User’s Guide for the Graphical User Interface

HP 64751 68340 Emulator
HP 64704 Analyzer

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and

fitness for a particular purpose.Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software
on equipment that is not furnished by Hewlett-Packard.

© Copyright 1987, 1992, 1993, Hewlett-Packard Company.

This document contains proprietary information, which is protected by copyright.
All rights are reserved. No part of this document may be photocopied, reproduced
or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject
to change without notice.

HP is a trademark of Hewlett-Packard Company.
Microtec is a registered trademark of Microtec Research Inc.
MS-DOS is a trademark of Microsoft Corporation.

OSF/Motif and Motif are trademarks of the Open Software Foundation in the U.S.
and other countries.

SunOS, SPARCsystem, OpenWindows, and SunView are trademarks of Sun
Microsystems, Inc.

UNIX is a registered trademark of UNIX System Laboratories Inc. in the U.S.A.
and other countries.

Hewlett-Packard

P.O. Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c) (1)(ii) of the
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are as set forth
in FAR 52.227-19(c)(1,2).

Printing History

New editions are complete revisions of the manual. The date on the title page
changes only when a new edition is published.

A software code may be printed before the date; this indicates the version level of
the software product at the time the manual was issued. Many product updates and
fixes do not require manual changes, and manual corrections may be done without
accompanying product changes. Therefore, do not expect a one-to-one
correspondence between product updates and manual revisions.

Edition 1 B1442-97000, March 1992
Edition 2 B1442-97001, September 1992
Edition 3 B1442-97002, March 1993
Edition 4 B1442-97003, December 1993

Safety, Certification and Warranty

Safety and certification and warranty information can be found at the end of this
manual on the pages before the back cover.

68340 Emulation and Analysis

The HP 64751 68340 emulator replaces the microprocessor in your embedded
microprocessor system, also calledttirget systenso that you can control
execution and view or modify processor and target system resources.

The emulator can be used with the HP 64704 Emulation Bus Analyzer or the
HP 64794 Deep Memory Emulation Bus Analyzer which capture 80 channels of
emulation processor bus cycle information synchronously with the processor’s
clock signal. This analyzer is called #maulation analyzer

With the Emulator, You Can ...

* Plug into 68340 target systems with Pin Grid Array (PGA) sockets.

» Download programs into emulation memory or target system RAM.

» Display or modify the contents of processor registers and memory resources.

* Run programs at clock speeds up to 25 MHz (with active probe boards
64751-66508 and higher — up to 16.78 MHz with boards 64751-66506 and
lower), set up software breakpoints, step through programs, and reset the
emulation processor.

With the Analyzer, You Can ...

» Trigger the analyzer when a particular bus cycle state is captured. You can
also trigger the analyzer after a state has occurred a specified number of times.
States are stored relative to the trigger state.

* Qualify which states get stored in the trace.

» Prestore certain states that occur before each qualified store state.

» Trigger the analyzer after a sequence of up to 8 different events have occurred.

e Cause the emulator to stop program execution when the analyzer finds its
trigger condition.

With the HP 64700 Card Cage, You Can ...

Use the RS-422 capability of the serial port and an RS-422 interface card on
the host computer (HP 98659 for the HP 9000 Series 300) to provide
upload/download rates of up to 230.4K baud.

Easily upgrade HP 64700 firmware by downloading to flash memory.

With Multiple HP 64700s, You Can ...

Start and stop up to 16 emulators at the same time (up to 32 if modifications
are made).

Use the analyzer in one HP 64700 to arm (that is, activate) the analyzers in
other HP 64700 card cages or to cause emulator execution in other HP 64700
card cages to break.

Use the HP 64700’s BNC connector to trigger an external instrument (for
example, a logic analyzer or oscilloscope) when the analyzer finds its trigger
condition, or you can allow an external instrument to arm the analyzer or break
emulator execution.

With the Graphical User Interface, You Can ...

Use the emulator and analyzer under an X Window System that supports
OSF/Motif interfaces.

Enter commands using pull-down or pop-up menus.

Enter, recall, and edit commands using the command line pushbuttons.

Enter file names, recalled commands, recalled values, etc., using dialog boxes.
Set breakpoints by pointing the mouse cursor on a line in the mnemonic
memory display and clicking.

Create action keys for commonly used commands or command files.

With the Softkey Interface, You Can ...

Use the emulator and analyzer with a terminal or terminal emulator.
Quickly enter commands using softkeys, command recall, and command
editing.

In This Book

This book describes the Graphical User Interface and the Softkey Interface when
used with the HP 64751 68340 emulator and the HP 64704 analyzer. Itis
organized into five parts whose chapters are described below.

Part 1. Quick Start Guide

Chapter 1 presents an overview of emulation and analysis and quickly shows
you how to use the emulator and analyzer.

Part 2. User’s Guide

Chapter 2 shows how to plug the emulator into a target system.

Chapter 3 shows you how to start and exit the HP 64700 interfaces.
Chapter 4 shows you how to enter commands.

Chapter 5 shows how to configure the emulator.

Chapter 6 shows how to use the emulator.

Chapter 7 shows how to use the analyzer.

Chapter 8 shows how to use the Software Performance Measurement Tool
(SPMT) with the analyzer.

Chapter 9 shows how to make coordinated measurements.

Chapter 10 shows how to change X resource settings for the Graphical User
Interface.

Part 3. Reference

Chapter 11 describes emulator/analyzer interface commands.
Chapter 12 lists the error messages that can occur while using the
emulator/analyzer interface.

Chapter 13 lists the emulator specifications and characteristics.

Part 4. Concept Guide
Chapter 14 contains conceptual information on various topics.

Part 5. Installation Guide

Chapter 15 outlines the installation of the Graphical User Interface, and shows
you how to start and exit the interface.
Chapter 16 shows you how to install or update emulator firmware.

Contents

Part 1

Quick Start Guide

Getting Started

The Emulator/Analyzer Interface — At a Glance

The Softkey Interface 24

Softkey Interface Conventions 25

The Graphical User Interface 26
Graphical User Interface Conventions 28

The Getting Started Tutorial 31

Step 1. Startthe demo 32

Step 2: Display the program in memory 33

Step 3: Run from the transfer address 34

Step 4: Step high-level source lines 35

Step 5: Display the previous mnemonic display 36
Step 6: Run until an address 37

Step 7: Display data values 38

Step 8: Display registers 39

Step 9: Step assembly-level instructions 40

Step 10: Trace the program 41

Step 11: Display memory at an address in a register 43
Step 12: Patch assembly language code 44

Step 13: Exit the emulator/analyzer interface 47

24

Contents

Part 2 User’s Guide

2 Plugging into a Target System

Step 1. Turn OFF power 53

Step 2. Unplug probe from demo target system 54

Step 3. Select the emulator clock source 55

Step 4. Plug the 68340 PGA emulator probe into the target system 60
Step 5. Turn ON power 61

3 Starting and Exiting HP 64700 Interfaces

Starting the Emulator/Analyzer Interface 65

To start the emulator/analyzer interface 65

To start the interface using the default configuration 66

To run a command file on interface startup 67

To display the status of emulators 67

To unlock an interface that was left locked by another user 68

Opening Other HP 64700 Interface Windows 69

To open additional emulator/analyzer windows 69
To open the high-level debugger interface window 70
To open the software performance analyzer (SPA) interface window 70

Exiting HP 64700 Interfaces 71

To close an interface window 71
To exit a debug/emulation session 72

Contents

4 Entering Commands

Using Menus, the Entry Buffer, and Action Keys 75

To choose a pulldown menu item using the mouse (method 1) 76
To choose a pulldown menu item using the mouse (method 2) 77
To choose a pulldown menu item using the keyboard 77

To choose popup menu items 79

To place values into the entry buffer using the keyboard 80

To copy-and-paste to the entry buffer 80

To recall entry buffer values 83

To use the entry buffer 83

To copy-and-paste from the entry buffer to the command line entry area 84
To use the action keys 85

To use dialog boxes 85

To access help information 89

Using the Command Line with the Mouse 90

To turn the command line on or off 90

To enter acommand 91

To edit the command line using the command line pushbuttons 92
To edit the command line using the command line popup menu 93
Torecall commands 94

To get help about the command line 94

Using the Command Line with the Keyboard 95

To enter multiple commands on one command line 95
Torecall commands 96

To edit commands 96

To access on-line help information 97

Using Command Files 98

To start logging commands to a command file 101
To stop logging commands to a command file 101
To playback (execute) a command file 102

Using Pod Commands 103

To display the pod commands screen 104
To use pod commands 104

Contents

Forwarding Commands to Other HP 64700 Interfaces 105

To forward commands to the high-level debugger 105
To forward commands to the software performance analyzer 106

5 Configuring the Emulator

Using the Configuration Interface 110

To start the configuration interface 111

To modify a configuration section 113

To store a configuration 115

To change the configuration directory context 116
To display the configuration context 117

To access help information 117

To exit the configuration interface 118

To load a configuration 118

Modifying the General Configuration Items 119

To select the emulator’s clock source 119

To enable/disable entry into the monitor after configuration 120
To restrict to real-time runs 120

To turn OFF the restriction to real-time runs 121

Reconfiguring the Emulator Configuration Registers 122
To define values for the emulator configuration registers 122

Selecting the Emulation Monitor 123

To select the background monitor 125
To select the foreground monitor program 126
To use a custom foreground monitor program 129

Mapping Memory 133

To map memory ranges 135

To characterize unmapped ranges 139

To delete memory map ranges 140

To map memory ranges that use function codes 141
To emulate global chip select operation 143

10

Contents

Configuring the Emulator Pod 148

To set the reset values of the SSP and PC 148
To specify the user memory access size 149

Setting the Debug/Trace Options 150

To enable/disable breaks on writes to ROM 150
To trace background cycles 151

Using the Emulator

Using the Emulator Configuration Registers 155

To view the SIM register differences 158
To synchronize to the 68340 SIM registers 158
To synchronize to the emulator configuration registers 159

Loading and Storing Absolute Files 160

To load absolute files 160
To load absolute files without symbols 161
To store memory contents into absolute files 162

Using Symbols 163

To load symbols 163

To display global symbols 164

To display local symbols 165

To display a symbol’'s parent symbol 169

To copy-and-paste a full symbol name to the entry buffer 170

Using Context Commands 171

To display the current directory and symbol context 172
To change the directory context 172
To change the current working symbol context 173

11

Contents

Executing User Programs 174

To run programs from the current PC 174

To run programs from an address 175

To run programs from the transfer address 175
To run programs fromreset 175

To run programs until an address 176

To stop (break from) user program execution 176
To step high-level source lines 177

To step assembly-level instructions 178

To reset the emulation processor 178

Using Software Breakpoints 179

To display the breakpoints list 180

To enable/disable breakpoints 181
To set a permanent breakpoint 184
To set a temporary breakpoint 185
To set all breakpoints 186

To deactivate a breakpoint 186

To re-activate a breakpoint 187

To clear a breakpoint 189

To clear all breakpoints 191

Displaying and Modifying Registers 192

To display register contents 196
To modify register contents 197

Displaying and Modifying Memory 198

To display memory 198

To display memory in mnemonic format 199

To return to the previous mnemonic display 199
To display memory in hexadecimal format 200
To display memory in real number format 201
To display memory at an address 202

To display memory repetitively 203

To modify memory 203

Displaying Data Values 204

To display data values 204
To clear the data values display and add a new item
To add items to the data values display 205

205

12

Contents

Changing the Interface Settings 206

To set the source/symbol modes 206
To set the display modes 207

Using System Commands 209

To set UNIX environment variables 209

To display the name of the emulation module 210
To display the eventlog 210

To display the errorlog 211

To edit files 212

To copy information to a file or printer 215

To open a terminal emulation window 216

Using Simulated I/O 217

To display the simulated I/O screen 217
To use simulated I/O keyboard input 218

Using Basis Branch Analysis 219
To store BBA datato afile 219

Using the Emulation Analyzer

The Basics of Starting, Stopping, and Displayingcés 223

To start a trace measurement 224

To display the trace status 224

To stop a trace measurement 227

To display the trace 228

To position the trace display on screen 229
To change the trace depth 230

To modify the last

trace command entered 230

13

Contents

Qualifying Trigger and Store Conditions 231

To qualify the trigger state and position = 237

To trigger on a number of occurrences of some state 239
To qualify states stored in the trace 240

To prestore states before qualified store states 241

To change the count qualifier 242

To trace until the analyzer is halted 243

To break emulator execution on the analyzer trigger 244

Using the Sequencer 245

To trigger after a sequence of states 245
To specify a global restart state 247
To trace "windows" of program execution 248

Modifying the Trace Display 250

To display a dequeued trace 251

To display the trace about a line number 252

To display the trace, disassembling from a line number 253
To display instruction cycles only 254

To display the trace in absolute format 255

To display the trace in mnemonic format 256

To display the trace with high-level source lines 257

To display the trace with symbol information 259

To change column widths in the trace display 260

To display time counts in absolute or relative format 261
To display the trace with addresses offset 262

To return to the default trace display 263

Saving and Restoring Traces 264

To save trace commands 264
To restore trace commands 265
To save traces 265

To restore traces 266

14

Contents

8 Making Software Performance Measurements

Activity Performance Measurements 269

To set up the trace command for activity measurements 271
To initialize activity performance measurements 272
To interpret activity measurement reports 276

Duration Performanckleasurements 284

To set up the trace command for duration measurements 285
To initialize duration performance measurements 287
To interpret duration measurement reports 289

Running Measurements and Creating Reports 293

To run performance measurements 293
To end performance measurements 294
To create a performance measurement report 295

9 Making Coordinated Measurements

Setting Up for Coordinated Measurements 301

To connect the Coordinated Measurement Bus (CMB) 301
To connect to the rear panel BNC 303

Starting/Stopping Multiple Emulators 305

To enable synchronous measurements 305
To start synchronous measurements 306
To disable synchronous measurements 306

Using Trigger Signals 307

To drive the emulation analyzer trigger signal to the CMB 309

To drive the emulation analyzer trigger signal to the BNC connector 310
To break emulator execution on signal from CMB 310

To break emulator execution on signal from BNC 311

To arm the emulation analyzer on signal from CMB 311

To arm the emulation analyzer on signal from BNC 312

15

Contents

10

Setting X Resources

To modify the Graphical User Interface resources 316
To use customized scheme files 320

To set up custom action keys 322

To set initial recall buffer values 323

To set up demos or tutorials 325

Part 3

11

Reference

Emulator/Analyzer Interface Commands

How Pulldown Menus Map to the Command Line 332
How Popup Menus Map to the Command Line 336
Syntax Conventions 338

Commands 339

bbaunld 340

break 341

cmb_execute 342

copy 343

COUNT 348

display 350

display memory 356

display trace 360

end 364

--EXPR-- 366

FCODE 369

forward 371

help 372

load 374

log_commands 376

modify 378
performance_measurement_end 384
performance_measurement_initialize 385
performance_measurement_run 387
pod command 389

QUALIFIER 391

16

12

13

reset 394

run 395
SEQUENCING 397
set 399

specify 404

step 406
stop_trace 408
store 409
-SYMB-- 411
sync_sim_registers 419
trace 420
TRIGGER 424
wait 426
WINDOW 428

Error Messages

Contents

Graphical/Softkey Interface Messages - Unnumbered 433

Graphical/Softkey Interface Messages - Numbered 450

Terminal Interface Messages 453

Emulator Messages 453

68340 Emulator Messages 456

General Emulator and System Messages 462
Analyzer Messages 475

Specifications and Characteristics

Emulator Specifications and Characteristics

Electrical 478
Physical 490
Environmental 492

478

17

Contents

Part 4 Concept Guide

14 Concepts

X Resources and the Graphical User Interface 497

X Resource Specifications 497
How X Resource Specifications are Loaded 499
Scheme Files 501

Part 5 Installation Guide

15 Installation

Installing Hardware 510

Step 1. Connect the Emulator Probe Cables 512

Step 2. Install Boards into the HP 64700 Card Cage 515

Step 3. Install emulation memory modules on emulator probe 527
Step 4. Plug the emulator probe into the demo target system 531
Step 5. Apply power to the HP 64700 533

Connecting the HP 64700 to a Computer or LAN 537

Installing HP 9000 Software 538

Step 1. Install the software from the media 538

Step 2. Verify the software installation 540

Step 3a. Start the X server and the Motif Window Manager (mwm) 541
Step 3b. Start HP VUE 541

Step 4. Set the necessary environment variables 541

18

16

Contents

Installing Sun SPARCsystem Software 544

Step 1. Install the software from the media 544

Step 2. Start the X server and OpenWindows 545
Step 3. Set the necessary environment variables 545
Step 4. Verify the software installation 547

Step 5. Map your function keys 548

Verifying the Installation 549

Step 1. Determine the logical name of your emulator 549
Step 2. Start the interface with the

emul700command 550

Step 3. Exit the Graphical User Interface 553

Installing/Updating Emulator Firmware

To update emulator firmware with "progflash” 557
To display current firmware version information 560
If there is a power failure during a firmware update 561

Glossary

Index

19

20

Part 1

Quick Start Guide

A one-glance overview of the product and a few task instructions to help you
comfortable.

21

Part 1

22

Getting Started

23

Chapter 1: Getting Started

Display area.

Status line. ——

Command line.

The Emulator/Analyzer Interface — At a Glance

When an X Window System that supports OSF/Motif interfaces is running on the
host computer, the emulator/analyzer interface is the Graphical User Interface
which provides pull-down and pop-up menus, point and click setting of

breakpoints, cut and paste, on-line help, customizable action keys and pop-up recall
buffers, etc.

The emulator/analyzer interface can also be the Softkey Interface which is provided
for several types of terminals, terminal emulators, and bitmapped displays. When
using the Softkey Interface, commands are entered from the keyboard.

The Softkey Interface

Memory :mnemonic :file main (module) . "main.c
address data
00000FC0 4E560000 LINK.W A6, #50000
00000FC4 4EB9000014 JSR $000014E8
00000FCA 4EB900001a JSR $00001A3E
00000FD0 4E71 NOP
0 FD2 4EB9000015 JSR 500001592
00000F] 52B9000076 ADDQ.L #1,5000076F2
00000FDE 4 00076 PEA $000076F2
00000FE4 4EB9000010 JSR 500001014
00000FEA b588F ADDQ.L #4,a7
00000FEC 4A39000076 TST.B $000076FE
00000FF2 6708 BEQ.B $00000FFC
00000FF4 4EB9000019 JSR $0000197E
00000FFA 4E71 NOP
00000FFC 4EB900001a JSR $00001A62
00001002 4E71 NOP
00001004 s60CC BRA.B $00000FD2
STATUS : cWs: main."main.e": RS - R
display memory main mnemonic

Display area. Can show memory, data values, analyzer traces, registers,
breakpoints, status, simulated 1/0O, global symbols, local symbols, pod commands
(the emulator’'s underlying Terminal Interface), error log, or display log. You can
use the UP ARROW, DOWN ARROW, PAGE UP, and PAGE DOWN cursor keys
to scroll or page up or down the information in the active window.

24

Chapter 1: Getting Started

Status line. Displays the emulator and analyzer status. Also, when error and
status messages occur, they are displayed on the status line in addition to bei
saved in the error log.

Command line. Commands are entered on the command line by pressing
softkeys (or by typing them in) and executed by pressing the Return key. The Tab
and Shift-Tab keys allow you to move the cursor on the command line forward or
backward. The Clear line key (or CTRL-e) clears from the cursor position to the
end of the line. The CTRL-u key clears the whole command line.

Softkey Interface Conventions

Example Softkey Interface commands throughout the manual use the following
conventions:

bold Commands, options, and parts of command syntax.

bold italic Commands, options, and parts of command syntax which
may be entered by pressing softkeys.

normal User specified parts of a command.

$ Represents the UNIX prompt. Commands which follow
the "$" are entered at the UNIX prompt.

<RETURN> The carriage return key.

25

Chapter 1: Getting Started

Menu bar ——

Action keys

Entry buffer

Entry buffer recall
button.

Display area.

Scroll bar.

Status line. —__

Command line.

Command line entry

area.

Softkey
pushbuttons

The Graphical User Interface

File Display Modify Execution Breakpoints Trace Settings Help

Action keys: | = Demo = | Disp Sre () | Trace () | Run | Step Source
| = Your Key = | tdake |Disp Sre Prev |Run Aerto() | Break | Step Asm

() imain I_R/eca
Memory :mnemonic file = main{modulel. "main.c”
addre label da

31 exterh woid update_system!(); /#* update system wariables #/
32 extern woid interrupt_simi{}; /% simulate an interrupt */
33 extern woid do_sort(}; /#* sets up ascii array and call
34

35 main(}

36 i

97 init_system(};

35 proc_spec_initil;

33

186 while (truel

1A

182 update_system(};

183 num_checks++;

184 interrupt_sim{&num_checks)

185 if {graph?’

1686 graph_datal};

187 proc_specificl);

STATUS: cws: main. " main.c”:

isplay memory main mnemonic

Command: Cursor: |§.§é§<ﬁ§i%§§} |Forward |Clear to end |Clear |He|p

Command buttons. Includes commandCursor buttons for command line area
recall button. control.

Menu Bar. Provides pulldown menus from which you select commands. When
menu items are not applicable, they appear half-bright and do not respond to mouse
clicks.

Action Keys. User-defined pushbuttons. You can label these pushbuttons and
define the action to be performed.

26

Chapter 1: Getting Started

Entry Buffer. Wherever you see "()" in a pulldown menu, the contents of the

entry buffer are used in that command. You can type values into the entry bu

or you can cut and paste values into the entry buffer from the display area or f

the command line entry area. You can also set up action keys to use the contents of
the entry buffer.

Entry Buffer Recall Button. Allows you to recall entry buffer values that have
been predefined or used in previous commands. When you click on the entry
buffer Recall button, a dialog box appears that allows you to select values.

Display Area. Can show memory, data values, analyzer traces, registers,
breakpoints, status, simulated 1/O, global symbols, local symbols, pod commands
(the emulator’s underlying Terminal Interface), error log, or display log.

Whenever the mouse pointer changes from an arrow to a hand, you can press and
hold theselectmouse button to access popup menus.

Scroll Bar. A "sticky slider" that allows navigation in the display area. Click on
the upper and lower arrows to scroll to the top (home) and bottom (end) of the
window. Click on the inner arrows to scroll one line. Drag the slider handle up or
down to cause continuous scrolling. Click between the inner arrows and the slider
handle to page up or page down.

Status Line. Displays the emulator and analyzer status. Also, when error and
status messages occur, they are displayed on the status line in addition to being
saved in the error log. You can press and holdeteetmouse button to access the
Status Line popup menu.

Command Line. The command line area is similar to the command line in the
Softkey Interface; however, the graphical interface lets you use the mouse to enter
and edit commands.

e« Command line entry area Allows you to enter commands from the
command line.

» Softkey pushbuttons Clicking on these pushbuttons, or pressing softkeys,
places the command in the command line entry area. You can press and hold
theselectmouse button to access the Command Line popup menu.

e Command buttons(includes command recall button). The commiaeturn
button is the same as pressing the carriage return key — it sends the command
in the command line entry area to the emulator/analyzer.

27

Chapter 1: Getting Started

The commandecall button allows you to recall previous or predefined
commands. When you click on the comm&uedtall button, a dialog box
appears that allows you to select a command.

e Cursor buttons for command line area control Allow you to move the
cursor in the command line entry area forward or backward, clear to the end of
the command line, or clear the whole command line entry area.

You can choose not to display the command line area by turning it off. For the
most common emulator/analyzer operations, the pulldown menus, popup menus,
and action keys provide all the control you need. Choosing menu items that require
use of the command line will automatically turn the command line back on.

Graphical User Interface Conventions

Choosing Menu Commands

This chapter uses a shorthand notation for indicating that you should choose a
particular menu item. For example, the following instruction

ChooséFile - Load - Configuration

means to first display tHele pulldown menu, then display thead cascade
menu, then select tl@onfiguration item from the Load cascade menu.

Based on this explanation, the general rule for interpreting this notation can be
stated as follows:

* The leftmost item in bold is the pulldown menu label.

+ If there are more than two items, then cascade menus are involved and all
items between the first and last item have cascade menus attached.

» The last item on the right is the actual menu choice to be made.

28

Chapter 1: Getting Started

Mouse Button and Keyboard Bindings

Because the Graphical User Interface runs on different kinds of computers, w
may have different conventions for mouse buttons and key names, the Graphica
User Interface supports different bindings and the customization of bindings.

This manual refers to the mouse buttons using general (or "generic") terms. The
following table describes the generic mouse button names and shows the default
mouse button bindings.

Mouse Button Bindings and Description

Bindings:

Generic

Button Sun

Name HP 9000 SPARCsystem Description

paste left left Paste from the display
area to the entry buffer.

command paste middle! middle! Paste from the entry
buffer to the command
line text entry area.

select right right Click selects first item in
popup menus. Press and
hold displays menus.

command selectleft right Displays pulldown menus.

pushbutton left left Actuates pushbuttons

select outside of the display area.

1 Middle button on three-button mouse. Both buttons on two-button mouse.

29

Chapter 1: Getting Started

The following tables show the default keyboard bindings.

Keyboard Key Bindings

Generic Key Name

menu select
insert

delete
left-arrow
right-arrow
up-arrow
down-arrow
escape

TAB

HP 9000
extend char
insert char
delete char
left arrow
right arrow
up arrow
down arrow
escape

TAB

Sun SPARCsystem

extend char
insert char
delete char
left arrow
right arrow
up arrow
down arrow

escape

TAB

30

Chapter 1: Getting Started

The Getting Started Tutorial

This tutorial gives you step-by-step instructions on how to perform a few basic
tasks using the emulator/analyzer interface. The tutorial examples presented in this
chapter make the following assumptions:

e The HP 64751 emulator and HP 64704 analyzer are installed into the
HP 64700 Card Cage, the HP 64700 is connected to the host computer, and the
emulator/analyzer interface software has been installed as outlined in the
"Installation” chapter.

» The emulator contains at least 256 Kbytes of emulation memory installed in
bank 0 and is plugged into the demo target system.

The Demonstration Program

The demonstration program used in this chapter is a simple environmental control
system. The program controls the temperature and humidity of a room requiring
accurate environmental control.

31

Chapter 1: Getting Started
Step 1. Start the demo

Step 1. Start the demo

A demo program and its associated files are provided with the Graphical User
Interface.

Change to the demo directory.

$ cd /usr/hp64000/demo/debug_env/hp64751 <RETURN>
Refer to the README file for more information on the demo program.

Check that "/usr/hp64000/bin" and "." are in your PATH environment variable. To
see the value of PATH:

$ echo $PATH <RETURN>

If the Graphical User Interface software is installed on a different type of computer
than the computer you are using, edit the "platformScheme" resource setting in the
"Xdefaults.emul" file.

For example, if the Graphical User Interface will be run on a HP 9000 computer
and displayed on a Sun SPARCsystem computer, change the platform scheme to
"SunOS".

Start the emulator/analyzer demo.

$ Startemul <logical_emul_name> <RETURN>

This script starts the emulator/analyzer interface (with a customized set of action
keys), loads a configuration file for the demo program, and then loads the demo
program.

The <logical_emul_name> in the command above is the logical emulator name
given in the HP 64700 emulator device table file (flusr/hp64000/etc/64700tab.net).

32

Chapter 1: Getting Started
Step 2: Display the program in memory

Step 2: Display the program in memory

1 If the symbol "main” is not already in the entry buffer, move the mouse pointer to
the entry buffer (notice the flashing I-beam cursor) and type in "main”.

2 ChooseDisplay - Memory - Mnemonic ().

Or, using the command line, enter:

display memory main mnemonic <RETURN>

File Display Modify Execution Breakpoints Trace Seftings

Action keys: | = Demo = | Run xfer til {) |Disp Src & Asm | Patch ()
| = Your Key = | tMake & Load | Step Asm | Step Source | Disp Var()
| Disp @REG || Disp Src Prev || Trace | Run [Again

() imain IReca

Memaory :mnemonic :file = main{modulel. "main.c”
addre label data

31 extern void update_systemi); /#* update system wariables #*/
32 extern void interrupt_simi}; /% simulate an interrupt */
33 extern void do_sortil; /% sets up ascii array and call
34
35 maini}
35 i
97 init_systemi);
98 proc_spec_initi};
33
186 while {truel
181 i
182 update_system();
183 num_checks++;
184 interrupt_sim{&num_checks)
185 if {graph?
1686 graph_datall;
187 proc_specificll);

STATUS: cws: main."main.c”

The default display mode settings cause source lines and symbols to appear in
displays where appropriate. Notice you can use symbols when specifying
expressions. The global symbol "main" is used in the command above to specify
the starting address of the memory to be displayed.

33

Chapter 1: Getting Started
Step 3: Run from the transfer address

Step 3: Run from the transfer address

The transfer address is the entry address defined by the software development tools
and included with the program’s symbol information.

» Click on theRun Xfer til () action key.

Or, using the command line, enter:

run from transfer_address until main <RETURN>
Memory :Bsp fmnemonic :file = maintmodule). "main.c”:
addre label data

31 extern woid update_systemil; /% update system wariables */
32 extern woid interrupt_simil; f* simulate an interrupt #/
33 extern woid do_sorti}; /* sets up ascii array and calls
34
35 maint}

I
97 init_system(};
98 proc_spec_init(};
33
166 while (truel
181 {
18z update_systemi ?;
143 num_checks++;
1684 interrupt_sim{&num_checks?;
165 if (graph?
166 graph_datall;
167 proc_specificl);

STATUS: HE8340--Running in monitor Software break: 000000 c08sp B A1.3

Notice the message "Software break: <address>" is displayed on the status line and
that the emulator is "Running in monitor" (you may have to clicls¢fectmouse

button to remove temporary messages from the status line). When you run until an
address, a breakpoint is set at the address before the program is run.

Notice the highlighted bar on the screen; it shows the current program counter.

34

Chapter 1: Getting Started
Step 4: Step high-level source lines

Step 4: Step high-level source lines

You can step through the program by high-level source lines. The emulator
executes as many instructions as are associated with the high-level program source
lines.

To step a source line from the current program counter, click @tépeSource
action key.

Or, using the command line, enter:

step source <RETURN>

Notice that the highlighted bar (the current program counter) moves to the next
high-level source line.

Step into the "init_system" function by continuing to step source lines, either by
clicking on theStep Sourceaction key, by clicking on th&gain action key which
repeats the previous command, or by enteringtife sourcecommand on the
command line.

Memory :Bsp fmnemonic :file = init_systemimodule). "init_system.c”
addre label data
26
27 void init_wal_arr{};
28
23 void
3H init_systeml]}

- E A% FUMCTION init_system() */
32

/% Initialize the target walues for temperature and humidity */

33 target_temp = 73;

34 target_humid = 45;

35

36 /% Intialize the variables indicating the current environment #/
37 /* conditions */

a8 current_temp = B8;

33 current_humid = 41;

48

41 /#% SJet starting directions for temp and humid #*/

42 temp_dir = up;

35

Chapter 1: Getting Started
Step 5: Display the previous mnemonic display

Step 5: Display the previous mnemonic display

Click on theDisp Src Prevaction key.

Or, using the command line, enter:
display memory mnemonic previous_display <RETURN>
This command is useful, for example, when you have stepped into a function that

you do not wish to look at—you can display the previous mnemonic display and
run until the source line that follows the function call.

36

Chapter 1: Getting Started
Step 6: Run until an address

Step 6: Run until an address

When displaying memory in mnemonic format, a selection in the popup menu lets
you run from the current program counter address until a specific source line.

» Position the mouse pointer over the line "proc_spec_init();", press and hold the
selectmouse button, and chooRen Until from the popup menu.

—'E Hewlett Packard Emulator/Analyzer: em68340 (m68340) E a EJ
File Display Modify Execution Breakpoints Trace Seftings Help
Action keys: | = Demo = | Run xfer til {) |Disp Src & Asm | Patch ()
| = Your Key = | tMake & Load | Step Asm | Step Source | Disp Var()
| Disp @REG || Disp Src Prev || Trace | Run [Again
() imain IRecaII
Memory :Bsp imnemonic :(file = mainimodulel. "main.c”:
addre label dats A
31 extern void update_systemi); /#* update system wariables #*/
32 extern void interrupt_simi}; /% simulate an interrupt */
33 extern void do_sortil; /% sets up ascii array and call
34
35 main{}
35 i
97 init_systemi);
c_initl(l);
Choose Action for Highlighted Line
ig? ”Ehi le Crrue) Set/Clear Software Breakpoint
182 update_system({] Edit Source
183 num_checks++; -
184 interrupt_sim{gRun Until
185 if {graph?
1686 graph_datal Trace After
187 proc_specific()] Trace Before
7| STATUS: cws: main."main.c”: Trace About NN Ny
; Trace Until :

Or, using the command line, enter:

run until main."main.c": line 98 <RETURN>

After the command has executed, notice the highlighted bar indicates the program
counter has moved to the specified source line.

37

Chapter 1: Getting Started
Step 7: Display data values

Step 7: Display data values

1 Position the mouse pointer over "num_checks" in the source line that reads
"num_checks++;" and click tigastemouse button (notice "num_checks" is cut
and pasted into the entry buffer).

2 Click on theDisp Var () action key.

Or, using the command line, enter:

display data , num_checks int32 <RETURN>
Data :update

addre label type dats

HARAT7GF 2 |_num_checks int32 5]

The "num_checks" variable is added to the data values display and its value is
displayed as a 32-bit integer.

38

Chapter 1: Getting Started

Step 8: Display registers

Step 8: Display registers
You can display the contents of the processor registers.
» ChooseDisplay - Registers—» BASIC.

Or, using the command line, enter:

display registers <RETURN>

Registers

MNext FC ABEBEFCARsp
FC BBHEEFCA STATUS 2784 < = =z > USP BEBEABAR S5P HBE12F34

VER APREREEA SFC @@ DFC @@

DB-07 HEREREZA AHEEEEZE BRBAGHZE BEBEEY IC HERAD14E BBEBZAFS BRAB4E6FS BEBEY7 A6
AB-AY @BEEY 156 FFFFFFFF BRBEY7ZE BOBESEZE0 BORAY7ES OBEEF 156 ARA1ZF34 BEB1ZF 34

39

Chapter 1: Getting Started
Step 9: Step assembly-level instructions

Step 9: Step assembly-level instructions

You can step through the program one instruction at a time.

» To step one instruction from the current program counter, click datépeAsm
action key.

Or, using the command line, enter:

step <RETURN>

Registers

MNext FC BBABBFCABsp

FC BBHEEFCA STATUS 2784 < = =z > USP BEBRBEAR S5P BBE12F34

D8-07 HERBEAZA AHEEEEZE BRBAGHZE BEEEEYIC DAREAD14E BEEBZAFS ARAE4E6FS BRBE77E6
AB-AY BEEEY1S6 FFFFFFFF BRBAY 28 BEBEEHZE BARAYYES BEEEF 156 ABA12F34 BEB12F 34
WER BEREEAEA SFC @B@ DFC @@

Step_FC BHABBFCAEsp JSR p.proc_spec_init

Mext FC BBEEE1A3EEsp

FC BBHBEIA3E STATUS 2784 < 5 =z * USP BHBRBAEAR S5P HBEE12F3d

0B-07 HAABAAZA BEBHAGZH AABAGAZS DHOEAT IC HORBE145 BHEBZAFS ABEA4GFS DEBE77AEG
AB-A7 BAEB7156 FFFFFFFF BREA7725 DHOEGSHZE0 HOAB77ES DHEEF 156 ABA1ZF34 BEB12F38
WER HRABAAEA SFC B OFC @8

Notice, when registers are displayed, stepping causes the assembly language
instruction just executed to be displayed.

40

Chapter 1: Getting Started
Step 10: Trace the program

Step 10: Trace the program

When the analyzer traces program execution, it looks at the data on the emulation
processor’s bus and control signals at each clock cycle. The information seen at a
particular clock cycle is called a state.

When one of these states matches the "trigger state" you specify, the analyzer stores
states in trace memory. When trace memory is filled, the trace is said to be
"complete."

Click on theRecall button to the right of the entry buffer.

A selection dialog box appears. You can select from entry buffer values that have
been entered previously or that have been predefined.

Click on "main" in the selection dialog box, and click the "OK" pushbutton.

Notice that the value "main" has been returned to the entry buffer.

To trigger on the address "main" and store states that occur after the trigger, choose
Trace - After ().

Or, using the command line, enter:

trace after main <RETURN>

Notice the message "Emulation trace started" appears on the status line. This

shows that the analyzer has begun to look for the trigger state which is the address
"main" on the processor’s address bus.

Run the demo program from its transfer address by choosing
Execution— Run - from Transfer Address.

Or, using the command line, enter:

run from transfer_address <RETURN>

41

Chapter 1: Getting Started
Step 10: Trace the program

Notice that now the message on the status line is "Emulation trace complete". This

shows the trigger state has been found and the analyzer trace memory has been
filled.

5 To view the captured states, choBésplay - Trace.

Or, using the command line, enter:

display trace <RETURN>

race List Mare data of f screen
Label: Address Opcgode or Status w/ Source Lines time count
umnbaol mnemonic w/symbal relative

BHgHEdE R Emain.c - line 1 thru 6 HEHHUSHEEEEESHERHERESHSHERBRHSRY

n

prog|main.main LINK.W AG, #$EEEL e
pr|main+BEABERAZ $BEEG supr prgm word rd {(ds1B6} 728 nS
+HA6Z sysstactdBAATF 34 $Baa1 supr data long wr (dslG3 728 n3
+@63 sysstactdA@@yF 36 $Z2FFA supr data word wr (ds16) 728 n3

il main. c - line 37 HEHHREEHAHAH AR ARARERER R R AR A E AR E R H R R H R R

init_systemi);

+084 pr|main+AE0BEEEY TSR init.init_system G568 nS
+HEAS pr|main+tAHOBEEEE $OAHD supr prgm word rd (dslB} 720 nS
+HAE pr|maintAHEBREERE $14E8 supr prgm word rd (ds1B} 7268 nS

BB Emain. c - line 95 HEHHUHBEHAHAHAHAHAHEHERBAH AR AR HHHHBHHRBRH RS BH

The default display mode settings cause source lines and symbols to appear in the
trace list.

Captured states are numbered in the left-hand column of the trace list. Line 0
always contains the state that caused the analyzer to trigger.

Other columns contain address information, data values, opcode or status
information, and time count information.

42

Chapter 1: Getting Started
Step 11: Display memory at an address in a register

Step 11: Display memory at an address in a
register

Click on theDisp @REGaction key.

Or, using the command line, enter the name of the command file:

mematreg <RETURN>
A command file dialog box appears (or a prompt appears in the command line).

Move the mouse pointer to the dialog box text entry area, type "A7", and click on
the "OK" button.

Or, if the prompt is in the command line:
A7 <RETURN>

Memory :@sp :bytes :blocked :update

addre data he iascii
BAR12F5C-63 AR 58] 2A Fa 58] BAa 2A Fa A
BAA12FE4-6R AR 5]z] 46 Fa 5]z] B1 2F a4 .. F o
BAR1ZFEC-73 AR 53] 1a aA 53] BAa 71 56 C e e e . ogW
Baa12F74-78 5 5] [5]5] 72 0A [5]5] Ba aa ac .
BAR12F7C-33 Al 53] 5Aa 28 53] BAa a7 1c P
Baa12F84-36 5 5] [5]5] a1 4B [5]5] B1 2F 34 A
BAR12FEC-33 AR 53] AF EA 53] BAa 76 Fe [W
BEa12F34-38 55| a1 2F Fa [5]5] Ba a7 1H P
BAR12FIC-A3 55| J5[5] Ba AR J5[5] BAa 5G] 5L5] e e e
BAR12FA4-AB AR 58] AA AR 58] BAa 77 Ed e T
BAR12FAC-B3 55| J5[5] Ba AR J5[5] BAa 5G] 3A e H

AEA 1 2FB4-BB AB B8 BA B2 BB BA @A 15
BEA 1 2FBC-C3 AR B8 BA @1 @B BA @A 15 e e e e
AEA12FC4-CB AB B8 @A B8 BB BE BA 4@ P

BAE12FCC-03 g B Y7 28 @@ B BE &e P
AEA12F04-08 AB B8 @@ CA B8 @A 8@ 2§ e e e
AAE12FOC-E3 15 T 1 " Vs IC B@ ®Ba 77 28 P T

43

Chapter 1: Getting Started
Step 12: Patch assembly language code

Step 12: Patch assembly language code

ThePatch () action key lets you patch code in your program.
1 With "main” still in the entry buffer, click on tHeun Xfer til () action key.

2 To display memory with assembly-level instructions intermixed with the high-level
source lines, click on thRisp Src & Asm action key.

Memory :Bsp fmnemonic :file = main(module). "main.c":
addre label data
32 extern void interrupt_sim{}; /% simulate an interrupt */
33 extern void do_sartil); /#% sets up ascii array and calls
34
35 maini}

i
pr|main.main 4ESE8064 LINK.W AB, #8668

init_systemi};

BEaEarC4 4EB30ERAl4 JSR init.init_system
98 proc_spec_init(};

ARBEARFCA 4EB3AEEALA ISR p.proc_spec_init
33
1668 while (truel

ABABEF DB 4E71 WOP
181 i
162 update_systemi);

BEEEEFDZ 4EB3AEEALS ISR up. update_system
183 rum_checks++;

3 Click on thePatch () action key.

A window appears and tivé editor is started. Add the line:

LINK A6,#1234h

Exit out of the editor, saving your changes.

The file you just edited is assembled, and the patch main menu appears. Type "a"
and press <RETURN> to apply the patch.

44

Chapter 1: Getting Started
Step 12: Patch assembly language code

Memory :Bsp fmnemonic :file = main(module). "main.c":
addre label data
32 extern void interrupt_sim{}; /% simulate an interrupt */
33 extern void do_sartil); /#% sets up ascii array and calls
34
35 maini}

i
pr|main.main 4E561234 LINK.W AB, #1%1234

init_systemi};

BEaEarC4 4EB30ERAl4 JSR init.init_system
98 proc_spec_init(};

ARBEARFCA 4EB3AEEALA ISR p.proc_spec_init
33
1668 while (truel

ABABEF DB 4E71 WOP
181 i
162 update_systemi);

BEEEEFDZ 4EB3AEEALS ISR up. update_system
183 rum_checks++;

Notice in the emulator/analyzer interface that the instruction at address "main" has
changed.

Click on thePatch () action key again.

A window running thevi editor again appears, allowing you to modify the patch
code that was just created. Modify the line you added previously to:

LINK A6,#0

Exit out of the editor, saving your changes.

The file you just edited is assembled, and the patch main menu appears. Type "a
<RETURN>" to apply the patch.

Notice in the emulator/analyzer interface that the instruction at address "main" has
been changed back to what it was originally.

When patching a single address, make sure the new instruction takes up the same
number of bytes as the old instruction; otherwise, you may inadvertently modify
code that follows.

45

Chapter 1: Getting Started
Step 12: Patch assembly language code

5 Type "main+4 thru main+15" in the entry buffer.

By entering an address range in the entry buffer (that is, <address> thru <address>)
before clicking on th@atch () action key, you can modify a patch template file
which allows you to insert as much or as little code as you wish.

6 Click on thePatch () action key again.

A window running thevi editor again appears. Suppose you want to patch the
demo program so that the proc_spec_init() function is called before the
init_system() function. Suppose also that there is memory available at address
8800H. Edit the patch template file as shown below.

; PCHS700 Assembly Patch File: PCHmain+4.s

Date : Tue Jun 30 14:06:06 MDT 1992
; Dir : /users/guest/demo/debug_env/hp64751
; Owner: guest

INCLUDE PCHSINC.s
ORG main+4
BRA patchl ;You may want to change this name!
ORG 8800h ;You MUST set this address!
patchl:
; i You may need to modify labels and operands of the 111
; il following code to match your assembler syntax i
; 1l Patching Range: main+4 thru main+15

JSR _proc_spec_init

JSR _Init_system
BRA main+16 ;You MUST set this address also!

Notice that symbols can be used in the patch file. Exit out of the editor, saving
your changes.

The file you just edited is assembled, and the patch main menu appears. Type "a"
and press <RETURN> to apply the patch.

You can step through the program to view execution of the patch.

46

Chapter 1: Getting Started
Step 13: Exit the emulator/analyzer interface

Step 13: Exit the emulator/analyzer interface .

» To exit the emulator/analyzer interface and release the emulator, choose
File - Exit — Released

Or, using the command line, enter:

end release_system <RETURN>

47

48

Part 2

User’'s Guide

A complete set of task instructions and problem-solving guidelines, with a few
basic concepts.

49

Part 2

50

Plugging into a Target System

51

Plugging the Emulator into a Target
System

This chapter describes the steps you must perform when connecting the emulator to
a target system:

1 Turn OFF power.

2 If the emulator is currently connected to the demo target system or a different
target system, unplug the emulator probe.

3 Select the emulator clock source.
4 Plug the emulator probe into the target system.
5 Turn ON power (first the HP 64700, then the target system).

After you plug the emulator into your target system, you must configure the
emulator so that it operates properly with your target system (refer to the
"Configuring the Emulator" chapter).

CAUTION Possible Damage to the Emulator ProbeThe emulation probe contains devices
that are susceptible to damage by static discharge. Therefore, precautionary
measures should be taken before handling the microprocessor connector attached to
the end of the probe cable to avoid damaging the internal components of the probe
by static electricity.

We STRONGLY suggest using a ground strap when handling the emulator
probe. A ground strap is provided with the emulator.

52

Chapter 2: Plugging into a Target System

Step 1. Turn OFF power

Step 1. Turn OFF power

CAUTION Possible Damage to the EmulatorMake sure target system power is OFF and
make sure HP 64700 power is OFF before removing or installing the emulator

probe into the target system.

Do not turn HP 64700 power OFF while the emulator is plugged into a target

system whose power is ON.

1 If the emulator is currently plugged into a different target system, turn that target system’s pow

or OFF.

2 Turn emulator power OFF.

53

Chapter 2: Plugging into a Target System
Step 2. Unplug probe from demo target system

Step 2. Unplug probe from demo target system

1 If the emulator is currently connected to a different target system, unplug the emulator probe;
otherwise, disconnect the emulator probe from the demo target system.

54

Chapter 2: Plugging into a Target System
Step 3. Select the emulator clock source

Step 3. Select the emulator clock source

For 64751-66506 and lower numbered active probe printed-circuit boards, the
selection of the internal or external clock source is made with the "Micro-proce
clock source?" configuration question as described in the "Configuring for
Operation with Your Target System" section of the "Configuring the Emulator"
chapter.

For 64751-66508 and higher numbered active probe printed-circuit boards, the
selection of the internal or external clock source is made by positioning a jumper
module on the board.

If your active probe board number is 64751-66506 or lower, go on to Step 4;
otherwise, perform the following steps.

55

Chapter 2: Plugging into a Target System
Step 3. Select the emulator clock source

1 Remove plastic rivets that secure the plastic cover on the top of the emulator probe, and removye the
cover.

TO INSTALL RIVET:
PUSH DOWN ON
RIVET HEAD

TO REMOVE RIVET:
PUSH UP ON
CENTER SHAFT

W ADD PLASTIC

WASIIERS TO
THESE TWO
POSITIONS ONLY

56

Chapter 2: Plugging into a Target System
Step 3. Select the emulator clock source

2 To select the 32.768 KHz crystal internal to the emulator, insert the jumper module such that pin 1 of

the module aligns with pin 1 of the socket. The target system MUST drive MODCK high (or allow a
pullup resistor in the emulator to pull it high) during reset to enable the 68340 VCO and programr
clock mode.

h

To select an external (target system) TTL oscillator, rotate the jumper module 180 degrees such

of the module aligns with pin 1 of the socket. The target system MUST drive MODCK low during|reset

to enable the 68340 to use the EXTAL signal as the clock source.

Pin 1 of
Clock Jumper
Saocket

64751E01

57

Chapter 2: Plugging into a Target System
Step 3. Select the emulator clock source

3 Replace the plastic cover, and insert new plastic rivets (supplied with the emulator) to secure tluue cover.

TO INSTALL RIVET:
PUSH DOWN ON
RIVET HEAD

TO REMOVE RIVET:
PUSH UP ON
CENTER SHAFT

W ADD PLASTIC

WASIIERS TO
THESE TWO
POSITIONS ONLY

58

Chapter 2: Plugging into a Target System
Step 3. Select the emulator clock source

You can also replace the jumper with a prototyping socket on which a crystal and
any capacitors or tank circuitry are assembled. (One such prototyping socket is part
number 20314-36-455 from Electronic Molding Corp., 96 Mill Street, Woonsocket
RI.) The figure below shows the connections that are made to the socket.

—
Emulator +5v —] | (Do Not Connecf Anything
! ! 1417 4o This Pin)
EXTAL Side of Emulator | 5 Py - XTAL Side of Emulaofor
32768 KHz Crystal 32768 KHz Crystal
68340 EXTAL — 3 12 m 68340 XTAL
Target EXTAL —1 4 1M — Target XTAL
NC —5 10 — NC
NC — 6 99— NC
NC — 7 81— Emulator +5v

64751B01

59

Chapter 2: Plugging into a Target System
Step 4. Plug the 68340 PGA emulator probe into the target system

. CAUTION

Step 4. Plug the 68340 PGA emulator probe into
the target system

Possible Damage to the Emulator ProbeThe emulator probe is provided with a
pin extender.Do not use the probe without a pin extender installedReplacing
a broken pin extender is much less expensive than replacing the emulator probe.

The use of more than one pin extender is discouraged, unless it is necessary for
mechanical clearance reasons, because pin extenders cause signal quality
degradation.

1 Install the emulator probe into the target system socket. Make sure that pin 1 of the connector|aligns
with pin 1 of the sockeDamage to the emulator will result if the probe is incorrectly installed.

68340
EMULATOR
PROBE

TARGET SYSTEM

PIN A1

PGA SOCKET

60

Chapter 2: Plugging into a Target System
Step 5. Turn ON p ower

Step 5. Turn ON power

1 Turn emulator power ON. .

2 Turn target system power ON.

61

62

Starting and Exiting HP 64700
Interfaces

63

Starting and Exiting HP 64700 Interfaces

You can use several types of interfaces to the same emulator at the same time to
give yourself different views into the target system.

The strength of the emulator/analyzer interface is that it lets you perform the
real-time analysis measurements that are helpful when integrating hardware and
software.

The C debugger interface (which is a separate product) lets you view the stack
backtrace and high-level data structures, and it lets you use C language expressions
and macros. These features are most useful when debugging software.

The Software Performance Analyzer interface (which is also a separate product)
lets you make measurements that can help you improve the performance of your
software.

These interfaces can operate at the same time with the same emulator. When you
perform an action in one of the interfaces, it is reflected in the other interfaces.

Up to 10 interface windows may be started for the same emulator. Only one C
debugger interface window and one SPA window are allowed, but you can start
multiple emulator/analyzer interface windows.

The tasks associated with starting and exiting HP 64700 interfaces are grouped into
the following sections:

e Starting the emulator/analyzer interface.
» Opening other HP 64700 interface windows.
e Exiting HP 64700 interfaces.

64

Chapter 3: Starting and Exiting HP 64700 Interfaces
Starting the Emulator/Analyzer Interface

Starting the Emulator/Analyzer Interface

Before starting the emulator/analyzer interface, the emulator and interface software
must have already been installed as described in the "Installation" chapter.

This section describes how to:

« Start the interface.

» Start the interface using the default configuration.
* Run acommand file on interface startup.
» Display the status of emulators defined in the 64700tab.net file.

* Unlock an interface that was left locked by another user.

To start the emulator/analyzer interface

Use theemul700 <emul_name>ommand.

If /Jusr/hp64000/binis specified in your PATH environment variable (as shown in
the "Installation" chapter), you can start the interface witlenma/700
<emul_name>command. The "emul_name" is the logical emulator name given in
the HP 64700 emulator device table (/usr/hp64000/etc/64700tab.net).

If you are running a window system on your host computer (for example, the X
Window System), you can run the interface in up to 10 windows. This capability
provides you with several views into the emulation system. For example, you can
display memory in one window, registers in another, an analyzer trace in a third,
and data in the fourth.

65

Chapter 3: Starting and Exiting HP 64700 Interfaces
Starting the Emulator/Analyzer Interface

Examples To start the emulator/analyzer interface for the 68340 emulator:

$ emul700 em68340 <RETURN>

The "em68340" in the command above is the logical emulator name given in the
HP 64700 emulator device table file (/lusr/hp64000/etc/64700tab.net).

Blank lines and the rest of each line after a '# character are ignored.

The information in each line must be in the specified order, with one line
for each HP series 64700 emulator. Use blanks or tabs to separate fields.
#

+ + +

Channel| Logical | Processor | Remainder of Information for the Channel
Type | Name | Type | (IP address for LAN connections)

+ + +

'# lan: em68340 m68340 21.17.9.143
serial: em68340 m68340 myhost /dev/iemcom23 OFF 9600 NONE XON 2 8

If you're currently running the X Window System, the Graphical User Interface
starts; otherwise, the Softkey Interface starts.

The status message shows that the default configuration file has been loaded. If the
command is not successful, you will be given an error message and returned to the
UNIX prompt. Error messages are described in the "Error Messages" chapter.

To start the interface using the default
configuration

» Use theemul700 -d <emul_namexommand.

In theemul700 -d <emul_name>xommand, thed option says to use the default
configuration. Thed option is ignored if the interface is already running in
another window or on another terminal.

66

Chapter 3: Starting and Exiting HP 64700 Interfaces
Starting the Emulator/Analyzer Interface

To run a command file on interface startup

Use theemul700 -c <cmd_file> <emul_namesommand.

You can cause command files to be run upon starting the interface by using th
<cmd_file> option to theemul700command.

Refer to the "Using Command Files" section in the "Entering Commands" cha
for information on creating command files.

Examples To start the emulator/analyzer interface and run the "startup” command file:
$ emul700 -c startup em68340 <RETURN>
To display the status of emulators
Use theemul700 -lor emul700 -lvcommand.
The-l option of theemul700command lists the status of all emulators defined in
the 64700tab and 64700tab.net files. If a logical emulator name is included in the
command, just the status of that emulator is listed.
You can also use the option with the| option for a verbose listing of the status
information.

Examples To list, verbosely, the status of the emulator whose logical name is "em68340":

$ emul700 -lv. em68340 <RETURN>

The information may be similar to:

em68340 - m68340 running; user = guest

description:

M68340 emulation, w/internal analysis, 260Kb emul mem

user interfaces: xdebug, xemul, xperf, skemul, sktiming

device channel:

/dev/emcom23

67

Chapter 3: Starting and Exiting HP 64700 Interfaces
Starting the Emulator/Analyzer Interface

Or, the information may be similar to:

em68340 - m68340 running; user = guest@myhost
description: M68340 emulation w/internal analysis, 260Kb emul mem
user interfaces: xdebug, xemul, xperf, skemul, sktiming
internet address: 21.17.9.143

To unlock an interface that was left locked by
another user

» Use theemul700 -U <emul_namexommand.

The-U option to theemul700command may be used to unlock the emulators
whose logical names are specified. This command will fail if there currently is a
session in progress.

Examples To unlock the emulator whose logical name is "em68340":

$ emul700-U em68340 <RETURN>

68

Chapter 3: Starting and Exiting HP 64700 Interfaces
Opening Other HP 64700 Interface Windows

Opening Other HP 64700 Interface Windows

TheFile - Emul700 menu lets you open additional emulator/analyzer interface
windows or other HP 64700 interface windows if those products have been
installed (for example, the software performance analyzer (SPA) interface and
high-level debugger interface).

This section shows you how to:
» Open additional emulator/analyzer interface windows.
* Open the high-level debugger interface window.

» Open the software performance analyzer (SPA) interface window.

To open additional emulator/analyzer windows

To open additional Graphical User Interface windows, choose
File - Emul700- Emulator/Analyzer under Graphic Window®r enter the
emul700 <emul_name>xommand in another terminal emulation window.

To open additional conventional Softkey Interface windows, choose

File - Emul700- Emulator/Analyzer under Terminal Windowsr enter the
emul700 -u skemul <emul_namerzommand in another terminal emulation
window.

You can open additional Graphical User Interface windows, or terminal emulation
windows containing the Softkey Interface.

When you open an additional window, the status line will show that this session is
joining a session already in progress, and the event log is displayed.

You can enter commands in any window in which the interface is running. When
you enter commands in different windows, the command entered in the first
window must complete before the command entered in the second window can
start. The status lines and the event log displays are updated in all windows.

69

Chapter 3: Starting and Exiting HP 64700 Interfaces
Opening Other HP 64700 Interface Windows

To open the high-level debugger interface window

* ChooseFile - Emul700- High-Level Debugger ...under "Graphic Windows", or
enter theemul700 -u xdebug <emul_nameezommand in another terminal

emulation window.
For information on how to use the high-level debugger interface, refer to the

debugger/emulatddser’s Guide

To open the software performance analyzer
(SPA) interface window

* ChooseFile - Emul700- Performance Analyzer ...under "Graphic Windows", or
enter theemul700 -u xperf <emul_name>ommand in another terminal
emulation window.

For information on how to use the software performance analyzer, refer to the
Software Performance Analyzer User’'s Guide

70

Chapter 3: Starting and Exiting HP 64700 Interfaces
Exiting HP 64700 Interfaces

Exiting HP 64700 Interfaces

There are several options available when exiting the HP 764700 interfaces. You
can simply close one of the open interface windows, or you can exit the debug

session by closing all the open windows. When exiting the debug session, yo
lock the emulator so that you can continue later, or you can release the emula
system so that others may use it. This section describes how to:

* Close an interface window.

» Exit a debug/emulation session.

To close an interface window

In the interface window you wish to close, chobse - Exit — Window. In the
emulator/analyzer interface command line, enteetitlcommand with no options.

All other interface windows remain open, and the emulation session continues,
unless the window closed is the only one open for the emulation session. In that
case, closing the window ends the emulation session, but locks the emulator so that
other users cannot access it.

71

Chapter 3: Starting and Exiting HP 64700 Interfaces
Exiting HP 64700 Interfaces

To exit a debug/emulation session

To exit the interface, save your configuration to a temporary file, and lock the
emulator so that it cannot be accessed by other users, ¢hlees&xit - Locked.
In the emulator/analyzer interface command line, entegriidockedcommand.

To exit the interface and release the emulator for access by other users, choose
File - Exit — Released In the emulator/analyzer interface command line, enter the
end release_systernommand.

If you exit the interface locked, the interface saves the current configuration to a
temporary file and locks the emulator to prevent other users from accessing it.
When you again start the interface with ¢éineul700command, the temporary file

is reloaded, and therefore, you return to the configuration you were using when you
quit the interface locked.

Also saved when you exit the interface locked are the contents of the entry buffer
and command recall buffer. These recall buffer values will be present when you
restart the interface.

In contrast, if you end released, you must have saved the current configuration to a
configuration file (if the configuration has changed), or the changes will be lost.

72

Entering Commands

73

Entering Commands

When an X Window System that supports OSF/Motif interfaces is running on the
host computer, the emulator/analyzer interface is the Graphical User Interface
which provides pull-down and pop-up menus, point and click setting of

breakpoints, cut and paste, on-line help, customizable action keys and pop-up recall
buffers, etc.

The emulator/analyzer interface also provides the Softkey Interface for several
types of terminals, terminal emulators, and bitmapped displays. When using the
Softkey Interface, commands are entered from the keyboard.

When using the Graphical User Interface,dbmmand lingortion of the interface

gives you the option of entering commands in the same manner as they are entered
in the Softkey Interface. If you are using the Softkey Interface, you can only enter
commands from the keyboard using the command line.

The menu commands in the Graphical User Interface are a subset of the commands
available when using the command line. While you have a great deal of capability
in the menu commands, you have even more in the command line.

This chapter shows you how to enter commands in each type of emulator/analyzer
interface. The tasks associated with entering commands are grouped into the
following sections:

« Using menus, the entry buffer, and action keys.
e Using the command line with the mouse.

e Using the command line with the keyboard.

e Using command files.

e Using pod commands.

e Forwarding commands to other HP 64700 interfaces.

74

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

Using Menus, the Entry Buffer, and Action Keys

This section describes the tasks you perform when using the Graphical User
Interface to enter commands. This section describes how to:

Choose a pulldown menu item using the mouse.

Choose a pulldown menu item using the keyboard.

Use the popup menus. .
Use the entry buffer.

Copy and paste to the entry buffer.

Use action keys.

Use dialog boxes.

Access help information.

75

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To choose a pulldown menu item using the
mouse (method 1)

Position the mouse pointer over the name of the menu on the menu bar.
Press and hold tmmmmand selechouse button to display the menu.

While continuing to hold down the mouse button, move the mouse pointer to the
desired menu item. If the menu item has a cascade menu (identified by an arrow on
the right edge of the menu button), then continue to hold the mouse button down
and move the mouse pointer toward the arrow on the right edge of the menu. The
cascade menu will display. Repeat this step for the cascade menu until you find the
desired menu item.

Release the mouse button to select the menu choice.

If you decide not to select a menu item, simply continue to hold the mouse button
down, move the mouse pointer off of the menu, and release the mouse button.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or message box when the menu
item is chosen.

76

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To choose a pulldown menu item using the
mouse (method 2)

Position the mouse pointer over the menu name on the menu bar.

Click thecommand selechouse button to display the menu.

Move the mouse pointer to the desired menu item. If the menu item has a ca
menu (identified by an arrow on the right edge of the menu button), then repe

previous step and then this step until you find the desired item.

Click the mouse button to select the item.

If you decide not to select a menu item, simply move the mouse pointer off of the
menu and click the mouse button.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or other box when the menu item
is chosen.

To choose a pulldown menu item using the
keyboard

To initially display a pulldown menu, press and holdrtteu seleckey (for
example, the "Extend char" key on a HP 9000 keyboard) and then type the
underlined character in the menu label on the menu bar. (For example, " for
"File". Type the character in lower case only.)

To move right to another pulldown menu after having initially displayed a menu,
press theight-arrow key.

77

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To move left to another pulldown menu after having initially displayed a menu,
press thdeft-arrow key.

To move down one menu item within a menu, presddia-arrow key.
To move up one menu item within a menu, pressipharrow key.

To choose a menu item, type the character in the menu item label that is underlined.
Or, move to the menu item using the arrow keys and then presRET@JRN>
key on the keyboard.

To cancel a displayed menu, pressiEBeapekey.

The interface supports keyboard mnemonics and the use of the arrow keys to move
within or between menus. For each menu or menu item, the underlined character in
the menu or menu item label is the keyboard mnemonic character. Notice the
keyboard mnemonic is not always the first character of the label. If a menu item

has a cascade menu attached to it, then typing the keyboard mnemonic displays the
cascade menu.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or other box when the menu item
is chosen.

Dialog boxes support the use of the keyboard as well. To direct keyboard input to a
dialog box, you must position the mouse pointer somewhere inside the boundaries
of the dialog box. That is because the interkadoard focus policig set to

pointer. That just means that the window containing the mouse pointer receives the
keyboard input.

In addition to keyboard mnemonics, you can also specify keyboard accelerators
which are keyboard shortcuts for selected menu items. Refer to the "Setting X
Resources" chapter and the "Softkey.Input" scheme file for more information about
setting the X resources that control defining keyboard accelerators.

78

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To choose popup menu items

Move the mouse pointer to the area whose popup menu you wish to access. (If a
popup menu is available, the mouse pointer changes from an arrow to a hand.)

Press and hold ttselectmouse button.

After the popup menu appears (while continuing to hold down the mouse butt
move the mouse pointer to the desired menu item.

Release the mouse button to select the menu choice.

If you decide not to select a menu item, simply continue to hold the mouse button
down, move the mouse pointer off of the menu, and release the mouse button.

The following popup menus are available in the Graphical User Interface:

Mnemonic Memory Display.
Breakpoints Display.

Global Symbols Display.
Local Symbols Display.
Status Line.

Command Line.

79

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To place values into the entry buffer using the
keyboard

Position the mouse pointer within the text entry area. (An "lI-beam" cursor will
appear.)

Enter the text using the keyboard.

To clear the entry buffer text area from beginning until end, prestnieu key
combination.

To copy-and-paste to the entry buffer

To copy and paste a discrete text string as determined by the interface, position the
mouse pointer over the text to copy and clickghstemouse button.

To specify the exact text to copy to the entry buffer: press and hgddstemouse
button; drag the mouse pointer to highlight the text to copy-and-paste; release the
pastemouse button.

You can copy-and-paste from the display area, the status line, and from the
command line entry area.

When you position the pointer and click the mouse button, the interface expands
the highlight to include the most complete text string it considers to be discrete.
Discrete here means that the interface will stop expanding the highlight in a given
direction when it discovers a delimiting character not determined to be part of the
string. A common delimiter would, of course, be a space.

When you press and hold the mouse button and drag the pointer to highlight text,
the interface copies all highlighted text to the entry buffer when you release the
mouse button.

Because the interface displays absolute addresses as hex values, any copied and
pasted string that can be interpreted as a hexadecimal value (that is, the string

80

Note

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

contains only numbers 0 through 9 and characters "a" through "f*) automatically
has an "h" appended.

If you have multiple Graphical User Interface windows open, a copy-and-paste
action in any window causes the text to appear in all entry buffers in all windows.
That is because although there are a number of entry buffers being displayed, there
is actually only one entry buffer and it is common to all windows. That means you
can copy a symbol or an address from one window and then use it in another
window.

On a memory display or trace display, a symbol may not be completely displa
because there are too many characters to fit into the width limit for a particular
column of the display. To make a symbol usable for copy-and-paste, you can scroll
the screen left or right to display all, or at least more, of the characters from the
symbol. The interface displays absolute addresses as hex values.

Text pasted into the entry buffer replaces that which is currently there. You cannot
use paste to append text to existing text already in the entry buffer.

See "To copy-and-paste from the entry buffer to the command line entry area" for
information about pasting the contents of the entry buffer into the command line
entry area.

81

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

Example To paste the symbol "num_checks" into the entry buffer from the interface display
area, position the mouse pointer over the symbol and then click the paste mouse
button.

File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | = Demo = | Disp Sre () | Trace () | Run | Step Source
| = Your Key = | tdake |Disp Sre Prev |Run Aerto() | Break | Step Asm
{):i num_checks IReca
A mouse click Memory :imnemonic :file = mainimodule). "main.c”:
. addre label dats
causes the interface 31 extern woid update_systemi}; /#* update system wariables #/
to expand the 32 extern woid interrupt_simi{}; /% simulate an interrupt */
. . . extern void do_sort(); /#* sets up ascii array and call
highlight to include
the symbol o ey
"num_checks" and init_system();
paste the symbol proc_spec_init};
into the entry buffer. 188 while (true)

181 i

182 update_system(};

183 num_check sga

184 interrupt_sim{&num_checks);
185 if {graph?’

1686 graph_datal};

187 proc_specificl);

STATUS: cws: main. " main.c”

82

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To recall entry buffer values

Position the mouse pointer over fRecall button just to the right of the entry
buffer text area, click the mouse button to bring up the Entry Buffer Recall dialog
box, and then choose a string from that dialog box.

The Entry Buffer Recall dialog box contains a list of entries gained during the
emulation session as well as any predefined entries present at interface startu

If you exit the emulation/analysis session with the interface "locked", recall buf
values are saved and will be present when you restart the interface.

You can predefine entries for the Entry Buffer Recall dialog box and define the
maximum number of entries by setting X resources (refer to the "Setting X
Resources" chapter).

See the following "To use dialog boxes" section for information about using dialog
boxes.

To use the entry buffer

Place information into the entry buffer (see the previous "To place values into the
entry buffer using the keyboard", "To copy-and-paste to the entry buffer”, or "To
recall entry buffer values" task descriptions).

Choose the menu item, or click the action key, that uses the contents of the entry
buffer (that is, the menu item or action key that contains "()").

83

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To copy-and-paste from the entry buffer to the
command line entry area

Place text to be pasted into the command line in the entry buffer text area.

You may do that by:
» Copying the text from the display area using the copy-and-paste feature.
» Enter the text directly by typing it into the entry buffer text area.

» Choose the text from the entry buffer recall dialog box.

Position the mouse pointer within the command line text entry area.

If necessary, reposition the cursor to the location where you want to paste the text.
If necessary, choose the insert or replace mode for the command entry area.

Click thecommand pastmouse button to paste the text in the command line entry
area at the current cursor position.

The entire contents of the entry buffer are pasted into the command line at the
current cursor position.

Although a paste from the display area to the entry buffer affects all displayed entry
buffers in all open windows, a paste from the entry buffer to the command line only
affects the command line of the window in which you are currently working.

See "To copy-and-paste to the entry buffer" for information about pasting
information from the display into the entry buffer.

84

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To use the action keys

1 If the action key uses the contents of the entry buffer, place the desired information
in the entry buffer.

2 Position the mouse pointer over the action key and click the action key.

Action keys are user-definable pushbuttons that perform interface or system
functions. Action keys can use information from the entry buffer — this make
possible to create action keys that are more general and flexible.

Several action keys are predefined when you first start the Graphical User Interface.
You can use the predefined action keys, but you'll really appreciate them when you
define and use your own.

Action keys are defined by setting an X resource. Refer to the chapter "Setting X
Resources" for more information about creating action keys.

To use dialog boxes

1 Click on an item in the dialog box list to copy the item to the text entry area.
2 Edit the item in the text entry area (if desired).

3 Click on the "OK" pushbutton to make the selection and close the dialog box, click
on the "Apply" pushbutton to make the selection and leave the dialog box open, or
click on the "Cancel" pushbutton to cancel the selection and close the dialog box.

The graphical interface uses a number of dialog boxes for selection and recall:

Directory Selection Selects the working directory. You can change to a
previously accessed directory, a predefined directory, or
specify a new directory.

85

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

File Selection From the working directory, you can select an existing file
name or specify a new file name.

Entry Buffer Recall ~ You can recall a previously used entry buffer text string, a
predefined entry buffer text string, or a newly entered entry
buffer string, to the entry buffer text area.

Command Recall You can recall a previously executed command, a
predefined command, or a newly entered command, to the
command line.

The dialog boxes share some common properties:

* Most dialog boxes can be left on the screen between uses.

» Dialog boxes can be moved around the screen and do not have to be positioned
over the graphical interface window.

» If you iconify the interface window, all dialog boxes are iconified along with
the main window.

Except for the File Selection dialog box, predefined entries for each dialog box
(and the maximum number of entries) are set via X resources (refer to the "Setting
X Resources" chapter).

86

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

Examples To use the File Selection dialog box:

The file filter selects
specific files.

A list of File Filter

filter-matching files
flrom the culrrgn; fusers/quest/demos/ debug_ernv/hpB47517/% . EA

directory. .

. _ Files
A list of files fusersiquestfdemofdebug_envihp&4751/Config.EA
previously accessed . § fusersfquest/demoidebug_envihp&d751/Configall.EA
during the emulation <Previous Files=

session. usersfiquestfdemofdebuq envihp84751/Config.EA

A single click on a
file name from either
list highlights the file
name and copies it tc
the text area. A
double click chooses
the file and closes thi

dialog box. i ¥
Label informs you
what kind of file

selection you are fusers/guest/demo/debug_env/hpB4751/Config. EA_
performing.

Load Emulation Configuration

Text entry area. -
Text is either OK Filter Cancel
copied here from
the recall list, or
entered directly.

Clicking this button Entering a new file filter Clicking this button
chooses the file name and clicking this button cancels the file selection
displayed in the text entry causes a list of files operation and closes the
area and closes the dialogmatching the new filter to dialog box.

box. be read from the directory.

87

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To use the Directory Selection dialog box:

Label informs you

O,f the type of list Emulator/Analyzer: Directory Selection
displayed.

A list of predefined Previous Working Directories

or previously ¥ Associated X Resource: "emul.m&8000*dirSelectSub.entri
accessed d #

irectories. %HDME .

HP&4000/monitor
A single click on a HP&4000/demofdebug_envihp&d731
directory name from -
the list highlights fusersiguestidemo/debug env
the name and copics
it to the text area. A
double click chooses
the directory and

closes the dialog £ e]

box.

Selection

Esers.-" guest/demos debug_erv/hpB4751

Text entry area.

Directory name is
either copied here OK Apply
from the recall list,
or entered directly.

Clicking this button Clicking this button Clicking this button
chooses the directory chooses the directory cancels the directory
displayed in the text entrydisplayed in the text entryselection operation and
area and closes the dialogarea, but keeps the dialogcloses the dialog box.
box. box on the screen instead

of closing it.

88

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To access help information

1 Display the Help Index by choositglp — General Topic...or Help - Command
Line....

2 Choose a topic of interest from the Help Index.

The Help Index lists topics covering operation of the interface as well other
information about the interface. When you choose a topic from the Help Inde
interface displays a window containing the help information. You may leave t
window on the screen while you continue using the interface.

89

Chapter 4: Entering Commands
Using the Command Line with the Mouse

Using the Command Line with the Mouse

When using the Graphical User Interface,dbemand lingortion of the interface

gives you the option of entering commands in the same manner as they are entered
in the Softkey Interface. Additionally, the graphical interface makes the softkey
labels pushbuttons so commands may be entered using the mouse.

If you are using the Softkey Interface, using the command line with the keyboard is
the only way to enter commands.

This section describes how to:

e Turn the command line off/on.
* Enter commands.

» Edit commands.

* Recall commands.

» Display the help window.

To turn the command line on or off

To turn the command line on or off using the pulldown menu, choose
Settings— Command Line.

To turn the command line on or off using the status line popup menu: position the
mouse pointer within the status line area, press and hodelégeimouse button,
and choos€ommand Line Off from the menu.

To turn the command line off using the command line entry area popup menu:
position the mouse pointer within the entry area, press and haldldnmouse
button, and chooseommand Line Off from the menu.

Turns display of the command line area "on" or "off." On means that the command
line is displayed and you can use the softkey label pushbuttons, the command
return and recall pushbuttons, and the cursor pushbuttons for command line editing.

90

Chapter 4: Entering Commands
Using the Command Line with the Mouse

Off means the command line is not displayed and you use only the pulldown menus
and the action keys to control the interface.

The command line area begins just below the status line and continues to the
bottom of the emulator/analyzer window. The status line is not part of the
command line and continues to be displayed whether the command line is on or off.

Choosing certain pulldown menu items while the command line is off causes the
command line to be turned on. That is because the menu item chosen requires
some input at the command line that cannot be supplied another way.

To enter a command

Build a command using the softkey label pushbuttons by successively positioning
the mouse pointer on a pushbutton and clickingtishbutton selechouse button
until a complete command is formed.

Execute the completed command by clickingRleturn pushbutton (found near
the bottom of the command line in the "Command" group).

Or:

Execute the completed command using the Command Line entry area popup menu:
Position the mouse pointer in the command line entry area; press and hold the
selectmouse button until the Command Line popup menu appears; then, choose the
Execute Commandmenu item.

You may need to combine pushbutton and keyboard entry to form a complete
command.

A complete command is a string of softkey labels and text entered with the
keyboard. You know a command is complete wReturn pushbutton is not
halfbright. The interface does not check or act on a command, however, until the
command is executed. (In contrast, commands resulting from pulldown menu
choices and action keys are supplied with the needed carriage return as part of the
command.)

91

Chapter 4: Entering Commands
Using the Command Line with the Mouse

To edit the command line using the command
line pushbuttons

To clear the command line, click t@dear pushbutton.

To clear the command line from the cursor position to the end of the line, click the
Clear to end pushbutton.

To move to the right one command word or token, clickthvard pushbutton.
To move to the left one command word or token, clickBekup pushbutton.

To insert characters at the cursor position, presaseet key to change to
insertion mode, and then type the characters to be inserted.

To delete characters to the left of the cursor position, pres8HheKSPACE>
key.

When the cursor arrives at the beginning of a command word or token, the softkey
labels change to display the possible choices at that level of the command.

When moving by words left or right, tli@rward pushbutton becomes halfbright
and unresponsive when the cursor reaches the end of the command string.
Similarly, theBackup pushbutton becomes halfbright and unresponsive when the
cursor reaches the beginning of the command.

See "To edit the command line using the mouse and the command line popup
menu" and "To edit the command line using the keyboard" for information about
additional editing operations you can perform.

92

Chapter 4: Entering Commands
Using the Command Line with the Mouse

To edit the command line using the command
line popup menu

To clear the command line: position the mouse pointer within the Command Line
entry area; press and hold ge&ectmouse button until the Command Line popup
menu appears; chooSéear Entire Line from the menu.

To clear the command line from the cursor position to the end of the line: posit
the mouse pointer at the place where you want the clear-to-end to start; press
hold theselectmouse button until the Command Line popup menu appears; ch
Clear to End of Line from the menu.

To position the cursor and insert characters at the cursor location: position the
mouse pointer in a non-text area of the command line entry area; press and hold the
selectmouse button to display the Command Line popup menu; cRos#®on

Cursor, Insert Mode from the menu; type the characters to be inserted.

To replace characters at the current cursor location: position the mouse pointer in a
non-text area of the command line entry area; press and halel¢cénouse

button to display the Command Line popup menu; chBoséion Cursor,

Replace Modefrom the menu; type the characters to be inserted.

To position the cursor and replace characters at the cursor location: position the
mouse pointer in a non-text area of the command line entry area; press and hold the
selectmouse button to display the Command Line popup menu; cRos#®on

Cursor, Replace Modefrom the menu; type the characters to be inserted.

When the cursor arrives at the beginning of a command word or token, the softkey
labels change to display the possible choices at that level of the command.

See "To edit the command line using the mouse and the command line
pushbuttons" and "To edit the command line using the keyboard" for information
about additional editing operations you can perform.

93

Chapter 4: Entering Commands
Using the Command Line with the Mouse

To recall commands

1 Click the pushbutton labeldgiecallin the Command Line to display the dialog box.

2 Choose a command from the buffer list. (You can also enter a command directly
into the text entry area of the dialog box.)

Because all command entry methods in the interface — pulldown menus, action
keys, and command line entries — are echoed to the command line entry area, the
contents of the Command Recall dialog box is not restricted to just commands
entered directly into the command line entry area.

The Command Recall dialog box contains a list of interface commands executed
during the session as well as any predefined commands present at interface startup.

If you exit the emulation/analysis session with the interface "locked", commands in
the recall buffer are saved and will be present when you restart the interface.

You can predefine entries for the Command Recall dialog box and define the
maximum number of entries by setting X resources (refer to the "Setting X
Resources" chapter).

See "To use dialog boxes" for information about using dialog boxes.

To get help about the command line

» To display the help topic explaining the operation of the command line, press the
Help pushbutton located near the bottom-right corner of the Command Line area.

94

Chapter 4: Entering Commands
Using the Command Line with the Keyboard

Using the Command Line with the Keyboard

When using the command line with the keyboard, you enter commands by pressing
softkeys whose labels appear at the bottom of the screen. Softkeys provide for
quick command entry, and minimize the possibility of errors.

The command line also provides command completion. You can type the first few
characters of a command (enough to uniquely identify the command) and then
press <Tab>. The interface completes the command word for you.

Entering commands with the keyboard is easy. However, the interface provid
other features that make entering commands even easier. For example, you

» Enter multiple commands on one line.
* Recall commands.
» Edit commands.

» Access on-line help information.

Examples

To enter multiple commands on one command
line
Separate the commands with semicolons (;).

More than one command may be entered in a single command line if the commands
are separated by semicolons (;).

To reset the emulator and break into the monitor:

reset ; break <RETURN>

95

Chapter 4: Entering Commands
Using the Command Line with the Keyboard

Examples

To recall commands

Press <CTRL>r or <CTRL>b.

The most recent 20 commands you enter are stored in a buffer and may be recalled
by pressing <CTRL>r. Pressing <CTRL>b cycles forward through the recall buffer.

For example, to recall and execute the command prior to the last command:

<CTRL>r <CTRL>r <RETURN>

To edit commands

Use the <Left arrow>, <Right arrow>, <Tab>, <Shift><Tab>, <Insert char>, <Back
space>, <Delete char>, <Clear line>, and <CTRL>u keys.

The <Left arrow> and <Right arrow> keys move the cursor single spaces to the left
or right.

The <Tab> and <Shift><Tab> keys move the cursor to the next or previous word
on the command line.

The <Insert char> key enters the insert editing mode and allows characters or
command options to be inserted at the cursor location.

The <Back space> key deletes the character to the left of the cursor.
The <Delete char> key deletes the character to the right of the cursor.
The <Clear line> key deletes the characters from the cursor to the end of the line.

The <CTRL>u key erases the command line.

96

Chapter 4: Entering Commands
Using the Command Line with the Keyboard

To access on-line help information

» Use thehelp or ? commands.

To access the command line’s on-line help information, type &ighgor ? on the
command line. You will notice a new set of softkeys. By pressing one of these
softkeys and <RETURN>, you can display information on that topic.

Examples To display information on the system commands:

help system_commands <RETURN>

Or:

? system_commands <RETURN>

The help information is scrolled on to the screen. If there is more than a screen full
of information, you will have to press the space bar to see the next screen full, or
the <RETURN> key to see the next line, just as you do with the Widdé¢

command. After all the information on the particular topic has been displayed (or
after you press "g" to quit scrolling through information), you are prompted to press
<RETURN> to return to the command line.

97

Chapter 4: Entering Commands
Using Command Files

Using Command Files

You can execute a series of commands that have been stored in a command file.
You can create command files by logging commands while using the interface or
by using an editor on your host computer.

Once you create a command file, you can execute the file in the emulation
environment by typing the name of the file on the command line and pressing
<RETURN>.

Command files execute until an end-of-file is found or until a syntax error occurs.
You can stop a command file by pressing <CTRL>c or the <Break> key.

This section shows you how to:
» Start logging commands to a command file.
» Stop logging commands to a command file.

» Playback (execute) a command file.

Nesting Command Files

You can nest a maximum of eight levels of command files. Nesting command files
means one command file calls another.

Comments in Command Files

Text that follows a pound sign (#), up to the end of the line, is interpreted as a
comment.

Using the wait Command

When editing command files, you can inseait commands to pause execution of
the command file at certain points.

If you press <CTRL>c to stop execution of a command file while the "wait"
command is being executed from the command file, the <CTRL>c will terminate
the "wait" command, but will not terminate command file execution. To do this,
press <CTRL>c again.

98

Chapter 4: Entering Commands
Using Command Files

Use thawait measurement_completeommand after changing the trace depth.
By doing this, when you copy or display the trace after changing the trace depth,
the new trace states will be available. Otherwise the new states won’t be available.

Passing Parameters

Command files provide a convenient method for passing parameters by using a
parameter declaration line preceding the commands in the command file. When the
command file is called, the system will prompt you for current values of the formal
parameters listed.

Parameters are defined as:

Passed Parameters These are ASCII strings passed to a command file. Any
continuous set of ASCII characters can be passed. Spaces separate the
parameters.

Formal Parameters -These are symbols preceded by an ampergahd (
which are the variables of the command file.

The ASCII string passed (passed parameter) will be substituted for the formal
parameter when the command file is executed.

The only way to pass a parameter containing a space is to enclose the parameter in
double quotes () or single quotes (). Thus, to pass the parameter HP 9000 to a
command file, you can use either "HP 9000" or 'HP 9000'.

The special paramet&®ArG_IEfT gets set to all the remaining parameters
specified when the command file was invoked. This lets you use variable size
parameter lists. If no parameters are &&rG_|EfT gets set to NULL.

Consider the command file example (named CMDFILE) shown below:

PARMS &ADDR &VALUE1

#

modify a location or list of locations in memory
and display the result

#

modify memory &ADDR words to & VALUE1 &ArG_IEfT
display memory &ADDR blocked words

99

Chapter 4: Entering Commands
Using Command Files

When you execute CMDFILE, you will be prompted with:

Define command file parameter [&ADDR]

To pass the parameter, enter the address of the first memory location to be
modified. You will then be prompted f&/ALUEL . If you enter, for example,
"0,-1,20, Offffh, 4+5*4", the first parameter "0,-1,20," is passe&MALUE1 and
the remaining parameters "Offffh," and "4+5*4" are pass&ias |EfT .

You can also pass the parameters when you invoke the command file (for example,
CMDFILE 1000h 0,-1,20, Offfth, 4+5*4).

Other Things to Know About Command Files

You should know the following about using command files:

1

Command files may contain shell variables. Only those shell variables
beginning with "$" followed by an identifier will be supported. An identifier is
a sequence of letters, digits or underscores beginning with a letter or
underscore. The identifier may be enclosed by braces "{ }" or entered directly
following the "$" symbol. Braces are required when the identifier is followed
by a letter, a digit or an underscore that is not interpreted as part of its name.

For example, assume a directory named /users/softkeys and the shell variable
"S". The value of "S" is "soft". By specifying the directory as /users/${S}keys
the correct result is obtained. However, if you attempt to specify the directory
as /users/$Skeys, the Softkey Interface looks for the value of the variable
"Skeys". This is not the operators intended result. You may not get the
intended result unless Skeys is already defined to be "softkeys".

You can examine the current values of all shell variables defined in your
environment with the command "env".

Positional shell variables, such as $1, $2, and so on, are not supported. Neither
are special shell variables, such as $@, $*, and so on, supported.

You can continue command file lines. This is done by avoiding the line feed
with a backslash (). A line terminated by "\" is concatenated with any
following lines until a line that does not contain a backslash is found. A line
constructed in this manner is recognized and executed as one single command
line. If the last line in a command file is terminated by "\", it appears on the
command line but is not executed. Normally, the line feed is recognized as the
command terminator. The UNIX environment recognizes three quoting

100

Chapter 4: Entering Commands
Using Command Files

characters for shell commands which are double quotes ("), single quotes ('),
and the backslash symbol (\).

For example, the following three lines are treated as a single shell command.
The two hidden line feeds are ignored because they are inside the two single
quotes ():

lawk '/$/ { blanks++}
END { print blanks }

"an_unix_file .

To start logging commands to a command file

ChooseFile - Log - Record and use the dialog box to select a command file name.

Using the command line, enter tlog_commands to <filescommand.

To stop logging commands to a command file

ChooseFile - Log - Stop.

Using the command line, enter tlog_commands offtommand.

101

Chapter 4: Entering Commands
Using Command Files

To playback (execute) a command file

ChooseéFile - Log - Playback and use the dialog box to select the name of the
command file you wish to execute.

Using the command line, enter the name of the command file and press
<RETURN>.

If you enter the name of the command file in the command line and the interface
cannot find the command file in the current directory, it searches the directories
specified in the HP64KPATH environment variable.

To interrupt playback of a command file, press the <CTRL>c key combination.
(The mouse pointer must be within the interface window.)

If you press <CTRL>c to stop execution of a command file while the "wait"
command is being executed from the command file, the <CTRL>c will terminate
the "wait" command, but will not terminate command file execution. To do this,
press <CTRL>c again.

102

Chapter 4: Entering Commands
Using Pod Commands

Using Pod Commands

Pod commands are Terminal Interface commands. The Terminal Interface is the
low-level interface that resides in the firmware of the emulator.

A pod command used in the Graphical User Interface bypasses the interface and
goes directly to the emulator. Because some pod commands can cause the interface
to become out-of-sync with the emulator, or even cause the interface to terminate
abnormally, they must be used with care.

For example, if you change configuration items, the actual state of the emulat
no longer match the internal record the interface keeps about the state of the
emulator.

Issuing certain communications-related commands can prevent the interface from
communicating with the emulator and cause abnormal termination of the interface.

However, it is sometimes necessary to use pod commands. For example, you must
use a pod command to execute the emulap@rormance verification (pv)
routine. Performance verification is an internal self-test procedure for the emulator.

Remember that pod commands can cause trouble for the high-level interface if they
are used indiscriminately.

This section shows you how to:
» Display the pod commands screen.

* Use pod commands.

103

Chapter 4: Entering Commands
Using Pod Commands

To display the pod commands screen

ChooseDisplay — Pod Commands

The pod commands screen displays the results of pod (Terminal Interface)
commands. To set the interface to use pod commands, Gettisgs- Pod
Command Keyboard

To use pod commands

To begin using pod commands, cho8s#tings— Pod Command Keyboard

To end using pod commands, click twspendpushbutton softkey.

TheSettings— Pod Command Keyboardcommand displays the pod commands
screen and activates the keyboard for entering pod command on the command line.

104

Chapter 4: Entering Commands
Forwarding Commands to Other HP 64700 Interfaces

Forwarding Commands to Other HP 64700
Interfaces
To allow the emulator/analyzer interface to run concurrently with other HP 64700

interfaces like the high-level debugger and software performance analyzer, a
background "daemon" process is necessary to coordinate actions in the interfaces.

This background process also allows commands to be forwarded from one int
to another. Commands are forwarded usinddheard command available in the
command line. The general syntax is:

forward <interface_name> "<command_string>" <RETURN>

This section shows you how to:
» Forward commands to the high-level debugger.

* Forward commands to the software performance analyzer.

Examples

To forward commands to the high-level debugger

Enter theforward debug "<command string>" command using the command
line.

To send the "Program Run" command to the debugger:
forward debug "Program Run" <RETURN>

Or, since only the capitalized key is required:

forward debug "P R" <RETURN>

105

Chapter 4: Entering Commands
Forwarding Commands to Other HP 64700 Interfaces

To forward commands to the software
performance analyzer

» Enter theforward perf "<command string>" command using the command line.

Examples To send the "profile" command to the software performance analyzer:

. forward perf "profile” <RETURN>

106

Configuring the Emulator

107

Configuring the Emulator

This chapter describes how to configure the emulator. You must map memory
whenever you use the emulator. When you plug the emulator into a target system,
you must configure the emulator so that it operates correctly in the target system.
The configuration tasks are grouped into the following sections:

» Using the configuration interface.

* Modifying the general configuration items.

» Reconfiguring the emulator configuration registers.
» Selecting the emulation monitor program.

* Mapping emulation and target system memory.

» Configuring the emulator pod.

» Setting the debug/trace options.

The simulated I/O feature and configuration questions are described in the
Simulated 1/0 User’s Guide

The interactive measurement configuration questions are described in the "Making
Coordinated Measurements" chapter.

Configuring for Operation in the Target System

After you plug the emulator into a target system and turn on power to the
HP 64700, you need to configure the emulator so that it operates properly with your
target system.

Before the emulator can operate in your target system, you must:

Map memory. Because the emulator can use target system memory or emulation
memory (or both), it is necessary to map ranges of memory so that the emulator
knows where to direct its accesses.

You can synchronize emulation memory accesses to the target system in order to
more closely imitate target system memory. For example, if emulation memory

108

Chapter 5: Configuring the Emulator

replaces slower target system memory that requires wait states, synchronizing
emulation memory to the target system causes wait states to be inserted on
emulation memory accesses as they would be on target system memory accesses.

Refer to the "Mapping Memory" section later in this chapter.

Select the emulator’s clock source. Generally, you should use the target
system clock when plugging the emulator into a target system.

Also, the emulator needs to know the following things:

Is there circuitry in the target system that requires programs to run in
real-time? Some emulator commands cause temporary breaks to the monito
state, typically to access microprocessor register values, single-port emulation
memory, or target system memory. If the target system requires that program
in real-time, you must restrict the emulator to real-time runs.

Should the emulator respond to target system interrupts when

running in the monitor program? If so, you must use a foreground monitor
program since target system interrupts are always ignored during background
operation (refer to the "Selecting the Emulation Monitor" section later in this
chapter). If it's not important that the emulator respond to target system interrupts
when running in the monitor, you can use the background monitor.

109

Chapter 5: Configuring the Emulator
Using the Configuration Interface

Using the Configuration Interface

This section shows you how to modify, store, and load configurations using the
emulator configuration interface.

This section shows you how to:

Start the configuration interface.

Modify a configuration section.

Store a configuration.

Change the configuration directory context.
Display the configuration context.

Access help information.

Exit the configuration interface.

Load a configuration.

This chapter describes emulator configuration in general terms. For information
about your emulator’s specific configuration questions, refer to your emulator
User’'s Guide

110

Chapter 5: Configuring the Emulator
Using the Configuration Interface

To start the configuration interface

ChooseModify — Emulator Config... from the emulator/analyzer interface
pulldown menu.

Using the command line, enter tmedify configuration command.

The configuration interface main menu (see example below) is displayed.

The configuration sections that are presented depend on the hardware and features
of your particular emulator.

The configuration interface may be left running while you are using the
emulator/analyzer interface.

If you're using the Softkey Interface, you don't get a main menu from which to
choose configuration sections; however, the same display area and command line
are used to answer the configuration questions.

111

Chapter 5: Configuring the Emulator
Using the Configuration Interface

Examples The 68340 emulator configuration interface main menu is shown below.

Clicking on one of
these lines selects a
particular configuration
section.

Clicking this button
presents the questions
for the selected
configuration section.

Emulator Configuration: Main Men

~ Emulator Configuration Sections
& General Items

<> Reconfigure Internal Registers
<> Monitor Type

<> Memory Map

<> Emulator Pod Settings

<» DebugfTrace Options
£ Simulated 10

~Analyzer Configuration Sections

<> Interactive Measurement Specification

Modify Apply to Exit
Section Emulator Window

Clicking this button Clicking this button Clicking this button
stores the current exits the configuration presents the on-line help.
configuration. interface.

112

Chapter 5: Configuring the Emulator
Using the Configuration Interface

To modify a configuration section

1 Start the emulator configuration interface.

2 Click on a section name in the configuration interface main menu, and click the
"Modify Section" pushbutton.

3 Use the command line to answer the configuration questions.

If you're using the Softkey Interface:
The configuration questions in the "General Items" section are the first to
asked.

To access the questions in the "Reconfigure Internal Registers" section, answer
"yes" to the "Reconfigure internal registers?" question.

To access the questions in the "Monitor Type" section, answer "yes" to the
"Modify memory configuration?" question.

To access the questions in the "Memory Map" section, answer "yes" to the
"Modify memory configuration?" question.

To access the questions in the "Emulator Pod Settings" section, answer "yes" to
the "Modify emulator pod configuration?" question.

To access the questions in the "Debug/Trace Options" section, answer "yes" to
the "Modify debug/trace options?" question.

113

Chapter 5: Configuring the Emulator
Using the Configuration Interface

Each configuration section presents a window similar to the following.

The menu bar. File Display

select imternal or external emulation clock

Whern the internal clock has been selected, the emulator
will operate using an internal 32.768 Khz crustal.

Configuration he|p < The ETrget system HUSThdriVBIHDDELK hing(Dr EHEL; 4
. a pullup resistor in the emulator to pu it nig uring
text display area. reset to enable the 53348 VCD.

WReg the external clock has been selected, the emulator
will™se the crystal or TTL oscillator in the target system.
MOOCLE 2kould be driven appropriately.

Emulator status

and error message %\ Confiquring H68340
line. Micro-processor clock source? internal

Command line text

entry area. |internal§|external§| El E | El El El RECALL E

Pushbutton softkeysi{ Command: Heanll Cursor: |Backup IFonl.rard |Clearto end:|Clear:

Command control
and cursor control
pushbuttons.

To answer a configuration question, click the softkey pushbutton that has your
answer. Or, click on the "Return” command pushbutton to accept the answer that is
shown.

When you answer a configuration question, you are normally presented with the
next question in the section; however, there are some cases when a carriage return
is required, and you can supply it by clicking the "Return" command pushbutton or
by pressing the <RETURN> key.

114

Chapter 5: Configuring the Emulator
Using the Configuration Interface

At the last question of a configuration section, you are asked if you wish to return
to the main menu. You can click the "next_sec" softkey pushbutton to access the
guestions in the next configuration section.

To recall a configuration question, click the "RECALL" softkey pushbutton. If you
do this at the starting question of a configuration section, you are asked if you want
to return to the main menu.

In order for the emulator to recognize any configuration changes, the configuration
must be applied to the emulator.

To store a configuration

When answering the configuration questions, chédse- Store...from the
pulldown menu, and use the File Selection dialog box to name the configuration
file.

From the configuration interface main menu, click on the "Apply to Emulator"
button, and use the File Selection dialog box to name the configuration file.

If you're using the Softkey Interface, the last configuration question,
"Configuration file name?", lets you name the file to which configuration
information is stored. If you don't enter a name, configuration information is saved
to a temporary file (which is deleted when you exit the interface and release the
emulation system).

The file to which the configuration is stored becomes the current configuration file.
The emulator only recognizes configuration changes when they are stored or loaded.

When modifying a configuration using the graphical interface, you can store your
answers at any time. This is useful for quickly verifying the effect a configuration
change has on the emulator.

Configuration information is saved in two files with extensions of ".EA" and ".EB".
The file with the ".EA" extension is the "source" copy of the file, and the file with
the ".EB" extension is the "binary" or loadable copy of the file.

115

Chapter 5: Configuring the Emulator
Using the Configuration Interface

For more information on how to use dialog boxes, refer to the "To use dialog
boxes" description in the "Using Menus, the Entry Buffer, and Action Keys"
section of the "Entering Commands" chapter.

To change the configuration directory context

* When answering the configuration questions, chédse- Directory... from the

pulldown menu, and use the Directory Selection dialog box to specify the new
directory.

The directory context specifies the directory to which configuration files are stored
and from which they are loaded.

For more information on how to use dialog boxes, refer to the "To use dialog
boxes" description in the "Using Menus, the Entry Buffer, and Action Keys"
section of the "Entering Commands" chapter.

116

Chapter 5: Configuring the Emulator
Using the Configuration Interface

To display the configuration context

* When answering the configuration questions, ch@ssglay - Context...from the
pulldown menu.

The current directory context and the current configuration files are displayed in a
window. Click the "Done" pushbutton when you wish to close the window.

mulator Configuration: Current Conte

z Directory: fusersiguest/demofdebug_envihp&4751
k Configuration File: fusersfguestidemofdebug_envihp&4751/Config

To access help information

* When answering the configuration questions, chétedp — General Topic...from
the pulldown menu.

» From the configuration interface main menu, click on the "Help Topic" button.

117

Chapter 5: Configuring the Emulator
Using the Configuration Interface

To exit the configuration interface

When answering the configuration questions, chédse- Exit... from the
pulldown menu (or type <CTRL>X), and click "Yes" in the confirmation dialog box.

From the configuration interface main menu, click the "Exit Window" button, and
click "Yes" in the confirmation dialog box.

The confirmation dialog box only appears if changes have been made to the current
configuration.

When you choose "Yes" from the confirmation dialog box, any modifications made
to the configuration which haven’t been stored are lost. Choosing "No" from the
confirmation dialog box cancels the exit and keeps the emulator configuration
interface running.

To load a configuration

In the emulator/analyzer interface, chobde — Load — Emulator Config... from
the pulldown menu, and use the File Selection dialog box to specify the
configuration file to be loaded.

Using the command line, enter tload configuration <FILE> command.

This command loads previously created and stored configuration files.

118

Chapter 5: Configuring the Emulator
Modifying the General Configuration Items

Modifying the General Configuration Items

In order to modify the general configuration items, you must first start the
configuration interface and access the "General Items" configuration section (refer
to the previous "Using the Configuration Interface" section).

This section shows you how to:

» Select the emulator’s clock source.

» Enable/disable entry into the monitor after configuration.
» Restrict to real-time runs.

e Turn OFF the restriction to real-time runs.

To select the emulator’s clock source

For 64751-66508 and higher numbered active probe printed-circuit boards, the
selection of the internal or external clock source is made by positioning a jumper
module on the board as described in the "Plugging into a Target System" chapter.

For 64751-66506 and lower numbered active probe printed-circuit boards, the
selection of the internal or external clock source is made with the "Micro-processor
clock source?" configuration question.

Answer "internal" or "external" to the "Micro-processor clock source?" question.

When you answer "internal", the emulator will use the internal 32.768 KHz crystal.
The target system MUST drive MODCLK high (or allow a pullup resistor in the
emulator to pull it high) during reset to enable the 68340 voltage-controlled
oscillator (VCO).

When you answer "external”, the emulator will use the crystal or TTL oscillator in
the target system. MODCLK should be driven appropriately.

Generally, you should select the external clock option when using the emulator
in-circuit to synchronize the emulator with your target system.

119

Chapter 5: Configuring the Emulator
Modifying the General Configuration Iltems

Your target system clock must conform to the specifications for the 68340
microprocessor.

Note that changing the clock source drives the emulator into the reset state. The
emulator may later break into the monitor depending on how the "Enter monitor
after configuration?" question is answered.

To enable/disable entry into the monitor after
configuration

Answer "yes" or "no" to the "Enter monitor after configuration?".

This question allows you to select whether the emulator will be running in the
monitor or held in the reset state on completion of the emulator configuration.

The answer to this configuration question is important in some situations. For
example, when you select the external clock and the target system is turned off, do
not select reset to monitor. Otherwise, configuration will fail. When you select an
external clock source, this question becomes "Enter monitor after configuration
(using external clock)?" and the default answer becomes "no".

To restrict to real-time runs

Answer "yes" to the "Restrict to real-time runs?" question.

While running programs, temporary breaks to the monitor state are not allowed.
The emulator refuses the following commands:

» Display or modify registers.

» Display, modify, copy, load, store, or breakpoint commands that access
single-port emulation memory or target system memory.

The emulator contains one 4 Kbyte block of dual-port emulation memory
which can be accessed while runs are restricted to real-time. This block of

120

Chapter 5: Configuring the Emulator
Modifying the General Configuration Items

dual-port emulation memory is reserved for foreground monitor programs
when they are used.

* Synchronize SIM registers.

If you want to enter one of these commands, you must first make an explicit break
into the monitor using thereak command.

CAUTION Target system damage could occurlf your target system circuitry is dependent
on constant execution of program code, be aware that the following commands still
cause breaks from running programs even when you have restricted the emulator to
real-time runs:

e reset
e run

* break
e step

Use caution in executing these commands.

To turn OFF the restriction to real-time runs

* Answer "no" to the "Restrict to real-time runs?" question.

Temporary breaks to the monitor while running programs are allowed, and the
emulator accepts commands normally.

121

Chapter 5: Configuring the Emulator
Reconfiguring the Emulator Configuration Registers

Reconfiguring the Emulator Configuration
Registers

In order to modify the general configuration items, you must first start the
configuration interface and access the "Reconfigure Internal Registers"

configuration section (refer to the previous "Using the Configuration Interface"
section).

This section shows you how to:

» Define values for the emulator configuration registers.

To define values for the emulator configuration
registers

» Answer the "Initial value of the configuration copy of <CF_SIM_REGISTER>"
questions.

These questions allow you to specify the initial values of the following CF_SIM
registers.

CF_MBAR
CF_SIM_MCR
CF_PPARA1

CF_PPARA2

CF_CSOADDR
CF_CSOMASK
CF_CS1ADDR
CF_CS1IMASK
CF_CS2ADDR
CF_CS2MASK
CF_CS3ADDR
CF_CS3MASK

Refer to the "Using the Emulator Configuration Registers" section in the "Using the
Emulator" chapter for information on how these registers are used.

122

Chapter 5: Configuring the Emulator
Selecting the Emulation Monitor

Selecting the Emulation Monitor

This section shows you how to:

» Select the background monitor (implemented with the 68340 Background
Debug Mode (BDM)).

» Select the foreground monitor program.
» Use acustom foreground monitor program.

When you power up the emulator, or when you initialize it, the background monitor
is selected. You can also configure the emulator to use a foreground monitor.
Before the background and foreground monitors are described, you should
understand the foreground and background emulator modes as well as the fu

of the emulation monitor.

Background

Background is the emulator mode in which emulation processor execution is
suspended.

Foreground

Foreground is the mode in which the emulator executes as if it were a real
microprocessor. The emulator is in foreground when it is running user programs or
running in a foreground monitor.

Function of the Monitor

The monitor is the interface between the emulation system controller (which
accepts and executes emulation commands) and the target system. The monitor
uses the emulation microprocessor because that's the only way to access registers,
single-port emulation memory, and target system memory.

When the emulation system controller recognizes that a command requires the
monitor, it writes a command code to a communications area and "breaks" emulator
execution into the monitor. The monitor reads this command (and any associated
parameters), makes the appropriate accesses, places the values in the
communication area, and returns emulator execution to its previous state.

123

Chapter 5: Configuring the Emulator
Selecting the Emulation Monitor

Background Monitor

When a background monitor is selected, the Background Debug Mode (BDM) of
the 68340 processor is used. The BKPT line is asserted to enter the monitor.

Foreground Monitor

The foreground monitor is an assembly language program that is executed by the
68340 emulation microprocessor in its normal operating mode.

When a foreground monitor is selected, the foreground monitor or downloaded
custom monitor is loaded into dual-ported emulation memory and consumes a
4 Kbyte block of the 68340’s address range.

The foreground monitor program is included with the interface software as
/usr/hp64000/monitor/fm64751.s It can be assembled with the HP AxLS
68000/10/20 Assembler/Linker/Librarian or with the Microtec Research 68000
assembler and linker.

You may customize the foreground monitor if necessary; however, you must
maintain the basic communications protocol between the monitor and the emulation
system controller. Comments in the monitor program source file detail sections
that cannot be changed.

Comparison of Background and Foreground Monitor Programs

Monitor Program Characteristic Background Foreground
Takes up processor memory space No Yes, 4 Kbytes
Allows the emulator to respond to target system No Yes
interrupts during monitor execution

Can be customized No Yes
Resident in emulator firmware 68340 emulation Yes, (custom monitor

processor's BDM | must be assembled
linked, and loaded)

124

Chapter 5: Configuring the Emulator
Selecting the Emulation Monitor

To select the background monitor

Access the configuration questions.
Answer "yes" to the "Modify memory configuration?" question.
Answer "background" to the "Monitor type?" question.

Answer "yes" to the "Reset map (change of monitor type requires map reset)?"
guestion.

Re-map memory (see the following section on "Mapping Memory").

When a background monitor is selected, the Background Debug Mode (BDM) of
the 68340 processor is used. The BKPT line is asserted to enter the monitor.

During background monitor operation, there will be no bus cycle activity except for
memory reads and writes that result from memory display or modify commands.

Changing the monitor configuration resets the memory map, So you must re-map
memory.

125

Chapter 5: Configuring the Emulator
Selecting the Emulation Monitor

10

11

12

13

To select the foreground monitor program

Access the configuration questions.
Answer "yes" to the "Modify memory configuration?" question.
Answer "foreground" to the "Monitor type?" question.

Answer "yes" to the "Reset map (change of monitor type requires map reset)?"
guestion.

Enter 0 through 7 in response to the "Interrupt priority level for default foreground
monitor?" question.

Enter the base address of the monitor in response to the "Monitor’s base address?"
guestion.

Answer the "Enable /DSACK interlocking on monitor addresses?" question.
Re-map memory (see the following section on "Mapping Memory").
Answer "yes" to the "Modify emulator pod configuration?" question.
Answer the "Reset value for Supervisor Stack Pointer?" question.

Answer the "Reset value for Program Counter?" question.

Save the configuration changes.

Modify the TRACE exception vector to point to the TRACE_ENTRY symbol in
the monitor program so that you can step through the user program.

Selecting the Foreground Monitor

Answering "foreground" to the "Monitor type?" question causes the current
memory map to be deleted, and a new map term is added for the monitor program.

126

Chapter 5: Configuring the Emulator
Selecting the Emulation Monitor

The starting address of the monitor block is set by answering the "Monitor’'s base
address?" question, and your response to the "Enable /DSACK interlocking on
monitor addresses?" question determines whethelstti®dSACK interlock)

memory attribute is added.

When you select a foreground monitor, the emulator automatically loads the default
program, resident in emulator firmware, into dual-ported emulation memory. The
foreground monitor is reloaded every time the emulator breaks into the monitor
state from the reset state.

Unlike the background monitor, the foreground monitor runs within the same
address space as the target program consuming a 4 Kbyte block of the 68340’s
address range. The foreground monitor can run with target interrupts enabled
"Selecting the Interrupt Priority Level" below).

The emulator breaks into the foreground monitor by using the emulation
processor’s background debug mode (BDM) except for single-stepping, which uses
the trace exception. The time spentin BDM is approximately 350 microseconds.
An exception stack frame of 7 to 13 words will be temporarily pushed onto the
user’'s master and/or interrupt stack(s) during monitor entry.

Selecting the Interrupt Priority Level

The default foreground monitor can be configured to run at a lowered interrupt
priority level to allow critical target system interrupts to be processed during
monitor execution.

At the point it is safe to lower the interrupt priority level, the foreground monitor
will set the interrupt priority mask to the value specified or the interrupt level that
was in effect before monitor entry, whichever is greater.

During background monitor operation, all target system interrupts, including level 7
non-maskable interrupts, are blocked.

Modifying this configuration item will reset the processor.

Selecting the Monitor’'s Base Address

Your response to the "Monitor’'s base address?" question defines the starting
address of the 4 Kbyte block of dual-ported emulation memory. This block of
memory is reserved for the foreground monitor. The address must reside on a

4 Kbyte boundary (in other words, an address ending in 000H) and must be
specified in hexadecimal. Also, the foreground monitor's base address must have
no function code specified.

127

Chapter 5: Configuring the Emulator
Selecting the Emulation Monitor

The current memory map will be deleted, and a new map term is added for the
monitor.

Specifying Target Synchronization

If you wish to synchronize monitor cycles to the target system (that is, interlock the
emulation and target system /DSACK on accesses to the monitor memory block),
answer "yes" to the "Enable /DSACK interlocking on monitor addresses?"
guestion; otherwise, answer "no".

When interlocking is enabled, cycle termination of accesses to foreground monitor
memory will not occur until the target system provides a /DSACK. If the monitor
is placed in an address range for which the target system does not generate a
/IDSACK, the emulator will be unable to break into the monitor and a "CPU in wait
state" status will result.

When interlocking is disabled, accesses to foreground monitor memory will be
terminated by a /DSACK signal generated by the emulator. Any cycle termination
signals generated by the target system during monitor memory accesses, including
/BERR, will be ignored.

Modifying this configuration item will reset the processor and controls whether the
dsi (/DSACK Interlock) memory attribute is used in the foreground monitor
memory map term.

Re-Mapping Memory

When you configure the emulator for a foreground monitor program, the memory
map is reset, and a 4 Kbyte block of emulation memory is automatically mapped
for the monitor program. You must re-map other memory ranges before loading
user programs.

Modifying the TRACE Exception Vector

In order for single stepping to operate with the foreground monitor, the trace vector
in the target system’s exception table (VBR plus 24H) must point to the
TRACE_ENTRY address in the monitor. This address is equal to the monitor's
base address plus 800H in the default foreground monitor.

128

Chapter 5: Configuring the Emulator
Selecting the Emulation Monitor

To use a custom foreground monitor program

1 Edit the monitor program source file to define its base address.
2 Assemble and link the monitor program.

3 Access the configuration questions.

4 Answer "yes" to the "Modify memory configuration?" question.
5 Answer "user_foreground" to the "Monitor type?" question.

6 Answer "yes" to the "Reset map (change of monitor type requires map reset)?"
guestion.

7 Enter the name of the monitor program absolute file in response to the "Monitor
filename?" question.

8 Enter the base address of the monitor in response to the "Monitor’s base address?"
guestion.

9 Answer the "Enable /DSACK interlocking on monitor addresses?" question.
10 Re-map memory (see the following section on "Mapping Memory").
11 Answer "yes" to the "Modify emulator pod configuration?" question.
12 Answer the "Reset value for Supervisor Stack Pointer?" question.
13 Answer the "Reset value for Program Counter?" question.

14 Save the configuration changes.

129

Chapter 5: Configuring the Emulator
Selecting the Emulation Monitor

Examples

15 Modify the TRACE exception vector to point to the TRACE_ENTRY symbol in

the monitor program so that you can step through the user program.

Using a custom foreground monitor program is the same as selecting the default
foreground monitor, except that the customized monitor program must be
assembled, linked, and loaded into emulation memory. Also, the "Interrupt priority
level for default foreground monitor?" question is not asked because you can
specify the interrupt priority level in the program.

A custom foreground monitor must be assembled and linked starting at the 4 Kbyte
boundary specified as the monitor’s base address. An ORG statement in the
foreground monitor source file defines the base address. Refer to the foreground
monitor source provided with the emulator for more information.

The custom foreground monitor is saved in the emulator (until the monitor type is
changed) and reloaded every time the emulator breaks into the monitor state from
the reset state.

The following examples of how to set up and use a foreground monitor program
assume the HP 64870 or HP B1464 68000/08/10/20/302
Assembler/Linker/Librarian is installed on the host computer.

To copy the foreground monitor program source file

$ cp /usr/hp64000/monitor/fm64751.s . <RETURN>

To edit the monitor program source

$ chmod 644 fm64751.s <RETURN>
$ vi fm64751.s <RETURN>

The monitor will be loaded at 20000H, so the modify ORG statement near the top
of the file to look like this:

ORG 020000H * START MONITOR ON 4K BOUNDARY

Notice that the ORG statement is indented from the left margin; if it is not indented,
the assembler will interpret the ORG as a label and will generate an error when
processing the address portion of the statement.

130

Chapter 5: Configuring the Emulator
Selecting the Emulation Monitor

To assemble and link the monitor program enter the following commands
(which assume thatisr/hp64000/binis defined in the PATH environment
variable):

$ as68k-L fm64751.s >fm64751.lis <RETURN>
$ 1d68k -c fm64751.k -L> fm64751.map <RETURN>

Where the “fm64751.k” linker command file is:

name fm64751
load fm64751.0
end

To configure the emulator to use a foreground monitor programaccess the
configuration questions, and answer the questions as shown below.

Modify memory configuration? yes

Monitor type? user_foreground

Reset map (change of monitor type requires map reset)? yes
Monitor file name? fm64751

Monitor’s base address? 20000h

Re-map memory for the demo program by entering the following mapper
commands:

0 thru 6fffth emulation rom <RETURN>
7000h thru 16fffh emulation ram <RETURN>
end <RETURN>

Modify emulator pod configuration? yes

Reset value for Supervisor Stack Pointer? 13000h
Reset value for Program Counter? 400h
Configuration file name? fmoncfg

To load the demo program absolute fileenter the following command using the
command line:

load ecs.x <RETURN>

131

Chapter 5: Configuring the Emulator
Selecting the Emulation Monitor

To modify the TRACE exception vector to point to the TRACE_ENTRY label
in the monitor program (so that the emulator can single-step), enter the following
commands using the command line:

modify memory 24h longto 20800h <RETURN>

Now, you are ready to use the emulator.

132

Chapter 5: Configuring the Emulator
Mapping Memaory

Mapping Memory

Because the emulator can use target system memory or emulation memory (or
both), it is necessary to map ranges of memory so that the emulator knows where to
direct its accesses.

Up to 7 ranges of memory can be mapped, and the resolution of mapped ranges is
256 bytes bytes (that is, the memory ranges must begin on 256 byte boundaries and
must be at least 256 bytes in length).

The emulator contains 4 Kbytes of dual-port emulation memory and provides two
slots for additional emulation memory modules:

HP 64171A 256 Kbyte Memory Modules or HP 64171B 1 Mbyte Memory
Modules (0 wait state emulation memory through 16.7 MHz, 1 wait state
above 16.7 MHz).

HP 64172A 256 Kbyte Memory Modules or HP 64172B 1 Mbyte Memory
Modules (0 wait state emulation memory through 25 MHz).

* HP 64173A 4 Mbyte Memory Modules (0 wait state emulation memory
through 22 MHz, 1 wait state above 22 MHz).

(The 68340 processor is programmed for the correct number of wait states by user
code.) If memory modules are mixed, the performance characteristics of the slower
module should be used.

Emulation memory is made available to the mapper in blocks. When you map an
address range to emulation memory, at least one block is assigned to the range.
When a block of emulation memory is assigned to a range, it is no longer available,
even though part of the block may be unused.

Emulation memory in bank 0 of the emulator probe is divided into 4 equal blocks,
and memory in bank 1 is divided into 2 equal blocks. The 4 Kbyte block of
dual-port emulation memory is 1 block.

When you map ranges of emulation memory, blocks are allocated so as to leave the
greatest amount of emulation memory available. For example, if you map the range
0 through OFFH as emulation memory, the 4 Kbyte block of dual-port memory is
used if possible; if that block has already been used, the next smallest available
block is used.

133

Chapter 5: Configuring the Emulator

Mapping Memory

You should map all memory ranges used by your programs before loading
programs into memory.

Using Emulation Memory to Substitute for 8-Bit Memory

Emulation memory is 16-bit wide memory. However, you can use emulation
memory to substitute for 8-bit memory by using one of the chip selects and
generating internd SACKXx signals for an 8-bit port. You must place the
appropriate values into the emulator configuration (CF_SIM) versions of the chip
select address and mask registers so that emulation memory is accessed correctly.

Using Chip Selects to Access Emulation Memory

When using chip selects to access emulation memorfp3AE€Kx signals can be
generated internally or externally.

If the DSACKX signals are generated externally (as defined by the
CF_CSXMASK register), emulation memory must be interlocked with the target
system (use thasi attribute when mapping the emulation memory range);
otherwise, there will be NOSACKX response.

Fast Termination Mode

Emulation memory does not support the fast termination mode (-1 wait state) that
can be defined in the chip select registers. If a chip select is programmed for this
mode, it will override the mapper and force access to the target system.

External DMA Access to Emulation Memory

External direct memory access (DMA) to emulation memory is not permitted.

The HP 64751 emulator supports operation of the two 68340 on-chip DMA

channels in both single- and dual-address modes. Dual-address transfers can access
emulation memory; single-address transfers must be between peripherals and
memory in the target system only.

134

Chapter 5: Configuring the Emulator
Mapping Memaory

To map memory ranges

1 Access the configuration questions.
2 Answer "yes" to the "Modify memory configuration?" question.

3 Enter the address range, memory type, and optionally an attribute for the memory
range.

You can characterize memory ranges as emulation RAM, emulation ROM, tar
system RAM, target system ROM, or as guarded memory.

Guarded memory accesses will cause emulator execution to break into the m
program.

Writes to locations characterized as ROM will cause emulator execution to break
into the monitor program if the "Break processor on write to ROM?" trace/debug
configuration option is enabled.

Even though execution breaks into the monitor, the memory location is modified if
it's in emulation ROM or target system RAM mapped as ROM.

135

Chapter 5: Configuring the Emulator

Mapping Memory

The attributes can be:

dp

dsi

csO

dp_dsi

dp_cs0

Dual-port emulation memory.

One emulation memory range, up to 4 Kbytes in length, can be
given thedp attribute. Thelp attribute specifies that the range
be mapped to the 4 Kbyte block of dual-port emulation
memory. If a foreground monitor program is selecteddghe
attribute is automatically assigned to the memory range
reserved for the monitor program.

Interlock emulation memory and target system /DSACK.

Thedsi attribute specifies that accesses in that range of
emulation memory be synchronized with the target system.
This means the termination of accesses in the range will not
occur until the target system provides a /DSACK. If the target
system does not generate a /[DSACK, the emulator will be
unable to break into the monitor and a "CPU in wait state"
status will result.

When interlocking is disabled, accesses to emulation memory
will be terminated by a /DSACK signal generated by the
emulator. Any cycle termination signals generated by the target
system during emulation memory accesses, including /BERR,
will be ignored.

Use 68340 chip select 0.

ThecsOattribute allows you to emulate the 68340’s global chip
select operation. One memory range, either target or emulation,
can be given this attribute. Refer to the "To emulate global chip
select operation" task description at the end of this section.

Combination of thelp anddsi attributes.

Combination of thelp andcsOattributes.

136

Chapter 5: Configuring the Emulator
Mapping Memaory

dsi_cs0 Combination of thelsi andcsOattributes.
dp_dsi_cs0 Combination of thelp, dsi, andcsOattributes.

Examples Consider the following section summary from the linker load map output listing.

SECTION SUMMARY

SECTION ATTRIBUTE START END LENGTH ALIGN

ABSOLUTE DATA 00000000 0000002F 00000030 O (BYTE)

0 NORMAL 00000030 00000030 00000000 2 (WORD)

env. NORMAL CODE 00000400 00000FB8 00000BBY 2 (WORD)

prog NORMAL CODE 00000FBA 00001A83 O00000ACA 2 (WORD)

const NORMAL ROM 00001A84 00001AC9 00000046 2 (WORD)

lib NORMAL CODE 00001ACA 0000265D 00000B94 2 (WORD)

libc NORMAL CODE 0000265E 0000487B 0000221E 2 (WORD)

libm 0000487C 0000487C 00000000 O (BYTE)

mon NORMAL CODE 0000487C 000049C5 0000014A 2 (WORD)

envdata NORMAL DATA 00007000 00007155 00000156 4 (LONG)

data NORMAL DATA 00007156 00007721 000005CC 2 (WORD)

idata 00007722 00007722 00000000 O (BYTE)

udata 00007722 00007722 00000000 O (BYTE)

libdata NORMAL DATA 00007724 00007727 00000004 4 (LONG)

libcdata NORMAL DATA 00007728 00008153 00000A2C 2 (WORD)

mondata NORMAL DATA 00008154 00008177 00000024 2 (WORD)

stack NORMAL DATA 0000B000 00012FFF 00008000 4 (LONG)

heap NORMAL DATA 00013000 00016FFD 00003FFE 4 (LONG)

Notice the ABSOLUTE DATA, CODE, and ROM sections occupy locations 0
through 49C5H. Because the contents of these sections will eventually reside in
target system ROM, this area should be characterized as ROM when mapped. This
will prevent these locations from being written over accidentally. If breaks on

writes to ROM are enabled, instructions that attempt to write to these locations will
cause emulator execution to break into the monitor.

Also, notice the DATA sections occupy locations 7000H through 8177H and
0BOOOH through 16FFDH. Since these sections are written to, they should be
characterized as RAM when mapped.

137

Chapter 5: Configuring the Emulator

Mapping Memory

Enter the following commands to map memory for the above program.

delete all <RETURN>
0 thru 6fffh emulation rom <RETURN>
7000h thru 16fffh emulation ram <RETURN>

The resulting memory mapper screen is shown below.

Emulation memary blocks: available =
function

entry range code attribute

1 BH- BFFFH EMUL/ROM
2 78BBH- 16FFFH EMUL/RAM

To synchronize emulation memory accesses in the range 0 through 6FFFH, you
would enter the following command in place of the command above:

0 thru 6fffh emulation rom dsi <RETURN>
To specify that the range 0 through 6FFFH is in supervisor program space, you
would enter:

0 thru 6fffh supervisor program emulation rom <RETURN>

To exit out of the memory mapper, enter:

end <RETURN>

138

Chapter 5: Configuring the Emulator
Mapping Memaory

To characterize unmapped ranges

1 Access the configuration questions.
2 Answer "yes" to the "Modify memory configuration?" question.

3 Use thalefault softkey to characterize unmapped ranges.

Thedefault softkey in the memory mapper allows you to characterize unmapped
memory ranges. Unmapped memory ranges are treated as target system RA
default. Unmapped memory ranges cannot be characterized as emulation me

Examples To characterize unmapped ranges as target RAM:

default target ram <RETURN>

To characterize unmapped ranges as guarded memory:

default guarded <RETURN>

To exit out of the memory mapper, enter:

end <RETURN>

139

Chapter 5: Configuring the Emulator
Mapping Memory

To delete memory map ranges
1 Access the configuration questions.

2 Answer "yes" to the "Modify memory configuration?" question.

3 Use thaleletesoftkey to delete mapped ranges.

Note that programs should be reloaded after deleting mapper terms. The memory
mapper may re-assign blocks of emulation memory after the insertion or deletion of
mapper terms.

Examples To delete term 1 in the memory map:

delete 1 <RETURN>

To delete all map terms:

delete all <RETURN>

To exit out of the memory mapper, enter:

end <RETURN>

140

Chapter 5: Configuring the Emulator
Mapping Memaory

To map memory ranges that use function codes

Specify function codes with address ranges when mapping memory.

Memory mapper softkeys that represent the different function codes are:

supervisor

user

program

data

supervisor program
supervisor data
user program

user data

When you specify function codes with mapper ranges, the 68340 function code
outputs (FCO, FC1, FC2) are decoded to select particular blocks of memory.
Function codes let you overlay address ranges. When you specify function codes
as part of the address, the emulator memory mapper knows that overlaid blocks are
different memory regions and will define them separately.

If you specify a function code when mapping a range of memory, you must include
the function code when referring to locations in that range. If you don't include the
function code, an "ambiguous address" error message is displayed.

If you use different function codes, it's possible to map address ranges that overlap.
When address ranges with different function codes overlap, you must load a
separately linked module for the space associated with each function code. The
modules are linked separately because linker errors occur when address ranges
overlap.

When address ranges are mapped with different function codes, and there are no
overlapping ranges, your program modules may exist in one absolute file.

However, you have to use multiple load commands—one for each function code
specifier. This is necessary to load the various sections of the absolute file into the
appropriate function code qualified memory ranges. When you do this, be sure that
all address ranges not mapped (that is, the "other" memory mapper term) are
mapped as target RAM. When "other" is mapped as guarded, guarded memory
access errors (from the attempt to load the absolute file sections that are outside the
specified function code range) can prevent the absolute file sections that are inside
the specified function range from being loaded.

141

Chapter 5: Configuring the Emulator

Mapping Memory

Examples

Suppose you're developing a system with the following characteristics:
* Input port at 100 hex.

* Output port at 400 hex.

* Supervisor program from 1000 through 1fff hex.

» User program from 3000 through 3fff hex.

e User data from 3000 through 3fff hex.

Notice that the last two terms have address ranges that overlap. You can use
function codes to cause these terms to be mapped to different blocks of memory.

Suppose also that the only things that exist in your target system at this time are the
input and output ports and some control logic; no memory is available. You can
reflect this by mapping the I/O ports to target system memory space and the rest of
memory to emulation memory space with the following mapper commands:

Oh thru Offfh targetram <RETURN>
1000h thru 1fffh supervisor program emulation rom

<RETURN>
3000h thru 3fffh user program emulation ram <RETURN>
3000h thru 3fffh user data emulation ram <RETURN>

After the configuration is saved, display memory at 1000H by entering the
following command (using the command line):

display memory 1000h blocked bytes <RETURN>

Notice that an "ambiguous address" error occurs because the "sp" function code
was not included with the address. The following command should have been
entered instead:

display memory fcode sp 1000h blocked bytes <RETURN>

142

Chapter 5: Configuring the Emulator
Mapping Memaory

To emulate global chip select operation

Use thecsOattribute when mapping the boot ROM address range.

Make sure the CF_MBAR register is valid, and modify the CF_CSOADDR and
CF_CSOMASK registers to appropriate values.

Or:
Load a previously saved configuration that has appropriate values of CF_MBAR,
CF_CSOADDR, and CF_CSOMASK.

If the you're emulating boot ROM with emulation memory, load the boot ROM
code.

Run from reset.

The advantages are:
* You can put the boot ROM contents in emulation memory.

* The base address of the boot ROM does not have to be at address 0 to fetch
vectors from reset.

» If boot ROM is already in the target system, you can prevent guarded memory
accesses when running from reset.

Limitations:

The maximum amount of emulation memory that can be mapped is half the amount
of memory installed in bank 1 or one quarter the amount of memory installed in
bank 0, whichever is larger.

143

Chapter 5: Configuring the Emulator

Mapping Memory

Examples

This example shows how to use ds®@memory map attribute to emulate the
68340’s global chip select operation.

To map the boot ROM address range in emulation memonaccess the
configuration questions, and answer the questions as shown below.

Modify memory configuration? yes
Entering the following mapper commands. Specify unmapped ranges as guarded

memory to show that the fetches of the supervisor stack pointer and program
counter values after reset really come from the boot ROM address range.

80000h thru 8ffffh emulation rom csO <RETURN>
default guarded <RETURN>
Configuration file name? boot_cfg

To modify the emulator configuration registers so appropriate information is sent to
the analyzer:

modify register CF_SIM CF_MBAR to 100001h <RETURN>
modify register CF_SIM CF_CSOADDR to 80001h <RETURN>
modify register CF_SIM CF_CSOMASK to Offfdh <RETURN>

To load the supervisor stack pointer and program counter values that will be
fetched from the boot ROM after reset:

modify memory 80000h longto 0,81000h <RETURN>

To load the boot ROM program into emulation memory (NOP, NOP, BRA.B
81000H):

modify memory 81000h words to 4e71lh, 4e71h, 60fah

<RETURN>

To trace execution after reset:

trace <RETURN>

144

Chapter 5: Configuring the Emulator
Mapping Memaory

To run from reset:

run from reset <RETURN>

To display the trace:
display trace <RETURN>

Label: Address Opcode ar Status time count

Base: he mnemonic relative

ABEAERERE ORI.B #$@g8,004 m—m————————=
+@d1 BEEREEERZ $B8E supr prgm word rd (ds163 728 n3
+0d2 BEBEEAE4 ORI.B #$ 1806, AB G868 nS
+HA3 CEHERAEE % 1HEH supr prgm word rd (ds163) 728 nS
+B8@4 BEE31AEE MNOP 848 nS
+BE5 BEE31AEZ MOP 728 nS
+0dE BEB3 1064 BRA.B $E0Es 1080 728 nS
+067 BEE31AE6 MNOP 728 nS
+063 BEE31aEE NOP 728 nS
+863 BEE3laEz MOP 728 nS
+018 BEB5 1884 BRA.B 80685 1880 728 nS
+811 BEE318EE MOP 6868 nS
+A12 BEE318EE MNOP 728 nS
+813 BEB3lAEZ MNOP 728 nS
+@14 BEB31ad4 BRA.B $E0Es 10ag 728 nS
+A15 BEE31AE6 MNOF 7268 nS

Notice the supervisor stack pointer and program counter values that were loaded at
80000H and 80004H are fetched from memory locations 0 through 7 and the
program begins running at 81000H.

Suppose your boot ROM is at a higher address:

To map the boot ROM address range in emulation memory, access the
configuration questions, and answer the questions as shown below.

Modify memory configuration? yes
Entering the following mapper commands. Specify unmapped ranges as guarded

memory to show that the fetches of the supervisor stack pointer and program
counter values after reset really come from the boot ROM address range.

0ff000000h thru Off00ffffh emulation rom ¢sO <RETURN>
default guarded <RETURN>

Configuration file name? boot_cfg

145

Chapter 5: Configuring the Emulator

Mapping Memory

To modify the emulator configuration registers so appropriate information is sent to
the analyzer:

modify register CF_SIM CF_MBAR to 100001h <RETURN>
modify register CF_SIM CF_CSOADDR to 0ff000001h <RETURN>
modify register CF_SIM CF_CSOMASK to Offfdh <RETURN>

To load the supervisor stack pointer and program counter values that will be
fetched from the boot ROM after reset:

modify memory 0ff000000h longto 0, 0ff001000h <RETURN>

To load the boot ROM program into emulation memory (NOP, NOP, BRA.B
OFF001000H):

modify memory 0ff001000h words to 4e71h, 4e71h, 60fah
<RETURN>

To trace execution after reset:

trace <RETURN>

To run from reset:

run from reset <RETURN>

To display the trace:
display trace <RETURN>

146

Chapter 5: Configuring the Emulator

Mapping Memaory

Label: HAddress Opcode or Status time count

Base: he mnemonic relative

FFoBREEA ORI.B #$@@,080 —mm—————————
+dd1 FFBEaEBEZ $080A supr prgm word rd (dsl6) 726 n3
+0@2 FFBAgaE4 Illegal Instruction: $FFEE18E8 7268 nS
+683 FFABEARG §160EH supr prgm word rd (dslG} G5a n3
+B864 FFE@laEa MNOP 348 nS
+B8@5 FFE@laez MNOP 7208 nS
+0d6 FFE@la@4 BRA.B $FFaalaga 728 nS
+0@7 FFBA1806 MNOF 7268 nS
+085 FFEalopa NOP 7208 n3
+0@3 FFE@lapz MNOP 7268 nS
+018 FFBA18@4 BRA.B $FFBal1aEa 728 nS
+811 FFE@l8EE MNOF 728 nS
+6812 FFE@lapa MNOP 5868 nS
+6813 FFB@laez MNOP 7208 nS
+d14 FFB@la@4 BRA.B $FFaalaga 728 nS
+6815 FFBA1806 MNOF 7268 nS

Notice the supervisor stack pointer and program counter values that were loaded at
OFFO00000H appear to be fetched from memory locations 0FFO00000H through
OFF000007H when they are really fetched from locations 0 through 7. This is
because the upper 8 bits of the CF_CSOADDR register are sent to the analyzer
instead of A31-A24 (this is true even if Port A is set up to be address lines).

147

Chapter 5: Configuring the Emulator
Configuring the Emulator Pod

Configuring the Emulator Pod

In order to configure the emulator pod, you must first start the configuration
interface and access the "Emulator Pod Settings" configuration section (refer to the
previous "Using the Configuration Interface" section).

This section shows you how to:
» Set the reset values of the Supervisor Stack Pointer and the Program Counter.

e Set the user memory access size.

To set the reset values of the SSP and PC

Enter an even address in response to the "Reset value for Supervisor Stack
Pointer?" question.

Enter an even address in response to the "Reset value of the Program Counter?"
guestion.

When using a foreground monitor, the supervisor stack pointer must be set to an
address in emulation or target system RAM in order for the emulator to transition
into the run state, to step, or to perform other functions after emulation reset.

The "Reset value ... ?" configuration questions set the initial SSP and PC values
after emulation reset. Upon the transition from emulation reset into the emulation
monitor, the supervisor stack pointer register and the program counter are set to the
values specified, which must be 32-bit hexadecimal even addresses.

If a run from reset command is given, this configuration item has no affect and the
initial supervisor stack pointer and program counter will be retrieved from reset
vector in the vector table.

When using the background monitor, the initial values set in response to the "Reset
value ... ?" configuration questions are also used to set up the SSP and PC after
emulation reset; however, this is not necessary for proper emulator operation. If a
target system reset occurs while running in the background monitor, the supervisor
stack pointer and program counter are unaffected.

148

Chapter 5: Configuring the Emulator
Configuring the Emulator Pod

To specify the user memory access size

Answer the "User memory access size?" question.

When accessing target system memory locations or single-port emulation memory
locations, the access mode specifies the type of microprocessor cycles that are used
to read or write the value(s). For example, when the access mode is byte and a
target system location is modified to contain the value 12345678H, byte

instructions are used to write the byte values 12H, 34H, 56H, and 78H to target
system memory.

Answer "bytes" if the emulator should make 8-bit accesses to target system
memory.

Answer "words" if the emulator should make 16-bit accesses to target system
memory.

Answer "longs" if the emulator should make 32-bit accesses to target system
memory.

149

Chapter 5: Configuring the Emulator
Setting the Debug/Trace Options

Setting the Debug/Trace Options

In order to set the debug/trace options, you must first start the configuration
interface and access the "Debug/Trace Options" configuration section (refer to the
previous "Using the Configuration Interface" section).

This section shows you how to:
+ Enable/disable breaks on writes to ROM.

» Trace background cycles.

To enable/disable breaks on writes to ROM

1 Access the configuration questions.
2 Answer "yes" to the "Modify trace/debug options?" question.

3 Answer "yes" to the "Break processor on write to ROM?" question to enable
breaks; answer "no" to disable breaks.

When breaks on writes to ROM are enabled:
The emulator will break into the emulation monitor whenever the user program
attempts to write to a memory region mapped as ROM.

Even though execution breaks into the monitor, the memory location is
modified if it's in emulation ROM or target system RAM mapped as ROM.

When breaks on writes to ROM are disabled:
The emulator will not break to the monitor upon a write to ROM.

150

Chapter 5: Configuring the Emulator
Setting the Debug/Trace Options

To trace background cycles

Answer "background"” or "both" to the "Trace background or foreground
operation?" question.

Answering "background" specifies that the analyzer trace only background cycles.
This is rarely a useful setting for user program debugging.

Because the background monitor is implemented using the 68340 background
debug mode (BDM), only memory accesses are captured when tracing background

cycles.
Answering "both" specifies that the analyzer trace both foreground and backg.

cycles. You may wish to specify this option so that all emulation processor cy
may be viewed in the trace display.

151

152

Using the Emulator

153

Using the Emulator

This chapter describes general tasks you may wish to perform while using the
emulator. These tasks are grouped into the following sections:

Using the emulator configuration registers.
Loading absolute files.

Using symbols.

Using context commands.

Executing user programs (starting, stopping, stepping, and resetting the
emulator).

Using software breakpoints.
Displaying and modifying registers.
Displaying and modifying memory.
Displaying data values.

Changing the interface settings.
Using system commands.

Using simulated I/O.

Using Basis Branch Analysis.

154

Chapter 6: Using the Emulator
Using the Emulator Configuration Registers

Using the Emulator Configuration Registers

The 68340 processor contains a System Integration Module (SIM) which has the
external bus interface, four chip selects, input/output ports, and other circuitry to
reduce external logic in a typical microprocessor system. The SIM can be
programmed or configured in a variety of ways to suit the need of various systems.

The HP 64751A emulator contains circuitry that accommodates the flexibility of
the 68340 SIM and maintains consistent emulation features.

64751A EMULATOR

T T T T T T T TT T T T
| |
T — SERIAL I/0 68340 |
g TIMERS PROCESSOR |
R
G — DMA !
E | |8
T : PORTA COE¥EOL : !
: PORTB | CPU32 L7
I I 4
s 1< AS, DS g
Y | SIM I
s | > DAt ANALYSISI ©
T 1 ADDR, FC LATCH |
| : |
E | A23-A0,FC I
Mo A31-A24 I
: > D15-D0 > ! g
I q : T
| | R
| L | 0
| DE-SIM MEMORY EMUL. | I L
| MODULE[G0 | MAPPER MEMORY
| CF_SIM— |
| |
- J

155

Chapter 6: Using the Emulator
Using the Emulator Configuration Registers

In the previous figure, there is a block labeled DE-SIM module. It receives as
inputs from the 68340:

e Port A which can be address lines 31-24, interrupt acknowledge inputs, or
general purpose 1/O lines.

» Port B which can be interrupt requests, chip selects, or general purpose I/O
lines.

The DE-SIM module provides as outputs:

» Address lines A31-A24 to the memory mapper and the analyzer.
» A qualified chip select 0 (CSO0) to the memory mapper.

The 68340 SIM is configured through the registers in the SIM register class; these
registers control how the 68340 uses external signal lines to access memory.

The emulator’s DE-SIM module is configured through the registers in the CF_SIM
register class. The DE-SIM module controls how the emulator interprets the
signals from the 68340 when accessing emulation memory and passing information
to the analysis trace.

Normally, the SIM and CF_SIM registers should be programmed with the same
values so they will be working together.

One of the primary functions of the DE-SIM is to provide A31-A24 to the memory
mapper and analyzer so they will have the complete 32-bit address bus. This is
easy if Port A of the 68340 is programmed as address lines; however, if it's
programmed as an input port, for example, the upper address lines are not available
external to the 68340 (this is the case following reset). The four chip selects,
however, have access to the full 32 bit address inside the 68340. You can therefore
locate memory using a chip select at an address that is not possible to decode
externally. If properly programmed, the DE-SIM can use information in the
programming of the chip selects to re-create the upper address lines. This provides
the ability to map emulation memory at these addresses and also provides a correct
address in the analysis trace so that symbolic debugging is possible.

Normally, the DE-SIM would be programmed through the CF_SIM registers to
match the programming of the 68340 SIM as it will exist after all of the boot-up
configuration is complete. This can be done before the boot-up code is run. In fact,
the programming of the CF_SIM registers is part of the configuration and will be
loaded along with the memory map and other configuration items when a
configuration file is loaded.

156

Chapter 6: Using the Emulator
Using the Emulator Configuration Registers

The default programming of the DE-SIM matches the reset values of the 68340
SIM (refer to the MotorolMC68340 Integrated Processor User’s Manial
specific values).

If desired, the programming of the DE-SIM can be transferred into the 68340 SIM
with thesync_sim_registers to_68340_from_configpmmand. This happens
automatically each time a break to the monitor from emulation reset occurs. This
ensures that the 68340 is prepared to properly access memory when a program is
downloaded to the emulator.

Alternatively, the emulator’'s DE-SIM can be programmed from the 68340 SIM
with thesync_sim_registers from_68340_to_configommand. This is useful if
initialization code that configures the 68340 SIM exists, but you don’t what its
values are. In this case, you can use the default configuration, run from reset to
execute the initialization code, and usedyniec_sim_registers
from_68340_to_configcommand to configure the emulator to match the 68340
SIM.

At any time, you can verify if the SIM and DE-SIM are programmed the same
thesync_sim_registers differenceommand. Any differences between the two
register sets will be listed.

It should be noted that the DE-SIM module is programmed solely from the
CF_SIM register set and is therefore static with respect to the application program.
No attempt is made to update the programming of the DE-SIM by tracking
instructions that will program the 68340 SIM.

This section shows you how to:
* View the SIM register differences.
» Synchronize to the 68340 SIM registers.

» Synchronize to the emulator configuration registers.

157

Chapter 6: Using the Emulator
Using the Emulator Configuration Registers

To view the SIM register differences

» Enter thesync_sim_registers differenceommand.

Before displaying the SIM configuration register differences, make sure the
contents of the MBAR register is valid (in other words, its least significant bit
should be 1).

Examples To display the SIM register differences:

modify register SIM MBAR to 40001h <RETURN>
sync_sim_registers difference <RETURN>

MBAR = 40001 CF_MBAR = 100001
CSOMASK = ffffffff CF_CSOMASK = ffff000d
CSOADDR = 18515e60 CF_CSOADDR = ff000000
CS1MASK = fffffffo CF_CS1MASK = 00000000
CS1ADDR = 8830fcc8 CF_CS1ADDR = 00000000
CS2MASK = fff7ffff CF_CS2MASK = 00000000
CS2ADDR = e41cff24 CF_CS2ADDR = 00000000
CS3MASK = fffffffd CF_CS3MASK = 00000000
CS3ADDR = 54005ca0 CF_CS3ADDR = 00000000

To synchronize to the 68340 SIM registers

» Enter thesync_sim_registers from_68340_to_configpmmand.

The contents of the 68340 SIM registers are copied to the emulator’s configuration
registers. The contents of the MBAR register must be valid (that is, its least
significant bit should be 1).

158

Chapter 6: Using the Emulator
Using the Emulator Configuration Registers

To synchronize to the emulator configuration
registers

Enter thesync_sim_registers to_68340_from_configpmmand.

The contents of the emulator’s configuration registers are copied to the 68340 SIM
registers. The contents of the CF_MBAR register must be valid (that is, its least
significant bit should be 1).

159

Chapter 6: Using the Emulator
Loading and Storing Absolute Files

Loading and Storing Absolute Files

This section describes the tasks related to loading absolute files into the emulator
and storing memory contents into absolute files. This section shows you how to:

* Load absolute files into memory.
* Load absolute files without symbols.

» Store memory contents into absolute files.

To load absolute files

ChooseFile - Load - Executableand use the dialog box to select the absolute file.

Using the command line, enter tbad <absolute_file>command.

You can load absolute files into emulation or target system memory. You can load
IEEE-695 format absolute files. You can also load HP format absolute files. The
store memorycommand creates HP format absolute files.

If you wish to load only that portion of the absolute file that resides in memory
mapped as emulation RAM or ROM, use the command lioatsemul_mem
syntax.

If you wish to load only the portion of the absolute file that resides in memory
mapped as target RAM, use the command liloeld user_memsyntax.

If you want both emulation and target memory to be loaded, do not specify
emul_memor user_mem

160

Chapter 6: Using the Emulator
Loading and Storing Absolute Files

Examples To load the demo program absolute file, enter the following command:

load ecs.x <RETURN>

To load only portions of the absolute file that reside in target system RAM:

load user_mem absfile <RETURN>

To load only portions of the absolute file that reside in emulation memory:

load emul_mem absfile <RETURN>

To load absolute files without symbols

* ChooseFile - Load - Program Only and use the dialog box to select the absolu
file.

» Using the command line, enter thad <absolute_file> nosymbolsommand.

161

Chapter 6: Using the Emulator
Loading and Storing Absolute Files

Examples

To store memory contents into absolute files

Using the command line, enter tstere memorycommand.

You can store emulation or target system memory contents into HP format absolute
files on the host computer. Absolute files are stored in the current directory. If no
extension is given for the absolute file name, it is given a ".X" extension.

Storing memory contents into absolute files is useful when copying ROM contents
to RAM so that software breakpoints can be used. In other words, you store ROM
contents to an absolute file, re-map memory to substitute emulation RAM for the
target ROM, and load the absolute file.

To store the contents of memory locations 900H through 9FFH to an absolute file
on the host computer named "absfile":

store memory 900h thru 9ffth to absfile <RETURN>

After the command above, a file named "absfile.X" exists in the current directory
on the host computer.

162

Chapter 6: Using the Emulator
Using Symbols

Using Symbols

If symbol information is present in the absolute file, it is loaded along with the
absolute file (unless you use thesymbolsoption). Both global symbols and
symbols that are local to a program module can be displayed.

Long symbol names can be truncated in the symbols display; however, you can
increase the width of the symbols display by starting the interface with more
columns (refer to the "Setting X Resources" chapter).

This section describes how to:

* Load symbols.

» Display global symbols.

» Display local symbols. .
» Display a symbol’'s parent symbol.

» Copy-and-paste a full symbol name to the entry buffer.

To load symbols

ChooseéFile - Load — Symbols Onlyand use the dialog box to select the absolute
file.

Using the command line, enter tbad symbols <absolute_filexxommand.

Unless you use theosymbolsoption when loading absolute files, symbols are
loaded automatically. However, if you did userbgymbolsoption when loading
the absolute file, you can load the symbols without loading the absolute file again.

This option is particularly useful for loading symbols for files located in target
ROM so that you can use symbols with that code.

163

Chapter 6: Using the Emulator

Using Symbols

Examples To load symbols from the demo program:
load symbols ecs.x <RETURN>
To display global symbols
ChooseDisplay — Global Symbols
Using the command line, enter ttisplay global_symbolscommand.
Listed are: address ranges associated with a symbol, the segment the symbol is
associated with, and the offset of that symbol within the segment.
If there is more than a screen full of information, you can use the up arrow, down
arrow, <NEXT>, or <PREV> keys to scroll the information up or down on the
display.

Examples To display global symbols in the demo program:

display global_symbols <RETURN>

Global symbols in ecs.x

Procedure symbols

Procedure name Address range __ Segment 0ffset
__fflush ABAE448C - BBAB44A5S libe Jala)a]e]
_bufsync ABAB2COC - EBABZDAS libec Jala)s]e]
_dbl_tao_str ABEABZEEE - BBAB3I333 libc A1E4
_doprnt ABAB3648 - BBAB4371 libe A8 36
_exec_funecs ABBABZE8A - BBEBZEAS libe ABzC
_Findbuf ABAB44AE - BBAB4533 libc ABAD
_startup AHHEESFC - HEAHB?IE erw AEEA
_swrite ABEE47 1C - BBAB4751 libe Aanan
_wrtchk ABAB4752 - BBAB47ES libe Jala)a]e]
_=f1lsbuf ABEAE47ER - BBAB457E libc Jala)s]e]
atexit ABABZE5E - BBABZG53 libe ABAD
calloc ABBABZBCE - BBABZBF7 libe A412
clear_screen AABEEIFE - BEBBBA3E erw B1CA
close ABABAECE - BHEDEIAS env AB9R
cambsort ABHE1Z44 - BEAE143E prog A28A
do_sort ABEE1442 - BBABI4ELl prog 4438

164

Chapter 6: Using the Emulator
Using Symbols

To display local symbols

When displaying symbols, position the mouse pointer over a symbol on the symbol
display screen and click tlselectmouse button.

When displaying symbols, position the mouse pointer over the symbol, press and
hold theselectmouse button, and choo®esplay Local Symbolsfrom the popup
menu.

Position the mouse cursor in the entry buffer and enter the module whose local
symbols are to be displayed; then, chddsplay — Local Symbols ()

Using the command line, enter ttlisplay local_symbols_in <modulexommand.
To display the address ranges associated with the high-level program’s sourc

line numbers, you must display the local symbols in the file.

165

Chapter 6: Using the Emulator

Using Symbols

Examples

View the local
symbols associated
with the highlighted
symbol by choosing
this menu item.

To use the Symbols Display popup menu:

update_system

HAABABSE - BEABAESD
ARAR 1557

E
—'E Hewlett Packard Emulator/Analyzer: em68340 (m68340) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | < Demo = | Disp Sre () | Trace() | Run | Step Source
| = Your Key = | tdake |Disp Sre Prev |Run Herto() | Break | Step Asm
() imain IRecaII
Global symbols in ecs.x
Procedure symbols A
Procedure name Address range __ Segment Of fset
HAAB2CAGE - BBEABZCOB libe aaBEa

B
prog

wait_for_io Global Symbols Display F env L]
write " 0 erwv A154
write_hdwr Display Local Symbols 1o prog Az236
Paplay Parent Symbols
Static symbols
Symbal name Cut Full Symbol Name . Segment Of fset
7A5 s . stack HEHER
JSR_ENTRY Edit File Defining Symbol on ARAA
L_1_I0_check_loaop HEARAGIE e HEHER
L_2_I10_exit_loop HEARAG4A e HEHER
MONITOR_MESSAGE AEABEE174 - ABEATLYY mondata ABEA
TopOfHeap B8 16FFE Jaala]e] ¥
TopOfStack BE6 13868 heap Jaala]e]
| STATUS: M68340--Running in monitor Emulation trace complete

166

Using the command line

To display local symbols in a module:

display local_symbols_in

update_sys <RETURN>

Chapter 6: Using the Emulator

Using Symbols

Symbals in update_sysimodule!
Procedure symbols

Frocedure name

get_targets

graph_data

read_conditions

sawve_points

set_outputs

update_system

write_hdur

Filename symbals
Filename

Address
ARAR1ES4 -
ABAR1S7E -
ABAR1EE4 -
ARAR1832 -
ABABLT7A -
ABAA1S32 -
ApAR1s1z -

range
BAEEE 1500
BEBE 1R3Y
BEER1773
BEEE 1377
BEEE 1866
ABEE 1640
AHEE 1556

__ Segment

prog
prog
prog
prog
prog
prog
prog

update_sys.c

To display local symbols in a procedure:

display local_symbols_in

update_sys.save_points <RETURN>

Procedure special sumbols
Procedure special name
EMTRY

ERIT

TEXTRANGE

Address
AREE 15832
ABEE 1376

range

Symbols in update_sys{module}.save_pointsi{procedure!

Segment

prog
preg

AREA 1632 - BEBRE1SY7 prog

Offset
A386
A3ER
A386

167

Chapter 6: Using the Emulator
Using Symbols

To display address ranges associated with the high-level source line numbers:

display local_symbols_in update_sys."update_sys.c":

<RETURN>

Symbols in update_sysimodule). "update_sys.c":

Source reference symbols

Line range Address range __ Segment 0ffset
t1-#47 AAAAL53Z - ABEBISB!l prog HBEE
#45-#53 ARBALSBZ - ABAB1SCS prog ABZE
#54-#56 AABALSCE - ABARLS0! prog BB3A
#57-1#53 ARAALS0Z - ABER1SED prog BBR46
#EE-HER ARBALSEE - ABEBISF3 prog BBE2
#E1-#E1 AREALSF4 - ABAB16B3 prog BBES
#E2-#E63 HREA1EE4 - BBEB16HT prog BB7g
#E4-#64 ARABALEER - ABEBLG1Y prog HBYE
#E5-H#E5 ARBALE1E - ABAR1G629 prog ABaC
#E3-#72 ARBALEZA - ABAR1G630 prog HBSE
#73-1#75 ARBALE3E - ABER1G643 prog BBEZ
#7E-H#77 AREA 1644 prog BBES
#78-194 ARBALES4 - ABAB16EF prog BBCs
#35-#35 HREALEYE - BBEB1G8Y prog HBE4
#36-#33 ARABALE8E - ABEB 1680 prog HBFC
t166-#168A AABALEBE - ABAR1G68F prog a1z

168

Chapter 6: Using the Emulator
Using Symbols

To display a symbol’s parent symbol

* When displaying symbols, position the mouse pointer over the symbol, press and
hold theselectmouse button, and choo®&splay Parent Symbolsrom the popup

menu.
Examples
1 ¥
—'E Hewlett Packard Emulator/Analyzer: em68340 (m68340) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | < Demo = | Disp Sre () | Trace() | Run | Step Source
| = Your Key = | tdake |Disp Sre Prev |Run Herto() | Break | Step Asm
() imain IRecaII
View the pal’ent Symbaols in update_sysimodulel.save_points{procedure’ A
: Procedure special symbols
Sy_mb0| as_soqlated Procedure special name Address range __ Segment Of fset ;
with the highlighted | |ENTRY BEea 1892 prog

ExIT BEBE1376
ERTRAMGE

symbol by choosing

this menu item. — ay

\ Display Local Symbols
Display Parent Symhbols

Cut Full Symbol Hame
Edit File Defining Symbol

STATUS: M68340--Running in monitor Emulation trace complete
E

169

Chapter 6: Using the Emulator

Using Symbols

Examples

Copy the full name
of the highlighted
symbol to the entry
buffer by choosing
this menu item.

To copy-and-paste a full symbol name to the

entry buffer

When displaying symbols, position the mouse pointer over the symbol, press and
hold theselectmouse button, and chooSet Full Symbol Namefrom the popup

menu.

Once the full symbol name is in the entry buffer, you can use it with pulldown

menu items or paste it to the command line area.

By cutting the full symbol name, you get the complete names of symbols that have
been truncated. Also, you are guaranteed of specifying the proper scope of the

symbol.

1 1
—'E Hewlett Packard Emulator/Analyzer: em68340 (m68340) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help

Action keys: | < Demo = | Disp Sre () | Trace() | Run | Step Source
| = Your Key = | tdake |Disp Sre Prev |Run Herto() | Break | Step Asm
{):iupdate_sysimodulel. save_points{procedure) IRecaH
Symbols in update_sysimodulel
Procedure symbols A
Procedure name Address range __ Segment Of fset
get_targets HAAE1654 - BBEAB1E0D0 prog BAACE
graph_data HAAB137E - BBEABIAS? prog A3F2
read_conditions BEBE16E4 - BEEALYY3 prog

HARRA ARAA

Local Symhbols Display

=E po ts

set_output I prog
Display Local Symbols S:gg
Display Parent Symbols

Filename symbals
Filename

Cut Full Symbol Mame

update_sys.c

Edit File Defining Symbol

| STATUS: cws: update_sys

170

Chapter 6: Using the Emulator
Using Context Commands

Using Context Commands

The commands in this section display and control the directory and symbol
contexts for the interface.

Directory context. The current directory context is the directory accessed by all
system references for files—primarily load, store, and copy commands—if no
explicit directory is mentioned. Unless you have changed directories since
beginning the emulation session, the current directory context is that of the
directory from which you started the interface.

Symbol context. The emulator/analyzer interface and the Symbol Retrieval
Utilities (SRU) together support a current working symbol context. The current
working symbol represents an enclosing scope for local symbols. If symbols h
not been loaded into the interface, you cannot display or change the symbol ¢

This section shows you how to:
» Display the current directory and symbol context.
» Change the directory context.

* Change the symbol context.

171

Chapter 6: Using the Emulator
Using Context Commands

To display the current directory and symbol
context

* ChooseDisplay — Context.

» Using the command line, enter {w&d andpws commands.

The current directory and working symbol contexts are displayed, and also the
name of the last executable file from which symbols were loaded.

Example

. Emulator/Analyzer: Current Conte
Directory context. Directory:

t— Symbol File: fusersfguestidemofdebug_envihp64751fecs.x
Executable from Symbol Scope: update_sys
which symbols were
last loaded.

Done

Symbol context.

To change the directory context

» ChooseFile - Context— Directory and use the dialog box to select a new directory.

* Using the command line, enter tbek<directory> command.

The Directory Selection dialog box contains a list of directories accessed during the
emulation session as well as any predefined directories present at interface startup.

172

Chapter 6: Using the Emulator
Using Context Commands

You can predefine directories and set the maximum number of entries for the
Directory Selection dialog box by setting X resources (see the "Setting X
Resources" chapter).

To change the current working symbol context

ChooseéFile - Context— Symbolsand use the dialog box to select the new
working symbol context.

Using the command line, enter thws <symbol_context>ommand. (Because
cwsis a hidden command and doesn’t appear on a softkey label, you have to
in.)

You can predefine symbol contexts and set the maximum number of entries f
Symbol Scope Selection dialog box by setting X resources (see the "Setting X
Resources" chapter).

Displaying local symbols or displaying memory in mnemonic format causes the
working symbol context to change as well. The new context will be that of the
local symbols or memory locations displayed.

173

Chapter 6: Using the Emulator
Executing User Programs

Executing User Programs

You can use the emulator to run programs, break program execution into the
monitor, step through the program by high-level source lines or by assembly
language instructions, and reset the emulation processor.

When displaying memory in mnemonic format, a highlighted bar shows the current
program counter address. When you step, the mnemonic memory display is
updated to highlight the new program counter address.

When displaying resisters, the register display is updated to show you the contents
of the registers after each step.

You can open multiple interface windows to display memory in mnemonic format
and registers at the same time. Both windows are updated after stepping.

This section describes how to:

e Start the emulator running the user program.
» Stop (break from) user program execution.

» Step through user programs.

* Reset the emulation processor.

To run programs from the current PC

* ChooseExecution— Run - from PC.

* Using the command line, enter thum command.

When the emulator is executing the user program, the message "Running user
program" is displayed on the status line.

174

Chapter 6: Using the Emulator
Executing User Programs

To run programs from an address

» Position the mouse pointer in the entry buffer and enter the address you want to run
from; then, choosExecution- Run - from ().

» Using the command line, enter tha from <address>command.

Examples To run from address 9COH:

run from 9cOh <RETURN>

To run programs from the transfer address .

* ChooseExecution— Run - from Transfer Address.

* Using the command line, enter thum from transfer_address command.

Most software development tools allow you to specify a starting or entry address
for program execution. That address is included with the absolute file’s symbolic
information and is known by the interface astthasfer address

To run programs from reset

* ChooseExecution— Run - from Reset

* Using the command line, enter thum from reset command.

The run from reset command resets the emulation processor and lets the emulator
run and fetch its stack pointer and program counter value from memory.

175

Chapter 6: Using the Emulator
Executing User Programs

A resetcommand followed by mun command will load the interrupt stack pointer
and program counter values specified during configuration into the emulation
processor and run from the loaded program counter value. This is true for both
background and foreground monitors.

Examples

To run programs until an address

Position the mouse pointer in the entry buffer and enter the address you want to run
from; then, choosExecution- Run - until ().

Using the command line, enter tha until <address>command.
When you run until an address, a software breakpoint is set at the address and the
program is run from the current program counter.

When using the command line, you can combine the various types of run
commands; for example, you can run from the transfer address until another
address.

To run from the transfer address until the address of the global symbol main:

run from transfer_address until address main <RETURN>

To stop (break from) user program execution

ChooseExecution- Break.

Using the command line, enter thiwak command.

This command generates a break to the background monitor.

176

Chapter 6: Using the Emulator
Executing User Programs

If the user program executes a STOP or LPSTOP instruction, you cannot break to
the emulator’s monitor state while the processor is in the stopped state. The break
command uses the emulation processor background debug mode (BDM), and the
processor must be executing instructions in order to enter the BDM. An interrupt
from the target system will cause the 68340 to exit the stopped state; then, the break
command will work normally.

Software breakpoints and then until command allow you to stop execution at
particular points in the user program.

Examples To break emulator execution from the user program to the monitor:

break <RETURN>

To step high-level source lines

» ChooseExecution— Step Sourceand select one of the items from the cascade
menu.

» Using the command line, enter ttep sourcecommand.

When stepping through instructions associated with source lines, execution can
remain in a loop and the message "Stepping source line 1; Next PC: <address>" is
displayed on the status line. In this situation you can abort the step command by
pressing <CTRL>c.

Examples To step through instructions associated with the high-level source lines at the
current program counter:

step source <RETURN>
To step through instructions associated with high-level source lines at address
"main":

step source from main <RETURN>

177

Chapter 6: Using the Emulator
Executing User Programs

Examples

To step assembly-level instructions

ChooseExecution- Step Instruction and select one of the items from the cascade
menu.

Using the command line, enter ttepcommand.

The step command allows you to step through program execution an instruction or
a number of instructions at a time. Also, you can step from the current program
counter or from a specific address.

To step one instruction from the current program counter:
step <RETURN>

To step a number of instructions from the current program counter:

step 8 <RETURN>

To step a number of instructions from a specified address:

step 16 from 920h <RETURN>

To reset the emulation processor

ChooseExecution- Reset

Using the command line, enter tlesetcommand.

Theresetcommand causes the processor to be held in a reset stateesik,a

run, orstepcommand is entered. A CMB execute signal will also cause the
emulator to run if reset. Also, a request to access memory or registers while reset
will cause a break into the monitor.

178

Chapter 6: Using the Emulator
Using Software Breakpoints

Using Software Breakpoints

Software breakpoints provide a way to accurately stop the execution of your
program at selected locations.

Note Version A.04.00 or greater of the HP 64700 system firmware provides support for
permanent as well as temporary breakpoints. If your version of HP 64700 system
firmware is less than A.04.00, only temporary breakpoints are supported.

When you set a software breakpoint at an address, the instruction at that address is
replaced with a BGND instruction. When the BGND instruction is executed,

control is passed to the emulator’'s monitor program, and the original instruction is
restored in the user program.

If the BGND instruction was not inserted as the resultrobdify
software_breakpoints secommand, the "Undefined software breakpoint”
message is displayed on the status line.

In order to successfully set a software breakpoint, the emulator must be able to
write to the memory location specified. Therefore, software breakpoints cannot be
set in target memory while the emulator is reset, and they can never be set in target
ROM. (You can, however, copy target ROM to emulation memory by storing the
contents of target ROM to an absolute file, re-mapping the range as emulation
RAM, and loading the absolute file.)

Another way to break user program execution at a certain point is to break on the
analyzer trigger.

This section shows you how to:
» Display the breakpoints list.
» Enable/disable breakpoints.
» Set a permanent breakpoint.
» Set a temporary breakpoint.
» Set all breakpoints.

» Deactivate a breakpoint.

179

Chapter 6: Using the Emulator
Using Software Breakpoints

CAUTION

* Re-activate a breakpoint.
» Clear a breakpoint.

* Clear all breakpoints.

Software breakpoints should not be set, cleared, enabled, or disabled while the
emulator is running user code. If any of these commands are entered while the
emulator is running user code, and the emulator is executing code in the area where
the breakpoint is being modified, program execution may be unreliable.

To display the breakpoints list

ChooseDisplay - Breakpoints or Breakpoints - Display.

Using the command line, enter tiisplay software_breakpointscommand.

The breakpoints display shows the address and status of each breakpoint currently
defined. If symbolic addresses are turned on (when setting the display modes), the
symbolic label associated with a breakpoint is also displayed. Also, the breakpoints
display shows whether the breakpoint feature is enabled or disabled.

Software breakpoints :enabled
addre label taty
AREARFCA maintmodule). "main.c": line 36 temporary
BEEREFCA Bsp maintmodule). "main.c": line 38 pending
ABABAFDZ mainimodule). "main.c”: line 1B2 permanent
ABEBGEFFC maintmodule). "main.c": line 187 inactivated
The status of a breakpoint can be:
temporary Which means the temporary breakpoint has been set but not

encountered during program execution. These breakpoints are
removed when the breakpoint is encountered.

180

Chapter 6: Using the Emulator
Using Software Breakpoints

pending Which means the temporary breakpoint has been set but not
encountered during program execution. These breakpoints are
inactivated when the breakpoint is encountered.

permanent Which means the permanent breakpoint is active.

inactivated Which means the breakpoint has been inactivated somehow.
Temporary breakpoints are inactivated when they are
encountered during program execution. Both temporary and
permanent breakpoints may be inactivated using the breakpoints
display popup menu.

In the breakpoints display, a popup menu is available. You can set, inactivate, or
clear breakpoints as well as enable or disable the breakpoints feature from the
popup menu.

To enable/disable breakpoints

Choose th8reakpoints - Enable toggle.

When displaying the breakpoint list, press and hold&hectmouse button and
then choos&nable/Disable Software Breakpointgrom the popup menu.

Using the command line, enter tmedify software_breakpoints enableor
modify software_breakpoints disablecommand.

The breakpoints feature must be enabled before you can set, inactivate, or clear
breakpoints.

If breakpoints were set when the feature was disabled, they are "inactivated" when
the feature is re-enabled, and you must set them again.

The emulator/analyzer interface will enable software breakpoints whenever the
XEnv_68k_exceptsymbol is present in the symbol data base.

The run-time library provided with the 68332 C Cross Compiler uses software
breakpoints to interrupt program execution when exceptions (for example, divide

181

Chapter 6: Using the Emulator
Using Software Breakpoints

by zero) are encountered. If software breakpoints are disabled, exception
processing may result in "access to guarded memory" errors and/or other
unpredictable behavior. To prevent this, a special global symbol,
XEnv_68k_exceptis included in the library.

When theXEnv_68k_exceptsymbol is present, the 68340 emulator writes a value
to this location. The value tells the run-time library to use the BGND instruction to
perform a software break.

182

Examples

Bring up menu and
choose this item to
change states.

Chapter 6: Using the Emulator
Using Software Breakpoints

To enable software breakpoints using the breakpoints display popup menu:

E E
—'E Hewlett Packard Emulator/Analyzer: em68340 (m68340) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help

Action keys: | < Demo = | Disp Sre () | Trace() | Run | Step Source
| = Your Key = | tdake |Disp Sre Prev |Run Herto() | Break | Step Asm
() imain IRecaII
Sof tware breakpoints :disabled
addre label taty A
BARABEFCH main{module). "main.c": line 36 inactivated
BEBAAFCA Bsp mainimoduled. "main.c": line 38 inactivated
BARABFDZ main{module). "main.c": line B2 inactivated
ABBREFFC maintmodulel. "main.c” line 187 inactivated
Choose Action for Highlighted Line
Fetfinactbeate Broakpoint
Clegy {delete) Breakpoby
Choose Action for All Breakpoints
Enable/Disable Software Ereakpoints
Set Al Breakpoints
Clear {delete]) All Ereakpoints ¥
| STATUS: M68340--Running in monitor Software break: 000000fcalsp
E E

183

Chapter 6: Using the Emulator
Using Software Breakpoints

To set a permanent breakpoint

When displaying memory in mnemonic format, position the mouse pointer over the
program line at which you wish to set the breakpoint and clicketeetmouse

button. Or, press and hold teelectmouse button and chooSet/Clear Software
Breakpoint from the popup menu.

Place an absolute or symbolic address in the entry buffer; then, choose
Breakpoints - Permanent ()

Using the command line, enter tmedify software_breakpoints set <address>
permanentcommand.

Permanent breakpoints are available if your version of HP 64700 system firmware
is A.04.00 or greater.

The breakpoints feature must be enabled before individual breakpoints can be set.

Note that you must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data).

When displaying memory in mnemonic format, asterisks (*) appear next to
breakpoint addresses. An asterisk shows the breakpoint is active. Also, if
assembly level code is being displayed, the disassembled instruction mnemonic at
the breakpoint address will show the breakpoint instruction.

184

Chapter 6: Using the Emulator
Using Software Breakpoints

Examples To set permanent breakpoints using the mnemonic memory display popup menu:
E
—'E Hewlett Packard Emulator/Analyzer: em68340 (m68340)
File Display Modify Execution Breakpoints Trace Settings Help
lick this [Action keys: | < Demo = | Disp Sre () | Trace() | Run |Step Source
Click t I,S Ine to set @ | = Your Key = | tdake |Disp Sre Prev |Run Herto() | Break | Step Asm
breakpoint.
() imain IRecaII
Memory :Bsp imnemonic (file = mainimoduled. "main.c”:
Click this line to address lshel data A
| b kpoi 31 extern wvoid update_system(}; /% update system wvariables #/
Clear a brea pOInt' 3z extern void interrupt_sim(}; /% simulate an interrupt */
(Asterisks mark set 93 extern void do_sort(}; /% sets up ascii array and call
. 34
breakpoints.) 35 mainl)
36 {
97 init_system(};
* 98 proc_spec_init{};
33
: 168 while {true’
Bring up menu and 101 {
choose this item to update_systemi); = - e
183 num_checks++; oose Action for Highlighted Line
set (Or C!ear) a 184 interrupt_sim{&num] SetiCl Softw Breakpoint
breakpoint on the W et/Clear Software Breakpoin
. . . graph_datall); i
highlighted line. | proo. apesifio(y, |EditSource
Run Until i
| STATUS: HB8340--Stepping complete BN N
¢ Trace After ;

To set a temporary breakpoint

» Place an absolute or symbolic address in the entry buffer; then, choose
Breakpoints — Temporary () (or Breakpoints - Set ()if your version of
HP 64700 system firmware is less than A.04.00).

» Using the command line, enter tmedify software_breakpoints set <address>
temporary or modify software_breakpoints set <addresseommand.

The breakpoints feature must be enabled before individual breakpoints can be set.

185

Chapter 6: Using the Emulator
Using Software Breakpoints

Note that you must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data).

When displaying memory in mnemonic format, asterisks (*) appear next to
breakpoint addresses. An asterisk shows the breakpoint is active. Also, if
assembly level code is being displayed, the disassembled instruction mnemonic at
the breakpoint address will show the breakpoint instruction.

To set all breakpoints

* When displaying the breakpoint list, position the mouse pointer within the
breakpoints display screen, press and holdefectmouse button, and chodSet
All Breakpoints from the popup menu.

» ChooseBreakpoints - Set All.

» Using the command line, enter tmedify software_breakpoints secommand.

Breakpoints must be enabled before being set.

To deactivate a breakpoint

* When displaying breakpoints, position the mouse pointer over the line displaying
the active breakpoint and click teelectmouse button. Or, press and hold the
selectmouse button and chooSet/Inactivate Breakpointfrom the popup menu.

A deactivated breakpoint remains in the breakpoint list and can be re-activated
later. Deactivating a breakpoint is different than clearing a breakpoint because a
cleared breakpoint is removed from the breakpoints list.

186

Chapter 6: Using the Emulator
Using Software Breakpoints

To re-activate a breakpoint

* When displaying breakpoints, position the mouse pointer over the line displaying
the inactivated breakpoint and click gelectmouse button. Or, press and hold the
selectmouse button and chooSet/Inactivate Breakpointfrom the popup menu.

The "inactivated" breakpoint either becomes "temporary" (or "pending") if it was
set as a temporary breakpoint or "permanent” if it was set as a permanent
breakpoint.

187

Chapter 6: Using the Emulator
Using Software Breakpoints

Examples

To re-activate breakpoints using the breakpoints display popup menu:

Change status with a
mouse click on this

line (menu and
highlight do not
appear).

Choose this menu
item to change the
state of the
highlighted
breakpoint.

inactiva

H line

maintimodulel. "main. 187

Choose Action for Highlighted Line

Setflnactivate Ereakpoint

Clear {delete) Breakpoint

Choose Action for All Breakpoints
Enable/Disable Software Ereakpoints
Set All Breakpoints
Clear {delete]) All Ereakpoints

—'E Hewlett Packard Emulator/Analyzer: em68340 (m68340) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | < Demo = | Disp Sre () | Trace() | Run | Step Source

| = Your Key = | tdake |Disp Sre Prev |Run Herto() | Break | Step Asm

() imain IRecaII

Sof tware breakpoints :enabled

addre label taty A
BEBAAFCA mainimoduled. "main.c” line 36 inactivated
BEBAAFCA Bsp mainimoduled. "main.c” line 38 permanent
BRBAAFDZ mainimodulel. "main.c” line 1B2 permanent

| sTATUS:

ME68340--5tepping complete Emulation trace complete

188

Chapter 6: Using the Emulator
Using Software Breakpoints

To clear a breakpoint

When displaying memory in mnemonic format, position the mouse pointer over the
program line at which you wish to clear a currently set breakpoint (notice the
asterisk at the left of the line) and click g&ectmouse button. Or, press and hold

the selectmouse button and chooSet/Clear Software Breakpointfrom the

popup menu.

When displaying breakpoints, position the mouse pointer over the line displaying
the breakpoint you wish to clear, press and holgéfectmouse button, and
chooseClear (delete) Breakpointfrom the popup menu.

Place an absolute or symbolic address in the entry buffer; then choose
Breakpoints Clear ().

Using the command line, enter tmedify software_breakpoints clear <address>
command.

When you clear a breakpoint, it is removed from the breakpoints list.

189

Chapter 6: Using the Emulator
Using Software Breakpoints

Examples To clear a software breakpoint using the breakpoints display popup menu:
E E
—'E Hewlett Packard Emulator/Analyzer: em68340 (m68340) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | < Demo = | Disp Sre () | Trace() | Run | Step Source
| = Your Key = | tdake |Disp Sre Prev |Run Herto() | Break | Step Asm
() imain IRecaII
Sof tware breakpoints :enabled
. addre label taty A
Bnng Up the menu BARABEFCH mainimoduler.” line 36 inactivated

i BEBAAFCA Bsp mainimoduled.” line 38 permanent
and choose this item BRBAAFDZ mainimodulel.” H line 1B2 permanent
to clear the d AFFC mainimodul nain.c’: ' permanent

highlighted Choose Action for Highlighted Line

Setflnactivate Ereakpoint

breakpoint. —
\ Clear {delete) Breakpoint

Choose Action for All Breakpoints
Enable/Disable Software Ereakpoints
Set All Breakpoints
Clear {delete]) All Ereakpoints v

| STATUS: ME68340--5tepping complete Emulation trace complete
E 13

190

Chapter 6: Using the Emulator
Using Software Breakpoints

To clear all breakpoints

» When displaying breakpoints, position the mouse pointer within the Breakpoints
Display screen, press and hold sieéectmouse button, and chooSéear (delete)
All Breakpoints from the popup menu.

» ChooseBreakpoints - Clear All.

» Using the command line, enter tmedify software_breakpoints clearcommand.

191

Chapter 6: Using the Emulator
Displaying and Modifying Registers

Displaying and Modifying Registers
This section describes tasks related to displaying and modifying emulation
processor registers.

You can display the contents of an individual register or of all the registers. The
register classes and names are listed in the following table.

Register Class | Register Description
BASIC PC Program Counter
ST Status Register
(General USP User Stack Pointer
Registers) SSP Supervisor Stack Pointer
DO - D7 Data Registers 0 through 7
AO - A7 Address Registers 0 through 7
VBR Vector Base Register
SFC, DFC Alternate Function Code Registers

192

Chapter 6: Using the Emulator

Displaying and Modifying Registers

Register Class | Register Description
SIM MBAR Module Base Address Register
SIM_MCR Module Configuration Register
(System SYNCR Clock Synthesizer Control Register
Integration AVR Autovector Register
Module) RSR Reset Status Register
PORTA Port A Data
DDRA Port A Data Direction
PPARA1 Port A Pin Assignment 1
PPARA2 Port A Pin Assignment 2
PORTB Port B Data
PORTB1 Port B Data
DDRB Port B Data Direction
PPARB Port B Pin Assignment
SWIvV Software Interrupt Vector
SYPCR System Protection Control
PICR Periodic Interrupt Control Register
PITR Periodic Interrupt Timing Register
SWSR Software Service
CSOMASK Address Mask CSO
CSOADDR Base Address CSO
CS1IMASK Address Mask CS1
CS1ADDR Base Address CS1
CS2MASK Address Mask CS2
CS2ADDR Base Address CS2
CS3MASK Address Mask CS3
CS3ADDR Base Address CS3
DMA1/2 DMA_MCR1/2 Module Configuration Register
INTR1/2 Interrupt Register
(DMA CCR1/2 Channel Control Register
Controller CSR1/2 Channel Status Register
Modules FCR1/2 Function Code Register
1and2) SAR1/2 Source Address Register
DAR1/2 Destination Address Register
BTC1/2 Byte Transfer Counter

193

Chapter 6: Using the Emulator
Displaying and Modifying Registers

Register Class | Register Description

SERIAL SERIAL_MCR Module Configuration Register
ILR Interrupt Level

(Serial Module) | IVR Interrupt Vector
MR1A Mode Register 1A
SRA Status Register A
CSRA Clock-Select Register A
CRA Command Register A
RBA Receiver Buffer A
TBA Transmitter Buffer A
IPCR Input Port Change Register
ACR Auxiliary Control Register
ISR Interrupt Status Register
IER Interrupt Enable Register
MR1B Mode Register 1B
SRC Status Register B
CSRB Clock-Select Register B
CRB Command Register B
RBB Receiver Buffer B
TBB Transmitter Buffer B
IP Input Port Register
OPCR Output Port Control Register
OP_SET Output Port Bit Set
OP_RST Output Port Bit Reset
MR2A Mode Register 2A
MR2B Mode Register 2B

TIMER1/2

(Timer Modules
1 and 2)

TIMER_MCR1/2
IR1/2

CR1/2

SR1/2

CNTR1/2
PREL11/2
PREL21/2
COM1/2

Module Configuration Register
Interrupt Register

Control Register
Status/Prescaler Register
Counter Register

Preload 1 Register

Preload 2 Register

Compare Register

194

Chapter 6: Using the Emulator

Displaying and Modifying Registers

Register Class | Register Description

CF_SIM CF_MBAR Module Base Address Register
CF_SIM_MCR Module Configuration Register

(Emulator CF_PPARA1 Port A Pin Assignment 1

Configuration | CF_PPARA2 Port A Pin Assignment 2

Registers) CF_CSOMASK Address Mask CS0O
CF_CSOADDR Base Address CS0O
CF_CS1MASK Address Mask CS1
CF_CS1ADDR Base Address CS1
CF_CS2MASK Address Mask CS2
CF_CS2ADDR Base Address CS2
CF_CS3MASK Address Mask CS3
CF_CS3ADDR Base Address CS3

195

Chapter 6: Using the Emulator
Displaying and Modifying Registers

Examples

To display register contents

ChooseDisplay - Registers

Using the command line, enter tiisplay registerscommand.

When displaying registers, you can display classes of registers and individual
registers.

The least significant bit of the emulation processor's MBAR register must be a 1
(which means the MBAR contents are valid) before you can display or modify
registers in the SIM, DMA1, DMA2, SERIAL, TIMER1, or TIMER2 register
classes.

The contents of write-only registers cannot be displayed.

To display the basic register contents:

display registers <RETURN>

To display the SIM module configuration register:

modify register SIM MBAR to 100001h <RETURN>
display registers SIM SIM_MCR <RETURN>

To display the contents of the emulator configuration registers (CF_SIM class):

display registers CF_SIM <RETURN>

196

Chapter 6: Using the Emulator
Displaying and Modifying Registers

To modify register contents

» ChoosaModify - Registers...and use the dialog box to name the register and
specify its value.

Clicking the "Recall" pushbutton

lets you select register names and
values from predefined or previously
specified entries.

er: Modify Registe

Placing the mouse pointer in the tex ~Modify Register

entry area lets you type in the register W |Reca||

Walue ;| IRecaII

name and value.

To define the type of value, press Value Type | Hex = |
and hold theommand selechouse I Read Current Register Value
button and drag the mouse to select

the value type. [ox [Apply

Clicking this checkbox causes the
current value of the named register to
be placed in the "Value" text entry

area.
Clicking this button modifies Clicking this button cancels

Clicking this button modifies the the register to the value modification and closes the

register to the value specified and specified and leaves the dialogdialog box.

closes the dialog box. box open.

» Using the command line, enter tmedify register <register> to <value>
command.

You can modify the emulator configuration registers (CF_SIM register class);
however, any changes you make this way are not saved when you save the
configuration. You must modify the configuration to have emulator configuration
register changes saved.

197

Chapter 6: Using the Emulator
Displaying and Modifying Memory

Displaying and Modifying Memory

You can display and modify the contents of memory in hexadecimal formats and in
real number formats. You can also display the contents of memory in assembly
language mnemonic format.

This section shows you how to:

» Display memory.

» Display memory in mnemonic format.

» Display memory in mnemonic format at the current PC.
» Return to the previous mnemonic display.

» Display memory in hexadecimal format.

» Display memory in real number format.

» Display memory at an address.

» Display memory repetitively.

* Modify memory.

* Modify memory at an address.

To display memory

* ChooseDisplay - Memory.

This command either re-displays memory in the format specified by the last
memory display command, or, if no previous command has been executed, displays
memory as hexadecimal bytes beginning at address zero.

198

Chapter 6: Using the Emulator
Displaying and Modifying Memory

To display memory in mnemonic format

To display memory at a particular address, place an absolute or symbolic address in
the entry buffer; then, chooBésplay -~ Memory - Mnemonic (), or, using the
command line, enter thiisplay memory <address> mnemonicommand.

To display memory at the current program counter address, choose
Display -~ Memory — Mnemonic at PC or, using the command line, enter the
display memory mnemonic at_pcommand.

A highlighted bar shows the location of the current program counter address. This
allows you to view the program counter while stepping through user program
execution.

Whether source lines, assembly language instructions, or symbols are include
the display depends on the modes you choose with the

Settings— Source/Symbols Modesr Settings— Display Modespulldown menu
items. See the "Changing the Interface Settings" section.

If symbols are loaded into the interface, the default is to display source only.

To return to the previous mnemonic display

ChooseDisplay - Memory - Mnemonic Previous

Using the command line, enter ttlisplay memory mnemonic previous_display
command.

This command is useful for quickly returning to the previous mnemonic memory
display.

For example, suppose you are stepping source lines and you step into a function
that you would like to step over. You can return to the previous mnemonic
memory display, set a breakpoint at the line following the function call, and run the
program from the current program counter.

199

Chapter 6: Using the Emulator
Displaying and Modifying Memory

Examples

To display memory in hexadecimal format

Place an absolute or symbolic address in the entry buffer; then, choose
Display - Memory — Hex () and select the size from the cascade menu.

Using the command line, enter ttisplay memory <address> blocked <size>
command.

This command displays memory as hexadecimal values beginning at the address in
the entry buffer.

To display memory in absolute word format:

display memory ascii_old_data absolute words <RETURN>
Memory :Bsp fwords rabsolute :update

addre label data :he iascii
ABEAYZ0R _ascii_old_d 2628

ABRATZ0C 2BzA

ABHATZ0E 26834 4
ABHETZER 3Gea g.
ABHETZEZ 2354 tP
ABHETZE4 6173 as
ABHETZER 20824

ABEE72ES 34ea 4.
ABHEYZER 2628

ABHETZEC 3736 76
ABHETZEE 2E32 .2
ABHETZFA Jz2ea 2.
ABHETZF 2 2353 jiss)
ABHETZF 4 7769 wi
ABHETZFE 20824

ABEE72F 3 31e@ 1.
ABHEYZFA aB4C L

200

Chapter 6: Using the Emulator
Displaying and Modifying Memory

To display memory in blocked byte format:

display memory ascii_old_data blocked bytes <RETURN>

Memary :Bsp rbytes rbleocked :update
addre data ihe iascii

ABEAY20R-E1 28 28 28 28 28 34 38 @A 48.
ABEATZEZ-E3 23 58 61 73 =28 2B 34 @A #FPas 4.
ABEATZER-F 1 28 28 37 36 2E 32 32 @A 76 22 .
ABEATZ2FZ2-F3 23 53 ¥Y7 B3 =28 Z@ 31 @A S wi 1.
ABEA7ZFR-81 A 4C 45 41 52 45 44 @A .LER RED.
ABHE7382-89 4C B BE 28 28 2@ 31 @A Len 1.
ABHA73BA-11 43 4C 45 41 52 45 44 @A CLER RED.
ApEaY312-13 41 Y6 65 28 38 ZE 38 @A Ave a.e.
ABEAY31R-21 43 4C 45 41 52 45 44 @A CLER RED.
ABRAT3Z22-23 43 4C 45 41 52 45 44 @A CLEAR RED.
ABEAT732A-31 43 4C 45 41 52 45 44 @A CLEAR RED.
ABHA7332-33 43 4C 45 41 52 45 44 @A CLER RED.
ABHA733A-41 43 4C 45 41 52 45 44 @A CLER RED.
ABHET342-43 43 4C 45 41 52 45 44 @A CLER RED.
ABHA734A-51 43 4C 45 41 52 45 44 @A CLER RED.
ABEEY352-53 43 4C 45 41 52 45 44 @A CLER RED.
ABHAY35A-61 43 4C 45 41 52 45 44 @A CLER RED.

To display memory in real number format

Place an absolute or symbolic address in the entry buffer; then, choose
Display—Memory - Real () and select the size from the cascade menu.

Using the command line, enter ttlisplay memory <address> real <size>
command.

Displays memory as a list of real number values beginning at the address in the
entry buffer. Short means four byte real numbers and long means eight byte real
numbers.

201

Chapter 6: Using the Emulator
Displaying and Modifying Memory

Examples To display memory in 64-bit real number format:
display memory real long <RETURN>
Memary :Bsp :long real :update

addre label data :real
AREB720A _ascii_old_d E.8134798157437BE- 154
AREETZER 1. 37554980 1 174B3E- 138
AREE7ZER B. B84783378053044E - 154
BREE7ZF2 1. 6346646 1035068E- 138
BREE7ZFA 3. 145289638 168 13E-307
AREE73E2 1. 876155244346 36E+A60
AREE73EA 1. 59148324067 205E+016
AREE73 12 2.34828830112762E+0A7
AREE73 1A 1. 59148324067 205E+016
AREE7IZ2 1. 59148324067 205E+A16
AREE7IZA 1.59148324067205E+016
BREE7I2 1. 59148324067 205E+816
BREE7I3A 1. 59148324067 205E+016
BBEE7I42 1. 59148324067 205E+A16
AREE734A 1.59148924067205E+816
AREE7352 1.591489240672B5E+A16
AREE73SA 1. 59148324067 205E+016

To display memory at an address

» Place an absolute or symbolic address in the entry buffer; then, choose
Display—Memory - At ().

This command displays memory in the same format as that of the last memory
display command. If no previous command has been issued, memory is displayed
as hexadecimal bytes.

202

Chapter 6: Using the Emulator
Displaying and Modifying Memory

To display memory repetitively
ChooseDisplay - Memory - Repetitively.

Using the command line, enter ttisplay memory repetitively command.

The memory display is constantly updated. The format is specified by the last
memory display command.

This command is ignored if the last memory display command was a mnemonic
display.

To modify memory .

ChooseModify -~ Memory and complete the command using the command line.

To modify memory at a particular address, place an absolute or symbolic address in
the entry buffer; then, choosodify . Memory at () and complete the command
using the command line.

Using the command line, enter tmedify memory command.

You can modify the contents of one memory location or a range of memory
locations. Options allow you to modify memory in byte, short, word, and real
number formats.

203

Chapter 6: Using the Emulator
Displaying Data Values

Displaying Data Values

The data values display lets you view the contents of memory as data types. You
can display data values in the following formats:

bytes

8-bit integers

unsigned 8-bit integers
chars

words

16-bit integers

unsigned 16-bit integers
long words

32-bit integers

unsigned 32-bit integers

This section shows you how to:
» Display data values.
* Clear the data values display and add a new item.

* Add item to the data values display.

To display data values

ChooseDisplay - Data Values

Using the command line, enter tiisplay datacommand.

Items must be added to the data values display before you can use this command.

The data display shows the values of simple data types in the user program. When
the display mode setting turns ON symbols, a label column that shows symbol
values is added to the data display.

Step commands and commands that cause the emulator to enter the monitor (for
example, encountering a breakpoint) cause the data values screen to be updated.

204

Chapter 6: Using the Emulator
Displaying Data Values

To clear the data values display and add a new
item

Place an absolute or symbolic address in the entry buffer; then, choose
Display - Data Values- New () and select the data type from the cascade menu.

Using the command line, enter itisplay data <address>command.

To add items to the data values display

Place an absolute or symbolic address in the entry buffer; then, choose
Display - Data Values- Add () and select the data type from the cascade menu.

Using the command line, enter itisplay data , <address>ommand.

205

Chapter 6: Using the Emulator
Changing the Interface Settings

Changing the Interface Settings

This section shows you how to:
» Set the source/symbol modes.

* Set the display modes.

To set the source/symbol modes

To display assembly language mnemonics with absolute addresses, choose

Settings— Source/Symbol Modes. Absolute, or, using the command line, enter
theset source off symbols offommand.

To display assembly language mnemonics with absolute addresses replaced by
global and local symbols where possible, ch&ettings- Source/Symbol

Modes- Symbols or, using the command line, enter $ie¢ source off symbols
on command.

To display assembly language mnemonics intermixed with high-level source lines,

chooseSettings— Source/Symbol Modes. Source Mixed or, using the command
line, enter theset source on symbols ooommand.

To display only high-level source lines, cho&sttings- Source/Symbol

Modes- Source Only, or, using the command line, enter sie¢ source only
symbols oncommand.

The source/symbol modes affect mnemonic memory displays and trace displays.

Each display mode cascade menu choice is a toggle. Choosing one of these items
causes it to be the only one active and toggles all others off. Provided that symbols
were loaded, the interface defaults to:

» Source only for mnemonic memory displays.

» Source mixed for trace listing displays.

206

Chapter 6: Using the Emulator
Changing the Interface Settings

To set the display modes

» ChooseSettings- Display Modes...to open the display modes dialog box.

~SourcefSymbols View

Press and hold thszlect \

mouse button and drag the
mouse to select "Source Only",
"Source Mixed", or "Off". Source in Trace |Source Mixed =

Tab Expansion (2 to 15 Spaces)

il Symbolic Addresses

urce in Memory | Source Only =

Clicking toggles whether
symbolic information is
displayed.

tMnemonic Field
Move the mouse pointer to the Symbols in Mnemonic Field

text entry area and type in the

value. Descriptions of the Source Lin

modes follow. Source: (60 to 253) All Others: (1 to 80)

Clicking toggles auto update - il Memory Displays (Except Mnemonic)
settings. -] Trace Display

7 Default All Settings

Clicking this checkbox
changes all display mode OK Apply Cancel |
settings to their defaults.

Clicking this button saves your Clicking this button saves Clicking this button cancels your
changes and closes the dialog your changes and leaves thehanges and closes the dialog box.
box. dialog box open.

207

Chapter 6: Using the Emulator
Changing the Interface Settings

Source/Symbols View

Source in Memoryspecifies whether source lines are included, mixed with
assembly code, or excluded from mnemonic memory displays.

Source in Tracespecifies whether source lines are included, mixed with stored
states, or excluded from trace displays.

Symbolic Addressespecifies whether symbols are included in displays.

Tab Expansionsets the number of spaces displayed for tabs in source lines.

Source/Symbols View

Label Field sets the width (in characters) of the address field in the trace list or
label (symbols) field in any of the other displays.

Mnemonic Field sets the width (in characters) of the mnemonic field in memory
mnemonic, trace list, and register step mnemonic displays. It also changes the
width of the status field in the trace list.

Symbols in Mnemonic Fieldsets the maximum width of symbols in the mnemonic
field of the trace list, memory mnemonic, and register step mnemonic displays.

Source Linessets the width (in characters) of the source lines in the memory
mnemonic display.

Auto Update

Memory Displaystoggles whether memory displays are automatically updated
after commands that change memory contents or whether you must enter memory
display commands to update the display. You may wish to turn off memory
display updates, for example, when displaying memory mapped 1/O.

Trace Displaystoggles whether trace displays are automatically updated when

trace measurements complete or whether you must enter trace display commands to
update the display. You may wish to turn off trace display updates in one
emulator/analyzer window in order to compare the display with a new trace display
in another emulator/analyzer window.

208

Chapter 6: Using the Emulator
Using System Commands

Using System Commands

With the system commands, you can:

» Set UNIX environment variables while in the Softkey Interface.
» Display the name of the emulation module.

» Display the event log.

» Display the error log.

+ Editfiles.

» Copy information to a file or printer.

* Open a terminal emulation window.

To set UNIX environment variables

» Using the command line, enter thet <VAR>command.

You can set UNIX shell environment variables from within the Softkey Interface
with theset <environment_variable> = <valuexommand.

Examples To set the PRINTER environment variable to "lp -s":

set PRINTER ="Ip -s" <RETURN>

After you set an environment variable from within the Softkey Interface, you can
verify the value of it by enteringet <RETURN>,

209

Chapter 6: Using the Emulator
Using System Commands

Examples

To display the name of the emulation module

Using the command line, enter th@me_of modulecommand.

While operating your emulator, you can verify the name of the emulation module.
This is also the logical name of the emulator in the emulator device file.

To display the name of your emulation module:

name_of module <RETURN>

The name of the emulation module is displayed on the status line.

To display the event log

ChooseDisplay - Event Log.

Position the mouse pointer on the status line, press and halel¢ltenouse
button, and then chooisplay Event Logfrom the popup menu.

Using the command line, enter tlisplay event_logcommand.

The last 100 events that have occurred during the emulation session are displayed.

The status of the emulator and analyzer are recorded in the event log, as well as the
conditions that cause the status to change (for example, software breakpoints and
trace commands).

210

Chapter 6: Using the Emulator
Using System Commands

To display the error log

* ChooseDisplay - Error Log .

» Position the mouse pointer on the status line, press and halel¢licenouse
button, and then chooSisplay Error Log from the popup menu.

» Using the command line, enter tilisplay error_log command.

The last 100 error messages that have occurred during the emulation session are

displayed.

211

Chapter 6: Using the Emulator
Using System Commands

To edit files

ChooseéFile - Edit - File and use the dialog box to specify the file name.

To edit a file based on an address in the entry buffer, place an address reference
(either absolute or symbolic) in the entry buffer; then, chBdse. Edit — At ()
Location.

To edit a file based on the current program counter, chtilese Edit — At PC
Location.

To edit a file associated with a symbol when you are displaying symbols, position
the mouse pointer over the symbol, press and holskleetmouse button, and
chooseEdit File At Symbol from the popup menu.

To edit a file when displaying memory in mnemonic format, position the mouse
pointer over the line of source where you want to begin the edit, press and hold the
selectmouse button, and choo&dit Source from the popup menu.

When editing files at addresses, the interface determines which source file contains
the code generated for the address and opens an edit session on the file. The
interface will issue an error if it cannot find a source file for the address.

The interface will choose the "vi" editor as its default editor, unless you specify
another editor by setting an X resource. Refer to the "Setting X Resources" chapter
for more information about setting this resource.

You must load symbols before most commands will work because symbol
information is needed to be able to locate the files.

212

Examples

Choosing this menu
item brings up a
terminal window
with an edit session
open on the file
where the
highlighted symbol is
defined.

—_—

Chapter 6: Using the Emulator
Using System Commands

To edit a file that defines a symbol:

f t
—'E Hewlett Packard Emulator/Analyzer: em68340 (m68340) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | < Demo = | Disp Sre () | Trace() | Run | Step Source
| = Your Key = | tdake |Disp Sre Prev |Run Herto() | Break | Step Asm
() imain IRecaII
Global symbols in ecs.x
Procedure symbols
Procedure name Address range __ Segment
realloc HAAB2AFA - BBRABZBCS libe
save_points [p FARARRA
set_outputs Global Symbols Display prog
sprintf . libe
strepud Display Local Symbols prog
strnomp Drgplay Parent Symbols libc
unlink e
update_system | Cut Full Symbol Name prog
{@=ts=For—io__ TEditFile Defining Symbol e
write [=1akty
write_hdwr HEAAE1812 - BBEAB1EEE prog
Static symbols
Symbal name Address range __ Segment
?AS HEABF 156 stack
JSR_ENTRY HEaAB43C2 mon
| STATUS: M68340--Running in monitor Emulation trace complete Tl
t f

213

Chapter 6: Using the Emulator
Using System Commands

Choosing this menu
item brings up a
terminal window
with an edit session
open on the file
where the
highlighted source

To edit afile at a source line:

curr_loct++;
if {curr_loc >

NUH_OF_0LD

curr_los = B; /*BUGIITTI+/

Choose Action for Highlighted Line

—'E Hewlett Packard Emulator/Analyzer: em68340 (m68340) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | < Demo = | Disp Sre () | Trace() | Run | Step Source

| = Your Key = | tdake |Disp Sre Prev |Run Herto() | Break | Step Asm

(): save_points IRecaH
Memory :Bsp imnemonic :file = update_sysimodulel. "update_sys.c”

addre label dats A
262 MAKEEAR{ARGE Y ;
263
264 old_datalcurr_locl. temp = current_temp;
265 old_datalecurr_locl.humid = current_humid;

Set/Clear Software Ereakpoint

line exists.

Edit Source

Run Until

F_0Lo

268

ZE3 temp_tot=H;

278 for (i=B;i<NUM_OF_OLD; i++
271 temp_tot += old_datald
272

273 old_datalcurr_locl. ave_ter
274

275 humid_tot=H;

276 for (i=@;i<NUM_OF_OLD; i++
277 humid_tot += old_datall
278

| STATUS: M68340--Running in monitor

Trace After
Trace Before
Trace About
Trace Until

214

Chapter 6: Using the Emulator
Using System Commands

To copy information to a file or printer

ChooseéFile - Copy, select the type of information from the cascade menu, and use
the dialog box to select the file or printer.

Using the command line, enter tt@py command.

ASCII characters are copied to the file or printer.
If you copy information to an existing file, it will be appended to the file.

Refer to the following paragraphs for details about the different copy options.

Display ... Copies information currently in the display area. This option is use
for restricting the number of lines that are copied. Also, this option is useful fo
copying the contents of register classes other than BASIC.

Memory ... Copies the contents of a range of memory. The format is the same as
specified in the last display memory command. For example, if you copy memory
after displaying a range of memory in mnemonic format, the file would contain the
mnemonic memory information. If there is no previous display memory command,
the format used is a blocked hex byte format beginning at address zero.

Data Values ... Copies the contents of the defined data values last displayed. An
error occurs if you try to copy data values to a file if you have not yet displayed
data values.

Trace ... The most recently captured trace is copied to the file. The copied trace
listing is formatted according to the current display mode.

You can set the display mode with ®Bettings— Source/Symbols Modesr
Settings— Display Modespulldown menu items. See the "Changing the Interface
Settings" section.

Registers ... Copies the current values of the BASIC register class to a file. To
copy the contents of the other register classes, first display the registers in that
class, and then use thide — Copy - Display ...command.

Breakpoints ... Copies the breakpoints list. If no breakpoints are present in the
list, only the enable/disable status is copied.

215

Chapter 6: Using the Emulator
Using System Commands

Status ... Copies the emulator/analyzer status display.

Global Symbols ... Copies the global symbols. If symbols have not been
loaded, this menu item is grayed-out and unresponsive.

Local Symbols () ... Copies the local symbols from the symbol scope named

(by an enclosing symbol) in the entry buffer. If symbols have not been loaded, this
menu item is grayed-out and unresponsive.

Pod Commands ... Copies the last 100 lines from the pod commands display.

Error Log ... Copies the last 100 lines from the error log display.

Event Log ... Copies the last 100 lines from event log display.

To open a terminal emulation window

e ChooseFile - Term...

This command opens a terminal window into the current working directory context.

216

Chapter 6: Using the Emulator
Using Simulated 1/10

Using Simulated 1/O

Simulated 1/O is a feature of the emulator/analyzer interface that lets you use the
same keyboard and display that you use with the interface to provide input to
programs and display program output.

To use simulated I/O, your programs must communicate with the simulated I/O
control address and the buffer locations that follow it. (The Hewlett-Packard AXLS
compilers, if your program uses I/O, automatically link with environment
dependent routines that communicate with the simulated 1/0 control address and
buffer.)

Also, before simulated 1/0O can work, the emulator must be configured to enable
polling of the simulated I/O control address and to define the control address

location.
This section shows you how to: .

» Display the simulated I/O screen.
» Use simulated I/0O keyboard input.

Refer to theSimulated 1/0 User’s Guidier complete details on how simulated 1/0
works.

To display the simulated I/O screen

ChooseDisplay — Simulated 10.

Before you can display simulated 1/O, polling for simulated I/O must be enabled in
the emulator configuration.

217

Chapter 6: Using the Emulator
Using Simulated 1/10

Examples

Simulated [/0 display Status messages disabled
display is open

A message tells you whether the display is open or closed. You can modify the
configuration to enable status messages.

To use simulated 1/0 keyboard input

* To begin using simulated /O input, cho&ettings— Simulated 10 Keyboard.

» To end simulated I/O and return to using the interface, useiipendsoftkey.

The command line entry area is used for simulated input with the keyboard.
Therefore, if the command line is turned off, choosing this menu item with turn
command line display back on.

If you are planning to use even a modest amount of simulated I/O input during an
emulation session, it might be a good idea to open another Emulator/Analyzer
window to be used exclusively for simulated I/O input and output.

218

Chapter 6: Using the Emulator
Using Basis Branch Analysis

Using Basis Branch Analysis

Basis branch analysis (BBA) is provided by the HP Branch Validator product. This
product is used to analyze the testing of your programs, create more complete test
suites, and quantify your level of testing.

The HP Branch Validator records branches executed in a program and generates
reports that provide information about program execution during testing. It uses a
special C preprocessor to add statements that write to a data array when program
branches are taken. After running the program in the emulator (using test input),
you can store the BBA information to a file. Then, you can generate reports based
on the stored information.

This section shows you how to:
» Store BBA data to afile.

Refer to theHP Branch Validator (BBA) User’s Guider complete details on the
BBA product and how it works.

To store BBA data to a file

ChooseFile - Store— BBA Data and use the selection dialog box to specify the
file name.

The default file name "bbadump.data” can be selected from the dialog box.

219

220

Using the Emulation Analyzer

221

Using the Emulation Analyzer

This chapter describes tasks you perform while using the emulation analyzer.
These tasks are grouped into the following sections:

» The basics of starting, stopping, and displaying traces.
» Qualifying trigger and store conditions.

» Using the sequencer.

» Modifying trace displays.

e Saving and restoring traces.

222

Chapter 7: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

The Basics of Starting, Stopping, and Displaying
Traces

This section describes the basic tasks that relate to starting and stopping trace
measurements.

When you start a trace measurement, the analyzer begins looking at the data on the
emulation processor’s bus and control signals on each analyzer clock signal. The
information seen on a particular clock is called a state.

When one of these states matches the "trigger state" you specify, the analyzer stores
states in trace memory. When trace memory is filled, the trace is said to be
"complete." The default trigger state specification is "any state," so when you start

a trace measurement after initializing the analyzer, the analyzer will "trigger" on the
first state it sees and store the following states in trace memory.

Once you start a trace measurement, you can view the progress of the measurement
by displaying the trace status.

In some situations, for example, when the trigger state is never found or when
analyzer hasn't filled trace memory, the trace measurement does not complete®
these situations, you can halt the trace measurement.

Once atrace is displayed, you can use the cursor keys and other keys to position the
trace list on the display. To speed up the display of traces, you can reduce the
depth of the trace list. Also, when entering trace commands, there is a special
command that allows you to recall and modify the last trace command entered.

This section describes how to:

e Start trace measurements.

» Display the trace status.

e Stop trace measurements.

« Display the trace.

» Position the trace display on the screen.
e Change the trace depth.

* Modify the last trace command entered.

223

Chapter 7: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

Examples

To start a trace measurement

Chooselrace - Everything.

Using the command line, enter tinace command.

Thetrace command tells the analyzer to begin monitoring the states which appear
on the trace signals. You will see a message that confirms that a trace is started.

The default trace command (simpfgice with no options) will trigger on any state,
store all captured states.

While the emulator is running the user program, you can start the default trace
measurement with the command:

trace <RETURN>
A message is displayed on the status line to show you that the "Emulation trace

[has] started", and another message will show you when the "Emulation trace [is]
complete”.

To display the trace status

ChooseDisplay - Status

Using the command line, enter ilisplay statuscommand.

In addition to the analyzer information shown on the status line (Emulation trace
started, Emulation trace complete, etc.), you can display complete analyzer status
with the command below.

224

Chapter 7: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

Examples To display the trace status:

display status <RETURN>

Status

Emulator Status
MES348--Running user program
Trace Status

Emulation trace complete
Arm ignored

Trigger in memory

Arm to trigger 7

States 512 (512) @..511
Jegquence term £
Oecurrence left 1

The first line of the emulation trace status display shows the user trace has be
"completed”; other possibilities are that the trace is still "running" or that the tr
has been "halted".

The second line of the trace status display contains information on the arm
condition. If the analyzer is always armed, the message "Arm ignored" is
displayed. When the arm condition is ignored, the "Arm to trigger" time is not
meaningful and a question mark is displayed. (The "Making Coordinated
Measurements" chapter explains arm conditions.)

If the analyzer is to be armed by one of the internal signals, either the message
"Arm not received" or "Arm received" is displayed. The display indicates if the arm
condition happened any time since the most recent trace started, even if it happened
after the trace was halted or became complete.

The "Arm to trigger" line displays the amount of time between the arm condition
and the trigger. The time displayed will be from -0.04 microseconds to 41.943
milliseconds, less than -0.04 microseconds, or greater than 41.943 milliseconds. |If
the arm signal is ignored or the trigger is not in memory, a question mark (?) is
displayed.

225

Chapter 7: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

The "States" line shows the number of states that have been stored (out of the
number that is possible to store) and the line numbers that the stored states occupy.
(The trigger state is always stored on line 0.)

The "Sequence term" line of the trace status display shows the number of the term
the sequencer was in when the trace completed. Because adarbotthe last
sequence ternconstitutes the trigger, the number displayed is what would be the
next term (2 in the preceding example) even though that term is not defined. If the
trace is halted, the sequence term number just before the halt is displayed,;
otherwise, the current sequence term number is displayed. If the current sequence
term is changing too quickly to be read, a question mark (?) is displayed.

The "Occurrence left" line of the trace status display shows the number of
occurrences remaining before the primary branch can be taken out of the current
sequence term. If the occurrence left is changing too quickly to be read, a question
mark (?) is displayed.

226

Chapter 7: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

To stop a trace measurement

* Choosé€lrace - Stop.

* Using the command line, enter thtep_tracecommand.

You can, and most likely will, specify traces whose trigger or storage states are
never found. When this happens, the "Emulation trace complete" message is never
shown, and the trace continues to run ("Emulation trace running"). When these
situations occur, you can halt the trace measurement wigitahetracecommand.

Thestop_tracecommand is also useful to deactivate signals which are driven
when the trigger is found (refer to the "Making Coordinated Measurements"
chapter).

Examples To halt a trace measurement:

stop_trace <RETURN>

When thestop_tracecommand is entered, the message "Emulation trace halted" is
displayed.

227

Chapter 7: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

Examples

To display the trace

Chooselrace - Display or Display - Trace.

Using the command line, enter tiisplay trace command.

You can display captured trace data withdtsplay trace command. The
available options to thdisplay trace command are described in the "Modifying
the Trace Display" section later in this chapter.

To display the trace:
display trace <RETURN>

0ffset=0 More data off screen
Label: Address Opcgode or Status w/ Source Lines time count
Bas=e: umnbaol mnemonic w/symbal relative
strepyf+d@@eEal2 mOOOQ.L #1,03 mmmmmm—————o
+BA1 strcpyB+HAEBEB14 NOP 728 nS
+B0Z strcpyB+BAEBEBLIE CHMP.L 04,03 5868 nS
+883 strepyS+BBOEBEG1S BLT.B prog|strepyB+$aa18 728 n3
+AB4 streopyS+BEABABLIA NOP 728 nS
+ABS streopyS+BAAEABLE NOP 728 nS
+8d6 strcpyB+b@pBE@lZ ADDOQ.L #1,03 728 nS
+B87 stropyb+BBAEBEB14 NOP 7268 nS
+B88 strcpuyb+BAEBEBLIE CMP.L 04,03 728 nS
+@63 strcpyS+dAABEE18 BLT.B proglstrcpg8+$aala 728 n3
+A18 stropyB+HAEBEBLIAR NOF G868 nS
+A11 strepyS+BARAEABLE NOP 728 nS
+812 strepyb+BBEBEB1Z ADDO.L #1,03 728 nS
+A13 streopybS+BAAEAB14 NOP 728 nS
+814 stropyB+d@EBEBIE CMP.L 04,03 728 nS
+815 strocpyB+BBEBEBLIS BLT.H prog|stropyB+$aa18 726 nS

The first column in the trace list contains the line number. The trigger is always on
line 0.

The second column contains the address information associated with the trace
states. Addresses in this column may be locations of instruction opcodes on fetch
cycles, or they may be sources or destinations of operand cycles.

The third column shows mnemonic information about the emulation bus cycle.

228

Chapter 7: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

The fourth column shows the count information (time is counted by default).
"Relative" indicates that each count is relative to the previous state.

You can use the scrollbar in the Graphical User Interface or the <NEXT> and
<PREV> keys in the Softkey Interface to scroll through the trace list a page at a
time. The <Up arrow> and <Down arrow> keys will scroll through the trace list a
line ata time. You can also display the trace list centered around a specific line
number (for examplealisplay trace 100 <RETURN3. Refer to the "Modifying

the Trace Display" section for more information on the trace list display.

Note that when a trigger condition is found but not enough states are captured to fill
trace memory, the status line will show the trace is still running. You can display

all but the last captured state in this situation; you must halt the trace to display the
last captured state.

To position the trace display on screen

Use the scroll bar or the <Up arrow>, <Down arrow>, <PREV>, <NEXT>,
<CTRL>f, and <CTRL>g keys.

The trace display command can display up to 1024 states, not all of which can
appear on the screen at the same time. However, you can reposition the display on
the screen with the keys described below.

The <Up arrow> and <Down arrow> (or roll up and roll down) keys move the
display up or down on the screen one line at a time.

The <PREV> and <NEXT> (or page up and page down) keys allow you to move
the display up or down a page at a time.

The <CTRL>f and <CTRL>g keys allow you to move the display left or right,
respectively. These keys are used when the width of the address or
mnemonic/absolute columns is increased so that not all the trace display data can be
displayed across the screen.

229

Chapter 7: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

To change the trace depth

Using the command line, enter ttiisplay trace depthcommand.

Thedisplay trace depthcommand allows you to specify the number of states that
are displayed. By reducing the trace depth, you can shorten the time it takes for the
interface to upload the trace information. You can increase the trace depth to view
more states of the current trace.

The maximum number of trace states is 1024 when counting is turned off, 512
otherwise. The minimum trace depth is 9.

If you wish to reduce the number of states that are displayedisgiiay trace
depth command must be entered beforetthee command. You cannot use this
command to reduce the number of states displayed in the current trace.

To modify the last trace command entered

Chooselrace - Trace Specand use the dialog box to select and edit a trace
command.

Using the command line, enter tinace modify_commandcommand.

The Trace Specification Selection dialog box contains a list of trace specifications
executed during the emulation session as well as any predefined trace specifications
present at interface startup.

You can predefine trace specifications and set the maximum number of entries for
the dialog box by setting X resources (see the "Setting X Resources" chapter).

Thetrace modify_commandcommand recalls the last trace command. The
advantage of this command over command recall is that you do not have to move
forward and backward over other commands to find the last trace command,; also,
the last trace command is always available, no matter how many commands have
since been entered.

230

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Qualifying Trigger and Store Conditions

This section describes tasks relating to the qualification of trigger and storage states.

You can trigger on, or store, specific states or specific values on a set of trace
signals (which are identified by trace labels).

Also, you carprestorestates. The prestore qualifier is a second storage qualifier
used for storing states that occur before the normally stored states. Prestore is
useful for capturing entry points to procedures or for identifying where global
variables are accessed from.

This section describes how to:

* Qualify the trigger state and its position in the trace.
e Trigger on a number of occurrences of some state.
* Qualify states stored in the trace.

* Qualify prestore states.

» Change the count qualifier.

» Trace until the analyzer is halted.

» Cause the emulator to break into the monitor when the analyzer triggers.

Expressions in Trace Commands

When modifying the analysis specification, you can enter expressions which consist
of values, symbols, and operators.

Values Values are numbers in hexadecimal, decimal, octal, or binary. These
number bases are specified by the following characters:

Bb Binary (example: 10010110b).
QgOo Octal (example: 3770 or 3770).
D d (default) Decimal (example: 2048d or 2048).

231

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Hh Hexadecimal (example: Oa7fh).
You must precede any hexadecimal number that begins
with an A, B, C, D, E, or F with a zero.

Don't care digits may be included in binary, octal, or hexadecimal numbers and
they are represented by the letdérer x. A zero must precede any numerical value
that begins with an "X".

Symbols A symbol database is built when the absolute file is loaded into the
emulator. Both global and local symbols can be used when entering expressions.
Global symbols are entered as they appear in the global symbols display. When
specifying a local symbol, you must include the name of the module ("anly.c") as
shown below.

anly.c:cmp_function
Operators Analysis specification expressions may contain operators. All

operations are carried out on 32-bit, two’s complement integers. (Values which are
not 32 bits will be sign extended when expression evaluation occurs.)

The available operators are listed below in the order of evaluation precedence.
Parentheses are also allowed in expressions to change the order of evaluation.

, = Unary two’s complement, unary one’s complement. The
unary two's complement operator is not allowed on
constants containing don't care bits.

* 1, % Integer multiply, divide, and modulo. These operators are
not allowed on constants containing don't care bits.

+, - Addition, subtraction. These operators are not allowed on
constants containing don't care bits.

& Bitwise AND.

| Bitwise inclusive OR.

Values, symbols, and operators may be used together in analysis specification
expressions. For example, if the local symbol exists, the following is a valid
expression:

module.c:symb+0b67dh&O0fff00h

232

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

However, you cannot add two symbols unless one of them is an EQU type symbol.

Emulation Analyzer Trace Signals

When you qualify states, you specify values that should be found on the analyzer
trace signals. The emulation analyzer trace signals are described in the table that
follows.

233

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

ify

cles.

ne
b are:

Emulation Analyzer Trace Signals
Trace Signal Signal
Signals Name Description
0-31 A0-A31 Address Lines 0-31.
32-47 D0-D15 Data Lines 0-15.
64 BKG_L Background Debug Mode (BDM) active. This signal is used to qua
the analyzer clock for tracing only foreground or only background cy
65 FCO Function Codes 0-2. These lines to the analyzer are derived from t
66 FC1 68340 processor’s function code lines. The function code meaning
67 FC2
001 - User Data Space
010 - User Program Space
101 - Supervisor Data Space
110 - Supervisor Program Space
111 - CPU Space
68 RAW Read/write signal.
69 SI1Z0 Number of bytes remaining to be transferred.
70 Siz1
71 CS BYTE L Chip select byte/word signal.
72 DSO L Data size acknowledge. Note that the 68340 SIM can be programmed to
73 DS1 L internally generate theSACKX signals for external accesses; in this
case, th&SACKXx values do not show up on these trace signals.
74 BERR L Bus error active.
75 HALT L Halt active.
76 CODE_L Instruction execution active.
77 FLUSH_L Instruction pipeline flush active.
78 FC3 Function code 3. This can be set by the 68340 DMA controller for
DMA transfers; however
79 CSO L Chip select 0 active.

234

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

State Qualifiers

Whenever a state can be specified in the trace command (trigger state, storage state,
prestore state, etc.), you will see the following softkeys that allow you to qualify the
state:

address The value following this softkey is searched for on the lines that
monitor the emulation processor’s address bus.

data The value following this softkey is searched for on the lines that
monitor the emulation processor’s data bus.

status The value following this softkey is searched for on the lines that
monitor other emulation processor signals.

When a value is specified without one of these softkeys it is assumed to be an
address value.

Predefined Values for Qualifiers ~ When you specify status qualifiers for
analyzer states (by pressing thatus softkey), you will be given the following
softkeys which are predefined values for the qualifiers.

235

Chapter 7: Using the Emulation Analyzer

Qualifying Trigger and Store Conditions

Predefined Equates for Analyzer Status

Equate Value Description

buserror OXXXX XOXX XXXX XXXXb /BERR active

code OXXX0 XXXX XXXX XXXXb code execution cycles

code_tfr OXX00 XXXX XXXX XXXXb first instruction following a pipeline flush

cpu OXXXX XXXX XXXX 111xb CPU space function code

csx_hyte OxxxX XX11 OxXX XxXxxb byte data transfer, chip select actib&SACKx not
internally generated)

csx_word OXxXXX XX11 1xxx xXxxb word data transfer, chip select actidSACKx
not internally generated)

data OXO0XX XXXX XXXX X01xb data cycle

dma OXIXX XXXX XXXX XXXXD DMA space function code (if used by DMA
controller module)

ds_byte OXxXXX XX10 XxxxXX Xxxxb byte data transfer

ds_word OxxxX XX01 xxxx XxXxxb word data transfer

memread OXXXX XXXX XXX1 XXXXb memory read

memwrite OXXXX XXXX XXXO XXXXb memory write

prog OXOXX XXXX XXXX X10xb program space function code

rerun OXXXX 00XX XXXX XXxXb /BERR and /HALT active (retry)

siz_3byt OXXXX XXXX X11X Xxxxb 3 byte access

siz_byte OXXXX XXXX X01X Xxxxb byte access

siz_long OXXXX XXXX XO00xX XXxxb long word access

siz_word OXXXX XXXX X10X XxXxxb word access

super OXOXX XXXX XXXX 1xxxb supervisor space function code

supdata 0X0xx Xxxx Xxxx 101xb supervisor data space function code

supprog OX0xx XxXxx Xxxx 110xb supervisor program space function code

user OXOXX XXXX XXXX OxxXxb user space function code

userdata 0X0xx Xxxx Xxxx 001xb user data space function code

userprog 0X0xx Xxxx Xxxx 010xb user program space function code

These predefined values may be used as other values would be used. For example:

trace after status write

is the same as:

trace after status

OXXXXXXXXXXXOXXXXD

236

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

To qualify the trigger state and position

Enter a trigger state specification in the entry buffer; then, chioase - After (),
Trace— About (), or Trace - Before ().

When displaying memory in mnemonic format, position the mouse pointer over the
source line where you want to set the trace trigger, press and heédatinouse

button and choosErace After, Trace Before or Trace About from the popup

menu.

Using the command line, enter tinace after, trace about, ortrace before
commands.

Tracing after the trigger state says states that occur after the trigger state should be
saved; in other words, the trigger is positioned at the top of the trace.

Tracing before the trigger state says states that occur before the trigger state
be saved; in other words, the trigger is positioned at the bottom of the trace.

Tracing about the trigger state says states that occur before and after the trigger
state should be saved; in other words, the trigger is positioned at the center of the
trace.

When the analyzer counts time or states, the actual trigger position is within +/- 1
state of the number specified. When counts are turned OFF, the actual trigger
position is within +/- 3 states of the number specified.

Usually, when you enterteace aboutcommand, the trigger state (line 0) is

labeled "about". However, if there are three or fewer states before the trigger, the
trigger state is labeled "after". Likewise, if there are 3 or fewer states after the
trigger, the trigger state is labeled "before".

The state you define aftace after, trace about, ortrace beforeis the state that
will trigger the analyzer and cause states to be stored.

237

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Examples Suppose you want to look at the execution of the demo program after the call of the
"update_system()" function (main.c: line 102) occurs. To trigger on this address,
enter:

trace after address main."main.c": line 102 <RETURN>
set source on inverse_video on symbols on <RETURN>

display trace <RETURN>

race List 0ffset=8 More data off

Label: Address Opcode or Status w/ Source Lines time count
umnbol mnemonic w/symbal relative

Bigdi it imain.c - line 181 thru 162 HHUBUESUBRAS SRS SHEHRRERERSHSRHERY

update_: tem{)
pr|main+td0EEEE1Z TSR up. update_system 728 n3
pr|maintBHEEEE 14 $AEEA supr prgm word rd (dslB} 728 nS
pr|main+tdEAEEEIE $1532 supr prgm word rd (dslB} 7208 nS
gt tttinain. e - line R g e e g

+BA3 pr|maintBAEBRAE1E incomplete instr.: SE2BRSTYRYS 7208 n3

+dE4 sysstactBBBEyF 38 3al]a]5] supr data long wr (dslG) 726 n3
+HE5 sysstac+BBARYFIZ $AF0G supr data word wr (dslG) 726 n3
Bt fupdate_sys.c - line 1 thru 47 BHRBRHEHERERARERARBRRAR RS

Hinclude

In the preceding trace list, line O (labeled "after") shows the beginning of the
program loop.

238

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

To trigger on a number of occurrences of some
state

» Use theoccurs <#TIMES> after specifying the trigger state.

When specifying a trigger state, you can include an occurrence count. The
occurrence count specifies that the analyzer trigger on the Nth occurrence of some
state.

The default base for an occurrence count is decimal. You may specify occurrence
counts from 1 to 65535.

Examples To trigger on the 20th occurrence of the call of the "update_system()" function
(main.c: line 102):
trace after address main."main.c": line 102 occurs 20
<RETURN>

239

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Examples

To qualify states stored in the trace

Enter a storage state specification in the entry buffer; then, chicase- Only ().

Using the command line, use thiely option in thetrace command.

By default, all captured states are stored; however, you can qualify which states get
stored by using thigace command’only option.

When the emulator is running the demo program, to stuyeaccesses of the
"target_temp" variable:

trace after main."main.c": line 102
only target temp <RETURN>

race List 0ffset=0 Mare data of f screen
Label: Address Opcgode or Status w/ Source Lines time count
umnbaol mnemonic w/symbal relative

BHgHEdE R Emain.c - line 141 thru 162 BELHEHSUHHRRSRESHERHSHEEHSBESHSRY

update_systemi);
ElRdzil v |maintBAABEAELZ incomplete instr.: J4EBIS TRV —mmmmmmmmmeo
+BH81 dat|_target_temp $HE43 supr data word rd (dslB} 3.58 mS
+082 dat|_target_temp $HA47 supr data word wr (dslB} [EalE] nS
+083 dat|_target_temp $HAE47 supr data word rd (dslBE} 2.2 uj
+HA4 dat|_target_temp $BA47 supr data word rd (ds1B} 4.62 m3
+HAS dat|_target_temp $BA47 supr data word rd (ds1B6} 51.6 m5
+HA66 dat|_target_temp 30847 supr data word rd (dslG) 3.84 wu3
+@E7 dat|_target_temp 38847 supr data word rd (dslG3 2.8 us
+BA8 dat|_target_temp $HAE47 supr data word rd (dslB} 2.3 u§
+B83 dat|_target_temp $HAE47 supr data word rd (dslB} 47.4 w3
+018 dat|_target_temp $HA4E supr data word wr (dslB} 348 nS
+611 dat|_target_temp $HE4G supr data word rd (dslBE} 2.1 us
+012 dat|_target_temp $BA4E supr data word rd (ds1B} 4.62 m3

Notice the trigger state (line 0, labeled "after") is included in the trace list; trigger
states are always stored.

240

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Examples

To prestore states before qualified store states

Enter a storage state specification in the entry buffer; then, clicasze- Only ()
Prestore.

Use theprestore option in therace command.

Prestore allows you to save up to two states which precede a normal store state.
Prestore is turned off by default. However, you can usiabe command’s
prestore option to specify a prestore qualifier.

Prestore is useful when you want to find the cause of a particular state. For
example, if a variable is accessed from many different places in the program, you
can qualify the trace so that only accesses of that variable are stored. Then, you can
turn on prestore to find out where accesses of that variable originate from.

States which satisfy the prestore qualifier and the storage qualifier at the sam
are stored as normal states.

To storing only write accesses to the variable "target_temp" and prestore the two
previous states:

trace after main."main.c": line 102
only target_temp status memuwrite
prestore anything <RETURN>

0ffset=8 More data of f screen
Label: Address Opcode or Status w/ Source Lines time count
Base: umnbol mnemonic w/symbal relative

Bigdi it imain.c - line 181 thru 162 HHUBUESUBRAS SRS SHEHRRERERSHSRHERY

incomplete imstr.: /4EBI/PPPe ——mmmmmmmmmm
105 HHRSEENEHHAREREEE RN R

if (*temperature <= MIN_TEMP) temp_dir = up;
pstore get_tar+HBAHEEE4E incomplete instr.: FACS3I V7YY
pstore dat|_target_temp $HB4A supr data word rd (ds1B6}
+HA3 dat|_target_temp $BA43 supr data word wr (dslB) 3.58 mS5
pHgntttupdate_sys.c - line JUEL g g g b g R g b g g i hg gy
if (*temperature <= MIN_TEMP) temp_dir = up;
pstore get_tar+BEAAEEAE4E incomplete instr.: JACS3I/YPPYS
pstore dat|_target_temp $HE43 supr data word rd (dslB}
+BEAE dat|_target_temp $0A43 supr data word wr (dslB} 145. m3
g tttupdate_sys.c - line R g g b g

if {*temperature <= MIN_TEMP)} temp_dir = up;

241

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Examples

To change the count qualifier

Use thecounting option in therace command.

After initializing the analyzer, the default count qualifier is "time", which means
that the time between states is saved. When time is counted, up to 512 states can be
stored in the trace.

When you count states, the counter is incremented each time the state is captured
(not necessarily stored) by the analyzer. When a state is counted, up to 512 states
can be stored in the trace.

When you turn OFF counting, up to 1024 states can be stored in the trace.

Suppose you want to know how many loops of the program occur between calls of
the "do_sort" function. To change the count qualifier to count a state that occurs
once for each loop of the program, enter:

trace only do_sort
counting state main."main.c": line 102 <RETURN>

set source off <RETURN>

Label: Address Opcode or Status state count
Base: ymbol mnemonic wdsymbaol relative

write_h+EBEBEBZZ CMP.L As,04 mmmmmmem e
+@a1 pro|main. do_sort incomplete instr.: S4ESESYYYYS
+082 pro|lmain.do_sort incomplete instr.: S4ESESTYVYS
+BA3 pro|lmain.do_sort incomplete instr.: S4ESESTYVVS
+d84 pro|lmain.do_sort incomplete instr.: J4ESESTYVYS
+BA5 pro|lmain.do_sort incomplete instr.: S4ESESTYYVS
+dA56 pro|lmain.do_sort incomplete instr.: S4ESESTYVVS
+d87 pro|lmain.do_sort incomplete instr.: J4ESESTYVYS
+dA53 pro|lmain.do_sort incomplete instr.: J4ESESTYVYS
+B83 pro|lmain.do_sort incomplete instr.: S4ESESTYVVS
+d18 pro|lmain.do_sort incomplete instr.: S4ESESTYVYS
+A11 pro|main. do_sort incomplete instr.: S4ESESYYPYS
+A12 prao|lmain.do_sort incomplete instr.: S4ESEST7YVYS
+A13 pro|lmain.do_sort incomplete instr.: S4ESESTYVRS
+A14 pro|lmain.do_sort incomplete instr.: S4ESES7YVRS
+A15 pro|lmain.do_sort incomplete instr.: S4ESESTTVRS

B e e i T i i I R SN S A A S

242

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

The trace listing above shows that the program loops 4 times for each call of the
"do_sort" function.

To trace until the analyzer is halted

Chooselrace - Until Stop.

Using the command line, enter tinace on_haltcommand.

Thetrace on_haltcommand allows you to prevent triggering. In other words, the
trace runs until you enter tiséop_tracecommand. Th&ace on_haltcommand
is the same as tracihgfore a state that never occurs.

Thetrace on_haltcommand is useful, for example, when you wish to trace the
states leading up to a break into the monitor. Suppose your program breaks
access to guarded memory. To trace the states that lead up to the break, ent
trace on_haltcommand, and run the program. When the break occurs, the
emulator is running in the background monitor, and the analyzer is no longer
capturing states. To display the states leading up to the break, estepttieace
command (and thdisplay trace command if traces are not currently being
displayed).

When theon_halt option is used in a trace command, the trigger condition (and
position) options, as well as thepetitively andbreak_on_trigger options, cannot
be included in the command.

Also, note that this does not work the same when using a foreground monitor
(unless the processor becomes halted) because the analyzer continues to capture
states when the break to monitor occurs.

243

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Examples

To break emulator execution on the analyzer
trigger

Enter a trigger state specification in the entry buffer; then, chioase - Until ().

Using the command line, use thieak on_trigger option to therace command.

Thebreak_on_trigger option to therace command allows you to cause the
emulator to break when the analyzer finds the trigger state.

Note that the actual break may be several cycles after the analyzer trigger.

To trace before source line 102 and cause the emulator to break into the monitor
when the analyzer triggers:

trace before address main."main.c": line 102
break_on_trigger <RETURN>

244

Chapter 7: Using the Emulation Analyzer
Using the Sequencer

Using the Sequencer

When you use the analyzer’'s sequencer, you can specify traces that trigger on a
series, or sequence, of states. You can specify a state which, when found, causes
the analyzer to restart the search for the sequence of states. Also, the analyzer’s
sequencer allows you to trace "windows" of code execution.

This section describes how to:

» Trigger on a sequence of states.

» Specify a global restart state.

» Trace "windows" of program execution.

The sequencing and windowing capabilities from within the Softkey Interface are
not as powerful or flexible as they are from within the Terminal Interface. For
example, in the Terminal Interface, you can specify different restart states for each
sequence term and you can set up a windowing trace specification where the
does not have to be in the window. If you do not find the sequencing flexibility
you need from within Softkey Interface, refer to &840 Emulator User's Guide

for the Terminal Interface

To trigger after a sequence of states

Use thdrace find_sequenceommand.

The analyzer's sequencer has several levels (also saliegnce terms Each
state in the series of states to be found before triggering, as well as the trigger state,
is associated with a sequence term.

The sequencer works like this: The analyzer searches for the state associated with
the first sequence term. When that state is captured, the analyzer starts searching
for the state associated with the second term, and so on. The last sequence term
used is associated with the trigger state. When the trigger state is captured the
analyzer is triggered. Up to seven sequence terms and an optional occurrence count
for each term are available.

245

Chapter 7: Using the Emulation Analyzer
Using the Sequencer

Examples In the demo program, suppose you wish to trigger on the following sequence of
events: the "save_points" function, the "interrupt_sim" function, and finally the
"do_sort" function. Also, suppose you wish to store only opcode fetches of the
assembly language LINK A6,#0 instruction (data values that equal 4E56H) to show
function entry addresses.

To set up the sequencing trace specification, enter the following trace command.

trace find_sequence save_points then interrupt_sim
trigger about do_sort onlydata 4e56h <RETURN>

set source off <RETURN>

Label: Address Opcode or Status time count

Basze: umnbaol mnemonic w/symbal relative

-A11 updat.write_hdur $4ESG supr prgm word rd {(dslB} ————-mme-
=g adv upda.save_points $4ES6 supr prgm word rd (ds16) 8.4 mS
sg adv ma.interrupt_sim $4ES6 supr prgm word rd (ds16) G.78 m3
-AH8 pr.proc_specific $4ESE supr prgm word rd (dslB} 12.5 m3
-B87 up.update_system incomplete instr.: S4ESESTVPIVS 5.BB m5
-HHE upda.get_targets incomplete instr.: S4ESESTVPYVS 3.4 S
-HE5 .read_conditions incomplete instr.: S4ESES7YVYS 3.58 m5
-AH4 upda.set_outputs incomplete instr.: S4ESRSTPRYS 8.36 m3
-Ba3 updat.write_hdwr incomplete instr.: /4ESG/7777/ 47.3 m3
-8z upda. save_points incomplete instr.: J4ESG/7777/ 8.4 mS
-A01 ma.interrupt_sim incomplete instr.: J4ESGSTYYYS G.78 m3
pro|main.da_sart incomplete instr.: J4ESES 7YY/ 16.4 m53
+6a1 pro|main.strocpyS incomplete instr.: S4ESESPYPYS 3.69 mS
+H82 pro|main.stropyd incomplete instr.: S4ESESPYVYS 45H. us
+0A3 pro|main.stropyd incomplete instr.: S4ESESPYVYS 458, us
+0A4 pro|main.stropyd incomplete instr.o: S4ESESPYVYS 458. us

Notice the states that contain "sq adv" in the first column (you may have to press
<PREV> in order to see the states captured prior to the trigger). These are the
states associated with (or captured for) each sequence term. Just as the trigger state
is always stored in trace memory, the states captured in the sequence are always
stored if the trace buffer is deep enough.

246

Chapter 7: Using the Emulation Analyzer
Using the Sequencer

Examples

To specify a global restart state

Use theaestart option to thérace command.

When using the analyzer's sequencer, an additional sequence restart term is also
allowed. This restart is a "global restart"; that is, it applies to all the sequence terms.

The restart term is a state which, when captured before the analyzer has found the
trigger state, causes the search for the sequence of states to start over. You can use
the restart term to make certain some state does not occur in the sequence that
triggers the analyzer.

In the demo program, suppose you wish to trigger on the following sequence of
events: the "save_points" function, the "interrupt_sim" function, and the "do_sort"
function. However, you only want to trigger when the "interrupt_sim" calls the
"do_sort" function. In other words, if the "proc_specific" function is entered be
the "do_sort" function is entered, you know "interrupt_sim" did not call "do_sor
this time, and the analyzer should start searching again from the beginning.

Again, suppose you wish to store only opcode fetches of the assembly language
LINK A6,#0 instruction (data values that equal 4E56H).

To set up this sequencing trace specification, enter the following trace command.

trace find_sequence save_points then interrupt_sim
restart proc_specific trigger about do_sort only data
4e56h <RETURN>

set source off <RETURN>

247

Chapter 7: Using the Emulation Analyzer

Using the Sequencer

Label: Address Opcode or Status time count

bBase: umnbol mnemonic w/symbal relative

-a1z upda. set_outputs $4ESE supr prgm word rd (dslG} 183. mS
-a11 updat.write_hdwr $4ESE supr prgm word rd (dslG) 47.3 mS
sq adv upda.save_points $4E36 supr prgm word rd (dslG} 8.4 m3
sq adv ma.interrupt_sim $4ESE supr prgm word rd (dslB} .78 m3
sq adv pr.proc_specific $4ESE supr prgm word rd (dslB} 86.8 U5
-BE7 up.update_system incomplete instr.: S4ESESVYYYS 5.68 m3
-HEE upda.get_targets incomplete instr.: S4ESESVYVYS 31.5 U5
-AB5 .read_conditions incomplete instr.: F4ESES7YRYS 3.58 m3
-B84 upda. set_outputs incomplete instr.: /f4ESG/777Y?S 51.9 mS
-Ba3 updat.write_hdwr incomplete instr.: /4ESG/7777/ 47.3 mS
sq adv upda.save_points incomplete instr.: /4ESB/777?/ 18.4 mS
sq adv ma.interrupt_sim incomplete instr.: J4ESESYPVYS .78 m3
pro|main.do_sort incomplete instr.: /A4ESESVPY?YS 863, u5
+HE1 pro|main.strocpyS incomplete instr.: /A4ESESVPY?YS 3.6 m5
+H82 pro|main.stropyd incomplete instr.: S4ESESTVVRS 454, u5
+BA3 pro|main.stropyd incomplete instr.: S4ESES?VVYS 458, us

Notice in the preceding trace (you may have to press <PREV> in order to see the
states captured prior to the trigger) that, in addition to states captured in the
sequence, "sq adv" is also shown next to states which cause a sequencer restart.

To trace "windows" of program execution

Use theenableanddisable options to thérace command.

Windowing refers to the analyzer feat