User’s Guide for the
Graphical User Interface

HP 64798
MC6830x Emulation/Analysis

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection
with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1996 Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the prior
written consent of Hewlett-Packard Company. The information contained in
this document is subject to change without notice.

HP is a trademark of Hewlett-Packard Company.

OSF/Motif and Motif are trademarks of the Open Software Foundation in the
U.S. and other countries.

SunOS, SPARCsystem, OpenWindows, and SunView are trademarks of Sun
Microsystems, Inc.

UNIX® is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited.

Hewlett-Packard

P.O. Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by
the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1)(ii) of the Rights in Technical Data and Computer
Software Clause at DFARS 252.227-7013. Hewlett-Packard Company,
3000 Hanover Street, Palo Alto, CA 94304 U.S.A. Rights for non-DOD
U.S. Government Departments and Agencies are as set forth in FAR
52.227-19(c)(1,2).

Printing History

New editions are complete revisions of the manual. The date on the title
page changes only when a new edition is published.

A software code may be printed before the date; this indicates the version
level of the software product at the time the manual was issued. Many
product updates and fixes do not require manual changes, and manual
corrections may be done without accompanying product changes. Therefore,
do not expect a one-to-one correspondence between product updates and
manual revisions.

Edition 1 B3093-97000, July 1996

6830x Emulation and Analysis

The HP 64798 6830x emulators replace the microprocessor in your
embedded microprocessor system, also called the target system, so that you
can control execution and view or modify processor and target system
resources.

The emulator requires an emulation analyzer that captures 64 channels of
emulation processor bus cycle information synchronously with the
processor’s clock signal. The HP 64703 Emulation Bus Analyzer meets this
requirement.

The HP 64703 Emulation Bus Analyzer also has an an external analyzer that
captures up to 16 channels of data external to the emulator. You can also use
the HP 64704 or HP 64794 Emulation Bus Analyzer which has 80 channels;
however, these analyzers do not have external analysis channels.

With the Emulator, You Can ...
¢ Plug into 6830x target systems.
e Download programs into emulation memory or target system RAM.

¢ Display or modify the contents of processor registers and memory
resources.

e Run programs, set up software breakpoints, step through programs, and
reset the emulation processor. For information about your emulator clock
speed, refer to the 6830x Installation/Service/Terminal Interface User’s
Guide.

With the Analyzer, You Can ...

e Trigger the analyzer when a particular bus cycle state is captured. States
are stored relative to the trigger state.

e Qualify which states get stored in the trace.
e Prestore certain states that occur before each normal store state.
e Trigger the analyzer after a sequence of up to 8 events have occurred.

e (Capture data on signals of interest in the target system with the external
analyzer.

¢ (Cause emulator execution to break when the analyzer finds its trigger
condition.

With the HP 64700 Card Cage, You Can ...

e Use the RS-422 capability of the serial port and an RS-422 interface card
on the host computer (HP 98659 for the HP 9000 Series 300) to provide
upload/download rates of up to 230.4K baud.

e Fasily access and use the emulator over a Local Area Network by
connecting it to the LAN.

e Easily upgrade HP 64700 firmware by downloading to flash memory.

With Multiple HP 64700s, You Can ...

e Start and stop up to 16 emulators at the same time (up to 32 if
modifications are made).

e Use the analyzer in one HP 64700 to arm (activate) the analyzers in other
HP 64700 card cages or to cause emulator execution in other HP 64700
card cages to break.

¢ Use the HP 64700’s BNC connector to trigger an external instrument (for
example, a logic analyzer or oscilloscope) when the analyzer finds its
trigger condition, or you can allow an external instrument to arm the
analyzer or break emulator execution.

With the Graphical User Interface, You Can ...

e Use the emulator and analyzer under an X Window System that supports
OSF/Motif interfaces.

e Enter commands using pull-down or pop-up menus.
¢ Enter, recall, and edit commands using the command line pushbuttons.

e Enter file names, recalled commands, recalled values, etc., using dialog
boxes.

e Set breakpoints by pointing the mouse cursor on a line in the mnemonic
memory display and clicking.

e (reate action keys for commonly used commands or command files.

With the Softkey Interface, You Can ...

e [Use the emulator and analyzer with a terminal or terminal emulator to
execute terminal interface commands.

e Quickly enter commands using softkeys, command recall, and command
editing.

In This Book

This book documents the Graphical User Interface and the Softkey Interface
when used with the HP 64798 6830x emulators and the HP 64703/4 analyzer.
It is organized into five parts whose chapters are described below.

Part 1. Quick Start Guide

Chapter 1 presents an overview of emulation and analysis and quickly
shows you how to use the emulator and analyzer.

Part 2. User’s Guide

Chapter 2 tells where to find information about plugging the emulator
into a target system.

Chapter 3 shows you how to start and exit the HP 64700 interfaces.
Chapter 4 shows you how to enter commands.

Chapter 5 shows you how to configure the emulator.

Chapter 6 shows you how to use the emulator.

Chapter 7 shows you how to use the analyzer.

Chapter 8 shows you how to use the Software Performance
Measurement Tool (SPMT) with the analyzer.

Chapter 9 shows you how to use the external state analyzer.
Chapter 10 shows you how to make coordinated measurements.
Chapter 11 shows you how to change X resource settings.

Part 3. Reference
Chapter 12 describes emulator/analyzer interface commands.
Chapter 13 lists the error messages that can occur.

Part 4. Concept Guide
Chapter 14 contains conceptual information on various topics.

Part 5. Installation Guide
Chapter 15 outlines the installation of the Graphical User Interface.

Chapter 16 shows you how to install or update emulator firmware.
Follow these instructions if you have ordered the HP 64782 emulator
and the HP 64700 Card Cage separately.

Contents

Notice 2
Printing History 3
Part 1 Quick Start Guide
1 Getting Started
The Emulator/Analyzer Interface — At a Glance 24

The Getting Started Tutorial 31

Step 1. Start the demo 32

Step 2: Display the program in memory 33

Step 3: Run from the transfer address 34

Step 4: Step high-level source lines 35

Step 5: Display the previous mnemonic display 36
Step 6: Run until an address 37

Step 7: Display data values 38

Step 8: Display registers 39

Step 9: Step assembly-level instructions 40
Step 10: Trace the program 41

Step 11: Patch assembly language code 43

Step 12: Exit the emulator/analyzer interface 47

Part 2 User’s Guide
2 Plugging into a Target System
Plugging the Emulator into a Target System 52
3 Starting and Exiting HP 64700 Interfaces
Starting and Exiting HP 64700 Interfaces 54

Starting the Emulator/Analyzer Interface 55

Contents

To start the emulator/analyzer interface 55

To start the interface using the default configuration 57

To run a command file on interface startup 57

To display the status of emulators 57

To unlock an interface that was left locked by another user 58

Opening Other HP 64700 Interface Windows 59

To open additional emulator/analyzer windows 59
To open the software performance analyzer (SPA) interface window 60

Exiting HP 64700 Interfaces 61

To close an interface window 61
To exit a debug/emulation session 62

Entering Commands
Entering Commands 64

Using Menus, the Entry Buffer, and Action Keys 65

To choose a pull-down menu item using the mouse (method 1) 65
To choose a pull-down menu item using the mouse (method 2) 66
To choose a pull-down menu item using the keyboard 66

To choose pop-up menu items 68

To place values into the entry buffer using the keyboard 68

To copy and paste to the entry buffer 68

To recall entry buffer values 71

To use the entry buffer 71

To copy and paste from the entry buffer to the command line entry area 72
To use the action keys 72

To use dialog boxes 73

To access help information 76

Using the Command Line with the Mouse 77

To turn the command line on or off 77
To enter a command 78

Contents

To edit the command line using the command line pushbuttons 79
To edit the command line using the command line pop-up menu 79
To recall commands 80

To get help about the command line 81

Using the Command Line with the Keyboard 82

To enter multiple commands on one command line 82
To recall commands 83

To edit commands 83

To access online help information 84

Using Command Files 85

To start logging commands to a command file 88
To stop logging commands to a command file 88
To playback (execute) a command file 89

Using Pod Commands 90

To display the pod commands screen 91
To use pod commands 91

Forwarding Commands to Other HP 64700 Interfaces 92

To forward commands to the software performance analyzer 93
Configuring the Emulator
Configuring the Emulator 96

Using the Configuration Interface 97

To start the configuration interface 98

To modify a configuration section 100

To apply configuration changes to the emulator 100
If apply to emulator fails 101

To store configuration changes to a file 102

To change the configuration directory context 103
To display the configuration context 103

Contents

To access help topics 104

To access context sensitive (f1) help 105
To exit the configuration interface 105
To load an existing configuration file 105

Modifying the General Items and Monitor Setup 106
When Restricting the Emulator to Real-time Runs 107

Reconfiguring the Emulator Copy of the SIM Registers 108
To define values for the emulator copy of the SIM registers 109

Mapping Memory 110

To add memory map entries 112

To modify memory map entries 116

To delete memory map entries 117

To characterize unmapped ranges 117

To map memory ranges that use function codes 118

Modifying the Emulator Pod Settings 121

Setting the Debug/Trace Options 122

To configure breaks on writes to ROM 122
To configure the trace mode 123

Setting Simulated I/O 124

Verifying the Emulator Configuration 125

To display information about chip selects 125

To display information about bus interface ports 127

To display information about the memory map 129

To display information about the reset mode configuration 131

To display assembly language instructions for setting up the SIM 132
To check for configuration inconsistencies 133

10

Contents

6 Using the Emulator
Using the Emulator 136

Using the EMSIM Registers 137

To view the SIM register differences 138

To synchronize to the 6830x SIM registers 139

To synchronize to the EMSIM registers 140

To restore default values in the EMSIM registers 140

Loading and Storing Absolute Files 141

To load absolute files 141
To load absolute files without symbols 142
To store memory contents into absolute files 143

Using Symbols 144

To load symbols 144

To display global symbols 145

To display local symbols 146

To display a symbol’s parent symbol 150

To copy and paste a full symbol name to the entry buffer 151

Using Context Commands 152

To display the current directory and symbol context 153
To change the directory context 153
To change the current working symbol context 1564

Executing User Programs 155

To run programs from the current PC 156

To run programs from an address 156

To run programs from the transfer address 157
To run programs from reset 157

To run programs until an address 158

To stop (break from) user program execution 159
To step high-level source lines 160

11

Contents

To step assembly-level instructions 161
To reset the emulation processor 162

Using Execution Breakpoints 163

To enable execution breakpoints 165

To disable an execution breakpoint 166

To set a permanent breakpoint 167

To set a temporary breakpoint 168

To clear an execution breakpoint 169

To clear all execution breakpoints 171

To display the status of all execution breakpoints 171

Displaying and Modifying Registers 173

To display register contents 173
To modify register contents 175

Displaying and Modifying Memory 176

To display memory 176

To display memory in mnemonic format 177

To return to the previous mnemonic display 178
To display memory in hexadecimal format 179
To display memory in real number format 180
To display memory at an address 181

To display memory repetitively 182

To modify memory 182

Displaying Data Values 183

To display data values 183
To clear the data values display and add a new item 184
To add items to the data values display 184

Changing the Interface Settings 185

To set the source/symbol modes 185
To set the display modes 186

12

Contents

Using System Commands 188

To set UNIX environment variables 188

To display the name of the emulation module 188
To display the event log 189

To display the error log 189

To edit files 190

To copy information to a file or printer 192

To open a terminal emulation window 193

Using Simulated I/O 194

To display the simulated I/O screen 194
To use simulated I/O keyboard input 195

Using Basis Branch Analysis 196
To store BBA data to a file 196

7 Using the Emulation Analyzer
Using the Emulation Analyzer 198

The Basics of Starting, Stopping, and Displaying Traces 199

To start a trace measurement 200

To stop a trace measurement 201

To display the trace list 201

To display the trace status 203

To change the trace depth 205

To modify the last trace command entered 206
To repeat the previous trace command 207
To position the trace display on screen 207

Qualifying Trigger and Store Conditions 208

To specify a trigger and set the trigger position 214

To use address, data, and status values in trace expressions 217
To enter a range in a trace expression 218

To trigger on a number of occurrences of some state 219

13

Contents

To break emulator execution on the analyzer trigger 220

To count states or time 220

To define a storage qualifier 222

To define a prestore qualifier 223

To trace activity leading up to a program halt 225

To capture a continuous stream of program execution no matter how large
your program 225

Using the Sequencer 229

To trigger after a sequence of states 230

To specify a global restart state 232

To trace "windows" of program execution 234
To specify both sequencing and windowing 236

Displaying the Trace List 237

To display the trace about a line number 240

To move through the trace list 241

To disassemble the trace list 241

To specify trace disassembly options 243

To specify trace dequeueing options 244

To display the trace without disassembly 246

To display symbols in the trace list 248

To display source lines in the trace list 249

To change the column width 250

To select the type of count information in the trace list 251

To offset addresses in the trace list 253

To reset the trace display defaults 254

To change the number of states available for display 254

To display program memory associated with a trace list line 255
To open an edit window into the source file associated with a trace list
line 255

14

Contents

Saving and Restoring Trace Data and Specifications 256

To store a trace specification 256
To store trace data 257

To load a trace specification 258
To load trace data 259

Making Software Performance Measurements
Making Software Performance Measurements 262

Activity Performance Measurements 263

To set up the trace command for activity measurements 266
To initialize activity performance measurements 267
To interpret activity measurement reports 271

Duration Performance Measurements 281

To set up the trace command for duration measurements 282
To initialize duration performance measurements 284
To interpret duration measurement reports 286

Running Measurements and Creating Reports 291

To run performance measurements 291
To end performance measurements 292
To create a performance measurement report 293

Using the External State Analyzer
Using the External State Analyzer 296

Setting Up the External Analyzer 297

To connect the external analyzer probe to the target system 297

Configuring the External Analyzer 300

To control the external analyzer with the emulator/analyzer interface 302

15

10

Contents

To specify the threshold voltage 302

To specify the external analyzer mode 303

To specify the slave clock mode 304

To define labels for the external analyzer signals 307

Making Coordinated Measurements
Making Coordinated Measurements 310

Setting Up for Coordinated Measurements 313

To connect the Coordinated Measurement Bus (CMB) 313
To connect to the rear panel BNC 315

Starting/Stopping Multiple Emulators 317

To enable synchronous measurements 317
To start synchronous measurements 318
To disable synchronous measurements 318

Using Trigger Signals 319

To drive the emulation analyzer trigger signal to the CMB 322

To drive the emulation analyzer trigger signal to the BNC connector 322
To drive the external analyzer trigger signal to the CMB 323

To drive the external analyzer trigger signal to the BNC connector 323
To break emulator execution on signal from CMB 323

To break emulator execution on signal from BNC 323

To break emulator execution on external analyzer trigger 324

To arm the emulation analyzer on signal from CMB 324

To arm the emulation analyzer on signal from BNC 324

To arm the emulation analyzer on external analyzer trigger 325

To arm the external analyzer on signal from CMB 325

To arm the external analyzer on signal from BNC 325

To arm the external analyzer on emulation analyzer trigger 325

16

Contents

11 Setting X Resources

Setting X Resources 328

To modify the Graphical User Interface resources 330
To use customized scheme files 334

To set up custom action keys 336

To set initial recall buffer values 337

To set up demos or tutorials 338

Part 3 Reference
12 Emulator/Analyzer Interface Commands
Emulator/Analyzer Interface Commands 344

Commands 352

bbaunld 353

break 354

cmb_execute 355

copy 356

copy local_symbols_in 359
copy memory 360

copy registers 362

copy trace 363

display 364

display configuration_info 366
display data 369

display global_symbols 372
display local_symbols_in 373
display memory 374

display registers 378

display simulated_io 379
display software_breakpoints 380
display trace 381

end 385

--EXPR-- 386

17

Contents

FCODE 389

forward 390

help 391

load 393

log_commands 395

modify 396

modify configuration 397
modify keyboard_to_simio 398
modify memory 399

modify register 402

modify SIM registers 403
performance_measurement_end 405
performance_measurement_initialize 406
performance_measurement_run 408
pod_command 409
QUALIFIER 411

RANGE 413

reset 415

run 416

SEQUENCING 418

set 420

specify 425

STATE 427

step 429

stop_trace 431

store 432

--SYMB-- 434
sync_sim_registers 441

trace 442

TRIGGER 445

wait 447

WINDOW 449

18

Contents

13 Error Messages
Error Messages 452
Part 4 Concept Guide
14 Concepts
Concepts 494
X Resources and the Graphical User Interface 495
Concepts of the EMSIM 502
Part 5 Installation Guide
15 Installation
Installation 508
Connecting the HP 64700 to a Computer or LAN 510

Installing HP 9000 Software 511

Step 1. Install the software from the media 511

Step 2. Set the necessary environment variables 512

Step 3. Verify the software installation 514

Step 4. Start the X server and the Motif Window Manager (mwm) 515
Step 5. Start HP VUE 515

Installing Sun SPARCsystem Software 516

Step 1. Install the software from the media 516

Step 2. Start the X server and OpenWindows 517
Step 3. Set the necessary environment variables 517
Step 4. Verify the software installation 519

Step 5. Map your function keys 519

19

16

Contents

Verifying the Installation 521

Step 1. Determine the logical name of your emulator 521
Step 2. Start the interface with the emul700 command 522
Step 3. Exit the Graphical User Interface 523

Installing/Updating Emulator Firmware

Installing/Updating Emulator Firmware 526

To update emulator firmware with "progflash" 527
To display current firmware version information 530
If there is a power failure during a firmware update 531

20

Part 1

Quick Start Guide

21

Part 1

A one-glance overview of the product and a few task instructions to help you
get comfortable.

22

Getting Started

23

Figure 1
9 Hawtatt Packard Emadatos fAnalyzer: hpbadzl (mB830)
\ o B
Menu bar Filo Display heody Eveeution Breshpoints Trese Settings Hielp
Action keys Aciion keys: [Disp Sre (]
[bisse][Besg Sra Prev][un sher o (][Break][Step Asm][Feg ool |
) main Aecall
Entry buffer — Hewowiy iwrmarcnio fLle = neiniecdalar, "nein e
— sbireess lebgs| clsr s "
91 i T _aigarenl o fob e e war s 7 ﬂ
awrars wold Ierarrpr_sinlieg ®h; S ainolare sn Tipt =/
Entry buffer recall A3 ewwarn wold do_sortloldos] datall, char tal1[8], Lnt =ized;
button H
. e nalnl b
Display area 0
7 T_mijatanl §;
pre_apes_ LAt Y [
Scroll bar whi le [Ty
181
e upedate_mgstenl d;
&3 roin_oheaol 244+
164 Lrmarropt _sinl G obecliad; =
Status line. 15 L [graph}
15 3] graph_daral
. dl \ 155 prces_apenl F Lol
mmand lin
0 a € STETES: MY —Hemm ey im memiter IJ_LLI
Command line entry display rarcry nremonic
area
Softkey pushbuttons

The Emulator/Analyzer Interface — At a Glance

When an X Window System that supports OSF/Motif interfaces is running on
the host computer, the emulator/analyzer interface is the Graphical User
Interface which provides pull-down and pop-up menus, point and click
setting of breakpoints, cut and paste, online help, customizable action keys
and pop-up recall buffers, etc.

The Graphical User Interface

Command buttons Cursor buttons for command line area control

24

Getting Started

Menu Bar. Provides pull-down menus from which you select
commands. When menu items are not applicable, they appear half-bright
and do not respond to mouse clicks.

Action Keys. User-defined pushbuttons. You can label these
pushbuttons and define the action to be performed.

Entry Buffer. Wherever you see "()" in a pull-down menu, the
contents of the entry buffer are used in that command. You can type
values into the entry buffer, or you can cut and paste values into the
entry buffer from the display area or from the command line entry area.
You can also set up action keys to use the contents of the entry buffer.

Entry Buffer Recall Button. Allows you to recall entry buffer values
that have been predefined or used in previous commands. When you
click on the entry buffer Recall button, a dialog box appears that allows
you to select values.

Display Area. Can show memory, data values, analyzer traces,
registers, breakpoints, status, simulated 1/O, global symbols, local
symbols, pod commands (the emulator’s underlying Terminal Interface),
error log, or display log.

Whenever the mouse pointer changes from an arrow to a hand, you can press
and hold the select mouse button to access pop-up menus.

Scroll Bar. A "sticky slider" that allows navigation in the display area.
Click on the upper and lower arrows to scroll to the top (home) and
bottom (end) of the window. Click on the inner arrows to scroll one line.
Drag the slider handle up or down to cause continuous scrolling. Click
between the inner arrows and the slider handle to page up or page down.

Status Line. Displays the emulator and analyzer status. Also, when
error and status messages occur, they are displayed on the status line in
addition to being saved in the error log. You can press and hold the
select mouse button to access the Status Line pop-up menu.

Command Line. The command line area is similar to the command line
in the Softkey Interface; however, the graphical interface lets you use the
mouse to enter and edit commands.

e Command line entry area. Allows you to enter commands from the
command line.

25

Getting Started

e Softkey pushbuttons. Clicking on these pushbuttons, or pressing softkeys,
places the command in the command line entry area. You can press and
hold the select mouse button to access the Command Line pop-up menu.

e (Command buttons (includes command recall button). The command
Return button is the same as pressing the carriage return key — it sends
the command in the command line entry area to the emulator/analyzer.

The command Recall button allows you to recall previous or
predefined commands. When you click on the command Recall
button, a dialog box appears that allows you to select a command.

e (Cursor buttons for command line area control. Allow you to move the
cursor in the command line entry area forward or backward, clear to the
end of the command line, or clear the whole command line entry area.

You can choose not to display the command line area by turning it off. For
the most common emulator/analyzer operations, the pull-down menus,
pop-up menus, and action keys provide all the control you need. Choosing
menu items that require use of the command line will automatically turn the
command line back on.

Graphical User Interface Conventions

Choosing Menu Commands

This chapter uses a shorthand notation for indicating that you should choose
a particular menu item. For example, the following instruction

Choose File - Load - Configuration

means to first display the File pull-down menu, then display the Load cascade
menu, then select the Configuration item from the Load cascade menu.

Based on this explanation, the general rule for interpreting this notation can
be stated as follows:

e The leftmost item in bold is the pull-down menu label.

e If there are more than two items, then cascade menus are involved and all
items between the first and last item have cascade menus attached.

e The last item on the right is the actual menu choice to be made.

26

Getting Started

Mouse Button and Keyboard Bindings

Because the Graphical User Interface runs on different kinds of computers,
which may have different conventions for mouse buttons and key names, the
Graphical User Interface supports different bindings and the customization of
bindings.

This manual refers to the mouse buttons using general (or "generic") terms.
The following table describes the generic mouse button names and shows the
default mouse button bindings.

Mouse Button Bindings and Descriptions

Generic Bindings for Bindings for Description

Button HP 9000 Sun SPARCsystem

Name (SunOS or Solaris)

paste left left Paste from the display
area to the entry buffer.

command middle’ middle’ Paste from the entry

paste buffer to the command
line text entry area.

select right right Click selects first item in

pop-up menus. Press and
hold displays menus.

command left right Displays pull-down menus.
select

pushbutton left left Actuates pushbuttons
select outside of the display area.

'Middle button on three-button mouse. Both buttons on two-button mouse.

27

Getting Started

The following table shows the default keyboard bindings.

Keyboard Key Bindings

Generic Key Name

menu select
insert
delete
left-arrow
right-arrow
up-arrow
down-arrow
escape

TAB

HP 9000

extend char
insert char
delete char
left arrow
right arrow
up arrow
down arrow
escape
TAB

Sun SPARCsystem
(SunOS or Solaris)

extend char
insert char
delete char
left arrow
right arrow
up arrow
down arrow
escape
TAB

28

The Softkey Interface
The emulator/analyzer interface can also be the Softkey Interface which is
provided for several types of terminals, terminal emulators, and bitmapped
displays. When using the Softkey Interface, commands are entered from the

Getting Started

keyboard.

Figure 2

ddvess dat
: a ress ata

Display area 000FCE 4E560000 LIRK AE, ¥00000
000FCC 4EB9000014 JER 00014F0
000FD2 4FBS00001A JER 0001446
000FD8 4E71 HOP
000FDA 4EB9000015 JSR 000159
000FE0 52B9000076 ADDQ.L #1,00076F2
000FE6 4879000076 PEA.L 00076F2
000FEC 4EBS000010 JER 000101
000FF2 588F ADDQ . L #4,Aa7
000FF4 4A39000076 TST.B 00076FE
000FFA 6708 BEQ.B 0001004
000FFC 4EB9000019 JER 0001986

) 001002 4E71 Hop

Status line 001004 4EB900001A JSR 0001A6A
001002 4E71 HOP
00100C 60CC ERA.B 0000FDA

. \\\\\\\\\ TATUS : cws: main.'"main.c'":
Command line —_ display memory main mnemonic

trace ste

displa

29

bold
bold italic

normal
$

<RETURN>

Getting Started

Display area

Can show memory, data values, analyzer traces, registers, breakpoints,
status, simulated I/0O, global symbols, local symbols, pod commands (the
emulator’s underlying Terminal Interface), error log, or display log. You can
use the UP ARROW, DOWN ARROW, PAGE UP, and PAGE DOWN cursor
keys to scroll or page up or down the information in the active window.

Status line

Displays the emulator and analyzer status. Also, when error and status
messages occur, they are displayed on the status line in addition to being
saved in the error log.

Command line

Commands are entered on the command line by pressing softkeys (or by
typing them in) and executed by pressing the Return key. The Tab and
Shift-Tab keys allow you to move the cursor on the command line forward or
backward. The Clear line key (or CTRL-¢) clears from the cursor position to
the end of the line. The CTRL-u key clears the whole command line.

Softkey Interface Conventions

Example Softkey Interface commands throughout the manual use the
following conventions:

Commands, options, and parts of command syntax.

Commands, options, and parts of command syntax which may be entered by
pressing softkeys.

User specified parts of a command.

Represents the UNIX prompt. Commands which follow the "$" are entered at
the UNIX prompt.

The carriage return key.

30

The Getting Started Tutorial

This tutorial gives you step-by-step instructions on how to perform a few
basic tasks using the emulator/analyzer interface. The tutorial examples
presented in this chapter make the following assumptions:

e The HP 64798 emulator and HP 64703/4 analyzer are installed into the
HP 64700 Card Cage, the HP 64700 is connected to the host computer,
and the Graphical User Interface software has been installed as outlined in
the "Installation" chapter.

e The emulator is operating out-of-circuit (that is, not plugged into a target
system).

The Demonstration Program

The demonstration program used in this chapter is a simple environmental
control system. The program controls the temperature and humidity of a
room requiring accurate environmental control.

31

Getting Started
Step 1: Start the demo

Step 1: Start the demo

A demo program and its associated files are provided with the Graphical User
Interface in the directory hp64798.

Change to the demo directory.
$ cd /usr/hp64000/demo/debug_env/hp64798

Refer to the README file for more information on the demo program.

Check that "/usr/hp64000/bin" and "." are in your PATH environment
variable. To see the value of PATH:

$ echo $PATH

If the Graphical User Interface software is installed on a different
type of computer than the computer you are using, edit the
"platformScheme" resource setting in the "Xdefaults.emul" file.
For example, if the Graphical User Interface will be run on a HP 9000
computer and displayed on a Sun SPARCsystem computer, change the
platform scheme to "SunOS".

Start the emulator/analyzer demo.
$ Startemul em6830x

This script starts the emulator/analyzer interface (with a customized set of
action keys), loads a configuration file for the demo program, and then loads
the demo program.

The <logical_emul_name> in the command above is the logical emulator
name given in the HP 64700 emulator device table file
(fusr/hp64000/etc/64700tab.net). You can enter the LAN name address
instead of the logical emulator name.

32

Getting Started
Step 2: Display the program in memory

Figure 3

Entry buffer

Step 2: Display the program in memory

1 If the symbol "main" is not already in the entry buffer, move the
mouse pointer to the entry buffer (notice the flashing I-beam cursor)

and type in "main".

2 Choose Display - Memory - Mnemonic ().
Or, using the command line, enter:

display memory main

Hevlatt Packard Emulatorn/Analyear: hplsds? (miGEE0:)

mnemonic

Filo Désplay hinly Exeeution B

dpoints Tract Setting Helj

Aetiofn keys: = Daine = Ruin #ler @[) |[Qisp See & Asm][Paten| §
| = Your Keys || hake & Load Shep Asm Step Source Csp Var(
Disp @REG Disp Sre Praw Trage Fiun Again
[rain Aeeal

Hareory !rrmronic 'file =

« o Aoy AR darcy’ debuog_erecd beEA T nein. o !

sddrans skl dts A
a1 axtern void updete_sogatanl i) £ updete sgstan varisbles 50 "
= wwtern wold irterropt_sinline ®# 3 M+ mirulste s LnterTopt B
a3 axtarn vold do_sortlald] detsll, cher sscii_destsl1[8], irmt sizad)
=
o= mimirl
= -1 L
g7 irLE_sgntanl 3
=] proc_spec_init] D
=3
108 whilla [trual
1@1 3
182 wpdate_syatani F)
183 rem_chackat+]
14 irtarrope_sinl Groen_chachal!
185 if Lgreph® 1
i[5] graph_dstall]
1a7 pro=_spacifiel !
STATRS: cwsr maie, Fear a0/ Seme/ debog_sav /Bl S0 anin. o7 [k
EI Sl m WO RGBT R L
o e e e = e e
Command: R:bum"FIﬂ:I Cursor: le'u-rl.l. .'\-I l-'mwd"fl:arh- :ndl 'l:'!ﬂl-'l @

The default display mode settings cause source lines and symbols to appear
in displays where appropriate. You can use symbols when specifying
expressions. The global symbol "main" is used in the command above to
specify the starting address of the memory to be displayed.

33

Getting Started
Step 3: Run from the transfer address

Figure 4

Step 3: Run from the transfer address

The transfer address is the entry address defined by the software
development tools and included with the program’s symbol information.

Click on the Run Xfer til () action key.
Or, using the command line, enter:

run from transfer_address until main

Hewlatt Packard Emulator/Analyzes: hplsds? (mGBE0x0

File Display heoy Exeeution Bresbpuints Trace Seitng Hulp
Action eys: = D = R Tr tll[) §[Disp See & Asm Fatgh |)
= oL Key - hakor & Load Step Asm Step Sourae s ar|)
Disp @HEG Diaps Fre Prew Trace Filan Again
[E nmain Areal
Harory (Bap trreronic (File = . dusrd hpSA 00 dercy’ debug_eree bpE T nan. 27!
sckdrans Jaba] =T A
31 wxtarn vold cpdeta_sgqatanif] 3 update amten varishles U
T mrtermn owold Loterrgstostnliet 330 £3 aboolete e briecrogs s
a3 axtarn void do_sorticold o] detell, cher sscii_detall[B], irt aized)
™
5 mainl}
"
ar irtt_sgstenl)
b= =] proc_spac_initl 3} D
]
1 while [erual
131 L
18z upslata_systani)
[n k] rami_chachat+!
124 irtarrupt_sinliren_chachal!
105 Uf [gragh? &=
106 graph_dstsl}}
[xF proc_spacificihy
STHIWE: R eeRemaiay 1o maiTer Splmaare bresks MNIRalag [4Tk

v Fron trensder_sddrass el] neln

IIIIIIILPIMJI medify || Broak I and I—I'I'(—
Command: [Rewurn|[ecal] Cursor: [Fackis|[Forwerd][Clear to end][Clear] [Fielp]

Notice the message "Software break: <address>" is displayed on the status
line and that the emulator is "Running in monitor" (you may have to click the
select mouse button to remove temporary messages from the status line).
When you run until an address, a breakpoint is set at the address before the
program is run.

Notice the highlighted bar on the screen; it shows the current program
counter.

34

Getting Started
Step 4: Step high-level source lines

Figure 5

Step 4: Step high-level source lines

You can step through the program by high-level source lines. The emulator
executes as many instructions as are associated with the high-level program
source lines.

To step a source line from the current program counter, click on the
Step Source action key.
Or, using the command line, enter:

Step source

Notice that the highlighted bar (the current program counter) moves to the
next high-level source line.

Step into the "init_system" function by continuing to step source
lines, either by clicking on the Step Source action key, by clicking
on the Again action key which repeats the previous command, or by
entering the step source command on the command line.

Hawdott Packard ErmdatosAnalyzer: hpbsdzl (mGS30=)
File Display Moy Exeeulion Brestgoints Trace Settng Halj:

e
Aetonvers: Oy 5ee0
[s sre e o et [_sipon | fegmir]

i rain Azl
Flagwnriy Bap weercele sFLle = Lol _sgeresncdi e, Tinlr_sgeren, o
scidrmes bl durs A
&€
@ wold Lnit_wal_avrll;]
s}
) wold
3 LAl T_mgarenl
‘*[fo FURCTION (nlt_sgsteny of
fo [mlrislizes the target uslose for tenperstire sed boniditg of
33 TATQEL_Tap = 74;
&2 rargen_baanld = 45;
*=
x felreialize the varlables prdicating the corrent s Torwent of
37 fe corditions
] currenT_teng = B
T3 current_Famnid = 41;
48 @

41 fo Sar starrieg directions for tenp and honid of
42 rerg diT = up;

STETWS: cmal ll.lll_lgl-u-.d (T} l|_|,ll|-l-.-:". IJ_LLI

Biag scisria

Comemni; [Retumn][Recel] Cursor: [Eocki][Ferward][Ciear ta ena][Crear]

35

Getting Started
Step 5: Display the previous mnemonic display

Step 5: Display the previous mnemonic display

Click on the Disp Src Prev action key.
Or, using the command line, enter:

display memory mnemonic previous_display

This command is useful, for example, when you have stepped into a function
that you do not wish to look at—you can display the previous mnemonic
display and run until the source line that follows the function call.

36

Getting Started
Step 6: Run until an address

Figure 6

Step 6: Run until an address

When displaying memory in mnemonic format, a selection in the pop-up
menu lets you run from the current program counter address until a specific

source line.

Position the mouse pointer over the line "proc_spec_init();", press
and hold the select mouse button, and choose Run Until from the
pop-up menu. This screen shows the command line turned on.

Hervlatt Fackard EmulatordSnalyzar: hplsds? (mGEE0:)

Fili Display heodily Execution B

hpoints Trace Setting

Huljs

Action beys = Deme = Ruiie ¥Ter il [) J|Disp See & Asm Patsh i)
I = o Key = ke & [oed Step Asm Step Sourae Crsp War(§
Diap @AEG || Disp Sre Prev Trace Fitm Again
[main Ricall
Hareory (Bap lwrarenie (Pl le = L duerd BB derey debag_ereed heEA T E nelnL 27!
sciclrany Iabw] cluts A
=) | a=tarn vold updsts_systanl) A% ppedete systan verisbles B2 "\
T wxtern wvold irterropt_sinling 33 /% sinulete e Loteeropt 37
a3 a=tarn vold do_sortiold =] detall, cher sscii_deesl[1[E], imt sizal)
o}
=] nimiml}
= [
a7 ini :_lil“nl LN
I |Chaodd Action e Heghiglaed Ling D
:g:; FetiChear Sofbware Breskpoint
152 |Edn Source
1e3
:$ Fhun Ut femchin | =
105 Tratt ARar
107 | Trace Bedore
STaTS: | Traee Aot by Bpl 4 S npin. 0" [olk |
diaplay o Teaeak Llinil
= e e b oo o o
Command: |R!bum IHH-l Cursor: II'C.II.'P.L :\-I l-'umnu\dl Clear to !ridl CIHH @

Or, using the command line, enter:

run until

main."main.c": line 98

After the command has executed, notice the highlighted bar indicates the

program counter has moved to t

he specified source line.

37

Getting Started
Step 7: Display data values

Step 7: Display data values

1 Position the mouse pointer over "num_checks" in the source line that
reads "num_checks++;" and click the paste mouse button (notice
"num_checks" is cut and pasted into the entry buffer).

2 Choose Display - Data Values
Or, using the command line, enter:

display data , num_checks int32
Figure 7 Hawdott Packard Emwdatos Analyzer holadzlh (mGS30:)
File Display bodty Expcailion Breabgoints Track Seflings Halj
Action keys:
[bisse |[osp Sro Prev][Runder o (][Break][Step fsm][Regaci)]
{k nun_cheoks Aecall
Oars jopdste A
Addrees Labe=| L™ A=t
BETEEE | _paan_chechs Lee32 [} ®
[1
&
L
STETWS: HERI2 R ey i mamitwr Selamare Broak! D007 RacPup IJ_LLI

EIIP|H=| dets , ren_chachs ime32

Coessand; [Return|[Reeall] Cursor: [Fackus][Forward][Ciear to and][Slear]

The "num_checks" variable is added to the data values display and its value is
displayed as a 32-bit integer.

38

Getting Started
Step 8: Display registers

Step 8: Display registers

You can display the contents of the processor registers.

¢ Choose Display - Registers - BASIC.
Or, using the command line, enter:

display registers
Flgure 8 Hevlatt Packard Emulatorn/Analyear: hplsds? (miGEE0:)

Fili Display hodidy Eveeution Breabpoints Tresk Setting Hitljs
Aetion Reys: = D = Rain ler (81) J|Disp See & Asin Pateh |)

| = Your Keys || hake & Load Shep Asm Step Source Csp Var(
Digp EHEG Digp See Prew Traze Him Again

[nun_checks Aecall

Fagiatars

A
HMa=i FT OOEZ00RE "
FT O STATUS Z7D © a H LESF ipstataetra SEF O FES
D007 EWppeceicr) | DeDMietelie) ENDCMDSET DODCTTEE ENDeOONNION DDNDeTCNNIND NCNCNNTADCND) CMDADNCNCNCADNCY
A-A7 oo OC FFFFFFFF BDOOTSOA D000TSCT BOOOTCAC D00OFSoA DOODCF= Do Fes

STETwS: R eivegpiay cenglens
diapley reglatars BASIC

[[run [trace [atep |[diaplay | medily |[Ereak [e=d |[—ETI-—
Command: [Return|[Fecal] Cursor: [Fachis] [Forward][Clear to end][Clear] [Help]

39

Getting Started
Step 9: Step assembly-level instructions

Step 9: Step assembly-level instructions

You can step through the program one instruction at a time.

* To step one instruction from the current program counter, click on
the Step Asm action key.

Or, using the command line, enter:

step

Flgure 9 Hevlatt Packard Emulatorn/Analyear: hplsds? (miGEE0:)

Filo Désplay by Exeeution Breskpoints Trace Setting Hulp

Aetiofn keys: = Daine = Ruin #ler @[) |[Qisp See & Asm][Paten| §
| = Your Keys || hake & Load Shep Asm Step Source Csp Var(
Disp @REG Disp Sre Praw Trage Fiun Again

[nun_checks Aeal

Fagiatars

[

Haxt FL DOET00Ewp "
FC ERCEYEESE STATUS 2708 < a H LEF oot S5F DOOOCFES
C-07 DO | DD DOOsHED DODDETTE DOCRoe DONONOn EeOnce Qe
FO-AT DDDEEMOC FFFFFFFF DOOOTSSA OODOTSCE DOOOTCAC OO0OFSSA DOOOCFH OoDOCFes

Stap_FL DOIEERap LIMGCH A5, HED0D
Nt FL BAIZMEBsp [
FO BOOEEEM STATLS 2700 < a : USF DOmonm S5 DESRCFEH

DE-07 BN0EE00] DOD000D EOREEHEL BOOCETEE DOSDO0OD DONO00DD DROGON0E DORO0aER
FE-A7 BOOEEMOC FFFFFFFF BOBOTSTA GO0O7SCZ BOA0TCAC GOOCFSOR DOGOCFDY DOROCFEH

STEIWE: HEEIZ==Sueppiny complene
Hren

[[run [trace [atep |[diaplay | medily |[Ereak [e=d |[—ETI-—
Command: [Return|[Fecal] Cursor: [Fachis] [Forward][Clear to end][Clear] [Help]

Notice, when registers are displayed, stepping causes the assembly language
instruction just executed to be displayed.

40

Getting Started
Step 10: Trace the program

Step 10: Trace the program

When the analyzer traces program execution, it looks at the data on the
emulation processor’s bus and control signals at each clock cycle. The
information seen at a particular clock cycle is called a state.

When one of these states matches the "trigger state" you specify, the analyzer
stores states in trace memory. When trace memory is filled, the trace is said
to be "complete."

Click on the Recall button to the right of the entry buffer.

A selection dialog box appears. You can select from entry buffer values that
have been entered previously or that have been predefined.

Click on "main" in the selection dialog box, and click the "OK"
pushbutton.

Notice that the value "main" has been returned to the entry buffer.

To trigger on the address "main" and store states that occur after the
trigger, choose Trace — After ().

Or, using the command line, enter:

trace after main

Notice the message "Emulation trace started" appears on the status line.
This shows that the analyzer has begun to look for the trigger state which is
the address "main" on the processor’s address bus.

Run the emulator demo program from its transfer address by
choosing Execution - Run - from Transfer Address.

Or, using the command line, enter:

run from transfer_address

Notice that now the message on the status line is "Emulation trace complete".
This shows the trigger state has been found and the analyzer trace memory
has been filled.

41

Getting Started
Step 10: Trace the program

5 To view the captured states, choose Display — Trace.
Or, using the command line, enter:

display trace

Figure 10

Hevlatt Packard Emulatorn/Analyear: hplsds? (miGEE0:)

Filo Display Moy Eveeaition Breahpoints Trace Setting

Hulp

Aetiofn keys: = Daine = Ruin #ler @[) |[Qisp See & Asm][Paten| §
| = Your Keys || hake & Load Shep Asm Step Source Csp Var(
Disp @REG Disp Sre Praw Trage Fiun Again

e
T O T T T

Labal: FAddrass

Esaa! _ mabols
BEEEEl ool mstnmein

+a] -|n| _sgwtenio_buf
HEE _agetenioHDOO0OC
G _ageten ot D00004
+00H gt o0
S _agetan o D000
+0E gt L oHDOO00A
HEET st oD
+00E s tan Lo D000E
HEE _sgstenicHD000 10
018 _agstenictD00D]2
+all gt L o000 14
H1Z _systanicHD000 15
+al3 gt o000 12
+ili14 gt L o200 1A
+als a0 T

Op=e=da or Ststus w' Sooreas Lires

$4ESE apr dets Td
ko n s dets rd
JETI apr dets rd
1 T4E4 spr dets rd
16572 s dets rd
b Brcin o] spr dets rd
1A supr dets rd
JEOSF apr dets td
1Z5AA s dets rd
$20EA apr dets rd
1EFIF spr dets rd
1ETO7 s dets rd
AR spr dets rd
1 00EE supr dets rd
#FTFS apr dets td
IFESS spr dets rd

L]

K
ERhELEEREREEEED
o [

AThIwS: R eeRemaiag ia maiter

Sl maare bresk: MMZoMERg

Buapleg rrece

Command: mm

medily |[Ereak [e=d |[—ETI-—
tursar: [Fach i) [Forward][Eiear to end][Ciear]

(et

The default display mode settings cause source lines and symbols to appear

in the trace list.

Captured states are numbered in the left-hand column of the trace list. Line

0 always contains the state that caused the analyzer to trigger.

Other columns contain address information, data values, opcode or status
information, and time count information.

42

Getting Started
Step 11: Patch assembly language code

Step 11: Patch assembly language code

The Patch () action key lets you patch code in your program.
1 With "main" still in the entry buffer, click on the Run Xfer til ()
action key.

2 To display memory with assembly-level instructions intermixed with
the high-level source lines, click on the Disp Src & Asm action key.

Flgure 1 Hewlatt Packard Emulator/Analyzes: hplsds? (mGBE0x0 |
Filo Disglay Modly Execution Bresvpeints Trask Setting Helj
Aetion ki = Diing = Fieiis WTer t() [[Disp See & Asm]| Pateh ()
= oL Key - hakor & Load Step Asm Step Sourae s ar|)
Disp @HEG Diaps Fre Prew Trace Filan Again
{E main Aecall
Harory (Bap trreronic (File = . dusrd hpSA 00 dercy’ debug_eree bpE T nan. 27!
sckdrans Jabal =T A
S92 mstern vold imterrugt_sinbine ¥1; SF sinulste an interroge 0 A
93 m=tern wvoid do_sortlold sl detsll, cher sscii_dsts[1[8], irt sizeb)
ol
=] mainl
] L
- | et nein 4ESE0000 LINE.H RS, H0a0a
TR ZFEB HWNE.L A3, -IAT:
BECECH ZFEA HWNE.L A2, -IAT: D
BECEDE S4TCOE0OTS HOWER.L $HDDEOTSEA, AZ
BEEEOC ZETCDO0ATS HOWEA.L HDOTSCE, A2
k-ra irtt_sgntanl)
BEZEER 14ECEEa] HNE.BE @1, (A=}
DOZEER AEETEEE ISR LALt. LALE_systan
= proc_spac_init (3]
BEEEEC 4EEDDODEEA ISR P proc_spec_init .2
=]
1 while [tromk
STETEE: B eelmaing in maiter Splvmpre bresks MR eRap |l

mat moiroe ong dlapley reEory Resnonl o

IIIIIIILPIMJI medify || Broak I and I—I'I'(—
Command: [Rewurn|[ecal] Cursor: [Fackis|[Forwerd][Clear to end][Clear] [Fielp]

3 Click on the address for main in the source display to enter the
address into the entry buffer.

4 Click on the Patch () action key.

A window appears and the vi editor is started. Notice that the address for
"main" appears in the ORG statement.

5 Add the line:

LINK A6,#1234h

43

Getting Started
Step 11: Patch assembly language code

Figure 12
; PCHE700 Assembly Patch File: PCHOOOFCAh.s
; Date @ Tue Jul 5 11:01:36 MDT 1994
; Dir @ Jusr/hph4dod/demo/debug_env/hpha7as
; Owner: markb
INCLUDE PCHSINC.s
ORG OQOFCAL ; wou may need to change this!
Link &6,%#12340
"PCHOOOFCAh.s" 12 lines, 236 characters
6 Exit out of the editor, saving your changes.
The file you just edited is assembled, and the patch main menu appears.
7 Type "a" and press <RETURN> to apply the patch.
Flgure 13 Hewlat Packasd Emulaton Analyzar: hplsda? (mGEE0) |
Fils Display ol Evecution Breskpoints Trace Seftings Halp
Action ks = D » Ruiin KTar @]) || Disp See & Aain Pateh |)
< Your Key > hdake & [oad Step Asm Step Sourae Dasp War{)
Disp @REG [Disp See Frv Trace [Agaliy
[k EH2BCER |Recan
Mercry Bap trearcnic tHils = L e beEAO00 dene debug s bpEATE Ratr 2t
sddrans lsba] st
= axtarm veld rterropt_sinliet ®) A% ominalete sn LrterTopt wS

EE] axtarn void do_sortlold el detall, char sscii_dets[I[B], irc sized!
™

¥ [T
36 [
- | rstr.ruin 4ESEIZI4 LIME.H FE, T
ECEDE ZFOE HWE. L Az, ~IAT
DOCETH ZFR HWE.L AZ,-IATH
DR S4TOEGTE HOWEA. L HDDSOTEEA, AZ
EEEDC SETCEGTS HOWER. L HDDDOTSCE, AR
a7 bt _sgatanl }]
DCEED HECTEE] HNVE.E Hol, Rz
DECEEE AEEEREE ISR ALt LnLE_systan
= proc_spac_inttl i
DOCEET AEESEEGCH ISR P prec_spms_init
=
1o whila [trual
STaTRs: R —Resaing e mesiver Salmmare bresh; MFRgelfay i REN|

Beedifig vemwecrsy EEREECRRN words o BIZHE

[run trace | atep [diaplay | medi Ty || Broak wmd|[—ETC—]
Command: [Return|[Recsl] cursor: [Fachi)[Forward] [Clear to end][Clear] [Felp]

44

10

11

12

Getting Started
Step 11: Patch assembly language code

Notice in the emulator/analyzer interface that the instruction at address
"main" has changed.

Click on the Patch () action key again.

A window running the vi editor again appears, allowing you to modify the
patch code that was just created.

Modify the line you added previously to:
LINK A6,#0

Exit out of the editor, saving your changes.
The file you just edited is assembled, and the patch main menu appears.
Type "a" and press <RETURN> to apply the patch.

Notice in the emulator/analyzer interface that the instruction at address
"main" has been changed back to what it was originally.

When patching a single address, make sure the new instruction takes up the
same number of bytes as the old instruction; otherwise, you may
inadvertently modify code that follows.

Type "main+4 thru main+15" in the entry buffer.

By entering an address range in the entry buffer (that is, <address> thru
<address>) before clicking on the Patch () action key, you can modify a
patch template file which allows you to insert as much or as little code as you
wish.

If you make a mistake while editing the patch, then save the changes, when
you enter the file again to fix the mistake, a "duplicate symbol" error will
appear on the INCLUDE PCHSINC.s" line when the patch is reassembled.
Although this message is displayed, it will not affect the new patch assembly.

45

Figure 14

Getting Started
Step 11: Patch assembly language code

13 Click on the Patch () action key again.

A window running the vi editor again appears. Suppose you want to patch
the demo program so that the proc_spec_init() function is called before the
init_system() function. Suppose also that there is memory available at
address 8800H. Edit the patch template file as shown below.

FCHS700 Assembly Patch File: PCHOOOFCAh+4.s

Date : Tue Jul 5 12:11:11 MDT 1994
Dir : fusr/hpf4000/demo/debug_env/hpb4749
Owner: markh

INCLUDE PCHSINC.s

ORG 0OOFCAh+4 ; vou may need to change this!
BRA patchl ; ¥You may want to change this name!
ORG 8800h ; You MUST set this address!

NOF

! You may need to modify labels and operands of the
following code to match your assembler syntax
! Patching Range: Q00FCAh+4 thru 00QFCAh+15
Insert new code here !1PPITIID
_proc_spec_init
_init_system
QOOFCAh+16 ; ¥You MUST set this address also!

Notice that symbols can be used in the patch file.
14 Exit out of the editor, saving your changes.

The file you just edited is assembled, and the patch main menu appears.
15 Type "a" and press <RETURN> to apply the patch.

You can step through the program to view execution of the patch.

46

Getting Started
Step 12: Exit the emulator/analyzer interface

Step 12: Exit the emulator/analyzer interface
¢ To exit the emulator/analyzer interface and release the emulator,

choose File - Exit - Released.
Or, using the command line, enter:

end release_system

47

48

Part 2

User’s Guide

49

Part 2

A complete set of task instructions and problem-solving guidelines, with a
few basic concepts.

50

Plugging into a Target System

51

CAUTION

Plugging the Emulator into a Target System

For information about plugging the emulator into a target system,
refer to the 6830x Installation/Service/Terminal Interface User’s
Guide. That manual describes connecting these emulators to a target
system using a 144-pin TQFP, a PQFP (plastic quad flat pack) cable.

* M68302—Model HP 64798C

* M68LC302—Model HP 64798F
* M68306—Model HP 64798H

Possible Damage to the Emulator Probe. The emulator contains devices
that are susceptible to damage by static discharge. Therefore, precautionary
measures should be taken before handling the emulator probe to avoid
damaging the internal components of the emulator by static electricity.

52

Starting and Exiting HP 64700
Interfaces

53

Starting and Exiting HP 64700 Interfaces

You can use several types of interfaces to the same emulator at the
same time to give yourself different views into the target system.

The strength of the emulator/analyzer interface is that it lets you
perform the real-time analysis measurements that are helpful when
integrating hardware and software.

The Software Performance Analyzer interface (which is also a
separate product) lets you make measurements that can help you
improve the performance of your software.

These interfaces can operate at the same time with the same
emulator. When you perform an action in one of the interfaces, it is
reflected in the other interfaces.

Up to 10 interface windows may be started for the same emulator.
Only one SPA window is allowed, but you can start multiple
emulator/analyzer interface windows.

The tasks associated with starting and exiting HP 64700 interfaces are
grouped into the following sections:

* Starting the emulator/analyzer interface.

¢ Opening other HP 64700 interface windows.

* Exiting HP 64700 interfaces.

54

Starting the Emulator/Analyzer Interface

Before starting the emulator/analyzer interface, the emulator and
interface software must have already been installed as described in
the "Installation" chapter.

This section describes how to:

* Start the interface.

* Start the interface using the default configuration.

* Run a command file on interface startup.

* Display the status of emulators defined in the 64700tab.net file.
e Unlock an interface that was left locked by another user.

To start the emulator/analyzer interface

Use the emul700 <emul_name> command.

If /usr/hp64000/bin is specified in your PATH environment variable (as shown
in the "Installation" chapter), you can start the interface with the emul700
<emul_name> command. The "emul_name" is the logical emulator name
given in the HP 64700 emulator device table (/usr/hp64000/etc/64700tab.net).
It may also be the LAN address.

If you are running a window system on your host computer (for example, the
X Window System), you can run the interface in a maximum of 10 windows.
This capability provides you with several views into the emulation system.
For example, you can display memory in one window, registers in another, an
analyzer trace in a third, and data in the fourth.

55

Starting and Exiting HP 64700 Interfaces
To start the emulator/analyzer interface

Examples To start the emulator/analyzer interface for the 6830x emulator:

$ emul700 em6830x

The "em6830x" in the command above is the logical emulator name given in
the HP 64700 emulator device table file (fusr/hp64000/etc/64700tab.net).

Blank lines and the rest of each line after a '# character are ignored.

The information in each line must be in the specified order, with one line

for each HP series 64700 emulator. Use blanks or tabs to separate fields.

#

+ + +

Channel| Logical | Processor | Remainder of Information for the Channel

Type | Name | Type | (IP address for LAN connections)

+ + +

lan: em6830x m6830x 21.17.9.143

serial: em6830x m6830x myhost /dev/iemcom23 OFF 9600 NONE XON 2 8

If you're currently running the X Window System, the Graphical User
Interface starts; otherwise, the Softkey Interface starts.

The status message shows that the default configuration file has been loaded.
If the command is not successful, you will be given an error message and
returned to the UNIX prompt. Error messages are described in the "Error
Messages" chapter.

56

Starting and Exiting HP 64700 Interfaces
To start the interface using the default configuration

To start the interface using the default configuration

Use the emul700 -d <emul_name> command.

In the emul700 -d <emul_name> command, the -d option starts the default
configuration. The -d option is ignored if the interface is already running in
another window or on another terminal.

Examples

To run a command file on interface startup

Use the emul700 -¢ <cmd_file> <emul_name> command.

You can cause command files to be run upon starting the interface by using
the -c <cmd_file> option of the emul700 command.

Refer to the "Using Command Files" section in the "Entering Commands"
chapter for information on creating command files.

To start the emulator/analyzer interface and run the "startup" command file:

$ emul700 -c startup em6830x

To display the status of emulators

Use the emul700 -1 or emul700 -1v command.

The -1 option of the emul700 command lists the status of all emulators
defined in the 64700tab and 64700tab.net files. If a logical emulator name is
included in the command, just the status of that emulator is listed.

You can also use the -v option with the -1 option for a verbose listing of the
status information.

57

Starting and Exiting HP 64700 Interfaces
To unlock an interface that was left locked by another user

Examples To list, verbosely, the status of the emulator whose logical name is "em6830x":

$ emul700 -lv.. em6830x

The information may be similar to:
em6830x - m6830x running; user = guest
description: M6830x emulation, 512K bytes emul mem
user interfaces: xdebug, xemul, xperf, skemul, sktiming
device channel: /dev/emcom23

Or, the information may be similar to:
em6830x - m6830x running; user = guest@myhost
description: M6830x emulation, 512K bytes emul mem
user interfaces: xdebug, xemul, xperf, skemul, sktiming
internet address: 21.17.9.143

To unlock an interface that was left locked by another
user

* Use the emul700 -U <emul_name> command.
The -U option of the emul700 command may be used to unlock the
emulators whose logical names are specified. This command will fail if there
currently is a session in progress.

Examples To unlock the emulator whose logical name is "em6830x":

$ emul700 -U em6830x

58

Opening Other HP 64700 Interface Windows

The File - Emul700 menu lets you open additional emulator/analyzer
interface windows or other HP 64700 interface windows if those
products have been installed (for example, the software performance
analyzer (SPA) interface).

This section shows you how to:

¢ Open additional emulator/analyzer interface windows.
* Open the software performance analyzer (SPA) interface window.

To open additional emulator/analyzer windows

To open additional Graphical User Interface windows, choose
File - Emul700 - Graphic Windows - Emulator/Analyzer.
Or, using the command line, enter:

emul700 <emul_name>

To open additional conventional Softkey Interface windows, choose
File - Emul700 -~ Terminal Windows — Emulator/Analyzer .

Or, using the command line, enter:
emul700 <emul_name>

You can open additional Graphical User Interface windows, or terminal
emulation windows containing the Softkey Interface. When you open an
additional window, the status line will show that this session is joining a
session already in progress, and the event log is displayed.

You can enter commands in any window. When you enter commands in
different windows, the command entered in the first window must complete
before the command entered in the second window can start. The status
lines and the event log displays are updated in all windows.

59

Starting and Exiting HP 64700 Interfaces
To open the software performance analyzer (SPA) interface window

To open the software performance analyzer (SPA)
interface window

Choose File - Emul700 - Graphic Windows - Performance

Analyzer.
Or, using the command line, enter:

emul700 -u xperf <emul_name>

For information on how to use the software performance analyzer, refer to
the Software Performance Analyzer User’s Guide.

60

Exiting HP 64700 Interfaces

There are several options available when exiting the HP 64700
interfaces. You can simply close one of the open interface windows,
or you can exit the debug session by closing all the open windows.
When exiting the debug session, you can lock the emulator so that you
can continue later, or you can release the emulation system so that
others may use it. This section describes how to:

¢ (Close an interface window.

e Exit a debug/emulation session.

To close an interface window

In the interface window you wish to close, choose
File - Exit -~ Window.

Or, using the command line, enter:
end

All other interface windows remain open, and the emulation session
continues, unless the window closed is the only one open for the emulation
session. In that case, closing the window ends the emulation session, but
locks the emulator so that other users cannot access it.

61

Starting and Exiting HP 64700 Interfaces
To exit a debug/emulation session

To exit a debug/emulation session

To exit the interface, save your configuration to a temporary file, and
lock the emulator so that it cannot be accessed by other users,
choose File - Exit - Locked.

Or, using the command line, enter:

end locked

To exit the interface and release the emulator for access by other
users, choose File - Exit - Released.
Or, using the command line, enter:

end release_system

If you exit the interface locked, the interface saves the current configuration
to a temporary file and locks the emulator to prevent other users from
accessing it. When you again start the interface with the emul700 command,
the temporary file is reloaded, and therefore, you return to the configuration
you were using when you quit the interface locked.

Also saved when you exit the interface locked are the contents of the entry
buffer and command recall buffer. These recall buffer values will be present
when you restart the interface.

In contrast, if you end released, you must have saved the current
configuration to a configuration file (if the configuration has changed), or the
changes will be lost.

62

Entering Commands

63

Entering Commands

When an X Window System that supports OSF/Motif interfaces is
running on the host computer, the emulator/analyzer interface is the
Graphical User Interface which provides pull-down and pop-up
menus, point and click setting of breakpoints, cut and paste, online
help, customizable action keys and pop-up recall buffers, etc.

The emulator/analyzer interface also provides the Softkey Interface
for several types of terminals, terminal emulators, and bitmapped
displays. When using the Softkey Interface, commands are entered
from the keyboard.

When using the Graphical User Interface, the command line portion
of the interface gives you the option of entering commands in the
same manner as they are entered in the Softkey Interface. If you are
using the Softkey Interface, you can only enter commands from the
keyboard using the command line.

The menu commands in the Graphical User Interface are a subset of
the commands available when using the command line. While you
have a great deal of capability in the menu commands, you have even
more in the command line.

This chapter shows you how to enter commands in each type of
emulator/analyzer interface. The tasks associated with entering
commands are grouped into the following sections:

e Using menus, the entry buffer, and action keys.

¢ Using the command line with the mouse.

¢ Using the command line with the keyboard.

e Using command files.

e Using pod commands.

* Forwarding commands to other HP 64700 interfaces.

64

Using Menus, the Entry Buffer, and Action Keys

This section describes the tasks you perform when using the
Graphical User Interface to enter commands. This section describes
how to:

* (Choose a pull-down menu item using the mouse.

* (Choose a pull-down menu item using the keyboard.

e Use the pop-up menus.

* Use the entry buffer.

¢ Copy and paste to the entry buffer.

* Use action keys.

e Use dialog boxes.

* Access help information.

To choose a pull-down menu item using the mouse
(method 1)

Position the mouse pointer over the name of the menu on the menu
bar.

Press and hold the command select mouse button to display the
menu.

While continuing to hold down the mouse button, move the mouse
pointer to the desired menu item. If the menu item has a cascade
menu (identified by an arrow on the right edge of the menu button),
then continue to hold the mouse button down and move the mouse
pointer toward the arrow on the right edge of the menu. The cascade
menu will display. Repeat this step for the cascade menu until you
find the desired menu item.

65

Entering Commands
To choose a pull-down menu item using the mouse (method 2)

Release the mouse button to select the menu choice.

If you decide not to select a menu item, simply continue to hold the mouse
button down, move the mouse pointer off of the menu, and release the mouse
button.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or message box when the
menu item is chosen.

To choose a pull-down menu item using the mouse
(method 2)

Position the mouse pointer over the menu name on the menu bar.
Click the command select mouse button to display the menu.

Move the mouse pointer to the desired menu item. If the menu item
has a cascade menu (identified by an arrow on the right edge of the
menu button), then repeat the previous step and then this step until
you find the desired item.

Click the mouse button to select the item.

If you decide not to select a menu item, simply move the mouse pointer off of
the menu and click the mouse button.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or other box when the
menu item is chosen.

To choose a pull-down menu item using the keyboard

To initially display a pull-down menu, press and hold the menu select
key (for example, the "Extend char" key on an HP 9000 keyboard)
and then type the underlined character in the menu label on the
menu bar. (For example, "f" for "File". Type the character in
lowercase only.)

To move right to another pull-down menu after having initially
displayed a menu, press the right-arrow key.

To move left to another pull-down menu after having initially
displayed a menu, press the left-arrow key.

66

Entering Commands
To choose a pull-down menu item using the keyboard

To move down one menu item within a menu, press the down-arrow
key.
To move up one menu item within a menu, press the up-arrow key.

To choose a menu item, type the character in the menu item label
that is underlined. Or, move to the menu item using the arrow keys
and then press the <RETURN> key on the keyboard.

To cancel a displayed menu, press the Escape key.

The interface supports keyboard mnemonics and the use of the arrow keys to
move within or between menus. For each menu or menu item, the
underlined character in the menu or menu item label is the keyboard
mnemonic character. Notice the keyboard mnemonic is not always the first
character of the label. If a menu item has a cascade menu attached to it, then
typing the keyboard mnemonic displays the cascade menu.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or other box when the
menu item is chosen.

Dialog boxes support the use of the keyboard as well. To direct keyboard
input to a dialog box, you must position the mouse pointer somewhere inside
the boundaries of the dialog box. That is because the interface keyboard,
Socus policy is set to pointer. That just means that the window containing
the mouse pointer receives the keyboard input.

In addition to keyboard mnemonics, you can also specify keyboard
accelerators which are keyboard shortcuts for selected menu items. Refer to
the "Setting X Resources" chapter and the "Softkey.Input" scheme file for
more information about setting the X resources that control defining
keyboard accelerators.

67

Entering Commands
To choose pop-up menu items

To choose pop-up menu items

Move the mouse pointer to the area whose pop-up menu you wish to
access. (If a pop-up menu is available, the mouse pointer changes
from an arrow to a hand.)

Press and hold the select mouse button.

After the pop-up menu appears (while continuing to hold down the
mouse button), move the mouse pointer to the desired menu item.
Release the mouse button to select the menu choice.

If you decide not to select a menu item, simply continue to hold the mouse
button down, move the mouse pointer off of the menu, and release the mouse
button.

To place values into the entry buffer using the
keyboard

Position the mouse pointer within the text entry area. (An "I-beam"
cursor will appear.)
Enter the text using the keyboard.

To clear the entry buffer text area from beginning until end, press the
<Ctrl>u key combination.

To copy and paste to the entry buffer

To copy and paste a discrete text string as determined by the
interface, position the mouse pointer over the text to copy and click
the paste mouse button.

To specify the exact text to copy to the entry buffer: press and hold
the paste mouse button; drag the mouse pointer to highlight the text
to copy-and-paste; release the paste mouse button.

You can copy-and-paste from the display area, the status line, and from the
command line entry area.

When you position the pointer and click the mouse button, the interface

expands the highlight to include the most complete text string it considers to
be discrete. Discrete here means that the interface will stop expanding the

68

Entering Commands
To copy and paste to the entry buffer

highlight in a given direction when it discovers a delimiting character not
determined to be part of the string. A common delimiter would, of course, be
a space.

When you press and hold the mouse button and drag the pointer to highlight
text, the interface copies all highlighted text to the entry buffer when you
release the mouse button.

Because the interface displays absolute addresses as hex values, any copied
and pasted string that can be interpreted as a hexadecimal value (that is, the
string contains only numbers 0 through 9 and characters "a" through "f")
automatically has an "h" appended.

__|
Copy and paste and the Entry Buffer

If you have multiple Graphical User Interface windows open, a copy-and-paste
action in any window causes the text to appear in all entry buffers in all
windows. That is because although there are a number of entry buffers being
displayed, there is actually only one entry buffer and it is common to all
windows. That means you can copy a symbol or an address from one window
and then use it in another window.

On a memory display or trace display, a symbol may not be completely
displayed because there are too many characters to fit into the width limit for
a particular column of the display. To make a symbol usable for
copy-and-paste, you can scroll the screen left or right to display all, or at least
more, of the characters from the symbol. The interface displays absolute
addresses as hex values.

Text pasted into the entry buffer replaces that which is currently there. You
cannot use paste to append text to existing text already in the entry buffer.

See "To copy-and-paste from the entry buffer to the command line entry
area' for information about pasting the contents of the entry buffer into the
command line entry area.

69

Entering Commands
To copy and paste to the entry buffer

Example To paste the symbol "num_checks" into the entry buffer from the interface
display area, position the mouse pointer over the symbol and then click the
paste mouse button.

Hawlatt Packard Emadatos/nalyzer holsdzh (mGS50:0
File Display hody Exeeution Bresipoints Trace Sefting Help

e e e o e o e R e . e e, . e e
renonvers: | D o0
[ise |Bop s e[et e[St tom | g]

(puwe_oheoks Aecall
A mouse click causes Hencrsl ibep. irnmeniLoiif L e et ilnadll o, Ralndu s A
the interface to expand 32[mararn wold opdste_sgerenll; fo pcete mgaren uarisbles of &
[N : aatarn wold Loesrropr_sinling *b Fe sirolane an iimertopr o/
the hlgh"ght to include a3 murare wold do_sortiold_=] dstall, char sscii_dsts[l[8], 1er sized;
the symbol Ea
" "] rlinl
num_checks" and *c
paste the symbol into i Loy oueronl b,
pron_spe_LnlT il [

the entry buffer. =

5] while [rroe)

1a1 [

162 pdane_sgatent

183 Fon_oheoliat+;

164 Ermarrapt_s Lol o chechial; =

165 if Lgrapht

135 graphy_darsl

187 proc_spec | f Lol

STATNS: HEEI0P—Bemming in wesiier Seftmare brosk! 0000hcebsy | A 1P |

Hiapley rmrcry natn mrecnlc

Comsnd; [Roturn|[Rezall] Cursor [F sewaed) [Stear to o] [Clear]

70

Entering Commands
To recall entry buffer values

To recall entry buffer values

Position the mouse pointer over the Recall button just to the right of
the entry buffer text area, click the mouse button to bring up the
Entry Buffer Recall dialog box, and then choose a string from that
dialog box.

The Entry Buffer Recall dialog box contains a list of entries gained during the
emulation session as well as any predefined entries present at interface
startup.

If you exit the emulation/analysis session with the interface "locked", recall
buffer values are saved and will be present when you restart the interface.

You can predefine entries for the Entry Buffer Recall dialog box and define
the maximum number of entries by setting X resources (refer to the "Setting
X Resources" chapter).

See the following "To use dialog boxes" section for information about using
dialog boxes.

To use the entry buffer

Place information into the entry buffer (see the previous "To place
values into the entry buffer using the keyboard", "To copy-and-paste
to the entry buffer", or "To recall entry buffer values" task
descriptions).

Choose the menu item, or click the action key, that uses the contents
of the entry buffer (that is, the menu item or action key that contains

ll()ll).

71

Entering Commands
To copy and paste from the entry buffer to the command line entry area

To copy and paste from the entry buffer to the
command line entry area

Place text to be pasted into the command line in the entry buffer text
area.

You may do this:
e Copying the text from the display area using the copy and paste feature.
e Entering the text directly by typing it into the entry buffer text area.

e Choosing the text from the entry buffer recall dialog box.

Position the mouse pointer within the command line text entry area.
If necessary, reposition the cursor to the location where you want to
paste the text.

If necessary, choose the insert or replace mode for the command
entry area.

Click the command paste mouse button to paste the text in the
command line entry area at the current cursor position.

The entire contents of the entry buffer are pasted into the command line at
the current cursor position.

Although a paste from the display area to the entry buffer affects all
displayed entry buffers in all open windows, a paste from the entry buffer to
the command line only affects the command line of the window in which you
are currently working,.

See "To copy and paste to the entry buffer" for information about pasting
information from the display into the entry buffer.

To use the action keys

If the action key uses the contents of the entry buffer, place the
desired information in the entry buffer.

Position the mouse pointer over the action key and click the action
key.

Action keys are user-definable pushbuttons that perform interface or system
functions. Action keys can use information from the entry buffer — this
makes it possible to create action keys that are more general and flexible.

72

Entering Commands
To use dialog boxes

Several action keys are predefined when you first start the Graphical User
Interface. You can use the predefined action keys, but you'll really appreciate
action keys when you define and use your own.

Action keys are defined by setting an X resource. Refer to the chapter
"Setting X Resources" for more information about creating action keys.

Directory Selection
File Selection

Entry Buffer Recall

Command Recall

To use dialog boxes

Click on an item in the dialog box list to copy the item to the text
entry area.

Edit the item in the text entry area (if desired).

Click on the "OK" pushbutton to make the selection and close the
dialog box, click on the "Apply" pushbutton to make the selection and
leave the dialog box open, or click on the "Cancel" pushbutton to
cancel the selection and close the dialog box.

The graphical interface uses a number of dialog boxes for selection and recall
as described in the following:

Selects the working directory. You can change to a previously accessed
directory, a predefined directory, or specify a new directory.

From the working directory, lets you select an existing file name or specify a
new file name.

Lets you recall a previously used entry buffer text string, a predefined entry
buffer text string, or a newly entered entry buffer string, to the entry buffer
text area.

Lets you recall a previously executed command, a predefined command, or a
newly entered command, to the command line.

The dialog boxes share some common properties:
¢ Most dialog boxes can be left on the screen between uses.

¢ Dialog boxes can be moved around the screen and do not have to be
positioned over the graphical interface window.

e If you iconify the interface window, all dialog boxes are iconified along
with the main window.
Except for the File Selection dialog box, predefined entries for each dialog

box (and the maximum number of entries) are set via X resources (refer to
the "Setting X Resources" chapter).

73

Examples

The file filter selects
specific files.

Alist of filter-matching
files from the current
directory.

Alist of files previously\

accessed during the
emulation session.

A single click on a file
name from either list
highlights the file name
and copies it to the text
area. A double click
chooses the file and
closes the dialog box.

Label informs you what

kind of file selection you

are performing.

Text entry area. Text)'s/

either copied here
from the recall list, or
entered directly.

Entering Commands
To use dialog boxes

To use the File Selection dialog box:

EmulatorfAnalyzer: File Selection

Filter

A

1 | | =)

Load Executable (Program and Symbols)

V]

OK

Filter

Cancel

Clicking this button chooses the Entering a new file filter and
clicking this button causes a list file selection operation and

file name displayed in the text
entry area and closes the
dialog box.

of files matching the new filter
to be read from the directory.

Clicking this button cancels the

closes the dialog box.

74

Entering Commands
To use dialog boxes

To use the Directory Selection dialog box:

Label informs you of the

type of list displayed. Emulator/Analyzer: Directory Selection

Previous Working Directories

A list of predefined or # Associated X Resource: "emul.még30x*dirSelectSub.entri
previously accessed !
directories.

$HP&4000/monitor
$HP&4000/demofdebug_envihp&4798

Asingle click on a B

directory name from the fusersofrogerc
list highlights the name
and copies it to the text
area. A double click
chooses the directory

and closes the dialog — s
box. e EEEE—— =

Selection

Text entry area.
Directory name is
either copied here from
the recall list, or

entered directly. oK

Apply Cancel

Clicking this button chooses Clicking this button chooses Clicking this button cancels the
the directory displayed in the the directory displayed inthe directory selection operation
text entry area and closes the text entry area, but keeps the and closes the dialog box.
dialog box. dialog box on the screen

instead of closing it.

75

Entering Commands
To access help information

To access help information

Display the Help Index by choosing Help - General Topic... or
Help - Command Line....

Choose a topic of interest from the Help Index.

The Help Index lists topics covering operation of the interface as well other
information about the interface. When you choose a topic from the Help
Index, the interface displays a window containing the help information. You
may leave the window on the screen while you continue using the interface.

76

Using the Command Line with the Mouse

When using the Graphical User Interface, the command line portion
of the interface gives you the option of entering commands in the
same manner as they are entered in the Softkey Interface.
Additionally, the graphical interface makes the softkey labels
pushbuttons so commands may be entered using the mouse.

If you are using the Softkey Interface, using the command line with
the keyboard is the only way to enter commands.

This section describes how to:

¢ Turn the command line off/on.
* Enter commands.

¢ Edit commands.

* Recall commands.

e Display the help window.

To turn the command line on or off

To turn the command line on or off using the pull-down menu,
choose Settings - Command Line.

To turn the command line on or off using the status line pop-up
menu: position the mouse pointer within the status line area, press
and hold the select mouse button, and choose Command Line Off
from the menu.

To turn the command line off using the command line entry area
pop-up menu: position the mouse pointer within the entry area, press
and hold the select mouse button, and choose Command Line Off
from the menu.

77

Entering Commands
To enter a command

Turns display of the command line area "on" or "off." On means that the
command line is displayed and you can use the softkey label pushbuttons, the
command return and recall pushbuttons, and the cursor pushbuttons for
command line editing. Off means the command line is not displayed and you
use only the pull-down menus and the action keys to control the interface.

The command line area begins just below the status line and continues to the
bottom of the emulator/analyzer window. The status line is not part of the
command line and continues to be displayed whether the command line is on
or off.

Choosing certain pull-down menu items while the command line is off causes
the command line to be turned on. That is because the menu item chosen
requires some input at the command line that cannot be supplied another
way.

To enter a command

Build a command using the softkey label pushbuttons by
successively positioning the mouse pointer on a pushbutton and
clicking the pushbutton select mouse button until a complete
command is formed.

Execute the completed command by clicking the Return pushbutton
(found near the bottom of the command line in the "Command"

group).

Or:

Execute the completed command using the Command Line entry
area pop-up menu: Position the mouse pointer in the command line
entry area; press and hold the select mouse button until the
Command Line pop-up menu appears; then, choose the Execute
Command menu item.

You may need to combine pushbutton and keyboard entry to form a complete
command.

A complete command is a string of softkey labels and text entered with the
keyboard. You know a command is complete when Return pushbutton is not
halfbright. The interface does not check or act on a command, however, until
the command is executed. (In contrast, commands resulting from pull-down
menu choices and action keys are supplied with the needed carriage return
as part of the command.)

78

Entering Commands
To edit the command line using the command line pushbuttons

To edit the command line using the command line
pushbuttons

To clear the command line, click the Clear pushbutton.

To clear the command line from the cursor position to the end of the
line, click the Clear to end pushbutton.

To move to the right one command word or token, click the Forward
pushbutton.

To move to the left one command word or token, click the Backup
pushbutton.

To insert characters at the cursor position, press the insert key to
change to insertion mode, and then type the characters to be inserted.

To delete characters to the left of the cursor position, press the
<BACKSPACE> key.

When the cursor arrives at the beginning of a command word or token, the
softkey labels change to display the possible choices at that level of the
command.

When moving by words left or right, the Forward pushbutton becomes
half-bright and unresponsive when the cursor reaches the end of the
command string. Similarly, the Backup pushbutton becomes half-bright and
unresponsive when the cursor reaches the beginning of the command.

See "To edit the command line using the mouse and the command line
pop-up menu" and "To edit the command line using the keyboard" for
information about additional editing operations you can perform.

To edit the command line using the command line
pop-up menu

To clear the command line: position the mouse pointer within the
Command Line entry area; press and hold the select mouse button
until the Command Line pop-up menu appears; choose Clear Entire
Line from the menu.

To clear the command line from the cursor position to the end of the
line: position the mouse pointer at the place where you want the
clear-to-end to start; press and hold the select mouse button until the

79

Entering Commands
To recall commands

Command Line pop-up menu appears; choose Clear to End of Line
from the menu.

To position the cursor and insert characters at the cursor location:
position the mouse pointer in a non-text area of the command line
entry area; press and hold the select mouse button to display the
Command Line pop-up menu; choose Position Cursor, Insert
Mode from the menu; type the characters to be inserted.

To replace characters at the current cursor location: position the
mouse pointer in a non-text area of the command line entry area;
press and hold the select mouse button to display the Command Line
pop-up menu; choose Position Cursor, Replace Mode from the
menu; type the characters to be inserted.

To position the cursor and replace characters at the cursor location:
position the mouse pointer in a non-text area of the command line
entry area; press and hold the select mouse button to display the
Command Line pop-up menu; choose Position Cursor, Replace
Mode from the menu; type the characters to be inserted.

When the cursor arrives at the beginning of a command word or token, the
softkey labels change to display the possible choices at that level of the
command.

See "To edit the command line using the mouse and the command line
pushbuttons" and "To edit the command line using the keyboard" for
information about additional editing operations you can perform.

To recall commands

Click the pushbutton labeled Recall in the Command Line to display
the dialog box.

Choose a command from the buffer list. (You can also enter a
command directly into the text entry area of the dialog box.)

Because all command entry methods in the interface — pull-down menus,
action keys, and command line entries — are echoed to the command line
entry area, the contents of the Command Recall dialog box is not restricted
to just commands entered directly into the command line entry area.

The Command Recall dialog box contains a list of interface commands
executed during the session as well as any predefined commands present at
interface startup.

80

Entering Commands
To get help about the command line

If you exit the emulation/analysis session with the interface "locked",
commands in the recall buffer are saved and will be present when you restart
the interface.

You can predefine entries for the Command Recall dialog box and define the
maximum number of entries by setting X resources (refer to the "Setting X
Resources" chapter).

See "To use dialog boxes" for information about using dialog boxes.

To get help about the command line

To display the help topic explaining the operation of the command
line, press the Help pushbutton located near the bottom-right corner
of the Command Line area.

81

Using the Command Line with the Keyboard

When using the command line with the keyboard, you enter
commands by pressing softkeys whose labels appear at the bottom of
the screen. Softkeys provide for quick command entry, and minimize
the possibility of errors.

The command line also provides command completion. You can type
the first few characters of a command (enough to uniquely identify
the command) and then press <Tab>. The interface completes the
command word for you.

Entering commands with the keyboard is easy. However, the
interface provides other features that make entering commands even
easier. For example, you can:

e Enter multiple commands on one line.

* Recall commands.

¢ Edit commands.

* Access online help information.

Examples

To enter multiple commands on one command line

Separate the commands with semicolons (;).

More than one command may be entered in a single command line if the
commands are separated by semicolons (;).

To reset the emulator and break into the monitor:

reset ; break

82

Entering Commands
To recall commands

Examples

To recall commands
Press <CTRL>r or <CTRL>b.
The most recent 20 commands you enter are stored in a buffer and may be

recalled by pressing <CTRL>r. Pressing <CTRL>b cycles forward through
the recall buffer.

For example, to recall and execute the command prior to the last command:

<CTRL>r <CTRL>r

<Left arrow>
<Right arrow>

<Tab> <Shift>
<Tab>

<Insert char>

<Back space>
<Delete char>
<Clear line>
<CTRL>u

To edit commands

Use the following keys:
Move the cursor single spaces to the left or right.

Move the cursor to the next or previous word on the command line.

Enters the insert editing mode and allows characters or command options to
be inserted at the cursor location.

Deletes the character to the left of the cursor.

Deletes the character to the right of the cursor.

Deletes the characters from the cursor to the end of the line.

Erases the command line.

83

Entering Commands
To access online help information

Examples

To access online help information

Use the help or ? commands.

To access the command line’s online help information, type either help or ?
on the command line. You will notice a new set of softkeys. By pressing one
of these softkeys and <RETURN>, you can display information on that topic.

To display information on the system commands:

help system_commands
Or:

? system_commands

The help information is scrolled on to the screen. If there is more than a
screen full of information, you will have to press the space bar to see the next
screen full, or the <RETURN> key to see the next line, just as you do with
the UNIX more command. After all the information on the particular topic
has been displayed (or after you press "q" to quit scrolling through
information), you are prompted to press <RETURN> to return to the
command line.

84

Using Command Files

You can execute a series of commands that have been stored in a
command file. You can create command files by logging commands
while using the interface or by using an editor on your host computer.

Once you create a command file, you can execute the file in the
emulation environment by typing the name of the file on the
command line and pressing <RETURN>.

Command files execute until an end-of-file is found or until a syntax
error occurs. You can stop a command file by pressing <CTRL>c or
the <Break> key.

This section shows you how to:

e Start logging commands to a command file.
e Stop logging commands to a command file.
e Playback (execute) a command file.

Nesting Command Files
You can nest a maximum of eight levels of command files. Nesting
command files means one command file calls another.

Comments in Command Files
Text that follows a pound sign (#), up to the end of the line, is
interpreted as a comment.

Using the wait Command
When editing command files, you can insert wait commands to pause
execution of the command file at certain points.

If you press <CTRL>c to stop execution of a command file while the
"wait" command is being executed from the command file, the
<CTRL>c will terminate the "wait" command, but will not terminate
command file execution. To do this, press <CTRL>c again.

85

Entering Commands
To access online help information

Use the wait measurement_complete command after changing the
trace depth. By doing this, when you copy or display the trace after
changing the trace depth, the new trace states will be available.
Otherwise the new states won’t be available.

Passing Parameters

Command files provide a convenient method for passing parameters
by using a parameter declaration line preceding the commands in the
command file. When the command file is called, the system will
prompt you for current values of the formal parameters listed.

Parameters are defined as:

Passed Parameters These are ASCII strings passed to a command file.
Any continuous set of ASCII characters can be passed. Spaces separate
the parameters.

Formal Parameters These are symbols preceded by an ampersand
(&), which are the variables of the command file.

The ASCII string passed (passed parameter) will be substituted for
the formal parameter when the command file is executed.

The only way to pass a parameter containing a space is to enclose the
parameter in double quotes (") or single quotes (*). Thus, to pass the
parameter HP 9000 to a command file, you can use either "HP 9000"
or "HP 9000’.

The special parameter &ArG_IEfT gets set to all the remaining
parameters specified when the command file was invoked. This lets
you use variable size parameter lists. If no parameters are left,
&ArG_IEST gets set to NULL.

Consider the command file example (named CMDFILE) shown below:

PARMS &ADDR &VALUE1

#

modify a location or list of locations in memory

and display the result

#

modify memory &ADDR words to &VALUE1 &ArG_IEfT

86

Entering Commands
To access online help information

display memory &ADDR blocked words

When you execute CMDFILE, you will be prompted with:
Define command file parameter [&ADDR]

To pass the parameter, enter the address of the first memory location
to be modified. You will then be prompted for &VALUE1. If you
enter, for example, "0,-1,20, Offffh, 4+5*4" the first parameter
"0,-1,20," is passed to &VALUEI and the remaining parameters
"Offffh," and "4+5%4" are passed to &ArG_IE{T.

You can also pass the parameters when you invoke the command file
(for example, CMDFILE 1000h 0,-1,20, Offffh, 4+5%4).

Other Things to Know About Command Files
You should know the following about using command files:

Command files may contain shell variables. Only those shell
variables beginning with "$" followed by an identifier will be
supported. An identifier is a sequence of letters, digits or
underscores beginning with a letter or underscore. The identifier
may be enclosed by braces "{ }" or entered directly following the "$"
symbol. Braces are required when the identifier is followed by a
letter, a digit or an underscore that is not interpreted as part of its
name.

For example, assume a directory named /users/softkeys and the shell
variable "S". The value of "S" is "soft". By specifying the directory as
/users/${S}keys the correct result is obtained. However, if you
attempt to specify the directory as /users/$Skeys, the Softkey
Interface looks for the value of the variable "Skeys". This is not the
operators intended result. You may not get the intended result unless
Skeys is already defined to be "softkeys".

You can examine the current values of all shell variables defined in
your environment with the command "env".

Positional shell variables, such as $1, $2, and so on, are not
supported. Neither are special shell variables, such as $@, $*, and so
on, supported.

87

Entering Commands
To start logging commands to a command file

You can continue command file lines. This is done by avoiding the
line feed with a backslash (\). A line terminated by "\" is
concatenated with any following lines until a line that does not
contain a backslash is found. A line constructed in this manner is
recognized and executed as one single command line. If the last line
in a command file is terminated by "\", it appears on the command
line but is not executed. Normally, the line feed is recognized as the
command terminator. The UNIX environment recognizes three
quoting characters for shell commands which are double quotes ("),
single quotes (), and the backslash symbol (\).

For example, the following three lines are treated as a single shell
command. The two hidden line feeds are ignored because they are
inside the two single quotes ():

lawk '/$/ { blanks++ }

END { print blanks }

> an_unix_file

To start logging commands to a command file

Choose File - Log - Record and use the dialog box to select a
command file name.

Using the command line, enter the log_commands to <file>
command.

To stop logging commands to a command file

Choose File - Log - Stop.
Or, using the command line, enter:

log_commands off

88

Entering Commands
To playback (execute) a command file

To playback (execute) a command file

Choose File - Log - Playback ,and use the dialog box to select the
name of the command file you wish to execute.

Or, using the command line, enter the name of the command file and press
<RETURN>.

If you enter the name of the command file in the command line and the
interface cannot find the command file in the current directory, it searches
the directories specified in the HP64KPATH environment variable.

To interrupt playback of a command file, press the <CTRL>c key
combination. (The mouse pointer must be within the interface window.)

If you press <CTRL>c to stop execution of a command file while the "wait"
command is being executed from the command file, the <CTRL>c will
terminate the "wait" command, but will not terminate command file
execution. To do this, press <CTRL>c again.

89

Using Pod Commands

Pod commands are Terminal Interface commands. The Terminal
Interface is the low-level interface that resides in the firmware of the
emulator.

A pod command used in the Graphical User Interface bypasses the
interface and goes directly to the emulator. Because some pod
commands can cause the interface to become out-of-sync with the
emulator, or even cause the interface to terminate abnormally, they
must be used with care.

For example, if you change configuration items, the actual state of the
emulator will no longer match the internal record the interface keeps
about the state of the emulator.

Issuing certain communications-related commands can prevent the
interface from communicating with the emulator and cause abnormal
termination of the interface.

However, it is sometimes necessary to use pod commands. For
example, you must use a pod command to execute the emulator’s
performance verification (pv) routine. Performance verification is
an internal self-test procedure for the emulator.

Remember that pod commands can cause trouble for the high-level
interface if they are used indiscriminately.

This section shows you how to:

* Display the pod commands screen.
e Use pod commands.

90

Entering Commands
To display the pod commands screen

To display the pod commands screen

Choose Display - Pod Commands.

The pod commands screen displays the results of pod (Terminal Interface)
commands. To set the interface to use pod commands, choose
Settings -~ Pod Command Keyboard.

Examples

To use pod commands

To begin using pod commands, choose Settings - Pod Command
Keyboard.

To end using pod commands, click the suspend pushbutton softkey.

The Settings - Pod Command Keyboard command displays the pod
commands screen and activates the keyboard for entering pod command on
the command line.

To see a list of pod command categories available, choose Settings — Pod
Command Keyboard, and on the command line, type: help.

To see a list of pod commands that control the emulator, type: help emul.
To see details of the emulator "r" (run user code) command, type: help r.

91

Forwarding Commands to Other HP 64700
Interfaces

To allow the emulator/analyzer interface to run concurrently with
other HP 64700 interfaces like the software performance analyzer, a
background "daemon" process is necessary to coordinate actions in
the interfaces.

This background process also allows commands to be forwarded from
one interface to another. Commands are forwarded using the forward
command available in the command line. The general syntax is:

forward <interface_name> "<command_string>"

This section shows you how to:

* Forward commands to the software performance analyzer.

92

Entering Commands
To forward commands to the software performance analyzer

To forward commands to the software performance
analyzer

* Enter the forward perf "<command string>" command using the
command line.

Examples To send the "profile" command to the software performance analyzer:

forward perf "profile”

93

94

Configuring the Emulator

95

Configuring the Emulator

This chapter describes how to configure the emulator. You must map
memory whenever you use the emulator. When you plug the emulator
into a target system, you must configure the emulator so that it
operates correctly in the target system. The configuration tasks are
grouped into the following sections:

e Using the configuration interface.

* Modifying the general items and monitor setup.

¢ Reconfiguring the emulator copy of the SIM registers.

* Mapping memory.

e Setting the debug/trace options.

e Setting Simulated I/O

* Verifying the emulator configuration.

The simulated I/0 feature and configuration questions are described
in the Stmulated I/0O User’s Guide.

The external analyzer configuration options are described in the
"Using the External State Analyzer" chapter.

The interactive measurement configuration options are described in
the "Making Coordinated Measurements" chapter.

96

Using the Configuration Interface

This section shows you how to modify, store, and load configurations
using the emulator configuration interface.

This section shows you how to:

e Start the configuration interface.

* Modify a configuration section.

* Apply configuration changes to the emulator.
* Display information if the "apply" didn’t work.
* Store configuration changes to a file.

¢ Change the configuration directory context.

e Display the configuration context.

e Access help topics.

* Access context sensitive (f1) help.

e Exit the configuration interface.

¢ Load an existing configuration file.

This section describes emulator configuration in general. The
remaining sections in this chapter describe the specific configuration
options for your emulator.

97

Configuring the Emulator
To start the configuration interface

To start the configuration interface

Choose Modify - Emulator Config... from the emulator/analyzer
interface pull-down menu.

Or, using the command line, enter:
modify configuration

The configuration interface top-level dialog box (see the following example)
is displayed.

The configuration sections that are presented depend on the hardware and
the features of your particular emulator.

The configuration interface may be left running while you are using the
emulator/analyzer interface.

If you're using the Softkey Interface from a terminal or terminal emulation
window, you don’t get a dialog box from which to choose configuration
sections; however, you have access to the same configuration options
through a series of configuration questions.

98

Configuring the Emulator
To start the configuration interface

Examples The 6830x emulator configuration interface top-level dialog box is shown
below.

Emulator Configuration: hplsds2 {(m6830x)
| File Display Help

- Emulator Configuration Sections

The menu bar.

O General ltems

g:;cskér}?ngg gglzgtfs O Reconfigure Internal Registers

a particular configuration 0 Memory Map
section.

O Emulator Pod Settings
O DebugfTrace Options
O Simulated 10

Clicking this button loads g :
configuration changes into -Analyzer Configuration Sections

the emulator.

\ O Interactive Measurement Specification

|Apply to Emulator|

=

This portion of the dialog box displays configuration status
information.

99

Configuring the Emulator
To modify a configuration section

To modify a configuration section

Start the emulator configuration interface.

Click on a section name in the configuration interface top-level dialog
box.

Use the section dialog box to make changes to the configuration.

As soon as you change a configuration option, the change is recorded (as
seen by the "Changes Not Loaded" message in the top level dialog).

If you're using the Softkey Interface:

The configuration questions in the "General Items" section are the first
to be asked.

To access the questions in the "Reconfigure Internal Registers"
section, answer "yes" to the "Reconfigure internal registers?" question.

To access the questions in the "Memory Map" section, answer "yes" to
the "Modify memory configuration?" question.

To access the questions in the "Simulated 10" section, answer "yes" to
the "Modify Simulated IO?" question.

To access the questions in the "Debug/Trace Options" section, answer
"yes" to the "Modify debug/trace options?" question.

Apply the configuration changes to the emulator.

To apply configuration changes to the emulator

Click the "Apply to Emulator" button in the top-level dialog box.
Loads the configuration changes into the emulator. Status text to the right
shows whether the load was successful.

You can apply configuration changes to the emulator at any time (even while
section dialog boxes are open). This lets you verify changes without closing
section dialog boxes.

The "Apply to Emulator" button does not store configuration changes to a file.

When you exit the configuration interface and there are configuration
changes that have not been stored, you are asked whether you want to store
the changes, exit without storing, or cancel the exit.

100

Configuring the Emulator
If apply to emulator fails

If apply to emulator fails

Choose Display — Failed Apply Info from the pull-down menu in the top-level
configuration interface window.

A window containing the following information about the failed configuration
is opened:

e Chip select information from the emsim (emulator) resister set.

e Bus interface port information from the emsim (emulator) resister set.

e The expanded memory map.

¢ Reset mode configuration information.

¢ A complete list of the configuration inconsistencies. This list is not limited
to 16 messages as is the Display — Configuration Info - Diagnostics
command.

This information is shown in the same format as output from the various

Display - Configuration Info - commands.

Because the old configuration is reloaded when an apply to emulator fails, the

information displayed in this window is different from the information

displayed by the Display — Configuration Info - commands (which display

information about the configuration currently loaded).

Refer to the "Verifying the Emulator Configuration" section later in this
chapter for details on these types of configuration information displays.

101

Configuring the Emulator
To store configuration changes to a file

CAUTION

To store configuration changes to a file

Choose File - Store... from the pull-down menu in the top-level
configuration interface window, and use the file selection dialog box
to name the configuration file.

If you're using the Softkey Interface, the last configuration question,
"Configuration file name?", lets you name the file to which
configuration information is stored. If you don’t enter a name,
configuration information is saved to a temporary file (which is
deleted when you exit the interface and release the emulation
system).

When modifying a configuration using the graphical interface, you can store
your answers at any time.

Configuration information is saved in a file with the extension ".EA". This file
is the "source", ASCII format copy of the file. (The interface will create a
temporary file with the extension ".EB" which is the "binary" or loadable copy
of the file.)

Do not modify configurations by editing the ".EA" files. Use the
configuration interface to modify and save configurations.

For more information on how to use dialog boxes, refer to the "To use dialog
boxes" description in the "Using Menus, the Entry Buffer, and Action Keys"
section of the "Entering Commands" chapter.

102

Configuring the Emulator
To change the configuration directory context

To change the configuration directory context

Choose File - Directory... from the pull-down menu in the top-level
configuration interface window, and use the directory selection
dialog box to specify the new directory.

The directory context specifies the directory to which configuration files are
stored and from which they are loaded.

For more information on how to use dialog boxes, refer to the "To use dialog
boxes" description in the "Using Menus, the Entry Buffer, and Action Keys"
section of the "Entering Commands" chapter.

Figure 15

To display the configuration context

Choose Display —» Context... from the pull-down menu in the
top-level configuration interface window.

The current directory context and the current configuration files are
displayed in a window. Click the "Done" pushbutton when you wish to close
the window.

Emulator Configuration: Current Context

= Directory: fusrfhpdd4000fdemofdebug_envihp&4798
k Configuration File: fusrihp&4000idemofdebug_envihp8d798fConfig

Done

103

Configuring the Emulator
To access help topics

To access help topics

* Choose Help - General Topic... from the pull-down menu in the
top-level configuration interface window, click on a topic in the
selection dialog box, and click the "OK" button.

Figure 16

Emulator/Analyzer: Help
Displays hel
m';'?]?tyesmf Pen Help Index: Topics

About Emulation Interface A
he Interface ... At a Glance
Common Questions & Answers
Action Keys
J: Entry Buffer
, Command Line Operation
Dlsplays.h.elp apout Registers
the specific topic. Concept of EMSIM and SIM

File Selection Dialog Box

X Resources

Display Screen: Memory

Display Screen: Breakpoints

Display Screen: Symbols

Display Screen: Trace

Selection

About Emulation Interface

OK Cancel

104

Configuring the Emulator
To access context sensitive (f1) help

To access context sensitive (f1) help

Place the mouse pointer over the item you're interested in, and press
the f1 key.

Choose Help - On Item... from the pull-down menu in the top-level
configuration interface window. Notice that the mouse pointer
changes from an arrow to a question mark. Move the question mark
mouse pointer over the item you're interested in, and click any
mouse button.

The configuration interface provides context sensitive help in the top level
dialog box and throughout the configuration section dialog boxes.

To exit the configuration interface

Choose File - Exit... from the pull-down menu in the top-level
configuration interface window (or type <CTRL>x).

If configuration changes have not been stored to a file, a confirmation dialog
box appears, giving you the options of: storing, exiting without storing, or
canceling the exit.

To load an existing configuration file

In the emulator/analyzer interface, choose File — Load — Emulator
Config... from the pull-down menu, and use the file selection dialog
box to specify the configuration file to be loaded.

Or, using the command line, enter:
load configuration <FILE>

This command loads previously created and stored configuration files. You
cannot load a configuration while the configuration interface is running.

105

Figure 17

Modifying the General Items and Monitor Setup

To modify the general configuration items, first start the configuration
interface and access the "General Items/Monitor Setup" configuration
section (refer to the previous "Using the Configuration Interface"
section).

Emulator Configuration

-Emulator Settings
Restrict to Real Time <> Yes < Mo

Clock Source < Internal < External

Target Memory Access Size
Software Breakpoint Trap Vector

-Reset Vectors

Automatic Reset Vectors < Yes < No
L))

EEE

To access information about the configuration items, use the online
help button or press f1 to show context-sensitive help on an individual
item.

106

Configuring the Emulator
When Restricting the Emulator to Real-time Runs

CAUTION

When Restricting the Emulator to Real-time Runs

If your target system circuitry is dependent on constant execution of
program code, you should restrict the emulator to real-time runs. This will
help ensure that target system damage does not occur. However, remember
you can still execute the reset, break, and step commands; you should use
caution in executing these commands.

The default configuration does not restrict the emulator to real-time runs.
Therefore, the emulator might make temporary breaks into the monitor to
complete certain commands. However, you may wish to restrict runs to real
time to prevent temporary breaks that might cause target system problems.

When runs are restricted to real time and the emulator is running the user
program, all commands that cause a break (except reset, break, run, and
step are refused.

The following commands are not allowed when runs are restricted to real
time and the emulator is running the user program:

¢ Display/modify registers.

e Display/modify target system memory.
e Load/store target system memory.

e Modify SIM registers.

¢ Display emulator SIM configuration info.
If you want to enter one of these commands, you must first make an explicit
break into the monitor using the break command.

Because the emulator contains dual-port emulation memory, commands that
access emulation memory are allowed while runs are restricted to real time.

When the restriction to real-time runs is turned off, all commands, regardless
of whether or not they require a break to the emulation monitor, are
accepted by the emulator.

107

Configuring the Emulator
When Restricting the Emulator to Real-time Runs

Reconfiguring the Emulator Copy of the SIM
Registers

To reconfigure the emulator copy of the SIM registers, first start the
configuration interface and access the "Reconfigure Internal
Registers" configuration section (refer to the previous "Using the
Configuration Interface" section).

Figure 18

Emulator Configuration: Reconfigure Internal Registers

-Emulator Copy of General Registers

BAR SCR

-Emulator Copy of Bus Interface Port Registers

PachT [EZCAN PBCNT [CEEED

PADDR [EZEAN PeoDR [CEEER

-Emulator Copy of Chip Select Registers {CS:0oe)

ORO Ehiggvsy OR1 gEiggiy OR2 Qg OR3 gailgg
ACAA1h 7 ACHEE

h
ACeesh

108

Configuring the Emulator
To define values for the emulator copy of the SIM registers

To access information about the configuration items, use the online
help button or press f1 to show context-sensitive help on an individual
item.

To define values for the emulator copy of the SIM
registers

Click on the register field and enter the desired value. Then apply the
changes to the emulator.

Refer to the "Using the EMSIM Registers" section in the "Using the Emulator"
chapter for information on how these registers are used. Refer to the
"Concepts" chapter for conceptual information about these registers.

109

Mapping Memory

Because the emulator can use target system memory or emulation
memory (or both), it is necessary to map ranges of memory so that
the emulator knows where to direct its accesses.

Up to 8 ranges of memory can be mapped, and the resolution of
mapped ranges is 256 bytes (that is, the memory ranges must begin
on 256-byte boundaries and must be at least 256 bytes in length).

Emulation memory is made available to the mapper in 64-Kbyte
blocks. When you map an address range to emulation memory, at
least one block is assigned to the range. When a block of emulation
memory is assigned to a range, it is no longer available, even though
part of the block may be unused.

Direct memory access (DMA) to emulation memory is not permitted.

You should map all memory ranges used by your programs before
loading programs into memory.

In order to map memory, you must first start the configuration
interface and access the "Memory Map" configuration section (refer to
the previous "Using the Configuration Interface" section).

When you select the "Memory Map" configuration option, the following
window appears:

110

Figure 19

File Map Settings

Configuring the Emulator
To define values for the emulator copy of the SIM registers

mulator Configuration: Memory Map

Help

Entr Y range

1 AH- 1FFFFH EMUL/RAM

Map terms remaining:

Emulation memory remaining: =l bytes
function code attribute

STATUS: Mapping emulation memory, default unspecified blocks: gquarded

This section shows you how to:

* Add memory map entries.

* Modify memory map entries.

¢ Delete memory map entries.

* (Characterize unmapped ranges.

* Map memory ranges that use function codes.

111

Configuring the Emulator
To add memory map entries

To add memory map entries

Choose Map - Add New Entry from the pull-down menu in the
memory map window.

Press and hold the select mouse button and choose Add New Entry
from the pop-up menu.

Using the command line (Settings - Command Line), enter the
address range, memory type, and possibly a blk1-blk8 attribute for
emulation memory ranges.

You can characterize memory ranges as emulation RAM, emulation ROM,
target system RAM, target system ROM, or as guarded memory.

Guarded memory accesses will cause emulator execution to break into the
monitor program.

Writes to locations characterized as ROM will cause emulator execution to
break into the monitor program if the "Break processor on write to ROM"
trace/debug configuration option is enabled.

Writes to emulation ROM will be inhibited. Writes by user code to target
system memory locations mapped as ROM or guarded memory will result in a
break to the monitor but are not inhibited (that is, the write still occurs).

112

Configuring the Emulator
To add memory map entries

The first two methods of mapping memory ranges give you the following
dialog box.

Figure 20

The starting address of
the range to be added.

The ending address of
the range to be added.

Specifies the increment value
for the "+" and "-" buttons of the
start and end address fields.

Adds the defined range
to the memory map.

Configuration: Memory Map:

- Add Mew Map Entry

Start Address

e
End Address B
— Address Increment IK EE]
Emul RAM = |

Memory Type

Function Code MNone

Emul Attributes Mone

Subtract or add the address
increment value. The end
address is changed by the same
amount, thereby moving the
block of memory.

hange only the end address,
thereby changing the size of the
block of memory.

Multiply or divide the increment
value by 2.

These buttons may be held
down to repeat the action.

Closes the dialog box.

113

Configuring the Emulator
To add memory map entries

Examples Consider the following section summary from the linker load map output
listing.

SECTION SUMMARY

SECTION ATTRIBUTE START END LENGTH ALIGN
ABSOLUTE DATA 00000000 0000002F 00000030 O (BYTE)

0 NORMAL 00000030 00000030 00000000 2 (WORD)

env NORMAL CODE 00000400 0000OFCO 00000BC1 2 (WORD)

prog NORMAL CODE 00000FC2 00001A89 00000AC8 2 (WORD)

const NORMAL ROM 00001A8A 00001ACF 00000046 2 (WORD)

lib NORMAL CODE 00001ADO 00002663 00000B94 2 (WORD)

libc NORMAL CODE 00002664 00004881 0000221E 2 (WORD)

libm 00004882 00004882 00000000 O (BYTE)

mon NORMAL CODE 00004882 000049CB 0000014A 2 (WORD)

envdata NORMAL DATA 00007000 00007155 00000156 4 (LONG)

data NORMAL DATA 00007156 00007721 000005CC 2 (WORD)

idata 00007722 00007722 00000000 O (BYTE)

udata 00007722 00007722 00000000 O (BYTE)

libdata NORMAL DATA 00007724 00007727 00000004 4 (LONG)

libcdata NORMAL DATA 00007728 00008153 00000A2C 2 (WORD)

mondata NORMAL DATA 00008154 00008177 00000024 2 (WORD)

stack NORMAL DATA 0000B000 O00012FFF 00008000 4 (LONG)

heap NORMAL DATA 00013000 O00016FFD O0OOQ3FFE 4 (LONG)

Notice the ABSOLUTE DATA, CODE, and ROM sections occupy locations 0
through 49CBH. Because the contents of these sections will eventually

reside in target system ROM, this area should be characterized as ROM when

mapped. This will prevent these locations from being written over
accidentally. If breaks on writes to ROM are enabled, instructions that
attempt to write to these locations will cause emulator execution to break
into the monitor.

Also, notice the DATA sections occupy locations 7000H through 8177H and
0BOOOH through 16FFDH. Since these sections are written to, they should
be characterized as RAM when mapped.

114

Configuring the Emulator
To add memory map entries

Using the command line (choose Settings — Command Line from the
pull-down menu in the memory map window), enter the following commands
to map memory for the above program.

delete all

<addr> 0 thru A4ffth emulation rom
7000h thru 8fffh emulation ram
0b000Oh thru 16fffh emulation ram

The resulting memory mapper screen is shown below.

mulator Configuration: Memory Map;

File Map Settings Help

Map terms remaining: B Emulation memory remaining: S bytes

range function code attribute

1 BH- 4FFFH EMUL/ROH
2 78BAH- SFFFH EMUL/RAM
3 BeBAH- 16FFFH EMUL/RAM

STATUS: Happing emulation memory, default unspecified blocks: gquarded

To exit out of the memory mapper, enter:

end

115

Configuring the Emulator
To modify memory map entries

Examples

Click and hold the
mouse select button to
bring up the menu. Then
choose the Modify Entry
item to modify the
highlighted memory map
entry.

To modify memory map entries

Choose Map - Modify Entry from the pull-down menu in the
memory map window and select the entry number from the cascade
menu.

Position the mouse pointer over the entry you wish to modify, press
and hold the select mouse button and choose Modify Entry from the
pop-up menu.

These commands open the same dialog box that is used for adding memory
map entries, except it lets you modify the current settings for the entry.

In order to modify an entry when using the command line, you must delete
the entry and add a new entry.

To modify a memory map entry using the pop-up menu:

mulator Configuration: Memory Ma

File Map Settings Help |
Map terms remaining: & Emulation memory remaining: il bytes
range type function code attribute
1 AH- 4FFFH EMUL/ROM
2 78ABH- BFFFH EMUL/RAM -
3 BEEEH- 1EFFFH EMUL/RAM Memory Map Display
todify Entry

Add Mew Entry

Delete Entry

STATUS: Mapping emulation memory, default unspecified blocks: guarded

Use the dialog box to modify the entry, and click the "Modify" button to add
the modified range to the memory map.

116

Configuring the Emulator
To delete memory map entries

To delete memory map entries

Choose Map - Delete Entry from the pull-down menu in the
memory map window and select the entry number from the cascade
menu.

Position the mouse pointer over the entry you wish to delete, press
and hold the select mouse button and choose Delete Entry from the
pop-up menu.

Or, using the command line, enter:

delete <ENTRY#>

Note that programs should be reloaded after deleting mapper terms. The
memory mapper may re-assign blocks of emulation memory after the
insertion or deletion of mapper terms.

To characterize unmapped ranges

Choose Map - Default Memory Type from the pull-down menu in
the memory map window and select the memory type from the
cascade menu.

Or, using the command line, enter:
default <memory_type>

Unmapped memory ranges are treated as target system RAM by default.
Unmapped memory ranges cannot be characterized as emulation memory.

117

Configuring the Emulator
To map memory ranges that use function codes

To map memory ranges that use function codes

Specify function codes with address ranges when mapping memory.
The function code can be:

e None

® supervisor

® supervisor program
e supervisor data

e user

® user program

e user data

® program

e data

Function code information lets you further characterize memory blocks as
supervisor, user, supervisor program, supervisor data, user program, or user
data space. When you specify function codes with mapper ranges, the 6830x
function code outputs (FCO, FC1, FC2) are decoded to select particular
blocks of memory. Function codes let you overlay address ranges. When you
specify function codes as part of the address, the emulator memory mapper
knows that overlaid blocks are different memory regions and will define them
separately.

If you specify a function code when mapping a range of memory, you must
include the function code when referring to locations in that range. If you
don’t include the function code, an "ambiguous address" error message is
displayed.

If you use different function codes, it’s possible to map address ranges that
overlap. When address ranges with different function codes overlap, you
must load a separately linked module for the space associated with each
function code. The modules are linked separately because linker errors
occur when address ranges overlap.

When address ranges are mapped with different function codes, and there
are no overlapping ranges, your program modules may exist in one absolute
file. However, you have to use multiple load commands—one for each
function code specifier. This is necessary to load the various sections of the
absolute file into the appropriate function code qualified memory ranges.

118

Examples

Configuring the Emulator
To map memory ranges that use function codes

When you do this, be sure that all address ranges not mapped (that is, the
"other" memory mapper term) are mapped as target RAM. When "other" is
mapped as guarded, guarded memory access errors (from the attempt to load
the absolute file sections that are outside the specified function code range)
can prevent the absolute file sections that are inside the specified function
range from being loaded.

Suppose you're developing a system with the following characteristics:

e Input port at 100 hex.

e QOutput port at 400 hex.

e Supervisor program from 1000 through 1fff hex.
e Supervisor data from 2000 through 2fff hex.

e User program from 3000 through 3fff hex.

e User data from 3000 through 3fff hex.

The last two terms have address ranges that overlap. You can use function
codes to cause these terms to be mapped to different blocks of memory.
Suppose also that the only things that exist in your target system at this time
are the input and output ports and some control logic; no memory is
available. You can reflect this by mapping the I/O ports to target system
memory space and the rest of memory to emulation memory space by
entering the following mapper commands using the command line
(Settings —~ Command Line):

Oh thru Offfh target ram

1000h thru 1fffh supervisor program emulation rom
2000h thru 2fffh supervisor data emulation ram
3000h thru 3fffh user program emulation ram
3000h thru 3fffh user data emulation ram

After the configuration is saved, display memory at 1000H by entering the
following command (using the command line):

display memory 1000h blocked bytes

119

Configuring the Emulator
To map memory ranges that use function codes

Notice that an "ambiguous address" error occurs because the "sp" function
code was not included with the address. The following command should
have been entered instead:

display memory fcode sp 1000h blocked bytes

120

Modifying the Emulator Pod Settings

To modify the emulator pod settings, you must start the configuration
interface and access the "Debug/Trace Options" configuration section
(refer to the "Using the Configuration Interface" section).

Figure 21 Emuilator Configuration: Pod Settegs -

~Pod Settings

Target System Mermspts S Enable £ Disable
Target Bus Error (BEAR] <* Enabée & Disahie
Haskgroand Freeae 4 Emabde » Disable

DTACEK Soaree | Mag IMerloch o

Dirive DTACK High & Wan 4 Ho

= Procissor Sellinga

e

IACETIPED Frocussoe Fin

~Target Controd Signals
Dirive Rackigrownd Cyeles to Targel € Yes € Mo
Baffer Funstion Code Lines O Wis £ Mo
Baiffiar “AS, "LADS, "L, “WACE? i es G Mo
Buffer Azadidrite Line £ ik £ Mo
Builler Chip Sebeed Lines & Yes O Ho

To access information about the configuration items, use the online help button or press 1 to show context-sensitive help on
an individual item.

121

Setting the Debug/Trace Options

To set the debug/trace options, you must start the configuration
interface and access the "Debug/Trace Options" configuration section
(refer to the "Using the Configuration Interface" section).
Figure 22 Emuilator Configuration: [kebag Opilons
[rebsgiTrage Options

Hreah on Voelle to AOM € Yes O Mo

Trace haade [Type of Cyekes)
Trace Dkit Cyales £ Yirs 4 Mo

Canel I Help I

To access information about the configuration items, use the online help button or press 1 to show context-sensitive help on
an individual item.

To configure breaks on writes to ROM

When breaks on writes to ROM are enabled, the emulator will break into the
emulation monitor whenever the user program attempts to write to a memory
region mapped as ROM. The emulator will prevent the processor from
actually writing to memory mapped as emulation ROM; however, it cannot
prevent writes to target system RAM locations which are mapped as ROM,
even though the write to ROM break is enabled.

When breaks on writes to ROM are disabled, the emulator will not break to
the monitor upon a write to ROM. The emulator will not modify the memory
location if it is in emulation ROM.

122

Configuring the Emulator
To configure the trace mode

To configure the trace mode

"Background" specifies that the analyzer trace only background cycles. This
is rarely a useful setting for user program debugging.

"Both" specifies that the analyzer trace both foreground and background
cycles. You may wish to specify this option so that all emulation processor
cycles may be viewed in the trace display.

"Foreground" specifies that the analyzer trace only foreground cycles.

123

Setting Simulated I/0

To set the debug/trace options, you must start the configuration
interface and access the "Simulated I/O " configuration section (refer
to the "Using the Configuration Interface" section).

Figure 23

mulator Configuration: Simulated |

Enable Polling for Simulated If{O 4 Yes <> No

Simio Control Address 1| _systemio_buf

Simio Control Address 2|A

Simio Control Address 3|

Simio Control Address 4|

Simio Control Address 5|

Simio Control Address 6|

File for Standard Input | Jfdev/simioskeyboard

File for Standard Outputl fdevisimiofdisplay

File for Standard Error | /devisimio/display

Enable Simio Status Messages <> Yes 4 No

6K]

To access information about the configuration items, use the online help button or press 1 to show context-sensitive help on
an individual item.

124

Verifying the Emulator Configuration

The 6830x emulator lets you display information about emulator
configuration and processor SIM programming. You can also display
information about inconsistencies found in the emulator configuration.

This section shows you how to:

* Display information about chip selects.

* Display information about bus interface ports.

* Display information about the memory map.

* Display information about the reset mode configuration.

* Display assembly language instructions for setting up the SIM.
* Check for configuration inconsistencies.

To display information about chip selects

Choose Display - Configuration Info — Chip Selects (SIM) or
Display — Configuration Info - Chip Selects (Emulator SIM)
from either the configuration interface the emulator/analyzer
interface pull-down menu.

Or, using the command line, enter:

display configuration_info sim_chip_selects or
display configuration_info emsim_chip_selects

These commands let you display chip select information from the sim
(processor) register set or the emsim (emulator) register set.

The resulting display shows how the chip select is assigned, the base address,
the block size, and other information from the option register.

125

Configuring the Emulator
To display information about chip selects

Examples To display information about chip selects from the sim (processor) register
set, choose Display - Configuration Info - Chip Selects (SIM) from
either the configuration interface the emulator/analyzer interface pull-down
menu.

Hewdoil Packard Ermdatosfnalyzer: hoptsdzl (mGgs0:0

File Disglay oty Expeition Brespoints Tract Setangs Halj
hetion keys | DispSee() [Traee () [Rum Step Searce || = Wour Key »
hinke Dasp Sra Pr)\Ierlo“ BEreak Step Asm Peg 3oy)

{F nuwe_checks Aecall

Processar [afo; Chip Selscte in S[H Reglaars n

The Followirg table vef lecte the corrent usluoss i the sin [procsssord
regleter set,
Seleot Address Fange BesalAZ3-130 HMeeh (AE3-130 R/H Spoce OTACK

(=] [mcccc s EE st k] (R o k] btk mpr prog B owsir

-

STATES: HEIC—Ewmaing in mesiisr Seftmare brosk: 0007colap

Hisplay configurstion_info sin_chip_salscts

Coemesnd; [Remn][Recall] Cursor: [Eackio][Forward][Clvar 1o and][Clear]

126

Configuring the Emulator
To display information about bus interface ports

To display information about chip selects from the emsim (emulator) register
set, choose Display — Configuration Info . Chip Selects (Emulator
SIM) from either the configuration interface the emulator/analyzer interface
pull-down menu.

Hawdott Packard Emadatos | Analyzer: hpdsdzl (mEE30) |

File Display boddy Exeeaition Breabpoints Trace Settngs Help

Actionbeys: [Disp See) Track ()][Rum Step Seuree || = Your Key =
bk Dusp Sra Pr L1)\Itrlo” Break Step fism Peg 3o)

[k nus_oheoks Plecall I

Processor [rfo: Chip Selacts in EMSIH (Evoletor Copyd Regiscars A

The following table reflecte the current waluss inothe eneln reglater set,

Theze waluss wll] be Josdesd Lrno the processor when the wonltor Le enmered
From evailation veser,
Salect Address Rage BessalAZ3-130 Hseah(AZ3-130 RYH Spece OTACK

[t] - [sEssst] ¥ e borh sipr prog B ouslt

L

STETES: HEFHZ—Hwssisy ts meaiter Sefrmare brosk: 000CBcalap

Hisplay configuratior_infs snein_chip_ss lecta

dlwlau walily || bresk el 1
Command; [Return|[Aecal] Cursor: [Eachuo] [Ferward][Slear to o] [Siear]

To display information about bus interface ports

Choose Display - Configuration Info - Bus Interface Port
(SIM) or Display — Configuration Info - Bus Interface Port
(Emulator SIM) (where Port is your port of interest) from either
the configuration interface the emulator/analyzer interface pull-down
menu.

Or, using the command line, enter:

display configuration_info bus_interface_port or
display configuration_info embus_interface_port

127

Examples

Configuring the Emulator
To display information about bus interface ports

where port is your port of interest.

These commands let you display chip select information from the sim

(processor) register set or the emsim (emulator) register set for your port of
interest.

The resulting display shows the pin assignments for the port you have chosen.

To display information about bus interface port A from the sim (processor)
register set, choose Display - Configuration Info - Bus Interface Port A

(SIM) from either the configuration interface the emulator/analyzer
interface pull-down menu.

Hewdoit Packard Evmdatosfnalyzer: hoptsdzl (mGgs0:0

File Disglay oty Expeition Brespoints Trace Setangs Halj
hetion keys | DispSee() [Treaee () [Rum Step Searce || = Wour Key »
hinke Dasp Sra Pr)\Ierlo“ BEreak Step Asm Peg 3oy)

{F nuwe_checks Aecall

Processar [afo; Bus [noerfsce Porn A Ln S[H Reglarars n

The Followirg table vef lacte the corrent usluss in the processor
Fore A Pln Fuetione,
Bit St Ly

IRCLEZ
D

P [mpain
FAT [rgaim
D

P [rpain
e]

IRCLES
PAIZ [rgur

R]

o
-

STATES: HEIC—Ewmaing in memiier Seftmare brosk: 0007colap

Hisplay configurstion info bus_portA

Coemesnd; [Remmn][Fecall] Cursor: [Eackis|[Forward][Clvar 1o end][Clear]

128

Configuring the Emulator
To display information about the memory map

To display information about bus interface port A from the emsim (emulator)
register set, choose Display — Configuration Info — Bus Interface Port A
(Emulator SIM) from either the configuration interface the
emulator/analyzer interface pull-down menu.

Hewdoit Packard Evmdatosfnalyzer: hoptsdzl (mGgs0:0

File Disglay Modty Execition Bredpoints Track Setngs Halj [
hetion keys | DispSee() [Treaee () [Rum Step Searce || = Wour Key »
hinke Dasp Sra Pr)\Ierlo“ BEreak Step Asm Peg 3oy) |
[nue_oheoks Aecall | |
Progessar [afo; Bos [roerfsce Pore A Le EMSIH (Erdlator Copeyr Reglaters A
Thea Followirg table vef lecte the corrent usluoss in the svalator
Port A Pl Furco bore,
Bit St Ly
a D
1 FA1 [rpor
2 G0
3 IRiLEE |
4
g P [mpain
T FAT [rgaim
[
a P [rpain
18 e] |
1 IRCLES |
i2 FAIZ [rput il
STATWS: HEEIZ—Emaisy i mesiter Seltmare brosk: 007Ekcolup !
Hisplay configurstion info srbus_portA
[Crun [crane || step |[diselau] [wedifs |[bresk || sad | |--Eli=]
Comeand; [Return][Reca] Cursar: [Fack o] [Forward] [Cioar to o] [Ciear]

To display information about the memory map

Choose Display - Configuration Info - Memory Map from either
the configuration interface the emulator/analyzer interface pull-down
menu.

Or, using the command line, enter:
display configuration_info memory_map

When in the memory map section of the emulator configuration, the ranges of
memory that have been mapped are displayed.

129

Examples

Configuring the Emulator
To display information about the memory map

The memory map configuration information shows detailed information about
the memory map and how actual mapper resources are allocated due to the
current programming of the chip selects in the EMSIM register sets.

When the emulator automatically expands the memory map to assign actual
mapper resources, it looks at ranges that have been mapped during emulator
configuration.

To display information about the memory map and its correlation with RAM,
choose Display - Configuration Info — Memory Map from either the
configuration interface the emulator/analyzer interface pull-down menu.

Hawdott Packard Emadator/ Analyzar: hpladzl (miGE30x)
Filo Display oady Exesition Breskpoints Teast Setting Helj:

e e e e e o . e .} e £ e e o B |, e
cion veys: [Dlap See 1)
[isie g S Pre s o et o [ego 1

[& nus_oheoks Azcall
Progeseor [nfo; Expercesd Henory Hap n
Thiz shoae wore detslled Lrfornst Lon sbout the venory e, @
Ermry Faege Tiges FC Frovibore Ccwrwrent
irfa FFFOESEH- FFFFFFH [HF block =d
1 BEEEH- GETFFFH enul van =)
2 B BECFFFH anag] van
3 BEEAOH- BEFFFFH ana] van
i COEOH- GETFFFH svu] ren [
5 FFFE3H- FFFFFFH targ van
arher sddresass gusTded
@
v
STETES: HEEINZ—Hesaieg im mesitsr Seltmare brosk: 0007%calap

EI spley configuret ion_info rerory nep

Comepnd; [Feturn][Recad] Cusor: [Fackis][Forward][Clear to ona][Clear]

Notice the entry labeled "info". Ranges with this label do not take up mapper
resources; they just show information about the processor’s address space.
Another "info" entry will be listed if the internal RAM is enabled with the
EMRAMBAR register.

130

Configuring the Emulator
To display information about the reset mode configuration

To display information about the reset mode
configuration

¢ Choose Display - Configuration Info - Reset Mode Value from
either the configuration interface the emulator/analyzer interface
pull-down menu.

Or, using the command line, enter:

display configuration_info reset_mode

Examples To display information about the reset mode configuration, choose
Display - Configuration Info - Reset Mode Value from either the
configuration interface or the emulator/analyzer interface pull-down menu.

Hawlait Packard Evmdator/Analyzer: holadzh (mGSE0) |

File Display hosty Expaiition Bresbpoints Track Settings Help:

hetion keys | DispSee() [Treaee () [Rum Step Searce || = Wour Key »
hinke Dasp Sra Pr)\Ierlo“ BEreak Step Asm Peg 3oy)

[nue_oheoks Aecall I

Processor [afo; Fesar Hods sed Operatlon n

Thie shoas irfornetion shoor prosesecr hen Lt Qs relesssd from resar,

Bus width Ls set for word
Frocessor core opu Le ensbled

-

STATES: HEIC—Ewmaing in memiier Seftmare brosk: 0007colap

Hisplay configurstion info resst_mcds

Coemesnd; [Remmn][Fecall] Cursor: [Eackis|[Forward][Clvar 1o end][Clear]

131

Configuring the Emulator
To display assembly language instructions for setting up the SIM

Examples

To display assembly language instructions for setting
up the SIM

Choose Display - Configuration Info - Initialization Source
Code from either the configuration interface the emulator/analyzer
interface pull-down menu.

Or, using the command line, enter:
display configuration_info init_source_code

This command displays the assembly language program that will initialize the
processor as defined by the current EMSIM register contents.

Hewdoit Packard Evmdatosfnalyzer: hoptsdzl (mGgs0:0

[File] Dasgtay psossy Exeeution Bresipoints Trace Settings Help
hetion keys | DispSee() [Treaee () [Rum Step Searce || = Wour Key »
hinke Dasp Sra Pr)\Ierlo“ BEreak Step Asm Peg 3oy)

{F nuwe_checks Aecall

Frogessor [nfo; Souvce Code to [nitlellze Prooessor n

o e-lmrroction |lres edicsts wsliess which are the sse se ressr debsiloe
CHIP o
o Coef Lgurar Los for MEESEE S[H vegletars
HONE. L ISoaaaesed, A jear FA for ber & aor
HWE, W EERFEE, S0BF2, AR jaat bar
HIVE, L TEOCEEEFEE, (5EEF4, FE oot sor
HIWE, L TRERH | o, e jear F for veglever bese
HWE. W TE8033, 1$831s, AR) jasr pacnt
HOWE, W TESRGE, (55350, A3} ear peddr
HOWE, W DRSS, (55524, FA) jeat phont
HWE, H TR0, (8555, AR jesr phddr
HONE, W T8dPEd, (SE332, AAY jear ord
HWE, W TEcE], (98338, A8 jeer brfll
HOWE, W IEdFfd, (55335, A jear orl
HWE. W TE63, (58534, A3 jesr brl
HONE, W T8dP0d, (5553, AAY jear orl
HIWE, W TEolil, (P30 A8 jeet brd

STATES: HEIC—Ewmaing in memiier Seftmare brosk: 0007colap

-

Hisplay configurstion_info init_scurce_cods

Coemesnd; [Remmn][Fecall] Cursor: [Eackis|[Forward][Clvar 1o end][Clear]

132

Configuring the Emulator
To check for configuration inconsistencies

To check for configuration inconsistencies

Choose Display — Configuration Info - Diagnostics from the
configuration interface or the emulator interface pull-down menu.

Or, using the command line, enter:
display configuration_info diagnostics

This command:
e (Checks for inconsistencies between the mapper and the EMSIM registers.

¢ C(Checks for inconsistencies between the reset mode configuration value
and the EMSIM registers.

e (Compares corresponding values in the SIM and EMSIM register sets.

This command identifies errors that result from inconsistencies between
related configuration values. These errors should be resolved in order for the
emulator to operate correctly.

This command also provides status and warning messages about expectations
and limitations of the emulator of which you should be aware.

If no messages are returned, no inconsistencies are found in the emulator
configuration.

133

Configuring the Emulator
To check for configuration inconsistencies

Examples To check for inconsistencies between the configuration and the EMSIM
registers, choose Display - Configuration Info - Diagnostics from either
the configuration interface the emulator/analyzer interface pull-down menu.

Hewdatt Packard Emulaton Anadyzen hplsda? (mGS30:0
File Disglay hodsly Eeenition Bresbpoints Trace Setting Help

e Doy Mod preoution Bestsomts Tucs setogs ________ to|
Ao e
[v Prev] e s ek —J[_siep s][g

[£ Ressrved Aecall

Processor [nfo; Oisgrossioe A

The evwilator configuratlon hae been checked for Lroonelstencies and potential]

problens, Ay "ERRDRS" Jisted shoold b= resclved for the ssolator to opsrate

correct iy, Freg "Harnieg” wesasges list sspectstions sed linitations of the

ewiilaror of which the vzer shoold b neds e,

2T = BEEAFEE anaoT = BB

Mo irconslatercies or potential problems found, 1

L1,

TR R eeResainy in miver Sl mmare bresk: BIboePap

Hiegleg conflgaration_info

[run -" tracn -" atup -“du.pl...,' medify |[Brosk |[emd |[—Em—
Command: [Aeturn|[Recal] Cursor- [Fachic][Forward][Ciear to end][Clear] [Helg]

134

Using the Emulator

135

Using the Emulator

This chapter describes general tasks you may wish to perform while
using the emulator. These tasks are grouped into the following
sections:

* Using the emulation copy of the SIM (emsim) registers.

¢ Loading and storing absolute files.

e Using symbols.

e Using context commands.

* Executing user programs (starting, stopping, stepping, and
resetting the emulator).

* Using execution breakpoints.

* Displaying and modifying registers.
* Displaying and modifying memory.
* Displaying data values.

¢ Changing the interface settings.

e Using system commands.

e Using Simulated I/O.

* Using Basis Branch Analysis.

136

Using the EMSIM Registers

The 6830x processors contain a System Integration Block (SIB) which
integrates various peripherals with with the M68000 core. Programming
certain parts of the SIB will affect operation of the emulator. These
emulator-sensitive parts of the SIB are referred to as the processor’s System
Integration Module (SIM).

The SIM contains the BAR and SCR registers along with the chip-select, port
control and interrupt control registers, plus any clock control registers if
present. For the 68302 emulator (64798C) the SIM registers are: BAR, SCR,
BRO, ORO, BR1, OR1, BR2, OR2, BR3, OR3, PACNT, PADDR, PBCNT,
PBADDR, and GIMR.

The Programming of the SIM registers by the user affects how the emulator
must be configured to operate properly. For example, the GIMR determines
how interrupt level 7 is detected by the processor. The emulator uses
interrupt level 7 to break to the monitor, thus must be configured according
to the expectations of the processor. The chip select registers determine the
DTACK source for a bus cycle within the range of a chip select. This
information is needed for the emulator to properly complete bus cycles.

The EMSIM registers, which are an emulator version of the SIM registers, are
used to configure the emulator hardware. The EMSIM registers are usually
set to the "after initialization code" values desired for the SIM registers. By
default the EMSIM registers contain the "processor reset" SIM values (refer
to the appropriate Motorola MC6830x User’s Manual for specific values.)
Therefore, the default programming of the emulator hardware will match the
SIM reset values.

If desired, the programming of the emulator hardware (EMSIM registers) can
be transferred into the processor SIM registers with the Modify - SIM
Registers - Copy Emulator SIM to Processor SIM pull-down
menu or sync_sim_registers to_6830x_from_config from the command
line. This happens automatically each time a break to the monitor from
emulation reset occurs. This ensures that the processor is prepared to
properly access memory when a program is downloaded to the emulator.
Alternatively, the emulator hardware can be programmed from the
processor’s SIM registers with the Modify — SIM Registers - Copy
Processor SIM to Emulator SIM pull-down menu or
sync_sim_registers from_6830x_to_config from the command line. This

137

Using the Emulator
To view the SIM register differences

is useful if initialization code that configures the processor SIM exists, but
you don’t know what its values are. In this case, you can use the default
configuration, run from reset to execute the initialization code, and use this
command to configure the emulator to match the processor SIM.

At any time, you can verify if the SIM and emulator hardware (EMSIM) are
programmed the same with the Display — SIM Register Differences
pull-down menu or sync_sim_registers difference from the command
line. Any differences between the two register sets will be listed.

It should be noted that the emulator hardware is programmed solely from the
EMSIM register set and is therefore static with respect to the application
program. No attempt is made to update the programming of the emulator
hardware by tracking instructions that will program the processor SIM.

This section shows you how to:

e View the SIM register differences.

e Synchronize to the 6830x SIM registers.

e Synchronize to the EMSIM registers.

¢ Restore default values in the EMSIM registers.

To view the SIM register differences
Choose Display — SIM Register Differences from the

emulator/analyzer interface pull-down menu.
Or, using the command line, enter:

sync_sim_registers difference

138

Using the Emulator
To synchronize to the 6830x SIM registers

Examples To display the SIM register differences:
Hivlatt Fackasd Emulator/Analyzaer: hplsds? (miEg50) |
File Display oy Execution Breabpoints Trace Set Hilj |
action weys! [DispSee () [Treee() [Rum Stig Soaren |[= vour Ky - i
[hake|[Disp Sro Prev][Run der e ([Break Step Asm || Fegaml) |
[Ressrved Azcall |
DiFfarerces for SIH srd EMSIH Raglaters &
SR = EHEIFEI EHICR = PR :
STRTHS: W= Remming in weaiter Salmasre bresk: W Soelag
IE-.nc_:ln_rml atere diFference
[Crun J[trace J[atep J[asaptay] madily |[Bresk wnd |[—ET—] :
Command: (Aeturn) IFItul Cursor: II-C.J(I.L.'\II l-'un\.uldl (Clear to En-dl Clzal-'l @ |

To synchronize to the 6830x SIM registers
¢ Choose Modify - SIM Registers — Copy Processor SIM to

Emulator SIM from the emulator/analyzer pull-down menu.
Or, using the command line, enter:

sync_sim_registers from_6830x_to_config

The contents of the 6830x SIM registers are copied to the emulation copy of
the SIM registers.

139

Using the Emulator
To synchronize to the EMSIM registers

To synchronize to the EMSIM registers
¢ Choose Modify - SIM Registers -~ Copy Emulator SIM to

Processor SIM from the emulator/analyzer pull-down menu.
Or, using the command line, enter:

sync_sim_registers to_6830x_from_config

The contents of the emulation copy of the SIM registers are copied to the
6830x SIM registers.

To restore default values in the EMSIM registers

¢ Choose Modify - SIM Registers - Default Emulator SIM from the
emulator/analyzer interface pull-down menu.

Or, using the command line, enter:
sync_sim_registers default_config

The contents of the EMSIM register set are restored to their power-up values.

140

Loading and Storing Absolute Files

This section describes the tasks related to loading absolute files into
the emulator and storing memory contents into absolute files. This
section shows you how to:

* Load absolute files into memory.

* Load absolute files without symbols.

e Store memory contents into absolute files.

To load absolute files

Choose File - Load - Executable and use the dialog box to select
the absolute file.

Or, using the command line, enter:
load <absolute_file>

You can load absolute files into emulation or target system memory. You can
load IEEE-695 format absolute files. You can also load HP format absolute
files. The store memory command creates HP format absolute files.

If you wish to load only that portion of the absolute file that resides in
memory mapped as emulation RAM or ROM, use the command line’s
load emul_mem syntax.

If you wish to load only the portion of the absolute file that resides in memory
mapped as target RAM, use the command line’s load user_mem syntax.

If you want both emulation and target memory to be loaded, do not specify
emul_mem or user_mem.

141

Examples

Using the Emulator
To load absolute files without symbols

To load the demo program absolute file and the configuration file, enter the
following commands:

load configuration Config.EA
load ecs.x

To load only portions of the absolute file that reside in target system RAM:
load user_mem absfile
To load only portions of the absolute file that reside in emulation memory:

load emul_mem absfile

To load absolute files without symbols
Choose File - Load - Program Only and use the dialog box to

select the absolute file.
Or, using the command line, enter:

load <absolute_file> nosymbols

142

Using the Emulator
To store memory contents into absolute files

To store memory contents into absolute files

¢ Using the command line, enter:
Store memory <expression>

You can store emulation or target system memory contents into HP format
absolute files on the host computer. Absolute files are stored in the current
directory. If no extension is given for the absolute file name, it is given a ".X"
extension.

Examples To store the contents of memory locations 900H through 9FFH to an absolute
file on the host computer named "absfile":

store memory 900h thru 9ffth to absfile

After the command above, a file named "absfile. X" exists in the current
directory on the host computer.

143

Using Symbols

If symbol information is present in the absolute file, it is loaded along
with the absolute file (unless you use the nosymbols option). Both
global symbols and local program module symbols can be displayed.

Long symbol names can be truncated in the symbols display; however,
you can increase the width of the symbols display by starting the
interface with more columns (refer to the "Setting X Resources"
chapter). This section describes how to:

¢ Load symbols.

* Display global and local symbols.

¢ Display a symbol’s parent symbol.

¢ Copy and paste a full symbol name to the entry buffer.

To load symbols

Choose File - Load - Symbols Only and use the dialog box to select
the absolute file.

Or, using the command line, enter:
load symbols <absolute_file>

Symbols are loaded automatically unless you use the nosymbols option when
loading absolute files. If you did use the nosymbols option when loading the
absolute file, you can load the symbols without loading the absolute file again.

144

Examples

Using the Emulator
To display global symbols

To load symbols from the demo program:

load symbols ecs.x

Examples

To display global symbols

Choose Display - Global Symbols.
Or, using the command line, enter:

display global_symbols

Listed are: address ranges associated with a symbol, the segment the symbol
is associated with, and the offset of that symbol within the segment.

If there is more than a screen full of information, you can use the up arrow,
down arrow, <NEXT>, or <PREV> keys to scroll the information up or down
on the display.

To display global symbols in the demo program:

display global_symbols

145

Using the Emulator
To display local symbols

Hawbott Packard Evwdatos | Analyzer: hplsdzlh (mGE830x)

[Fite] Display Moty Evecaition Bresipoints Trace Serts Healp
Actionbeys: [DispSee () [Trwer() |[Rum Stegp Searee || = Woar Koy »
[|DI!I- Sra Pﬂ Plun er to. [] Ereak Step Asm feg 30l §
{ k& nu_cheoks Plecall
Globe] mwbols in e, A
Frocedure sumbals
Frocedure ruwe Address ronge _ Segeent OF fear
__F¥lu=h BEFCA - EAE] Tk 5o s
b mge BEETEC - BEESIT libe s ss]
_dbl_to_sty BEEACA - BESFF Tk o e bed
_doprnit B4 - BEFA0 ik GA3E
_muimn_fioe @ 18R - BESIAF Tk 5 5 v
_F L BATEER - BERFS ik s ss]
_ETATTUD BAZ15A - BAEFED aves scs]
_mavita BAFIES - @730 liko s]
_wrrchls GEFIIE - EOTIEY ik fos]
ok Lk GEFIEA - COT44F D1k fos]
aTaxlt BECISE - BESIEY ik o
callas BECELS - BECTA] ik B4GE
o lear_acvasn BAFSEA - BOISES, ey aitA
cloze B8 - BAR4EE arw =sz 5]
oankemarr BECFES - BA3IEE prog asa v
do_morr BARICE - BAAAE prog BEFA
STETHS: HEFIOF —Remmimy in memiter Selemare broak: 2007Rcalsp

Hiaplay global_smbols

p—T -

Command! [Roturn|[Recal] Cursor: [Facki] [Forwaed][Cloar to end][Clear]

To display local symbols

* When displaying symbols, position the mouse pointer over a symbol
on the symbol display screen and click the select mouse button.

* When displaying symbols, position the mouse pointer over the
symbol, press and hold the select mouse button, and choose Display
Local Symbols from the pop-up menu.

¢ Position the mouse cursor in the entry buffer and enter the module
whose local symbols are to be displayed; then, choose
Display — Local Symbols ().

Or, using the command line, enter:
display local_symbols_in <module>

To display the address ranges associated with the high-level program’s source
file line numbers, you must display the local symbols in the file.

146

Using the Emulator
To display local symbols

Examples To use the Symbols Display pop-up menu:

Heswdatt Packard Emadatosffnalyzar hpksdzl (miEag
[Fite] osgriay poomny Eveestion Bresipoints Trace Setrs Heljs

rmier, [T 5] ——m—

View the local symbols Lk.omphanks Azcall
i i Global =gwbols Lr i
associated with the Globalehhuln el og A
hlghllghted symbol by Frazemchire Fures: Fddrass rargs e O faar A
H H H rea] loo BESGFY - BESELT DLbo a3
choosing this menu item. St ol P - CORER oy vl
BT _gempeT e BEEIA - B34 prog =
serired GEPICE - BRPET libe G
s rop S - BEEF prog a1vs
- BESTEE DLk
- BACEEF v [
walt_for | dGlobal Symbaols Display
e Fa Display Local Symbols i s
i MHsolay Parsr Symbols
‘5::1;; [e Cut Full Symbol Hame | Swwern Offsar O
R e Eit File Defining Symbol ecy picalh |

STHTWS: Build amccasafel] se mermisgs more faawed
dizspley globs]_surbols

Cossssand; [Return|[Reesl] Cuesor: [Each o] [Forwand] [Clear ta o] [Slear]

147

Using the Emulator

To display local symbols

Using the command line:

To display local symbols in a module:

display local_symbols_in update_sys

Hawlott Packard EmadatosfAnalyzer: hpbadzl (mBS30s)

[Eite] mesgtay psomsy Expeution Breskpoinis Trace Sestings Halj

revan vy, Lo 501
[sk s i Prev] s e 10 (e[_Step][gt 1]

{E alobal_sysbols Aecall
Sagbande i pedene s rcck]ad n
Prroaadure gkl

Prrcamdbre e Fddraes vargs _ Secwrent OF faar
T _ T ATt B2 - BEESF prog BEEE
graph_dets BEFED - BT prod = e o
voaad_cored LT Lo BAEAG - BT prog aiFz
amvwE_polate BASEIA - BETES prog B40C
BT _CiTpaTE BAIE1A - BEST4] prog BEEC
et _saten BAIEA - BEMIE prog a2
L e BAITHE - BEEEY prog B3F4
Sranic sgokols

Sagrben] ruse Fddraes varge _ Seowrent OF faar
_bA_array BATED - BETEER dats s rs]
_BA_mgs e sdeas_ G974 BAMEEA - BAGEED coeet (= 5h g

F L lavures migdan]s

FL lermne

L]

update_ sy, o

STETNS: cme: wpdate_ags

Hiaplay local_syrbala_in updets_ags

Comssand; [Feturn][Resadl] Cusor: [Fochio] [Foewaed] [Clear to e [Slear]

To display local symbols in a procedure:

display local_symbols_in update_sys.save_points

148

Using the Emulator
To display local symbols

To display address ranges associated with the high-level source line numbers:

display local_symbols_in
update_sys."update_sys.c":

Hawlott Packard Emadatos/Analyzar: hpbsdzh (mBSE0x0
[Eite] Disptay baomsy Evecution Bresipoints Trace Settings Haljs

cvan vy [Ol 51
[sk s S Prev] [et (] Bresk]| _step A][Begamei 1

[display looal_sysbols_in update_sys."update_sys.o” Aecall
Soprbele Lr opedere_mgeUncdg]ad, "pdane s, o7 n
Souros refarance sgnbals

Lire varges Fddress rarge _ Seorent OF fmar
11-147 BA3I5A - BEIT prog o5 5]
145-153 B335 - BEIET prog Sk
154156 B335 - I prog B34
157153 BAEFH - BEE0S prog o]
156-154 B34 - BEFEF prog e
151151 B30 - BIIES prog B
162-153 BA3ES - BEEF] prog [5
154154 BAIFE - BMHES prog B
15153 BAHEE - MY prog B
1E3-172 BAH1G - EHEE prog B4
173-17% SIS - M3 prog o5 1]
IE-177 AR prog Ba0E
175-1H B4 - BEIMES prog B2EE
a1 BAHE4 - BEIME0 prog ai1a
1E-133 BAHEE - BIMAS prog I o
11E83-1 168 MM - EHE prog ai48

STRTES: cm! wpdsta_sgs.” wpdate_sgu.c”t
Biaplay lecal_syrbols_in updete_sgs. “updete_sgs. ="

Comsand: [Return|[Recsl] Cursor: [Fachi][Forwad][Claar to ond][Cloar]

149

Using the Emulator
To display a symbol’s parent symbol

To display a symbol’s parent symbol

* When displaying symbols, position the mouse pointer over the
symbol, press and hold the select mouse button, and choose Display
Parent Symbols from the pop-up menu.

Examples
Hawlott Packard EmadatosfAnalyzar: hptsdzlh (mGs a0
[Fite] Dosgrtay psomsy Eveeution Bresspoints Trace Setting Help
Viewh o Pt hers:
a;es‘gc‘iafe%a\fvei{‘; rae [haske J[otsp Sre Prev[Run er o O Break][Step Asm_J[Regare()]
highlighted symbol by k.t phiink Hoal

choosing this menu item. Glohalaimhole, LA eos:x

Proamdure sk le i
Prrcatra s Fiddrzss rarge Saopenr 0f fuar |
rea] loo BESGFY - BESELT DLbo a3

savam ol AT e AR - BEEEES prog B
BT _gempeT e BEEIA - B34 prog =
aprLeef HEFAE - BETZEY like =t
g s BEHE - BEDEF prog a1vs

) BEGTEE - BEGTER Iibe 5]

BECEAR - GRCEEF [
amlT_bor_ dGlobal Symbaols Display
T e\ [Py e Symeon
THswolay Parerl Symbols
e ol |t Full Symbol Hame | s i
R TR Edit Filo Defning Symbol heso ol

STHTWS: Build amccasafel] se mermisgs more faawed
dizspley globs]_surbols

Cossssand; [Return|[Reesl] Cuesor: [Each o] [Forwand] [Clear ta o] [Slear]

150

Using the Emulator
To copy and paste a full symbol name to the entry buffer

To copy and paste a full symbol name to the entry
buffer

* When displaying symbols, position the mouse pointer over the
symbol, press and hold the select mouse button, and choose Cut Full
Symbol Name from the pop-up menu.

Once the full symbol name is in the entry buffer, you can use it with
pull-down menu items or paste it to the command line area.

By cutting the full symbol name, you get the complete names of symbols that
have been truncated. Also, you are guaranteed of specifying the proper
scope of the symbol.

Examples

Hewlelt Packard Emwdator\Analyzar: hpladzly (miEa0xp
[Eie] dsplay biodty Evesution Bresdguints Trace Setting Halj:
hcton ey, [Dip 5ee 1)
[]

{ £ nuwi_oheoks FAecall

Copy the full name of the
Globe] sipdba]s [roece,

highlighted symbol to the Procedurs surbols A
H Prroezechre o Fddraes varge St 0F faar

entry buffer by choosin realloo BEEEF - BEERCT] Lbo wxn [
this menu item. sovem_potrne S - EES prea I
BT _ e TEAIT S BAEIE - B prog HEEC
sprintd BEFALE - BETEEY ko s 5 s

arvops i BEAHE - BEDEF prog aira
ETTIOND TBE - (1.3
(i)

fGlobal Symbols Display

s d by ai54
i lre] Display Local Sysshols gl [
5 sy Parspd Symbols

Tar o sk]
T Cut Full Symb ol Blame E e Gip |
o g o]
JEF_ENTR Edit File Dniieg Syinbal ik v

STRTHS Build amccmiaful] s marmisgs sere @xssed
displey globs]_smbcls

Comsini®: [Rewrn|[Resall] Cursor: [Bashus] [Forward][Clear ta o] [Clear]

151

Using Context Commands

The commands in this section display and control the directory and
symbol contexts for the interface.

Directory context.

The current directory context is the directory accessed by all system
references for files—primarily load, store, and copy commands—if no
explicit directory is mentioned. Unless you have changed directories
since beginning the emulation session, the current directory context is
that of the directory from which you started the interface.

Symbol context.

The emulator/analyzer interface and the Symbol Retrieval Utilities
(SRU) together support a current working symbol context. The
current working symbol represents an enclosing scope for local
symbols. If symbols have not been loaded into the interface, you
cannot display or change the symbol context.

This section shows you how to:

* Display the current directory and symbol context.
¢ Change the directory context.
* Change the current working symbol context.

152

Using the Emulator
To display the current directory and symbol context

To display the current directory and symbol context

¢ Choose Display - Context.
Or, using the command line, enter:

pwdand pws

The current directory and working symbol contexts are displayed, and also
the name of the last executable file from which symbols were loaded.

EmulatorfAnalyzer: Current Context
Example

Directory: fusrfhps4000/demofdebug envihp&4798

. —3~ Symbol File: fusrfhpg4000/demoldebug_envihp&4798iecs.x
Directory context. | Symbol Scope: update_sys

Executable from which
symbols were last -
loaded. m

Symbol context.

To change the directory context

* Choose File - Context - Directory and use the dialog box to select
a new directory.

Or, using the command line, enter:
cd <directory>

The Directory Selection dialog box contains a list of directories accessed
during the emulation session as well as any predefined directories present at
interface startup.

153

Using the Emulator
To change the current working symbol context

You can predefine directories and set the maximum number of entries for the
Directory Selection dialog box by setting X resources (see the "Setting X
Resources" chapter).

To change the current working symbol context

* Choose File - Context — Symbols and use the dialog box to select
the new working symbol context.

Or, using the command line, enter:
cws <symbol_context>

(Because cws is a hidden command and doesn’t appear on a softkey label,
you have to type it in.)

You can predefine symbol contexts and set the maximum number of entries
for the Symbol Scope Selection dialog box by setting X resources (see the
"Setting X Resources" chapter).

Displaying local symbols or displaying memory in mnemonic format causes
the working symbol context to change as well. The new context will be that
of the local symbols or memory locations displayed.

154

Executing User Programs

You can use the emulator to run programs, break program execution
into the monitor, step through the program by high-level source lines
or by assembly language instructions, and reset the emulation
processor.

When displaying memory in mnemonic format, a highlighted bar
shows the current program counter address. When you step, the
mnemonic memory display is updated to highlight the new program
counter address.

When displaying resisters, the register display is updated to show you
the contents of the registers after each step.

You can open multiple interface windows to display memory in
mnemonic format and registers at the same time. Both windows are
updated after stepping.

o
Note:

A stack pointer must be initialized prior to execution. If you have set the Reset
Vectors option of the Emulation Configuration options to Auto Reset, the stack
pointer is automatically reset. If you have not set Reset Vectors to Auto, you
must manually reset the pointers through the Emulation Configuration menu
prior to each execution.

This section describes how to:

Start the emulator running the user program.

Stop (break from) user program execution.
* Step through user programs.
* Reset the emulation processor.

155

Using the Emulator
To run programs from the current PC

To run programs from the current PC

¢ Choose Execution - Run - from PC.
Or, using the command line, enter:

run

When the emulator is executing the user program, the message "Running
user program" is displayed on the status line.

To run programs from an address
* Position the mouse pointer in the entry buffer and enter the address

you want to run from; then, choose Execution - Run - from ().
Or, using the command line, enter:

run from <address>

Examples To run from address 920H:

run from 920h

156

Using the Emulator
To run programs from the transfer address

To run programs from the transfer address

Choose Execution - Run - from Transfer Address.
Or, using the command line, enter:

run from transfer_address

Most software development tools allow you to specify a starting or entry
address for program execution. That address is included with the absolute
file’s symbolic information and is known by the interface as the transfer
address.

To run programs from reset

Choose Execution — Run - from Reset.
Or, using the command line, enter:

run from reset

The run from reset command specifies a run from target system reset. It is
equivalent to entering a reset command followed by a run command. The
processor will be reset and then allowed to run.

157

Using the Emulator
To run programs until an address

Examples

To run programs until an address

When displaying memory in mnemonic format, position the mouse
pointer over the line that you want to run until; then press and hold
the select mouse button and choose Run Until from the pop-up
menu.

Position the mouse pointer in the entry buffer and enter the address
you want to run from; then, choose Execution — Run - until ().

Or, using the command line, enter:

run until <address>

When you run until an address, a software breakpoint is set at the address
and the program is run from the current program counter.

When using the command line, you can combine the various types of run
commands; for example, you can run from the transfer address until another
address.

To run from the transfer address until the address of the global symbol main:

run from transfer_address until main

158

Using the Emulator
To stop (break from) user program execution

To stop (break from) user program execution

* Choose Execution - Break.
Or, using the command line, enter:

break

This command generates a break to the monitor.

Software breakpoints and the run until command allow you to stop execution
at particular points in the user program.

Examples To break emulator execution from the user program to the monitor:

break

159

Using the Emulator
To step high-level source lines

Examples

To step high-level source lines
Choose Execution - Step Source and select one of the items from

the cascade menu.
Or, using the command line, enter:

Step source

When stepping through instructions associated with source lines, execution
can remain in a loop and the message "Stepping source line 1; Next PC:
<address>"is displayed on the status line. In this situation you can abort the
step command by pressing <CTRL>c.

To step through instructions associated with the high-level source lines at the
current program counter:

Step source

To step through instructions associated with high-level source lines at
address "main":

step source from main

160

Using the Emulator
To step assembly-level instructions

To step assembly-level instructions

¢ Choose Execution - Step Instruction and select one of the items
from the cascade menu.

Or, using the command line, enter:
step

The step command allows you to step through program execution an
instruction or a number of instructions at a time. Also, you can step from the
current program counter or from a specific address.

Examples To step one instruction from the current program counter:

step

To step a number of instructions from the current program counter:
step 8

To step a number of instructions from a specified address:

step 16 from 920h

161

Using the Emulator
To reset the emulation processor

To reset the emulation processor

¢ Choose Execution - Reset.
Or, using the command line, enter:

reset

The reset command causes the processor to be held in a reset state until a
break, run, or step command is entered. A CMB execute signal will also
cause the emulator to run if reset.

162

Using Execution Breakpoints

Breakpoints allow you to stop target program execution at a particular
address and transfer control to the emulation monitor. Suppose your
system crashes when it executes in a certain area of your program.
You can set a breakpoint in your program at a location just before the
crash occurs. When the processor executes the breakpoint, the
emulator will force a break to the monitor. You can display registers or
memory to understand the state of the system before the crash
occurs. Then you can step through the program instructions and
examine changes in the system registers that lead up to the system
crash.

Software breakpoints are implemented in the 6830x emulator by
replacing opcodes with TRAP instructions. You can configure the
emulator to use one of the 16 different TRAP instructions for software
breakpoints. The default emulator configuration specifies that the
TRAP #0FH is used for software breakpoints.

In order to successfully set a software breakpoint, the emulator must
be able to write to the memory location specified Therefore, software
breakpoints cannot be set in target memory while the emulator is
reset, and they can never be set in target ROM. (You can, however,
copy target ROM to emulation memory by storing the contents of
target ROM to an absolute file, re-mapping the range as emualtion
RAM, and loading the absolute file.)

When you set a software breakpoint, the emulator replaces the
opcode at the address specified with the TRAP instruction. When the
emulator detects a read from the appropriate vector table location
(TRAP instruction has executed in the user program), execution
breaks to the monitor.

If the TRAP was generated by a software breakpoint, a message
containing the address of the breakpoint is displayed on the status
line, and, if the breakpoint is temporary, the original opcode is
resotroed in the user program. If the breakpoint is permanent, it

163

Using the Emulator
To reset the emulation processor

remains active. A subsequent run or step command will execute from
the breakpoint address.

If the TRAP was not inserted as the result of a modify
software_breakpoints set command (in other words, it is part of the
user program), the "Undefined software breakpoint" message is
displayed on the status line. To continue with the program execution,
you must run or step from the user program’s TRAP instruction vector
address.

This section shows you how to:

* Set execution breakpoints in RAM.

* Set execution breakpoints in ROM.

¢ Use temporary and permanent breakpoints.
* Enable and disable execution breakpoints.
* Set a permanent breakpoint.

¢ Set a ROM breakpoint in RAM.

* (lear execution breakpoints.

* Display status of all execution breakpoints.

Software breakpoints should not be set, cleared, enabled, or disabled while
the emulator is running user code. If any of these commands are entered
while the emulator is running user code, and the emulator is eecuting code
in the area where the breakpoint is being modified, program execution may
be unreliable.

CAUTION

164

Using the Emulator
To enable execution breakpoints

To enable execution breakpoints

Choose Breakpoints — Enable.

Inside the breakpoints list display, press and hold the select mouse
button and then choose Enable/Disable Software Breakpoints
from the pop-up menu.

Or, using the command line, enter:
modify software_breakpoints enable

You must enable breakpoints before you can set, inactivate, or clear any
breakpoints.

Once you have enabled breakpoints, you can enter new ones into the
breakpoint table. Note that if you enable breakpoints, add several, and then
disable them, they all become inactive. If you reenable the breakpoints
feature, you must choose Breakpoints — Set All, or on the command-line,
enter modify software_breakpoints set if you want to set all the existing
breakpoint entries.

165

Using the Emulator
To disable an execution breakpoint

To disable an execution breakpoint

* Choose Breakpoints — Enable again. The Breakpoints - Enable
selection is a switch.

¢ Inside the breakpoints list display, press and hold the select mouse
button and then choose Enable/Disable Software Breakpoints
from the pop-up menu.
Or using the command line, enter:

modify software_breakpoints disable

Sometimes you will want to temporarily disable the execution breakpoints
feature without removing the existing breakpoints. Use one of the above
commands to do this.

When you disable breakpoints, the emulator replaces the BKPT instructions
at all breakpoint locations with the original instructions. It marks the
breakpoint table entries as “inactive.” The processor won’t break to monitor
when the instructions at inactive locations are executed.

If you later enable breakpoints, the ones in the table are still inactive. To use
them, you must set them by choosing Breakpoints — Set All, or on the
command line, entering the modify software_breakpoints set command.

166

Using the Emulator
To set a permanent breakpoint

To set a permanent breakpoint

When displaying memory in mnemonic format, position the mouse
pointer over the program line where you wish to set the breakpoint
and click the select mouse button. Or, press and hold the select
mouse button and choose Set/Clear Software Breakpoint from
the pop-up menu.

Place an absolute or symbolic address in the entry buffer; then,
choose Breakpoints — Permanent().

Or, using the command line, enter:

modify software_breakpoints set <address> -

permanent

The breakpoints feature must be enabled before individual breakpoints can
be set.

When displaying memory in mnemonic format, asterisks (*) appear next to
breakpoint addresses. An asterisk shows the breakpoint is active. Also, if
assembly level code is being displayed, the disassembled instruction
mnemonic at the breakpoint address will show the breakpoint instruction.

167

Using the Emulator
To set a temporary breakpoint

To set a temporary breakpoint

¢ Type in the absolute or symbolic address of the breakpoint you want
to set in the entry buffer. Then choose
Breakpoints - Temporary(), (or choose Breakpoints - Set() if
your version of HP 64700 system firmware is less than A.04.00).

* Choose Breakpoints - Set All to set all existing breakpoints in the
breakpoint table.

¢ Inside the breakpoints list display, press and hold the select mouse
button and then choose Set All Breakpoints from the pop-up menu.

Or, using the command line, enter commands as follows:

e To set a breakpoint at a location given by <address>, enter:
modify software_breakpoints set <address>

¢ To set all existing breakpoints in the breakpoint table, enter:
modify software_breakpoints set

To add a new breakpoint, you can choose Breakpoints - Temporary() with
the name of the new breakpoint in the entry buffer, or use the modify
software_breakpoints set command and specify the address for the
breakpoint. You can also use this method to reenable an existing breakpoint
at that address.

If you choose Breakpoints — Set All, or use the modify
software_breakpoints set command without an address parameter, all
existing breakpoints in the breakpoints table will be enabled. The
breakpoints feature must be enabled before individual breakpoints can be set.

When displaying memory in mnemonic format, asterisks (*) appear next to
breakpoint addresses. An asterisk shows the breakpoint is active. Also, if
assembly level code is being displayed, the disassembled instruction
mnemonic at the breakpoint address will show the breakpoint instruction.

168

Examples

Using the Emulator
To clear an execution breakpoint

Set a new breakpoint at get_targets:

modify software_breakpoints set
update_sys.get_targets

Reenable all existing breakpoints:

modify software_breakpoints set

To clear an execution breakpoint

Type in the name of the breakpoint you want to clear in the entry
buffer. Then choose Breakpoints — Clear().

Choose Breakpoints - Clear All to clear all existing breakpoints in
the breakpoint table.

Inside the breakpoints list display, press and hold the select mouse
button and then choose Clear (delete) Breakpoint from the
pop-up menu to clear the selected breakpoint.

Or, using the command line, enter commands as follows:

¢ To remove an existing breakpoint at a location given by <address>, enter:
modify software_breakpoints clear <address>

¢ To remove all existing breakpoints, enter:
modify software_breakpoints clear

When you're finished using a particular breakpoint, you should clear the
breakpoint table entry. The original instruction is restored to memory, and
the breakpoint table entry is removed.

169

Using the Emulator

To clear an execution breakpoint

Examples

Bring up the menu
and choose this
item to clear the
highlighted
breakpoint.

To clear a breakpoint using the breakpoints display pop-up menu:

Hewlatt Packard Emulator/Analyzern hplsds? (mGE30:)
Filo Display Moy Execution Bresbpoints Trace Seftings Help

e ————————————
Ao ey, [Diap S0
[s [orsp s Pre Fm et (][__rear_[_step o [Regoei |

L main HAecal
wre brashipolnte eneb]ed
Tammm Ly |

AT ST ‘
E valnlrodulel, "nain, o lire 96 tewgorariy [}
Chonan Astioi B Highlighted Lise
Setinaotraie Breakpoing
e [dedete) Breshpoint i
Clene Aetion lor A8 Brespoants
EnablefDisable Software Breakpodnts
Set AN Breskposnts
Clear [deleie) A8 Breskpoants =
v

SRS M1 —Eenming s memiter

To clear an existing breakpoint at get_targets:

modify software_breakpoints clear
update_sys.get_targets

To clear all existing breakpoints:

modify software_breakpoints clear

170

Using the Emulator
To clear all execution breakpoints

To clear all execution breakpoints

When displaying breakpoints, position the mouse pointer within the
breakpoints display screen, press and hold the select mouse button,
and choose Clear (delete) All Breakpoints from the pop-up menu.

Choose Breakpoints - Clear All.
Or, using the command line, enter:

modify software_breakpoints clear

To display the status of all execution breakpoints -

Choose Breakpoints - Display or Display — Breakpoints.
Or, using the command line, enter:

display software_breakpoints

The breakpoints table shows you whether the breakpoints feature is
currently enabled or disabled. Also, the status is shown for each breakpoint
in memory. If “Pending,” the BKPT instruction is in memory at that location
and the breakpoint is set. If “Inactive,” the memory location contains the
original instruction, and the breakpoint will not be executed.

Active breakpoints are indicated in the memory mnemonic display by
asterisks beside the lines with breakpoints set.

171

temporary

permanent

inactivated

pending

Using the Emulator
To display the status of all execution breakpoints

The status of a breakpoint can be one of the following;:

This means the temporary breakpoint has been set but not encountered
during program execution. These breakpoints are removed when the
breakpoint is encountered.

This means the permanent breakpoint is active. Permanent breakpoints
remain active after they are encountered during execution.

This means the breakpoint has been inactivated. Pending breakpoints are
inactivated when they are encountered during program execution. Both
temporary and permanent breakpoints can be inactivated (and restored)
using the breakpoints display pop-up menu.

This means the temporary breakpoint has been set but not encountered
during program execution. When encountered, these breakpoints are
inactivated, but retained in the breakpoints list. Pending breakpoints can
only be set using the softkey command line with commands like

modify software_breakpoints set 1000 and not selecting the additional
options <temporary> or <permanent>. The "pending" breakpoints status is
retained for compatibility with older product software versions.

In the breakpoints display, a pop-up menu is available, obtained by pressing
the select mouse button. You can inactivate or restore the status of any
breakpoint in the breakpoints list, as well as enable or disable the breakpoints
feature, using the pop-up menu.

172

Displaying and Modifying Registers

This section describes tasks related to displaying and modifying
emulation processor registers.

Within the interface, related registers are grouped into a class. For
example, the <BASIC> register class includes general registers, such
as the PC, ST, USP, SSP, and data and address registers. You can
display the contents of an individual register, a register class, or all
registers.

This section shows you how to:

* Display register contents.
* Modify register contents.

To display register contents

Choose Display - Registers - <register class>.
Or, using the command line, enter:

display registers <register class>

When displaying registers, you can display classes of registers and individual
registers.

173

Using the Emulator
To display register contents

Examples To display the IDMA register class:

display registers class IDMA

Harefudi P latca frunad paar: Bpdsd? (nEI0s0
Fibr (iupiry by Caristinn Sresipaids Traw fiemign =y
Arden boyn: s ewa = Pl ier 8] -Ihmlh- (]
2 Yo s J| Wabr i Losd Rz fam Jearce [War |
Diam s Poee Trase e T
T - [
|Paqraeers i

ILimmen g el Tlirm g |

VINTW; EREMET--Tomaiwg e ey e Talvmary Beaaks BEC Lol
TBoscing tagiasers 1B9

display registers individual CMR

Haraludi P batca firalprar: Bpdcdn? (B I0s0
Pt [huptoy Lbinllp Embiibon §reshpaids Trai el =
Ardan bovs: : lhema = Hur i [z Bre & foel] Pafmng) |
e Fry -][Viabe 4w |

Dhep $HED Dz Sre ey Traze (] L=l
k O [T

|Peaces &

[C]
rm W o r
i

» Erren s vn ulemre
Marngl Pers] Trersler 1 cleered

WINTI; EERMP-=Eessisg s s Talisrs Geads EECLaS 5
dinley FiE maEm O30

174

Using the Emulator
To modify register contents

To modify register contents

* Choose Modify - Register... and use the dialog box to name the
register and specify its value.

Clicking the "Recall" pushbutton lets you
select register names and values from
predefined or previously specified entries.

Placing the mouse pointer in the text entry ~Modify Register
\a/\;zl?elets you type in the register name and Name | PC I Recall

Value IRecaII

To define the type of value, press and hold

the command select mouse button and I Read Current Register Value

drag the mouse to select the value type.
[ox] [

Clicking this checkbox causes the current
value of the named register to be placed in
the "Value" text entry area.

Clicking this button modifies the register to Clicking this button modifies the Clicking this button cancels modification
the value specified and closes the dialog register to the value specified and and closes the dialog box.
box. leaves the dialog box open.

Or, using the command line, enter:

modify register < register> to <value>

175

Displaying and Modifying Memory

You can display and modify the contents of memory in hexadecimal
formats and in real number formats. You can also display the contents
of memory in assembly language mnemonic format.

This section shows you how to:

* Display memory.

¢ Display memory in mnemonic format.

* Display memory in mnemonic format at the current PC.
* Return to the previous mnemonic display.

* Display memory in hexadecimal format.

* Display memory in real number format.

* Display memory at an address.

* Display memory repetitively.

* Modify memory.

* Modify memory at an address.

To display memory

Choose Display - Memory.

This command either re-displays memory in the format specified by the last
memory display command, or, if no previous command has been executed,
displays memory as hexadecimal bytes beginning at address zero.

176

Using the Emulator
To display memory in mnemonic format

To display memory in mnemonic format

To display memory at a particular address, place an absolute or
symbolic address in the entry buffer; then, choose

Display — Memory - Mnemonic (), or, using the command line,
enter the display memory <address> mnemonic command.

To display memory at the current program counter address, choose
Display - Memory - Mnemonic at PC, or, using the command line,
enter the display memory mnemonic at_ pc command.

A highlighted bar shows the location of the current program counter address.

This allows you to view the program counter while stepping through user
program execution.

Whether source lines, assembly language instructions, or symbols are
included in the display depends on the modes you choose with the
Settings - Source/Symbols Modes or Settings - Display Modes
pull-down menu items. See the "Changing the Interface Settings" section.

If symbols are loaded into the interface, the default is to display source only.

177

Using the Emulator
To return to the previous mnemonic display

To return to the previous mnemonic display

¢ Choose Display - Memory - Mnemonic Previous.
Or, using the command line, enter:

display memory mnemonic previous_display

This command is useful for quickly returning to the previous mnemonic
memory display.

For example, suppose you are stepping source lines and you step into a
function that you would like to step over. You can return to the previous
mnemonic memory display, set a breakpoint at the line following the function
call, and run the program from the current program counter.

178

Using the Emulator
To display memory in hexadecimal format

To display memory in hexadecimal format

* Place an absolute or symbolic address in the entry buffer; then,
choose Display - Memory - Hex () and select the size from the
cascade menu.

Or, using the command line, enter:
display memory <address> blocked <size>

This command displays memory as hexadecimal values beginning at the
address in the entry buffer.

Examples To display memory in absolute word format:
display memory ascii_old_data absolute words
Memory :@sp :words :absolute :update

addre label data :he tascii
AR720A _ascii_old_d 2Aza

ARYZ20C Zaze

AR7Z20E 2834 4
Aa7ZER 3364 3.
AR7ZE2 2aza

AR72E4 2aza

AR7ZER 2A34 4
AR7ZES 35mA E.
ARYZER Zaze

A87ZEC Zaz2d

A87ZEE 2837 7
AR7ZF A 37m@ 7.
AR7ZF 2 2Aza

AR72F 4 2Aza

ARYZFE ZA35 5
ARYZF3 jalaz1z] 8.
A87ZFA Zaz2d

179

Using the Emulator
To display memory in real number format

To display memory in blocked byte format:

display memory ascii_old_data blocked bytes
Memory :@sp :bytes :blocked :update

addre data the tascii

BE720R-E1 28 28 26 28 28 34 33 @4 4 3
BE72E2-E9 28 28 28 28 28 34 35 @4 45
BE72ER-F 1 28 28 28 28 28 37 37 @4 77
BE72F2-F3 28 28 26 28 28 35 3@ @4 54
BE72FA-H1 28 28 28 28 28 34 34 @A 4 4
BH7382-H3 28 28 28 28 28 34 35 @A 45
BE738A-11 28 28 28 28 2@ 37 38 @A 78
BE7312-19 28 28 28 28 2@ 35 31 @A 51
BE731A-21 28 28 28 28 28 34 34 @A 4 4
BA7322-29 28 28 28 28 28 34 35 @A 45
BE732A-31 28 28 28 28 2@ 37 33 @A 713
BR7332-33 2B 28 28 28 2@ 35 32 @A 52
BE733A-41 28 28 28 28 2@ 34 35 @A 45
BE7342-43 28 28 28 28 2@ 34 34 @A 4 4
BE734A-51 28 28 37 34 2E 35 33 @A 74 5 3
BR7352-53 2B 28 28 28 2@ 3B 33 @A g3
BE735A-61 28 28 28 28 2@ 34 36 @A 46

To display memory in real number format

* Place an absolute or symbolic address in the entry buffer; then,
choose Display - Memory - Real () and select the size from the
cascade menu.

Or, using the command line, enter:

display memory <address> real <size>

Displays memory as a list of real number values beginning at the address in
the entry buffer. Short means four-byte real numbers and long means
eight-byte real numbers.

180

Examples To display memory in 64-bit real number format:

display memory real long

Using the Emulator
To display memory at an address

Memory :Bsp :long real :update

addre label data :real

HB720R _ascii_old_d 6.81347801374187E-154
AB7ZEZ 6.81347801574255E-154
BB72ER 6.813478813688378E- 154
AB72F2 §.813478813582765E- 154
HB72FA 6.81347801874221E-154
HB 7382 6.81347861374255E-154
HB7 38R 6.8134786 136884684E- 154
HB7312 6.8134780135280 1E-154
AB731A 6.813478015874221E-154
AB7322 §.81347881374255E-154
AB732R §.813478801388435E- 154
HB7332 6.813478613582835E-154
HB733R 6.81347801374255E-154
HB7342 6.81347801874221E-154
HAB734R 6. A4708548826633E- 154
AB7352 6.813478815831755E-154
AB733R §.81347881374285E- 154

To display memory at an address

¢ Place an absolute or symbolic address in the entry buffer; then,
choose Display - Memory - At ().
This command displays memory in the same format as that of the last
memory display command. If no previous command has been issued,
memory is displayed as hexadecimal bytes.

181

Using the Emulator
To display memory repetitively

To display memory repetitively

* Choose Display - Memory — Repetitively.
Or, using the command line, enter:

display memory repetitively

The memory display is constantly updated. The format is specified by the
last memory display command.

This command is ignored if the last memory display command was a
mnemonic display.

To modify memory

* Choose Modify - Memory and complete the command using the
command line.

¢ To modify memory at a particular address, place an absolute or
symbolic address in the entry buffer; then, choose
Modify - Memory at () and complete the command using the
command line.
Or, using the command line, enter:

modify memory

You can modify the contents of one memory location or a range of memory
locations. Options allow you to modify memory in byte, short, word, and real
number formats.

182

Displaying Data Values

The data values display lets you view the contents of memory as data
types. You can display data values in the following formats:
* bytes

e 8-bit integers

e unsigned 8-bit integers

* chars

* words

e 16-bit integers

* unsigned 16-bit integers

* long words

e 32-bit integers

* unsigned 32-bit integers

This section shows you how to:

* Display data values.
e C(Clear the data values display and add a new item.
* Add item to the data values display.

To display data values

Choose Display - Data Values.
Or, using the command line, enter:

display data

Items must be added to the data values display before you can use this
command.

183

Using the Emulator
To clear the data values display and add a new item

The data display shows the values of simple data types in the user program.
When the display mode setting turns ON symbols, a label column that shows
symbol values is added to the data display.

Step commands and commands that cause the emulator to enter the monitor
(for example, encountering a breakpoint) cause the data values screen to be
updated.

To clear the data values display and add a new item

* Place an absolute or symbolic address in the entry buffer; then,

choose Display - Data Values - New () and select the data type
from the cascade menu.

Or, using the command line, enter:

display data <address> <format>

To add items to the data values display

* Place an absolute or symbolic address in the entry buffer; then,

choose Display — Data Values - Add () and select the data type
from the cascade menu.

Or, using the command line, enter:

display data , <address> <format>

184

Changing the Interface Settings

This section shows you how to:

e Set the source/symbol modes.
e Set the display modes.

To set the source/symbol modes

To display assembly language mnemonics with absolute addresses,
choose Settings - Source/Symbol Modes — Absolute, or, using the
command line, enter the set source off symbols off command.

To display assembly language mnemonics with absolute addresses
replaced by global and local symbols where possible, choose
Settings - Source/Symbol Modes - Symbols, or, using the
command line, enter the set source off symbols on command.

To display assembly language mnemonics intermixed with high-level
source lines, choose Settings — Source/Symbol Modes - Source
Mixed, or, using the command line, enter the set source on
inverse_video on symbols on command.

To display only high-level source lines, choose

Settings - Source/Symbol Modes - Source Only, or, using the
command line, enter the set source only inverse_video off
symbols on command.

The source/symbol modes affect mnemonic memory displays and trace
displays. Each display mode cascade menu choice is a toggle. Choosing one
of these items causes it to be the only one active and toggles all others off.
Provided that symbols were loaded, the interface defaults to:

e Source only for mnemonic memory displays.

e Source mixed for trace listing displays.

185

Using the Emulator

To set the display modes

To set the display modes

¢ Choose Settings - Display Modes... to open the display modes

dialog box.

Press and hold the select
mouse button and drag the mouse to
select "Source Only", "Source

Mixed", or "Off".

Clicking toggles whether symbolic
information is displayed.

Move the mouse pointer to the text
entry area and type in the value.
Descriptions of the modes follow.

Clicking toggles auto update
settings.

Clicking this checkbox
changes all display mode settings to
their defaults.

Clicking this button saves your
changes and closes the dialog box.

~

Clicking this button saves your
changes and leaves the dialog

box open.

Emulator/Analyzer: Display Modes

- Source/Symbols View

' W Source Only &3 |
Source in Trace Source Mixed = |

Tab Expansion (2 to 15 Spaces)

M Symbolic Addresses

~Field Widths

nemonic Field 5

Symbols in Mnemonic Field | 16

M 148

Source: (60 to 255) All Others: (1 to 80)

~Auto Update

M hemory Displays (Except Mnemonic)
M kemory Mnemonic Auto PC
M Trace Display

7 Default All Settings

__OK |

closes the dialog box.

186

Clicking this button cancels your changes and

Using the Emulator
To set the display modes

Source/Symbols View

Source in Memory specifies whether source lines are included, mixed with
assembly code, or excluded from mnemonic memory displays.

Source in Trace specifies whether source lines are included, mixed with
stored states, or excluded from trace displays.

Symbolic Addresses specifies whether symbols are included in displays.
Tab Expansion sets the number of spaces displayed for tabs in source lines.

Source/Symbols View
Label Field sets the width (in characters) of the address field in the trace list

or label (symbols) field in any of the other displays.

Mnemonic Field sets the width (in characters) of the mnemonic field in -
memory mnemonic, trace list, and register step mnemonic displays. It also

changes the width of the status field in the trace list.

Symbols in Mnemonic Field sets the maximum width of symbols in the
mnemonic field of the trace list, memory mnemonic, and register step
mnemonic displays.

Source Lines sets the width (in characters) of the source lines in the memory
mnemonic display.

Auto Update

Memory Displays (Except Mnemonic) toggles whether memory displays are
automatically updated after commands that change memory contents or
whether you must enter memory display commands to update the display.
You may wish to turn off memory display updates, for example, when
displaying memory mapped I/O.

Memory Mnemonic Auto PC toggles whether memory mnemonic displays
automatically jump to the new PC location when the PC changes (such as
during stepping or break). You may wish to turn off the automatic update of
memory mnemonic displays when you want to examine a specific area of
memory regardless of the location of the current PC (such as during
stepping).

Trace Display toggles whether trace displays are automatically updated when
trace measurements complete or whether you must enter trace display
commands to update the display. You may wish to turn off trace display
updates in one emulator/analyzer window in order to compare the display
with a new trace display in another emulator/analyzer window.

187

Using System Commands

With the Softkey Interface system commands, you can:

* Set UNIX environment variables while in the Softkey Interface.
* Display the name of the emulation module.

* Display the event log.

* Display the error log.

Examples

To set UNIX environment variables

Using the command line, enter:
set <VAR>

You can set UNIX shell environment variables from within the Softkey
Interface with the set <environment_variable> = <value> command.

To set the PRINTER environment variable to "lp -s":

set PRINTER ="Ip -s"

After you set an environment variable from within the Softkey Interface, you
can verify the value of it by entering !set.

Examples

To display the name of the emulation module

Using the command line, type the name_of_module command.

While operating your emulator, you can verify the name of the emulation
module. This is also the logical name of the emulator in the emulator device
file.

To display the name of your emulation module:

188

Using the Emulator
To display the event log

name_of _module

The name of the emulation module is displayed on the status line.

To display the event log

Choose Display — Event Log.

Position the mouse pointer on the status line, press and hold the
select mouse button, and then choose Display Event Log from the
pop-up menu.

Or, using the command line, enter:

display event_log

The last 100 events that have occurred during the emulation session are
displayed.

The status of the emulator and analyzer are recorded in the event log, as well
as the conditions that cause the status to change (for example, software
breakpoints and trace commands).

To display the error log

Choose Display - Error Log.

Position the mouse pointer on the status line, press and hold the
select mouse button, and then choose Display Error Log from the
pop-up menu.

Or, using the command line, enter:

display error_log

The last 100 error messages that have occurred during the emulation session
are displayed.

189

Using the Emulator
To edit files

To edit files

* Choose File - Edit - File and use the dialog box to specify the file
name.

* To edit a file based on an address in the entry buffer, place an
address reference (either absolute or symbolic) in the entry buffer;
then, choose File - Edit - At () Location.

* To edit a file based on the current program counter, choose
File - Edit - At PC Location.

* To edit a file associated with a symbol when you are displaying
symbols, position the mouse pointer over the symbol, press and hold
the select mouse button, and choose Edit File Defining Symbol
from the pop-up menu.

* To edit a file when displaying memory in mnemonic format, position
the mouse pointer over the line of source where you want to begin
the edit, press and hold the select mouse button, and choose Edit
Source from the pop-up menu.

When editing files at addresses, the interface determines which source file
contains the code generated for the address and opens an edit session on the
file. The interface will issue an error if it cannot find a source file for the
address.

If, upon starting the emulator session, you chose to copy files to a new
directory, the file you try to edit will have write permissions. This same file
will be "read only" if you did not choose to copy files to a new directory upon
starting up the emulator.

The interface will choose the "vi" editor as its default editor, unless you
specify another editor by setting an X resource. Refer to the "Setting X
Resources" chapter for more information about setting this resource.

You must load symbols before most commands will work because symbol
information is needed to be able to locate the files.

190

Using the Emulator
To edit files

Examples To edit a file that defines a symbol:

Hewlatl Fackard Emulatorn!Analyzern: hplsds? (mGES30=)
Filo Display heodily Execution Breskpoints Trece Settings Haljs

e ——————————————
T e
[k Bp S prev et] __reak][s A [Beg a1

[main Aecall

Choosing the Edit File P B T N e e

Defining Symbol menu Frcammrs gk]a A
item brings up a terminal Frocedure o __ Address range _ Segrent _ Offser gy
window with an edit —FHlush OEro - paree] 1ibo ok

. . b i i BELVEC - BEFSS1V ik =55)
session open on the file I_to_str BEFEA - BEEFSF ke 42
where the highlighted o BEGiFY - ke
symbol is defined. B 15 - |Lbo

_ETATTLE Global Symibols Display]
_mariTe]
ki !J!al.ﬂ'.' l...i:lﬂl Sﬁlnh{lla

ok Jaka i Al iy A | e O fee 5 o}
ATERLT 55 5 5]
Zaliné Cut Full Symbeol Mame GHEE
olear_soresn Edin Fib Defieng Syeshol B1CA
olos 4 GEEA &
ik BEEFES - BESIEE prog |3 v
do_sart BESICE - IS prog EEFA

STETES: HEZ—Renmimy s mesiter

191

Using the Emulator
To copy information to a file or printer

To copy information to a file or printer

¢ Choose File - Copy, select the type of information from the cascade
menu, and use the dialog box to select the file or printer.

Or, using the command line, enter:

copy

ASCII characters are copied to the file or printer.
If you copy information to an existing file, it will be appended to the file.
Refer to the following paragraphs for details about the different copy options.

Display ... Copies information currently in the display area. This option
is useful for restricting the number of lines that are copied. Also, this
option is useful for copying the contents of register classes other than
BASIC.

Memory ... Copies the contents of a range of memory. The format is
the same as specified in the last display memory command. For
example, if you copy memory after displaying a range of memory in
mnemonic format, the file would contain the mnemonic memory
information. If there is no previous display memory command, the
format used is a blocked hex byte format beginning at address zero.

Data Values ... Copies the contents of the defined data values last
displayed. An error occurs if you try to copy data values to a file if you
have not yet displayed data values.

Configuration Info ... Copies the contents of the configuration
information last displayed. An error occurs if you try to copy
configuration information to a file if you have not yet displayed any.

Trace ... The most recently captured trace is copied to the file. The
copied trace listing is formatted according to the current display mode.

You can set the display mode with the Settings — Source/Symbols Modes
or Settings — Display Modes pull-down menu items. See the "Changing the
Interface Settings" section.

192

Using the Emulator
To open a terminal emulation window

Registers ... Copies the current values of the BASIC register class to a
file. To copy the contents of the other register classes, first display the
registers in that class, and then use the File - Copy - Display ...
command.

Breakpoints ... Copies the breakpoints list. If no breakpoints are
present in the list, only the enable/disable status is copied.

Status ... Copies the emulator/analyzer status display.

Global Symbols ... Copies the global symbols. If symbols have not
been loaded, this menu item is grayed-out and unresponsive.

Local Symbols () ... Copies the local symbols from the symbol scope
named (by an enclosing symbol) in the entry buffer. If symbols have not
been loaded, this menu item is grayed-out and unresponsive.

Pod Commands ... Copies the last 100 lines from the pod commands
display.

Error Log ... Copies the last 100 lines from the error log display.
Event Log ... Copies the last 100 lines from event log display.

To open a terminal emulation window

Choose File - Term...

This command opens a terminal window into the current working directory
context.

193

Using Simulated I/0

Simulated I/0O is a feature of the emulator/analyzer interface that lets
you use the same keyboard and display that you use with the interface
to provide input to programs and display program output.

To use simulated I/0, your programs must communicate with the
simulated I/O control address and the buffer locations that follow it.
(The Hewlett-Packard AXLS compilers, if your program uses 1/0,
automatically link with environment dependent routines that
communicate with the simulated I/O control address and buffer.)

Also, before simulated I/0 can work, the emulator must be configured
to enable polling of the simulated I/O control address and to define
the control address location.

This section shows you how to:

* Display the simulated I/O screen.
* Use simulated I/O keyboard input.

Refer to the Simulated I/0 User’s Guide for complete details on how
simulated I/O works.

To display the simulated I/O screen

Choose Display — Simulated 10.

Before you can display simulated I/0O, polling for simulated I/O must be
enabled in the emulator configuration.

194

Examples

Using the Emulator
To use simulated 1/0 keyboard input

Simulated I/0 display Status messages disabled
display is open

A message tells you whether the display is open or closed. You can modify
the configuration to enable status messages.

To use simulated I/O keyboard input

To begin using simulated I/O input, choose Settings — Simulated 10
Keyboard.

To end simulated I/O and return to using the interface, use the
suspend softkey.

For Simulated I/O to work, you must configure the emulator to enable polling
of simulated 1/0.

The command line entry area is used for simulated input with the keyboard.
Therefore, if the command line is turned off, choosing this menu item with
turn command line display back on.

If you are planning to use even a modest amount of simulated I/O input
during an emulation session, it might be a good idea to open another
Emulator/Analyzer window to be used exclusively for simulated I/0 input and
output.

195

Using Basis Branch Analysis

Basis branch analysis (BBA) is provided by the HP Branch Validator
product. This product is used to analyze the testing of your programs,
create more complete test suites, and quantify your level of testing.

The HP Branch Validator records branches executed in a program and
generates reports that provide information about program execution
during testing. It uses a special C preprocessor to add statements that
write to a data array when program branches are taken. After running
the program in the emulator (using test input), you can store the BBA
information to a file. Then, you can generate reports based on the
stored information.

This section shows you how to store BBA data to a file. Refer to the
HP Branch Validator (BBA) User’s Guide for complete details on
the BBA product and how it works.

To store BBA data to a file

Choose File - Store - BBA Data and use the selection dialog box to
specify the file name.

The default file name "bbadump.data" can be selected from the dialog box.

196

Using the Emulation Analyzer

197

Using the Emulation Analyzer

This chapter describes tasks you may wish to perform while using the
emulation analyzer. These tasks are grouped into the following
sections:

The basics of starting, stopping, and displaying traces.
Qualifying trigger and store conditions.

Using the sequencer.

Displaying the trace list.

Saving and restoring trace data and specifications.

198

The Basics of Starting, Stopping, and
Displaying Traces

This section describes the basic tasks that relate to starting and
stopping trace measurements.

When you start a trace measurement, the analyzer begins looking at
the data on the emulation processor’s bus and control signals on each
analyzer clock signal. The information seen on a particular clock is
called a state.

When one of these states matches the "trigger state" you specify, the
analyzer stores states in trace memory. When trace memory is filled,
the trace is said to be "complete." The default trigger state
specification is "any state," so when you start a trace measurement
after initializing the analyzer, the analyzer will "trigger" on the first
state it sees and store the following states in trace memory.

Once you start a trace measurement, you can view the progress of the
measurement by displaying the trace status.

In some situations, for example, when the trigger state is never found,
the trace measurement does not complete. In these situations, you
can halt the trace measurement.

Once a trace is displayed, you can use the cursor keys and other keys
to position the trace list on the display. To speed up the display of
traces, you can reduce the depth of the trace list. Also, when entering
trace commands, there is a special command that allows you to recall
and modify the last trace command entered.

This section describes how to:

* Start a trace measurement.

e Display the trace list.

e Display the trace status.

¢ Change the trace depth.

* Modify the last trace command entered.

199

Using the Emulation Analyzer
To start a trace measurement

e Repeat the previous trace command.
e Position the trace display on the screen.

Example

To start a trace measurement

Choose Trace - Everything.
Or, using the command line, enter:

trace

When you use the trace command without any options, the analyzer begins
recording processor bus cycles immediately, and continues until the trace
buffer is filled. In the default trace configuration, the analyzer stores all bus
cycles.

If you are using the emulation-bus analyzer with deep memory, the depth of
the trace list buffer depends on whether or not you installed memory
modules on the analyzer card, and the capacity of the memory modules
installed. Refer to the Hewlett-Packard Emulator-Bus Analyzer (with deep
trace memory) User’s Guide for details. If you are using the 1K analyzer,
the trace list buffer is 512 or 1024 states deep (depending on whether or not
you turn on the state/time count). See "To count states or time" in this
chapter.)

From the demo directory /usr/hp64000/demo/debug_env/hp64798, start the
demo program and trace from the program start:

Startemul

reset

trace

run from transfer_address

200

Using the Emulation Analyzer
To stop a trace measurement

To stop a trace measurement

Choose Trace - Stop.
Or, using the command line, enter:

Stop_trace

You must use this command to stop a trace started with a Trace — Until
Stop command (refer to "To trace activity leading up to a program halt" later
in this chapter). Several other conditions may occur that will make you want
to stop a trace. The analyzer may not record any trace states because your
trigger specification isn’t correct, or because you have a target system
problem. At other times, a valid trace may be capturing data slowly. You can
use the stop_trace command to prevent the analyzer from storing additional
data.

You do not have to stop a trace in order to begin viewing a partial trace
because the interface supports incremental trace uploading. After the trigger
condition occurs, the interface begins uploading and displaying trace states
as they are captured.

To display the trace list

Choose Trace - Display or Display - Trace.
Or, using the command line, enter:

display trace

You can display captured trace data with thedisplay trace command. The
available options to the display trace command are described in the
"Modifying the Trace Display" section later in this chapter.

201

Examples

Using the Emulation Analyzer
To display the trace list

To display the trace:

display trace
race List Of fset=H)
Label: Address Opcode or Status w/ Source Lines time count
Base: umbaol mnemonic w/symbaol relative
update_sy+BBABEE NWOP —mme
+B81 update_sy+HBBEEES CHMP.L 04,02 368 ns
+ddZ update_sy+HEBEGA BLT.B p|update_system+BEAEBEZ 366 n3
+BB3 update_sytHHBAEC NOP 368 nS
gt itopdate_sys.c - line EPRE s b gt ibaguniRibigifginifapudifugudifrbisif g iBaugubifugififigidifigifnd
countert+;
+BA4 update_sg+BABAEZ ADOO. L #1,02 728 nS
+BB5 update_sy+HBEBAE4 NOP 368 ns
+HdE update_sy+HEBEGEE NOF 366 n3
+H87 update_sy+HBEEES CHMP.L 04,0z 368 n3
+8d8 update_syt+W@BEGER BLT.B p|update_system+BEERBEZ 366 n3
+BB3 update_sytHHBAEC NOP 368 nS
pugugattttopdate_sys.c - line Bl Epfgusgunaueanensgnagneynounonannns
countert+;
+818 update_sg+BABAEZ ADOO. L #1,02 728 ns

+d11 update_sy+H@AHEE4 NOF 366 n3

The first column in the trace list contains the line number. The trigger is
always on line 0.

The second column contains the address information associated with the
trace states. Addresses in this column may be locations of instruction
opcodes on fetch cycles, or they may be sources or destinations of operand
cycles.

The third column shows mnemonic information about the emulation bus
cycle.

The next column shows the count information (time is counted by default).
"Relative" indicates that each count is relative to the previous state.

If your analyzer card contains external analysis (for example, HP 64703), the
next column shows the data captured on the external trace signals.

You can use the <NEXT> and <PREV> keys to scroll through the trace list a
page at a time. The <Up arrow> and <Down arrow> keys will scroll through
the trace list a line at a time. You can also display the trace list centered
around a specific line number (for example, display trace 100). Refer to
the "Modifying the Trace Display" section for more information on the trace
list display.

202

Using the Emulation Analyzer
To display the trace status

Note that when a trigger condition is found but not enough states are
captured to fill trace memory, the status line will show the trace is still
running. You can display all but the last captured state in this situation; you
must halt the trace to display the last captured state.

Examples

To display the trace status

Choose Display - Status.
Or, using the command line, enter:

display status

In addition to the analyzer information shown on the status line (Emulation
trace started, Emulation trace complete, etc.), you can display complete
analyzer status with the command below.

To display the trace status:

display status
Harwlati Pactisd P msbionlinadyzen bploda? (a1
Filp [bupiwy bl Eabisbos Grespaids Trae St “ry
Agdmy bovs: s [lpma = Mur i | 3 [o & s [EEETE
2 Fwur Kep = blabe & Loas S fam Sirp Seerer g Var | 3
T #HED || Dian Brc Pror Traze Pl Aguin
—
ik [Bacu
- pre
ar
LTI o R —— e
[
| teiis || anig Beuighiy | [smiify)| eask [ied |[-e10=]
Commard [Buiam | Arcall| Curnur: |3 o ian | F ormand | Conar s ared | Conar s 1

203

Using the Emulation Analyzer
To display the trace status

The first line of the emulation trace status display shows the user trace has
been "completed"; other possibilities are that the trace is still "running" or
that the trace has been "halted".

The second line of the trace status display contains information on the arm
condition. If the analyzer is always armed, the message "Arm ignored" is
displayed. If the analyzer is to be armed by one of the internal signals, either
the message "Arm not received" or "Arm received" is displayed. The display
indicates if the arm condition happened any time since the most recent trace
started, even if it happened after the trace was halted or became complete.
(The "Making Coordinated Measurements" chapter explains arm conditions.)

The "Arm to trigger" line displays the amount of time between the arm
condition and the trigger. The time displayed will be from -0.04
microseconds to 41.943 milliseconds, less than -0.04 microseconds, or greater
than 41.943 milliseconds. If the arm signal is ignored or the trigger is not in
memory, a question mark (?) is displayed.

The "States" line shows the number of states that have been stored (out of
the number that is possible to store) and the line numbers that the stored
states occupy. (The trigger state is always stored on line 0.)

The "Sequence term" line of the trace status display shows the number of the
term the sequencer was in when the trace completed. Because a branch out
of the last sequence term constitutes the trigger, the number displayed is
what would be the next term (2 in the preceding example) even though that
term is not defined. If the trace is halted, the sequence term number just
before the halt is displayed; otherwise, the current sequence term number is
displayed. If the current sequence term is changing too quickly to be read, a
question mark (?) is displayed.

The "Occurrence left" line of the trace status display shows the number of
occurrences remaining before the primary branch can be taken out of the
current sequence term. If the occurrence left is changing too quickly to be
read, a question mark (?) is displayed.

204

Using the Emulation Analyzer
To change the trace depth

To change the trace depth

Choose Trace - Display Options... and in the dialog box, enter the
desired trace unload depth in the field beside Unload Depth. Then
click the OK or Apply pushbutton.

Or, using the command line, enter:
display trace depth <depth>

Using one of the above command forms, you specify the number of states
that will be unloaded for display, copy, or file storage. By reducing the trace
unload depth, you shorten the time it takes for the interface to unload the
trace information. You can increase the trace unload depth to view more
states of the current trace. Regardless of how much or how little unload
depth you specify, the entire trace memory will be filled with captured states
during a trace.

In the emulation-bus analyzer with deep memory, the maximum number of
trace states depends on whether or not you installed memory modules in the
analyzer card, and the capacity of the memory modules. Refer to the
Hewlett-Packard Emulation-Bus Analyzer (with deep trace memory)
User’s Guide for details. In the 1K analyzer, the maximum number of trace
states is 1024 when counting is turned off, and 512 otherwise. In either
analyzer, the minimum trace depth is 9.

Trace data must be unloaded before it can be displayed, copied, or stored in a
file. If you wish to reduce the number of states that are unloaded for display,
you must enter the unload depth specification (in one of the two ways shown
above) before you enter the trace command. The above commands cannot
be used to reduce the number of states displayed in the current trace. You
can enter a new unload depth specification after a trace is complete to
increase the amount of trace memory that is unloaded, if desired.

206

Using the Emulation Analyzer
To modify the last trace command entered

To modify the last trace command entered

Choose Trace - Trace Spec... and use the dialog box to select and
edit a trace command.

Or, using the command line, enter:
trace modify_command

The Trace Specification Selection dialog box lets you recall, edit, and enter
trace commands that have been executed during the emulation session or
trace commands that have been predefined. If you make an error in a trace
command or want to change the measurement slightly, it’s often easier to
recall the previous trace command and edit it than it is to enter a new trace
command.

You can predefine trace specifications and set the maximum number of
entries for the dialog box by setting X resources (see the "Setting X
Resources" chapter).

The trace modify_command command recalls the last trace command.
The advantage of this command over command recall is that you do not have
to move forward and backward over other commands to find the last trace
command; also, the last trace command is always available, no matter how
many commands have since been entered.

206

Using the Emulation Analyzer
To repeat the previous trace command

To repeat the previous trace command

Choose Trace - Again.
To continually repeat the last trace, choose Trace — Repetitively.
Or, using the command line, enter:

trace again

The trace again command is most useful when you want to repeat a
measurement with the same trace specification. It saves you the trouble of
reentering the complete trace command specification.

The "repetitively" choice continually repeats the last trace command.
Successive traces begin as soon as the results from the just-completed trace
are displayed.

Also, this command is useful when you load a trace specification from a file.
(See "To load a trace specification" in this chapter.)

To position the trace display on screen

Use the scroll bar or the <Up arrow>, <Down arrow>, <PREV>,
<NEXT>, <CTRL>f, and <CTRL>g keys.

The trace display command can display more states than can appear on the
screen at one time. However, you can reposition the display on the screen
with the keys described below.

The <Up arrow> and <Down arrow> (or roll up and roll down) keys move the
display up or down on the screen one line at a time.

The <PREV> and <NEXT> (or page up and page down) keys allow you to
move the display up or down a page at a time.

The <CTRL>f and <CTRL>g keys allow you to move the display left or right,
respectively. These keys are used when the width of the address or
mnemonic/absolute columns is increased so that not all the trace display data
can be displayed across the screen.

207

Bb

QqOo

D d (default)
Hh

Qualifying Trigger and Store Conditions

This section describes tasks relating to the qualification of trigger and storage
states.

You can trigger on, or store, specific states or specific values on a set of trace
signals (which are identified by trace labels).

Also, you can prestore states. The prestore qualifier is a second storage
qualifier used for storing states that occur before the normally stored states.
Prestore is useful for capturing entry points to procedures or for identifying
where global variables are accessed from.

This section describes how to:

e Specify a trigger and set the trigger position.

e Use address, data, and status values in trace expressions.
e Enter a range in a trace expression.

e Trigger on a number of occurrences of some state.

¢ Break emulator on execution on the analyzer trigger.

¢ Count states or time.

¢ Define a storage qualifier.

e Define a prestore qualifier.

e Trace activity leading up to a program halt.

Expressions in Trace Commands
When modifying the analysis specification, you can enter expressions which
consist of values, symbols, and operators.

Values Values are numbers in hexadecimal, decimal, octal, or binary.
These number bases are specified by the following characters:

Binary (example: 10010110b).
Octal (example: 3770 or 377q).
Decimal (example: 2048d or 2048).
Hexadecimal (example: 0a7fh).

You must precede any hexadecimal number that begins with an A, B, C, D, E,
or F with a zero.

208

Using the Emulation Analyzer
To position the trace display on screen

Don’t care digits may be included in binary, octal, or hexadecimal numbers
and they are represented by the letters X or x. A zero must precede any
numerical value that begins with an "X".

Symbols A symbol database is built when the absolute file is loaded into
the emulator. Both global and local symbols can be used when entering
expressions. Global symbols are entered as they appear in the global
symbols display. When specifying a local symbol, you must include the
name of the module ("anly.c") as shown below.

anly.c:cmp_function

Operators Analysis specification expressions may contain operators.
All operations are carried out on 32-bit, two’s complement integers.
(Values which are not 32 bits will be sign extended when expression
evaluation occurs.)

The available operators are listed below in the order of evaluation
precedence. Parentheses are also allowed in expressions to change the order
of evaluation.

Unary two’s complement, unary one’s complement. The unary two’s
complement operator is not allowed on constants containing don’t care bits.
Integer multiply, divide, and modulo. These operators are not allowed on
constants containing don’t care bits.

Addition, subtraction. These operators are not allowed on constants
containing don’t care bits.

Bitwise AND.

Bitwise inclusive OR.

Values, symbols, and operators may be used together in analysis specification
expressions. For example, if the local symbol exists, the following is a valid
expression:

module.c:symb+0b67dh&O0fff00h

However, you cannot add two symbols unless one of them is an EQU type
symbol.

209

Using the Emulation Analyzer
To position the trace display on screen

Emulation Analyzer Trace Signals

When you qualify states, you specify values that should be found on the
analyzer trace signals. The signals are described in the table that follows.

Emulation Analyzer Trace Signals

Analyzer Status Signal Signal
Channel # | Bit # Name Description
0-23 AO0-A23 Address lines 0-23
24-31 A24-A31 Address lines 24-31 (68306 only)
32-47 D0-D15 Data lines 0-15
48 0 *BKG 0 = in background monitor
1 = in foreground monitor
49-51 1-3 FCO0-FC2 Function Code lines 0-2
52 4 RAW 0 = write bus cycle

1 = read bus cycle

53 5 TIAC 0 = external processor cycle
1 = internal processor cycle

5% 6 DMA 0 = processor cycle
1 = dma cycle (bus arbitrated)

55 7 *MAP_BYTE 0 = emulation memory access mapped as byte
1 = normal access
(This bit is currently unused)

56-568 8-10 IPLO-IPL2 Interrupt Priority Level lines 0-2 from target
59 11 (Unused)
60 12 *HALT 0 = processor halt
1 = processor not halted
61 13 *BERR 0 = bus error
1 = no bus error
62 14 *DATA_LSB 0 = lower byte of data bus not valid

1 = lower byte of data bus valid

210

Using the Emulation Analyzer
To position the trace display on screen

Emulation Analyzer Trace Signals

Analyzer Status Signal Signal
Channel # | Bit # Name Description
63 15 DATA_MSB 0 = upper byte of data bus not valid
1 = upper byte of data bus valid
State Qualifiers
Whenever a state can be specified in the trace command (trigger state,
storage state, prestore state, etc.), you will see the following softkeys that
allow you to qualify the state:
address The value following this softkey is searched for on the lines that monitor the
emulation processor’s address bus.
data The value following this softkey is searched for on the lines that monitor the
emulation processor’s data bus.
status The value following this softkey is searched for on the lines that monitor

other emulation processor signals.

When a value is specified without one of these softkeys it is assumed to be an
address value.

Predefined Values for Qualifiers When you specify status qualifiers

for analyzer states (by pressing the status softkey), you will be given the
following softkeys which are predefined values for the qualifiers.

211

Using the Emulation Analyzer
To position the trace display on screen

Qualifier Status Values Description

bgd OXXXX XXXX XXXX XXX0y emulator in background

berr 0XX0L XXXX XXXX XXXXY bus cycle bus error

data OXXXX XXXX XXXX XO1xy bus cycle is a data transfer
ded_intl OXXXX XXXO XXXX XXXXY dedicated mode interrupt 1
ded_int6 OXXXX XXOX XXXX XXXXY dedicated mode interrupt 6
ded_int7 OXXXX XOXX XXXX XXXXY dedicated mode interrupt 7
dma OXXXX XXXX XLXX XXXXY bus released to DMA device
ext_cyc OXXXX XXXX XXOX XXXXY external processor cycle

fetch OXx11 XxxX XXX1 Xx10xy

fod OXXXX XXXX XXXX XXX1y emulator in foreground

halt 0XX10 XXXX XXXX XXXXY processor halt

hibyte 010XX XXXX XXXX XXXXY high byte bus transfer

intack OXXXX XXXX XXXX 111xy interrupt acknowledge cycle
int_cyc OXXXX XXXX XXIX XXXXY internal processor cycle

lobyte 00LXX XXXX XXXX XXXXY low byte bus transfer
map_byte OXXXX XXXX OXXX XXXXY emulation memory address is byte wide
map_word OXXXX XXXX IXXX XXXXY emulation memory address is word wide
no_dma OXXXX XXXX XOXX XXXXY bus not released to DMA device
no_intr OXXXX X111 XXXX XXXXY no interrupt

nor_intl OXXXX X110 XXXX XXXXY normal mode interrupt level 1
nor_int2 OXXXX X101 XXXX XXXXY normal mode interrupt level 2
nor_int3 OXxXXX X100 XXXX XXXXY normal mode interrupt level 3
nor_int4 OXXXX X011 XXXX XXXXY normal mode interrupt level 4
nor_int5 OXXXX X010 XXXX XXXXY normal mode interrupt level 5
nor_int6é OXXXX X001 XXXX XXXXY normal mode interrupt level 6
nor_int7 OXxXX X000 XXXX XXXXY normal mode interrupt level 7
prog OXXXX XXXX XXXX X10xy program cycle

read OXXXX XXXX XXXL XXXXY bus cycle is a read

retry OXX00 XXXX XXXX XXXXY

sup OXXXX XXXX XXXX 1XXXY supervisor cycle

supdata OXXXX XXXX XXXX 101Xy supervisor data cycle
supprog OXXXX XXXX XXXX 110xy supervisor program cycle
user OXXXX XXXX XXXX OXXXY user cycle

userdata OXXXX XXXX XXXX 001Xy user data cycle

userprog OXXXX XXXX XXXX 010xy user program cycle

word 0ZLXX XXXX XXXX XXXXY word cycle

write OXXXX XXXX XXXO XXXXY memory write

These predefined values may be used as other values would be used.

For example:

212

Using the Emulation Analyzer
To position the trace display on screen

trace after status write
is the same as:

trace after status OXXXXXXXXXXXOXXXXY

213

Using the Emulation Analyzer
To specify a trigger and set the trigger position

To specify a trigger and set the trigger position

Enter a trigger state specification in the entry buffer; then, choose
Trace - After (), Trace - About (), or Trace - Before ().

When displaying memory in mnemonic format, position the mouse
pointer over the source line where you want to set the trace trigger,
press and hold the select mouse button and choose Trace After,
Trace Before, or Trace About from the pop-up menu.

Or, using the command line, enter:

trace after , trace about ,or trace before

More data of f =«

Address

Label:

ymbol

Opcode or Status w/ Source Lines
mnemonic w

ymbol

time coun
relative

t

181 thru

1682 HHffgEnEgd gttt

Fiffg g nain. e - line

update_system();

Bl Prog|maintddBdEalz ISR up. update_system 728 n3
+@d1 prog|maintd8dE 14 jalaz]%] pgm word rd (ds163} 368 n3
+HBZ prog|maintARBALE 153A pgm word rd (ds163) 368 n3

g imain. e - line 103 HAREEEE g R R R H R A R E e B R e Y
+HE3 prog|main+@8EE18 AOO0. L B, #esmsnmksdn 366 nS
+8i4 sysstack+@E7F 30 jalaz]g] data long wr (dslG3 a1514] n3
+8d5 sysstack+@d7F3Z BFEA data word wr (ds163 368 n3

Bhfaa g dtupdate_sys.c - line 1 thru 47 BEEEREREGHLELEGERE AR HSEY

Hinclude <stdio.h?

wioid

update_system()

Tracing after the trigger state says states that occur after the trigger state
should be saved; in other words, the trigger is positioned at the top of the
trace.

Tracing before the trigger state says states that occur before the trigger state
should be saved; in other words, the trigger is positioned at the bottom of the
trace.

Tracing about the trigger state says states that occur before and after the
trigger state should be saved; in other words, the trigger is positioned at the
center of the trace.

214

Using the Emulation Analyzer
To specify a trigger and set the trigger position

When the analyzer counts time or states, the actual trigger position is within
+/- 1 state of the number specified. When counts are turned OFF, the actual
trigger position is within +/- 3 states of the number specified.

Usually, when you enter a trace about command, the trigger state (line 0) is
labeled "about". However, if there are three or fewer states before the
trigger, the trigger state is labeled "after". Likewise, if there are 3 or fewer
states after the trigger, the trigger state is labeled "before".

The state you define after trace after, trace about, or trace before is the state
that will trigger the analyzer and cause states to be stored.

215

Examples

Using the Emulation Analyzer
To specify a trigger and set the trigger position

Suppose you want to look at the execution of the demo program after the call
of the "update_system()" function (main.c: line 102) occurs. To trigger on
this address, enter:

trace after address main."main.c": line 102
set source on inverse_video on symbols on

display trace

In the preceding trace list, line O (labeled "after") shows the beginning of the
program loop.

216

Using the Emulation Analyzer
To use address, data, and status values in trace expressions

Example

To use address, data, and status values in trace
expressions

Enter the value(s) desired in the entry buffer (such as address
1000h). Then Choose Trace — After(), Trace — Before(), or
Trace - About(), as desired.

Or, using the command line, enter commands as follows:

e To specify an address expression, enter:

<expression> -or- address <expression>

e To specify a data expression, enter:

data <expression>

e To specify a status expression, enter:
status <expression>

Many trace commands require that you enter address, data and status
expressions to specify the bus state. You can combine multiple expressions
on the same command line to build a complete bus state qualifier. You can
also use logical operators to build more complex states. Refer to the
"Emulator/Analyzer Interface Commands" chapter for details.

The default expression type is address, therefore you don’t need to specify
the address keyword when you enter an address expression.

Start a trace and store only writes of 0 hex to the graph address in the demo
program:

trace only graph data 0 status write

217

Using the Emulation Analyzer
To enter a range in a trace expression

To enter a range in a trace expression

Use the command line rules (described below) to create your
expression in the entry buffer. Then Choose Trace — After(),
Trace - Before(), or Trace - About(), as desired.

Or, using the command line, enter commands as follows:

e To specify an address range enter:

address range <expression> thru <expression>

¢ To specify a data range, enter:

data range <expression> thru <expression>

e To specify a status range enter:

status range <expression> thru <expression>

e To take the logical not of a range, use the not keyword before the range
keyword.

Ranges allow you to qualify analyzer actions on a contiguous set of values.
Mostly, you'll use address ranges to trigger or store on access to a data block
such as a lookup table. But, you can also use data ranges to qualify a trigger
or storage on a range of data values.

There is only one range term available in the trace specification. Once it has
been used, it cannot be reused. That is, if you specify a range in a trigger
specification, you can’t duplicate it in the storage specification. (The
Terminal Interface does allow this type of measurement, though there is still
only one range term. Refer to the Hewlett-Packard Emulation-Bus
Analyzer (with deep trace memory) User’s Guide for details.)

Since address is the default range type, you can omit the address keyword.
You can’t omit the data or status keywords if those are the bus parts you
want to qualify.

You can use the logical or operator to combine the range term with several
state qualifiers. See the examples.

218

Examples

Using the Emulation Analyzer
To trigger on a number of occurrences of some state

Store only the accesses to the demo program’s current_humid location:

trace only range current_humid thru +1h
Store only bus cycles where data is in the range 6h..26h or is 29h:

trace only data range 6h thru 26h ordata 29h

Examples

To trigger on a number of occurrences of some state

Use the occurs <#TIMES> after specifying the trigger state.

When specifying a trigger state, you can include an occurrence count. The
occurrence count specifies that the analyzer trigger on the Nth occurrence of
some state.

The default base for an occurrence count is decimal. You may specify
occurrence counts from 1 to 65535.

To trigger on the 20th occurrence of the call of the "update_system()"
function (main.c: line 102):

trace after address main."main.c": line 102
occurs 20

219

Using the Emulation Analyzer
To break emulator execution on the analyzer trigger

Examples

To break emulator execution on the analyzer trigger

Enter a trigger state specification in the entry buffer, then choose
Trace - Until ().

When displaying memory in mnemonic format, position the mouse
pointer over the program line which you wish to trace before, press
and hold the select mouse button and choose Trace Until from the
pop-up menu.

Or, using the command line, use the break_on_trigger option to the trace
command.

The break_on_trigger option to the trace command allows you to cause the
emulator to break when the analyzer finds the trigger state.

Note that the actual break may be several cycles after the analyzer trigger.

To trace before source line 102 and cause the emulator to break into the
monitor when the analyzer triggers:

trace before address main."main.c": line 102
break_on_trigger

To count states or time

Create your first specification form on the command line. That will
enter the proper format in the Trace Specification Selection dialog
box. Obtain that dialog box by choosing Trace - Trace Spec... You
can click on your specification in the dialog box, edit it if desired, and
click OK.

Or, using the command line, enter commands as follows:

¢ To count occurrences of a particular bus state in the trace, enter:

trace counting <bus_state>

220

Using the Emulation Analyzer
To count states or time

<bus_state> represents a combination of address, data and status
expressions that must be matched to satisfy the trigger qualifier.

¢ To count all states in the trace, enter:

trace counting anystate

¢ To count time in the trace, enter:

trace counting time

¢ To disable counting in the trace, enter:
trace counting off

You can use the analyzer’s state/time counter to count time or bus states. If
using the emulation-bus analyzer with deep memory, counting imposes no
restrictions on memory depth. If using the 1K analyzer, use of the counter
restricts the trace memory to a maximum depth of 512 states. If you disable
the counter in the 1K analyzer, using the trace counting off command,
maximum trace depth is 1024 states.

When using the 1K analyzer, the MC6830x emulator defaults to counting off.
To count states or time, you must configure the analyzer clocks correctly.
See "To configure the analyzer clock" in the "Configuring the Emulator"
chapter for more information.

Use the display trace count command to determine how the count is
displayed in the trace list. See “To display count information in the trace” for
more information.

221

Examples

Using the Emulation Analyzer
To define a storage qualifier

To count occurrences of a particular bus state in the trace (this requires the
1K analyzer speed to be set to "Slow" in the configuration):

trace counting state address 10h
Count all states in the trace:

trace counting anystate

Count time in the trace:

trace counting time

Disable counting in the trace:

trace counting off

To define a storage qualifier

Enter the storage qualifier (such as status read) in the entry buffer.
Then choose Trace - Only().
Or, using the command line, enter:

trace only <bus_state>

<bus_state> represents a combination of address, data and status
expressions that must be matched to satisfy the storage qualifier.

Storage qualifiers can help filter unwanted information from program
execution and improve your trace measurement. The analyzer stores only the
information specified in the storage qualifier. Note that if you have a
sequencer or trigger specification, any states given there are shown in the
trace list even if they don’t meet the storage qualifier.

222

Examples

Using the Emulation Analyzer
To define a prestore qualifier

Trace only address 10h:

trace only address 10h
Trace only data value Offh:
trace only data Offh
Trace only write operations

trace only status write

To define a prestore qualifier

Place your prestore qualification into the entry buffer, then choose
Trace - Only() Prestore.
Using the command line, enter commands as follows:

e Specify a prestore qualifier by entering:
trace prestore <bus_state>

<bus_state> represents a combination of address, data and status
expressions that must be matched to satisfy the prestore qualifier.

e Disable prestore qualification by entering:
trace prestore anything

You use the prestore qualifier to save states that are related to other routines
that you're tracing. For example, you might be tracing a subprogram, and
want to see which program called it. You can specify calls be prestored and
that entries to the subprogram be stored. The easiest way to do this is to

223

Examples

Using the Emulation Analyzer
To define a prestore qualifier

prestore program reads that are outside the address range of the subprogram
being called.

You may have several program modules that write to a variable, and
sometime during execution of your program, that variable gets bad data
written to it. Using a prestore measurement, you can find out which module
is writing the bad data. Store-qualify writes to the variable, and uses prestore
to capture the instructions that caused those writes to occur (perhaps by
prestoring program reads).

Specify a prestore qualifier:

trace prestore address not range gen_ascii_data
thru gen_ascii_data end status program and read
only gen_ascii_data

Disable prestore qualification:

trace prestore anything

224

Using the Emulation Analyzer
To trace activity leading up to a program halt

To trace activity leading up to a program halt

Choose Trace - Until Stop.
Or, using the command line, enter:

trace on_halt

The above commands cause the analyzer to continuously fill the trace buffer
until you issue a Trace — Stop or stop_trace command.

Sometimes you may have a program failure that can’t be attributed to a
specific trigger condition. For example, the emulator may access guarded
memory and break to the monitor. You want to trace the events leading up to
the guarded memory access but you don’t know what to specify for a trigger.
Use the above command. The analyzer will capture and record states until
the break occurs. The trace list will display the last processor states leading
up to the break condition.

Note that the trace until stop command may not capture the desired
information when you are using a foreground monitor (unless the code that
causes the break also causes the processor to halt) because the analyzer will
continue to capture foreground monitor states after the break. When using a
foreground monitor, you can use the command line to enter a trace command
that stores only states outside the range of the foreground monitor program
(for example, trace on_halt only not range <mon_start_addr> thru
<mon_end_addr> on_halt).

To capture a continuous stream of program execution
no matter how large your program

The following example can be performed in emulation systems using the
emulation-bus analyzer with deep memory (it cannot be done with the 1K
analyzer). It shows you how to capture all of the execution of your target
program. You may wish to capture target program execution for storage, for
future reference, and/or for comparison with execution after making program
modifications. The execution of a typical target program will require more
memory space than is available in the trace memory of an analyzer. This
example shows you how to capture all of your target program execution
while excluding unwanted execution of the emulation monitor.

225

Using the Emulation Analyzer
To capture a continuous stream of program execution no matter how large your
program

Choose Trace - Display Options ..., and in the dialog box, enter 0
or the total depth of your deep analyzer trace memory in the entry
field beside Unload Depth. Then click OK or Apply. This sets unload
depth to maximum.

For this measurement, the analyzer will drive trigl and the emulator
will receive trigl from the trigger bus inside the card cage. The trigl
signal is used to cause the emulator to break to its monitor program
shortly before the trace memory is filled. This use of trigl is not
supported in workstation interface commands. Therefore, terminal
interface commands (accessible through the pod command feature)
must be used. Enter the following commands:

a. Choose Settings -~ Pod Command Keyboard.

b. Enter tgout trigl -c <states before end of memory>
(trigger output trigl before trace complete).

c. Enter bc -e trigl (break conditions enabled on trigl).

d. Click the suspend softkey.

Note that "tgout trigl -c <states...>" means generate trigl as an output when
the state that is <states...> before the end of the trace memory is captured in
the trace memory; "bc -e trigl" means enable the emulator to break to its
monitor program when it receives trigl.

Select a value for <states before end of memory> that allows enough time
and/or memory space for the emulator to break to its monitor program before
the trace memory is filled. Otherwise, some of your program execution will
not be captured in the trace. Many states may be executed before the
emulation break occurs, depending on the state of the processor when the
trigl signal arrives. Also, if your program executes critical routines in which
interrupts are masked, the occurrence of trigl may be ignored until the
critical routine is completed (when using a foreground monitor).

If you are using a foreground monitor, enter the following additional
pod commands to prevent the trace memory from capturing monitor
execution. The following example commands will obtain this result
in some emulators:

a. Choose Settings - Pod Command Keyboard.
b. Enter trng addr=<address range occupied by your monitor>
(trigger on range address = <address range>)
where <address range> is expressed as <first addr>..<last addr>.
c. Enter tsto Ir (trace store not range).
d. Click the suspend softkey.

226

Using the Emulation Analyzer
To capture a continuous stream of program execution no matter how large your program

Note that "trng addr=<addr>..<addr>" means define an address range for the
analyzer; "tsto Ir" means store all trace activity except activity occurring in
the defined address range.

4 Start the analyzer trace with the Trace - Again command

5 Start your program running using Execution - Run - from(), from
Transfer Address, or from Reset, as appropriate.

The Trace — Again (or trace again) command starts the analyzer trace
with the most recent trace specifications (including the pod_command
specifications you entered). The trace command cannot be used by itself
because it defaults the "bc -e trigl", "trng addr=...", and "tsto 'r"
specifications, returning them to their default values before the trace begins.

You can see the progress of your trace with the command, Display — Status.
A line in the Trace Status listing will show how many states have been
captured.

6 The notation "trigl break" usually followed by "Emulation trace
complete" will appear on the status line. If "trigl break" remains on
the status line without "Emulation trace complete", manually stop the
trace with the command:

Trace - Stop

You must wait for the notation "trigl break" and/or "Emulation trace
complete" to appear on the status line; this ensures the trace memory is filled
during the trace (except for the unfilled space you specified in step 2 above).

Note that when you set a delay specification using tgout -c or tgout -t (trigger
output delay before trace complete/after trigger), the trace will indicate
complete as soon as the analyzer has captured the state specified, even
though the entire trace memory has not been filled.

If the notation "trigl break" remains on the status line without being replaced
by "Emulation trace complete", it indicates the trace memory is not
completely filled, and no more states are being captured.

7 Store the entire trace memory content in a file with a command like:
wait measurement_complete ; copy trace to <directory/filename>

The "wait" command is inserted ahead of the "copy" command to ensure that
the unload of trace data is complete before you try to store it. Without "wait",
you will get an ERROR message warning that the unload is still in process.
The <filename> is an ASCII filename for a binary file that can be viewed using
the load trace command.

8 Start a new trace with the command: trace again

227

10

Using the Emulation Analyzer
To capture a continuous stream of program execution no matter how large your
program

Resume the program run from the point where it was interrupted
when the emulator broke to the monitor with the command run.
Wait until the notation "trigl break" and/or "Emulation trace
complete" appears on the status line. Then store the new trace
memory content in a new file with commands like:

stop_trace
wait measurement_complete ; copy trace to <directory/filename+1>

Note that "filename+1" in the above command suggests use of consecutive
filenames to store your execution files, such as FILENAME1, FILENAMEZ2,
etc.

Repeat steps 8 through 10 above until all program execution has been
captured. Your destination directory will have a set of files that, taken
together, contain all of your program execution. Note that if you did not
prevent capture of foreground monitor cycles in step 3 above, the last few
trace lines in each file may contain monitor cycles.

228

Using the Sequencer

When you use the analyzer’s sequencer, you can specify traces that
trigger on a series, or sequence, of states. You can specify a state
which, when found, causes the analyzer to restart the search for the
sequence of states. Also, the analyzer’s sequencer allows you to trace
"windows" of code execution.

This section describes how to:

* Trigger after a sequence of states.

e Specify a global restart state.

e Trace "windows" of program execution.

e Specify both sequencing and windowing.

The sequencing and windowing capabilities from within the Softkey
Interface are not as powerful or flexible as they are from within the
Terminal Interface. For example, in the Terminal Interface, you can
specify different restart states for each sequence term and you can set
up a windowing trace specification where the trigger does not have to
be in the window. If you do not find the sequencing flexibility you
need from within Softkey Interface, refer to the 6830x
Installation/Service/Terminal Interface User’s Guide.

229

Using the Emulation Analyzer
To trigger after a sequence of states

To trigger after a sequence of states

Create your first specification form on the command line. That will
enter the proper format in the Trace Specification Selection dialog
box. Obtain the dialog box by choosing Trace — Trace Spec... You
can click on your specification in the dialog box, edit it if desired, and
click OK.

Or, using the command line, enter:

trace find_sequence <bus_state> occurs <#times>
then <bus_state> occurs <#times> trigger
<bus_state>

<bus_state> represents a combination of address, data and status
expressions that must be matched to satisfy the trigger or sequence qualifier.
<#times> is the number of times that bus state must occur to satisfy the
qualifier.

The analyzer’s sequencer has several levels (also called sequence terms).
Each state in the series of states to be found before triggering, as well as the
trigger state, is associated with a sequence term.

When triggering using the sequencer, the analyzer searches for the state
associated with the first sequence term. When that state is captured, the
analyzer starts searching for the state associated with the second term, and
so on. The last sequence term used is associated with the trigger state.
When the trigger state is captured the analyzer is triggered. Up to seven
sequence terms and an optional occurrence count for each term are available.

230

Examples

Using the Emulation Analyzer
To trigger after a sequence of states

In the demo program, suppose you wish to trigger on the following sequence
of events: the "save_points" function, the "interrupt_sim" function, and finally
the "do_sort" function. Also, suppose you wish to store only opcode fetches of
the assembly language LINK A6,#0 instruction (data values that equal
4E56H) to show function entry addresses.

To set up the sequencing trace specification, enter the following trace

command.

trace find_sequence save_points then
interrupt_sim trigger about do_sort only data
4e56h

set source off

Label: Address Opcode or Status time count

Base: umbaol mnemonic w/symbaol relative

-B12 upda.set_outputs 4ES6 pgm word rd (dslB6} 5.22 m3
-811 updat.write_hdwr 4ESE pam word rd (dslB6) 27,6 mS
sq adv upda.save_points 4ESE pgm word rd (ds1G6) G.84 mS
sq adv ma.interrupt_sim 4ESE pgm word rd (ds163} 4.86 mS
-Bd8 pr.proc_specific 4ESE pgm word rd (ds163} 7.06 mS
-B87 up.update_system LINK AG, fhkon 3.27 mS
-BAE upda.get_targets LINK AG, ik on 16,6 uS
-BES .read_conditions LINK AE, fh#sxx 2. B4 m5S
-HE4 upda. set_outputs LINK AE, f#xx 5.22 m3
-BE3 updat.write_hdwr LINK AE, f#xx 27.6 m3
-BdZ upda.save_points LINK AG, fh o 6.84 mS
-BE 1 ma.interrupt_sim LINK AE, f# 4 4.86 mS
pro|main.do_sort LINK AE, 4 3.25 mS
+B81 profmain.stropyd LINK AE, ff#xnx 5.65 m3
+88Z2 pro|main.strcpud LINK AE, fhax 243. us
+8d3 pro|main.strcpyd LINK AG, fh#wx 243, u3

Notice the states that contain "sq adv" in the first column (you may have to
press <PREV> in order to see the states captured prior to the trigger).

These are the states associated with (or captured for) each sequence term.
Just as the trigger state is always stored in trace memory, the states captured
in the sequence are always stored if the trace buffer is deep enough.

231

Using the Emulation Analyzer
To specify a global restart state

Examples

To specify a global restart state

Create your first specification form on the command line. That will
enter the proper format in the Trace Specification Selection dialog
box. Obtain the dialog box by choosing Trace — Trace Spec... You
can click on your specification in the dialog box, edit it if desired, and
click OK.

Or, using the command line, enter:

trace find_sequence <bus_state> occurs <#times>
then <bus_state> occurs <#times> restart
<bus_state> trigger <bus_state>

<bus_state> represents a combination of address, data and status
expressions that must be matched to satisfy the trigger or sequence qualifier.
<#times> is the number of times the selected bus state must occur to satisfy
the qualifier.

The restart qualifier allows you to restart the trace sequence whenever a
certain instruction or data access occurs. For example, you might have a
complicated trace sequence that searches for an intermittent failure
condition. You could set the restart term to restart the sequence whenever a
bus cycle occurred that ensures that the code segment would perform
correctly. Thus, the trace will be satisfied only when that restart term never
occurs and the code segment fails.

In the demo program, suppose you wish to trigger on the following sequence
of events: the "save_points" function, the "interrupt_sim" function, and the
"do_sort" function. However, you only want to trigger when the
"interrupt_sim" calls the "do_sort" function. In other words, if the
"proc_specific" function is entered before the "do_sort" function is entered,
you know "interrupt_sim" did not call "do_sort" this time, and the analyzer
should start searching again from the beginning.

Again, suppose you wish to store only opcode fetches of the assembly
language LINK A6,#0 instruction (data values that equal 4E56H).

To set up this sequencing trace specification, enter the following trace
command.

232

Using the Emulation Analyzer
To specify a global restart state

trace find_sequence save_points then
interrupt_sim restart proc_specific trigger about
do_sort onlydata 4e56h

set source off

More data off en
Label: Address Opcode or Status time count
Base: umba] mnemanic wisymbol relative
-Bd7 up.update_system LINK AG, B 3.27 mS
-Bd6 upda.get_targets LINK AG, Bk 16.6 S
-HAS .read_conditions LIMK AE, f**xx 2.84 mS
-EE4 upda.set_outputs LINK AE, f#*xx 5.22 m5
-BA3 updat.write_hdwr LIMNK AE, f#*kk 27.6 m3
sq adv upda.save_points LINK AG, Bk G.84 mS
sq adv ma.interrupt_sim LINK AE, f#*xx 4,88 m5
prof(main.do_sort LINK AG, fxrx SE4. u3
+dd1 pro|main.strcpyd LIMK AG, f# s 5.65 m3
+B@2 prao|main.strcpy8 LINK AG, B 249. us
+B@3 pro|main.strepuS LINK AE, f*wwx 243. us
+dd4 pra|main.strepyS LINK AG, H*xwx 249. u3
+B@S prao|main.strcpyS LINK AG, f sk 249. us
+BA6 prao|main.strcpyS LINK AG, Bk 243. u3
+8@7 pro|main.strcpgS LINK AE, fxwwx 249, us
+dd3 pro|main.strcpyS LINK AG, B 249. u3

Notice in the preceding trace (you may have to press <PREV> in order to see
the states captured prior to the trigger) that, in addition to states captured in
the sequence, "sq adv" is also shown next to states which cause a sequencer
restart.

233

Using the Emulation Analyzer
To trace "windows" of program execution

To trace "windows" of program execution

Create your first specification form on the command line. That will
enter the proper format in the Trace Specification Selection dialog
box. Obtain the dialog box by choosing Trace — Trace Spec... You
can click on your specification in the dialog box, edit it if desired, and
click OK.

Or, using the command line, enter commands as follows:

e To trace only the states occurring after a particular bus cycle, enter:
trace enable <bus_state>

e To trace only the states occurring between two particular bus cycles, enter:
trace enable <bus_state> disable <bus_state>

<bus_state> represents a combination of address, data and status
expressions that must be matched to satisfy the windowing qualifier.

Windowing refers to the analyzer feature that allows you to turn on, or
enable, the capturing of states after some state occurs then to turn off, or
disable, the capturing of states when another state occurs. In effect,
windowing allows you capture "windows" of code execution.

Windowing is different than storing states in a range (the only range option in
the trace command syntax) because it allows you to capture execution of all
states in a window of code whereas storing states in a range won't capture
the execution of subroutines that are called in that range or reads and writes
to locations outside that range.

When you use the windowing feature of the analyzer, the trigger state must
be in the window or else the trigger will never be found.

If you wish to combine the windowing and sequencing functions of the
analyzer, note the following restrictions:

e Up to four sequence terms are available when windowing is in effect.
¢ (Global restart is not available when windowing is in effect.

e Qccurrence counts are not available.

234

Examples

In the demo program, suppose you are only interested in the execution that
occurs within the switch statement of the "combsort" function. You could
specify source line number 229 as the window enable state and the source
line number of the next statement (line number 241) as the window disable
state. Set up the windowing trace specification with the following command.

trace enable main."main.c": line 229 disable
main."main.c": line 241

set source on

Hgdggdtdmain.c - line 233 thro 241 HUHHUHHUHHHUHAEHEUHEUHERHEREREY

mb gap */

—gap, i=H; t
sq adv |combsort+BBBHEA MOVEAR.L D3,A@ 728
229 HHELHBEHUHUHRERELEREREGHR RS

naaananttinain.c - line 227 thru

. (A3),08 5.67
+A13 combsort+BABEIA CMPI.L #BEABEBEAR, DB 364
+B14 da|main, switches ARBA data long wr (dslB6) 364
+B815 . switches+BABARZ ABAR data word wr (dslB6) 364
+B16 data|main. gap ARBA data long rd (dslB) 364
+B17 main. gap+ABBABZ ARLE data word rd (ds1B} 364
+B18 combsort+BEABIC ARBA pgm word rd (ds1B} 364

race List Of fset=H More data off screen
Label: Address Opcode or Status w/ Source Lines time count
Base: ymbol mnemonic w/symbol relative

i3

n3
jigi]

[aks]
[aks]
[aks]
[aks]
[aks]
[aks]

Notice in the resulting trace (you have to press the <NEXT> key) that the
enable and disable states have the "sq adv" string in the line number column.
This is because the windowing feature uses the analyzer’s sequencer.

235

Using the Emulation Analyzer
To specify both sequencing and windowing

Example

To specify both sequencing and windowing

Create your first specification form on the command line. That will
enter the proper format in the Trace Specification Selection dialog
box. Obtain that dialog box by choosing Trace - Trace Spec... You
can click on your specification in the dialog box, edit it if desired, and
click OK.

Or, using the command line, enter:

trace enable <bus_state> disable <bus_state>
find_sequence <bus_state> then <bus_state>
trigger <bus_state>

<bus_state> represents a combination of address, data and status
expressions that must be matched to satisfy the trigger or sequence qualifier.
<#times> is the number of times that bus state must occur to satisfy the
qualifier.

You can use the sequencing and windowing specifications together to make
specification of complex qualifiers easier. If you use the windowing
specification, the sequence specification is limited to four sequence terms.
Also, note that when you use a windowing specification, you cannot use a
restart term with your sequence specification.

Use the analyzer sequencer to trace states occurring between the start of the
example program and the call to the message interpreter, then trigger after
access to the variable that stores the value of current humidity, but only if it
is accessed after a specific series of events:

trace enable main disable proc_spec find_sequence
update_sys.get_targets then update_sys.write_hdwr
trigger after current_humid

236

Displaying the Trace List

The trace list is your view of the analyzer’s record of processor bus
activity. You can specify what is shown in the trace list to make it
easier to find the information of interest. For example, you can display
symbol information where available, or source lines from the
high-level languages used to write the target system program. You can
also change column widths and set options for trace list disassembly.

Display control is available through the Trace — Display Options...
dialog box, the trace list pop-up menu, and the command line. You
can combine most options within a single command line command to
obtain a desired trace display. See the display trace and set command
descriptions in the "Emulator/Analyzer Interface Commands" chapter
for more information. This section describes how to:

* Use the Trace Options dialog box.

e Use the trace list pop-up menu.

* Display the trace about a line number.

* Move through the trace list.

* Disassemble the trace list.

e Specify trace disassembly options.

e Specify trace dequeueing options.

e Display the trace without disassembly.

* Display symbols in the trace list.

* Display source lines in the trace list.

e Change the column width.

e Select the type of count information in the trace list.

* Offset addresses in the trace list.

* Reset the trace display defaults.

* Change the number of states available for display.

¢ Display program memory associated with a trace list line.

237

Using the Emulation Analyzer
To specify both sequencing and windowing

¢ Open an edit window into the source file associated with a trace list

line.

Examples To use the Trace Options dialog box:

Click to select the desired format of trace

= Emulator/Analyzer: Trace Options

disassembly.

Click to select the way that absolute
status information is shown in the trace
list.

Click to select count reference: Relative
(to preceding state), or Absolute (to

trigger).
Click to select trace list dequeuing, if
available for your emulator.
I

Enter the desired depth of the trace
memory to be unloaded for display or
storage in a file.

Enter a value to be subtracted from
addresses and symbol/source-line
references shown in the trace list

~Trace Display QOptions

Lratus Format Haw =

Count Format @ Relative <> Absolute

- [Dequeue Enable

}Unload Depth : 3132 Recall
Address Offset : Bh Recall
Move to Line Recall

I N e A e

|4 £

Enter the desired trace list line number to
be placed on screen.

f

Click OK to Click Apply to Click these Click this
specify the trace specify the trace pushbuttons to pushbutton to

options and close options and leave select predefined cancel the entries
the dialog box. the dialog box or previously and close the
open. specified entries. dialog box.

238

Using the Emulation Analyzer
To specify both sequencing and windowing

To use the trace list pop-up menu:

Click to begin trace; disasse_mbly —'E Hewlett Packard Emulator/Analyzer: hplsds2 (mB6833x) E a E_]

from the selected line, moving

that line to the top of File Display Modify Execution Breakpoints Trace Settings Help

the display. Action keys: | Disp Src () | Trace () | Run | Step Source | < Your Key = |
Make | Disp Sre Prev| Run Xfer to)| Break | Step Asm | Reg 33x() |

Click to open an edit window into
the source ()| madn Recall
file that contains the address of
the selected line.

Opcode or Status w/ Source Lines
mnemonic w/symbaol relative Y

te in~_LIMK.l{ ARG, 38686
Click to opena d|5p|ay window preglmai ntBEBEAZ a8a prgm word rd (dslB}
into memory Containing the +H82 HH/F 34 pal0] data word wr (ds1B)

. +B83 sysstack+BE7FIE LZFFA {ds16)
address of the selected line. g Proo o anr B A e
Note that the format of the +B85 prog|mail Choose Action for Highlighted Line
f : +@HE sysstaciy: r (ds1B6)
memory ghsplay will be] +BA7 sysstac Disassemble From br (ds 163
mnemonic for addresses in the +B88 prog|mail Edit Source P
code segment and absolute +B83 | sysstas — r (dslB)
otherwise +d18 sysstac Display Memory At r (dslB)
! +B11 prog|main+tBEABEAEA $HABA prgm word rd (dslB}
+B12 prog|main+tBABABC $7156 prgm word rd (dslB}
+0813 prog|maintBBBEEE MOVER.L #$OBEE717E, A3
+814 prog|maintBEEE1A $HBEA prgm word rd (ds16}
+815 prog|main+BABE1Z2 $717E prgm word rd (ds16)
| sTATUS: MG68332-=Running user program Emulation trace complete

239

Using the Emulation Analyzer
To display the trace about a line number

To display the trace about a line number

* Choose Trace - Display Options... and in the dialog box, enter the
desired trace list line number in the field beside Move to Line. Then
click the OK or Apply pushbutton.

Or, using the command line, enter:
display trace <LINE #>

If you need to move to a particular state quickly, you can use this command.
The command places the specified state in the center of the current trace
display.

Examples Display the trace about line number 20:

Choose Trace - Display Options... and in the dialog box, enter 20 in the
field beside Move to Line. Then click the OK or Apply pushbutton.

Enter the following command on the command line to display the trace about
line number 256:

display trace 256

240

Using the Emulation Analyzer
To move through the trace list

To move through the trace list

Use the scroll bar at the right of the display to scroll up and down.
Use the arrows at the bottom of the display (if any) to scroll left and
right.

Using the command line, enter commands as follows:

e Toroll the trace display to the left, press <Ctrl>f simultaneously.

e Toroll the trace display to the right, press <Ctrl>g simultaneously.

e Toroll the display down one line, press the down arrow key.

e Toroll the display up one line, press the up arrow key.

e To move to the previous page in the trace list, press the Pg Up or Prev key.

e To move to the next page in the trace list, press the Pg Dn or Next key.

Though the trace display is set to 256 or more states, only 15 lines may be
displayed in the interface window, depending on your terminal type. You can
move through the trace list display using various key combinations.

You can roll the display left and right only if the trace list is wider than 80
columns. This may occur if you increased the width of the columns.

To disassemble the trace list

Choose Trace - Display Options... and in the dialog box, select
Data Format Mnemonic. Then click the OK or Apply pushbutton.

Use the mouse to place the cursor on a line in the trace list where
you want disassembly to begin. Then press the select mouse button,
and click on Disassemble From in the trace list pop-up menu.

Or, using the command line, enter commands as follows:

¢ To disassemble instruction data in the trace list, enter:

display trace mnemonic

241

Examples

Using the Emulation Analyzer
To disassemble the trace list

¢ To control where trace list disassembly starts, enter:

display trace disassemble_from_line_number
<LINE #>

<LINE #> is a line number corresponding to a state in the trace list.
Disassembly of instruction data means that you will see instructions as they
would appear in an assembly language program listing. That is, instruction
mnemonics and operands are shown instead of hexadecimal instruction data.
The analyzer interface normally disassembles instruction data in the trace
list. However, if you specify absolute data display, that mode remains in
effect until you select the mnemonic option.

When you identify a particular trace list line where disassembly is to begin,
be sure to specify a line number that corresponds to an analyzer state with an
opcode fetch. The analyzer interface disassembles and displays the trace
starting with the state you specify.

To disassemble instruction data in the trace list starting at line 40:
Place the cursor on line 40, press the select mouse button, and click on

Disassemble From in the pop-up menu.

Or, using the command line, enter:

display trace disassemble_from_line_number 40

242

Using the Emulation Analyzer
To specify trace disassembly options

To specify trace disassembly options

Selection of disassembly options is not supported in pull-downs of
the Graphical User Interface. By default, the Graphical User
Interface selects high_word and all_cycles. Use the command line
if you need to specify trace disassembly using other options.

Or, using the command line, enter commands as follows:

e To show only instruction cycles in the trace list, enter:

display trace disassemble_from_line_number
<LINE#> instructions_only

¢ To show all bus cycles in the trace list, enter:

display trace disassemble_from_line_number
<LINE#> all_cycles

Normally, the MC6830x presents the trace list data as it was stored by the
analyzer. That is, all bus cycles are shown, and disassembly starts with the
most significant word of the data.

If you don’t want to see operand cycles in the trace list, specify the
instructions_only option.

The disassembly options remain in effect until you specify a new disassembly
option.

Note that although the "high_word," "low_word" and "align" options are
displayed, these are for 32-bit processors only, and will not perform any
action.

243

Using the Emulation Analyzer
To specify trace dequeueing options

Examples Show only instruction cycles in the trace list starting at line 40:

display trace disassemble_from_line_number 40
instructions_only

Show all bus cycles in the trace list:

display trace disassemble_from_line_number 40
all_cycles

To specify trace dequeueing options

* Choose Trace - Display Options... and in the dialog box, select
Dequeue Enable. Then click the OK or Apply pushbutton.

Or, using the command line, enter commands as follows:

e To dequeue the trace list, enter:

display trace dequeue on

e To display the trace list without dequeueing, enter:
display trace dequeue off

<LINE #> is a line number corresponding to a state in the trace list.
<STATE#> is the line number of the data operand that is associated with the
instruction at <LINE#>.

A dequeued trace list is available through the disassembly options. In a
dequeued trace list, unused instruction prefetch cycles are discarded, and
operand cycles are placed immediately following the corresponding
instruction fetch. If you choose a non-dequeued trace list, instruction and
operand fetches are shown exactly as captured by the analyzer.

244

Examples

Using the Emulation Analyzer
To specify trace dequeueing options

Once the dequeuer has been started on the correct opcode, it will continue to
disassemble correctly unless an unusual condition causes it to misinterpret
the data. By specifying the first instruction state for disassembly and the
number of the first operand cycle for that instruction, you can resynchronize
the disassembly.

You may see TAKEN, NOT TAKEN, or ?TAKEN? beside a branch in your
dequeued trace list. TAKEN is shown beside a branch if the dequeuer
determines that the branch was taken. NOT TAKEN is shown if the
dequeuer determines that the branch was definitely not taken. ?TAKEN?
means the dequeuer was not able to determine whether or not the branch
was taken. If youread down the trace list and see that the branch was taken,
use the disassemble_from_line_number command to restart disassembly
at the trace list line number of the branch destination.

Dequeue the trace list:

Choose Trace - Display Options... and in the dialog box, select Dequeue
Enable. Then click the OK or Apply pushbutton.

Or, using the command line, enter:
display trace dequeue on
Display the trace list without dequeueing;:

display trace dequeue off

245

Using the Emulation Analyzer
To display the trace without disassembly

To display the trace without disassembly

Choose Trace - Display Options... and in the dialog box, select
Data Format Absolute. You can select Hex, Binary, or Mnemonic
format for display of status information. Then click the OK or Apply
pushbutton.

Or, using the command line, enter commands as follows:

e To display the trace list without instruction disassembly and with status
information in binary format, enter:

display trace absolute status binary

e To display the trace list without instruction disassembly and with status
information in hexadecimal format, enter:

display trace absolute status hex

e To display the trace list without instruction disassembly and with status
information in mnemonic format, enter:

display trace absolute status mnemonic

For some measurements, it may be more convenient for you to view the trace
data without instruction disassembly. The Data Format Absolute selection
in the Trace - Display Options... dialog box, or the display trace
absolute command allows you to do this. Notice that once you enter this
format selection, subsequent trace lists will displayed in this format until you
select the mnemonic format with the dialog box or display trace mnemonic
command again.

You can select the display format for the status information when you choose
Data Format Absolute in the dialog box, or when you use the display
trace absolute command. The status information can be displayed in
binary, hex, or as mnemonics that indicate the nature of the current bus
cycle (such as a read or write).

246

Examples

Using the Emulation Analyzer
To display the trace without disassembly

Display the trace list without instruction disassembly and with status
information in binary format:

Choose Trace - Display Options... and in the dialog box, select Data
Format Absolute. Select Status Format Binary. Then click the OK or
Apply pushbutton.

Or, using the command line, enter:
display trace absolute status binary

Display the trace list without instruction disassembly and with status
information in hexadecimal format, make appropriate entries in the
Trace - Display Options... dialog box, or enter the following command:

display trace absolute status hex

Display the trace list without instruction disassembly and with status
information in mnemonic format, make appropriate entries in the
Trace - Display Options... dialog box, or enter the following command:

display trace absolute status mnemonic

247

Using the Emulation Analyzer
To display symbols in the trace list

To display symbols in the trace list

Choose Settings - Source/Symbol Modes — Symbols, or choose
Settings - Display Modes ..., and in the dialog box, click on
Symbolic Addresses. In the Field Widths area of the dialog box,
you can select the widths of the Label Field and Symbols in
Mnemonic Field to control the display space allocated to the
symbols. To select symbol types, use the command line, described
below.

Or, using the command line, enter commands as follows:

e To display symbols in the trace list, enter:
set symbols on

e To display only high level symbols, enter:
set symbols high

e To display only low level symbols, enter:

set symbols low

¢ To display all symbols (both high and low level), enter:
set symbols all

When you enable symbol display, addresses and operands are replaced by the
symbols that correspond to those values. The symbol information is derived
from the SRU symbol database for that command file. See Chapter 6, "Using
the Emulator" for more information on SRU and symbol handling.

High-level symbols are those that are available only from high-level languages
such as a compiler. Low-level symbols are those that are available from
assembly language modules (which may include symbols generated internally
by a compiler).

248

Using the Emulation Analyzer
To display source lines in the trace list

The Settings — Source/Symbol Modes..., Settings - Display Modes..., or
set symbols command remains in effect until you enter a new

Settings - Source/Symbol Modes..., Settings — Display Modes..., or

set symbols command with different options.

Refer to Chapter 6, "Using the Emulator", for details of how to set up and use
the Display Modes dialog box.

To display source lines in the trace list

Choose Settings - Source/Symbol Modes — Source Mixed or
Settings - Source/Symbol Modes - Source Only.

Choose Settings - Display Modes..., and in the dialog box, click on
Source in Trace and select either Source Mixed or Source Only
from the submenu.

Or, using the command line, enter commands as follows:

e To display mixed source and assembly language in the trace list, enter:

set source on

e To display only source language statements in the trace list, enter:
set source only

e To display only assembly language in the trace list, enter:
set source off

If you developed your target programs in a high-level language such as “C,”
you can display the source code in the trace list with the corresponding
assembly language statements. Or, you can choose to display only the source
listing without the assembly language information.

The analyzer uses the line-number information in the SRU symbol database
for the absolute file to reference between source lines and assembly language
information. Refer to Chapter 6, "Using the Emulator" for more information
on SRU and symbol handling.

249

Using the Emulation Analyzer
To change the column width

To change the column width

Choose Settings - Display Modes..., and select desired widths for
information in the trace list by using the dialog box. Refer to the
"Examples" page under "To display symbols in the trace list", earlier
in this chapter for details of how to use the dialog box.

Or, using the command line, enter commands as follows:

e To set the column width for the address column in the trace list, enter:

set width label <WIDTH>

¢ To set the column width for the mnemonic column in the trace list, enter:

set width mnemonic <WIDTH>

¢ To set the column width for source lines in the trace list, enter:
set width source <WIDTH>

<WIDTH> is an integer between 1 and 80, specifying the width of the column
in characters. (<WIDTH> is restricted to certain values which are shown if
you press the <WIDTH> softkey.)

You can display more information by widening a column or ignore the
information by narrowing the column. For example, you might want to widen
the label column so that you can see the complete names of the symbols in
that column.

You can combine multiple options on the command line to set the width for
several columns at once.

250

Example

Using the Emulation Analyzer
To select the type of count information in the trace list

Set the width of the address label column to 30 characters and the width of
the mnemonic column to 50 characters:

set width label 30 mnemonic 50

To select the type of count information in the trace list

Choose Trace - Display Options... and in the dialog box, select
Count Format Relative or Absolute, as desired. Then click the OK or
Apply pushbutton.

Or, using the command line, enter commands as follows:

e To display count information in the trace list relative to the trigger state,
enter:

display trace count absolute

e To display count information in the trace list relative to the previous trace
list state, enter:

display trace count relative

Count information may be displayed two ways: relative (which is the default),
or absolute. When relative is selected, count information is displayed relative
to the previous state. When absolute is selected, count information is
displayed relative to the trigger condition.

The count information in the trace list is always displayed if count display is
turned on. To turn on the trace counting function, enter a command
beginning with trace counting on the command line. Refer to "T'o count
states or time" later in this manual for details.

When using the 1K analyzer, the trace memory is 512 states deep if counting
states or time is turned on and 1024 states deep if counting is turned off. To
disable counting in the 1K analyzer, use the command trace counting off.
When using the emulation-bus analyzer with deep memory, full memory

251

Using the Emulation Analyzer
To select the type of count information in the trace list

depth is always available; the depth of the deep analyzer is not affected by
the counting selected. See “To count states or time.”

Examples Count time and store only each iteration of the update_sys symbol in the
demo program (if using the 1K analyzer, make sure the clock speed is set to
"Slow" in the configuration):

Specify the trace for the emulator:

trace only update_sys counting time

Now, start the program run; then display the trace:

run from transfer_address

display trace count relative

Count absolute entries into the get_targets routine of the demo program:

trace only address range update_sys thru
update_sys end counting state get_targets

run from transfer_address

display trace count absolute

252

Using the Emulation Analyzer
To offset addresses in the trace list

Example

To offset addresses in the trace list

Choose Trace - Display Options... and in the dialog box, enter the
desired offset value in the field beside Address Offset. Then click the
OK or Apply pushbutton.

Or, using the command line, use the offset_by command line option to the
display trace command.

The Address Offset or offset_by trace display options allow you to cause the
address information in the trace display to be offset by the amount specified.
The offset value is subtracted from the instruction’s physical address to yield
the address that is displayed.

If code gets relocated and therefore makes symbolic information invalid, you
can use the Address Offset or offset_by option to change the address
information so that it again agrees with the symbolic information.

You can also specify an offset to cause the listed addresses to match the
addresses in compiler or assembler listings.

Trace execution from entry of the demo program (the main label) then offset
by the value of main so that the addresses appear the same as the location
counter in the assembler listing:

reset

trace

run from transfer_address

display trace offset_by main

253

Using the Emulation Analyzer
To reset the trace display defaults

To reset the trace display defaults

Choose Settings - Display Modes... Then in the dialog box, click
on Default All Settings, and click the OK pushbutton. This leaves the
trace display in the "source intermixed and symbols on" mode.

Or, using the command line, enter:
set default

This turns off all symbolics and source references in the interface.

To change the number of states available for display

Choose Trace - Display Options... and in the dialog box, enter the
desired number of states to be made available for display in the field
beside Unload Depth. Then click the OK or Apply pushbutton.

Or, using the command line, enter:
display trace depth <DEPTH#>

<DEPTH#> is the number of states to be available in the trace list for
displaying, copying, or storing to a file. If you are using the emulation-bus
analyzer with deep memory, the depth of the trace list buffer depends on
whether or not you installed memory modules on the analyzer card, and the
capacity of the memory modules installed. Refer to the Hewlett-Packard
Emulator-Bus Analyzer (with deep memory) User’s Guide for details. If
you are using the 1K analyzer, the trace list buffer is 512 or 1024 states deep
(depending on whether or not you turn on the state/time count). See "To
count states or time" in this chapter.)

When you display the trace list, the interface requests the number of states
specified by the trace depth from the emulator. If you want faster trace
display, you can decrease the trace depth. To display more states, you can
increase the trace depth. Notice that the trace depth setting only regulates
the number of states sent from the emulation-bus analyzer to the interface.
You still need to use the Pg Up and Pg Dn keys to page through the trace list.

264

Examples

Using the Emulation Analyzer
To display program memory associated with a trace list line

Set the depth of the trace memory to 256 states:
Choose Trace - Display Options... and in the dialog box, enter 256 in the

field beside Unload Depth. Then click the OK or Apply pushbutton.
Set the depth of the trace to 1024 states:

display trace depth 1024

To display program memory associated with a trace
list line

Using the mouse, place the cursor on the line in the trace list where
you want to see the associated content of program memory. Then
press the select mouse button, and click on Display Memory At in
the trace list pop-up menu.

You will see a display of memory at the location of the program that emitted
the selected trace list line. This is the same as placing the program address
of the selected trace list line in the entry buffer and choosing

Display - Memory - At() in the pull-down menus.

To open an edit window into the source file associated
with a trace list line

Using the mouse, place the cursor on the line in the trace list whose
source file you wish to edit. Then press the select mouse button, and
click on Edit Source in the trace list pop-up menu.

A new window will open. It will show the source file that emitted the line you
selected in the trace list. An edit session will be in progress on the source file
in the new window. When you complete the desired edit, save the file and
close the window.

265

Saving and Restoring Trace Data and
Specifications

The emulator/analyzer can save trace data and trace specifications in
a file for later use. This can help you record measurement results to
use for comparison with other tests, and to automate measurements.

Suppose you're using the emulator in a manufacturing test
application. The target system is your product board. You might build
a command file that recalls a trace specification, makes the trace on
the target board, and then recalls a previous measurement result
(from a working product) and compares it to the new measurement
(using the UNIX diff command).

This section describes how to:

e Store a trace specification.
* Store trace data.
¢ Load a trace specification.
* Load trace data.

To store a trace specification

Choose File - Store - Trace Spec... In the dialog box, select an
existing filename or specify a new filename to contain the present
trace specification. Then click OK.

Using the command line, store the current trace specification by
entering:

store trace_spec <filename>

<filename> is any UNIX file name including paths. The extension .TS is
automatically added to the file name. The trace specification file is a binary
file.

256

Using the Emulation Analyzer
To store trace data

The store trace_spec command allows you to save a trace specification
(effectively the current trace command with all trigger, storage and sequence
options) in a file for later use. For example, you might have several trace
commands that you want to make every time your target system program is
modified. You can store each trace command in a separate file and recall it
later using the load trace_spec command.

Example Store a trace specification to a file:
store trace_spec tspec.TS
To store trace data
Choose File - Store - Trace Data... In the dialog box, select an
existing filename or specify a new filename to contain the present
trace memory content, then click OK.
Or, using the command line, enter:
store trace <filename>
<filename> is any UNIX file name including paths. The trace data file is a
binary file. The extension .TR is automatically added to the file name. A
trace data file can be reloaded and displayed like other trace listings.
You can store the trace data resulting from a measurement. This can be
useful if you want to compare the results of later measurements with a
reference result obtained in an earlier measurement.

Example Store a trace to a file:

store trace tracel. TR

257

Using the Emulation Analyzer
To load a trace specification

To load a trace specification

* Choose File - Load - Trace Spec... In the dialog box, click on the
name of the trace specification you want to load (placing it in the
Load Trace Specification box), then click OK.

Or, using the command line, enter:
load trace_spec <filename>

<filename> is any UNIX file name including paths. The extension .TS is
assumed.

Once you save a trace specification in a file using the File - Store - Trace
Speec... or store trace_spec command, you can load it using the appropriate
command above. To start a trace with the trace specification that you loaded,
use the Trace - Again or trace again command.

Example Load a trace specification from a file and start the trace:

load trace_spec tspec

trace again

258

Using the Emulation Analyzer
To load trace data

Example

To load trace data

Choose File - Load - Trace Data... In the dialog box, click on the
name of the trace data file (file of trace memory content) you want to
load (placing it in the Load Trace Data box). Then click OK.

Or, using the command line, enter:
load trace <filename>

<filename> is any UNIX file name including paths. The extension .TR is
assumed.

Loads a previously saved trace from a binary trace data file (with a "."TR"
suffix).

Once you save trace data in a file using the File - Store - Trace Data... or
store trace command, you can reload it. To view the data you loaded, use
the Display - Trace, Trace - Display, or display trace command.
Remember that a new trace measurement will overwrite this trace data (but
not the file from which it was loaded).

The interface will try to display the trace listing in the display format active
when the trace data was stored. If the interface needs symbols to replace
absolute addresses or to find high-level source lines, and symbols are not
loaded, an error occurs.

For example, suppose "source-mixed" was the display mode when the trace
was captured and the executable file "test1" was the file being executed in
the emulator/target system. To reload and display a trace listing saved from
that emulation session requires reloading the symbols for "test1".

Load a trace from a file:

load trace tracel

259

260

Making Software Performance
Measurements

261

Making Software Performance Measurements

The Software Performance Measurement Tool (SPMT) is a feature of
the Softkey Interface that allows you to make software performance
measurements on your programs.

The SPMT allows you to make some of the measurements that are
possible with the HP 64708 Software Performance Analyzer and its
Graphical User Interface (HP B1487).

The SPMT post-processes information from the analyzer trace list.
When you end a performance measurement, the SPMT dumps the
post-processed information to a binary file, which is then read using
the perf32 report generator utility.

Two types of software performance measurements can be made with
the SPMT: activity measurements, and duration measurements.

This chapter describes tasks you perform while using the Software
Performance Measurement Tool (SPMT). These tasks are grouped
into the following sections:

* Activity performance measurements.

¢ Duration performance measurements.

* Running performance measurements and creating reports.

262

Activity Performance Measurements

Activity measurements are measurements of the number of accesses
(reads or writes) within an address range. The SPMT shows you the
percentage of analyzer trace states that are in the specified address
range, as well as the percentage of time taken by those states. Two
types of activity are measured: memory activity, and program activity.

Memory activity is all activity that occurs within the address range.

Program activity is the activity caused by instruction execution in the
address range. Program activity includes opcode fetches and the
cycles that result from the execution of those instructions (reads and
writes to memory, stack pushes, etc.).

For example, suppose an address range being measured for activity
contains an opcode that causes a stack push, which results in multiple
write operations to the stack area (outside the range). The memory
activity measurement will count only the stack push opcode cycle.
However, the program activity measurement will count the stack push
opcode cycle and the write operations to the stack.

By comparing the program activity and the memory activity in an
address range, you can get an idea of how much activity in other areas
is caused by the code being measured. An activity measurement
report of the code (prog), data, and stack sections of a program is
shown below.

This section describes how to:

* Set up the trace command for activity measurements.
* Initialize activity performance measurements.

¢ Interpret activity measurement reports.

263

Making Software Performance Measurements

Label

prog
Address Range ADEH thru 1261H

Memory Activity
State Percent Rel = 57.77 Abs = 57.77
Mean = 295.80 Sdv = 26.77
Time Percent Rel = 60.97 Abs = 60.97

Program Activity
State Percent Rel = 99.82 Abs = 99.82
Mean =511.10 Sdv= 0.88
Time Percent Rel = 99.84 Abs = 99.84

data
Address Range 6007AH thru 603A5H

Memory Activity
State Percent Rel = 30.51 Abs = 30.51
Mean = 156.20 Sdv = 31.87
Time Percent Rel = 28.09 Abs = 28.09

Program Activity
State Percent Rel= 0.18 Abs= 0.18
Mean = 0.90 Sdv= 0.88
Time Percent Rel= 0.16 Abs= 0.16

stack
Address Range 40000H thru 43FFFH

Memory Activity
State Percent Rel = 11.72 Abs = 11.72
Mean = 60.00 Sdv = 29.24
Time Percent Rel = 10.94 Abs = 10.94

Program Activity
State Percent Rel= 0.00 Abs= 0.00
Mean = 0.00 Sdv= 0.00
Time Percent Rel= 0.00 Abs= 0.00

264

Making Software Performance Measurements

Graph of Memory Activity relative state percents >= 1

prog 57.77% *ttsttii
data 3051% Fkkkkkkkkkkkkkkk
stack 11.729%p *rsxx

Graph of Memory Activity relative time percents >= 1

prog 60.979p H*rkikikikikik Hokk
data 28.000p *rwwkikikiikk
stack 10.940p *rwex

Graph of Program Activity relative state percents >= 1
prog 99,820/ **¥rkk Hokkkkk Hkkk S

Graph of Program Activity relative time percents >= 1
prog 99.84% * kxR kkkkkkok

Summary Information for 10 traces

Memory Activity
State count

Relative count 5120

Mean sample 170.67

Mean Standard Dv 29.30

95% Confidence 12.28% Error tolerance
Time count

Relative Time - Us 2221.20

Program Activity
State count
Relative count 5120
Mean sample 170.67
Mean Standard Dv 0.58
95% Confidence 0.24% Error tolerance
Time count
Relative Time - Us 2221.20
Absolute Totals
Absolute count - state 5120
Absolute count - time - Us 2221.20

265

Making Software Performance Measurements
To set up the trace command for activity measurements

Examples

To set up the trace command for activity
measurements

Specify a trace display depth of 512.
Trace after any state, store all states, and count time.

Before you initialize and run performance measurements, the current trace
command (in other words, the last trace command entered) must be properly
set up.

In general, you want to give the SPMT as many trace states as possible to
post-process, so you should increase the trace depth to the maximum
number, as shown in the following command.

If you wish to measure activity as a percentage of all activity, the current
trace command should be the default (in other words, trace <RETURN>).
The default trace command triggers on any state, and all captured states are
stored. It is important that time be counted by the analyzer; otherwise, the
SPMT measurements will not be correct. Also, since states are stored "after"
the trigger state, the maximum number of captured states appears in each
trace list.

You can qualify trace commands any way you like to obtain specific
information. However, when you qualify the states that get stored in the
trace memory, your SPMT results will be biased by your qualifications; the
percentages shown will be of only those states stored in the trace list.

To specify a trace depth of 512:

display trace depth 512
To trace after any state, store all states, and count time:

trace counting time

266

Making Software Performance Measurements
To initialize activity performance measurements

To initialize activity performance measurements

Use the performance_measurement_initialize command.

After you set up the trace command, you must tell the SPMT the address
ranges on which you wish to make activity measurements. This is done by
initializing the performance measurement. You can initialize the performance
measurement in the following ways:

e Use default initialization (using global symbols if the symbols database is
loaded).

e [Initialize with user-defined files.
¢ Initialize with global symbols.
e [Initialize with local symbols.

¢ Restore a previous performance measurement (if the emulation system
has been exited and re-entered).

Default Initialization

Entering the performance_measurement_initialize command with no
options specifies an activity measurement. If a valid symbolic database has
been loaded, the addresses of all global procedures and static symbols will be
used; otherwise, a default set of ranges that cover the entire processor
address range will be used.

Initialization with User Defined Ranges

You can specifically give the SPMT address ranges to use by placing the
information in a file and entering the file name in the
performance_measurement_initialize command.

267

Making Software Performance Measurements
To initialize activity performance measurements

Address range files may contain program symbols (procedure name or
static), user defined address ranges, and comments. An example address
range file is shown below.

Any line which starts with a # is a comment.

All user’s labels must be preceded by a "|".

|users_label 10H 1000H
program_symbol

A program symbol can be a procedure name or a static. In the case of a pro-
cedure name the range of that procedure will be used.

|users_label2 program_symboll -> program_symbol2

#"->" means thru. The above will define a range which starts with symboll
and goes thru symbol2. If both symbols are procedures then the range will
be defined as the start of symbol1l thru the end of symbol2.

dirl/dir2/source_file.s:local_symbol

The above defines a range based on the address of local_symbol.

Initialization with Global Symbols

When the performance_measurement_initialize command is entered
with no options or with the global_symbols option, the global symbols in the
symbols database become the address ranges for which activity is measured.
If the symbols database is not loaded, a default set of ranges that cover the
entire processor address range will be used.

The global symbols database contains procedure symbols, which are
associated with the address range from the beginning of the procedure to the
end, and static symbols, which are associated with the address of the static
variable.

268

Making Software Performance Measurements
To initialize activity performance measurements

Initialization with Local Symbols

When the performance_measurement_initialize command is entered
with the local_symbols_in option and a source file name, the symbols
associated with that source file become the address ranges for which activity
is measured. If the symbols database is not loaded, an error message will
occur telling you that the source filename symbol was not found.

You can also use the local_symbols_in option with procedure symbols; this
allows you to measure activity related to the symbols defined in a single
function or procedure.

Restoring the Current Measurement

The performance_measurement_initialize restore command allows you
to restore old performance measurement data from the perf.out file in the
current directory.

If you have not exited and re-entered emulation, you can add traces to a
performance measurement simply by entering another
performance_measurement_run command. However, if you exit and
re-enter the emulation system, you must enter the
performance_measurement _initialize restore command before you
can add traces to a performance measurement. When you restore a
performance measurement, make sure your current trace command is
identical to the command used with the restored measurement.

The restore option checks the emulator software version and will only work if
the perf.out files you are restoring were made with the same software version
as is presently running in the emulator. If you ran tests using a former
software version and saved perf.out files, then updated your software to a
new version number, you will not be able to restore old perf.out
measurement files.

269

Examples

Making Software Performance Measurements
To initialize activity performance measurements

Suppose the "addr_ranges" file contains the names of all the functions in the
"ecs" demo program loop:
combsort

do_sort

gen_ascii_data

get_targets

graph_data

interrupt_sim

proc_specific
read_conditions
save_points

set_outputs

strcpy8

update_system

write_hdwr

Since these labels are program symbols, you do not have to specify the
address range associated with each label; the SPMT will search the symbol
database for the addresses of each label.

An easy way to create the "addr_ranges" file is to use the copy
global_symbols command to copy the global symbols to a file named
"addr_ranges"; then, fork a shell to UNIX (by entering "! <RETURN>" on the
Softkey Interface command line) and edit the file so that it contains the
procedure names shown above. Enter a <CTRL>d at the UNIX prompt to
return to the Softkey Interface.

To initialize the activity measurement with a user-defined address range file:

performance_measurement_initialize addr_ranges

270

Making Software Performance Measurements
To interpret activity measurement reports

To interpret activity measurement reports

View the performance measurement report.

Activity measurements are measurements of the number of accesses (reads
or writes) within an address range. The reports generated for activity
measurements show you the percentage of analyzer trace states that are in
the specified address range, as well as the percentage of time taken by those
states. The performance measurement must include four traces before
statistics (mean and standard deviation) appear in the activity report. The
information you will see in activity measurement reports is described below.

Memory Activity All activity found within the address range.

Program Activity All activity caused by instruction execution in the
address range. Program activity includes opcode fetches and the cycles
that result from the execution of those instructions (reads and writes to
memory, stack pushes, etc.).

Relative With respect to activity in all ranges defined in the
performance measurement.

Absolute With respect to all activity, not just activity in those ranges
defined in the performance measurement.

Mean Average number of states in the range per trace. The following
equation is used to calculate the mean:

states in_range
mean =
toral states

271

mean
Ssumgq

Making Software Performance Measurements
To interpret activity measurement reports

Standard Deviation Deviation from the mean of state count. The
following equation is used to calculate standard deviation:

i=1

N
std dev = ’\/Nl__f X 3 Ssumq — N (mean)2

Where:

Number of traces in the measurement.

Average number of states in the range per trace.
Sum of squares of states in the range per trace.

Symbols Within Range Names of other symbols that identify
addresses or ranges of addresses within the range of this symbol.

Additional Symbols for Address Names of other symbols that also
identify this address.

Note that some compilers emit more than one symbol for certain addresses.
For example, a compiler may emit "interrupt_sim" and "_interrupt_sim" for
the first address in a routine named interrupt_sim. The analyzer will show
the first symbol it finds to represent a range of addresses, or a single address
point, and it will show the other symbols under either "Symbols within range"
or "Additional symbols for address", as applicable. In the "interrupt_sim"
example, it may show either "interrupt_sim" or "_interrupt_sim" to represent
the range, depending on which symbol it finds first. The other symbol will be
shown below "Symbols within range" in the report. These conditions appear
particularly in default measurements that include all global and local symbols.

Relative and Absolute Counts Relative count is the total number of
states associated with the address ranges in the performance
measurement. Relative time is the total amount of time associated with
the address ranges in the performance measurement. The absolute
counts are the number of states or amount of time associated with all the
states in all the traces.

272

Om
t

N
Pm

Examples

Making Software Performance Measurements
To interpret activity measurement reports

Error Tolerance and Confidence Level An approximate error may
exist in displayed information. Error tolerance for a level of confidence is
calculated using the mean of the standard deviations and the mean of the
means. Error tolerance gives an indication of the stability of the
information. For example, if the error is 5% for a confidence level of
95%, then you can be 95% confident that the information has an error of
5% or less.

The Student’s "T" distribution is used in these calculations because it
improves the accuracy for small samples. As the size of the sample increases,
the Student’s "T" distribution approaches the normal distribution.

The following equation is used to calculate error tolerance:

error pct, =]C\?mT;ni_ X 100

Where:

Mean of the standard deviations.

Table entry in Student’s "T" table for a given confidence level.
Number of traces in the measurement.

Mean of the means (i.e., mean sample).

Consider the following activity measurement report (generated with the
commands shown):

display trace depth 512
trace counting time
performance_measurement_initialize addr_ranges

performance_measurement_run 20
performance_measurement_end
Iperf32 | more

273

Making Software Performance Measurements
To interpret activity measurement reports

Label

set_outputs
Address Range 1784H thru 1814H

Memory Activity
State Percent Rel = 30.28 Abs = 25.00
Mean = 128.00 Sdv = 227.46
Time Percent Rel = 30.45 Abs = 25.45

Program Activity
State Percent Rel = 28.97 Abs = 25.00
Mean = 128.00 Sdv = 227.46
Time Percent Rel = 29.28 Abs = 25.45

update_system
Address Range 159CH thru 1656H

Memory Activity
State Percent Rel = 30.28 Abs = 25.00
Mean = 128.00 Sdv = 227.46
Time Percent Rel = 30.44 Abs = 25.45

Program Activity
State Percent Rel = 28.99 Abs = 25.02
Mean = 128.10 Sdv =227.40
Time Percent Rel = 29.29 Abs = 25.46

read_conditions
Address Range 16EEH thru 177CH

Memory Activity
State Percent Rel = 12.11 Abs = 10.00
Mean = 51.20 Sdv = 157.59
Time Percent Rel= 12.18 Abs = 10.18

Program Activity
State Percent Rel = 11.59 Abs = 10.00
Mean = 51.20 Sdv = 157.59
Time Percent Rel= 11.71 Abs = 10.18

strcpy8

274

Making Software Performance Measurements
To interpret activity measurement reports

Address Range 10BOH thru 110AH

Memory Activity
State Percent Rel= 9.75 Abs = 8.05

Mean = 41.20 Sdv =116.63
Time Percent Rel= 9.45 Abs= 7.90

Program Activity

State Percent Rel = 12.39 Abs = 10.69
Mean = 54.75 Sdv = 149.76
Time Percent Rel= 11.83 Abs = 10.28
interrupt_sim

Address Range 101EH thru 10A8H

Memory Activity

State Percent Rel= 6.15 Abs= 5.08

Mean = 26.00 Sdv=114.41
Time Percent Rel= 5.96 Abs= 4.98

Program Activity
State Percent Rel= 5.97 Abs= 5.16
Mean = 26.40 Sdv =114.35

Time Percent Rel= 5.81 Abs= 5.05
write_hdwr
Address Range 181CHthru 1894H
Memory Activity
State Percent Rel = 6.06 Abs= 5.00

Mean = 25.60 Sdv =114.49
Time Percent Rel= 6.10 Abs= 5.10

Program Activity

State Percent Rel= 5.79 Abs= 5.00

Mean = 25.60 Sdv = 114.49
Time Percent Rel= 5.86 Abs= 5.10

proc_specific

Address Range 1A6CH thru 1A8CH

275

Making Software Performance Measurements
To interpret activity measurement reports

Memory Activity
State Percent Rel= 3.84 Abs= 3.17
Mean = 16.25 Sdv = 72.67
Time Percent Rel= 3.86 Abs= 3.23

Program Activity
State Percent Rel= 3.70 Abs= 3.19
Mean = 16.35 Sdv = 73.12
Time Percent Rel= 3.73 Abs= 3.24

combsort
Address Range 124EH thru 1444H

Memory Activity
State Percent Rel= 1.06 Abs= 0.88
Mean = 4.50 Sdv = 20.12
Time Percent Rel= 1.06 Abs= 0.89

Program Activity
State Percent Rel= 1.90 Abs= 1.64
Mean = 8.40 Sdv = 37.57
Time Percent Rel= 1.80 Abs= 1.56

do_sort
Address Range 144CHthru 14EAH

Memory Activity
State Percent Rel= 0.47 Abs= 0.39
Mean= 2.00 Sdv= 5.30
Time Percent Rel= 0.49 Abs= 0.41

Program Activity
State Percent Rel= 0.70 Abs= 0.61
Mean= 3.10 Sdv= 7.68
Time Percent Rel= 0.69 Abs= 0.60

gen_ascii_data

Address Range 1112H thru 1246H

Memory Activity
State Percent Rel= 0.00 Abs= 0.00

276

Mean = 0.00 Sdv= 0.00
Time Percent Rel= 0.00 Abs= 0.00

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv= 0.00
Time Percent Rel= 0.00 Abs= 0.00

get_targets
Address Range 165EH thru 16E6H

Memory Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv= 0.00
Time Percent Rel= 0.00 Abs= 0.00

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv= 0.00
Time Percent Rel= 0.00 Abs= 0.00

graph_data
Address Range 1988H thru 1A40H

Memory Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv= 0.00
Time Percent Rel= 0.00 Abs= 0.00

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv= 0.00
Time Percent Rel= 0.00 Abs= 0.00

proc_spec_init
Address Range 1A48H thru 1A64H

Memory Activity
State Percent Rel= 0.00 Abs= 0.00
Mean = 0.00 Sdv= 0.00
Time Percent Rel= 0.00 Abs= 0.00

Making Software Performance Measurements
To interpret activity measurement reports

277

Making Software Performance Measurements
To interpret activity measurement reports

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv= 0.00
Time Percent Rel= 0.00 Abs= 0.00

save_points
Address Range 189CH thru 1980H

Memory Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv= 0.00
Time Percent Rel= 0.00 Abs= 0.00

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv= 0.00
Time Percent Rel= 0.00 Abs= 0.00

Graph of Memory Activity relative state percents >= 1

set_outputs 30.28% *H*kikkkdkickik
update_system 30.28% *H*rkrkkkdkikdk
read_conditions 12.11% *xxxxx
strcpy8 9.75% *rr*x
interrupt_sim 6.15% ***

write_hdwr 6.06% ***
proc_specific 3.84% **

combsort 1.06% *

Graph of Memory Activity relative time percents >= 1

Set_outputs 30.45%p *FrEEkkekcRARRR
Update_system 30.44% *rrEerkER*RAR*R
read_conditions ~ 12.18% ***
Stl’prS Q.450fp **kxx
interrupt_sim 5.969% ***

write_hdwr 6.10% ***
proc_specific 3.86% **

combsort 1.06% *

Graph of Program Activity relative state percents >=1

278

Making Software Performance Measurements
To interpret activity measurement reports

set_outputs 28.970p *xkkxickickiokiokiok
Update_system 2899% Fkkkkkkkkkkkkkk
read_conditions 11.599%p *rkkxx
strcpy8 12,3900 *¥*wrx
interrupt_sim 5.97% ***

write_hdwr 5.79% ***
proc_specific 3.70% **

combsort 1.90% *

Graph of Program Activity relative time percents >= 1

set_outputs 20,280 *rxikikikikiokiok
update_system 20,000 *ikikickkkkikiok
read_conditions 11.710%0 *+kx**
strcpy8 11.830f *¥kkik
interrupt_sim 5.810p ***

write_hdwr 5.86% ***
proc_specific 3.73% **

combsort 1.80% *

Summary Information for 20 traces

Memory Activity
State count

Relative count 8455

Mean sample 30.20

Mean Standard Dv 75.44

95% Confidence 116.98% Error tolerance
Time count

Relative Time - Us 3500.92

Program Activity
State count
Relative count 8838
Mean sample 31.56
Mean Standard Dv 79.24
95% Confidence 117.55% Error tolerance
Time count
Relative Time - Us 3641.08
Absolute Totals
Absolute count - state 10240
Absolute count - time - Us 4188.56

279

Making Software Performance Measurements
To interpret activity measurement reports

The measurements for each label are printed in descending order according
to the amount of activity. You can see that the set_outputs function has the
most activity. Also, you can see that no activity is recorded for several of the
functions. The histogram portion of the report compares the activity in the
functions that account for at least 1% of the activity for all labels defined in
the measurement.

280

Duration Performance Measurements

Duration measurements provide a best-case/worst-case
characterization of code execution time. These measurements record
execution times that fall within a set of specified time ranges. The
analyzer trace command is set up to store only the entry and exit
states of the module to be measured (for example, a C function or
Pascal procedure). The SPMT provides two types of duration
measurements: module duration, and module usage.

Module duration measurements record how much time it takes to
execute a particular code segment (for example, a function in the
source file).

Module usage shows how much of the execution time is spent outside
of the module (from exit to entry). This measurement gives an
indication of how often the module is being used.

When using the SPMT to perform duration measurements, there
should be only two addresses stored in the trace memory: the entry
address, and the exit address. Recursion can place several entry
addresses before the first exit address, and/or several exit addresses
before the first entry address. Duration measurements are made
between the last entry address in a series of entry addresses, and the
last exit address in a series of exit addresses (see the figure below).
All of the entry and exit addresses which precede these last addresses
are assumed to be unused prefetches, and are ignored during time
measurements.

When measuring a recursive function, module duration will be
measured between the last recursive call and the true end of the
recursive execution. This will affect the accuracy of the measurement.

If a module is entered at the normal point, and then exited by a point
other than the defined exit point, the entry point will be ignored. It
will be judged the same as any other unused prefetch, and no

281

Making Software Performance Measurements
To set up the trace command for duration measurements

time-duration measurement will be made. Its time will be included in
the measure of time spent outside the procedure or function.

If a module is exited from the normal point, and then re-entered from

START - assumed prefetch
START - assumed prefetch
START - assumed prefetch
START - last ENTRY address -
END - assumed prefetch
END - assumed prefetch Measure duration
END - assumed prefetch
END - last EXIT address -
START - assumed prefetch
START - assumed prefetch
START - assumed prefetch
START - last ENTRY address -
END - assumed prefetch
END - assumed prefetch

Measure duratio

some other point, the exit will also be assumed to be an unused
prefetch of the exit state.

Note that if you are making duration measurements on a function that
is recursive, or one that has multiple entry and/or exit points, you may
wind up with invalid information.

This section describes how to:

e Set up the trace command for duration measurements.
¢ Initialize duration performance measurements.

* Interpret duration measurement reports.

To set up the trace command for duration
measurements

Specify a trace display depth of 512.

2 Trace after and store only function start and end addresses.

For duration measurements, the trace command must be set up to store only
the entry and exit points of the module of interest. Since the trigger state is
always stored, you should trigger on the entry or exit points. For example:

282

CAUTION

Examples

Making Software Performance Measurements
To set up the trace command for duration measurements

trace after symbol_entry or symbol_exit only
symbol_entry or symbol_exit counting time

The previous command depends on the generation of correct exit address
symbols by the software development tools.

Or:
trace after module_name start or module_name end
only module_name start or module_name end

counting time

Where "symbol_entry" and "symbol_exit" are symbols from the user program.
Or, where "module_name" is the name of a C function or Pascal procedure
(and is listed as a procedure symbol in the global symbol display).

To specify a trace display depth of 512:

display trace depth 512

To set up the trace command for duration measurements on the
interrupt_sim function:

trace after interrupt_sim start or interrupt_sim
end only interrupt_sim start or interrupt_sim end
counting time

The trace specification sets up the analyzer to capture only the states that
contain the start address of the interrupt_sim function or the end address of
the interrupt_sim function. Since the trigger state is also stored, the analyzer
is set up to trigger on the entry or exit address of the interrupt_sim function.
With these states in memory, the analyzer will derive two measurements:
time from start to end of interrupt_sim, and time from end to start of
interrupt_sim.

283

Making Software Performance Measurements
To initialize duration performance measurements

To initialize duration performance measurements

¢ Use the performance_measurement_initialize command with the
duration option.

After you set up the trace command, you must tell the SPMT the time ranges
to be used in the duration measurement. This is done by initializing the
performance measurement. You can initialize the performance measurement
in the following ways:

e [Initialize with user-defined files.

¢ Restore a previous performance measurement (if the emulation system
has been exited and re-entered).

Initialization with User Defined Ranges

You can specifically give the SPMT time ranges to use by placing the
information in a file and entering the file name in the
performance_measurement_initialize command.

Time range files may contain comments and time ranges in units of
microseconds (us), milliseconds (ms), or seconds (s). An example time
range file is shown below.

Any line which starts with a # is a comment.

1us 20 us
10.1 ms 100.6 ms
355s 6.77s

us microseconds

ms milliseconds

s seconds

#

The above are the only abbreviations allowed. The space between the number
and the units abbreviation is required.

When no user defined time range file is specified, the following set of default
time ranges are used.

lus 10us

10.1 us 100 us

100.1 us 500 us

500.1us 1 ms

1.001 ms5ms

284

Making Software Performance Measurements
To initialize duration performance measurements

5.001 ms 10 ms
10.1 ms 20 ms
20.1 ms 40 ms
40.1 ms 80 ms
80.1 ms 160 ms
160.1 ms 320 ms
320.1 ms 640 ms
640.1ms1l.2s

Restoring the Current Measurement

The performance_measurement_initialize restore command allows you
to restore old performance measurement data from the perf.out file in the
current directory.

If you have not exited and re-entered emulation, you can add traces to a
performance measurement simply by entering another
performance_measurement_run command. However, if you exit and
re-enter the emulation system, you must enter the
performance_measurement _initialize restore command before you
can add traces to a performance measurement. When you restore a
performance measurement, make sure your current trace command is
identical to the command used with the restored measurement.

The restore option checks the emulator software version and will only work if
the perf.out files you are restoring were made with the same software version
as is presently running in the emulator. If you ran tests using a former
software version and saved perf.out files, then updated your software to a
new version number, you will not be able to restore old perf.out
measurement files.

285

Examples

Making Software Performance Measurements
To interpret duration measurement reports

To initialize the duration measurement:

performance_measurement_initialize duration

To interpret duration measurement reports

View the performance measurement report.

Duration measurements provide a best-case/worst-case characterization of
code execution time. These measurements record execution times that fall
within a set of specified time ranges. The information you will see in duration
measurement reports is described below.

Number of Intervals Number of "from address" and "to address" pairs
(after prefetch correction).

Maximum Time The greatest amount of time between the "from
address" to the "to address".

Minimum Time The shortest amount of time between the "from
address" to the "to address".

Average Time Average time between the "from address" and the "to
address". The following equation is used to calculate the average time:

amount of time for all intervals

mean = :
number of intervals

286

mean
Ssumgq

Om

—

Making Software Performance Measurements
To interpret duration measurement reports

Standard Deviation Deviation from the mean of time. The following
equation is used to calculate standard deviation:

N
std dev = ’\/Nl__f X 3 Ssumq — N (mean)2

i=1

Where:

Number of intervals.

Average time.

Sum of squares of time in the intervals.

Error Tolerance and Confidence Level An approximate error may
exist in displayed information. Error tolerance for a level of confidence is
calculated using the mean of the standard deviations and the mean of the
means. Error tolerance gives an indication of the stability of the
information. For example, if the error is 5% for a confidence level of
95%), then you can be 95% confident that the information has an error of
5% or less.

The Student’s "T" distribution is used in these calculations because it
improves the accuracy for small samples. As the size of the sample increases,
the Student’s "T" distribution approaches the normal distribution.

The following equation is used to calculate error tolerance:

error pct, =]C\?mT;ni_ X 100

Where:

Mean of the standard deviations in each time range.

Table entry in Student’s "T" table for a given confidence level.

Number of intervals.

Mean of the means (i.e., mean of the average times in each time range).

287

Making Software Performance Measurements
To interpret duration measurement reports

Examples Consider the following duration measurement report (generated with the
commands shown):

display trace depth 512
trace after interrupt_sim start or interrupt_sim
end only interrupt_sim start or interrupt_sim end

counting time
performance_measurement_initialize duration
performance_measurement_run 10
performance_measurement_end

Iperf32 | more

Time Interval Profile

From Address 10A8
File main(module)."/users/guest/demo/debug_env/hp64782/main.c"
Symbolic Reference at interrupt_sim+8A

To Address 101E
File main(module)."/users/guest/demo/debug_env/hp64782/main.c"
Symbolic Reference at main.interrupt_sim

Number of intervals 2550

Maximum Time 73297.920 us

Minimum Time 48230.400 us

Avg Time 55672.752 us

Statistical summary - for 10 traces
Stdv 11442.64
95% Confidence 0.80% Error tolerance

Graph of relative percents
lus 10us 0.00%
10.1 us 100 us 0.00%
100.1 us 500 us 0.00%
500.1us 1 ms 0.00%
1.001 ms5ms 0.00%
5.001 ms 10 ms 0.00%

288

Making Software Performance Measurements
To interpret duration measurement reports

10.1 ms 20 ms 0.00%
20.1 ms 40 ms 0.00%
40.1 ms 80 ms 100.00%
80.1 ms 160 ms 0.00%
160.1 ms 320 ms 0.00%
320.1 ms 640 ms 0.00%
640.1ms1l.2s 0.00%

From Address 101E
File main(module)."/users/guest/demo/debug_env/hp64782/main.c
Symbolic Reference at main.interrupt_sim

To Address 10A8
File main(module)."/users/guest/demo/debug_env/hp64782/main.c
Symbolic Reference at interrupt_sim+8A

Number of intervals 2550

Maximum Time 342343.680 us

Minimum Time 52.320 us

Avg Time 36987.751 us

Statistical summary - for 10 traces
Stdv 76924.84
95% Confidence 8.07% Error tolerance

Graph of relative percents
lus 10us 0.00%
10.1 us 100 us 14.820%p *rxwkirk
100.1 us 500 us 5.06% ***
500.1us 1 ms 0.00%
1.001 ms 5 ms 24.82% *rwkkikkokk
5.001 ms 10 ms 20.27% *rxxxwrixk
10.1 ms 20 ms 10.08% *xx**
20.1 ms 40 ms 0.00%
40.1 ms 80 ms 9.889%p **r**
80.1 ms 160 ms 5.02% ***
160.1 ms 320 ms 7.57% ****
320.1 ms 640 ms 2.47% *
640.1ms1.2s 0.00%

289

Making Software Performance Measurements
To interpret duration measurement reports

Two sets of information are given in the duration measurement report:
module duration and module usage.

The first set is the "module usage" measurement. Module usage
measurements show how much time is spent outside the module of interest;
they indicate how often the module is used. The information shown in the
first part of the duration report above shows that the average amount of time
spent outside the interrupt_sim function is about 55.7 milliseconds.

The second set of information in the duration measurement report is the
"module duration" measurement. The module duration report shows that the
amount of time it takes for the interrupt_sim function to execute varies from
52.3 microseconds to 342.3 milliseconds. The average amount of time it takes
for the interrupt_sim module to execute is roughly 37 milliseconds.

290

Running Measurements and Creating Reports

Several performance measurement tasks are the same whether you
are making activity or duration measurements.

This section describes how to:

¢ Run performance measurements.
* End performance measurements.

* (Create a performance measurement report.

To run performance measurements

Use the performance_measurement_run command.

The performance_measurement_run command processes analyzer trace
data. When you end the performance measurement, this processed data is
dumped to the binary "perf.out" file in the current directory. The perf32
report generator utility is used to read the binary information in the "perf.out"
file.

If the performance_measurement_run command is entered without a
count, the current trace data is processed. If a count is specified, the current
trace command is executed consecutively the number of times specified.

The data that results from each trace command is processed and combined
with the existing processed data. The STATUS line will say "Processing trace
<NO.>" during the run so you will know how your measurement is
progressing. The only way to stop this series of traces is by using <CTRL>c
(sig INT).

The more traces you include in your sample, the more accurate will be your
results. At least four consecutive traces are required to obtain statistical
interpretation of activity measurement results.

291

Examples

Making Software Performance Measurements
To end performance measurements

To run the performance measurement, enter the following command:

performance_measurement_run 20

The command above causes 20 traces to occur. The SPMT processes the
trace information after each trace, and the number of the trace being
processed is shown on the status line.

To end performance measurements

Use the performance_measurement_end command.

The performance_measurement_end command takes the data generated
by the performance_measurement_run command and places it in a file
named perf.out in the current directory. If a file named "perf.out" already
exists in the current directory, it will be overwritten. Therefore, if you wish
to save a performance measurement, you must rename the perf.out file
before performing another measurement.

The performance_measurement_end command does not affect the
current performance measurement data which exists within the emulation
system. In other words, you can add more traces later to the existing
performance measurement by entering another
performance_measurement_run command.

Once you have entered the performance_measurement_end command,
you can use the perf32 report generator to look at the data saved in the
perf.out file.

Note that the "perf.out" file is a binary file. Do not try to read it with the
UNIX more or cat commands. The perf32 report generator utility (described
in the following section) must be used to read the contents of the "perf.out"
file.

292

Examples

Making Software Performance Measurements
To create a performance measurement report

To cause the processed trace information to be dumped to the "perf.out" file:

performance_measurement_end

-f<file>

To create a performance measurement report

Use the perf32 command at the UNIX prompt.

The perf32 report generator utility must be used to read the information in
the "perf.out" file and other files dumped by the SPMT (in other words,
renamed "perf.out" files). The perf32 utility is run from the UNIX shell. You
can fork a shell while in the Softkey Interface and run perf32, or you can exit
the Softkey Interface and run perf32.

Options to "perf32"

A default report, containing all performance measurement information, is
generated when the perf32 command is used without any options. The
options available with perf32 allow you to limit the information in the
generated report. These options are described below.

Produce outputs limited to histograms.

Produce a summary limited to the statistical data.

Produce a summary limited to the program activity.

Produce a summary limited to the memory activity.

Produce a report based on the information contained in <file> instead of the
information contained in perf.out.

For example, the following commands save the current performance
measurement information in a file called "perfl.out", and produce a histogram
showing only the program activity occupied by the functions and variables.

mv perf.out perfl.out
perf32 -hpf perfl.out

293

Examples

Making Software Performance Measurements
To create a performance measurement report

Options -h, -s, -p, and -m affect the contents of reports generated for activity
measurements. These options have no effect on the contents of reports
generated for duration (time interval) measurements.

Now, to generate a report from the "perf.out" file, type the following on the
command line to fork a shell and run the perf32 utility:

Iperf32 | more

294

Using the External State
Analyzer

295

Using the External State Analyzer

The HP 64703A analyzer provides an external analyzer with 16
external trace channels. These trace channels allow you to capture
activity on signals external to the emulator, typically other target
system signals. The external analyzer may be configured as an
extension to the emulation analyzer, as an independent state analyzer,
or as an independent timing analyzer.

When the external analyzer is configured as an independent state
analyzer, the emulator/analyzer interface does not control the external
analyzer. However, you can use pod commands to control the
independent state analyzer via the terminal interface. Refer to the
6830x Installation/Service/Terminal Interface User’s Guide for
information on using the terminal interface commands for the

external analyzer when it is configured as an independent state
analyzer.

When the external analyzer is configured as an independent timing
analyzer, you must use a special Timing Analyzer Interface program.
Refer to the Tvmaing Analyzer Interface User’s Guide for
information on using the external analyzer when it is configured as an
independent timing analyzer.

The tasks you perform with the external analyzer are grouped into the
following sections:

e Setting up the external analyzer.
¢ Configuring the external analyzer.

296

Setting Up the External Analyzer

This section assumes you have already connected the external
analyzer probe to the HP 64700 Card Cage.

Before you can use the external analyzer, you must:

* Connect the external analyzer probe to the target system.
e Specify threshold voltages of external trace signals.

* Label the external trace signals.

* Select the external analyzer mode.

To connect the external analyzer probe to the target
system

1 Assemble the Analyzer Probe. The analyzer probe is a two-piece assembly, consisting of ribbon cable and
18 probe wires (16 data channels and the J and K clock inputs) attached to a connector. Either end of the
ribbon cable may be connected to the 18-wire connector, and the connectors are keyed so they may only be
attached one way. Align the key of the ribbon cable connector with the slot in the 18-wire connector, and
firmly press the connectors together.

RIBBON CABLE

18 WIRE
CONNECTOR

297

Using the External State Analyzer
To connect the external analyzer probe to the target system

2 Attach grabbers to probe wires. Each of the 18 probe wires has a signal and a ground connection. Each
probe wire is labeled for easy identification. Thirty-six grabbers are provided for the signal and ground
connections of each of the 18 probe wires. The signal and ground connections are attached to the pin in the
grabber handle.

CONNECTING PIN

GRABBER HANDLE

298

Using the External State Analyzer
To connect the external analyzer probe to the target system

Turn OFF target system power before connecting analyzer probe wires to
the target system. The probe grabbers are difficult to handle with precision,
and it is extremely easy to short the pins of a chip (or other connectors
which are close together) with the probe wire while trying to connect it.

CAUTION

3 You can connect the grabbers to pins, connectors, wires, etc., in the target system. Pull the hilt of the
grabber towards the back of the grabber handle to uncover the wire hook. When the wire hook is around the
desired pin or connector, release the hilt to allow the grabber spring tension to hold the connection.

HP PART NO.
-a— I.C. CLIP

10024A

299

Configuring the External Analyzer

After you have assembled the external analyzer probe and connected
it to the emulator and target system, the next step is to configure the
external analyzer.

The external analyzer is a versatile instrument, and you can configure
it to suit your needs. For example, you can specify threshold voltage
levels on the external analyzer channels, and you can operate the
external analyzer in several different modes.

The default configuration specifies that the external analyzer is
aligned with the emulation analyzer. TTL level threshold voltages are
defined, as well as an external label named "xbits" which contains all
16 channels.

In order to configure the external analyzer, you must first start the
configuration interface and access the "External Analyzer"
configuration section (refer to the "Using the Configuration Interface"
section in the "Configuring the Emulator" chapter).

300

Using the External State Analyzer
To connect the external analyzer probe to the target system

Figure 24

~External Analyzer Mode

Emulator Controls External Bits ¢ Yes € No

Thresh Volt (Low Byte & J Clock) : TTL I Recall

Thresh Volt (High Byte & K Clock) TTL IRecaII

External Analyzer Mode

~Slave Clock Settings

Slave Clock Mode
J Clock Edge L Clock Edge

K Clock Edge M Clock Edge

~External Label Definition
Define Label Label Name Start Width Polarity
& ¥Yes O No |xbits | B 16 | @ Pos 4> Neg

I 5 | @& Pos O Heg
| 8 | & Pos O Neg
O Yes @ No bitd | 1 | & Pos O Mg
|
|
|
|

O Yes & Mo | low_byre|ind

O Yes @ Mo lhi_byte

& ves @ e ibitd | & Fos € Neg

O Yes @ Mo bit?

| @& Pos © neg
| & Pos € ey
| & Pos © Neg

O ves & Ne bitd

O Yes @ Mo ibitd

If you're using the Softkey Interface from a terminal or terminal emulation
window, you don’t get a dialog box from which to choose configuration
sections; however, you have access to the same configuration options
through a series of configuration questions. To access the questions in the

301

Using the External State Analyzer
To control the external analyzer with the emulator/analyzer interface

"External Analyzer" section, answer "yes" to the "Modify external analyzer
configuration?" question.

This section describes how to:

e Specify whether the emulation emulator/analyzer interface should control
the external analyzer.

e Specify the threshold voltages for the external channels.
¢ Select the external analyzer mode.

e Specify the slave clock mode when configured as an independent state
analyzer.

e Define labels for the external analyzer channels.

To control the external analyzer with the
emulator/analyzer interface

Choose "yes" or "no" for the "Should emulation control the external
bits" configuration option.

Answer "yes" if the emulation emulator/analyzer interface should control the
external analyzer. You must answer "yes" to access the remaining external
analyzer configuration questions. At the end of the configuration process the
external analyzer mode and threshold voltages will be set; existing labels will
be deleted, and only the labels specified in response to the questions below
will be defined.

Answer "no" if the emulation emulator/analyzer interface shouldn’t control
the external analyzer. If emulation does not control the external bits, the
external analyzer configuration will not be modified in any way by the
emulation interface.

To specify the threshold voltage

Choose "yes" for the "Should emulation control the external bits"
configuration option.

Enter the "Threshold voltage for bits 0-7 and J clock" value.
Enter the "Threshold voltage for bits 8-15 and K clock" value.

The external analyzer probe signals are divided into two groups: the lower
byte (channels 0 through 7 and the J clock), and the upper byte (channels 8

302

Using the External State Analyzer
To specify the external analyzer mode

through 15 and the K clock). You can specify a threshold voltage for each of
these groups.

The default threshold voltages are specified as TTL which translates to 1.40
volts.

Voltages may be in the range from -6.40 volts to 6.35 volts (with a 0.05V
resolution). You may also specify CMOS (which translates to 2.5 volts), or
ECL (which translates to -1.3 volts).

To specify the external analyzer mode

Choose "yes" for the "Should emulation control the external bits"
configuration option.

Choose "Emulation", "State", or "Timing" for the "External analyzer
mode" configuration option.

The default configuration selects the "emulation" external analyzer mode. In
this mode, you have 16 external trace signals on which data is captured
synchronously with the emulation clock.

The external analyzer may also operate as an independent state analyzer, or
it may operate as an independent timing analyzer if a host computer interface
program is used.

Choose "emulation" to select the emulation mode. In this mode, the external
analyzer becomes an extension of the emulation analyzer. In other words,
they operate as one analyzer. The external bits are clocked with the
emulation clock. External labels may be used in trace commands to qualify
trigger, storage, prestore, or count states. External labels may be viewed in
the trace display.

Choose "state" to select the independent state mode of the external analyzer.
The external bits are not available for use from the emulation interface. You
can, however, use pod commands to control the external state analyzer in its
independent mode.

Choose "timing" to select the timing mode of the external analyzer. The
external bits are not available for use from the emulation interface. Because
the pod commands for the timing analyzer dump information in binary
format, you will need to use Timing Analyzer Interface, or other interface
program, to capture the timing analyzer data.

303

Using the External State Analyzer
To specify the slave clock mode

Figure 25

To specify the slave clock mode

Choose "yes" for the "Should emulation control the external bits"
configuration option.

Choose "State" for the "External analyzer mode" configuration option.
Choose "Off", "Mixed", or "Demux" for the "Slave clock mode for
external bits" configuration item.

There are two modes of demultiplexing that can be set for the 16 channels of
the external analyzer: mixed clocks and true demultiplexing.

Choose "off" to turn slave clocks OFF. If the slave clock is "off", all 16
external bits are clocked with the emulation clock.

Choose "mixed" to specify the mixed clock demultiplexing mode. In this
mode, the lower eight external bits (0-7) are latched when the slave clock (as
specified by your answers to the next four questions) is received. The upper

eight bits and the latched lower eight are then clocked into the analyzer
when the emulation clock is received (see the figure below).

16 TRACE SIGNALS
|

~
s
SLAVE CLOCK > SLAVE LATCH
) ~
- ~
® s
MASTER CLOCK [A4 S MASTER {POD)
LATCH

If no slave clock has appeared since the last master clock, the data on the
lower 8 bits of the pod will be latched at the same time as the upper 8 bits. If

304

Using the External State Analyzer
To specify the slave clock mode

more than one slave clock has appeared since the last master clock, only the
first slave data will be available to the analyzer (see the figure below).

Figure 26

MASTER i i

CLOCK —

SLAVE I

CLOCK _A }
DATA LATCHED ON FOLLOWING SLAVE
FIRST SLAVE CLOCK CLOCKS IGNORED
AFTER LAST MASTER
CLOCK

Choose "demux" to specify the true demultiplexing mode. In this mode, only
the lower eight external channels (0-7) are used. The slave clock (as
specified by your answers to the next four questions) latches these bits and
the emulation clock samples the same channels again. The latched bits show
up as bits 0-7 in the trace data, and the second sample shows up as bits 8-15

(see the figure below).

305

Figure 27

Using the External State Analyzer
To specify the slave clock mode

8 TRACE SIGNALS

|
N
S
SLAVE CLOCK > SLAVE LATCH
~
|
NI
MASTER CLOCK [NS . MASTER (POD)
LATCH

EXAMPLE TIMING:

AD—-AD ADDRESS DATA

SLAVE CLOCK }

MASTER CLOCK)

If no slave clock has appeared since the last master clock, the data on the
lower 8 bits of the pod will be the same as the upper 8 bits. If more than one
slave clock has appeared since the last master clock, only the first slave data
will be available to the analyzer.

306

Using the External State Analyzer
To define labels for the external analyzer signals

4 If the "mixed" or "true demultiplexing" slave clock modes are
selected, choose "None", "rising", "falling", or "Both" for the "Edges of
J (K,L,M) clock used for slave clock" configuration options.
Four configuration options are present when you select either the "mixed" or
"demux" slave clock mode. They allow you to define the slave clock. You can
specify rising, falling, both, or neither (none) edges of the J, K, L, and M
clocks. When several clock edges are specified, any one of the edges clocks
the trace.

Clocks J and K are the external clock inputs of the external analyzer probe.
The L and M clocks are generated by the emulator. Typically, the L clock is
the emulation clock derived by the emulator and the M clock is not used.

To define labels for the external analyzer signals

1 Choose "yes" for the "Should emulation control the external bits"
configuration option.

2 For each defined external label (there can be up to 8), choose the
"name", "start bit", "width", and "polarity".
You can define up to eight labels for the 16 external data channels in the
configuration. These external analyzer labels can be used in trace
commands, and the data associated with these labels can be displayed in the
trace list. One external analyzer label, "xbits", is defined by the default
configuration and is included in the default trace list.

External labels can be defined with bits in the range of 0 through 15. The
start bit may be in the range 0 through 15, but the width of the label must not
cause the label to extend past bit 15. Thus, the sum of the start bit number
plus the width must not exceed 16.

The "polarity" configuration option allows you to specify positive or negative
logic for the external bits. In other words, positive means high=1, low=0.
Negative means low=1, high=0.

Once external labels are defined, they may be used in trace commands to
qualify events (if the emulation controls the external analyzer). Also, you
can modify the trace display to include data for the various trace labels.

Note that the Timing Analyzer Interface does not use the external labels
defined in the emulator/analyzer interface. You maintain labels for the timing
analyzer within the Timing Analyzer Interface itself.

307

308

10

Making Coordinated
Measurements

309

Making Coordinated Measurements

When HP 64700 Card Cages are connected together via the Coordinated
Measurement Bus (CMB), you can start and stop up to 32 emulators at the
same time.

You can use the analyzer in one HP 64700 to arm (activate) the analyzers in
other HP 64700 Card Cages or to cause emulator execution in other
HP 64700 Card Cages to break into the monitor.

You can use the HP 64700’s BNC connector (labeled TRIGGER IN/OUT on
the lower left corner of the HP 64700 rear panel) to trigger an external
instrument (for example, a logic analyzer or oscilloscope) when the analyzer
finds its trigger condition. Also, you can allow an external instrument to arm
the analyzer or break emulator execution into the monitor.

The coordinated measurement tasks you can perform are grouped into the
following sections:

e Setting up for coordinated measurements.

e Starting and stopping multiple emulators.

¢ Driving trigger signals to the CMB or BNC.

¢ Stopping program execution on trigger signals.

e Arming analyzers on trigger signals.

310

Making Coordinated Measurements

The location of the CMB and BNC connectors on the HP 64700 rear panel is

shown in the following figure.
Figure 28
Ul Iy e

)

CMB only
CMB Connector —— g-g ®

Trigger in/oul
@ Comm config
S oo oy ot e M M
h
—~
M

(
C

I000 : ﬂ.!.!.!;

BNC Connector

> <D
SO
—’
)
.

R5232/422
e U

/\WARNING
LAN AUl N N

Ne enerate—serviceable
CAUTION s o WARNING
. Y Y - o aYala Hnin grd to
Come Cained pereonmel

nnnnn + LAN or LAN AUL U
nnnnnnnn
N\ U u

U © i s
o gy,

64700520

Signal Lines on the CMB

There are three bi-directional signal lines on the CMB connector on the rear
panel of the emulator. These CMB signals are:

TRIGGER The CMB TRIGGER line is low true. This signal can be
driven or received by any HP 64700 connected to the CMB. This signal
can be used to trigger an analyzer. It can be used as a break source for
the emulator.

READY The CMB READY line is high true. It is an open collector and
performs an ANDing of the ready state of enabled emulators on the CMB.
Each emulator on the CMB releases this line when it is ready to run.

This line goes true when all enabled emulators are ready to run,
providing for a synchronized start.

311

Making Coordinated Measurements

When CMB is enabled, each emulator is required to break to background
when CMB READY goes false, and will wait for CMB READY to go true before
returning to the run state. When an enabled emulator breaks, it will drive the
CMB READY false and will hold it false until it is ready to resume running,.
When an emulator is reset, it also drives CMB READY false.

EXECUTE The CMB EXECUTE line is low true. Any HP 64700 on the
CMB can drive this line. It serves as a global interrupt and is processed
by both the emulator and the analyzer. This signal causes an emulator to
run from a specified address when CMB READY returns true.

BNC Trigger Signal

The BNC trigger signal is a positive rising edge TTL level signal. The BNC
trigger line can be used to either drive or receive an analyzer trigger, or
receive a break request for the emulator.

Comparison Between CMB and BNC Triggers The CMB trigger and
BNC trigger lines have the same logical purpose: to provide a means for
connecting the internal trigger signals (trigl and trig2) to external
instruments. The CMB and BNC trigger lines are bi-directional. Either
signal may be used directly as a break condition.

The CMB trigger is level-sensitive, while the BNC trigger is edge-sensitive.
The CMB trigger line puts out a true pulse following receipt of EXECUTE,
despite the commands used to configure it. This pulse is internally ignored.

Note that if you use the EXECUTE function, the CMB TRIGGER should not
be used to trigger external instruments, because a false trigger will be
generated when EXECUTE is activated.

312

Setting Up for Coordinated Measurements

This section describes how to:

¢ Connect the Coordinated Measurement Bus.
* (Connect the rear panel BNC.

To connect the Coordinated Measurement Bus (CMB)

Be careful not to confuse the 9-pin connector used for CMB with those used
by some computer systems for RS-232-C communications. Applying
RS-232-C signals to the CMB connector is likely to result in damage to the
HP 64700 Card Cage.

CAUTION

To use the CMB, you will need one CMB cable for the first two emulators and
one additional cable for every emulator after the first two. The CMB cable is
orderable from HP under product number HP 64023A. The cable is four meters
long.

You can build your own compatible CMB cables using standard 9-pin D type
subminiature connectors and 26 AWG wire.

Note that Hewlett-Packard does not ensure proper CMB operation if you are
using a self-built cable!

313

Making Coordinated Measurements

To connect the Coordinated Measurement Bus (CMB)

1 Connect the cables to the HP 64700 CMB ports.

w
—
<
=
]
L

(NC)

TWO EMULATORS

(FEMALE
(NC)

THREE EMULATORS, ETC

64700E14

314

Making Coordinated Measurements

To connect to the rear panel BNC

Number of HP 64700 Series Maximum Total Length of Cable |Restrictions on the CMB

Emulators Connection

2t08 100 meters None.

9to 16 50 meters None.

9to 16 100 meters Only 8 emulators may have rear
panel pullups connected. *

17 to 32 50 meters Only 16 emulators may have rear

panel pullups connected. *

* A modification must be performed by your HP Customer Engineer.

Emulators using the CMB must use background emulation monitors.

At least 3/4 of the HP 64700-Series emulators connected to the CMB must be powered up before
proper operation of the entire CMB configuration can be assured.

To connect to the rear panel BNC

CAUTION

The BNC line on the HP 64700 accepts input and output of TTL levels only.

(TTL levels should not be less than 0 volts or greater than 5 volts.) Failure to
observe these specifications may result in damage to the HP 64700 Card

Cage.

315

Making Coordinated Measurements
To connect to the rear panel BNC

1 Connect one end of a 50-ohm coaxial cable with male BNC connectors to the HP 64700 BNC
receptacle and the other end to the appropriate BNC receptacle on the other measuring instrument.

ALIGN SLOTS ON
SIDES OF PLUG
WITH TABS ON
SIDES OF JACK

PUSH TOGETHER
AND TURN UNTIL
CONNECTORS LOCK

64700E15

The BNC connector is capable of driving TTL level signals into a 50-ohm load. (A positive rising edge
is the trigger signal.) It requires a driver that can supply at least 4 mA at 2 volts when used as a
receiver. The BNC connector is configured as an open-emitter structure which allows for multiple
drivers to be connected. It can be used for cross-triggering between multiple HP 64700Bs when no
other cross-measurements are needed. The output of the BNC connector is short-circuit protected
and is protected from TTL level signals when the emulator is powered down.

316

Starting/Stopping Multiple Emulators

When HP 64700 Card Cages are connected together via the
Coordinated Measurement Bus (CMB), you can start and stop up to
32 emulators at the same time. These are called synchronous
measurements.

This section describes how to:

* Enable synchronous measurements.
* Start synchronous measurements.
* Disable synchronous measurements.

To enable synchronous measurements

Enter the specify run command.

You can enable the emulator’s interaction with the CMB by using the

specify run command. When the EXECUTE signal is received, the emulator
will run at the current program counter address or the address specified in
the specify run command.

Note that when the CMB is being actively controlled by another emulator, the
step command does not work correctly. The emulator may end up running in
user code (NOT stepping). Disable CMB interaction (see "To disable
synchronous measurements" below) while stepping the processor.

Note that enabling CMB interaction does not affect the operation of analyzer
cross-triggering.

You can use the specify trace command to specify that an analyzer
measurement begin upon reception of the CMB EXECUTE signal.

The trace measurement defined by the specify trace command will be
started when the EXECUTE signal becomes active. When the trace
measurement begins, you will see the message "CMB execute; emulation
trace started".

When you enter a normal trace command, trace at execute is disabled, and
the analyzer ignores the CMB EXECUTE signal.

317

Examples

Making Coordinated Measurements
To start synchronous measurements

To enable synchronous measurements:

specify run from le8h
To trace when synchronous execution begins:

specify trace after address main

To start synchronous measurements

Enter the emb_execute command.

The ecmb_execute command will cause the EXECUTE line to be pulsed,
thereby initiating a synchronous measurement. CMB interaction does not
have to be enabled in order to use either of these commands. (When you
enable CMB interaction, you only specify how the emulator will react to the
CMB EXECUTE signal.)

All emulators whose CMB interaction is enabled will break into the monitor
when any one of those emulators breaks into its monitor.

To disable synchronous measurements

Enter the specify run disable command.

You can disable the emulator’s interaction with the CMB by using the
specify run disable command. When interaction is disabled, the emulator
ignores the CMB EXECUTE and READY lines.

318

Figure 29

Using Trigger Signals

The HP 64700 contains two internal lines, trigl and trig2, over which
trigger signals can pass from the emulator or analyzer to other

HP 64700s on the Coordinated Measurement Bus (CMB) or other
instruments connected to the BNC connector.

You can configure the internal lines to make connections between the
emulator, analyzer, external analyzer (if it is configured as an
independent state or timing analyzer), CMB connector, or BNC
connector. Measurements that depend on these connections are
called nteractive measurements or coordinated measurements.

This figure below illustrates the possible connections between the
internal lines (trigl and trig2) and the emulator, analyzer, and
external devices.

Interactive Measurement Specification
BHC <<=¥7=3> —==% BMNC <<=77=3> —==%
CHMBT <<-27-%>r —— CHMBT <<-27-3> ——-
Trigl Trigd
Emulator <<----—— ——- Emulator <<-77--—- ---
Analyzer ------ ===y Analyzer <<=77-3% ---
External Analyzer <<-77-»» ---/
NOTES:
1. The connections marked "77" are set up here in configuration.
2. drive = ———=?* receiwve = {{--—— (The display won”t change, howewver.}
3. The External Analyzer question is only asked when the External Analyzer
mode is state or timing.

Note that the "External Analyzer" connection for "Trig2" is only
available if you have selected "state" or "timing" for the external
analyzer mode.

Notice that the analyzer always drives trigl, and the emulator always
receives trigl. This provides for the break_on_trigger syntax of the
trace command.

319

Making Coordinated Measurements
To disable synchronous measurements

You can use the trigl or trig2 line to make a connection between the
analyzer and the CMB connector or BNC connector so that, when the
analyzer finds its trigger condition, a trigger signal is driven on the
HP 64700’s Coordinated Measurement Bus (CMB) or BNC connector.
This can also be done for the external analyzer when it is configured
as an independent state or timing analyzer.

You can use the trigl or trig2 line to make a connection between the
emulator break input and the CMB connector, BNC connector,
analyzer, (or external analyzer when configured as an independent
state or timing analyzer) so that program execution can break when a
trigger signal is received from the CMB, BNC, or analyzer.

You can use the trig2 line to make a connection between the analyzer
and the CMB connector or BNC connector so that the analyzer can be
armed (that is, enabled) when a trigger signal is received from the
CMB or BNC connector. This can also be done for the external
analyzer when it is configured as an independent state or timing
analyzer.

You can use the trigl and trig2 lines to make several type of
connections at the same time. For example, when the analyzer finds
its trigger condition, a signal is driven on the trigl line. This signal
may be used to stop user program execution, but the trigger signal
may also be driven on the CMB and BNC connectors.

Also, it’s possible for signals to be driven and received on the CMB or
BNC connectors. So, for example, while the analyzer’s trigger signal
can be driven on the CMB and BNC connectors, signals can also be
received from the CMB and BNC connectors and used to stop user
program execution. In this case, the emulator will break into the
monitor on either the analyzer trigger or on the reception of a trigger
signal from the CMB or BNC.

You can disable connections made by the internal trigl and trig2 lines
by choosing "neither" or "no" to the appropriate interactive
measurement configuration options.

In order to modify the interactive measurement specification, you
must first start the configuration interface and access the "Interactive

320

Making Coordinated Measurements
To disable synchronous measurements

Measurement Specification" configuration section (refer to the "Using

the Configuration Interface" section in the "Configuring the Emulator"

chapter).
Figure 30

~Interactive Measurement Specification

BHC on Trig1 Meither =

CMBT on Trigl Meither 3

BMC on Trig2 Meither =

CMET on Trig2 Meither =

Emulator Break Receive Trig2 @ Yes € Mo

Analyzer on Trig2 Meither =

External Analyzer on Trig2 | Meither £=

If you're using the Softkey Interface from a terminal or terminal
emulation window, you don’t get a dialog box from which to choose
configuration sections; however, you have access to the same
configuration options through a series of configuration questions. To
access the questions in the "Interactive Measurement Specification"
section, answer "yes" to the "Modify interactive measurement
specification?" question.

This section shows you how to:

¢ Drive the emulation analyzer trigger signal to the CMB.
¢ Drive the emulation analyzer trigger signal to the BNC connector.
* Drive the external analyzer trigger signal to the CMB.

321

Making Coordinated Measurements
To drive the emulation analyzer trigger signal to the CMB

* Drive the external analyzer trigger signal to the BNC connector.
e Break emulator execution on signal from CMB.

¢ Break emulator execution on signal from BNC.

¢ Break emulator execution on external analyzer trigger.

* Arm the emulation analyzer on signal from CMB.

* Arm the emulation analyzer on signal from BNC.

e Arm the emulation analyzer on external analyzer trigger.

* Arm the external analyzer on signal from CMB.

* Arm the external analyzer on signal from BNC.

e Arm the external analyzer on emulation analyzer trigger.

To drive the emulation analyzer trigger signal to the
CMB

Choose "receive" for the "Should CMBT drive or receive Trigl"
configuration option.

You could also drive the emulation analyzer trigger to the CMB over the trig2
internal line by specifying that the CMBT should receive trig2 and that the
emulation analyzer should drive trig2.

To drive the emulation analyzer trigger signal to the
BNC connector

Choose "receive" for the "Should BNC drive or receive Trigl"
configuration option.

You could also drive the emulation analyzer trigger to the BNC over the trig2
internal line by specifying that the BNC should receive trig2 and that the
emulation analyzer should drive trig2.

322

Making Coordinated Measurements
To drive the external analyzer trigger signal to the CMB

To drive the external analyzer trigger signal to the
CMB

Choose "receive" for the "Should CMBT drive or receive Trig2"
configuration option.

Choose "drive" for the "Should External Analyzer drive or receive
Trig2" configuration option.

To drive the external analyzer trigger signal to the
BNC connector

Choose "receive" for the "Should BNC drive or receive Trig2"
configuration option.

Choose "drive" for the "Should External Analyzer drive or receive
Trig2" configuration option.

To break emulator execution on signal from CMB

Choose "drive" for the "Should CMBT drive or receive Trigl"
configuration option.

You could also break emulator execution on a trigger signal from the CMB
over the trig2 internal line by specifying that the CMB should drive trig2 and
that the emulator break should receive trig2.

To break emulator execution on signal from BNC

Choose "drive" for the "Should BNC drive or receive Trigl"
configuration option.

You could also break emulator execution on a trigger signal from the BNC
over the trig2 internal line by specifying that the BNC should drive trig2 and
that the emulator break should receive trig2.

323

Making Coordinated Measurements
To break emulator execution on external analyzer trigger

To break emulator execution on external analyzer
trigger

Choose "yes" for the "Should Emulator break receive Trig2"
configuration option.

Choose "drive" for the "Should External Analyzer drive or receive
Trig2" configuration option.

When an emulator break occurs due to the analyzer trigger, the analyzer will
stop driving the internal signal that caused the break. Therefore, if trig2 is
used both to break and to drive the CMB TRIGGER (for example), TRIGGER
will go true when the trigger is found and then will go false after the emulator
breaks. However, if trigl is used to cause the break and trig2 is used to drive
the CMB TRIGGER, TRIGGER will stay true until the trace is halted or until
the next trace starts.

[\

To arm the emulation analyzer on signal from CMB

Choose "drive" for the "Should CMBT drive or receive Trig2"
configuration option.

Choose "receive" for the "Should Analyzer drive or receive Trig2"
configuration option.

Use the arm_trig2 option to the trace command.

[\

To arm the emulation analyzer on signal from BNC

Choose "drive" for the "Should BNC drive or receive Trig2"
configuration option.

Choose "receive" for the "Should Analyzer drive or receive Trig2"
configuration option.

Use the arm_trig2 option to the trace command.

324

Making Coordinated Measurements
To arm the emulation analyzer on external analyzer trigger

To arm the emulation analyzer on external analyzer
trigger

Choose "receive" for the "Should Analyzer drive or receive Trig2"
configuration option.

Choose "drive" for the "Should External Analyzer drive or receive
Trig2" configuration option.

Use the arm_trig2 option to the trace command.

To arm the external analyzer on signal from CMB

Choose "drive" for the "Should CMBT drive or receive Trig2"
configuration option.

Choose "receive" for the "Should External Analyzer drive or receive
Trig2" configuration option.

To arm the external analyzer on signal from BNC

Choose "drive" for the "Should BNC drive or receive Trig2"
configuration option.

Choose "receive" for the "Should External Analyzer drive or receive
Trig2" configuration option.

To arm the external analyzer on emulation analyzer
trigger

Choose "drive" for the "Should Analyzer drive or receive Trig2"
configuration option.

Choose "receive" for the "Should External Analyzer drive or receive
Trig2" configuration option.

325

326

11

Setting X Resources

327

1

2

Setting X Resources

The Graphical User Interface is an X Window System application
which means it is a client in the X Window System client-server model.

The X server is a program that controls all access to input devices
(typically a mouse and a keyboard) and all output devices (typically a
display screen). It is an interface between application programs you
run on your system and the system input and output devices.

An X resource controls an element of appearance or behavior in an X
application. For example, in the graphical interface, one resource
controls the text in action key pushbuttons as well as the action
performed when the pushbutton is clicked.

By modifying resource settings, you can change the appearance or
behavior of certain elements in the graphical interface.

When the graphical interface starts up, it reads resource specifications
from a set of configuration files. Resources specifications in later files
override those in earlier files. Files are read in the following order:

The application defaults file. For example,
/usr/lib/X11/app-defaults/HP64_Softkey in HP-UX or
/usr/openwin/lib/X11/app-defaults/HP64_Softkey in SunOS.

The $XAPPLRESDIR/HP64_Softkey file. (The XAPPLRESDIR
environment variable defines a directory containing system-wide
custom application defaults.)

The server’'s RESOURCE_MANAGER property. (The xrdb command
loads user-defined resource specifications into the
RESOURCE_MANAGER property.)

If no RESOURCE_MANAGER property exists, user defined resource
settings are read from the $HOME/ Xdefaults file.

The file named by the XENVIRONMENT environment variable.

If the XENVIRONMENT variable is not set, the

$HOME/ Xdefaults-host file (typically containing resource
specifications for a specific remote host) is read.

328

Setting X Resources

5 Resource specifications included in the command line with the -xrm
option.

6 System scheme files in directory /usr/hp64000/1ib/X11/HP64_schemes.

7 System-wide custom scheme files located in directory
$XAPPLRESDIR/HP64_schemes.

8 User-defined scheme files located in directory
$HOME/ . HP64_schemes (note the dot in the directory name).
Scheme files group resource specifications for different displays,
computing environments, and languages.

This chapter shows you how to:

Modify the Graphical User Interface resources.
Use customized scheme files.

Set up custom action keys.

Set initial recall buffer values.

Set up demos or tutorials.

Refer to the "X Resources and the Graphical Interface" section in the
"Concepts" chapter for more detailed information.

329

Setting X Resources
To modify the Graphical User Interface resources

To modify the Graphical User Interface resources

You can customize the appearance of an X Windows application by modifying
its X resources. The following tables describe some of the commonly
modified application resources.

Application Resources for Schemes

Resource Values Description

HP64_Softkey.platformScheme HP-UX Names the subdirectory for platform specific
SunOS schemes. This resource should be set to the
(custom) platform on which the X server is running

(and displaying the Graphical User Interface)
if it is different than the platform where the
application is running.

HP64_Softkey.colorScheme BW Names the color scheme file.
Color
(custom)

HP64_Softkey.sizeScheme Small Names the size scheme file which defines the
Large fonts and the spacing used.
(custom)

HP64_Softkey.labelScheme Label Names to use for labels and button text. The
$LANG default uses the $LANG environment variable
(custom) if it is set and if a scheme file named

Softkey. $LANG exists in one of the
directories searched for scheme files;
otherwise, the default is Label.

HP64_Softkey.inputScheme Input Specifies mouse and keyboard operation.
(custom)

330

Setting X Resources
To modify the Graphical User Interface resources

Commonly Modified Application Resources

Resource Values Description

HP64_Softkey.lines 24 Specifies the number of lines in the main
(min. 18) display area.

HP64_Softkey.columns 100 Specifies the number of columns, in
(min. 80) characters, in the main display area.

HP64_Softkey.enableCmdline True Specifies whether the command line area is
False displayed when you initially enter the

Graphical User Interface.

*editFile (example) |Specifies the command used to edit files.
vi %s

*editFileLine (example) |Specifies the command used to edit a file at a

vi +%d %s

certain line number.

*<proc>*actionKeysSub.keyDefs

(paired list
of strings)

Specifies the text that should appear on the
action key push buttons and the commands
that should be executed in the command line
area when the action key is pushed. Refer to
the "To set up custom action keys" section for
more information.

*<proc>*dirSelectSub.entries (list of Specifies the initial values that are placed in
strings) the File - Context — Directory pop-up recall

buffer. Refer to the "To set initial recall
buffer values" section for more information.
*<proc>*recallSub.entries (list of Specifies the initial values that are placed in
strings) the entry buffer (labeled "():"). Refer to the

"To set initial recall buffer values" section for
more information.

331

Setting X Resources
To modify the Graphical User Interface resources

The following steps show you how to modify the Graphical User Interface’s X
resources.

Copy part or all of the HP64_Softkey application defaults file to a
temporary file.

The HP64_Softkey file contains the default definitions for the graphical
interface application’s X resources.

For example, on an HP 9000 computer you can use the following command to
copy the complete HP64_Softkey file to HP64_Softkey.tmp (note that the
HP64_Softkey file is several hundred lines long):

cp /usr/lib/X11/app-defaults/HP64_Softkey HP64_Softkey.tmp

NOTE: The HP64_Softkey application defaults file is re-created each time
Graphical User Interface software is installed or updated. You can use the
UNIX diff command to check for differences between the new HP64_Softkey
application defaults file and the old application defaults file that is saved as
/usr/hp64000/1ib/X11/HP64_schemes/old/HP64_Softkey.

Modify the temporary file.

Modify the resource that defines the behavior or appearance that you wish to
change.

For example, to change the number of lines in the main display area to 36:

vi HP64_Softkey.tmp

Search for the string "HP64_Softkey.lines". You should see lines similar to
the following.

! The lines and columns set the vertical and horizontal dimensions of the
I main display area in characters, respectively. Minimum values are 18 lines
I'and 80 columns. These minimums are silently enforced.

! Note: The application cannot be resized by using the window manager.

IHP64_Softkey.lines:

24

IHP64_Softkey.columns: 85

332

Setting X Resources
To modify the Graphical User Interface resources

Edit the line containing "HP64_Softkey lines" so that it is uncommented and
is set to the new value:
!
! The lines and columns set the vertical and horizontal dimensions of the
I main display area in characters, respectively. Minimum values are 18 lines

I'and 80 columns. These minimums are silently enforced.
I

! Note: The application cannot be resized by using the window manager.

HP64_Softkey.lines: 36
IHP64_Softkey.columns: 85

Save your changes and exit the editor.

3 If the RESOURCE_MANAGER property exists (as is the case with
HP VUE — if you're not sure, you can check by entering the xrdb
-query command), use the xrdb command to add the resources to
the RESOURCE_MANAGER property. For example:
xrdb -merge -nocpp HP64_Softkey.tmp
Otherwise, if the RESOURCE_MANAGER property does not exist, append
the temporary file to your $HOME/. Xdefaults file. For example:
cat HP64_Softkey.tmp >> $HOME/. Xdefaults

4 Remove the temporary file.

5 Start or restart the Graphical User Interface.

After you have completed the above steps, you must either start, or restart
by exiting and starting again, the Graphical User Interface. Starting and

exiting the Graphical User Interface is described in the "Starting and Exiting
HP 64700 Interfaces" chapter.

333

Setting X Resources
To use customized scheme files

To use customized scheme files

Scheme files are used to set platform specific resources that deal with color,
fonts and sizes, mouse and keyboard operation, and labels and titles. You can
create and use customized scheme files by following these steps.

Create the SHOME/.HP64_schemes/<platform> directory.
For example:

mkdir $HOME/.HP64 schemes
mkdir $HOME/.HP64 schemes/HP-UX

Copy the scheme file to be modified to the
$HOME/.HP64_schemes/<platform> directory.

Label scheme files are not platform specific; therefore, they should be placed
in the $SHOME/.HP64_schemes directory. All other scheme files should be
placed in the $HOME/.HP64_schemes/<platform> directory.

For example:

cp /usr/hp64000/1ib/X11/HP64_schemes/HP-UX/Softkey.Color
$HOME/.HP64_schemes/HP-UX/Softkey.MyColor

Note that if your custom scheme file has the same name as the default
scheme file, the load order requires resources in the custom file to explicitly
override resources in the default file.

Modify the SHOME/ HP64_schemes/<platform>/Softkey.<scheme>
file.

For example, you could modify the
"$HOME/.HP64_schemes/HP-UX/Softkey.MyColor" file to change the defined
foreground and background colors. Also, since the scheme file name is
different than the default, you could comment out various resource settings
to cause general foreground and background color definitions to apply to the
Graphical User Interface. At least one resource must be defined in your color
scheme file for it to be recognized.

334

Setting X Resources
To use customized scheme files

4 If your custom scheme file has a different name than the default, you
must modify the scheme resource definitions.

The Graphical User Interface application defaults file contains resources that
specify which scheme files are used. If your custom scheme files are named
differently than the default scheme files, you must modify these resource
settings so that your customized scheme files are used instead of the default
scheme files.

For example, to use the "$HOME/.HP64_schemes/HP-UX/Softkey.MyColor"
color scheme file you would set the "HP64_Softkey.colorScheme" resource to
"MyColor":

HP64_Softkey.colorScheme: MyColor

Refer to the previous "To customize Graphical User Interface resources"
section for more detailed information on modifying resources.

335

Setting X Resources
To set up custom action keys

To set up custom action keys

¢ Modify the "actionKeysSub.keyDefs" resource.

The "actionKeysSub.keyDefs" resource defines a list of paired strings. The
first string defines the text that should appear on the action key pushbutton.
The second string defines the command that should be sent to the command
line area and executed when the action key is pushed.

A pair of parentheses (with no spaces, that is "()") can be used in the
command definition to indicate that text from the entry buffer should replace
the parentheses when the command is executed.

Action keys that use the entry buffer should always include the entry buffer
symbol, "()", in the action key label as a visual cue to remind you to place
information in the entry buffer before clicking the action key.

Shell commands can be executed by using an exclamation point prefix. A
second exclamation point ends the command string and allows additional
options on the command line.

Also, command files can be executed by placing the name of the file in the
command definition.

Finally, an empty action ("") means to repeat the previous operation, whether
it came from a pull-down, a dialog, a pop-up, or another action key.

Examples To set up custom action keys when the graphical interface is used with 6830x
emulators, modify the "*m6830x*actionKeysSub.keyDefs" resource:
*m6830x*actionKeysSub.keyDefs: \

"Make" "cd /users/project2/6830x; 'make! in_browser" \

"Load Pgm" "load configuration config.EA; load program2" \

"Run Pgm" "run from reset" \

"Trace after ()" "trace after (); display trace" \

"Step Source" "set source on; display memory mnemonic; step source" \
"Again”

Refer to the previous "To modify Graphical User Interface resources" section
for more detailed information on modifying resources.

336

Setting X Resources
To set initial recall buffer values

To set initial recall buffer values

e Modify the "entries" resource for the particular recall buffer.

There are six pop-up recall buffers present in the Graphical User Interface.
The resources for these pop-up recall buffers are listed in the following table.

The window manager resource "*transientDecoration" controls the borders
around dialog box windows. The most natural setting for this resource is

"title."

Popup Recall Buffer Resources

Recall Popup Resources

Description

File - Context — Directory ... |*dirSelect.textColumns
*dirSelect.listVisibleItemCount
*dirSelectSub.entries

File - Context — Symbols ... *symSelect.textColumns
*symSelect.listVisibleItemCount
*symSelectSub.entries

Trace - Trace Spec ... *modtrace.textColumns
*modtrace.listVisibleltemCount
*modtraceSub.entries

Entry Buffer (): *recall.textColumns
*recall listVisibleItemCount
*recallSub.entries

Command Line command *recallCmd.textColumns
recall *recallCmd listVisibleItemCount
*recallCmdSub.entries

Command Line pod/simio *recallKbd.textColumns
recall *recallKbd listVisibleltemCount
*recallKbdSub.entries

The default number of text
columns in the pop-up is 50.

The default number of visible lines
in the pop-up is 12.

The "entries" resource is defined
as a list of strings (see the
following example).

Up to 40 unique values are saved
in each of the recall buffers (as
specified by the resource settings
"*XcRecall. maxDepth: 40" and
"*XcRecall.onlyUnique: True").

337

Setting X Resources
To set up demos or tutorials

Examples To set the initial values for the directory selection dialog box when the
Graphical User Interface is used with 6830x emulators, modify the
"*m6830x*dirSelectSub.entries" resource:
*m6830x*dirSelectSub.entries: \

"$HOME" \

"

"lusers/projectl”\
"lusers/project2/6830x"

Refer to the previous "T'o modify the Graphical User Interface resources"
section for more detailed information on modifying resources.

To set up demos or tutorials

You can add demos or tutorials to the Graphical User Interface by modifying
the resources described in the following tables.

Demo Related Component Resources

Resource Value Description
*enableDemo False Specifies whether Help - Demo

True appears in the pull-down menu.
*demoPopupSub.indexFile /Xdemo/Index-topics Specifies the file containing the list of

topic and file pairs.

*demoPopup.textColumns 30 Specifies the width, in characters, of
the of the demo topic list pop-up.

*demoPopup.listVisibleIltemCount 10 Specifies the length, in lines, of the
demo topic list pop-up.

*demoTopic About demos Specifies the default topic in the
demo pop-up selection buffer.

338

Setting X Resources
To set up demos or tutorials

Tutorial Related Component Resources

Resource Value Description
*enableTutorial False Specifies whether Help - Tutorial
True appears in the pull-down menu.

*tutorialPopupSub.indexFile JXtutorial/Index-topics | Specifies the file containing the list
of topic and file pairs.

*tutorialPopup.textColumns 30 Specifies the width, in characters,
of the of the tutorial topic list
Pop-up.

*tutorialPopup.listVisibleItemCount 10 Specifies the length, in lines, of the

tutorial topic list pop-up.

*tutorialTopic About tutorials Specifies the default topic in the
tutorial pop-up selection buffer.

The mechanism for providing demos and tutorials in the graphical interface is
identical. The following steps show you how to set up demos or tutorials in
the Graphical User Interface.

1 Create the demo or tutorial topic files and the associated command
files.
Topic files are simply ASCII text files. You can use "\I" to produce inverse
video in the text, "\U" to produce underlining in the text, and "\N" to restore

normal text.
Command files are executed when the "Press to perform demo (or tutorial)"

button (in the topic pop-up dialog) is pushed. A command file must have the
same name as the topic file with ".cmd" appended. Also, a command file
must be in the same directory as the associated topic file.

339

Setting X Resources
To set up demos or tutorials

Create the demo or tutorial index file.

Each line in the index file contains first a quoted string that is the name of
the topic which appears in the index pop-up and second the name of the file
that is raised when the topic is selected. For example:

"About demos" /users/guest/gui_demos/general

"Loading programs" /users/guest/gui_demos/loadprog

"Running programs" /users/guest/gui_demos/runprog

You can use absolute paths (for example, /users/guest/topicl), paths relative
to the directory in which the interface was started (for example,
mydir/topic2), or paths relative to the product directory (for example,
/Xdemo/general where the product directory is something like
/usr/hp64000/inst/emul/64742A).

Set the "*enableDemo" or "*enableTutorial" resource to "True".
Define the demo index file by setting the "*demoPopupSub.indexFile"
or "*tutorialPopupSub.indexFile" resource.

For example:

*demoPopupSub.indexFile: /users/guest/gui_demos/index

You can use absolute paths (for example, /users/guest/Index), paths relative
to the directory in which the interface was started (for example,
mydir/indexfile), or paths relative to the product directory (for example,

/Xdemo/Index-topics where the product directory is something like
/usr/hp64000/inst/emul/64742A).

If you wish to define a default topic to be selected, set the
"*demoTopic" or "*tutorialTopic" resource to the topic string.
For example:

*demoTopic: "About demos”

Refer to the previous "To customize Graphical User Interface resources"
section for more detailed information on modifying resources.

340

Part 3

Reference

341

Part3

Descriptions of the product in a dictionary or encyclopedia format.

342

12

Emulator/Analyzer Interface
Commands

343

Emulator/Analyzer Interface Commands

This chapter describes the emulator/analyzer interface commands in
alphabetical order. First, the syntax conventions are described and the
commands are summarized.

How Pull-down Menus Map to the Command Line

Pull-down menu items and corresponding softkey commands are shown

below.
Pull-down Command Line
File - Context — Directory cd
File - Context — Symbols CWSs
File - Load — Emulator Config load configuration
File - Load — Executable load <abs_file>
File - Load - Program Only load <abs_file> nosymbols
File - Load - Symbols Only load symbols
File - Load — Trace Data load trace <FILE>
File - Load - Trace Spec load trace <FILE>
File - Store - Trace Data store trace
File - Store - Trace Spec store trace_spec
File - Store - BBA Data bbaunload
File - Copy - Display copy display to
File - Copy - Memory copy memory to
File - Copy - Data Values copy data to
File - Copy - Configuration Info copy configuration_info to
File - Copy - Trace copy trace to
File - Copy — Registers copy registers to
File - Copy — Breakpoints copy software_breakpoints to
File - Copy - Status copy status to
File - Copy - Global Symbols copy global_symbols to
File - Copy - Local Symbols () copy local_symbols_in --SYMB-- to
File - Copy - Pod Commands copy pod_command to
File — Copy - Error Log copy error_log to
File — Copy - Event Log copy event_log to

344

Emulator/Analyzer Interface Commands

Pull-down Command Line
File - Log — Playback <command file>
File - Log — Record log_commands to
File - Log — Stop log_commands off

File - Emul700 - Performance Analyzer
File - Emul700 — Emulator/Analyzer
File - Emul700 - Timing Analyzer

File - Emul700 - SPA for VRTXsa

File - Emul700 - SPA for VRTX

File - Edit - File
File - Edit —» At () Location
File - Edit — At PC Location

File - Term

File - Exit - Window (save session)

File - Exit - Locked (all windows, save
session)

File - Exit - Released (all windows, release
emulator)

N/A
N/A
N/A
N/A
N/A

I'vi <file> ! no_prompt_before_exit
!'vi +<line> <file> ! no_prompt_before_exit
!'vi +<line> <file> ! no_prompt_before_exit

!

end
end locked

end release_system

Display — Context

Display - Memory

Display - Memory — Mnemonic ()
Display - Memory — Mnemonic at PC
Display - Memory - Mnemonic Previous
Display - Memory — Hex () - bytes
Display - Memory - Hex () - words
Display - Memory - Hex () - long
Display - Memory — Real () - short
Display - Memory - Real () - long
Display - Memory — At ()

Display - Memory - Repetitively

Display — Data Values
Display - Data Values — New () - <type>
Display - Data Values —» Add () - <type>

pwd, pws

display memory

display memory --EXPR-- mnemonic
display memory mnemonic at_pc
display memory mnemonic previous_display
display memory --EXPR-- blocked bytes
display memory --EXPR-- blocked words
display memory --EXPR-- blocked long
display memory --EXPR-- real short
display memory --EXPR-- real long
display memory --EXPR--

display memory repetitively

display data
display data --EXPR-- <type>
display data, --EXPR-- <type>

345

Emulator/Analyzer Interface Commands

Pull-down

Command Line

Display — Configuration Info

Display — Configuration Info - Diagnostics
Display — Configuration Info — Chip Selects
(SIM)

Display — Configuration Info — Chip Selects
(Emulator SIM)

Display — Configuration Info — Bus Interface
Ports (SIM)

Display — Configuration Info — Bus Interface
Ports (Emulator SIM)

Display — Configuration Info -~ Memory Map
Display — Configuration Info — Reset Mode
Value

Display — Configuration Info - Initialization
Source Code

Display — SIM Register Differences
Display — Trace

Display — Registers
Display — Breakpoints
Display - Status

Display — Simulated 10
Display — Global Symbols
Display — Local Symbols ()
Display - Pod Commands
Display - Error Log
Display — Event Log

display configuration_info
display configuration_info diagnostics
display configuration_info sim_chip_selects

display configuration_info emsim_chip_selects
display configuration_info bus_interface_ports
display configuration_info embus_interface_ports

display configuration_info memory_map
display configuration_info reset_mode

display configuration_info init_source_code

sync_sim_registers difference
display trace

display registers

display software_breakpoints
display status

display simulated_io

display global_symbols
display local_symbols_in --SYMB--
display pod_command
display error_log

display event_log

Modify - Emulator Config
Modify - Memory

Modify - Memory at ()
Modify — Register

Modify — SIM Registers — Copy Processor SIM

to Emulator SIM

Modify — SIM Registers — Copy Emulator SIM

to Processor SIM
Modify - SIM Registers — Default Emulator
SIM to Reset Values

modify configuration

modify memory

modify memory --EXPR--

modify register

sync_sim_registers from_6830x_to_config

sync_sim_registers to_6830x_from_config

sync_sym_registers default_emsim

346

Emulator/Analyzer Interface Commands

Pull-down

Command Line

Execution - Run - from PC

Execution - Run - from ()

Execution - Run - from Transfer Address
Execution - Run - from Reset

Execution - Run - until ()

Execution - Step Source - from PC
Execution - Step Source - from ()
Execution - Step Source - from Transfer
Address

Execution - Step Instruction - from PC
Execution - Step Instruction - from ()
Execution - Step Instruction - from Transfer
Address

run
run from --EXPR--

run from transfer_address

run from reset

run until --EXPR--

step source

step source from --EXPR--

step source from transfer_address

step
step from --EXPR--
step from transfer_address

Execution - Break break

Execution - Reset reset,

Breakpoints - Display display software_breakpoints

Breakpoints — Enable modify software_breakpoints enable/disable

Breakpoints — Permanent ()
Breakpoints —» Temporary ()
Breakpoints - Set All

Breakpoints — Clear ()
Breakpoints — Clear All

modify software_breakpoints set --EXPR--
permanent

modify software_breakpoints set --EXPR--
temporary

modify software_breakpoints set

modify software_breakpoints clear --EXPR--
modify software_breakpoints clear

347

Emulator/Analyzer Interface Commands

Pull-down Command Line
Trace - Display display trace
Trace - Display Options display trace

Trace — Trace Spec
Trace - After ()
Trace — Before ()
Trace - About ()
Trace - Only ()
Trace - Only () Prestore
Trace - Again

Trace — Repetitively
Trace - Everything
Trace - Until ()
Trace - Until Stop
Trace - Stop

N/A (browses recall buffer for trace commands)
trace after STATE

trace before STATE

trace about STATE

trace only STATE

trace only STATE prestore anything
trace again

<previous trace spec> repetitively
trace

trace before STATE break_on_trigger
trace on_halt

stop_trace

Settings —» Source/Symbol Modes - Absolute
Settings —» Source/Symbol Modes - Symbols
Settings —» Source/Symbol Modes - Source
Mixed

Settings —» Source/Symbol Modes - Source
Only

Settings — Display Modes

Settings - Pod Command Keyboard
Settings —» Simulated 10 Keyboard

Settings - Command Line

set source off symbols off
set source off symbols on
set source on inverse_video on symbols on

set source only inverse_video off symbols on

set

display pod_command; pod_command keyboard
display simulated_io; modify keyboard_to_simio
N/A (toggles the command line)

348

Emulator/Analyzer Interface Commands

How Pop-up Menus Map to the Command Line

The following tables show the items available in the pop-up menus and the
command line commands to which they map.

Mnemonic Memory Display Pop-up

Command Line

Set/Clear Software Breakpoint
Edit Source

Run Until

Trace After

Trace Before

Trace About

Trace Until

modify software_breakpoints set/clear --EXPR--
I'vi +<line> <file> ! no_prompt_before_exit

run until --EXPR--

trace after STATE

trace before STATE

trace about STATE

trace before STATE break_on_trigger

Breakpoints Display Pop-up

Command Line

Set/Inactivate Breakpoint

Clear (delete) Breakpoint
Enable/Disable Software Breakpoints
Set All Breakpoints

Clear (delete) All Breakpoints

modify software_breakpoints set/deactivate --EXPR--
modify software_breakpoints clear --EXPR--

modify software_breakpoints enable/disable

modify software_breakpoints set

modify software_breakpoints clear

Symbols Display Pop-up

Command Line

Display Local Symbols
Display Parent Symbols

Cut Full Symbol Name
Edit File Defining Symbol

display local_symbols_in --SYMB--

display local_symbols_in --SYMB--, display
global_symbols

N/A

!'vi +<line> <file> ! no_prompt_before_exit

349

Emulator/Analyzer Interface Commands

Status Line Pop-up

Command Line

Remove Temporary Message
Command Line On/Off
Display Error Log

Display Event Log

N/A

(toggles command line)
display error_log
display event_log

Command Line Pop-up

Command Line

Position Cursor, Replace Mode
Position Cursor, Insert Mode
Execute Command

Clear to End of Line

Clear Entire Line

Command Line Off

<INSERT CHAR> key (when in insert mode)
<INSERT CHAR> key

<RETURN> key

<CTRL>e

<CTRL>u

(toggles command line)

350

Emulator/Analyzer Interface Commands

Syntax Conventions
Conventions used in the command syntax diagrams are defined below.

Oval-shaped Symbols

Oval-shaped symbols show options available on the softkeys and other
commands that are available, but do not appear on softkeys (such as
log_commands and wait). These appear in the syntax diagrams as:

global_symbols

Rectangular-shaped Symbols

Rectangular-shaped symbols contain prompts or references to other syntax
diagrams. Prompts are enclosed with angle brackets (< and >). References
to other diagrams are shown in all capital letters. Also, references to
expressions are shown in all capital letters, for example --EXPR-- and
--SYMB-- (see those syntax diagrams). These appear in the following syntax
diagrams as:

<REGISTERS> ——EXPR—-—

Circles

Circles indicate operators and delimiters used in expressions and on the
command line as you enter commands. These appear in the syntax diagrams

as:
The -NORMAL- Key

The softkey labeled -NORMAL- allows you exit the --SYMB-- definition, and
access softkeys that are not displayed when defining expressions. You can
press this key after you have defined an expression to view other available
options.

351

Commands

Emulator/analyzer Softkey Interface commands are summarized in the table

below and described in the following pages.

IUNIX_COMMAND
bbaunload

break

cd (change directory)3
cmb_execute

<command file>”

copy configuration_info
copy data®

copy display

copy error_log

copy event_log

copy global_symbols

copy help

copy local_symbols_in
copy memory

copy pod_command

copy registers

copy software_breakpoints
copy status

copy trace

cws(change working symbol)3
display configuration_info
display data®*

display error_log

display event_log
display global_symbols
display local_symbols_in
display memory

display pod_command
display regis‘cers1
display simulated_io2
display software_breakpoints
display status

display trace

end

forward®

help3

load <absolute_file>
load configuration

load emul_mem

load fg_mon

load trace

load trace_spec

load user_memory
log_commands

modify configuration
modify keyboard_to_simio2

U This option is not available in real-time mode.

2 This is only available when simulated /O is defined.
3 These commands are not displayed on softkeys.

* This option is not available in real-time mode if addresses are in user memory.

modify memory4

modify reg,ister1

modify softvvare_breakpoints1
modify tags

name_of_module3
performance_measurement_end
performance_measurement_init
performance_measurement_run
pod_command

pwd (print working directorgf)3
pws (print working symbol)
reset

run

set

specify

step

stop_trace

store memory

store trace

store trace_spec
sync_sim_registers

trace

wait®

352

Emulator/Analyzer Interface Commands
bbaunld

See Also

bbaunld

This command is available when the HP Branch Validator product is installed.
This basis branch analyzer (BBA) product is used to analyze the testing of
your programs, create more complete test suites, and quantify your level of
testing.

The HP Branch Validator records branches executed in a program and
generates reports that provide information about program execution during
testing. It uses a special C preprocessor to add statements that write to a
data array when program branches are taken. After running the program in
the emulator (using test input), you can use the bbaunload command to store
the BBA information to a file. Then, you can generate reports based on the
stored information.

Refer to the HP Branch Validator (BBA) User’s Guide for complete details
on the bbaunload command syntax.

363

Emulator/Analyzer Interface Commands
break

running

reset
running in monitor

See Also

break

break <RETURN>

This command causes the emulator to leave user program execution and
begin executing in the monitor.

The behavior of break depends on the state of the emulator:

Break diverts the processor from execution of your program to the emulation
monitor.

Break releases the processor from reset, and diverts execution to the monitor.
The break command does not perform any operation while the emulator is
executing in the monitor.

The reset, run, and step commands.

354

Emulator/Analyzer Interface Commands
cmb_execute

cmb_execute

cmb _execute <RETURN>

The cmb_execute command causes the emulator to emit an EXECUTE pulse
on its rear panel Coordinated Measurement Bus (CMB) connector. All
emulators connected to the CMB (including the one sending the CMB
EXECUTE pulse) and configured to respond to this signal will take part in
the measurement.

See Also The specify run and specify trace commands.

365

Emulator/Analyzer Interface Commands
copy

COopy

‘P{ MEMORY

% TRACE A
¥>{ REGISTERS A
%Oﬁwurefbraukpoms)i
= global_symaols
\—QLD[AL,SYMBDLSJN }—/
¥>< help H<HEL3,F\LE> }—J
~—= display

errur_log

y

evenf_.og

~(5o3 como)
—={ sfafus)
configuration_info

<RETURN>
L><noheuder

waif_for_exif

printer

HP_UX_CMD

64782501

Use this command with various parameters to save or print emulation and
analysis information.

The copy command copies selected information to your system printer or
listing file, or directs it to an UNIX process.

356

configuration_info
data

display
error_log
event_log
<FILE>

global_symbols
help
<HELP_FILE>

UNIX CMD

local_symbols_in

memory
noappend

noheader
pod_command

Emulator/Analyzer Interface Commands
copy

Depending on the information you choose to copy, default values may be
options selected for the previous execution of the display command. For
example, if you display memory locations 10h through 20h, then issue a copy
memory to myfile command, myfile will list only memory locations 10h
through 20h.

The parameters are as follows:

Copies the last configuration information display.

Copies a list of memory contents formatted in various data types (see display
data).

Copies the display to a selected destination.

Copies the most recent errors that have occurred.

Copies the most recent events that have occurred.

This prompts you for the name of a file where you want the specified
information to be copied. If you want to specify a file name that begins with a
number, you must precede the file name with a backslash. For example:
copy display to \12.10.

Copies a list of global symbols to the selected destination.

Copies the contents of the emulation help files to the selected destination.
This represents the name of the help file to be copied. Available help file
names are displayed on the softkey labels.

This represents an UNIX filter or pipe where you want to route the output of
the copy command. UNIX commands must be preceded by an exclamation
point (). An exclamation point following the UNIX command continues
command line execution after the UNIX command executes. Emulation is
not affected when using an UNIX command that is a shell intrinsic.

Copies all the children of a given symbol to the selected destination. See the
--SYMB-- syntax page and the Symbolic Retrieval Utilities User’s Guide for
information on symbol hierarchy.

Copies a list of the contents of memory to the selected destination.

This causes any copied information to overwrite an existing file with the
same name specified by <FILE>. If this option is not selected, the default
operation is to append the copied information to the end of an existing file
with the same name that you specify.

Copies the information into a file without headings.

This allows you to copy the most recent commands sent to the HP 64700
Series emulator/analyzer.

357

printer

registers

software
_breakpoints
status

to

trace
wait_for_exit
!

Examples

See Also

Emulator/Analyzer Interface Commands
copy

This option specifies your system printer as the destination device for the
copy command. Before you can specify the printer as the destination device,
you must define PRINTER as a shell variable. For example, you could enter
the text shown below after the "$" symbol:

$ PRINTER=Ip
$ export PRINTER

If you don’t want the print message to overwrite the command line, execute:

$ set PRINTER ="Ip -s"

Copies a list of the contents of the emulation processor registers to the
selected destination.
Copies a list of the current software breakpoints to a selected destination.

Copies emulation and analysis status information.

This allows you to specify a destination for the copied information.

Copies the current trace listing to the selected destination.

Waits for the UNIX command to complete before returning.

An exclamation point specifies the delimiter for UNIX commands. An
exclamation point must precede all UNIX commands. A trailing exclamation
point should be used if you want to return to the command line and specify
noheader. Otherwise, the trailing exclamation point is optional. If an
exclamation point is part of the UNIX command, a backslash (\) must
precede the exclamation point.

See the following pages on various copy syntax diagrams.

See the following pages on various copy syntax diagrams.

358

Emulator/Analyzer Interface Commands
copy local_symbols_in

copy local_symbols_in

(copy }’Qcco\,symbo\s,iHJ To output of | LOCAL_SYMBOLS_IN
= ——SYMB—— on ‘ COPY ‘diogrom

This command lets you copy local symbols contained in a source file and
relative segments (program, data, or common) to the selected destination.

Local symbols are symbols that are children of the particular file or symbol
defined by --SYMB--, that is, they are defined in that file or scope.

For additional information on symbols, refer to the --SYMB-- syntax pages
and the Symbolic Retrieval Utilities User’s Guide.
--SYMB-- is the current working symbol.
The parameters are as follows:
--SYMB-- This option represents the symbol whose children are to be listed. See the

--SYMB-- syntax diagram and the Symbolic Retrieval Utilities User’s Guide
for information on symbol hierarchy.

Examples copy local_symbols_in mod_name to printer
copy local_symbols_in mod_name: to linenumfile
See Also The display local_symbols_in command.

3569

Emulator/Analyzer Interface Commands
copy memory

copy memory

< copy >—A< memory

-EXPR--
oy
N

N
N N

To output of MEMORY
al COoPY diagram

This command copies the contents of a memory location or series of locations
to the specified output.

The memory contents are copied in the same format as specified in the last
display memory command.

Contents of memory can be displayed if program runs are not restricted to
real-time. Memory contents are listed as an asterisk (*) under the following
conditions:

e The address refers to guarded memory.

* Runs are restricted to real-time, the emulator is running a user
program, and the address is located in user memory.
Values in emulation memory can always be displayed.

Initial values are the same as those specified by the command display
memory 0 blocked bytes offset_by 0.

Defaults are to values specified in the previous display memory command.

360

~-EXPR--

FCODE

Examples

See Also

Emulator/Analyzer Interface Commands
copy memory

The parameters are as follows:

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a memory address or offset value. See the EXPR
syntax diagram.

The function code used to define the address space being referenced. See the
syntax diagram for FCODE to see a list of the function codes available and for
an explanation of those codes.

A comma used immediately after memory in the command line appends the
current copy memory command to the preceding display memory command.
The data specified in both commands is copied to the destination specified in
the current command. Data is formatted as specified in the current
command. The comma is also used as a delimiter between values when
specifying multiple memory addresses.

copy memory start to printer

copy memory 0 thru 100h, start thru +5,500H ,
target2 to memlist

copy memory 2000h thru 204fh to memlist

The display memory, modify memory, and store memory commands.

361

Emulator/Analyzer Interface Commands
copy registers

copy registers

copy = registers %j
To output of | REGISTERS

<CLASS> on COPY diagram
1

"l <REGISTER>

This command copies the contents of the processor registers to a file or
printer.

The copy register process does not occur in real-time. The emulation system
must be configured for nonreal-time operation to list the registers while the
processor is running.

With no options specified, the basic register class is copied. This includes the
local and global registers.

The parameters are as follows:

<CLASS> Specifies a particular class of the emulator registers.
<REGISTER>
Examples copy registers global to printer
copy registers to reglist
See Also The display registers and modify registers commands.

362

Emulator/Analyzer Interface Commands

copy trace

from_line_number
<LINE#>

thru_line_number

Examples

See Also

copy trace

Com)

fromiﬁmeimumbea—% <LINE #> }—%hruiﬁmeimumber}% <LINE #> b

Ct’ To output of TRACE
on COPY diagram

This command copies the contents of the trace buffer to a file or to the
printer.

Trace information is copied in the same format as specified in the last display

trace command.

Initial values are the same as specified by the last display trace command.

The parameters are as follows:
This specifies the trace list line number from which copying will begin.

Use this with from_line_number and thru_line_number to specify the starting

and ending trace list lines to be copied.

Specifies the last line number of the trace list to include in the copied range.

copy trace to tlist
copy trace from_line_number 0 thru_line_number
to longtrac

The display trace and store trace commands.

5

363

Emulator/Analyzer Interface Commands
display

data
error_log
event_log

global_symbols

display

display - = DATA /] <RETURN>

- /
N P{SOFTWARE,BREAKPO\NTS‘ -
o |
{EH’DFJGQ)
{eventtag)
» pod_command
>< status)

This command displays selected information on your screen.

|

7
NN

64749507

You can use the <Up arrow>, <Down arrow>, <PREV>, and <NEXT> keys to
view the displayed information. For software_breakpoints, data, memory,
and trace displays you can use the <CTRL>g and <CTRL>f keys to scroll left
and right if the information goes past the edge of the screen.

Depending on the information you select, defaults may be the options
selected for the previous execution of the display command.

The parameters are as follows:

This allows you to display a list of memory contents formatted in various data
types (see the display data pages for details).

This option displays the recorded list of error messages that occurred during
the emulation session.

This option displays the recorded list of events.

This option lets you display a list of all global symbols in memory.

364

local_symbols_in

memory
pod_command

registers
simulated_io

software
_breakpoints
status

trace

Examples

See Also

Emulator/Analyzer Interface Commands
display

This option lets you display all the children of a given symbol. See the
--SYMB-- syntax page and the Symbolic Retrieval Ulilities User’s Guide for
details on symbol hierarchy.

This option allows you to display the contents of memory.

This option lets you display the output of previously executed emulator pod
commands.

This allows you to display the contents of emulation processor registers.

This lets you display data written to the simulated I/O display buffer after you
have enabled polling for simulated I/0 in the emulation configuration.

This option lets you display the current list of software breakpoints.

This displays the emulator and trace status.
This displays the current trace list.

display event_log

display local_symbols_in mod_name

The copy command description and the following pages which describe the
various display commands.

365

Emulator/Analyzer Interface Commands
display configuration_info

display configuration_info

< display Hconﬁgurahon,mfo) w diagnostics To | <RETURN=> | an
sim_chip_selects <MODIFY= | diagram

= emsim_chip_selects

bus_interface_ports

i

embus_inferface_ports

I

memory_map

- reset_mode

|

inil _source_code

|

64749501

This command displays information about emulator configuration and
processor SIM programming. You can also display diagnostic information
about inconsistencies found in the emulator configuration.

366

diagnostics

sim_chip_selects

emsim_chip
_selects

bus_interface_ports

embus_interface
_ports
memory_map

reset_mode

init_source_code

Emulator/Analyzer Interface Commands
display configuration_info

The parameters are as follows:

Checks all parts of the emulator configuration and reports any
inconsistencies. It identifies errors that result from inconsistencies between
related configuration values. These errors should be resolved in order for the
emulator to operate correctly.

This option primarily checks for inconsistencies between the mapper and the
EMSIM registers, but it also provides status messages about expectations and
limitations of the emulator of which you should be aware. (These checks are
primarily between the reset mode configuration value and the EMSIM
registers.)

If no messages are returned, no inconsistencies are found in the emulator
configuration.

Display chip select information from the sim (processor) register set or the
emsim (emulator) register set. The resulting display shows:

How the chip select is assigned.
The base address.
The block size.

Other information from the option register.
Display bus interface information from the sim (processor) register set or the
emsim (emulator) register set. The resulting display shows the pin
assignments for the available ports.

When in the memory map section of the emulator configuration, the ranges of
memory that have been mapped are displayed.

The memory map configuration information shows detailed information about
the memory map and how actual mapper resources are allocated due to the
current programming of the chip selects in the EMSIM register sets.

Displays information about the reset mode configuration value, whether it is
generated internally by the emulator or externally by the target system.
Displays the assembly language program that will initialize the processor as
defined by the current EMSIM register contents.

367

Examples

See Also

Emulator/Analyzer Interface Commands
display configuration_info

display configuration_info diagnostics
display configuration_info memory_map
The sync_sim_registers and modify configuration commands. Also, see

the "Verifying the Emulator Configuration" section in the "Configuring the
Emulator" chapter.

368

Emulator/Analyzer Interface Commands
display data

display data

(display >—>< data

0 <RETURN> on
display diagram

:{ —ExPR—— | byte
thru H——EXPR M

I

word

oo
. -

This command can display the values of simple data types in your program.
Using this command can save you time; otherwise, you would need to search
through memory displays for the location and value of a particular variable.
The address, identifier, and data value of each symbol may be displayed. You
must issue the command set symbols on to see the symbol names displayed.

In the first display data command after you begin an emulation session,
you must supply at least one expression specifying the data item(s) to
display.

Thereafter, the display data command defaults to the expressions
specified in the last display data command, unless new expressions are
supplied or appended (with a leading comma).

w

69

~-EXPR--

thru --EXPR--

<TYPE>

byte
word
long

int8

int16
int32
u_int8
u_intl16
u_int32
char

Emulator/Analyzer Interface Commands
display data

Symbols are normally set off until you give the command set symbols on.
Otherwise, only the address, data type, and value of the data item will be
displayed.

The parameters are as follows:

A leading comma allows you to append additional expressions to the previous
display data command.

Commas between expression/data type specifications allow you to specify
multiple variables and types for display with the current command.

Prompts you for an expression specifying the data item to display. The
expression can include various math operators and program symbols. See
the --EXPR-- and --SYMB-- syntax pages for more information.

Allows you to specify a range of addresses for which you want data display.
Typically, you use this to display the contents of an array. You can display
both single-dimensioned and multi-dimensioned arrays. Arrays are displayed
in the order specified by the language definition, typically row major order for
most Algol-like languages.

Specifies the format in which to display the information. (Data type
information is not available from the symbol database, so you must specify.)
Hex display of one 8 bit location.

Hex display of one 16 bit location.

Hex display of one 32 bit location.

Note that byte ordering in word and long displays is determined by the
conventions of the processor in use.

Display of one 8 bit location as a signed integer using two’s complement
notation.

Display of two bytes as a signed integer using two’s complement notation.
Display of four bytes as a signed integer using two’s complement notation.
Display of one byte as an unsigned positive integer.

Display of two bytes as an unsigned positive integer.

Display of four bytes as an unsigned positive integer.

Displays one byte as an ASCII character in the range 0 through 127. Control
characters and values in the range 128 through 255 are displayed as a period

0.

370

Emulator/Analyzer Interface Commands
display data

Examples display data Msg_A thru +17 char , Stack long
set symbols on
set width label 30

display data ,Msg B thru +17 char ,Msg_Dest thru
+17 char

See Also The copy data and set commands.

371

Emulator/Analyzer Interface Commands
display global_symbols

See Also

display global_symbols

display global_symbols = To | <RETURN> | on
DISPLAY diagram

This command displays the global symbols defined for the current absolute
file.

Global symbols are symbols declared as global in the source file. They
include procedure names, variables, constants, and file names. When the
display global_symbols command is used, the listing will include the
symbol name and its logical address.

The copy global_symbols command.

372

Emulator/Analyzer Interface Commands
display local_symbols_in

display local_symbols_in

Cdisp\oy)—P@Dcm\,symbo\s,m To | <RETURN> | on
M ——SYMB—— M DISPLAY diagram

This command displays the local symbols in a specified source file and their
relative segment (program, data, or common).
Local symbols of --SYMB-- are the ones which are children of the file and/or
scope specified by --SYMB--. That is, they are defined in that file or scope.
See the --SYMB-- syntax pages and the Symbolic Retrieval Utilities User’s
Guide for further explanation of symbols.
Displaying the local symbols sets the current working symbol to the one
specified.
The parameters are as follows:

--SYMB-- This option represents the symbol whose children are to be listed. See the

--SYMB-- syntax diagram and the Symbolic Retrieval Utilities User’s Guide
for more information on symbol hierarchy and representation.

Examples display local_symbols_in mod_name
display local_symbols_in mod_name:main
See Also The copy local_symbols_in command.

373

Emulator/Analyzer Interface Commands
display memory

display memory
(display)——(memory

EXPR--

FCODE thru H ——EXPR-- M

O O

repefitively

\ shart g
o)

=~ blocked
.'

absolute

—{ mnemonic

previous_display

J

DISPLAY diagram

To | <RETURN> | on
OffsetbyH —-EXPR-- Mj

This command displays the contents of the specified memory location or
series of locations.

The memory contents can be displayed in mnemonic, hexadecimal, or real
number format. In addition, the memory addresses can be listed offset by a

374

absolute
at_pc

blocked
bytes
--EXPR--

FCODE

long

Emulator/Analyzer Interface Commands
display memory

value, which allows the information to be easily compared to the program
listing.

When displaying memory mnemonic and stepping, the next instruction that
will step is highlighted. The memory mnemonic display autopages to the new
address if the next PC goes outside the currently displayed address range.
This feature works even if stepping is performed in a different emulation
window than the one displaying memory mnemonic.

Pending software breakpoints are shown in the memory mnemonic display by
an asterisk (*) in the leftmost column of the assembly instruction or source
line that has a pending breakpoint.

A label column (symbols) may be displayed for all memory displays except
blocked mode. Memory mnemonic may be displayed with source and
assembly code intermixed, or with source code only. Symbols also can be
displayed in the memory mnemonic string. (See theset command.)

Initial values are the same as specified by the command:
display memory 0 blocked bytes offset_by 0

Defaults are values specified in a previous display memory command.
The symbols and source defaults are:

set source off symbols off

The parameters are as follows:

Formats the memory listing in a single column.

Displays the memory at the address pointed to by the current program
counter value.

Formats the memory listing in multiple columns.

Displays the absolute or blocked memory listing as byte values.

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a memory address or memory offset value. See the
EXPR syntax diagram.

The function code used to define the address space being referenced. See the
syntax diagram for FCODE to see a list of the function codes available and for
an explanation of those codes.

Displays memory in a 64-bit real number format or 32-bit long words when
preceded by blocked or absolute.

375

mnemonic

offset_by

previous_display
real

repetitively

short
thru

words

Emulator/Analyzer Interface Commands
display memory

This causes the memory listing to be formatted in assembly language
instruction mnemonics with associated operands. When specifying
mnemonic format, you should include a starting address that corresponds to
the first byte of an operand to ensure that the listed mnemonics are correct.
If set source only is on, you will see only the high level language statements
and corresponding line numbers.

This option lets you specify an offset that is subtracted from each of the
absolute addresses before the addresses and corresponding memory contents
are listed. You might select the offset value so that each module appears to
start at address 0000H. The memory contents listing will then appear similar
to the assembler or compiler listing.

This option is also useful for displaying symbols and source lines in
dynamically relocated programs.

Returns to display associated with the previous mnemonic memory display
command.

Formats memory values in the listing as real numbers. (NaN in the display
list means "Not a Number.")

Updates the memory listing display continuously. You should only use this to
monitor memory while running user code, since it is very CPU intensive. To
allow updates to the current memory display whenever memory is modified,
a file is loaded, software breakpoint is set, etc., use the set update command.
Formats the memory list as 32-bit real numbers.

This option lets you specify a range of memory locations to be displayed. Use
the <Up arrow>, <Down arrow>, <NEXT>, and <PREV> keys to view
additional memory locations.

Displays the absolute or blocked memory listing as 16-bit word values.

A comma after memory in the command line appends the current display
memory command to the preceding display memory command. The data
specified in both commands is displayed. The data will be formatted as
specified in the current command. The comma is also a delimiter between
values when specifying multiple addresses.

376

Emulator/Analyzer Interface Commands
display memory

Examples You can display memory in real number and mnemonic formats:

display memory 2000h thru 202fh, 2100h real long
display memory 400h mnemonic

set symbols on
Set source on
display memory main mnemonic

See Also The copy memory, modify memory, set, and store memory commands.

377

Emulator/Analyzer Interface Commands
display registers

<CLASS>
<REGISTER>

Examples

See Also

display registers

(display)—{ registers) To | <RETURN> | on

DISPLAY diagram

<CLASS>

<REGISTER>

This command displays the current contents of the emulation processor
registers.

If a step command just executed, the mnemonic representation of the last
instruction is also displayed, if the current display is the register display.

This process does not occur in real-time. The emulation system must be
configured for nonreal-time operation to display registers while the processor
is running. Symbols also may be displayed in the register step mnemonic
string (see set symbols).

With no options specified, the basic register class is displayed as the default.
This includes the local and global registers.

The parameters are as follows:
This allows you to display a particular class of emulation processor registers.
This displays an individual register or control register field.

display registers

display registers BASIC D2

The copy registers, modify registers, set, and step commands.

378

Emulator/Analyzer Interface Commands
display simulated_io

display simulated_io

display > simulated io >—>To <RETURN> | on
DISPLAY diagram

This command displays information written to the simulated I/0 display
buffer.

After you have enabled polling for simulated I/0 during the emulation
configuration process, six simulated I/O addresses can be defined. You then
define files used for standard input, standard output, and standard error.

For details about setting up simulated /O, refer to the Simulated I/O User’s

Guide.
Examples display simulated_io
See Also The modify configuration and modify keyboard_to_simio commands.

379

Emulator/Analyzer Interface Commands
display software_breakpoints

display software_breakpoints

To | <RETURN> | on
offset_by)——{——ExPR——}J DISPLAY | diagram

This command displays the currently defined software breakpoints and their
status.

C display)——Goftwore_breckpoints) \{

If the emulation session is continued from a previous session, the listing will
include any previously defined breakpoints. The column marked "status"
shows whether the breakpoint is pending, inactivated, or unknown.

A pending breakpoint causes the processor to enter the emulation monitor
upon execution of that breakpoint. Executed breakpoints are listed as
inactivated. Entries that show an inactive status can be reactivated by
executing the modify software_breakpoints set command.

A label column also may be displayed for addresses that correspond to a
symbol. See the set command for details.

The parameters are as follows:

--EXPR-- An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying an offset value for the breakpoint address. See the
--EXPR-- syntax diagram.

offset_by This option allows you to offset the listed software breakpoint address value
from the actual address of the breakpoint. By subtracting the offset value
from the breakpoint address, the system can cause the listed address to
match that given in the assembler or compiler listing,.

Examples display software_breakpoints
display software_breakpoints offset_by 1000H
See Also The copy software_breakpoints, modify software_breakpoints, and

set commands.

380

Emulator/Analyzer Interface Commands
display trace

display trace

< display >—>< frace D)

(depth H <DEPTH#> }—\
e = |

disassemble_from_line_number H <LINE #> H

~—={ mnemonic
~—={ absolute

o)
H..

= mnemonic

exfemm,mbal/ binary) -{ then }/\
)

L—(offser,by H __EXPR-- }—D

=
~ 64782502
L><dequeue on

off J
To | <RETURN> | on
DISPLAY diagram = ovailable when external labzls are in use

This command displays the contents of the trace buffer.

Captured information can be presented as absolute hexadecimal values or in
mnemonic form. The processor status values captured by the analyzer can be
listed mnemonically or in hexadecimal or binary form.

381

absolute

count
absolute

relative

depth
<DEPTH#>

dequeue

disassemble
_from_line
__number

Emulator/Analyzer Interface Commands
display trace

Addresses captured by the analyzer are physical addresses.

The offset_by option subtracts the specified offset from the addresses of the
executed instructions before listing the trace. With an appropriate entry for
offset, each instruction in the listed trace will appear as it does in the
assembled or compiled program listing,.

The count parameter lists the time associated with a trace event either
relative to the previous event in the trace list or as an absolute count
measured from the trigger event.

The source parameter allows display of source program lines in the trace
listing, enabling you to quickly correlate the trace list with your source
program.

Initial values are the same as specified by the command:
display trace mnemonic count relative offset_by 0

The parameters are as follows:
Lists trace information in hexadecimal format, rather than mnemonic
opcodes.

This lists the time count for each event of the trace as the total time
measured from the trigger event.

This lists the time count for each event of the trace as the time measured
relative to the previous event.

This defines the number of states to be uploaded by the interface.

Note that after you have changed the trace depth, execute the command wait
measurement_complete before displaying the trace. Otherwise the new trace
states will not be available.

Displays the trace list with or without dequeuing. A dequeued trace list is
available through the disassembly options. In a dequeued trace list, unused
instruction prefetch cycles are discarded, and operand cycles are placed
immediately following the corresponding instruction fetch. If you choose a
non-dequeued trace list, instruction and operand fetches are shown exactly
as captured by the analyzer.

Displays the trace at a certain line number and disassembles instruction
opcodes.

382

~-EXPR--

external
binary
<external

_label>
hex

off
then

<LINE#>

mnemonic
offset_by

Emulator/Analyzer Interface Commands
display trace

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying an offset value to be subtracted from the addresses
traced by the emulation analyzer. See the EXPR syntax diagram.

Displays the external analyzer trace list in binary format.
This option displays a defined external analyzer label.

Displays the external analyzer trace list in hexadecimal format.

Use this option to turn off the external trace list display.

This allows you to display multiple external analysis labels. This option
appears when more than one external analyzer label is in use.

This prompts you for the trace list line number to be centered in the display.
Also, you can use <LINE#> with disassemble_from_line_number. <LINE#>
prompts you for the line number from which the inverse assembler attempts
to disassemble data in the trace list.

Lists trace information with opcodes in mnemonic format.

This option allows you to offset the listed address value from the address of
the instruction. By subtracting the offset value from the physical address of
the instruction, the system makes the listed address match that given in the
assembler or compiler listing.

This option is also useful for displaying symbols and source lines in
dynamically relocated programs.

Note that when using the set source only command, the analyzer may
operate more slowly than when using the set source on command. This is an
operating characteristic of the analyzer:

When you use the command set source on, and are executing only
assembly language code (not high-level language code), no source
lines are displayed. The trace list will then fill immediately with the
captured assembly language instructions.

When using set source only, no inverse assembled code is displayed.
Therefore, the emulation software will try to fill the display with
high-level source code. This requires the emulation software to search
for any captured analysis data generated by a high-level language
statement.

In conclusion, you should not set the trace list to set source only when
tracing assembly code. This will result in optimum analyzer performance.

383

Emulator/Analyzer Interface Commands
display trace

status
binary Lists absolute status information in binary form.
hex Lists absolute status information in hexadecimal form.
mnemonic Lists absolute status information in mnemonic form.
Examples display trace count absolute
display trace absolute status binary
display trace mnemonic
See Also The copy trace, store trace, and set commands.

384

Emulator/Analyzer Interface Commands
end

locked

release_system

Examples

See Also

end

end <RETURN=>

relegse_system

This command terminates the current emulation session.

You can end the emulation session and keep the emulator in a locked state.
The current emulation configuration is stored, so that you can continue the
emulation session on reentry to the emulator. You also can release the
emulation system when ending the session so that others may use the
emulator.

Note that pressing <CTRL>d performs the same operation as pressing end
<RETURN>. Pressing <CTRL>\ or <CTRL>| performs the same asend
release_system <RETURN>.

When the emulation session ends, control returns to the UNIX shell without
releasing the emulator.

The parameters are as follows:

This option allows you to stop all active instances of an emulator/analyzer
interface session in one or more windows and/or terminals. This option is not
available when operating the emulator in the measurement system.

This option stops all instances of the emulator/analyzer interface in one or
more windows or terminals. The emulation system is released for other
users. If you do not release the emulation system when ending, others
cannot access it.

end

end release_system

The "Exiting the Emulator/Analyzer Interface" section in the "Starting and
Exiting HP 64700 Interfaces" chapter.

385

Emulator/Analyzer Interface Commands
--EXPR--

R

o To] e o

<DON'T CARE
NUMBER>

--NORMAL--

-EXPR--

<DON'T CARE NUMBER>}

<NUMBER>

-Co
= end

<OP>

An expression is a combination of numeric values, symbols, operators, and
parentheses used to specify address, data, status, executed address, or any
other value used in the emulation commands.

The function of an expression (--EXPR--) is to let you define the address,
data, status, or executed address expression that fits your needs. You can
combine multiple values to define the expression.

Certain emulation commands will allow the option of <+EXPR> after pressing
a thru softkey. This allows you to enter a range without retyping the original
base address or symbol. For example, you could specify the address range

disp_buf thru disp_buf + 25
as
disp_buf thru +25

The parameters are as follows:

You can include "don’t care numbers" in expressions. These are indicated by
a number containing an "x." These numbers may be defined as binary, octal,
decimal, or hexadecimal. For example: 1fxxh, 17x70, and 011xxx10b are
valid.

Note that "Don’t care numbers" are not valid for all commands.

This appears as a softkey label to enable you to return to the --EXPR-- key.
The --NORMAL-- label can be accessed whenever defining an expression, but

386

<NUMBER>

<OP>

--SYMB--

end

start

<UNARY>

()

Emulator/Analyzer Interface Commands
--EXPR--

is only valid when "C" appears on the status line, which indicates a valid
expression has been defined.

This can be an integer in any base (binary, octal, decimal, or hexadecimal), or
can be a string of characters enclosed with quotation marks.
This represents an algebraic or logical operand and may be any of the
following (in order of precedence):
mod modulo
* multiplication
division
logical AND
addition

+ o

- subtraction
| logical OR

This allows you to define symbolic information for an address, range of
addresses, or a file. See the --SYMB-- syntax pages and the Symbolic
Retrieval Utilities User’s Guide for more information on symbols.

This displays the last location where the symbol information may be located.
For example, if a particular symbol is associated with a range of addresses,
end will represent the last address in that range.

This displays first memory location where the symbol you specify may be
located. For example, if a particular symbol is associated with a range of
addresses, start will represent the first address in that range.

This defines either the algebraic negation (minus) sign (-) or the logical
negation (NOT) sign (~).

Parentheses may be used in expressions to enclose numbers. For every
opening parenthesis, a closing parenthesis must exist.

Note that when "C" appears on the right side of the status line, a valid
expression exists. The --NORMAL-- key can be accessed at any time, but is
only valid when "C" is on the command line.

387

Emulator/Analyzer Interface Commands
--EXPR--

Note that when a thru softkey has been entered, a <+ EXPR> prompt
appears. This saves you from tedious repeated entry of long symbols and
expressions. For example:

disp_buf thru +25
is the same as

disp_buf thru disp_buf + 25

Examples 05fxh
Offffh
disp_buf+5
symb_tbl + (offset/ 2)
start

mod_name: line 15 end

See Also The SYMB syntax description.

388

Emulator/Analyzer Interface Commands
FCODE

FCODE

~(w

The function code is used to define the address space being referenced.
Select the appropriate function code from those listed below.

d Data space.

none Causes the emulator to ignore the function code bits.
p Program space.

S Supervisor space.

sd Supervisor data space.

sp Supervisor program space.

u User space.

ud User data space.

up User program space.

Examples To copy a portion of user data memory to a file:

copy memory fcode ud 1000H thru 1{ffH to mymem
To modify a location in program memory:
modify memory fcode p 5000h long to 12345678h

389

Emulator/Analyzer Interface Commands
forward

bms
<COMMAND>

emul
perf
<UINAME>

Examples

See Also

forward

= perf

i

bms

<UINAME=>

l

This command lets you forward commands to other HP 64700 interfaces that
use the "emul700dmn" daemon process to coordinate actions between the
interfaces.

Sends messages to the Broadcast Message Server or BMS.

An ASCII string, enclosed in quotes, that is the command to be forwarded to
the named interface.

Forwards command to the emulator/analyzer interface.

Forwards commands to the software performance analyzer interface.
Forwards commands to a user interface name other than those available on
the softkeys.

To send the "profile" command to the software performance analyzer:

forward perf "profile"

The User’s Guide for the interface to which you are forwarding commands.

390

Emulator/Analyzer Interface Commands
help

<HELP_FILE>

Examples

help

<HELP FILE> <RETURN>

Displays information about system and emulation features during an
emulation session.

Typing help or ? displays softkey labels that list the options on which you
may receive help. When you select an option, the system will list the
information to the screen.

The help command is not displayed on the softkeys. You must enter it into
the keyboard. You may use a question mark in place of help to access the
help information.

The parameters are as follows:

This represents one of the available options on the softkey labels. You can
either press a softkey representing the help file, or type in the help file name.
If you are typing in the help file name, make sure you use the complete
syntax. Not all of the softkey labels reflect the complete file name.

help system_commands

? run

This is a summary of the commands that appear on the softkey labels when
you type help or press ?:
system_commands

run

trace

step

break

display

modify

load

store

copy
reset

391

Emulator/Analyzer Interface Commands
help

stop_trace

end

software_breakpoints

registers

expressions (--EXPR--)

symbols (--SYMB--)

specify

cmb

cmb_execute

map

set

wait

pod_command

bbaunload

coverage
performance_measurement_initialize
performance_measurement_run
performance_measurement_end

392

Emulator/Analyzer Interface Commands
load

configuration

load

load <FILE> = <RETURN=>

&> <FCODE>

= emul_mem

= user_mem

D

% frace / } <FILE> }—J
%onﬂguruﬂom

symbols < > noupdate
bol P, ‘{ FILE dat
%rmce,spec —{ <FILE>

64782503

This command transfers absolute files from the host computer into emulation
or target system RAM. With other parameters, the load command can load
emulator configuration files, trace records, trace specifications, or symbol
files.

noaborf

} <OFFSET>

offset_by

The absolute file contains information about where the file is stored. The
memory map specifies that the locations of the file are in user (target
system) memory or emulation memory. This command also allows you to
access and display previously stored trace data, load a previously created
configuration file, and load absolute files with symbols.

Note that any file specified by <FILE> cannot be named "configuration",
"emul_mem", "user_mem", "symbols", "trace", or "trace_spec" because these
are reserved words, and are not recognized by the emulator/analyzer

interface as ordinary file names.

The absolute file is loaded into emulation memory by default.

The parameters are as follows:

This option specifies that a previously created emulation configuration file

will be loaded into the emulator. You can follow this option with a file name.
Otherwise the previously loaded configuration will be reloaded.

393

emul_mem

FCODE
fg_mon
<FILE>

offset_by
<OFFSET>

noabort

nosymbols
noupdate

symbols
trace
trace_spec

user_mem

Examples

See Also

Emulator/Analyzer Interface Commands
load

Loads only those portions of the absolute file that reside in memory ranges
mapped as emulation memory.

Specifies the address space where the file will be loaded.

Loads a foreground monitor.

This represents the absolute file to be loaded into either target system
memory, emulation memory (.X files are assumed), or the trace memory (.TR
files are assumed).

Specifies an offset value that is subtracted from the address before the
foreground monitor file is loaded.

This option allows you to load a file even if part of the file is located at
memory mapped as "guarded" or "target ROM" (trom).

This option causes the file specified to be loaded without symbols.

This option suppresses rebuilding of the symbol data base when you load an
absolute file. If you load an absolute file, end emulation, then modify the file
(and relink it), the symbol database will not be updated upon reentering
emulation and reloading the file. The default is to rebuild the database.

This option causes the file specified to be loaded with symbols.

This option allows you to load a previously generated trace file.

This option allows you to load a previously generated trace specification.
Note that the current trace specification will be modified, but a new trace will
not be started. To start a trace with the newly loaded trace specification,
enter trace again or specify trace again (not trace). If you specify trace, a
new trace will begin with the default trace specification, not the one you
loaded.

Loads only those portions of the absolute file that reside in memory ranges
mapped as target memory.

load sortl

load configuration config3

The display trace command.

394

Emulator/Analyzer Interface Commands
log_commands

log_commands

o >__{ <FLE> } <RETURN>

This command allows you to record commands that are executed during an
emulation session.

Commands executed during an emulation session are stored in a file until this
feature is turned off. This is a handy method for creating command files.

To execute the saved commands after the file is closed, type the filename on
the command line.

The parameters are as follows:

<FILE> This represents the file where you want to store commands that are executed
during an emulation session.
noappend If the named file is an existing file, this option causes the new commands to

overwrite any information present in the file. If this option is not specified,
new commands are appended to the existing contents of the file.

off This option turns off the capability to log commands.
to This allows you to specify a file for the logging of commands.
Examples log_commands to logfile

log_commands off

See Also The wait command.

395

Emulator/Analyzer Interface Commands
modify

modify

= MEMORY / <RETURN>

N REGISTER /
N CONFIGURATION I

- KEYBOARD_TO_SIMIO Y

. SIM RECGIST=ZRS

64749503

This command allows you to observe or change information specific to the
emulator.

The modify command is used to:

Modify contents of memory (as integers, strings, or real numbers).
Modify the contents of the processor registers.

View or edit the current emulation configuration.

Modify the simulated I/0 keyboard settings.

Modify the SIM registers.

The following pages contain detailed information about the various modify
syntax diagrams.

396

Emulator/Analyzer Interface Commands
modify configuration

modify configuration

on MODIFY diagram

This command allows you to view and edit the current emulation
configuration items.

The configuration questions are presented in sequence with either the
default response, or the previously entered response. You can select the
currently displayed response by pressing <RETURN>. Otherwise, you can
modify the response as you desire, then press <RETURN>.

The default responses defined on powerup are displayed.

Examples modify configuration

See Also The load configuration command.

397

Emulator/Analyzer Interface Commands
modify keyboard_to_simio

See Also

modify keyboard_to_simio

< modify Meyboerditois{mio To output of

KEYBOARD TO SIMIO

on MODIFY

diagram

This command allows the keyboard to interact with your program through

the simulated I/0 software.

When the keyboard is activated for simulated I/0, its normal interaction with
emulation is disabled. The emulation softkeys are blank and the suspend
softkey is displayed on your screen. Pressing suspend <RETURN> will

deactivate keyboard simulated I/O and return the keyboard to normal

emulation mode. For details about setting up simulated 1/O, refer to the

Sitmulated 1/0 User’s Guide.

The display simulated_io command.

398

Emulator/Analyzer Interface Commands
modify memory

modify memory

<mod\fy >——< memoryjl --EXPR--
='{ FCODE F
e C v Ol
_ fo EXPR
Nt) EXPR- .

/

I bytes

— real (to C <REAL#>
—Cr]

ong

\——C string >——< to >+ <STRING> }LTD <RETURN>
on MODIFY diagram

This command lets you modify the contents of selected memory locations.
You can modify the contents of individual memory locations to individual -
values. Or, you can modify a range of memory to a single value or a sequence

of values.

Modify a series of memory locations by specifying the address of the first
location in the series to be modified, and the values to which the contents of
that location and successive locations are to be changed. The first value listed
will replace the contents of the first memory location. The second value
replaces the contents of the next memory location in the series, and so on,
until the list is exhausted. When more than one value is listed, the value
representations must be separated by commas. (See the examples for more
information.)

399

bytes
--EXPR--

FCODE

long

real
<REAL#>
short
words
string
<STRING>

Emulator/Analyzer Interface Commands
modify memory

A range of memory can be modified such that the content of each location in
the range is changed to the single specified value, or to a single or repeated
sequence. This type of memory modification is done by entering the limits of
the memory range to be modified (--EXPR-- thru --EXPR--) and the value or
list of values (--EXPR--, ... | --EXPR--) to which the contents of all locations
in the range are to be changed.

Note that if the specified address range is not large enough to contain the
new data, only the specified addresses are modified.

If the address range contains an odd number of bytes and a word operation is
being executed, the last word of the address range will be modified. Thus the
memory modification will stop one byte after the end of the specified address
range.

If an error occurs in writing to memory (to guarded memory or target
memory with no monitor) the modification is aborted at the address where
the error occurred.

For integer memory modifications, the default is to the current display
memory mode, if one is in effect. Otherwise the default is to "byte."

For real memory modifications, the default is to the current display memory
mode, if one is in effect. Otherwise the default is "word."

The parameters are as follows:

Modify memory in byte values.

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a memory address. See the EXPR syntax diagram.
The function code used to define the address space being referenced. See the
syntax diagram for FCODE to see a list of the function codes available and for
an explanation of those codes.

Modify memory values as 32-bit long word values or 64-bit real values when
preceded by real.

Modify memory as real number values.

This prompts you to enter a real number as the value.

Modify memory values as 32-bit real numbers.

Modify memory values as 16-bit values.

Modify memory values to the ASCII character string given by <STRING>.
Quoted ASCII string including special characters as follows:

null \O
newline \n
horizontal tab \t

400

thru
to

words

Examples

See Also

Emulator/Analyzer Interface Commands
modify memory

backspace \b
carriage return \r
form feed \f
backslash \\
single quote \
bit pattern \ooo (where 000 is an octal number)

This option lets you specify a range of memory locations to be modified.
This lets you specify values to which the selected memory locations will be
changed.

Modify memory locations as 32-bit values.

A comma is used as a delimiter between values when modifying multiple
memory addresses.

modify memory datal bytesto OE3H,O01H, O8H
modify memory datal thru DATA100 to OFFFFH
modify memory 0675H realto -1.303

modify memory temp real long to 0.5532E-8

modify memory buffer string to "Test\n\0"

The copy memory, display memory, and store memory commands.

401

Emulator/Analyzer Interface Commands
modify register

~-EXPR--

<REGISTER>
to

Examples

See Also

modify register

< modify }{ register > <REGISTER>
M <CLASS> M

LC to >—977E><PRff—>To

on

<RETURN> ‘

MODIFY ‘ diagram

This command allows you to modify the contents of the emulation processor
internal registers.

The entry you specify for <REGISTER> determines which register is
modified. Individual fields of control registers may be modified.

Register modification cannot be performed during real-time operation of the
emulation processor. A break command or condition must occur before you
can modify the registers.

The parameters are as follows:

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a register value. For the floating-point registers, the
value is interpreted as a decimal real number. See the --EXPR-- description.
This represents the name of a register.

Allows you to specify the values to which the selected registers will be
changed.

modify register D2 to 41H

The copy registers, display registers, and modify registers commands.

402

Emulator/Analyzer Interface Commands
modify SIM registers

Examples

modify SIM registers

The 6830x SIM is configured through the registers in the SIM register class;
these registers control how the 6830x uses external signal lines.

The emulator’s hardware is configured through the registers in the EMSIM
register class.

Normally, the SIM and EMSIM registers should be programmed with the same
values so they will be working together.

The default programming of the emulator hardware (EMSIM) matches the
reset values of the 6830x SIM (refer to the appropriate Motorola MC6830x
User’s Manual for specific values).

If desired, the programming of the emulator hardware (EMSIM) can be
transferred into the 6830x SIM with the sync_sim_registers
to_6830x_from_config command. This happens automatically each time a
break to the monitor from emulation reset occurs. This ensures that the
6830x is prepared to properly access memory when a program is downloaded
to the emulator.

Alternatively, the emulator hardware (EMSIM) can be programmed from the
6830x SIM with the sync_sim_registers from_6830x_to_config
command. This is useful if initialization code that configures the 6830x SIM
exists, but you don’t know what its values are. In this case, you can use the
default configuration, run from reset to execute the initialization code, and
use the sync_sim_registers from_6830x_to_config command to
configure the emulator to match the 6830x SIM.

At any time, you can verify if the SIM and EMSIM are programmed the same
with the sync_sim_registers difference command. Any differences
between the two register sets will be listed.

It should be noted that the emulator hardware is programmed solely from the
EMSIM register set and is therefore static with respect to the application
program. No attempt is made to update the programming of the emulator
hardware by tracking instructions that will program the 6830x SIM.

sync_sim_registers from_6830x_to_config

sync_sim_registers to_6830x_from_config

403

Emulator/Analyzer Interface Commands
modify SIM registers

sync_sim_registers default_emsim

See Also The sync_sim_registers command and the "Concepts" chapter.

404

Emulator/Analyzer Interface Commands
performance_measurement_end

performance_measurement_end

<performomoeimeosurememtiemd/ <RETURN>

This command stores data previously generated by the
performance_measurement_run command, in a file named "perf.out" in
the current working directory.

The file named "perf.out" is overwritten each time this command is executed.
Current measurement data existing in the emulation system is not altered by
this command.

Examples performance_measurement_end

See Also The performance_measurement_initialize and
performance_measurement_run commands.

Refer to the "Making Software Performance Measurements" chapter for
examples of performance measurement specification and use.

405

Emulator/Analyzer Interface Commands
performance_measurement _initialize

performance_measurement_initialize

(performomceimeosurememtiimtioh’ze>)

(7B

_ activity

duration

~={ restore

%ocqsymbos‘m)v

= ——SYMB——
k!»Cg\obc\isymbo\s >

o)

This command sets up performance measurements.

_/

<RETURN>

The emulation system will verify whether a symbolic database has been

loaded. If a symbolic database has been loaded, the performance

measurement is set up with the addresses of all global procedures and static
symbols. If a valid database has not been loaded, the system will default to a
predetermined set of addresses, which covers the entire emulation processor

address range.
The measurement will default to "activity" mode.

Default values will vary, depending on the type of operation selected, and

whether symbols have been loaded.

406

activity

duration

<FILE>
global_symbols
local_symbols_in
restore

--SYMB--

Examples

See Also

Emulator/Analyzer Interface Commands
performance_measurement_initialize

The parameters are as follows:

This option causes the performance measurement process to operate as
though an option is not specified.

This option sets the measurement mode to "duration." Time ranges will
default to a predetermined set (unless a user-defined file of time ranges is
specified).

This represents a file you specify to supply user-defined address or time
ranges to the emulator.

This option specifies that the performance measurement will be set up with
the addresses of all global symbols and procedures in the source program.
This causes addresses of the local symbols to be used as the default ranges
for the measurement.

This option restores old measurement data so that a measurement can be
continued when using the same trace command as previously used.

This represents the source file that contains the local symbols to be listed.
This also can be a program symbol name, in which case all symbols that are
local to a function or procedure are used. See the SYMB syntax diagram.

performance_measurement_initialize
performance_measurement_initialize duration

performance_measurement_initialize
local_symbols_in mod_name

The performance_measurement_run and
performance_measurement_end commands.

Refer to the "Making Software Performance Measurements" chapter for
examples of performance measurement specification and use.

407

Emulator/Analyzer Interface Commands
performance_measurement_run

performance_measurement_run

Cperformenceimeosurement7run> - = <RETURN>

This command begins a performance measurement.

This command causes the emulation system to reduce trace data contained
in the emulation analyzer, which will then be used for analysis by the
performance measurement software.

The default is to process data presently contained in the analyzer.

The parameters are as follows:

<COUNT> This represents the number of consecutive traces you specify. The emulation
system will execute the trace command, process the resulting data, and
combine it with existing data. This sequence will be repeated the number of
times specified by the COUNT option.

Note that the trace command must be set up correctly for the requested
measurement. For an activity measurement, you can use the default trace
command (trace).

For a duration measurement, you must set up the trace specification to store
only the points of interest. To do this, for example, you could enter:

trace only <symbol_entry> or <symbol_exit>

Examples performance_measurement_run 10

performance_measurement_run

See Also The performance_measurement_end and
performance_measurement_initialize commands.

Refer to the "Making Software Performance Measurements" chapter for
examples of performance measurement specification and use.

408

Emulator/Analyzer Interface Commands
pod_command

pod_command

= <PODCMD>

<RETURN>

keyboard

Allows you to control the emulator through the direct HP 64700 Terminal
Interface.

The HP 64700 Card Cage contains a low-level Terminal Interface, which
allows you to control the emulator’s functions directly. You can access this
interface using pod_command. The options to pod_command allow you
to supply only one command at a time. Or, you can select a keyboard mode
which gives you interactive access to the Terminal Interface.

There are certain commands that you should avoid while using the Terminal
Interface through pod_command.

stty, po, Xp Do not use. These commands will change the operation of
the communications channel, and are likely to hang the
Softkey Interface and the channel.

echo, mac Using these may confuse the communications protocols in
use on the channel.

wait Do not use. The pod will enter a wait state, blocking access
by the emulator/analyzer interface.

init, pv These will reset the emulator pod and force an end
release_system command.

t Do not use. The trace status polling and unload will become
confused.

To see the results of a particular pod_command (the information returned
by the emulator pod), you use display pod_command.

Refer to the 6830x Installation/Service/Terminal Interface User’s Guide
for information on using the Terminal Interface to control the emulator.

409

keyboard

<POD_CMD>

suspend

Examples

See Also

Emulator/Analyzer Interface Commands
pod_command

The parameters are as follows:

Enters an interactive mode where you can simply type Terminal Interface
commands (unquoted) on the command line. Use display pod_command to
see the results returned from the emulator.

Prompts you for a Terminal Interface command as a quoted string. Enter the
command in quotes and press <RETURN>.

This command is displayed once you have entered keyboard mode. Select it
to stop interactive access to the Terminal Interface and return to the
Graphical User Interface or Softkey Interface.

This example shows a simple interactive session with the Terminal Interface.

display pod_command
pod_command keyboard
cf

tsq

tcq

Click suspend to return to the Graphical User Interface or Softkey Interface.

The display pod_command command.

Also see the 6830x Installation/Service/Terminal Interface User’'s Guide
and the Terminal Interface online help information.

410

Emulator/Analyzer Interface Commands
QUALIFIER

QUALIFIER
From
TRACE = To output of | QUALIFIER
diagram

J on TRACE diagram

The QUALIFIER parameter is used with trace only, trace prestore, and
TRIGGER to specify states captured during the trace measurement.

You may specify a range of states (RANGE) or specific states (STATE) to be
captured. You can continue to "or" states until the analyzer resources are
depleted. You can use only one RANGE statement in the entire trace
command.

You can include "don’t care numbers." These contain an "x" preceded and/or
followed by a number. Some examples include 1fxxh, 17x70, and 011xxx10b.
"Don’t care numbers" may be entered in binary, octal, or hexadecimal base.

The default is to qualify on all states.
The parameters are as follows:

or This option allows you to specify multiple states (STATE) to be captured
during a trace measurement. See the STATE syntax diagram.

RANGE This allows you to specify a range of states to be captured during a trace
measurement. See the RANGE syntax diagram.

STATE This represents a unique state that can be a combination of address, data,

status, and executed address values. See the STATE syntax diagram. -

411

Emulator/Analyzer Interface Commands
QUALIFIER

Examples trace only address mod_name:read_input

trace only address range mod_name:read_input thru
output

trace only address range mod_name:clear thru
read_input

See Also The trace command.

412

Emulator/Analyzer Interface Commands
RANGE

RANGE

RANGE

© -
> o
3

QUALIFIER
= data
= status

= <external label>

CO{EXPRH thru HffEXPRff P To output of RANGE
on | QUALIFIER | diagram

diagram

/

The RANGE parameter allows you to specify a condition for the trace
measurement, made up of one or more values.

The range option can be used for state qualifier labels. Range can only be
used once in a trace measurement.

Refer to the "Qualifying Trigger and Store Conditions" section in the "Using
the Emulation Analyzer" chapter for a list of the predefined values that can
be assigned to the status state qualifiers.

Expression types are "address" when none is chosen.

The parameters are as follows:

address The value following this softkey is searched for on the lines that monitor the

emulation processor’s address bus. -
data The value following this softkey is searched for on the lines that monitor the

emulation processor’s data bus.
--EXPR-- An expression is a combination of numeric values, symbols, operators, and

parentheses, specifying an address, data, status, or executed address value.
See the EXPR syntax diagram for details.

<external_label> This represents a defined external analyzer label.

not This specifies that the analyzer search for the logical "not" of the specified
range (this includes any addresses not in the specified range).

413

range
status

thru

Examples

See Also

Emulator/Analyzer Interface Commands
RANGE

This indicates a range of addresses to be specified (--EXPR-- thru --EXPR--).
The value following this softkey is searched for on the lines that monitor
other emulation processor signals.

This indicates that the following address expression is the upper address in a
range.

See the trace command examples.

The trace command and the QUALIFIER syntax description.

414

Emulator/Analyzer Interface Commands
reset

reset

<RETURN>

reset

This command suspends target system operation and re-establishes initial
emulator operating parameters, such as reloading control registers.

The reset signal is latched when the reset command is executed and
released by either the run or break command.

See Also The break and run commands.

415

Emulator/Analyzer Interface Commands
run

run <RETURN>

from --EX-R--

fransfer_address
untit

—-EXPR--

= FCODE

This command causes the emulator to execute a program.
If the processor is in a reset state, run will cause the reset to be released.

If the emulator is configured to run directly into user code out of reset, the
monitor will not be entered and part of your debug environment may be
temporarily disabled. A subsequent break into the monitor will restore it. See
the "Enter monitor from reset?" question in the configuration menu for more
information.

If the from parameter and an address are specified, the processor will start
running your program at that address. Otherwise, the run will occur from the
address currently stored in the processor’s program counter.

A run from reset command will reset the processor and then allow it to run.
It is equivalent to entering a reset command followed by a run command.

If the emulator is configured to participate in the READY signal on the CMB,
then this emulator will release the READY signal so that it will go TRUE if all
other HP 64700 emulators participating on that signal are also ready. See the
cmb_execute command description.

Qualifying a run command with an until parameter causes a software
breakpoint to be set before the program is run.

If you omit the address option (--EXPR--), the emulator begins program
execution at the current address specified by the emulation processor
program counter. If an absolute file containing a transfer address has just
been loaded, execution starts at that address.

416

address

~-EXPR--

FCODE

from
reset
transfer_address

until

Examples

See Also

Emulator/Analyzer Interface Commands
run

The parameters are as follows:

Specifies an address for a temporary register breakpoint that will be
programmed into one of the processor’s two breakpoint registers. Up to two
addresses may be specified.

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a memory address. See the EXPR syntax diagram.
The function code used to define the address space being referenced. See the
syntax diagram for FCODE to see a list of the function codes available and for
an explanation of those codes.

This specifies the address from which program execution is to begin.
This option resets the processor prior to running.

This represents the starting address of the program loaded into emulation or
target memory. The transfer address is defined in the linker map and is part
of the symbol database associated with the absolute file.

Causes a software breakpoint to be set at the specified address before the
program is run.

run

run from 810H

run from COLD_START

run from transfer_address until 910H

The step command.

417

Emulator/Analyzer Interface Commands
SEQUENCING

find_sequence

QUALIFIER

SEQUENCING

Fraom trace
syntax diagram

{fndsequemce)ﬁ—{ QUALIFIER }

k(occurs H<11T\MES> M

fhen

restart H QUALIFIER 74

Lets you specify complex branching activity that must be satisfied to trigger
the analyzer.

Sequencing provides you with parameters for the trace command that let
you define branching conditions for the analyzer trigger.

You are limited to a total of seven sequence terms, including the trigger, if no
windowing specification is given. If windowing is selected, you are limited to
a total of four sequence terms.

The analyzer default is no sequencing terms. If you select the sequencer
using the find_sequence parameter, you must specify at least one qualifying
sequence term.

The parameters are as follows:

Specifies that you want to use the analysis sequencer. You must enter at least
one qualifier.

Specifies the address, data, status, or executed address value or value range
that will satisfy this sequence term if looking for a sequence (find_sequence),
or will restart at the beginning of the sequence (restart). See the
QUALIFIER syntax pages for further information.

418

occurs

<#TIMES>
then

restart

Examples

See Also

Emulator/Analyzer Interface Commands
SEQUENCING

Selects the number of times a particular qualifier must be found before the
analyzer proceeds to the next sequence term or the trigger term. This option
is not available when trace windowing is in use. See the WINDOW syntax
pages.

Prompts you for the number of times a qualifier must be found.

Allows you to add multiple sequence terms, each with its own qualifier and
occurrence count.

Selects global restart. If the analyzer finds the restart qualifier while
searching for a sequence term, the sequencer is reset and searching begins
for the first sequence term.

trace find_sequence Caller_3 then Write_Num
restart anly."anly.c": line 57 trigger after
Results+0c4h

The trace command and the QUALIFIER and WINDOW syntax descriptions.

419

Emulator/Analyzer Interface Commands
set

set

= <ENV_VAR> =

= <VALUE>

Crarie)

o)
H.‘
= off

pr.y

\—><Tctbs,c1re H <TABS> 5
L><mumber,of,SCJuFCEJmES H <NUMSRC=> b

b

label

<WIDTH> })

mnemanic

<WIDTH> }

symbols)——{ <WIDTH=> }\

source H <WIDTH> }

To | <RETURN> ‘om‘ DISPLAY ‘d\ogram

64782504

420

default
<ENV_VAR>
inverse video
off
on

Emulator/Analyzer Interface Commands
set

Controls the display format for the data, memory, register, software
breakpoint, and trace displays.With the set command, you can adjust the
display format results for various measurements, making them easier to read
and interpret. Formatting of source lines, symbol display selection and
width, and update after measurement can be defined to your needs.

The display command uses the set command specifications to format
measurement results for the display window. Another option to the set
command, <ENV_VAR> = <VALUE>, allows you to set and export system
variables to the UNIX environment.

The default display format parameters are the same as those set by the
commands:

set update

set source off symbols off

You can return the display format to this state by entering:
set default

The parameters are as follows:

This option restores all the set options to their default settings.

Specifies the name of a UNIX environment variable to be set.

The equals sign is used to equate the <ENV_VAR> parameter to a particular
value represented by <VALUE>.

This displays source lines in normal video.

This highlights the source lines on the screen (dark characters on light
background) to differentiate the source lines from other data on the screen.

421

langinfo
C
ADA
C_IEE695

memory
noupdate
number_of _
source_lines

Emulator/Analyzer Interface Commands
set

In certain languages, you may have symbols with the same names but
different types. For example, in IEEE695, you may have a file named main.c
and a procedure named main. SRU would identify these as main(module)
and main(procedure). The command display local_symbols_in main would
cause an error message to appear (Ambiguous symbol: main(procedure,
module)). Users of C tend to think the procedure is important and users of
ADA tend to think the module is important. By entering "langinfo" and "C",
SRU will interpret the above command to be main(procedure). With langinfo
ADA, SRU will interpret the above command to be main(module).

Identifies ANSI C as the language so SRU can use the C hierarchy to
disambiguate symbols.

Identifies ADA as the language so SRU can use the ADA hierarchy to
disambiguate symbols.

Identifies C_IEEE-695 as the language so SRU can use the C_IEEE-695
hierarchy to disambiguate symbols.

An alternate method for making the langinfo specification is to use the
environment variable, HP64SYMORDER. By making the following entry in your
.profile, the langinfo setting will always be C, for example.

$ HP64SYMORDER=C # | want to use the C disambiguating
hierarchy
$ export HP64SYMORDER # let children processes know
about it

Sets update option for memory displays only.

When using multiple windows or terminals, and specifying this option, the
display buffer in that window or terminal will not update when a new
measurement completes. Displays showing memory contents are not
updated when a command executes that could have caused the values in
memory to change (modify memory, load, etc.).

This allows you to specify the number of source lines displayed for the actual
processor instructions with which they correlate. Only source lines up to the
previous actual source line will be displayed. Using this option, you can
specify how many comment lines are displayed preceding the actual source
line. The default value is b.

422

<NUMSRC>
source
memory
off
on
only
symbols
off
on
high
low
all
tabs_are
<TABS>
trace
update

Emulator/Analyzer Interface Commands
set

This prompts you for the number of source lines to be displayed. Values in
the range 1 through 50 may be entered.

This displays source lines of memory.

This option prevents inclusion of source lines in the trace and memory
mnemonic display lists.

This option displays source program lines preceding actual processor
instructions with which they correlate. This enables you to correlate
processor instructions with your source program code. The option works for
both the trace list and memory mnemonic displays.

This option displays only source lines. Processor instructions are only
displayed in memory mnemonic if no source lines correspond to the
instructions. Processor instructions are never displayed in the trace list.

This prevents symbol display.

This displays symbols. This option works for the trace list, memory, software
breakpoints, and register step mnemonics.

Displays only high level symbols, such as those available from a compiler.
See the Symbolic Retrieval Utilities User’s Guide for a detailed discussion
of symbols.

Displays only low level symbols, such as those generated internally by a
compiler, or an assembly symbol.

Displays all symbols.

This option allows you to define the number of spaces inserted for tab
characters in the source listing,.

Prompts you for the number of spaces to use in replacing the tab character.
Values in the range of 2 through 15 may be entered.

Sets update option for trace displays only.

When using multiple windows or terminals, and specifying this option, the
display buffer in that window or terminal will be updated when a new
measurement completes. This is the default. Note that for displays that
show memory contents, the values will be updated when a command
executes that changes memory contents (such as modify memory, load, and
So on).

423

<VALUE>

width

source

label

mnemonic

<WIDTH>

Examples

See Also

Emulator/Analyzer Interface Commands
set

Specifies the logical value to which a particular UNIX environment variable is
to be set.

This allows you to specify the width (in columns) of the source lines in the
memory mnemonic display. To adjust the width of the source lines in the
trace display, increase the widths of the label and/or mnemonic fields.

This lets you specify the address width (in columns) of the address field in
the trace list or label (symbols) field in any of the other displays.

This lets you specify the width (in columns) of the mnemonic field in
memory mnemonics, trace list and register step mnemonics displays. It also
changes the width of the status field in the trace list.

This prompts you for the column width of the source, label, mnemonic, or
symbols field.

Note that <CTRL>f and <CTRL>g may be used to shift the display left or
right to display information which is off the screen.

set source on inverse_video on tabs_are 2
set symbols on width label 30 mnemonic 20
set PRINTER ="Ip -s"

set HP64KSYMBPATH="filel:procl
file2:proc2:code_block_1"

The display data, display memory, display software_breakpoints,
and display trace commands.

424

Emulator/Analyzer Interface Commands
specify

specify

run <RETURN=>
—{ disable
\—< fram

transfer_address

= until --EXPR-- }-/

¥—{ TRACE

This command prepares a command for execution, and is used with the
cmb_execute command.

When you precede a run or trace command with specify, the system does
not execute your command immediately. Instead, it waits until until an
EXECUTE signal is received from the Coordinated Measurement Bus or until

you enter a cmb_execute command. -
If the processor is reset and no address is specified, acmb_execute
command will run the processor from the "reset" condition.

Note that the run specification is active until you enter specify run disable.
The trace specification is active until you enter another trace command
without the specify prefix.

The emulator will run from the current program counter address if no
address is specified in the command.

The parameters are as follows:
disable This option turns off the specify condition of the run process.

425

from
--EXPR--

FCODE

transfer_address
run
TRACE

until

Examples

See Also

Emulator/Analyzer Interface Commands
specify

This is used with the specify run from command. An expression is a
combination of numeric values, symbols, operators, and parentheses,
specifying a memory address. See the EXPR syntax diagram.

The function code used to define the address space being referenced. See the
syntax diagram for FCODE to see a list of the function codes available and for
an explanation of those codes.

This is used with the specify run from command, and represents the address
from which the program will begin running.

This option specifies that the emulator will run from either an expression or
from the transfer address when a CMB EXECUTE signal is received.

This option specifies that a trace measurement will be taken when a CMB
EXECUTE signal is received.

Specifies an address where program execution is to stop. The emulator will
set a software breakpoint at this address and stop execution of your program
when it reaches this address and enter the monitor.

specify run from START

specify trace after address 1234H

The cmb_execute command.

426

Emulator/Analyzer Interface Commands
STATE

STATE

From

STATE on

To output of STATE

QUALIFIER | diagram

on | QUALIFIER | diagram

eﬁ
=~ <external label>

—_ExPR—— M

Y

<STATUS>

——EXPR——

k <STATUS>
——EXPR——

This parameter lets you specify a trigger condition as a unique combination
of address, data, status, and executed address values.

The STATE option is part of the QUALIFIER parameter to the trace
command, and allows you to specify a condition for the trace measurement.
Refer to the "Qualifying Trigger and Store Conditions" section in the "Using
the Emulation Analyzer" chapter for a list of the predefined values that can
be assigned to the status state qualifiers.

The default STATE expression type is address.

427

address

and

data

--EXPR--
<external_label>
not

status

<STATUS>

Examples

See Also

Emulator/Analyzer Interface Commands
STATE

The parameters are as follows:

This specifies that the expression following is an address value. This is the
default, and is therefore not required on the command line when specifying
an address expression.

This lets you specify a combination of status and expression values when
status is specified in the state specification.

The value following this softkey is searched for on the lines that monitor the
emulation processor’s data bus.

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying an address, data, status, or executed address value.
See the EXPR syntax diagram.

This represents a defined external analyzer label.

This specifies that the analyzer will search for the logical "not" of a specified
state (this includes any address that is not in the specified state).

The value following this softkey is searched for on the lines that monitor
other emulation processor signals.

This prompts you to enter a status value in the command line. Status values
can be entered from softkeys or typed into the keyboard. Numeric values
may be entered using symbols, operators, and parentheses to specify a status
value. See the EXPR syntax diagram.

trace before status write

trace about address 1000H status write

The trace command and the QUALIFIER syntax description, and the trace
command examples.

428

Emulator/Analyzer Interface Commands
step

step

step

<NUMBER>

source

L WEXF}RW
FCODE }-/ Truﬂsfer nddress

<RETURN=>
- silently

The step command allows sequential analysis of program instructions by
causing the emulation processor to execute a specified number of assembly
instructions or source lines.

You can display the contents of the processor registers, trace memory, and
emulation or target memory after each step command.

Source line stepping is implemented by single stepping assembly instructions
until the next PC is beyond the address range of the current source line.
When attempting source line stepping on assembly code (with no associated
source line), stepping will complete when a source line is found. Therefore,
stepping only assembly code may step forever. To abort stepping, press
<CTRL>c.

When displaying memory mnemonic and stepping, the next instruction that
will step is highlighted. The memory mnemonic display autopages to the new
address if the next PC goes outside of the currently displayed address range.
This feature works even if stepping is performed in a different emulation
window than one displaying memory mnemonic.

If no value is entered for <NUMBER> times, only one step instruction is
executed each time you press <RETURN>. Multiple instructions can be
executed by holding down the <RETURN> key. Also, the default step is for
assembly code lines, not source code lines.

429

~-EXPR--

FCODE

from
<NUMBER>

silently

transfer_address

source

Examples

See Also

Emulator/Analyzer Interface Commands
step

If the from address option (defined by --EXPR-- or transfer_address) is
omitted, stepping begins at the next program counter address.

The parameters are as follows:

An expression is a combination of numeric values, symbols, operators, and
parentheses specifying a memory address. See the EXPR syntax diagram.
The function code used to define the address space being referenced. See the
syntax diagram for FCODE to see a list of the function codes available and for
an explanation of those codes.

Use this option to specify the address from which program stepping begins.
This defines the number of instructions that will be executed by the step
command. The number of instructions to be executed can be entered in
binary (B), octal (O or Q), decimal (D), or hexadecimal (H) notation.

When you specify a number of steps, this option updates the register step
mnemonic only after stepping is complete. This will speed up stepping of
many instructions. The default is to update the register step mnemonic after
each assembly instruction (or source line) executes (if stepping is performed
in the same window as the register display).

This represents the starting address of the program you loaded into
emulation or target memory. The transfer_address is defined in the linker
map.

This option performs stepping on source lines.

step

step from 810H

step 5 source

step 20 silently

Step 4 from main

The display registers, display memory mnemonic, and set symbols
commands.

430

Emulator/Analyzer Interface Commands
stop_trace

stop_trace

stop _trace <RETURN>

This command terminates the current trace and stops execution of the
current measurement.

The analyzer stops searching for trigger and trace states. If trace memory is
empty (no states acquired), nothing will be displayed.

See Also The trace command.

431

Emulator/Analyzer Interface Commands
store

~-EXPR--

FCODE

<FILE>

memory

store

frace_spec } <FILE> H<RETURN>

~-EXPR--

{=r]

This command lets you save the contents of specific memory locations in an
absolute file. You also can save trace memory contents in a trace file.

The store command creates a new file with the name you specify, if there is
not already an absolute file with the same name. If a file represented by
<FILE> already exists, you must decide whether to keep or delete the old
file. If you respond with yes to the prompt, the new file replaces the old one.
If you respond with no, the store command is canceled and no data is stored.

The transfer address of the absolute file is set to zero.

The parameters are as follows:

This is a combination of numeric values, symbols, operators, and
parentheses, specifying a memory address. See the EXPR syntax diagram.
The function code used to define the address space being referenced. See the
syntax diagram for FCODE to see a list of the function codes available and for
an explanation of those codes.

This represents a file name you specify for the absolute file identifier or trace
file where data is to be stored. If you want to name a file beginning with a
number, you must precede the file name with a backslash (\) so the system
will recognize it as a file name.

This causes selected memory locations to be stored in the specified HP64000
format file with a .X extension.

432

thru
to

trace

trace_spec

Examples

See Also

Emulator/Analyzer Interface Commands
store

This allows you to specify that ranges of memory be stored.

Use this in the store memory command to separate memory locations from
the file identifier.

This option causes the current trace data to be stored in the specified file
with a .TR extension.

This option stores the current trace specification in the specified file with a
TS extension.

A comma separates memory expressions in the command line.

store memory 800H thru 20FFH to TEMP2

store memory EXEC thru DONE to \12.10

store trace TRACE

Store trace_spec TRACE

The display memory, display trace, and load commands.

433

Emulator/Analyzer Interface Commands
--SYMB--

~SYMB-

--SYMB--

<SYMB=> 7
~—{ orocedure

enfryfexﬁjoﬂgey
text rcmgai

I\ (segmemH <SEG_NAME> }—/
-4 FILE L(line H <LINEn> }—/

FILE
<FILENAME>
. <FILENAME> .'
= SCOPE *‘
<SYMB>

SCOPE P
<FILENAME>
SCOPE
SCOPE

%<\DENT\F\ER>

(O e 10D

434

Emulator/Analyzer Interface Commands
--SYMB--

This parameter is a symbolic reference to an address, address range, file, or
other value.

Note that if no default file was defined by executing the command display
local_symbols_in --SYMB--, or with the cws command, a source file name
(<FILE>) must be specified with each local symbol in a command line.

Symbols may be:

e (Combinations of paths, filenames, and identifiers defining a scope, or
referencing a particular identifier or location (including procedure entry
and exit points).

e (Combinations of paths, filenames, and line numbers referencing a
particular source line.

e Combinations of paths, filenames, and segment identifiers identifying a
particular PROG, DATA or COMN segment or a user-defined segment.

The Symbolic Retrieval Utilities (SRU) handle symbol scoping and
referencing. These utilities build trees to identify unique symbol scopes.

If you use the SRU utilities to build a symbol database before entering the
emulation environment, the measurements involving a particular symbol
request will occur immediately. If you then change a module and re-enter
the emulation environment without rebuilding the symbol database, the
emulation software rebuilds the changed portions of the database in
increments as necessary.

Further information regarding the SRU and symbol handling is available in
the Symbolic Retrieval Utilities User’s Guide. Also refer to that manual for
information on the HP64KSYMBPATH environment variable.

The last symbol specified in a display local_symbols_in --SYMB--
command, or with the cws command, is the default symbol scope. The
default is "none" if no current working symbol was set in the current
emulation session.

You also can specify the current working symbol by typing the cws command
on the command line and following it with a symbol name. The pws
command displays the current working symbol on the status line.

Display memory mnemonic also can modify the current working symbol.

435

<FILENAME>

line

<LINE#>
<IDENTIFIER>
SCOPE

segment

<SEG_NAME>
(<TYPE>)

filename
module

procedure

static

task

Emulator/Analyzer Interface Commands
--SYMB--

The parameters are as follows:

This is an UNIX path specifying a source file. If no file is specified, and the
identifier referenced is not a global symbol in the executable file that was
loaded, then the default file is assumed (the last absolute file specified by a
display local_symbols_in command). A default file is only assumed when
other parameters (such as line) in the --SYMB-- specification expect a file.
This specifies that the following numeric value references a line number in
the specified source file.

Prompts you for the line number of the source file.

Identifier is the name of an identifier as declared in the source file.

Scope is the name of the portion of the program where the specified
identifier is defined or active (such as a procedure block).

This indicates that the following string specifies a standard segment (such as
PROG, DATA, or COMN) or a user-defined segment in the source file.
Prompts you for entry of the segment name.

When two identifier names are identical and have the same scope, you can
distinguish between them by entering the type (in parentheses). Do not type
a space between the identifier name and the type specification. The type will
be one of the following;:

Specifies that the identifier is a source file.

These refer to module symbols. For Ada, they are packages. Other language
systems may allow user-defined module names.

Any procedure or function symbol. For languages that allow a change of
scope without explicit naming, SRU assigns an identifier and tags it with type
procedure.

Static symbols, which includes global variables. The logical address of these
symbols will not change.

Task symbols, which are specifically defined by the processor and language
system in use.

A colon is used to specify the UNIX file path from the line, segment, or
symbol specifier. When following the file name with a line or segment
selection, there must be a space after the colon. For a symbol, there must not
be a space after the colon.

436

Emulator/Analyzer Interface Commands
--SYMB--

Examples The following short C code example should help illustrate how symbols are
maintained by SRU and referenced in your emulation commands.
File /users/dave/control.c:
int *port_one;
main () {
int port_value;

port_ptr = port_one;
port_value = 10;

process_port (port_ptr, port_value);
} /* end main */

File /system/projectl/porthand.c:
#include "utils.c"

void process_port (int *port_num, int port_data) {
static int i;
static int i2;

for (i=0;i<=64; i++) {
i2=i*2;
*port_num = port_data + i2;
delay();
{ . . .
static int i;
i=3;
port_data = port_data + i;
}
}

} /* end of process_port */

File /system/project1/utils.c:
delay() {

intij;

int waste_time;

for (i = 0; i <= 256000; i++)
for (j = 0; j <= 256000; j++)
waste_time = 0;
} /* end delay */

437

Emulator/Analyzer Interface Commands
--SYMB--

The symbol tree as built by SRU might appear as follows, depending on the
object module format and compiler used:

/users/dave/control.c

{filename)
port_one (static) main {procedure)
ENTRY TEXTRANGE
procspecial) {procspecial

/system/project1/porthand.c
(filename)
EXIT
(procspecial

process_port /system/project1/ utils.c
(procedure) (filename)

(procspecial

EXIT
{proespecial

@ TEXTRANGE

ENTRY TEXTRANGE
procspecial) (procspecial
ENTRY BLOCK 1
procspecial) (procedure) eI
(procspecial

Note that SRU does not build tree nodes for variables that are dynamically
allocated on the stack at run-time, such as i and j within the delay ()
procedure. SRU has no way of knowing where these variables will be at run

438

Emulator/Analyzer Interface Commands
--SYMB--

time and therefore cannot build a corresponding symbol tree entry with run
time address.

Here are some examples of referencing different symbols in the above
programs:

control.c:main

control.c:port_one

porthand.c:utils.c:delay

The last example above only works with IEEE-695 object module format; the
HP object module format does not support referencing of include files that
generate program code.

porthand.c:process_port.i

porthand.c:process_port.BLOCK_1.i

Notice how you can reference different variables with matching identifiers by
specifying the complete scope. You also can save typing by specifying a scope
with cws. For example, if you are making many measurements involving
symbols in the file porthand.c, you could specify:

cws porthand.c:process_port

Then:

BLOCK_1.i

are prefixed with porthand.c: process_port before the database lookup.

439

See Also

Emulator/Analyzer Interface Commands
--SYMB--

If a symbol search with the current working symbol prefix is unsuccessful,
the last scope on the current working symbol is stripped. The symbol you
specified is then retested with the modified current working symbol. Note
that this does not change the actual current working symbol.

For example, if you set the current working symbol as

cws porthand.c:process_port.BLOCK_1

and made a reference to symbol i2, the retrieval utilities attempt to find a
symbol called

porthand.c:process_port.BLOCK_1.i2

which would not be found. The symbol utilities would then strip BLOCK_1
from the current working symbol, yielding

porthand.c:process_port.i2

which is a valid symbol.

You also can specify the symbol type if conflicts arise. Although not shown in
the tree, assume that a procedure called port_one is also defined in control.c.
This would conflict with the identifier port_one which declares an integer
pointer. SRU can resolve the difference. You must specify:

control.c:port_one(static)
to reference the variable, and
control.c:port_one(procedure)

to reference the procedure address.

The copy local_symbols_in and display local_symbols_in commands.

Also refer to the Symbolic Retrieval Utilities User’s Guide for further
information on symbols.

440

Emulator/Analyzer Interface Commands
sync_sim_registers

sync_sim_registers

(Syﬂc,swmjegwsfers from 6830x_to_caonfig <RETURN=>
to_6330x_from_canfig
(aerence
64749508

This command synchronizes the 6830x’s system integration module (SIM)
registers to the emulator’'s EMSIM registers.

The parameters are as follows:

from_6830x Copies the microprocessor’s SIM registers into the emulator’s EMSIM
_to_config registers.

to_6830x Copies the emulator’s EMSIM registers into the microprocessor’s SIM
_from_config registers.

difference Displays the differences between the microprocessor’s SIM registers and the

emulator’s EMSIM registers.

See Also The modify register commands and the "Concepts" chapter.

441

Emulator/Analyzer Interface Commands
trace

trace

trace
= WINDOW = SEQUENCING
s

S again <RETURN>

repetitively

= madify command

= TRIGCGER

QUALIFIER

prestare

anything

break on_trigger
repetitively

/

This command allows you to trace program execution using the emulation
analyzer.

Note that the options shown can be executed once for each trace command.
Refer to the TRIGGER and QUALIFIER diagrams for details on setting up a
trace.

You can perform analysis tasks either by starting a program run and then
specifying the trace parameters, or by specifying the trace parameters first
and then initiating the program run. Once a trace begins, the analyzer
monitors the system busses of the emulation processor to detect the states
specified in the trace command.

When the trace specification is satisfied and trace memory is filled, a message
will appear on the status line indicating the trace is complete. You can then

442

again

anything
arm_trig2

break on_trigger

modify_command
on_halt

only
prestore

QUALIFIER

Emulator/Analyzer Interface Commands
trace

use display trace to display the contents of the trace memory. If a previous
trace list is on screen, the current trace automatically updates the display. If
the trace memory contents exceed the page size of the display, the <NEXT>,
<PREV>, <Up arrow>, or <Down arrow> keys may be used to display all the
trace memory contents. You also can press <CTRL>f and <CTRL>g to move
the display left and right.

You can set up trigger and storage qualifications using the specify trace
command. The analyzers will begin tracing when acmb_execute command
executes, which causes an EXECUTE signal on the Coordinated
Measurement Bus.

The analyzer will trace any state by default.

The parameters are as follows:

This option repeats the previous trace measurement. It also begins a trace
measurement with a newly loaded trace specification. (Using trace without
the again parameter will start a trace with the default specification rather
than the loaded specification.)

This causes the analyzer to capture any type of information.

This option allows you to specify the external trigger as a trace qualifier, for
coordinating measurements between multiple HP 64700s, or an HP 64700
and another instrument.

Before arm_trig2 can appear as an option, you must modify the emulation
configuration interactive measurement specification. When doing this, you
must specify that either BNC or CMBT drive trig2, and that the analyzer
receive trig2. See the chapter on "Making Coordinated Measurements" for
more information.

This stops target system program execution when the trigger is found. The
emulator begins execution in the emulation monitor. When using this option,
the on_halt option cannot be included in the command.

This recalls the last trace command that was executed.

When using this option, the analyzer will continue to capture states until the
emulation processor halts or until a stop_trace command is executed. When
this option is used, the break_on_trigger, repetitively, and TRIGGER options
cannot be included in the command.

This option allows you to qualify the states that are stored, as defined by
QUALIFIER.

This option instructs the analyzer to save specific states that occur prior to
states that are stored (as specified with the "only" option).

This determines which of the traced states will be stored or prestored in the
trace memory for display upon completion of the trace. Events can be

443

repetitively

SEQUENCING

TRIGGER

WINDOW

Examples

See Also

Emulator/Analyzer Interface Commands
trace

selectively saved by using trace only to enter the specific events to be saved.
When this is used, only the indicated states are stored in the trace memory.
See the QUALIFIER syntax.

This initiates a new trace after the results of the previous trace are displayed.
The trace will continue until a stop_trace or a new trace command is issued.
When using this option, you cannot use the on_halt option.

Allows you to specify up to seven sequence terms including the trigger. The
analyzer must find each of these terms in the given order before searching for
the trigger. You are limited to four sequence terms if windowing is enabled.
See the SEQUENCING syntax pages for more details.

This represents the event on the emulation bus to be used as the starting,
ending, or centering event for the trace. See the TRIGGER syntax diagram.
When using this option, you cannot include the on_halt option.

Selectively enables and disables analyzer operation based upon independent
enable and disable terms. This can be used as a simple storage qualifier. Or,
you may use it to further qualify complex trigger specifications. See the
WINDOW syntax pages for details.

trace after 1000H
trace only address range 1000H thru 1004H

trace after address 1000H occurs 2 only address
range 1000H thru 1004H break _on_trigger

The copy trace, display trace, load trace, load trace_spec, specify
trace, store trace, and store trace_spec commands.

444

Emulator/Analyzer Interface Commands
TRIGGER

TRIGGER

From

TRACE

diagram after

4 I
=y
oo)

k“{ QUALIFIER

before

To output of TRIGGER
occurs H <HATIMES> M on TRACE diagram

This parameter lets you define where the analyzer will begin tracing program
information during a trace measurement.

A trigger is a QUALIFIER. When you include the occurs option, you can
specify the trigger to be a specific number of occurrences of a QUALIFIER
(see the QUALIFIER syntax diagram).

The default is to trace after any state occurs once.
The parameters are as follows:

about This option captures trace data leading to and following the trigger qualifier.
The trigger is centered in the trace listing.

after Trace data is acquired after the trigger qualifier is found.

before Trace data is acquired prior to the trigger qualifier.

occurs This specifies a number of qualifier occurrences of a range or state on which
the analyzer is to trigger.

QUALIFIER This determines which of the traced states will be stored in trace memory.

<#TIMES> This prompts you to enter a number of qualifier occurrences.

445

Emulator/Analyzer Interface Commands
TRIGGER

Examples trace after MAIN

trace after 1000H thendata 5

See Also The trace command and examples.
Also, refer to the "Making Coordinated Measurements" chapter.

446

Emulator/Analyzer Interface Commands
wait

measurement
_complete
or

seconds
<TIME>

wait

= <RETURN>

<TIME> Secomds\[or measurement complete
S\ —comp

I

<TIME>

measurement complete

Ny

This command allows you to present delays to the system.

The wait command can be an enhancement to a command file, or to normal
operation at the main emulation level. Delays allow the emulation system
and target processor time to reach a certain condition or state before
executing the next emulation command.

The wait command does not appear on the softkey labels. You must type the
wait command into the keyboard. After you type wait, the command
parameters will be accessible through the softkeys.

The system will pause until it receives a <CTRL>c signal.

Note that if set intr <CTRL>c was not executed on your system, <CTRL>c
normally defaults to the backspace key. See your UNIX system administrator
for more details regarding keyboard definitions.

The parameters are as follows: -
This causes the system to pause until a pending measurement completes (a
trace data upload process completes), or until a <CTRL>c signal is received.
If a measurement is not in progress, the wait command will complete
immediately.

This causes the system to wait for a <CTRL>c signal or for a pending
measurement to complete. Whichever occurs first will satisfy the condition.
This causes the system to pause for a specific number of seconds.

This prompts you for the number of seconds to insert for the delay.

447

Examples

Emulator/Analyzer Interface Commands
wait

Note that a wait command in a command file will cause execution of the
command file to pause until a <CTRL>c signal is received, if <CTRL>c is
defined as the interrupt signal. Subsequent commands in the command file
will not execute while the command file is paused. You can verify whether
the interrupt signal is defined as <CTRL>c by typing set at the system
prompt.

wait

wait 5; wait measurement_complete

448

Emulator/Analyzer Interface Commands
WINDOW

disable
enable

QUALIFIER

Examples

See Also

WINDOW

From trace
syntax diagram

{ enable H QUALIFIER }
L(disable H QUALIFIER M

Lets you select which states are stored by the analyzer.

WINDOW allows you to selectively toggle analyzer operation. When enabled,
the analyzer will recognize sequence terms, trigger terms, and will store
states. When disabled, the analyzer is effectively off, and only looks for a
particular enable term.

You specify windowing by selecting an enable qualifier term; the analyzer will
trigger or store all states after this term is satisfied. If the disable term
occurs after the analyzer is enabled, the analyzer will then stop storing states,
and will not recognize trigger or sequence terms. You may specify only one
enable term and one disable term.

The analyzer defaults to recognizing all states. If you specify enable, you
must supply a qualifier term. If you then specify disable, you must specify a
qualifier term.

The parameters are as follows:

Allows you to specify the term which will stop the analyzer from recognizing
states once the enable term has been found.

Allows you to specify the term which will enable the analyzer to begin
monitoring states.

Specifies the actual address, data, status value or range of values that cause
the analyzer to enable or disable recognition of states. Note that the enable
qualifier can be different from the disable qualifier. Refer to the QUALIFIER
syntax pages for further details on analyzer qualifier specification.

trace enable _rand disable 0Oecch

The trace command and the SEQUENCING and QUALIFIER syntax
descriptions.

449

450

13

Error Messages

451

Error Messages

This chapter alphabetically lists and describes the error messages displayed
on the interface status line and in the error log. The error log records error
messages received during the emulation session. You may want to display the
error log to view the error messages. Sometimes several messages will be
displayed for a single error to help you locate a problem quickly. To prevent
overrun, the error log purges the oldest messages to make room for the new
ones.

To display the error log, enter:

display error_log

Error messages are listed alphabetically by the first letter of the first word of
the error messages. In the error log, some messages may be preceded by a
number. Messages in this chapter that have an error message number
associated with them have the number listed in parentheses following the
message. These are ordered alphabetically by the first letter of the first word.

<message> (622)
Cause: Monitor specific message.

<CONFIGURATION FILENAME> does not exist
Cause: The configuration file you are trying to load does not exist.

Action: Try the load configuration command again using a valid configuration
file name.

<LOGICAL NAME>: End, continuing

Cause: This is a status message. The emulation session is being exited with
the end command. When you restart the emulation session later, it will
continue using the same settings as in the session you just ended. The
emulator logical name is located in the /usr/hp64000/etc/64700tab.net (or
64700tab) file.

452

Error Messages

<LOGICAL NAME>: End, released

Cause: This is a status message. The emulation session is being exited with
the end release_system command. When the session has ended, the emulator
is released, meaning that others can access and use it. When you restart the
emulation session later, the new session will use all default settings. The
emulator logical name is located in the /usr/hp64000/etc/64700tab.net (or
64700tab) file.

64700 command aborted (10371)

Cause: User abort occurred due when emulator is monopolized by another
command.

Action: Don'’t issue an abort.

Address range too small for request - request truncated

Cause: Too small of an address range is specified in a modify memory
command.

Action: Specify a larger memory range.

Adjust PC failed during break (600)
Cause: System failure or target condition.

Action: Run performance verification (Terminal Interface pv command), and
check target system.

Ambiguous address: <address> (312)

Cause: Certain emulators support segmentation or function code information
in addressing. The emulator is unable to determine which of two or more
address ranges you are referring to, based upon the information you entered.

Action: Re-enter the command and fully specify the address, including
segmentation or function code information.

Analyzer Break (613)
Cause: Status message.

453

Error Messages

Analyzer limitation; all range resources in use
Analyzer limitation; all pattern resources in use
Analyzer limitation; all expression resources in use (10360)

Cause: Your trace specification would use more than the maximum number of
resources available to the analyzer.

Action: Simplify the trace specification.

Analyzer trace running (1304)

Cause: This error occurs when you attempt to change the external analyzer
mode while a trace is in progress.

Action: Halt the trace before changing the external analyzer mode.

BNC trigger break (616)

Cause: This status message will be displayed if you have configured the
emulator to break on a BNC trigger signal and the BNC trigger line is
activated during a program run. The emulator is broken to the monitor.

Break caused by CMB not ready (611)

Cause: This status message is printed during coordinated measurements if
the CMB READY line goes false. The emulator breaks to the monitor. When
CMB READY is false, it indicates that one or more of the instruments
participating in the measurement is running in the monitor.

Action: None, information only.

Break condition configuration aborted (653)

Cause: Occurs when <CTRL>c is entered during the configuration of break
conditions.

Break due to cause other than step (689)

Cause: An activity other than a step command caused the emulator to break.
This could include any of the break conditions or a <CTRL>c break.

Break failed (602)
Cause: The break command was unable to break the emulator to the monitor.

Action: Determine why the break failed, then correct the condition and retry
the command. See message 608.

454

Error Messages

Breakpoint code already exists: <breakpoint_address> (667)

Cause: You attempted to insert a breakpoint; however, there was already a
software breakpoint instruction at that location which was not already in the
breakpoint table.

Action: Your program code is apparently using the same instructions as used
by the software breakpoints feature. Remove the breakpoint instructions
from your program code and use the modify software_breakpoints set
command to insert them.

Breakpoint disable aborted (671)

Cause: Occurs when <CTRL>c is entered when disabling software
breakpoints.

Breakpoint enable aborted (670)
Cause: Occurs when <CTRL>c is entered when setting software breakpoints.

Breakpoint list full; not added: <address> (664)

Cause: The software breakpoint table is already reached the maximum of 32
breakpoints. The breakpoint you just requested, with address <address>,
was not inserted.

Action: Clear breakpoints that are no longer in use. Then, set the new
breakpoint.

Breakpoint not added: <address> (668)

Cause: You tried to insert a breakpoint in a memory location which was not
mapped or was mapped as guarded memory.

Action: Insert breakpoints only within memory ranges mapped to emulation
or target RAM or ROM.

Breakpoint remove aborted (669)

Cause: Occurs when <CTRL>c is entered when clearing a software
breakpoint.

Cannot create module file:
Cause: Insufficient disk space for the module file.
Action: Check disk space under /usr/hp64000.

455

Error Messages

Cannot default emulator; already in use (10332)

Cause: You tried to start an emulator interface, but your attempt failed
because the emulator is already in use by someone else.

Action: Current user must release the emulator.

Cannot initialize PC and SSP (154)

Cause: When the emultor breaks to the monitor from reset, the emulator may
try to initialize SSP as PC by reading memory reset vactor location (0,4).If a
memory access fails, then this message will occur.

Note that you may specify the initial value of SSP and PC through the
configuration menu.

Action: Initialize SSP and PC before running and/or use the configuation
menu to changed the method of setting up SSP and PC.

Cannot interpret emulator output (10350)

Cause: There may be characters dropped in the information returned from
the emulator.

Action: Ignore this message unless it becomes frequent. If it becomes
frequent, you may have a fatal error; call your HP 64700 representative.

Cannot lock emulator; failure in obtaining the accessid
Cannot lock emulator; failure in <ERRNO MSG>

Cannot modify program counter to an odd value (164)

Cause: The emulator will not allow you to modify the content of the program
counter to an odd value.

Cannot modify stack pointer to an odd value (163)

Cause: The emulator will not allow you to modify the stack pointer to an odd
value.

Cannot start. Ending previous session, try again

Cause: The host system could not start a new emulation session, and is
ending the previous session.

Action: After the previous session has ended, try starting a new emulation
session. If that fails, try "emul700 -u <logical name>" to unlock the emulator
and cycle power, if needed.

456

Error Messages

Cannot start. Pod initialization failed

Cause: The host system could not start a new emulation session because it
could not initialize the emulator.

Action: Cycle power on the emulator; verify that there are no red lights on
the front of the emulator. You may need to run the Terminal Interface "pv"
command to verify that the emulator is functioning properly before starting a
new session.

Cannot unlock emulator; emulator in use by user: <USER NAME>
(10328)

Cause: The emulator is already in use by the named user.

Action: Current user must release the emulator.

Cannot unlock emulator; emulator not locked (10328)
Cause: You have issued a command to unlock an emulator that is not locked.
Action: The emulator is available now. You can start the interface.

Cannot unlock emulator; lock file missing
Cannot unlock emulator; semaphore missing (10328)

Cause: Lock semaphore missing.

Action: Verify existence and permissions of /usr/hp64000 directory. Cycle
emulator power and use emul700 -u <logical name>.

Clock (CLKO) drive must be normal (159)
Cause: Bits 15 or 14 have been set to nonzero.
Action: Reset the bits.

CMB execute; emulation trace started (1305)

Cause: This status message informs you that an emulation trace
measurement has started as a result of a CMB execute signal (as specified by
the specify trace command).

457

Error Messages

CMB execute; run started (693)

Cause: This status message is displayed when you are making coordinated
measurements. The CMB /EXECUTE pulse has been received; the emulation
processor started running at the address specified by the specify run
command.

Action: None; information only.

CMB execute break (623)

Cause: This message occurs when coordinated measurements are enabled
and an EXECUTE pulse causes the emulator to run; the emulator must break
before running,.

Action: This is a status message; no action is required.

CMB trigger break (617)

Cause: This status message will be displayed if you have configured the
emulator to break on a CMB trigger signal and the CMB trigger line is
activated during a program run. The emulator is broken to the monitor.

Configuration aborted (624)

Cause: Occurs when a <CTRL>c is entered while emulator configuration
items are being set.

Configuration failed; setting unknown: <item>=<setting> (626)
Cause: Target condition or system failure.

Action: Check target system, and run performance verification (Terminal
Interface pv command).

Configuration not valid, restoring previous configuration
Configuration not valid, restoring default configuration

Cause: The modifications you tried to make to the emulator configuration are
not valid, so the host system restored the previous configuration.

Action: See the "Configuring the Emulator" chapter for more information
about the emulator configuration items and their settings.

458

Error Messages

Configuration process QUIT

Cause: The configuration process ended because <CTRL> "\" (SIGQUIT
signal) was encountered. This is an easy way to exit configuration without
saving any changes.

Action: Try starting the emulation session again. If the problem persists, you
may need to cycle power on the emulator.

Connecting to <LOGICAL NAME>

Cause: This is a status message. The host system is making a communication
connection to the emulator whose logical name is defined in
/usr/hp64000/etc/64700tab.net or /usr/hp64000/etc/64700tab.

Continue load failed

Cause: The host system could not continue the previous emulation session
because it could not load the continue file.

Action: Try again. If the failure continues, call your HP Service
Representative.

Continuing previous session, continue file loaded

Cause: This is a status message. An emulation session which was ended
earlier with the end command has been restarted. The host system reported
that the session was continued (using settings from the previous session) and
that the continue file loaded properly.

Continuing previous session, user interface defaulted

Cause: The previous emulation session was continued and the Softkey
Interface was set to the default state.

Could not access emulation memory (161)

Cause: The cycle is hung, or CLKO has been turned off, or there is no clock
processor.

Action: Reset the processor.

459

Error Messages

Could not create <CONFIGURATION BINARY FILENAME>

Cause: The system could not create a binary emulation configuration file
(file.EB).

Action: Check the file.EB write permission and verify that the specified
directory exists and is writeable.

Could not create default configuration

Cause: The host system could not create a default configuration for the
emulation session.

Action: Check disk space under /usr/hp64000 and verify proper software
installation.

Could not exec configuration process

Cause: The host system could not fork the configuration process or could not
execute the configuration process.

Action: Make sure that the host system is operating properly, and that all
Softkey Interface files were loaded properly during the installation process.
Try starting the emulation session again.

Could not load default configuration

Cause: The host system could not load the default configuration into the
emulator.

Action: Cycle power on the emulator and run the Terminal Interface "pv"
(performance verification) command on the emulator to verify that it is
functioning properly. Also, verify proper software installation. If loading
default configuration still fails, then call your HP 64000 representative.

Count out of bounds: <value> (318)
Cause: You specified an occurrence count less than 1 or greater than 65535.
Action: Re-enter the command, specifying a count value from 1 to 65535.

Coverage not supported (180)

Cause: The memory coverage command cannot be used in this emulator
because there is no supporting hardware.

460

Error Messages

DEMO/TEST BOARD not present or powered up (190)

Cause: Performance verification was attempted without the demo/test board
present.

Action: Connect the demo/test board to the emulator.

Disable breakpoint failed: <address> (604)
Cause: System failure or target condition.

Action: Run performance verification (Terminal Interface pv command), and
check target system.

Disable breakpoint failed: <address> (666)
Cause: System failure or target condition.
Action: Check memory mapping and configuration questions.

Display register failed: <register> (634)
Cause: The emulator was unable to display the register you requested.
Action: To resolve this, you must look at the other status messages

displayed. It’s likely that emulator was unable to break to the monitor to
perform the register display. See message 608.

Don’t care number unexpected

Cause: While defining an expression in your command, you included a don’t
care number (a binary, octal, decimal, or hexadecimal number containing
"x"), which was not expected. Don’t care numbers are not valid for all
commands. See the EXPR command syntax for more information about
expressions.

Emul700dmn continuation failed

Cause: Communication between the emulator and the host system to
continue the emulation session failed.

Action: Check the data communication switch settings on the rear panel of
the HP 64700 series emulator. If necessary, refer to the HP 64700
Installation/Service Guide.

461

Error Messages

Emul700dmn executable not found

Cause: The emulation session could not begin because the host system could
not locate the HP 64700 emulator daemon process executable.

Action: Make sure that software installation is correct. Then try starting the
emulator again.

Emul700dmn failed to start

Cause: The emulation session could not begin because the host system could
not start the HP 64700 emulator daemon process.

Action: Make sure there is sufficient disk space under /usr/hp64000. Make
sure the host system is operating properly, that all Softkey Interface software
has been loaded correctly, and the data communication switch settings on
the emulator rear panel match the settings in the
/usr/hp64000/etc/64700tab.net (or 64700tab) file.

Emul700dmn message too large

Emul700dmn message too small

Emul700dmn queue and/or semaphores missing
Emul700dmn queue failure

Emul700dmn error in file operation
Emul700dmn queue full

Cause: The HP 64700 emulator daemon process command was too large for
the host system to process.

Action: You must press end_release_system to exit this emulation session
completely; then start a new session. Make sure the host system is operating
properly, that all Softkey Interface software has been loaded correctly, and
the data communication switch settings on the emulator rear panel match the
settings in the /usr/hp64000/etc/64700tab.net (or 64700tab) file. You may
have to cycle power and use emul700 -u ,logical name> to unlock the system.

Emul700dmn sem op failed, perhaps kernel limits too low

Cause: The host system could not start the emulation session; there may be
too many processes running on the host system.

Action: Make sure the host system is operating properly, and is not
overloaded with currently executing processes. Stop or remove some
processes on the system. Also, verify that the semaphore capabilities have
been installed in the UNIX kernel. Then try starting the emulation session
again.

462

Error Messages

Emul700dmn version incompatible with this product

Cause: The emulation session could not begin because the version of the
HP 64700 emulator daemon executable on host system is not compatible with
the version of the Softkey Interface you are using,.

Action: Make sure the software has been properly installed. Then try starting
the emulator again.

Emulation analyzer defaulted to delete label

Cause: Analyzer trace labels were changed or modified while labels were in
use in the trace specification.

Action: Enter the previous trace specification and try again.

Emulation memory access failed (702)
Cause: System failure.
Action: Run performance verification (Terminal Interface pv command).

Emulator locked by another user (10326)

Cause: This message occurs when you try to start an emulation interface, but
your attempt failed because the emulator is being used by someone else.

Action: The current user must release the emulator.

Emulator locked by another user interface (10330)

Cause: You tried to start an emulator interface, but your attempt failed
because the emulator is already in use by someone else.

Action: Current user must release the emulator.

Emulator locked by user: <USER NAME> (10329)

Cause: You tried to start an emulator interface, but your attempt failed
because the emulator is already in use by someone else.

Action: Current user must release the emulator.

463

Error Messages

Emulator terminated hung bus cycle: <cycle> at <address>(164)

Cause: A hung bus cycle occurred during a memory access operation. This
message indicates that the emulator detected the hung bus cycle and
terminated it.

Action: Retry the command that caused the hung bus cycle. You may need to
determine the source of termination (such as the processor, emulation
memory, or target memory) and make required corrections.

Enable breakpoint failed: <breakpoint> (665)
Cause: System failure or target condition.

Action: Check memory mapping and configuration questions.

Ending released

Cause: This is a status message. The emulation session is being exited with
the end release_system. The emulator will be released for others to access
and use it.

Error: display size is <LINES> lines by <COLUMNS> columns. It must
be at least 24 by 80.

Cause: You tried to specify an incorrect window size.

Action: Set the window size accordingly, then start the emulation session.
The size of the window must be a minimum of 24 lines (rows) by 80 columns
to operate an emulation session.

Error in configuration process
Error starting configuration process

Cause: Unexpected configuration error.

Action: Verify proper software installation and call your HP 64000
representative.

Exceeded maximum 64700 command line length (10351)
Cause: Your command is longer than 240 characters.
Action: Shorten the command.

464

Error Messages

Exceeded number of emulation memory terms available (142)
Cause: Too many emulation memory map terms have been used.
Action: reduc size or number of memory mapped terms.

External label in use: <label> (1301)

Cause: This error occurs when you attempt to select the external analyzer’s
independent state mode while an external trace label is currently used as a
qualifier in the emulation analyzer trace specification.

Action: Remove any external trace label qualifiers from emulation trace
specifications before selecting the external analyzer’s independent state
mode.

Failed to disable step mode (684)
Cause: System failure.
Action: Run performance verification (Terminal Interface pv command).

Fatal error from function <ADDRESS OF FUNCTION>
Cause: This is an unexpected fatal system error.

Action: Cycle power on the emulator and start again. If this is a persistent
problem, call your HP 64000 representative.

FATAL SYSTEM SOFTWARE ERROR (204, 205, 208)
Cause: The system has encountered an error from which it cannot recover.

Action: Write down the sequence of commands which caused the error.
Cycle power on the emulator and re-enter the commands. If the error
repeats, call your local HP Sales and Service office for assistance.

File could not be opened

Cause: You tried to store or load trace data to a file with incorrect permission.
Or the analyzer could not find the file you specified, or else there were
already too many files open when you entered your command.

Action: Check the directory and file for correct read and write permission.
Specify a file that is accessible to the analyzer. Close the other files that are
presently open.

465

Error Messages

File perf.out does not exist

Cause: You tried to execute the "restore" command to continue a previous
software performance measurement, and the SPMT software found that no
"performance_measurement_end" command was previously executed to
create a file from which "restore" could be performed.

Action: Execute a new SPMT measurement.

File perf.out not generated by measurement software

Cause: The file named perf.out exists in the current directory, but it was not
created by the "performance_measurement_end" command.

Action: Rename the old "perf.out" file, or move it to another directory.

File transfer aborted (410)

Cause: A transfer operation was aborted due to a break received, most likely
a <CTRL>c from the keyboard.

Action: If you typed <CTRL>c, you probably did so because you thought the
transfer was about to fail. Retry the transfer, making sure to use the correct
command options. If you are unsuccessful, make sure that the data
communications parameters are set correctly on the host and on the

HP 64700, then retry the operation.

Fuse F1 blown on HP64748C ABG Control Board (191)
Cause: Hardware fault.

Guarded memory access break (614)

Cause: This message is displayed if the emulation processor attempts to read
or write memory mapped as guarded.

Action: Troubleshoot your program; or, you may have mapped memory
incorrectly.

Guarded memory break: <address> (628)

Cause: A memory access to a location mapped as guarded memory has
occurred during execution of the user program.

Action: Investigate the cause of the guarded memory access by the user
program.

466

Error Messages

HP 64700 I/O error; communications timeout
Cause: This is a communication failure.

Action: Check power to the emulator and check that all cables are connected
properly. If you are using LAN and heavy LAN traffic is present, try setting
the environment variable to HP64700TIMEOUT="30" (or larger if needed).
The value is the number of seconds before timeout occurs. Then try running
again.

HP 64700 I/O error; power down detected
Cause: The emulator power was cycled.

Action: Do not do this during a user interface session; this may force the user
interface to end immediately.

HP64700 I/O channel busy; communications timed out

Cause: The communications channel is in use for an unusually long period of
time by another command.

Action: try again later.

HP64700 I/O channel in use by emulator: <LOGICAL NAME> (10331)

Cause: You tried to start an emulator interface, but your attempt failed
because the emulator is already in use by someone else.

Action: Current user must release the emulator.

HP64700 I/O channel semaphore failure: <string>
Cause: Semaphore (ipc) facility not installed.
Action: Reconfigure the kernel to add ipc facility.

HP64700 I/O error; connection timed out
Cause: A user abort occurred while attempting to connect via LAN.
Action: Possibly connecting to an emulator many miles away, be patient.

Illegal status combination

Cause: You tried to specify combinations of status qualifiers in expressions
incorrectly when entering commands.

Action: Refer to the "Emulator/Analyzer Interface Commands" chapter for
information about syntax of commands.

467

Error Messages

Illegal symbol name
Cause: You tried to specify incorrect symbol names when entering commands.

Action: Specify correct symbol names. To see global symbol names, use the
display global_symbols command. To see local symbol names, use the
display local_symbols_in <SYMB> command.

Incompatible compatibility table entry (206)

Cause: The emulation firmware (ROM) is not compatible with the analysis or
system firmware in your HP 64700 system.

Action: The ROMs in your emulator must be compatible with each other for
your emulation system to work correctly. Contact your Hewlett-Packard
Representative.

Incompatible with 64700 firmware version (10352)

Cause: The installed interface firmware combination is incorrect or
incompatible.

Action: Upgrade the interface software of product firmware.

Initialization failed
Cause: The emulator could not be initialized.

Action: Make sure your data communication switch settings are correct, and
that all Softkey Interface software has been loaded properly. Cycle power on
the emulator, then try starting up the emulation session again.

Initialization load failed
Cause: The emulator could not be initialized.

Action: Make sure your data communication switch settings are correct, and
that all Softkey Interface software has been loaded properly. Cycle power on
the emulator, then try starting up the emulation session again.

Initializing emulator with default configuration

Cause: This is a status message. The host system started the emulation
session and initialized the emulator using the default configuration. The
emulator is probably operating correctly.

468

Error Messages

Initializing user interface with default config file

Cause: This is a status message. The host system started the emulation
session and Softkey Interface using the default configuration file. The
emulator is probably operating correctly.

Insufficient emulation memory, memory map may be incomplete

Cause: You can map only the amount of emulation memory available in your
emulator. Trying to map additional unavailable memory may cause
information to be missing from your memory map.

Action: Modify your configuration and update the memory map to correctly
reflect the amount of emulation memory available.

Insufficient emulation memory (21)

Cause: You have attempted to map more emulation memory than is available,
or you have attempted to include tag memory with a target system memory
range when there is not enough emulation memory available.

Action: Reduce the amount of emulation memory or tag memory that you are
trying to map.

Internal memory must not be mapped to 0 or 1000H
Cause: Register EMSIM EBAR set the internal memory to OH or 1000H.
Action: Set the internal memory to another number.

Target may be asserting INTR 7 (156)

Cause: Target may be asserting interrupt 7 signals while the emulator is
trying to break to the background monitor.

Action: Have the target negate interrupt level 7 or configure the emulator to
disable target interrupts.

Invalid analysis subsystem; product address: <address> (902)

Cause: This error occurs when the HP 64700 system controller determines
that the analysis firmware (ROM) is invalid.

Action: This message is not likely to occur unless you have upgraded the
ROMs in your emulator. Be sure that the correct ROMs are installed in the
analyzer board.

469

Error Messages

Invalid answer in <CONFIGURATION FILENAME> ignored

Cause: You must provide acceptable responses to questions in the
configuration file (file.EA). The emulator ignored the incorrect response.
Incorrect responses may appear in configuration files when you have saved
the configuration to a file, edited it later, and tried reloading it into the
emulator. This may also occur if you have loaded a configuration file that you
created while using another emulator, and the response differs from the
response required for this emulator.

Action: Examine your configuration file to check for inappropriate responses
to configuration file questions.

Invalid attribute for memory type: <attribute> (140)

Cause: You tried to specify a memory attribute for target memory. Attributes
are valid for emulation memory only, not for target or guarded memory.

Action: Re-enter your specification and use attributes only when specifying
emulation memory space.

Invalid auxiliary subsystem; product address: <address> (904)
Cause: For future products.

Invalid ET subsystem; product address: <address> (903)
Cause: Detects an invalid ET. Used only internally.

Invalid firmware for emulation subsystem (901)

Cause: This error occurs when the HP 64700 system controller determines
that the emulation firmware (ROM) is invalid.

Action: This message is not likely to occur unless you have upgraded the
ROMs in your emulator. Be sure that the correct ROM is installed in the
emulation controller.

Invalid trigger duration: <duration> (2031)

Cause: This error occurs when you attempt to specify an external timing
trigger duration which is in the valid range but is not a multiple of 10 ns.

Action: Re-enter the command with the trigger duration as a multiple of 10
ns.

470

Error Messages

Invalid word access for odd address (2)

Cause: When the access mode is "word", you have attempted to modify a
target system memory location at an odd address.

Action: Either change to an even address or modify the access mode to bytes
if possible.

Invalid word access for odd number of bytes (3)

Cause: When the access mode is "word" and the display mode is "byte", you
have attempted to modify a range of target system memory (perhaps, as
small as a two byte range) with an odd number of byte values.

Action: Either specify an even number of bytes or modify the access mode to
bytes if possible.

Inverse assembly file <INVERSE ASSEMBLER FILENAME> could not
be loaded

Inverse assembly file <INVERSE ASSEMBLER FILENAME> not found,
<filename>

Inverse assembly not available

Cause: The file does not exist.
Action: Reload your interface and/or real-time operating system software.

Inverse assembly not available
Cause: The inverse assembler for your emulator is missing.
Action: Verify proper software installation.

Joining session already in progress, continue file loaded

Cause: This is a status message. When operating the emulator in multiple
windows, a new emulation session is "joined" to a current session. In this
case, the new session was able to continue because the continue file loaded
properly.

Joining session already in progress, user interface defaulted

Cause: When operating the emulator in multiple windows, a new emulation
session is "joined" to a current session. In this case, the new session used the
user interface default selections.

471

Error Messages

Lab firmware analysis subsystem; product address: <address> (912)

Cause: This message should never occur. It shows that you have an
unreleased version of analysis firmware.

Lab firmware auxiliary subsystem; product address: <address> (914)

Cause: This message should never occur. It shows that you have an
unreleased firmware version of the auxiliary subsystem.

Lab firmware for emulation subsystem (911)

Cause: This message should never occur. It shows that you have an
unreleased version of emulation firmware.

Lab firmware subsystem; product address: <address> (913)

Cause: This message should never occur. It shows that you have an
unreleased version of system controller firmware.

Load aborted

Cause: While loading a file into the emulator, an event occurred that caused
the host system to stop the load process.

Action: Use the display error_log command to view any errors. If the problem
persists, make sure the host system and emulator are operating properly, and
that you are trying to load an acceptable file. See the "Emulator/Analyzer
Interface Commands" chapter for information about the load command.

Load completed with errors

Cause: While loading a file into the emulator, one or more events occurred
that caused errors during the load process.

Action: Use the display error_log command to view any errors. You may need
to modify the configuration and map memory before you load the file again. If
the problem persists, make sure the host system and emulator are operating
properly, and that you are trying to load an acceptable file.

Logical emulator name unknown; not found in 64700tab file (10315)

Cause: This message may occur while trying to start up the emulator. It
indicates that the emulator name specified could not be found in the
64700tab.net or /etc/hosts files.

Action: Specify the name in one of these files.

472

Error Messages

Map term n limited to 4 chip selects (165)

Cause: This status message occurs if more than 4 chip selects are assigned to
a mapped term (as defined by the EMSIM registers: EMCSOR][0-10],
EMCSBRI[0-10], EMCSORBT, or EMCSBRBT). Only the first 4 chip selects
will be allowed.

Measurement system not found

Cause: You tried to end the current emulation session and select another
measurement system module which could not be located by the host system.

Action: Either try the end select measurement_system command again or
end and release the emulation session.

Memory allocation failed, ending released

Cause: This is a fatal system error because the emulation session was unable
to allocate memory.

Action: You may need to reconfigure your UNIX kernel to increase the per
process maximum memory limit and available swap space. Reboot your
UNIX system and try starting a new session again.

Memory modify aborted; next address: <address> (754)

Cause: This message is displayed if a break occurs during processing of a
modify memory command. The break could result from any of the break
conditions (except a software breakpoint) or could have resulted from a
<CTRL>c break.

Action: Retry the operation. If breaks are occurring continuously, you may
wish to disable some of the break conditions.

Memory range overflow
Cause: A modify memory command is attempted that would cross physical 0.

Action: Limit the modify memory command to not overflow physical O or
break the command into two separate modify commands.

Memory range overflow (710)

Cause: Accessing a word or short word, for example display memory Offffffff
blocked word will cause a rounding error that overflows physical memory.

Action: Reduce memory display request.

473

Error Messages

Message overflow (141)

Cause: The display configuration_info diagnostics command may emit
more messages than HP 64700 will allow. This occurs when more than 16
messages have been emitted.

M6830x probe not connected or configured incorrectly (160)
Cause: The emulator probe hardware is not that for the M6830x emulator.

Action: make sure the three cables from the emulator control board to the
emulator are properly connected. Make sure you are using the proper
hardware.

Negated patterns not allowed in timing (2030)

Cause: This error occurs when you attempt to specify a "not equals"
expression when defining the external timing trigger. You can only specify
labels which equal patterns (of 1’s, 0’s, or Xs).

Action: Do not attempt to specify negated timing patterns.

No address label defined

Cause: The address trace label was somehow removed in the terminal
interface using the tlb command.

Action: End session and start again.

No more processes may be attached to this session

Cause: You can operate an emulator in four windows. Each time you start the
emulator in another window, a new process is attached to the current session.

Action: Do not try to use more than four windows. Once you have started the
emulator in four windows, you have reached the maximum number of
processes allowed for that emulator.

No symbols loaded

Cause: You tried to step through lines in the source file before symbols are
loaded.

Action: Load symbols and try again, or use step with the "source" option (i.e.
step assembly language program).

474

Error Messages

No valid trace data
Cause: You tried to store trace data before a trace was completed.

Action: Wait until valid trace data is available before attempting to store a
trace.

Not a valid trace file - load aborted

Cause: You tried to load a file. TR that was not created by the emulation
session.

Action: Only load trace data files that were created by the emulator.

Not an absolute file
No absolute file: <file>
No absolute file, No database: <file>

Cause: You tried to load a file into the emulator that is not an executable or
absolute file, so the host system stopped the load process.

Action: Try your command again, and make sure you specify a valid absolute
file name to be loaded.

Not compatible trace file - load aborted

Cause: You tried to load a file. TR that was created by another type of
emulator.

Action: Only load trace data files that were created by the same type of
emulator.

Number of lines not in range: 1 <= valid lines <= 50

Cause: You tried to enter a number of lines that was outside the range from 1
to 50.

Action: Try entering the command again using a valid number of lines.

Number of spaces not in range: 2 <= valid spaces <= 15
Cause: You tried to enter a number of spaces outside the range from 2 to 15.
Action: Try entering the command again using a valid number of spaces.

475

Error Messages

opcode extends beyond specified address range

Cause: Memory disassembly is attempted on an address range that is too
small.

Action: Display memory mnemonic using a large address range, or no address
range at all.

perf.out file could not be opened - created

Cause: The performance analyzer failed to open or create a file named
"perf.out" in response to your "performance_measurement_end" command.

Action: Free up some file space or correct the write permissions in your
current working directory.

Perfinit - Absolute file (database) must be loaded line <LINE NUMBER>

Cause: No symbolic data base has been opened (or exists) for the target file
when you executed the "performance_measurement_initialize" command.

Action: Make sure a data base has been loaded for the target file.

Perfinit - error in input file line <LINE NUMBER> invalid symbol

You included a "label" file name with your
"performance_measurement_initialize" command, and that file contains an
invalid symbol.

Action: Edit the file and correct the invalid symbol.

Perfinit - error in input file line <NUMBER>

Cause: You included an input file name with your
"performance_measurement_initialize" command, and that file contains a
syntax error.

Action: Edit the file and correct the syntax error.

Perfinit - File could not be opened

Cause: You specified a file as an option to
"performance_measurement_initialize", and the file you specified could not
be found or opened by SPMT software.

Action: Make sure you entered the correct file name.

476

Error Messages

Perfinit - No events in file

Cause: You specified a file along with your
"performance_measurement"initialize" command that contained no events.
Any measurement displayed from this file will have NULL results.

Action: Either edit the file to add events, or use the default setup to start a
new measurement.

Perfinit <—EXPR— ERROR> line <LINE NUMBER>

Performance tool must be initialized

Cause: You tried to make a performance measurement when the Software
Performance Measurement Tool (SPMT) was not initialized.

Action: The Software Performance Measurement Tool (SPMT) must be
initialized before making performance measurements on your software. Use
the performance_measurement,_initialize command to initialize the SPMT.

Performance tool not initialized

Cause: The Software Performance Measurement Tool (SPMT) has not been
initialized.

Action: To make accurate activity or duration measurements on current data,

use the performance_measurement_initialize command to initialize the SPMT
before running a performance measurement.

Period not in 1/2/5 sequence: <period> (2021)

Cause: This error message occurs when the external timing sample period is
not in a 1/2/56 sequence; for example, 10ns, 20ns, 50ns, 100ns, 200ns, 500ns,
lus, 2us, bus, etc. Some examples of invalid sample period specifications are:
12ns, 18ns, 26ns, 60ns, 80ns, etc.

Action: Use a number in the 1/2/6 sequence when specifying the external
timing sample period.

Program counter is odd (84)

Cause: You attempted to modify the program counter to an odd value using
the modify registers command on a processor which expects even alignment
of opcodes.

Action: Modify the program counter only to even numbered values.

477

Error Messages

Question file missing or invalid
Cause: Some of the Softkey User Interface files are missing or are corrupted.

Action: Reinstall the host software and try starting the emulation session
again.

Range crosses segment boundary

Cause: On a segment offset processor, an address range is specified that
would cross different segments.

Action: Break the memory command into multiple commands so that the
address ranges start and end in the same segment.

Read memory failed at <PHYSICAL ADDRESS> - store aborted

Cause: While storing memory from the emulator to a file, a read memory
error occurred.

Action: Use the display error_log command to view any errors. You may need
to modify the configuration and map memory before storing the file again.

Read PC failed during break (603)
Cause: System failure or target condition.

Action: Try again.

Record checksum failure (400)

Cause: During a transfer operation, the checksum specified in a file did not
agree with that calculated by the HP 64700.

Action: Retry the transfer operation. If the failure is repeated, make sure
that both your host and the HP 64700 data communications parameters are
configured correctly.

Records expected: <number>; records received: <number> (401)

Cause: The HP 64700 received a different number of records than it
expected to receive during a transfer operation.

Action: Retry the transfer. If the failure is repeated, make sure that the data

communications parameters are set correctly on the host and on the
HP 64700.

478

Error Messages

Register access aborted (630)
Cause: Occurs when a <CTRL>c is entered during register display.

Register class cannot be modified: <register_class> (637)
Cause: You tried to modify a register class instead of an individual register.

Action: You can only modify individual registers. Refer to the display
registers command description for a list of register names.

Register not writable: <register> (636)
Cause: This error occurs when you attempt to modify a read only register.

Action: If this error occurs, you cannot modify the contents of the register
with the modify register command.

Request access to guarded memory: <address> (707)

Cause: The address or address range specified in the command included
addresses within a range mapped as guarded memory. When the emulator
attempts to access these during command processing, the above message is
printed, along with the specific address or addresses accessed.

Action: Re-enter the command and specify only addresses or address ranges
within emulation or target RAM or ROM. Or, you can remap memory so that
the desired addresses are no longer mapped as guarded.

Restricted to real time runs (40)

Cause: While the emulator is restricted to real-time execution, you have
attempted to use a command that requires a temporary break in execution to
the monitor. The emulator does not permit the command and issues this
error message.

Action: You must break the emulator’s execution into the monitor before you
can enter the command.

479

Error Messages

Retry limit exceeded, transfer failed (412)
Cause: The limit for repeated attempts to send a record during a transfer
operation was exceeded, therefore the transfer was aborted.

Action: Retry the transfer. Make sure you are using the correct command
options for both the host and the HP 64700. The data communications
parameters need to be set correctly for both devices. Also, if you are in a
remote location from the host, it is possible that line noise may cause the
failure.

Run failed during CMB execute (694)
Cause: System failure or target condition.

Action: Run performance verification (Terminal Interface pv command), and
check target system.

Sample period out of bounds: <bounds> (2022)

Cause: The external timing sample period must be between 10 ns and 50 ms
(in a 1/2/6 sequence).

Action: Re-enter the command with the sample period between the bounds
shown.

Session aborted

Cause: This will only happen when running multiple emulation windows and
a fatal system error occurs.

Action: Find the window that caused the error and see the error message that
it displayed. All the additional windows will simply state "session aborted".
Cycle power on the emulator and enter emul700 -u <logical name> to make
sure the emulator is unlocked.

Session cannot be continued, ending released

Cause: The emulation session is ending automatically because it could not be
continued from the previous session. When the session has ended the
emulator will be released, meaning that others can access and use it.

Action: When you restart the emulation session later, the new session will use
all default settings.

480

Error Messages

Severe error detected, file transfer failed (411)
Cause: An unrecoverable error occurred during a transfer operation.

Action: Retry the transfer. If it fails again, make sure that the data
communications parameters are set correctly on the host and on the

HP 64700. Also make sure that you are using the correct command options,
both on the HP 64700 and on the host.

Slave clock requires at least one edge
Cause: The analyzer has an invalid clock specification.

Action: Modify your configuration and try your command again.

Software breakpoint: <address> (615)

Cause: This status message will be displayed if a software breakpoint is
encountered during a program run. The emulator is broken to the monitor.
The string <address> indicates the address where the breakpoint was
encountered.

Software breakpoint break condition is disabled (661)

Cause: You have attempted to set or clear a software breakpoint when
software breakpoints are disabled.

Action: You must enable software breakpoints before you can set them.

Specified breakpoint not in list: <address> (663)

Cause: You tried to clear a software breakpoint that was not previously set.
The string <address> prints the address of the breakpoint you attempted to
clear.

Action: You must first set a software breakpoint before it can be cleared.

Starting address greater than ending address

Cause: You specified a starting address that is greater than the ending
address.

Action: Specify a starting address that is less than or equal to the ending
address.

481

Error Messages

Starting new session, continue file loaded

Cause: This is a status message. The emulator was started using a new
emulation session, and the continue file loaded properly.

Starting new session, user interface defaulted

Cause: The emulator was started using a new emulation session, and the user
interface was set to default selections.

Action: Call your HP Service Representative.

Status unknown, run "emul700 -1 <LOGICAL NAME>"
Cause: The host system cannot determine the status of the emulator.

Action: To verify communication between the emulator and the host system,
and display the emulator status, enter the emul700 -1 <logical name>
command. The emulator logical name is located in the
/usr/hp64000/etc/64700tab.net (or 64700tab) file.

Step count must be 1 through 999
Cause: You tried to use a step count greater than 999.

Action: Use a step count less than 1000.

Step display failed (688)
Cause: System failure or target condition.
Action: Check memory mapping and configuration questions.

Stepping aborted; number steps completed: <number> (686)

Cause: This message is displayed if a break was received during a step
command with a step count greater than zero. The break could have been
due to any of the break conditions or a <CTRL>c break. The number of steps
completed is displayed.

Stepping aborted; number steps completed: <STEPS TAKEN>

Cause: Stepping aborted because <CTRL>c or software breakpoint was hit,
guarded memory was accessed, or some other kind of error occurred.
Action: See the error log display for any abnormal errors. Correct those
errors and then step again.

482

Error Messages

Stepping complete
Cause: Stepping was completed successfully.

Stepping failed (680)
Cause: Stepping has failed for some reason.

Action: Usually, this error message will occur with other error messages.
Refer to the descriptions of the accompanying error messages to find out
more about why stepping failed.

Supervisor stack is set for ROM or guarded memory
Cause: The supervisor stack is set for inappropriate access to memory.
Action: Reset the stack.

Symbols not accessible, symbol database not loaded

Cause: You specified a trace list with values expressed using symbols defined
in the source code modules, such as source on, and the database file has not
been loaded into emulation. Example: display trace symbols on.

Target memory access failed (700)

Cause: This message is displayed if the emulator was unable to perform the
requested operation on memory mapped to the target system.

Action: In most cases, the problem results from the emulator’s inability to
break to the monitor to perform the operation. See message 608.

Target memory access; bus error (155)

Cause: Target memory received a bus error when attempting to access the
target memory.

Action: Change the processor chip select configuration, the emulation
DTACK configuration, or target system to supply DTACK.

Timeout, receiver failed to respond (415)
Cause: Communication link or transfer protocol incorrect.
Action: Check link and transfer options.

483

Error Messages

Timeout in emul700dmn communication

Cause: The host system could not start the emulation session because the
HP 64700 emulator process ran out of time before the emulator could start.

Action: You must press end_release_system to exit this emulation session
completely; then start a new session. Make sure the host system is operating
properly, that all Softkey Interface software has been loaded correctly, and
the data communication switch settings on the emulator rear panel match the
settings in the /usr/hp64000/etc/64700tab.net (or 64700tab) file.

Trace error during CMB execute (692)
Cause: System failure.

Action: Run performance verification (Terminal Interface pv command).

Trace file not found
Cause: You tried to load trace data file that does not exist.

Action: Find the correct name and path of the trace data file and try again.

Transfer failed to start (413)
Cause: Communication link or transfer protocol incorrect.

Action: Check link and transfer options.

trigl break (618)

Cause: This status message will be displayed if you use the break_on_trigger
syntax of the trace command and the analyzer has found the trigger
condition while tracing a program run. The emulator is broken to the
monitor.

trig2 break (619)

Cause: This status message will be displayed if you have used the internal
trig2 line to connect the analyzer or external analyzer trigger output to the
emulator break input and the analyzer has found the trigger condition. The
emulator is broken to the monitor.

484

Error Messages

Trigger delay out of bounds: <bounds> (2042)

Cause: This error occurs when you attempt to specify an external timing
trigger delay outside the valid range. The external timing trigger delay must
be between 0 and 10 ms (in 10 ns increments).

Action: Re-enter the command with the trigger delay within the bounds
shown.

Trigger duration out of bounds: <bounds> (2032)

Cause: This error occurs when you attempt to specify an external timing
trigger duration outside the valid range. A "greater than" duration must fall
within the range of 30 ns to 10 ms (and must be a multiple of 10 ns). A "less
than" duration must fall within the range 40 ns to 10ms (and must be a
multiple of 10 ns).

Action: Re-enter the command with the trigger duration within the bounds
shown.

Unable to break (608)

Cause: This message is displayed if the emulator is unable to break to the
monitor because the emulation processor is reset, halted, or is otherwise
disabled.

Action: First, look at the emulation prompt and other status messages
displayed to determine why the processor is stopped. If reset by the
emulation controller, use the break command to break to the monitor. If
reset by the emulation system, release that reset. If halted, try reset and
break to get to the monitor. If there is a bus grant, wait for the requesting
device to release the bus before retrying the command. If there is no clock
input, perhaps your target system is faulty. It’s also possible that you have
configured the emulator to restrict to real time runs, which will prohibit
temporary breaks to the monitor.

Unable to configure break on software breakpoints (651)

Cause: The emulator controller cannot enable breakpoints, possibly because
the emulator is in an unknown state or because of a hardware failure.

Action: Initialize the emulator or cycle power, then re-enter the command. If
the same failure occurs, call your HP sales and service office.

485

Error Messages

Unable to configure break on write to ROM (650)

Cause: The emulator controller is unable to configure for breaks on writes to
ROM, possibly because the emulator was left in an unknown state or because
of a hardware failure.

Action: Initialize the emulator or cycle power. Then re-enter the command.
If the same failure occurs, call your HP sales and service office.

Unable to delete label; used by emulation analyzer: <label> (1105)

Cause: This error occurs when you attempt to delete an emulation trace
label which is currently being used as a qualifier in the emulation trace
specification or is currently specified in the emulation trace format.

Action: You stop the trace or must change the trace command before you
can delete the label.

Unable to delete label; used by external state analyzer: <label> (1106)

Cause: This error occurs when you attempt to delete an external trace label
which is currently being used as a qualifier in the external state trace
specification or is currently specified in the external trace format.

Action: You stop the trace or must change the trace command before you
can delete the label.

Unable to delete label; used by external timing analyzer: <label> (1107)

Cause: This error occurs when you attempt to delete an external trace label
which is currently being used as a qualifier in the external timing trace
specification.

Action: Remove the label from the external timing analyzer specifications,
and then delete the label.

Unable to load new memory map; old map reloaded (725)
Cause: There is not enough emulation memory left for this request.
Action: Reduce the amount of emulation memory requested.

486

Error Messages

Unable to modify register: <register>=<value> (632)
Cause: The emulator was unable to modify the register you requested.

Action: To resolve this, you must look at the other status messages
displayed. It’s likely that emulator was unable to break to the monitor to
perform the register modification. See message 608.

Unable to read registers in class: <class> (631)
Cause: The emulator was unable to read the registers you requested.

Action: To resolve this, you must look at the other status messages
displayed. Most likely, the emulator was unable to break to the monitor to
perform the register read. See message 608.

Unable to redefine label; used by emulation analyzer: <label> (1108)

Cause: This error occurs when you attempt to redefine an emulation trace
label which is currently used as a qualifier in the emulation trace
specification.

Action: You stop the trace or must change the trace command before you
can redefine the label.

Unable to redefine label; used by external state analyzer: <label> (1109)

Cause: This error occurs when you attempt to redefine an external trace
label which is currently used as a qualifier in the external state trace
specification.

Action: You stop the trace or must change the trace command before you
can redefine the label.

Unable to redefine label; used by external timing analyzer: <label>
(1110)

Cause: This error occurs when you attempt to redefine an emulation or
external trace label which is currently being used as a qualifier in the
external timing trace specification.

Action: Remove the label from the external timing analyzer specifications,
and then redefine the label.

487

Error Messages

Unable to reload old memory map; hardware state unknown (726)
Cause: System failure.
Action: Run performance verification (Terminal Interface pv command).

Unable to reset (640)
Cause: Target condition or system failure.

Action: Check target system, and run performance verification (Terminal
Interface pv command).

Unable to run (610)
Cause: System failure or target condition.

Action: Run performance verification (Terminal Interface pv command), and
check target system.

Unable to run after CMB break (606)
Cause: System failure or target condition.

Action: Run performance verification (Terminal Interface pv command), and
check target system.

Unable to run performance verification tests (191)

Cause: You entered the pv command but the emulator was unable to start
performance verification because the firmware did not identifythe probe as
being the MC6830x.

Action: Make sure the correct emulator probe is connected and that all cables
are secured. make sure the demo board is connected to the emulator probe,
and that the power cable is connected between the card cage and the demo
board.

Undefined software breakpoint: <address> (605)

Cause: The emulator has encountered a software breakpoint in your program
that was not inserted with the modify software_breakpoints set command.

Action: Remove the breakpoint instructions in your code before assembly
and link.

488

Error Messages

Unexpected message from emul700dmn

Cause: The host system could not start the emulation session because of an
unexpected message from the HP 64700 emulator process command.

Action: You must press end_release_system to exit this emulation session
completely; then start a new session. Make sure the host system is operating
properly, that all Softkey Interface software has been loaded correctly, and
the data communication switch settings on the emulator rear panel match the
settings in the /usr/hp64000/etc/64700tab.net (or 64700tab) file.

Unexpected software breakpoint (620)

Cause: If you have enabled software breakpoints, this message is displayed if
a software breakpoint instruction is encountered in your program that was
not inserted by a modify software_breakpoints set command and is therefore
not in the breakpoint table.

Action: Remove the breakpoint instructions in your code before assembly
and link, and use the modify software_breakpoints set command to reinsert
them after the program is loaded into memory.

Unexpected step break (621)
Cause: System failure.
Action: Run performance verification (Terminal Interface pv command).

Unknown expression type

Cause: While entering your command, you included an unknown expression
type.

Action: See the EXPR command syntax for more information about
expressions. Then try entering your command again with a known expression

type.

Unload trace data failed
Cause: Unexpected error occurred while waiting for a trace to be completed.
Action: End and release the session, and then try again.

489

Error Messages

Update HP 64740 firmware to version A.02.02 or newer (181)

Cause: This error occurred when you attempted to disassemble a trace and
the analyzer firmware was found to be out of date.

Action: Refer to Chapter 16 "Installing/ Updating Emulator Firmware". You
must update the firmware either to the version specified in the message or a
newer firmware version.

Wait time failure, could not determine system time
Cause: The system call failed.

Action: Verify that 'date’ executes correctly from the UNIX prompt.

Warning: at least one integer truncated to 32 bits
Warning: at least one integer truncated to 16 bits
Warning: at least one integer truncated to 8 bits

Cause: The number entered was too large for the currently specified display
or access size.

Action: Try entering the command again using the correct size of number.

Width not in range: 1 <= valid width <= 80

Cause: You tried to specify the width of the field outside the range from 1 to
80.

Action: Try entering the command again using a valid number for the width.

Write to ROM break: <address> (628)

Cause: When the emulator is configured to break on writes to ROM, a
memory write access to a location mapped as ROM has occurred during
execution of the user program.

Action: Investigate the cause of the write to ROM by the user program. You
can configure the emulator so that it does not break on writes to ROM.

Write to ROM break (612)

Cause: This status message will be printed if you have enabled breaks on
writes to ROM and the emulation processor attempted a write to a memory
location mapped as ROM.

Action: None (except troubleshooting your program).

490

Part 4

Concept Guide

491

Part4

Topics that explain concepts and apply them to advanced tasks.

492

14

Concepts

493

Concepts

This chapter provides conceptual information on the following topics:

e Xresources and the Graphical User Interface.
¢ Concepts of the EMSIM

494

X Resources and the Graphical User Interface

This section contains more detailed information about X resources
and scheme files that control the appearance and operation of the
Graphical User Interface. This section:

¢ Describes the X Window concepts surrounding resource
specification.

* Describes the Graphical User Interface’s implementation of scheme
files.

X Resource Specifications

An X resource specification is a resource name and a value. The resource
name identifies the element whose appearance or behavior is to be defined,
and the value specifies how the element should look or behave. For example,
consider the following resource specification:

Application.form.row.done.background: red

The resource name is "Application.form.row.done.background:" and the value
is "red".

Resource Names Follow Widget Hierarchy

A widget is an OSF/Motif graphic device from which X applications are built.
For example, pushbuttons and menu bars are Motif widgets. Applications are
built using a hierarchy of widgets, and the application’s X resource names
follow this hierarchy. For example:

Application.form.row.done.background: red

In the resource name above, the top-level widget is named after the
application. One of the top-level widget’s children is a form widget, one of
the form widget’s children is a row-column manager widget, and one of the
row-column manager widget’s children is a pushbutton widget. Resource
names show a path in the widget hierarchy.

495

Concepts

Each widget in the hierarchy is a member of a widget class, and the particular
instance of the widget is named by the application programmer.

Class Names or Instance Names Can Be Used

When specifying resource names, you can use either instance names or class
names. For example, a "Done" pushbutton may have an instance name of
"done" and a class name of "XmPushButton". To set the background color for
a hypothetical "Done" pushbutton, you can use:

Application.form.row.done.background: red
Or, you can use:
Application.form.row.XmPushButton.background: red

Applications also have class and instance names. For example, an application
may have an instance name of "applicl" and a class name of "Application". To
set the background color for a hypothetical "Done" pushbutton only in the
"applicl" application, you can use:

applicl.form.row.done.background: red

Note that instance names are more specific than class names. That is, class
names may apply to many instances of the widget.

The class and instance names for the widgets in the Graphical User Interface
can be displayed by choosing Help — X Resource Names and clicking on the
"All names" button.

Wildcards Can Be Used

A wildcard may be used to match a resource specification to many different
widgets at once. For example, to set the background color of all
pushbuttons, you can use:

Application*XmPushButton.background: red

Note that resource names with wildcards are more general than those
without wildcards.

496

Concepts

Specific Names Override General Names
A more specific resource specification will override a more general one when
both apply to a particular widget or application.

The names for the application and the main window widget in HP64_Softkey
applications have been chosen so that you may specify custom resource
values that apply in particular situations:

Apply to ALL HP64_Softkey applications:
HP64_Softkey*<resource>: <value>

Apply to specific types of HP64_Softkey applications:
emul*<resource>: <value> (for the emulator)

perf*<resource>: <value> (for the performance analyzer)

Apply to all HP64_Softkey applications, but only when they are
connected to a particular type of microprocessor:
m6830x<resource>: <value> (for the 6830x)
m68020<resource>: <value> (for the 68020)

Apply to a specific HP64_Softkey application connected to a specific
processor:

perf. m6830x*<resource>: <value> (for the 6830x perf. analyzer)
emul.m68020*<resource>: <value> (for the 68020 emulator)

If all four examples above are used for a particular resource, #3 will override
#2 for all applications connected to a 6830x emulator, and #4 will override #2,
but only for the specifically mentioned type of microprocessor.

When modifying resources, your resource paths must either match, or be
more specific than, those found in the application defaults file.

How X Resource Specifications are Loaded

When the Graphical User Interface starts up, it loads resource specifications
from a set of configuration files located in system directories as well as
user-specific locations.

497

HP-UX
Sun0s

Concepts

Application Default Resource Specifications

Default resource specifications for an application are placed in a system
directory:

/usr/lib/X11/app-defaults

/usr/openwin/lib/X11/app-defaults

The name of the Graphical User Interface application defaults file is
HP64_Softkey (same as the application class name). This file is
well-commented and contains information about each of the X resources you
can modify. You can easily view this file by choosing Help — Topic and
selecting the "X Resources: App Default File" topic. Do not modify the
application defaults file; any changes to this file will affect the appearance
and behavior of the application for all users.

User-Defined Resource Specifications

User-defined resources (for any X application) are located in the X server’s
RESOURCE_MANAGER property or in the user’s SHOME/.Xdefaults file.

Load Order

Resource specifications are loaded from the following places in the following
order:

The application defaults file. For example,
/usr/lib/X11/app-defaults/HP64_Softkey when the operating system is
HP-UX or /usr/openwin/lib/X11/app-defaults/HP64_Softkey when the
operating system is SunOS.

The $XAPPLRESDIR/HP64_Softkey file. (The XAPPLRESDIR
environment variable defines a directory containing system-wide
custom application defaults.)

The server’'s RESOURCE_MANAGER property. (The xrdb command

loads user-defined resource specifications into the
RESOURCE_MANAGER property.)

If no RESOURCE_MANAGER property exists, user defined resource
settings are read from the $HOME/.Xdefaults file.

498

Concepts

The file named by the XENVIRONMENT environment variable.

If the XENVIRONMENT variable is not set, the
$HOME/ . Xdefaults-host file is read (typically contains resource
specifications for a specific remote host).
Resource specifications included in the command line with the -xrm
option.
When specifications with identical resource names appear in different places,
the latter specification overrides the former.

Scheme Files

Several of the Graphical User Interface’s X resources identify scheme files
that contain additional X resource specifications. Scheme files group
resource specifications for different displays, computing environments, and
languages.

Resources for Graphical User Interface Schemes
There are five X resources that identify scheme files:
HP64_Softkey.labelScheme:

Names the scheme file to use for labels and button text. Values can
be: Label, $LANG, or a custom scheme file name. The default uses the
$LANG environment variable if it is set and if a scheme file named
Softkey.$LANG exists in one of the directories searched for scheme
files; otherwise, the default is Label.

HP64_Softkey.platformScheme:

Names the subdirectory for the platform specific color, size, and input
scheme files. This resource should be set to the platform on which the
X server is running (and displaying the Graphical User Interface) if it
is different than the platform where the application is running. Values
can be: HP-UX, SunOS, pc-xview, or a custom platform scheme
directory name.

HP64_Softkey.colorScheme:

Names the color scheme file. Values can be: Color, BW, or a custom
scheme file name.

499

Softkey.Label

Softkey.BW

Softkey.Color
Softkey.Large
Softkey.Small

Softkey.Input

Concepts

HP64_Softkey.sizeScheme:

Names the size scheme file which defines the fonts and the spacing
used. Values can be: Large, Small, or a custom scheme file name.

HP64_Softkey.inputScheme:

Names the input scheme file which specifies mouse and keyboard
operation. Values can be: Input, or a custom scheme file name.

The actual scheme file names take the form: "Softkey.<value>".

Scheme File Names

There are six scheme files provided with the Graphical User Interface. Their
names and brief descriptions of the resources they contain follow.

Defines the labels for the fixed text in the interface. Such things as menu
item labels and similar text are in this file. If the $LANG environment
variable is set, the scheme file "Softkey. $LANG" is loaded if it exists;
otherwise, the file "Softkey.Label" is loaded.

Defines the color scheme for black and white displays. This file is chosen if
the display cannot produce at least 16 colors.

Defines the color scheme for color displays. This file is chosen if the display
can produce 16 or more colors.

Defines the size scheme (that is, the window dimensions and fonts) for high
resolution displays (1000 pixels or more vertically).

Defines the size scheme (that is, the window dimensions and fonts) for low
resolution displays (less than 1000 pixels vertically).

Defines the input scheme (that is, the button and key bindings for the
mouse and keyboard).

500

Concepts

Load Order for Scheme Files
Scheme files are searched for in the following directories and in the following
order:

System scheme files in directory /usr/hp64000/1ib/X11/HP64_schemes.

System-wide custom scheme files located in directory
$XAPPLRESDIR/HP64_schemes.

User-defined scheme files located in directory
$HOME/.HP64_schemes (note the dot in the directory name).

Custom Scheme Files

You can modify scheme files by copying them to the directory for
user-defined schemes and changing the resource specifications in the file.
For example, if you wish to modify the color scheme, and your platform is
HP-UX, you can copy the
/usr/hp64000/1ib/X11/HP64_schemes/HP-UX/Softkey.Color file to
$HOME/.HP64_schemes/HP-UX/Softkey.Color and modify its resource
specifications.

You can create custom scheme files by modifying the X resource for the
particular scheme and by placing the custom scheme file in the directory for
user-defined schemes. For example, if the following resource specifications
are made:

HP64_Softkey.platformScheme: HP-UX
HP64_Softkey.colorScheme: MyColor

The custom scheme file would be:

$HOME/.HP64_schemes/HP-UX/Softkey.MyColor

501

Concepts of the EMSIM

The 6830x rocessors contain a System Integration Block (SIB) which
integrates various peripherals with the M68000 core. How certain
parts of the SIB are programmed affect operation of the emulator.
These emulator-sensitive parts of the SIB are referred to as the
processor’s System Integration Module (SIM).

The SIM contains the BAR and SCR registers along with the
chip-select, port control, and interrupt control registers, plus any
clock control registers, if present. For the 68302 emulator (64798C)
the SIM registers are: BAR, SCR, BR0O, OR0O, BR1, OR1, BR2, OR2,
BR3, OR3, PACNT, PADDR, PBCNT, PBDDR, and GIMR.

The programming of the SIM registers by the user affects how the
emulator must be configured to operate properly. For example, the
GIMR determines how interrupt level 7 is detected by the processor.
The emulator uses interrupt level 7 to break to the monitor and so
must be configured to what the processor expects. The chip select
registers determine the DTACK source for a bus cycle within the
range of a chip select. This information is needed for the emulator to
properly complete bus cycles.

The EMSIM registers, which are an emulator version of the SIM
registers, are used to configure the emulator hardware. The EMSIM
registers are usually set to the "after initialization code" values desired
for the SIM registers. By default the EMSIM registers contain the
"processor reset" SIM values (refer to the appropriate Motorola
MC6830x User’s Manual for specific values). Therefore, the default
programming of the emulator hardware matches the SIM reset values.
For the 68302 emulator (64798C) the EMSIM registersare: EMBAR,
EMSCR, EMBR0O, EMORO, EMBR1, EMOR1, EMBR2, EMOR2, EMBR3,
EMOR3, EMPACNT, EMPADDR, EMPBCNT, EMPBDDR, and
EMGIMR.

Some processors, such as the MC68LC302 do not connect certain
upper address signals to the outside of the chip. For the MC68LC302
the upper four address bits (A20 through A23) which are sent to the
emulation memory mapping hardware and the bus analyzer hardware

502

Concepts

must be re-created from the chip select signals. This "address
regeneration" hardware in the emulator is programmed based on the
EMSIM register set. The emulator needs access to the full 24-bit
address bus which is maintained internally in the processor. If the
"address regeneration" hardware is not properly programmed, that is,
if the EMSIM register set is not kept correct, the emulator may show
analyzer trace information incorrectly, and the emulator may not map
emulation memory correctly.

EMSIM Utility Command

Modify - SIM Registers

This capability lets the user compare and transfer register values between
the SIM and EMSIM register sets. Note even though the word "sim" is used in
the command, all operations also include the RAM and EMRAM register sets.

Modify - SIM Registers — Copy Emulator SIM to Processor SIM

This transfers the current values of the EMSIM registers into the SIM
registers. This happens automatically each time a break to the monitor from
emulation reset occurs. This ensures that the processor is prepared to
properly access memory when a program is downloaded to the emulator.

Modify - SIM Registers — Copy Processor SIM to Emulator SIM

This transfers the current values of the SIM registers into the EMSIM
registers. This is useful if initialization code that configures the processor
SIM exists, but you don’t know its values. In this case, you can use the
default configuration, run from reset to execute the initialization code, and
then configure the emulator to match the processor SIM.

Display - SIM Register Differences

This shows current differences between the SIM registers and the EMSIM
registers. This presents a list of all registers whose values are different
between the SIM and the EMSIM. Use this to compare the programming
between the SIM and EMSIM.

Display - Configuration Info

This displays information about the emulator configuration and processor
SIM programming

503

Concepts

Display - Configuration Info - Diagnostics

This checks the emulator configuration. Any inconsistencies and potential
problems found during the check are listed. Resolve any items in the list to
ensure correct operation of the emulator.

Display — Configuration Info — Chip Selects (SIM)

This displays chip selects in the SIM (processor) register set in a table. Use
this to see how the SIM registers have configured the chip select pins of the
processor.

Display - Configuration Info - Chip Selects (Emulator SIM)

This displays chip selects in the EMSIM (emulator) register set in a table.
Use this to see how the EMSIM registers have configured the chip select pins
of the emulation copy.

Display - Configuration Info - Bus Interface Ports (SIM)

This displays bus interface ports in the SIM (processor) register set in a
table. Use this to see how the SIM registers have configured the external bus
interface pins of the available ports.

Display - Configuration Info - Bus Interface Ports (Emulator SIM)

This displays bus interface ports in the EMSIM (emulator) register setin a
table. Use this to see the SIM register values that will be loaded into the
processor SIM when the monitor is entered from emulation reset.

Display - Configuration Info -~ Memory Map

This displays detailed information about the memory map in a table. Use this
to check the way the memory map has been configured.

Display - Configuration Info — Reset Mode Value

This displays the reset mode configuration value and operation in a table.
This is the value that will be driven onto the data bus to configure the
processor when it comes out of reset. The meaning of each data bit in the
value is shown.

Display - Configuration Info -, Initialization Source Code

This displays the assembly language program to initialize the processor SIM
and RAM based on the current contents of the EMSIM and EMRAM register
sets.

504

Part 5

Installation Guide

505

Part5

Instructions for installing and configuring the product.

506

15

Installation

507

Installation

This chapter shows you how to install interface software. It also
shows you how to verify installation by starting the emulator analyzer
interface for the first time. These installation tasks are described in
the following sections:

e Where to find information on connecting the HP 64700 to a
computer or LAN.

* Installing HP 9000 software.
¢ Installing Sun SPARCsystem software.
* Verifying the installation.

For information about installing hardware, refer to the MC6830x
Emulator/Analyzer Installation/Service/Terminal Interface User’s
Guide.

Minimum HP 9000 Hardware and System Requirements
The following is a set of minimum hardware and system

recommendations for operation of the Graphical User Interface on
HP 9000 Series 300/400 and Series 700 workstations.

HP-UX

For Series 9000/300 and Series 9000/400 workstations, the minimum
supported version of the operating system is 7.03 or later. For Series
9000/700 workstations, the minimum supported version of the
operating system is version 8.01.

Motif/OSF

For Series 9000/700 workstations, you must also have the Motif 1.1
dynamic link libraries installed. They are installed by default, so you
do not have to install them specifically for this product, but you
should consult your HP-UX documentation for confirmation and more
information.

508

Installation

Hardware and Memory

Any workstation used with the Graphical User Interface should have a
minimum of 16 megabytes of memory. Series 300 workstations should
have a minimum performance equivalent to that of a HP 9000/350. A
color display is also highly recommended.

From here, you should proceed to the section titled "Installation for
HP 9000 Hosted Systems" for instructions on how to install, verify,
and start the Graphical User Interface on HP 9000 systems.

Minimum Sun SPARCsystem Hardware and System
Requirements
The following is a set of minimum hardware and system recommendations for

operation of the Graphical User Interface on Sun SPARCsystem (SunOS or
Solaris) workstations.

SunOS

The Graphical User Interface software is designed to run on a Sun
SPARCsystem with SunOS version 4.1 or 4.1.1 or greater, and Solaris
version 2.3. Each tape uses the QIC-24 data format.

64700 Operating Environment

The Graphical User Interface requires version A.04.10 or greater of
the 64700 Operating Environment. (The Graphical User Interface
version is A.04.00.)

Hardware and Memory

Any workstation used with the Graphical User Interface should have a
minimum of 16 megabytes of memory. A color display is also highly
recommended.

From here, you should proceed to the section titled "Installation for
Sun SPARCsystems" for instructions on how to install, verify, and start
the Graphical User Interface on SPARCsystem workstations.

509

Connecting the HP 64700 to a Computer or LAN

Refer to the HP 64700 Series Installation/Service Guide for
instructions on connecting the HP 64700 to a host computer (via
RS-422 or RS-232) or LAN and setting the HP 64700’s configuration
switches. (RS-422 and RS-232 are only supported on HP 9000 Series
300/400 machines.)

510

Installing HP 9000 Software

This section shows you how to install the Graphical User Interface on
HP 9000 workstations. These instruction also tell you how not to
install the Graphical User Interface if you want to use just the
conventional Softkey Interface.

This section shows you how to:

¢ Install the software from the media.
¢ Verify the software installation.

e Start the X server and the Motif Window Manager (mwm), or start
HP VUE.

e Set the necessary environment variables.

Step 1. Install the software from the media

The tape that contains the Graphical User Interface software may contain
several products. Usually, you will want to install all of the products on the
tape. However, to save disk space, or for other reasons, you can choose to
install selected filesets.

If you plan on using the Softkey Interface instead of the Graphical User
Interface, you can save about 3.5 megabytes of disk space by not installing
the XUI suffixed filesets in the "64700 Operating Environment" and
"<processor-type> Emulation Tools" partitions. (Also, if you choose not to
install the Graphical User Interface, you will not have to use a special
command line option to start the Softkey Interface.)

Refer to the information on updating HP-UX in your HP-UX documentation
for instructions on viewing partitions and filesets and marking filesets that
should not be loaded.

The following sub-steps assume that you want to install all products on the
tape.

1 Become the root user on the system you want to update.
2 Make sure the tape’s write-protect screw points to SAFE.

511

Installation
Step 2. Set the necessary environment variables

Put the product media into the tape drive that will be the source
device for the update process.

Confirm that the tape drive BUSY and PROTECT lights are on. If the
PROTECT light is not on, remove the tape and confirm the position
of the write-protect screw. If the BUSY light is not on, check that the
tape is installed correctly in the drive and that the drive is operating
correctly.

When the BUSY light goes off and stays off, start the update program
by entering

/etc/update

at the HP-UX prompt.

When the HP-UX update utility main screen appears, confirm that the
source and destination devices are correct for your system. Refer to
the information on updating HP-UX in your HP-UX documentation if
you need to modify these values.

Select "Load Everything from Source Media" when your source and
destination directories are correct.

To begin the update, press the softkey <Select Item>. At the next
menu, press the softkey <Select Item> again. Answer the last prompt
with

y
It takes about 20 minutes to read the tape.

When the installation is complete, read /tmp/update.log to see the
results of the update.

Step 2. Set the necessary environment variables

The DISPLAY environment variable must be set before the Graphical User
Interface will start. Also, you should modify the PATH environment variable
to include the "/usr/hp64000/bin" directory, and, if you have installed
software in a directory other than "/", you need to set the HP64000
environment variable.

The following instructions show you how to set these variables at the UNIX
prompt. Modify your ".profile" or ".login" file if you wish these environment
variables to be set when you log in. The following instructions also assume

512

Installation
Step 2. Set the necessary environment variables

that you're using "sh" or "ksh"; if youre using "csh", environment variables are
set using the "setenv <VARIABLE> <value>" command.

Set the DISPLAY environment variable by entering

DISPLAY=<hostname>:<server_number>.<screen_number>
export DISPLAY

For example:
DISPLAY=myhost:0.0; export DISPLAY

Consult the X Window documentation supplied with the UNIX system
documentation for an explanation of the DISPLAY environment variable.

Set the HP64000 environment variable.

If you installed the software relative to a directory other than the root
directory, it is strongly recommended that you use a symbolic link to make
the software appear to be under /usr/hp64000. For example, if you installed
the software relative to directory /users/team, you would enter

In -s /fusers/team/usr/hp64000 /usr/hp64000

If you installed the HP 64000 software relative to the root directory, "/", or
established a symbolic link to /usr/hp64000, then you would enter

HP64000=/usr/hp64000; export HP64000
If you did not install relative to the root directory, or do not wish to establish
a symbolic link, you can set the HP64000 variable to the full path that

contains the HP 64000 software. Again, if you installed relative to
/users/team, you would enter

HP64000=/users/team/usr/hp64000; export HP64000

Set the PATH environment variable to include the usr/hp64000/bin
directory by entering

PATH=$PATH:$HP64000/bin; export PATH

Including usr/hp64000/bin in your PATH relieves you from prefixing
HP 64700 executables with the directory path.

Set the MANPATH environment variable to include the
$HP64000/man and $HP64000/contrib/man directories by entering

MANPATH=$MANPATH:$HP64000/man:$HP64000/contrib/man
export MANPATH

Including these directories in your MANPATH variable lets you access the
online "man" page information included with the software.

513

Installation
Step 3. Verify the software installation

Step 3. Verify the software installation

A number of new filesets were installed on your system during the software
installation process. This and following steps assume that you chose to load
the Graphical User Interface filesets.

You can use this step to further verify that the filesets necessary to
successfully start the Graphical User Interface have been loaded and that
customize scripts have run correctly. Of course, the update process gives you
mechanisms for verifying installation, but these checks can help to
double-check the install process.

Verify the existence of the HP64_Softkey file in the
/$hp64000/X11/app-defaults subdirectory by entering

1s /$hp64000/X11/app-defaults/HP64_Softkey at the HP-UX
prompt.

Finding this file verifies that you loaded the correct fileset and also verifies
that the customize scripts executed because this file is created from other
files during the customize process.

Examine /$hp64000/X11/app-defaults/HP64_Softkey near the end
of the file to confirm that there are resources specific to your
emulator.

Near the end of the file, there will be resource strings that contain references
to specific emulators. For example, if you installed the Graphical User
Interface for the 6830x emulator, resource name strings will have m6830x
embedded in them.

After you have verified the software installation, you must start the X server
and an X window manager (if you are not currently running an X server). If
you plan to run the Motif Window Manager (mwm), or similar window
manager, continue with Step 4a of these instructions. If you plan to run

HP VUE, skip to Step 4b of these instructions.

514

Installation
Step 4. Start the X server and the Motif Window Manager (mwm)

Step 4. Start the X server and the Motif Window
Manager (mwm)

If you are not already running the X server and a window manager, do so
now. The X server is required to use the Graphical User Interface because it
is an X Windows application. A window manager is not required to execute
the interface, but, as a practical matter, you must use some sort of window
manager with the X server.

Start the X server by entering x11start at the HP-UX prompt.

Consult the X Window documentation supplied with the HP-UX operating
system documentation if you do not know about using X Windows and the X
server.

After starting the X server and Motif Window Manager, continue with step 2
of these instructions.

Step 5. Start HP VUE

If you are running the X server under HP VUE and have not started HP VUE,
do so now.

HP VUE is a window manager for the X Window system. The X server is
executing underneath HP VUE. Unlike the Motif Window Manager, HP VUE
provides a login shell and is your default interface to the HP 9000 workstation.

515

Installing Sun SPARCsystem Software

This section shows you how to install the Graphical User Interface on
Sun SPARCsystem workstations. These instructions also tell you how
not to install the Graphical User Interface if you want to use just the
conventional Softkey Interface.

This section shows you how to:

* Install the software from the media.

* Start the X server and OpenWindows.

¢ Set the necessary environment variables.
¢ Verify the software installation.

e Map your function keys.

Step 1. Install the software from the media

The tape that contains the Graphical User Interface software may contain
several products. Usually, you will want to install all of the products on the
tape. However, to save disk space, or for other reasons, you can choose to
install selected filesets.

If you plan on using the conventional Softkey Interface instead of the
Graphical User Interface, you can save about 3.5 megabytes of disk space by
not installing the XUI suffixed filesets. (Also, if you choose not to install the
Graphical User Interface, you will not have to use a special command line
option to start the Softkey Interface.)

Refer to the Software Installation Notice for software installation
instructions. After you are done installing the software, return here.

516

Installation
Step 2. Start the X server and OpenWindows

Step 2. Start the X server and OpenWindows

If you are not already running the X server, do so now. The X server is
required to run the Graphical User Interface because it is an X application.

Start the X server by entering /usr/openwin/bin/openwin at the
UNIX prompt.

Consult the OpenWindows documentation if you do not know about using
OpenWindows and the X server.

Step 3. Set the necessary environment variables

The DISPLAY environment variable must be set before the Graphical User
Interface will start. Also, you should modify the PATH environment variable
to include the "usr/hp64000/bin" directory, and, if you have installed software
in a directory other than "/", you need to set the HP64000 environment
variable.

The following instructions show you how to set these variables at the UNIX
prompt. Modify your ".profile" or ".login" file if you wish these environment
variables to be set when you log in. The following instructions also assume
that you're using "csh'"; if you're using "sh", environment variables are set in
the "<VARIABLE >=<value>; export <VARIABLE>" form.

The DISPLAY environment variable is usually set by the openwin
startup script. Check to see that DISPLAY is set by entering

echo $DISPLAY
If DISPLAY is not set, you can set it by entering

setenv
DISPLAY=<hostname>:<server_number>.<screen_number>

For example:
setenv DISPLAY=myhost:0.0

Consult the OpenWindows documentation for an explanation of the DISPLAY
environment variable.

517

Installation
Step 3. Set the necessary environment variables

Set the HP64000 environment variable.

For example, if you installed the HP 64000 software relative to the root
directory, "/, you would enter

setenv HP64000 /usr/hp64000

If you installed the software relative to a directory other than the root
directory, it is strongly recommended that you use a symbolic link to make
the software appear to be under /usr/hp64000. For example, if you installed
the software relative to directory /users/team, you would enter

In -s /users/team/usr/hp64000 /usr/hp64000

If you do not wish to establish a symbolic link, you can set the HP64000
variable to the full path that contains the HP 64000 software; also set the
LD_LIBRARY_PATH variable to the directory containing run-time libraries
used by the HP 64000 products. Again, if you installed relative to
/users/team, you would enter

setenv HP64000 /users/team/usr/hp64000

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${HP64000}/lib

Set the PATH environment variable to include the usr/hp64000/bin
directory by entering

setenv PATH ${PATH}:${HP64000}/bin

Including usr/hp64000/bin in your PATH relieves you from prefixing
HP 64700 executables with the directory path.
Set the MANPATH environment variable to include the

usr/hp64000/man and usr/hp64000/contrib/man directories by
entering

setenv MANPATH ${MANPATH}:${HP64000}/man
setenv MANPATH ${MANPATH}:${HP64000}/contrib/man

Including these directories in your MANPATH variable lets you access the
online "man" page information included with the software.
If the Graphical User Interface is to run on a SPARCsystem computer

that is not running OpenWindows, include the /usr/openwin/lib
directory in LD_LIBRARY_PATH.

setenv LD_LIBRARY PATH
${LD_LIBRARY_PATH}:/usr/openwin/lib

518

Installation
Step 4. Verify the software installation

Step 4. Verify the software installation

A number of product filesets were installed on your system during the
software installation process. Due to the complexity of installing on NF'S
mounted file systems, a script that verifies and customizes these products
was also installed. This stand alone script may be run at any time to verify
that all files required by the products are in place in the file system. If
required files are not found, this script will attempt to symbolically link them
from the $HP64000 install directory to their proper locations.

Run the script $HP64000/bin/envinstall.

Step 5. Map your function keys

If you are using the conventional Softkey Interface, map your function keys
by following the steps below.

Copy the function key definitions by typing:

cp $HP64000/etc/ttyswre ~/.ttyswre

This creates key mappings in the .ttyswre file in your $HOME directory.
Remove or comment out the following line from your .xinitrc file:
xmodmap -e '’keysym F1 = Help’

If any of the other keys F1-F8 are remapped using xmodmap, comment out
those lines also.

519

Installation
Step 5. Map your function keys

Add the following to your .profile or .login file:

stty erase "H

setenv KEYMAP sun

The erase character needs to be set to backspace so that the Delete key can
be used for "delete character."

If you want to continue using the F'1 key for HELP, you can use use F2-F9 for
the Softkey Interface. All you have to do is set the KEYMAP variable. If you
use OpenWindows, type:

setenv KEYMAP sun.2-9

If you use xterm windows (the xterm window program is located in the
directory /usr/openwin/demo), type:

setenv KEYMAP xterm.2-9

Reminder: If you are using OpenWindows, add /usr/openwin/bin to the end of
the $PATH definition, and add the following line to your .profile:

setenv OPENWINHOME /usr/openwin

After you have mapped your function keys, you must start the X server and
an X window manager (if you are not currently running an X server).

520

Verifying the Installation

This section shows you how to:

* Determine the logical name of your emulator.
e Start the emulator/analyzer interface for the first time.
e Exit the emulator/analyzer interface.

Step 1. Determine the logical name of your emulator

The logical name of an emulator is a label associated with a set of
communications parameters in the $HP64000/etc/64700tab.net file. The
64700tab.net file is placed in the directory as part of the installation process.
1 Display the 64700tab.net file by entering
more /usr/hp64700/etc/64700tab.net at the HP-UX prompt.
2 Page through the file until you find the emulator you are going to use.
This step will require some matching of information to an emulator, but it
should not be difficult to determine which emulator you want to address.

Examples A typical entry for a 6830x emulator connected to the LAN would appear as
follows:
.

Channel| Logical | Processor | Remainder of Information for the Channel
Type | Name | Type | (IP address for LAN connections)
H

T+

lan: em6830x m6830x 21.17.9.143

A typical entry for a 6830x emulator connected to an RS-422 port would
appear as follows:

| |OFF | NONE |RTS | 2 | 8

H

| |Xpar|Parity|Flow|Stop|Char

Channel| Logical | Processor | Host| Physical |Mode| | |Bits|Size
Type | Name | Type |Name| Device | | |XON| |

#

#

serial: em6830x m6830x myhost /dev/emcom23 OFF NONE RTS 2 8

521

Installation
Step 2. Start the interface with the emul700 command

Step 2. Start the interface with the emul700 command

1 Apply power to the emulator you wish to access after making sure
the emulator is connected to the LAN or to your host system.
On the HP 64700 Series Emulator, the power switch is located on the front
panel near the bottom edge. Push the switch in to turn power on to the
emulator.

2 Wait a few seconds to allow the emulator to complete its startup
initialization.

3 Choose a terminal window from which to start the Graphical User
Interface.

4 Start the Graphical User Interface by entering emul700 command
and giving the logical name of the emulator as an argument to the
command, as in

$HP64000/bin/emul700 <logical_name> &

or
emul700 <logical name> &

if $HP64000/bin is in your path.

If you are running the X server, if the Graphical User Interface is installed,
and if your DISPLAY environment variable is set, the emul700 command will
start the Graphical User Interface. Otherwise, emul700 starts the
conventional Softkey Interface.

You should include an ampersand ("&") with the command to start the
Graphical User Interface as a background process. Doing so frees the
terminal window where you started the interface so that the window may still
be used.

5 Optionally start additional Graphical User Interface windows into the
same emulation session by repeating the previous step.
You can also choose to use the conventional Softkey Interface under X
Windows, but you must include a command line argument to emul700 to
override the default Graphical User Interface. Start the conventional interface
by entering

emul700 -u skemul <logical name>

522

Example

Installation
Step 3. Exit the Graphical User Interface

Suppose you have discovered that the logical name for a 6830x emulator
connected to the LAN is "em6830x". To start the Graphical User Interface
and begin communicating with that emulator, enter (assuming your $PATH
includes $HP64000/bin)

emul700 em6830x

After a few seconds, the Graphical User Interface Emulator/Analyzer window
should appear on your screen. The window will be similar to the following;:

Step 3. Exit the Graphical User Interface

Position the mouse pointer over the pull-down menu named "File" on
the menu bar at the top of the interface screen.

Press and hold the command select mouse button until the File menu
appears.

While continuing to hold the mouse button down, move the mouse
pointer down the menu to the "Exit" menu item.

Display the Exit cascade menu by moving the mouse pointer to the
right edge of the Exit menu choice. There is an arrow on the right
edge of the menu item.

Choose "Released" from the cascade menu.
The interface will terminate and release the emulator for use by others.

523

524

16

Installing/Updating Emulator
Firmware

525

Installing/Updating Emulator Firmware

The 6830x emulator firmware is included with the emulator/analyzer
interface software, and the program that downloads emulator
firmware is included with the HP B1471 64700 Operating
Environment product.

(The firmware, and the program that downloads it into the control
card, are also included with the 6830x emulator probe on an MS-DOS
format floppies. The floppies are for users that do not have hosted
interface software.)

Before you can update emulator firmware, you must have already
installed the emulator into the HP 64700, connected the HP 64700 to
a host computer or LAN, and installed the emulator/analyzer interface
and HP B1471 software as described in the "Installation" chapter.

This chapter describes how to:

* Update firmware with the "progflash" command.

* Display current firmware version information.

526

Installing/Updating Emulator Firmware
To update emulator firmware with "progflash”

To update emulator firmware with "progflash"

Enter the progflash -v <emul_name> <products ...> command.

The progflash command downloads code from files on the host computer into
Flash EPROM memory in the HP 64700.

The -v option means "verbose". It causes progress status messages to be
displayed during operation.

The <emul_name> option is the logical emulator name as specified in the
/usr/hp64000/etc/64700tab.net file.

The <products> option names the products whose firmware is to be updated.

If you enter the progflash command without options, it becomes interactive.
If you don’t include the <emul_name> option, it displays the logical names in
the /usr/hp64000/etc/64700tab.net file and asks you to choose one. If you
don'’t include the <products> option, it displays the products which have
firmware update files on the system and asks you to choose one. (In the
interactive mode, only one product at a time can be updated.) You can abort
the interactive progflash command by pressing <CTRL>c.

Progflash will print "Flash programming SUCCEEDED" and return 0 if it is
successful; otherwise, it will print "Flash programming FAILED" and return a
nonzero (error).

You can verify the update by displaying the firmware version information.

527

Installing/Updating Emulator Firmware
To update emulator firmware with "progflash"

Examples To install or update the HP 64798 emulator firmware:

$ progflash <RETURN>

HPB1471-19309 A.05.00 03Jan94
64700 SERIES EMULATION COMMON FILES

A Hewlett-Packard Software Product
Copyright Hewlett-Packard Co. 1988

All Rights Reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under copyright laws.

RESTRICTED RIGHTS LEGEND

Use, duplication , or disclosure by the Governmentis subject to

restrictions as set forth in subparagraph (c) (1) (Il) of the Rights

in Technical Data and Computer Software clause at DFARS 52.227-7013.
HEWLETT-PACKARD Company , 3000 Hanover St. , Palo Alto, CA 94304-1181

Logical Name Processor
1 em68k m68000
2 em80960 180960
3 em6830x m6830x

Number of Emulator to Update? (intr (usually cntl C or DEL) to abort)

To update firmware in the HP 64700 that contains the 6830x emulator, enter
II8II.

Product
164700
2 64703/64704/64706/64740
364744
4 64798
5 64760

Number of Product to Update? (intr (usually cntl C or DEL) to abort)

528

Installing/Updating Emulator Firmware
To update emulator firmware with "progflash”

To update the HP 64798 6830x emulator firmware, enter "4".
Enable progress messages? [y/n] (y)

To enable status messages, enter "y".

Checking System firmware revision...
Mainframe is a 64700B

Reading configuration from "/usr/hp64000/inst/update/64798.cfg’

ROM identifier address = 2FFFFOH

Required hardware identifier = 1FFFH, 12FFH, 1201H, 1202H, 1203H, 1204H, 1205H,
1206H

Control ROM start address = 280000H

Control ROM size = 40000H

Control ROM width = 16

Programming voltage control address = 2FFFFEH

Programming voltage control value = FFFFH

Programming voltage control mask = OH

Rebooting HP64700...

Checking Hardware id code...

Erasing Flash ROM

Downloading ROM code: /ust/hp64000/inst/update/64798.X
Code start 280000H (should equal control ROM start)
Code size 2348CH (must be less than control ROM size)

Finishing up...

Rebooting HP64700...

Flash programming SUCCEEDED
$

You could perform the same update as in the previous example with the
following command:

$ progflash -v em6830x 64798 <RETURN>

529

Installing/Updating Emulator Firmware
To display current firmware version information

To display current firmware version information

¢ Use the Terminal Interface ver command to view the version
information for firmware currently in the HP 64700.
When using the Graphical User Interface or Softkey Interface, you can enter
Terminal Interface commands with the pod_command command. For
example:

display pod_command <RETURN>
pod_command "ver" <RETURN>

Examples The Terminal Interface ver command displays information similar to:

Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under copyright laws.

HP64700B Series Emulation System
Version: B.01.00 20Dec93
Location: Flash
System RAM:1 Mbyte

HP64798C Motorola 68302 Emulator
Version: A.03.00
Control: HP 64748C Emulation Control Board
Speed: 20.1 MHz
Memory: 1024 Kbytes
BANK 0: HP 64171B (35 ns) or HP 64172B (20 ns) 1 MByte Memory Module

HP64740 Emulation Analyzer
Version: A.02.02 13Mar91

530

Installing/Updating Emulator Firmware
If there is a power failure during a firmware update

If there is a power failure during a firmware update -

If there is a power glitch during a firmware update, some bits may be lost
during the download process, possibly resulting in an HP 64700 that will not
boot up.

Repeat the firmware update process.

If the HP 64700 is connected to the LAN in this situation and you are
unable to connect to the HP 64700 after the power glitch, try repeating
the firmware update with the HP 64700 connected to an RS-232 or
RS-422 interface.

531

532

absolute file

access mode

analyzer

background

background
emulation
monitor

background
memory

BNC connector

breakpoint

compiler

Glossary

This file contains machine-readable instructions and/or data. the instructions
and/or data are stored at absolute addresses. Absolute files are generated by
the compiler/assembler/linker. These files are loaded into memory for
execution by the target processor.

Specifies the types of cycles used to access target system memory locations.
For example a "byte" access mode tells the monitor program to use load/store
byte instructions to access target memory.

arm condition

A condition that reflects the state of a signal external to the analyzer. The
arm condition can be used in branch or storage qualifiers. External signals
can be from another analyzer or an instrument connected to the CMB or BNC.

An instrument that captures data on signals of interest at discreet periods.

The emulator mode in which foreground operation is suspended so the
emulation processor can be used for communication with the emulation
controller. The background monitor does not occupy any processor address
space.

An emulation monitor program that does not execute as part of the user
program, and therefore, operates in the emulator’s background mode.

Memory space reserved for the emulation processor when it is operating in
the background mode. Background memory does not take up any of the
microprocessor’s address space.

A connector that provides a means for the emulator to drive/receive a
trigger/signal to/from an external device (such as a logic analyzer,
oscilloscope, or HP 64000-UX system).

A point at which emulator execution breaks from the target program and
begins executing in the monitor.

A program that translates high-level language source code into object code,

or produces an assembly language program with subsequent translation into
object code by an assembler. Compilers typically generate a program listing

which may list errors displayed during the translation process.

533

data segment

display mode

embedded
microprocessor
system

emulation/analy
sis system

emulation bus

emulation bus
analyzer

emulation
memory

emulation
memory map

emulation
monitor
program

emulation
probe

emulation
processor

Glossary

A segment that contains data (other than immediate data) for an executable
segment. A data segment is identified by a specific type code in the
descriptor of the segment.

When displaying memory, this mode tells the emulator the size of the
memory locations to display. When modifying memory, the display mode
tells the emulator the size of the values to be written to memory.

The microprocessor system which the emulator plugs into.

A set of hardware and software capable of performing emulation functions on
a target system that uses a particular microprocessor.

The emulation bus contains all of the signals on the pins of the emulation
microprocessor.

The internal analyzer that captures emulator bus cycle information
synchronously with the processor’s clock signal.

This is memory space that resides in your emulator hardware.

The emulation memory map defines the addresses supported by memory
hardware during emulation. You set up this map during the emulation
configuration process. In it, you assign hardware memory in your emulator,
and/or in your target system, to support ranges of addresses. In this map, you
also define the behavior of the memory so that it will act as RAM hardware or
ROM hardware to emulate the type of memory you intend to install in your
target system when its design is complete.

A program that is executed by the emulation processor which allows the
emulation controller to access target system resources. For example, when
you display target system memory locations, the monitor program executes
microprocessor instructions that read the target memory locations and send
their contents to the emulation controller.

The cable that connects the emulator to the target system microprocessor
socket.

The emulation processor is the processor that replaces the target system
processor during an emulation session. The emulation processor is pat of the
emulation probe.

534

emulator

entry point

external
analyzer

external
analyzer probe

external clock

foreground

glitch

global restart

host computer

instrumentation
card cage

monitor

pod commands

Glossary

An instrument that performs just like the microprocessor it replaces, but at
the same time, it gives you information about the operation of the processor.
An emulator gives you control over target system execution and allows you to
view or modify the contents of processor registers, target system memory,
and I/O resources.

An executable segment offset that identifies the starting point for execution,
as when the segment is invoked via a gate.

An analyzer that captures activity on signal nodes external to the emulation
processor bus.

A set of signal lines that connect the external analyzer to target system
signals.

Any clock other than the clock source of the emulator. Typically, the clock of
the target system is used as an external clock for emulation tests and
measurements.

The mode in which the emulator is executing the user program. In other
words, the mode in which the emulator operates as the target microprocessor
would.

This is the name assigned to the detection of at least one transition in both
directions between any two sampling clock pulses during a timing
measurement.

When the same secondary branch condition is used for all terms in the
analyzer’s sequencer, and secondary branches are always back to the first
term.

A computer to which an HP emulator can be connected. A host computer
may run interface programs that control the emulator. Host computers may
also be used to develop programs to be downloaded into the emulator.

The hardware frame and power supply built to accept installation of
emulation and analysis board assemblies, and to provide interconnections for
boards and interconnections for development stations that control the
development hardware.

The monitor is a collection of routines that perform many of the functions
needed in an emulator, such as displaying the content of registers or loading
code into memory so that the code can be executed during a test.

Another name for Terminal Interface commands. (The Terminal Interface is
the low-level interface that resides in the firmware of the emulator.) Pod
commands bypass the graphical interface and go directly to the emulator.

535

Glossary

prestore The analyzer feature that allows up to two states to be stored before normally
stored states. This feature is useful when you want to find the cause of a
particular state. For example, if a variable is accessed from many different
places in the program, you can qualify the trace so that only accesses of that
variable are stored and turn on prestore to find out where accesses of that
variable originate from.

primary Occurs when the analyzer finds the primary branch state specified at a
sequencer certain level and begins searching for the states specified at the primary
branch branch’s destination level.

real time Refers to continuous execution of the user program without interference
from the emulator. (Such interference occurs when the emulator temporarily
breaks into the monitor so that it can access register contents or target
system memory or 1/0.)

secondary Occurs when the analyzer finds the secondary branch state specified at a
sequencer certain level before it found the primary branch state and begins searching
branch for the states specified at the secondary branch’s destination level.

sequence terms Individual levels of the sequencer. The HP 64705A analyzer provides eight
sequence terms.

sequencer The part of the analyzer that allows it to search for a certain sequence of
states before triggering.

sequencer Occurs when the analyzer finds the primary or secondary branch state
branch specified at a certain level and begins searching for the states specified at
another level.

target system The microprocessor system which the emulator plugs into.
target system This is memory space that resides within your target system hardware.
memory

trace A collection of states captured on the emulation bus (in terms of the
emulation bus analyzer) or on the analyzer trace signals (in terms of the
external analyzer) and stored in trace memory.

trigger The captured analyzer state about which other captured states are stored.
The trigger state specifies when the trace measurement is taken.

536

Index

A
about, trigger position
specification, 214-216
absolute files, 393
loading, 141
loading without symbols, 142
storing memory contents into, 143
access size (target memory), 533
action keys, 25
custom, 336
operation, 72
with command files, 336
with entry buffer, 71-72
activity measurements (SPMT), 263
additional symbols for address, 272
confidence level, 273
error tolerance, 273
interpreting reports, 271-280
mean, 271
relative and absolute counts, 272
standard deviation, 272
symbols within range, 272
trace command setup, 266
address
not range command, 218
values, 217
address (analyzer state qualifier
softkey), 211, 413, 428
address overlays, memory mapping, 118
address qualifiers, 211
address range command
range command, 218
address range file format (SPMT
measurements), 268
after, trigger position
specification, 214-216
ambiguous address error message, 118
analyzer, 533
arming other HP 64700 analyzers, 5
breaking emulator execution into the
monitor, 5
breaking execution of other HP 64700
Series emulators, 5
definition, 4
general description, 4
occurrence count, 219
state qualifiers, 211
trace at EXECUTE, 317
trigger condition, 214-216

using the, 198
analyzer probe

assembling, 297

connecting to the target system, 299
analyzer status

occurrence left information, 204

sequence term information, 204
app-defaults directory

HP 9000 computers, 498

Sun SPARCsystem computers, 498
application resource

See X resource
arm information, 204
arm_trig2, in trace command, 443

B
background, 533
emulation monitor, 533
memory, 533
tracing, 123
background execution, tracing, 123
bases (number), 208
bbaunload command, syntax, 353
before, trigger position
specification, 214-216
binary numbers, 208
blocks (emulation memory), size of, 110
BNC
connector, 5, 310
trigger signal, 312
break command, 159, 169-170
syntax, 354
breakpoints, 34
copying to a file, 193
disabling execution breakpoints, 166
displaying and seeing status, 171-172
enabling, 165
setting temporary breakpoints, 168
breaks on write to ROM, 122

C

capture continuous stream of

execution, 225-228

cascade menu, 65

cautions
BNC accepts only TTL voltage, 315
CMB 9-pin port NOT for RS-232C, 313
protect emulator against static
discharge, 52

real-time dependent target system
circuitry, 107
changing
column width, 250
directory context in config window, 103
directory context in emulator/analyzer
window, 153
symbol context, 154
characterization of memory, 112
class name, X applications, 496
client, X, 328
clocks
See also slave clocks
CMB (coordinated measurement bus), 310
EXECUTE line, 312, 355
HP 64700 connection, 313-314
READY line, 311
signals, 311
TRIGGER line, 311
cmb_execute command, 318, 355
color scheme, 330, 334, 500
columns in main display area, 331
command buttons, 26
command files, 395
other things to know about, 87
passing parameters, 86
command line, 25
Command Recall dialog box, 26
Command Recall dialog box, operation, 80
copy-and-paste to from entry buffer, 72
editing entry area with popup menu, 79
editing entry area with pushbuttons, 79
entering commands, 78
entry area, 25
executing commands, 78
help, 81
keyboard use of, 82
on-line help, 84, 86-87
recalling commands with dialog box, 80
turning on or off, 77, 331
command paste mouse button, 27
Command Recall dialog box operation, 73
command select mouse button, 27
commands, 82
combining on a single command line, 82
completion, 82
editing in command line entry area, 79
entering in command line, 78
executing in command line, 78

537

Index

keyboard entry, 82
line erase, 83
map, 119
recall, 83
recalling with dialog box, 80
summary, 352
word selection, 83
configuration context
displaying from config window, 103
configuration info
copy command, 357
copying to a file, 192
display command, 366-368
configuration, emulator
background states, tracing, 123
breaks on writes to ROM, 122
exiting the interface, 105
loading from file, 105
modifying a section, 100
starting the interface, 98-99
storing, 102
context
changing directory in configuration
window, 103

changing directory in emulator/analyzer

window, 153
changing symbol, 154

displaying directory from configuration

window, 103
displaying directory from
emulator/analyzer window, 153
displaying symbol, 153

coordinated measurements, 319
break_on_trigger syntax of the trace
command, 319
definition, 310

copy command, 356-358
configuration info, 357
data, 357
display, 357
error_log, 357
event_log, 3567
global symbols, 357
help, 357
local_symbols_in, 359
memory, 360-361
pod_command, 357
registers, 362

software breakpoints, 358
status, 3568
trace, 363
copy-and-paste
addresses, 69
from entry buffer, 72
multi-window, 69, 72
symbol width, 69
to entry buffer, 68-70
copying
breakpoints to a file, 193
configuration info to a file, 192
data values to a file, 192
display area to file, 192
emulator status to a file, 193
error log to file, 193
event log to file, 193
global symbols to file, 193
local symbols to file, 193
memory to file, 192
pod commands to a file, 193
registers to file, 193
trace listing to file, 192
count states, 220-221
count time, 220-221
count, occurrence, 219
cursor buttons, 26

D
data
copy command, 357
display command, 369-371
data (analyzer state qualifier
softkey), 211, 413, 428
data range command, 218
data values, 183,217
adding items to existing display, 184
clearing display and adding item, 184
copying to a file, 192
displaying, 183
data values, displaying, 38
decimal numbers, 208
demos, setting up, 338-340
demultiplexing, using slave clocks
for, 304-306
demux, slave clock mode, 305
dequeuer
how it works, 244

device table file, 32, 55-56

dialog box, 73-75
Command Recall, operation, 73, 80
Directory Selection, 153

Directory Selection, operation, 73, 75
Entry Buffer Recall, operation, 71, 73

File Selection, operation, 73-74
Trace Specification Selection,
operation, 206
dialog box, trace options, 238
directory context

changing in configuration window, 103
changing in emulator/analyzer window, 153
displaying from configuration window, 103

displaying from emulator/analyzer
window, 153
Directory Selection dialog box
operation, 73, 75
display area, 25
columns, 331
copying to a file, 192
lines, 331-332
display command, 364-365
configuration info, 366-368
data, 369-371
error_log, 364
event_log, 364
global_symbols, 372
local_symbols_in, 373
memory, 374-377
memory mnemonic, 33, 177
pod_command, 365
registers, 173-174, 378
simulated_io, 194, 196, 379
software_breakpoints, 380
status, 365
symbols, 144
trace, 201-204, 381-384
display mode, 534
display software_breakpoints
command, 171-172
display trace, 237
positioning, 207

display trace absolute command, 246-247

display trace absolute status binary
command, 246-247

display trace absolute status hex
command, 246-247

538

Index

display trace absolute status mnemonic
command, 246-247
display trace command, 240, 259
display trace count absolute
command, 251-252
display trace count command, 251-252
display trace count relative
command, 251-252
display trace depth command, 254
display trace dequeue off
command, 244-245
display trace dequeue on command,
244-245
display trace
disassemble_from_line_number
command, 241-242
align_data_from_line option, 244-245
options, 243
display trace mnemonic
command, 241-242
display trace offset_by command, 253
displays, copying, 357
don’t care digits, 209
downloading absolute files, 5, 141
dual-port emulation memory, 107
duration measurements (SPMT), 281
average time, 286
confidence level, 287
error tolerance, 287
interpreting reports, 286-290
maximum time, 286
minimum time, 286
number of intervals, 286
recursion considerations, 281
selecting, 284-285
standard deviation, 287
trace command setup, 282-283

E
editing
command line entry area with pop-up
menu, 79
command line entry area with
pushbuttons, 79
file, 190-191, 331
file at address, 190, 331
file at program counter, 190
file at symbol from symbols screen, 190

file from memory display screen, 190
embedded microprocessor system, 534
emul700, command to start the
emulator/analyzer interface, 55
emulation bus analyzer, 534
emulation memory

block size, 110

dual-port, 107

loading absolute files, 141
emulation monitor, 534
emulation session, exiting, 62
emulation, external analyzer mode, 303
emulator, 535

configuring the, 96

device table file, 32, 55-56

general description, 4

limitations, DMA support, 110

multiple start/stop, 5, 317

plugging into a target system, 51

running from target reset, 157

status lines, predefined values for, 211

using the, 136
emulator configuration

break processor on write to ROM, 122

exiting configuration interface, 105

load command, 393

loading from file, 105

modify command, 397

modifying a configuration section, 100

restrict to real-time runs, 107-108

starting configuration interface, 98-99

storing, 102

trace background/foreground

operation, 123
emulator status, displaying, 193
emulator/analyzer interface

exiting, 47, 61

running in multiple windows, 55

starting, 55-56
end command, 47, 385
entry

pod commands, 91

simulated io, 195
entry buffer, 25

address copy-and-paste to, 69

clearing, 68

copy-and-paste from, 72

copy-and-paste to, 68-70

Entry Buffer Recall dialog box, 25
Entry Buffer Recall dialog box,
operation, 71
multi-window copy-and-paste from, 72
operation, 71
recall button, 25
recalling entries, 71
symbol width and copy-and-paste to, 69
text entry, 68
with action keys, 71-72
with pulldown menus, 71
Entry Buffer Recall dialog box
operation, 73
environment variables (UNIX)
HP64KPATH, 89
HP64KSYMBPATH, 435
PATH, 55
Softkey Interface, setting while in, 188
eram, memory characterization, 112
erom, memory characterization, 112
error log
copy command, 357
display command, 364
to file, 193
event log, 59
copy command, 357
display command, 364
to file, 193
event_log, 59
EXECUTE
CMB signal, 312
tracing at, 317
execution breakpoints
disabling, 166
displaying and seeing their status, 171-172
enabling, 165
setting (temporary breakpoints), 168
exit, emulator/analyzer interface, 47, 61
exiting
emulation session, 62
emulator/analyzer windows, 61
expressions, 208
--EXPR-- syntax, 386-388
external analyzer
configuration, 300
general description, 4
labels, 302, 307
mode, 303

539

Index

should emulation control?, 302
using, 296

F
file
breakpoints, copying to, 193
configuration info, copying to, 192
data values, copying to, 192
display area to, 192
editing, 190-191
editing at address, 190
editing at program counter, 190
editing at symbol, 190
editing from memory display, 190
emulator configuration, 102
emulator configuration load, 105
emulator status, copying to, 193
error log to, 193
event log to, 193
global symbols to, 193
local symbols to, 193
memory to, 192
pod commands, copying to, 193
registers to, 193
trace listing to, 192
file extensions
.EA configuration files, 102
file formats
address range for SPMT
measurements, 268
time range for SPMT measure, 284
File Selection dialog box operation, 73-74
firmware updates, 5
firmware version, 530
foreground, 535
foreground operation, tracing, 123
formal parameters (command files), 86
forward command, syntax, 390
function codes
mapping memory, 118-120
memory mapping, 118
need for separately linked modules, 118
functions, step over, 178

G

global restart qualifier, 535

global symbols, 33, 209, 372
copy command, 357

display command, 145, 372
initializing the SPMT measurement
with, 268
to file, 193

grabbers, connecting to
analyzer probe, 298

guarded memory accesses, 112, 119

H
halfbright, 78-79
hand pointer, 25, 68
hardware
HP 9000 memory needs, 508
HP 9000 minimum performance, 508
HP 9000 minimums overview, 508
SPARCsystem memory needs, 509
SPARCsystem min. performance, 509
SPARCsystem minimums overview, 509
help
command line, 81
copy command, 357
help index, 76
on-line, 84, 86-87
softkey driven information, 84, 86-87
help command, 391-392
help index, displaying, 76
hexadecimal numbers, 208
high level interface
using pod commands within, 225-228
HP 64700 Operating Environment,
minimum version, 509
HP 9000
700 series Motif libraries, 508
HP-UX minimum version, 508
installing software, 511
minimum system requirements
overview, 508
HP 98659 RS-422 Interface Card, 5
HP-UX, minimum version, 508
HP64KPATH, UNIX environment
variable, 89
HP64KSYMBPATH environment
variable, 435

I
IEEE-695 absolute file format, 141
input

pod commands, 91

simulated io, 195
input scheme, 330, 500
installation, 508
HP 9000 software, 511
SPARCsystem software, 516
instance name, X applications, 496
interactive measurements, 319
interface, emulator configuration
exiting, 105
modifying a section, 100
starting, 98-99
interface, exiting, 62
inverse video
graphical interface demo/tutorial files, 339

K
keyboard
accelerators, 67
choosing menu items, 66-67
focus policy, 67
pod commands, 91
simulated io, 195
keyboard_to_simio, modify command, 398

L
label scheme, 330, 334, 500
labels
configuration file, 307
LANG environment variable, 500
LD_LIBRARY_PATH environment
variable, 518
libraries, Motif for HP 9000/700, 508
line numbers (source file), symbol
display, 146
lines in main display area, 331-332
list, trace, 201-204
load command, 393-394
absolute files, 141
configuration, 393
trace, 394
trace_spec, 394
load trace command, 259
load trace_spec command, 256, 258
local symbols, 209, 373
copy command, 359
display command, 146-149, 373
initializing the performance measurement
with, 269

540

Index

to file, 193
log_commands command, 395

M
map command, 119
mapping memory, 110
maximum trace depth, 220-221
memory, 360-361
activity measurements, 263, 271
characterization of, 112
contents listed as asterisk (¥), 360
copy command, 360-361
display command, 374-377
displaying, 176
displaying at an address, 181
displaying repetitively, 182
dual-port emulation, 107
loading programs into, 141
mapping, 110
mnemonic format display, 177
modify command, 399-401
modifying, 182
re-assignment of memory blocks in
mapper, 117
store command, 432
to file, 192
memory mapper, resolution, 110
memory mapping
block size, 110
function code specification, 118-120
overlaid addresses, 118
memory recommendations
HP 9000, 508
SPARCsystem, 509
menu, pop-up menu in trace list, 239
menus
editing command line with pop-up, 79
hand pointer means pop-up, 25, 68
pulldown operation with keyboard, 66-67
pulldown operation with mouse, 65-66
mixed, slave clock mode, 304
mixing pod commands with high level
commands, 225-228
mnemonic memory display, 33, 177
setting the source/symbol modes, 185
modes, source/symbol, 185
modify command, 396
configuration, 397

keyboard_to_simio, 398

memory, 399-401

register, 175, 402

SIM registers, 403
modify software_breakpoints clear
command, 169-170
modify software_breakpoints disable
command, 166
modify software_breakpoints enable
command, 165
modify software_breakpoints set
command, 165-166, 168
modify_command, trace command
option, 206
module duration measurements
(SPMT), 281
module usage measurements, 281
Motif, HP 9000/700 requirements, 508
mouse

buttons, 27

choosing menu items, 65-66
multi-window

copy-and-paste from entry buffer, 72
multiple commands, 82
multiple emulator start/stop, 5

N

name_of_module command, 188

nesting command files, 85

NORMAL key, 351, 386

nosymbols, 144

notes
"perf.out" file is in binary format, 292
CMB EXECUTE and TRIGGER
signals, 312
external timing analyzer does not use
configuration labels, 307
measurement errors on
recursive/multiple entry routines, 282
only one range resource available, 413
re-assignment of memory blocks by
mapper, 117
some compilers emit more than one
symbol for an address, 272
step command doesn’t work when CMB
enabled, 317
trigger found but trace memory
unfilled, 203

number bases, 208
numerical values, 208

(o)
occurrence counts, 219, 230
octal numbers, 208
offset addresses in trace list, 253
online help, 84, 86-87
operating system
HP 64700 Series minimum version, 509
HP-UX minimum version, 508
SunOS minimum version, 509
operators, 209
overlaid addresses, memory mapping, 118

parameter passing in command files, 86
parent symbol, displaying from symbols
screen, 150
paste mouse button, 27
PATH, UNIX environment variable, 55
perf.out, SPMT output
file, 269, 285, 291-293, 405
perf32, SPMT report generator
utility, 262, 291-292
interpreting reports, 271-280, 286-290
options, 293
using the, 293-294
performance measurements
See software performance measurements
performance_measurement_end
command, 405
performance_measurement_initialize
command, 406-407
performance_measurement_run
command, 408
permanent software breakpoints
how to set, 167
platform
HP 9000 memory needs, 508
HP 9000 minimum performance, 508
SPARCsystem memory needs, 509
SPARCsystem minimum performance, 509
platform scheme, 330, 499
plug-in, 51
pod commands, 409-410
copy command, 357
copying to a file, 193

541

Index

display command, 365
display screen, 91
keyboard input, 91
pod commands used in high level
interface, 225-228
pop-up menu in trace list, 239
pop-up menus
command line editing with, 79
hand pointer indicates presence, 25, 68
positioning the trace display, 207
power failure during firmware update, 531
prestore qualifier, 223-224
prestore qualifiers, 536
primary branches (analyzer
sequencer), 536
processor type, 56
progflash example, 528
program activity measurements
(SPMT), 263, 271
program counter
mnemonic memory display, 34
running from, 156
pulldown menus
choosing with keyboard, 66-67
choosing with mouse, 65-66
pushbutton select mouse button, 27

Q
QUALIFIER, in trace command, 411-412
qualifiers, 211

simple trigger, 214-216

slave clock, 304-306

R
RAM, mapping emulation or target, 112
range resource, note on, 413
RANGE, in trace command, 413-414
READY, CMB signal, 311
real-time runs, 536
commands not allowed during, 107
restricting the emulator to, 107-108
recall buffer, 25
columns, 337
initial content, 337
lines, 337
recalling entries, 71
recall, command, 83
dialog box, 80

recall, trace specifications dialog box, 206
recursion in SPMT measurements, 281
registers
copy command, 362
display command, 378
display/modify, 173
displaying, 39, 173-174
modify, 175
modify command, 402
SIM, 403
to file, 193
release_system, end command
option, 47, 102
repeat the previous trace command, 207
repetitive display of memory, 182
reset (emulator), commands which cause
exit from, 162
reset command, 415
reset trace display defaults, 254
reset, run from target, 157
resolution, memory mapper, 110
resource
See X resource
RESOURCE_MANAGER property, 498
restart term, 230-233
restrict to real-time runs
emulator configuration, 107-108
permissible commands, 107
target system dependency, 107
ROM
mapping emulation or target, 112
writes to, 112
RS-422, host computer interface card, 5
run command, 156, 416-417
run from reset, 157

S
scheme files (for X resources), 329, 499
color scheme, 330, 334, 500
custom, 334-335, 501
input scheme, 330, 500
label scheme, 330, 334, 500
platform scheme, 330, 499
size scheme, 330, 500
scroll bar, 25
secondary branch expression, 536
select mouse button, 27
sequencer (analyzer), 536

branch, 536
terms, 230, 536
using the, 229
sequencing and windowing
specification, 236, 238-239
SEQUENCING, in trace command, 418-419
server, X, 328, 498
set command, 420-424
set default command, 254
set source off command, 249
set source on command, 249
set source only command, 249
set symbols all command, 248
set symbols high command, 248
set symbols low command, 248
set symbols off command, 248
set symbols on command, 248
set width label command, 250
set width mnemonic command, 250
set width source command, 250
shell variables, 87
sig INT, 291
signals, CMB, 311
SIM registers, 403-404
simulated I/0, 96, 398
display command, 379
displaying screen, 194, 196
keyboard input, 195
size scheme, 330, 500
slave clocks, 304-306
softkey driven help information, 84, 86-87
softkey pushbuttons, 26
softkeys, 82
software
installation for HP 9000, 511
installation for SPARCsystems, 516
software breakpoints
clearing all breakpoints, 171
clearing, 169-170
copy command, 358
display command, 380
software performance
measurements, 261, 264-280, 282-290,
292-294
absolute information, 271
activity measurements, 263
adding traces, 269, 285
duration, 281

542

Index

end, 405

ending, 292

how they are made, 262

initialize, 406-407

initializing, 267-270, 284-285

initializing, default, 267

initializing, duration

measurements, 284-285

initializing, user defined ranges, 267, 284

initializing, with global symbols, 268

initializing, with local symbols, 269

memory activity, 263, 271

module duration, 281

module usage, 281

program activity, 263, 271

recursion, 281

relative information, 271

restoring the current

measurement, 269, 285

run, 408

running, 291

trace command setup, 266

trace display depth, 266
source lines

display in trace list, 249

set command, 423

symbol display, 146
source/symbol modes, setting, 185
SPARCsystems

installing software, 516

minimum system requirements

overview, 509

SunOS minimum version, 509
specify command, 425-426
specify trace disassembly options, 243
SPMT (Software Performance
Measurement Tool)

See software performance measure
sq adv, captured sequence state, 231

copy command, 358
display command, 365
status (analyzer state qualifier
softkey), 211, 414, 428
predefined values for, 211
status line, 25, 59
status range command, 218
status values, 217
status, emulator
copying to a file, 193
step command, 35, 160-161, 429-430
step over, 178
stop_trace command, 201, 431
storage qualifier, 222
store command, 432-433
absolute files, 141, 143
store trace command, 257
store trace_spec command, 256, 258
summary of commands, 352
SunOS, minimum version, 509
switching
directory context in config window, 103
directory context in emulator/analyzer
window, 153
symbol context, 154
--SYMB-- syntax, 434-440
symbol context
changing, 154
displaying, 153
symbol file, loading, 144
symbols, 144, 209
displaying, 144
displaying in trace list, 248
displaying parent from screen, 150
global to file, 193
local to file, 193
set command, 423
--SYMB-- syntax, 434-440
sync_sim_registers command, 441

SRU (Symbolic Retrieval Utilities), 435-436 synchronous measurements, 317

state, external analyzer mode, 303
STATE, in trace command, 427-428
states
change the number available for
display, 254
static discharge, protecting the emulator
probe against, 52
status

syntax conventions, 351

system requirements
HP 64700 minimum version, 509
HP 9000 overview, 508
HP-UX minimum version, 508
SunOS minimum version, 509

T
target memory
loading absolute files, 141
target reset, running from, 157
target system, 536
dependency on executing code, 107
plugging the emulator into, 51
RAM and ROM, 112
temporary software breakpoints
setting, 168
terminal emulation window, opening, 193
terminal interface
commands used in high level
interface, 225-228
threshold voltages, 302
time range file format (SPMT
measurements), 284
timing
external analyzer mode, 303
trace, 536
at EXECUTE, 317
continuous stream of execution, 225-228
copy command, 363
count states, 220-221
count time, 220-221
display command, 381-384
displaying count information, 251-252
displaying the, 201-204
displaying without disassembly, 246-247
listing the, 201-204
listing to file, 192
load command, 394
loading data, 259
loading specifications, 258
on program halt, 225
recalling trace specifications, 206
repeat the previous command, 207
reset display defaults, 254
restoring data, 256
restoring specifications, 256
saving data, 256
saving specifications, 256
starting, 200
stopping, 201
store command, 433
storing data, 257
Trace Specification Selection dialog
box, 206

543

Index

trigger position, 214-216 TRIGGER, in trace command, 445-446 class name for applications, 496
trace again command, 207, 258 trom, memory characterization, 112 class name for widgets, 496
trace command, 200, 442-444 TTL (softkey for specifying threshold command line options, 499
setting up for SPMT measurements, 266 voltages), 303 commonly modified graphical interface
trace counting anystate command, 220-221 tutorials, setting up, 338-340 resources, 330
trace counting command, 220-221 defined, 495
trace counting off U general form, 495
command, 220-221, 251-252 uploading memory, 5 instance name for applications, 496
trace counting time command, 220-221 user (target) memory, loading absolute instance name for widgets, 496
trace depth files, 141 loading order, 498
how to change, 205 user program, 535 modifying resources, generally, 330-333
trace disassembly RESOURCE_MANAGER property, 498
specifying options, 243 v scheme file system directory, 501
trace display, 237 values, 208 scheme files, Graphical User Interface, 499
depth, SPMT measurements, 266 predefined for analyzer state qualifiers, 211 scheme files, named, 500
positioning, 207 version, firmware, 530 schemes, forcing interface to use
source/symbol modes, 185 voltages, threshold, 302 certain, 499
trace expressions Softkey.BW, 500
address values, 217 w Softkey.Color, 500
data values, 217 wait command, 447-448 Softkey.Input, 500
range, 218 Softkey.Label, 500

command files, using in, 85

status values, 217 widget resource Softkey.Large, 500
trace list See X resource Softkey.Small, 500
disassembly, 241-242 WINDOW, in trace command, 449 wildcard character, 496
display specific line number, 240 windowing and sequencing xrdb, 498
display source lines, 249 specification, 236, 238-239 xrm command line option, 499
move through, 241 windows X server, 328, 498
offset addresses, 253 exiting emulator/analyzer, 61 X Window System, 55
popup menu, 239 opening new emulator/analyzer, 59 xbits, external analyzer label, 307

trace on_halt command, 225

trace only command, 222

trace options dialog box, 238

trace prestore anything command, 223-224

running emulator/analyzer interface in
multiple, 55
terminal emulation, opening, 193

workstation
trace prestore command, 223-224 HP 9000 memory needs, 508
trace signals (emulation analyzer), 210 HP 9000 minimum performance, 508
trace_spec SPARCsystem memory needs, 509
load command, 394 SPARCsystem minimum performance, 509
stpre command, 433) write to ROM break, 122
tracing background operation, 123
tram, memory characterization, 112 X
transfer address, 157 :
. ’ X client, 328
trigger, 536

X resource, 328
$XAPPLRESDIR directory, 498
$XENVIRONMENT variable, 499
Xdefaults file, 498

specifying a simple, 214-216 Just/hp64000/1ib/X11/HP64_schemes, 501
stop driving on break, 324 app-defaults file, 498
TRIGGER, CMB signal, 311 ’

condition, 214-216
position, 214-216
position, accuracy of, 214

544

Safety

Summary of Safe Procedures

The following general safety precautions must be observed during all phases of
operation, service, and repair of this instrument. Failure to comply with these
precautions or with specific warnings elsewhere in this manual violates safety
standards of design, manufacture, and intended use of the instrument.
Hewlett-Packard Company assumes no liability for the customer’s failure to
comply with these requirements.

Ground The Instrument

To minimize shock hazard, the instrument chassis and cabinet must be connected to
an electrical ground. The instrument is equipped with a three-conductor ac power
cable. The power cable must either be plugged into an approved three-contact
electrical outlet or used with a three-contact to two-contact adapter with the
grounding wire (green) firmly connected to an electrical ground (safety ground) at
the power outlet. The power jack and mating plug of the power cable meet
International Electrotechnical Commission (IEC) safety standards.

Do Not Operate In An Explosive Atmosphere

Do not operate the instrument in the presence of flammable gases or fumes.
Operation of any electrical instrument in such an environment constitutes a definite
safety hazard.

Keep Away From Live Circuits

Operating personnel must not remove instrument covers. Component replacement
and internal adjustments must be made by qualified maintenance personnel. Do not
replace components with the power cable connected. Under certain conditions,
dangerous voltages may exist even with the power cable removed. To avoid
injuries, always disconnect power and discharge circuits before touching them.

WARNING

Do Not Service Or Adjust Alone

Do not attempt internal service or adjustment unless another person, capable of
rendering first aid and resuscitation, is present.

Do Not Substitute Parts Or Modify Instrument

Because of the danger of introducing additional hazards, do not install substitute
parts or perform any unauthorized modification of the instrument. Return the
instrument to a Hewlett-Packard Sales and Service Office for service and repair to
ensure that safety features are maintained.

Dangerous Procedure Warnings

Warnings, such as the example below, precede potentially dangerous procedures
throughout this manual. Instructions contained in the warnings must be followed.

Dangerous voltages, capable of causing death, are present in this instrument. Use
extreme caution when handling, testing, and adjusting.

4

Safety Symbols Used In Manuals

The following is a list of general definitions of safety symbols used on equipment
or in manuals:

Instruction manual symbol: the product is marked with this symbol when it is
necessary for the user to refer to the instruction manual in order to protect against
damage to the instrument.

Indicates dangerous voltage (terminals fed from the interior by voltage exceeding
1000 volts must be marked with this symbol).

Protective conductor terminal. For protection against electrical shock in case of a
fault. Used with field wiring terminals to indicate the terminal which must be
connected to ground before operating the equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal common,
as well as providing protection against electrical shock in case of a fault. A terminal
marked with this symbol must be connected to ground in the manner described in
the installation (operating) manual before operating the equipment.

Frame or chassis terminal. A connection to the frame (chassis) of the equipment
which normally includes all exposed metal structures.

Alternating current (power line).

Direct current (power line).

Alternating or direct current (power line).

Caution The Caution sign denotes a hazard. It calls your attention to an operating procedure,
practice, condition, or similar situation, which, if not correctly performed or
adhered to, could result in damage to or destruction of part or all of the product.

Warning The Warning sign denotes a hazard. It calls your attention to a procedure, practice,
condition or the like, which, if not correctly performed, could result in injury or
death to personnel.

Certification and Warranty

Certification

Hewlett-Packard Company
certifies that this product met
its published specifications at
the time of shipment from the
factory. Hewlett-Packard
further certifies that its
calibration measurements are
traceable to the United States
National Bureau of Standards,
to the extent allowed by the
Bureau’s calibration facility,
and to the calibration
facilities of other
International Standards
Organization members.

Warranty

This Hewlett-Packard system
product is warranted against
defects in materials and
workmanship for a period of
90 days from date of
installation. During the
warranty period, HP will, at
its option, either repair or
replace products which prove
to be defective.

Warranty service of this
product will be performed at
Buyer’s facility at no charge
within HP service travel
areas. Outside HP service
travel areas, warranty service
will be performed at Buyer’s
facility only upon HP’s prior
agreement and Buyer shall
pay HP’s round trip travel
expenses. In all other cases,
products must be returned to
a service facility designated
by HP.

For products returned to HP
for warranty service, Buyer
shall prepay shipping charges
to HP and HP shall pay
shipping charges to return
the product to Buyer.
However, Buyer shall pay all
shipping charges, duties, and
taxes for products returned
to HP from another country.
HP warrants that its software
and firmware designated by
HP for use with an
instrument will execute its
programming instructions
when properly installed on
that instrument. HP does not

warrant that the operation of
the instrument, or software,
or firmware will be
uninterrupted or error free.

Limitation of Warranty
The foregoing warranty shall
not apply to defects resulting
from improper or inadequate
maintenance by Buyer,
Buyer-supplied software or
interfacing, unauthorized
modification or misuse,
operation outside of the
environment specifications
for the product, or improper
site preparation or
maintenance.

No other warranty is
expressed or implied. HP
specifically disclaims the
implied warranties of
merchantability and fitness
for a particular purpose.

Exclusive Remedies

The remedies provided herein
are buyer’s sole and exclusive
remedies. HP shall not be
liable for any direct, indirect,
special, incidental, or
consequential damages,
whether based on contract,
tort, or any other legal theory.
Product maintenance
agreements and other
customer assistance
agreements are available for
Hewlett-Packard products.
For any assistance, contact
your nearest Hewlett-Packard
Sales and Service Office.

	6830x Emulation and Analysis
	In This Book
	Contents
	Quick Start Guide
	Getting Started

	User’s Guide
	Plugging into a Target System
	Starting and Exiting HP 64700 Interfaces
	Entering Commands
	Configuring the Emulator
	Using the Emulator
	Using the Emulation Analyzer
	Making Software Performance Measurements
	Using the External State Analyzer
	Making Coordinated Measurements
	Setting X Resources

	Reference
	Emulator/Analyzer Interface Commands
	Error Messages

	Concept Guide
	Concepts

	Installation Guide
	Installation
	Installing/Updating Emulator Firmware

	Glossary
	Index
	Safety
	Certification and Warranty

