42]1 CLR.L tenp_dir

=tenp_dir d=t sdata write: SABBBAAAEA
=sy=s:[43]1 CLR.L hunid_dir

—umid_dir dst sdata write: 5PA0ARBAA

[ETATUS | M6EA48—PRunning user progran Emulation trace complete
Window System Register Processzor Breakpoints Memory Config ZNERIIES
Begin Halt CHMB Format Trace Display

The first column in the trace list contains the line number. The trigger state is
always on line number 0.

The second column contains the address information associated with the trace
states. Addresses in this column may be locations of instruction opcodes on fetch
cycles, or they may be sources or destinations of operand cycles. Selecting "both"
for the address disassembly mode causes both hexadecimal values and symbols to
appear in this column.

See the equals signs "=" preceding some of the addresses. Addresses preceded by
"=" are "equivalent" addresses. They were emitted by the inverse assembler to
identify the low words in the long words captured by the analyzer.

The third column shows mnemonic information about each emulation bus cycle.

22

Chapter 1: Getting Started
Step 11. Stop (break from) program execution

Step 11. Stop (break from) program execution
TheProcessoBreak command causes emulator execution to break from the user
program and begin executing the monitor program.

The monitor state is implemented using the 68040 Background monitor Debug
Mode (BDM). When the emulator is running the monitor program, it can access
internal registers and target system resources.

When the emulator is running the user program, commands that require access to
internal registers or target system resources will cause temporary breaks to the
monitor (unless the emulator is restricted to real time runs).

When the emulator is running in the monitor, no bus cycles or processor
instructions occur, except for accesses to target memory when requested.

Select théProcessoBreak command.

To break emulator execution from the demo program to the monitor program,
select:

Processor Break

The status line shows that the emulator is "Running in monitor".

23

Chapter 1: Getting Started
Step 12. Display processor registers

Step 12. Display processor registers

Select theRegisterDisplay command.

For example, to display the contents of the basic registers, select:

Register Display Basic

Press <CTRL>z to zoom the emulation window. To display the contents of register
D2, alone, select:

Register Display Single
Use the <Tab> key to select "d2" and press <Enter>.

The register contents are displayed in the emulation window as shown in the
following display.

ARARAAS O #5paRARAA4, D1
HEABARS9e _lren

ARARAAS A4 . DA

APABAAS A6 . main:[128]
ARABAAS A main:[127] . D3,D8
ARARAASaa - DA

ABABARSac - #500000828 , D1
ARBRAASae - _lren

pc
48
a4
af
ad
usp
cacr

pARA1ACca st = 2788

alalalilalifad i) di = 88888685 dZ = Bapasasa d3 = Baeaeaeac
£ fP88cS=-PAARART db = B8ABABZa d7 = BaBanana
papacASe al = B8BB6LB6e aZz = B8BA6A34 a3 = B88aavdf6
AARA1bOEG a5 = B8ae7vf64 ab paRav B a7 = B888687f 14
papapana nsp = BBBBABA1 isp papavE 14 vhr = BBBABABAO
alalslalslasli] sfc = 88 dfc B8

2 = Papapase

[ETATUS : M68A48—Runming in monitor Emulation trace complete
Window System [EhgEaday Processzor Breakpoints Memory Config Analysis
Display Modify

24

Chapter 1: Getting Started
Step 13. Step through program execution

Step 13. Step through program execution

The emulator allows you to execute one instruction or a number of instructions
with the step command.

Use theProcessofStep command.

To step one instruction from the emulator’s current program counter, select:

Processor Step Pc

Enter a step count of 1, and press <Enter>. The executed instruction, the program
counter address, and the resulting register contents are shown.

mulation
f£1f{888ch=-AA0A0807 d6 = BAABABZA d7 = BHAnAnAna
aABAcASe al = BABABGLBGe aZz = #APB6A34 a3 = ABAavdf6
88881bho6 a5 aeaa?E 64 ab 886887 8c a? = B8887f 14
alaalalalalali] nsp Baaaaa881 isp BapavE 14 vhr = BBBBBBB8
alalalaala sl] sfc a8 afc a8

a4
af
ad
usp
cacr

dZ = B90A0AEA

ABABA1Acals - BNE.B 5AAAA1ABE
= ABPBA180bels

pc = BABA1ALe

48 alalalalalipedd]

a4 f{f{Ba6c

af 8888685

ad BaBA1b66

usp alalalaala sl]

cacr aa8n888a

2788
aBaeAeAS
aaaaaaa7
AeaB6e6e
a8aa7f 64
Baaaaaea 1
a8

papapasa
napanaza
paRA6A34
papavf B
papavE 14
B8

ABRABABAC
[alalals]al5]a]5]
aBpaTAf 6
aeeavE 14
[alalals]al5]a]5]

MeBB48—Runming in monitor Emulation trace complete
Window System Register |[ggaet=any Breakpoints Memory Config Analysis
Go Break Reset CMB Step HMMU DeMMU

To step eight instructions from the current program counter, select:

Processor Step Pc

The previous step count is displayed in the "# of instructions to single step" field.
You can enter a number from 1 through 99 to specify the number of times to step.
Type 8 into the field, and press <Enter>. The executed instructions and ending
register contents are shown in the emulation display.

25

Chapter 1: Getting Started
Step 14. Reset the emulator

ABABA 18bels SUBQ.L #1,D01
ABABA18cAls BLT.B 5AAAA1ACC
ABABA18Cc20s MOVE.B (AB)+,D8
ABABA18Cc40s CMP.B (A1)+,DB
ABABA18cHEs BNE.B 5$AAAA1ADA
ABABA18c80s TST.B pa
pEABBA1Bcals - BHNE.B 5APAA1ABE
AABA18bels - SUBQ.L #1,D1
= ABPBA18c8ks
pc aaBA16cA
48 alalalalalipedd]
a4 f{f{Ba6c
af 88886851
ad BaBA1b66
usp alalalaala sl]
cacr aa8n888a

2788
aBaeaeA3
aaaaaaa7
aeae6a6E
a8aa7f 64
Baaaaaea 1
a8

papapasa
napanaza
paRA6A34
papavf B
papavE 14
B8

ABRABABAC
[alalals]al5]a]5]
aBpaTAf 6
aeeavE 14
[alalals]al5]a]5]

MeBB48—Runming in monitor Emulation trace complete
Window System Register |[ggaet=any Breakpoints Memory Config Analysis
Go Break Reset CMB Step HMMU DeMMU

Step 14. Reset the emulator

* Use theProcessoReset command.

To reset the emulator and hold the processor in the reset state, select:
Processor Reset Hold

The status line shows "Emulation reset".

26

Solving Quick Start Problems

Solutions to problems you might face during the Getting Started procedures.

27

Chapter 2: Solving Quick Start Problems
If the PC interface won't start

Solving Quick Start Problems

This chapter helps you identify and resolve problems that may arise while using the
Getting Started chapter.

For more information, refer to the "Solving Problems" chapter and the "Emulator
Error Messages" chapter later in this manual.

If the PC interface won't start

When you start the PC Interface, the first thing it attempts to do is communicate
with the emulator. If it is unable to do so, the program simply exits, returning you
to the MS-DOS prompt.

Make sure you have the proper cable to connect your PC to the emulator. See the
HP 64700 Card Cage Installation/Service Guide

Make sure that all switches on the HP 64700 Card Cage are set correctly. For a
standard RS-232 connection to a PC, the COMM switches on the back of the Card
Cage should be all set to 0, with switch 13 setto 1. If you are using an RS-422
connection, you will need different switch settings. Seélth&4700 Card Cage
Installation/Service Guide.

Make sure that the emulator is connected to power and that the power switch is on.

Make sure that the 64700tab configuration file (usually installed in

\hp64700\tables) matches the communications port number, communications
parameters and emulator description for the port you are using and the emulator. If
you are unable to determine the source of the problem, contact your local HP Sales
and Service Office for assistance.

28

Chapter 2: Solving Quick Start Problems
If the emulator starts, but won’t respond to commands

If the emulator starts, but won’t respond to
commands

Make sure that the data communications switch settings (or settings made wit
stty command in the terminal interface) are correct for the terminal or host
computer and cable you are using.

If the emulator seems to execute a command but doesn’t echo what you typed,
check the local echo switch setting or the echo setting stttheommand in the
terminal interface.

If you need more information about power or datacomm connections, see the
HP 64700 Series Card Cage Installation/Service Guiflgou are unable to
determine the source of the problem, contact your local HP Sales and Service
Office for assistance.

29

Chapter 2: Solving Quick Start Problems
If you can't load the demo program

If you can’t load the demo program

[J Check to ensure that the emulator probe is plugged into the demo board, with
power connected to the demo board from the emulator. (The demo program may
not work with target systems other than the demo board.)

[J Make sure the reset flying lead is connected from the probe to the demo board.
[J Check to ensure that you changed to the demo directory:
* Jusr/hp64000/demo/debug_env/hp64783 for the MC68040.
[J Check to see that the emulation configuration and memory map are correct. Refer

to the chapter titled, "Configuring the Emulator."

[J Make sure you are using the correct load procedure for the emulator
communications configuration. Refer to the chapter titled "Using the Emulator" for
examples of different configurations and the appropriate load procedures.

30

Chapter 2: Solving Quick Start Problems
If you can’t display the program

If you can’t display the program

[Verify that the program loaded correctly.

[J Check to see that the status of the emulator is reset or is running in monitor.
the STATUS line on the display. If the emulator is halted, it can’t use the monitor
to display program memory. In this case, reset the emulator and try to display the
program memory again.

[J Check to see that the configuration and memory map are correct. See the chapter
titted "Configuring the Emulator".

If the emulator won't run the program

[J Check to see that the configuration and memory map are correct. See the chapter
titted "Configuring the Emulator".

[J Make sure that the emulator is properly connected to the demo board. See the
chapter titled "Installation and Service" in this manual.

If you can’t break to the monitor

[J Run performance verification to test the emulation controller. See "To verify the
performance of the emulator" in the chapter titled "Installation and Serivce" in this
manual.

[J Make sure your stack pointer is valid.

31

Chapter 2: Solving Quick Start Problems
If the emulator won't reset

If the emulator won't reset

[J Run performance verification to test the emulation controller. See "To verify the
performance of the emulator" in the chapter titled "Installation and Serivce" in this
manual.

32

Part 2

Using the Emulator

33

Part 2: Using the Emulator
Making Measurements

Making Measurements

When you've become familiar with the basic emulation process, you'll want to
make specific measurements to analyze your software and target system. The
emulator has many features that allow you to control program execution, view
processor resources, and program activity.

In This Part

Chapter 3, “Using the PC Interface,” tells you how to use the PC Interface
commands.

Chapter 4, “Using the Emulator,” shows you how to use the PC Interface
commands to control the emulation processor and make simple emulation
measurements.

Chapter 5, “Using the Analyzer,” explains how to use the emulation-bus analyzer to
record program execution for debugging.

Chapter 6, “Making Coordinated Measurements,” tells how to couple two or more
emulators to coordinate measurements involving more than one processor.

Chapter 7, “Configuring the Emulator,” explains how to use the PC Interface
commands to allocate emulation resources such as memory and how to enable and
disable certain emulator features.

Chapter 8, “Solving Problems,” explains some of the problems that you might
encounter when you use the emulator, and how to solve them.

This part of the manual explains how to accomplish various common tasks, often
requiring use of several PC Interface commands together. It assumes you know
how to use PC Interface commands to control the emulator. If you need a general
introduction to using the emulator, see Part 1.

34

Using the PC Interface

How to control the emulator by using commands and forms

35

Chapter 3: Using the PC Interface

The PC Interface allows you to use the emulator and analyzer through a simple
guided interface. You are prompted to select commands and fill in electronic
“forms” to operate the emulation and analysis functions.

What are PC Interface forms?

In contrast to commands, which perform some action, the PC Interface uses a
number of electronic forms to accept data entry for later use. A form is a screen
used to enter multiple pieces of related information. For example, emulator
configuration information is entered via a form. Forms almost always perform
actions, and the data entered via a form always affects the behavior of certain
subsequent commands.

All PC Interface forms are similar in that they have a numbields where you

type in information. In some cases, a field may only accept a small set of
predetermined values (such as “yes” or “no”). For these fields, you can either type
in the value, or use thiab andShift-Tab keys to cycle through the valid choices

for the field.

When you are filling in a form, you can use arrow keys to move from field to field.
Pressing<Enter> accepts the value in the field, and moves to the next Geitti.

Left, Cntl Right, Ins(ert), Del(ete) andBackspaceallow you to back up within a
single field and edit it. When you finish filling in a form, position the cursor on the
last field of the form (usually in the lower right corner), and pr&sger>. You

can move to the last field with the (up and down) arrow keys, or you can press the
keyboardEnd> key. If you need to cancel your changes, prés>to exit the

form unchanged.

36

Chapter 3: Using the PC Interface
Running the PC Interface and Composing Commands

Running the PC Interface and
Composing Commands

Before you can use the PC Interface with your emulator, you must first install {
emulator hardware and software, normally done only once, and then develop

system programs to run.

Installing the emulator hardware and software is described in the chapter titled

"Installation and Service", and in the first steps of the chapter titled "Getting
Started".

Developing programs is described in the “Programs” section of the chapter titled
"Using the Emulator".

Caution

To use the PC Interface with your emulator

Possible damage to emulator! When you use the emulator with a target system,
always apply power to the emulator before turning on power to the target system.
Otherwise, the emulator might be damaged.

Apply power to the emulator.
Apply power to your target system.

Start the PC Interface software (described later in this chapter).

Use the PC Interface to configure the emulator as needed for the target system and

your programs. See the chapter titled, “Configuring the Emulator.”

Use the PC Interface commands to load, run and debug your programs as described

in this chapter and the next two chapters in this manual.

37

Chapter 3: Using the PC Interface
Running the PC Interface and Composing Commands

To apply power

Caution Possible damage to emulator! When you use the emulator with a target system,
always apply power to the emulator before turning on power to the target system.
Otherwise, the emulator might be damaged.

1 Make sure that the emulator probe is plugged into the demo board or your target
system. (Do this with emulator power OFF and target system power OFF.)

2 Apply power to the emulator by moving the front panel power switch to the ON
position.

3 Apply power to the target system.

You must apply power to the emulator before you start the PC Interface software.
Otherwise, the PC Interface cannot communicate with the emulator, and won't start.

38

Chapter 3: Using the PC Interface
Running the PC Interface and Composing Commands

To start the PC Interface

1 If you wish to start the interface running in a specific directory, use the MS-DOS
cd command to change to that directory before you start the PC Interface.

The PC Interface allows you to enter complete pathnames whenever a file nal
required. However, if you have most of your files in one directory, you can sav
typing by changing to that directory before you start the PC Interface. Or, you can
change the current directory from inside the PC Interface later.

2 Start the PC Interface by typing

pcm68040 <options> <logical name>

at the MS-DOS command prompt.

The<options>parameter can be left blank, or can be one or more of the following.
Each option must be separated by at least one blank space from the next option.

Option Meaning

/m Tells the PC Interface that you're
using a monochrome monitor.

Iw <filename> Loads a PC Interface
configuration file designated by
<filename>.

[c <filename> Loads and executes a PC Interface
command file designated by
<filename>.

1? Displays information about the

PC Interface startup options.

The<logical name>parameter is one of the communications port names assigned
in the file \np64700\tables\64700tab. At installation, the 64700tab file assigns
emul_com1to the COM1 port, anémul_com2to the COM2 port. You may wish

to add to this (if you have more than two COM ports) or change the names to
something more meaningful. For example, if you had both an MC68020 and an
MC68040 emulator, you might assigm020to the COML1 port, aném040to the
COM2 port. The 64700tab file can be changed with a text editor.

39

Chapter 3: Using the PC Interface
Running the PC Interface and Composing Commands

Examples

When you start the PC Interface, it initializes the emulator as specified in your last
exit command (for exampl&ystemExit L ocked otUnlocked), and presents the

initial PC Interface windows. If the startup is unsuccessful, you'll be returned to the
MS-DOS prompt.

To start the MC68040 PC Interface on a system with a monochrome monitor and
the emulator attached to the serial port COM1 (named emul_com1 in the
hp64700tab file), type:

pcm68040 /m emul_com1

To start the MC68040 PC Interface with a color monitor, the emulator attached to
the serial port named em040 and load a configuration file named configl.cfg, type:

pcm68040 /w configl.cfg em040

Example

To compose commands in the command line

Press the key corresponding to the first letter of the command option you want.

or

Use the right and left arrow keys to highlight a command option. PresEmier>
key to select that option.

Press theEsc>key to back up in the command tree when you select the wrong
option.

Press<CtrI>R to repeat the last command.

When a command or option is highlighted, the bottom line of the display shows the
next level of options or a short message describing the current option.

Press the keys “p,” “g,” and “p” to select the commBratessoGo Pc.

40

Chapter 3: Using the PC Interface
Running the PC Interface and Composing Commands

To view the emulator status

To see the emulator status, look at the status line near the bottom of the screen. This
line is always visible.

The emulator status line tells you whether the emulation processor is running i
user program, running in the monitor, or in the reset state. It also tells you if a
analysis trace is in progress, complete, or was halted.

To exit the PC Interface

To save the current configuration, exit, and then restore the current configuration
the next time you enter the PC Interface, s&gstemExit L ocked.

To exit and start with the default configuration the next time you enter the
PC Interface, sele@ystemExit Unlocked.

To exit the PC Interface without saving the current configuration, sistetm
Exit No_Save.

When you start the PC Interface, it looks in the current directory for the file
pcm68040.cfg. If present, that configuration file is loaded. When you exit “locked,”
the current configuration is written to that file. When you exit “unlocked” or “no
save,” that file is left unchanged.

41

Chapter 3: Using the PC Interface
Using Windows

Using Windows

Most of the information reported to you by the PC Interface is displayed in one or
more windows. For example, the output from a trace listing is displayed in one
window. Another window is used to show you the results of a memory display .
Yet another window might contain a listing of a text file which you requested the
PC Interface to display for you. These windows allow multiple views of different
information to be present on your screen at the same time.

Each window behaves like a miniature terminal screen. Since there are multiple
windows displayed on the screen at one time, they tend to be fairly small (about 5
lines), but they can be scrolled forward and backward (within limits). Or, you can
“zoom” a window so that it occupies most of the screen. You can even hide a
window, to make room for another window to be displayed.

There are two types of windows in the PC Interface: system windows and
user-defined windows.

System windows are used by the PC Interface to display the results of various
Interface commands, such as analysis traces or the terminal interface. Although
these windows can be hidden or resized, they are a permanent part of the Interface
and cannot be deleted.

User-defined windows can be opened by the user to display ASCII files, such as
source code for use in debugging. These windows can be hidden, resized, and
deleted.

Many Interface commands will automatically access the correct system window in
order to complete the requested task. However, commands which require access to
user windows must always have that window explicitly defined.

This section explains how to manage PC Interface windows usiigititkow
commands.

42

Chapter 3: Using the PC Interface
Using Windows

10

To create a new user window

SelectwWindow Open.

Now you see the window definition form. Type a window name of 12 characte
less. PressEnter>.

Type a number in the range 1..20 (a row number) to position the top edge of the
window, then pressEnter>. Or press<Enter> to accept the default position.

Type a number in the range 1..20 to position the bottom edge of the window, then
press<Enter>. Or, presxEnter> to accept the default position.

Now the cursor is in the “Autoclear” field. Typef you want information that is
written to the window to overwrite existing data in the window. Trygfeyou want
information written to the window to be appended to the existing data. Press
<Enter>.

Type in a number in the range 20..1030 to specify the buffer size (number of lines)
of the window. PressEnter>.

Type a number in the range 0..79 (a column number) to position the left edge of the
window, then pressEnter>. Or, presEnter> to accept the default position.

Type a number in the range 0..79 to position the right edge of the window, then
press<Enter>. Or, pressEnter> to accept the default position.

Now the cursor is in the “Display” field. Typef you want the window to be
displayed when you finish this procedure. Tygéyou want the window to be
hidden.

To save the changes you have made to the form and create the new window, press
<End> <Enter>. Or, presEsc>to discard your changes and exit the window
definition form.

43

Chapter 3: Using the PC Interface

Using Windows

A user-defined window provides a unique window into which you may load ASCII
files, such as source code files or other information that will help you with your
system debugging problems.

Since the window definition screen is a form, you may use the arrow keys to move
to only the fields you want to change. Also, as with all forms, you can uEadhe

key to move to the last field on the form. Note that although the buffer can contain
many more lines than the on-screen portion, each 20 lines in the window buffer
consumes up to 2 Kbytes of system memory in your PC.

You can display hidden windows with tiéindow Utility View command, as
described in “To view a window,” later in this chapter.

To delete a user window

SelectWindow Delete.

UseTab or Shift-Tab to select the name of the user-defined window you wish to
delete. Or, type in the desired window’s name. PrEsder>.

You are asked to confirm the deletion. Typéyou want to delete the selected
window. Typen to abort the deletion.

Press<Enter> to delete the window, or presgEsc>to abort the command and
return to the PC Interface.

When you are finished with a user-defined window, you may wish to delete it.
Deleting a user-defined window removes it from the PC Interface display and frees
the system memory associated with its corresponding window buffer.

44

Chapter 3: Using the PC Interface
Using Windows

To make a window the active window

Use<Ctrl-A> to page through windows, sequentially activating them.

or

SelectWindow Activate.

UseTab or Shift-Tab to select the name of the window you want to activate. Or,
type in the desired window’s name. (The currently active window is the default.)

Press<Enter> to confirm your selection and activate the window. Pr&sE>t0
abort the window activation and return to the PC Interface screen.

The active window is the one highlighted by a bold border on the PC Interface
screen. This is the one that is acted on by PC Interface window commands, such as
Window Zoom, or by the cursor movement keys.

You can'’t activate a hidden window. You must first make it visible with the
Window Utility View command.

To hide a window

SelectwWindow Utility Hide.

UseTab or Shift-Tab to select the name of the window you want to hide. Or, type
in the desired window’s name. (The currently active window is shown initially,
making it the default choice.)

45

Chapter 3: Using the PC Interface

Using Windows

3 PresscEnter> to confirm your selection and hide the window. Prdssc>to

abort the process and return to the PC Interface screen.

You can hide a window to temporarily remove it from the PC Interface screen. This
can help clarify the display. The window definition still exists, and data is written
to the window as if it were still displayed.

To view a window

SelectwWindow Utility View.

UseTab or Shift-Tab to select the name of the window you want to view. Only
windows that are currently hidden are listed. Or, type in the desired window’s name.

Press<Enter> to confirm your selection and view the window. PreSsc>to
abort the process and return to the PC Interface screen.

You can'’t see the contents of a hidden window, though the PC Interface writes data
to hidden windows. To reveal a hidden window and its contents, you use the
Window Utility View command.

You also need to use this command if a window is hidden and you want to activate
it.

To erase the contents of a window

Use<Ctrl-E> to erase the active window.

or

1 SelectWindow Erase.

46

Chapter 3: Using the PC Interface
Using Windows

UseTab or Shift-Tab to select the name of the window you want to erase. Or, type
in the desired window’s name. (The currently active window is the default.)

Press<Enter> to confirm the name selection.

You are asked to confirm the erasure. Tyjieyou want to erase the contents of
the selected window. Typeto abort the erasure.

Press<Enter> to erase the window contents, or preEsc>to abort the erase
command and return to the PC Interface.

Sometimes you may want to erase the contents of a window to remove incorrect
measurement results, or to remove a file that you loaded and no longer need. You
use theNVindow Erase command to do this. You can also use the key combination
<Ctrl-E> to erase the currently active window, but you are not prompted to
confirm the erasure.

To load a file into a window

SelectWindow Load.

UseTab or Shift-Tab to select the name of the window into which you want to
load (display) a file. Or, type in the name of the window to use. (The currently
active window is the default.) PresBnter>.

Type in the name of a file to load into the window. You should load only ASCII
text files. The results of loading non-text file types are unpredictable. You can
include a drive specifier, directory path, and file extension if desired.

Press<Enter> to load the file contents into the selected window. RtEss>to
abort the load command and return to the main PC Interface screen.

You can load a file into a window to view the file’s contents. This is handy for
viewing source code files while debugging. Or, you might load files that describe
system specifications while you are debugging that part of the system.

47

Chapter 3: Using the PC Interface

Using Windows

To store the contents of a window to a file

1 SelectWindow Store.

2 UseTab or Shift-Tab to select the name of the window whose contents you want

to store. Or, type in the name of the window whose contents will be stored. (The
currently active window is the default.)

3 Press<Enter> to confirm the name selection.

4 Type in the number of the first line in the range of lines you want to store.

or

Position the cursor in the window on the first line in the range of lines you want to
store. Use the up and down arrow keys to do this. The line number will be reflected
in the “From line” field of the form.

Press<Enter> to move to the next field.

Type in the number of the last line in the range of lines you want to store.

or

Position the cursor in the window on the last line in the range of lines you want to
store. Use the up and down arrow keys to do this. The line number will be reflected
in the “Thru line” field of the form.

Press<Enter> to move to the next field.

Type in the name of a file into which the window contents should be stored. You
can include a drive specifier, directory path, and file extension if desired.

Press<Enter> to store the window contents into the selected file. Rifess>to
abort and return to the main PC Interface screen.

You may want to store the results of a measurement for later usé/imtiew
Store command allows you to do this. By specifying a range of lines to be stored,
you can limit the information stored to that which interests you.

48

Chapter 3: Using the PC Interface
Using Windows

You can’t store an empty window to a file. If you specify the name of an existing
file, the window contents are appended to the contents of the file.

Example To print lines 20 through 30 of the Symbols window on a system printer attached to
your PC, enter:

Window StoreSymbols <Enter> 20 <Enter> 30 <Enter> prn <Enter>

To search a window for a string

1 SelectWindow Utility Search.

2 UseTab or Shift-Tab to select the name of the window whose contents you want
to search. Or, type in the desired window’s name. (The currently active window is
the default.) PressEnter>.

3 Type in the number of the first line in the range of lines you want to search.

or

Position the cursor in the window on the first line in the range of lines you want to
search. Use the up and down arrow keys to do this. The line number will be
reflected in the “From line” field of the form.

Press<Enter> to move to the next field.

4 Type in the number of the last line in the range of lines you want to search.

or

Position the cursor in the window on the last line in the range of lines you want to
search. Use the up and down arrow keys to do this. The line number will be
reflected in the “Thru line” field of the form.

Press<Enter> to move to the next field.

49

Chapter 3: Using the PC Interface

Using Windows

5 Type in the string that you want to find in the selected window.

6 Press<Enter> to search the window contents for the selected string. PEsss

to abort the command and return to the main PC Interface screen.

If the window buffer is large and the buffer is nearly full, you may find it tedious to
page through the window display while searching for a particular measurement
value or source line. Instead, you can uséN¥fredow Utility Search command to

find the data.

When the PC Interface finds the string in the window, it places the cursor
immediately after the string with the string at the top of the window.

To zoom a window

Use<Ctrl-Z> to expand and condense the currently active window.

or
SelectWindow Zoom.

UseTab or Shift-Tab to select the name of the window that you want to zoom. Or,
type in the desired window’s name. (The currently active window is the default.)

Press<Enter> to confirm the selection and zoom the window to full screen size.
Press<Esc>to abort the window zoom.

Often you’ll want to see more information than can be displayed in the default
window size, but you don’t want to change the window parameters permanently.
You can temporarily expand any window to the full PC Interface screen size. Other
windows are obscured under the zoomed window. Only one window may be
zoomed at a time.

If you perform the zoom operation on a window that already occupies the full
PC Interface screen, it will be returned to the size defined by the window
parameters.

50

Chapter 3: Using the PC Interface
Using Windows

To change window parameters

SelectwWindow Utility Parameters.

UseTab or Shift-Tab to select the name of the window that you want to modify
Or, type in the desired window’s name. (The currently active window is the
default.) PressEnter>.

Type a number in the range 0..20 to position the top edge of the window, then press
<Enter>. (Or, pressEnter> to accept the default position.)

Type a number in the range 0..20 to position the bottom edge of the window, then
press<Enter>. (Or, pressEnter> to accept the default position.)

Now the cursor is in the “Autoclear” field. Tygaf you want information that is
written to the window to overwrite existing data in the window. Tiyffeyou want
information written to the window to be appended to the existing data. Press
<Enter>.

Type in a number in the range 20..1030 to specify the buffer size of the window.
(Note that each 20 lines in the window buffer consumes about 2 Kbytes of system
memory.) PressEnter>.

Type a number in the range 0..79 to position the left edge of the window, then press
<Enter>. (Or, pressEnter> to accept the default position.)

Type a number in the range 0..79 to position the right edge of the window, then
press<Enter>. (Or, pressEnter> to accept the default position.)

Now the cursor is in the “Scroll” field. Typeif you want the PC Interface to write
data to the window one line at a time as it becomes available. (Usually more useful
for large trace listings or displaying large source files.)

Typen if you want the PC Interface to wait until it has all requested data available
before it writes the data to the window. (The second method is faster overall, but
you may notice an initial delay while the PC interface gathers the information.)

51

Chapter 3: Using the PC Interface

Using Windows
10 To save the changes, pregsnd> <Enter>. Press<xEsc>to discard your changes

and exit the window parameters form.
You may find that the default window definitions don’t meet your needs. You can
use theNindow Utility Parameters form to change the window definition to your
tastes. Also, this form is the only way that you can change the way in which data is
written to the window (the “Scroll” parameter).

Example To reposition and resize the Symbols window, enter the following command:
Wndow Utility Parameters Symbols <Enter>
0 <Enter>
12 <Enter>
y <Enter>
48 <Enter>
30 <Enter>
79 <Enter>
n <Enter>

To change window colors

1 SelectWindow Utility Color.

2 UseTab andShift-Tabto select color if you have a display card and monitor that
are capable of displaying color. Select mono if either your display card or monitor
is restricted to monochrome.

3 UseTab or Shift-Tab to select the foreground color from the following choices:

white, black, blue, green, cyan, red, magenta

Press<Enter>.

4 UseTab or Shift-Tab to select the background color from the above choices.

52

Chapter 3: Using the PC Interface
Using Windows

5 Press<Enter> to save your changes, or pre&sc>to abort the command and
leave the colors unchanged.

Changing colors is useful only if you have a color monitor. Although the
monochrome monitor choice will allow you to change color selections, the display
will always have black background color and white foreground color.

To move around in a window

» To move the cursor up in the window, use the up arrow key.

» To move the cursor down in the window, use the down arrow key.
» To move to the next page in the window buffer, usé>th®n key.

* To move to the previous page in the window buffer, us@¢hep key.

* To move the cursor to the right in the window, Gsd-right arrow . If more than
78 columns right are present, moving the cursor right from right-most column will
cause window to scroll horizontally.

» To move the cursor to the left in the window, Gse-left arrow .
* To move to the beginning of the window buffer, presdHbme key.

* To move to the end of the window buffer, pressiEhd key.

To move around in a window, the window must be active. You us#ithgow
Activate command (described earlier in this chapter) to make a window active.

53

Chapter 3: Using the PC Interface
Defining and Using Function Key Macros

Defining and Using Function Key
Macros

Function key macros allow you to assign keystroke sequences to a function key or
function key combination. Thus, you can reduce typing and simplify repeated
measurements by assigning your most frequent command sequences to a function
key macro.

There are forty possible function key combinations that may be assigned to macros.
* Function key$-1-F10

* Function key$-1-F10combined withShift

* Function keyd$-1-F10combined withAlt

» Function key$-1-F10combined withCtrl

The default PC Interface configuration predefines three macros:

» F1is defined aBrocessofstepPc 1.

* F2is defined asCtrl>\ (the system terminal abort sequence).

* F10is defined aSystemExit L ocked.

You can redefine these keys to any sequence that you want.

Nesting and Chaining Macros

You can nest macros to perform complex measurement sequences. For example,
you might have the following sequence assigndeBbto

key_seql<ShftF5>key seq2

<Shift><F5> may then have another sequence.

Nesting of macros is supported. For examp&hift><F5> may be the following
key sequence:

key_seq3<fd>key_seq4

54

Chapter 3: Using the PC Interface
Defining and Using Function Key Macros

Nesting is limited to 16 levels. Direct or indirect recursion of macros is not
permitted, except as a chain. For example, suppose you have the following assigned
to F3:

key_seql<f3>key_seq2

This isn’t a valid macro. But, you can do the following:

key seql key_seq2<f3>

Keystroke Representations

When you select a keystroke for activation of the macro, you casilaske and
<Shift><Tab> to scroll through the choices, or you can directly type the desired
key combination. This works for all key macro definitions. You can create
configuration files that define key macros by using a text editor, as long as you
follow the rules for representing keystrokes.

» All keystroke sequences that are not part of the standard printable ASCII
character set must be enclosed in brackets. This includes characters in the
range 0..31 decimal and 127..255 decimal. For example, function key 3 is
represented as-3>.

» The control key<Ctrl>) is represented using the circumflex symB9ihen
the character that follows it is part of the ASCII character set, and is
represented by the string “Ctrl” when the following character is not part of the
ASCII character set. For examp#Gtri>M (<Enter>) is shown as"M>;
<Ctrl>F5 is shown asCtrlIF5>.

When you us€onfig Key_macro to define a macro, it's easier to simply use a
particular key rather than enter a string representing that key. But, when you're
using a text editor to create a configuration file, pressing that key may have other
consequences. For example, if you presster> in your editor, a new line is
started. So, you type “<"M>", which the PC Interface uses to represent the
<Enter> key.

Organizing the Macros

You may want to arrange your macro definitions to help you remember their
functions. For example, you might assign all unshifted function keys to System
functions, all Alt function keys to Analysis functions, and so on. Or, if you are
using the emulator in a production testing environment, you might arrange the
macros so that the key number corresponds to steps in a sequence.

55

Chapter 3: Using the PC Interface
Defining and Using Function Key Macros

For long keystroke sequences, it may be better to have the macro call a command
file. This is particularly true when you are configuring the emulator for a
measurement. For example, suppose you want to change the configuration, map
memory, and load an absolute file. Simplify the process by building command and
configuration files that will be loaded with one macro.

To create a function key macro

SelectConfig Key_macro.

Use the<Tab> and<Shift><Tab> keys to select the function key combination to
which you want a macro assigned. PrelSater>.

Use the<Tab> and<Shift><Tab> keys to select the keystroke that terminates the
function key macro definition (default &Esc>). Press<Enter>.

Enter the keystrokes that will be assigned to the function key.

Press th&Esc>key (or other key defined as the termination key in step 3) to end
the macro definition.

You create a function key macro by choosing the key sequence that will run the
macro, then defining the sequence of operations to be performed in the macro.

You can create a function key macro outside the PC Interface by using a text editor
to create a configuration file. The key macro definitions must be preceded and
followed by the $KEYMAC separator. Each macro definition begins with the key
combination that represents the macro. A colon separates the macro assignment
from the definition. The definition itself appears as the sequence of keystrokes in
the macro. The following shows the default function key macros defined by the PC
Interface, as represented in a configuration file:

$KEYMAC
<F1>:pspl<"M>
<F2>:<M>
<F10>:sel
$KEYMAC

56

Chapter 3: Using the PC Interface
Defining and Using Function Key Macros

Examples Build a macro to end modification of a PC Interface form and save its contents:
<F5>:<End><"M>
Build a macro to create a user-defined window and load a source file into that
window. This example uses the <F5> macro as part of its sequence.

<F6>:wosourcel<"M>< "M><"M>< M>1000< "M>40<F5>wl<"M>
demo.asm<"M>

Build a set of macros to implement a “trace continuous” feature:
<ShftF1>:abi

<ShftF2>:adi<F5>
<ShftF3>:<ShftF1><ShftF2><ShftF3>

If you press<ShftF3> after defining this macro, the analyzer repeats trace
measurement and display. If there are no states to display, the PC Interface will
beep. The analyzer displays the first 16 states by default. For your measurements,
you may want to define other macros to set up the trace specification, and redefine
the macro assigned &8hift><F2> to select the states for display.

You can improve the execution of the last macro by seledfiimgow Utilities
Parameters, then set “Autoclear"y@ndscroll to n. When you run the macro, the
entire analyzer display will be updated simultaneously.

57

Chapter 3: Using the PC Interface
Defining and Using Function Key Macros

To execute a function key macro

To execute a function key macro for a particular command sequence, press the key
that is assigned to that sequence.

To cancel repetition of nested or chained macros, pres&tde>key.

To run a function key macro, you type the key sequence for the macro that you
want. For example, if System Symbols Global Display is assigreslite<F3>,
press and hold theAlt> key, then pressF3>.

To edit a function key macro

SelectConfig Key_macro.

Use the<Tab> and<Shift><Tab> keys to select the function key macro that you
want to edit. PressEnter>.

Use the<Tab> and<Shift><Tab> keys to select the keystroke that terminates the
function key macro definition (other thafsc>). Press<Enter>.

Edit the macro definition.

To move the cursor through the macro definition,<Gel> left arrow and
<Ctrl> right arrow .

To delete a keystroke character, position the cursor at that character, and then press
<Delete>

To type a keystroke character, press the key combination that creates that character
(for example<CtrI>m to enter the charactefM>).

58

Chapter 3: Using the PC Interface
Defining and Using Function Key Macros

5 Press the macro definition termination key, assigned in step 3, to save the changes.

You can edit a keystroke macro after you have created it. You might do this if you
find a more efficient way to make the measurement, or if you want to change macro
parameters. The PC Interface allows intelligent editing of the macros. For example,
if you have the character sequer¢®1> in your macro, and position the cursor
anywhere in that sequence, pressibglete>will remove the entire sequence.

To delete a function key macro

1 SelectConfig Key_macro.

2 Use the<Tab> and<Shift><Tab> keys to select the function key macro that you
want to edit. PressEnter>.

3 Use the<Tab> and<Shift><Tab> keys to select the keystroke that terminates the
function key macro definition (other thafsc>). Press<Enter>.

4 Use the<Delete>key to remove all keystrokes from the macro definition.

5 Press the macro definition termination key, assigned in step 3, to save the changes
and clear the macro definition.

You may want to delete a key macro sequence to save space in configuration files.
You can delete the macro definition using the above procedure, then save the
configuration file. Or, you can remove the macro definition text from the
configuration file by using a text editor.

59

Chapter 3: Using the PC Interface
Defining and Using Function Key Macros

To save and restore function key macros

To save the function key macro definitions, create a configuration file by selecting
Config Store and specifying a file name.

To load a set of function key macro definitions, load a configuration file by
selectingConfig Load and specifying the name of a configuration file that contains
the macro definitions you want to load.

The function key macro definitions are stored in PC Interface configuration files.
You can create an explicit configuration file that contains your macro definitions
and the other configuration items. Also, if you exit the PC InterfaceSygitem

Exit L ocked, the macro definitions and other configuration information will be
stored in a default configuration file. This file will be loaded when you reenter the
PC Interface.

60

Chapter 3: Using the PC Interface
Building Command Files

Building Command Files

A command file is an ASCII file containing PC Interface commands. You can
create command files from within the interface by logging commands to a
command file as you execute the commands. Or, you can create command fil
outside the interface with an ASCII text editor. You can send a command file t
PC Interface and have it execute the commands found there as if you typed th
directly into the interface command line.

With a single command file, you can implement a complete test procedure. For
example, you could start the interface and execute your command file. The
command file could load a configuration, load an absolute file, modify registers or
memory, set up a trace specification, start the program, capture the trace, and save
the trace listing to a file. (The ability to capture information from the emulator may
be limited, and depends on the host computer configuration.)

You can build a command file by creating a list of commands with an ASCII editor,
or by logging commands to a file during a work session. Because the command file
is an ASCII text file, you may use an ASCII editor to add, modify, or remove
commands.

You can put most PC Interface commands into a command file. The only things
that you cannot do in a command file are:

» Define function key macros.
e Set up the analyzer trace specification.
e Change the emulator configuration.

These things must be done in a configuration file. See the section “Using
Configuration Files.”

As with any source file, comments in command files help to explain the operation
of the command file and can also contain creation and modification information for
the command file. You can put comments in command files by using a text editor; a
“#" character anywhere in a line means that the rest of the text on the line is a
comment.

Command files may be nested up to eight levels. (Nesting means that one command
file calls another.)

61

Chapter 3: Using the PC Interface
Building Command Files

To create a command file using an editor

» Use an ASCII text editor to create and save a file containing abbreviated PC
Interface commands and parameters.

You can create a command file outside the PC Interface by using a text editor. The
following table shows how things are represented in command files:

Token Action Example

Single character Selects the PC Interfaceabi
command or option that
starts with that character

@<VALUE> <VALUE> is a parameter @20
for a data form

< Resets to top of commane
file

! Wait for one second !
Starts comment text #This is a comment.

Example Create a file namecindfile.cmd that contains the following text:

#open a new window
wo
#window name
@WIN1
#top row number

0

#bottom row number
@5

#set autoclear on
@Y

#buffer size

@20

#left edge
@0

#right edge
@15

#display window when done
@Y

62

Chapter 3: Using the PC Interface
Building Command Files

To create a command file by logging commands

To log both commands and the command results to a file, SgitetnL og Both
Enable, type in a filename, and pregnter>.

To log only commands to a file, sel&ytstemLog I nputEnable, type in a
flename, and pressEnter>.

To log only command results to a file, sel®gstemL og OutputEnable, type in a
flename, and pressEnter>.

Command logging makes it easy to create a command file. You enable logging and
work through the sequence of steps needed for your measurement. When you're
finished, disable command logging and edit the file if necessary. You then have a
file ready for use as a command file.

You can specify a pathname with the log file if you want the file in a directory
other than the current directory. If you specify the name of an existing file, the
existing file is automatically overwritten.

To use a command file

SelectSystemCommand.

Type in the name of the file that contains the commands that you want to execute,
and pressEnter>.

You can also start a command file automatically by specifyinfgtkélename>
option when you start the PC Interface. See “To start the PC Interface” in this
chapter.

You can stop command file execution by pressingEsx>key.

63

Chapter 3: Using the PC Interface
Building Command Files

To add delays during command execution

To have the PC Interface wait for any keystroke before executing the next
command, sele@ystemWaitKey.

To have the PC Interface wait for the current measurement to finish before
executing the next command, sel®gstemWait M easurement.

To have the PC Interface wait for a definite period of time to elapse before
executing the next command, sel®gstemWait Time, type in a value in seconds,
then pressEnter>.

Command delays can help make a command file more useful. Suppose that you
have a command file that makes several measurements, but before each
measurement, you must reset the target system. You can @ystthraWait

command to delay the next command until you've had time to reset the target and
press a key to continue the command file.

64

Chapter 3: Using the PC Interface
Using Configuration Files

Using Configuration Files

The PC Interface uses configuration files to save and restore environment,
emulator, and analyzer settings. Refer to Chapter 7, “Configuring the Emulator,”
and Chapter 5, “Using the Analyzer,” for more information on configuring the
emulator and analyzer.

The configuration file is an ASCI!I file having several different sections. These
sections begin and end with a section name; between the names are the current
configuration settings for that section.

$SYSWIN Contains settings for the PC Interface system-defined windows.
$USERWIN Contains settings for user-defined windows (if any).

$MISC Contains color settings for display monitors.

$KEYMAC Contains function key macro definitions.

$SYMDB Defines the current symbol database.

$EMUL Contains the current emulator configuration as a series of

Terminal Interface configuration commands.

$TIMTRIG Contains the trigger specification for the external timing
analyzer, if present.

$STLABINT Lists the analyzer trace format and label information.

$STPATINT Lists pattern and range specifications for the emulation-bus
analyzer.

$STSEQINT Lists sequencer term definitions for the emulation-bus analyzer.

You can modify a configuration file using an ASCII text editor, and then load it
into the PC Interface. However, the simplest and safest way to change a
configuration file is to load an existing configuration, modify it using the PC
Interface commands, and then save it to a new file.

65

Chapter 3: Using the PC Interface
Using Configuration Files

To load a configuration file

1 SelectConfig L oad.

2 Type in the name of a file containing the configuration that you want to load, and

press<Enter>.

You can also use the <filename>option to load a configuration file when you
start the PC Interface. See “To start the PC Interface” in this chapter.

To store a configuration file

SelectConfig Store.

Type in the name of a file under which you want to save the emulator
configuration, and pressEnter>.

You can save the PC Interface configuration in a file for later use. This is especially
useful if you have several sets of emulator configurations or analyzer trigger
specifications that you use for different measurements. You can set up each
configuration and save it in a file, then load each configuration when you're ready
to repeat that measurement.

The emulator configuration is also saved in a file when you s®letemExit
Locked. The filename is the same as that used to start the prpgra68040Q
with the extension .CFG.

66

Chapter 3: Using the PC Interface
Accessing the Terminal Interface

Accessing the Terminal Interface

You can control the emulator with a set of primitive commands resident in the
emulator’s firmware. This command set is called the Terminal Interface, because
you only need an ordinary terminal to use these commands. The Terminal Int
is described in thM1C68040/EC040/LC040 Emulator/Analyzer Terminal Interfa
User’s Guide.

For most operations, you do not need to use the Terminal Interface commands
because the PC Interface translates commands you give it into an appropriate
sequence of Terminal Interface commands automatically. However, there may be
times when you want to use the Terminal Interface commands directly. To do this,
you can cause the PC Interface to activate the “Terminal” window. While the
Terminal window is active, the PC Interface emulates an ordinary terminal.
Anything you type while this window is active is sent to the emulator, which treats
it as a Terminal Interface command. Any output produced by the emulator as a
result is displayed in the same window.

This section explains how to access the Terminal Interface from within the
PC Interface.

To access the Terminal Interface

To enter the Terminal Interface, sel8gstemTerminal.

To leave the Terminal Interface, pré&ds-\ .

The Terminal Interface allows access to the low-level commands of the emulator.
You need to use caution when using the Terminal Interface commands because the
PC Interface operation may be disturbed by changes to the emulator configuration
using the Terminal Interface. This is because you can change configuration
parameters in the emulator, but the PC Interface will not be aware of the changes.
In general, you should not use any commands that change the emulator’s
configuration or data communications parameters, nor any of the commands listed
in the following table.

67

Chapter 3: Using the PC Interface
Accessing the Terminal Interface

Commands Reason to Avoid

stty, po, xp Do not use. Will change the channel
operation and hang emulator.

echo, mac Usage may confuse the channel protocol.

wait Do not use, will block access to
emulator.

init, pv Will reset emulator and force exit
unlocked.

See theViIC68040/EC040/LC040 Emulator/Analyzer Terminal Interface User’s
Guidefor more information regarding the Terminal Interface.

Examples To access the Terminal Interface and display memory locations 0 through 20 in
long word format, enter:

SystemTerminal
m -dl 0..20
Ctrl-\

To access the Terminal Interface and check the emulator status, and then the trace
configuration, enter:

SystemTerminal
es

tcf

Ctrl-\

68

Chapter 3: Using the PC Interface
Accessing the Terminal Interface

2 Enter:help <cmd_name>

Examples

To get help on Terminal Interface commands

1 SelectSystemTerminal.

where<cmd_name>is the Terminal Interface command for which you want hel

TypeCitrl-\ to exit the Terminal Interface.

You can access the emulator’s low-level Terminal Interface usirfgytem
Terminal command. If you need help on any Terminal Interface command, you can
use itshelp command.

See théViIC68040/EC040/LC040 Emulator/Analyzer Terminal Interface User’s
Guidefor more information regarding the Terminal Interface.

To get help on the Terminal Interfackecommand, enter:

System Terminal
help cf
Ctrl-\

To get help on all Terminal Interface command groups, enter:

System Terminal
help *
Ctrl-\

69

Chapter 3: Using the PC Interface
Accessing the Operating System

Accessing the Operating System

The PC Interface includes commands that allow you to perform sM$BOS
operating system functions without leaving the PC Interface. You can enter a single
command, and then return immediately to the PC Interface, or enter a series of
commands at the MS-DOS prompt.

When you use the operating system access capability, you should not run any
programs that modify the communications ports (COM1-COM4), such as terminal
emulation programs. Also, you should not run any programs that consume system
memory and do not release it. Many network management programs and TSR
(terminate-and-stay-resident) programs are in this category.

Also, there is a limited amount of memory available when you use the system
commands from the PC Interface. You cannot run programs that require large
amounts of system memory, such as compilers or complex text editors.

This section explains how to use the system access commands.

To enter a single MS-DOS command

SelectSystemM S-DOSCommand.

Type in the MS-DOS command you want to execute (include any command
parameters such as filenames or command options).

Press<Enter> to execute the command. Pre&sc>to discard the command and
return to the PC Interface.

70

Chapter 3: Using the PC Interface
Accessing the Operating System

4 When the command has finished executing, press any key to return to the
PC Interface.

Examples To display all files in the current directory, enter:
System NM5-DOS Command dir <Enter>

To format a floppy in the A: drive, enter:

System NM5-DOS Command format a: <Enter>

To enter multiple MS-DOS commands
1 SelectSystemM S-DOSFork to invoke an MS-DOS command shell.
2 An MS-DOS prompt will appear. Type in the desired series of MS-DOS commands.

3 When you are ready to return to the PC Interface,dyjiat the MS-DOS prompt,
and then pressEnter>.

71

72

Using the Emulator

How to control the processor and view system resources

73

Chapter 4: Using the Emulator
Preparing the Emulator for Use

The emulator has many commands and features that allow you to control execution
of your program, such as single stepping and setting breakpoints. You can also
display or modify memory locations and registers.

Preparing the Emulator for Use

In order to use the emulator, it must first be properly installed and power must be
applied to both the emulator and the target system (See “To apply power” in the
chapter titled, “Using the PC Interface.” The emulator may then need to be
configured to meet your target system'’s design, see below.

To configure the emulator

Set up the emulator for use by configuring it as described in the chapter titled,
"Configuring the Emulator".

Before you can run or test your programs with the emulator, you need to specify a
number of configuration items that adapt the emulator to specific target system
designs and program requirements. You should check the configuration and modify
it for your needs before using the emulator. Otherwise, some emulator functions
may not operate correctly.

74

Chapter 4: Using the Emulator
Loading and Storing Programs

Loading and Storing Programs

The PC Interface provides commands that allow you to move files into emulation
or target memory from the PC through the serial ports of the HP 64700 Card Cage.
Or, you can save a range of memory in an absolute file for later reuse. (You might
do this if you patch a section of code and need to reload it later for further testing.)

The PC interface can load HP64000 and IEEE-695 absolute files, in addition t
following hexadecimal formats:

* Intel hexadecimal.
* Tektronix hexadecimal.
* Motorola S-records.

Two file format readers come with the PC Interface. The readers convert HP64000
or IEEE-695 files into two files that are usable with your emulator. This means that
you can use available language tools to create absolute files, and then load those
files into the emulator using the PC Interface.

The readers can operate from within the PC Interface or as a separate process from
the MS-DOS prompt. You may need to use them separately if there is not enough
memory on your personal computer to operate the PC Interface and a reader
simultaneously. You also can include the readers as part of a “make file.”

To build programs

Create source files in “C” or MC68040 assembly language using a text editor.

Translate any “C” source files to relocatable object code using a compatible C cross
compiler.

Translate any assembly source files to relocatable object files using a compatible
MC68040 cross assembler.

75

Chapter 4: Using the Emulator
Loading and Storing Programs

3 Link all relocatable object files with a linker/loader that produces absolute object

files in the IEEE-695 format or HP64000 (HP-OMF) format. (The IEEE-695
format is preferred.)

(Optional) Build an SRU symbol database before entering emulation by entering
the srubuild <absfilename>command.

If you're planning to load programs into emulation or target system memory, you
need to have your files in a format acceptable to the MC68040 emulator. Usually,
this means you’ll want your files in IEEE-695 absolute format, since it is widely
supported in a number of environments.

If you compile or assemble programs on your PC, you will, of course, need to use a
cross compiler or assembler. Language tools available from Microtec Résearch
and IntermetridS provide cross compilers and assemblers. Another alternative is

to use programs developed on a workstation using compatible cross-development
language tools, and then downloading the absolute files to your PC. Most HP 9000
series workstations have language tools available which produce IEEE-695 format
and HP64000 format absolute files.

Processor C Compiler Assembler
MC68040 HP B1463 HP B1465

In addition to the language tools already mentioned, you may use other language
tools, provided they produce either IEEE-695 or HP64000 absolute file formats.
(The PC interface also supports other file formats, including Motorola S-records,
Intel hex, and Tektronix hex; however, these file formats do not support symbol
records and are therefore less useful in the PC Interface.)

76

Chapter 4: Using the Emulator
Loading and Storing Programs

To prepare programs for the PC Interface

To prepare HP64000 absolute files for use with the PC Interface, type:

RHP64000 [-q] [-f@fc] <filename>

or

To prepare IEEE-695 absolute files for use with the PC Interface, type: .

RIEEE695 [-u] [-q] [-f@fc] <filename>

where

[-u] Specifies that the first leading underscore of a symbol is not
removed.

[-a] Specifies the “quiet” mode. This option suppresses the display
of messages.

[-f@fc] Specifies an optional function coéteto be supplied for the
load addresses of data in the absolute file. The optional function
codes available for the MC68040 emulator are:

<fc> Meaning

none Emulator defaults to supervisor space

S Supervisor address space

u User address space

<filename> Specifies the name of the file containing the absolute program

(<file.ext>) when using the IEEE-695 reader or the linker
symbol file (<file.L>) when using the HP64000 reader.

The HP64000 reader produces an absolute and an ASCII file using the absolute file
(<file.X>), the linker symbol file (<file.L>), and the assembler symbol files
(<scrl.A>,<scr2.A>,...).

77

Chapter 4: Using the Emulator
Loading and Storing Programs

Examples

The IEEE-695 reader produces an absolute and an ASCII file using any IEEE-695
MUFOM (Microprocessor Universal Format for Object Modules) absolute file
(<file.ext>).

The reader programs are installed in the directory named \hp64700\bin by default.
For the reader to operate properly, this directory must be in the environment
variable PATH usually defined in the “\autoexec.bat” file. If not, you must supply
the directory name when executing the reader program.

You may want to incorporate the reader as the last step in your “make file,” or as a
step in your construction process. This to eliminate the possibility of having to exit
the PC Interface due to space limitations. Also, the files necessary for emulation
will then be updated automatically every time you modify your program.

The following command will create the files “TESTPROG.HPA” and
“TESTPROG.HPS” using the HP64000 reader:

RHP64000 TESTPROG.L
The following command will use the IEEE-695 reader to create the files

“TESTFILE.HPA” and “TESTFILE.HPS” and cause all absolute code/data to be
loaded into program space.

RIEEE695 -f@p TESTFILE.HP

78

Chapter 4: Using the Emulator
Loading and Storing Programs

To load a program

Check to make sure that you have mapped memory as appropriate for your system
design, as described in the “Memory configuration” section of chapter 7.

SelectMemoryL oad.

UseTab andShift-Tab to select the format of your absolute file. PrelSater> to
accept your choice.

UseTab andShift-Tab to select whether to load emulation memory, target system
memory, both, or a custom foreground monitor. Pr&sger> to accept your
choice.

UseTab andShift-Tab to select either user or supervisor address space to be
loaded. PressEnter> to accept your choice.

You can select from the following list of optional function codes:

<fcode> Meaning

none Emulator defaults to supervisor space
S Supervisor address space

u User address space

If you're using the HP64000 or IEEE-695 absolute file fornab, to selecyesif

you want the reader to re-read the absolute file and produce new .HBAPSd

files. You would want to do this if you had changed any of the load options and
needed to re-load the program in order to have the changes take effect (for example,
deleting leading underscore characters). RiEsger> to accept your choice.

If you're using the IEEE-695 formalab to seleclyesif you want the reader to
delete the first leading underscore character from symbol names (C compilers add a
leading underscore to most symbols). Présster> to accept your choice.

Specify the name of the file containing the absolute program (<file.ext>) when
using the IEEE-695 or the linker symbol file (<file.L>) when using the HP64000.

79

Chapter 4: Using the Emulator
Loading and Storing Programs

The file extension can be something other than those shown above, but cannot be
“HPA “.HPS,” or “.HPT.” (<file>.HPT is a temporary file used by the reader to
process the symbols.)

Press<Enter> to load the file, or pressEsc>to discard your entries and return to
the PC Interface command line.

Using the file that you specify (TESTFILE.ABS, for example), the PC Interface
does the following:

* |t checks to see if two files with the same base name and extensions .HPS and
.HPA already exist (for example, TESTFILE.HPS and TESTFILE.HPA).

 |f TESTFILE.HPS and TESTFILE.HPA don't exist, the PC Interface invokes
the reader to create them. The new absolute file, TESTFILE.HPA, is then
loaded into the emulator.

e If TESTFILE.HPS and TESTFILE.HPA already exist but the creation dates
and times are earlier than that of TESTFILE.ABS, the PC Interface invokes the
reader to recreate them. The new absolute file, TESTFILE.HPA, is then loaded
into the emulator.

» If TESTFILE.HPS and TESTFILE.HPA already exist but the creation dates
and times are later those for the file TESTFILE.ABS, the PC Interface does not
invoke the reader. The current absolute file, TESTFILE.HPA, is then loaded
into the emulator.

Only the PC Interface does date/time checking. When you run the reader at the
MS-DOS command line prompt, it will always update the absolute and symbol files.

When the reader operates on a file, a status message will be displayed showing
which reader is in use. When the reader is finished, another message shows that the
absolute file is being loaded.

The PC Interface can load HP64000 or IEEE-695 format absolute files, plus several
other types of absolute files, into emulation or target system memory. IEEE-695
format is preferred, since it is so widely used and has a bit more flexibility in terms
of symbol handling.

The memory type and function code parameters work with your memory map.
Each memory map term has a memory type and function code associated with it.
Based on what you enter here as the memory type and function code, the

PC Interface selects all memory map terms that match the specified type and
function code, and comes up with a set of addresses that are eligible for loading.

80

Examples

Chapter 4: Using the Emulator
Loading and Storing Programs

The PC Interface then reads your absolute file and loads only those addresses that
are eligible. Addresses in your absolute file that are not eligible for loading are
simply ignored.

Use of the memory type and function code parameters can save you time, if you
change a memory map term and only want to reload the addresses affected by the
change. On the other hand, if you have a range of addresses that overlap, but have
different function codes, then yowustload the two address ranges separately,

since the absolute file does not contain any function code information. This is
illustrated in the following example.

Suppose you using two MMU mappings, one which is user address space fro
1000 thru 1fff hex. The other is supervisor address space from 1000 thru 1fff hex.
You have absolute files called userprog.x and supprog.x. You load these programs
by selectingMemoryL oad twice. The first time, you selachas the function code,

and specify userprog.x as the file name. The second time, you use the arrow keys
andTab to selecs as the function code, and specify supprog.x as the file name.
The programs are loaded into the correct address spaces.

81

Chapter 4: Using the Emulator
Loading and Storing Programs

Example

To store a program

1 SelectMemoryStore.
2 Tabto select a file format for the stored program data, then pErger>.
3 Type in a memory range&lower>..<upper>, then pressEnter>.

4 Type in the name for the new absolute file. Présster>.

If you patched a program or data structure by modifying memory, you may want to
save the memory image for comparison with other changes, or you may want to
reload the patch later for future testing. The store command allows you to do this.

You can save memory to files in any of the following formats:

 Raw HP64000 absolute.
» Intel hexadecimal.

» Tektronix hexadecimal.
* Motorola S-records.

To save the memory locations of the init_system routine in an absolute file named
new, selectMemoryStore. Then select the Raw HP64000 file format, and type in
the range init_system..init_system end and prEsger>. Type in the nameew

and pressEnter> to save the memory range in the file.

82

Chapter 4: Using the Emulator
Using Symbols

Using Symbols

Symbol handling adds power to your interaction with the emulator. You can use
symbols in expressions involving addresses, which frees you from trying to
remember the addresses associated with the symbols.

When you build HP64000 absolute files, an assembler symbol file (with the same
base name as the source file and a “.A” extension) is created. The assembler
file contains local symbol information. Also, a linker symbol file (with the same
base name as the absolute file and a “.L" extension) is created. The linker sy
file contains global symbol information and information about the relocatable
assembly modules that combine to form the absolute file.

When you load a file using the HP64000 file format, the file format reader collects
global symbol information from the linker symbol file and local symbol
information from the assembler symbol files. It uses this information to create a
single symbol database with the extension .HPS. The process is similar for the
IEEE-695 file format, except that all symbol information is collected directly from
the absolute file.

The symbol database is accessible only to the PC Interface, and allows you to use
symbols in address expressions. For example, you can specify a symbol in a run
address or in a memory display command.

Additional symbol capabilities are available when you transfer symbol data to the
emulator from the PC Interface. After you transfer symbol data to the emulator, you
can display memory locations and analyzer trace lists with symbols.

What is symbol scoping?

Every symbol is defined within some program module, and hespeassociated

with it, determined by the semantics of the source language you are using. A
symbol's scope can be global, or it can be local to the module defining it. A symbol
also has a name associated with it. If the symbol has global scope, then it's full
name has the form “:<symbol_name>". If the symbol has scope local to a module,
then it's full name has the form “<module name>:<symbol name>".

83

Chapter 4: Using the Emulator

Using Symbols

To illustrate, suppose A, B and C are modules, and that syiblis defined as a
local symbol in both A and B, but is defined as a global symbol in module C. Then
there are actually three instanceX¥% , which may be distinguished by using

their “full” names:A:XYZ , B:XYZ , and:XYZ . Note that the global instancenist
calledC:XYZ, even though it is defined in module C. The global instax¢& is

best thought of as being common to all modules. This implies that the syifibol

can only be defined as a global symbol once, otherwise we would have two
symbols whose full names are botyZ .

A symbol can always be referred to by its full name. However, this can be tedious
to type if the module name happens to be something like
Spurious_Interrupt_Handler. The PC Interface allows the most recently referenced
module to be the current local symbol module. This means that the full name of a
symbol local to the current module has the form “<symbol name>". Notice that
“<module name>:" does not have to be typed. The full name of a global symbol
that is not also defined as a local in the current module also has the form “<symbol
name>",

To illustrate, if module A happened to be current, th¥d would refer to the
local symbolA:XYZ . If XYZ is not defined as a local symbol in the current
module, therXYZ refers to the (single) global instan®¥é&’Z . Suppose D is yet
another module, where D doesn't define the syrifY@ locally. Then, when
either C or D is the current modukYZ refers to the global instanceYZ .

When you first load an absolute file, there is no current local symbol module. Thus,
XYZ refers to the global instanc€YZ initially. Referencing a local symbol by its

full name causes that symbol's module to become current. So if you refer first to
A:XYZ , then toXYZ, both references are to the local instafe€yZ . This is
convenient for specifying a range of addresses, which some commands allow.

For example, the range of address¥&..XYZ+100 in module A could be entered
simply asA:XYZ..XYZ+100, instead oA:XYZ..A:XYZ+100 . A module also
becomes current when you display its local symbols usingyitemSymbols

L ocalDisplay command.

84

Chapter 4: Using the Emulator
Using Symbols

To load a symbol database

Load an absolute file in HP64000 or IEEE-695 format using/tmoryL oad
command.

or

SelectSystemSymbolsGlobal L oad, type the name of the linker symbol file (for
HP64000 format) or the absolute file (for IEEE-695 format), and piester>.

When you load HP64000 or IEEE-695 format absolute files into the emulator, the
corresponding symbol database is also loaded. A symbol database also can be
loaded separately witBystemSymbolsGlobal Load. Use this command when you
load multiple absolute files into the emulator. You can load the various symbol
databases corresponding to each absolute file. When you load a symbol database,
information from any previously loaded symbol database is removed from memory.
That is, only one symbol database can be in memory at a time.

After a symbol database is loaded, both global and local symbols from the database
can be used when entering expressions. Initially, however, no local symbol module
is current. Therefore, to access global symbol XYZ, you would simply enter XYZ;
whereas, to access local symbol XYZ in module A, you would need to enter

A:XYZ (making A the current local symbol module).

To display global symbols

SelectSystemSymbolsGlobal Display.

The symbols window automatically becomes the active window because of this
command.

The global symbols display has two parts. The first part lists all the modules that
were linked to produce this object file. You use these module names when you
want to refer to a local symbol. They are case-sensitive.

85

Chapter 4: Using the Emulator

Using Symbols

The second part of the display lists all global symbols in this module. These names
can be used in measurement specifications, and are case-sensitive. For example, if
you wish to make a measurement using the sy@ibl_A, you must specify
Cmd_A. The string<CMD_A andcmd_aare not valid symbol names here.

Examples

To display local symbols

To display local symbols loaded into the PC Interface,
selectSystemSymbolsL ocal Display.

Type the name of the module you want to display (from the first part of the global
symbols list) and pressEnter>.

After you display local symbols with th&ystemSymbolsL ocalDisplay”

command, you can enter local symbols as they appear in the source file or local
symbol display, rather than entering their full names in the form
module_name:symbal That is, when you display local symbols in a given
module, that module becomes the current local symbol module.

If you have not displayed local symbols, you can still enter a local symbol by
including the name of the module (which also causes that module to become the
current local symbol module):

module_name:symbol

Remember that the only valid module names are those listed in the first part of the
global symbols display, and are case-sensitive for compatibility with other systems
(such as UNIX). Furthermore, module names and local symbols must be found in
the currently loaded symbols database (see “To load a symbol database,” earlier in
this chapter.)

To display the local symbols from the “update_sys” module in the demo program,
selectSystemSymbolsL ocal Display, type irupdate_sysand pressEnter>.

86

Chapter 4: Using the Emulator
Using Symbols

To transfer global symbols to the emulator

SelectSystemSymbolsGlobal Transfer.

You can use the emulator's symbol-handling capability to make various displays
(particularly those containing addresses) more readable. Many displays, such as
trace listings and memory displays in mnemonic form, are produced directly by the
emulator itself, then sent to the PC Interface (which simply puts the results on
screen). Consequently, you must inform the emulator which symbols you wish

see in any displays which it might produce. You do this by transferring the sy
database information to the emulator.

To remove global symbols from the emulator

SelectSystemSymbolsGlobal Remove.

If you work with large symbol databases, you can easily fill emulator system
memory. This may cause problems if you try to define new equates or macros using
the Terminal Interface, or if you want to load more local symbol information. You
can free memory by removing groups of symbols from the emulator.

87

Chapter 4: Using the Emulator

Using Symbols

Examples

To transfer local symbols to the emulator

SelectSystemSymbolsL ocal TransferAll to transfer local symbol information for
all modules in the symbol database.

or

SelectSystemSymbolsL ocal TransferGroup and type in one or more module
names, separated by commas.

As with global symbols, you can transfer local symbol information to the emulator.
You can transfer information for all modules in the database at once. Or, to save
space in the emulator’s system memory, you may prefer to transfer only the
symbols related to the module(s) used in your measurements.

To transfer local symbols for all modules in the demo program, select:
System Symbols Local Transfer All

To transfer local symbol information from the assembly mouipéiate_sysin the
demo program, select:

System Symbols Local Transfer Goup update_sys <Enter>

To display transferred local symbols

SelectSystemSymbolsL ocalL oaded. This command operates in much the same
way as thé&ystemSymbolsL ocalDisplay command, except that it only displays
those symbols which have been transferred from the symbol database over to the
emulator. This display option is useful for determining whether you need to transfer
other local modules, or remove any which are no longer useful to free up emulator
memory.

88

Chapter 4: Using the Emulator
Using Symbols

To remove local symbols from the emulator

» SelectSystemSymbolsL ocal RemoveAll to remove local symbol information for
all modules in the symbol database.

or

» SelectSystemSymbolsL ocalRemove Group and type in one or more module
names, separated by commas.

When you're finished making measurements using one group of local symbols, you
may want to remove them from the emulator to make room for new symbol groups.

Examples To remove local symbol information for all modules in the demo program, select:

System Symbols Local Remove All

To remove local symbol information for the assembly module main in the demo
program, select:

System Symbols Local Remove Goup main <Enter>

89

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

Accessing Processor Memory
Resources

While you are debugging your system, you may want to examine memory
resources. For example, you may need to verify that the correct data is loaded, or
check to see if a sequence of values was written correctly. Also, you may need to
modify one or more memory locations to test different data sets for a program. The
emulator has flexible memory commands that allow you to view and modify
memory as needed.

The display/modify mode can be either bytes, words, or longs. Otherwise the mode
specified in the laglemoryDisplay command determines how data is displayed.

If you selectedion’t care when you specified "Memory data access width?" as part
of the emulation configuration, the size you specify here will be used to access
memory for the modification you specify.

Example

To display memory as byte values
SelectM emoryDisplayByte.

Type in one or more individual addresses or address ranges. If you specify multiple
addresses, separate them with semicolons. RErgsr>.

The emulator automatically breaks into the monitor if there is a request to access
non-dual-port memory.

To display the demo program’s average temperature array in byte format, enter:

Memory Display Byte aver_temp.. <Enter>

90

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

To display memory as word values

1 SelectMemoryDisplayWord.

2 Type in one or more individual addresses or address ranges. If you specify multiple
addresses, separate them with semicolons. RErgsr>.

The emulator automatically breaks into the monitor if there is a request to acc
non-dual-port memory.

Example To display the memory from e00 to elf as word values, enter:
Memory Display Wbrd 0e00..0elf <Enter>

To display memory as long-word values

1 SelectMemoryDisplayL ong.

2 Type in one or more individual addresses or address ranges. If you specify multiple
addresses, separate them with semicolons. RErgsr>.

The emulator automatically breaks into the monitor if there is a request to access
non-dual-port memory.

Example To display the processor’s interrupt vector table in long-word format, enter:

Memory Display Long 0..3ff <Enter>

91

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

Example

To display memory as instruction mnemonics

1 SelectMemoryDisplay M nemonic.

2 Type in one or more individual addresses or address ranges. If you specify multiple

addresses, separate them with semicolons. RErgsr>.

When you use thislnemonic option, the emulator disassembles the memory
locations beginning with the first address you specify. If this address is not the
starting address of an instruction, the display will be incorrect.

The emulator automatically breaks into the monitor if there is a request to access
non-dual-port memory.

To display memory containing the write_hdwr routine in the demo program, enter:

Memory Display Mhemonic write_hdwr.. <Enter>

To display memory repetitively

SelectM emoryDisplay Repetitively to repeatedly display the contents of the most
recently displayed memory locations.

When you're finished using the changing memory display, piese>to return to
the PC Interface command line.

Repetitive memory display can be useful if you want to watch the activity in a
certain memory area while a target system program is executing. However, it
continuously uses the communication channel from the PC to the emulator, so you
can't enter other measurements while the repetitive display is in process.

The address range and display format (byte, word, mnemonic, etc.) are those
specified in the most recently enteidd@moryDisplay command.

92

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

To modify memory by bytes

1 SelectMemoryM odify Byte.

2 To modify a single memory location to a single value, typeldress>=<value>

or

To modify a range of memory locations to a single value, type:
<lower>..<upper>=<value>

or
To modify a range of memory locations with a list of values, type:

<lower>..<upper>=<valuel><value2>, . ..

3 PresscEnter> to start the modify.

The<address>parameter is an expression representing a single address location.
The<lower> and<upper> values are address expressions representing the lower
and upper boundaries of the memory area to be modifiedlie>represents the

data value to which the contents of memory are to be modified.

See next page for examples.

93

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

Examples

To modify the byte at elf hex to 43, select:
Memory Mbodify Byte 0elf=43 <Enter>

To modify the value at an address identified by a symbol, enter:
Memory Mbodify Byte mysymbol=43 <Enter>

To modify the range of locations from e00 through e38 to zero, enter:
Memory Mbdify Byte 0e00..0e38=0 <Enter>

To modify the range of locations from e00 through e38 to “ABC,” enter:
Memory Mbdify Byte 0e00..0e38="ABC" <Enter>

You can combine multiple address ranges and value lists. For example:

Memory Mbdify Byte 0elf=43;0e00..0e38="ABC" <Enter>

Remember that the memory modification is affected by the display mode. Suppose
that locations fO0 and fO1 each contain 01. If you enter the command:

Memory Modify Byte 0f01=3 <Enter>

Then location fOO contains 01 and location fO1 contains 03. But, if you entered:
Memory Modify Word 0f00=3 <Enter>
Then location fOO will contain 00, and location fO1 will contain 03. Notice that you

refer to a word by an even address, which is the address of its most significant byte
(this is defined by the MC68040 processor architecture).

94

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

To modify memory by words

1 SelectMemoryM odify Word.

2 To modify a single memory location to a single value, typeldress>=<value>

or

To modify a range of memory locations to a single value, type:
<lower>..<upper>=<value>

or
To modify a range of memory locations with a list of values, type:

<lower>..<upper>=<valuel><value2>, . ..

3 PresscEnter> to start the modify.

The<address>parameter is an expression representing a single address location.
The<lower> and<upper> values are address expressions representing the lower
and upper boundaries of the memory area to be modifiedlie>represents the

data value to which the contents of memory are to be modified.

To modify memory by long words

1 SelectMemoryM odify L ong.

2 To modify a single memory location to a single value, typeldress>=<value>

or

To modify a range of memory locations to a single value, type:
<lower>..<upper>=<value>

or

95

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

To modify a range of memory locations with a list of values, type:
<lower>..<upper>=<valuel><value2>, . ..

Press<Enter> to start the modify.

The<address>parameter is an expression representing a single address location.
The<lower> and<upper> values are address expressions representing the lower
and upper boundaries of the memory area to be modifiailie>represents the

data value to which the contents of memory are to be modified.

To copy memory

SelectMemoryCopy.

Specify the source address range in the fdower>..<upper>, and then press
<Enter>.

Type in a destination address to which the first address of the source range should
be copied.

Press<Enter> to start the copy.

The MemoryCopy command allows you to move blocks of code or data to
different locations in memory. You can use it, along with memory remapping, to
move a block of target system code into emulation memory.

<lower> and<upper> specify the lower and upper address ranges of the block that
you want to move, while thedestination>address is the starting address of the
range for the destination memory block.

96

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

Examples In one situation, suppose you have relocatable ROM code in your target system in
the range c000 through c1ff. You want to move this code into emulation memory
for modification. You could set up a temporary memory map usandigure
MemoryMap command as shown below:

Memory Map Conf iguration

Unnapped memory: Tupe Bony Attribute [l

Addreszs Range Type Attribute

+«tl+ Interfield movement Ctrl «+ !Field editing TAB :Scroll choices

[ETATUS : M6BA4A—Rumming user program Enulation trace complete
Addressz range to be mapped. (ex. 1888..1fff)
Example Memory Mapping

Now copy the memory block from target ROM to emulation ROM:
Memory Copy 0c000..0c1ff <Enter> 0d000 <Enter>

In another situation, suppose you need to modify the exception vector table located
in your target system ROM with the following conditions:

Initial Map:

Address Range Memory Configuration

0000-ffff 64K bytes target ROM for the exception vector
table and program code

10000-18fff 32K bytes target RAM for program data
19000-19fff Other guarded memaory
80000-80fff Emulation RAM (foreground monitor)

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

Add Emulation Memaory:
20000-203ff Emulation RAM (1K block for exception vector table).
Now copy the exception table from target ROM to emulation RAM:

Memory Copy O0..3ff <Enter> 20000 <Enter>

Change the VBR to point to the relocated exception vector table starting address:
Register Modify VBR=20000 <Enter>

To search memory

1 SelectMemoryFind.

2 Type in the memory range to be searched in the fomer>..<upper>, where
<lower> and<upper> are the boundaries of the region to be searched. Press
<Enter>.

3 Type in the expression or string for which you want to search. If you type in a
character string, it must be delimited by single or double quote marks.

4 Press<Enter> to start the search.

Searching memory for values or character strings can help you determine whether a
program is functioning correctly.

Sometimes you expect a data value to be written to a particular memory location
during a program run. But, the program may accidentally write the value to the
wrong location. You can search memory for the expression to see if the value was
written to another location.

98

Chapter 4: Using the Emulator
Accessing Processor Memory Resources

The<lower> and<upper> values are address expressions representing the lower
and upper boundaries of the memory area to be searched.

If you're searching for character stringstring> is an ASCII string delimited by *
(accent grave) or " (double quote). Remember that if one of the characters is part of
the string, you should use the other character as a delimiter.

Example To search an address range for the string “ommand,” enter:

Memory Find 100..200 <Enter> "ommand" <Enter>

99

Chapter 4: Using the Emulator
Using Processor Run Controls

Using Processor Run Controls

Without the help of an emulator, run control can be difficult. Usually, you're

limited to starting the processor from reset, and then entering data values that
vector program execution to the routines you want to test. Reaching those routines
may be difficult or impossible if the data values are boundary conditions or the
program logic is faulty.

By using the emulator, you can run the processor from the current program counter
or any desired address. If you want to examine your system after each program
instruction, you can use tieocessofStep command to step through the program.

You can break to the monitor program to examine on-chip resources such as RAM
and registers using software breakpoints. And, you can reset the processor from the
emulator.

To run a program

To run the processor from the current program counter (PC) value Belesssor
Go Pc.

To run the processor from a specific address value, SetEssoGo Address
and type in an address.

To run the processor from reset, seRrcicessoGo Reset.

When you're ready to start a program run, either to test target system operation or
make an analyzer measurement, you useribeessoGo command.

The address is a 32-bit address expression. You can include supervisor or user
function codes to specify the priviledge level for the run command. See
<ADDRESS> in chapter 11 for more information.

TheProcessofG0 Reset command pulses the processor reset line. The processor
fetches the values at offsets 0 and 4 from the vector table and loads these values
into the interrupt stack pointer and program counter registers. It then begins
running from the program counter address value.

100

Chapter 4: Using the Emulator
Using Processor Run Controls

However, if you reset the emulator, break to the monitor, then run the processor
from the current PC (or from a specified address), the processor does not fetch
offsets 0 and 4 from the vector table. It simply uses the current stack pointer and
program counter register values. Unless the stack pointer (and the PC, when doing a
run from PC) have not been initialized to the same values as they would be by

doing aProcessoGo Reset, the run will fail. Th€onfig General form allows you

to define initial values for the program counter and stack pointer, which are used
whenever the monitor is entered from the reset state. See Chapter 7, “Configuring
the Emulator,” for more information.

Examples To run from the demo program’s starting location, select:
Processor CGo Address ENTRY <Enter>

To run a program from a known address, such as 400h, select:
Processor CGo Address 400 <Enter>

To break to monitor

* SelectProcessoBreak.

The emulation monitor is a program that provides various emulation functions,
including register access and target system memory manipulation. You must break
execution to the monitor before executing certain emulation commands, such as
those accessing registers, emulation memory that is not dual-port, or target system
memory. You also can use the break command to pause user program execution.

The emulator status changes to show that the processor is running in the monitor.

You can use either a foreground or background monitor. See the chapter titled
"Configuring the Emulator" for more information. The bd@dncepts of

Emulation and Analysithat was supplied with your product manuals also has an
explanation of emulation monitors.

101

Chapter 4: Using the Emulator
Using Processor Run Controls

To step the processor

To step from the current program counter value, sBlectessoStepPc. Type in
the number of instructions to step, and prdSster>.

To step from a specific address, seRrdcessoStepAddress. Type in the number
of instructions to step, and pressnter>. Type in the starting address for the step,
and pressEnter>.

TheProcessofStep command lets you single-step the processor through program
code. You can display registers after each step to help you locate the source of
problems or verify correct operation. Or, you might want to modify a register, and
then step the processor to check the result.

You can specify a step courtpunt>) to step the processor more than one
instruction. The default base is decimal. The default bas@afiiress>is hex.

When stepping through instructions associated with source lines, execution may
take a long time and the message "Stepping source line 1; Next PC: <address>" is
displayed on the status line. In this situation, you can abort the step command by
pressing <CTRL>c.

The emulator uses the built-in tracing capability of the MC68040 processor to

single step assembly instructions. The emulator needs the trace exception vector
(located at offset 0x24 in the vector table) to be set properly in order to single step
instructions. When a step command is given to the emulator, the emulator reads the
trace exception vector and attempts to change one or more vector table entries if the
trace exception vector is not set correctly. As long as the vector table is located in
emulation memory or target RAM, stepping should always succeed. Upon
completion of single stepping, the emulator restores modified vector table entries
and issues a status message the first time the vector table is modified.

If the trace exception vector does not contain the correct value and the vector table
is located in target ROM, the emulator will issue an error message and not perform
the single step. There are two ways to deal with this situation. Either alter the
ROM-based code so the trace vector contains the correct value, or copy/relocate the
vector table into emulation memory or target RAM.

The correct value of the trace exception vector differs, depending on whether you
are using a background or foreground monitor. The foreground monitor requires
that the trace exception vector point to the TRACE_ENTRY address in the monitor

102

Examples

Chapter 4: Using the Emulator
Using Processor Run Controls

(located at offset 0x680 from the start of the monitor). If the trace exception vector
already contains the correct value, the emulator performs the single step without
modifying the vector table. Otherwise, the emulator attempts to change the trace
a-line and f-line exception vectors to the TRACE_ENTRY address in the
foreground monitor.

The background monitor only requires that the trace exception vector be an even
value and point to readable memory. This allows the processor to complete trace
exception processing, including initial prefetches from the trace exception handler,
during transition into the background monitor. After reading the trace exceptio
vector, the emulator attempts to read from the address it points to. If the read
succeeds, the emulator single steps without modifying the vector table. Othe

the emulator attempts to write the current value of VBR into the trace exceptio
vector (because the vector table is readable).

There are some limitations when single stepping. A step may fail when single
stepping an instruction that changes the address of the vector table (modifies the
VBR register). With the background monitor, instructions that can be interrupted
(ie: floating-point operations) may not complete because the emulator generates an
interrupt after a finite amount of time after the single step is initiated.

To step the processor one instruction, enter:

Processor Step Pc 1 <Enter>

To step the processor three instructions from the current program counter, enter:
Processor Step Pc 3 <Enter>

To step the processor five instructions fromitiiie systemsymbol in the demo
program, enter:

Processor Step Address5 <Enter> init_system <Enter>

103

Chapter 4: Using the Emulator
Using Processor Run Controls

To change the step function display

SelectProcessofStepEvents.

Tab to selecy if you want to display registers after each stem, ibyou don't
want register display. Presgnter>.

Tab to selecy if you want the instruction mnemonic displayed at each stepif or
you don’t want mnemonic display. Predsnter>.

Type the name of a command file to execute when stepping is complete. (This is
optional).

Press<Enter> to accept the changes. PreEsc>to discard the changes.

You can alter the way the step command works to give you only the information
you need. This helps avoid display clutter for long step sequences.

Also, you can enhance the step command by specifying an optional command file
to execute when stepping.

104

Chapter 4: Using the Emulator
Using Processor Run Controls

To reset the processor

To reset the processor from the emulator and leave it reset BeleessoReset
Hold.

To reset the processor and begin executing in the monitor, BeleessoReset
M onitor.

To reset the processor from the target system, assert the RESET signal in yo
target system.

When you apply power to the emulator, the initialization process leaves the
emulator in the reset state. Changing some configuration items also resets the
processor. See Chapter 7 for more information.

Sometimes you may want to reset the emulation processor prior to a program run.
TheProcessoReset command allows you to do this. Or, you can reset the
emulation processor from the target system.

The MC68040 emulator will respond to a target system reset. A target system reset
does not reset the entire emulator. It resets only the emulation processor.

If the emulator is running a user program when the target system reset occurs, it
behaves as if BrocessofGo Reset command were issued.

If the MC68040 emulator is in the monitor when the target reset occurs, it will
reenter the monitor when the reset is released (&rifc@ssoResetM onitor
command had been given.)

105

Chapter 4: Using the Emulator
Using Registers

Using Registers

The emulator allows you to display the processor’s internal registers to determine
the results of program execution. You can display a single register, or you can
diaplay groups of related registers.

Sometimes, you may want to modify a register, and then run a segment of program
code to test the results.

To display registers

» To display a register, seldeegisterDisplay Single, and then use tfi@ab key to
select the register. Or, you can type in the register name.<Bnet&s> to accept
your selection.

» To display all registers from the processor’s basic register set, Relgster
DisplayBasic.

» To display all registers in a class of the processor’s register set (such as the fpu),
selectRegisterDisplayClass. Use th&ab key to select the register class desired.

The available registers and register classes are as follows:

Register Class Register Names

Basic pc, st, usp, isp, msp, cacr, d0..d7, a0..a7, vbr, dfc, sfc
Fpu fpcr, fpsr, fpiar, fp0..fp7

Mmu itt0, dtt0, itt1, dttl, mmusr, tc, urp, srp

106

Chapter 4: Using the Emulator
Using Registers

The Mmu register class of the MC68EC040 is different from the Mmu register
class of the MC68040 and MC68LC040. The MC68EC040 uses registers
dacrO/iacrO and dacrl/iacrl, which are nearly identical to dttO/itt0 and dtt1/itt1.
Those registers are displayed in the dtt0/itt0 and dttl/itt1 registers, respectively.

The processor must be running to allow register displays. If it is running in the
monitor, the emulator does the display directly. If it's running the target program,

the emulator forces a break to the monitor, gets the register data, and then returns to
the user program. If you restrict the emulator to real-time runRedisterDisplay
command isn’t allowed while you're running a user program. See Chapter 7,
“Configuring the Emulator,” for more information.

Examples To display the processor’s AO register, enter:

Register Display Single a0 <Enter>

To modify registers

1 SelectRegisterM odify.
2 Use theTab key to select a register name. Or, simply type the name of the register.
3 Press<Enter> to accept the name and move to the next field.

4 Type an integer or integer expression to which the register should be modified.
(You cannot use symbols in these expressions.)

5 Press<Enter> to accept the value and modify the register.

Modifying a register’s contents can help you test the effects of different program
values without the trouble of rebuilding your program code. For example, you
might stop the processor at a certain point (use a software breakpoint), and then
modify a register, and run from that point to test the result.

The processor must be running to allow modifying registers. See the previous
instructions on “To display registers” for more information.

107

Chapter 4: Using the Emulator

Using Registers

Examples

You can enter values into the three FPU control registers and the eight
floating-point registers in hexadecimal values. You cannot use other numerical
bases or floating-point values.

To modify the PC register to address 1000h, enter:
Register Modify pc <Enter> 1000 <Enter>

Notice that you can’t use a symbol as part of the expression when modifying a
register.

To modify the D3 register to 0, enter:
Register Modify d3 <Enter> 0 <Enter>

108

Chapter 4: Using the Emulator
Using Execution Breakpoints

Using Execution Breakpoints

Breakpoints allow you to stop target program execution at a particular address and
transfer control to the emulation monitor. Suppose your system crashes when it
executes in a certain area of your program. You can set a breakpoint in your
program at a location just before the crash occurs. When the processor executes the
breakpoint, the emulator will force a break to the monitor. You can display registers
or memory to understand the state of the system before the crash occurs. Th

can step through the program instructions and examine changes in the syste
registers that lead up to the system crash.

Execution breakpoints are implemented using the BKPT instruction of the
MC68040. You can add breakpoints, set existing breakpoints, clear breakpoints but
keep them available to be set again, or remove execution breakpoints from the
emulator.

Add execution breakpoints at the first word of program instructions. Otherwise,
your BKPT may be interpreted as data and no breakpoint cycle will occur. When
the BKPT instruction is executed, target program execution stops immediately
(unlike using the analyzer to cause a break into the monitor, which may allow
several additional bus cycles to execute before the break finally occurs).

Adding or setting execution breakpoints in RAM

When you add or set an execution breakpoint in RAM, the emulator will place a
breakpoint instruction (BKPT) at the address you specified, and then read that
address to ensure that the BKPT instruction is there. The program instruction that
was replaced by BKPT is saved by the emulator.

When the breakpoint instruction is executed, the BKPT acknowledge cycle is
detected by the emulator, and the emulator causes a break to the monitor. At this
point, the emulator replaces the BKPT instruction with the original instruction it
saved. Italso replaces the BKPT instruction with the original instruction whenever
you clear or remove the breakpoint.

The emulator allows an unlimited number of breakpoints to be set in RAM.

109

Chapter 4: Using the Emulator
Using Execution Breakpoints

Adding or setting execution breakpoints in ROM

If you try to add or set an execution breakpoint at a location in ROM, the emulator
will attempt to set the breakpoint instruction as it does in RAM, but it will fail
because the instruction in ROM will not change. Then the emulator will set up a
hardware resource to "jam" the BKPT instruction onto the data bus when the
processor attempts to fetch the normal instruction from the breakpoint address.

There are only enough resources in hardware to contain eight ROM breakpoints at
one time.

To determine if an active breakpoint uses one of the eight hardware resources,
display the address in memory. Breakpoints implemented in software will show a
BKPT instruction at the breakpoint address. Breakpoints implemented using one of
the eight hardware resources will show the original instruction at the breakpoint
address.

Execution breakpoints in ROM when the MMU
manages memory

If the MMU is enabled when setting an execution breakpoint in ROM, the emulator
translates the logical breakpoint address and uses the physical address to set up the
emulation hardware resource.

In the unlikely event that multiple logical addresses translate to the same physical
address in ROM, or that ROM address translations change while the breakpoint is
set, it is possible for the breakpoint to be jammed onto the data bus for the wrong
logical address.

110

Chapter 4: Using the Emulator
Using Execution Breakpoints

Examples

To add an execution breakpoint

1 SelecBreakpointsAdd.

2 Add one breakpoint by typing in a single address. Add several breakpoints by

typing in several addresses separated by semicolons.
Press<Enter> to save the address selection.

When you add an execution breakpoint, it is automatically set. A breakpoint e

is also added in the system breakpoint table. The emulator uses the monitor to
insert the breakpoint instruction. Therefore, you can’'t add a breakpoint when the
emulator is reset. SeldetocessoBreak to begin running in the monitor.

To add an execution breakpoint at the symbol get_targets, enter:

Breakpoints Add get_targets <Enter>

To add an execution breakpoint at address 42a, enter:
Breakpoints Add 42a <Enter>

111

Chapter 4: Using the Emulator
Using Execution Breakpoints

Examples

To set an execution breakpoint

SelectBreakpointsSetSingle. Then type a single address to enable one breakpoint,
or type in several addresses, separated by semicolons, to enable several breakpoints.
Press<Enter> to save your selection.

or

SelectBreakpointsSetAll to enable all currently defined breakpoints.

When a breakpoint is executed, it is disabled. If you want to reenable the
breakpoint, use thet option to thé@reakpoints command. The emulator will

search the breakpoint table for the address you specify. If there is a breakpoint entry
for that location, the entry will be marked “enabled”. If the breakpoint is in RAM,

the BKPT instruction will be written to memory at that location.

The emulator uses the monitor to enable the breakpoint. Therefore, you can't
enable a breakpoint when the emulator is reset. Us&rdlsessoBreak command
to begin running in the monitor.

To enable an existing execution breakpoint at target_temp, select:

Breakpoints Set Single target_temp <Enter>

To enable existing breakpoints at get targets and write_hdwr, select:

Breakpoints Set Single get_targets;write_hdwr <Enter>

To enable all existing breakpoints, select:

Breakpoints Set All

112

Chapter 4: Using the Emulator
Using Execution Breakpoints

To set a ROM breakpoint in RAM

SelectBreakpointsAdd. Then type in the address where the breakpoint is to occur
in the Address field. Now move the cursor to the field beside "Force hardware
breakpoint:" and use the <Tab> key to select "yes". REser> to save your
selection.

There may be times when you want to force the emulator use one of its eight
hardware resources to ensure an emulation break at a RAM address. For ex

you may know that the program in ROM will overwrite the RAM address befor

the breakpoint is executed. Normally, this will eliminate the breakpoint instruction.
The above command ensures that the breakpoint will be executed at the specified
address, regardless of how the software at that address may change during
execution.

113

Chapter 4: Using the Emulator
Using Execution Breakpoints

Examples

To clear an execution breakpoint

SelectBreakpointClearSingle. Then type a single address to disable one
breakpoint, or type in several addresses, separated by semicolons, to disable several
breakpoints. PressEnter> to save your selection

or

SelectBreakpoint<ClearAll to disable all currently defined breakpoints.

Sometimes you will want to temporarily disable a breakpoint without removing it.
TheClear option to th@reakpoints command lets you do this.

When you disable an execution breakpoint, the emulator replaces the BKPT
instruction at the breakpoint address with the original instruction. It marks the
breakpoint table entry as “disabled.” The processor won't break to the monitor
when the instruction at that location is executed.

The emulator uses the monitor to disable the breakpoint. Therefore, you can't
disable a breakpoint when the emulator is reset. UdertlvessoBreak command
to begin running in the monitor.

To disable an existing execution breakpoint at address 100, select:

Breakpoints Clear Single 100 <Enter>

To disable existing breakpoints at addresses 100 and 200, select:

Breakpoints Clear Single 100;200 <Enter>

To disable all existing breakpoints, select:

Breakpoints Clear All

114

Chapter 4: Using the Emulator
Using Execution Breakpoints

Examples

To remove an execution breakpoint

SelectBreakpointlRemoveSingle. Then type a single address to remove one
breakpoint, or type in several addresses, separated by semicolons, to remove several
breakpoints. PressEnter> to save your selection.

or

SelectBreakpointdRemoveAll to remove all currently defined breakpoints.

When you're finished using a particular breakpoint, you should remove the
breakpoint table entry. THRemove option to thBreakpoints command lets you

do this. In RAM, the original instruction is restored to memory, and the breakpoint
table entry is removed.

The emulator uses the monitor to remove the breakpoint.

To remove an existing execution breakpoint at address 100, select:

Breakpoints Remove 100 <Enter>

To remove existing breakpoints at addresses 100 and 200, select:

Breakpoints Remove 100;200 <Enter>

To remove all existing breakpoints, select:

Breakpoints Remove All

To display execution breakpoints

» SelectBreakpointdisplay. The status of each breakpoint is shown.

115

Chapter 4: Using the Emulator
Using the Emulator In-Circuit

Using the Emulator In-Circuit

N
)
y

MEMORY SLOT O

FLYING LEAD

68040
EMULATOR
PROBE

MEMORY SLOT 1

TARGET SYST=M

PGA SOCKET

PIN A1

64783E0L

Emulator Probe Installation

As your target system design progresses, you'll want to test features of your target
system program. Your program design will interact with real hardware instead of
emulation memory locations.

You must connect the emulator probe to your target system to do in-circuit
emulation. Then you can make analyzer measurements and use the memory display
and other capabilities of the emulator to debug target system problems.

Caution When you use the emulator in-circuit, you need to carefully consider the
relationship of the emulator to your target system design. Refer to the chapter titled
"Connecting the Emulator to a Target System" later in this manual. It discusses
things you need to know to successfully connect the emulator to a target system and
overcome problems you may encounter. Refer to the chapter titled "Configuring
the Emulator" for details of the emulation configuration.

116

Chapter 4: Using the Emulator
Using the Emulator In-Circuit

To install the emulator probe in the target system

Caution Possible damage to the emulator problee emulation probe contains devices that
are susceptible to damage by static discharge. You should take precautions before
handling the probe, to avoid damaging the internal components of the probe with
static electricity.

Caution Possible damage to the emulatibfake sure both target system and emulator .
power are OFF before installing the emulator probe into the target system.

Caution The emulator probe will be damaged if incorrectly instalMdke sure to align pin
Al of the probe connector with pin Al of the socket.

1 Remove the processor from the target system socket. Note the location of pin A1 on
the processor and on the target system socket. Store the processor in a protected
environment (such as antistatic foam).

2 Insert the emulator probe into the target system socket. Make sure to align pin Al
of the emulator probe and the target system socket.

To power-on the emulator and target system

Caution Possible damage to the emulat¥idu must apply power to the emulator before
you apply power to the target system. Otherwise, the emulator may be damaged.

1 Apply power to the emulator.

2 Apply power to the target system.

117

Chapter 4: Using the Emulator
Using the Emulator In-Circuit

To shutdown the emulator and target system

1 Turn off power to the target system.

2 Turn off power to the emulator.

. To probe target system sockets

» Aflexible adapter is available from Hewlett-Packard for special target system
probing needs. ltis listed in the following table:

Probe type HP part number
68040 PGA to PGA flexible adapter E3429A

118

Chapter 4: Using the Emulator
Using The MC68040 Emulator With MMU Enabled

Using The MC68040 Emulator With
MMU Enabled

When you enable memory management in the MC68040 emulator, many
capabilities and features become available that are not otherwise offered. Also,
some of the features of the emulator behave differently. The remaining pages in
this chapter will help you when you are using the emulator with the MMU ena
The chapter titled, "Using Memory Management" provides detailed informatio
help you use the MMU most efficiently.

Disable the MMU unless you need it for address translation. You will still be able
to use the transparent translation registers for defining cache modes, etc.

To enable the processor memory management
unit

To turn on the MMU in the emulation processor, obtain the emulation
configuration withConfig General, and proceed as follows:

Change the Monitor type to "foreground"

Answern to "Disable memory management unit?"

Refer to the chapter titled, "Configuring the Emulator” in this manual for details of
setting up the emulation configuration.

Once enabled, the MMU can be set up by the operating system to manage logical
(virtual) memory in physical address space. The selection of a root pointer and the
value in the translation control register determine how the MMU will manage
memory. The MMU must be enabled in the emulation configuration before the
operating system can establish the MMU control values.

The target system will control the MMU during program execution by using the
MDIS signal. The target system can disable the MMU, even if it is enabled in the
emulation-configuration question.

119

Chapter 4: Using the Emulator
Using The MC68040 Emulator With MMU Enabled

Note

Examples

A foreground monitor must be used when the MMU is enabled. Before you can
enable the MMU in the emulation configuration, you must select "foreground" for
the monitor type.

Make sure the foreground monitor is mapped to memory space that has a 1:1
translation and is not write protected. Refer to the chapter titled "Configuring the
Emulator" for instructions on how to map the foreground monitor to 1:1 address
space in the MMU.

To enable the MMU so that the operating system can set it up to manage memory,
perform the following:

Access the general configuration screen:

Config General

Use the arrow keys to move to the Monitor type field and enter:
Tab (to selecforeground)

Use the arrow keys to move to the Disable memory management unit? field and
enter:

Tab (to selech)
Save the changes and exit the general configuration screen:
<End><Enter>

Refer to the chapter titled "Configuring the Emulator” for further details on setting
up the emulation configuration.

To disable the MMU, do the following:
Access the general configuration screen:

Config General

Use the arrow keys to move to the Disable memory management unit? field and
enter:

Tab (to selecy)

120

Chapter 4: Using the Emulator
Using The MC68040 Emulator With MMU Enabled

You can use the arrow keys to move to the Monitor type field and select
foreground, background, or none, as desired.

To obtain additional information about the MMU, refer to the chapter titled "Using
Memory Management" in this manual.

Examples

To view the present logical-to-physical mappings

SelectProcessoMMU Mappings. Then enter the logical address range for whi
you want the mappings displayed. Finally, specify whether to use the present TC
register value or an alternate value you specify, the present URP value or a value
you specify, and the present SRP value or a value you specify.

If the present TC register value disables the MMU, you must override it with an
enable value before the emulator can read the MMU mappings.

The display will show the logical-to-physical address translations defined by the
current MMU registers and translation tables.

To see the logical-to-physical mappings using the default range of logical addresses
(initially O thru Offffffffh), enter:

Processor MMU Mappings <End><Enter>

To see all of the logical-to-physical mappings for logical addresses from 0 through
Offffh (when the URP root pointer is enabled), enter the command:

Processor MMU Mappings

Then use the arrow keys to enter in the Address(range): field, and type in:
0..Offff <End><Enter>

To see the logical-to-physical mappings for the pages that contain logical address
40f0h, enter the command:

Processor MMU Mappings

Then use the arrow keys to enter in the Address(range): field, and type in:

121

Chapter 4: Using the Emulator
Using The MC68040 Emulator With MMU Enabled

40f0 <End><Enter>

To see only the mappings for supervisor function code in the address range from 0
through Offffh, enter the command:

Processor MMU Mappings

Then use the arrow keys to enter in the Address(range): field, and type in:
0..0ffff@s <End><Enter>

To see only the mappings for user function code in the address range from O
through Offffh, enter the command:

Processor MMU Mappings

Then use the arrow keys to enter in the Address(range): field, and type in:
0..0ffff@u <End><Enter>

To show all of the valid mappings in the mapping tables for selected values of the
TC, URP, and SRP registers, ignoring the present values of those registers, enter:

Processor MMU Mappings

Place the cursor in the "Use TC reg:" field and pres$abekey to obtain "no". A
Value: field will open. Specify the value you want to be used in place of the
present value of the TC register.

Use TC regno Value:0C000

Place the cursor in the "Use URP reg:" and "Use SRP reg:" fields and Gisdthe
key to select "no". Then enter the desired values for those registers in the
associated "Value:" fields.

Finally, press<End><Enter>

Note that the hexadecimal number base is assumed for the TC, URP, and SRP
registers.

122

Chapter 4: Using the Emulator
Using The MC68040 Emulator With MMU Enabled

Examples

To see translation details for a single logical
address

SelectProcessoMMU Tables. Then enter the logical address for which you want
the translation details displayed. In the Table level: field, us€ahdey to select

all tables used by your logical address. Finally, specify whether to use the present
TC register value or an alternate value you specify, the present URP value or a
value you specify, and the present SRP value or a value you specify.

If the present TC register value disables the MMU, you must override it with a
enable value before the emulator can read the MMU mappings.

To see how logical address 40fOh is mapped through the translation tables to its
corresponding physical address, enter:

Processor MMU Tables
In the Address: field, type in 40f0
Finally, pressxEnd><Enter>

To see how logical address 1000h in user space is mapped through the translation
tables, enter the command:

Processor MMU Mappings
Then use the arrow keys to enter in the Address(range): field, and type in:
1000@u

Finally, pressxEnd><Enter>

123

Chapter 4: Using the Emulator
Using The MC68040 Emulator With MMU Enabled

Examples

To see details of a translation table used to map
a selected logical address

SelectProcessoMMU Tables. Then enter the logical address for which you want
the table details displayed. In the Table level: field, us@dbekey to select the

desired translation table whose details you want displayed. Finally, specify

whether to use the present TC register value or an alternate value you specify, the
present URP value or a value you specify, and the present SRP value or a value you
specify.

If the present TC register value disables the MMU, you must override it with an

enable value before the emulator can read the MMU mappings.

Note that table levalll is also offered. If you seleall, you will see the translation
details for your logical address through the tables. This is the same as if you had
not selected all tables in the Table level: field.

Tablea may be accessed at several different base addresses, depending on which
logical address is to be translated. This command ensures you sesWhéte
you want to see it.

To see the details of Taldeused to map logical address 1250h, enter the command:
Processor MMU Tables

In the Address: field, type in 1250

In the Table level: field, use tAab key to seleca.

Finally, pressxEnd><Enter>

124

Chapter 4: Using the Emulator
Using an FPU with an MC68EC040 or MC68LCO040 Target System

Using an FPU with an MC68EC040 or
MC68LC040 Target System

The MC68EC040 and MC68LC040 processors do not have an on-chip FPU. When
floating-point functionality is required, all floating-point operations must be

implemented in software using integer instructions. Language systems usually
provide a floating-point software library for this purpose.

The HP 64783A/B emulator uses an MC68040 processor with an on-chip FP
Because there is no way to disable the FPU, floating-point operations may ex
differently, depending on the language system used. If your language system
generates calls directly to the floating-point software library and does not emit any
opcodes for floating-point instructions, then there should be no difference in
floating-point operations whether you are using the emulator or the
MC68EC040/LC040 processor plugged into your target system.

If your language system emits opcodes for floating-point instructions and relies on
an F-Line exception handler to call the floating-point software library when the
instruction is executed, then your target system will operate differently when the
emulator is plugged in. When using the emulator, most floating-point instructions
will be executed on the FPU in hardware instead of generating an F-Line exception
and allowing the floating-point operations to be implemented in software. For this
scenario, the following three points should be taken into consideration:

» Floating-point software libraries cannot be tested while the emulator is plugged
in. Floating-point instructions are always executed on-chip, not by your
floating-point libraries. This will definitely cause a problem for anyone trying
to develop floating-point software libraries.

e Target programs containing FPU instructions will run faster when the emulator
is plugged into the target system because they are executed in the hardware of
the MC68040 instead of by the floating-point software libraries, as they will be
when the MC68EC040/LC040 processor is plugged in. This will cause
performance measurements to show much better results when using the
emulator than you will actually obtain when you use the MC68EC040/LC040
processor.

» If you are unaware that your language tools use floating-point instructions (and
you do not actively provide floating-point libraries and F-Line exception

125

Chapter 4: Using the Emulator
Using an FPU with an MC68EC040 or MC68LC040 Target System

handling), you may find that your target system does not work when you
unplug the emulator and plug in your MC68EC040/LC040 target processor.

126

Using the Analyzer

How to record program execution in real-time

127

Chapter 5: Using the Analyzer

Theemulation-bus analyzes a powerful tool that allows you to view the

execution of your program in real-time, by monitoring all activity on the system

bus. The bus is a group of lines carrying address, data, and status information
between various parts of the target system and the emulator. Any time the digital
values on the bus line are stable, the bit values on the bus lines are said to comprise
abus stateThe bus state changes continually as information is transferred from

place to place in the system. When the bus state changes, it marks the completion of
onebus cycleand the beginning of another.

You monitor bus activity by capturingti@ceof bus states in a special emulator

buffer called the trace buffer. By examining the trace list you can tell, for example,
whether a certain address was accessed (as in an instruction fetch), and can even tell
which accesses were reads and which were writes. Furthermore, if you want, you

can tell how much time elapsed between one state and the next. Because there is
usually far more information carried over the bus than you care to see, powerful
triggering and sequencing capabilities ensure that the analyzer captures only the
information you need. That way, you don’t waste time searching through long trace
lists for the information you're looking for.

This chapter explains how to use analyzer capabilities.

128

Chapter 5: Using the Analyzer
Making Basic Analyzer Measurements

Making Basic Analyzer Measurements

Most measurements can be made using just a few analyzer commands. These
commands allow you to:

e Start or stop a trace measurement.
» Display the trace status.

» Display the trace list.

» Define a simple trigger qualifier.

» Define a simple storage qualifier.

» Set the trigger position in trace memory.
In addition to these essential functions, the analyzer has powerful triggering, .

storage and trace list display capabilities, that you can use to make complex
measurements. These features are described in other sections of this chapter.

To begin a trace measurement

Begin an emulation-bus analyzer trace by selecfimgdysisBegin

When you start a trace, the analyzer begins recording data according to your trigger
and storage specifications. When the trace is complete, or halted (by you), you can
display the data.

More information on trigger and storage specifications is included later in this
chapter.

129

Chapter 5: Using the Analyzer
Making Basic Analyzer Measurements

To halt a trace measurement

Halt an emulation-bus analyzer measurement by seleétiradysisHalt

You may occasionally need to halt a trace because you determine that the analyzer
isn’t capturing the data you expect (the trace buffer isn't filling). That is, the
analyzer status shows it is still “running” when you think it should be “complete.”
Halt the trace currently in progress ushgalysisHalt. You may also need to

respecify your trigger and storage terms (later in this chapter), and then restart the
trace.

To view the trace status

Check the emulation-bus analyzer trace status by looking at the PC Interface status
line, near the bottom of the screen. The analyzer status is shown on the right half of
the line.

The trace status display shows whether the trace is “running,” “halted,” or
“complete.”

To display the trace list

Display the trace list using the default parameters by seleétiragysisDisplay

Press<End><Enter> to accept the default display.

The trace list is a 1024 state deep buffer—if the analyzer has been set up to count
states or time, and a 512 state deep buffer otherwise. You can selectively display
portions of the buffer by setting the fields in the Analysis Display form. See the
section “The Trace Display” (later in this chapter) for more information.

130

Chapter 5: Using the Analyzer
Making Basic Analyzer Measurements

Example

To define a simple trigger qualifier

1 Define a simple trigger on an address value by sele&imglysisT raceM odify
2 Use the arrow keys to move to fhiéggger on field and typea. Press<Enter>.

3 Now you see another form. Use the arrow keys to move to the address field next to

thea= label. Type in the address value, then px&sger>.

4 PressxEnd><Enter> twiceto save the trigger specification.

Typically you'll want to trigger the analyzer (begin storing data) once a certain
program location is reached. You can use either a simple address expression, or one
that includes symbols.

Trigger the analyzer when the demo program reaches the location write_hdwr in
the update_sys module:

Analysis Trace Modify
Use the arrow keys to move to fhiggger on field and typea. Press<Enter>.

Now you see another form. Move to the address field next.tdype in the
address valuarrite_hdwr .

Press<End><Enter> twice to save the trigger specification.

131

Chapter 5: Using the Analyzer
Making Basic Analyzer Measurements

Example

To define a simple storage qualifier

1 Store only bus states that reference a particular address by sekectihgisTrace

M odify

2 Use the arrow keys to move to thmrefield. Typea, then pressEnter>.

3 Now you see another form. Use the arrow keys to move to the field nextte the

label. Type in an address, then preBater>.

4 PressxEnd><Enter> twice to save the new trace specification.

If you want to store only the accesses to a specific location, you can use the trace
storage qualifier. The trigger qualifier (previous section) effectively ignores all bus
states prior to the trigger. The storage qualifier then filters all subsequent states
after the trigger, storing only those that match the qualifier. As described later in
this chapter, the storage qualifier can specify a pattern that matches a number of
states, instead of matching just one.

The Analysis Display window displays timing information. If you want to measure
how often the demo program accesses the write_hdwr symbol, set the trigger
pattern tca=write_hdwr (see the previous section). Then set the storage qualifier
to a (step 2 above). When you get to the next form (step 3), the field nextate the
label already contains the addresi&e _hdwr, because you entered it previously as
the trigger qualifier. So, pres&End><Enter> twice to accept this value.

Start the trace:
Analysis B egin
Then run the program:

Processor Go Address ENTRY <Enter>

Display the trace:
Analysis Display <End><Enter>

132

Chapter 5: Using the Analyzer
Making Basic Analyzer Measurements

Example

To set the trigger position

1 Position the trigger term by selectirgnalysisTraceM odify
2 Press theEnd> key to move to the last field in the trace specification.

3 Use the<Tab> key to selecstart, centeror endto position the trigger at the start,

center or end of the trace. Or type in a value from 1 through 512 (or 1 through 1024
if counting is off) to position the trigger at that trace state.

4 Press theEnter> key to save the new trace specification.

The previous sections of this chapter indicated that the analyzer begins capturl

data when the trigger qualifier is matched. Actually, the analyzer captures data
continuously before the trigger as well, but overwrites this data when the trigger is
matched. By setting the trigger position, you can keep some (or all) of the states
that were captured prior to the trigger. For example, you might want to see all the
program events leading to a particular access. So, you can define that access as the
trigger term, and then position the trigger at the end of the trace.

To position the trigger 10 states after the beginning of the trace (so that 10 states
will appear before the trigger in the trace list), select:

Analysis Trace Modify

Press the&End> key to move to the last field. Tyd® and pressEnter> to save
the trace specification.

133

Chapter 5: Using the Analyzer
Displaying the Trace List

Displaying the Trace List

Thetrace listis your view of the analyzer’s record of processor bus activity. You

can control how the information in the trace list is presented, to make it easier to
find the information of interest. For example, you can display symbol information
where available, or source lines from the high-level languages used to write the
target system program. You can also change the column widths and set options for
disassembly of the trace list.

To change the trace format

1 SelectAnalysisFormat.
2 Use the arrow keys to move to one of ldieel fields.

3 Tab or Shift-Tab to change the label to one of the following:

addr (for address lines)

data (for data lines)

mne (for instruction mnemonics)

stat (for processor status information)
count (state and time counts)

seq (sequencer state change indicator)
—OFF— (no label in this position)

Press<Enter> to accept the new label definition.

4 If abasespecification is available for the label, you can move to it with the arrow
keys. PressTab> to select one of the following bases:

hex (hexadecimal)
bin (binary)

oct (octal)

dec (decimal)

asc (ascii)

134

Example

Chapter 5: Using the Analyzer
Displaying the Trace List

Press<Enter> to accept the base specification.

For the addr label, you may specifwalth parameter in the range 4..50. Type in
the desired value and predsnter>.

For the count label, you may speai@} to show the count (or time) relative to the
previous state , @bsto show the absolute count between this state and the trigger
state. Pres§ab to select the desired setting and presster>.

Press<End>, then<Enter> to save the format changes and exit the format screen.
Press<Esc>to exit the format screen and discard your changes.

The AnalysisFormat form specifies how data is arranged on the screen when
display the trace list. You can specify multiple options on the form. The seque

of the options in the form determines the sequence of the columns in the trace list
display. Each row of the form specifies what will appear in one column of the
output. The rows on the form—from top to bottom, correspond to the
columns—from left to right, of the trace list display.

When you enter aAnalysisFormat command with a new set of options, the
previous trace format is destroyed, and the new options determine the new format.
So if you display the trace list, then change the format and display the trace list
again, you will see the same data as before, but formatted differently.

If you want to set counting relative to the trigger state, perform the following:
Access the format screen:

Analysis Format

Use the arrow keys to move tdedbel field and enter:

Tab (to select count) <Enter>

Use the arrow keys to move to the count qualifier field and enter:

Tab (to select abs) <Enter>

Save the changes and exit the format screen:

<End><Enter>

135

Chapter 5: Using the Analyzer
Displaying the Trace List

To display the trace list

Select:AnalysisDisplay.

The cursor is in the “Dequeuing” fielflab to selecbn if you want software
dequeuing of the instruction stream (see next pagejf tv disable dequeuing.
Press<Enter>.

Now the cursor is in the “Start” field. Type in a number to specify the first state to
be displayed (0 is the trigger state) from the trace list. REas®r>.

Now the cursor is in the “End” field. Type in a number to specify the last state to be
displayed from the trace list. Predsnter>.

If you enabled software dequeuing in step 2, the cursor will be in the “Operand”
field. (This field appears only the first time that you display the most recent trace,
or if you changed the “start” state in step 3.) Type in a number that represents the
operand cycle associated with the first disassembled instruction. (You may need to
examine the trace list first before specifying this value). Rigsger>.

The cursor is now in the “Cycles” fiel@fab to selectll if you want to see all
instruction and operand cycles as they were captured by the analyzer, or select
instr only if you want to see only the instruction cycles. Prdsster>.

The cursor is now in the “Address mode” fi€l@b to selectAbsolute if you want
to see numeric addresses in the address 8gldbolsif you want to see only
symbols in that field (when available),Both if you want to see a mix of the
numeric addresses and symbols. Pr&sger>.

The cursor is now in the “Start on” field. (This field appears only the first time that
you display a trace, or if you entered a start state other than the détzulio)
selecthigh word if you want the analyzer to disassemble instructions beginning
with the upper 16 bits of captured datalosvy word to disassemble instructions
beginning with the lower 16 bits of captured data.

Press<End><Enter> to accept your choices and display the trace list. REess>
to abort theAnalysisDisplay command.

136

Chapter 5: Using the Analyzer
Displaying the Trace List

The trace list is a 512 or 1024 state deep buffer. You can selectively display
portions of the buffer using the Analysis Display form. The trigger state is always
state 0, so a negative number indicates a state prior to the trigger (if any).

The MC68040 PC Interface presents trace lists with the trace data disassembled
into an instruction stream. You can choose to show all bus cycles (instructions and
operands) or only the instruction cycles.

Each analyzer bus state may have two words. An opcode can appear in either word.
Usually the disassembiler starts with the upper word of the first trace state, however
you can force disassembly to begin with the lower word. If the disassembled trace
list isn’t what you expected, try using this option.

A dequeued trace list is available through the disassembly options. In the deq

trace list, unused instruction prefetch cycles are discarded, and operand cycle
placed immediately following the corresponding instruction fetch. If you choos

non-dequeued trace list, instruction and operand fetches are shown exactly as
captured by the analyzer.

Once the dequeuer has been started on the correct opcode, it will continue to
disassemble correctly unless an unusual condition causes it to misinterpret the data.
By specifying the first instruction state for disassembly and the number of the first
operand cycle for that instruction, you can resynchronize the disassembly. (You
may also need to use tlogv word option.)

You may see TAKEN, NOT TAKEN, or ?TAKEN? beside a branch in your

dequeued trace list. TAKEN is shown beside the branch if the dequeuer determines
that the branch was taken. NOT TAKEN is shown if the dequeuer determines that
the branch was not taken. ?TAKEN? means the dequeuer was not able to definitely
determine whether or not the branch was taken. If you read down the trace list and
see that the branch was taken, restart disassembly at the trace list line number of the
branch destination. You will need to uselthe word option if the destination

opcode is in the low word at the destination address.

137

Chapter 5: Using the Analyzer
Displaying the Trace List

Example

Suppose you want to display ten states from the trace list, starting at the trigger,
without dequeuing. Access the trace list display screen and set up the display using
the “Dequeuing,” “Start,” and “End” fields:

Analysis Display

Tab (to select off) <Enter>
Tab (to select 0) <Enter>
Tab (to select 10) <Enter>

Save the changes and exit the display screen:

<End><Enter>

To change the trace depth

SelectAnalysisTraceM odify.

Use the arrow keys to move the cursor to the field next to “Count” and press the
Tab key to selecoff to disable counting @n to enable counting. PresEnter>.

Press<xEnd>, then<Enter> to save your changes and exit the trace specification
form. PresxEsc>if you want to discard your changes and exit the trace
specification form.

The analyzer’s state/time counter uses half of the analyzer's state memory
resources. Therefore, when you use the time or state counter, the analyzer’s trace
depth is 512 states. You can double the trace depth to 1024 states by setting the
state/time counter to off.

138

Chapter 5: Using the Analyzer
Analyzing Program Execution When The MMU Is Enabled

Analyzing Program Execution When
The MMU Is Enabled

Most emulation and analysis commands that require an address as part of the
command use logical addresses. When the MC68040 MMU is enabled, physical
addresses are placed on the emulation bus. The physical addresses may not be the
same as the logical addresses. The deMMUer reverse translates the physical
addresses back to logical addresses and supplies these to the analyzer so that the
analyzer can:

» accept commands expressed in source file symbols. .
» display trace lists with addresses expressed in source file symbols.
» display appropriate portions of source code preceding lists of trace data.

Refer to Chapter 9 for detailed information to help you use the deMMUer more
efficiently.

To program the deMMUer in a static memory
system

1 Run your program to the point where you are sure the MMU is set up.

2 Break to the monitor program with the command:

Processor B reak

3 Load the deMMUer with the command:

Processor DeMMULoad or Verbose Load

4 Enable the deMMUer with the command:

139

Chapter 5: Using the Analyzer
Analyzing Program Execution When The MMU Is Enabled

Processor DeMMUEnable

5 Continue execution of your target program with the command:

Processor Go Pc,or Address, or Reset

To pick the place to load the deMMUer, you might set an execution breakpoint in
your code at a point where you are sure your MMU will be set up to translate the

address space you want to analyze. After the breakpoint has executed (emulator
running in foreground monitor), you can load the deMMUer.

Whether you continue your program or restart it, the deMMUer will be able to
reverse translate the physical addresses according to the MMU setup at the time
you issued th@rocessoDeMMU Load command. The deMMUer will remain
loaded even if you reset the emulation processor.

If you restart your program, you can use the analyzer to see how the MMU tables
are created and how the program operates.

Address ranges will be reverse translated correctly if they are translated by the
setup of the MMU that existed when you issuedrtfeeessoDeMMU Load
command. If context switches cause the MMU to access logical memory that was
not represented in the MMU tables when you loaded the deMMUer, incorrect
logical addresses will be provided by the deMMUer.

To store a deMMUer setup file

Store the deMMUer setup in a deMMUer setup file with the command:

Processor D eMMUFile Store <file>

Stores a deMMUer setup file (with a ".ED" suffix) by reading the present content of
the MMU registers and the MMU tables. You can edit this file to remove address
ranges that do not need to be reverse translated. Then you can load this file to set
up the deMMUer to reverse translate only those ranges that need to be reverse
translated during your next test.

140

Chapter 5: Using the Analyzer
Analyzing Program Execution When The MMU Is Enabled

To load the deMMUer from a deMMUer setup file

Load the deMMUer from a deMMUer setup file with the command:

Processor DeMMUFile Loador Verbose Load <file>.ED

Files that store setup information for the deMMUer have filenames that end in
".ED".

The <file>.ED should contain only those address ranges that need to be reverse
translated. When this file is loaded, the deMMUer creates a set of reverse

translations for it, ignoring the present content of the MMU registers and the M
tables in the emulator.

To trace program execution in physical address
space

Disable the deMMUer with the command:

Processor DeMMUDisable

Now the analyzer will get its address information directly from the emulation
address bus. This information is useful when you want to see behavior of your
operating system.

141

Chapter 5: Using the Analyzer
Making Complex Measurements

Making Complex Measurements

Earlier in this chapter the idea of a trigger and storage qualifier were introduced,
allowing you to selectively capture only the states you want to see. However, the
analyzer is actually capable of much more. You may find that:

» the trace buffer fills before reaching the states you want to see;

» you must search through a long trace list to find only a few states pertinent to
your measurement problem.

The HP 64700 analyzer has triggering and sequencing capabilities that help solve
these problems. 8imple triggertells the analyzer to start storing data when a

certain bus state is encounterecsejuencés a more complex specification that
specifies a series of bus states that must be matched before the trigger is reached. A
triggering sequence consistssefjuence termgach of which specifies which

state(s) to match next, and which states to store in the trace buffer while looking for
that state.

So far in this chapter, triggers and storage qualifiers have been single addresses.
But each trigger and storage qualifier should really be thought of as an expression
describing gatternthat can match one or more states. For example, an expression
could select all states in which the address lines carry a value ending in 1111
(binary). An address is just a special case of a pattern that only matches a single
address. Throughout this chapter, such expressions are represented by the
<expression> symbol. Expressions are described more fully, later in this chapter.

This section tells you how to get the most out of the HP 64700 analyzer by
specifying triggers and sequence specifications. It also describes additional
measurement tools to help you get more information from the trace.

142

Chapter 5: Using the Analyzer
Making Complex Measurements

Example

To insert a sequence term

1 SelectAnalysisTraceM odify.

2 Use the arrow keys to move the cursor to the term number of the sequence term

where you want to insert a new term. The new term will be inserted before that
term.

3 Tab until the term number field displaysand pressEnter>. A new sequence

term is inserted.

4 Make any changes needed to qualifiers (see other parts of this chapter for det

5 PressxEnd>, then<Enter>, to save your changes and exit the trace specification

form. PresxEsc>if you want to discard your changes and exit the trace
specification form.

You can specify up to eight sequence terms. At least two are always required,
because the first term specifies the trigger and the analyzer triggers on entry into the
succeeding term.

When you start a trace, the analyzer searches for the “Find” state of the first
sequence term, then searches for the “Then find” state of the second term, and so on
until it reaches the “Trigger on” term.

Any one of the eight sequence terms may be specified as the trigger level. The
trigger state is always line 0 in the trace list.

When you insert a new sequence term in the middle of the sequence, succeeding
terms are incremented.

Assume that you have four sequence terms and you want to insert a trigger as the
third sequence term.

Select AnalysisTraceM odify.

Insert the new sequence term by using the arrow keys to position your cursor on the
term number of sequence term 3.

143

Chapter 5: Using the Analyzer
Making Complex Measurements

Use théeTab key to cycle through the term number options until the field displays
Press<Enter>.

A new sequence term will now be displayed. Sequence terms 3 and 4 have been
moved down the screen and renumbered 4 and 5.

Make the new term the trigger level by placing the cursor on the term number of
sequence term 3 and pressirap until the field displayd . Press<Enter>. The
“Find” or “Then find” label changes to “Trigger on.”

Example

To remove a sequence term

SelectAnalysisTraceM odify.

Use the arrow keys to move the cursor to the term number of the sequence term you
want to remove.

Tab until the term number field displaizs and pressEnter>. The sequence term
is deleted.

Make any changes needed to qualifiers (see other parts of this chapter for details.)

Press<End>, then<Enter>, to save your changes and exit the trace specification
form. PresxEsc>if you want to discard your changes and exit the trace
specification form.

You may want to delete sequence terms to remove unneeded qualifications from
the sequence specification. When you delete a sequence term, any terms following
it are shifted up to fill the gap.

Suppose that there are 4 sequence terms on the screen and you want to remove term
number 3.

SelectAnalysisTraceM odify.

144

Chapter 5: Using the Analyzer
Making Complex Measurements

Use the arrow keys to move to the term number field that holdBab 3intil the
field displaysD and pressEnter>.

Sequence term number 4 will be shifted up and will now be term number 3.

Save the changes and exit the format screen by entdmdpr<Enter>.

To assign the trigger term

1 SelectAnalysisTraceM odify.

2 Use the arrow keys to move the cursor to the term number of the sequence term that
you want to use as the trigger level.

3 Tab until the term number field displayfs and pressEnter>. The “Find” or
“Then find” label changes to “Trigger on.”

4 Make any changes needed to qualifiers (see other parts of this chapter for details.)

5 PressEnd>, then<Enter>, to save your changes and exit the trace specification
form. PresxEsc>if you want to discard your changes and exit the trace
specification form.

Any but the last of the eight sequence terms may be specified as the trigger level.
The trigger state is always line 0 in the resultant trace list.

The selected term specifies the trigger qualifier. The analyzer triggers on entry into
the succeeding term.

Example Suppose that there are six sequence terms on the screen and you want to make term
number 4 the trigger term.

SelectAnalysisTraceM odify.

Use the arrow keys to move to the term number field that holdBab4until the
field displaysT and pressEnter>.

145

Chapter 5: Using the Analyzer
Making Complex Measurements

The “Find” or “Then find” label changes to “Trigger on.”

Save the changes and exit the trigger screen by entéfimdp<Enter>.

To reset the analyzer

SelectAnalysisTraceReset.

When you reset the analyzer trace specification, the sequencer is set to the default
two-term sequence in which it stores any state and triggers on any state. All pattern
and range specifications are also reset. (See “To define trace patterns” and “To
define a range” for more information.)

To define a qualifier

SelectAnalysisTraceM odify.

Use the arrow keys to move to the qualifier field for which you want to specify an
expression. (The analyzer searches for the expression you specify before taking
action, such as counting a state, moving to a new sequence term, and so on.)

Tab to select a state qualifier from the following list of states, ranges and patterns:

any state, no state, r, Ir, a, b, ¢, d, e, f, g, h, arm

Or, you may enter a complex expression. Type in the complex expression using
patterns and ranges according to the following rules:
» The patterns, range and arm qualifier are divided into two disjoint sets.

<SET1>={a,b,c,d 1,1}
<SET2>={e,f,g,h,arm}

(Thearm qualifier is discussed in the section on coordinated measurements.)

146

Chapter 5: Using the Analyzer
Making Complex Measurements

* You can form expressions by inserting intraset operators between members of
the same set. The operators are:

~ (intraset logical NOR)
| (intraset logical OR)

If you form an expression using these operators, the operator must remain the
same for all members of the same set. (See the examples).

* You can form expressions by inserting interset operators between members of
<SET1>and<SET2> The operators are:

and (logical and)
or (logical or)
The order in which you put the sets does not matter.

See the chapter titled “Expression Syntax” for a more complete description.

4 Presx<Enter> if you need to define the expressions associated with the patterns
and ranges in the expression. (See “To define trace patterns.”) Otherwise, skip to
step 5.

5 Press<End>, then<Enter>, to save your changes and exit the trace specification.
Press<Esc>to discard your changes and exit the trace specification.

Complex expressions allow you to build more complicated trace qualifiers with
multiple conditions. Since the complex expressions are built from the trace patterns,
which contain simple expressions, you can build qualifiers with multiple logical
operators.

Examples These are valid complex expressions:

a~b and elarm
aore
bandeandcandg

147

Chapter 5: Using the Analyzer
Making Complex Measurements

These are invalid complex expressions:

a~c
c[fand g

Examples

To create a numeric expression

Form logical expressions by combining numeric values and logical operators to
produce a numeric result.

The simplest numeric expressions consist of numbers and radix indicators. The
radix indicators are:

Y y (binary)

Q g O o (octal)

T t (decimal)

H h (hexadecimal (default))

See Chapter 11, “Expression Syntax,” for more details on humeric expressions and
the available logic operators.

The following are valid numeric expressions:

IXXX0Y<<3
(340q*7)/2
Offar32T
52T*7a

148

Chapter 5: Using the Analyzer
Making Complex Measurements

To define trace patterns

SelectAnalysisTraceModify.

Use the arrow keys to move to the qualifier you want to change and enter a pattern,
range or complex expression. (See “To define a qualifier” for more details.) Press
<Enter>.

Now you are in the pattern modification screen. Use the arrow keys to move to the
equality field next to the desired pattern. To set the pattern equal to an expression
Tab until this field displays. To set the pattern not equal to the expres3iah,

until the field display$=. Press<Enter> to move to theddr field for that pattern.

In theaddr field, you can enter an address expression, using either numeric
expressions, symbols, or a combination thereof. Or, you can leave the field blank.
Press<Enter> to move to thelata field.

In thedata field, you can enter data expressions using numeric expressions, or
leave the field blank. Pres&nter> to move to thetat field.

In thestat field, you can enter a status expression using numeric values. Or, you
can use th&ab key to select from different predefined status qualifiers. (See
STATUS in the "Expression Syntax" chapter for a list.) You can use logical
operators to combine the status qualifiers.

When you finish modifying patterns, preg€snd> to move to the last field in the
form. PresxEnter> to accept your changes and return to the sequencer definition
screen. You can exit that screen by presskgd>, then<Enter>.

If you want to discard your changes, pregsc>

The analyzer provides eight pattern variables, to which you assign simple
expressions. Then you use these patterns to build more complicated qualifiers for
the primary and secondary branch qualifiers.

By specifying the address, data and status values for a particular pattern, you can
use a pattern to specify a complete processor bus state.

149

Chapter 5: Using the Analyzer
Making Complex Measurements

The equality setting affects the logical connectives between the address, data and
status values. If you set the equalitytdhe logical connective end. If you set

the equality td=, the logical connective &. For example, you could have the
following relationships of address 100h and selected status values:

addr=100 and status=read from physical memory
addr'=100 or status!=acknowledge access

You can combine the predefined status qualifiers. For example, if you want to see
only read cycles from physical memory, enter the following in the stat field:

read&&physical

See the following display for an example of how these are entered.

Internal State Trace Specification

Set 1
Range (r) Label EEVIEN - thru
Pat addr data =tat
a 188 ead&&physical
b 1648 ack
c
d
Set 2
e
f
9
h
arm
Expression
Expressions have the form: <zetl?> and”or <{setZ>. Where setl conszists of <a,
b,c,d,r,*'r> and setZ consists of <e,f,g,h,arn>. Patterns within a set can be
Joined with !{or) or "(norl), but not both. Example: *vr " a or e | F {1 g | h
Pattern Expression: G WIE-yA-y=]

ETATUS : M6BA48—Running in monitor

Emulation trace halted

TAB selects a simple pattern or enter an expression or move up to edit patterns.

Analysis Trace Modify Form - Level 2

Example Suppose that you want to trace and trigger on an access to either address 100, 200,
or 300 in your program.

Set up the analyzer:
Analysis Trace Modify

150

Chapter 5: Using the Analyzer
Making Complex Measurements

Modify the trace forms as shown:

Internal State Trace 3pecification

[While storing
Trigger on times
g Store
Branches Count Prestore Trigger position
of 1624
€11+ Interfield movement Ctrl ¢+ :Field editing TAB :Scroll choices

ETATUS . M68A4B—Ruwming in monitor Emulation trace halted

TAB selects a pattern or press ENTER to modify this field and the pattern values|

Analysis Trace Modify Form - Level 1

Internal State Trace Specification

Set 1
Range (r) Label = thru
Pat dd dat. tat.
a 188
b prdcl:]
c 308
d

Set 2
e
f
a9
h
arm

Expression

Expreszions have the form: <{zetl?> and or <=zetZ>. Uhere =setl conszists of {a,
b,c,d,r, tr> and setZ consists of <e,f,g,h,arm>. Patterns within a set can be
Joined with {(or) or "(nor), but nmot both. Example: v "a ore | f i g i h
Pattern Expression:

ETATUS . M68A4B—Ruwming in monitor Emulation trace halted

The TAB key selects whether the pattern matches the values or not the values.

Analysis Trace Modify Form - Level 2

Start the analyzer and the program:

Analysis Begin
Processor Go Pc

151

Chapter 5: Using the Analyzer
Making Complex Measurements

Now you can run your program. When you list the trace, the analyzer will have
triggered on the first access to any of the three addresses: 100h, 200h, or 300h.

To define a range

1 SelectAnalysisTraceModify.

2 Use the arrow keys to move to the qualifier you want to change and enter an
expression using the range expressioor {r). (See “To define a qualifier” for
more details.) PressEnter>.

3 Now you are in the pattern modification screen. Use the arrow keys to move to the
label field next to “Range (r) Labell’ab to selecaddr (address) odata (data) as
the group of processor lines for which you want to define a range.<Fet&s> to
move to the next field.

4 Now you can specify the lower bound of the range. If you selected addr, you can
enter an address expression, using either numeric expressions, symbols, or a
combination thereof. If you selected data, you can enter data expressions using
numeric expressions. Predsnter>.

5 Specify the upper bound of the range, using the same rules as in step 4.

6 When you finish, pressEnd> to move to the last field in the form. Pregnter>
to accept your changes and return to the sequencer definition screen. You can exit
that screen by pressirdgend>, then<Enter>.

If you want to discard your changes, pregsc>

The range qualifier can be used in analyzer storage and complex branch

qualifiers. For example, you might have a lookup table in your program, and want

to record accesses to that table in the trace list. You can define the range qualifier as
the lower and upper boundaries of the lookup table.

152

Chapter 5: Using the Analyzer
Making Complex Measurements

Examples Suppose you want to trigger on reads from a data area (addresses 5000h through
5100) and store only those reads.

UseAnalysisTraceFormat to set anddr anddata label tohex. Set up the
analyzer as shown.

Analysis Trace Modify

Modify the screens as shown:

Internal State Trace Specification
fl While storing
Trigger on | times
g Store e and e |
Branches Count Prestore Trigger position
of 1824
«tl+ Interfield movement Ctrl ¢+ :Field editing TAB :Scroll choices

[ETATUS : M6BA4B—Running in itor Emulation trace halted

TAB selects a pattern or press ENTER to modify this field and the pattern values

Analysis Trace Modify Form - Level 1

153

Chapter 5: Using the Analyzer
Making Complex Measurements

Internal State Trace Specification

Set 1
Range (r) Label SEEFIEN - 58688 thru 5188
Pat addr data stat
a 188
b 288
c 388
d

Set 2

n
Expression

Expres=zions have the form: <setl’> and/or <{setZ>. Where setl consists of <a,

b,c,d,r,'r> and setZ consists of <e,f,g,h,arn>. Patterns within a set can be

Joined with if{or) or "(nor), but not both. Example: *r " a ore | f 1 g i h

Pattern Expression:

B oa e

al

[ETATUS : M68A4A—Runming in monitor Emulation trace halted

TAB selects a simple pattern or enter an expression or move up to edit patterns.

Analysis Trace Modify Form - Level 2

Start the analyzer and the program.

Analysis Begin
Processor Go PC

When your program has run long enough, or you have taken steps to cause the
reads to occur:

Display the trace
Analysis Display

154

Chapter 5: Using the Analyzer
Making Complex Measurements

Example

To set the storage qualifier

1 SelectAnalysisTraceM odify.

2 Enter a qualifier in the qualifier field next to the “While Storing” or “Store” label

for each sequence term. (See “To define a qualifier” if you need more information.)

Press<End>, then<Enter>, to save your changes and exit the trace specification
form. PresxEsc>if you want to discard your changes and exit the trace
specification form.

There are eight storage qualifiers, one for each sequence term. This allows yo
store only the states of interest at each level of the sequence, which uses the
memory more efficiently and makes the trace display easier to read.

Suppose you want to trace execution in a program, but only after a sequence of
events have occurred in a specific order. In this example, the analyzer will wait to
find the symbol "main", and then the symbol "interrupt_sim", and then the symbol
"gen_ascii_data" in the ecs demo program. The analyzer will capture the
occurrences of each of these symbols (addresses), and then it will store all of the
program activity that follows. This type of measurement is useful when you are
analyzing a program that may take several paths, and you want to capture activity
only after the program takes one particular path.

Start this example with the emulation processor reset.
Processor Reset Hold

155

Chapter 5: Using the Analyzer
Making Complex Measurements
Set up the trigger and pattern specifications for the measurement.
Analysis Trace Modify
The Analysis Trace Modify Form (Level 1) will be on screen. Modify the Level 1

and Level 2 forms as shown. Obtain the Level 2 form by pressing <Enter> while
the cursor is in one of the "While storing" fields of the Level 1 form.

Internal State Trace Specification

f While storing
Find times

2 While storing [X

Then find | times
g While storing

Trigger om times

g Store
Branches Count Prestore Trigger position

of 1824

«tl+ !Interfield movement Ctrl <+ !Field editing TAB :Scroll choices

ETATUS: ME6BB48—BRunning user program Emulation trace complete

TAB selects a pattern or press ENTER to modify this field and the pattern values

Analysis Trace Modify Form - Level 1

156

Internal State Trace Specification

Chapter 5: Using the Analyzer
Making Complex Measurements

Set 1
Range (r) Label = thru
Pat addr data =tat
a main
b interrupt_=simn
c gen_ascii_data
d

Set 2
e
f
g
h
arm

Expreszion

Expreszions have the form: <{setl’> and- or <zetZ>. Where szetl conzists of <a,
b,c,d,r,*'r> and setZ consists of <{e,f,g,h,armn>. Patterns within a set can be
Joined with i(or) or "(nor), but not both. Example: *v " aor e | f 1 g 1 h
Pattern Expression:

BTATUS ! M6BA4A—Ruiming user program

TAB =elects a simple pattern or enter an expression or move up to edit patterns.

Analysis Trace Modify Form - Level 2

When the Level 2 form is set up as shown above, press <End> and then <Enter> to

Emulation trace complete

save your changes and return to the Level 1 form.

When the Level 1 form is set up as shown on the preceding page, press <End> and
then <Enter> to save your changes and return to the display of the MC68040 PC

Interface windows.

157

Chapter 5: Using the Analyzer
Making Complex Measurements

Set up the trace display format.

Analysis Format

Internal State Format Specification

Qualify States Clock Speed
user [very fast]

Lakel Pol Base Width Label Pol Base Width
hex 14

«tl+ !Interfield movement Ctrl <+ !Field editing TAB :Scroll choices

ETATUS: ME6BB48—BRunning user program Emulation trace complete

Enter the width of the address column displayed in the trace list.

Analysis Format Form

The display width of 14 was selected to allow the full symbol names to be shown in
the address column of the trace list.

158

Chapter 5: Using the Analyzer
Making Complex Measurements
Start the analyzer first, and then start the demo program.

Analysis Begin
Processor Go Address ENTRY

The trace will be completed. Then you can view the tracelist. Format the tracelist
as follows:

Analysis Trace Display

fina lysis,

ETATUS: ME6BB48—BRunning user program Emulation trace complete
States available: -2..1821 Dequeuing aigd Start]

Address mode [Ja]
Use the TAB key to select whether disassembly starts on the high or low word.

Analysis Display Trace Form

The above form uses the default analyzer display format, except that the trace list is
started on line -3 and ended on line 10. Make these selections in the form and press
<Enter>.

159

Chapter 5: Using the Analyzer
Making Complex Measurements

addr,H

68848 Mnemnonic

main
interrupt_sim
gen_ascii_data
BBAABSE 4
pBABB4Ze
BBABBRSA8
BBABBSACc
=main:[144]
main:[1431
=main:[143]
BBABBSe4
=AABBASE6
pBABB4Ze
BBABBS=8
=AAABASea
ascii_old_data

a
1
2
3
4
5
4]
7
8
9

BTATUS ! M6BA4A—Ruiming user program

Window
Begin

SBystem Register
Halt CHMB Format

incomplete instr.:. ~4EB9-/8888- 7771/
MOVEM.L DZ2-D4-AZ,— (A7)
LINK.W A6 , #SFFEC
MOVEM.L D2/AZ2-A3,- (A7)
G————43— sdata byte read
ORI.B #5088, D4
BRA.B main:[1431
MOVE.B (A1)+,(RAB)+
ADDQ . L #1,D1
MOVEQ H5ARARAAAT , DA
CMP.L D1,D8
BLE.B main:[1451
G————43— sdata byte read
TST.B (A1)
BNE.B main:[1441
=data byte write

Processor
Trace

Breakpoints
Display

Analysis Display Screen

Emulation trace complete
Memory Config

The analysis display screen shows that the first state that was captured was the
symbol "main". The second state that was captured was the symbol
“interrupt_sim". Trigger was recognized on symbol "gen_ascii_data", and after

that, all states were stored. This has given a trace of activity that occurs only after a
specific series of events have been executed. The trace memory only contains the
states of interest at each step in the sequence.

160

Chapter 5: Using the Analyzer
Making Complex Measurements

Example

To define a primary branch term

SelectAnalysisTraceM odify.

For each term that you want to modify, enter a state qualifier in the qualifier field
next to the “Find” or “Then find” labels. (See “To define a qualifier” if you need
more information.) PressEnter> if you need to define patterns, or use the arrow
keys to move to the “times” field.

Now the cursor is in the field next to the word “times.” This field sets the
occurrence count. Type in a number between 1 and 65535 that specifies how
times the qualifier must be found before the sequencer advances to the next s

Press<End>, then<Enter>, to save your changes and exit the trace specification
form. PressEsc>if you want to discard your changes and exit the trace
specification form.

The primary branch qualifier defines the main path from a given sequencer term to
another term (or the same term). If both the primary and secondary branch
qualifiers are satisfied simultaneously, the primary branch is taken.

Usually, you'll use the primary branch qualifiers to define a sequence of states that
must be satisfied to reach the trigger condition.

See the example under "To set the storage qualifier” for an example use of the
primary branch qualifier.

161

Chapter 5: Using the Analyzer
Making Complex Measurements

To define a global restart term

1 SelectAnalysisTraceM odify.

2 Use the arrow keys to move the cursor to the field next to the label “Branches.”
Tab to selectestart on if you want a global restart, off if you want to disable
the global restart. Pres&nter>.

3 If you selectedestart on in step 2, enter a state qualifier in the qualifier field
below the “Branches” field. (See “To define a qualifier” if you need more
information.)

4 Press<End>, then<Enter>, to save your changes and exit the trace specification
form. PressEsc>if you want to discard your changes and exit the trace
specification form.

The restart qualifier allows you to restart the trace sequence whenever a certain
instruction or data access occurs. For example, you might have a complicated trace
sequence that searches for an intermittent failure condition. You could set the
restart term to restart the sequence whenever a bus cycle occurred that ensures that
the code segment would perform correctly. Thus, the trace will be satisfied only
when that restart term never occurs and the code segment fails.

You can also have the analyzer take a unique secondary branch for each sequencer
level. See “To define a secondary branch term.”

162

Example

Chapter 5: Using the Analyzer
Making Complex Measurements

Suppose you want to trace execution in a program, but only if it executes
abnormally. In this example, the analyzer is set up to find the symbol "main”, and
then the symbol "interrupt_sim", and then trigger when it finds the symbol
"gen_ascii_data" in the ecs demo program. In the normal sequence of events, the
system is updated (symbol "update_system" occurs) before the "interrupt_sim"
symbol occurs. You only want to trace activity if "interrupt_sim" and then
"gen_ascii_data" occur without the system being updated.

The analyzer will capture the occurrences of each of the above symbols, but will
restart its search from the beginning of the sequence (symbol "main") each time it
finds "update_system". The trace will only be triggered and completed (with
storage of all activity) if "gen_ascii_data" is found during a trace of the sequence
that does not include "update_system".

This type of measurement is useful when you are analyzing a program that ta
normal path, but occasionally fails to make a required call. You want to captu
activity only if the program fails to make that required call.

Load the demo program and transfer symbol data to the emulator (see Chapter 1 for
instructions)

Set up the trigger and pattern specifications for the measurement:
Analysis Trace Modify
The Analysis Trace Modify Form (Level 1) will be on screen. Modify the Level 1

and Level 2 forms as shown. Obtain the Level 2 form by pressing <Enter> while
the cursor is in one of the "While storing" fields of the Level 1 form.

163

Chapter 5: Using the Analyzer
Making Complex Measurements

Internal State Trace 3pecification

[While storing
Find tines

B While storing {0

Then find | tines
g While storing

Trigger on times

g store
Branches rg=adis M Count Prestore Trigger position
of 1624
€11+ Interfield movement Ctrl ¢+ :Field editing TAB :Scroll choices
[ETATUS : M68BA4A——Enulation reset Emulation trace halted

Use the TAB and Shift-TAB keys to select a trigger pozition or enter a nunber.

Analysis Trace Modify Form - Level 1

Internal State Trace Specification

Set 1
Range (r) Label = thru
Pat dd dat. tat.
a main
b interrupt_simn
[=3 gen_ascii_data
a update_system

Set 2
e
f
a9
h
arm

Expression

Expreszions have the form: <{zetl?> and or <=zetZ>. Uhere =setl conszists of {a,
b,c,d,r, tr> and setZ consists of <e,f,g,h,arm>. Patterns within a set can be
Joined with {(or) or "(nor), but nmot both. Example: v "a ore | f i g i h
Pattern Expression:

[ETATUS : M68BA4A——Enulation reset

Emulation trace halted

TAB selects a zimple pattern or enter an expresszion or move up to edit patterns.

Analysis Trace Modify Form - Level 2

When the Level 2 form is set up as shown above, press <End> and then <Enter> to
save your changes and return to the Level 1 form.

When the Level 1 form is set up as shown above, press <End> and then <Enter> to
save your changes and return to the display of the MC68040 PC Interface windows.

164

Chapter 5: Using the Analyzer
Making Complex Measurements

Set up the trace display format.

Analysis Format

Internal State Format Specification

Qualify States Clock Speed
user [very fast]

Lakel Pol Base Width Label Pol Base Width
hex 14

«tl+ !Interfield movement Ctrl <+ !Field editing TAB :Scroll choices

ETATUS: ME6BB48—BRunning user program Emulation trace complete

Enter the width of the address column displayed in the trace list.

Analysis Format Form

The display width of 14 was selected to allow the full symbol names to be shown in
the address column of the trace list.

165

Chapter 5: Using the Analyzer
Making Complex Measurements
Start the analyzer first, and then start the demo program.

Analysis Begin
Processor Go Address ENTRY

The trace will not be completed. You will have to halt it.
Analysis Trace Halt

Then you can view the tracelist:

Analysis Trace Display

Accept the default format of the trace list offered in the Analysis Display Trace
Form. Simply press <End> and then <Enter>.

Mnalysis
addr 68848 Mnemonic

main incomplete instr.: ~4EB9-8888.777%/
update_sysztem incomplete instr.: ~487V9-80888.777%/
main incomplete instr.: ~4EB9-8888.777%/
update_sysztem incomplete instr.: ~487V9-80888.777%/
main incomplete instr.: ~4EB9-8888.777%/
update_sysztem incomplete instr.: ~487V9-80888.777%/
main incomplete instr.: ~4EB9-8888.777%/
update_sysztem incomplete instr.: ~487V9-80888.777%/
main incomplete instr.: ~4EB9-8888.777%/

update_sysztem incomplete instr.: ~487V9-80888.777%/
main incomplete instr.: ~4EB9-8888.777%/
update_sysztem incomplete instr.: ~487V9-80888.777%/
main incomplete instr.: ~4EB9-8888.777%/
update_sysztem incomplete instr.: ~487V9-80888.777%/
main incomplete instr.: ~4EB9-8888.777%/
update_sysztem incomplete instr.: ~487V9-80888.777%/

ETATUS : M6EA48—Enulation re Emulation trace halted
Window System Register Processor Breakpoints Memory Config OERUEFES
Begin Halt CHMB Format Trace Display

Analysis Display Screen
Notice that the sequence is never completed because after "main", "update_system"
is found. When "update_system" occurs, the sequence is restarted. If the sequence
were ever completed without "update_system" occurring, a trace would be
triggered on "gen_ascii_data" and the trace memory would store the activity that
followed.

166

Chapter 5: Using the Analyzer
Making Complex Measurements

To define a secondary branch term

1 SelectAnalysisTraceM odify.

2 Use the arrow keys to move the cursor to the field next to the label “Branches.”
Tab to selecper levelif you want to specify individual secondary branch
qualifiers, oroff if you want to disable the secondary branch qualifiers. Press
<Enter>.

3 If you selectegber levelin step 2, enter a state qualifier in the qualifier field next to
the “Else on” label for each sequencer term. (See “To define a qualifier” if you
need more information.) Press <Enter> to define patterns or use the arrow ke
move to the “goto level” field. Type in a sequence level (only the sequence lev
currently displayed are valid).

4 Press<End>, then<Enter>, to save your changes and exit the trace specification
form. PresxEsc>if you want to discard your changes and exit the trace
specification form.

The secondary branch qualifier defines an alternate path from a given sequencer
term to another term (or the same term). If both the primary and secondary branch
qualifiers are satisfied simultaneously, the primary branch is taken. You can use the
secondary branch as an alternate path to the trigger if more than one sequence of
conditions is acceptable.

Because the secondary branch qualifier is unique for each sequence term, it is more
flexible than a global restart qualifier. You can have each secondary branch

qualifier cause a transition to different term numbers. See the examples under “To
define a primary branch term” and “To set the storage qualifier.”

When you make all the secondary branch qualifiers identical, you have a global
restart qualifier. See “To specify a global restart qualifier.”

167

Chapter 5: Using the Analyzer
Setting Analyzer Clocks

Setting Analyzer Clocks

The HP 64700 Series emulators allow up to five clock signals for emulation and
external analysis. These are J, K, L, M, and N clocks. The HP 64783 emulator
generates the L clock to drive the emulation analyzer. The other clocks are not used.

The PC Interface provides fields in thealysisFormat form to configure the clock
signals. You can use thaalysisFormat command to qualify capture of either
target program execution (called user), which includes execution of the foreground
monitor, or execution of the background monitor. You also use this form to specify
the maximum data rate that the analyzer will see, which affects the state/time
counter.

To trace user/background code execution

1 SelectAnalysisFormat.

2 Use the arrow keys to move the cursor to the field next to the label “Quakfy.”
to selecuserif you want the analyzer to record only your target program (user)
states. Seledtackground if you want the analyzer to record only background
monitor program states. Seladit to have the analyzer record execution of your
target program and background monitor program states.

3 PressEnd>, then<Enter>, to save your changes and exit the format form. Press
<Esc>if you want to discard your changes and exit the format form.

The emulation-bus analyzer has built-in qualifiers that allow you to select whether
the analyzer captures execution of the target program (which includes execution of
the foreground monitor), background monitor code, or both. Usually, you’ll want
to trace only your target program. If you're trying to solve a problem with

emulator and target system interaction, you may want to trace both the target
program and background monitor code.

168

Chapter 5: Using the Analyzer
Setting Analyzer Clocks

To configure the analyzer clock

1 SelectAnalysisFormat.

2 Use the arrow keys to move the cursor to the field next to the label “Clock Speed.”
Tab to selecslowif the analyzer data rate is less than or equal to 16 MHz. Select
fast if the analyzer data rate is between 16 and 20 MHz. Selgcfast if the
analyzer data rate is greater than 20 MHz.

3 PresskEnd>, then<Enter>, to save your changes and exit the format form. Press
<Esc>if you want to discard your changes and exit the format form.

The MC68040 analyzer clock is seiiery fast by default. The analyzer can
capture all types of bus cycles correctly up to the maximum clock rate of 40 MHz,
but cannot correctly count states or time at higher speeds for certain bus cycle types.

The worst-case situation is one where a zero-wait state burst cycle is performed.
The analyzer clock rate for burst cycles is given by the equation:

Processor Clock Ra{BCLK)
(1 + number of wait statgs

Analyzer Clock Rate

To determine the correct setting for the “Clock Speed” field in the MC68040
emulator, calculate the maximum data rate by using the above equation. Remember
that the emulator requires one wait state for all accesses when the external clock is
greater than or equal to 25 MHz. (See the chapter titled "Configuring the

Emulator" for more information.) Then choose the clock speed setting according to
the calculated clock rate. If no burst cycles are performed, the analyzer clock speed
can be setlow.

169

Chapter 5: Using the Analyzer
Setting Analyzer Clocks

The trace state and time count qualifiers are limited by the analyzer clock rate
settings as follows:

Analyzer clock rate Clock Speed setting Valid Count Qualifier
options
clock< 16 MHz slow Count <state>
Count time
clock< 20 MHz fast Count <state>
clock= 20 MHz very fast Count none
Example Suppose you are running the MC68040 processor at 40 MHz. You have enabled a

wait state for target memory because target memory requires one wait state for
synchronous/burst accesses over 25 MHz. The resulting data rate is 20 MHz, so you
modify the “Clock Speed” field in th&nalysisFormat form tdfast. You are

limited to counting states in the trace specification.

Because the analyzer clock rate is between 16 and 20 MHz, you can choose to

count states during the trace. However, you cannot choose to count time during the
trace.

170

Chapter 5: Using the Analyzer
Using Other Analyzer Features

Using Other Analyzer Features

The analyzer has other features that can be used in all configurations to make trace
measurements easier to interpret or add additional information.

» Prestoreallows you to save specific trace states that are related to other events
in your trace list. For example, you might want to save all the callers of a
subroutine.

» Countqualifiers allow you to count states or time.

To define a prestore qualifier

SelectAnalysisTraceM odify.

Use the arrow keys to move the cursor to the field next to “Prestore” and press the
Tab key to selecon. (Selecoff if you want to disable a previous prestore
specification, and skip to step 4.) PreEster>.

Type in a state qualifier expression in the field below “Prestore.” (See “To define a
qualifier,” in this chapter.)

Press<End>, then<Enter> to save your changes and exit the trace specification
form. PresxEsc>if you want to discard your changes and exit the trace
specification form.

You use the prestore qualifier to save states that are related to other states specified
by storage qualifiers.

171

Chapter 5: Using the Analyzer
Using Other Analyzer Features

To count states or time

1 SelectAnalysisTraceM odify.

2 Use the arrow keys to move the cursor to the field next to “Count.” PreBalihe
key to selectime if you want to count time intervalstate if you want to count bus
states, ooff if you want to disable counting. Predsnter>.

3 If you selectedtatein step 2, type in a state qualifier expression in the field below
“Count.” (See “To define a qualifier,” in this chapter.)

4 Press<End>, then<Enter> to save your changes and exit the trace specification
form. PresxEsc>if you want to discard your changes and exit the trace
specification form.

The trace count qualifier can be used to measure time for each stored state or
occurrence counts of a particular state. You can display these values either relative
to the last stored state (relative mode) or relative to the trigger state (absolute
mode). You change the display using AmalysisFormat command. Refer to “To
change the trace format,” earlier in this chapter.

The MC68040 emulator defaultsdéf. Refer to “To configure the analyzer clock”
to see the counts that can be made at different analyzer clock speeds.

When you seleatff, the analyzer trace depth is increased from 512 states to 1024
states.

172

Making Coordinated Measurements

Use the Coordinated Measurement Bus to start and stop multiple emulators and
analyzers

173

Chapter 6: Making Coordinated Measurements

The Coordinated Measurement Bus (CMB) connects multiple emulators and
allows you to make synchronous measurements between those emulators.

For example, you might have a target system that contains an MC68040 processor
and another processor. You use HP 64700 Series emulators to replace both target

system processors, and connect the emulators using the CMB. You can run a
program simultaneously on both emulators. Or, you can start a trace on one

emulation-bus analyzer when the other emulator reaches a certain program address.

These measurements are possible with the CMB.

Three signal lines are used to control interaction over the CMB.

TRIGGER

READY

EXECUTE

The CMB TRIGGER line is low true. This signal can be driven
or received by any HP 64700 connected to the CMB. This
signal can be used to trigger an analyzer. It can be used as a
break source for the emulator.

The CMB READY line is high true. It is an open-collector
circuit and performs an ANDing of the ready state of enabled
emulators on the CMB. Each emulator on the CMB releases
this line when it is ready to run. This line goes true when all
enabled emulators are ready to run, providing for a
synchronized start.

When CMB is enabled, each emulator is required to break to
background when CMB READY goes false, and will wait for
CMB READY to go true before returning to the run state.
When an enabled emulator breaks, it will drive the CMB
READY false and will hold it false until it is ready to resume
running. When an emulator is reset, it also drives CMB
READY false.

The CMB EXECUTE line is low true. Any HP 64700 on the
CMB can drive this line. It serves as a global interrupt and is
processed by both the emulator and the analyzer. This signal
causes an emulator to run from a specified address when CMB
READY returns true.

174

Chapter 6: Making Coordinated Measurements

There are two lines internal to the emulator that are used for coordinated analyzer
measurements. These are TRIG1 and TRIG2. The analyzer can drive or receive
either of these signals. Also, the rear-panel BNC and the CMB TRIGGER signal
can drive or receive either of these signals.

Several different commands and forms control these signals. By using these
commands, you can make the following types of measurements:

e Start a program run or analyzer trace when the CMB EXECUTE signal is
driven.

* Use either the BNC trigger or CMB TRIGGER to arm (and potentially trigger)
the analyzer.

» Have the analyzer drive the BNC trigger or CMB TRIGGER to trigger other
instruments or emulators.

» Break the emulator into the monitor when a BNC trigger, CMB TRIGGER
analyzer trigger occurs.

The commands used to make coordinated measurements are as follows:

Command Function

Config General Sets drivers and receivers of internal trigger signals
Config Trigger Configuration item enables/disables CMB interaction
ProcessoCMB Go Sets run at CMB EXECUTE address

AnalysisCMB Begin Enables/disables trace on CMB EXECUTE

ProcessolCMB Execute Starts a coordinated CMB measurement
or
AnalysisCMB Execute

This chapter shows some of the common measurements that you may want to
make. By combining the above commands in different ways, you can make more
complex measurements involving several test instruments. This can be useful for
troubleshooting multiprocessor systems or problems where the emulator isn'’t
capable of making the whole measurement.

The MC68040 emulator supports CMB interaction whether it is configured to use a
background monitor or a foreground monitor. To connect emulators using the
CMB, see thédP 64700 Series Card Cage Installation/Service Guide

175

Chapter 6: Making Coordinated Measurements
To start a simultaneous program run on two emulators

To start a simultaneous program run on two
emulators

Enable the CMB on each emulator (useGbafig General command to access the
“Enable CMB interaction?” configuration item, then sejexg.

Reset each emulator using Pr@cessoResetHold command.

Set the run address for the first emulator by seleBtiagessoCMB Go
<address> <Enter>

Set the run address for the second emulator by sel&ttingssoCMB Go
<address> <Enter>

Start program execution on both emulators by seleBliogessoCMB Execute
on the emulator driving the CMB bus.

Before you do this procedure, both emulators must be connected via the CMB. To
connect the CMB, see tli#P 64700 Series Card Cage Installation/Service Guide

The procedure for starting a simultaneous trace on two emulators is similar. For
each emulator, you should set up the trigger specification before enabling the CMB.
Then use th&nalysisCMB Begin command to enable trace on execute for each
emulator. When the EXECUTE signal is received, both emulators will begin

running as specified by tirocessolCMB Go command, and will start a trace
according to the given trigger specification.

176

Chapter 6: Making Coordinated Measurements
To start a simultaneous program run on two emulators

Example Assume that you have two MC68040 emulators. The same program is loaded in
each emulator. The first emulator is driving the CMB bus. The following example
will start a simultaneous program run on both emulators.

Enable CMB interaction by selecting in each emulator:
Config General

and set the “Enable CMB Interaction?” configuration iterpe®
Select in each emulator:

Processor Reset Hold

Set the run address for the first emulator by selecting:
Processor CMB CGo

and entering the start address of the program (example: 100h)
Now set the run address for the second emulator by selecting:
Processor CMB Go

and entering 100

Start program execution on both emulators by selecting the following in the first
emulator:

Processor CMB Execute

177

Chapter 6: Making Coordinated Measurements
To trigger one emulation-bus analyzer with another

Example

To trigger one emulation-bus analyzer with
another

Enable the CMB on each emulator (useGbafig General command to access the
“Enable CMB interaction?” configuration item, then sejexg.

Reset each emulator using Pr@cessoResetHold command.
Set up the first emulator to drive the CMB trigger.

Set up the second emulator to receive the CMB trigger.

Start a trace on each emulator usingAhalysisBegin command.

Start a run on each emulator usingRnecessoGo0 command.
Before you do this procedure, both emulators must be connected via the CMB. To
connect the CMB, sdéP 64700 Series Card Cage Installation/Service Guide

In the above procedure, you set one emulation-bus analyzer to drive the CMB
trigger, and set another to trigger on receipt of a CMB trigger. You can use the
same concepts to trigger external instruments using the BNC connector on the rear
panel of the HP 64700 Series Card Cage.

Assume you have two MC68040 emulators. The same program is loaded in each
emulator. The following example will trigger the analyzers in both emulators.

Enable CMB interaction by selecting:

Config General

and set the “Enable CMB Interaction?” configuration iterpe®
Select :

Analysis Trace Modify

Set the analyzer to trigger on the pattern:
addr=100 and stat=write

178

Chapter 6: Making Coordinated Measurements
To trigger one emulation-bus analyzer with another
and set the trigger position to the center of the trace. See lower right corner of the
following figure.

Internal State Trace Specification
fl While storing
Trigger om times
A Store T
Branches Count Prestore Trigger position
of 1824
«ti+ Interfield movement Ctr]l +» [Field editing TAB :Bcroll choices

ETATUS : M6EBA48—Enulation reset Emulation trace halted

Use the TAB and Shift-TAB keys to select a trigger position or enter a number.

Select "Center" of Trace

Now set up the trigger signal configuration :

Config Trigger

Use the arrow keys to move to the analyzer and CMB fields for TRIG1, and use
<Tab> to set the drivers and receivers as shown in the following display:

179

Chapter 6: Making Coordinated Measurements
To trigger one emulation-bus analyzer with another

TRIG1 TRIGZ
BNC HEETE BNC [T
CME [m—— oy Wi gnore |
Enulator e Emulator EETeE
fAnalyzer fmalyzer e
«ti+ Interfield movement Ctr]l +» [Field editing TAB :Bcroll choices

Cross Trigger Configuratiom

BTATUS : Me8B48—Enulation reset Ermulation trace halted

The internal analyzer may drive () or ignore the
TRIG1 and TRIGZ sigmals.

First Emulation-bus Analyzer Trigger Configuration

Start the trace and break the emulator to the monitor:

Analysis Begin
Processor Break

Load the program in the second emulator. Then enable CMB interaction by
selecting:

Config Ceneral
and set the “Enable CMB Interaction?” configuration iterpe®
Select:

Analysis Trace Modify

Set the second emulation-bus analyzer to triggaren and position the trigger in
the center of the trace.

180

Chapter 6: Making Coordinated Measurements
To trigger one emulation-bus analyzer with another

Now set up the second emulation-bus analyzer trigger signal:

Config Trigger

Use the arrow keys to move to the analyzer and CMB fields for TRIG1, and use
<Tab> to set the drivers and receivers as shown in the following display:

Cross Trigger Configuration

TRIG1 TRIGZ
ol grore | i, i gnore |
CMB CMB
Enulator [Tl Emulator [ITOITSN
fnalyzer fnalyzer
«tl> Interfield movement Ctrl «» (Field editing TAB :Scroll choices

STATUS: M68A48—Enulation reset Emulation trace halted

The intermal analyzer nay drive () or ignore the
TRIG1 and TRIGZ signals.

Second Emulation-bus Analyzer Trigger Configuration

Start the trace and break the emulator to the monitor:

Analysis Begin
Processor Break

Start the first emulator:

Processor Go Pc

On the second emulator, pregsnter>. Note that the second emulator is now
running.

Enter a command for the program on the first emulator:
Memory Modify Bytes CMD_INPUT=z <Enter>

Display the trace on the first emulator:

181

Analysis Display both <Enter> -1 <Enter> 14 <Enter>

Display the trace on the second emulator:
Analysis Display both <Enter> -1 <Enter> 14 <Enter>

To break to the monitor on an analyzer trigger
signal

1 SelectConfig Trigger.

2 Use the arrow keys to move to the field labeled “Emulator” under the TRIG1
signal. Use theTab> key to change this field to an arrow pointing toward
“Emulator.”

Use the arrow keys to move to the field labeled “Analyzer” under the TRIG1
signal. Use theTab> key to change this field to an arrow pointing away from
“Analyzer.”

3 Specify the trigger conditions for the trace. (See Chapter 5).
4 SelectAnalysisBegin to start the trace.

5 SelectProcessofGo to start the program run.

The trigger signals and the analyzer trigger capabilities allow you to specify
hardware breakpoints. You can use the trigger specification to specify complex
sequences of address, data and status, then break the program to the monitor when
the sequence is found. This is useful when you want to examine memory locations
and registers after the trigger condition but before further program execution.

You can use a similar process to break to monitor when a BNC trigger or CMB
trigger is received.

182

Chapter 6: Making Coordinated Measurements
To break to the monitor on an analyzer trigger signal

Example The following example will cause execution to break to the monitor when your
program reaches address 5000.

Select:

Config Trigger

Use the arrow keys to move to the “Emulator” field under the TRIG1 signal.
<Tab> until this field displays an arrow pointing toward “Emulator.”

Use the arrow keys to move to the “Analyzer” field under the TRIG1 signal.
<Tab> until this field displays an arrow pointing away from “Analyzer.”

Specify the trigger condition by selecting:
Analysis Trace Modify

and using the arrow keys to move to the “Trigger on” field. Tayped press
<Enter>.

Use the arrow keys to move to the address field next @~ttabel. Ente6000and
press<Enter>.

Press<End><Enter> twiceto save the trigger specification.
To start the trace select:

Analysis Begin

To start the program run select:

Processor o

183

184

Configuring the Emulator

How to adapt the emulator to your system

185

Chapter 7: Configuring the Emulator

Each target system differs in the way it uses memory and memory mapped /O
devices, and configures the processor. During system development, your needs for
emulator resources may change as your target system design matures. You can
allocate emulator resources using PC Interface commands. This resource allocation
is called theemulator configurationYou change the emulator’s configuration with

the Config Map Modify form and the Config General form.

Menory Map Conf iguration

«tl+

HchABB . .Bcl1ff
HABBA . .Ad1ff =

iInterfield movement Ctr]l +» [Field editing TAB :Bcroll choices

Unmapped memory: Tupe By Attribute

Address Range Type Attribute

SR =R =P =L

ETATUS : M68A48—Running user program Emulation trace complete

Address range to be mapped. (ex. 18688..1fff)

The Config Map Modify Form

186

Chapter 7: Configuring the Emulator

General Emulation Configuration

Monitor type] Monitor address? [EELELEL]

Terminate monitor bus cycles? @ Monitor interrupt priority level?
Disable instruction’data caches? [[J] Disable memory management unit?
Is clock rate greater than Z5MHz? m Enable interrupts from target?

Enable breaks om writes to ROM? [Enable software breakpoints?

BEEA .

Restrict to real-time runs? [Enable CMB interaction?
Memory data access width? Initial stack pointer? IFFLa)
Initial program counter? ZJNNNEGE

«ti+!Interfield movement Ctrle+:Field editing TAB:Scroll choices [usnl

[ETATUS : Me8B48—Enulation re Ermulation trace halted
=e the tab key to select the tuype of monitor to be used. The foreground monitor

lshould be selected when using the MMU/caches or when interrupts must be serviced
hile the monitor is runming. For initial plug—in "none" may be useful.

The Config General Form

187

Chapter 7: Configuring the Emulator
Configuring and Mapping Memory

Configuring and Mapping Memory

Each target system allocates memory and 1/O as needed by the application. As the
system design matures, memory locations and requirements may change. For
example, the initial target system design may not have much memory. But a change
in application definition might need more program code, requiring more memory.
While the design is being changed, you can develop the program using emulation
memory to simulate target system memory. Later on, you can use target system
memory instead. You can even request that certain regions of emulator memory be
treated as read-only (even though emulator memory can, in fact, be written to),
causing a break to monitor on attempts to write to these memory regions. This is
useful if you know that the specified memory range will eventually be implemented
in target system ROM.

Since memory can be used in such a flexible way, you must specify to the emulator
which addresses correspond to target system memory, and which correspond to
emulator memory. That way, when the emulation processor attempts to read or
write memory, the emulator knows whether it should respond to the request, or pass
it on to the target system.

To ensure that timing of accesses to emulation memory are the same as accesses to
target system memory, you can lock termination of emulation memory cycles and
monitor bus cycles to the target sysfEAandTEA signals. If your target system
termination signals are not available, you can allow termination of the
emulation-access cycles to be done by signals within the emulator.

You specify how memory is going to be used by meansm@&raory mapA
memory map consists of one or manap termsEach map term indicates, for a
given range of addresses, whether it is target memory or emulator memory.

188

Chapter 7: Configuring the Emulator
Configuring and Mapping Memory

To assign memory map terms
1 SelectConfig MapM odify.
2 Use the arrow keys to move to one of the “Address Range” fields next to a term.

3 Type in an address range that has the lower and upper boundaries of the term you
want (<lower>..<upper>). The addresses must be aligned on 256-byte boundaries
(<lower> ends in 00 hex, and <upper> ends in ff hex).

4 Press<Enter>to move to the memory "Type” field for that term.

5 Tabto select a memory type as follows:

Type value Memory Assigned
eram Emulation RAM
erom Emulation ROM
tram Target System RAM
trom Target System ROM
grd Guarded memory

6 Pres<Enter> to move to the “Attribute” field for that term.

7 Tab to select an attribute as follows:

dp to indicate that this block is to reside in the special 4-Kbyte block of
dual-ported emulation memory on the probe.

lock indicates that accesses to emulation memory are terminated by target
systemTl'A andTEA signals instead of the internal termination signals of the
emulator.

tci asserts th&Cl line to the MC68040 for all addresses in this memory block,
indicating that accesses to this block should not be cached.

189

Chapter 7: Configuring the Emulator
Configuring and Mapping Memory

(Combine multiple attributes by separating them with commas, for example:
dp,lock.)

8 Repeat steps 2 through 7 for each address range you want to map (but no more than

7 address ranges).

Press<xEnd>, then<Enter> to exit the map and save your changes. RiEss>to
exit the map and discard your changes.

You need to specify the location and type of various memory regions used by your
programs and your target system. The emulator needs this information to:

» Orient buffers for data transactions with emulation memory and the target
system.

* Reserve emulation memory blocks.

» Set the type of memory blocks so that configuration items such as break on
write to ROM will operate correctly.

The MC68040 emulator has seven map terms. Your address specifications must
begin and end on 256-byte boundaries (256-byte resolution). To specify an address
beginning on a 256-byte boundary, enter an address ending in 00. To specify an
address ending on a 256-byte boundary, enter an address ending in ff. Because of
the way the emulation memory system is designed, the amount of memory used by
each map term corresponds to the nearest block size available, not the amount
specified by the address range. For example, if a block size is 128 Kbytes, and you
allocate 256 bytes of that block, all 128 Kbytes will be allocated, leaving 127.75
Kbytes as unusable memory.

There is one 4-Kbyte block of dual-ported emulation memory on the emulator
probe. (Dual-ported means that the emulation controller can access memory
locations without interfering with program execution). This block can be mapped
by specifying thelp attribute after the map address and memory type specification.
If you use the foreground monitor, the emulator creates a map term reserving this
block for the monitor code.

If you specify an address range less than 4 Kbytes witliptladtribute, all 4

Kbytes are allocated because that is the minimum block size for that memory. If
you specify a block size less than 4 Kbytes and the dual-port memory is unmapped,
the emulator uses that memory to more closely match the requested address range
to the block size.

190

Chapter 7: Configuring the Emulator
Configuring and Mapping Memory

There are also two memory sockets on the probe. This memory is not dual-ported,
the monitor is used to read and write these locations when you display or modify
memory. You can install 256-Kbyte, 1-Mbyte, or 4-Mbyte SRAMSs in various
configurations. The valid configurations are shown below.

Installation Memory slot 0** Memory slot 1** Blocks Available
1 256K 256K 4-64K, 2-128K
% 256K M 4-64K, 2-512K
3 M 256K 4-256K, 2-128K
4 1M 1M 4-256K, 2-512K
5 256K Empty 4-64K

6 M Empty 4-256K

7 4M 4M 4-1M, 2-2M

8 4M 1M 4-1M, 2-512K

9 4M 256K 4-1M, 2-128K
10 4M Empty 4-1M

* |Installation 2 is not recommended because it does not allocate blocks as well as Installation 3.

** Memory Slot 0 and Memory Slot 1 are marked on the probe board as BANK 0 and BANK 1. Their
locations are also shown in illustrations in the Installation and Service Chapter of this manual.

Your selection of wait states may be affected if you install 4M memory modules. See "To enable one wait
state" later in this chapter.

191

Chapter 7: Configuring the Emulator
Configuring and Mapping Memory

MEMORY SLOT O

FLYING LEAD

68040
EMULATOR
PROBE

MEMORY SLOT 1

TARGET SYST=M

PGA SOCKET

PIN A1

64783E04

Emulator Probe Memory Slots

For each configuration, the “Blocks Available” indicate the minimum amount of
memory that will be allocated if you specify a map term with that block size or less.
If you need to use emulation memory, you should examine your target system
design and install memory in the way that will maximize block usage. (See the
examples at the end of this section.)

If you specify thdock attribute, the emulator waits for the target sysiéxor

TEA signals to terminate an emulation memory cycle. This makes the bus cycle
length identical to that of your target system, so that timing will be the same. If
your target system does not rettih or TEA in the address range mapped to
emulation memory, don'’t use theek attribute, because the system will hang while
waiting for the targeTA or TEA signals. (See “To interlock emulator and target
termination signals for monitor cycles” for more information.)

If you don’t specify théock attribute when you map a memory block, the target
TA andTEA signals are ignored on accesses to that block.

If you specify thdci attribute, thél Cl (transfer cache inhibit) line is asserted for
accesses to that memory block. This prevents instructions or data from that memory
block from being loaded into the processor cache memory. If you need to disable
caching for all memory accesses, use the “Disable instruction/data caches?”
configuration item. See “To disable the processor cache memory” in this chapter.

192

Example

Chapter 7: Configuring the Emulator
Configuring and Mapping Memory

If you want to add a term that overlaps address ranges with an existing term, you
must either redefine or delete the existing term.

If you change the monitor type or monitor base address, the memory map is reset.
So, you should configure the emulator before you map memory. Otherwise, you
may need to reenter the map definition.

Suppose that you're using the emulator in-circuit, and that there is a 12-byte 1/0
port at 1c000 hex in your target system. You have ROM in your target system from
0 through ffff hex. Also, you want to use the dual-port emulation memory at 20000
hex:

1¢000..1cOff tram
0..0ffff trom
20000..20fff eram dp

Remember that yomustuse the background monitor if you want to use the
dual-port emulation memory.

The relationship between memory ranges and block sizes of memory is easie
understand by looking at an example. Suppose you have Installation 1 from th

table on the previous page. Then you enter the following map commands:

0..7fff eram
20000..3f000 eram
40000..4ffff eram
50000..500ff eram

If you haven't used the dual-port emulation RAM, the first map term that will fit is
assigned to that memory. In this example, that is the last term that you defined (the
range from 50000..500ff). The entire 4-Kbyte block is reserved though you
specified only a 256-byte range. Two 64-Kbyte blocks and one 128-Kbyte block
are used from the other emulation memory, leaving two 64-Kbyte blocks and one
128-Kbyte block. One of the 64-Kbyte blocks is used for the first map term, but 32
Kbytes of that block are unused and unavailable. The third term uses the other
64-Kbyte block. The second term uses part of the 128-Kbyte block, leaving the rest
unavailable.

The mapper’s resolution is independent of the block allocation. In the above
example, if you set the “Unmapped memory: Typejrab and your program
accessed 8000h, the emulator would do a guarded memory break.

193

Chapter 7: Configuring the Emulator
Configuring and Mapping Memory

To assign the memory map default

1 SelectConfig MapM odify to access the memory configuration.

2 Use the arrow keys (if necessary) to move to the field next to “Unmapped memory:
Type.”

3 Tabto select a memory type (and attribute, if desired) as follows:

Type, Attribute Memory assigned

tram Target system RAM

tram, tci Target system RAM with tci enabled
trom Target system ROM

trom, tci Target system ROM with tci enabled
grd Guarded memory space

4 PresxEnd>, then<Enter> to save your changes and exit the memory map. Press
<Esc>to discard your changes and exit the memory map.

The unmapped memory type/attribute term specifies all address ranges not
otherwise covered by existing memory map terms. This can save you time in
memory mapping. If you selectasdm or trom, you must also choose to include
or not include théci attribute.

» If you choose to include thei attribute, no data that is sent to unmapped
memory will be written into the caches.

» If you choose not to include the attribute, transactions that are sent to
unmapped memory may also be loaded into the instruction and/or data caches.

194

Chapter 7: Configuring the Emulator
Configuring and Mapping Memory

Often you will want to be notified when the processor accesses a nonexistent
memory location during a program run. Usedka (quarded) memory type to do
this. The emulator will break to monitor and display a message when a guarded
memory access OCCurs.

Example Suppose you're working in-circuit with a target system that has some peripherals
and ROM, but no RAM. Eventually, this system will have RAM in all other
address ranges. You might assign map terms for the peripherals and target ROM.
Then set the unmapped memory typardm.

To check the memory map

1 SelectConfig MapM odify to access the memory map.

2 When you're finished viewing the map, you can press eitBhad><Enter> to .
exit (if you made changes and want to save themdEec>(if you don’t want to

change the map).

195

Chapter 7: Configuring the Emulator
Configuring and Mapping Memory

To delete memory map terms

1 SelectConfig MapM odify to access the memory map.

2 Use the arrow keys to move to the “Address Range” field of the term you want to
delete.

3 Use the spacebar to wipe out the address range definition for that term. Then press
<Enter>.

4 Repeat steps 2 and 3 for all terms you want to delete.

5 PressEnd>, then<Enter> to exit the map and save your changes. RiEss>to
exit the map and discard your changes.

If you delete map terms that are between other terms, the other terms are
renumbered when you save the map. This eliminates gaps in the term numbering
sequence.

To reset the memory map

» SelectConfig MapReset.

This removes all memory map terms and resets the map. Make sure that you want
to reset the map beforehand. If you want to remove only one or two terms without
resetting the map, see the previous section.

196

Chapter 7: Configuring the Emulator
Configuring and Mapping Memory

To enable one wait state

1 SelectConfig General to access the emulator configuration.
2 Use the arrow keys to move to the field next to “Is clock rate greater than 25 MHz?”

3 Typey if your target system clock frequency is greater than 25 MHz. iyjpe
your target system clock frequency is at or below 25 MHz.

4 Regardless of your target system clock frequency ypgou have installed any
4-Mbyte, 25-ns memory modules in BANKO or BANK1 on the emulation probe.

5 Press<End>, then<Enter> to save your changes and exit the configuration. Press
<Esc>to discard your changes and exit the configuration.

When the clock speed of BCLK is above 25 MHz, the emulator requires one
state for all accesses to memory, including burst mode accesses. You add thi
state by selecting. Without this wait state, emulator operation will be erratic. N
wait states are required for memory accesses, including burst mode accesses, when
the clock rate of BCLK is at or below 25 MHz, unless you have installed 4-Mbyte,
25-ns memory modules in BANKO or BANK1 (or both) on the emulation probe.

The 25-ns memory modules need the additional wait state during accesses by the
emulation system.

When operating above 25 MHz, the target system is responsible for adding a wait
state to its accesses. The emulator will not attempt to add a wait state to target
accesses, other than to ignore cycle terminations until a wait state has passed. The
target system is responsible for making sure cycle terminations and data are valid
after the wait state.

197

Chapter 7: Configuring the Emulator
Configuring and Mapping Memory

Note

To enable the memory management unit

To turn on the MMU in the MC68040 emulation processor, gain access to the
general configuration form, change the monitor type to foreground (if not
foreground already), and change the Disable memory management unit?rield to

Once enabled, the MMU of the MC68040 can be set up by the operating system to
manage logical (virtual) memory in physical address space. The selection of a root
pointer and the value in the translation control register determine how the MMU
will manage memory. The MMU must be enabled by this configuration field

before the operating system can establish those control values.

Your target system will enable the MMU during program execution by using the
MDIS signal. The target system can disable the MMU even if it is enabled via the
configuration question.

A foreground monitor must be used when the MMU of the MC68040 is enabled. If
the background monitor is selected when you attempt to enable the MMU, a
message will advise you to select the foreground monitor first.

Make sure the foreground monitor is mapped to memory space that has a 1:1
translation and is not write protected. Refer to the end of this chapter for
instructions on how to map the foreground monitor to 1:1 address space when using
the MMU.

198

Examples

Chapter 7: Configuring the Emulator
Configuring and Mapping Memory

To enable the MC68040 MMU so that the operating system can set it up to manage
memory, perform the following:

Access the general configuration screen:

Config General

Use the arrow keys to move to the Monitor type: field and enter:

Tab (to selecforeground)

Use the arrow keys to move to the Disable memory management unit? field and
enter:

Tab (to selech)
To disable the MC68040 MMU, do the following:
Access the general configuration screen:

Config General

Use the arrow keys to move to the Disable memory management unit? field a
enter:

Tab (to selecy)

You can use the arrow keys to move to the Monitor type: field and select
foreground, background, or none, as desired.

199

Chapter 7: Configuring the Emulator
Using the Emulation Monitor

Using the Emulation Monitor

The emulation monitor is used to perform emulation functions such as display and
modification of target system memory, emulation memory that is not dual-ported,
and processor registers. You can choose either a foreground or background
monitor, and the base address at which the monitor resides. (See ti@oboegts

of Emulation and Analysisupplied with your product manuals for more

information on foreground and background monitors.)

If you initialize the emulator, then break to monitor, and then try to run the
processor, the run will fail because the processor’s stack pointer and program
counter aren't initialized. A configuration item allows you to set these values for
convenience so that the above sequence will work correctly.

The following table summarizes the implementation of the monitor configuration.

Background monitor Foreground monitor

Monitor address, Terminate monitor Monitor address—sets address block
bus cycles?, Monitor interrupt that will contain the monitor in dual-port
priority level —not available memory
Target system keep alive-set address Terminate monitor bus
from which to periodically read a byte cycles?—interlocks target system cycle
during background monitor operation termination signals to terminate
emulation accesses instead of using
internal emulation cycle termination
signals.
Monitor interrupt priority
level—allows lowering of interrupt
mask to this level during foreground
monitor execution
Target system keep alive-not
available

200

Chapter 7: Configuring the Emulator
Using the Emulation Monitor

What is the background monitor?

When you select the background monitor, the monitor program overlays processor
address space and doesn’t use any processor memory resources. The MMU and
processor caches are disabled, and dma cannot be performed. Also, when the
emulator is executing a routine in the background monitor, target system interrupts
are disabled (including level 7 interrupts). These conditions may not be tolerable to
some target system designs.

If you're using the background monitor, you can set a “keep-alive address” from
which the background monitor will periodically read a byte during monitor
operation. See “To set the background monitor keep-alive address,” later in this
chapter.

What is the foreground monitor?

If you select the foreground monitor, you can choose a default monitor that is
resident in the emulator, or you can design a custom foreground monitor that
supports special target system needs.

If you use a foreground monitor, you must specify the base address where th
monitor is loaded. This is done through the “Monitor address” configuration itef,
described later in this chapter. Since a foreground monitor must run in dual-ported
memory, changing the monitor address automatically resets the memory map so
that it has exactly one map term. This single map term maps the 4-Kbyte range of
addresses, beginning with the monitor base address you specified, to the 4-Kbyte
block of dual-ported memory in the emulator. You must then reenter any other map
terms you need.

Interrupts can be enabled and configured during foreground execution, which may
make the emulator more transparent in some applications. See “To set the
foreground monitor interrupt priority.”

A foreground monitor must be used when the MMU of the MC68040 is enabled,
when the caches of the MC68040 are enabled, when your target system does dma
activity, or when the target system performs bus arbitration.

201

Chapter 7: Configuring the Emulator
Using the Emulation Monitor

To select the emulation monitor

1 SelectConfig General to access the emulator configuration.
2 Use the arrow keys to move to the field to the right of “Monitor type.”

3 Tabto selecforeground if you want to use a foreground monitor (either the
default foreground monitor or a custom foreground monitor which you have built).
Selecthackground if you want to use the built-in background monitor. Select
noneif you want to use no monitor, see below.

4 Press<End>, then<Enter> to exit the configuration and save your changes. Press
<Esc>to discard your changes and exit the configuration.

When you select the foreground monitor, the emulator maps the 4-Kbyte block of
dual-port memory for exclusive use by the monitor. You can't use any portion this
4-Kbyte block for any other purpose because doing so will destroy the currently
loaded copy of the monitor.

When you select the foreground monitor, the memory map is reset because the map
is affected. Always select the monitor type before entering your memory map. The
processor is always reset when you change monitor types. The foreground monitor
can only reside in emulation memory.

Both monitors use the trace exception vector (located at offset 24 in the vector
table) to implement thBrocessoStep command. Therefore, you may need to
initialize this vector properly before using the step command. See the section “To
step the processor” in the chapter titled "Using the Emulator" for more information.

There are two types of foreground monitors. One is resident in the emulator, and is
automatically loaded whenever the processor exits the emulation reset state. If this
monitor doesn’t meet your needs, you can modify the monitor source code
(supplied with the emulator) and load it using ¥hemoryL oad command. See

“To load a program” in the chapter titled "Using the Emulator" for more

information.

Selectingnone specifies that no monitor will be used. This option is useful when
you are first connecting the emulator to a target system (refer to the chapter on
plugging the emulator into a target system). Sometimes the task of connecting an
emulator to a target system is complicated by characteristics of the emulation

202

Chapter 7: Configuring the Emulator
Using the Emulation Monitor

monitor. For example, foreground monitor bus cycles are visible to the target
system. By selecting "none", you eliminate the question "am | having trouble
connecting to my target system because of something the monitor is doing?"

When you choose "none", you will be able to run the emulator from reset (if you
previously loaded a program), and you will be able to take a trace with the analyzer
to see what activity is being executed by your emulator. You will not be able to use
any of the other emulator capabilities and features (such as loading a program or
displaying memory). When your system is running successfully with the "none"
selection, then choose one of the other monitor options to see if your target system
will operate with the emulation monitor.

If you have trouble with emulation monitor functions, you can reload the monitor.
Whenever the processor transitions out of the emulator reset state, the current
monitor (background, default foreground, or custom foreground) is (re)loaded.
When you load a configuration file, you will have to reload your custom
foreground monitor.

More information on emulation monitors is given in the bGokcepts of
Emulation and Analysithat was supplied with your product manuals.

203

Chapter 7: Configuring the Emulator
Using the Emulation Monitor

To set the monitor base address

1 SelectConfig General to access the emulator configuration.
2 Use the arrow keys to move the cursor to the field next to “Monitor address.”
3 Type in a hexadecimal address on a 4-Kbyte boundary (XXXXX000h).

4 Pres<End>, then<Enter> to exit the configuration and save your changes. Press

<Esc>to discard your changes and exit the configuration.

As indicated earlier in this chapter (see “Emulation Monitor”), when you use a
background monitor, this configuration item is not available. If you use a
foreground monitor, changing this configuration item automatically resets the
memory map, and creates a single map term which maps the monitor’'s address
range to the 4-Kbyte block of dual-ported memory. You cannot delete or alter this
map term by using th@onfig MapM odify command. Instead, you must change

the monitor configuration by using the “Monitor type,” “Monitor address,” and
“Terminate monitor bus cycles?” configuration items.

If the memory management feature of the MC68040 emulator is enabled, be sure
the foreground monitor is mapped in a range that is translated 1:1, and it is not
write protected. Refer to the end of this chapter for instructions on how to map the
foreground monitor to appropriate address space.

204

Chapter 7: Configuring the Emulator
Using the Emulation Monitor

To interlock emulator and target cycle
termination signals for monitor cycles

SelectConfig General to access the emulator configuration.

Use the arrow keys to move the cursor to the field to the right of the question
“Terminate monitor bus cycles?”

Typen if you want to interlock emulator and target system cycle termination
signals for monitor accesses. Typi you want to terminate monitor accesses with
only the emulator-generated signals.

Press<xEnd>, then<Enter> to exit the configuration and save your changes. Press
<Esc>to exit the configuration and discard your changes.

When you enable interlocking, emulation monitor cycles are terminated by the
target systenfA or TEA signals. Otherwise, the emulator-generated signals
terminate the cycles.

This configuration item is available to the foreground monitor but not the
background monitor. This configuration item affects the map term defined for the
foreground monitor.

If you enable the interlock, and the foreground monitor is in an address range where
the target system does not rettlivh or TEA, the emulator will stop functioning.

Use theProcessoResetHold command to reset the processor. Then disable the
interlock.

If you disable the interlock, the targeA and TEA signals will be ignored during
monitor accesses. This is useful in ranges wheréArend/orTEA signals are not
available from the target system. The danger of this option is that the emulator may
become out of sync with the target system if you do not enable the interlock in
ranges where the target system supgleand/orTEA.

Bus cycles will be visible to the target system during foreground monitor operation.
If interlocking is disabled, these cycles may cause erratic system operation if the
target system is not expecting them.

205

Chapter 7: Configuring the Emulator
Using the Emulation Monitor

Example

To set foreground monitor interrupt priority

1 SelectConfig General to access the emulator configuration.

2 Make sure that the field next to “Monitor type?” say®ground. If not, choose

the monitor type first. (You cannot set monitor interrupt priority with the
background monitor.)

3 Use the arrow keys to move to the field next to the text “Monitor interrupt priority

level.”

4 Type in a priority level in the range 0..7.

5 PressEnd>, then<Enter> to exit the configuration and save your changes. Press

<Esc>to exit the configuration and discard your changes.

During background monitor execution, interrupts are always disabled. This may
cause problems for some target systems, especially those for real-time control
where interrupt servicing must be done immediately.

To solve this problem, you can select the foreground monitor. Then set the
interrupt priority level to one that allows your target system to function correctly,
yet avoids excessive interrupt processing.

At monitor entry, if the processor’s interrupt priority level was greater than the
value set by this configuration item, the monitor uses the previous priority level.
Otherwise, the priority is lowered to the level you specify here.

The foreground monitor only lowers the interrupt priority to the level you specify
when it is not executing critical code. When it is executing critical code, such as
monitor entry, all interrupts are disabled.

Target system interrupts are blocked if you set disable target system interrupts. See
“To enable target system interrupts.”

The emulator is reset when you change the setting of this configuration item.

Suppose your target system has a disk device driver that uses interrupt level 5, and
the service routine must be run to prevent disk drive damage. To allow interrupts of

206

Chapter 7: Configuring the Emulator
Using the Emulation Monitor

higher priority than level 4 to be serviced during foreground monitor execution, set
this configuration item td.

Example

To set the background monitor keep-alive
address

SelectConfig General to access the emulator configuration.

Make sure that the field next to “Monitor type?” shgskground. If not, choose
the monitor type first. (You cannot set the monitor keep-alive address with the
foreground monitor.)

Use the arrow keys to move to the field next to the text “Target system keep al

To enable the target system keep-alive function, type in a hex address with op
function code. To disable the function, tygisabled

Press<xEnd>, then<Enter> to exit the configuration and save your changes. Press
<Esc>to exit the configuration and discard your changes.

Some target systems need to have memory locations read periodically in order to
work properly. For example, your target system may have a watchdog timer that
will time out if a specific address isn’t read periodically.

In this situation, you set the “Target system keep alive” configuration item to the
address that must be accessed. Then, when the emulator is in the background
monitor, it will periodically read a byte from the specified address location.

To select the background monitor and have it periodically read a byte from address
ffff hex in user space, sele€bnfig General and enter the address 0000ffff@u in
the “Target system keep alive” field.

207

Chapter 7: Configuring the Emulator
Using the Emulation Monitor

To preset the interrupt stack pointer and program
counter

SelectConfig General to enter the configuration screen.
Use the arrow keys to move to the field next to “Initial stack pointer.”

Type in an even hexadecimal address value to be used for the initial value of the
ISP (Interrupt stack pointer). This value should correspond to the value loaded at
memory address 0 of your vector table. PrdSster> to accept the value.

Use the arrow keys to move to the field next to “Initial program counter.”

Type in an even hexadecimal address value to be used for the initial value of the PC
(Program Counter). This value should correspond to the value loaded at memory
address 4 of your vector table. PreEsiter> to accept the value.

Press<xEnd>, then<Enter> to save your changes and exit the configuration. Press
<Esc>to discard your changes and exit the configuration.

Normally, if you run the emulator from reset, the processor fetches the values at
offsets 0 and 4 from the vector table, and loads these values into the interrupt stack
pointer and program counter registers. It then begins running from the program
counter address value. (You run from reset by entering the conifrecessoGo

Reset.)

However, if you reset the emulatér¢cessoResetHold), break to the monitor,

and then run the emulator, the stack pointer and program counter values are not
read from these locations. This configuration item allows you to specify their initial
values.

These configuration items are provided as a convenience feature to initialize the
stack pointer and program counter to predefined values when the emulator enters
the monitor after a reset. This allows you to reset, break, and then run as if you had
done a run from reset. (You can accomplish the same thing by usiRggtsters

Modify command to set the PC and ISP values while in the monitor.)

208

Chapter 7: Configuring the Emulator
Using the Emulation Monitor

Normally you will set the interrupt stack pointer to the value contained at offset 0
of your vector table, and the program counter to the value contained at offset 4 in
your vector table.

Example Assume that the memory range 7000..7fff is mappedaass and reserved as stack
space in your design. To set the interrupt stack pointer to 7ff0 and the initial
program counter to 400h, select:

Config General 7ff0 <Enter> 400 <Enter> <End> <Enter>
If you now use th@rocessoResetHold command to reset the processor, followed

by aProcessoBreak command to break to the monitor, the isp is set to 7ff0 and
the pc is set to 400.

209

Chapter 7: Configuring the Emulator
Using the Emulation Monitor

To enable break on write to ROM

1 SelectConfig General to access the emulator configuration.

2 Use the arrow keys to move to the field next to the question “Enable breaks on
writes to ROM?”

3 Typey if you want the emulator to break to the monitor when a write to ROM is
detected. Typa if you want to ignore these events.

4 Press<End>, then<Enter> to exit the configuration and save your changes. Press
<Esc>to exit the configuration and discard your changes.

Typically, attempts to write to ROM (mappedeasm or trom) will cause a

hardware break. But you can choose to disable hardware breakpoints. For example,
you might want to disable the break that would occur on a write to ROM because
you need to see the next few bus cycles after the write in the trace list.

The memory in the emulation or target system will be changed by processor writes,
even if that memory has been mapped as ROM.

210

Chapter 7: Configuring the Emulator
Setting Other Configuration Items

Setting Other Configuration Items

The emulator allows you to restrict commands to those that won’t temporarily
interrupt target execution to perform monitor functions. This is important for some
systems that require non-stop real-time code execution.

Also, you can disable the processor cache memories. The emulation-bus analyzer
can't see instructions (or data) that are fetched from cache. This can make trace
displays difficult to interpret. When you disable the caches, all instructions and data
are fetched from memory, and therefore will appear on the bus where the analyzer
can see them.

You can block target system interrupts from the emulation processor. This can help
you troubleshoot problems with spurious interrupts or allow you to delay testing of
interrupt service routines.

You can enable CMB interaction. This allows you to run multiple emulators in a
synchronized environment.

To restrict to real-time runs

SelectConfig General to access the emulator configuration.

Use the arrow keys to move the cursor to the field next to the question “Restrict to
real-time runs?”

Typey if you want to restrict the emulator command set to those that won’t
interrupt real-time runs. Typeif you want to use the full emulator command set.

Press<xEnd>, then<Enter> to exit the configuration and save your changes. Press
<Esc>to exit the configuration and discard your changes.

The emulator uses the emulation monitor program to implement some features,
such as register displays. When the processor executes the monitor, it is not

211

Chapter 7: Configuring the Emulator
Setting Other Configuration Items

executing your target system program. This may cause problems in target systems
that need real-time program execution.

If you enable this configuration item, the emulator will stop running user code only
with theProcessoReset ProcessoBreak,ProcessoGo andProcessoStep
commands. Commands suchRaegister that require a break to monitor are

rejected. Also, th& emoryDisplay andviemoryM odify commands will be

rejected if the address argument specifies standard emulation memory (not
dual-ported) or target system memory.

While this configuration item affects which commands will be accepted, it does not
affect hardware breakpoints such as write to ROM, break on analyzer trigger or
guarded memory access breaks. It also doesn't affect the emulator’s response to
software breakpoints.

When you disable this configuration item, all commands are accepted.

To enable the processor cache memories

SelectConfig General to access the emulator configuration.

Use the arrow keys to move to the field next to the question “Disable
instruction/data caches?”

Typen if you don’t want the emulator to disable the instruction and data caches.
Typey if you want the emulator to disable the instruction and data caches.

Press<xEnd>, then<Enter> to exit the configuration and save your changes. Press
<Esc>to exit the configuration and discard your changes.

The MC68040 processor has a cache that stores the most recently used instructions
and another cache for recently used data.

The cache memories increase processor performance, but the emulation-bus
analyzer can’t see processor accesses to the internal cache because they do not
appear on the bus. This may cause confusing trace displays or failure to trigger the
analyzer, especially if the code is a small loop where all the instructions and
operands fit into cache and registers.

212

Chapter 7: Configuring the Emulator
Setting Other Configuration Items

When you disable the caches, the emulation processor will always access external
memory. Then the analyzer will see all bus cycles, which will improve the trace
list. Processor performance will be reduced.

When you are concerned about measuring processor performance, enable the
caches. Note that setting this configuration itey does not enable the caches.
The target system must deasseriGB8S line, and the target program must set the
cache-control register enable bits of the CACR to enable the caches. If you are
making analyzer measurements with the caches enabled, you may need to
experiment to find suitable trigger combinations.

When you set this configuration itemytothe emulator asserts tG®IS line to
disable the caches.

If you need to disable caching only for accesses to a specific memory block, use the
tci memory map attribute. This allows you to capture analysis information for
specific memory ranges without dramatically affecting overall system performance.
See “To assign memory map terms” in this chapter.

To enable target system interrupts

SelectConfig General to access the emulator configuration.

Use the arrow keys to move to the field next to the question “Enable interrupts from
target?”

Typey if you want the target system interrupt signals to reach the emulation
processor. Type if you want to block the target system interrupt signals.

Press<xEnd>, then<Enter> to exit the form and save your changes. Pr&se>to
discard your changes and exit the configuration.

You may want to disable target system interrupts if your target system interrupt
logic doesn’t work correctly or isn't finished, or you may want to disable these
interrupts if the service routines and vectors aren’t assigned. You can enable the
interrupts when you're ready to test the interrupt handling.

213

Chapter 7: Configuring the Emulator
Setting Other Configuration Items

Target system interrupts are always disabled during background monitor execution.
The foreground monitor also disables interrupts during certain critical routines,
such as monitor exit and entry.

You can enable interrupts during the remainder of foreground execution. See “To
set the foreground monitor interrupt priority.”

To enable CMB interaction

SelectConfig General to access the emulator configuration.

Use the arrow keys to move to the field next to the question “Enable CMB
interaction?”

Typey if you want this emulator to respond to synchronized runs and breaks via
the CMB. Typen if you don’t want this emulator to participate in coordinated
measurements.

Press<xEnd>, then<Enter> to save your changes and exit the configuration. Press
<Esc>to discard your changes and exit the configuration.

The Coordinated Measurement Bus (CMB) allows you to use multiple emulators in
a synchronized measurement. See Chapter 6 for more information.

214

Chapter 7: Configuring the Emulator
Setting Other Configuration Items

To set the memory access size

1 SelectConfig General to access the emulator configuration.
2 Use the arrow keys to move to the field labeled “Memory data access width.”

3 Tabto select the instruction type used by the monitor to access memory as follows:

* To have the emulator use the optimum data type for memory accesses, select
don't care.

* To have the monitor use byte data type for memory accessespgtdact

* To have the monitor use word data type for memory accessesyseidst

* To have the monitor use long word data type for memory accesseslogjact

4 PresxEnd>, then<Enter> to save your changes and exit the configuration. Press
<Esc>to discard your changes and exit the configuration.

The access size you select affects your interaction with memory displays,
modifications, and searches. It determines whether the emulator interprets data
values as bytes, words, or long words. Use this to set the size you need initially. If
you use the size parameters with individual commands, the global display mode
will be changed.

The access size is different. When you display or modify target memory or
emulation memory that is not dual-port, the emulator uses the monitor to read or
write target memory locations. The access size determines whether the emulator
uses byte, word, or longword sizing for the memory accesses.

If set todon't care, the size you include in your command is used for the access. It
will temporarily override thelon't care for the access. If set byte, word, or

long, the size selected in your command will have no effect on the actual memory
access; it will be what you specified for the memory access size.

If you choosévyte, word, orlong for your access size, only that size will be used.

In cases where access is made to misaligned addresses or memory content having
an insufficient number of bytes, the emulator will perform read-modify-write
transactions for the access, using the size you specify.

215

Chapter 7: Configuring the Emulator
Configuring the Triggers

Configuring the Triggers

The HP 64700 contains two internal lines, TRIG1 and TRIG2, over which trigger
signals can pass from the emulator or analyzer to other HP 64700s on the
Coordinated Measurement Bus (CMB) or other instruments connected to the BNC
connector.

You can configure the internal lines to make connections between the emulator,
analyzer, any external state or timing analyzer, CMB TRIGGER line, or BNC
connector. Measurements that depend on these connections arantabetive
measurementsr coordinated measurementee Chapter 6, “Making Coordinated
Measurements” for more coordinated measurement information.

This section shows you how to:

» Drive analyzer trigger signals to the CMB or BNC.
» Break emulator execution on trigger signals.

* Arm analyzers on trigger signals.

» Drive and receive CMB or BNC trigger signals at the same time.

To drive analyzer trigger signals to the CMB or
BNC

Select theConfig Trigger command.

Move the cursor to the TRIG1 BNC field and use<ab> key to select the
arrow pointing towards BNC.

Move the cursor to the TRIG1 CMB field and use<fiab> key to select the
arrow pointing towards CMB.

Move the cursor to the TRIG1 Analyzer field and use<thab> key to select the
arrow pointing towards the internal line (away from “Analyzer”).

216

Chapter 7: Configuring the Emulator
Configuring the Triggers

5 Press th&End> key and then press tké&nter> key to save the trigger
configuration.

The preceding steps assume you are using TRIG1. Substitute TRIG2 in each step to
use TRIG2.

Example The trigger configuration screen below shows the emulation-bus analyzer driving
both the CMB and BNC trigger signals over the TRIGL1 line.

Cross Trigger Configuratiom
TRIG1 TRIGZ
BNC (S BNC
CMB CMB
Enulator ATOEel Emulator
fAnalyzer fmalyzer
«Tl+ Interfield movement Ctrl ¢+ [Field editing TAB :Bcroll choices

[STATUS: M6BA4A—Emulation re Ermulation trace halted

The internal analyzer may drive () or ignore the
TRIG1 and TRIGZ =signals.

217

Chapter 7: Configuring the Emulator
Configuring the Triggers

To break emulator execution on trigger signals

1 Select theConfig Trigger command.

2 Move the cursor to the Emulator field and usesthab> key to select the arrow
pointing towards Emulator.

3 Move the cursor to the field associated with the source of the trigger signal (on the
same internal line) and use #&i€ab> key to select the arrow pointing towards the
internal line.

4 Press th&End> key and then press tk&nter> key to save the trigger
configuration.

You can break user program execution into the monitor when a trigger signal is
received from the emulation-bus analyzer, the CMB trigger line, or the BNC
connector.

After the break occurs, the analyzer will stop driving the internal signal line that
caused the break. Therefore, if TRIG1 is used both to break and to drive the CMB
TRIGGER (for example), CMB TRIGGER will go true when the trigger is found
and then will go false after the emulator breaks. However, if TRIG1 is used to
cause the break and TRIG2 is used to drive the CMB TRIGGER, CMB TRIGGER
will stay true after the trigger until the trace is halted or until the next trace starts.

218

Chapter 7: Configuring the Emulator
Configuring the Triggers

Example The trigger configuration screen below shows the emulation-bus analyzer trigger
signal being used to break emulator execution over the TRIG1 internal line and the
CMB TRIGGER signal being used to break emulator execution over the TRIG2

internal line.
Cross Trigger Configuratiom
TRIG1 TRIGZ
i, olli gnore | BNC
oLl gnore | CMB
Enulator Emulator
fAnalyzer fmalyzer
«Tl+ Interfield movement Ctrl ¢+ [Field editing TAB :Bcroll choices

STATUS : M6BA4A—Emulation reset Ermulation trace halted
The emulator mauy either receive (<< J or ignore the TRIG1 and TRIGZ control

lzignals. Upon receipt of TRIG1 or TRIGZ, the emulator will break to background

onitor operation.

219

Chapter 7: Configuring the Emulator
Configuring the Triggers

Example

To arm analyzers on trigger signals

Select theConfig Trigger command.

Move the cursor to the Analyzer field and use<fiab> key to select the arrow
pointing towards the analyzer.

Move the cursor to the field associated with the source of the trigger signal (on the
same internal line) and use &€ab> key to select the arrow pointing towards the
internal line.

Press <End> and then <Enter> to save the trigger configuration.

You can arm (that is, enable) the emulation-bus analyzer when a trigger signal is
received from the CMB trigger line, the BNC connector, or the other analyzer’'s
trigger output signal.

The trigger configuration screen below shows the emulation-bus analyzer being
armed by a trigger signal from the BNC connector over the TRIG1 internal line.
Cross Trigger Configuratiom
TRIG1 TRIGZ
ENC BNC
2 i gnore | CHB
Enulator ATOEel Emulator
Analyzer fmalyzer
IInterfield movement Ctrl ¢+ [Field editing TAB :Bcroll choices

STATUS : M6BA4A—Emulation reset
The emulator may either receive ({{——— J or ignore the TRIG1 and TRIGZ control
Upon receipt of TRIGL or TRIGZ, the emulator will break to background
onitor operation.

Ermulation trace halted

220

Chapter 7: Configuring the Emulator
Configuring the Triggers

Example

To drive and receive CMB or BNC trigger signals
at the same time

Select theConfig Trigger command.

Move the cursor to the CMB or BNC field and use<fiab> key to select the
double-headed arrow pointing both towards CMB or BNC and the internal line.

Move the cursor to the other fields (on the same internal line) and uskahe
key to make the desired selections.

Press<xEnd> and therxEnter> to save the trigger configuration.

The CMB or BNC TRIGGER signals may be driven by the analyzer trigger
outputs, received to break the emulator or arm the analyzer, or both.

The trigger configuration screen on the next page shows the emulation-bus al
trigger output and the CMB trigger line being used to break emulator execution
over the TRIG1 internal line; it also shows the emulation-bus analyzer trigger
driving the CMB TRIGGER line over the TRIG1 internal line.

221

Chapter 7: Configuring the Emulator

Configuring the Triggers
Cross Trigger Configuratiom
TRIG1 TRIGZ
ol i gnore | - Wi gnore |
[, 1< ——— | cME Il
Emulator Emulator EETeE
fmalyzer fmalyzer [FTTE
«ti+ Interfield movement Ctr]l +» [Field editing TAB :Bcroll choices

BTATUS : Me8B48—Enulation reset Ermulation trace halted

The internal analyzer may drive (y receive (<4<) or ignore the
TRIG1 and TRIGZ sigmals.

222

Chapter 7: Configuring the Emulator
Providing MMU Address Translations for the Foreground Monitor

Providing MMU Address Translations
for the Foreground Monitor

When using the memory management unit (MMU) of the MC68040, the target
system must provide correct address translations for the foreground monitor. To
ensure correct address translations, you will need to understand your target
system’s memory map and MMU address translation structure. You may need to
modify your mapping scheme or some of its mapping protections. If you do not
obtain correct address translation for the foreground monitor, any attempt to break
into the monitor after the MMU has been enabled may result in a target system bus
error or undefined execution.

The foreground monitor will reside in the 4-Kbyte block of dual-port emulation
memory. The dual-port memory can be mapped to begin on any 4-Kbyte address

boundary. Simply specify an address ending in 000h when you answer the monitor
address question when you set up the emulation configuration.

In order for the monitor to operate after the MMU is turned on, the target syste
must provide 1:1 address translation (logical address = physical address) for t
block of memory occupied by the monitor. For example, if the monitor code
begins at logical address 0ffffL000h, then the MMU must translate that address to
physical address 0ffff1000h, logical address 0ffff1004h to physical address
0ffffL004h, etc.

Do not write protect the address range occupied by the foreground monitor.

There are two ways to provide the proper address translation for the memory space
occupied by the foreground monitor:

e Locate the foreground monitor in a block of memory that is transparently
translated via ITTx and DTTx transparent translation registers (TTRs). The
monitor contains both code and data so two TTRs are needed to provide
translations: one for instructions, and the other for data. When the MMU
processes translations, it first compares the logical address with the parameters
of the TTRs. Ifit finds a match, the MMU uses the logical address as the
physical address for the access (obtaining the needed 1:1 translation).

The minimum block size that can be transparently translated by the TTRs is 16
Mbytes. If your target system already sets up one pair of data and instruction
TTRs for supervisor, or both supervisor and user, access and no write

223

Chapter 7: Configuring the Emulator
Providing MMU Address Translations for the Foreground Monitor

protection, then you may be able to find an unused 4-Kbyte block within this
16-Mbyte range where the monitor can reside.

If your target system does not use a pair of TTRs, then you may want to
modify your MMU boot code to configure an instruction and data TTR
specifically for the monitor.

Example This example shows how to modify boot code to use a pair of TTRs. Assume
your target system does not access any physical addresses in the 16-Mbyte
range 02000000..02ffffffh, and DTTO/ITTO are unused. By locating the
monitor at address 02000000 and adding the following code fragment to your
boot code, you should be able to break into the monitor while the MMU is
turned on:

* configure ITTO/DTTO for emulation monitor
MOVE.L #$0200C000,DO

MOVEC DO,ITTO

MOVEC DO,DTTO

Without these transparent translations for the monitor, the MMU will probably
generate an access fault when you attempt to break into the monitor. The
access fault would occur because addresses in the 02000000 range would have
no valid translations (they would be on a non-resident page).

If you cannot modify your boot code, you may be able to use an execution
breakpoint to break into the monitor before the MMU is enabled and use the
monitor to configure the TTRs. Do this only as a last resort because the
MC68040 processor automatically disables all TTRs whenever an emulation or
target reset occurs.

» Locate the monitor within a page that is controlled by the MMU address
translation tables; one that is always resident, writeable, supervisor accessible,
and translated 1:1. The monitor occupies one 4-Kbyte page of emulation
memory. It will be stored in the 4-Kbyte range of the dual-port memory.

224

Chapter 7: Configuring the Emulator
Providing MMU Address Translations for the Foreground Monitor

Locating the Foreground Monitor using the MMU
Address Translation Tables

Locate the foreground monitor at a specific page address and add the proper
address translation for this page in your supervisor address translation tables. The
minimum page size is 4 Kbytes so the monitor only requires a single translation.
The page that contains the foreground monitor must always be resident, translated
1:1 (logical address = physical address), and never be write protected.

The most direct way to do this is to modify the address translation tables in your
source code, rebuild your executable file, and download the executable into RAM,

or reprogram the executable into ROM. For systems that use an operating system
to manage dynamic translation tables in RAM, the page allocated to the monitor
must not be allowed to be swapped out by the operating system. This may require
that the page selected for the monitor reside in unused space within the operating
system (assuming the operating system is translated 1:1). The easiest way to create
unused space is to globally define an 8-Kbyte array of data that is never refer
by your software. After rebuilding your operating system software, refer to the
linker symbol map file to determine the address range of this array. Use the |
address that resides on a 4-Kbyte boundary within this range as the starting a
for the monitor.

As a last resort, if your target system software cannot be rebuilt, you can use the
emulator to modify your translation tables directly.

The emulator provides a command to display individual address translations in
detail, including address, value, and mnemonic information about each descriptor
from the translation tables. You may be able to provide the proper address
translation for the monitor by simply modifying a single descriptor (long word) to
convert an invalid page into a resident page.

If the translation tables are located in ROM, you will need to copy them into
emulation memory before you attempt to modify them. This is done by storing all
or part of your ROM to a file, and then mapping emulation memory over the ROM
address range and reloading the file.

225

226

Solving Problems

What to do when the emulator doesn’t behave as expected

227

Chapter 8: Solving Problems
If the emulator appears to be malfunctioning

Sometime during your use of the emulator, you'll encounter a problem that isn’t
adequately explained by an error message or obvious target system symptoms. This
chapter explains how to solve some of these more complex problems.

If the emulator appears to be malfunctioning

Check to make sure that the cables connecting the Emulation Control Board to the
Emulation Probe are connected correctly. Refer to the Installation and Service
chapter in this manual for details.

Run the performance verification procedure as described in the Installation and
Service Chapter of this manual. If the emulator fails this test, contact your
Hewlett-Packard representative.

If the emulator passes the performance verification procedure, look for other
reasons for the problem. Performance Verification is a thorough test, but it cannot
find every hardware failure in the emulator. Itis a good indication that the
emulator is functioning correctly, but if you are still convinced the emulator is
malfunctioning, contact your local Hewlett-Packard representative.

If the trace listing opcode column contains only
the words "dma long write (retry)" repeatedly

Check to see if the internal ribbon cable that connects the last sixteen channels of
the 80-channel internal analyzer to the HP 64783 emulator control board is missing.
If it is, locate the supplied ribbon cable and connect one end to the slot in the
analyzer board and the other end to the slot in the 68040 control board. Refer to the
Installation and Service Chapter in this manual to see the proper location of this
cable.

228

Chapter 8: Solving Problems
If the analyzer fails to trigger on a program address

If the analyzer fails to trigger on a program
address

Check to make sure that the program address is a long-word address (an address
ending in 0, 4, 8, or C hex). The MC68040 fetches instructions on long-word
addresses. Other instruction addresses never appear on the processor bus, and
therefore are never seen by the analyzer. Modify the trigger address so that the two
least significant binary digits of your trigger address are zeroes. For example, to
trigger a trace on address 2316H, specify your trigger to occur on address 2314H.
Note that this only applies to instruction fetches; data reads and writes are made
directly to the destination address, regardless of whether it is a long-word address
or not.

If the analyzer triggers on a program address
when it should not

Check to see if the analyzer is triggering on an instruction prefetch. The analy|
cannot distinguish between prefetch and execution because the processor do

provide that information. Usually your actual trigger address is within 16 words of
the address where trigger is occurring.

Try to pad the program code with NOP instructions to move the trigger address
away from the other code so that it won't be prefetched until it is time to trigger.

You may be able to insert a write instruction to a meaningless variable in your code
immediately following the trigger address. Then you can trigger on a write to the
address of the variable. Write transactions never appear in instruction prefetches.

229

Chapter 8: Solving Problems
If trace disassembly appears to be partially incorrect

If trace disassembly appears to be partially
incorrect

Check to see if the analyzer began disassembly of the trace on a long-word
boundary but the instruction started on the low word within the long word. This

will make disassembly incorrect. Refer to the paragraph titled "To display the trace
list" in the "Using the Analyzer" chapter.

If the trace list seems correct for a few states after disassembly starts, and then it
seems incorrect, restart disassembly of the trace at the low word where disassembly
first becomes incorrect. Refer to the paragraph titled "To display the trace list" in
the "Using the Analyzer" chapter.

230

Chapter 8: Solving Problems
If there are unexplained states in the trace list

If there are unexplained states in the trace list

[J Are you sure that the sequence, storage and trigger specifications are set up to
exclude the states that you don't need?

[J Try using the “Start” and “Operand” fields in tAaalysisDisplay form to inform
the dequeuer which operand state belongs with the first instruction state.

[J Try using thdow word option to theAnalysisDisplay command to begin
disassembly from the low word of the starting state, instead of the high word.

[J Check to see if instruction or operand accesses in the range covered by the trace
could be filled from cache memory. If so, these cycles won't appear in the trace list,
which will confuse the disassembler. Either disable the cache memory entirely or
disable caching for those address ranges by addirg tfieansfer cache inhibit)
attribute to those ranges in the memory map. (See the chapter titled, "Configuring
the Emulator.”)

If the analyzer won't trigger

L] Instruction fetches from cache memory are not visible to the analyzer. You can
disable the cache while using the analyzer usin@tmdig General command.
Reenable the cache to improve performance when you're finished using the
analyzer. See the chapter titled "Configuring the Emulator" for more information
on disabling the cache.

231

Chapter 8: Solving Problems
If the analyzer fails to trigger on a program label add ress

If the analyzer fails to trigger on a program label
address

In your trace pattern, instead of specifying the address alone, preced8& (ipr
example~3&handler:<address symbol} to mask off the lower two bits of the
address. This will cause the analyzer to trigger on any reference to the longword
containing the desired symbol.

If you see multiple guarded memory accesses

Check the stack pointer value. If it points to guarded memory, you will see multiple
guarded memory accesses. Reset the emulator and set the stack pointer to a correct
value.

If you suspect that the emulator is broken

Shut off power to the target system and then the emulator.
Disconnect the emulator from the target system.

Connect the emulator to the demo board. Also connect the power cable from the
emulator to the demo board and connect the reset flying lead. (See the chapter titled
"Installation and Service.")

Apply power to the emulator.
Start the PC Interface software. (See chapter 1.)

SelectSystemTerminal.

232

Chapter 8: Solving Problems
If you have trouble mapping memory

7 Typetcf -e to set the analyzer to easy configuration (required for performance
verification).

8 Typepv 1to run performance verification.

If either the emulator or analyzer fail the performance verification, check the
installation of those modules. (See the chapter titled "Configuring the Emulator.")
If the installation is correct, contact your local HP Sales and Service office for
assistance.

If you have trouble mapping memory

[J The emulator uses a best fit algorithm to assign memory blocks to map requests.
Since the memory block sizes available depend on the SRAM installations and the
use of the dual-port memory, it is possible that a 256-byte map request may use 512
Kbytes. (The map term will be only 256 bytes.) Most systems won't have such
differences between memory block size requirements and available memory.
However, certain SRAM installations will aggravate the problem.

[J Use of the dual-port memory is controlled first by monitor selection and next b
explicit selection of a dual-port term in the map. If you choose a foreground
monitor, the dual-port memory block is reserved for that purpose. If you choose a
background monitor, and don’t explicitly map a term withdpettribute, the
dual-port memory may be used to satisfy any map request. For example, if you
request a 256-byte map term and this memory block is available, it will be used to
satisfy the request because it is closest to the needed size. Or, if you request a term
that is slightly larger than another available block, the dual-port memory will be
used with another map term to satisfy the request. (For example, a 260-Kbyte
request may use one 256-Kbyte block and the 4-Kbyte dual-port memory.)

See the section “Memory Mapping” in the chapter titled "Configuring the
Emulator" for more information on memory allocation.

233

Chapter 8: Solving Problems
If emulation memory behavior is erratic

If emulation memory behavior is erratic

[J Check to see if you have installed HP 64171A or HP 64171B memory modules on

the emulation probe board. These memory modules are too slow to work with the
MC68040 emulator. Use HP 64172A and/or HP 64172B memory modules.

If you're having problems with DMA

Check to make sure that your DMA process doesn’t access memory ranges mapped
to emulation RAM ¢ram) or emulation ROMdrom). DMA to emulation
memory resources is not supported.

If you're having problems with emulation reset

Connect the reset flying lead to some point in your target system that distributes the
reset signal to components that need to be reset when the processor is reset. This
will make sure that all critical components in your target system are reset by the
emulator. Suppose your system reset circuit drives several critical system
components as well as the processor. Suppose also that the critical components are
memory-mapping circuits that locate ROM containing the vector table at address
zero for startup, and then move it to a high address range after system initialization.
An emulator reset cannot drive your reset line directly. Therefore, an attempt to run
after emulation reset will fail because the vector table is not located in the correct
place. Use the target reset to reinitialize memory or Bsecassofs0 Pc or

Address command instead dPi@cessolGo Reset command. For further

information, refer to the chapter on plugging the emulator into a target system.

234

Chapter 8: Solving Problems
If the deMMUer runs out of resources during the loading process

If the deMMUer runs out of resources during the
loading process

[J Check the physical address ranges that will be reverse translated by the present
setup of the deMMUer. EntBrocessoDeMMU Verbose_Load to see a list of
those physical address ranges. If all of the physical spaces where you have code
under development are listed, ignore the "out of resources" message.

[J Check to ensure that you have placed sufficient restrictions in the MMU mapping
paths to prevent reverse translating physical address space where you have no
memory.

[J Check your emulation memory map to make sure you have entries to support each
of the address spaces where you have code under development. Make sure those
spaces are no larger than they need to be to accommodate your program code.

[J Check if you are using both root pointers in your memory mapping scheme. The
deMMUer may have run out of resources for only one of the root pointers.

[] Store the present setup of the MMU to a file, and then use an editor to elimina
address ranges that do not need to be reverse translated. Only leave addres
that need to be reverse translated in the file. Then load this file into the deMMUer.
When this file is loaded, the deMMUer creates a set of reverse translations for it,
ignoring the MMU setup in the emulator. Refer to "Saving and Restoring
DeMMUer Setup Files" in the chapter titled "Using the Emulation-Bus Analyzer"
for how to store and load a deMMUer file.

[J Read "Using the deMMUer" in the chapter titled "Using Memory Management" for
ways to make more efficient use of deMMUer resources, and to understand how
deMMUer resources are allocated when using different root pointers or when using
function-code mappings.

235

Chapter 8: Solving Problems
If you only see physical memory addresses in the analyzer measurement results

If you only see physical memory addresses in the
analyzer measurement results

[] Check to see if you enabled the deMMUer with the comnfamdessoDeMMU
Enable.

[J Check to see if you loaded the deMMUer with the information needed to reverse
translations made by the MMU with the commaPidicessoDeMMU
Verbose_ Load.

[J Read "Using the deMMUer" in the chapter titled "Using Memory Management" to
understand how the deMMUer selects physical address ranges to reverse translate
for the analyzer.

If the deMMUer is loaded but you still get
physical addresses for some of your address
space

[J Some physical accesses are normal, especially accesses to the MMU tables.

[J Check to see which physical memory spaces are being reverse translated by the
deMMUer. Enter th€rocessoDeMMU Verbose Load command to see a list of
the physical address spaces that will be deMMUed.

[J Check the setup of the MMU mapping tables. Make sure that unused address
spaces are marked with invalid descriptors in the mapping tables.

[J Check the emulation memory map. Make sure you have allocated only the memory
spaces needed to accommodate code you are developing in your map. Make sure
you have mapped the smallest spaces that you can for the code you are developing.

236

Chapter 8: Solving Problems
If you can’t break into the monitor after you enable the MMU

[J Check that the MMU had the setup you wanted to analyze when you loaded the
deMMUer. [f it was managing memory for some other MMU setup, break to the
monitor and issue therocessoDeMMU L oad command again.

[J Check to see if there was a context change in the MMU during execution of your
program. If there was, the content of the root pointer may have changed for
execution of the new context. The deMMUer tables were set up to reverse translate
the MMU tables under the root pointer values that existed when you entered the
ProcessoDeMMU L oad command. If those root pointer values change (pointing
to other translation tables), there is no way to automatically update the deMMUer.

It will continue to provide reverse translations for the setup that existed at the time
you issued th€rocessoDeMMU Load command. Issue tReocessoDeMMU
Load command again.

[J Read "Using the deMMUer" in the chapter titled "Using Memory Management" to
understand how the deMMUer selects the physical addresses it will translate.

If you can’t break into the monitor after you
enable the MMU

[J Enter the commandProcessoResetMonitor. If your MC68040 is now running in
the monitor, look at your MMU Tables or the transparent translation register that
maintains 1:1 mapping for your foreground monitor. The mapping has failed.
Modify your MMU tables or the transparent translation register to obtain the 1:1
mapping for the address space occupied by the foreground monitor.

[] Refer to the end of the chapter titled, "Using Memory Management" for a detailed
example that discusses how to solve a "can't break into monitor" problem.

237

238

Part 3

Reference

239

Part 3: Reference
Emulator Features

Emulator Features

This part of the manual gives a comprehensive description of all emulator features,
and all PC Interface commands. It does not attempt to explaito do things
with the emulator. Instead, it tells what commands are available, and what they do.

In This Part

Chapter 9, "Using Memory Management," gives you an understanding of emulation
and analysis of the MC68040 Memory Management Unit.

Chapter 10, “Emulator Commands,” gives a breakdown of the menu hierarchies of
the PC Interface. Each group of related commands is explained, to give you a
complete picture of what each command actually does.

Chapter 11, “Expressions,” shows the syntax of expressions (such as addresses,
registers names) that are unique to the MC68040.

Chapter 12, “Error Messages,” lists the PC Interface error and status messages
unique to the MC68040 emulator, and gives their meanings.

Chapter 13, “Data Formats,” describes the content and format of the various files
used by the PC Interface, such as symbol database files and configuration files.

Chapter 14. “Specifications and Characteristics,” contains the electrical
specifications and characteristics for the MC68040 emulator.

If you want to know how to accomplish commonly performed tasks, see Part 2 of
this manual. If you are looking for a general introduction to using the emulator, see
Part 1.

240

Using Memory Management

Understanding logical and physical emulation and analysis

241

Chapter 9: Using Memory Management
Understanding Emulation and Analysis Of The Memory Management Unit

Understanding Emulation and
Analysis Of The Memory Management
Unit

You only need to read this chapter if you are using the on-chip MMU (Memory
Management Unit) of the MC68040 or MC68LC040 microprocessor. If you are
using an MC68ECO040, or if you are using an MC68040 or MC68LC040 with its
MMU disabled, you won't need the information in this chapter.

This chapter begins with a discussion of terms and conditions you need to
understand when you are using the MC68040 or MC68LC040 emulator/analyzer
with the MMU enabled. Under these conditions, many capabilities and features
become available that are not otherwise offered. Also, some of the features you
have been using behave differently. These are discussed in this chapter.

Terms And Conditions You Need To Understand

The following paragraphs explain the differences between logical and physical
memory, and between static and dynamic virtual memory systems.

Logical vs Physical

When you develop a program, compile it or assemble it, and link it, addresses are
assigned to contain each of the bytes of the program. These addresses are logical
addresses. When the program is loaded into hardware memory so that it can be
executed by the microprocessor, it is loaded into physical address space. When you
are not using an MMU, the program is loaded into physical memory hardware at

the logical addresses assigned in the linker load map. Under these conditions, there
is no need to differentiate between logical addresses and physical addresses because
they are the same (simply addresses). When you use the MMU, it becomes
necessary to understand the difference between logical addresses and physical
addresses.

242

Chapter 9: Using Memory Management
Understanding Emulation and Analysis Of The Memory Management Unit

Most emulation and analysis commands that require an address as part of the
command use logical addresses. Some emulation and analysis commands will
accept either logical or physical addresses.

What are logical addresses?

Logical addresses are the addresses that are assigned to your program code when
you develop your program. They are the addresses represented by symbols in your
symbols data base (the symbol "Main" represents a logical address).

What are physical addresses?

Physical addresses are the addresses assigned by the MMU to contain your

program. Physical addresses identify locations where you actually have memory
hardware in your target system. Physical addresses appear on the processor address
bus instead of logical addresses.

Static and dynamic system architectures

There are several design strategies where memory management can help in
developing a system or product. Three of these are described in the following
paragraphs. One shows memory management used in a static memory syste
other two show memory management used in different dynamic memory syst
The MC68040 emulator is designed to work in any of these system types; however,
the deMMUer which provides reverse translations to the analyzer is primarily
intended for use in static systems.

Static system example

A static system design may use the MMU simply to protect supervisor code and 1/0
space against accesses from a user program. Once a static system is initialized, it
never changes. Your HP emulator and analyzer can give you complete support for
a static memory management system. After the MMU has been set up to manage

memory in a static system, the deMMUer can be loaded with information to reverse
the MMU translations over the entire range managed by the MMU.

243

Chapter 9: Using Memory Management
Understanding Emulation and Analysis Of The Memory Management Unit

Non-paged dynamic system example

Assume three programmers are developing separate programs to run in a real-time
operating system environment. The programmers each write their programs to
begin at address Oh. The operating system accepts the responsibility to know where
in physical memory space each of these programs will be located. The
programmers don’'t have to worry that some additional code they write in their
programs might overwrite some of the code that was written by another
programmer. The operating system will place all of the code in available memory
space and place appropriate translation mappings in the MMU to ensure that when
the logical address for one of the programs (tasks) is present in the program
counter, the appropriate physical address will appear on the bus to access the
desired physical memory location.

Your HP emulator/analyzer can give you partial support for a non-paged, dynamic
system. When the MMU has been set up to manage memory during execution of
one of the above tasks, you can update the deMMUer to translate addresses for that
task. When that task is executing, the analyzer will be able to make trace
measurements and provide correct results. When any of the other tasks are
executing, trace measurement results will be invalid because the other tasks will
depend on different translation tables in the MMU and there is no way to
automatically update the deMMUer when execution switches from one task to
another.

Paged dynamic system example

Assume you have developed a program that occupies 10 megabytes of logical
address space. Perhaps you have only 2 megabytes of physical address space in
your system. Sitill, you want to be able to run the entire program. You set up a
specification in the MMU translation control register to divide the address space

into pages (the 68040 lets you divide the memory space into one of two page sizes,
either 4 Kbytes or 8 Kbytes). Assume you set up the MMU to divide the memory
into 4-Kbyte pages. Your program will occupy 2,500 pages of code, and 500 of
these pages can be contained within your physical memory space at any given time.

As your program executes, the operating system moves pages of your program code
into address space in physical memory. When execution goes beyond the addresses
contained on the presently active page, the MMU checks to see if the next logical
address is on a page that has already been placed in physical memory. Ifitis, the
MMU performs the appropriate translation for the next logical address, placing the
appropriate physical address on the bus, and execution continues. Ifitis not, the
operating system moves the page that has the next address to be executed up from

244

Chapter 9: Using Memory Management
Understanding Emulation and Analysis Of The Memory Management Unit

an external storage device to physical memory space, overwriting one of the pages
that had occupied physical space before. The operating system updates the
translation tables to identify the new logical address space that now occupies that 4
Kbyte of physical memory, and program execution continues.

As pages are swapped back and forth between an external storage device and the
physical memory, the relationship between any one logical address and its
corresponding physical address may change many times.

Your HP emulator will let you run a paged, dynamic system, but the analyzer will

not be able to provide support for such features as symbolic addresses, or display of
corresponding source files. The deMMUer cannot detect changes in the MMU
mappings. The longer the system runs, the further out of date the deMMUer will
become. Of course, the analyzer will still be able to show activity captured at
physical addresses. By experimenting with several starting points for the inverse
assembler, you can obtain a trace list with activity inverse assembled into an
equivalent assembly language listing. SefewlysisDisplay and refer to "To

display the trace list" in chapter 5 (Using the Analyzer) of this manual for details.

Where Is The MMU?

The MMU is located between the CPU core and the external address bus. Th
program counter always contains logical address values. When the MMU is t
off, the program counter value is placed directly on the address bus to access
address in physical memory. When the MMU is turned on, the MMU accepts the
logical address value and translates it (by using its translation tables) to a physical
address. The physical address from the MMU is placed on the processor address
bus.

245

Chapter 9: Using Memory Management
Understanding Emulation and Analysis Of The Memory Management Unit

Using supervisor and user privilege modes

The MMU allows separate tables to be set up for supervisor and user access. For
example, you can create one set of mapping tables to translate addresses in
supervisor space and another set of mapping tables to translate addresses in user
space. The supervisor space uses the SRP (supervisor root pointer). The user space
uses the URP (user root pointer). The supervisor address space can begin at
supervisor address 0 and the user address space can begin at user address 0. The
MMU must ensure that these addresses are placed in different physical spaces.

You can use the MMU to protect your program space from unauthorized accesses.
If you map a portion of your program through the MMU and identify it as
supervisor space, the MMU will not allow any access to that program space unless
the privilege mode is supervisor at the time the access is attempted. Take care to
ensure that supervisor or user is specified with addresses if the MMU will be
making the distinction (excaddress>@%

How the MMU is enabled

The MMU depends on a hardware enable and a software enable. Both of these
enables must agree to enable the MMU before it can translate logical addresses to
physical addresses. If either one (or both) of these enables fail to enable the MMU,
it will remain disabled.

Hardware enable

The hardware enable is performed byMi2IS signal. WherMDIS is asserted,
the MMU is disabled. WheWIDIS is negated, the MMU is enabled to translate
addresses. The emulator controlskti2lS line according to the way you set the
"Enable/disable MMU?" general configuration parameter.

If you enterdisable theMDIS line is asserted. If you entemable theMDIS line
is directly controlled by the target system. In this condition, your target system can
hold the line high or low to enable or disable the MMU.

246

Chapter 9: Using Memory Management
Understanding Emulation and Analysis Of The Memory Management Unit

Software enable

The software enable is performed when the operating system loads an enable value
into the translation control register (TC). If the enable bit of the TC register is

"e=1", the MMU will be enabled. If the enable bit in the TC register is "e=0", the
MMU will be disabled.

Restrictions when using the emulator with the
MMU turned on

There are only three restrictions: you must use a foreground monitor, it must not be
write protected, and you must map it to address space that the MMU translates 1:1
(logical=physical) for supervisor accesses.

You must use a foreground monitor. The background monitor does not have the
capabilities to support the MMU functions. The foreground monitor can operate
with the MMU turned on.

You must map the monitor code to address space that the MMU translates 1:1 for
supervisor accesses. The emulator executes monitor code to implement many of its
emulation features. The emulator must be able to find the monitor code whet
the MMU is turned on or off. By mapping the monitor into address space that
1:1 translation, the monitor stays within known address space at all times, and
emulator can always find it when it needs to use it. This mapping is described
the end of the emulation configuration chapter (Chapter 7).

Be sure that no write protection exists in the MMU mapping for the monitor.

Caution

Make sure your translation tables are valid. Turning on the MMU can cause your
program or emulator to fail if the MMU tables are not set up correctly. The address
space where the program is executing can change when the MMU is turned on or
turned off. Stack space or other data spaces can move. Breakpoints that have been
set can be lost.

247

Chapter 9: Using Memory Management
Understanding Emulation and Analysis Of The Memory Management Unit

How the MMU affects the way you compose your
emulation commands

When you display registers, the address registers, stack pointers, and program
counter always contain logical addresses, even when the MMU is turned on.

If you enter éProcessofGo Address<address>command, the address you enter
must be the logical address. The program counter will accept it and supply it to the
MMU for translation before it places the address on the processor bus.

Breakpoint addresses in RAM space are always logical addresses. When you set a
breakpoint at an address, that address is translated by the MMU and the BKPT
instruction replaces the instruction at the appropriate physical address. When the
breakpoint is executed, the emulator restores the original instruction to the physical
address, by first translating the logical address through the MMU.

Consider what happens if you set a breakpoint at a particular address, and before
the breakpoint is hit, you update the translation tables in the MMU, changing the
mapping to the location where the breakpoint is set. This is discussed in detall
under "Solving Problems" at the end of this chapter.

If you enter a command to display memory or modify memory, your command is
directed to logical address space. If you want to display memory at a physical
address, you have to change your command. For example, the command to display
memory at address 100N émoryDisplayWord 100 will show you the memory
content at logical address 100H (which might be some other physical address). If
you want to see the content at physical memory address 100H, you will have to
enter the command emoryDisplayWord 100@a(where "a" = "absolute" =

"physical").

Addresses expressed using symbols are always logical addresses. In the case of
symbols, the emulator looks in the symbol data base and finds the logical address
that corresponds to the symbol you used in your command, and it loads that logical
address into the program counter.

If you attempt to modify a memory location that is write protected by the MMU,
the emulator will temporarily modify the translation tables to allow the access.

248

Chapter 9: Using Memory Management
Seeing Details of MMU Translations

Seeing Details of MMU Translations

The following paragraphs discuss emulator displays that help you understand
translations made by your MMU. There are three displays, each giving a different
level of detail of the MMU translations.

* The present address mappings in your MMU tables.
» The translation table entries for a single logical address.

» The contents of a single level of the translation tables pointed to by a selected
logical address.

How the emulator helps you see the details of the
MMU mappings

To see all of the logical-to-physical translations presently mapped, enter the

commandProcessoMMU Mappings<End><Enter>. The emulator will read the
present state of the translation tables and show all of the valid mappings in those
tables. The display will be similar to the following:

Logical Address Physical Address Attributes
000089000..000089fff@s 0fff89000..0fff89fff@sa S W
00008a000..00008afff@s 0fff8a000..0fff8afff@sa S W
00008b000..00008bfff@s 0fff8b000..0fff8bfff@sa S W
00008c000..00008cfff@s 0fff8c000..0fff8cfff@sa S W
00008d000..00008dfff@s 0fff8d000..0fff8dfff@sa S W
00008e000..00008efff@s 0fff8e000..0fff8efff@sa S W
00008f000..00008ffff@s 0fff8f000..0fff8ffff@sa S W
000090000..000090fff@s 0fff90000..0fff90fff@sa S W
000091000..000091fff@s 0fff91000..0fff91fff@sa S W
000092000..000092fff@s 0fff92000..0fff92fff@sa S W
000093000..000093fff@s 0fff93000..0fff93fff@sa S W
000094000..000094fff@s 0fff94000..0fff94fff@sa S W
000095000..000095fff@s 0fff95000..0fff95fff@sa S W
Logical Address Physical Address Attributes
ISTATUS 160! MMU is not enabled via TC register

249

Chapter 9: Using Memory Management
Seeing Details of MMU Translations

The above listing shows privilege modes were included in the mapping scheme.
The logical and physical addresses are shown in supervisor space. Notice that the
physical addresses also show "a" beside the privilege mode indication. The "a"
indicates physical address space.

Note that the emulator enters the monitor to obtain the information it shows in the
MMU displays. Execution of your target program is suspended while the emulator
gathers information for an MMU display. If there are portions of your program that
should not be interrupted during execution, insert an execution breakpoint in some
safe area of your program code and run until the breakpoint is executed. Then you
can safely view the MMU mappings.

The display you get with tHerocessoM MU Mappings command can show as

much as one line per page (or group of adjacent pages) of mapped logical address
space. Contiguous entries are shown on one line to make the display more
readable. Early terminations (which result in contiguous translation of multiple
pages) will also be shown on a single display line.

The display of MMU mappings will only show pages for which the system has
valid mappings. No information is given in the defifippings display for paths
designated invalid, or for paths containing illegal entries.

To avoid a list of mappings that scrolls for a long time, specify a limited address
range in your command. The commdairdcessoMMU M appings, followed by
Address(range)..Offff instructs the emulator to show the valid mappings for only
the logical addresses in the range of 0 through Offff, instead of all possible
mappings.

Another way to limit the number of address ranges shown in an MMU mappings
display is to limit the listing to only user or supervisor address space. The
commandProcessoM MU Mappings, followed by Address(rang8).0ffff@u

will show all of the mappings for addresses from 0 through Offff in user address
space.

Note: For convenience, tikocessoMMU M appings command will use the

logical address range from the most recent entry iRtbeessoM MU Mappings

form. To change the default logical address range back to the full address space,
enter 0..0ffffffffh beside Address(range): in the form.

The display shows TT beside address ranges that are overridden by the transparent
translation registers. In these ranges, logical-to-physical address translation will be
1:1. The MC68040 always compares logical addresses to the content of the
transparent translation registers before it attempts a translation. If it finds a match

250

Chapter 9: Using Memory Management
Seeing Details of MMU Translations

in the transparent translation registers, it accepts the logical address as the physical
address and performs no translation.

Supervisor/user address mappings

If you are using separate supervisor and user mappings, the emulator will support
this choice and show appropriate information.

» To see only the mappings in supervisor address space, use the command:
ProcessoMMU M appings, followed by Address(rangeddress>
[..[<address>]|@s This tells the emulator to show the supervisor mapping for
the associated logical address or address range.

* To see only the mappings in user address space, use the coRrmaadsor
MMU M appings, followed by Address(rangeaddress> [..[<address>]|@u

» If you specify no privilege mode, then mappings will be shown for both root
pointers.

The MC68040 uses the URP as the root pointer for user address space and the SRP
as the root pointer for supervisor address space. No distinction is made between

program and data space.

251

Chapter 9: Using Memory Management
Seeing Details of MMU Translations

Translation details for a single logical address

To see translation details for a logical address, enter a command Saxtessor
MMU Tables, and in the form that appears, enter the desired addresgablde
option tells the emulator to show the translation details for the specified address.
The display will show the way the logical address is mapped through the tables to
reach its corresponding physical address.

Logical Address(hex) O 0 0 O 4 0 F 8
Logical Address (bin) 0000 0000 0000 0000 0100 0000 1111 1000
Table Level AAAA AAAB BBBB BBCC CCCC PPPP PPPP PPPP

LEVEL INDEX LOCATION CONTENTS TBL/PAGE G Ux S CM M U W UDT/PDT
SRP 02028200 02028200 RESIDENT

A 000 02028200 ffffifff fffife00 y 'y RESIDENT

B 000 fffffle00 fifffiff fififO0 yy RESIDENT

C 004 fiffff10 fffiffff ffiff000y 11yinyyy RESIDENT

Physical Address (hex) = fffffOf8

Address mapping details
The example display shows:

» The translation mapping for logical address 40f8H in supervisor space. Both
the hexadecimal and binary values are shown for the logical address.

* The Table Level line shows how each address bit is mapped. The first seven
bits are used as an offset into Table A. The next seven bits offset into Table B.
The next six bits offset into Table C. The example display was made with
4-Kbyte pages selected; only five bits index into Table C when 8-Kbyte pages
are selected. The lowest-order 12 bits contain the offset into the physical page.

» Theindex used in Table A is 0 which points to physical address 2028200. The
content of this address is ffffffff, indicating a B level table located at base
address fffffe00. The status also indicates that this table has been used "U",
and the address is write protected.

» The physical address is finally calculated by adding the physical page offset to
the base address of the physical page.

252

Chapter 9: Using Memory Management
Seeing Details of MMU Translations

Status information

Status can be assigned to an address at any point in its mapping. To interpret
status, you must OR the status information at each level of the mapping. For
example: the "M" bit shows that the content of the page indicated by Table C has
been modified (by a write or read-modify-write). This applies only to addresses in
this page. A"y" might have been shown under the "S" status bit in the A line. It
would indicate that only supervisor accesses are allowed for pages under the A
table. This restriction would apply to all addresses of this table, even though S=1
only appeared at the upper level of the table.

Note that the address shown in the example display was mapped through the
supervisor root pointer. If you wanted to see the mapping through the tables under
the user root pointer, you would use a commandRikeessoMMU Tables, and

then enter the Addres#0f8@u You can add the desired function code table index
to your command to see how any address is mapped through the tables under the
selected root pointer (e.g.ors).

The specific status bits shown beside each table entry are defined as follows:
+ TBL/PAGE indicates the base address of the next table.
* G means the entry is global.

* Ux shows the values of the user programmable attributes (signals UPAO and
UPAL).

e S means supervisor mode protection.

 CMidentifies the cache mode: cw (cachable, writethrough), cc (cachable,
copyback), is (inhibited, serialized), or in (inhibited, nonserialized).

M means the page has been modified.
« U means the page (or pages) has been used, or previously accessed.
W means the page is (or pages are) write protected.

UDT/PDT indicates whether the page at the next level is RESIDENT or INVALID.

253

Chapter 9: Using Memory Management
Seeing Details of MMU Translations

Table details for a selected logical address

The lowest level of detail you might like to see is the content of one of the tables
used to map a particular logical address. You might enter a command like:
ProcessoMMU Tables, and then enter the Addret3f8, and then us€ab to

select Table levet. The emulator would show the details of Table C where it is
used to map logical address 40F8. There might be a great many Table C’s, but this
command will only show the Table C that is used to map the logical address you
specified in your command.

In the example display of table details:

» The LOCATION column shows the physical address of each indexed location
in Table C.

e The TBL/PAGE column shows the base addresses of physical pages indicated
by each location in Table C.

» The firstindexed location in Table C shows that its associated physical page
has been accessed, but not modified ("U" bit = "y", and "M" bit = "n").

Logical Address(hex) O 0 0 O 4 0 F 8
Logical Address (bin) 0000 0000 0000 0000 0100 0000 1111 1000
Table Level AAAA AAAB BBBB BBCC CCCC PPPP PPPP PPPP

LEVEL INDEX LOCATION CONTENTS TBL/PAGE G UxSCM M U W UDT/PDT
SRP 00000200 00000200 RESIDENT

000 00000200 0000040b 00000400 y n RESIDENT

000 00000400 0000060b 00000600 y n RESIDENT

000 00000600 0000008f 00000000 N 00y cw nyy RESIDENT
001 00000604 00001087 00001000 n 00y cw nny RESIDENT
002 00000608 00002087 00002000 n 00y cw nny RESIDENT
003 0000060c 00003087 00003000 nNn 00y cwnnyRESIDENT
004 00000610 00004087 00004000 n 00y cw nny RESIDENT
005 00000614 00005087 00005000 n 00y cw nny RESIDENT
006 00000618 00006087 00006000 N 00y cw nny RESIDENT

0000000 m>

254

Chapter 9: Using Memory Management
Using the DeMMUer

Using the DeMMUer

The deMMUer circuitry reverses the translations made by the MMU (translates the
physical addresses it finds on the processor buses back to their corresponding
logical addresses) before sending the addresses to the analyzer.

What part of the emulator needs a deMMUer?

Actually, the emulator doesn’t need the deMMUer; the analyzer does. It can’t

provide its full symbolic features unless it has help from the deMMUer. The

analyzer normally receives its address information directly from the processor
address bus. It uses the symbols data base created for the program loaded in
memory to cross reference the addresses it receives to the symbols and
corresponding code in your source files. When the MMU is used, logical addresses
are translated to physical addresses before they are placed on the processor address
bus. Therefore, they no longer match the symbols data base.

What would happen if the analyzer didn't get help from

the deMMUer? .
The analyzer would get its address information directly from the address bus

emulation processor. It would have no way to know what translation had occurred
in the MMU. Therefore, it could not trigger or qualify its trace on any symbol

defined in the symbols data base. Further, its trace list could only show you the
physical address value it found on the address bus; it would not be able to show any
symbols associated with that physical address, or any corresponding source file
lines. You would have to figure out for yourself what portion of your program
address space was executing when that physical address appeared on the bus.

How does the deMMUer serve the analyzer?

The analyer does not get its information directly from the processor address bus
when the deMMUer is turned on. Instead, the deMMUer accepts the physical
address from the processor address bus, reverse-translates it to its logical address
value, and supplies it to the analyzer. By having the logical address corresponding

255

Chapter 9: Using Memory Management

Using the DeMMUer

to the transactions on the processor address bus, the analyzer can accept trace
specifications expressed in source file symbols, show symbols in its trace lists, and
show the regions of the source files that were executing when the bus activity
occurred.

Reverse translations are made in real time

The deMMUer performs its reverse translations without slowing down the
measurement. For this reason, the analyzer that obtains its information from the
deMMUer is able to provide its full feature set.

DeMMUer options

» ProcessoDeMMU Disable. Your analyzer receives physical addresses if the
MMU is enabled. The analyzer can only show hexadecimal values for those
physical addresses. They may not correspond to the logical addresses of your
program code. Note that until the MMU is enabled in hardware and software,
addresses will be logical. Only after the MMU is enabled is there a distinction.

* ProcessoDeMMU Enable. Your analyzer receives logical addresses
translated by the deMMUer according to the tables in place when you last
loaded the deMMUer.

* ProcessoDeMMU Load. The emulator reads the MMU registers and
interprets the translation tables to load the deMMUer. You will see a form that
allows you to use the present values of the MMU registers during the loading
process, or to specify values to override the present MMU registers during the
loading process. The deMMUer is also enabled after it is loaded.

e ProcessoDeMMU Verbose Load. This sets verbose mode for the deMMUer
load function. It offers the same register-override selections as Processor
DeMMU Load, and additionally displays a list of the physical address ranges
that will be reverse-translated by the deMMUer. Addresses will be shown as:
<address>..<address>@s
This means <address> through <address> at supervisor priviledge mode.

256

Chapter 9: Using Memory Management
Using the DeMMUer

Processor DeMMU File Load. The emulator reads a file containing an MMU
setup, and loads the deMMUer to reverse translate addresses in the file. This
file must have been created using the Processor DeMMU File Store command.
It will have a ".ED" filename extension.

Processor DeMMU File Verbose_Load. The emulator reads a file containing
an MMU setup, and loads the deMMUer to reverse translate addresses in the
file. Alistis displayed of the physical address ranges that will be reverse
translated by the deMMUer.

Processor DeMMU File Store. The emulator stores the present setup of the
MMU in afile. You can edit this file to remove address ranges that do not
need to be reverse translated. Then you can load this file into the deMMUer
using the Processor DeMU File Load or Verbose_Load command.

What the emulator does when it loads the
deMMUer

When the emulator loads the deMMUer, it does the following:

Temporarily breaks into the monitor.

Reads the MMU tables and provides spaces in the deMMUer table to rev
translate all of the valid addresses in the MMU tables.

If there are more valid physical memory addresses than can be accommodated
in the deMMUer table, the emulator reads the emulation memory map for help
in selecting appropriate address ranges to reverse translate.

Provides deMMUer table entries to reverse translate small address spaces
defined in the emulation memory map before providing table entries to reverse
translate larger address spaces.

Allocates remaining resources to reverse translate addresses beginning with the
lowest remaining address.

If there are valid physical memory addresses remaining after all available
spaces have been used in the deMMUer table, the emulator displays the "out of
resources" message.

257

Chapter 9: Using Memory Management

Using the DeMMUer

Restrictions when using the deMMUer

Keep the deMMUer up to date

When you load the deMMUer, the emulator reads the present value of the TC, SRP,
and URP registers in the MMU, and the present translation tables, and calculates
the address translations that can be performed (all possible physical-to-logical
translations are determined during this process). Then the emulator loads the
deMMUer to reverse those translations. After the deMMUer is loaded, any change
to the MMU, its registers, or its translation tables will make the deMMUer out of
date. The only way to update the deMMUer for changes in the translation setup is
to load the deMMUer again.

The target program is interrupted while the deMMUer is
being loaded

The emulator uses the foreground monitor to load reverse translations into the
deMMUer. Depending on the complexity of your tables, this process can take a
long time. If there are portions of your target program that must not be interrupted
for long periods of time, make sure your code is executing in safe regions before
you load the deMMUer. You might set a breakpoint in a region of your target
program that is outside the time-critical regions and perform the load of the
deMMUer after the breakpoint is executed.

The analyzer must be off

Your analyzer must not be making a trace when you load the deMMUer.
Otherwise, part of the trace will be based on physical addresses and the other part
will be based on logical addresses.

Expect strange addresses if you analyze physical
memory with multiple logical mappings

The deMMUer can only translate a physical address into one logical address. If

two programs both use the same physical space (such as when two programs use a
single data location), they might refer to that space by two different logical address
values (and two different logical address symbols). The deMMUer translation

RAM will be loaded with only one of the logical addresses. This means that you

258

Chapter 9: Using Memory Management
Using the DeMMUer

might be analyzing execution of your program and find it accesses a data space at
an address you don'’t recognize, even though the data may be what you expect to
see. The unexpected address will be the logical address known to the other
program that also uses this location.

The way the deMMUer selects a logical address for a physical address when two or
more logical addresses are available is as follows:

» The deMMUer selects the logical address with the lowest address value.

» If one of the addresses is controlled by the MMU tables and one by a
transparent translation register, the deMMUer sends the address defined in the
MMU tables.

If one of the logical addresses is within a range defined in the emulation
configuration memory map and another is not, the logical address defined in the
memory map is sent.

259

Chapter 9: Using Memory Management

Using the DeMMUer

Resource limitations

If you enter thé’rocessoDeMMU L oad command and your emulator performs its
task and returns the main menu set of commands to the screen, you won't need to
know about the deMMUer resource limitations. When the deMMUer is loaded
without any problems, the main menu set of commands simply shows on screen
and you can proceed with your measurement. The following information will help
you deal with problems when you try to load the deMMUer and receive a message
such as "deMMUer out of resources".

The deMMUer has a table where it records ranges of physical addresses that it can
reverse translate to logical addresses. This table has eight entries, and each entry
contains a single physical address range. Each address range in the table will be 32
Mbytes. Up to 256 Mbytes of physical addresses can be reverse translated
Normally, entries in this table are allocated automatically, without intervention.

address..address

address..address

address..address

address..address

address..address

address..address

address..address

260

Chapter 9: Using Memory Management
Using the DeMMUer

Example to show resource limitations
Consider the following program arrangement:

Assume a system contains memory and peripherals at three different ranges: one
from O to 4 Mbytes, one from 256 to 258 Mbytes, and one from 512 to 514 Mbytes.
The rest of the physical address space is unused.

4M RAM

Unused 2M Peripherals | Unused 4M ROM Unused

0 aM

256M 258M 512M 514M

If your MMU mapping tables are set up to only allow access to memory in these
ranges, your deMMUer will load properly and you can proceed with your
measurements. If you failed to restrict your MMU mappings to these physical
ranges (instead you provided valid address translations for the entire 4-Gbyte
address space), the deMMUer will allocate all eight of its resource blocks in the
first 256-Mbyte range, and no deMMUing will be provided for the peripherals and
ROM space in the above program.

The Emulation Memory Map Can Help

When the emulator tries to load the deMMUer and finds more physical memor
identified in the MMU mapping tables than it can translate in its deMMUer tabl
will assign resources to terms defined in the emulation memory map. If the
emulation memory map is arranged as follows, the deMMUer will load in a wa
that ensures the physical ranges of interest will be in the deMMUer.

00000000..003fffff eram
10000000..101fffff tram
20000000..203fffff trom
other tram

When the emulator reads the emulation memory map for help in loading the
deMMUer, it sorts the entries: first by size, and second by address range. The
smallest address range (256M to 258M) will occupy the first resource block in the
deMMUer translation table. Address range (0 to 4M) will occupy the second
resource block, and address range (512M to 514M) will occupy the third resource
block. The remaining five resource blocks will be assigned to other physical ranges
found in the MMU tables, beginning with the lowest addresses. You may see a
message indicating some physical addresses will not be translated by the

261

Chapter 9: Using Memory Management

Using the DeMMUer

deMMUer, or Out of DeMMUer resources, because the deMMUer might run out of
resource blocks before all of the physical addresses have been assigned reverse
translations, but the program spaces you care about will all be reverse translated.
You can use th€erbose_Load option of the deMMUer load command to make
sure the program spaces you care about will be reverse translated.

If you map a space greater than 256 Mbytes in the emulation memory map, you
will run out of resource blocks before you satisfy the map.

The best way to ensure that all of the address ranges you care about will be reverse
translated is to compose an emulation memory map that allocates blocks of

physical memory only large enough to accommodate the address space occupied by
code you are trying to develop. The deMMUer algorithm will allocate resource
blocks in its eight-entry table to reverse translate only those physical address ranges.

With the above example, you could have avoided running out of resources. If you
had placed invalid descriptors in your MMU tables in the paths that lead to unused
physical address ranges, the deMMUer would have had more than enough resource
blocks in its eight-entry table to reverse translate the valid address ranges.

Finally, you can store the present setup of the MMU to a file, and then use an editor
to eliminate address ranges that do not need to be reverse translated. This only
leaves address ranges that need to be reverse translated in the file. Then you can
load this file into the deMMUer. When this file is loaded, the deMMUer creates a
set of reverse translations for it, ignoring the MMU setup in the emulator. Refer to
"Saving and Restoring DeMMUer Setup Files" in the chapter titled "Using the
Emulation-Bus Analyzer" for how to store and load a deMMUer file.

262

Chapter 9: Using Memory Management
Using the DeMMUer

Dividing the deMMUer table between user and
supervisor address space

You can have two sets of MMU translation tables, one under each root pointer

(URP and SRP). In this case, the emulator divides the deMMUer table into two
equal address spaces. The first four resource blocks provide reverse translations for
user physical address ranges, and the last four resource blocks provide reverse
translations for supervisor physical address ranges.

There are cases where the deMMUer table will not be divided into two sets of four
resource blocks each, even if you are using both root pointers (URP and SRP). If
the values of your user root pointer and supervisor root pointer are the same

(URP = SRP), and if the user and supervisor function codes are ignored in all of the
transparent translation registers, then the deMMUer table will not be divided. It

will make its eight resource blocks available to reverse translate either user or
supervisor space.

If the user root pointer and supervisor root pointer contain different values, or if
function-code mapping is used in any of the transparent translation registers, the
deMMUer table will be divided into two 4-block tables as shown below.

address..addres@u

address..addres@u

address..addres@u

address..addres@u

address..addres@s

address..addres@s

address..addres@s

address..addres@s

263

Chapter 9: Using Memory Management

Solving Problems

Solving Problems

Your program and emulator may be running fine until you turn on the MMU. Then
program execution may fail. You may not be able to use features of your emulator.
How can this happen? It can happen if the MMU mapping tables are incorrect.
When the MMU turns on and starts managing memory by performing tablewalks in
tables that are invalid, pages of logical memory may overwrite your stack space,
your emulation monitor, or any other address space, making your entire system
unusable. If this happens, note where the program is executing. The stack may be
inaccessible. The monitor (with its emulation feature set) may be inaccessible. The
vector table may be placed in guarded memory. Program data space may become
inaccessible.

Using the "Processor MMU Mappings" command
to overcome plug-in problems

Plug-in problems involving the MMU are often caused by incorrect mappings in
your translation tables. If your logical address is translated to an incorrect physical
address, thBrocessoMMU Mappings command can show the details of how

your logical addresses are mapped to the wrong physical addresses.

To display the MMU translations when the TC register contains a disable value,
enter an enable value in the Processor MMU Mappings form that appears when you
enter the Processor MMU Mappings command. Do this by selecting "no" beside
"Use TC reg:", and entering 8000h in the field beside "Value:".

You can also use tlrocessoM MU Mappings command to test your mappings
before you enable the MMU. This command, by itself, reads the present
translations in your MMU tables. No invalid or illegal paths are shown in the
listing. You can read through the display on screen to see if all of your address
ranges are represented, and if they are mapped to appropriate space in physical
memory.

When you enter therocessoM MU Mappings command, the emulator reads the
MMU registers (TC, URP, SRP, ITTO, ITT1, DTTO, and DTT1) and the MMU
tables. If you do not have correct values in the registers, the emulator will let you

264

Chapter 9: Using Memory Management
Solving Problems

specify correct values to be used when composing the display of translations. For
example, by entering "no" beside Use TC reg:, a "Value" field appears where you
can specify a new value to override the TC register.

If the TC register has a disable value, you must use this form to override it with an
enable value before the emulator can read the content of the MMU tables.

Use the analyzer with the deMMUer to find MMU
mapping problems

If your system operates properly until you turn on the MMU, and then it fails, the
problem is most likely in the mappings used by the MMU to translate logical
addresses to physical addresses. You could go down the list of logical-to-physical
translations to see the mapping scheme used to translate each logical address to its
corresponding physical address, but normally that would take too much time. The
analyzer can help you identify the one, or few, logical addresses that are being
mapped incorrectly by the MMU. Then you can uséPtioeessoM MU Tables
command and enter the suspect addresses in the Address: field to look at the
mapping tables used to translate those addresses.

Failure caused by access to guarded memory

If the problem is an access to guarded memory, remember that guarded mem
guarded physical memory. You need to find the logical address that the MMU
improperly translated to guarded physical memory and then investigate the
mappings the MMU used to perform the translation.

Begin by looking at the registers displ&egisterDisplay) to see the value of the

logical address in the program counter. Then usBriteessoM MU Tables

command and specify the suspect <address> to see the path through the tables that
the MMU took when it translated that logical address to a guarded address in
physical memory. Note that the value of the program counter may have changed
after the guarded access occurred. In this case, the present address in the program
counter may map to proper physical memory.

If the present program counter address does not translate to an address in guarded
physical memory, the access to guarded memory may have been caused when your
program read or wrote to data memory before the present program counter address

265

Chapter 9: Using Memory Management

Solving Problems

appeared. Set up the analyzer to make a trace (with the deMMUer turned on) and
trigger at the logical program counter addrégsalysisTraceM odify and trigger

on the<pc addressy. Select @entertrigger so you can see activity preceding and
following the trigger point. In order to capture every transaction on the emulation
bus, qualify all states for capture.

If the access occurs again just before the program counter address you used as your
trigger specification, you should be able to read back in the trace list and find one

or more addresses that could be causing the problem. Then you can try those
suspected addresses in commaRdsgessoM MU Tables for each
<suspect_addresspto see how each of them is mapped through the MMU tables.
This should identify the error in the MMU mapping tables.

If you find a particular address that is mapped to guarded memory, and if the
problem seems to be in Table B (for example), you can look at the details of Table
B for that address by using a command, sucPaséssoMMU Tables, Address:
<suspect_address>Table levelb).

Failure due to system halt

If the emulator and/or target system simply stops operating, set up the analyzer to
trace with a trigger-never specification (Triggemanstate so that the trace will

run continuously until the system stops again. After the system halt occurs again,
read the trace list to find the addresses preceding the system halt. Use the addresses
in ProcessoMMU Tables, Address:address>commands to see how the MMU

maps each one to physical memory.

266

Chapter 9: Using Memory Management
Solving Problems

Execution breakpoint problems

If you set a breakpoint in RAM, the emulator modifies memory using a logical
address. If you set a breakpoint in ROM, the emulator translates a logical address
into a physical address and remembers the physical address as the address where it
will jam the breakpoint instruction when it is fetched. If your MMU address
translations change while breakpoints are activated, you can get the "undefined
software breakpoint" message when you run your program or or the "breakpoint
code already exists" message when you attempt to modify the breakpoints.

You set a breakpoint. Then the MMU changes its mappings. Now the logical
address where the breakpoint is to occur is translated to a different physical address.
No emulation break occurs when the logical address is translated to the new
physical address. Some different logical address is translated through the MMU to
reach the physical breakpoint address, and the emulator jams the BKPT instruction.
When the BKPT instruction is executed, it is at a point in your program where you
never set a breakpoint.

You should disable any hardware breakpoints before changing the MMU address
translations. Reenable the hardware breakpoints after the MMU address
translations have been modified.

267

Chapter 9: Using Memory Management
Solving Problems

A "can’t break into monitor" example

The following example assumes you mapped your foreground monitor beginning at
address 4000H. You connected your emulator into your target system and ran your
target program (which set up the MC68040 MMU). You tried to break into the
emulation monitor and got the message, "Can't break into monitor."

The emulator can’t break into the monitor because it can't find the monitor. The
MMU mapped the foreground monitor to physical address space that is not a 1:1
translation from logical address space.

A variety of failure modes can happen at this point. Your emulation system may
execute unknown code, or it may simply halt.

To analyze this problem, reset into the monitor with the comiiResabssoReset
Monitor.

TheReset command does not change the content of the MMU mapping tables or
registers. It only disables the "enable bit" in the TC register of the MMU. Now
you can look at the translations that are performed by the MMU to find the
translation that was applied to your foreground monitor. Enter the command:
ProcessoMMU Mappings and use the Processor MMU Mappings form to
override the TC register with 8000h (an enable value that allows the emulator to
read the MMU tables).

Remember to override the TC register value with 8000h in order to enable the
reading of the MMU tables by the emulator.

The display will show a list of the logical-to-physical address translations that will

be performed when the MMU is enabled. Find the logical address range that

contains your foreground monitor and see the physical address where it is mapped.
The physical address range needs to be the same as the logical address range for the
emulator to be able to find the monitor.

The display you get with yotrocessoM MU M appings command (with the

required value to override the TC register), might show the logical address range of
your foreground monitor mapped to physical addresses beginning at COO0H, as
follows:

Logical Address Physical Address

00004000..00004fff 0000C000..0000cfff@a

268

Chapter 9: Using Memory Management
Solving Problems

The next step in this analysis is to display the MMU mapping table for the logical
base address of the foreground monitor. You might enter the comiraaessor
MMU Tables (plus the TC register override), and enter the adte8sn the

form. Inthis example, you would see the following display of mappings:

Logical Address(hex) O 0 0 0 4 0 0 O
Logical Address (bin) 0000 0000 0000 0000 0100 0000 0000 0000
Table Level AAAA AAAB BBBB BBCC CCCC PPPP PPPP PPPP

LEVEL INDEX LOCATION CONTENTS TBL/PAGE G UxS CM M U W UDT/PDT
SRP 00000200 00000200 RESIDENT

A 000 00000200 0000040b 00000400 y n RESIDENT

B 000 00000400 0000060b 00000600 y n RESIDENT

C 016 00000640 0000cO1f 0000CO00N 00y cwyynRESIDENT

Physical Address (hex) = 0000c000

In the example display, the foreground monitor whose logical address is 4000h was
placed in physical address CO00h. Table C points to the page containing the
foreground monitor. The base address of Table C is 00000600h, and the content
used by logical address 4000h is at index 016 whose physical address is
00000640h. The content of this address is 0000C000h (the address of the page
containing the monitor).

To solve the problem in this example, you can obtain the needed 1:1 mapping
modifying the content of the MMU table directly with the following command:
MemoryM odify Long, and beside Address, en@000640@a=000040.1f

269

Chapter 9: Using Memory Management

Solving Problems

After this modification, you can get a new display of the mapping tables for logical
address 4000h to see if your modified MMU tables now map your foreground
monitor correctly. Enter the commarRiocessoMMU Tables, (include the value

to override the TC register) and enter the addt868on the form.

Logical Address(hex) O 0 0 0 4 0 0 O
Logical Address (bin) 0000 0000 0000 0000 0100 0000 0000 0000
Table Level AAAA AAAB BBBB BBCC CCCC PPPP PPPP PPPP

LEVEL INDEX LOCATION CONTENTS TBL/PAGE G UxS CM M U W UDT/PDT
SRP 00000200 00000200 RESIDENT

A 000 00000200 0000040b 00000400 y n RESIDENT

B 000 00000400 0000060b 00000600 y n RESIDENT

C 016 00000640 0000401f 00004000 n 00y cwyyn RESIDENT

Physical Address (hex) = 00004000

The above modifications will provide the proper mapping for your system until you
rerun the portion of your target program that sets up the MMU. Then the same
problem will occur again. To fix the problem permanently, you need to modify
your target program so it provides a 1:1 mapping for the address space where the
foreground monitor is located.

270

10

Emulator Commands

A complete description of all emulator commands, and what they do.

271

Chapter 10: Emulator Commands

This chapter shows all commands that you can select from PC Interface menus.
Each top-level command on the main menu (for exarRpbeessor) is shown as a
horizontal tree, with the main menu command at the left, and all of its
subcommands branching to the right. The tree also shows which subcommands
require typed-in information (such as an address), and which commands bring up a
form to be filled in. The top level commands are arranged in alphabetical order to
help you find them quickly.

In addition to showing command hierarchies, this chapter explains the purpose of
each command. However, no attempt is made to explain things like the syntax of
symbolic addresses, or how to fill in a particular form. Instead, you arehald

each command does.

272

Chapter 10: Emulator Commands
Analysis Commands

Analysis Commands

The Analysis command hierarchy is shown below. These commands are all
concerned with operation of the emulation bus analyzer. There are several
configuration items that affect the analyzer. These are coveredQuotifig
command hierarchy, later in this chapter.

Display (form)

Format (form)

Halt

Modify >—— (form)

Analysis Begin

AnalysisBegin — Starts an analyzer trace. This causes the analyzer to begin
monitoring bus activity and storing in the trace buffer any states that match your
trigger and storage qualifiers. TA@alysisTrace command, described later in this
chapter, lets you specify which states you wish to capture in the trace buffer.
However, until you actuallgtart a trace, the analyzer isn’t even “looking” at the
bus, so no states will be captured.

273

Chapter 10: Emulator Commands

Analysis Commands

=
-
=
m

Analysis CMB

AnalysisCMB Begin — Informs all emulators connected to the CMB, that upon
receipt of the next EXECUTE signal, each emulator should begin an analyzer trace.

AnalysisCMB Execute — Sends an EXECUTE signal to all analyzers. This is
exactly the same commandRmecessolCMB Execute.

Analysis Display

AnalysisDisplay — Opens the form shown in the following figure. This command
allows you to view the contents of the trace buffer. It gives you a formatted
representation of the buffer’s contents in the “Analysis” window. Because there is
usually far more information in the trace buffer than can be displayed on your
screen, the form shown below allows you to specify exactly what you wish to see.
The meanings of the fields are as shown.

fina lysis,

addr,H 686848 Mnemonic

WE=1T N b W Ne@

Jalalaalala)]
Jalalalala]a ik
BaBB2288
BaBB22682
BaBB2284
BaBB2286
BaB82288
BaBB228a
BaBB228c
BaBB228e
Bebefafc
aBBBBa2C
BebefafB
Bebefafb
BaBaBhba
=BaBaBhBb
BaBaBhbg

SBEBEFAFE sdata
Se/Be2200 sdata
Uninplemented F-Line
ADD . B D7,-(AB)
Uninplemented F-Line
ADD . B D7,-(AB)
Uninplemented F-Line
ADD . B D7,-(AB)
Uninplemented F-Line
ADD . B D7,-(AB)
SeezC——— sdata
S8ABABEBA sdata
SBABAZZ0ER sdata long
S5————2788 sdata word
BCLR D2, (S85B4,44,A5
ADD . B D7,-(AB)

BCLR D2, (S85B4,44,A5

long read
long read
Opcode: SFFFF

Opcode: SFFFF
Opcode: SFFFF
Opcode: SFFFF
urite
read
urite

urite
L=8)

word
long

L=8)

Emulation trace complete

on 5] End pi8 Oper 8
fiddress mode [Ja3d)] Start on IR
Use the TAB and Shift-TAB keys to turn dequeuwing on or off.

Start

Analysis Display Form

“States Available:” Displays the range of states available for display. Values
are dependent on the trigger position and whether countimgaisoff. If

counting ison, the number of states available is reduced from 1024 to 512,
since counting consumes states and memory. Negative states occur before the
trigger and positive states occur after the trigger, with the trigger being at zero.

274

Chapter 10: Emulator Commands
Analysis Commands

“Dequeuing:” Turns software instruction dequeuamgor off using therab or
Shift-Tab key. If dequeuing isn, a value must be entered in the “Oper” field.

“Start"/“End:” These hold the range of states to be displayed. “Start” holds the
first state and “End” holds the last state to be displayed. These values must be
contained in the “States Available” range. Each time you display the trace
buffer, these two fields are automatically modified to reflect the next of group
of undisplayed lines.

“Oper:” Used when software instruction dequeuing has been enabled, this field
will only appear during the first display of the most recent trace, or if the

“Start” state has been modified. It will hold a number that represents the
operand cycle associated with the first disassembled instruction.

“Cycles:” TheTab or Shift-Tab key is used to seleatl—to display both
operand and instruction cycles,iostr only—to display only instruction
cycles.

“Address Mode:” Thé& ab or Shift-Tab key is used to seleabsolute—to
display numeric addressesymbol—to display only symbols (when they are
available), oboth—to display a mix.

“Start on:” Appears only during the first display or the entry of a “Start” state
other than the default. THab or Shift-Tab key is used to selekligh Word
or Low Word to instruct the analyzer to disassemble instructions beginning

with the upper or lower 16 bits of captive data.

275

Chapter 10: Emulator Commands
Analysis Commands

Analysis Format

AnalysisFormat — Affects what you see when you display the trace buffer.
However, selecting this command does not actually display the trace buffer.
Instead, it lets you fill in the form and fields shown below, specifying the output
format for all subsequertnalysisDisplay commands.

Internal State Format Specification

Qualify States Clock Speed
user ENuery fast]

Labkel Fol Base Width
e |

Labkel Fol Base Width

«tl+

iInterfield movement Ctr]l +» [Field editing TAB :Bcroll choices

ETATUS : M68A48—Running user program Emulation trace complete

se the TAB and Shift-TAB keus to select the states qualified for the analyzer.

Analysis Format Form

“Qualify States:” Thél'ab or Shift-Tab key is used to seleaser—to display
user program statedackground—to display monitor program states, or
all—to display both user and monitor program states.

“Clock Speed:” Thdab or Shift-Tab key is used to selestow, fast, or very

fast The trace state and time count qualifiers are limited by the analyzer clock
rate settings as in the following table.

Analyzer clock rate Clock Speed setting Valid Count Qualifier
options

clock< 16 MHz slow Count <state>
Count time

clock< 20 MHz fast Count <state>

clock=> 20 MHz very fast Count none

276

Chapter 10: Emulator Commands
Analysis Commands

To determine the correct setting for this field use the following equation.

Processor Clock Rate
(1 + numberof wait states

Analyzer Clock Rate

Remember that the emulator requires one wait state for all accesses when the
external clock is greater than or equal to 25 MHz. Choose the data rate option
according to the data rate you calculate with the equation above. If no burst
cycles are performed, the analyzer clock speed can be set "slow".

“Label:” Use theTab or Shift-Tab key to select one of the following:

addr (for address lines)

data (for data lines)

mne (for instruction mnemonics)

stat (for processor status information)
count (state and time counts)

seq (sequencer state change indicator)
OFF (no label in this position)

(Base): If a base specification is available for the labelTabeor Shift-Tab
to select one of the following base options:

hex (hexidecimal)
bin (binary)

oct (octal)

dec (decimal)

(Width): This field appears only &ddr was chosen in the Label field. It hold
a width in the range of 4..50.

(Relative): This field appears onlydbunt was chosen in the Label field. Use
theTab or Shift-Tab key to selectel to show the count (or time) relative to
the previous state, absto show the count relative to the trigger state.

A good way to understand the relationship betweeW ttadysisFormat and

Display commands is to think of the display command as producing a report. The
format command lets you customize the columns of that report, indicating what

goes in each column (address, time stamp, etc.), the order of those columns, and the
width of each column. The display command then uses that format for all reports it
produces, until you change the format again.

277

Chapter 10: Emulator Commands
Analysis Commands

Analysis Halt

AnalysisHalt — Forces termination of the current trace, even though the trace
buffer may not be full yet. Most of the time, when you start a trace, the trace buffer
fills up quite rapidly. However, if you specify a trigger that never gets matched, or
you have a complex series of sequencer terms, the trace buffer may never fill. To
remedy the situation, you need to halt the incomplete trace, respecify your trigger
or sequence terms, and then restart the trace.

Analysis Trace

AnalysisTrace — Lets you specify the trigger, storage qualifier, and any sequence
terms you need. It does not start the trace. To do that, you need to Asalifsés
Begin command.

AnalysisTrace Reset — This resets the trace specification back to the default:
trigger on any state, and store any states after the trigger, with the trigger state
appearing as the first state in the trace buffer.

AnalysisTraceModify — This allows you to describe exactly what the trigger
pattern is, plus any storage qualifier patterns, and branch term qualifiers. The two
forms and the fields are as follows:

Internal State Trace Specification

fl While storing
Trigger om times
A Store
Branches Count Prestore Trigger position
of 1824
«ti+ Interfield movement Ctr]l +» [Field editing TAB :Bcroll choices

ETATUS : M6BA48—Running in monitor

Emulation trace halted

TAB selects a pattern or press ENTER to modify this field and the pattern values|

Analysis Trace Modify Form: Level 1

278

Chapter 10: Emulator Commands
Analysis Commands

“Count:” TheTab or Shift-Tab key is used to seletime—to count time
intervals,state—to count bus states, off—to disable counting. If the count is
set tostate then a qualifier field appears below the “Count” field.

“State Qualifier (unlabeled):” This field appears onlgtdtewas chosen in the
“Count” field. It holds a qualifier used when counting bus states. See chapter 5,
“To define a qualifier” for more information.

“Term Number (unlabeled):” This field displays the term number.TEteor
Shift-Tab key is used to selett—to insert a termD—to delete a term, or

T—to assign a trigger level. Tf is chosen, then a value must be entered in the
“Trigger on” field.

“Trigger on:” This field appears only T was entered in the “Term Number”
field. It holds a state qualifier namxeEnter> leads to the second form shown
below.

“Times:” This field holds a number that specifies how many times the qualifier
must be found before the sequencer advances to the next state. It must be a
number between 1 and 65535.

“Branches:” TheTab or Shift-Tab key is used to selemtstart on—to enable

a global restarpff—to disable the global restart, per level—to specify

individual secondary branch qualifiersréstart on is chosen, then a state
qualifier must be entered in the field below the “Branches” fieldedflevelis
chosen, then a state qualifier must be entered in the field next to the “Else on”
label.

“Branch Qualifier (unlabeled):” This field appears below the “Branches” fie
only if restart on was chosen in the “Branches” field. It holds a qualifier us
during global restarts. See chapter 5, “To define a qualifier” for more
information.

“Level Qualifier (unlabeled):” This field appears next to the “Else on” label
only if per levelwas chosen in the “Branches” field. It holds the sequence
level used for secondary branches. See chapter 5, “To define a qualifier” for
more information.

“Prestore:” TheTab or Shift-Tab key is used to seleoh—to enable a
prestore specification, @ff—to disable a previous prestore specification. If
on is chosen, then a state qualifier must be entered in the field below the
“Prestore” label.

279

Chapter 10: Emulator Commands
Analysis Commands

“Prestore Qualifier (unlabeled):” This field appears under the “Prestore” label
only if on was chosen in the “Prestore” field. It holds the prestore qualification.
See chapter 5, “To define a qualifier” for more information.

“Trigger Position:” TheTab or Shift-Tab key can be used to selstart,
center, orend. The trigger may be positioned at a specific state by typing in a
value between 1 and 512 (or 1 and 1024 if counting is off).

“Equals:” Every pattern on the screen has an “Equals” field next to ifTdalhe
or Shift-Tab key is used to selest—to set the pattern equal to an expression,
or I=—to set the pattern not equal to the expression.

Internal State Trace Specification

Set 1
Range (r) Label EEVIEN - thru
Pat addr data =tat
a 188 ead&&physical
b 1648 ack
c
d

Set 2
e
f
9
h
arm

Expression

Expressions have the form: <zetl?> and”or <{setZ>. Where setl conszists of <a,
b,c,d,r,*'r> and setZ consists of <e,f,g,h,arn>. Patterns within a set can be
Joined with !{or) or "(norl), but not both. Example: *vr " a or e | F {1 g | h
Pattern Expression: G WIE-yA-y=]

ETATUS : M6BA48—Running in monitor

Emulation trace halted

TAB selects a simple pattern or enter an expression or move up to edit patterns.

Analysis Trace Modify Form: Level 2

“Addr:” Each address field in the column holds an address expression, or can
be left blank. The expressions can be made of nhumeric expressions, symbols,
or a combination of both.

“Data:” Each data field in the column holds a data expression made of numeric
expressions, or can be left blank.

280

Chapter 10: Emulator Commands
Analysis Commands

“Stat:” TheTab or Shift-Tab key can be used to select from predefined status
qualifiers. See STATUS in the chapter titled "Expression Syntax" for a listing.
You can also enter a status expression using numeric values and combine
status qualifiers using logical operators.

“Range (r) Label:” This allows you to define a range of address or data values.
TheTab or Shift-Tab key allows you to seleeiddr or data as the group of
processor lines for which you want to define a range. If you e then

upper and lower bounds can be entered using address expressions. If you chose
data, then use data expressions.

281

Chapter 10: Emulator Commands
Breakpoint Commands

Breakpoint Commands

Shown below is the menu hierarchy for Breakpoints command. These are
debugging commands which allow you to stop your program at critical points,
examine registers and/or memory locations, then resume execution, if you wish.

Breakpoints are implemented with the BKPT instruction. When you issue
ProcessofGo command, the emulator replaces each instruction which has an
enabled breakpoint with a BKPT instruction. If your program reaches any of these
BKPT instructions, a break to monitor occurs. The emulator then replaces the
BKPT with the instruction that was originally there, and disables the breakpoint.

Breakpoints | - Add)* (farm)

Display

. -

Single (type-in)
Sef All
Single (type-in)

64783521

282

Chapter 10: Emulator Commands
Breakpoint Commands

Breakpoints Add

BreakpointsAdd — Adds a breakpoint to the list of breakpoints in your program. It
alsosetsthe breakpoint, meaning the breakpoint is enabled. When a breakpoint is
executed in your program, it is automatically disabled, or “unset”. However, the
breakpoint address is retained in the list of breakpoints. To set the breakpoint again,
you use th@reakpointsSet command.

[nlits)

mulation

finalysis

ETATUS : M6EA48—Enulation reset

Address —>

Force hardware breakpoint:
Address(s) of the new software breakpoint(s).

Ermulation trace halted

(ex. 1f8:3456)

Breakpoints Add Form

"Address:" specifies the address where the breakpoint is to be added.

"Force hardware breakpoint:" Select "yes" to force the emulator to use one of i
eight hardware resources to store the breakpoint address instead of storing the
breakpoint instruction in software. Use this option when you know that the
software might be overwritten before the breakpoint instruction is fetched. Select
"no" to have the breakpoint instruction placed at the address in memory. An
unlimited number of breakpoints can be placed within the software.

283

Chapter 10: Emulator Commands
Breakpoint Commands

Breakpoints Clear

Clearing a breakpoint “unsets” it, without removing it from the list of breakpoints.
That way, you can temporarily disable one or all breakpoints, then later enable
them quickly, without reentering the addresses from scratch.

Breakpoint<ClearAll — This command permits you to clear all the breakpoints in
the breakpoint list.

Breakpoint<ClearSingle — This command permits you to clear one of the
breakpoints in the breakpoint list.

Breakpoints Display

BreakpointdDisplay — Lists all the breakpoints in your program, and tells whether
each is enabled or not.

Breakpoints Remove

Removing a breakpoint from the list also disables it, as you might expect. If you
want to enable a breakpoint after it has been removed from the list, you must add it
to the list again.

BreakpointdRemoveAll — This permits you to remove all the breakpoints from
the breakpoint list.

BreakpointdRemoveSingle — This permits you to remove one of the breakpoints
from the breakpoint list.

Breakpoints Set

BreakpointsSet All — This permits you to set all the breakpoints in the breakpoint
list.

BreakpointsSetSingle — This permits you to set one of the breakpoints in the
breakpoint list.

Setting a breakpoint enables it. A breakpoint must be added to the list before you
can set it. When a breakpoint is encountered in your program, it is automatically
cleared (disabled). You can also explicitly clear breakpoints witBriekpoints

Clear command.

284

Chapter 10: Emulator Commands
Configuration Commands

Configuration Commands

Configuration commands allow you to customize emulator configuration for the
specific needs of your target system and programs. Configuration is divided into
two main areas: memory map configuration and general emulator configuration.
These are explained in the first few pages of “Configuring the Emulator”
(chapter 7). Th€onfig command hierarchy is shown below.

General (form)

Key Macro (form)

Load (type—in)

i

(form)

Store (type—in)

Trigger (form) .

285

Chapter 10: Emulator Commands
Configuration Commands

Config General

Config General — Allows you to modify the general emulator configuration

options. It brings up one of the forms shown below. The set of fields within the

form change, depending on which monitor is selected. The meaning of each field is
as described below.

General Emulation Conf iguration

Monitor type ey Monitor address?
Terminate monitor bus cycles? m Monitor interrupt priority level? E
Disable instructionsdata caches? [fif] Dizable memory management unit? [HE
I= clock rate greater than Z5MH=z7? m Enable interrupts from target? @
Enable breaks on writes to ROM? []} Enable software breakpoints? [[y]]
Restrict to real-time runs? [EF Enable CMB interaction? [[n 1]

Memory data access width? Initial stack pointer? ZFgYa3

Initial program counter? ZJENENG

«Tl2 ! Interfield movement Ctrle+ Field editing TAB:8croll choices [ysml

[STATUS: M6BA4A—ulation reset Ermulation trace halted
[Srecify the value loaded into the pc register after a '"Processor/Reset/Monitor"
onmand or a "Processor~ResetsHold" followed by a "Processor/Break”. The value
ust be an even address.

Config General Form, Monitor Foreground Selected

“Monitor type:” Can either be foreground, background, or none.

"Terminate monitor bus cycles?:" Allows you to specify whether the emulator
or the target system will terminate foreground monitor bus cycles.

— Typey if the monitor is in an address range where the target system
does not returiA or TEA. Monitor cycles will be terminated by
emulator-generated cycle-termination signals. Cycle termination
signals generated by the target system during access to the foreground
monitor, includingTEA, will be ignored.

— Typen if monitor cycles will be terminated when the target sysiém
and/orTEA signals are asserted. If you seleeind the monitor is in a
range where the target system does not ratArand/orTEA, the
emulator will stop.

286

Chapter 10: Emulator Commands
Configuration Commands

General Emulation Conf iguration

Monitor type ey Target system keep alive? [EEEUIEN

I= clock rate greater than Z5MH=z7? m Enable interrupts from target? @
Enable breaks on writes to ROM? []} Enable software breakpoints? [[y]]
Restrict to real-time runs? [EF Enable CMB interaction? [[n 1]
Memory data access width? Initial stack pointer?

Initial program counter? ZJENENG

«Tl2 ! Interfield movement Ctrle+ Field editing TAB:8croll choices [ysml

STATUS : M6BA4A—Emulation reset Ermulation trace halted
[Srecify the value loaded into the pc register after a '"Processor/Reset/Monitor"

onmand or a "Processor~ResetsHold" followed by a "Processor/Break”. The value
ust be an even address.

Config General Form, Monitor Background Selected

General Emulation Conf iguration

Monitor type none |

Disable instructionsdata caches? [fif] Disable memory management unit? [§]

Is clock rate greater than 25MHz? [Ef] Enable interrupts from target? [ITF]

«Tl2 ! Interfield movement Ctrle+ Field editing TAB:8croll choices [ysml

STATUS: M6BA—Enulation reset Ermulation trace halted
=e the tab key to select the type of monitor to be used. The foreground monitor

l=hould be selected when using the MMU-scaches or uhen interrupts must be serviced
hile the monitor is ruming. For initial plug—in "wone' may be useful.

Config General Form, Monitor None Selected

287

Chapter 10: Emulator Commands

Configuration Commands

"Disable instruction/data caches?:" Allows you to select whether the processor
caches will be active. If the caches are disabled, all instruction and data
transactions will appear on the processor buses where they can be captured by
the emulation-bus analyzer. If the caches are enabled, transactions will be
completed in the fastest and most efficient manner, but trace analysis and trace
triggering may be difficult.

“Is clock rate greater than 25MHZ?:” Enables one wait state if clock is greater
than 25MHZ.

“Enable breaks on writes to ROM?:” Type y if you want the emulator to break
to the monitor when a write to ROM is detected.

“Restrict to real-time runs?:” Restricts the emulation to real-time runs. If you
enable this configuration item, the emulator will break to the monitor only with
the ProcessoReset ProcessoBreak,ProcessofGo, andProcessofstep
commands.

"Memory data access width?:" Specifies the type of microprocessor cycles that
are used to read or write values to memory. Sdtatt care if you want the
emulator to select the optimum access size. Sajtesif the emulator should
make only 8-bit accessegords if only 16-bit accesses, atwhgsif the

emulator should make only 32-bit accesses.

“Monitor address?:" Specify the base address for the foreground monitor.

"Monitor interrupt priority level?:" Enter a number from 0 to 7. Interrupts
having values higher than the number you enter here will be recognized by the
emulation processor during foreground monitor execution.

Disable memory management unit?:" Setetd let the MMU of the

emulation processor control placement of the target program in physical
memory. The target system will be able to enable and disable the MMU with
the MDIS signal. Selecgt to have the emulator disable the MMU with the
MDIS signal.

"Target system keep alive?:” Sets the background monitor keep alive address.
To enable the target system keep-alive function, type in a hex address with
optional function code. To disable the keep-alive function, select disabled.

“Enable interrupts from target?:” To enable target system interrupt signals to
reach the emulation processor, type

288

Chapter 10: Emulator Commands
Configuration Commands

“Enable software breakpoints?:” Allows you to enable or disable software
breakpoints.

“Enable CMB interaction?:” Allows you to enable or disable multiple emulator
start/stop synchronization. Typdf you want this emulator to respond to
synchronized runs and breaks via the CMB.

“Initial stack pointer?:” Presets the interrupt stack pointer. This field holds the
address of the pointer.

“Initial program counter?:” Presets the program counter.

289

Chapter 10: Emulator Commands
Configuration Commands

Config Key_Macro

Config Key_Macro — Allows you to define key macros. You can define function
keys F1-F10. After selecting the key that will be used to define the macro
definition, you can enter the macro definition in the last field.

ode

mulation

fmaluysis

STATUS : M6BA4A—Emulation rese Enulation trace halted

Def ine macro for 4N Definition terminated by (XN

=e TAB and Shift-TAB to select the key for uwhich this definition is being made.

Config Key_Macro Form

“Define macro for:” Specifies the function key to which the macro is assigned.

“Definition terminated by:” Specifies the key that allows you to exit the macro
definition. You can select <ESC> or one of the function keys.

“(macro definition field):” Contains the keystrokes that execute PC Interface
commands. The key you defined in the “Definition terminated by” field is used
to exit the macro definition.

Config Load

The Config Load command lets you load configuration information from a file that
was stored previously with th@onfig Store command. This loads all information
accessed via tHeonfig General command, thd emoryMapM odify command,

and theAnalysisFormat form.

290

Chapter 10: Emulator Commands
Configuration Commands

Config Map
These commands are used to describe the memory map.
Config MapReset — Resets the memory map configuration to the default values.

Config MapM odify — Opens the following form and allows you to modify the
memory map as follows:

"Unmapped memory type:" Specifies the characterization of memory ranges

Menory Map Conf iguration
Unmapped memory: Tupe By Attribute

Address Range Type Attribute

p:lock,tci

«ti+ Interfield movement Ctr]l +» [Field editing TAB :Bcroll choices

ETATUS : M6EBA48—Enulation reset Emulation trace halted

Use the TAB and Bhift-TAB keys to pick memoruy tuype for unmapped ranges.

Config Map Modify Form

not mapped. Use tieb or Shift-Tab key to selectram, trom, orgrd.

“Unmapped memory attribute:” Specifies whether the transfer cache is
inhibited or not in unmapped memory ranges. Usd #thekey to selectci if

you want to prevent data that is sent to unmapped ranges from being written
into the caches. Leave the field blank if you are willing to let data sent to
unmapped ranges also be written into the caches.

“Term (1-8):” You can map up to 8 memory ranges. The resolution of mapped
ranges is 256 bytes.

“Address Range:” Specifies the address range to be characterized by the
mapper.

291

Chapter 10: Emulator Commands

Configuration Commands

“Type:” Characterizes the type of memory to be used for the address range.
You can use th&ab or Shift-Tab key to seleceram—emulation RAM,
erom—emulation ROMtram—target RAM,trom—target ROM,
grd—guarded, odp—dual-port memory.

“Attribute:” Specifiesdp, lock, tci, or none as the memory attribute. Setfgct

to indicate that this block is to reside in the special 4-Kbyte block of dual-port
emulation memory on the probe. Seleck to indicate that the target system
(TA andTEA) and emulation cycle termination signals should be interlocked
for this memory range only. Seldct to indicate that read data will not be
written into the instruction and/or data caches for transactions within this
memory range.

Config Store

Config Store — Saves the PC Interface configuration into a named file.

Config Trigger

Config Trigger — Defines the devices that drive and receive the internal TRIG1

and

TRIG2 signals. The analyzers can drive these internal signals, which can then

drive signals on the CMB and BNC ports. The analyzers can be armed (activated)
on the reception of these signals. Emulator execution can break into the monitor on
reception of these signals. The form and fields are as follows.

“BNC:” The Tab or Shift-Tab key is used to seledtive, receive both, or
ignore.

“CMB:” The Tab or Shift-Tab key is used to seledtive, receive both, or
ignore.

“Emulator:” TheTab or Shift-Tab key is used to selemceiveorignore.
Upon receipt, the emulator will break back to monitor operation.

“Analyzer:” TheTab or Shift-Tab key is used to seledtive, receive or
ignore.

292

Chapter 10: Emulator Commands
Configuration Commands

Cross Trigger Configuratiom
TRIG1 TRIGZ
i, olli gnore | BNC
oLl gnore | CMB
Enulator ATOEel Emulator
fnalyzer [T fmalyzer
«Tl+ Interfield movement Ctrl ¢+ [Field editing TAB :Bcroll choices

STATUS : M6BA4A—Emulation reset Ermulation trace halted
The BNC (trigger in“ out) conmection on the emulator may either drive (

receive (<<), drive & receive (£ >>) or ignore the TRIG1 and TRIGZ
ontrol zignals.

Config Trigger Form

293

Chapter 10: Emulator Commands
Memory Commands

Memory Commands

TheMemory command hierarchy is shown below. These commands are all
concerned with memory operation.

= Copy >—> (type—in)
: - Byte >—> (type—in)
\>< Long >—> (type—in)
\{Mmemomc} (type—in)
\>< Word >—> (type—in)

(type—in)

- -
K{ Lood } (form)

— - Byte >—> (type—in)
\{ Long >—> (type—in)
\{ Word } (type—in)
L—(Store >» (form)

Memory Copy

The MemoryCopy command copies the contents of one range of memory to
another.

Memory Display

MemoryDisplayByte — Displays, in byte format (8-bit), the contents of the
memory locations specified.

294

Chapter 10: Emulator Commands
Memory Commands

MemoryDisplayM nemonic — Displays, in disassembled mnemonic format, the
contents of the memory locations specified.

MemoryDisplay Repetitively — Repetitively displays the contents of the memory
locations specified by the last memory display command.

MemoryDisplayWord — Displays, in word format (16-bit), the contents of the
memory locations specified.

MemoryDisplayL ong — Displays, in word format (32-bit), the contents of the
memory locations specified.

Memory Find
MemoryFind — Searches a range of memory for a data pattern. The fields are:
ode
mulation
fmaluysis

STATUS : M6BA4A—Emulation reset
Memory range —>
Data pattern -

Ermulation trace halted

Memory range to search. (ex. B. Bffff)

Memory Find Form

“Memory range:” Specifies the range of memory in which to search for the
data pattern

“Data pattern:” Specifies the data pattern to be searched for. Up to eight byte
of data are expected. You can search for ASCII strings enclosed by string
delimiters.

295

Chapter 10: Emulator Commands
Memory Commands

Memory Load

MemoryL oad — Accesses the following form which in turn allows you to load an
absolute file into memory.

Memory Load Cownf iguration

File Format IEEE-695
Target memory type for memory load T
Force the absolute file to be read no |

Delete a leading underscore character from symbol names YEg

File name

«Tl+ Interfield movement Ctrl ¢+ [Field editing TAB :Bcroll choices

STATUS : M6BA4A—Emulation reset Ermulation trace halted
=e the TAB and Shift-TAB keys to select the absolute file format.

Memory Load Form

“File Format:” Specifies the format of the absolute file to be loaded. You can
use theTab or Shift-Tab key to selectEEE-695, HP6400Q Raw HP64000
Intel_Hex, Motorola_Hex, orExt_ Tek_ Hex

When you select thiEEE-695 option, an absolute file name is expected. The
extension of an IEEE-695 absolute file cannot be “.HPA” or “.HPS".

When you select thedP64000option, a linker symbol file name is expected.
The extension of a HP 64000 linker symbol file is “.L".

“Target memory type for memory load:” Specifies the type of memory into
which the absolute file should be loaded. You can us€aher Shift-Tab

key to select emulation memory, target system memory, both, or a custom
foreground monitor.

296

Chapter 10: Emulator Commands
Memory Commands

“Force the absolute file to be read:” When loading IEEE-695 or HP64000
format absolute files, this option can force the absolute file reader to be run. If
you don't force the absolute file reader to be run, it may or may not be run
depending on the creation date/time of the memory image (.HPA) and symbol
(.HPS) files. You can select: no, yes.

“Delete a leading underscore character from symbol names:” When loading
IEEE-695 files, you can cause any leading underscores to be deleted from
symbol names. You can use ffeb or Shift-Tab key to selectyesor no.

“File name:” Specifies the name of the absolute file.

Memory Modify

MemoryM odify Byte — Maodifies, with byte (8-bit) values, the contents of the
memory locations specified to the values specified.

MemoryM odify Word — Modifies, with short (16-bit) values, the contents of the
memory locations specified to the values specified.

MemoryM odify Long — Modifies, with word (32-bit) values, the contents of the
memory locations specified to the values specified.

297

Chapter 10: Emulator Commands
Memory Commands

Memory Store

MemoryStore — Saves the contents of memory locations into an absolute file. The
fields are as shown:

ode

mulation

fmaluysis

STATUS : M6BA4A—Emulation reset
File Format [EURGIEELGGE Memory range —>

Abzolute file name
Use the TAB and Shift-TAB keys to select the abzolute file format.

Ermulation trace halted

Memory Store Form

“file format:” Sets the format of the absolute file. You can usd #ieor
Shift-Tab key to selecRaw HP64000 Intel_Hex, Motorola_Hex, or
Ext Tek Hex

“memory range:” Specifies the range of memory locations to be saved to the
absolute file.

“absolute file name:” Specifies the name of the absolute file.

298

Chapter 10: Emulator Commands
Processor Commands

Processor Commands

TheProcessor command hierarchy is shown below. These commands are all
concerned with the operation of the processor.

MMU = MC‘DDH’WQSH (form) ‘

Tables H (far n) ‘

Load H (form) ‘
Verbose_Load (form)
Store H (form) ‘

@ - Address F{ (forn) ‘
Events ﬂ (forn) ‘
64783520 PC H (type-in ‘

299

Chapter 10: Emulator Commands
Processor Commands

Processor Break

ProcessoBreak — Breaks emulator execution into the monitor.

Processor CMB
ProcessolCMB Execute — Issues a CMB EXECUTE signal.

ProcessolCMB Go Address — Specifies the address for the emulator to execute
from on the reception of the CMB EXECUTE signal.

ProcessolCMB Go Pc — Specifies that the emulator execute from the current
program counter address upon reception of the CMB EXECUTE signal.

Processor Go

ProcessofGo Address — Starts emulator execution of the user program at the
specified address.

ProcessofGo Pc — Starts emulator execution of the user program at the current
program counter address.

ProcessofGo0 Reset — Runs the emulator from the reset state.

300

Chapter 10: Emulator Commands
Processor Commands

Processor MMU

ProcessoM MU Mappings — Instructs the emulator to list the present
logical-to-physical mappings controlled by the TC, SRP, URP, ITTO, ITT1, DTTO,
and DTT1 registers, and the present MMU tables. Opens the following form:

Processor MMU Mappings

Address(range) NS SSEE RS
Uze TC reg:
Uze 3RF reg:
Uze URF reg:
Uze ITTA reg:
Uze ITT1 reg:
Uze DTTA reg:
Uze DTT1 reg:

ETATUS: M6BA48—Emulation

Emulation trace halted

reset

[Enter the addresz(or range) for uvhich mappings will he displayed. Blank for all.

Processor MMU Mappings Form

Address(range):" Specifies a logical address reference for the MMU
information to be displayed.

"Use TC reg:" Specifies a value to be used as the TC (translation control)
register when reading the tables and showing the address mappings. If you
selectyes the current register value is used. If you selecyou can type in a
value to be used.

"Use SRP reg:" Specifies a value to be used as the SRP (supervisor root
pointer) when reading the tables and showing the address mappings. If you
selectyes the current register value is used. If you selecyou can type in a
value to be used.

"Use URP reg:" Specifies a value to be used as the URP (user root pointer)
when reading the tables and showing the address mappings. If yoyesglect

301

Chapter 10: Emulator Commands

Processor Commands

the current register value is used. If you selecyou can type in a value to
be used.

"Use ITTO reg:" Specifies a value to be used as the ITTO (instruction
transparent translation register 0) when reading the tables and showing the
address mappings. If you selges the current register value is used. If you
selectno, you can type in a value to be used.

"Use ITT1 reg:" Specifies a value to be used as the ITT1 (instruction
transparent translation register 1) when reading the tables and showing the
address mappings. If you selges the current register value is used. If you
selectno, you can type in a value to be used.

"Use DTTO reg:" Specifies a value to be used as the DTTO (data transparent
translation register 0) when reading the tables and showing the address
mappings. If you selegis the current register value is used. If you select
no, you can type in a value to be used.

"Use DTT1 reg:" Specifies a value to be used as the DTT1 (data transparent
translation register 1) when reading the tables and showing the address
mappings. If you selegies the current register value is used. If you select
no, you can type in a value to be used.

302

Chapter 10: Emulator Commands
Processor Commands

ProcessoMMU Tables — Instructs the emulator to show the translation path
through the MMU tables for a single logical address, or show details of one table
used in the translation of a single logical address. Opens the following form:

Processor MHU Tables
Table level:SEHl

ETATUS: M68A4H—Emulation reset Emulation trace halted

Enter the address for which tabhles will he displayed.

Processor MMU Tables Form

Address(range):" Specifies a logical address reference for the MMU
information to be displayed.

"Table level:" Specifies display of the content of the selected translation ta
at the point referenced by the logical address specified in the form.

"Use TC reg:" Specifies a value to be used as the TC (translation control)
register when reading the tables and showing the details of the selected table.
If you selectyes the current register value is used. If you selecyou can

type in a value to be used.

"Use SRP reg:" Specifies a value to be used in place of the present content of
the SRP (supervisor root pointer) when reading the tables and showing the
details of the selected table. If you selexg the current register value is used.

If you selecho, you can type in a value to be used.

"Use URP reg:" Specifies a value to be used as the URP (user root pointer)
when reading the tables and showing the details of the selected table. If you

303

Chapter 10: Emulator Commands

Processor Commands

selectyes the current register value is used. If you selecyou can type in a
value to be used.

"Use ITTO reg:" Specifies a value to be used as the ITTO (instruction
transparent translation register 0) when reading the tables and showing the
details of the selected table. If you selgxg the current register value is used.
If you selecho, you can type in a value to be used.

"Use ITT1 reg:" Specifies a value to be used as the ITT1 (instruction
transparent translation register 1) when reading the tables and showing the
details of the selected table. If you selexg the current register value is used.
If you selecho, you can type in a value to be used.

"Use DTTO reg:" Specifies a value to be used as the DTTO (data transparent
translation register 0) when reading the tables and showing the details of the
selected table. If you sele@s the current register value is used. If you select
no, you can type in a value to be used.

"Use DTT1 reg:" Specifies a value to be used as the DTT1 (data transparent
translation register 1) when reading the tables and showing the details of the
selected table. If you selgas the current register value is used. If you select
no, you can type in a value to be used.

304

Chapter 10: Emulator Commands
Processor Commands

ProcessoDeMMU Load and Verbose Load — Causes the emulatorto read the
MMU registers and interpret the translation tables to load the deMMUer. Opens
the following form:

ProcessoDeMMU Verbose Load — This sets the verbose mode for the
deMMUer load function. A list is displayed of the physical address ranges that will
be reverse-translated by the deMMUer. Opens the following form:

Processor DeMMU Load Register Ouerrides

Use
Use
Use
Use
Use
Use
Use

reqg:
reqg:
reqg:
reqg:
reqg:
reqg:
reqg:

ETATUS: M6BA48—Emulation

reset Emulation trace halted

The TAB key =elects whether or not to use the current TC register value.

Processor DeMMU Load and Verbose_ Load Form

"Use TC reg:" Specifies a value to be used as the TC (translation control)
register when reading the MMU registers and interpreting the translation t
to load the deMMUer. If you seleges the current register value is used. If
you selecho, you can type in a value to be used.

"Use SRP reg:" Specifies a value to be used in place of the present content of
the SRP (supervisor root pointer) when reading the MMU registers and
interpreting the translation tables to load the deMMUer. If you sgigathe
current register value is used. If you sefegtyou can type in a value to be
used.

"Use URP reg:" Specifies a value to be used as the URP (user root pointer)
when reading the MMU registers and interpreting the translation tables to load

305

Chapter 10: Emulator Commands
Processor Commands

the deMMUer. If you selegtes the current register value is used. If you
selectno, you can type in a value to be used.

"Use ITTO reg:" Specifies a value to be used as the ITTO (instruction
transparent translation register 0) when reading the MMU registers and
interpreting the translation tables to load the deMMUer. If you sgtgcthe
current register value is used. If you sefegtyou can type in a value to be
used.

"Use ITTL1 reg:" Specifies a value to be used as the ITT1 (instruction
transparent translation register 1) when reading the MMU registers and
interpreting the translation tables to load the deMMUer. If you sgtgcthe
current register value is used. If you sefegtyou can type in a value to be
used.

"Use DTTO reg:" Specifies a value to be used as the DTTO (data transparent
translation register 0) when reading the MMU registers and interpreting the
translation tables to load the deMMUer. If you sejest the current register
value is used. If you selead, you can type in a value to be used.

"Use DTT1 reg:" Specifies a value to be used as the DTT1 (data transparent
translation register 1) when reading the MMU registers and interpreting the
translation tables to load the deMMUer. If you sejest the current register
value is used. If you selewd, you can type in a value to be used.

306

Chapter 10: Emulator Commands
Processor Commands

ProcessoDeMMU Enable — This causes your analyzer to receive logical
addresses translated by the deMMUer according to the translation tables in place, or
the demmuer file content, when you last loaded the deMMUer.

ProcessoDeMMU Disable — This causes your analyzer to receive physical
addresses if the MMU is enabled. The analyzer can only show hexadecimal values
for those physical addresses. They may not correspond to the logical addresses of
your program code. Note that until the MMU is enabled in hardware and software,
addresses will be logical. Only after the MMU is enabled is there a distinction.

ProcessoDeMMU File Load — This lets you load a file that contains an MMU
setup. The deMMUer will configure itself to reverse translate addresses for the
MMU setup in this file instead of the MMU setup in the emulation processor.

ProcessoDeMMU File Verbose_Load — This lets you load a file that contains an
MMU setup. The deMMUer will configure itself to reverse translate addresses for
the MMU setup in this file instead of the MMU setup in the emulation processor.
The display will show you the ranges of address that will be reverse translated by
the deMMUer.

ProcessoDeMMU File Store — Use this feature to overcome problems when the
deMMUer is unable to reverse translate all of the address ranges contained in the
present setup of the MMU. This command lets you store a file that contains the
present setup of the MMU. You can use an editor of your choice to remove address
ranges that you do not need to have reverse translated by the deMMUer. Then you
can load this file (using one of tReocessoDeMMU File ... commands above).

The deMMUer will configure itself to reverse translate addresses for the MMU

setup in this file instead of the MMU setup in the emulation processor.

307

Chapter 10: Emulator Commands
Processor Commands

ode

mulation,

finaly=sis

Emulation trace halted

ETATUS: M6BA4A—FRumming in monitor

File name:
Enter the name of the file which contains the DeMMUer information.

Processor DeMMU File Load/Verbose Load/Store Form

"File name:" Allows you to enter a DOS file name, along with its complete
path name, to either store the present MMU setup or to be loaded into the
deMMUer to configure it to provide reverse translations.

Processor Reset

ProcessoResetHold — Resets the emulation processor, and holds the emulation
processor in the reset state.

ProcessoResetM onitor — Resets the emulation processor, and breaks emulator
execution into the monitor.

308

Chapter 10: Emulator Commands
Processor Commands

Processor Step

ProcessofStep Address — Instructs the emulator to step a number of instructions
(1 to 99) from the address specified. Opens the following form:

ode

mulation

fmaluysis

ETATUS : 68A4A—Emulation reset
of instructions to single step -> il
Address -2

Enmulation trace halted

Mumber of instructionz to single step. (Max. 99)

Processor Step Address Form

“# of instructions to single step:” Specify the number of instructions to step.
The step defaultis 1.

“Address:” Starting address of instruction stepping.

ProcessofStep Events — Specifies whether registers are displayed, whether
instruction mnemonics are displayed, and whether a command file should be
executed on the completion of a step instruction.

309

Chapter 10: Emulator Commands
Processor Commands

ode:

mulation,

fmaly=sis

ETATUS: M6BA4A——Emtion reset Emulation trace halted
Display Registers? [ffl] Display Mnemonics? [N
Run command file
Ehould registers he displayed upon completion of step count? (Y¥Y/N)

Processor Step Events Form

“Display Registers?:” Specifies whether registers should be displayed after a

step command. You can select: y, n.

“Display Mnemonics?:” Specifies whether instruction mnemonics should be

displayed after a step command. You can select: y, n.

“Run command file:” Specifies the name of a command file to be run on the

completion of a step instruction.

Processofstep PC — Instructs the emulator to step a number of instructions (1 to

99) from the current program counter address.

310

Chapter 10: Emulator Commands
Register Commands

Register Commands

(type-in)

ka—< Closs)ﬂv (type-in)

Maodify >—> (Form)

64783527

Register Display
RegisterDisplay All — Displays the contents of all the registers.

RegisterDisplay Single — Displays the contents of a specified registers.

Register Modify

RegisterM odify — Modifies the contents of the register specified to the value
specified. You specify the register and its contents with the following form and

fields .

311

Chapter 10: Emulator Commands
Register Commands

ode

mulation

fmaluysis

BTATUS . M6BA4A—Ruming in monitor Enmulation trace halted
Modify Register —» 0d

To Value —2>
Use the TAB and Shift-TAB keys to pick the regiszter name.

Register Modify Form

“Modify Register:” — You can use thEab or Shift-Tab key to select
registers as shown in the following table.

Register Class Register Names

Basic pc, st, usp, isp, msp, cacr, d0..d7, a0..a7, vbr, dfc, sfc
Fpu fpcr, fpsr, fpiar, fp0..fp7

Mmu dtt0, dtt1, ittO, ittl, mmusr, tc, srp, urp

“To Value:” — Specifies the value that the register chosen in the “Modify
Register” field should be set to.

312

Chapter 10: Emulator Commands
System Commands

System Commands

The System command hierarchy is shown below. The commands are all concerned
with system operation.

Command (type—in)

No _Save

Unlocked

Disable

Enable >—’ {type—in)

MS—-DOS Command (type—in)

Fork)—’(MS—DOS Command Shell)

K—(Symbols (Menu — See the System Symbols description

%Terminol (Terminal Interface Window)

Measurement

Time

313

Chapter 10: Emulator Commands

System Commands

System Command

SystemCommand — Executes PC Interface commands from the named command
file.

System Exit

SystemExit L ocked — Exits the PC Interface, and specifies that the current
configuration will be present the next time you start up the PC Interface.

SystemExit No_save — Exits the PC Interface and specifies that the configuration
present when you entered the PC Interface will be present the next time you start up
the PC Interface.

SystemExit Unlocked — Exits the PC Interface without saving the current
configuration.

System MS-DOS

SystemM S-DOSCommand — Allows you to enter MS-DOS commands from the
PC Interface.

SystemM S-DOSFork — Forks an MS-DOS shell. You must enter the MS-DOS
EXIT command to return to the PC Interface.

Note that when using th&ystemM S-DOS ...” commands, do not run any

programs that modify the RS-232 ports. Also, you should not run any programs that
consume memory without returning it to the host computer. Some examples
include: operating HP AdvanceLink, starting a LAN (Local Area Network)
connection, and copying files from another computer system. Also, you will not be
able to execute any commands that require large amounts of system memory, such
as compilers, complex text editors, and so on. You can use the MS-DOS CHKDSK
command to determine the amount of free memory available after you fork the
system.

System Log

SystemL og I nputDisable — Turns off the logging of PC interface commands and
command input.

314

Chapter 10: Emulator Commands
System Commands

SystemL og I nputEnable — Causes subsequent PC Interface commands and
command input to be logged to the specified file. The saved commands may be
used later as command files.

SystemL og OutputDisable — Turns off the logging of the output from PC
Interface commands.

SystemL og OutputEnable — Causes the output of subsequent PC Interface to be
logged to the specified file. This command is useful if you want to save the results
of a series of PC Interface commands.

SystemL og Both Disable — Turns off the logging of PC Interface commands,
command input, and command output.

SystemL og Both Enable — Causes subsequent PC Interface commands, command
input, and the output from the commands to be logged to the specified file. This
command is useful if you want to save the input and output of a series of PC
Interface commands.

System Symbols

Global

< System)—{ Symbols

Load H (type—in) ‘

Remove

Transfer

Display >——{ (type—in) I

Load

Remove

Local

Group H (type—in) ‘

SystemSymbolsGlobal Display — Displays global symbols.

SystemSymbolsGlobal Load — Associates the PC interface with a symbol
database

315

Chapter 10: Emulator Commands
System Commands

SystemSymbolsGlobal Remove — Removes global symbols from the emulator.

SystemSymbolsGlobal Transfer — Transfers global symbols into the emulator so
that they can appear in mnemonic memory displays and in trace displays.

SystemSymbolsL ocal Display — Displays local symbols from a specified module
name.

SystemSymbolsL ocalL oaded — Display the local symbols that were previously
transferred to the emulator.

SystemSymbolsL ocalRemoveAll — Removes all local symbols previously
transferred into the emulator.

SystemSymbolsL ocalRemoveGroup — Removes the local symbols from the
specified modules that were previously transferred into the emulator.

SystemSymbolsL ocal TransferAll — Transfers all local symbols into the
emulator so that they can appear in mnemonic memory displays and in trace
displays.

SystemSymbolsL ocal TransferGroup — Transfers the local symbols from the
specified modules into the emulator so that they can appear in mnemonic memory
displays and in trace displays.

System Terminal

SystemT erminal — Provides a terminal emulation window that allows you to
access the HP 64700’s Terminal Interface. Use the Terminal Intbefgcer ?
command for information. EntexCtrl>\ to abort the Terminal Interface. Use
<Ctrl> A to cycle through the active windows.

System Wait

SystemWait Key — Causes the PC Interface to wait until any key is pressed
before allowing further entry of commands. This command is typically used in
command files to stop the execution of PC Interface commands at a certain point.

316

Chapter 10: Emulator Commands
System Commands

SystemWait Measurement — Causes the PC Interface to wait until the emulation
analyzer measurement is complete before allowing further entry of commands. This
command is typically used in command files to delay the execution of PC Interface
commands until after the trace measurement is complete.

SystemWait Time — Causes the PC Interface to wait a specified number of
seconds before allowing further entry of commands. This command is typically
used in command files to delay the execution of PC Interface commands at a
certain point.

317

Chapter 10: Emulator Commands
Window Commands

Window Commands

TheWindow command hierarchy is shown below. The commands are all
concerned with the operation of windows.

|
K{ Delete H (type in) \
\ﬂ{ Brose H (type—in) \
N Lood) (ype-in) |
\»< Open H (form) \
N~ store)+ (type in) |

Window Active

Window Active — Selects the active window by entering the window name. You
can also useCtrl> A to cycle through windows.

Window Delete

Window Delete — Deletes the user-defined window whose name is typed in.

318

Chapter 10: Emulator Commands
Window Commands

Window Erase

Window Erase — Erases the contents of the window whose name is typed in. You
can also useCtrl> e to erase the contents of the active window.

Window Load

Window L oad — Loads the window with the contents of the specified text file.
This should not be confused with loading emulator memory. The fields are as
follows:

ode

mulation

fmaluysis

STATUS : M6BA4A—Runn in monitor
Window Load —2> [NUNERST)]
From file —> ISl

Enter the name of the file to be loaded.

Enmulation trace halted

Window Load Form

“Window Load:” TheTab or Shift-Tab key is used to select the window to
load from the list of active windows.

“From File:” TheTab or Shift-Tab key can be used to select the name of the
file to load into the specified window. Or, the name of the file can be typed in.

Window Open

Window Open — Creates and defines parameters for a user-defined window. The
fields are:

“Window Open:” Specifies the name of the user-defined window to open.

319

Chapter 10: Emulator Commands
Window Commands

ode

mulation

fmaluysis

M6BA4A—Rumiming in monitor Emulation trace halted
Window Open —2>

Buffer =zize

Bottom row Wi Autoclear? (TN
28 Right edge [Display? [yl

Enter the name of the new window being opened.

Window Open Form

“Top row:” Specifies the row number (1 to 20) of the window’s top row.

“Bottom row:” Specifies the row number (1 to 20) of the window’s bottom
row.

“Autoclear?:” Specifies whether the contents of the window are cleared prior
to each time it is written to. You can select: y, n.

“Buffer size:” Specifies the number of rows (20 to 1030) of buffer space that
can be used by the window.

“Left edge:” Specifies the column number (0 to 79) of the window’s left edge.

“Right edge:” Specifies the column number (0 to 79) of the window’s right
edge.

“Display?:” Specifies whether the window should be displayed after it is
opened. You can selegtorn.

320

Chapter 10: Emulator Commands
Window Commands

Window Store

Window Store — Saves selected lines from the window to a specified file. This
command can be used to print window contents by specifying as the destination the
name of the printer device (LPT1 for example). The fields are:

finalusis

addr,H 68648 Mnemonic

BB18BaS5c BEQ.B SAA1ABAGY

=AA1BAa5e incomplete instr.: A4EVB/ TS
AB1APa48 Unimplemented F-Line Opcode: SF738
=AA1AAada TST.L (5F6A8,PC)

=AA18Aade TST.B (SF6B8,PC)

=AA18Aa5Z2 BEQ.B SAA1ABA4E

BB18Ba54 MOVEC CaACR, DB

BB188a58 BCLR #51F, D8

AB1AA1AE SA8————— log =data byte read
BB18BaS5c BEQ.B SAA1ABAGY

=AA1BAa5e incomplete instr.: A4EVB/ TS
AB1APa48 Unimplemented F-Line Opcode: SF738
=AA1AAada TST.L (5F6A8,PC)

=AA18Aade TST.B (SF6B8,PC)

=AA18Aa5Z2 BEQ.B SAA1ABA4E

BB18Ba54 MOVEC CaACR, DB

BB188a58 BCLR #51F, D8

BTATUS . M6BA4A—Ruming in monitor Ermulation trace complete

Window Store —> LEIITEIES il Thru line —> 1

Destination - [AAN
Use the UP and DOWUN cursor keus to pick the line number.

Window Store Form

“Window Store:” TheTab or Shift-Tab key can be used to select the name of
the window.

“From Line:” Specifies the first window line in the range of lines to be stor
“Thru Line:” Specifies the last window line in the range of lines to be store

“Destination:” Specifies the destination file that the window lines are to be
stored in.

321

Chapter 10: Emulator Commands
Window Commands

Window Utility

Window Utility Color — Specifies the monitor type and the foreground and
background colors if the monitor type is color. The fields are as follows:

ode

mulation

fmaluysis

BTATUS . M6BA4A—Ruming in monitor
Monitor Type

Emulation trace complete
Foreground Color [JET=H Background Color

Use the TAB and Shift-TAB keys to pick the monitor tupe.

Window Utility Color Form

“Monitor:” The Tab or Shift-Tab key can be used to select the monitor type,
color or monochrome

“Foreground Color:” Th@ab or Shift-Tab key can be used to select the
foreground color itolor was chosen for the monitor type.

“Background Color:” Thdab or Shift-Tab key can be used to select the
background color i€olor was chosen for the monitor type.

Window Utility Hide — Causes the specified window to be hidden from the PC
Interface display. Enter the window name in the following field to hide it.

“Window Utility Hide:” Specify the name of the window to be hidden.

322

Chapter 10: Emulator Commands
Window Commands

Window Utility Parameters — Allows you to customize the parameters of the
specified window. You can change the top and bottom rows, the left and right
edges, whether the contents of the window are cleared prior to each time it is
written to, and whether information updated all at once. The form and fields are as

follows:
ode:
mulation,
fmaluysis
BTATUS . M6BA4A—Ruming in monitor Enulation trace complete

Window Parm —> [NUNERST)] Top rouw H Bottom row 3 Autoclear? (TN
Buffer szize A Left edge i Right edge 3 Scroll? [yl

Use the TAB and Shift-TAB keys to pick the window name.

Window Utility Parameters Form

“Window Parm: Specifies the name of the window whose parameters you wish
to change. Tha&ab or Shift-Tab key can be used to select the window nam
from the list of active windows.

“Top row:” Specifies the row number (1 to 20) of the window’s top row.

“Bottom row:” Specifies the row number (1 to 20) of the window’s bottom
row.

“Autoclear?:” Specifies whether the contents of the window are cleared prior
to each time it is written. You can selgairn.

“Buffer size:” Specifies the number of rows (20 to 1030) of buffer space that
can be used by the window.

“Left edge:” Specifies the column number (0 to 79) of the window’s left edge.

323

Chapter 10: Emulator Commands
Window Commands

“Right edge:” Specifies the column number (0 to 79) of the window’s right
edge.

“Scroll?:” Specifies whether the window should be displayed after it is
modified. You can selegtorn.

Window Utility Search — Searches for a string between the specified line numbers
in a window. The fields are:

ode

Enulatio

finalysis

[ETATUS : M6BA4A—Runming in monitor Emulation trace complete

Window Search —> [UNEYSLN] i Thru line —>

Find string —>
Uze the TAB and Bhift-TAB keys to pick the window name.

Window Utility Search Form

“Window Search:” Th& ab or Shift-Tab key can be used to select the name
of the window in which the string should be searched for.

“From Line:” This field holds the first line in the range of lines to be searched.
“Thru Line:” This field holds the last line in the range of lines to be searched.

“Find String:” This field holds the string to be searched for in the specified
range of lines.

Window Utility View — Returns hidden windows to the PC Interface display.

Window Zoom

Window Zoom — Causes the specified window to occupy the full screenl> z
can also be used to zoom the currently active window.

324

11

Describes the syntax of expressions, addresses and other typed-in items that are
specific to the MC68040 emulator.

Expression Syntax

325

Chapter 11: Expression Syntax

ADDRESS

ADDRESS

<EXPR>

64783510

<ADDR>

Address expressions allow you to enter an address in a form recognized by the
MC68040 emulator. When you see the address variable <ADDR> in a command
sequence, remember that it is unique to the MC68040 emulator.

The <EXPR> part here must be a 32-bit number, with an optional radix specifier.
Numbers occupying less than 32 bits are left zero-filled to 32-bits. You can also
specify either supervisor or user to qualify an address specification. The @ symbol
is required only if you specify supervisor or user. Otherwise, @ must be omitted.

In some contexts you can specifyaageof addresses, such as when specifying a
memory map. An address range has the form
<EXPR>..<ADDRESS>

That is, the first address does not have a function code because it is assumed to be
the same as the ending <ADDRESS>.

326

Examples

Chapter 11: Expression Syntax
ADDRESS

Suppose you create the following memory map:
0..0fff eram

Now, the following memory display commands are valid:

Memory Display Byte 0..0f <Enter>
Memory Display Byte 1000..100f@u <Enter>
Memory Display Byte 1000..100f@s <Enter>

You can specify the base with the address. For example:

100t (100 base ten)
7010 (701 base eight)
2340@s (234 base eight in supervisor space)

327

Chapter 11: Expression Syntax

Expressions

Expressions

<EXPR>
< <OPERATOR> (= >
= <EXPR>

L~]
o = W/

Numeric expressions are the root of all HP 64700 PC Interface expression types,
including analyzer expressions and address specifications.

The expression capability in the PC Interface is very powerful. You may specify
numbers in one of four different bases and use many different arithmetic and
logical operators to form more complex expressions.

PC Interface expressions consist of othgrressionsandvalues which may be
modified by variouoperators. You may change the precedence of operators by
enclosing expressions within parentheses.

Values

Values consist afiumbers (in one of four baseg)atterns (hexadecimal, octal, or
binary numbers that also include don’t care values)|abels (symbols which
reference other numbers, from a symbol database).

<VALUE>

<NUMBER>

<PATTERN>

<LABEL>

il

328

Chapter 11: Expression Syntax
Expressions

Numbers are in hexadecimal, decimal, octal, or binary. You specify the base as
follows:

Yy Binary (example: 10010y)

QgOo Octal (example: 3770 or 377Q)

Tt Decimal (example: 197T)

Hh Hexadecimal (example: 0A7fH) (Note that hexadecimal

numbers starting with any one of the letter digits A-F must
be prefixed with a zero; otherwise the system will return an
error message)

If you do not specify a base, numbers default to hexadecimal or decimal, depending
on the context.

All numbers used in address specification, analyzer expressions, and any other
specification relating to a microprocessor address, data or status value defaults to
hexadecimal.

Numbers used to specify repeat count values, such as in the analyzer trace
specification or step count, default to decimal.

Floating point numbers are supported by some emulators. The only legal operations
on these values are addition, subtraction, multiplication, and division. You
represent a floating point value as a decimal in the form:

[+-IXX[E[+[-]X]
Where X's represent decimal values and E indicates a following exponent.

Patterns are hexadecimal, octal, or binary numbers which include don't care
specified by the letteds orx. The characte? represents a pattern of all don't car
digits. For example:

1011xx1ly
0A7Xh (equivalent to 000010100111xxxxy)
2x5Q (equivalent to 010xxx101y)
You will generally use patterns only in analyzer expressions.

Labels refer to names equated to numbers via the symbol database loaded for the
current program or loaded using ®estemSymbolsGlobalL oad command.

329

Chapter 11: Expression Syntax
Expressions

Operators

The expression capability includes a powerful set of operators, freeing you from the
need to evaluate expressions before entering them into other expressions. All
operations are carried out on 32-bit two's complement signed integers (values
which are not 32-bit will be padded out with zeros when expression evaluation
occurs). For emulators that directly support floating point data types, addition,
subtraction, multiplication and division are done using 64-bit floating point format.

The operators are listed in the following diagram and described in order of
evaluation precedence. As mentioned above, you may use parentheses in the

expression to change the order of evaluation.

<OPERATOR>

‘Q (Two's Complement)

@ (One's Complement)
(Integer Multiply)
~C)
(Integer Divide)
~C)
(Modulo)
= 7%
(Addition)
S +
@ (Subtraction)
(Shift | eft)
~{ <<

(Rotate Left)

<<<

(Shift Right)
~{ >>

(Rotate Right)

>>>

(Bit—wise And)
e)
@ (Bit—wise Exclusive Or)
T 2

(Logical And (Bit—wise Merge))
= && j

330

Chapter 11: Expression Syntax

Expressions
Note If your emulator supports symbols, and you are using a symbol in an expression,
only the+ and- operators are valid before and after the symbol. For example:
100h+main-5
-~ Unary two’s complement, unary one’s complement. Two's
complement is not allowed on patterns containing don’t
care bits. This is the truth table for one’s complement:
0=>1
1=>0
X=>X
Examples:
~1x0y = Ox1Y
-1101Y = 0011Y
* % Integer multiply, integer divide, integer modulo. These
operations are not allowed on patterns containing don’t
care bits.
Examples:
30afH*21 = 06468fH
23T%4T=3
0fa6/2 = 07d3h
+ - Addition, subtraction. Not allowed on patterns containing

don’t care bits.
Examples:

03dh+03fh = 07ch
1110Y-101Y = 1001Y

331

Chapter 11: Expression Syntax
Expressions

<< Shift left, rotate left, shift right, rotate right (you must
<<< specify the number of locations to shift or rotate after the
>> operator).
>>>

Examples:

1x0Y<<1 = 1x00Y

1x0Y>>1 = 01xY

1x01Y>>>1 = 100000000000000000000000000001x0Y
O0xxf0abcdH>>>4 = 0dxxfOabcH

& This symbol (&) represents a bit-wise AND operation. The
truth table is as follows:
& 0 1 X
0 0 0 0
1 0 1 X
X 0 X X
Example:

10xxy&11x1Y = 10xxY

This symbol (*) represents a bit-wise exclusive OR
operation. The truth table is as follows:

A 0 1 X

0 0 1 0

1 1 0 X

X 0 X X
Example:

332

&&

Chapter 11: Expression Syntax
Expressions

10xxY"A11x1Y = 01xxY

This symbol (|) represents a bit-wise inclusive OR
operation. The truth table is as follows:

| 0 1 X
0 0 1 0
1 1 1 1
X 0 1 X

Example:
10xxY|11x1Y = 11x1Y

This symbol (&&) represents a bit-wise merge operation.
The truth table is as follows:

&& 0 1 X
0 0 * 0
1 * 1 1
X 0 1 X

An overlap, indicated by*ain the merge truth table, may
occur if two patterns specify different values for a patter
bit. If an overlap occurs, the first pattern’s value for that
overrides the second pattern’s value.

Example:

10xxY&&11x1Y = 10x1Y

333

Chapter 11: Expression Syntax

Expressions

Using Expressions in Addressing and Analyzer Expressions

You can use the expression evaluation capability to form more powerful
expressions for use in specifying addressing and analyzer expressions. For
example, suppose you want to trigger the analyzer on the access to trap vector 13.
Instead of calculating the address, since you know the base address is 080 hex and
each vector is 4 address bytes, you can specify this as:

a=(080h+(13T*4))

334

Chapter 11: Expression Syntax
Analyzer Pattern Expressions

Analyzer Pattern Expressions

<COMPLEX_EXPR>

<SET1> =
<SETZ2>
<SET2>
<SET1>
<SET1>

(restricted to one operator type in the set)

<SET2>

(restricted to one operator type in the set)

335

Chapter 11: Expression Syntax
Analyzer Pattern Expressions

Complex Expressions Description

In the PC Interface analyzer trace specification, you use pattern labels, which have
been assigned to various simple expressions, to form complex expressions.

Pattern Labels and Ranges
You assign pattern labels to simple expressions using the analyzer trace
specification form. For example:

Pattern a: addr=2000

Pattern b: data!=00

Pattern c: stat=dma

Pattern d: addr=2000 and data=23
Pattern e: addr!=2105 and data!=0fc
You can also assign the range value:

Range: data=42..44

Sets
The pattern labels, along with the range and arm specifications, are divided into two
sets.
Set 1:
a,b,c,d,rIr
Set 2:
e,f,g,h,arm

Intraset Operations

You use intraset operators to form relational expressions between members of the
same set. The operators are:

~ (intraset logical NOR)

| (intraset logical OR)

336

Chapter 11: Expression Syntax
Analyzer Pattern Expressions

The operators must remain the same throughout a given intraset expression. So, you
could form intraset expressions such as these:

a~b~r

(Pattern a NOR pattern b NOR range.)
b|!'r

(Pattern b OR (NOT range).)

e|arm

(Pattern e OR arm.)

f~h

(Pattern f NOR pattern h.)

You cannotuse the intraset operators to form expressions between set 1 and set 2.
Also, remember that the intraset operator must remain the same throughout the set.
Therefore, the following examples angalid:

b~c|d
(This is incorrect because the operator must remain the same throughout the set.)
b~e

(You cannot use intraset operators for interset operations.)

Interset Operations

You use interset operators to form relational expressions between members of set 1
and set 2. The operators are:

and (interset logical AND)

or (interset logical OR)

337

Chapter 11: Expression Syntax
Analyzer Pattern Expressions

You can then form the following types of expressions:
(set 1 expression) and (set 2 expression)

(set 1 expression) or (set 2 expression)

The order of sets does not matter:
(set 2 expression) and (set 1 expression)

Combination

You can use both the intraset and interset operators to form very powerful
expressions.

a~b and e|]arm
c or f~g~h

However, you cannot repeat different sets to extend the expression. The following
is invalid:

a~bandeandcandg

DeMorgan’s Theorem and Complex Expressions

It seems that you only have a few operators to form logical expressions. However,
using the combination of the simple and complex expression operators, along with
a knowledge of DeMorgan’s Theorem, you can form virtually any expression you
might need in setting up an analyzer specification.

DeMorgan’s theorem in brief says that
A NOR B = (NOT A) AND (NOT B)

and
A NAND B = (NOT A) OR (NOT B)

The NOR function is provided as an intraset operator. HowevelAND
function is not provided directly. Suppose you wanted to set up an analyzer trace of
the condition

(addr=2000) NAND (data=23)

338

Chapter 11: Expression Syntax
Analyzer Pattern Expressions

This can be done easily using the simple and complex expression capabilities. First,
you would define the simple expressions as the inverse of the values you wanted to
NAND:

Pattern a: addr!=2000
Pattern b: data!=23

Then you would OR these together using the intraset operators:
alb

This is effectively the same as:
(NOT addr=2000) OR (NOT data=23) =
(addr=2000) NAND (data=23)
If you need an intraset AND operator, you can use the same theory. Suppose you
actually wanted:
(addr=2000) AND (data=23)

First, define the simple expressions as the inverse values:

Pattern a: addr!=2000
Pattern b: data!=23

Then you would NOR these together using the intraset operators:
a~b

This is effectively the same as:

(NOT addr=2000) NOR (NOT data=23) =
(addr=2000) AND (data=23)

339

Chapter 11: Expression Syntax

STATUS
STATUS
Some status equates are predefined by the emulator. These equates may be used in
analysis expressions to qualify triggering or storage on specific bus cycle types.
68040 Equates
Name Value Description
ack LTI XXXXXXXX LXXXXXY Acknowledge access.
alto L1OXxxxXxxxx1x001xy Alternate logical function code O.
alt3 L1OXxXxxXxXxxx1x011xy Alternate logical function code 3.
alt4 10xxxxxxxx1x100xy Alternate logical function code 4.
altv L1OXXXXXXXX1x111xy Alternate logical function code 7.
burst OXXXXXOXXXXXXXXKXY Burst cycle.
byte OXXXXXXO LXXXXXXXXY Byte transfer request (S121/S120=01).
cpush OXXXXXXXXX1X000xy Data cache push access.
d_tblwk OXXXXXXXXX1X011Xy Data translation table access.
data OXXXXXXXXX1XX01XyY Data space access.
dma OXXHXXXXXXXXOXXXXXY Direct memory access.
i tblwk OXXXXXXXXX1X 100Xy Instruction translation table access.
line OXXXXXX L LXXXXXXXXY Line transfer request (S121/S1Z0=11).
logical OXXOXXXXXXXXXXXXXY Logical memory address.
long OXXXXXXOOXXXXXXXXY Longword transfer request (S121/S120=00).
physical OXXLXXXXXXXXXXXXXY Physical memory address.
prog OXXXXXXXXXIXX1O0XY Program space access.
read OXXXXXXXXXXXIXXXXY Read cycle.
retry OXXXXXXXXOOXXXXXXY Retrying a previous bus cycle.
snp_hitl OXXOLXXXXXOXXXXXY Snoop operation 1 (SC1/SC0=01)
snp_hit2 OXX LOXXXXXOXXXXXY Snoop operation 2 (SC1/SC0=10)
snp_inhb OXXOOXXXXXOXXXXXY Snooping inhibited.
snp_miss OXXLIXXXXXOXXXXXY Snoop miss.
sup OXXOXXXXX LXIXXXY Supervisor space.

340

supdata
supprog
ta

tea
upa0
upal
upa2
upa3
user
userdata
userprog
word
write

OXXXXXXXXX1X101xy
OXXXXXXXXX1X110xy
OXXXXXXXXLOXXXXXXY
OXXXXXXXXO LXXXXXXY
OXXOOXXXXXXXXXXY
OXXOLXXXXXXXXXXY
OXXTLOXXXXXXXXXXY
OXXTLIXXXXXXXXXXY
OXXXXXXXXX LXOXXXY
OXXXXXXXXX1X001xy
OXXXXXXXXX1X010xy
OXXXXXX LOXXXXXXXXY
OXXXXXXXXXXXOXXXXY

Chapter 11: Expression Syntax
STATUS

Supervisor data space.
Supervisor program space.
Transfer acknowledge.
Transfer error acknowledge.
User prog attributes UPA[1:0]=00.
User prog attributes UPA[1:0]=01.
User prog attributes UPA[1:0]=10.
User prog attributes UPA[1:0]=11.
User space.
User data space.
User program space.
Word transfer request (S121/S1Z20=10).
Write cycle.

341

342

12

Emulator Error Messages .

This chapter lists error and status messages that you may see when using the
emulator. The causes of the messages are given along with actions you can take to

overcome error conditions.

343

Chapter 12: Emulator Error Messages

Error Messages

This chapter contains descriptions of error messages that can occur while using the
PC Interface of the MC68040 emulator. When errors occur, you can display the
error messages and their associated numbers (if any) in the Error_Log window.
Obtain that window with the command:

Wndow Utility View

In the form that appears, type in "Error_Log".

The error messages in this chapter are listed in alphabetical order, and each
description includes the cause of the error and the action you should take to remedy
the situation.

The emulator can return messages to the display only when it is prompted to do so.
Situations may occur where an error is generated as the result of some command,
but the error message is not displayed until the next command (or a carriage return)
is entered.

Up to eight error messages can be displayed at one time. If more than eight error
messages are generated, only the last eight are displayed.

344

Chapter 12: Emulator Error Messages
Address translation error; non-resident page: <address> (Error 172)

Address translation error; non-resident page: <address> (Error 172)

Cause: The error occurred when the monitor attempted to access memory with the
MMU enabled. You requested the monitor to display or modify memory, or you
tried to exit the monitor; the memory access generated an access fault resulting
from an MMU address translation failure. This error indicates that the address does
not have a valid translation.

Action: Display the address translation tables for the <address> given in the
message. You can display the MMU translations to see if the <address> is within
one of the translated ranges. You can display translation tables for the address, and
then you can view table details if one of the translation tables seems to be
misdirecting the translation of the address.

Address translation error; supervisor-only page: <address> (Error 172)

Cause: The error occurred when the monitor attempted to access memory with the
MMU enabled. You requested the monitor to display or modify memory, or you
tried to exit the monitor and the memory access generated an access fault resulting
from an MMU address translation failure. A user mode access was attempted to a
page that is only accessible in supervisor mode.

Action: Try your command again, but be sure to specify access in the supervisor
mode.

Address translation error; target bus error: <address> (Error 172)

Cause: The error occurred when the monitor attempted to access memory with the
MMU enabled. You requested the monitor to display or modify memory, or you
tried to exit the monitor; the memory access generated an access fault resulting
from an MMU address translation failure. The target system terminated a
tablewalk cycle withTEA (bus error).

Action: Verify that the SRP and URP registers point to the correct location in
memory where your address translation tables reside. If this is target memory,
will need to determine why your target system as3étts

345

Chapter 12: Emulator Error Messages
Address translation error; write-protected page: <address> (Error 172)

Address translation error; write-protected page: <address> (Error 172)

Cause: The error occurred when the monitor attempted to access memory with the
MMU enabled. You requested the monitor to display or modify memory, or you
tried to exit the monitor and the memory access generated an access fault resulting
from an MMU address translation failure.

This error indicates that write access was denied to a write-protected page. NOTE:
Except for stacking on exit, any attempts to modify memory in write protected
pages using the monitor will succeed as long as the translation tables reside in
RAM. The monitor will temporarily clear any write protect flags in your

translation tables in order to force the access to be completed. If the monitor is
unable to clear the write protect flags because the translation tables are in ROM,
you will see this error.

Action: Check the content of the write protected page to see if it has been changed
by the attempted write transaction.

Analyzer Break (Async_Stat 613)

Cause: Status message. No action necessary.

Another window exists by this name
Cause: You tried to open a new user window with a name that is already in use.

Action: Choose another name and Wsedow Open to open the window.

Arm term used more than once (Error 1250)

Cause: This error occurs when you attempt to use the “arm” qualifier more than
once in a sequencer branch expression.

Action: Reenter the trace command and specify the “arm” qualifier only once.

Ascii symbol download failed (Error 881)
Cause: This error occurs because the system is out of memory.

Action: You must either reduce the number of symbols to be loaded, or free up
additional system space and try the download again.

346

Chapter 12: Emulator Error Messages
Attempt to load code outside of allocated bounds (Error 850)

Attempt to load code outside of allocated bounds (Error 850)

Cause: This error occurs when you attempt to load an absolute file that contains
code or data outside the range allocated for system code.

BNC trigger break (Async_Stat 616)

Cause: This status message will be displayed if you have configured the emulator to
break on a BNC trigger signal and the BNC trigger line is activated during a
program run. The emulator is broken to the monitor.

Break caused by CMB not ready (Error 611)

Cause: This status message is printed during coordinated measurements if the CMB
READY line goes false. The emulator breaks to the monitor. When CMB READY

is false, it indicates that one or more of the instruments participating in the
measurement is running in the monitor. No action is necessary (status only).

Break condition configuration aborted (Error 653)

Cause: Occurs when <CTRL> c is entered dupmdisplay.

Break condition must be specified (Error 652)

Cause: You tried to define a breakpoint without specifying the break condition to
enable or disable.

Action: Reenter the breakpoint command along with the enable/disable flag and the
break condition you wish to modify.

Break due to cause other than step (Error 689)

Cause: An activity other thanPaocessofStep command caused the emulator to
break. This could include any of the break conditions or a <CTRL> ¢ break.

347

Chapter 12: Emulator Error Messages
Breakpoint code already exists: <address> (Error 667)

Breakpoint code already exists: <address> (Error 667)

Cause: You attempted to insert a breakpoint; however, there was already a software
breakpoint instruction at that location which was not already in the breakpoint table.

Action: Remove the breakpoints from your program code and try to insert
breakpoints again.

Breakpoint disable aborted (Error 671)

Cause: Occurs when <CTRL> c is entered when disabling software breakpoints.

Breakpoint enable aborted (Error 670)

Cause: Occurs when <CTRL> c is entered when setting software breakpoints.

Breakpoint not added: <address> (Error 668)

Cause: The emulator tried to insert a breakpoint in a memory location which could
not be accessed.

Action: Insert breakpoints only within memory ranges mapped to emulation or
target RAM or ROM.

Breakpoint remove aborted (Error 669)

Cause: Occurs when <CTRL> c is entered when clearing a software breakpoint.

Cannot enable mmu/cache while background monitor is selected (Error 158)

Cause: You tried to enable either the MMU or the cache within the emulation
configuration after selecting the background monitor. The background monitor
requires the MMU and the cache to be disabled in order to operate properly.

Action: Use the foreground monitor if you want to enable either the MMU or the
cache.

Cannot interpret emulator output

Cause: The PC Interface cannot interpret the emulator’s output. You may have
started the PC Interface and then turned off the emulator.

Action: Restart the emulator and the PC Interface. A memory resident program
(TSR) or device driver in your PC may be preventing reliable serial communication.

348

Chapter 12: Emulator Error Messages
Cannot open command download file <filename>. Exit immediately

Cannot open command download file <filename>. Exit immediately
Cause: The command download file you specified cannot be opened.

Action: Exit and ensure that the HPBIN environment variable is set to
HP64700\BIN or the BIN directory where the PC Interface was installed.

Cannot open command file <filename>
Cause: The command file you specified cannot be opened.

Action: Try again, making sure you enter the command file name correctly.

Cannot open configuration file <filename>
Cause: The configuration file you specified cannot be opened.

Action: Exit and try again, making sure you enter the configuration file name
correctly.

Cannot set monitor to type specified

Cause: Your monitor does not support the specified attributes (monochrome or
color).

Action: Select another type.

Clock speed not available with current count qualifier (Error 1239)

Cause: This error occurs when you attempt to speé#fgtar very fast maximum
qualified clock speed when the analyzer is counting time. This error also occurs
when you attempt to specifyary fast maximum qualified clock speed when the
analyzer is counting states.

Action: Change the count qualifier; then reenter the command. See the chapter
titled, "Using the Analyzer" for more information.

CMB execute break (Error 623)

Cause: This message occurs when coordinated measurements are enabled and an
EXECUTE pulse causes the emulator to run. The emulator must break before
running. This is a status message; no action is required.

349

Chapter 12: Emulator Error Messages
CMB execute; emulation trace started (Error 1305)

CMB execute; emulation trace started (Error 1305)

Cause: This status message informs you that an emulation trace measurement has
started as a result of a CMB execute signal. Refer to the chapter titled "Making
Coordinated Measurements" for further information.

CMB execute; run started (Async_Stat 693)

Cause: This status message is displayed when you are making coordinated
measurements. The CMB/EXECUTE pulse has been received; the emulation
processor started running at the address specified. Refer to the chapter titled
"Making Coordinated Measurements" for further information.

CMB trigger break (Async_Stat 617)

Cause: This status message will be displayed if you have configured the emulator to
break on a CMB trigger and the CMB trigger line is activated during a program
run. The emulator is broken to the monitor.

Command line too complex (Error 814)
Cause: There was not enough memory for the expressions in the command line.

Action: Split up the command line, or use fewer expressions.

Command line too complex (Error 816)
Cause: Too many expression operators are used.

Action: Split up the command line, or use fewer expressions.

350

Chapter 12: Emulator Error Messages
Command line too complex (Error 818)

Command line too complex (Error 818)

Cause: A maximum nesting level has been exceeded for nested command
execution.

Action: Reduce the number of nesting levels.

Command line too long; maximum line length: <number of characters>
(Error 813)

Cause: This error occurs when the command line exceeds the maximum number of
characters.

Action: Split the command line into two command lines.

Configuration aborted (Error 642)

Cause: Occurs when a <CTRL> c is entered while emulator configuration items are
being set.

Configuration failed; setting unknown: <item>=<value> (Error 626)

Cause: Target condition or system failure while trying to change configuration
item.

Action: Try to reset. Then reenter your configuration command. Check target
system, and run performance verificatipg ¢command).

Conflict between expected and received symbol information (Error 880)

Cause: The information you supplied in a symbol definition is not what the
HP 64700 expected to receive.

Action: Make sure that all symbols in the symbol file are defined correctly. Verify
that there are no spaces in the address definitions for the symbols in the symbol file
being downloaded.

351

Chapter 12: Emulator Error Messages
Conflicting disassembler option: <option> (Error 1000)

Conflicting disassembler option: <option> (Error 1000)

Cause: This error occurs when you attempt to specify inverse assembly options that
are not allowed with each other.

Action: Do not use conflicting inverse assembly options in the same trace list
command.

Continuing with default foreground monitor (Error 144)

Cause: You have downloaded a custom foreground monitor which was linked at an
address other than the monitor address specified within the emulation configuration.

Action: Change the monitor address within the emulation configuration or link your
custom monitor at the address specified in the configuration.

Copy memory aborted; next destination: <address> (Error 752)

Cause: One of these messages is displayed if a break occurs during processing of
the M emoryCopy orM emoryModify commands. The break could result from any
of the break conditions or could have resulted from a <CTRL> ¢ break.

Action: Retry the operation. If breaks are occurring continuously, you may wish to
disable some of the break conditions.

Copy target image not supported (Error 175)

Cause: Theim (copy image memory) command cannot be used in this emulator.
Normally, thecim command would be used to copy a target system memory range
to emulation memory so you could set breakpoints or patch code.

Action: To do this without theim command, save the target system memory range
to an absolute file using tidemoryCopy command. Then remap the target
memory range to emulation memory, and load the absolute file into emulation
memory using th&emoryL oad command. Refer to the chapter titled, "Using the
Emulator" for information on saving and loading absolute files.

352

Chapter 12: Emulator Error Messages
Count out of bounds: <number> (Error 318)

Count out of bounds: <number> (Error 318)

Cause: You specified an occurrence count less than 1 or greater than 65535 for a
Trigger on or Find specification in the Internal State Trace Specification form.

Action: Reenter the command, specifying a count value from 1 to 65535.

Count qualifier not available with current clock speed (Error 1240)

Cause: This error occurs when you attempt to specify the “time” count qualifier
when the current maximum qualified clock speefdss or very fast. This error

also occurs when you attempt to specify a “state” count qualifier when the
maximum qualified clock speedfast.

Action: Change the clock speed; then change the count qualifier. See the chapter
titled, "Using the Analyzer" for more information.

Corrupt symbol file found

Cause: An attempt was made to access a symbol database file which was not of the
correct format.

Action: Try again making sure to use correct file names.

Coverage not supported (Error 175)

Cause: The memory coverage command cannot be used in this emulator because
there is no supporting hardware.

Critical error occurred while attempting to access the specified file

Cause: You may have left the disk out of the floppy drive or failed to close the
drive door.

Action: Insert the disk and make sure the drive door is fully closed. Then try to
access the specified file again.

353

Chapter 12: Emulator Error Messages
DeMMUer has not been loaded (Error 163)

DeMMUer has not been loaded (Error 163)

Cause: You tried to enable the deMMUer before it had been loaded. The
deMMUer can only be enabled after it has been loaded with a set of reverse
translation information.

Action: Load the deMMUer from the present translation tables in memory or from
a deMMUer file that you have previously saved.

Disable breakpoint failed: <address> (Error 604)
Cause: System failure or target condition.

Action: Emulator was unable to write previously saved opcode to target memory.
Check target memory system.

Disable breakpoint failed: <address> (Error 666)
Cause: System failure or target condition.

Action: Check memory mapping and configuration questions. This message is
usually accompanied by other messages. Look at those messages to better
understand the error and know which actions to take.

Disabled mmu/cache while background monitor is selected (Status 157)

Cause: This status message indicates that the MMU and/or cache was enabled in
the emulation configuration when you changed the monitor type to background.
The background monitor requires the MMU and the cache to be disabled in order to
operate properly. Both the MMU and the cache were disabled automatically when
you changed to the background monitor.

Display register failed: <register> (Error 634)
Cause: The emulator was unable to display the register you requested.

Action: To resolve this, you must look at the other status messages displayed. It is
likely that the emulator was unable to break to the monitor to perform the register
display.

354

Chapter 12: Emulator Error Messages
Display truncated to <number of lines> lines (Status 162)

Display truncated to <number of lines> lines (Status 162)

Cause: This status message indicates that more lines of MMU translations could
have been displayed, but when you requested a display of MMU translations, you
limited the number of lines to be displayed.

Downloaded monitor spans multiple 4K byte block boundaries (Error 145)

Cause: You tried to load a custom foreground monitor, but the absolute file has
address records that are outside the range of a single 4-Kbyte block.

Action: Modify your custom monitor so that its code and data fit into a single
4-Kbyte block; then assemble, link, and repeat the load operation.

Dual ported memory already in use (Error 142)

Cause: There is only one 4-Kbyte block of dual-port, emulation memory available
for mapping and you tried to map another term using the dual-port attribute. If you
select the foreground monitor, this block is used by the monitor and is not available
for mapping.

Action: Reenter th€onfig MapM odify command and use thg attribute for
only one address range, or select a background monitor and recreate your map.

Dual ported memory limited to 4K bytes (Error 141)

Cause: There are only 4 Kbytes of dual-port emulation memory on the emulator
probe. You tried to map an emulation memory term whose address range spanned
more than 4 Kbytes and then you assignedihattribute.

Action: You can:

* Reenter the address specification in your map and specifip thiribute. Be
sure to restrict the address range to 4 Khytes.

» Reenter your specification, and use regular emulation memory. That is, do not
include thedp attribute.

355

Chapter 12: Emulator Error Messages
Emulation memory access failed (Error 702)

Emulation memory access failed (Error 702)

Cause: This message is displayed if the emulator was unable to perform the
requested operation on memory mapped to the target system. In most cases, the
problem results from the emulator’s inability to break to the monitor to perform the
operation. Usually there are other error messages. Refer to them to fully
understand the cause of the error.

Action: See message "Unable to Break".

Emulator terminated hung bus cycle: <address> byte read (Status 170)

Cause: This status message will be displayed if the target system fails to provide

TA or TEA bus cycle termination for a particular cycle and the emulator terminates

the bus cycle in order to break from execution of the target program to execution
within the monitor, or to complete execution of a monitor command (which

accessed this memory address). This can happen on any access to target memory or
interlocked emulation memory (when you answered "Yes" to the "Terminate

monitor bus cycles?" attribute question).

The emulator will not terminate any hung bus cycles unless you explicitly say break
or you execute a monitor command (ie: "Memory Display ..."). The emulator will
generate this status message each time it terminates a hung bus cycle. The emulator
never attempts to terminate bus cycles in program space (opcode fetches) or for any
addresses in the foreground monitor.

Enable breakpoint failed: <address> (Error 665)
Cause: System failure or target condition.

Action: Check memory mapping and configuration questions. This message is
usually accompanied by other messages. Look at those messages to better
understand the error and know which actions to take.

356

Chapter 12: Emulator Error Messages
Failed to disable step mode (Error 684)

Failed to disable step mode (Error 684)

Cause: System failure. Run performance verificafpencommand).

FATAL SYSTEM SOFTWARE ERROR (Error 204)
FATAL SYSTEM SOFTWARE ERROR (Error 205)
FATAL SYSTEM SOFTWARE ERROR (Error 208)

Cause: The system has encountered an error from which it cannot recover.

Action: Write down the sequence of commands that caused the error. Cycle power
on the emulator and reenter the commands. If the error repeats, call your local HP
Sales and Service office for assistance.

File transfer aborted (Error 410)

Cause: Aransfer operation was aborted due to a break received, most likely a
<CTRL> c from the keyboard. If you typed <CTRL> c, you probably did so
because you thought the transfer was about to fail.

Action: Retry the transfer, making sure to use the correct command options. If you
are unsuccessful, make sure the data communications parameters are set correctly
on the host and on the HP 64700; then retry the operation.

Full disk
Cause: Your disk is full.

Action: Either make room on this disk by deleting unnecessary files or insert
another disk and try again.

Guarded mem break: <guarded memory address> (Async_Stat 628)

Cause: This status message indicates that the target program accessed memory
mapped as guarded and the emulator interrupted target execution and began
running in the monitor. When the MMU is enabled, the address displayed in t
message will be physical, as denoted by the trailing "a" after the function code

357

Chapter 12: Emulator Error Messages
Handled target exception: <exception> (Error 628)

Handled target exception: <exception> (Error 628)

Cause: The vector base register points to the exception vector table in the
foreground monitor and the target program generated an exception that was caught
by the monitor.

Hardware breakpoints can only be used in target memory (Error 154)

Cause: You attempted to use the "Force hardware breakpoint:" option to set a
breakpoint at an address mapped as emulation memory. The force hardware option
for breakpoints is not available for addresses in emulation memory; it is only
available for breakpoints in target memory, typically for setting breakpoints in

target ROM.

Action: Answer "no" to the "Force hardware breakpoint:" option and try to set the
breakpoint again.

HP64783 M68040 firmware not compatible with emulation probe (Status 179)

Cause: The emulation control card is programmed with MC68040 firmware, but the
firmware does not identify the probe as being the MC68040.

Action: Make sure that you are using an MC68040 probe, and then make sure the
probe cables between the control card and the probe are connected correctly. Refer
to the Installation and Service Chapter for proper cable connections.

lllegal base for count display (Error 1130)

Cause: When specifying the trace format, counts may only be displayed relative or
absolute. When counting states, the count is always displayed as a decimal number.

Action: Respecify the trace format without using a base for the count column. Also,
you can specify that counts be displayed absolute, or you can specify that counts be
displayed relative.

358

Chapter 12: Emulator Error Messages
lllegal base for mnemonic disassembly display (Error 1131)

lllegal base for mnemonic disassembly display (Error 1131)

Cause: When specifying the trace format, you cannot specify a number base for the
column containing mnemonic information.

Action: Respecify the trace format without using a base for the mnemonic column.

lllegal base for sequencer display (Error 1132)

Cause: When specifying the trace format, you cannot specify a number base for the
column containing sequencer information.

Action: Respecify the trace format without using a base for the sequencer column.

lllegal value specified

Cause: The value you entered may be outside the legal range for the item or the
item may have a specific boundary requirement (for example, 4 Kbyte boundary).

Action: Check the reference part of this manual for more information and try again.

lllegal width for symbol display: <width> (Error 1138)

Cause: This error occurs when the value specified for the trace format address field
width is not valid.

Action: Enter your command again, and specify the width of the address field for
symbol display within the range of 4 to 55.

Insufficient emulation memory (Error 21)
Cause: You tried to map more emulation memory than is available.

Action: Check your map specification. Do not try to map more emulation memory
than is available in your system. You can install up to 2 Mbytes of memory in your
system. For a detailed explanation that may explain why you got this messag
refer to the message titled, "Request cannot be satisfied with remaining map
resources"” in this chapter.

359

Chapter 12: Emulator Error Messages
Interrupt stack is located in guarded memory: <address> (Error 151)

Interrupt stack is located in guarded memory: <address> (Error 151)

Cause: You issued a command to run the target program, but when the emulator
attempted to write to one of your stacks, it detected that the stack address is in
memory mapped as guarded.

The monitor exits to user program by executing an RTE instruction. Depending
upon whether or not you set the M bit in the SR, the monitor will either place a
format $0 stack frame on the interrupt stack or will place a format $1 (throwaway)
stack frame on the interrupt stack and a format $0 stack frame on the master stack.
Any access violations detected during these writes will abort the exit from the
monitor.

Action: Use theRegisterDisplay andRegisterM odify commands to set the stack
pointer to an even value that points at a memory region (emulation or target RAM)
that can be used for stack operations before running your program. Or, you can
modify the emulation configuration and respecify the memory map to RAM for the
address range containing the interrupt stack and/or the master stack.

Interrupt stack is located in ROM: <address> (Error 151)

Cause: You issued a command to run the target program, but when the emulator
attempted to write to one of your stacks, it detected that the stack address is in
memory mapped as ROM, and you enabled breaks on writes to ROM.

The monitor exits your target program by executing an RTE instruction.

Depending upon whether or not you set the M bit in the SR, the monitor will either
place a format $0 stack frame on the interrupt stack or will place a format $1
(throwaway) stack frame on the interrupt stack and a format $0 stack frame on the
master stack. Any access violations detected during these writes will abort the exit
from the monitor.

Action: Use theRegisterDisplay andregisterM odify commands to set the stack
pointer to an even value that points at a memory region (emulation or target RAM)
that can be used for stack operations before running your program. Or, you can
modify the emulation configuration and respecify the memory map to RAM for the
address range containing the interrupt stack and/or the master stack.

360

Chapter 12: Emulator Error Messages
Interrupt stack pointer is odd or uninitialized (Error 151)

Interrupt stack pointer is odd or uninitialized (Error 151)

Cause: You are in the monitor and you tried to run, but the emulator detected that
your stack pointer is invalid (it detected an odd value).

Action: Use theRegisteDisplay andRegisterM odify commands to set the stack
pointer to an even value that points at a memory region (emulation or target RAM)
that can be used for stack operations before running your program.

Insufficient emulation memory (Error 21)
Cause: You tried to map more emulation memory than is available.

Action: Check your map specification. Do not try to map more emulation memory
than is available in your system. You can install up to 2 Mbytes of memory in your
system.

Interrupt stack is not located in RAM: <address> (Error 151)

Cause: You issued a command to run the target program. When the emulator
attempted to write to one of your stacks, it detected that the stack address is not
located in memory which operates as RAM. When the monitor writes out a stack
frame to your stack space, the monitor reads it back to verify that it was created
correctly. Unless the emulator can verify that the stack frame is located in RAM
and was created correctly, the monitor will abort the run.

The monitor exits the target program by executing an RTE instruction. Depending
upon whether or not you set the M bit in the SR, the monitor will either place a
format $0 stack frame on the interrupt stack or will place a format $1 (throwaway)
stack frame on the interrupt stack and a format $0 stack frame on the master stack.
Any access violations detected during these writes will abort the exit from the
monitor.

Action: Use theRegisterDisplay andregisterM odify commands to set the stack
pointer to an even value that points at a memory region (emulation or target RAM)
that can be used for stack operations before running your program. Or, you ¢
modify the emulation configuration and respecify the memory map to RAM for
address range containing the interrupt stack and/or the master stack.

361

Chapter 12: Emulator Error Messages
Invalid address: <address> (Error 310)

Invalid address: <address> (Error 310)

Cause: You specified an invalid address value as an argument to a command (other
than an analyzer command). For example, you may have specified digits that don't
correspond to the base specified, or you forgot to precede a hexadecimal letter digit
with a number (even zero (0)).

Action: Reenter the command and the address specification. See the <ADDRESS>
and the <EXPRESSION> syntax pages in this manual for information on address
specifications.

Invalid address range: <address_range> (Error 311)

Cause: You specified an invalid address range as an argument to a command (other
than an analyzer command). For example, you may have specified digits that don't
correspond to the base specified, or you forgot to precede a hexadecimal letter digit
with a number, or the upper boundary of the range you specified is less than the
lower boundary.

Action: Reenter the command and the address specification. See the <ADDRESS>
and <EXPRESSION> syntax pages in this manual for information on address
specifications. Also, make sure that the upper boundary specification is greater than
the lower boundary specification (the lower boundary must always precede the
upper boundary on the command line).

362

Chapter 12: Emulator Error Messages
Invalid attribute for memory type : <attribute> (Error 140)

Invalid attribute for memory type : <attribute> (Error 140)

Cause: The dual-port memory and "Terminate monitor bus cycles?" attributes are
valid only for emulation ROM and emulation RAM memory types. You tried to
assign one of these attributes to target memory.

Action: Refer to the chapter titled, "Configuring the Emulator” for information on
the memory type attributes.

Invalid attribute. The dual ported (dp) attribute is only allowed on one term
Cause: You tried to set the dual ported (dp) attribute on at least two terms.

Action: Set the attribute to something other than dual ported on all but one term in
the Config MapM odify form.

Invalid base: <base> (Error 319)

Cause: This error occurs if you have specified an invalid base when entering a
command to change the format of the trace list.

Action: Refer to the "Expressions Syntax" chapter for valid base options.

Invalid clock channel: <name> (Error 1207)
Cause: Valid clock channels are L, M, and N.

Action: Respecify the command using valid clock channels.

Invalid configuration file: <filename>

Cause: You tried to load a file that was not a valid configuration file. Configuration
files must have matching pairs of section headers and cannot contain blank lines.

Action: Try your command again and check the configuration file name.

363

Chapter 12: Emulator Error Messages
Invalid configuration item: <item> (Error 627)

Invalid configuration item: <item> (Error 627)

Cause: You specified a non-existent configuration item. For example, because the
MC68040 emulator does not support an internal clock, you would see this message
if you entered a command to specify an internal clock configuration item for your
emulator.

Action: Reenter the command, specifying only configuration items that are
supported by your emulator. Refer to the "Configuring the Emulator" chapter in
this manual.

Invalid count: <count> (Error 315)

Cause: This error occurs when the emulation system expects a certain number (of
arguments, for example), but you specify a different number.

Action: Enter the number the system expects to receive.

Invalid data in <section> section of configuration file <name>

Check the <section> part of the configuration file called <name> for errors.
Compare your configuration file with one produced withGloafig Store
command. Fix any errors and try again.

Invalid disassembler option: <option> (Error 1001)

Cause: You specified an invalid option for the disassembler. The disassembler can
display all bus cycles, display only instruction cycles, dequeue the trace list, not
dequeue the trace list, and disassemble starting with the lower word of the
instruction.

Action: Use valid inverse assembly options available in the Analysis Display form.

Invalid emulation configuration received from emulator

Cause: A memory resident program (TSR) or device driver in your PC may be
preventing reliable serial communication.

Action: Remove it and try again.

Invalid emulation memory map configuration received from emulator

Cause: A memory resident program (TSR) or device driver in your PC may be
preventing reliable serial communication.

364

Chapter 12: Emulator Error Messages
Invalid entry at line <NUM> in file: <FILE> (Error 10372)

Action: Remove it and try again.

Invalid entry at line <NUM> in file: <FILE> (Error 10372)

Cause: The data in the named <FILE> being loaded into the deMMUer is not in the
correct format.

Action: Edit the file <FILE> and correct the syntax error or create a new file with a
Processor DeMMU File Store command.

Invalid expression: <expression> (Error 307)

Cause: You have entered an expression with incorrect syntax; therefore, it cannot
be evaluated. <expression> is the bad expression.

Action: Reenter the expression, following the syntax rules for that type of
expression. Refer to the chapter titled, "Expression Syntax" to determine the
expression type and the correct syntax for that type.

Invalid map address range: <address range> (Error 723)

Cause: You specified an invalid address range. For example, you may have
specified digits that don't correspond to the base specified, or you forgot to precede
a hexadecimal letter digit with a number, or the upper boundary of the range you
specified is less than the lower boundary.

Action: Reenter your command and the address specification. See the ADDRESS
and EXPRESSIONS syntax pages in this manual for information on address
specifications. Also, make sure that the upper boundary specification is greater than
the lower boundary specification (the lower boundary must always precede the
upper boundary on the command line).

365

Chapter 12: Emulator Error Messages
Invalid memory map attribute: <attribute> (Error 731)

Invalid memory map attribute: <attribute> (Error 731)

Cause: The only valid memory map attributes for the MC68040 emulatoi are
(Transfer Cache Inhibitlpck (Terminate monitor bus cycles), atpl (Dual Port
Memory).

Action: Respecify your map attributes, using only valid memory map attributes.

Invalid memory map type: <type> (Error 730)

Cause: You specified a memory type while mapping that is not one of the
supported typesram, erom, tram, trom, grd.

Action: Respecify your memory type using only one of the five supported types,
listed above.

Invalid number of arguments (Error 308)

Cause: You either entered too many options to a command or an insufficient
number of options.

Action: Reenter the command with correct syntax. Refer to the chapter titled,
"Emulator Commands" in this manual for more information.

Invalid occurrence count: <number> (Error 1234)

Cause: Occurrence counts may be from 1 to 65535.

Action: Reenter your specification with a valid occurrence count.
Invalid option or operand (Error 300)

Invalid option or operand: <option> (Error 305)

Cause: You have specified an incorrect option to a command. <option>, if printed,
indicates the incorrect option.

Action: Reenter the command with the correct syntax. Refer to the chapter titled,
"Emulator Commands" for more information.

366

Chapter 12: Emulator Error Messages
Invalid qualifier resource or operator: <expression> (Error 1241)

Invalid qualifier resource or operator: <expression> (Error 1241)

Cause: When specifying complex expressions, you have either specified an illegal
pattern or used an illegal operator.

Action: See the chapter titled, "Using the Analyzer" for more information.

Invalid state number specified
Cause: You specified a state number that was not in the valid range of states.

Action: Enter a number between -1024 and 1023.

Invalid syntax: expected range
Cause: You entered something that was not a range of values.

Action: Try entering something in the form first..last.

Invalid syntax for global or user symbol name: <symbol> (Error 875)

Cause: This error occurs when you enter a global or user symbol name with
incorrect syntax.

Action: Make sure that you enter the global or user symbol name using the correct
syntax. When specifying a global symbol, make sure that you precede the global
symbol with a colon (for examplaglobal_symbo). When specifying a symbol

you created, make sure that you enter the name correctly without a colon.

Invalid syntax for local symbol or module: <symbol/module> (Error 876)

Cause: This error occurs when you enter a local symbol or module name with
incorrect syntax.

Action: When entering a local symbol name, make sure you specify the module
name, followed by a colon, and then the symbol name (for example
module:local_symbo). Make sure you specify the module name correctly.

367

Chapter 12: Emulator Error Messages
Invalid trigger option specified

Invalid trigger option specified

Cause: Either the value entered on@afig Trigger form was not valid, or an
attempt was made to drive an analyzer with both trigl and trig2.

Action: Use the <Tab> key to view the valid choices, or drive the analyzer with
either trigl or trig2

Invalid window buffer size specified

Cause: You tried to modify the window buffer size to an invalid value.

Action: UseWindow Utility Parameters to change the buffer size (the number of
rows that can be used by this window) to a value in the range of 20 to 1030.
Invalid window color specified

Cause: You either tried to set the foreground or background color to an invalid
color or you tried to set the color in a monochrome monitor.

Action: If your monitor is monochrome you cannot set any colors. Otherwise, use
the Tab key to select the foreground and background coldvgiimdow Utility
Color.

Invalid window corners specified
Cause: You tried to set invalid window corners.

Action: UseWindow Utility Parameters to specify window rows and edges.
Window rows must be values in the range of 1 to 20. Window edges must be
values in the range of 0 to 79.

368

Chapter 12: Emulator Error Messages
Label not defined: <label> (Error 321)

Label not defined: <label> (Error 321)

Cause: You entered an analyzer expression in which the label was not present in the
analyzer label list. For example, if the label list inclualddr, data, andstat, you

might have entered something suclioagerdata=24t This error also occurs if you

try to delete a label that does not exist.

Action: You can reenter your label specification, using one of the previously

defined labels, and adjust the expression as necessary to accommodate the fit of that
label to the analyzer input lines. You can also define a new label, and then reenter
the analyzer command using the newly defined label.

Logging already enabled to file:

Cause: You tried to usystemL og I nputEnable,SystemL og OutputEnable, or
SystemL og Both Enable to enable logging to a file that had already been enabled.
No action is required.

Map range overlaps with term: <term number> (Error 734)

Cause: You entered a map term whose address range overlaps with one already
mapped.

Action: Reenter the map term so that ranges do not overlap, or combine terms and
change the memory type. See the ADDRESS syntax pages in the chapter titled,
"Expression Syntax" in this manual.

369

Chapter 12: Emulator Error Messages
Master stack is located in guarded memory: <address> (Error 151)

Master stack is located in guarded memory: <address> (Error 151)

Cause: You issued a command to run the target program, but when the emulator
attempted to write to one of your stacks, it detected that the stack address is in
memory mapped as guarded.

The monitor exits to user program by executing an RTE instruction. Depending
upon whether or not you set the M bit in the SR, the monitor will either place a
format $0 stack frame on the interrupt stack or will place a format $1 (throwaway)
stack frame on the interrupt stack and a format $0 stack frame on the master stack.
Any access violations detected during these writes will abort the exit from the
monitor.

Action: Use theRegisterDisplay andRegisterM odify commands to set the stack
pointer to an even value that points at a memory region (emulation or target RAM)
that can be used for stack operations before running your program. Or, you can
modify the emulation configuration and respecify the memory map to RAM for the
address range containing the interrupt stack and/or the master stack.

Master stack is located in ROM: <address> (Error 151)

Cause: You issued a command to run the target program, but when the emulator
attempted to write to one of your stacks, it detected that the stack address is in
memory mapped as ROM, and you enabled breaks on writes to ROM.

The monitor exits your target program by executing an RTE instruction.

Depending upon whether or not you set the M bit in the SR, the monitor will either
place a format $0 stack frame on the interrupt stack or will place a format $1
(throwaway) stack frame on the interrupt stack and a format $0 stack frame on the
master stack. Any access violations detected during these writes will abort the exit
from the monitor.

Action: Use theRegisterDisplay andregisterM odify commands to set the stack
pointer to an even value that points at a memory region (emulation or target RAM)
that can be used for stack operations before running your program. Or, you can
modify the emulation configuration and respecify the memory map to RAM for the
address range containing the interrupt stack and/or the master stack.

370

Chapter 12: Emulator Error Messages
Master stack is not located in RAM: <address> (Error 151)

Master stack is not located in RAM: <address> (Error 151)

Cause: You issued a command to run the target program. When the emulator
attempted to write to one of your stacks, it detected that the stack address is not
located in memory which operates as RAM. When the monitor writes out a stack
frame to your stack space, the monitor reads it back to verify that it was created
correctly. Unless the emulator can verify that the stack frame is located in RAM
and was created correctly, the monitor will abort the run.

The monitor exits the target program by executing an RTE instruction. Depending
upon whether or not you set the M bit in the SR, the monitor will either place a
format $0 stack frame on the interrupt stack or will place a format $1 (throwaway)
stack frame on the interrupt stack and a format $0 stack frame on the master stack.
Any access violations detected during these writes will abort the exit from the
monitor.

Action: Use theRegisterDisplay andRegisterM odify commands to set the stack
pointer to an even value that points at a memory region (emulation or target RAM)
that can be used for stack operations before running your program. Or, you can
modify the emulation configuration and respecify the memory map to RAM for the
address range containing the interrupt stack and/or the master stack.

Master stack pointer is odd or uninitialized (Error 151)

Cause: You are in the monitor and you tried to run, but the emulator detected that
your stack pointer is invalid (it detected an odd value).

Action: Use theRegisterDisplay andregisterM odify commands to set the stack
pointer to an even value that points at a memory region (emulation or target RAM)
that can be used for stack operations before running your program.

Macro buffer full; macro not added (Error 809)
Cause: This error occurs when the memory reserved for macros is all used up.

Action: You must delete macros to reclaim memory in the macro buffer.

371

Chapter 12: Emulator Error Messages
Maximum argument buffer space exceeded (Error 826)

Maximum argument buffer space exceeded (Error 826)
Cause: You exceeded the space limits for argument lists.

Action: Reenter the command with less arguments, or simplify the expressions in
the arguments.

Maximum number of arguments exceeded (Error 824)
Cause: You exceeded the limit of 100 arguments per command.

Action: Reduce the number of arguments in the command.

Memory corrupted
Cause: System memory has been corrupted.

Action: Quit as soon as possible.

Memory modify aborted; next address: <address> (Error 754)

Cause: One of these messages is displayed if a break occurs during processing of
the M emoryCopy orM emoryModify commands. The break could result from any
of the break conditions or could have resulted from a <CTRL> ¢ break.

Action: Retry the operation. If breaks are occurring continuously, you may wish to
disable some of the break conditions.

Memory search aborted; next address: <address> (Error 756)

Cause: One of these messages is displayed if a break occurs during processing of
the MemoryCopy orM emoryModify commands. The break could result from any
of the break conditions or could have resulted from a <CTRL> ¢ break.

Action: Retry the operation. If breaks are occurring continuously, you may wish to
disable some of the break conditions.

372

Chapter 12: Emulator Error Messages
Missing option or operand (Error 313)

Missing option or operand (Error 313)
Cause: You have omitted a required option to the command.

Action: Reenter the command with the correct syntax. Refer to the chapter titled,
"Emulator Commands" in this manual for further information on required syntax.

MMU is not enabled via configuration (Error 160)

Cause: You tried to display MMU translations or load the deMMUer but the MMU
is disabled within the emulation configuration.

Action: If you wish to use the MMU, enable it in the emulation configuration
before attempting to display its translations or load the deMMUer.

MMU is not enabled via translation control register (Error 160)

Cause: You tried to display the MMU translations or load the deMMUer. While
the MMU is enabled within the emulation configuration, the enable bit is not set in
the translation control register.

Action: Either enable the MMU in your target system by modifying the TC register,
or specify an enabled value for the TC register in the "Use TC reg:" field of the
associated form when invoking the MMU or deMMUer commands.

Module name specified is not a valid local symbol module.
Cause: You may have entered the module name incorrectly.

Action: Try again, making sure to enter the correct module name. If you are not
sure of the module name, you can display a listing of local symbol modules using
the SystemSymbolsGlobal Display command.

Monitor address is not set to <addr> for downloaded monitor (Error 144)

Cause: You have downloaded a custom foreground monitor which was linked
address other than the monitor address specified within the emulation configu

Action: Change the monitor address within the emulation configuration or link
custom monitor at the address specified in the configuration.

373

Chapter 12: Emulator Error Messages
Monitor operation interrupted by target system (Error 173)

Monitor operation interrupted by target system (Error 173)

Cause: Your attempt to execute a monitor command was aborted when the target
system preempted the monitor and did not return control. When the foreground
monitor is running and is in its idle state, the monitor can be interrupted by the
target system to service target system requirements. If the target system interrupts
the monitor and fails to return control to the monitor after it has finished, this error
is generated. The emulator does not attempt to regain control when after the
monitor has been preempted.

Action: The only way to regain control of your emulation system is to reset the
emulation processor. If you do not want the monitor to be preemptable by target
system interrupts, you can increase the monitor interrupt priority level. Refer to the
chapter that discusses the emulation configuration options.

Nesting of command files exceeded 8 levels ... command file execution halted
Cause: You cannot nest more than eight levels in command files.

Action: Try condensing the command files into fewer levels.

No local symbol modules found

Cause: An attempt was made to display local symbols from a symbol database that
contained none. No action is required.

No map terms available; maximum number already defined (Error 7212)

Cause: You tried to add more mapper terms than are available for this emulator. For
example, with the MC68040 emulator, there are only eight terms. If you had

already defined memory types for these terms, then tried to map another term, you
would see the above error message.

Action: Either combine map ranges to conserve on the number of terms or delete
mapper terms that aren’t needed.

No modifications allowed while trace is in progress
Cause: You tried to modify the trace while it was in progress.

Action: You must stop the trace usiAgalysisHalt. Make any necessary
modifications and then restart the trace uginglysisBegin.

374

Chapter 12: Emulator Error Messages
No module specified for local symbol (Error 882)

No module specified for local symbol (Error 882)

Cause: This error occurs because you tried to specify a local symbol name without
specifying the module name where the symbol is located.

Action: Enter the module name where the local symbol is located, followed by a
colon, and then the local symbol name.

No monitor configured (Error 174)

Cause: You configured monitor "none" and you tried to break into the monitor or
execute a command that requires use of the monitor.

Action: Either change the configuration to use a monitor, or do not try to issue a
command that requires the monitor.

No software breakpoints are currently defined

Cause: Th8reakpoints command you entered could not be executed because there
are no software breakpoints currently defined in the breakpoint list.

Action: You must first add the breakpoint usBigakpointAdd, and then repeat
the command you entered.

No symbol database, cannot look up: <symbol>

Cause: This message occurs when there is no symbol database in memory, where
<symbol> is the symbol you entered that cannot be found.

Action: You must load symbols before they can be referenced. You can use the
SystemSymbols commands to load symbols, orMhemoryL oad command to
load a user program.

No symbol file is currently active
Cause: This message occurs when there is no symbol database in memory.

Action: You must load symbols before they can be referenced. You can uset
SystemSymbols commands to load symbols, orkhemoryL oad command to
load a user program.

375

Chapter 12: Emulator Error Messages
No translation for alternate function code address spaces (Error 161)

No translation for alternate function code address spaces (Error 161)

Cause: You tried to display an MMU translation for an address specified with
alternate function codes 0, 3, 4, or 7.

Action: Don't use alternate function codes 0, 3, 4, or 7 when attempting to display
an MMU translation for an address. The MMU does not translate addresses in
alternate function code space.

Number must be a multiple of 1000H

Cause: A number other than a multiple of 1000H was entered for the base address
of the foreground monitor during configuration.

Action: Use a number that is a multiple of 1000H for the base address of the
foreground monitor.

One sequence term required (Error 1228)

Cause: This error occurs when you attempt to delete terms from the sequencer
when only one term exists.

Action: At least one term must exist in the sequencer. Do not attempt to delete
sequence terms when only one exists.

Out of hardware breakpoints (Error 154)

Cause: You either tried to set a breakpoint in target ROM or use the "Force
hardware breakpoint:" option to set a breakpoint in target RAM, and all eight
hardware breakpoint resources are already in use.

Action: Review your present set of breakpoints to see if you can delete one or more
of the hardware breakpoints that are presently set. No more than eight hardware
breakpoints can be set at any one time (one per aligned long word). Only one
hardware resource is used if two hardware breakpoints are set in the same long
word.

376

Chapter 12: Emulator Error Messages
Out of system memory (Error 201)

Out of system memory (Error 201)

Cause: Macros and equates that you have defined have used all of the available
system memory.

Action: Delete some of the existing macros and equates. This will free additional
memory.

PC Interface is out of memory
Cause: The PC Interface has tried to allocate memory on your PC and failed.

Action: Try erasing the contents of windows (<CTRL>e and <CTRL>a). It may be
necessary to exit the PC Interface and re-enter to reinitialize the heap.

PC Interface is out of memory. Please exit immediately

Cause: The menu system of the PC Interface has tried to allocate memory on your
PC and failed.

Action: Exit immediately. Otherwise, subsequent commands could cause your PC
to hang, requiring a reboot.

Previous memory display command was too big

Cause: In the previous memory display command you specified a memory
expression that was too complex.

Action: Try MemoryDisplay again, specifying a simpler expression.

Program counter is odd or uninitialized (Error 150)

Cause: You tried to run the processor from the current PC, but the value of the
current PC is odd.

Action: Modify the PC to an even value. The processor expects even word
alignment of opcodes.

377

Chapter 12: Emulator Error Messages
Program counter is located in guarded memory (Error 150)

Program counter is located in guarded memory (Error 150)

Cause: You tried to run but the emulator detected that the program counter is
located in guarded memory. This error will only be generated if the MMU is
disabled; otherwise, you will see an asynchronous error indicating access to
guarded memory occurred when the emulator attempted to run the target program.

Action: Make sure the program counter is set to an address in RAM or ROM before
you attempt to run your program.

Range resource in use (Error 1221)

Cause: This error occurs when you attempt to redefine the “complex” configuration
range resource while it is currently being used as a qualifier in the trace
specification.

Action: In the “complex” configuration, display the sequencer specification to see
where the range resource is being used and remove it; then, you can redefine the
range resource. Refer to the chapter titled "Using the Analyzer" for details of how
to use the sequence.

Range term used more than once (Error 1248)

Cause: This error occurs when you attempt to use the range resource more than
once in a sequencer branch expression.

Action: Do not try to use the range resource more than once in a sequencer branch
expression.

Read PC failed during break (Error 603)
Cause: The monitor is not responding.

Action: Check your target system configuration, the emulator configuration and
memory map, or reinitialize the emulator. Then try the command sequence again.

378

Chapter 12: Emulator Error Messages
Record checksum failure (Error 400)

Record checksum failure (Error 400)

Cause: During &ransfer operation, the checksum specified in a file did not agree
with that calculated by the HP 64700.

Action: Retry tharansfer operation. If the failure is repeated, make sure that both
your host and the HP 64700 data communications parameters are configured
correctly.

Records expected: <number>; records received: <number> (Error 401)

Cause: The HP 64700 received a different number of records than it expected to
receive during &ransfer operation.

Action: Retry theransfer. If the failure is repeated, make sure the data
communications parameters are set correctly on the host and on the HP 64700. See
theHP 64700-Series Card Cage Installation/Service Giadeetails.

Register access aborted (Error 630)

Cause: Occurs when a <CTRL> c is entered during register display.

Register class cannot be modified: <register class> (Error 637)

Cause: You tried to modify a register class instead of an individual register. You
can only modify individual registers.

Action: See the "Register Commands" pages in the chapter titled, "Emulator
Commands" in this manual for a list of register names.

Repetitive memory display in progress. -- ESC to abort

Cause: This status message lets you know that a repetitive memory display is in
progress.

Action: You can press the <ESC> key to stop the display.

379

Chapter 12: Emulator Error Messages
Request access to guarded memory: <address> (Error 707)

Request access to guarded memory: <address> (Error 707)

Cause: The address or address range specified in the command included addresses
within a range mapped as guarded memory. When the emulator attempts to access
these during command processing, the above message is printed, along with the
specific address or addresses accessed.

Action: Reenter the command and specify only addresses or address ranges within
emulation or target RAM or ROM. You can also remap memory so that the desired
addresses are no longer mapped as guarded.

Request cannot be satisfied with remaining map resources (Error 147)

Cause: Although you have not exceeded the maximum number of map terms that
can be specified in the memory map, you have run into a hardware resource
limitation in the emulator that arises when target memory is mapped including the
transfer cache inhibit attribute.

There are eight hardware resources on the emulation probe for mapping emulation
memory and driving the TCI signal for target memory ranges. When two
emulation memory modules are installed, the emulator requires seven of these
resources to map all of the emulation memory. Target memory ranges require
either zero or one resource, depending on whether or not use of the transfer cache
inhibit attribute matches its use in the "Unmapped memory: Type" term. For
example, if "Unmapped memory: Type" is mapped to target RAM artdithe

(transfer cache inhibit) attribute is OFF, one hardware resource is required to add a
map term for target memory that requiteiso be ON. Consuming additional
hardware resources for mapping target memory will reduce the amount of
emulation memory available for mapping. Once all eight hardware resources have
been consumed, mappable emulation memory will be reduced to zero and you will
get this message.

Action: Try to minimize the number of hardware resources used for mapping target
memory by mapping the "Unmapped memory: Type" term to target memory both
with thetci attribute on and off. Find out which specification for "Unmapped
memory: Type" uses the least number of hardware resources.

380

Chapter 12: Emulator Error Messages
Request failed; bus grant (Error 171)

Request failed; bus grant (Error 171)

Cause: An attempt was made to execute a monitor command, but an external target
system device has monopolized the bus and the monitor is no longer responding.

Action: Wait until the processor has regained bus control, and then retry the
operation or don't let external devices monopolize the bus for extended periods of
time.

Request failed; halted (Error 171)

Cause: During a monitor command, one or more target exceptions caused the
processor to stop running bus cycles.

Action: Use the emulation-bus analyzer to determine what exceptions caused the
problem and try to work around them.
Request failed; no bus cycles (Error 171)

Cause: During a monitor command, some problem caused the processor to stop
running bus cycles.

Action: Use the emulation-bus analyzer to determine what caused the problem and
try to work around them. If you are using the demo board, make sure the reset
flying lead from the probe is connected to the demo board.

381

Chapter 12: Emulator Error Messages
Request failed; no target power (Error 171)

Request failed; no target power (Error 171)
Cause: You do not have proper power applied to your target system or demo board.

Action: Check the connection from your emulation probe to the target system or
demo board. If using the demo board, be sure you have connected the external
power cable correctly.

Request failed; slow clock (Error 171)
Cause: The target system is providing target power but no clock signal.

Action: Make sure the clock oscillator is installed correctly.

Request failed; target reset (Error 171)

Cause: During a monitor command, the target system asserted (and continues to
assert) the reset signal; the monitor is no longer responding.

Action: Prevent your target system from asserting the reset signal when you are
using monitor commands.

Request failed; unexpected exception: <vector number> (Error 171)

Cause: The monitor was executing a command and some exception occurred that it
did not expect. During monitor command execution, the monitor traps all
exceptions by using its own stack and vector table. The monitor provides exception
handlers for some exceptions, such as access fault, so that it can either recover or
issue a detailed error message. The monitor had no exception handler for the
exception number shown in this message.

Action: Reset the emulator and try your command again.

382

Chapter 12: Emulator Error Messages
Restricted to real time runs (Error 40)

Restricted to real time runs (Error 40)

Cause: While the emulator is restricted to real-time execution, you have attempted
to enter a command that requires a temporary break to the monitor for processing
(such as a request to display target system memory locations). The emulator will
not allow temporary breaks while the emulator is in the reset state or while the
target program is running.

Action: Break to the monitor using tReocessoBreak command, and then
execute the desired command or disable the real time mode.

Retry limit exceeded, transfer failed (Error 412)

Cause: The limit for repeated attempts to send a record duramgséer operation
was exceeded; therefore, the transfer was aborted.

Action: Retry the transfer. Make sure you are using the correct command options
for both the host and the HP 64700. The data communications parameters need to
be set correctly for both devices. Also, if you are in a remote location from the host,
line noise may cause the failure.

Run failed during CMB execute (Async_Error 694)
Cause: System failure or target condition.

Action: Run performance verificatiopf command), and check target system.

Sequence term not contiguous: <term> (Error 1225)

Cause: This error occurs when you attempt to insert a sequence term that is not
between existing terms or after the last term.

Action: Be sure that the sequence term you enter is either between existing
sequence terms or after the last sequence term.

383

Chapter 12: Emulator Error Messages
Sequence term not defined: <term> (Error 1227)

Sequence term not defined: <term> (Error 1227)

Cause: This error occurs when you attempt to delete or specify a primary branch
expression for a sequence term number that is possible, but is not currently defined.

Action: Insert the sequence term, and respecify the primary branch expression for
that term.

Sequence term number out of range: <term> (Error 1224)

Cause: This error occurs when a sequencer qualification command specifies a
non-existent sequence term. The easy configuration sequencer may have a
maximum of four sequence terms. Eight sequence terms exist in the complex
configuration sequencer.

Action: Reenter the command using an existing sequence term.

Severe error detected, file transfer failed (Error 411)
Cause: An unrecoverable error occurred duritrgrasfer operation.

Action: Retry the transfer. If it fails again, make sure the data communications
parameters are set correctly on the host and on the HP 64700. Also make sure you
are using the correct command options, both on the HP 64700 and on the host.

Software breakpoint: <breakpoint address> (Async_Stat 615)

Cause: This status message indicates that the target program executed a software
breakpoint instruction (an execution breakpoint, either in software or provided by
one of the eight hardware breakpoint resources). The emulator stopped the target
program and began running in the monitor.

384

Chapter 12: Emulator Error Messages
Software breakpoint break condition is disabled (Error 661)

Software breakpoint break condition is disabled (Error 661)

Cause: You disabled the software breakpoint feature. Breakpoints are enabled by
default. Then you attempted to set a breakpoint, or you attempted to single step
with the foreground monitor (either the built-in or custom foreground monitor).

Action: Re-enable the software breakpoint feature and try again.

Specified breakpoint not in list: <address> (Error 663)

Cause: You tried to set a software breakpoint that was not previously defined.
<address> prints the address of the breakpoint you attempted to set.

Action: Add the breakpoint into the table and memory.

Stack pointer is odd (Error 80)

Cause: You tried to modify the stack pointer to an odd value and the emulator
expects the stack to be aligned on a word boundary.

Action: Modify the stack pointer to an even value.

Step display failed (Error 688)
Cause: System failure or target condition.

Action: Check memory mapping and configuration questions.

Stepping aborted (Error 685)

Cause: This message is displayed if a break was received diriogessoStep
command with a stepcount of zero (0). The break could have been due to any of the
break conditions or a <CTRL> c break.

385

Chapter 12: Emulator Error Messages
Stepping aborted; number steps completed: <steps completed> (Error 686)

Stepping aborted; number steps completed: <steps completed> (Error 686)

Cause: This message is displayed if a break was received difriogegsoStep

command with a stepcount greater than zero. The break could have been due to any
of the break conditions or a <CTRL> ¢ break. The number of steps completed is
displayed.

Stepping failed (Error 680)

Cause: Stepping has failed for some reason. For example, this message will appear
if the emulator can’t modify the trace vector, which is used to implement the step
function. Usually, this error message will occur with other error messages.

Action: Refer to the descriptions of the accompanying error messages to find out
more about why stepping failed.

Symbol cannot contain text after the wildcard (Error 879)

Cause: You tried to include text after the wildcard specified in the symbol hame
(for examplesymbol*text).

Action: Enter the symbol again, but do not include text after the wildcard (*).

Symbol cannot contain wildcard in this context (Error 878)

Cause: You tried to enter a global, local, or user symbol name using the wildcard
(*) incorrectly.

Action: When you enter the symbol name again, include the wildcard (*) at the end
of the symbol.

386

Chapter 12: Emulator Error Messages
Symbol not found: <symbol> (Error 877)

Symbol not found: <symbol> (Error 877)
Cause: This occurs when you try to enter a symbol hame that doesn’t exist.

Action: Enter a valid symbol name.

Target bus error: <address> (Error 172)

Cause: The monitor attempted to access target system memory or memory that you
specified must be terminated by the target system, and the target system terminated
the bus cycle witTEA.

Action: Retry your command. If the error occurs again and if it is during an
attempted access to emulation memory, you can answer "yes" to the configuration
guestion "Terminate monitor bus cycles?" for the emulation memory. If the error
occurs again on access to target system memory, inspect your target system to
understand why it is sending th&A for the specified address.

Target failed to terminate bus cycle: <address> long read (Error 170)

Cause: You attempted to break or reset into the monitor and the target system failed
to terminate a bus cycle wifA or TEA. Normally, the emulator will force bus

cycle termination for the target system in order to break into the monitor.

However, the emulator refused to terminate the bus cycle because the address was
in program space or it was within the address range of the foreground monitor.

Action: Reset the emulator and target system. If the address is within emulation
memory, answer "yes" to the configuration question "Terminate monitor bus
cycles?" if the target system does not provide cycle terminations within this address
range.

387

Chapter 12: Emulator Error Messages
Target memory access failed (Error 700)

Target memory access failed (Error 700)

Cause: The emulator was unable to perform the requested operation on memory
mapped to the target system. This message is displayed in conjunction with other
error messages that further clarify the problem that occurred. In most cases, the
problem results from the emulator’s inability to break to the monitor to perform the
operation.

Action: See other error messages in the error log to further understand the cause of
the error.

The maximum number of windows are already defined

Cause: You tried to open a new window when the maximum number of user
windows has already been defined.

Action: Either use an existing window or delete any unnecessary windows using
WindowsDelete and then open the new window usiigdow Open.

The name of an empty window was specified

Cause: The action you specified could not be carried out because the window you
specified was empty. For example, if you ent&k8ddow Store and the name of
an empty window, you might get this error. No action is necessary.

There is currently no default local module

Cause: You referenced a line number symbol (for example, "line 23") without first
specifying a local symbol module.

Action: Try again, making sure to specify a local symbol module first (for example,
"main: line 23"). Once a local symbol module has been referenced, it becomes the
default until another is specified.

Trace status equate not found: <status_equate>

Cause: The trace status equate you specified stahBeld of the pattern screen
could not be found. For example, you may have entered "byte" when "siz_byte"
was expected.

Action: Use the <Tab> key to view the valid choices.

388

Chapter 12: Emulator Error Messages
Trigger term cannot be term 1 (Error 1251)

Trigger term cannot be term 1 (Error 1251)

Cause: This error occurs when you attempt to specify the first sequence term as the
trigger term. The trigger term may be any term except the first.

Action: Respecify the trigger term as any other sequence term.

Too many sequence terms (Error 1226)
Cause: This error occurs when you attempt to insert more than four sequence terms.

Action: Do not attempt to insert more than four sequence terms.

Trace error during CMB execute (Error 692)
Cause: System failure.

Action: Run performance verificatiop¥ command).

Trace format command failed; using old format (Error 1133)
Cause: This error occurs when the trace format command fails for some reason.

Action: This error message always occurs with another error message. Refer to the
description for the other error message displayed.

389

Chapter 12: Emulator Error Messages
Trigger position out of bounds: <bounds> (Error 1202)

Trigger position out of bounds: <bounds> (Error 1202)

Cause: This error occurs when you attempt to specify a number of lines to appear
either before or after the trigger which is greater than the number of lines allowed.
The <bounds> string indicates the incorrect range you typed (not the correct limits
on the range).

Action: Be sure that the trigger position specified is within the range -1024 to 1023
(or -512 to 511 if counting is enabled).

trigl break (Async_Stat 618)

Cause: This status message will be displayed if you usétbthfeg Trigger

command and form to have the analyzer send its trigger-recognition signal to the
emulator to cause an emulation break. The analyzer has found the trigger condition
while tracing a program run. The emulator is broken to the monitor.

Trigl signal cannot be driven and received (Error 1302)

Cause: This error occurs when you attempt to specify the internal TRIG1 signal as
the trace arm condition while the same analyzer’s trigger output is currently driving
the TRIGL1 signal. This error also occurs if you attempt to specify that the trigger
output drive the internal TRIG1 signal while that signal is currently specified as the
arm condition for the same analyzer.

Action: You can either change the arm or the trigger output specification; in either
case, make sure they do not use the same internal signal.

trig2 break (Async_Stat 619)

Cause: This status message will be displayed if you have used the internal TRIG2
line to connect the analyzer trigger output to the emulator break input and the
analyzer has found the trigger condition. The emulator is broken to the monitor.

390

Chapter 12: Emulator Error Messages
Trig2 signal cannot be driven and received (Error 1303)

Trig2 signal cannot be driven and received (Error 1303)

Cause: This error occurs when you attempt to specify the internal TRIG2 signal as
the trace arm condition while the same analyzer's trigger output is currently driving
the TRIG2 signal. This error also occurs if you attempt to specify that the trigger
output drive the internal TRIG2 signal while that signal is currently specified as the
arm condition for the same analyzer.

Action: You can either change the arm or the trigger output specification; in either
case, make sure they do not use the same internal signal.

Unable to access deMMUer while analysis trace is in process (Error 163)

Cause: You tried to issue a command that requires access to the deMMUer while
the analyzer was running a trace. You cannot load, enable or disable the deMMUer
while an analysis trace is in process.

Action: Wait for the trace to complete or stop the trace before changing the state of
the deMMUer.

Unable to modify trace vector to <value> for single stepping (Error 156)

Cause: You tried to single step, and the emulator detected the trace vector was not
set properly and the emulator was unable to modify the vector table because it was
not located in emulation memory or target RAM. This usually occurs when the
vector table is located in target ROM.

Action: Copy or relocate the vector table in emulation memory or target RAM, or
change your ROM image so that it contains the proper value for the trace vector for
single stepping. Refer to stepping information in the chapter titled "Using the
Emulator” in this manual.

Unable to access the specified file
Cause: The file you specified could not be found.

Action: Try again, making sure that you enter the correct file name.

Unable to allocate sufficient memory
Cause: The PC Interface could not start due to insufficient memory.

Action: Remove memory resident programs (TSRs) or device drivers and try again.
Your PC must have a minimum of 640K.

391

Chapter 12: Emulator Error Messages
Unable to break (Error 608)

Unable to break (Error 608)

Cause: This message is normally used with other messages that further describe the
error. Itis displayed if the emulator is unable to break to the monitor because the
emulation processor is reset, halted, or the monitor is not responding for some
reason.

Action: First, look at the emulation prompt and other status messages displayed to
determine why the processor is stopped. If reset by the emulation controller, use the
ProcessoBreak command to break to the monitor. If reset by the target system,
release that reset. If halted, BsocessoReset andProcessoBreak to get to the

monitor. If there is a bus grant, wait for the requesting device to release the bus
before retrying the command. If there is no clock input, perhaps your target system
is faulty. It's also possible that you have configured the emulator to restrict to real
time runs, which will prohibit temporary breaks to the monitor.

Unable to delete label; used by emulation analyzer: <label> (Error 1105)

Cause: This error occurs when you attempt to delete an emulation trace label that is
currently being used as a qualifier in the emulation trace specification or is
currently specified in the emulation trace format.

Action: Display the emulation trace sequencer specification and display the
emulation trace patterns in the complex configuration, or display the trace format to
see where the label is used. You must change the pattern or format specification to
remove the label before you can delete it.

Unable to execute the MS-DOS command

Cause: You specified an MS-DOS command that cannot be executed because it
requires too much memory.

Action: Use the MS-DOS CHKDSK command to see how much memory is
available. (You may not be able to run MS-DOS CHKDSK if there is not enough
memory available.)

Unable to load new memory map; old map reloaded (Error 725)
Cause: There is not enough emulation memory left for this request.

Action: Reduce the amount of emulation memory requested.

392

Chapter 12: Emulator Error Messages
Unable to load specified symbol file

Unable to load specified symbol file
Cause: The symbol file you specified could not be loaded.

Action: Try again, making sure to enter the correct file name.

Unable to load the specified configuration file
Cause: The configuration file you specified could not be loaded.

Action: Try again, making sure to enter the correct file name.

Unable to modify register: <register>=<value> (Error 632)
Cause: The emulator was unable to modify the register you requested.

Action: To resolve this, you must look at the other status messages displayed. It is
likely that the emulator was unable to break to the monitor to perform the register
modification.

Unable to open the requested file for logging purposes
Cause: Either the file you requested cannot be created or it cannot be written to.

Action: Check to make sure that you entered the correct file name.

Unable to open the specified window ... ESC to abort
Cause: There is insufficient memory left on your PC to open the specified window.

Action: Try a smaller buffer size or remove memory resident programs (TSRS) or
device drivers from your PC.

Unable to read registers in class: <name> (Error 631)
Cause: The emulator was unable to read the registers you requested.

Action: To resolve this, you must look at the other status messages displayed.
likely, the emulator was unable to break to the monitor to perform the register

393

Chapter 12: Emulator Error Messages
Unable to redefine label; used by emulation analyzer: <label> (Error 1108)

Unable to redefine label; used by emulation analyzer: <label> (Error 1108)

Cause: This error occurs when you attempt to redefine an emulation trace label that
is currently used as a qualifier in the emulation trace specification.

Action: Display the emulation trace sequencer specification in the easy
configuration and display the emulation trace patterns in the complex
configuration, or display the emulation trace format to see where the label is used.
You must change the pattern or format specification to remove the label before you
can redefine it.

Unable to reload old memory map; hardware state unknown (Error 726)
Cause: Error occurred while trying to modify the emulation memory map.

Action: Usually there are other error messages present. Refer to their descriptions
to more fully understand the cause and action to take for this error.

Unable to reset (Error 640)
Cause: Target condition or system failure.

Action: Check target system, and run performance verificgoegmmand).

Unable to run (Error 610)

Cause: Run has failed for some reason. For example, this message will appear if
the emulator cannot write to stack, which is required to run. Usually, this error
message will occur with other error messages.

Action: Refer to the descriptions of the accompanying error messages to find out
more information about why the run failed. Look at the emulator prompt to know
the emulator status. Take a trace with the analyzer to see where the emulator is
executing.

Unable to run after CMB break (Error 606)
Cause: System failure or target condition.

Action: Run performance verificatiop command), and check target system.

394

Chapter 12: Emulator Error Messages
Unable to run HP64783 performance verification tests (Error 178)

Unable to run HP64783 performance verification tests (Error 178)

Cause: You entered tipg command, but the emulator was unable to start
performance verification because the firmware did not identify the probe as being
the MC68040.

Action: Make sure the correct emulator probe is connected and that all cables are
secured. Make sure that the demo board is connected to the emulator probe, the
power cable is connected between the HP 64700 card cage and the demo board, and
the reset flying lead is connected between the emulation probe and the demo board.

Unable to run HP64783 tests without target power (Error 178)
Cause: The demo board does not have proper power connected to it.

Action: Check the connections of the external power cable and the reset flying lead
to the demo board.

Unable to store to the specified configuration file
Cause: The file name you specified cannot be stored.

Action: Make sure you entered the file name correctly or that the file is not
write-protected.

Unable to write to disk ... Disk may be full

Action: Either insert a new disk or delete unnecessary files from the current disk to
free memory and try again.

395

Chapter 12: Emulator Error Messages
Unexpected EOF in section <section> of configuration file <name>

Unexpected EOF in section <section> of configuration file <name>

Cause: The configuration file lacks a closing section header and is probably
corrupt.

Action: Compare it to a configuration file stored with @enfig Store command.
Correct any errors and try again.

Unexpected software breakpoint (Error 620)
Unexpected step break (Error 621)

Cause: System failure.

Action: Run performance verificatiop¥ command).

Undefined software breakpoint: <address> (Error 605)

Cause: The emulator has encountered a BKPT instruction in your program that was
not inserted with thBreakpointsAdd command.

Action: Remove the breakpoints inserted in your code before assembly and link,
and then reinsert them using BieakpointsAdd command. If this message was
received after you enabled the MMU, read "Execution Breakpoint Problems" in the
chapter titled, "Using Memory Management".

Undefined software breakpoint: <breakpoint address> (Async_Stat 605)

Cause: This status message indicates a breakpoint instruction was executed and the
emulator stopped target execution and started running in the monitor. The emulator
had no record of a breakpoint being set at this address. This can happen if the
MMU relocates a page containing a breakpoint before that breakpoint is executed.

In this case, the emulator will have no record of the breakpoint at the relocated
address.

396

Chapter 12: Emulator Error Messages
Unmatched quote encountered (Error 820)

Unmatched quote encountered (Error 820)

Cause: In entering a string, such as withettlitocommand, you didn’t properly
match the string delimiters (eitheror “’). For example, you might have entered

echo “set S1 to off

Action: Reenter the command and string, making sure to properly match opening
and closing delimiters. Note that both delimiters must be the same character. For
exampleecho “set S1 to off!

Update HP64740 firmware to version A.02.02 or newer (Error 177)

Cause: This error occurred when you attemped to disassemble a trace and the
analyzer firmware was found to be out of date.

Action: Refer to the chapter titled, "Installing/Updating Emulator Firmware". You
must update the firmware to the version number specified in the message, or newer
firmware version number. Your analyzer is not able to disassembile its trace
memory with its present firmware.

Update HP64700 system firmware to A.04.00 or newer (Error 176)
Cause: This error occurred because your system firmware is out of date.

Action: Refer to the chapter titled, "Installing/Updating Emulator Firmware". You
must update the firmware to the version number specified in the message, or newer
firmware version number. Your system is not usable with its present firmware.

Vector table modified for single stepping (Status 155)

Cause: This status message indicates that you issued the emulator command to
single step. The emulator detected that the trace vector was not properly set for
stepping so the emulator temporarily modified one or more exception vectors in
your vector table. The original values are restored by the emulator after the step
completes. This message is only issued one time if you do not change the ad
or value of the trace vector.

397

Chapter 12: Emulator Error Messages
Window load in progress

Window load in progress

Cause: This status message means that the contents of the file you specified are
currently being loaded in the window you specified. No action is required.

Window specified is not a hidden window

Cause: You tried to us#indow Utility View to return a hidden window to the PC
Interface display, but the window you specified was not hidden.

Action: If you entered the wrong window name, then try again, making sure to
enter the correct window name. Otherwise, no action is necessary.

Window specified is not a user-defined window

Cause: Th&Vindow command that you specified could not be executed because
you entered a window name that was not user-defined.

Action: You can try the command again with a user-defined window name.

Window specified is not a visible window

Cause: Th&Vindow command that you specified could not be executed because
you entered the name of a hidden window.

Action: You can us&/indow Utility View to return the hidden window to the
display. Then try the command again.

Write to ROM break:<ROM address> (Async_Stat 628)

Cause: This status message indicates the target program accessed memory mapped
as either emulation ROM or target ROM; the emulator interrupted target execution
and began running in the monitor. This only occurs if you enabled breaks on writes
to ROM. When the MMU is enabled, the address displayed in this message will be
physical, as denoted by the trailing "a" after the function code.

398

13

Data File Formats

399

Chapter 13: Data File Formats

Software development tools (in other words, compilers, assemblers, linkers, etc.)
generate absolute files that contain program code. Once these absolute files are
loaded into emulation and target system memory, the emulator can execute the
program code.

The Absolute File

The file format reader creates an absolute file (<file>.hpa). This absolute file is a
binary memory image, which is optimized for efficient downloading into the
emulator.

The ASCII Symbol File

The ASCII symbol file (<file>.hps) produced by the reader contains global
symbols, module names, local symbols, and, when using applicable development
tools such as a “C” compiler, program line numbers. Local symbols evaluate to
fixed (static, not stack relative) address.

You must use the required options for your specific language tools to include
symbolic (“debug”) information in the absolute and symbol files.

The symbol file contains symbol and address information in the form:

module_namel
module_name2

'rﬁodule_nameN
global_symboll 0100234
global_symbol2 0100678

global_symboIN 0100BCD
[module_namel|# 1234 0200872
[module_namel|local_symboll 0200653
[module_namel|local_symbol2 0200872

ihﬁodule_namel|Iocal_symboIN 0200986

Symbols are sorted alphabetically in the groups: module names, global symbols,
and local symbols.

Line numbers will appear similar to a local symbol except that “local_symbolX”

will be replaced by “#NNNNN” where NNNNN is a five digit decimal line

number. The addresses associated with global and local symbols are specific to the
processor for which the absolute files were generated.

400

Chapter 13: Data File Formats

You access line number symbols by entering the following on one line in the order
shown:

module name

colon (3)

space

the word “line”

space

the decimal line number

For example:

MAIN.C: line 23

If your emulator can store symbols internally, symbols will appear in disassembly.
When the line number symbol is displayed in the emulator, it appears in brackets.

Therefore, the symbol “MODNAME: line 345" will be displayed as
“MODNAME:[345]" in mnemonic memory and trace list displays.

The space preceding module names is required. Although formatted for readability
here, a single tab separates symbol and address.

The local symbols are scoped. This means that to access a variable named “count
in a function named “Foo” in a source file module named “MAIN.C,” you would
enter “MAIN.C:COUNT” as shown below.

How to Access Variables

Module Name Function Name Variable Name You Enter:
MAIN.C Foo count MAIN.C:Foo.count
MAIN.C bar count MAIN.C:bar.count
MAIN.C line number 23 MAIN.C: line 23

Command File

A command file is an ASCII file containing PC Interface commands. You can
create command files from within the interface by logging commands to a
command file as you execute the commands. Or, you can create command fil
outside the interface with an ASCII text editor. You can send a command file to the
PC Interface and have it execute the commands found there as if you typed them
directly into the interface command line.

401

Chapter 13: Data File Formats

With a single command file, you can implement a complete test procedure. For
example, you could start the interface and execute your command file. The
command file could load a configuration, load an absolute file, modify registers or
memory, set up a trace specification, start the program, capture the trace, and save
the trace listing to a file. (The ability to capture information from the emulator may
be limited, and depends on the host computer configuration.)

You can put most PC Interface commands into a command file. The only things
that you cannot do in a command file are:

» Define function key macros.
» Set up the analyzer trace specification.
* Change the emulator configuration.

These things must be done in a configuration file. See the section “Using
Configuration Files.”

As with any source file, comments in command files help to explain the operation
of the command file and can also contain creation and modification information for
the command file. You can put comments in command files by using a text editor; a
“#" character anywhere in a line means that the rest of the text on the line is a
comment.

Command files may be nested up to 8 levels. (Nesting means that one command
file calls another.)

Configuration File

The configuration file is an ASCII file having several different sections. These
sections begin and end with a section name; between the names are the current
configuration settings for that section.

$SYSWIN Contains settings for the PC Interface system-defined windows.
$USERWIN Contains settings for user-defined windows (if any).

$MISC Contains color settings for display monitors.

$KEYMAC Contains function key macro definitions.

$SYMDB Defines the current symbol database.

402

$EMUL

$STLABINT
$STPATINT
$STSEQINT

$STLABEXT

$STPATEXT

$STSEQEXT

$TIMSPEC

$TIMWAVE

$LABSPEC

$LABWAVE

Chapter 13: Data File Formats

Contains the current emulator configuration as a series of
Terminal Interface configuration commands.

Lists the analyzer trace format and label information.
Lists pattern and range specifications for the emulation analyzer.
Lists sequencer term definitions for the emulation analyzer.

Lists the analyzer trace format and label information for the
external state.

Lists pattern and range specifications for the emulation analyzer
for the external state.

Lists sequencer term definitions for the emulation analyzer for
the external.

Contains the trace specification for the external timing analyzer.

Contains the datafrom the lase captured timing analyzer
measurement.

Contains the analyzer trace format for the external timing
analyzer.

Contains the signal display format for the external timing
analyzer.

You can modify a configuration file using an ASCII text editor, then load it into the
PC Interface. However, the simplest and safest way to change a configuration file is
to load an existing configuration, modify it using the PC Interface commands, then
save it to a new file.

Function Key Macro Configuration File

You can create a function key macro outside the PC Interface by using a text

to create a configuration file. The key macro definitions must be preceded and
followed by the $KEYMAC separator. Each macro definition begins with the key
combination that represents the macro. A colon separates the macro assignment

403

Chapter 13: Data File Formats

from the definition. The definition itself appears as the sequence of keystrokes in
the macro.

» All keystroke sequences that are not part of the standard printable ASCII
character set must be enclosed in brackets. This includes characters in the
range 0..31 decimal and 127..255 decimal. For example, function key 3 is
represented as-3>.

» The control key<€Ctrl>) is represented using the circumflex symB9ihen
the character that follows it is part of the ASCII character set, and is
represented by the string “Ctrl” when the following character is not part of the
ASCII character set. For examp#€GtrI>M (<Enter>) is shown as"M>;
<CtrI>F5 is shown asCtrlF5>.The following shows the default function key
macros defined by the PC Interface, as represented in a configuration file:

$KEYMAC
<F1>:pspl<m”>
<F2>:\>>
<F10>:sel
$KEYMAC

Nesting is limited to 16 levels. Direct or indirect recursion of macros is not
permitted, except as a chain.

404

14

Specifications and Characteristics

405

Chapter 14: Specifications and Characteristics
Processor Compatibility

Processor Compatibility

The HP 64783A/B is compatible with the Motorola MC68040, MC68EC040, and
MC68LCO040 processors, and with any processors that meet all specifications of the
MC68040, MC68EC040, and MC68LC040 processors.

Electrical

Maximum clock speed

The maximum external speed of the HP 64783A is 33 MHz, and of the HP 64783B
is 40 MHz. The emulator runs without wait states at clock speeds up to 25 MHz.
Above 25 MHz, one wait state is required in all bus cycles and between burst
transfers.

Motorola JTAG

HP 64783A/B does not support Motorola JTAG. Therefore, no specifications are
given for Motorola JTAG in this manual.

406

Chapter 14: Specifications and Characteristics
HP 64783A/B Maximum Ratings

HP 64783A/B Maximum Ratings

Characteristic Symbol Value Unit
Supply Voltage Vee ~0.310+5.5 Vv
Input Voltage Vin _051t0+55 v
Maximum Operating Ambient Temperature TA 45 °c
Minimum Operating Ambient Temperature TA 0 °c
Storage Temperature Range Tstg 4010 +70 °c

407

Chapter 14: Specifications and Characteristics
HP 64783A/B Electrical Specifications

HP 64783A/B Electrical Specifications

HP 64783A/B — DC ELECTRICAL SPECIFICATIONS

(vcc=5.0 Vdc+5%)

Characteristic Symbol| Min | Max | Unit
Input High Voltage ViH 2 | Vee!| V
Input Low VOltage VIL GND!| 0.8 \Vi
Undershoot — | o5 Vv
Input Leakage Current @ 0.5/2.4 V mn ~250 — | pA
AVEC, BCLK, BG, CDIS, MDIS, IPLx, PCLK,RSTI, SCx, " — | 25
TBI, TLNx, TCI, TCK, TEA
Hi-Z (Off-State) Leakage Current @ 0.5/2.4 V L ITs| A
An, CIOUT, Dn,LOCK, LOCKE, SIZx, TDO,TMx, TLNx, TTx, UPAX K
BB, RW, TIP, TS 50 | 50
TA ~100| 100

—200| 200

Output High Voltage Vou
loH =-32 mA: Vv

An, Dn, SIZx, TTx, UPAx].OCK, LOCKE, TLNx, CIOUT, TMXx,

PSTx,RSTO,BR, MlI, BG,reset flying lead 20 | —
lon=-32mA:.

RMW, TS, TIP,BB, TA, IPEND 24 | —
Output Low Voltage VoL Vv
loL = 64 mA

An, Dn, SIZx, TTx, UPAXLLOCK, LOCKE, TLNx, CIOUT, TMX,

PSTx,RSTO,BR, MI, BG, reset flying lead — | o055
lo=24mA __

RMW, TS, TIP,BB, TA, IPEND — | 05
Capacitance Cin _ 25 pF

Vin=0V, f=1 MHz

408

Chapter 14: Specifications and Characteristics
HP 64783A/B Electrical Specifications

HP 64783A/B — DC ELECTRICAL SPECIFICATIONS

(vcc=5.0 Vdc+5%)

Characteristic Symbol| Min | Max | Unit
Supply Current lce

Notes for HP 64783A/B Electrical Specifications:

BCLK and PCLK have additional input current and capacitance loading because of
RC terminations. Refer to their equivalent circuit diagrams for details. The
numbers given in the HP 64783A/B Electrical Specifications table do not include

the RC terminations.

409

Chapter 14: Specifications and Characteristics
HP 64783A/B Clock AC Timing Specifications

HP 64783A/B Clock AC Timing Specifications

25 MHz 33 MHz 40 MHz
Num Characteristic Min | Max | Min |Max |Min Max | Unit
Frequency of Operation 16.67| 25| 16.67 33| 20 40| MHz
1 | PCLK Cycle Time 20 | 30 | 15| 30 125 25 ns
2 PCLK Rise Time 17 1.7 _ 15 ns
3 PCLK Fall Time 16 16 _ 15 ns
4 | PCLKDuty Cycle Measured at1.5V | 4750 5250 46.67 53.33 460 5400 9
44 | PCLK Pulse Width High Meas. at1.5V 950 | 1050 7 8 575 6.75 ns
apt | PCLK Pulse Width Low Measured at 159 55 | 1050 7 8 575 6.75 ns
\%
5 | BCLK Cycle Time 40 | 60 | 30| 60| 25| 50| ns
6,7 | BCLKRise and Fall Time _ 4 _ 3 _ 3 ns
g | BCLK Duty Cycle Measured at 1.5V | 4 60 40 60 40 60 %
g4 | BCLK Pulse Width High Measured at | 14 24 12 18 10 15 ns
15V
gpt | BCLK Pulse Width Low Measured at 115 14 24 12 18 10 15 ns
\%
9 PCLK, BCLK Frequency Stability — |1000| — | 1000 — | 1000 ppm
10 | PCLKto BCLK Skew _ n/a _ n/a _ n/a ns

Notes for Clock AC Timing Specifications:

1 Specification value at maximum frequency of operation.

410

Chapter 14: Specifications and Characteristics
HP 64783A/B Output AC Timing Specifications

HP 64783A/B Output AC Timing Specifications

25 MHz" | 33MHz! | 40 MHZ!
Num Characteristic Min |Max |Min |Max Min Max | Unit
11 | BCLK to AddresCIOUT,LOCK,LOCKE, | g | 25 | g5 | 225 525 21 ns
RMW, SIZx, TLNx, TMx, TTx, UPAx Valid
12 | BCLK to Output Invalid (Output Hold) 9 — | 65| — | 525 ns
13 | BCLK10TS Valid 9 | 25| 65| 225 525 21| ns
14 | BCLK10TIP Valid 9 | 25| 65| 225 525 22| ns
1g | BCLK o Data Out Valid 9 | 27 | 65| 245 525 23 ns
19 | BCLK to Data Out Invalid (Output Hold) 9 _ 6.5 — | 525 _ ns
20 | BCLK to Output Low Impedance 3 _ 3 _ 3 _ ns
21 | BCLK to Data-Out High Impedance 9 32 6.5 27 | 525 245 ns
262 | BCLK to Multiplexed Address Valid nfa | n/al n/al n/al n/la nla ng
272 | BCLK to Multiplexed Address Driven nal — | nal — | nal — ns
2g? | BCLK to Multiplexed Address High nfa | n/al n/al n/al n/la nla ng
Impedance
2¢? | BCLK to Multiplexed Data Driven nal — | nal — | nal — ns
3¢? | BCLK to Multiplexed Data Valid nfa | nial n/al n/al n/ia nla ns
3g | BCLK to AddressCIOUT, LOCK, 9 | 31 | 65| 26| 525 235 ns
LOCKE, RW, SIZx, TS, TLNx, TMx, TTX,
UPAX High Impedance
39 | BCLKto BB, TA, TIP High Impedance 19 | 31 14| 26| 115 235 ns

411

Chapter 14: Specifications and Characteristics
HP 64783A/B Output AC Timing Specifications

25 MHz! | 33MHz' | 40 MHZ'

Num Characteristic Min |Max |Min |[Max |Min Max | Unit
40 | BCLK10BR, BB Valid 9 | 25 | 65| 225 525 21 ns
43 | BCLKtoMI Valid 9 | 25 | 65| 225 525 21 ns
48 | BCLKtoTA Valid 9 | 25 | 65| 225 525 21| ns
50 | BCLK to IPEND, PSTXRSTO Valid 9 | 25 | 65| 225 525 21 ns

Notes:

1 Output timing is given for output drivers specified in the DC specs (Refer to
the table of HP 64783A/B Electrical Specifications). Large/small buffer mode
select has no effect.

2 Address multiplex mode is not supported.

412

Chapter 14: Specifications and Characteristics
HP 64783A/B Input AC Timing Specifications

HP 64783A/B Input AC Timing Specifications

25 MHz 33 MHz 40 MHz
Num Characteristic Min | Max | Min |[Max |[Min |Max | Unit
15 | Data-In Valid to BCLK (Setup) 9 _ 9 _ 8 _ ns
16 | BCLKto Data-In Invalid (Hold) 4 _ 4 _ 3 _ ns
17 | BCLKto Data-In High Impedance _ 49 — | 365! — | 30258 ns
(Read Followed by Write)
294 | TA Valid to BCLK (Setup) 15 — 1| 151 — | 13 —| ns
2o | TEA Valid to BCLK (Setup) 5 — | 15 — | 14| —| ns
29¢ | TCI Valid to BCLK (Setup) 15 — | 15| — | 14| — | ns
204 | TBI Valid to BCLK (Setup) 15 — | 158 —| 14 —| ns
53 | BCLK to TA, TEA, TCI, TBI Invalid 5 _ 5 _ > — | ns
(Hold)
4 | AVEC Valid to BCLK (Setup) 0! — 1 10! —! 10 —1| ns
o5 | BCLK to AVEC Invalid (Hold) 2 _ 2 _ 2 — | ns
31* | DLE Width High na| — | na| — | na — ns
3oL | Data-In Valid to DLE (Setup) n/a _ n/a _ n/a _ ns
33l | DLE to Data-In Invalid (Hold) n/a _ n/a _ n/a _ ns
341 | BCLKto DLE Hold n/a _ n/a _ n/a _ ns
35t | DLE High to BCLK n/a _ n/a _ n/a _ ns

413

Chapter 14: Specifications and Characteristics
HP 64783A/B Input AC Timing Specifications

25 MHz 33 MHz 40 MHz
Num Characteristic Min | Max | Min Max |Min Max | Unit
36t | Data-In Valid to BCLK n/a — n/a — n/a — ns
(DLE Mode Setup)
371 | BCLK to Data-In Invalid n/a _ n/a — n/a — ns
(DLE Mode Hold)
41a | BB Valid to BCLK (Setup) 12 — | 12| —| 12| —| ns
41p | BG Valid to BCLK (Setup) 12| —| 12| — 12| —| ns
41c | CDIS,MDIS Valid to BCLK (Setup) 13 _ 13 _ 13 _ ns
41d | IPLx Valid to BCLK (Setup) 8 _ 8 _ 38 _ ns
42 | BCLK to BB, BG, CDIS, IPLx, MDIS 5 _ 2 _ 2 _ ns
Invalid (Hold)
444 | Address Valid to BCLK (Setup) 12 _ 12 _ 12 _ ns
44p | S1Zx Valid to BCLK (Setup) 13 _ 13 _ 13 _ ns
a4c | TTx Valid to BCLK (Setup) 13 _ 13 _ 13 _ ns
44d | RMW Valid to BCLK (Setup) 10 — | 10| —| 10| —| ns
44e | SCx Valid to BCLK (Setup) 16 _ 16 _ 13 _ ns
45 | BCLK to Address, SIZx, TTx, RV, SCx| o _ 5 _ > — | ns
Invalid (Hold)
46 | TS Valid to BCLK (Setup) 14 | — | 14| —| 12| — | ns
47 | BCLK o TS Invalid (Hold) 2 _ 2 _ 2 — | ns
49 | BCLK to BB High Impedance _ 9 _ 9 _ 9 ns
(MC68040 Assumes Bus Mastership)

414

Chapter 14: Specifications and Characteristics
HP 64783A/B Input AC Timing Specifications

25 MHz 33 MHz 40 MHz
Num Characteristic Min | Max | Min |Max |Min |Max | Unit
51 | RSTI Valid to BCLK 9 | — 9 — | 9| — | ns
52 | BCLK to RSTI Invalid 2 | — 2 — | 2] —| ns
59 | Mode Select Setup RSTI Negated na | — | nal — nal —| ns
542 RSTI Negated to Mode Selects Invalid n/a _ n/a _ n/a _ ns

Notes:

1 Data Latch mode is not supported.
2 Mode selects are not used.

415

Chapter 14: Specifications and Characteristics
Physical

. Physical

Emulator Dimensions

173 mm height x 325 mm width x 389 mm depth (6.8 in. x 12.8 in. x 15.3 in.)

Emulator Weight

HP 64783A/B, 8.2 kg (18 Ib). Any component used in suspending the emulator
must be rated for 30 kg (65 Ib) capacity.

Probe alone: 0.3 kg (10 0z).

Cable Length

Emulation Control Card to Probe, approximately 914 mm (36 inches).

Probe dimensions

22458 mm _
8.842 In.
| 167 mm _
\ 6575 in.
‘ [J ooooco [JooooT ¢
‘ OO00000C 0000 |===
107.8 mm (o) 0888©QO©O
4244 in. olele
85.03 mm | ——— —
3.348 in. 000
OO0
el 000000 U
OO00000
rlelelelele ja
‘ I Al
4255 mm h
1675 in EmE—————
’ T "k J—j
"7 64783E12

416

Chapter 14: Specifications and Characteristics
Environmental

Environmental .

Temperature

Operating, 0° to +40° C (+32° to +104° F); nonoperating, -40° C to +60° C (-40° F
to +140° F).

Altitude

Operating/nonoperating 4600 m (15 000 ft).

Relative Humidity

15% to 95%.

BNC, labeled TRIGGER IN/OUT

Output Drive

Logic high level with 50-ohm load >= 2.0 V. Logic low level with 50-ohm load <=
04V.

Input

74HCT132 with 135 ohms to ground in parallel. Maximum input: 5 V above Vcc; 5
V below ground.

417

Chapter 14: Specifications and Characteristics

Communications

Communications

Host Port

25-pin female type “D” subminiature connector.
RS-232-C DCE or DTE to 38.4 kbaud.

RS-422 DCE only to 460.8 kbaud.

CMB Port

9-pin female type “D” subminiature connector.

418

Part 4

Installation and Service Guide

419

Part 4: Installation and Service Guide

Installation and Service Guide

In This Part

Part 4 of this book describes how to install the emulator in the card cage, how to
install the demo board power cable, SRAM modules, rivets and covers, and the
emulator probe cable. It also shows you how to connect the probe to the demo
board, verify performance of the hardware, and use the progflash program to ensure

software compatibility.

420

15

Connecting the Emulator to a Target
System

Things you need to know to successfully connect the emulator to a target system
and overcome problems you may encounter.

421

Chapter 15: Connecting the Emulator to a Target System
Plugging The Emulator Into A Target System

Plugging The Emulator Into A Target
System

The following paragraphs help you understand the emulator. Equivalent circuits
are shown, followed by a list of devices that you may need to use to overcome
mechanical and electrical constraints in your target system.

Understanding an emulator

An emulator is a tool intended for debugging software, and the interactions

between software and hardware. Although emulators can help in debugging certain
hardware problems, catastrophic problems often require use of other tools, such as
a timing analyzers with preprocessors, or oscilloscopes. To effectively use an
emulator, you need to understand its capabilities and limitations, and how it
interacts with your target system. This chapter discusses limitations and
interactions of an emulator, as they relate to your target system.

An emulator is designed to be electrically and functionally equivalent to the
processor it emulates, as much as possible. Most MC68040 signals are electrically
isolated from their counterparts on the target system connection. This is done for
both electrical and functional reasons. Equivalent circuits of each processor signal
are shown later in this chapter. The impacts of these circuits are calculated and
presented in the emulator specifications listed in the chapter titled "Specifications
and Characteristics" in this manual.

In the ideal case, you would use the emulator specifications listed in this manual
when designing your target system instead, of the processor specifications. In the
typical case, your target system has already been designed and prototyped. A target
system that is designed around MC68040 worst case specifications will typically
work with the emulator. [f certain circuits in your target system do not allow for
variations in the MC68040 specifications, compare the relevant emulator
specifications to evaluate their impact on your target system. By keeping the
differences between emulator specifications and processor specifications in mind
while you design your target system, you can save hours of debugging time when
you plug the emulator into your target system.

422

Chapter 15: Connecting the Emulator to a Target System
Plugging The Emulator Into A Target System

The MC68040 emulator does not switch between large and small buffer modes like
the MC68040 processor does. The emulator internally uses the large buffer mode
to get optimum timing performance. Since these large drivers can cause problems
for systems designed to work with small buffer mode, the emulator buffers all
signals from the processor to the target connector. Most of the signals are bu
in ABT logic family parts. These parts are chosen to provide high speed and
current capability while keeping slew rates to an acceptable level for small buffer
mode systems. Some control signals are buffered in PALs which have significantly
less drive capability than the processor in large mode.

Examine the DC specifications of the emulator to evaluate their differences from
processor specifications. Again, you can refer to the equivalent circuit diagrams in
this chapter for exact details. Because the emulator does not behave exactly like
the processor, you may need to examine signal quality and take appropriate steps to
compensate for differences.

The BCLK clock is the most important signal to the emulator because all system
timing is derived from this signal. The BCLK clock signal must have clean edges;
the duty cycle of this clock is not particularly important. The emulator regenerates
an internal BCLK from this signal with a 50% duty cycle. All timing is referenced
from the rising edge of BCLK. The PCLK clock is also internally regenerated;
therefore, the emulator is not sensitive to this signal.

Both the BCLK and PCLK signals are terminated on the emulator. The
terminations are placed on these signals, even though the emulator causes only a
short electrical stub, so that accessories such as the flexible cable can be used to
connect the emulator probe to your target system. The terminations on these
signals can interact with terminations on your target system. Refer to the
equivalent circuits in this chapter and adjust terminations in your target system for
best results.

The emulator uses power from the target system to operate the emulation processor
and some pullup resistors. Target power is sensed to make sure the emulator does
not drive the target system until it is powered up. In addition, the power detection
circuit delays release of processor reset for 50 ms after power is in specification to
allow the clock circuits to synchronize. Because of the protections designed into

the emulator, always power on the emulator before the target system and power off
the emulator after the target system.

423

Chapter 15: Connecting the Emulator to a Target System
Plugging The Emulator Into A Target System

Equivalent circuits

The equivalent circuits shown on this page and the next help you understand
connection requirements between the emulator probe and your target system.

AVEC, MDIS, TBI, TC|, TP, IPEND
D SRS +5V
PL(2:0), CDIS
PA_
o Co=10pF 316K ()
PAL lop=3.2ZmA
o Cn=7pF loL-24mA igpF
1 I =25uA I
ISDF =~ 250uA —

M, BR, RSTQ, PSTI(3:0),

TEA RST TM(210), TIOUT, TLN(10),
45V LOCK, LOCKE, U2A(1:0)
ABT
316K O PAL Cy=80F
\CZEE A oo T oo
== --32m P
fgpF \‘H:25FLAM o= 3204 I
- BG
TA +5V
+5V
2(PAL) 316K O ABT
C-20p7 316K) Cim4pF
i ==200LA L =2 100uA
I =200uA B 8pF
lo=24mA 8pF I
lou=3.2mA I u—

64783B01

424

Chapter 15: Connecting the Emulator to a Target System
Plugging The Emulator Into A Target System

R/W, TS, BB J(31:0), AG31:0),
+5V . .
oAl TT(10), SIZ(1:.0)
C-10p" 316K) =
e ==1001A ABT
I1h =100pA 1 C=8pF %WOKQ
loL=24mA 8pF oL =64mA
lou=32mA I lon=-32mA La -
= |, =+50uA I P
SC(1:0)
- BCLK
10K () ABT oV
Cin=4DF
Lg - =+ 100A 10K O
I . N ~ C,=SpF
L i ,,,,,, i 4% | =*1pA
= 7-630) —— RSO
- - 6800
t=300ps .
PCLK T "
(Y T) =

68pF

3
IHH

64783B02

425

Chapter 15: Connecting the Emulator to a Target System
Plugging The Emulator Into A Target System

Obtaining the terminal interface

The troubleshooting procedures in this chapter depend heavily on interpretation of
command-line prompts that are only seen at the low level terminal interface of this
emulator. Therefore, the commands you are told to enter are shown in the
terminal-interface form, and the displays you are told to look for are shown in this
chapter as they appear in the terminal interface.

To perform the procedures in this chapter, obtain the terminal interface through its
terminal window. Type the following command:

System Terminal

Command line prompts in this interface indicate the state of the emulator, and end
with "$". For example:

R$ indicates the emulator is reset.

M$ indicates the emulator is running the monitor program.

426

Chapter 15: Connecting the Emulator to a Target System
Plugging The Emulator Into A Target System

Connecting the emulator to the target system

Plugging the emulator into a target system can be difficult because of mechan
constraints. If the mechanical constraints cannot be removed so that the emul
can be plugged directly into the target socket, there are several accessories a
to help with the connection. These accessories are:

» Stacking pin protectors.
* PGA rotators, available from Emulation Technology.

PGA to PGA Flexible Adapter (see below), HP Part Number E3429A.

L nulaftor Probe

Flexiole Cable

/
Pin A1 \
Process Target System

Socketf

64783E15

427

Chapter 15: Connecting the Emulator to a Target System
Plugging The Emulator Into A Target System

64783814

Unfortunately, these accessories have an electrical impact on your target system.
The specifications given for the emulator do not include the impact of these

accessories. In addition to delays, the accessories can cause problems with signal
quality. Only use these accessories as a last resort.

An optional Reset Flying Lead is provided with the emulator. It can be used to
reset the target system when tbiecommand is used. The signal is driven low
when the emulator is in it's reset state ("R$" prompt on screen). In addition, the
signal will pulse low when arst orrst -m command is issued, if the emulator is

not already in the reset state. The signal carried by the Reset Flying Lead is
intended to be used to initialize circuitry in your target system that would normally
be reset along with the processor (see below).

Original
Target
System
Reset

Target System RESEH
3
m
%]

; Other

Circuits

The example circuit shows the emulator reset signal being ANDed with a target
system reset signal to generate a new target system reset signal. This new signal
will reset the processor and other circuits on the target system when either the
emulator asserts reset, or the target system generates reset.

428

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

Verifying Operation Of The Emulator
In Your Target System

When connecting an emulator into a new target system, the step-by-step approach
described in the remainder of this chapter will help you get your system running
most quickly. This is a logical procedure that starts out with the most simple
requirements and moves toward compete functionality, allowing for verification of
installation at each step of the way. This not only helps debug problems if they
arise, but builds confidence that the emulator is functioning correctly in your target
system.

To begin, run the performance verification procedure described in the Installation
and Service Chapter in this manual.

Some additional equipment may be required to make measurements of MC68040
signals. It will help to have an oscilloscope and high speed timing analyzer to use
during these procedures. A 250-MHz timing analyzer may be fast enough, but
faster is better. The oscilloscope should have a single-shot bandwidth greater than
500 MHz. You may also need to cross trigger these instruments from the emulator.
If there are no trigger inputs to the timing analyzer, you can probably use a timing
channel. The BNC trigger output of the 64700 emulation card cage provides a
rising edge TTL signal.

When making measurements, remember that signals need to be probed at the right
place for the measurement being made. The emulator specifications are referenced
to the target socket connector on the probe. This is where measurements should be
made to verify compliance with the specifications. When probing setup and hold
times to circuits in the target system, make the appropriate measurements at the
circuits. This will keep connection accessories from impacting the true
measurements. Always use ground leads to get the most accurate measurements
possible.

429

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

Running the emulator configured like the
processor

This step uses no emulation monitor, or emulation memory, and does not attempt to
control any of the processor signals. For this test, the only emulation feature that is
operating is the emulation-bus analyzer. The emulation-bus analyzer is passive,
like a preprocessor. The main purpose of this step is to determine whether the
loading and timing changes of the emulator impact your target system.

If your target system can run a program without the emulator, do this procedure.
Otherwise, go to step 2.

1 Turn on power to the emulator.

2 Check the emulator prompt by pressing <RETURN>.

The prompt should be "p$". A prompt of "-$" indicates a software
compatibility problem. Correct problems indicated in error messages (seen in
the emulator error log) or check the software version usingetheommand

for more information.

3 Configure the emulator by entering the following commands:

cf mon=none

cf cache=en

cf mmu=en

cf ti=en

cf wait=<en,dis> as appropriate for your target system

4 Set up the emulation-bus analyzer to capture all MC68040 system cycles.

tck -u

tg any
tsto any
tpc

t

430

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

5 Execute your program with the commanust.

This tells the emulator to deassert reset so that the emulator does not interfere
with the target system powerup reset.

6 Power on the target system.

7 Verify correct operation.

The target system should run just as if the processor was being used. If your target
system performs any I/O, check it to see of your system performs it correctly. If
your target system appears to work correctly, allow it to reach its stable operating
temperature and test it again.

If the target system appears to work correctly, go to the paragraph titled, "Installing
the Monitor", later in this chapter. Otherwise, verify operation of the target system
as described next.

To verify operation of the target system

Get the prompt by pressing <RETURN>, or use the commstiadget more

information about the emulator status. If the system is working the prompt will
normally be "U$", but there are a few situations where the system will be working
properly and the prompt will be something different. If the bus is taken away from
the MC68040 often or for long periods of time, the emulator can display the "g$"
prompt or alternate between "g$" and "U$". If the MC68040 is running code in its
internal cache for long periods of time, the emulator may display the "b$" prompt.
The emulator may alternate between any of these prompts during normal operation.

All other prompts usually indicate a problem. Even the "g$" or "b$" prompts can
indicate a problem. To understand problems indicated by the prompts, you need to
know whether bus cycles were executed, how many bus cycles were executed, what
type of bus cycles were executed, and whether the target system is still executing
bus cycles. You can tell the difference between these conditions by checking the
trace status to see if any bus cycles were captured. The analyzer may have states in
its internal pipeline that will not be reported until the trace is halted.

431

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

b$th;ts
Emulation trace halted
--- Emulation Trace Status ---
User trace halted <- trace status
Arm ignored
Trigger not in memory
Arm to trigger ?
States 0 (0) ?..? <- number of states captured
Sequence term 2
Occurrence left 1
b$

If the trace status indicates that the trace was halted, look at the number of states
collected to decide how many bus cycles were executed. If the status indicates that
the user trace was completed, a large number of states were executed. If this is the
case, it may help to take another trace to see if bus cycles are still being executed.
Again, view the trace status to determine if bus cycles are executing.

If the "p$" prompt remains after target powerup, check:
» mechanical installation of the probe.

* blown fuses.

» target system power supply voltage.

If the prompt is "c$", mechanical installation may be causing the problem, but the
most likely cause is a problem with the clock. Check clock quality. Look at the
voltage levels, edges, and duty cycle. If the clock looks suspect, compare it to the
target system clock without the emulator. If there is a significant difference, you
may need to adjust the target system terminations to account for the emulator’s
termination.

If the prompt is "r$", either the target system never released reset, or the target
system reset itself because of some program error condition. If no bus cycles were
captured by the analyzer, the target system never released reset. You need to find
out which conditions must occur to release reset, and then investigate these
conditions to determine why reset isn't being released.

An example of a failure to release reset might be a multicard system where the
master card starts the slave cards after verifying that they are installed in the system
by reading checksums from their ROMs. If a checksum is not read correctly, reset
to the associated slave card is not released. If the emulator interfered with the
reading of the checksum, then reset would not be released.

432

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

One thing to keep in mind is that the emulator does not trace alternate bus master
cycles while it is reset.

If any bus cycles were executed before the reset occurred, then something ca
the target system to reassert the reset condition. Usually, this is caused by so
type of fault which is detected by the system. This may result from access to
certain address range or because of a watchdog timeout. Refer to "Interpretin
Trace List", later in this chapter, to help you understand what caused the reset.

If the prompt is "b$", and there are no cycles in the trace list, the processor never
attempted to run any bus cycles even if other indications show it should have. This
could indicate problems with power, clock, or signal transitions, especially the reset
signal. Check power supply voltage levels. Make sure the power up is monotonic.
Check clock quality. Check that the reset signal meets its required assertion time
after power up and clock stabilization. Check signal quality on the reset signal,
especially the signal transitions.

If some cycles were captured in the trace list, but no cycles are occuring now, check
for setup and hold violations on the processor strobes. All MC68040 signals,
except the interrupt lines and reset signal, are synchronous to the clock and have to
be valid for all rising edges of BCLK. Check timing inputs to the emulator, such as
TA, TEA, andTBI , for setup and hold violations. The "b$" prompt is not a normal
condition for the processor when you find no functional reason. It usually indicates
that the processor has malfunctioned.

One possible cause of a "b$" prompt is the processor missing the end-of-cycle
indication during the cycle of an alternate bus master. The processor monitors the
TS signal during alternate bus master activity to see if it needs to intervene in the
cycle (snooping). If the processor sed@Sasignal but misses the corresponding

TA signal, the processor may hang, waiting for this bus cycle to complete, even
though the bus was granted to the MC68040 and released.

If bus cycles are occuring, then the "b$" prompt only indicates that bus cycles are
infrequent. A type of system that would exhibit this behavior would be an
interrupt-driven system. When done processing an interrupt, the system could
execute a STOP instruction to wait for the next interrupt. If the interrupts were
infrequent a "b$" prompt would be displayed.

If the prompt is "w$", the emulator has stopped in the middle of a bus cycle. Get
the emulation status; it will tell you the address and the type of cycle.

433

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

wses
M68040--CPU in wait state; 00badad00@sd long read
w$

To troubleshoot the above problem, you need to know if the target system provides
bus termination for the address. If the answer is no, then the target program must
have run incorrectly. The emulation-bus analyzer will have to be used to
investigate further. If the answer is yes, then the reason the bus cycle did not
complete must be determined, as described next.

There are many reasons why bus cycle interaction between a target system and an
emulator may fail. Usually the cause is that the target system missed the
start-of-cycle indication from the emulator, or that the emulator missed the
cycle-termination indication from the target system. For a better idea of what is
going on, refer to the MC68040 bus cycle diagram, below:

| © |2 | @ W | 2] a2

BCLK
| | | | | | |
L L L L L L L
A31-A2
| | | | | | |
| | | |
A M
I I I
I I I I I I I
1 1 | | | | |
AO | | | | | | |
I I L L L L L
I I I I I I I
I I I I
> M
| | |
| Byte | : Word : | Long |
SIZ0 | | I | I I I
I I L L L L L
I I I I I I I
— L L L L L L L
R/W | | | | | | |
I I I I I I I
I I I I I I I
—_— I I Il L I L
PO\
N
T
TIP I I I I I I I
L L L L L L L
I I I I I I I
_ L I L L I Il I
TA
N\ S
I I I I I I I
D31-D24 1 1 1 1 1 1 Dﬁ
| | | | | | ‘
D23-D16 Loy 1 1 1 Dﬁ
| ‘ | | | | ‘
D15-D8 1 1 1 Ly Dﬁ
| | | | ‘ | ‘
D7-D0 1 l l LN Dﬁ
| | | | ‘ | ‘
I I I I I I I
‘ Byte Read ‘ Word Read ‘ Long Word ‘
With Wait Read

64783W02

434

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

A basic MC68040 bus cycle starts with the transfer start si§8al,TheTS signal

pulses low for about one clock cycle. Another signal, transfer in progiestays

low throughout the cycle, but is not necessarily deasserted between cycles. The end
of the cycle occurs when the processor samples a transfer acknoWedge/or a
transfer error acknowledd@eéEA on the rising edge of the clock. Because of the
nature of these signals, most systems are synchronous to the clock. The typi
system will sampl@S on the rising clock edge and then generdi aignal an
intregal number of clocks later. Wait states are added to a cycle by delaying when
the TA is asserted.

If the emulator is configured for wait states (BCLK >25 MHZz), then a compatibility
problem with the emulator may be stalling the processor.

wscf

cf cache=en

cf mmu=en

cf mon=none

cf rrt=dis

cf tizen

cg wait=en <- configuration for wait states
W

The emulator requires at least one wait state in all bus cycles when it is configured
as above. The emulator does not add this wait state, but will not adokfitcen

the target system until after a wait state has been add€A.idfasserted by the

target system during the wait state period and is then deasserted before the emulator
allows termination, the bus cycle will never complete.

This particular example can be easily duplicated on the demo board by configuring
for wait states and interlocking memory to the demo board.

cf wait=en
map 0..0ff eram lock
rrst

If there is no functional reason why the bus cycle would not complete, check the
timing relationships between the various bus cycle control signals. Probably the
first measurement you will want to make is to see if the setup tifi&é tdf BCLK

is within the emulator specification.

If there are no cycles in the trace list, then the processor stopped during the first bus
cycle. In this case, it is pretty easy to set up the trace TSi@g the trigger

because the cycle of interest is the first cycle. If there are only a few cycles in the
trace list, the same technique can be used if the oscilloscope or timing analyzer has
enough depth.

435

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

If there are many cycles in the trace list before the processor stalled, use a different
method of triggering. There are a number of different approaches that can be used.
The most direct method is to trigger on a conditiomlBflow andTA high for a

period of time greater than the length of a memory cycle. Another method is to
determine if the system always stops at the same address. This address can then be
used as the trigger. One drawback to this method is that you may have to probe a
large number of signals to get a unique address.

A better way would be to use the emulation-bus analyzer to generate a trigger.
Unfortunately, because the cycle never finishes, the emulation-bus analyzer will not
capture this address, so something preceding this event must be used as the trigger.
Examine the trace list to find a unique event to use as the trigger. Once you have
specified the trigger, you need to configure the emulator to drive the trigger out.

The real trick to crosstriggering is to correlate the trigger event to the captured data.
In this type of measurement, the correlation is easy because the signals of interest
stop transitioning shortly after the trigger occurs.

tg addr=00badad00
tpc

tgout trig2

bnct -r trig2

t

Once you have a trace of the offending cycle, verify Tiais present for a valid

rising clock edge, taking into account a wait state if running faster than 25 MHz. If
TA looks reasonably correct, verify the setup and hold specificatiod#\ dEcurs

but on an invalid clock edge, you may need to make modifications to the target
system to ensure that there is at least one wait state in target cydlads Kot
asserted at all, it could be an indication that the target system mis3&l tBet up
your oscilloscope or logic analyzer to make a measurement on your cycle start
circuitry to determine why the target system did not respond to the cycle.

If the cycle where processing stops is part of a burst cycle, as indicated by the line
access type in the status display, there are several things to check.

wses
M68040--CPU in wait state; 000000000@sd line read
w$

A burst cycle is shown below. The main characteristic of a burst cycle is that there
are four data transfers as part of one cycle. The processor puts out an address and
assertd'S only once during the cycle. A burst request is indicated by the SIZx
signals. The target memory system can inhibit the burst cycle by asserfiigj the
signal. If the cycle is inhibited, the timing becomes just like a normal cycle. If the
cycle is not inhibited, oncES has been asserted, the process starts samplifay

436

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

each data transfer. The cycle is not over until the fauAtts received. When the
emulator has wait states enabled, a wait state is required between each of the data
transfers in the burst cycle. Evaluating the timing is the same as for a normal cycle.

\ C1 \ 2 \ C3 \ C4 \ (5 \
BCLK

A31-A0

SIZ1, sSIZ0

R/W

Nofe: The selected device incremenls
the value of A3 and A2 64783W03

437

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

If the prompt is "g$" and there are no cycles in the trace list, the target system never
gave the bus to the processor. Check the bus arbitration signals for proper
functionality and timing. Refer to the bus arbitration diagram below. Remember
that the analyzer does not trace alternate bus master cycles while the emulator is
reset, but it does once the emulator is running.

‘ C1 ‘ C2 ‘ c3 ‘ Cé ‘ 5 ‘ Cé6 ‘ c7 ‘ 8 ‘ c9
BCLK
| | | | | |
Aaﬂ Ao | | | | | |
| | | | | |
Transfer ‘ ‘ ‘ ‘ ‘ ‘

N S N s SN /SN

|
|
1
|
|
|
1
Aftributes :
|
|
|
|
TIP
|

AM_BRx

AM_BGx

Alternate Alternate
Processor
Master Master

* AM indicates fhe alternafe bus masfer 64783W01

438

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

When trying to determine why the bus is not being granted to the processor, you
will need to determine why either the bus arbitration circuitry or an alternate bus
master is not behaving correctly. The processor is not the bus master; therefore, it
requests the bus wiBR and waits for the target system to grant the busB@th
The processor then waits for BB line to be deasserted, indicating an idle bus,
before taking control of the bus. The processor will not request the bus until a
the reset line has been deasserted.

If the bus is requested by the processor, but it is not being granted check the bus
arbitration signal8B, BG, andBR. If the bus is granted, but never becomes idle,
the alternate bus master may be stuck in the middle of a cycle. Check the cycle
strobesTS, TA, andTEA. These strobes do not have to be asserted during alternate
master accesses, bufts is shown to the processor, tfieh needs to be shown to

end the cycle. While the processor is reset, the only item of concern is signal

quality.

If some cycles are shown in the trace list, but no cycles are occuring now, the
processor executed some cycles before getting stuck in a DMA cycle. Examine the
bus arbitration signals and cycle strobes around where the target system gets stuck.
Use the same techniques to set up a trigger as were described for measuring a bus
cycle that stops before it is complete.

If there are bus cycles occuring, then the "g$" prompt indicates that a high
percentage of the bus activity is by alternate bus masters.

439

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

Interpreting the trace list

There are some cases where a problem caused by an errant bus cycle does not show
up until many cycles later. The emulation-bus analyzer must be used to track back
thru the sequence of events to the faulty bus cycle. Data problems will often

behave like this, but there may be other causes.

If the "h$" prompt is shown, indicating a double bus fault, and if there are only two
states in the tracelist, this indicates a problem with the fetching of the initial vectors.

hstl

Line addr,H 68040 Mnemonic
0 00000000 $00000000 sdata long read
1 00000004 $000BADAD sdata long read
2

h$

The first two cycles in the trace list are the initial stack pointer and the initial
program counter. The initial program counter must be even or the processor will
immediately double bus fault. You should verify that the data captured by the
analyzer is what is expected.

If the data for the vectors is wrong, a trace should be set up to check for access
problems during the fetch of the initial vectors. If the data is completely incorrect,
suspect an address or strobe timing problem. If only a few bits are wrong or if the
data in the trace is correct, suspect a data timing problem.

If there are a lot of cycles in the tracelist, you need to start from the end and work
backwords to understand what caused the double bus fault. If the trace was
completed before the processor stopped, modify the trace specification to "trigger
on nothing" so that the last bus cycles that were run can be captured. Wait until the
emulator status shows a double bus fault, and then halt the trace.

tg never
reset the target system

es
th
tl -20

440

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

hstl
Line addr,H 68040 Mnemonic
-16 00000008 $4AFCO0000 sproglongread <-illegal inst
-15 0000000c $000BADAD sprog long read
-14 00000010 $000BADAD sprog long read
-13 00000014 $00000000 sprog long read
-12 00000018 $00000000 sprog long read
-11 000000ee $----0010 sdata word write <- illegal inst stack
-10 000000ea $----0000 sdata word write

-9 000000ec $0008---- sdata word write
-8 00000010 $000BADAD sdatalongread <-odd vector
-7 000000e8 $2700---- sdata word write

-6 000000e4 $000BADAC sdata long write
-5 000000e2 $----200C sdata word write <- address error stack
-4 000000de $----0000 sdata word write

-3 000000e0 $0008---- sdata word write
-2 0000000c $000BADAD sdatalong read <- odd vector
-1 000000dc $2700---- sdata word write

h$

A double bus fault occurs when the processor encounters an exception that prevents
processing of a previous exception. An example of a double bus fault is shown
above. This original exception occured because the target system tried to execute
an illegal instruction. During processing of the illegal instruction exception, the
processor encountered another exception.

This exception was an address error caused because the vector supplied for the
illegal instruction handler was odd. The double bus fault occured when the vector
supplied for the address error handler was also odd. Other things that can cause a
double bus fault are bus errors that occur during exception stacking or vector fetch.
Keep in mind that bus errors can happen because the the target systerfieaserts

or because of an access violation caused by the MMU.

Once you have found the cause of the double bus fault, you need to determine the
root cause of the problem. In some cases, the exception is a normal part of
execution, but the subsequent faults indicate a problem. In some cases, the first
fault indicates a problem directly, such as when the program has already
malfunctioned, and the fault is caused by an unintentional accesses.

At this point, the problem is to find the faulty bus cycle that eventually caused a
recognizable problem. The same situation exists if the processor stops execution at
an address that should not have been executed, or if a program is simply running
code incorrectly.

441

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

There are really only two ways to go about determining what is wrong. One is to
try to trace back the terminal error condition to a faulty bus cycle. The other is to
start at the beginning of the trace, or at some other known point, and work forward,
comparing the trace to the execution that was expected while looking for the point
where execution first becomes unexpected. A listing of the program or a tracelist
captured by a preprocessor could be used for this comparison.

When you find a suspected bus cycle, set up a trigger on it so that you can make a
timing measurement on the cycle. When looking for clues or shortcuts to the
problem, keep in mind that a system is usually made up of many different types of
memory devices: ROM, EEPROM, SRAM, DRAM, and peripheral ports. Each of
these devices may have different timing characteristics. Also, keep in mind that
unique characteristics of a bus cycle, such as size, transfer type, number of wait
states, and bursting may result in unigue timing requirements.

Fixing timing problems

When a timing problem is identified, you must decide how to fix it. First, examine
the signal to make sure that signal quality is not affecting the timing. Look for AC
or DC drive problems or reflections caused by transmission line problems. If you
can find no other solution to the problem, you may have to lower the clock speed.

If the timing problem only occurs during data accesses, another possible solution is
to add wait states to the memory access. This assumes that the problem is with the
amount of time it takes to access the memories in the system and is not a problem
with a setup time to a synchronous circuit. A good indicator of this type of

problem is when the data setup time to the emulator is being missed. One point of
caution: the emulator, when configured with wait statés/éit=en), does not add

a wait state to target accesses. The target system is responsible for adding the wait
state.

Another possible solution to data access problems is to use faster memories while
using the emulator.

442

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

Installing the emulator in a target system without
known good software

If you do not have a program in ROM on your target system that you can run t
electrically test the emulator, you will need to create a test environment. The initia
step of this is to use the emulator’s dual-port memory to install a simple program
that will run from reset. To do this, proceed as follows:

1 Turn on emulator power.

2 Check the prompt by pressing <RETURN>.
The prompt should be "p$>". A "-$" prompt indicates a software compatibility
problem. Correct problems indicated in error messages or check the version
"ver" for more information.

3 Configure the emulator by entering the following commands:

cf mon=none

cf cache=en

cf mmu=en

cf ti=en

cf wait=<en,dis> as appropriate for the target system

4 Map dual-port memory with the following command:
map 0..0fff eram dp,lock

This maps a block of emulation memory starting at address 0 so that the reset
vectors will be accessed from this block. The block is configured to be
interlocked to the target system strobes because all systems must have some
memory that responds at address 0 to operate.

5 Load a program with the following commands:

mo -ax -dI

m 0=0f00,100
mo -dw

m 100=60fe

This sets up the reset vectors ISP=0f00 and IPC=100. It then loads the most
simple program imaginable: jump to self.

443

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

6 Setup atrace to capture all MC68040 cycles, as follows:

tck -u

tg any
tsto any
tpc

t

7 Executa rst.

This tells the emulator to deassert reset so that the emulator does not interfere
with the target system powerup reset.

8 Power on the target system.

9 Verify correct operation.

The target system should run the same as when the target processor was being used.
The first indication of whether or not your target system is working is to see if your
program performs any I/O that can verify correct system operation. If your target
system appears to work initially, allow it to reach normal operating temperature
before concluding that target system operation is as it should be.

If the target system appears to work properly, go ahead to the paragraph titled
"Installing a Monitor". If you suspect problems, return to "Verifying System
Operation" in the previous paragraphs. Keep in mind that the emulator must
receive strobes from the target system for emulation memory accesses to complete.
Also, because these cycles are from internal emulation memory, the data on the
target system will not be the same as what the processor sees. If you think that
there are problems with emulation memory data, check the clock speed
configuration; the emulator is designed to give correct data at all speeds of
operation.

444

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Installing Emulator Features

Once the emulator is transparently running in the target system, it is time to st
adding other emulator features. Dividing the installation of features into two t
is the easiest way to debug problems. The monitor is the facility that provides the
majority of the emulator’s features, but some features like the reset circuitry do not
require the monitor. The first feature to be installed does not depend on the
monitor.

Evaluating the reset facilities

Now is a good time to use the emulator to find out how the emulator reset interacts
with your target system. The first question to answer is whether or not the emulator
reset command is adequate to reset your target system. Perform the following steps:

1 Run your target program by following the procedure in the previous steps.

2 Reset the emulation processor and run your program using the emulator
commands:

r rst

Note that the "r rst" command pulses the processor reset line.

3 Verify correct operation.

If your program does not run correctly after performing the above procedure, your
target system has other circuitry besides the processor that must be reset. The
emulator only resets the emulation processor when it responds to a reset command.
Other circuitry on your target system does not get reset. The following sequence
determines if an additional reset circuit is required.

1 Run your target program following the procedure in the previous steps.

2 Reset the emulation processor and run your target program using these
emulator commands:

rst

445

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Reset the target system using whatever facility is available.

r rst

3 Verify correct operation of the target system.

An example of a target system that requires an additional reset circuit is one that
normally has RAM starting at address 0, but for the first two bus cycles after reset,
maps ROM to this area instead to provide the inital vectors. If this remapping does
not occur, the system will attempt to fetch these vectors out of RAM, which will

fail.

For systems that require additional circuitry to be initialized by reset, a reset output
from the emulation probe (called reset flying lead) is provided. This reset flying
lead can be connected into your target circuitry to eliminate the need for an
additional step to reset circuitry in your target system. This allows the whole reset
procedure to be controlled by the emulator, automatically.

One additional thing to keep in mind is that your target system can initiate a reset
without the knowledge of the emulator. A reset that is initiated by your target
system will reset the emulator. If the emulator was running your target program at
the time of the reset, then when your system releases reset, the emulator will run as
if anr rst command had been issued. If the emulator was executing in the monitor
at the time of the reset, it will return to the monitor when the reset is released.

Another resetting method that may provide more convenience than the first method
requires use of the monitor. This method works well for target systems such as
those in the example above. This method resets the emulator into the monitor
instead of running the target system program immediately. Once in the monitor,
the initial stack pointer and initial PC can be loaded into the appropriate registers,
and then a run of the target program can be initiated. This method will be
illustrated in the next section.

446

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Installing the background monitor

The emulator allows you to choose between use of a background and foregro
monitor, but the choice is really predetermined by which of the MC68040 feat
you will be using.

The background monitor does not support use of the MMU, the caches, or DMA.
Therefore, the background monitor is only useful in the most simple systems, or to
provided a mechanism for testing target hardware, or to further evaluate the
integration of the emulator with your target system.

The background monitor does not show cycles to your target system. It
accomplishes this by blocking tAi& andTIP signals. Therefore, the background
monitor is transparent to your target system. Even though the background monitor
does not show its cycles to the target system, the initial vector fetch cycles are
shown to the target system and interlocked with the target system strobes. Cycles
not shown to the target system are called background cycles. All other cycles are
called foreground cycles.

Resetting into the background monitor

There are three ways to initially get into the background monitor. The first of these
ways is to enter the monitor from reset. Perform the following command sequence
to enter the monitor:

1 Reset the emulator and the target system if necessary using any reset procedure
you determined to work adequately.

2 Configure the emulator by entering the following commands:

cf mon=bg

cf monkaa=none

cf cache=dis

cf mmu=dis

cf ti=en

cf wait=<en,dis> as appropriate for the target system

447

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

3 Set up atrace to capture all MC68040 cycles, including background monitor
cycles, by entering the following commands:

tck -ub
tsto any

tg any
t

4 Execute the commanidt -m. This tells the emulator to release reset, but
enter the monitor.

5 Verify that the emulator is in the monitor.

The prompt should be "M$", indicating that operation is in the monitor. There
is not much that can go wrong up to this point because everything required has
been previously verified.

If you see the following error messages, something went wrong during the initial
vector fetches from the target system. Check these cycles for problems.

ISTATUS 170! Emulator terminated hung bus cycle: 000000000@sd long read
ISTATUS 170! Emulator terminated hung bus cycle: 000000004@sd long read

If you see a "g$" prompt, the background monitor is not compatible with this type
of target system. Go to the paragraph titled "Installing the Foreground Monitor".

If you get the "?$" prompt or something other than the "M$" prompt, this indicates
something went wrong with monitor operation. This may indicate problems with
the clock or reset signals. Because the emulator provides all control signals for the
background monitor, typically problems are with signals that can prevent the
processor from running bus cycles.

448

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Dealing with keep-alive circuitry while using the
background monitor

Another thing to watch for when using the background monitor is the triggerin
a target system keep-alive circuit because monitor bus cycles are hidden.
Depending on how a keep-alive circuit operates, the monitor may cause a problem.
The symptoms for different keep alive circuits may not show up in the same way.

Keep-alive circuits that monitor accesses on the bus or require a certain address to
be accessed probably will fail when you use the background monitor. Keep-alive
circuits that make sure bus cycles complete will not fail. If the keep-alive circuit
generates a bus error or an interrupt, the monitor will not be affected immediately.
If the keep-alive circuit asserts reset instead, monitor operation will be affected
immediately, although there may be no apparant symptoms if reset is only asserted
temporarily because the monitor will be reentered as soon as reset is deasserted.

If you suspect a problem with a keep-alive circuit, there is a configuration option
that can make the background monitor periodically cause a read access to a
particular address. If you do need a particular address to be read for the keep-alive
function, make sure the address you give will respond with memory strobes when
accessed.

cf monkaa=0deadadO

Retry the reset into monitor with this configuration enabled. If there is any sort of
problem with the keep-alive access, it will probably show up as a wait state at the
keep-alive address. If this happens, check the timing on that particular cycle. The
keep-alive address may respond with a bus error without adversly affecting monitor
operation.

449

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Testing memory accesses with the background
monitor

Once the background monitor looks like it is running properly, you can use it to test
accesses to different ranges of memory in your target system. This may be an
easier way to diagnose problems than by running a program that accesses each
memory range. Itis also easy to check accesses of different sizes using the monitor.

mo -ax -dl
m Obadad=12345678

When accesses to your target memory do not execute exactly right, the monitor
attempts to diagnose these problems and resolve them so the monitor program does
not malfunction. However, the monitor does not read back write cycles to check

the integrity of the data written. When testing memory accesses, the data should be
checked to make sure that it is correct.

M$m Obadad
0000badad ffdfOOff

If your target memory does not respond to a bus cycle, the monitor will force
termination of the cycle and report this error message:

ISTATUS 170! Emulator terminated hung bus cycle: 0000badad@sd word read
IERROR 700! Target memory access failed

Or, if the target system responds with a bus error for this memory access, the
monitor will report that information:

IERROR 170! Target bus error: 0000badad@sd
IERROR 700! Target memory access failed

450

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Running a program from the background monitor

Once you are satisfied that the monitor is working and that memory in your tar
system can be accessed correctly, you can use the monitor to run your target
program. Proceed as follows:

1 Reset into the monitor.
2 Load a program, if necessary.

3 Initialize the initial stack pointer and initial program counter.

reg isp=<initial ISP>
reg pc=<target program starting address>

If these values are not known, they can be found by taking a trace of the
program running from reset, as was done in the previous sections.

4 Take a trace of the program running, using the following commands:

tg addr=<long aligned target program starting address>
t

The trigger address must be long aligned because the MC68040 always fetches
instructions as long words from long-word boundaries.

5 Run the program with the command:

r

6 Verify correct operation of the program.

Assuming that the program ran without the monitor, the stack is most likely the
cause of any problems you see. The monitor runs the program by creating a stack
in foreground memory at the location indicated by the initial stack pointer. The
monitor then initiates an RTE, which starts the target program running. The
following trace list is an example showing correct operation:

451

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Line addr,H 68040 Mnemonic
-4 000000f0 $00------ mon sdata byte read

-3 000009b4 $4E714E71 mon sprog long read

-2 000000ec $000a007C sdata long read <-unstack

-1 000000e8 $27000000 sdatalongread <-unstack

0 00000008 $000060FE sproglongread <-target program
1 0000000c $000BADAD sprog long read

If the monitor detects problems with the stack pointer (the stack pointer must be
even), or if the monitor has a problem accessing the stack memory, an error
message is issued. Additionally, the monitor checks to make sure that the stack has
been written correctly before exiting. Problems are indicated by the error messages
listed below.

From this point on, most of the problems will be discussed from a functional point
of view instead of a parametric point of view. If any of the functional problems
discussed below identify a problem that looks parametric, use the debugging
techniques of the previous procedures to isolate the problem.

IERROR 151! Interrupt stack pointer is odd or uninitialized
IERROR 610! Unable to run

This message indicates that the stack pointer is invalid. Only word-aligned stack
pointers are allowed with the emulator. If this error is seen, the run will not be
attempted.

IERROR 170! Target bus error: 0000000e8@sd
IERROR 610! Unable to run

This message indicates a bus error occured during the stack write. This behavior
could be caused by putting the stack in a memory range that responded with bus
error for all accesses, or bus error on write accesses. Or, it could be caused by
putting the stack where nothing responds, and the bus error is the result of a
timeout. Keep in mind that the stack grows down from the initial stack pointer.

ISTATUS 170! Emulator terminated hung bus cycle: 0000000e8@sd long write
IERROR 610! Unable to run

This message indicates that the stack is in an address range that did not respond
with a memory strobe. Make sure that the stack is placed in valid memory.

IERROR 151! Interrupt stack is not located in RAM: 0000000e8@sd
IERROR 610! Unable to run

452

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

This message indicates that the stack memory was not writeable. Check to make
sure that the stack is placed in RAM.

If the target program appears to start at the wrong address, or if there is some
problem, the stack can be decoded to see if the correct information is present
The stack above is interpreted as follows: The initial stack pointer is defined t
point to the next available stack location. Therefore the exit stack starts four
below the initial stack pointer.

ISP-8 -> Status register = 2700
ISP-6 -> Program Counter = 0000000a
ISP-2 -> Vector Offset = 007C

The monitor is always exited using the FOUR WORD STACK frame, and the
monitor always uses 07C as the vector offset. When running a program from the
monitor after entering from reset, the powerup status word of 2700 is used.
Therefore, the only difference you will see in this stack frame will be because of
different initial program counter values.

The procedure of setting the initial stack pointer and initial program counter can be
automated by using the initial vectors configuration question to define these values.

cf rv=<initial ISP> <initial PC>

Once this configuration has been set up, the following reset sequence may be useful
on systems that remap memory to provide reset vectors similar to the example in
the "Evaluating the Reset Facility" section.

rst -m
r

453

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Breaking into the background monitor

The next thing to try with the background monitor is to see if you can break into it
from your target program. The emulator uses a nonmaskable interrupt (interrupt 7)
to break into the monitor. The interrupt is generated in such a way as to not
interfere with any interrupts pending in your target system. The resulting interrupt
acknowledge cycle is not shown to the target system. The associated stacking is in
foreground memory at the location determined by the interrupt stack pointer. If the
target system program is running in Master mode, there will also be stacking on the
master stack.

A vector fetch occurs sometime during or after stacking; it is also shown to the
target system. The emulator provides the data for this vector fetch to correctly run
the background monitor. After stacking and the vector fetch are completed, the
emulator transitions into the background monitor. The background monitor may
access foreground memory during its operation.

While the emulator is in the background monitor, no target interrupts are serviced.
The interrupt signals from the target system are ignored while in the background
monitor. The emulator will not respond to these signals in any way while in the
monitor. If the signals are still present when the monitor is exited, they will be
serviced according to normal interrupt priorities.

Entry into the background monitor can be traced by using the following trigger
specification:

tck -ub

tpc

tg stat=11xxXxXxxxxx1x111xy
t

b

Line addr,H 68040 Mnemonic

00000008 $60FE0000 sprog long read

0000000c $000BADAD sprog long read

fffffff $------ FF mon int7 ack <-acknowledge
000000ee $----007C sdata word write <-stack format
000000ea $----0000 sdata word write <-stack PC high
000000ec $0008---- sdata word write <-stack PC low
0000007c $0000069C sdata long read <-vector fetch
000000e8 $2700---- sdata word write <-stack SR
00000698 $0012FFFF mon sprog long read <-monitor
0000069c $11FCO01F mon sprog long read

NOUTRWNRO RN

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

If you have problems trying to break into the monitor, the most likely causes are the
values of the stack pointers, or the vector base register does not point to valid
memory. Any bus errors that occur during monitor entry will cause the break to
fail. If any stacking or vector fetch cycles are not terminated, the monitor will
terminate them by force. If this happens, the PC and SR may be displayed
incorrectly by the monitor. The same problem can result from stack memory t
not writeable. Neither condition will inhibit entry into the monitor, but the target
state will be corrupted.

Exiting the background monitor

If the procedures described in the preceding paragraphs gave satisfactory results,
you should be able to resume execution of the target program. You may want to
take a trace of the monitor exit procedure to verify that it is completed correctly.

r

If the target system and emulator do not work correctly after exiting the background
monitor, the problem may be because your target system is real-time sensitive. If
interrupts that needed to be serviced to keep the target system running were delayed
by the monitor, things such as data overrun could cause problems in the target
system. If you suspect such a problem, use the foreground monitor.

455

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Software breakpoint entry into the background
monitor

The background monitor can also be entered via a software breakpoint. The
emulator will respond to any software breakpoint instruction in the code if
breakpoints are enabled, regardless of whether the breakpoint was inserted by the
emulator or not. Breakpoints are enabled by the following command.

bc -e bp

Set breakpoints only on the initial word of an instruction; otherwise, they will not

be executed, and might alter an instruction, unintentionally. The emulator can
place a breakpoint using one of two methods. By default, the emulator will attempt
to modify memory to insert a breakpoint instruction at the address specified. If the
memory at the address specified is ROM or cannot be modified for some other
reason, special hardware resources on the emulator will interject a breakpoint
instruction when that address is fetched.

b
bp <instruction address>

If you suspect a problem occurred during the setting of the breakpoint, you can use
the analyzer to watch the breakpoint being set. The easiest way to do this is to
store-qualify your trace on the address where you are setting the breakpoint. The
trace list will only contain a cycle or two, but you can see what happened when the
emulator accessed this address.

tg any

tsto addr=<instruction address>
b

bp <instruction address>

Line addr,H 68040 Mnemonic

0 00000008 $FFFF---- sdata word read

1 00000008 $FFFF---- sdata word read

2 00000008 $FFFF---- sdata word read

3 00000008 $484F---- sdata word write <- breakpoint write
4 00000008 $FFFF---- sdata word read <- verify

5 00000008 $FFFF---- sdata word read

6

456

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

When a software breakpoint instruction is executed, the processor initiates a
breakpoint-acknowledge cycle. This cycle signals the start of an entry into the
monitor. From this point on, stacking and the vector fetch procede the same as for
a break entry. Unlike the interrupt-acknowledge cycle, the
breakpoint-acknowledge cycle is shown to the target system.

tsto any

tg stat=11xxxxxxxx1x000xy
t

r8

Line addr,H 68040 Mnemonic
-4 00000008 $484F0000 sproglongread <-bkpt fetch
-3 0000000c $000BADAD sprog long read
-2 00000010 $000BADAD sprog long read
-1 00000014 $00000000 sprog long read

0 00000000 $41------ bkpt ack (buserror) <-acknowledge
1 000000ee $----0010 sdata word write <-stack format
2 000000ea $----0000 sdata word write <-stack PC high
3 000000ec $0008---- sdata word write <-stack PC low
4 00000010 $00000690 sdatalongread <-vector fetch
5 000000e8 $2700---- sdata word write <-stack SR

6 00000690 $11FC0004 mon sprog long read <-monitor
7 00000694 $01186000 mon sprog long read

The only unique portion of a breakpoint entry is the breakpoint-acknowledge cycle
so any problems that you see will probably be related to this cycle. Because the
emulator internally responds to this cycle, it is not necessary for the target system to
respond to it. If the target system does respond to this cycle with any wait states,
the emulator may become out of sync with the target system because the emulator
terminates this cycle immediately. If this were to cause a problem, it would show

up on the cycle immediately following the breakpoint-acknowledge cycle.

457

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Stepping with the background monitor

The last feature of the background monitor which needs to be evaluated is the
single-stepping facility. The emulator uses a combination of the processor trace
facility and a nonmaskable interrupt to reenter the monitor after executing exactly
one instruction.

b

tsto any

tg stat=11xxxxxxxx1x111xy

t

S
000000008@s - BRA.B $00000008
PC = 000000008@s

When a step command is issued, the emulator sets the trace bits in the SR and then
performs a normal monitor exit. The emulator then forces a break to return to the
monitor. A typical trace of a single step is shown below:

addr,H 68040 Mnemonic

000009b0 $4E714E71 mon sprog long read

000000f0 $00------ mon sdata byte read

000009b4 $4E714E71 mon sprog long read

000000ec $0008007C sdata long read <- unstack
000000e8 $A7000000 sdatalongread <- unstack
00000008 $60FE0000 sprog long read <- stepped inst
0000000c $000BADAD sprog long read

00000008 $60FE0000 sprog long read

-9 0000000c $000BADAD sprog long read

-8 000000ec $00000008 sdata long write <- trace stack addr
-7 000000ea $----2024 sdata word write <- trace stack format
-6 000000e6 $----0000 sdata word write <- trace stack PC up

-5 000000e8 $0008---- sdata word write <- trace stack PC low
-4 00000024 $00000000 sdatalong read <- trace vector fetch
-3 000000e4 $A700---- sdata word write <- trace stack SR

-2 00000000 $000000F0 sprog long read <- trace prefetch

-1 00000004 $00000008 sprog longread <-trace prefetch

0 ffffffff $------ FF mon int7 ack <- break acknowledge

1 000000e2 $----007C sdata word write <- break stack format
2 000000de $----0000 sdata word write <- break stack PC up
3 000000e0 $0000---- sdata word write <- break stack PC low
4 0000007c $0000069C sdata long read <- break vector fetch
5 000000dc $2700---- sdata word write <- break stack SR
6 00000698 $0012FFFF mon sprog long read <- monitor
7 0000069c $11FCOO1F mon sprog long read

At the end of the execution of the first target program instruction, the processor

takes a trace exception. Stacking for this trace exception commences and at some
point, the trace vector is fetched. Once stacking for the trace is complete, the
processor prefetches from the address of the trace handler, but these instructions are

458

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

never executed because the processor immediately starts interrupt processing. The
interrupt processing proceeds the same as in a normal break.

Before exiting for a step, the monitor checks to make sure that the trace vectong
valid and that it points to accessable memory. If the vector is not even, or if th
memory it points to responds with a bus error or hangs, the emulator tempora
modifies the trace vector to point to the start of the vector table. Because the
instructions of the trace handler will not be executed, the content of the address
locations is not important.

If the emulator modifies the trace vector, the following status message is given:
ISTATUS 155! Vector table modified for single stepping

If the emulator finds it must modify the trace vector for single stepping to complete,
but the modification attempt fails, an error message similar to the following is
displayed:

IERROR 170! Target bus error: 0ff800024@sd
IERROR 156! Unable to modify trace vector to ff800000h for single stepping
IERROR 680! Stepping failed

If this error occurs, the vector table must be modified so that the trace vector
contains an address that points to accessable memory. If the vectors are in ROM,
perhaps the memory can be copied into emulation memory where you can modify it.

One way to watch what the emulator is doing during a step, is to set up the analyzer
to trace only foreground cycles and to store everything. This lets you watch the
emulator check and possibly modify the trace exeception vector. Use the following
commands:

tck -u
tsto any
tg any

t

S

The emulator may experience problems when stepping over instructions that
modify the VBR. This is because the check of the trace exception vector is made
using the old VBR value, but the actual stacking will use the new value of the
VBR. If the new VBR value changes the trace exception vector to something that
would require modification, then stepping can fail.

459

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

IERROR 680! Stepping failed

When stepping over instructions that cause the processor to take exceptions, the
trace list can look very different. Most exceptions preempt the trace exception until
after their exception handler runs. Other exceptions (like TRAP, CHK and CHK2)
create their stack frame and then take the trace exception. Any exceptions cause
the step trace list to look different. In all cases, the monitor is still entered through
the interrupt 7 exception.

For all exceptions except TRAP, CHK, and CHK2, the trace stack frame will be
missing when the monitor is entered. Instead of using the trace stack frame, the
exception stack frame will be used. The emulator detects that and issues an error
message that says stepping failed. This error message does not actually indicate a
problem with emulator stepping; it just indicates that an exception was hit. The
emulator is stopped at the starting address of the exception handler, and stepping
can be resumed.

The TRAP, CHK, and CHK2 exceptions will have an additional stack frame when
the monitor is entered. The exception stack frame will precede the normal trace
and interrupt stack frames. These exceptions do not cause the monitor to issue an
error message so multiple steps will not stop on this type of exception.

460

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Installing the foreground monitor

The foreground monitor supports all features of the emulator, but imposes on
target system more than the background monitor. The foreground monitor oc
a 4-Kbyte block in your target memory space. The emulator provides memo
this 4-Kbyte block, but the target system cannot use this address range for anything.
The cycles strobeBS andTIP are shown to the target system during foreground
monitor cycles. The monitor needs to be placed in an address range where it will
not interfere with target system operation.

If the monitor is placed in an address range where the target system responds with a
TA, interlock the monitor to the target strobes. The target system must not respond
with TEA for this address range. If the monitor is placed in an address range where
the target system does not respond with any strobes, do not interlock the monitor.

If in doubt, interlock the foreground monitor to the target system. It will be

obvious if this is the wrong thing to do because the monitor will stop operating
immediately.

If the MMU is being used, the monitor must be placed in an address range that is
translated logical=physical, and is writeable for supervisor program and data. If the
memory management scheme is dynamic, the monitor page must be resident at all
times. In addition, any pages required for stacking or vector fetches must also be
resident.

If there is not a suitable address range in which to put the monitor, the system
protection schemes may need to be modified to create a place for the monitor. This
may be as simple as adding an entry to the MMU tables, or it may require
modifying a hardware protection scheme to allow placement of the monitor.

Besides adding special requirements to the placement of the monitor, the MMU
impacts many operations of the emulator and processor. When the MMU is on, the
emulator can access both physical and logical memory. The emulator also provides
commands to examine the MMU tables.

With the MMU on, there are new problems added to the task of connecting the
emulator probe into a target system. Besides making sure that the restrictions noted
above are complied with, interpreting the trace list becomes more difficult. You

also need to keep in mind the distinctions between logical and physical memory
accesses when accessing memory. Finally, you need to find out whether you need
to load your program before the MMU is running or while it is running.

461

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

The foreground monitor, in contrast to the background monitor, allows servicing of
interrupts. When the foreground monitor is not busy performing some action,
interrupts are allowed. The interrupt routine must return control to the monitor
within a reasonable period of time or the monitor may timeout if it attempts to do
something. The level of interrupt that can be recognized by the monitor can be
controlled through a configuration question:

cf monint=0

Resetting into the foreground monitor

If you have successfully established operation of the background monitor, or if you
have decided that you cannot use the background monitor because you need certain
MC68040 features, then it is time to evaluate the foreground monitor. The first

thing to do is to enter the foreground monitor from reset. Perform the following
command sequence to enter the monitor.

1 Reset the emulator, and the target system if necessary, using whatever reset
procedure you determined to work.

2 Configure the emulator, as follows:

cf mon=fg

cf monaddr=addr as appropriate for the target system

cf monlock=<en,dis>as appropriate for the address mapping
cf monint=0

cf cache=en

cf mmu=en

cf ti=en

cf wait=<en,dis>as appropriate for the target system

3 Set up a trace to capture all MC68040 cycles. Background cycles do not need
to be traced to see foreground monitor operation.

tg any
tsto any
tck -u

t

462

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

4 Execute the commangt -m

This tells the emulator to release reset, but enter the monitor.

5 Verify that the emulator is in the monitor.

The prompt should be "M$", indicating correct operation in the monitor.
There is not much that can go wrong up to this point since everything required
has been previously verified.

If you get the following error messages, a failure occurred during the initial vector
fetches from the target system. Check these cycles for problems.

ISTATUS 170! Emulator terminated hung bus cycle: 000000000@sd long read
ISTATUS 170! Emulator terminated hung bus cycle: 000000004@sd long read

If you get a "w$" prompt for a monitor address, you may have incorrectly
interlocked the monitor to the target system. If the monitor was correctly
interlocked, check to see if there is a timing problem with the target terminations
for the monitor address range.

If you get the "b$" prompt or something other than the "M$" prompt, suspect a
failure in monitor operation. These prompts may indicate problems with the clock
or reset signals. If the monitor is interlocked, it may also indicate that the target
system responded with a bus error for a monitor access.

463

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Dealing with keep-alive circuitry by using the
custom foreground monitor

As with the background monitor, you may have problems with keep-alive circuitry
located in the target system. Because the foreground monitor cycles are shown to
the target system, bus cycle activity monitors should not be a problem. Also,
because interrupts can be serviced within a reasonable period of time, any
keep-alive circuits that depend on interrupts should not be a problem.

Keep-alive circuits that require a certain address to be accessed probably will fail
when you are using the foreground monitor. The keep-alive problem will most
likely show up immediately when using the foreground monitor. If the monitor is
interlocked, it will be affected immediately if a keep-alive circuit causes a bus

error. If a keep-alive circuit generates an interrupt or a reset, it should also be
immediately obvious. If reset is only temporarily asserted, it may not be so obvious
because the emulator will return to the monitor when it is released.

If you suspect a problem with a keep-alive circuit, try using the custom foreground
monitor. This monitor can be customized to take the required actions to satisfy a
keep-alive circuit. See the chapter on configuring the emulator for information on
using the custom foreground monitor. Retry your reset into the monitor with the
customized foreground monitor.

If keep-alive circuits cannot be accommodated by using the available emulator
features, you may need to disable them for emulation.

464

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Testing memory access with the foreground
monitor

Once the foreground monitor looks like it is running properly, you can use it to
accesses to different ranges of memory in your target system. This may be an
easier way to diagnose problems than by running a program that accesses each
memory range. Itis also easy to check accesses of different sizes using the monitor.

mo -ax -dl
m Obadad=12345678

When accesses to your target memory are not performed exactly right, the monitor
attempts to diagnose these problems and resolve them so the monitor program does
not malfunction. However, the monitor does not read back write cycles to check

the integrity of the data written. When testing memory accesses, check the data to
make sure it is correct.

M$m Obadad
0000badad ffdfoOff

If your target memory does not respond to a bus cycle, the monitor will force
termination of the cycle and report this error message.

ISTATUS 170! Emulator terminated hung bus cycle: 0000badad@sd word read
IERROR 700! Target memory access failed

Or, if the target system responds with a bus error for this memory access, the
monitor will report that information.

IERROR 170! Target bus error: 0000badad @sd
IERROR 700! Target memory access failed

465

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Running a program from the foreground monitor

Once you are satisfied that the monitor is working and that memory in your target
system can be accessed correctly, you can use the monitor to run your target
program. Use the following procedure:

1 Reset into the monitor.
2 Load a program, if necessary.

3 Initialize the initial stack pointer and initial program counter.

reg isp=<initial ISP>
reg pc=<starting address of target program>

If you do not know these values, you can find them by taking a trace of the
program running from reset as done in the previous sections.

4 Take a trace of the program as it is running, using the following commands:

tg addr=<long aligned starting address of target program>
t

The trigger address must be long aligned because the MC68040 always fetches
instructions as long words from long-word boundaries.

5 Run the program with the command:

r

6 Verify correct operation of the program.

Assuming that the program ran without the monitor, the stack is most likely the
cause of any problems that you see. The monitor runs the program by creating a
stack in memory at the location indicated by the initial stack pointer. The monitor
then initiates an RTE, which starts the target program running. The following trace
list shows an example of correct operation:

466

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Line addr,H 68040 Mnemonic
-4 000010f0 $00------ log sdata byte read
-3 00001e74 $4E714E71 log sprog long read
-2 0000f0ec $000a007C log sdata long read <-unstack
-1 0000f0e8 $27000000 log sdata long read <-unstack
0 00000008 $000060FE log sprog long read <-target program
1 0000000c $000BADAD log sprog long read

If the monitor detects problems with the stack pointer (the stack pointer must be
even), or if the monitor has a problem accessing the stack memory, an error
message is issued. Additionally, the monitor checks to make sure that the stack has
been written correctly before exiting. Problems are indicated by the following error
messages:

IERROR 151! Interrupt stack pointer is odd or uninitialized
IERROR 610! Unable to run

This message indicates that the stack pointer is invalid. Only word aligned stack
pointers are allowed with the emulator. The run is not attempted.

IERROR 170! Target bus error: 00000f0e8@sd
IERROR 610! Unable to run

This message indicates a bus error occurred during the stack write. This behavior
can be caused if the stack is in a memory range that responds with bus error for all
accesses or for write accesses. Or, this behavior can be caused by putting the stack
where the target system fails to respond immediately; the bus error is the result of a
timeout. Keep in mind that the stack grows down from the initial stack pointer.

ISTATUS 170! Emulator terminated hung bus cycle: 00000f0e8@sd long write
IERROR 610! Unable to run

This indicates that the stack is in an address range that did not respond with a
memory strobe. Make sure that the stack is placed in valid memory.

IERROR 151! Interrupt stack is not located in RAM: 00000f0e8@sd
IERROR 610! Unable to run

This indicates that the stack memory was not writeable. Check to make sure that
the stack is placed in RAM.

If the target program appears to start at the wrong address, or if there is some other
problem, the stack can be decoded to see if the correct information is present. The
stack above is interpreted as follows: The initial stack pointer is defined to point to

467

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

the next available stack location. Therefore, the exit stack starts four words below
the initial stack pointer.

ISP-8 - Status register = 2700
ISP-6 - Program Counter = 0000000a
ISP-2 - Vector Offset = 007C

The monitor is always exited using the FOUR WORD STACK frame, and the
monitor always uses 07C as the vector offset. When running a program from the
monitor after entering from reset, the powerup status word of 2700 is used.

Therefore, the only difference you will see in this stack frame will be because of
different initial program counters.

The procedure for setting the initial stack pointer and initial program counter can be
automated by using the initial vectors configuration question to define these values.

cf rv=<initial ISP> <target program starting address>

Once this configuration has been set up, the following reset sequence may be useful
on systems that remap memory to provide reset vectors.

rst -m
r

Breaking into the foreground monitor

The next thing to try with the foreground monitor is to see if you can break into it
from your target program. The emulator uses a nonmaskable interrupt (interrupt 7)
to break into the monitor. The interrupt is generated in such a way as to not
interfere with any interrupts pending in your target system. The resulting interrupt
acknowledge cycle is not shown to the target system. The associated stacking is in
foreground memory at the location determined by the interrupt stack pointer. If the
target system program is running in Master mode, there will also be stacking on the
master stack.

A vector fetch occurs sometime during or after stacking. The emulator provides the
data for this vector fetch to correctly run the foreground monitor. While the
emulator is transitioning into the foreground monitor, interrupts are temporarily
blocked. Once in the monitor the interrupt mask level is lowered to the greater of
the "monint" configuration setting or the target program mask level.

468

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Entry into the foreground monitor can be traced by using the following trigger
specification. The interrupt acknowledge signal is not shown to the target system
and is also not shown to the analyzer unless background cycles are being traced.

tck -ub

tpc

tg stat=11xxxxxxxx1x111xy
t

b

Line addr,H 68040 Mnemonic
-2 00000008 $60FEO0000 phy sprog long read
-1 0000000c $00000000 phy sprog long read
fffffff $------ FF mon int7 ack <- acknowledge
00000200 $0000040B mmu twalk data long read <- twalk stack
00000400 $0000060B mmu twalk data long read
0000063c $0000F01B mmu twalk data long read
0000f0ee $----007C phy sdata word write <- stack format
0000f0ea $----0000 phy sdata word write <- stack PC high
0000f0ec $0008---- phy sdata word write <-stack PC low
00000200 $0000040B mmu twalk data long read <- twalk vector
00000400 $0000060B mmu twalk data long read
00000600 $0000009F mmu twalk data long read
0000007c $000016C2 phy sdata long read <- vector fetch
0000f0e8 $2700---- phy sdata word write <- stack SR
00000200 $0000040B twalk prog long read <- twalk monitor
00000400 $0000060B twalk prog long read
00000600 $0000101b twalk prog long read
000016c0 $4E732FO0D phy sprog long read <- monitor
000016c4 $4BFAFB10 phy sprog long read

e e
ShhRREBoo~NourwNhvRO

If you have problems trying to break into the monitor, the most likely causes are
that the stack pointers or vector base register do not point to valid memory. Any
exceptions during monitor entry will cause the break to fail. Access errors during
stacking or vector fetches are the most common causes of failures. The target
system can respond with a bus error, or if the MMU is running, the MMU can
signal an access error. The MMU will signal an error if a translation is not
available, if a bus error occurs during translation lookup, or if a write protection
error occurs.

The break will also fail if accesses to the monitor cause an exception. This includes
bus errors and access errors signaled by the MMU. It is possible for the monitor to
execute correctly until the MMU is enabled, and then have problems. Keep in

mind that the monitor must be translated logical=physical and located in address
space that is not write protected.

469

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

If any stacking or vector-fetch cycles are not terminated, the monitor will terminate
them by force. If this happens, the PC and SR may be displayed incorrectly by the
monitor. The same problem can result from stack memory that is not writeable.
Neither condition will prevent entry into the monitor, but you will not be able to
resume execution in the target program.

Exiting the foreground monitor

If the tests of the preceding paragraphs operate correctly, you should be able to
resume execution of the target program. You may want to take a trace of the
monitor exit to verify that everything is working correctly. Use the run command:

r

Software breakpoint entry into the foreground
monitor

The foreground monitor can also be entered via a software breakpoint. The
emulator will respond to any software breakpoint instruction in the code if
breakpoints are enabled, regardless of whether the breakpoint was inserted by the
emulator or not. Breakpoints are enabled by the following command:

bc -e bp

Only set breakpoints on the initial word of an instruction; otherwise, they will not

be executed, and they may alter an instruction, unintentionally. The emulator can
place a breakpoint using two methods. By default, the emulator will attempt to
modify memory to insert a breakpoint instruction at the address specified. If the
memory at the address specified is ROM or cannot be modified for some other
reason, special hardware resources on the emulator will interject a breakpoint
instruction when the associated address is fetched. You can tell if a hardware
resource was required to support a breakpoint by viewing memory at the breakpoint
address. If the BKPT instruction has replaced the normal instruction at that
address, a software breakpoint was used. If the normal instruction is still in the

470

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

breakpoint address, the emulator is using one of its eight hardware resources to
implement the breakpoint.

b
bp <program instruction>

If you suspect some kind of problem with the setting of the breakpoint, use the
analyzer to watch the setting of the breakpoint. The easiest way to do this is to
store-qualify the trace on the address where you are setting the breakpoint. The
trace list will only contain a cycle or two, but you can see what happened when the
emulator accessed the breakpoint address.

If the MMU is running, you will need to store-qualify the actual physical address
being accessed. The address given in the "bp" command must always be treated as
a logical address. To find the corresponding physical address, use the MMU
translation command. Also, keep in mind that the MMU may cause problems when
setting the breakpoint.

mmu -t <logical breakpoint address>

tg any

tsto addr=<physical breakpoint address>
b

bp <logical breakpoint address>

Line addr,H 68040 Mnemonic

0 00000008 $FFFF---- phy sdata word read

1 00000008 $FFFF---- phy sdata word read

2 00000008 $FFFF---- phy sdata word read

3 00000008 $484F---- phy sdata word write <- breakpoint write
4 00000008 $FFFF---- phy sdata word read <- verify
5
6

00000008 $FFFF---- phy sdata word read

471

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

When a software breakpoint instruction is executed, the processor initiates a
breakpoint-acknowledge cycle. This cycle signals the start of an entry into the
monitor. From this point on, stacking and the vector fetch proceed the same as for
a break entry. Unlike the interrupt-acknowledge cycle, the
breakpoint-acknowledge cycle is shown to the target system.

tck -u

tsto any

tg stat=11xxxxxxxx1x000xy
t

r8

Line addr,H 68040 Mnemonic

00000008 $484F0000 log sprog long read <- bkpt fetch
0000000c $00000000 log sprog long read

00000010 $01000000 log sprog long read

00000014 $00000000 log sprog long read

00000000 $41------ bkpt ack (buserror) <- acknowledge
00000200 $0000040B mmu twalk data long read <- twalk stack
00000400 $0000060B mmu twalk data long read

0000063c $0000F01B mmu twalk data long read

0000fOee $----0010 phy sdata word write <- stack format
0000fO0ea $----0000 phy sdata word write <- stack PC high
0000f0ec $0008---- phy sdata word write <- stack PC low
00000200 $0000040B mmu twalk data long read <- twalk vector
00000400 $0000060B mmu twalk data long read

00000600 $0000009F mmu twalk data long read

00000010 $000016A2 phy sdata long read <- vector fetch
0000f0e8 $2700---- phy sdata word write <- stack SR
00000200 $0000040B twalk prog long read <- twalk monitor
00000400 $0000060B twalk prog long read

00000600 $0000101b twalk prog long read

000016a0 $007E2FOD phy sprog long read <- monitor
000016a4 $4BFAFAT73 phy sprog long read

The only unique part of a breakpoint entry is the breakpoint-acknowledge cycle so
any problems will probably be related to this cycle. Because the emulator

internally responds to this cycle, it is not necessary for the target system to respond
to it. If the target system responds to this cycle with any wait states, the emulator
may become out of sync with the target system because the emulator terminates this
cycle immediately. If this causes a problem, it will show up on the cycle

immediately following the breakpoint-acknowledge cycle.

472

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Stepping with the foreground monitor

The last feature of the foreground monitor that needs to be evaluated is the
single-stepping facility. The emulator uses the processor trace facility to reent
monitor after executing exactly one instruction, unless an exception occurs.

b

tsto any

tg stat=11xxxxxxxx1x000xy
t

S

000000008@s -
PC = 000000008@s

BRA.B $00000008

When a step command is issued, the emulator sets the trace bits in the SR, and then
performs a normal monitor exit. The emulator modifies the trace vector to transfer
control to the monitor. A typical trace of a single step is shown below:

Line addr,H 68040 Mnemonic

-42
-41
-40
-39
-38
-37
-36
-35
-34
-33
-32
-31
-30
-29
-28
-27

000010f0 $00------ log sdata byte read
00001e74 $4E714E71 log sprog long read
00000200 $0000040B mmu twalk data long read
00000400 $0000060B mmu twalk data long read
0000063c $0000F01B mmu twalk data long read
0000f0ec $0008007C log sdata long read
0000f0e8 $A7000000 log sdata long read
00000200 $0000040B twalk prog long read
00000400 $0000060B twalk prog long read
00000600 $0000009f twalk prog long read
00000008 $60FE0000 log sprog long read
0000000c $00000000 log sprog long read
00000008 $60FE0000 log sprog long read
0000000c $00000000 log sprog long read

0000f0ec $00000008 log sdata long write <-
<- stack format

<- stack PC high
<- stack PC low

0000f0ea $----2024 log sdata word write
0000f0e6 $----0000 log sdata word write
0000f0e8 $0008---- log sdata word write
00000200 $0000040B mmu twalk data long read
00000400 $0000060B mmu twalk data long read
00000600 $0000009F mmu twalk data long read
00000024 $00001680 log sdata long read
0000f0e4 $A700---- log sdata word write
00001680 $2FOD4BFA log sprog long read
00001684 $FB523ABC log sprog long read
00001688 $20246000 log sprog long read
0000168c $00924BFA log sprog long read
0000f0e0 $00000000 log sdata long write
00001718 $2F256000 log sprog long read

<- twalk stack

<- unstack
<- unstack
<- twalk monitor

<- stepped inst

stack address

<- twalk vector

<- vector fetch
<- stack SR

<- monitor

473

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

-13 000011d6 $----2024 log sdata word write
-12 0000171c $0022083A log sprog long read
-11 00001720 $0002F9D6 log sprog long read
-10 00001724 $67184BFA log sprog long read
-9 00001728 $F9F108D5 log sprog long read
-8 0000108 $F5------ log sdata byte read

-7 0000172c $0003484F log sprog long read <- monitor bkpt
-6 00001730 $4E7ADO002 log sprog long read
-5 00001734 $4A8D6A06 log sprog long read
-4 00001738 $F4784BFA log sprog long read
-3 00001119 $--03---- log sdata byte read

-2 0000173c $F8C40C3A log sprog long read
-1 00001119 $--0B---- log sdata byte write

0 00000000 $41------ bkpt ack (buserror) <- acknowledge

1 0000f0de $----0010 log sdata word write

2 0000f0da $----0000 log sdata word write

3 0000f0dc $172E---- log sdata word write

4 00000010 $000016A2 log sdata long read

5 0000f0d8 $2704---- log sdata word write

6 000016a0 $007E2FOD log sprog long read

7 000016a4 $4BFAFA73 log sprog long read

At the end of the execution of the first target program instruction, the processor
takes a trace exception. Stacking for this trace exception commences and at some
point, the modified trace vector is fetched. The monitor internally uses a
breakpoint instruction, but it is not part of the entry sequence.

If an error occurs during modification of the trace vector, an error message similar
to the following is displayed.

IERROR 170! Target bus error: 0ff800024@sd
IERROR 156! Unable to modify trace vector to 000001680 for single stepping
IERROR 680! Stepping failed

474

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

If the emulator does not reenter the monitor after stepping, as indicated by the
following error message, there can be a number of explanations. If the emulator
steps an instuction that modifies the VBR, the step will fail because the modified
trace vector will not be used to reenter the monitor. To get around this proble
trace vector in the target program can be modified to point to the monitor ent
point <monaddress + 0680>.

IERROR 680! Stepping failed

Stepping will behave differently when executing instructions that cause the
processor to take exceptions. Most exceptions preempt the trace exception until
after their exception handler runs. Other exceptions (like TRAP, CHK, and CHK2)
create their stack frame and then take the trace exception.

For all exceptions except TRAP, CHK, and CHK2, the exception handler will
execute before the trace exception is taken to return to the monitor. Exception
handlers that are instruction emulators are responsible for emulating the trace
behavior as well. If they do not emulate this behavior, stepping may fail because
the trace exception will never happen.

The TRAP, CHK, and CHK2 exception handlers do not run before the trace
exception is taken. They will have an additional stack frame when the monitor is
entered. The exception stack frame will precede the normal trace stack frame.

Installing emulation memory

The last feature of the emulator that you need to integrate is the emulation memory.
Emulation memory is intended to overlay ROM in the target system. This allows
changes to target programs to be quickly loaded into a system. Emulation memory
is not dual ported as is the case with the monitor memories. To display and modify
emulation memory, you must use the monitor.

If emulation memory is placed over existing target memory, interlock it to the

target memory strobes. This ensures that the target memory control circuits remain
in sync with the emulator. If there are no strobes that respond in the address range
where emulation memory is placed, then do not interlock. When interlocked, both
the TA and TEA signals are sampled.

475

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

IERROR 170! Target failed to terminate bus cycle: 000000000@sd word read
ISTATUS 170! Emulator terminated hung bus cycle: 000000000@sd word read
IERROR 702! Emulation memory access failed

To effectively use emulation memory, the monitor must be able to read and write to
it. Read and write accesses to emulation memory are seen by the target system.
Emulation memory will not be able to be loaded if it is interlocked and the target
system asserts bus error on write cycles or does not terminate the cycle.

IERROR 170! Target bus error: 0000badad @sd
IERROR 702! Emulation memory access failed

If the memory is write protected by the MMU, the monitor will temporarily disable
this protection to complete the write. This applies to both emulation memory and
target memory. Once emulation memory is mapped, it can be tested by performing
accesses from the monitor.

If the MMU is turned on and there are no address translations for the requested
emulation memory access, you will see the following error message:

IERROR 170! Address translation error; non-resident page: 000f84000@sd
IERROR 702! Emulation memory access failed

476

16

Installation and Service

477

Installation

This chapter shows you how to install emulation and analysis hardware and
interface software. It also shows you how to verify installation by starting the
emulator/analyzer interface for the first time. These installation tasks are described
in the following sections:

e Installing hardware.
» Verifying the installation and performance of the emulator.
» Ensuring software compatibility

» List of replaceable parts.

478

Chapter 16: Installation and Service
Installing Hardware

Installing Hardware

This section describes how to install emulation and analysis hardware and how to
connect the emulator probe to the demo target system.

Equipment supplied

The minimum system contains:

» HP 64783A/B 68040/68EC040/68LC040 PGA Emulator Probe (which
includes the demo target system).

* HP 64748C Emulation Control card.

* HP 64704A 80-Channel Emulation-Bus Analyzer card.

 HP 64700 Card Cage.

Optional parts are:

 HP 64172A 256-Kbyte Memory Modules or HP 64172B 1-Mbyte Memory
Modules (which provide emulation memory).

Equipment and tools needed

In order to install and use the MC68040 emulation system, you need:
* Flat-blade screwdriver.

Support Services information is at the back of each manual binder

Installation overview

The steps in the installation process are:

1 Connectthe HP 64783A/B emulator probe to the HP 64748C emulator control
card.

2 Install cards into the HP 64700 card cage.

3 Install emulation memory modules on the emulator probe.

4 Connect the emulator probe to the demo target system.

5 Apply power to the HP 64700 Card Cage.

Your emulation and analysis system may already be assembled (depending on how
parts of the system were ordered).

479

Chapter 16: Installation and Service

Installing Hardware

Caution

Antistatic precautions

Printed-circuit boards contain electrical components that are easily damaged by
small amounts of static electricity. To avoid damage to the emulator boards, follow
these guidelines:

» If possible, work at a static-free workstation.
» Handle the boards only by the edges; do not touch components or traces.
» Use a grounding wrist strap that is connected to the HP 64700’s chassis.

If you already have a modular HP 64700 Series Card Cage and want to remove the
existing emulator and insert an HP 64783A/B emulator in its place, the HP 64700
Series generic firmware and analyzer firmware may NOT be compatible, and the
software will indicate incompatibility. In this event, you must purchase a Flash
EPROM board to update the firmware. Instructions for installing this board and
programming it from a PC are provided in the HP 64700 Card Cage
Installation/Service manual. Instructions for installing and updating emulator
firmware are covered in the chapter titled "Installing/Updating Emulator Firmware"
in this manual.

Checking Hardware Installation

After hardware installation, run a performance test to verify that the emulator is
working properly. The performance verification procedure is described under "To
verify the performance of the emulator” later in this chapter.

Service Information

Use this chapter when removing and installing hardware, running performance
verification, and ordering parts. See the HP 64700 Series Installation/Service
Guide for information on system configurations, installing product software,
software updates, and ordering parts for the card cage. Turn off power to the card
cage before removing or installing hardware.

480

Chapter 16: Installation and Service
Installing Hardware

Step 1. Connect the Emulator Probe Cables

Three ribbon cables connect the HP 64748C emulation control card to the HP 64783A/B emulatar probe.

The shortest cable connects from J1 of the emulation control card to J3 of the emulator probe. Th
medium length cable connects from J2 of the emulation control card to J2 of the emulator probe.
longest cable connects from J3 of the emulation control card to J1 of the emulator probe.

Make sure the cable connectors are seated. There are stainless steel clips on the cable conntecjors; these
must be properly latched inside the sockets. Otherwise, the cables will work loose and you will sge
erratic operation. See illustration next page (step 2).

1 Connect the emulator probe cables to the emulation control card.

EVULATION CONTROL CARD

EGRESS PANEL

PROBE CABLES

481

Chapter 16: Installation and Service
Installing Hardware

2 When inserting cable connectors into the sockets, press inward on the connector clips so that they hook
into the sockets as shown. The order of connecting cables was given in step 1.

PUSH IN ON CLIPS
SO THEY HOOK
INTO SOCKET

482

Chapter 16: Installation and Service

Installing Hardware

3 Connect the other ends of the cables to the emulator probe. Again, make sure the stainless st
on the cable connectors are properly latched within the sockets, as shown in step 2.

eel clips

PROBE CABLES

TOP PLASTIC COVER

BOTTOM PLASTIC COVER

64/83E05

DEMO BOARD

483

Chapter 16: Installation and Service
Installing Hardware

Step 2. Install Boards into the HP 64700 Card
Cage

WARNING Before removing or installing parts in the HP 64700 Card Cage, make sure
that the card cage power is off and that the power cord is disconnected.

CAUTION Do NOT stand the HP 64700 Card Cage on the rear panel. You could damage the
rear panel ports and connectors.

1 Use a ground strap when removing or installing boards into the HP 64700 Card Cage to reduce the risk
of damage to the circuit cards from static discharge. A jack on the rear panel of the HP 64700 Card Cage
is provided for this purpose.

||l||
Ill' '

GROUND STRAP
PLUG

64700E07

484

Chapter 16: Installation and Service
Installing Hardware

2 Turn the thumb screw and remove the top cover by sliding the cover toward the rear and up.

LOOSEN THUMB SCREW
AND SLIDE COVER
TO REMOVE

m.ﬂ

|
||l"ll' "ln

64700E08

485

Chapter 16: Installation and Service
Installing Hardware

3 Remove the side cover by unsnhapping the two latches and lifting off.

ZMULATOR SIDE COVER

LATCHES
(ON BOTTOM PANEL)

TAB SLOTS

64783E08

4 Remove the card supports.

NUMBER HERE
INDICATES SLOT |

=
e
/ey

64700E01

486

Chapter 16: Installation and Service
Installing Hardware

5 First, completely loosen the four egress thumb screws.

To remove emulator cards, insert a flat blade screwdriver in the access hole and eject the emulator cards

by rotating the screwdriver.

FOUR EGRESS
THUMB SCREWS

PROBE CABLES

64783E06

EMULATOR CARD

T

WITH FLAT BLADE SCREWDRIVER
EJECT EMULATOR CARD, =GRESS
AND PROBE CABLE AS AN ASSEMBLY

487

Chapter 16: Installation and Service
Installing Hardware

6 Insert a screw driver into the third slot of the right side of the front bezel, push to release catch, and
pull the right side of the bezel about one-half inch away from the front of the HP 64700. Then, dqg the
same thing on the left side of the bezel. When both sides are released, pull the bezel toward you
approximately 2 inches.

Be careful because the plastic ears are easily broken on the front bezel.

FRONT PANFL
WITHOUT BEZEL
SHOWING CATCH

INSERT SCREW DRIVER INTO THIRD
SLOT OF FRONT BEZEL, PUSH

TO RELEASE CATCH AND
PULL BEZEL TOWARD YOU.

488

Chapter 16: Installation and Service
Installing Hardware

7 Lift the bezel panel to remove. Be careful not to put stress on the power switch extender.

LIFT BEZEL PANEL AND
TIP TOWARD YOU TO

BE CAREFUL NOT TO
PUT STRESS ON POWER
SWITCH EXTENDER.

8 If you're removing an existing analyzer card that provides external analysis, remove the right-angle
adapter board by turning the thumb screws counterclockwise.

489

Chapter 16: Installation and Service
Installing Hardware

9 To remove the analyzer card, insert a flat blade screwdriver in the access hole and eject the analyzer
card by rotating the screwdriver.

EJECT ANALYZER CARD

Do not remove the system control board. This board is used in all HP 64700 emulation and analysis
systems.

490

Chapter 16: Installation and Service
Installing Hardware

10 Install the analyzer and emulation control cards. The analyzer is installed in the slot next to the
system control card. The emulation control card is installed in the second slot from the bottom of|the
card cage. These cards are identified with labels that show their model numbers and serial numbers.
Note that components on the analyzer card face the opposite direction to the other cards.

To install a card, insert it into the plastic guides. Make sure the connectors are properly aligned;
press the card into mother board sockets. Check to ensure that the cards are seated all the way i
sockets. If the cards can be removed with your fingers, the cards are NOT seated all the way int

mother board socket.

Attach the cable from the emulation control card to the analyzer card, and to the software performance
analyzer, if installed. Tighten the thumbscrews that hold the emulation control card to the cardcage

frame.

80 CHANNEL
ANALYZER CARD

) 64748C
g EMU_ATION
, CONTROL
CONTROL ™~
CARD
CARDCAGE

64751E03

491

Chapter 16: Installation and Service

Installing Hardware

11 Connect the +5 V power cable to the connector in the HP 64700 front panel.

POWER CONNECTION
FOR DEMO BOARD

492

Chapter 16: Installation and Service
Installing Hardware

12 To reinstall the front bezel, be sure that the bottom rear groove of the front bezel is aligned with the

lip as shown below.

BE SURE BACK GROQVE OF
BEZEL IS ALIGNED WITH LIP,

PUSH FRONT BEZEL
INTO PLACE

13 If you wish to install the Flash card (used for updating firmware, see the Installing/Updating
Emulator Firmware chapter), refer to the diagram above. Install the flash card in any available sl
between the HP 64704A and the HP 64748C cards in the cardcage. Insert the flash card in the
guides. Make sure the connectors are properly aligned. Then press the card into the mother boz

Dt
lastic
ird

sockets. Make sure the card is seated all the way into the sockets.

493

Chapter 16: Installation and Service
Installing Hardware

14 Install the card supports.

NUMBER HERE
INDICATES SLOT |

CARD SUPPORTS

44700ED1

15 To install the side cover, insert the side cover into the tab slots and fasten the two latches.

EMULATOR SIDE COVER

LATCHES
(ON BOTTOM PANEL)

TAB SLOTS

647B3E08

494

Chapter 16: Installation and Service
Installing Hardware

16 Install the top cover in reverse order of its removal, but make sure that the side panels of the top cover
are attached to the side clips on the frame.

l|I||||
ml" @
||u|||| &

llIIlIlII 64700E09

SIDE CLIP

495

Chapter 16: Installation and Service
Installing Hardware

Step 3. Install emulation memory modules on
emulator probe

(Observe antistatic precautions)

1 Remove plastic rivets that secure the plastic cover on the top of the emulator probe, and removye the
cover. The bottom cover is only removed when you need to replace a defective active probe on the
exchange program.

TO INSTALL RIVET:
PUSH DOWN ON
RIVET HEAD

VEMORY SLOT O

MEMORY SLOT 1

TO REMOVE RIVET:
PUSH UP ON
CENTER SHAFT

WASHERS TO

ADD PLASTIC
OUR POSITIONS

64783E02

496

Chapter 16: Installation and Service

Installing Hardware

2 Determine the placement of the emulation memory modules. Three types of modules may be i
256 Kbyte (HP 64172A), 1 Mbyte (HP 64172B), and 4 Mbyte (HP 64173A). Any of the emulation
memory modules can be installed in either memory slot on the probe. Do not use HP 64171A/B

modules; they are too slow.

Memory in memory slot 0 is divided into four equal blocks that can be allocated by the memory m
Memory in memory slot 1 is divided into two equal blocks.

If you have only one emulation memory module, place it in memory slot 0.

If you have two memory modules of different sizes, place the memory module with the greatest ¢

in memory slot 0 to take advantage of the way memory slot 0 and memory slot 1 are divided by the

emulator. For example, if you install a 1-Mbyte module in memory slot 0 and a 256-Kbyte modul
memory slot 1, then the emulator will provide four 256-Kbyte blocks of memory in memory slot 0
two 128-Kbyte blocks of memory in memory slot 1.

Refer to the step called "To assign memory map terms" in the chapter titled "Configuring the Emt

nstalled:

apacity

2 in
and

lator"

for details of the combinations of memory module installations.

497

Chapter 16: Installation and Service
Installing Hardware

3 Install emulation memory modules on the emulator probe. There is a cutout at one end of the
modules so they can only be installed the correct way.

To install a memory module:

1 Align the groove in the memory module with the alignment rib in the connector.

2 Align the cutout in the memory module with the projection in the connector.

3 Place the memory module into the connector groove at an angle.

4 Firmly press the memory module into the connector and make sure it is completely seated.

5 Rotate the memory module forward so that the pegs on the connector fit into the holes on the
memory module.

6 Make sure the release tabs at each end of the connector snap around the memory module to
hold it in place.

Groove In
Memory Module
and Alignment Cutout in

Rib in Connector Memory Madule

Release Tabs

64794E03

memory

498

Chapter 16: Installation and Service
Installing Hardware

4 Replace the plastic cover, and insert new plastic rivets (supplied with the emulator) to secure tluue cover.

TO INSTALL RIVET:
PUSH DOWN ON
RIVET HEAD

TO REMOVE RIVET:
PUSH UP ON
CENTER SHAFT

ADD PLASTIC
WASHERS TO
OUR POSITIONS

64783E02

499

Chapter 16: Installation and Service
Installing Hardware

Step 4. Connect the emulator probe to the demo
target system

1 With HP 64700 power OFF, connect the emulator probe to the demo target system. When you install
the probe into the demo board, be careful not to bend any of the pins. Do not insert the probe ofthe
MC68040 emulator into the demo board socket incorrectly. Be very careful.

EMULATOR
PROBE

PGA SOCKET
PIN A1

DEMO BOARD

64783E09

500

Chapter 16: Installation and Service
Installing Hardware

2 Connect the power supply wires from the emulator to the demo target system. The 3-wire cable has

one power wire and two ground wiréa/hen attaching the 3-wire cable to the demo target system,

make sure the connector is aligned properly so that all three pins are connected

POWER CONNECTION
FOR DEMO BOARD
FROM HP 64700A

DEMO BOARD

64783E10

3 Connect the reset flying lead from the probe to the demo board.

FLYING LEAD

BLACK

GND

64783E11

RESET

501

Chapter 16: Installation and Service
Installing Hardware

Step 5. Apply power to the HP 64700

The HP 64700B automatically selects the 115 Vac or 220 Vac range. In the 115 Vac range, the
HP 64700B will draw a maximum of 345 W and 520 VA. In the 220 Vac range, the HP 64700B wi
draw a maximum of 335 W and 600 VA.

The HP 64700 is shipped from the factory with a power cord appropriate for your country. You sﬂould
verify that you have the correct power cable for installation by comparing the power cord you received
with the HP 64700 with the drawings under the "Plug Type" column of the following table.

If the cable you received is not appropriate for your electrical power outlet type, contact your
Hewlett-Packard sales and service office.

502

Chapter 16: Installation and Service
Installing Hardware

Power Cord Configurations

Plug Type Cable Part No. Plug Description | Length in/cm Color
Opt 903 8120-1378 Straight 90/228 Jade Gray
124V ** * NEMA5-15P

8120-1521 o 90/228 Jade Gray

:

Opt 900 8120-1351 Straight 90/228 Gray
250V * BS136A
8120-1703 elox 90/228 Mint Gray
Opt 901 8120-1369 Straight 79/200 Gray
250V * NZSS198/ASC
% 8120-0696 lox 87/221 Mint Gray
Opt 902 812001689 Straight 79/200 Mint Gray
250V *CEE7-Y11
8120-1692 lox 79/200 Mint Gray
72 ‘.f Straight
s \hg\ 8120-2857 (Shielded) 79/200 Coco
X Brown

* Part number shown for plug is industry identifier for plug only.
Number shown for cable is HP part number for complete cable including plug.
** These cords are included in the CSA certification approval for the equipment.

503

Chapter 16: Installation and Service

Installing Hardware

Power Cord Configurations (Cont'd)

.

Plug Type Cable Part No. Plug Description Length in/cm Color
Opt 906 8120-2104 Straight 79/20 Mint Gray
250V * SEV1011

8120-2296 1959-24507 79/200 Mint Gray
Q Type 12
O RS 90’
Opt 912 Straight 79/200 Mint Gray
220V *DHCK107
8120-2957 o 79/200 Mint Gray
Opt 917 8120-4600 Straight 79/200 Jade Gray
250V SABS164
% 8120-4211 elog 79/200
Opt 918 8120-4753 Straight Miti 90/230 Dark Gray
100V
8120-4754 o 90/230

* Part number shown for plug is industry identifier for plug only.
Number shown for cable is HP part number for complete cable including plug.
** These cords are included in the CSA certification approval for the equipment.

504

Chapter 16: Installation and Service
Installing Hardware

1 Connect the power cord and turn on the HP 64700.

The line switch is a push button located at the lower, left-hand corner of the front panel. To turn ON
power to the HP 64700, push the line switch button in to the ON (1) position. The power light at the
lower, right-hand corner of the front panel will be illuminated.

64700E03

505

Chapter 16: Installation and Service
Installing Hardware

To verify the performance of the emulator

1 If you have a special configuration or session in progress, save it now. This
procedure will cause your session to be lost.

2 Turn off power to the HP 64700 Card Cage.
3 Plug the emulator probe into the Demo Board.

4 Connect Demo Board power cable from the Demo Board to the HP 64700
Card Cage front panel. (See the diagrams under "Installing Hardware" in this
chapter.)

5 Connect the Reset Flying Lead from the Emulation Probe to the Demo Board. (See
"Step 4. Connect the emulator probe to the demo target system".)

6 Turn on power to the HP 64700 Card Cage.

7 Establish communication with the emulator from your system terminal, and obtain
an "R" or "R$" prompt.

8 Enter the comman@ystemTerminaltcf -e <return>. This sets the analyzer to
easy configuration, which is required for performance verification.

9 Enter the commanghv 1 <return>.

506

Chapter 16: Installation and Service
Installing Hardware

Examples Start the performance verification test routines from the PC Interface with the
command:

System Terminal pv 1

A message similar to the following should appear:
Testing: HP 64783 Motorola 68040 Emulator

PASSED:
Number of tests: 1 Number of failures: 0
Testing: HP 64740 Emulation Analyzer
PASSED:
Number of tests: 1 Number of failures: 0

Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation
without prior
written permission is prohibited, except as allowed under copyright
laws.

HP64700B Series Emulation System
Version: B.01.00 20Dec93
Location: Flash
System RAM:1 Mbyte

HP64783 Motorola 68040 Emulator
HP64740 Emulator Analyzer

If you have an emulation failure, you can replace the assembly that failed through
your local Hewlett-Packard representative, and through the

Support Materials Organization (SMO). Refer to the list of replacable parts at the
end of this chapter.

507

Chapter 16: Installation and Service

Installing Hardware

What is pv doing to the Emulator?

The performance verification procedures provide a thorough check of the
functionality of all of the products installed in the HP 64700 Card Cage. The Test
Suite for the HP 64783A/B Emulator consists of the following modules.

Tests available in Emulator Subsystem:
test # 1 (ABG68000 RAM)
test # 2 (ABG Type Map)
test # 3 (ABGDeMMU Map)
test # 4 (low DMMU RAM)
test# 5 (up DMMURAM)
test # 6 (68000 side RAM)
test # 7 (Host DPRAM)
test # 8 (Clock Test)
test # 9 (Release tobg)
test #10 (Release to fg)
test #11 (MonTransistion)
test #12 (Break Detection)
test #13(Dual Port RAM)
test #14 (Emul Mem Bank 0)
test #15(Emul Mem Bank 1)
test #16 (Demo Reset)
test #17(Demo Data)
test #18 (Demo Address)
test #19 (DemoStatus)
test #20 (Demo IPL)
test #21 (Demo Cache)
test #22 (Demo DMA)
test #23 (Demo MDIS)
test #24(Demo LED)
test #25 (Analysis Intrfc)
test #26(DeMMUer)
test #27 (CMB)

Troubleshooting

The test results for all of these modules are indicated by a simple PASS/FAIL
message. The PASS message gives a high level of confidence that all major
functions and signals are operating because it includes a loopback test that includes
read and write tests to the demo board. The demo board also stimulates inputs to
the emulator.

A FAIL message on the other hand indicates that one or more of the tested
functions is NOT working. In this event, an HP field representative can either swap
assemblies to isolate the failure to an individual board, or replace all the major
assemblies shown in the replaceable parts list. The emulation memory modules and
plastic cover are not part of the probe assembly. The emulation memory modules
must be ordered separately and the plastic covers should be removed from the
probe assembly before replacing the probe assembly.

508

Chapter 16: Installation and Service
Installing Hardware

To ensure software compatibility

There are various sets of firmware resident in the assemblies contained in the
HP 64700 Card Cage. It is important to ensure that all the versions are compatible
between the group of products you have installed. You can determine which
versions of firmware you have by entering the Terminal Intesfaceommand, as
follows: SystemTerminal ver

There are at least three assemblies that have firmware in the HP 64700 Card Cage.
These assemblies are the:

* Host Controller card
e Emulator card
* Analyzer card

If you purchased a complete Emulation/Analysis System from HP, you can be
assured that all the products contained in the HP 64700 Card Cage contain
compatible firmware at the time of sale. Software compatibility problems can occur
when you swap the host controller card, emulator card, or analyzer card from one
HP 64700 Card Cage to another, or from a recently purchased subassembly.

For example, you might purchase only the emulator subassembly (Emulation
Control Card, Probe, and interconnecting ribbon cable) and replace the original
emulator subassembly with the one you just purchased. In this case, the host
controller may contain a version of firmware that is older than required to operate
the new emulator; hence, compatibility problems can be caused by a newer
emulator. All emulators will work with the latest software versions. The emulator
software will warn you of incompatible software.

The HP 64700B Card Cage has Flash EPROM for the assemblies that may be
installed.

The latest versions of firmware for the host controller card and analyzer card, along
with a program callegrogflash are part of the B1471 software for the HP 9000
workstation and Sun SPARCsystems and the HP 64700 Option 006 software for
PCs.

When you load all your new versions of software onto your host computer, you are
now ready to load the new version of firmware from your host computer to the
assemblies that are in the HP 64700 Card Cage.

To load the new firmware, you use firegflashcommand. The progflash
command displays a list of card cages, and subassemblies in each card cage on your

509

Chapter 16: Installation and Service

Parts List

system. From these lists, you can select which product to update. For information
on using therogflashcommand, and updating your HP 64700 Series firmware,
refer to the chapter titled "Installing/Updating Emulator Firmware" in this manual.

Parts List

What is an Exchange Part?

Exchange parts are shown on the parts list. A defective part can be returned to HP
for repair in exchange for a rebuilt part.

Probe (exchange)

The Probe for the HP 64783A is not interchangable with the Probe for the
HP 64783B. Make sure you order the Probe replacement part number that is
compatible with your emulator.

To replace the Probe on the exchange program, you must remove certain parts, and
return only that part considered an exchange part. When returning the Probe, you
must remove the:

» cable assembly.

» top and bottom plastic covers.
*+ SRAM modules.

* demo board.

Emulation Control Card (exchange)

To replace the Emulation Control Card on the exchange program, you must remove
certain parts, and return only that part considered an exchange part. When
returning the Emulation Control Card, you must remove the:

» ribbon cable that connects the Emulation Control Card to the analyzer card.
» cable assembly.
* egress panel.

510

Chapter 16: Installation and Service

Parts List

Main Assembly

Component Part

New

Exchange

HP 64783A/B Probe and Demo Board

68040 Emulator Firmware Floppy

64700 SW UTIL

MC68040 Probe Board for HP 64783A

MC68040 Probe Board for HP 64783B
(Order the following parts separately:)
Top Plastic Cover
Bottom Plastic Cover
Plastic Rivets Kit (rivets and washers)
Reset Flying Lead

HP 64783A Demo Board for HP 64783A/B
(Order the following part separately:)
External Power Cable

HP 64748C Emulation Control Card Subassembly

Egress Panel

Bracket (used with Egress Panel)
Spacer, Hex M3X6

Screw, Machine M3X8
Cable-100 36"

Cable-100 37"

Cable-100 38"

Cable Clamp

Rubber Strip

Emulation Control Card

(without external cable or egress panel)
Wrist strap

HP 64172A 256 Kbyte SRAM Module

HP 64172B 1 Mbyte SRAM Module

HP 64173A 4 Mbyte SRAM Module

Analyzer Card HP 64740 with 1K memory depth

34-pin ribbon cable

64783-18000
64700-18006
64783-66504
64783-66505

64783-04101
64783-04102
64748-68700
64762-61602
64783-66502

5181-0201

64748-00205
64748-01201
0515-1146

0515-0372

64748-61601
64748-61602
64748-61603
64744-01201
64744-81001
64748-66515

9300-1405
64172A
64172B
64173A

64740-66526
64772-61602

64783-69504
64783-69505

64748-69515

64172-69501
64172-69502
64173-69501

64740-69526

511

512

17

Installing/Updating Emulator
Firmware

513

Installing/Updating Emulator Firmware

If you ordered the HP 64783A/B MC68040 emulator probe and the HP 64748C
emulation control card together, the control card contains the correct firmware for
the HP 64783A/B.

However, if you ordered the HP 64783A/B and the HP 64748C separately, or if
you are using an HP 64748C that has been previously used with a different
emulator probe, you must download the firmware for the HP 64783A/B into the
emulation control card.

The firmware, and the program that downloads it into the control card, are included
with the MC68040 emulator probe on the following MS-DOS format floppy disks:

+ MC68040 EMULATION FIRMWARE 64783
e 64700 SW UTIL
The steps to install or update the emulator firmware are:

1 Connect the HP 64700 card cage to an IBM PC AT compatible computer’s
RS-232 serial port.

2 Install the firmware update utility and the 64783 emulator firmware.

3 Run "progflash" to update emulator firmware.

514

Chapter 17: Installing/Updating Emulator Firmware
Step 1. Connect the HP 64700 to a PC host computer

Step 1. Connect the HP 64700 to a PC host
computer

1 Set the HP 64700 data communications configuration switches.

Set all "COMM CONFIG" (communications configuration) switches on the rear panel of the HP 64700

to the zero or open position.

Note that switch settings are read as part of the HP 64700 power-up procedure. Any changes made to the

switches after power-up will not be read until you turn the HP 64700 off and back on again.

515

Chapter 17: Installing/Updating Emulator Firmware
Step 1. Connect the HP 64700 to a PC host computer

2 Connect the RS-232 cable.

Recommended cables are HP 13242N (25-pin male to 25-pin male) or HP 24542M (9-pin female
25-pin male) which are equivalent to a MODEM cable.

To connect cables to the HP 64700, simply align the cable with the serial port and insert the 25-p
connector of the cable until itis firmly seated. Then tighten the holding screws on each side of th
with a small, flat blade screwdriver. This will ensure that the cable pins and shield hood make ga
contact with the HP 64700 connector and will also guard against accidental disconnection of the

—

(o]

n male
e cable
od
cable.

TIGHTEN W/
SMALL FLAT BLADE SCREWDRIVER

516

Chapter 17: Installing/Updating Emulator Firmware
Step 2: Install the firmware update utility

Step 2: Install the firmware update utility

Your HP Vectra PC or IBM PC AT compatible computer must have MS-DOS 3.1
or greater and a fixed disk drive. The firmware update utility and the 64783
firmware require about 300 Kbytes of disk space.

Insert the 64700 SW UTIL disk into drive A.

Change MS-DOS prompt to drive A: by typing "A:" at the MS-DOS prompt.

For example:

C> A: <RETURN>
A>

Type "INSTALL" at the MS-DOS prompt.

For example:
A> INSTALL <RETURN>

After confirming that you want to continue with the installation, the install program
will give you the option of changing the default drive and/or subdirectory where the
software will reside. The defaults are:

Drive = C:
Directory Path = C:\HP64700

Follow the remaining instructions to install the firmware update utility and the
64783 firmware. These instructions include editing your CONFIG.SYS and
AUTOEXEC.BAT files. Details follow in the next steps.

After completing the install program, use the PC editor of your choice and edit the
\CONFIG.SYS file to include these lines:

BREAK=ON
FILES=20

BREAK=ON allows the system to check for two break conditions:
<CTRL><Break>, and <CTRL>c.

517

Chapter 17: Installing/Updating Emulator Firmware
Step 2: Install the firmware update utility

FILES=20 allows 20 files to be accessed concurrently. This number must be at
LEAST 20 to allow the firmware update utility to operate properly.

Edit the AUTOEXEC.BAT file to add:

C:\HP64700\BIN (to the end of the PATH variable)
SET HPTABLES=C:\HP64700\TABLES (as a new line)
SET HPBIN=C:\HP64700\BIN (as a new line)

Part of an example AUTOEXEC.BAT file resembles:

ECHO OFF
SET HPTABLES=C:\HP64700\TABLES
PATH=C:\DOS;C:\HP64700\BIN

If you are using the COM3 or COM4 ports, you will need to edit the
\HP64700\TABLES\64700TAB file. The default file contains entries to establish
the communications connection for COM1 and COM2. The content of this file is:

EMUL_COM1 unknown COM1 OFF 9600 NONE ON

1
EMUL_COM2 unknown COM2 OFF 9600 NONE ON 1

0o

Either add another line or modify one of the existing lines. For example:

EMUL_COM3 unknown COM3 OFF 9600 NONE ON 1 8
EMUL_COM4 unknown COM4 OFF 9600 NONE ON 1 8

The "unknown" field usually specifies the processor type (which is "m68040" for
the HP 64783 emulator), but you don’t need to change this field in order to update
the emulator firmware.

Software installation is now complete. The PC will need to be rebooted to enable
the changes made to the CONFIG.SYS and AUTOEXEC.BAT files. To reboot,
press the <CTRL><ALT> keys simultaneously.

518

Chapter 17: Installing/Updating Emulator Firmware
Step 3: Run "progflash” to update emulator firmware

Step 3: Run "progflash" to update emulator
firmware

Enter the PROGFLAS [-V] [EMUL_NAME] [PRODUCT] command.

The PROGFLAS command downloads code from files on the host computer into
Flash EPROM memory in the HP 64700.

The -V option means "verbose". It causes progress status messages to be di
during operation.

The EMUL_NAME option is the logical emulator name as specified in the
\HP64700\TABLES\64700TAB file.

The PRODUCT option names the product whose firmware is to be updated.

If you enter the PROGFLAS command without options, it becomes interactive. If
you don't include the EMUL_NAME option, PROGFLAS displays the logical
names in the \HP64700\TABLES\64700TAB file and asks you to choose one. If
you don't include the PRODUCT option, PROGFLAS displays the products which
have firmware update files on the system and asks you to choose one. (In the
interactive mode, only one product at a time can be updated.) You can abort the
interactive PROGFLAS command by pressing <CTRL>c.

PROGFLAS will print "Flash programming SUCCEEDED" and return O if it is
successful; otherwise, it will print "Flash programming FAILED" and return a
nonzero (error).

You can verify the update by displaying the firmware version information.

519

Chapter 17: Installing/Updating Emulator Firmware
Step 3: Run "progflash” to update emulator firmware

Examples To install or update the HP 64783 emulator firmware in the HP 64700 that is
connected to the COML1 port:

C> PROGFLAS <RETURN>

HP64700S006 A.05.00 03Jan94
64700 SW UTIL

A Hewlett-Packard Software Product
Copyright Hewlett-Packard Co. 1988

All Rights Reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under copyright laws.

RESTRICTED RIGHTS LEGEND

Use , duplication , or disclosure by the Governmentis subject to

restrictions as set forth in subparagraph (c) (1) (Il) of the Rights

in Technical Data and Computer Software clause at DFARS 52.227-7013.
HEWLETT-PACKARD Company , 3000 Hanover St. , Palo Alto, CA 94304-1181

Logical Name Processor
1 EMUL_COM1 unknown
2 EMUL_COM2 unknown

Number of Emulator to Update? (intr (usually cntl C or DEL) to abort)

To update firmware in the HP 64700 that is connected to the COML1 port, enter "1".

Product
164783

Number of Product to Update? (intr (usually cntl C or DEL) to abort)

To update the HP 64783A/B MC68040 emulator firmware, enter "1".

Enable progress messages? [y/n] (y)

To enable status messages, enter "y".

520

Chapter 17: Installing/Updating Emulator Firmware
Step 3: Run "progflash” to update emulator firmware

Checking System firmware revision...
Mainframe is a 64700B

Reading configuration from '/hp64700/update/64783.cfg’
ROM identifier address = 2FFFFOH

Required hardware identifier = 1IFFFH,1FFCH

Control ROM start address = 280000H

Control ROM size = 40000H

Control ROM width = 16

Programming voltage control address = 2FFFFEH
Programming voltage control value = FFFFH
Programming voltage control mask = OH

Rebooting HP64700...
Checking Hardware id code...
Erasing Flash ROM
Downloading ROM code: /hp64700/update/64783.X
Code start 280000H (should equal control ROM start)
Code size 29A3EH (must be less than control ROM size)
Finishing up...

Rebooting HP64700...
Flash programming SUCCEEDED
cC>

You could perform the same update as in the previous example with the following
command:

C> PROGFLAS -V EMUL_COM1 64783 <RETURN>

521

522

Glossary
Absolute file

Glossary

Absolute file

a file consisting of machine-readable instructions in which absolute
addresses are used to store instructions, data, or both. These are the
files that are generated by the compiler/assembler/linker and are loaded
into HP 64700 Series emulators.

Access breakpoint

a break from execution of your target program to execution of the
emulation monitor when the emulator detects an access violation, such
as an attempt to write to ROM or guarded memory space. The same
effect can be obtained for an emulation break due to trigger recognition
within the emulation-bus analyzer, or due to a signal from an external
device supplied over the CMBT or the rear-panel BNC. Access
breakpoints do not obtain immediate transfer to the monitor program.
Several instruction cycles may be executed after the access violation
occurs before execution begins in the monitor. Refer to the chapter on
Using the Emulator in this manual for details of how to use
breakpoints, and effects of their use on execution of your target
program. Also, refer to Execution Breakpoints in this glossary.

Analyzer

an instrument that captures activity of signals synchronously with a
clock signal. An emulation-bus analyzer captures emulator bus cycle
information. An external analyzer captures activity on signals external
to the emulator. No external analyzer is supported by the MC68040
emulator because all analysis bits are used by the emulation-bus
analyzer.

523

Glossary
Arm Condition

Arm Condition

a condition that reflects the state of a signal external to the analyzer.
The arm condition can be used in branch or storage qualifiers. External
signals can be from another analyzer or an instrument connected to the
CMB or BNC.

Assembler

a program that translates symbolic instructions into object code.

Background

a memory that parallels (and overlaps) the emulation processor’s
normal address range. Entry to background can only take place under
emulator control, and cannot be reached via your target program.

Background Monitor

a monitor program that operates entirely in the background address
space. The background monitor can execute when target program
execution is temporarily suspended. The background monitor does not
occupy any of the address space that is available to your target program.

BNC Connector

a connector that provides a means for the emulator to drive/receive a
trigger signal to/from an external device (such as a logic analyzer,
oscilloscope, or HP 64000-UX system).

Breakpoint

a point at which emulator execution breaks from the target program and
begins executing in the monitor. (See also Execution Breakpoint and
Access Breakpoint.)

Command File

a file containing a sequence of commands to be executed.

524

Glossary
Compiler

Compiler

a program that translates high-level language source code into object
code, or produces an assembly language program with subsequent
translation into object code by an assembler. Compilers typically
generate a program listing which may list errors displayed during the
translation process.

Configuration File

a file in which configuration information is stored. Typically,
configuration files can be modified and re-loaded to configure
instruments (such as an emulator) or programs (such as the PC
Interface).

Coordinated Measurement

a synchronized measurement made between the emulator and analyzer,
between emulation-bus analyzer and external analyzer, or between
multiple emulators or analyzers. For example, a coordinated
measurement is made when two or more HP 64700 emulators/analyzers
start executing together, or break into background monitors at the same
time.

Coordinated Measurement Bus (CMB)

the bus that is used for communication between multiple HP 64700
Series emulators/analyzers or between HP 64700 emulators/analyzers
and an HP 64306 IMB/CMB Interface to allow coordinated
measurements.

Cross-Trigger

the situation in which the trigger condition of one analyzer is used to
trigger another analyzer. Two signals internal to the HP 64700 can be
connected through the BNC on the instrumentation card cage to allow
cross-triggering between the emulation-bus analyzer and other
analyzers.

525

Glossary

DCE (Data Communications Equipment)

DCE (Data Communications Equipment)
a specific RS-232C hardware interface configuration. Typically, DCE
is a modem.

Downloading

the process of transferring absolute files from a host computer into the
emulator.

DTE (Data Terminal Equipment)
a specific RS-232C hardware interface configuration. Typically, DTE
is a terminal or printer.

Emulation-bus Analyzer
a system component built into the HP 64700 that captures the
emulation processor’s address, data, and status information.

Emulation Memory
high-speed memory (RAM) in the emulator that can be used in place of
target system memory.

Emulator

a tool that replaces the processor in your target system. The goal of the
emulator is to operate just like the processor it replaces. The emulator
gives information about the bus cycle operation of the processor and
control over target system execution. Using the emulator, you may
view contents of processor registers, target system memory, and 1/0
resources.

Emulator Probe

the assembly that connects the emulator to the target system
microprocessor socket.

526

Glossary
Execution Breakpoint

Execution Breakpoint

a BKPT instruction placed in your software in RAM, replacing the
normal instruction at the RAM address. Breakpoints for code in ROM
are stored in emulation hardware and jammed on the emulation bus
during the fetch cycle. When the BKPT is executed, emulation
immediately transfers from execution of your target program to
execution of the emulation monitor. Refer to the chapter on Using the
Emulator in this manuyal for details of how to use execution
breakpoints, and effects of their use on execution of your target
program. Also, refer to Access Breakpoints in this glossary.

Foreground

the directly addressable memory range of the emulation processor.

Foreground Monitor
a monitor program that executes in the foreground address space. When
the monitor exists in foreground, it is directly accessible by, and can
interact with, your target program.

Fork
temporary diversion from one program to start another program or
process.

Form

the part of the PC interface screen that allows you to enter data for
modifying various parameters.

Guarded Memory

an address range that is to be inaccessible to the emulation processor.
The emulator will generate a break and display an error message if an
access to guarded memory occurs.

Handshaking

a process that involves receiving and/or sending control characters
which indicate a device is ready to receive data, that data has been sent,
and that data has been accepted.

527

Glossary
Host Computer

Host Computer

a computer to which an HP 64700 Series emulator can be connected. A
host computer may run interface programs which control the emulator.
Host computers may also be used to develop programs to be
downloaded into the emulator.

Inverse Assembler

a program that translates absolute code into assembly language
mnemonics.

Linker

a program that combines relocatable object modules into an absolute
file which can be loaded into the emulator and executed.

Locked Exit

one of two methods used to leave the PC interface and return to the
host computer operating system. A locked exit command allows you to
exit the PC interface and re-enter later with the current configuration.
(See also Unlocked Exit.)

Logging Commands

the process of automatically storing entered commands into a file. This
file can later be used as a command file.

Logical Address Space

the addresses assigned to code during the process of compiling,
assembling and linking to generate absolute files. Refer to Chapter 10
for a detailed explanation.

Macros

custom made commands that represent a sequence of other commands.
Entire sequences of commands defined in macros will be automatically
executed when you enter the macro name. Macro nesting is permitted;
this allows a macro definition to contain other macros.

528

Glossary
Memory Mapper Term

Memory Mapper Term

a number assigned to a specific address range in the memory map.
Term numbers are consecutive.

Memory Mapping

defining ranges of the processor address space as emulation RAM or
ROM, target RAM or ROM, or guarded memory.

Monitor Program

a program executed by the emulation processor that allows the
emulation system controller to access system resources. For exam
when you enter a command that requires access to your system
resources, the system controller writes a command code to a stora

area and breaks the execution of the emulation processor from your
target program into the monitor. The monitor program then reads the
command from the storage area and executes the processor instructions
that access the target system. After the system resources have been
accessed, execution returns to your target program.

Operating System

software which controls the execution of computer programs and the
flow of data to and from peripheral devices.

Parity Setting

the configuration of the parity switches. Depending on the
configuration of the parity output switch and the parity switch, a parity
check bit is added to the end of data to make the sum of the total bits
either even or odd. A parity check is performed after data has been
transferred, and is accomplished by testing a unit of the data for either
odd or even parity to determine whether an error has occurred in
reading, writing, or transmitting the data.

Path

also referred to as a directory (for example \users\projects).

529

Glossary
PC Interface

PC Interface

a program that runs on the HP Vectra and IMB PC/AT compatible
computers. This is a friendly interface used to operate an HP 64700
Series emulator.

Performance Verification

a program that tests the emulator to determine whether the emulation
and analysis hardware is functioning properly.

Physical Address Space

the address space in hardware memory and hardware 1/O that is
accessed by the microprocessor during normal program execution.
Refer to Chapter 10 for a detailed explanation.

Prefetch

the ability of a microprocessor to fetch additional opcodes and
operands before the current instruction is finished executing.

Prestore

the storage of states captured by the analyzer that precede states which
are normally stored. If the normal storage qualifier specifies the entry
address of a function or routine, prestore can be used to identify the
callers of that function or routine.

Real-Time Execution

refers to the emulator configuration in which commands that
temporarily interrupt target program execution (for example,
display/modify target memory or processor registers) are not allowed.

Remote Configuration

the configuration in which an HP 64700 Series emulator is directly

connected to a host computer via a single port. Commands are entered
(typically from an interface program running on the host computer) and
absolute code is downloaded into the emulator through that single port.

530

Glossary
RS-232C
RS-232C

a standard serial interface used to connect computers and peripherals.

Sequencer

a state machine in the analyzer that searches for execution of states in a
particular order.

Single-step

the execution of one microprocessor instruction. Single-stepping the
emulator allows you to view program execution one instruction at a
time.

Softkey Interface

the host computer interface program used in the UNIX environment.
The Softkey Interface is a friendly interface used to control HP 64700
emulators.

Software Breakpoint

refer to execution breakpoint and access breakpoint in this glossary.

Software Performance Analyzer

an analyzer that measures execution of software modules, interaction
between software modules, and usage of data points and I/O ports.

Standalone Configuration

the configuration in which a data terminal is used to control the HP
64700 Series emulator, and the emulator is not connected to a host
computer.

stderr

an abbreviation for “standard error output.” Standard error can be
directed to various output devices connected to the HP 64700 ports.

531

Glossary
stdin

stdin
an abbreviation for “standard input.” Standard input is typically defined
as your computer keyboard.

stdout

an abbreviation for “standard output.” Standard output can be directed
to various output devices connected to the HP 64700 ports.

Step
See Single-step.

Synchronous Execution

the execution of multiple HP 64700 Series emulators/analyzers at the
same time (i.e., multiple emulator start/stop).

Syntax

the order in which expressions are structured in command languages.
Syntax rules determine which forms of command language syntax are
grammatically acceptable.

Target Program

The program you are developing for your product. It is also called user
program.

Target System

the circuitry where the emulator probe is connected (typically a
microprocessor-based system under development).

Target System Memory

storage that is present in the target system.

Terminal Interface

the command interface present inside the HP 64700 Series emulators
that is used when the emulator is connected to a simple data terminal.

532

Glossary
Trace

This interface provides on-line help, command recall, macros, and
other features which provide for easy command entry from a terminal.

Trace

a collection of states captured synchronously by the analyzer.

Trigger

the condition that identifies a reference state within an analyzer trace
measurement. Trigger also refers to the analyzer signal that becomes
active when the trigger condition is found.

Uploading

the transfer of emulation or target system memory contents to a ho
computer.

Unlocked Exit

one of two methods used to leave the PC interface and return to the
host computer operating system. An unlocked exit command allows
you to exit the PC interface and re-enter later with the default
configuration. (See also Locked Exit.) This is not available in the
Terminal Interface.

User Program

Another name for your target program (the program you are developing
for your product.

Viewport

see Window.

Wait States

extra microprocessor clock cycles that increase the total time of a bus
cycle. Wait states are typically used when slower memory is
implemented.

533

Glossary
Window
Window

a specified rectangular area of virtual space shown on the display in
which data can be observed.

534

Index

absolute file

created by readed00

loading multiple, 85
absolute files

loading, 14-15
addition operator331
ADDR (address), syntax326-327
address mapping details of a single addr2sg,
address mappings in the MMU, supervisor/ugérl
address translation details of single addré23
addresses overlapping, effect on deMMU253
addresses physical in trace list, check 236
addresses, how affected when the MMU is 243
addresses, logical vs physical explaingd2
altitude specifications417
analysis begin20
Analysis Begin command

beginning a trace129
analysis display21
Analysis Display command

displaying a trace list (custom},36

displaying a trace list (default],30
Analysis Format command

changing trace formatg,34

configuring analyzer clocksl69

tracing code executiorl 68
Analysis Halt command

halting a trace, 130
Analysis Trace Modify command

assigning trigger termsl 45

changing trace deptt,38

counting states or timel, 72

defining global restart termd,62

defining prestore qualifiersl 71

defining primary branch termg,61

535

Index

defining qualifiers,146

defining ranges,152

defining secondary branch terni67

defining storage qualifiers] 32

defining trace patternsl49

defining trigger qualifiers, 131

inserting sequence term$43

removing sequence term$44

setting storage qualifierd,55

setting trigger position133
Analysis Trace Reset command

resetting analyzer and traces}6
analyzer

arming, 220

basic measurement$29

breaking to monitor on trigger signdl82-183

capturing data133

configuring clocks,169

driving triggers to CMB or BNC216

expressions334

failure to trigger,231

pattern expressiong35-339

resetting,146

setting clocks,168-170

trace pattern variable4,49

triggering one with another
AND operator

bit-wise, 332

interset logical, 337
architectures of virtual memon243
ASCII file

created by readed00
AUTOEXEC.BAT file, 517-518

background monitor201
See alsomonitor

bases
binary specifier,329
decimal specifier329
hexadecimal specifiel329
octal specifier,329

binary number specifier329

536

Index

bit-wise operators
Seeoperators
BKPT (breakpoint vector)
generally, 109
BNC connector,292
break command23
breakpoint
a breakpoint is recognized where none wasXkH),
breakpoints
analyzer trigger218
clearing (disabling),114
displaying, 115
enabling on write to ROM210
generally, 109
inserting, 111
removing, 115
setting (enabling),112
to add an execution breakpoirit]1
Breakpoints command, 12, 114-115
buffer size, 130
burst accessed,97
bus activity, 134

cables
data communication516
power, 502
cables, connecting to the emulator pro#81
can't break into monitor exampl@68
card cage
applying power,502
cautions
antistatic precautions480
rear panel, do not stand HP 64700 484
characterization of memory,2
clocks
specifications, 406
CMB (coordinated measurement bug®2
enabling interaction214
specifications, 418
code execution tracingl,68
COM ports, 39
command files

537

Index

ASCII representation62
building, 61-64
commenting,61, 402
content restrictionsgl, 402
creation of (logging) 63
creation of (text editor)p2
file format, 401
loading at startup39
logging commands and resul&3
stopping execution63
usage of,63
commands,299-310
00, 301
selecting,40
Analysis (main menu)273-281
Analysis Begin,273
Analysis CMB (options) 274
Analysis CMB Begin,274
Analysis CMB Execute274
Analysis Display (form),274
Analysis Format (form)276
Analysis Halt,278
Analysis Trace (options)278
Analysis Trace Modify (form)278
Analysis Trace Resef78
Breakpoints (main menu82-284
Breakpoints Add,283
Breakpoints Add Force Hardwar283
Breakpoints Clear (options284
Breakpoints Clear All,284
Breakpoints Clear Single284
Breakpoints Display284
Breakpoints Remove (options284
Breakpoints Remove All284
Breakpoints Remove Singl284
Breakpoints Set (optionsp84
Breakpoints Set All 284
Breakpoints Set Single284
Config (main menu)285-293
Config General (form)286
Config Key_Macro (form),290

538

Config Load, 290

Config Map (options) 291
Config Store,292

Config Trigger (form),292
Memory (main menu)294-298
Memory Copy, 294

Memory Display Byte, 294
Memory Display Long,294
Memory Display Mnemonic294
Memory Display Word,294
Memory Find (form),295
Memory Load (form),296
Memory Modify (options),297
Memory Modify Byte, 297
Memory Modify Long, 297
Memory Modify Word, 297
Memory Store (form),298
Processor CMB Execut&00
Processor CMB Go (options300
Processor CMB Go Addres800
Processor CMB Go PG00
Processor DeMMU Disable305
Processor DeMMU Enable&305
Processor DeMMU Load305

Processor DeMMU Verbose Load05

Processor Go (options300
Processor Go Addres800
Processor Go P@&00
Processor Go Rese800
Processor MMU Mappings301
Processor MMU Tables303
Processor Reset (option08
Processor Reset Hol@08
Processor Reset MonitoB808
Processor Step Addres309
Processor Step Event309
Processor Step PG09
Register (main menu)311-312
Register Display Single311
Register Modify,311

System (main menu)314

Index

539

Index

System Command314

System EXxit (options)314
System Exit Locked314
System Exit No_Save314
System Exit Unlocked314
System Log Both Disable314
System Log Both Enable314
System Log Input Enableg14
System Log Output Disableg14
System Log Output Enabl&14
System MS-DOS (optionsB14
System MS-DOS Comman@14
System MS-DOS Fork314
System Symbols Local (options315
System Terminal 316

System Wait (options)316
System Wait Key,316

System Wait Measuremer16
System Wait Time 316
Window (main menu) 318
Window Active, 318

Window Delete, 318

Window Erase,319

Window Load, 319

Window Open,319

Window Store,321

Window Utility (options), 322
Window Zoom, 324

commands (PC Interface)

selecting, 10

communications ports515-516
compatibility of software, to ensur&09
complex expressions336

DeMorgan’s Theorem338
pattern labels 336
pattern ranges336

complex measurementg42
Config General command

real-time run restriction211
running a program simultaneously on two emulat@i&-177
running a trace simultaneously on two emulatdgg-177

540

selecting emulation monitor (foreground or backgroudp
setting monitor base addres)4
triggering one analyzer with another78-181
Config Key_macro command
creating a macro56
deleting a macro59
editing a macro58
Config Load command
loading configuration files66
loading macros$0
Config Map Modify command
deleting memory map term496
Config Map Reset command
resetting memory map,96
Config Store command
saving configuration files66
saving macrosp0
Config Trigger command
arming analyzer220
breaking emulator execution on trigger sign@8
breaking to monitor on analyzer/CMB/BNC signaB2-183
driving analyzer to the CMB or BNQ16
driving and receiving CMB/BNC signals simultaneous?1

CONFIG.SYS file,517-518
configuration (PC Interface)

memory map,12
configuration files

contents of,65-66

file format, 402

loading, 66

loading at startup39

saving, 66

section names5-66

usage of,65-66
connecting probe to demo target systé&)
coordinated measurement bus

description,174

execute signall74

ready signal,174

trigger signal,174
coordinated measurements

Index

541

Index

bus description174
command options175
counting states or time,72

D data communications

cable selectionb16

specifications,418
date/time checking80
decimal number specifie329
definitions of terms,523-534
delays

command executiont4
deMMUer command option256
deMMUer, detailed discussio255-263
deMMUer, how it is loaded by the emulat@57
deMMUer, how to enable256
deMMUer, how to load reverse translatio?§6
deMMUer out of resources, things to che@8b
deMMUer places strange addresses in traéé,
deMMUer, programming in static memory systeb39
deMMUer resource limitation260
deMMUer, restrictions when usin@58
deMMUer, seeing present reverse translati@6
deMMUer, its reverse translation tab@60
deMMUer, keeping it up to dat58
demo target system

connecting the emulator prob&00
device table, emulato
display of single address mapped by MM2§2
display of table details at a logical addre254
displaying the present MMU mapping®49
displaying the trace21
divide (integer) operator331
dynamic virtual memory systemg44

E emulation memory map used by deMMU&261
emulation memory modules
installing, 496
emulation monitor
Seemonitor
emulator
See alsoemulator in-circuit

542

breaking into monitor on internal trigger218
breaking to monitor, 101
configuration, 74
configuring, 186
device table 9
device table file,9
displaying transferred local symboiR8
enabling CMB interaction214
failure to reset234
if you suspect it's broken232
in-circuit operation,116-118
interlocking cycle signals for monito205
memory map terms190
performance verification506
probe for in-circuit,116-118
probe memory socket4,91
removing global symbols fron87
removing local symbols from89
reset, 26
resetting processoi,05
restrict to real-time runs211
running program simultaneously on twb76-177
simultaneous trace on twd,76
status,41
transferring global symbols t&7
transferring local symbols t@8
triggering one analyzer with another78-181
use of, 37
emulator, how it loads the deMMUe257
emulator in-circuit
applying power,117
description,116-118
installing probe,117
power shutdown118
emulator probe
connecting the cable<i81
connecting to demo target syste&f0
enabling the MMU,246
enabling the MMU in the emulatod,19-124
environment variables
HPBIN, 518

Index

543

Index

HPTABLES, 9, 518

PATH, 518
equates, pre-defined statu8}0-341
eram, memory characterizatioh?
erom, memory characterizatiofh?
error messages

emulator, 343-398
example, can't break into monito268
exchange part, defined10
EXECUTE

CMB signal, 300
executing programs] 8
execution breakpoints

displaying, 115
expressions

See alsooperators

analyzer,334

creation of,148

EXPR, options,328-334

operators,330

relational, 336-337

VALUE, 328

file formats, absolutel4
files
save formats82
firmware update utility
installation, 517-518
floating point decimals329
foreground monitor201
mapping 1:1 for use when MMU enablez23-225
See alsomonitor
foreground monitor mapping for MC68040 MM223-225
forms
general information 36
FPU
used with MC68EC040 and MC68LC04025-126
function codes,77, 79
function codes used in translation tabl2d6
function key macros
creation of,56
defining and using54-60

544

Index

deletion of, 59

editing, 58

execution of,58

file format, 403

keystroke ASCII representationS5
loading, 60

nesting and chainingh4
organization,55

pre-defined,56, 404

saving, 60

global restart term162
glossary,523-534
guarded memory access when using MMA85

halt of system when using MML266
hardware enable for the MML246
hexadecimal number specifie829
hot keys
erase active window (Ctrl-E}6
page through active windows (Ctrl-A35
repeat last command (Ctrl-R30
zoom active window (Ctrl-Z)50
HPBIN environment variable518
HPTABLES environment variable9, 518
humidity specifications417

installation, 478
hardware,479-509
placing boards in the card cagi84
interactive measurements
Seecoordinated measurements
interface
if it won'’t start, 28
internal triggers
arm analyzers using220
break on,218
description,216-222
driving analyzer to the CMB or BNQ 16
driving and receiving CMB/BNC signals simultaneoust1
stop driving on break218
interrupt stack pointer (prese08

545

Index

interset operators337
intraset operators336

labels, VALUE expression329

list of replaceable part§10-511

listing the present MMU mapping249

load address function codesy, 79

loading absolute files14-15

logical address table detailab4

logical address translation details, to viel23
logical addresses define@43
logical-to-physical mappings, to vievi21

mapping memory,12-13
mappings, logical-to-physical, to vievt21
MC68EC040 and MC68LC040
performance measurements of FPU instructidri2g-126
special considerations when including an FRY5-126
testing floating-point libraries125-126
measurements
Seetraces
memory
accessing resource90-99
assigning map defauld, 94
assigning map terms,89
attribute codes189
boundaries,189
burst accessedq,97
characterization of12
checking map,195
configuration, 188-199
copying, 96
deleting map terms196
displaying (bytes) 90
displaying (long words)91
displaying (mnemonics)92
displaying (repetitively),92
displaying (words),91
displaying in mnemonic format.7
DMA problems, 234
emulator terms190
enabling one wait state (target synchy,7

546

mapping, 12-13, 188-199
modifying (bytes),93
modifying (long words),95
modifying (words),95
multiple guarded accessez32
problems mapping233
resetting map,196
searching,98
setting access siz15
target system;188-199
type values,194
unmapped,194
Memory Copy command
copying memory, 96
Memory Display command
displaying a memory location repetitivel92
displaying memory as byte90
displaying memory as instruction mnemoniég,
displaying memory as long word9;L
displaying memory as word$91
Memory Find command
searching memory98
Memory Load command
loading programsy9
loading symbols (absolute fileB5
memory management systems supportf
memory map, how it is used by deMMU&@61
Memory Modify command
modifying by bytes,93
modifying by long words 95
modifying by words,95
memory modules
installing on the emulation probd96
Memory Store command
saving programsg82
merge (bit-wise) operato333
MMU

mapping monitor 1:1 when MMU enabled23-225

mappings, how the emulator obtains thethp
mappings, obtaining a shorter list @50
MMU enabled, how it affects the analyzé:i39-141

Index

547

Index

MMU enabled, using the emulator witth19-124
MMU mapping details of a single addre2§2
MMU mappings, listing the present mappin@«9
MMU mappings, modifying for monitor268
MMU, special problems discussio@64-270
MMU, how it affects command compositio248
MMU, how it is enabled 246
MMU, mapping 1:1 for use with MC6804@23-225
MMU, restrictions when using247
MMU, where it is located 245
modulo (integer) operato331
monitor
breaking to,101
breaking to on analyzer/CMB/BNC signdl82-183
description (backgroundg01
description (foreground)201
interlocking emulator and target cycles f@Q5
resetting processor and runnint)5
selecting, 202
setting base addres204
setting interrupt priority (foreground06
setting the keep-alive addresx)7
startup option,39
to map 1:1 for use with an enabled MMBR23-225
types and description200-210
monitor, to map 1:1 for use with MC68040 MM223-225
MS-DOS
command restrictions314
entering a single commandp
exiting DOS shell, 71
going to DOS shell71
multiply (integer) operator331

N NAND operator,338
NOR (intraset logical) operatoB36
numbers, VALUE expressior§29

O octal number specifier329
one’s complement operato31
operators
Seeoperator name for truth table
addition, 331

548

AND (bit-wise), 332
AND (interset logical),337
combining intraset and intersed38
definition, 330
divide integer,331
interset, 337
intraset, 336
merge (bit-wise),333
modulo integer,331
multiply integer, 331
NAND, 338
NOR (intraset logical) 336
one’s complement331
OR (exclusive bit-wise) 332
OR (inclusive hit-wise) 333
OR (intereset logical)337
OR (intraset logical) 336
precedence list330
rotate left/right, 332
shift left/right, 332
subtraction,331
two’s complement331
OR operator
bit-wise, 333
exclusive bit-wise,332
inclusive bit-wise,333
interset logical, 337
intraset logical,336
out of deMMUer resources
how to avoid this messag@f2
out of resources deMMUer, things to che@8b
overlapping ranges, how they affect deMMURBE3

parts list,510-511
PATH environment variable518
patterns (complex expressions)
labels, 336
ranges,336
patterns, VALUE expressior829
PC Interface
date/time checking80
exiting, 41

Index

549

Index

logical name,39
selecting commandsl,0
starting, 9
starting, options 39
use of, 36
PCM68332, command to start the PC Interfate,
performance verification of emulatos06
physical address space, tracing executiorl i,
physical addresses define243
physical addresses in trace list, check 36
physical-logical mappings, to view,21
power applied to the card cadge?2
power cables
connecting,502
correct type,502
power, applying,38
prestore qualifiers171
primary branch terms161
probe
connecting the cable€i81
connecting to demo target syste&q0
dimensions,416
problems
analyzer won't trigger231
broken emulator232
desired interface won't starB8
DMA process accesses emulation mem@¥4
emulator won't reset234
mapping memory233
multiple guarded memory accessé82
solving quick start problem7-32
unexplained states in trace li&31
problems, a discussion for the MM264-270
processor
breaking to monitor,101
changing step display,04
enabling cache memorieg12
introduction, 100-105
resetting,105
running a program;100
stepping program execution02

550

Processor Break command
breaking to monitor, 101
Processor DeMMU Load command
loading deMMUer to reverse translatiorg)5
Processor Go command
running programs;100
Processor MMU Mappings command
listing the present translation301
Processor MMU Tables command
displaying details of a translation tab&Q3
Processor Reset command
resetting processot,05
Processor Step command
changing step displayl04
stepping program execution02
progflash example520
programs
assembling,76
breaking to monitor,101
building, 75
compiling, 76
executing,100
loading, 79
pausing execution101
preparing for Interface77
presetting the counte£08
running, 100

running simultaneously on two emulatols]6-177

saving, 82
stepping execution] 02

qualifiers, 146
quick start
solving problems27-32

ranges
defining for a trace 152
reader
running from MS-DOS,77
running from PC Interfacer9
real-time runs,211
Register Display command

Index

551

Index

displaying registers106
Register Modify command
modifying registers, 107
registers
display, 24
displaying, 106
displaying during program stef04
introduction, 106-108
modifying, 107
relational expressions337
reset
emulator, 26
rotate left/right operators332
running programs18

secondary branch qualifiel,67
secondary branch term,67
sequence term

inserting, 143

removing, 144
shift left/right operators332
signals

EXECUTE, 174

READY, 174

TRIGGER, 174
software

ensuring compatibility 509
software breakpoints

clearing (disabling),114

displaying, 115

inserting, 111

removing, 115

setting (enabling),112
software enable for the MMW247
solving problems 228

See alsoproblems
specifications

altitude, 417

clock, 406

CMB, 418

data communications}18

humidity, 417

552

probe dimensions416
temperature417
trigger in/out, 417
weight, 416
starting the trace20
states, counting172
static memory system, loadig deMMU&r39
static virtual memory systen243
status equates, predefineg40-341
step, 25
step function, changing displaj04
storage qualifier
defining, 132
setting, 155
strange addresses in trace from deMM253
subtraction operator331
symbols
.HPS file format,400
active module,83
displaying (global),85
displaying (local - all),86
displaying (local - transferred88
introduction, 83-89
loading, 85
local vs. global,83
removing from the emulator (global®7
removing from the emulator (localg9
scoping, 83
transferring to the emulatof,6
transferring to the emulator (globaBy
transferring to the emulator (loca3g
System Command command
use of command file63
System Exit command
exit configurations 41
System Log command
creating command file$3
logging commands and resuli&3
System MS-DOS command
entering a single DOS command)
going to DOS shell71

Index

553

Index

System Symbols command
displaying global symbols35
displaying local symbols (all)36
displaying local symbols (transferred8
loading symbols 85
removing global symbols from the emulat@?
removing local symbols from the emulat@&9
transferring global symbols to the emulat8v,
transferring local symbols to the emulat88
System Terminal command
accessing terminal interfacé7
System Wait command
keystroke delay 64
measurement delayg4
time delay,64
systems, virtual memory explainea43

table details at a single logical addre®54
table details for a single logical addre§24
target system
RAM and ROM, 12
target systems
enabling interrupts213
interlocking cycle signals for monito05
memory, 188-199
probing in-circuit, 116-118
resetting processor from,05
temperature specificationg,17
terminal interface
accessing67, 316
commands to avoids7
exiting, 67
general information67-69
help with terminal command$9
terms and their definition23-534
time, counting,172
trace
displaying the,21
starting the,20
trace buffer definition,128
trace list depth, 130
trace specification

554

Index

modifying, 19
traces
assigning trigger termsl 45
beginning a measuremerit29
changing depth138
changing format,134
code execution tracingl 68
counting states or timel,72
defining global restart termg,62
defining patterns,149
defining prestore qualifiersl71
defining primary branch tern61
defining qualifiers,146
defining ranges,152
defining secondary branch ternis7
defining storage qualifiers132
defining trigger qualifiers 131
description, 134
displaying a list (custom)136
displaying a list (default)130
halting a measurement,30
inserting sequence term$43
pattern variables149
removing sequence term$44
resetting,146
setting storage qualifier] 55
setting trigger position133
simultaneous on two emulators76
unexplained state31
viewing status,130
tram, memory characterizatiod?
transfer symbols to emulatot,6
translation details of single logical addre$23
translation of single address through MM2R2
translation table details for a logical add4
TRIG1
Seeinternal triggers
TRIG2
Seeinternal triggers
trigger
assigning the term145

555

Index

break emulator execution on signaky38

defining qualifiers,131

errors, 231

infout specifications417

setting the position133
trom, memory characterizatioi2
troubleshooting 508
truth tables

Seeoperator name under operators
two’s complement operatoB31

undefined software breakpoint when using MM2§7
unexplained state31

VALUE, 328
numbers/bases329
verifying emulator performancey06
versions of software, ensuring compatibiliyQ9

warnings, power must be OFF during installatid84
weight specifications416
Window Activate command

Ctrl-A shortcut, 45

selecting active window45
Window Delete command

deleting user windows44
Window Erase command

Ctrl-E shortcut,46

erasing window contentgl6
Window Load command

loading a file into a window47
Window Open command

opening user windows43
Window Store command

saving window contents48
Window Utility command

hiding windows, 45

modifying window colors,52

searching windows for string49

viewing windows, 46
Window Utility Parameters command

appending data51

556

Index

modifying buffer, 51

modifying position, 51

overwriting window data51

scrolling option,51
Window Zoom command

Ctrl-Z shortcut, 50

enlarging windows 50
windows

activating, 45

appending data51

buffer, 51

colors, 52

creating (user-defined only%3

deleting (user-defined only}4

erasing,46

hiding, 45

loading file into, 47

modifying parameters51

moving in, 53

overwriting window data51

position, 51

saving contents48

scrolling option,51

searching,49

selecting active45

system, 42

use of,42-53

user defined42

viewing, 46

zooming, 50

X XOR (bit-wise) operator332

Z zoom, window, 17

557

558

Certification and Warranty

Certification

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard further
certifies that its calibration measurements are traceable to the United States
National Bureau of Standards, to the extent allowed by the Bureau’s calibration
facility, and to the calibration facilities of other International Standards
Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in materials and
workmanship for a period of 90 days from date of installation. During the warranty
period, HP will, at its option, either repair or replace products which prove to be
defective.

Warranty service of this product will be performed at Buyer's facility at no charge
within HP service travel areas. Outside HP service travel areas, warranty service
will be performed at Buyer’s facility only upon HP’s prior agreement and Buyer
shall pay HP’s round trip travel expenses. In all other cases, products must be
returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping
charges to HP and HP shall pay shipping charges to return the product to Buyer.
However, Buyer shall pay all shipping charges, duties, and taxes for products
returned to HP from another country. HP warrants that its software and firmware
designated by HP for use with an instrument will execute its programming
instructions when properly installed on that instrument. HP does not warrant that
the operation of the instrument, or software, or firmware will be uninterrupted or
error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,
unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance agreements are
available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

Safety

Summary of Safe Procedures

The following general safety precautions must be observed during all phases of
operation, service, and repair of this instrument. Failure to comply with these
precautions or with specific warnings elsewhere in this manual violates safety
standards of design, manufacture, and intended use of the instrument.
Hewlett-Packard Company assumes no liability for the customer’s failure to
comply with these requirements.

Ground The Instrument

To minimize shock hazard, the instrument chassis and cabinet must be connected to
an electrical ground. The instrument is equipped with a three-conductor ac power
cable. The power cable must either be plugged into an approved three-contact
electrical outlet. The power jack and mating plug of the power cable meet
International Electrotechnical Commission (IEC) safety standards.

Do Not Operate In An Explosive Atmosphere

Do not operate the instrument in the presence of flammable gases or fumes.
Operation of any electrical instrument in such an environment constitutes a definite
safety hazard.

Warning

Keep Away From Live Circuits

Operating personnel must not remove instrument covers. Component replacement
and internal adjustments must be made by qualified maintenance personnel. Do not
replace components with the power cable connected. Under certain conditions,
dangerous voltages may exist even with the power cable removed. To avoid
injuries, always disconnect power and discharge circuits before touching them.

Designed to Meet Requirements of IEC Publication 348

This apparatus has been designed and tested in accordance with IEC Publication
348, safety requirements for electronic measuring apparatus, and has been supplied
in a safe condition. The present instruction manual contains some information and
warnings which have to be followed by the user to ensure safe operation and to
retain the apparatus in safe condition.

Do Not Service Or Adjust Alone

Do not attempt internal service or adjustment unless another person, capable of
rendering first aid and resuscitation, is present.

Do Not Substitute Parts Or Modify Instrument

Because of the danger of introducing additional hazards, do not install substitute
parts or perform any unauthorized modification of the instrument. Return the
instrument to a Hewlett-Packard Sales and Service Office for service and repair to
ensure that safety features are maintained.

Dangerous Procedure Warnings

Warnings, such as the example below, precede potentially dangerous procedures
throughout this manual. Instructions contained in the warnings must be followed.

Dangerous voltages, capable of causing death, are present in this instrument. Use
extreme caution when handling, testing, and adjusting.

77 or L

4

Safety Symbols Used In Manuals

The following is a list of general definitions of safety symbols used on equipment
or in manuals:

Instruction manual symbol: the product is marked with this symbol when it is
necessary for the user to refer to the instruction manual in order to protect against
damage to the instrument.

Hot Surface. This symbol means the part or surface is hot and should not be
touched.

Indicates dangerous voltage (terminals fed from the interior by voltage exceeding
1000 volts must be marked with this symbol).

Protective conductor terminal. For protection against electrical shock in case of a
fault. Used with field wiring terminals to indicate the terminal which must be
connected to ground before operating the equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal common,
as well as providing protection against electrical shock in case of a fault. A terminal
marked with this symbol must be connected to ground in the manner described in
the installation (operating) manual before operating the equipment.

rame or chassis terminal. A connection to the frame (chassis) of the equipment
thich normally includes all exposed metal structures.

Alternating current (power line).

Direct current (power line).

Alternating or direct current (power line).

Caution The Caution sign denotes a hazard. It calls your attention to an operating procedure,
practice, condition, or similar situation, which, if not correctly performed or
adhered to, could result in damage to or destruction of part or all of the product.

Warning The Warning sign denotes a hazard. It calls your attention to a procedure, practice,
condition or the like, which, if not correctly performed, could result in injury or
death to personnel.

	The HP 64783A/B Emulator
	In This Book
	Contents
	Quick Start Guide
	Getting Started
	Solving Quick Start Problems

	Using the Emulator
	Using the PC Interface
	Using the Emulator
	Using the Analyzer
	Making Coordinated Measurements
	Configuring the Emulator
	Solving Problems

	Reference
	Using Memory Management
	Emulator Commands
	Expression Syntax
	Emulator Error Messages
	Data File Formats
	Specifications and Characteristics

	Installation and Service Guide
	Connecting the Emulator to a Target System
	Installation and Service
	Installing/Updating Emulator Firmware

	Glossary
	Index
	Certification and Warranty
	Safety

