User’s Guide

Real-Time C Debugger for
6833x

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection
with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1994, 1996, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the prior
written consent of Hewlett-Packard Company. The information contained in
this document is subject to change without notice.

MS-DOS(R) is a U.S. registered trademark of Microsoft Corporation.

HP-UX 9.* and 10.0 for HP 9000 Series 700 and 800 computers are X/Open
Company UNIX 93 branded products.

TrueType(TM) is a U.S. trademark of Apple Computer, Inc.

UNIX(R) is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited.

Windows or MS Windows is a U.S. trademark of Microsoft Corporation.

Hewlett-Packard

P.O. Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the
U.S. Government is subject to restrictions as set forth in subparagraph (c)
(1) (i) of the Rights in Technical Data and Computer Software Clause at
DFARS 252.227-7013. Hewlett-Packard Company, 3000 Hanover Street, Palo
Alto, CA 94304 U.S.A. Rights for non-DOD U.S. Government Departments
and Agencies are as set forth in FAR 52.227-19(¢)(1,2).

ii

Printing History

New editions are complete revisions of the manual. The date on the title
page changes only when a new edition is published.

A software code may be printed before the date; this indicates the version
level of the software product at the time the manual was issued. Many
product updates and fixes do not require manual changes, and manual
corrections may be done without accompanying product changes. Therefore,
do not expect a one-to-one correspondence between product updates and

manual revisions.

Edition 1
Edition 2
Edition 3
Edition 4

B3624-97000, August 1994
B3624-97001, October 1994
B3624-97002, December 1994
B3624-97003, January 1996

Safety, Certification and Warranty

Safety and certification and warranty information can be found at the end of
this manual on the pages before the back cover.

iil

Real-Time C Debugger — Overview

The Real-Time C Debugger is an MS Windows application that lets you debug
C language programs for embedded microprocessor systems.

The debugger controls HP 64700 emulators and analyzers either on the local
area network (LAN) or connected to a personal computer with an RS-232C
interface or the HP 64037 RS-422 interface. It also controls HP E3490A
Software Probes on the LAN. It takes full advantage of the emulator’s
real-time capabilities to allow effective debug of C programs while running in
real time.

The debugger is an MS Windows application

* You can display different types of debugger information in different
windows, just as you display other windows in MS Windows applications.

* You can complete a wide variety of debug-related tasks without exiting
the debugger. You can, for example, edit files or compile your programs
without exiting the debugger.

¢ You can cut text from the debugger windows to the clipboard, and
clipboard contents may be pasted into other windows or dialog boxes.

The debugger communicates at high speeds

e You can use the HP 64700 LAN connection or the RS-422 connection for
high-speed data transfer (including program download). These
connections give you an efficient debugging environment.

You can debug programs in C context

e You can display C language source files (optionally with intermixed
assembly language code).

¢ You can display program symbols.

¢ You can display the stack backtrace.

¢ You can display and edit the contents of program variables.

¢ You can step through programs, either by source lines or assembly
language instructions.

¢ You can step over functions.

¢ You can run programs until the current function returns.

iv

You can run programs up to a particular source line or assembly language
instruction.

You can set breakpoints in the program and define macros (which are
collections of debugger commands) that execute when the breakpoint is
hit. Break macros provide for effective debugging without repeated
command entry.

You can display and modify processor resources

You can display and edit the contents of memory locations in
hexadecimal or as C variables.

You can display and edit the contents of microprocessor registers
including on-chip peripheral registers.

You can display and modify individual bits and fields of bit-oriented
registers.

You can trace program execution (emulator only)

You can trace control flow at the C function level.

You can trace the callers of a function.

You can trace control flow within a function at the C statement level.

You can trace all C statements that access a variable.

You can trace before, and break program execution on, a C variable being
set to a specified value.

You can make custom trace specifications.

You can debug your program while it runs continuously at full speed

You can configure the debugger to prevent it from automatically
initiating any action that may interrupt user program execution. This
ensures that the user program executes in real time, so you can debug
your design while it runs in a real-world operating mode.

You can inspect and modify C variables and data structures without
interrupting execution.

You can set and clear breakpoints without interrupting execution.

You can perform all logic analysis functions, observing C program and
variable activity, without interrupting program execution.

In This Book

This book documents the Real-Time C Debugger for 6833x. It is organized
into five parts:

Part 1. Quick Start Guide
Part 2. User’s Guide

Part 3. Reference

Part 4. Concept Guide

Part 5. Installation Guide

vi

Contents

Part 1

Quick Start Guide

Getting Started with an Emulator

Step 1.
Step 2.
Step 3.
Step 4.
Step b.
Step 6.
Step 7.
Step 8.
Step 9.

Step 10.
Step 11.
Step 12.
Step 13.
Step 14.
Step 15.
Step 16.

Start the debugger 5

Adjust the fonts and window size 6

Map memory for the demo program 7
Load the demo program 9

Display the source file 10

Set a breakpoint 11

Run the demo program 12

Delete the breakpoint 13

Single-step one line 13

Single-step 10 lines 14

Display a variable 15

Edit a variable 16

Monitor a variable in the WatchPoint window
Run until return from current function 18
Step over a function 18

Run the program to a specified line 19

Step 17. Display register contents 20
Step 18. Trace function flow 22

Step 19.
Step 20.
Step 21.

Trace a function’s callers 23
Trace access to a variable 24
Exit the debugger 25

17

vii

Contents

2 Getting Started with an HP E3490A Software Probe

Step 1. Start the debugger 30

Step 2. Load the demo program and configure initial register values
Step 3. Display the source file 33

Step 4. Set a breakpoint 35

Step 5. Run the demo program 36

Step 6. Delete the breakpoint 37

Step 7. Display a variable 38

Step 8. Edit a variable 39

Step 9. Monitor a variable in the WatchPoint window 40
Step 10. Single-step one line 41

Step 11. Run until return from current function 42

Step 12. Step over a function 43

Step 13. Run the program to a specified line 44

Step 14. Display register contents 45

Step 15. Exit the debugger 46

31

viii

Contents

Part 2 User’s Guide

3

4

Using the Debugger Interface
How the Debugger Uses the Clipboard 51
Debugger Function Key Definitions 52

Starting and Exiting the Debugger 53

To start the debugger 53
To exit the debugger 54
To create an icon for a different emulator 54

Working with Debugger Windows 56

To open debugger windows 56

To copy window contents to the list file 57
To change the list file destination =~ 57

To change the debugger window fonts 58
To set tabstops in the Source window 58
To set colors in the Source window 59

Using Command Files 60

To create a command file 60
To execute a command file 61
To create buttons that execute command files 62

Plugging the Emulator into Target Systems

Plugging the Emulator into Target Systems 64

Step 1. Turn OFF power 65

Step 2. Unplug the probe from the demo target system 65
Step 3. Plug the probe into the target system 66

Step 4. Turn ON power 67

ix

Contents

5 Configuring the Emulator

Configuring the Emulator 70
Setting the Hardware Options 71

Setting the Hardware Options for an Emulator 72

To select the emulator mode 73

To select the source of the emulation clock 74

To enable or disable use of the tag memory 75

To enable or disable target BERR on emulation memory accesses 75
To enable or disable target DSACK on emul mem accesses 76

To specify the internal RAM to use for show cycles 77

To specify the tristate voltage value 78

To enable or disable break on writes to ROM 78

To set up the reset mode configuration 79

Setting the Hardware Options for an HP E3490A Software Probe

To specify the processor type 81
To specify the target processor clock speed 82

Mapping Memory (Emulator Only) 84

To map memory 84

Selecting the Type of Monitor (Emulator Only) 88

Background Monitor 88

Foreground Monitor 88

To select the background monitor 89

To select the foreground monitor in the HP 64782 Emulator 90
To use a custom foreground monitor in the HP 64782 Emulator 91

Using the EMSIM Registers 93

EMSIM Registers in the Emulator 93

EMSIM Registers in the HP E3490A Software Probe 94
To view the SIM register differences 97

To synchronize to the 6833x SIM registers 97

To synchronize to the EMSIM registers 98

To reset the EMSIM registers to processor defaults 98

80

Contents

Verifying the Emulator Configuration 99

To check for configuration inconsistencies 99

To display information about chip selects 100

To display information about bus interface ports 100

To display information about the memory map 101

To display information about the reset mode configuration 101
To display assembly code for setting up the SIM 102

Setting Up the BNC Port (Emulator Only) 103

To output the trigger signal on the BNC port 103
To receive an arm condition input on the BNC port 103

Saving and Loading Configurations 104

To save the current emulator configuration 104
To load an emulator configuration 105

Setting the Real-Time Options 106

To allow or deny monitor intrusion 107
To turn polling ON or OFF 107

Debugging Programs
Debugging Programs 110

Loading and Displaying Programs 111

To load user programs 111

To display source code only 112

To display source code mixed with assembly instructions 112
To display source files by their names 113

To specify source file directories 114

To search for function names in the source files 115

To search for addresses in the source files 115

To search for strings in the source files 116

Displaying Symbol Information 117

To display program module information 118

To display function information 118

To display external symbol information 119

To display local symbol information 120

To display global assembler symbol information 121

X1

Contents

To display local assembler symbol information 121

To create a user-defined symbol 122

To display user-defined symbol information 123

To delete a user-defined symbol 123

To display the symbols containing the specified string 124

Stepping, Running, and Stopping the Program 125

To step a single line or instruction 125

To step over a function 126

To step multiple lines or instructions 127

To run the program until the specified line 128

To run the program until the current function return 128
To run the program from a specified address 129

To stop program execution 129

To reset the processor 130

Using Breakpoints and Break Macros 131

To set a breakpoint 132

To disable a breakpoint 133

To delete a single breakpoint 133

To list the breakpoints and break macros 134
To set a break macro 134

To delete a single break macro 137

To delete all breakpoints and break macros 138

Displaying and Editing Variables 139

To display a variable 139
To edit a variable 140
To monitor a variable in the WatchPoint window 141

Displaying and Editing Memory 142

To display memory 142

To edit memory 144

To copy memory to a different location 145

To copy target system memory into emulation memory 146
To modify a range of memory with a value 147

To search memory for a value or string 148

Contents

Displaying and Editing I/0 Locations 149

To display I/0 locations 149
To edit an I/O location 150

Displaying and Editing Registers 151

To display registers 151
To edit registers 153

Tracing Program Execution (Emulator Only) 154

To trace function flow 156

To trace callers of a specified function 157

To trace execution within a specified function 159
To trace accesses to a specified variable 160

To trace before a particular variable value and break 161
To trace until the command is halted 163

To stop a running trace 163

To repeat the last trace 163

To display bus cycles 164

To display absolute or relative counts 165

To change the disassembly of bus cycle data 165
To display dequeued trace data 166

Setting Up Custom Trace Specifications (Emulator Only) 167

To set up a "Trigger Store" trace specification 168

To set up a "Find Then Trigger" trace specification 171
To set up a "Sequence" trace specification 176

To edit a trace specification 180

To trace "windows" of program execution 180

To store the current trace specification 182

To load a stored trace specification 183

Programming Target Flash Memory (E3490A Only) 184

To program or erase a part 185

xiii

Contents

Part 3 Reference

7 Command File and Macro Command Summary

Command File and Macro Command Summary 190

8 Expressions in Commands

Numeric Constants 197
Symbols 198

Function Codes 201

C Operators 201

9 Menu Bar Commands

Menu Bar Commands 204

File - Load Object... (ALT, F, L) 207

File - Flash Programming... (ALT, F, F) 210

File - Command Log - Log File Name... (ALT, F, C, N) 213
File - Command Log - Logging ON (ALT, F, C, O) 214
File - Command Log - Logging OFF (ALT, F, C, F) 215
File - Run Cmd File... (ALT, F, R) 216

File - Load Debug... (ALT, F, D) 218

File - Save Debug... (ALT, F, S) 219

File - Load Emulator Config... (ALT, F, E) 220

File - Save Emulator Config... (ALT, F, V) 221

File - Copy Destination... (ALT, F, P) 223

File - Exit (ALT, F, X) 224

File - Exit HW Locked (ALT, F, H) 225

File Selection Dialog Boxes 226

Execution - Run (F5), (ALT, E, U) 227

Execution - Run to Cursor (ALT, E, C) 228
Execution — Run to Caller (ALT, E, T) 229

Execution - Run... (ALT, E, R) 230

Execution - Single Step (F2), (ALT, E, N) 232
Execution - Step Over (F3), (ALT, E, O) 233
Execution - Step... (ALT, E, S) 234
Execution - Break (F4), (ALT, E, B) 237

Contents

Execution - Reset (ALT, E, E) 238

Breakpoint - Set at Cursor (ALT, B, S) 239

Breakpoint - Delete at Cursor (ALT, B, D) 240

Breakpoint - Set Macro... (ALT, B, M) 241

Breakpoint - Delete Macro (ALT, B, L)) 244

Breakpoint — Edit... (ALT, B, E) 245

Variable - Edit... (ALT, V, E) 247

Variable Modify Dialog Box 249

Trace - Function Flow (ALT, T, F) 250

Trace - Function Caller... (ALT, T, C) 251

Trace - Function Statement... (ALT, T, S) 2563

Trace — Variable Access... (ALT, T, V) 255

Trace - Variable Break... (ALT, T, B) 257

Trace - Edit... (ALT, T, E) 259

Trace - Trigger Store... (ALT, T, T) 260

Trace - Find Then Trigger... (ALT, T, D) 263

Trace - Sequence... (ALT, T, Q) 267

Trace - Until Halt (ALT, T, U) 271

Trace - Halt (ALT, T, H) 272

Trace - Again (F7), (ALT, T, A) 273

Condition Dialog Boxes 274

Trace Pattern Dialog Box 277

Trace Range Dialog Box 279

Sequence Number Dialog Box 281

RealTime — Monitor Intrusion - Disallowed (ALT, R, T, D) 282
RealTime — Monitor Intrusion - Allowed (ALT, R, T, A) 283
RealTime - I/O Polling - ON (ALT, R, I, O) 284

RealTime - I/0O Polling - OFF (ALT, R, I, F) 285

RealTime —» Watchpoint Polling - ON (ALT, R, W, O) 286
RealTime — Watchpoint Polling - OFF (ALT, R, W, F) 287
RealTime - Memory Polling - ON (ALT, R, M, O) 288
RealTime - Memory Polling - OFF (ALT, R, M, F) 289
Assemble... (ALT, A) 290

Settings - Emulator Config — Hardware... (ALT, S, E, H) 291
Settings -» Emulator Config -~ Memory Map... (ALT, S, E, M) 297
Settings - Emulator Config -~ Monitor... (ALT, S, E, O) 302
Settings -» Emulator Config - Information... (ALT, S, E, I) 305
Settings - Communication... (ALT, S, C) 308

Settings - BNC - Outputs Analyzer Trigger (ALT, S, B, O) 311

Contents

Settings - BNC - Input to Analyzer Arm (ALT, S, B,I) 313

Settings - Font... (ALT, S, F) 314

Settings — Tabstops... (ALT, S, T) 316

Settings — Symbols — Case Sensitive -~ ON (ALT, S, S, C, O) 317
Settings — Symbols — Case Sensitive - OFF (ALT, S, S, C, F) 317
Settings — Extended - Trace Cycles - User (ALT, S, X, T, U) 318
Settings — Extended - Trace Cycles —Monitor (ALT, S, X, T, M) 318
Settings —» Extended - Trace Cycles - Both (ALT, S, X, T, B) 319
Settings - Extended - Load Error Abort— ON (ALT, S, X, L, O) 320
Settings —» Extended - Load Error Abort - OFF (ALT, S, X, L, F) 320
Settings —» Extended - Source Path Query - ON (ALT, S, X, S, O) 321
Settings —» Extended - Source Path Query - OFF (ALT, S, X, S, F) 321
Window - Cascade (ALT, W, C) 322

Window - Tile (ALT, W, T) 322

Window — Arrange Icons (ALT, W, A) 322

Window - 1-9 (ALT, W, 1-9) 323

Window - More Windows... (ALT, W, M) 325

Help - About Debugger/Emulator... (ALT, H, D) 326

Source Directory Dialog Box 327

WAIT Command Dialog Box 328

10 Window Control Menu Commands

Window Control Menu Commands 330

Common Control Menu Commands 331
Copy - Window (ALT, -, P, W) 331

Copy - Destination... (ALT, -, P, D) 332
Button Window Commands 333

Edit... (ALT, -, E) 333

Expression Window Commands 336
Clear (ALT, -, R) 336

Evaluate... (ALT, -, E) 337

I/0 Window Commands 338
Define... (ALT,-,D) 338

XVi

Contents

Memory Window Commands 340

Display — Linear (ALT, -, D, L) 340
Display - Block (ALT, -, D, B) 341
Display — Byte (ALT, -, D, Y) 341
Display - 16 Bit (ALT, -, D, 1) 341
Display — 32 Bit (ALT, -, D, 3) 341
Search... (ALT, -, R) 342

Utilities — Copy... (ALT, -, U, C) 344
Utilities - Fill... (ALT, -, U, F) 345
Utilities — Load... (ALT, -, U, L) 346
Utilities — Store... (ALT, -, U, S) 348

Register Window Commands 350

Copy - Registers (ALT, -, P, R) 350
Register Bit Fields Dialog Box 351

Source Window Commands 353

Display — Mixed Mode (ALT, -, D, M) (Emulator Only) 353
Display — Source Only (ALT, -, D, S) 354

Display — Select Source... (ALT, -, D, L)) 355

Search - String... (ALT, -, R, S) 356

Search - Function... (ALT, -, R, F) 357

Search - Address... (ALT, -, R, A) 359

Search - Current PC (ALT, -, R,C) 360

Search Directories Dialog Box 361

Symbol Window Commands 362

Display — Modules (ALT, -, D, M) 362
Display — Functions (ALT, -, D, F) 363
Display — Externals (ALT, -, D, E) 363
Display — Locals... (ALT, -, D, L) 364
Display — Asm Globals (ALT, -, D, G) 365
Display — Asm Locals... (ALT, -, D, A) 366
Display — User defined (ALT, -, D, U) 367
Copy — Window (ALT, -, P, W) 367
Copy - All (ALT, -, P, A) 368
FindString - String... (ALT, -, F, S) 368
User defined - Add... (ALT, -, U, A) 369

XVii

Contents

11

User defined - Delete (ALT, -, U, D) 371
User defined - Delete All (ALT, -, U, L) 371

Trace Window Commands (Emulator Only) 372

Display — Mixed Mode (ALT,-,D,M) 372

Display — Source Only (ALT, -, D, S) 373
Display — Bus Cycle Only (ALT, -, D,C) 373

Display — Count — Absolute (ALT, -, D, C, A) 374
Display — Count - Relative (ALT, -, D, C, R) 374
Display — From State... (ALT, -, D, F) 375

Display — Options — Dequeue ON (ALT, -, D, O, O) 376
Display — Options - Dequeue OFF (ALT, -, D, O, F) 377
Copy - Window (ALT, -, P, W) 377

Copy - All (ALT, -, P, A) 378

Search - Trigger (ALT, -, R, T) 378

Search - State... (ALT, -, R, S) 379

Trace Spec Copy — Specification (ALT, -, T, S) 380
Trace Spec Copy - Destination... (ALT, -, T, D) 380

WatchPoint Window Commands 381
Edit... (ALT, -, E) 381

Window Pop-Up Commands

BackTrace Window Pop-Up Commands 387
Source at Stack Level 387

Source Window Pop-Up Commands 388

Set Breakpoint 388
Clear Breakpoint 388
Evaluate It 388

Add to Watch 389
Run to Cursor 389

XVviii

12

13

Contents

Other Command File and Macro Commands

BEEP 393

EXIT 394

FILE CHAINCMD 395
FILE RERUN 396

NOP 397
TERMCOM 398
WAIT 400

Error Messages

Error Messages 402

Bad RS-232 port name 404

Bad RS-422 card I/O address 404

Could not open initialization file ~ 404

Could not write Memory 405

Error occurred while processing Object file 406
General RS-232 communications error 407
General RS-422 communications error 407
HP 64700 locked by another user 408

HP 64700 not responding 408

Incorrect DLL version 408

Incorrect LAN Address (HP-ARPA, Windows for Workgroups) 409
Incorrect LAN Address (Novell) 410
Incorrect LAN Address (WINSOCK) 410
Internal error in communications driver ~ 411
Internal error in Windows 411

Interrupt execution (during run to caller) 411
Interrupt execution (during step) 412
Interrupt execution (during step over) 412
Invalid transport name 413

LAN buffer pool exhausted 413

LAN communications error 414

LAN MAXSENDSIZE is too small 414

LAN socket error 414

Object file format ERROR 415

Out of DOS Memory for LAN buffer 416

Out of Windows timer resources 417

PC is out of RAM memory 417

Timed out during communications 418

Contents

Part 4 Concept Guide

14 Concepts

Concepts 424

Debugger Windows 425

The BackTrace Window 426
The Button Window 427

The Expression Window 428
The I/O Window 429

The Memory Window 430
The Register Windows 431
The Source Window 432

The Status Window 435

The Symbol Window 439
The Trace Window (Emulator Only) 440
The WatchPoint Window 442

Compiler/Assembler Specifications 443

IEEE-695 Object Files 443
Compiling Programs with MCC68K 445
Compiling Programs with AXLLS 446

Monitor Programs (Emulator Only) 448

Monitor Program Options (Emulator Only) 448
Assembling and Linking the Foreground Monitor with MCC68K (Emulator

Only) 450
Assembling and Linking the Foreground Monitor with AXLS (Emulator
Only) 450

Setting Up the Trace Vector (Emulator Only) 451
Notes on Foreground Monitors (Emulator Only) 451

Trace Signals and Predefined Status Values (Emulator Only) 452

SIM and RAM Implementations (Emulator Only) 456

Emulator support of the SIM and RAM (Emulator Only) 457
Emulator support of processor internal RAM (Emulator Only) 459
Show cycles used to see internal bus cycles (Emulator Only) 460
SIM/RAM synchronization and information 461

Contents

Part 5

15

16

Installation Guide

Installing the Debugger

Requirements 467

If You Are Using the HP E3490A Software Probe 468
Before Installing the Debugger 469

Step 1. Connect the HP 64700 to the PC 470

To connect via RS-232 470

To connect via LAN 473

To connect via RS-422 477

If you cannot verify RS-232 communication 478
If you cannot verify LAN communication 479

Step 2. Install the debugger software 480

Step 3. Start the debugger 484

If you have RS-232 connection problems 484
If you have LAN connection problems 487

If you have LAN DLL errors 488

If you have RS-422 connection problems 489

Step 4. Check the HP 64700 system firmware version 490

Optimizing PC Performance for the Debugger 491

Installing/Updating HP 64700 Firmware

Step 1. Connect the HP 64700 to the PC 495

Step 2. Install the firmware update utility =~ 497

Step 3. Run PROGFLASH to update HP 64700 firmware 500
Step 4. Verify emulator performance 502

Glossary

Index

XX1

Xxil

Part 1

Quick Start Guide

A few task instructions to help you get comfortable.

Part 1

Getting Started with an Emulator

Note

Getting Started

If you need to install the Real-Time C Debugger software, refer to Part 5,
"Installation Guide."

This tutorial helps you get comfortable by showing you how to perform some
measurements on a demo program. This tutorial shows you how to:

Start the debugger.

Adjust the fonts and window size.
Map memory for the demo program.
Load the demo program.

Display the source file.

Set a breakpoint.

Run the demo program.

Delete the breakpoint.

Single-step one line.

10 Single-step 10 lines.

11 Display a variable.

12 Edit a variable.

183 Monitor a variable in the WatchPoint window.
14 Run until return from current function.
15 Step over a function.

16 Run the program to a specified line.
17 Display register contents.

18 Trace function flow.

19 Trace a function’s callers.

20 Trace access to a variable.

21 Exit the debugger.

XTI W -

Demo Programs

Demo programs are included with the Real-Time C Debugger in the
CAHP\RTC\WM33X\DEMO directory (if C:\HP\RTC\M33X was the installation
path chosen when installing the debugger software).

Subdirectories exist for the SAMPLE demo program, which is a simple C
program that does case conversion on a couple strings, and for the ECS demo
program, which is a somewhat more complex C program for an
environmental control system.

Chapter 1: Getting Started with an Emulator
Step 1. Start the debugger

describes the program and batch files that show you how the object files were
made.

Each of these demo program directories contains a README file that .

This tutorial shows you how to perform some measurements on the SAMPLE
demo program.

Step 1. Start the debugger

Open the HP Real-Time C Debugger group box and double-click the
6833x debugger icon.

Or, if not using the 6833x debugger icon:

Choose the File - Run (ALT, F, R) command in the Windows Program
Manager.

Enter the debugger startup command, C\HP\ARTC\M33X\B3624.EXE
(if CAHPARTC\M33X was the installation path chosen when installing
the debugger software).

Choose the OK button.

Chapter 1: Getting Started with an Emulator
Step 2. Adjust the fonts and window size

Step 2. Adjust the fonts and window size

The first time RTC is used, a default window and font size is used. This may
not be the best for your display. You may change the font type and size with
the Settings — Font... command, and change the window size by using
standard Windows 3.1 methods (moving the mouse to the edge of the
window and dragging the mouse to resize the window).

1 Choose the Settings - Font... (ALT, S, F) command.
2 Choose the Font, Font Style, and Size desired in the Font dialog box.

3 Choose the OK button to apply your font selections and close the
Font dialog box.

The sizes of the RTC window, as well as the sizes of the windows within RTC,
and the fonts used will be saved in the B3624.INI file and reused when you
enter RTC the next time.

Chapter 1: Getting Started with an Emulator
Step 3. Map memory for the demo program

10

11

Step 3. Map memory for the demo program

By default, the emulator assumes all memory addresses are in RAM space in
your target system. If you wish to load some of your target program in
emulation memory, or identify some of your memory addresses as ROM or
Guarded, those specifications must be entered in the memory map.

The demo program reserves addresses Oh-0fffh for ROM, 6000h-0ffffh for
RAM, and 10000h-10fffh for RAM. Map these address ranges as emulation
memory.

Choose the Settings - Emulator Config - Memory Map... (ALT, S, E,
M) command.

If there are any entries in the Current Map field, choose the Delete All
button.

Enter "0" in the Start text box.

Tab the cursor to the End text box and enter "Offf".

Select "erom" in the Type option box.

Choose the Apply button.

Enter "6000" in the Start text box and "Offff" in the End text box.
Select "eram" in the Type option box.

Choose the Apply button.

Enter "10000" in the Start text box and "10fff" in the End text box.

Choose the Apply button.

Chapter 1: Getting Started with an Emulator
Step 3. Map memory for the demo program

If you are using the HP 64782 emulator, the Memory Configuration dialog box
will appear as shown below:

= Memory Configuration

Define Map Term

s [(]| [(E=] [Ew]
End: I:I " Current Map
Func Code: [s 0000000.__0000FFF erom

_ 0006000.. D00FFFF eram
Type 0010000..001 0FFf eram
® eram) erom) guarded

O tram O trom

" Emulation Memory Attributes
none

 interlock with target /DSACK

 emulate & bit wide memory

2 emulate 8 bit mem locked to target Available: 256 Kbytes
[~ Default
® tram) trom) guarded Delete § | Delete All §

If you are using the HP 64749 emulator, the Memory Configuration dialog box
will appear as shown in this screen.

= Memory Configuration

Define Map Term

st [] [_zeeb [Gose | [tewo]
End: I:I [Current Map

Func Code: 00000000000 erom
0006000..000FFff eram
0010000..0010fff eram

Twpe
® eram O erom guarded
2 tram 3 trom

[Emulation Memory Overlay

@ none 2 blk1) blk2 O blk 3
> blk4 O blkS5 bk 6

Avwailable: 4164 Kbytes

[Default
® tram ' trom > guarded Delete g | Delete All g

12

Chapter 1: Getting Started with an Emulator
Step 4. Load the demo program

Choose the Close button.

Step 4. Load the demo program

Choose the File - Load Object... (ALT, F, L) command.

Choose the Browse button and select the sample program object file,
CA\HP\RTC\M33X\DEMO\SAMPLE\SAMPLE X (if C:\HP\RTC\M33X
was the installation path chosen when installing the debugger
software).

Choose the OK button in the Object File Name dialog box.

Choose the Load button.

Chapter 1: Getting Started with an Emulator
Step 5. Display the source file

Step 5. Display the source file

To display the sample.c source file starting from the main function:

1 If the Source window is not open, double-click on the Source window
icon to open the window. Or, choose the Window — Source
command.

2 From the Source window’s control menu, choose
Search - Function... (ALT, -, R, F) command.

3 Select "main".
4 Choose the Find button.
5 Choose the Close button.

6 From the Source window’s control menu, choose Display - Source
Only (ALT, -, D, S) command.

Filenams : <rhhphrboohosS3zdenos, sanpleh sanmple . o
| #0017 main (weid)
#oo1e H
#0012 init_datai);
#0020 while(l)
#0021 H
#ooz2 convart (mesesace 1d) ;
#0023 message_id = next nessags (essage_id) s
#o0z24 ¥
#0025 ¥
#0025
#0027 init_data(void) % Initialize data *j
#ooz2g {
#0029 samprle_wear = 1
#0030 messags id = MESSAZE] ;
#0031 stropyr (data[0] cmessacs, datal) ;
#0032 datal[0] .status = ORIGTIRAL;

The window displays the sample.c source file, starting from the main function.

10

Chapter 1: Getting Started with an Emulator
Step 6. Set a breakpoint

Step 6. Set a breakpoint

To set a breakpoint on line 22 in sample.c:

1 Cursor-select line 22 (that is, move the mouse pointer over line 22
and click the left mouse button).

2 Choose the Breakpoint - Set at Cursor (ALT, B, S) command.

Filenanms : <:“hpwrbtoswmnS3xdaonos' sanpla sarnmpls . o
#0017 moair (weodia)
$oois {
#0012 init_datai);
#00z20 whila(1l)
#ooz21 i
EFP #0022 cotrert (Mmessacre_id) ;
#o0z2s message id = newkt message (messace i) g
#0024 H
#0025 ¥
#0026
#0027 init data(woid) J* Initializse data */f
$oozs {
#0029 sangle war = 1;
#0030 nmessage_id = MESSAZE]L ;
#0031 stropy (data[0] cmessacgse, datal)
#0032 Satal[0] .statu=s = ORIGIMNAL;

Notice that line 22 is marked with "BP" (which indicates a breakpoint has
been set on the line).

Note

This can be done more quickly by using the pop-up menu available with the
right mouse button.

11

Chapter 1: Getting Started with an Emulator
Step 7. Run the demo program

Step 7. Run the demo program

To run the demo program from the transfer address:
1 Choose the Execution - Run... (ALT, E, R) command.
2 Select the Start Address option.

3 Choose the Run button.

Source

Filenarms : <:“hp'rtohos3sosdaero, sanpl ey sangpls . o

| #oo17 main (weid)
$ooizs {
#0012 init_datai);
#oozo whila(1l)
#0021
#ooz22 conert [messags_id) s
#0025 message id = newt messaoge (messace 34)
#0024 H
#onozs ¥
#0026
#0027 init data(woid) J* Initiali== data *)
$oozs {
#0029 sangple wrer = 1;
#0030 message_id = MESSAZEL ;
#0031 stropy (data[0] cmessage, datad)

datal[0] -.astatus OFRTEINAL;

Notice the demo program runs until line 22. The highlighted line indicates
the current program counter.

12

Chapter 1: Getting Started with an Emulator
Step 8. Delete the breakpoint

Step 8. Delete the breakpoint

To delete the breakpoint set on line 22:
Cursor-select line 22.

Choose the Breakpoint - Delete at Cursor (ALT, B, D) command.

The "BP" marker disappears in the Source window.

Step 9. Single-step one line

To single-step the demo program from the current program counter:

Choose the Execution - Single Step (ALT, E, N) command. Or, press
the F2 key.

Notice the C statement executed and the program counter is at the "convert"
function.

13

Chapter 1: Getting Started with an Emulator
Step 10. Single-step 10 lines

Step 10. Single-step 10 lines

To single-step 10 consecutive executable statements from the current PC line:
1 Choose the Execution - Step... (ALT, E, S) command.
2 Select the Current PC option.

3 Enter "10" in the Count text box.

™ From

{® Current PC
O Start Address

O Address:

| | L]

] Over
[] Follow PC

4 Choose the Step button. Notice that the step count decrements by
one as the program executes step by step. The step count stops at 1.

5 Choose the Close button.

14

Chapter 1: Getting Started with an Emulator
Step 11. Display a variable

Step 11. Display a variable

To display the contents of auto variable "*mes":
1 Drag "*mes" on line 45 in the Source window until it is highlighted.

2 Choose the Variable - Edit... (ALT, V, E) command.

= Variable Edit

Yariable:

Type: char

[Value

72 [48H] 'H* +

[_Update 1 | Modify | [towp |

The Variable text box displays "*mes".

Notice the Value list box displays the contents of "*mes".

Note

You can only register or display an auto variable as a watchpoint while the

program counter is within the function in which the variable name is declared.

15

Chapter 1: Getting Started with an Emulator
Step 12. Edit a variable

Step 12. Edit a variable

To edit the contents of variable "*mes":
1 Inthe Variable Edit dialog box, choose the Modify button.

2 Enter "41" in the Value text box.

= Variable Modify

Yanable: mes]
Type: char Cancel g
Value: |41| |

3 Choose the OK button.

4 Notice the contents of the variable in the Value list box has changed
to "41".

16

Chapter 1: Getting Started with an Emulator
Step 13. Monitor a variable in the WatchPoint window

Step 13. Monitor a variable in the WatchPoint window
The WatchPoint window lets you define a set of variables that may be looked
at and modified often. For these types of variables, using the WatchPoint

window is more convenient than using the Variable - Edit... (ALT, V, E)
command.

To monitor the variable "*mes" in the WatchPoint window:
1 Inthe Variable Edit dialog box, choose the "to WP" button.
2 Choose the Close button.

3 Choose the Window — WatchPoint command.

YWatchPoint
*mes = 65 (41H> 'A’

Notice the variable "*mes" has been registered as a watchpoint.

17

Chapter 1: Getting Started with an Emulator
Step 14. Run until return from current function

Step 14. Run until return from current function

To execute the program until "convert_case" (the current PC function)
returns to its caller:

Choose the Execution - Run to Caller (ALT, E, T) command.
The program executes until the line that called "convert_case".

Choose the Execution - Single Step (ALT, E, N) command (or press
the F2 key) to go to the line that follows the return from the
"convert_case:" function.

Step 15. Step over a function

To step over "change_status":

Choose the Execution - Step Over (ALT, E, O) command. Or, press
the F3 key.

The "change_status" function executes, and line 40 is highlighted to show
that it is the next line which will be executed.

18

Chapter 1: Getting Started with an Emulator
Step 16. Run the program to a specified line

Step 16. Run the program to a specified line

To execute the demo program to the first line of "next_message":
1 Cursor-select line 63.

2 Choose the Execution - Run to Cursor (ALT, E, C) command.

Filenams : <:“hphyrto\ns3x,dsmooh, sanplah sanple . <

#0053 <chang=_ =tatus(int =t J*+ Changse status of th
#0054 {

#0055 if{=st == CORICIMAL)

#0055 return (COOPVERTED)

#0057 alaa

#ooss return (ORTEINALY ;

#0059 H

#0050

#0061 next messags(int id) i Change messags to bhe
#0062
#0063

#0054
#0055

return (MESSNZEL) »

The program executes and stops immediately before line 63.

19

Chapter 1: Getting Started with an Emulator
Step 17. Display register contents

Step 17. Display register contents

1 Choose the Window - Basic Registers command.

Basic Hegisters

MAME UALUE DESCRIPTION
PC A80AH568 Program Counter
ST 2784 Status

DA BBBAABA1 Register dB@

D1 FFFFAABA Register di

D2 BUPBABOA Register d2

D3 429B48A5 Register d3

D4 1BAAPAFE Register d4d

D5 AABB4483 Register db

D6 1B2397C8 Register db

D? F2823864 Register d7?

AB AABAGHA1A Register af

Al AABAGBGA Register al

A2 ABBAG144 Register a2

A3 31585A4B Register al

A4 8186H83E Register ad

A% 2385A62C Register ab

A6 BABATYFD4 Register ab

A7 AA0AYFD4 Register a?

USP A0BBBAABAA User Stack Pointer
S5P ABAYFD4 Supervisor Stack Pointer

The Basic Registers window opens and displays the register contents. The
display is updated periodically.

2 To see the effects of preventing monitor intrusion (running in
real-time mode), choose the RealTime - Monitor
Intrusion - Disallowed (ALT, R, T, D) command.

3 To run the program, choose the Execution - Run (ALT, E, U)
command. Or, press the F5 key.

20

NAME UALUE

Chapter 1: Getting Started with an Emulator
Step 17. Display register contents

Basic Hegisters
DESCRIPTION

Program Counter
Status

Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register

User Stack Pointer
Supervisor Stack Pointer

Notice that register contents

are replaced with "----

"

in the display. This

shows the debugger cannot update the register display. In order for the
emulator to update its register display, the emulation monitor must interrupt
target program execution while it reads the registers.

Choose the RealTime - Monitor Intrusion - Allowed (ALT, R, T, A)

command to deselect the real-time mode. Notice that the contents of
the registers are updated periodically.

21

Chapter 1: Getting Started with an Emulator
Step 18. Trace function flow

Step 18. Trace function flow

» Choose the Trace - Function Flow (ALT, T, F) command.

The Trace window becomes active and displays execution flow as shown

below.

Trace - Loading Data [Frame: 1]

state Ly meduleass#line :function Sourcs

| 2 BEQ sanpls"M #0032 soonert { 15.04
6 BB sanmplsat #0044 rcovart cass | 13.42 u=
10 SED sanpl="#0054 s Charge statn | 254 .5 uZ
14 SEQ sanpls" #0062 rnaxt message { 25.282 uz
12 EED sanplea' #0032 rcotrert { 15.12 u=
22 EED sanpl=tS #0044 rootrvart _casse 13.42 u=
26 EEQ sanpls=" #0054 s Chang= statu { 219.3 us
30 EED sanpls #0062 rhaxt Imessags | 24 .72 us
534 EEG sanplehhW #0032 s oorert { 15.72 u=
32 EEQ sanplstS #0044 soonvaert case { 13.482 us
12 EED) sarmpl="0 #0054 s Chateys statn | 277 .4 1=
46 EEQ sanpls="S #0062 tnaxt message | 24.62 u=
50 SED sanpls= #0038 s coart { 15.16 us
54 EED sampl=“ #0044 soomvert case | 13.42 us

The command traces, and stores in trace memory, only the entry points to
functions. This lets you check program execution flow.

22

Chapter 1: Getting Started with an Emulator
Step 19. Trace a function’s callers

Step 19. Trace a function’s callers

To trace the caller of "next_message":

1 Double-click "next_message" in the Trace window or on line 61 in the
Source window.

2 Choose the Trace — Function Caller... (ALT, T, C) command.

Function:

= Function Caller Trace
I 1].9 a

ne:u:t_messag e

| Cancel g

3 Choose the OK button.

The Trace window becomes active and displays the caller as shown below.

This command stores the first statement of a function and prestores

Trace - Loading Data [Frame: 1]
=tate typ mednles s #lins s function SoUrCs -q-q 1
| 1 FRE =anpl=%\ #0052 s chang=_statn) prastora~To [+
3 sanplat #0062 thaxt messags 172.7 u=
4 FRE sanpl="" #0023 rmain messacse id Prestors
& sanplat #0062 thaxt messags 19.22 u=
7 FRE =sanpls= #0059 Chang= statu } prastors
= sanplat #0062 thaxt messags 252 .6 u=
10 FRE =sanpl=" #0023 sroain messacs id praestors
12 sanplat #0062 thaxt messags 19.92 u=
13 FRE =sanpls=ys#0059 s chang=_statn) prastors
15 sanplat #0062 thaxt messags | 311.4 us
16 FRE =sanpls=yW#0023 rmain messacse_id pPrastors
12 sampled #0062 rnawt Imessacgs | 192.92 u=
12 FRE =sangpls=ys#0059 s chang=_statn) prastors
21 sarplat W #0062 shnawt message | 231 .6 us
s

statements that occur before the first statement (notice the state type PRE).
The prestored statements show the caller of the function. In the above
example, "next_message" is called by line 23 of "main". Because the first
statement of "next_message" is prefetched after "change_status", these states
are also included in the trace.

23

Chapter 1: Getting Started with an Emulator
Step 20. Trace access to a variable

Step 20. Trace access to a variable

To trace access to variable "message_id":

1 Double-click "message_id" in the Trace window or on line 23 in the
Source window.

2 Choose the Trace - Variable Access... (ALT, T, V) command.

3 Choose the OK button.

= Variable Access Trace

Yariable: | 0 g
[message_id

K
Cancel g

The Trace window becomes active and displays accesses to "message_id" as
shown below.

Trace - Loading Data [Frame: 1]
state Ly meduleass#line :function Sourcs
| 0 SEQ =sampls=% #0051 roomrvert case 0 —mm e
1 FRE =sanpl=% #0023 rmain messacse_id pPrastors"T2
5 FRE sanpl="" #0023 rmain messacse id Prestors
9 FRE =sampl=% #0022 rmain convraert (Ines prastors
13 FRE =sanpl= #0025 rain messads id prestors
17 FRE =sanpls=yW#0023 rmain messacse_id pPrastors
21 FRE =sanpl="#0022 sroain conwart (mes prestors
25 FRE sanpls=yW#0023 rmain messacse_id pPrastors
292 FRE sanpls=yW#0023 rmain messacse_id pPrastors
33 FRE sanpls="S #0022 rmain convert (Ines prastors
37 FRE sanpls=yW#0023 rmain messacse_id pPrastors
41 FRE =sanpl=" #0023 rroain messacs id prestors
45 FRE =sanpls=ys#0022 rmain convraert (Ines prastors
49 FRE sanpl=" #0023 sroain messacs id praestors

Line 23 displays twice because it accessed "message_id" twice for read and

write.

24

Chapter 1: Getting Started with an Emulator
Step 21. Exit the debugger

Step 21. Exit the debugger .

1 Choose the File - Exit (ALT, F, X) command.
2 Choose the OK button.

This will end your Real-Time C Debugger session.

25

26

Getting Started with an HP E3490A
Software Probe

27

Note

Getting Started

If you need to install the Real-Time C Debugger software, refer to Part 5,
"Installation Guide."

This tutorial helps you get comfortable with the software probe by showing
you how to perform some measurements on a demo program. This tutorial
shows you how to:

Start the debugger.

Load the demo program and configure initial register values.
Display the source file.

Set a breakpoint.

Run the demo program.

Delete the breakpoint.

Display a variable.

Edit a variable.

Monitor a variable in the WatchPoint window.
10 Single-step one line.

11 Run until return from current function.

12 Step over a function.

13 Run the program to a specified line.

14 Display register contents.

15 Exit the debugger.

XTI W -

Demo Programs

Demo programs are included with the Real-Time C Debugger in the
CAHP\ARTC\M33X\DEMO\SFTPROBE directory (if C:\HPA\ARTC\M33X was the
installation path chosen when installing the debugger software).

This tutorial shows you how to perform some measurements on the ECS
demo program. The ECS demo program is a somewhat complex C program
for an environmental control system.

28

Chapter 2: Getting Started with an HP E3490A Software Probe

Demo Target System

You must connect the HP E3490A Software Probe to a target system before
you run the demo. The demo program is designed to work with a Motorola
M68332EVS Evaluation System.

29

Chapter 2: Getting Started with an HP E3490A Software Probe
Step 1. Start the debugger

Step 1. Start the debugger

Open the HP Real-Time C Debugger group box and double-click the
6833X debugger icon.

Or:

Choose the File - Run (ALT, F, R) command in the Windows Program
Manager.

Enter the debugger startup command, C\HP\ARTC\M33X\B3624.EXE
(if CAHPARTC\M33X was the installation path chosen when installing
the debugger software).

Choose the OK button.

30

Chapter 2: Getting Started with an HP E3490A Software Probe
Step 2. Load the demo program and configure initial register values

Step 2. Load the demo program and configure initial
register values

Before you can load a program, you must ensure that the target processor

registers are initialized to appropriate values. To simplify this process, a
command file is supplied with the demo program.

Choose the File - Run Cmd File... (ALT, F, R) command.

|S{[-W Execution Breakpoint ¥ariable
Load Object...

Elash Programming...
Command Log 3

Run Cmd File...
Load Debug...
Save Debug...

Load Emulator Config...
Save Emulator Config...

Copy Destination...

Exit
Exit HW Locked

Click on the Browse button.

Select the example command file,
CAHP\RTC\M33X\DEMO\SFTPROBE\ECSDEMO.CMD (if
CAHP\RTC\M33X was the installation path chosen when installing the
debugger software).

31

Chapter 2: Getting Started with an HP E3490A Software Probe
Step 2. Load the demo program and configure initial register values

Command File Name

File Hame: Directories:

ecsdemo.cmd | c:'._.vm33x\demo\sitprobe

button.cmd = et #
i eczdemo. cmd F= hp
eczemul.cmd = e
= m33x
= demo
= sftprobe
s
List Files of Type: Drives:

Command Files(“CMD) [+] | =R

c: ms-dos_b |Ej

4 Choose the OK button in the Command File Name dialog box.

5 Choose the Execute button in the Run Command File dialog box.
Wait a few seconds for the command file to load.

6 Choose the Close button in the Run Command File dialog box.

This command file will run your target system’s built-in initialization code,
load the object file for the demo program, ECS.X, and then set up several
windows.

32

Chapter 2: Getting Started with an HP E3490A Software Probe
Step 3. Display the source file

Step 3. Display the source file .

To display the INIT_SYS.C source file starting from the function init_system:

If the Source window is not open, double-click on the Source window
icon to open the window, or choose the Window — Source command.

From the Source window’s control menu, choose
Search - Function... (ALT, -, R, F) command.

Select "init_system." You may need to scroll down to see
"init_system."

Choose the Find button.
Choose the Close button.

From the Source window’s control menu, choose Display — Source
Only (ALT, -, D, S) command.

33

Chapter 2: Getting Started with an HP E3490A Software Probe
Step 3. Display the source file

Filename : c:“hpsprtesn3d3xsdemnossftprobesinitsyst_c
#ee33 £ #% FUNCTION init_system{) =~
Hea34 #% Initialize the target values for
#8a3is target_temp = 73;
#8836 target_humid = 45;
#an3?
#Ba3is ##% Initialize the variables indicati
#Baie % conditions %/
#an4a current_temp = C{zhort>MEAN_TEMWF;
#Ha41 current_humid = Cshort>MEAN_HUMID;
a4z f_curr_temp = MEAN_TEMF;
ee43 f_curr_humid = MEAM_HUMID;
an44
aa45 s Bet starting directions for temp
a4 temp_dir = up;
#HaR47? humid_dir = up;
#An48
#a4? ## Initialize the wvariables that de

The window displays the INITSYST.C source file, starting from init_system
function.

34

Chapter 2: Getting Started with an HP E3490A Software Probe
Step 4. Set a breakpoint

Step 4. Set a breakpoint

To set a breakpoint on line 36 in INITSYST.C:

1 Cursor-select line 36 (that is, move the mouse pointer over line 36
and click the left mouse button).

2 Choose the Breakpoint - Set at Cursor (ALT, B, S) command.

Source

ilename : c:shpsrtewn33dxtdemossftprobesinitsyst.c
#ae3: { #% FUNCTION init_system() »~
HaA34 ## Initialize the target valuesz for
#BA35 target_temp = ?3;

BP #0G36 || target_humid = 45;
#Haa3zy
HUA38 s# Initialize the variables indicat
HoA37 % conditions *~
Bp48 current_temp = (short>MEAN_TEMP;
HuA41 current_humid = (short>MEAN_HUMID;
a4z f_curr_temp = MEAN_TEHMF;
aB43 f_curr_humid = MEAN_HUMID;
44
HAA45 ##* Bet ztarting directions for temp
oR46 temp_dir = up;
HaB47 humid_dir = up;
aB48
#an4? ##* Initialize the variahles that deg

Notice that line 36 is marked with "BP," which indicates a breakpoint has
been set on the line.

Note This can be done more quickly by using the pop-up menu available with the
right mouse button.

35

Chapter 2: Getting Started with an HP E3490A Software Probe
Step 5. Run the demo program

Step 5. Run the demo program
To run the demo program from the transfer address:
1 Choose the Execution - Run... (ALT, E, R) command.

2 Select the Start Address option.

— L TR

3 Current PC
® Start Address’ N

O User Heset
O Address:

3 Choose the Run button.

Source

Filename : c:“hphrtesmd3xsdemossftprobhesinitsyst.oc
#8A33 { % FUNCTION init_system{} =~
#0834 A% Initialize the target values for
#8835 target_temp = 73;

BF HHUH36 target_humid = 45;
#1837
#8838 #%* Initialize the variables indicat
#8839 s%* conditions *~
18840 current_temp = (zhort>MEAN_TEMF;
#8841 current_humid = {short>MEAN_HUMID;
#aa42 f_curr_temp = MEAN_TEMF;
#8843 f_curr_humid = MEAN_HUMID;
#1aa44
18845 <% Set starting directions for tenmp
#8846 temp_dir = up;
#aa47 humid_dir = up;
#8048
18849 s%* Initiali=e the variables that de

36

Chapter 2: Getting Started with an HP E3490A Software Probe
Step 6. Delete the breakpoint

Notice the demo program runs until line 36. The highlighted line indicates
the line which corresponds to the current program counter.

Step 6. Delete the breakpoint

To delete the breakpoint set on line 36:
1 Cursor-select line 36.

2 Choose the Breakpoint - Delete at Cursor (ALT, B, D) command.

The "BP" marker disappears in the Source window.

37

Chapter 2: Getting Started with an HP E3490A Software Probe
Step 7. Display a variable

Step 7. Display a variable

To display the contents of variable "target_temp":

1 Drag "target_temp" on line 35 in the Source window until it is
highlighted.

2 Choose the Variable - Edit... (ALT, V, E) command.

Yanable:

farget_temp |

Type: zhort int

Yalue

73 (D049H)

[Update | | Modity.. | | towp |

The Variable text box displays "target_temp."

Notice the Value list box displays the contents of "target_temp."

Note You can only register or display an auto variable as a watchpoint while the
program counter is within the function in which the variable name is declared.

38

Chapter 2: Getting Started with an HP E3490A Software Probe
Step 8. Edit a variable

Step 8. Edit a variable .

To edit the contents of variable "target_temp":
1 Inthe Variable Edit dialog box, choose the Modify button.

2 Enter "74t" in the Value text box. The "t" indicates that you are
entering a decimal value.

Variable Modify

Yariable: target_temp

Type: ghort int
Yalue: |?4l;| |
Help |

3 Choose the OK button.

4 Notice the contents of the variable in the Value list box has changed
to "74."

39

Chapter 2: Getting Started with an HP E3490A Software Probe
Step 9. Monitor a variable in the WatchPoint window

Step 9. Monitor a variable in the WatchPoint window
The WatchPoint window lets you define a set of variables that may be looked
at and modified often. For these types of variables, using the WatchPoint

window is more convenient than using the Variable - Edit... (ALT, V, E)
command.

To monitor the variable "target_temp" in the WatchPoint window:
1 Inthe Variable Edit dialog box, choose the "to WP" button.
2 Choose the Close button.

3 Choose the Window — WatchPoint command.

WatchPoint

num_checks = 8 (B080BBHAAH >
current_temp = @ (ABAAEH>
old_datal@l =
temp = @ (AAAEH >
humid = @ <BAAAEH >
ave_tenmp = B._000BBUE+B0A
ave_humid = B.P0886B0H0E+B0Q
target_temp = Y4 (AA4AH>

Notice the variable "target_temp" has been registered as a watchpoint.

40

Chapter 2: Getting Started with an HP E3490A Software Probe
Step 10. Single-step one line

Step 10. Single-step one line

To single-step the demo program from the current program counter:

Choose the Execution - Single Step (ALT, E, N) command. Or, press
the F2 key.

The next source line will be highlighted, showing that one source line has
been executed.

41

Chapter 2: Getting Started with an HP E3490A Software Probe
Step 11. Run until return from current function

Step 11. Run until return from current function

To execute the program until "init_system" (the current PC function) returns
to its caller:

1 Choose the Execution — Run to Caller (ALT, E, T) command.

The program executes until the line that called "init_system."

42

Chapter 2: Getting Started with an HP E3490A Software Probe
Step 12. Step over a function

Step 12. Step over a function

To step over "proc_spec_init'":

¢ Choose the Execution - Step Over (ALT, E, O) command. Or, press
the F3 key.

The command executes the "proc_spec_init" function.

43

Chapter 2: Getting Started with an HP E3490A Software Probe
Step 13. Run the program to a specified line

Step 13. Run the program to a specified line

To execute the demo program to the line "if (graph>0)":
1 Cursor-select line 128.

2 Choose the Execution - Run to Cursor (ALT, E, C) command.

Filename : c:shphrtesm3ddxsdemossftprobesmain.c

| #8117 main<>
#8118 {
#A119 init_system{);
#8120 proc_spec_init<(>;
#9121
#Ha1z22 while (true?
#9123 £
#1224 update_system{num_checks);

#0125 num_checks ++;
#0126 if (trtod
#@127?] interrupt_simtnum_checks>;

graph_data{graphl;
proc_specific();
>

The program executes and stops immediately before line 128.

44

Chapter 2: Getting Started with an HP E3490A Software Probe
Step 14. Display register contents

Step 14. Display register contents

1 Choose the Window - Basic Registers command.

Basic Registers

MAME UALUE DESCRIPTION
pc 62106 Program Counter
st 2708 Status

dfd 41cdd@Bld Hegister d@
dl 4200088c Hegister di
d2 fh258788 Hegister d2

d3 @8 Regizter d3
dd 666 Regizster dd
ds ff Regizter db

The Register window opens and displays the register contents. The display is
updated periodically.

2 To prevent the monitor from interrupting program execution, choose
the RealTime — Monitor Intrusion - Disallowed (ALT, R, T, D)
command.

3 To run the program, choose the Execution— Run (ALT, E, U)
command. Or, press the F5 key.

NAME UALUE DESCRIPTION
pc —————— Program Countenr
st ——————— Status
s ——— Regizter dB
dal — Regiszter di
d2 —— Regizter d2
a3 —— Regizter d3
d4 —— Regizter d4
d5 —— Regizter db

"

Notice that register contents are replaced with "----" in the display. This
shows the debugger cannot update the register display.

4 Choose the RealTime - Monitor Intrusion — Allowed (ALT, R, T, A)
command to deselect the real-time mode. Notice that the contents of
the registers are updated periodically.

45

Chapter 2: Getting Started with an HP E3490A Software Probe
Step 15. Exit the debugger

Step 15. Exit the debugger

1 Choose the File - Exit (ALT, F, X) command.
2 Choose the OK button.

This will end your Real-Time C Debugger session.

46

Part 2

User’s Guide

A complete set of task instructions and problem-solving guidelines, with a
few basic concepts.

47

Part 2

48

Using the Debugger Interface

49

Using the Debugger Interface

This chapter contains general information about using the debugger interface.
¢ How the Debugger Uses the Clipboard

* Debugger Function Key Definitions

e Starting and Exiting the Debugger

* Working with Debugger Windows

¢ Using Command Files

50

Chapter 3: Using the Debugger Interface
How the Debugger Uses the Clipboard

How the Debugger Uses the Clipboard

Whenever something is selected with the standard windows double-click, it is
placed on the clipboard. The clipboard can be pasted into selected fields by
clicking the right mouse button.

Double-clicks are also used in the Register and Memory windows to make
values active for editing. These double-clicks also copy the current value to
the clipboard, destroying anything you might have wanted to paste into the
window (for example, a symbol into the memory address field). In situations
like this, you can press the CTRL key while double-clicking to prevent the
selected value from being copied to the clipboard. This allows you to, for
example, double-click on a symbol, CTRL+double-click to activate a register
value for editing, and click the right mouse button to paste the symbol value
into the register.

Many of the Real-Time C Debugger commands and their dialog boxes open
with the clipboard contents automatically pasted in the dialog box. This
makes entering commands easy. For example, when tracing accesses to a
program variable, you can double-click on the variable name in one of the
debugger windows, choose the Trace - Variable Access... (ALT, T, V)
command, and click the OK button without having to enter or paste the
variable name in the dialog box (since it is has automatically been pasted in
the dialog box).

51

Chapter 3: Using the Debugger Interface
Debugger Function Key Definitions

Debugger Function Key Definitions

F1 Accesses context sensitive help. Context sensitive help is
available for windows, dialog boxes, and menu items (with
Ctrl+F1).

F2 Executes a single source line from the current program

counter address (or a single instruction if disassembled
mnemonics are mixed with source lines in the Source
window).

F3 Same as F2 except when the source line contains a
function call (or the assembly instruction makes a
subroutine call); in these cases, the entire function (or
subroutine) is executed.

F4 Break emulator execution into the monitor. You can use
this to stop a running program or break into the monitor
from the processor reset state.

F5 Runs the program from the current program counter
address.

Shift-F4 Tiles the open debugger windows.

Shift-Fb Cascades the open debugger windows.

F7 Repeats the trace command that was entered last.

Ctrl+F7 Halts the current trace.

52

Chapter 3: Using the Debugger Interface
Starting and Exiting the Debugger

Starting and Exiting the Debugger

This section shows you how:
e To start the debugger
e To exit the debugger

* To create an icon for a different emulator

To start the debugger

Double-click the debugger icon.

Or:

Choose the File - Run (ALT, F, R) command in the Windows Program
Manager.

Enter the debugger filename, CA\HP\ARTC\M33X\B3624.EXE (if
CAHP\RTC\M33X was the installation path chosen when installing the
debugger software).

Choose the OK button.

You can execute a command file when starting the debugger by using the
"-C<command_file>" command line option.

53

Chapter 3: Using the Debugger Interface
Starting and Exiting the Debugger

To exit the debugger

1 Choose the File - Exit (ALT, F, X) command.

2 Choose the OK button.

This will end your Real-Time C Debugger session.

To create an icon for a different emulator

Open the "HP Real-Time C Debugger" group box, or make it active by
positioning the mouse in the window and clicking the left button.

Choose the File -~ New... (ALT, F, N) command in the Windows
Program Manager.

Select the Program Item option and choose OK.
In the Description text box, enter the icon description.

In the Command Line text box, enter the
"CA\HP\RTC\M33X\B3624.EXE -T<transport> -E<connectname>"
command (if C\HP\RTC\M33X was the installation path chosen when
installing the debugger software). The "-T" and "-E" startup options
allow you to bypass the transport and connect name definitions in
the B3624.INI file.

<Transport> should be one of the supported transport options (for example,
HP-ARPA, RS232C, etc.).

<Connectname> should identify the emulator for the type of transport. For
example, if the HP-ARPA transport is used, <connectname> should be the
hostname or IP address of the HP 64700; if the RS232C transport is used,
<connectname> should be COM1, COM2, etc.

54

Chapter 3: Using the Debugger Interface
Starting and Exiting the Debugger

6 In the Working Directory text box, enter the directory that contains
the debugger program (for example, C\HP\ARTC\M33X).

7 Choose the OK button. .

55

Chapter 3: Using the Debugger Interface
Working with Debugger Windows

Working with Debugger Windows

This section shows you how:

To open debugger windows

To copy window contents to the list file
To change the list file destination

To change the debugger window fonts
To set tabstops in the Source window

To set colors in the Source window

To open debugger windows

Double-click the icon for the particular window.

Or, choose the particular window from the Window — menu.

Or, choose the Window — More Windows... (ALT, W, M) command,
select the window to be opened from the dialog box, and choose the
OK button.

56

Chapter 3: Using the Debugger Interface
Working with Debugger Windows

To copy window contents to the list file

From the window’s control menu, choose the Copy — Windows
(ALT, -, P, W) command.

The information shown in the window is copied to the destination list file.

You can change the name of the destination list file by choosing the
Copy - Destination... (ALT, -, P, D) command from the window’s control
menu or by choosing the File » Copy Destination... (ALT, F, P) command.

To change the list file destination

Choose the File - Copy Destination... (ALT, F, P) command, and
select the name of the new destination list file.

Or, from the window’s control menu, choose the
Copy - Destination... (ALT, -, P, D) command, and select the name of
the new destination list file.

Information copied from windows will be copied to the selected destination
file until the destination list file name is changed again.

List file names have the ".LST" extension.

57

Chapter 3: Using the Debugger Interface
Working with Debugger Windows

To change the debugger window fonts

Choose the Settings — Font (ALT, S, F) command.

Select the font, font style, and size. Notice that the Sample box
previews the selected font.

Choose the OK button.

To set tabstops in the Source window

Choose the Settings — Tabstops (ALT, S, T) command.

Enter the tab width. This width is also used for source lines in the
trace window.

Choose the OK button.

The tab width must be between 1 and 20.

58

Chapter 3: Using the Debugger Interface
Working with Debugger Windows

To set colors in the Source window

1 Exit the RTC interface and find the initialization file (B3624.INI). It
should be in the directory where you installed the RTC product
(C\HP\RTC\, by default).

2 Edit the initialization file to find the "color" entry. You will see:

[Color]
ColorMode=ON|OFF
ColorPc=<color>
ColorSource=<color>
ColorMne=<color>

Where: <color> may be any of the following: RED, GREEN, BLUE, YELLOW,
PINK, PURPLE, AQUA, ORANGE, SLATE, or WHITE.

¢ The <color> entry may be in upper-case or lower-case letters.

« When ColorMode=0ON, these are the default colors:

¢ (ColorPC=GREEN
e (ColorSource=RED
e (ColorMne=BLUE

e The default color is black if an option is given a null value.

« The options under [Color] set colors as follows:

e ColorPc sets the color of the line of the current program counter.
e (ColorSource sets the color of the line numbers of source lines.
e (ColorMne sets the color of the address of all mnemonic lines.

Note If you have set ColorMode=0ON while using a monochrome display, you may
see no line numbers in the Source window. Items that will be presented in
color on a color display may not be seen at all on a monochrome display.

59

Chapter 3: Using the Debugger Interface

Using Command Files

Using Command Files

This section shows you how:

e To create a command file

e To execute a command file

* To create buttons that execute command files

A command file is an ASCII text file containing one or more debugger
commands. All the commands are written in a simple format, which makes
editing easy. The debugger commands used in command files are the same
as those used with break macros. For details about the format of each
debugger command, refer to the "Reference" information.

To create a command file

Choose the File - Command Log - Log File Name... (ALT, F, C, N)
command.

Enter the command file name.

Choose the File - Command Log — Logging ON (ALT, F, C, O)
command.

Choose the commands to be stored in the command file.

Once the commands have been completed, choose the
File -~ Command Log - Logging OFF (ALT, F, C, F) command.

Command files can also be created by saving the emulator configuration.

60

Chapter 3: Using the Debugger Interface
Using Command Files

To execute a command file

1 Choose the File - Run Cmd File... (ALT, F, R) command.

2 Select the command file to be executed.

3 Choose the Execute button.

You can execute command files that have been created by logging commands.

Also, emulator configurations can be restored by executing the associated
command file.

You can execute a command file when starting the debugger by using the
"-C<command_file>" command line option.

Example Command File Being Executed

= Run Command File

File Mame: |[Z:\HP\HT[Z\M33)<\DEHI]\SAHPLE\sampdemD_ |

Directory: c-vhphuteAm33xidemotzample

log.cmd sl g
sampdemo_cmd senute

sampemul_cmd

Browse___ g

| [_Hew |

arameters:

Executing:

FILE COMFIGURATION LOAD sampemul.cmd

61

Chapter 3: Using the Debugger Interface

Using Command Files

To create buttons that execute command files

Activate the Button window by clicking on the Button window icon
or by choosing the Window — Button command.

From the Button window’s control menu, choose the Edit... (ALT, -,
E) command.

In the Command text box, enter "FILE COMMAND", a space, and the
name of the command file to be executed.

Enter the button label in the Name text box.
Choose the Add button.
Choose the Close button.

Once a button has been added, you can click on it to run the command file.

You can also set up buttons to execute other debugger commands.

62

Plugging the Emulator into Target
Systems

63

Plugging the Emulator into Target Systems

This chapter shows you how:

e Step 1. Turn OFF power

e Step 2. Unplug the probe from the demo target system
e Step 3. Plug the probe into the target system

e Step 4. Turn ON power

If you are using an HP E3490A Software Probe instead of an emulator, refer
to the HP E3490A Software Probe User’s Guide for information about
plugging into your target system.

64

Chapter 4: Plugging the Emulator into Target Systems
Step 1. Turn OFF power

Step 1. Turn OFF power

CAUTION Possible Damage to the Emulator. Make sure target system power is OFF
and make sure HP 64700 power is OFF before removing or installing the
emulator probe into the target system. Failure to turn off power will result in
damage to circuitry in the emulator probe.

Do not turn HP 64700 power OFF while the emulator is plugged into a target
system whose power is ON.

1 If the emulator is currently plugged into a different target system,
turn that target system’s power OFF.

2 Turn emulator power OFF.

Step 2. Unplug the probe from the demo target system

 If the emulator is currently connected to a different target system,
unplug the emulator probe; otherwise, disconnect the emulator probe
from the demo target system.

65

Chapter 4: Plugging the Emulator into Target Systems
Step 3. Plug the probe into the target system

Step 3. Plug the probe into the target system

 Install the emulator probe into the target system socket. Make sure
that pin Al of the connector aligns with pin Al of the socket.
Damage to the emulator will result if the probe is incorrectly
installed.

Emulator

Probe Fin A

PGA Socket

Demo Board
64782E06

Pin protectors are available for special target system probing needs:
¢ Pin protector, HP Part Number 5181-0206.

This accessory has an electrical impact on your target system. In addition to
delays, it can cause problems with signal quality. Only use this accessory as a
last resort.

Always make sure that pin 1 and other pins of the pin protectors and
connectors are properly aligned; otherwise, damage to the emulator will
result.

66

Chapter 4: Plugging the Emulator into Target Systems
Step 4. Turn ON power

Step 4. Turn ON power

1 Turn ON emulator power.

2 Turn ON target system power. .

67

68

Configuring the Emulator

69

Configuring the Emulator

This chapter contains information about configuring the emulator.

Setting the Hardware Options

Mapping Memory (Emulator Only)

Selecting the Type of Monitor (Emulator Only)
Using the EMSIM Registers

Verifying the Emulator Configuration

Setting Up the BNC Port (Emulator Only)
Saving and Loading Configurations

Setting the Real-Time Options

70

Chapter 5: Configuring the Emulator
Setting the Hardware Options

Setting the Hardware Options

Setting the Hardware Options for an Emulator

Setting the Hardware Options for an HP E3490A Software Probe

71

Chapter 5: Configuring the Emulator
Setting the Hardware Options for an Emulator

Setting the Hardware Options for an Emulator

This section shows you how:

* To select the emulator mode

* To select the source of the emulation clock

e To enable or disable use of the tag memory

* To enable or disable target BERR on emul mem accesses

e To enable or disable target DSACK on emul mem accesses
e To specify the internal RAM to use for show cycles

e To specify the tristate voltage value

* To enable or disable break on writes to ROM

* To set up the reset mode configuration

72

Chapter 5: Configuring the Emulator
Setting the Hardware Options for an Emulator

To select the emulator mode

1 Choose the Settings — Emulator Config — Hardware... (ALT, S, E, H)
command.

2 Select ACT or Normal for the "Emulation Mode" option.
3 Choose the OK button to exit the Hardware Configuration dialog box.

In the ACT mode:
¢ Emulation memory is not available.
e The external clock source may be either a crystal or oscillator.

¢ The emulation microprocessor must either be in the target system or
plugged into the emulator probe.

In the Normal mode:
¢ The emulator provides 512 Kbytes of emulation memory.
e The external clock source must be an oscillator.

¢ The emulation microprocessor is on the emulation control board.

73

Chapter 5: Configuring the Emulator
Setting the Hardware Options for an Emulator

To select the source of the emulation clock

Choose the Settings - Emulator Config — Hardware... (ALT, S, E, H)
command.

If you selected Emulation Mode Normal, then select Internal clock
when the target system provides a low frequency crystal and uses the
6833x clock synthesizer; the internal crystal is 32.768 kHz. Select
External if the target system provides a signal at the system clock
frequency to the 6833x.

If you selected Emulation Mode ACT, you must use an external target
system clock.

Choose the OK button to exit the Hardware Configuration dialog box.

The external target system clock must be an oscillator unless you are using
the emulator in the ACT mode, in which case, the external target system
clock may be either an oscillator or a crystal.

74

Chapter 5: Configuring the Emulator
Setting the Hardware Options for an Emulator

To enable or disable use of the tag memory

1 Choose the Settings — Emulator Config — Hardware... (ALT, S, E, H)
command.

2 Select Enable or Disable for the "Memory Tag" option.
3 Choose the OK button to exit the Hardware Configuration dialog box.

When enabled, the byte-identification tag bits will be sent to the analyzer
anytime execution is within emulation memory.

When disabled, no tag bits will be sent along with captured states.

For each byte of emulation memory, there is an associated bit of emulation
memory that can be used as tag memory. When a state is captured by the
analyzer, additional tag-memory bits are sent along with it. One bit is sent for
each valid byte that is transferred. You can use the tag memory bits for status
qualification in analyzer specifications.

Tag memory applies only to accesses within emulation memory.

To enable or disable target BERR on emulation
memory accesses

1 Choose the Settings — Emulator Config -~ Hardware... (ALT, S, E, H)
command.

2 Select Enable or Disable for the "Target BERR on Emul Mem
Accesses" option.

3 Choose the OK button to exit the Hardware Configuration dialog box.

When enabled, the emulator will use the target /BERR signal on accesses to
emulation memory.

75

Chapter 5: Configuring the Emulator
Setting the Hardware Options for an Emulator

When disabled, internally generated /BERRs are always used on emulator
memory accesses.

The emulator always responds to the target /BERR signal on target system
mMemory accesses.

To enable or disable target DSACK on emul mem
accesses

Choose the Settings - Emulator Config — Hardware... (ALT, S, E, H)
command.

Select Enable or Disable for the "Target DSACK on Emul Mem
Accesses" option.

Choose the OK button to exit the Hardware Configuration dialog box.

When enabled, termination of emulation memory accesses will not occur until
the target system provides a DSACK.

When disabled, target system DSACKs will be ignored and emulation memory
accesses will be terminated with DSACKs generated by the emulator.

This selection is only available if you selected Emulation Mode Normal.

76

Chapter 5: Configuring the Emulator
Setting the Hardware Options for an Emulator

To specify the internal RAM to use for show cycles

1 Choose the Settings — Emulator Config — Hardware... (ALT, S, E, H)
command.

2 Select either rambar, sram, sram0, or sram1 for the "Internal RAM to
Use for Show Cycles" option.

3 Choose the OK button to exit the Hardware Configuration dialog box.

This option only applies to the HP 64782 emulator product.

This selection chooses the internal RAM that will be represented by the
addresses generated in the show cycles mode of the 6833x processor. The
show cycles mode is discussed in the Reference chapter. The answer you
give for this configuration question will depend on the processor you are
emulating,.

This question has no meaning for the 68331 because that processor has no
internal RAM. For the 68332 and 68334, the only choice is rambar because
they only have one internal RAM. The 68336 has two internal RAMs: rambar,
and sram. In the 68335, there are three internal RAMs: rambar, sram0, and
sraml. All processors that have internal RAM have a rambar. For ease of
configuration, invalid choices are grayed out for the processor you are
emulating.

77

Chapter 5: Configuring the Emulator
Setting the Hardware Options for an Emulator

To specify the tristate voltage value

1 Choose the Settings — Emulator Config — Hardware... (ALT, S, E, H)

command.

Select auto, or enter a specific voltage value for the "Tri-State Voltage
Value" option.

Choose the OK button to exit the Hardware Configuration dialog box.

This option only applies to the HP 64782 emulator product.

The voltage you specify will be applied to the tristate input of the target
processor during tristate conditions. Normally you can specify "auto" and
operation will be correct. If you are working with a target processor that
requires a lower voltage, you can specify it here.

To enable or disable break on writes to ROM

Choose the Settings - Emulator Config - Hardware... (ALT, S, E, H)
command.

Select Enable or Disable for the "Break on write to ROM" option.
Choose the OK button to exit the Hardware Configuration dialog box.

When enabled, a running program breaks into the monitor when it writes to a
location mapped as ROM.

When disabled, program writes to locations mapped as ROM do not cause
breaks into the monitor.

78

Chapter 5: Configuring the Emulator
Setting the Hardware Options for an Emulator

To set up the reset mode configuration

Choose the Settings - Emulator Config — Hardware... (ALT, S, E, H)
command.

Select Emulator or Target for the "Source for Reset Mode Value"
option.

If you selected Emulator, enter "auto" or the desired value beside
Emulator Driven Reset Mode Value.

If you selected Target, enter "OH" or the value to be compared with
the value externally driven for additional error checking.

Choose the OK button to exit the Hardware Configuration dialog box.

When Emulator is the selected source, auto causes the reset mode value to
be generated by the emulator; it will set the SIM to be compatible with the
EMSIM register set. Any other value will be driven onto the data bus to
configure the chip select and port pins.

When Target is the selected source, OH will cause the emulator to perform no
error checking of the externally driven value. Any other value will be
compared with the value externally driven for additional error checking,.

79

Chapter 5: Configuring the Emulator
Setting the Hardware Options for an HP E3490A Software Probe

Setting the Hardware Options for an
HP E3490A Software Probe

The HP E3490A Software Probe supports only those features that are
common on all the processors in the CPU32 family. Additional processor
specific features and capabilities are supported through the use of user
configurable parameters and through different interfaces. The parameters
may be customized to suit specific target systems and saved in configuration
files for future use.

This section shows you how:
e To set the processor type
¢ To enable or disable breaks on memory usage violations

After you have configured these values and you have set the initial values for
the EMSIM registers, you need to "apply" the configuration by selecting
Execution - Reset then Execution — Break. When the break occurs the
following "configuration process" occurs:

e The target processor enters the BDM monitor.
¢ The BDM communication speed is set to the default clock rate.
e The emulation copies of the SIM registers are loaded into the target SIM.

¢ The BDM communication speed is set to the rate based on the value
configured as the target processor clock rate.

80

Chapter 5: Configuring the Emulator
Setting the Hardware Options for an HP E3490A Software Probe

To specify the processor type

1 Choose the Settings — Emulator Config — Hardware... (ALT, S, E, H)
command.

2 Select the Processor Type from the list of options.
3 Click on the OK button.

If you are using a processor in your target that is not listed as a choice in the
dialog box, the HP E3490A Software Probe can provide direct access to all
the registers defined in the CPU32 architecture programming model but will
not have direct access to memory mapped registers in the processor’s
internal modules.

If you are using a processor that is listed as a choice in the dialog box, the
HP E3490A Software Probe will have knowledge of on-chip peripheral
registers and SIM registers and will allow display and modification from the
user interface. For example, when 68332 is selected as the processor type,
the interface will support direct access to the SIM, the QSM, the TPU, and
the TPURAM registers.

The supported processor types are listed in the configuration dialog box.

The HP E3490A Software Probe does not have explicit support for all CPU32
processors. When using a member of the CPU32 family that is not explicitly
supported it may be possible to select a processor that is a formal subset of
the unsupported processor. This will provide direct access to all of the
internal memory mapped registers that are common. Since the registers in
the internal modules are memory mapped, registers in unsupported CPU32
processors are also accessible through the memory commands. For example,
on a 68332, SIM registers can be accessed at memory locations 7TFFA00 to
TFFATF or FFFAOQO to FFFATF.

Once you have set the processor type, you cannot change it unless you exit
and restart the debugger.

The default value for the processor configuration item is 683xx. With this
value, the HP E3490A Software Probe can provide direct access to all the
registers defined in the CPU32 architecture programming model but will not

81

Chapter 5: Configuring the Emulator
Setting the Hardware Options for an HP E3490A Software Probe

have direct access to memory mapped registers in the processor’s internal
modules.

If a processor is specified, HP E3490A Software Probe will have knowledge of
on-chip peripheral registers and SIM registers and will allow display and
modification from the user interface. For example, when 68332 is selected as
the processor type, the interface will support direct access to the SIM, the
QSM, the TPU, and the TPURAM registers.

The initially supported processor types are 6833x, 68331, 68332, 68333,
68334, 68335, 68336, and 68337.

The HP E3490A Software Probe does not have explicit support for all CPU32
processors. When using a member of the CPU32 family that is not explicitly
supported it may be possible to select a processor that is a formal subset of
the unsupported processor. This will provide direct access to all of the
internal memory mapped registers that are common. Since the registers in
the internal modules are memory mapped, registers in unsupported CPU32
processors are also accessible through the memory commands. For example,
on a 68332, SIM registers can be accessed at memory locations 7TFFA00 to
TFFATF or FFFAOQO to FFFATF.

To specify the target processor clock speed

Choose the Settings - Emulator Config - Hardware... (ALT, S, E, H)
command.

Select a Processor Clock Rate from the list of options.
Click on the OK button.

The HP E3490A Software Probe needs to be configured to communicate at a
rate which is compatible with your target processor clock rate.

If your target processor runs at less than 8 MHz after power-up, you will also
need to set a configuration switch on the HP E3490A Software Probe.

The processor clock rate configuration parameter is used to specify the
maximum rate that the HP E3490A Software Probe can communicate with

82

Chapter 5: Configuring the Emulator
Setting the Hardware Options for an HP E3490A Software Probe

the target processor through the BDM port. This maximum communication
rate is based upon the target processor type and the target processor clock
rate. The maximum communication rate directly impacts the performance of
downloading files through the HP E3490A Software Probe and the intrusion
time when polling. Running at a rate slower than the maximum does not
prevent correct operation.

The default value for the processor clock rate configuration parameter is
determined by the setting of configuration switch S2. In the Normal
(CLOSED) position this parameter is set to "greater than or equal to 8 MHz".
In the OPEN position this parameter is set to "greater than or equal to 131
kHz".

Most target systems run with a Processor Clock Rate of 8 MHz or above and
so will function properly using the default value. For correct operation in
target systems that run slower than 8 MHz, the default clock rate must be set
to "greater than or equal to 131 kHz" by setting switch S2 to OPEN.

The best performance for the HP E3490A Software Probe usually requires
changing the communication rate from the default value. Set the "Processor
Clock Rate" parameter to the highest rate that is equal to or less than the
target running clock rate. If using the internal clock synthesizer, set the
EMSYNCR (EMulator copy of the SYNthesizer Control Register, SYNCR) to
the same value as set by the initialization code.

See Also
Using the EMSIM Registers

"Detailed information about processor clock rates" in the HP £3490A
Software Probe User’s Guide.

83

Chapter 5: Configuring the Emulator
Mapping Memory (Emulator Only)

Mapping Memory (Emulator Only)

This section shows you how:
¢ To map memory

By default, the emulator assumes all memory addresses are in RAM space in
your target system. If you wish to load some of your target program in
emulation memory, or identify some of your memory addresses as ROM or
Guarded, enter those specifications in the memory map.

To map memory

Choose the Settings - Emulator Config - Memory Map... (ALT, S, E,
M) command.

Specify the starting address in the Start text box.
Specify the end address in the End text box.

If necessary, select the function code from the Func Code drop-down
list.

Select the memory type in the Type option box.

If you are using the HP 64782 Emulator, you can choose to interlock
emulation memory to target system cycle termination signals so that
bus cycles in emulation memory will only be terminated by /DSACK
signals returned from the target system. Otherwise, emulation
memory accesses will be terminated by emulator-generated /DSACK
signals. You can also specify that emulation memory act as 8-bit wide
memory instead of 16-bit memory (the default size of emulation
memory).

84

10

Chapter 5: Configuring the Emulator
Mapping Memory (Emulator Only)

If you are using the HP 64749 Emulator, you can choose to overlay
two or more ranges of addresses on a single range of emulation
memory hardware. If you wish to overlay one range of addresses
onto another range of addresses within emulation memory, select the
appropriate block. For example, to overlay a range of addresses on
the first address range in the Current Map, select blk1.

Choose the Apply button.
Repeat steps 2 through 8 for each range to be mapped.
Choose the Close button to exit the Memory Map dialog box.

You should map all memory ranges used by your programs before loading
programs into memory, unless those ranges are in RAM hardware within your
target system; the default, unless otherwise specified.

Up to 8 ranges of memory can be mapped in an HP 64782 Emulator product,
and up to 12 memory ranges can be mapped in the HP 64749 Emulator
product. The resolution of mapped ranges is 256 bytes (that is, the memory
ranges must begin on 256-byte boundaries and must be at least 256 bytes in
length).

The emulator probe provides two slots for emulation memory modules. The
amount of emulation memory that can be mapped depends on the number
and size of memory modules installed in those slots.

It is only necessary to specify function codes when mapping overlapping
address ranges for different memory spaces. When mapping overlapping
ranges, you can only select function codes that have not already been
selected for previously mapped ranges.

If you are using the HP 64749 Emulator, note the difference between memory
overlap and memory overlay. Memory overlap is when you use the same
address to access different hardware locations (for example, one in user
space and the other in supervisor space). Memory overlay means the same
hardware memory will respond to two or more addresses. For example, a
location in emulation memory might be accessed at address 1000 and also at
address 26000.

85

Chapter 5: Configuring the Emulator
Mapping Memory (Emulator Only)

You can specify one of the following memory types for each map term:

eram Specifies "emulation RAM".
erom Specifies "emulation ROM".
tram Specifies "target RAM".

trom Specifies "target ROM".
guarded Specifies "guarded memory".

When breaks on writes to ROM are enabled in the emulator configuration,
any access from the user program to any memory area mapped as ROM stops
emulator execution of your target program and (breaks) begins execution in
the emulation monitor program.

For non-mapped memory areas, select any of the memory types in the
Default option box.

To delete a map term, first select it in the Current Map list box; then, choose
the Delete button.

86

Example

To map addresses 6000h through Offffh as an emulation RAM having "X"
function code, specify the mapping term as shown below, if using the HP

64782 Emulator:

Chapter 5: Configuring the Emulator
Mapping Memory (Emulator Only)

" Define Map Term

Start: 6000

End:

Func Code:

Ivpe
@ eram > erom O} guarded
O tram O trom

~ Emulation Memory Attributes
#® none

) interlock with target /DSACK

) emulate 8 bit wide memory

) emulate 8 bit mem locked to target

Specify the mapping term as shown below, if using the HP 64749 Emulator:

[Define Map Term

Start: 6000

End:

Func Code:

[Type
#® eram 3 erom } guarded
O tram O trom

" Emulation Memory Overlay

@ none ' blk1 C blk2 O bk 3
O blk4 O blk5 O blk B

Choose the Apply button to register the current map term.

Then, choose the Close button to quit mapping.

87

Chapter 5: Configuring the Emulator
Selecting the Type of Monitor (Emulator Only)

Selecting the Type of Monitor (Emulator Only)

This section shows you how:

e To select the background monitor

¢ To select the foreground monitor in the HP 64782 Emulator

e To use a custom foreground monitor in the HP 64782 Emulator

The monitor is the interface between the emulation system controller (which
accepts and executes emulation commands) and the target system. The
monitor uses the emulation microprocessor because that is the only way to
access registers and target system memory.

When the emulation system controller recognizes that a command requires
the monitor, it writes a command code to a communications area and
"breaks" emulator execution into the monitor. The monitor reads this
command (and any associated parameters), makes the appropriate accesses,
places the values in the communication area, and returns emulator execution
to its previous state.

Background Monitor

When a background monitor is selected, the Background Debug Mode (BDM)
of the 6833x processor is used. The BKPT line is asserted to enter the
monitor.

Interrupts from the target system are disabled during background monitor
execution. If your programs have strict real-time requirements for servicing
target system interrupts, you must use a foreground monitor program.

Foreground Monitor

The foreground monitor is an assembly language program that is executed by
the 6833x emulation microprocessor in its normal operating mode.

When a foreground monitor is selected, the foreground monitor or
downloaded custom monitor is loaded into emulation memory and consumes
a 4-Kbyte block of 6833x address range.

88

Chapter 5: Configuring the Emulator
Selecting the Type of Monitor (Emulator Only)

A foreground monitor has the following advantages and disadvantages:

Advantages

¢ The foreground monitor executes as a part of the user program, and
target system interrupts can be enabled during monitor program
execution for applications that have strict real-time processing
requirements.

¢ The foreground monitor can be customized.

Disadvantages

¢ The foreground monitor occupies processor memory space.

To select the background monitor

Choose the Settings - Emulator Config — Monitor... (ALT, S, E, O)
command.

Select the Background option.
Choose the OK button.

When Background is selected, the Background Debug Mode (BDM) of the
6833x processor is used. The BKPT line is asserted to enter the monitor.

During background monitor operation, there will be no bus cycle activity
except for memory reads and writes that result from memory display or
modify commands.

Target system interrupts are blocked during background monitor operation.

89

Chapter 5: Configuring the Emulator
Selecting the Type of Monitor (Emulator Only)

To select the foreground monitor in the HP 64782
Emulator

Choose the Settings - Emulator Config — Monitor... (ALT, S, E, O)
command.

Select the Foreground option.

Enter the base address of the foreground monitor in the Monitor
Address text box. The address must reside on a 4-Kbyte boundary (in
other words, an address ending in 000H) and must be specified in
hexadecimal. Four Kbytes of emulation memory must be mapped at
this address.

If you want the foreground monitor to run at a lowered interrupt
priority level in order to allow critical target system interrupts to be
processed, select the desired interrupt priority level. When it is safe
to lower the interrupt level, the foreground monitor will set the
interrupt priority mask to either the level entered or the level in
effect before monitor entry, whichever is greater.

Choose the OK button.

The foreground monitor, resident in emulator firmware, is automatically
loaded into the specified 4-Kbyte block of emulation memory every time the
emulator breaks into the monitor state from the reset state.

90

Chapter 5: Configuring the Emulator
Selecting the Type of Monitor (Emulator Only)

To use a custom foreground monitor in the HP 64782
Emulator

Edit the foreground monitor program source.

Assemble and link the foreground monitor program.

Choose the Settings - Emulator Config — Monitor... (ALT, S, E, O)
command.

Select the User Foreground option.

Enter the base address of the foreground monitor in the Monitor
Address text box. The address must reside on a 4-Kbyte boundary (in
other words, an address ending in 000H) and must be specified in
hexadecimal. Four Kbytes of emulation memory must be mapped at
this address.

If you want the foreground monitor to run at a lowered interrupt
priority level in order to allow critical target system interrupts to be
processed, select the desired interrupt priority level. When it is safe
to lower the interrupt level, the foreground monitor will set the
interrupt priority mask to either the level entered or the level in
effect before monitor entry, whichever is greater.

Enter the name of the foreground monitor object file in the Monitor
Name text box.

Choose the OK button.

When customizing the foreground monitor, you must maintain the basic
communication protocol between the monitor program and the emulation
system controller.

An example foreground monitor is provided with the debugger in the
\HP\RTC\M33X\FFGMON directory. The file is named FGMON.S.

91

Chapter 5: Configuring the Emulator
Selecting the Type of Monitor (Emulator Only)

The custom foreground monitor is saved in the emulator (until the monitor
type is changed) and reloaded into the specified 4-Kbyte block of emulation
memory every time the emulator breaks into the monitor state from the reset
state.

92

Chapter 5: Configuring the Emulator
Using the EMSIM Registers

Using the EMSIM Registers

This section shows you how:

e To view the SIM register differences

¢ To synchronize to the 6833x SIM registers

¢ To synchronize to the EMSIM registers

¢ To reset the EMSIM registers to processor defaults

The 6833x processor contains a System Integration Module (SIM) which has
the external bus interface, 8 chip selects, and other circuitry to reduce
external logic in a typical microprocessor system. The SIM can be
programmed or configured in a variety of ways to suit the need of various
systems.

The EMSIM registers behave differently, depending on whether you are using
an emulator or an HP E3490A Software Probe.

EMSIM Registers in the Emulator

The 6833x processor contains a System Integration Module (SIM) which has
the external bus interface, 12 chip selects, and other circuitry to reduce
external logic in a typical microprocessor system. The SIM can be
programmed or configured in a variety of ways to suit the need of various
systems.

The 6833x emulator contains circuitry that accommodates the flexibility of
the SIM and maintains consistent emulation features.

The 6833x SIM is configured through the registers in the SIM register class;
these registers control how the 6833x uses external signal lines to access
memory.

The emulator is configured through the registers in the EMSIM register class.
These registers control how the emulator interprets the signals from the
6833x when accessing emulation memory and passing information to the
analysis trace.

Normally, the SIM and EMSIM registers should be programmed with the same
values so they will be working together.

93

Chapter 5: Configuring the Emulator
Using the EMSIM Registers

One of the primary functions of the EMSIM registers and associated logic is
to provide ADDR19-23 to the memory mapper and analyzer, so they will have
the complete 24-bit address bus. Providing upper-address bits is easy if Port
C of the 6833x is programmed as address lines; however, if the 6833x is
programmed as chip selects, the upper address lines are not available outside
of the 6833x (the 6833x is programmed as chip selects following reset). The
chip selects, though, have access to the full 24-bit address inside the 6833x.
You can therefore locate memory using a chip select at an address that is not
possible to decode externally. The emulator can use information in the
programming of the chip selects to recreate the upper address lines. This
provides a correct address in the analysis trace so that symbolic debugging is
possible.

Normally, the emulator is programmed through the EMSIM registers to match
the programming of the 6833x SIM as it will exist after all of the boot-up
configuration is complete. This programming can be done before the boot-up
code is run. In fact, the programming of the EMSIM registers is part of the
configuration, and will be loaded along with the memory map and other
configuration items when a configuration file is loaded.

The default programming of the EMSIM registers matches the reset values of
the 6833x SIM (refer to the Motorola MC6833x User’s Manual for specific
values).

Note that the emulator is programmed solely from the EMSIM register set
and is therefore static with respect to the application program. No attempt is
made to update the programming of the emulator by tracking instructions
that will program the 6833x SIM.

EMSIM Registers in the HP E3490A Software Probe

Internal Registers

The CPUS32 family of processors provides a variety of internal peripheral and
memory modules that are directly connected to the CPU32 core through an
internal bus. These modules are configured through memory mapped register
banks. The base address of the register banks as well as the base address of
internal memory modules are established through Module Configuration
Registers (e.g. MCR) and Base Address Registers (e.g. RAMBAR or MBAR).
A common module throughout the family is a System Integration Module
(SIM) which controls such things as clock speed and external chip selects.

94

Chapter 5: Configuring the Emulator
Using the EMSIM Registers

How Internal Register Values are Set

These registers are typically initialized by the CPU32 executing the reset
initialization code. During development, this code may not be available or
may not exist on the target system. To aid in development, the most
important of these registers can be set directly by the HP E3490A Software
Probe. This enables such functions as clock speed, chip selects, and location
of internal memory to be established prior to executing any user code. Once
these registers are set, resources in the target system can be accessed in the
same manner as the processor would access them after executing the reset
initialization code. Activities such as downloading code into the target
system can now be performed through the HP E3490A Software Probe.

The emulator copy is identified by the prefix "EM" on the register name (e.g.
EMSYNCR is the emulator copy of the SYNCR register) and are referred to as
the EMSIM. The EMSIM registers are transferred to the processor registers
when the target processor is reset while it is running in the BDM monitor.

The names and values of the EMSIM registers are displayed in the Emulator
SIM Registers window.

Based on the previous discussion, it should be clear that the EMSIM values
specified during configuration need to match the intended programming and
of use of your CPU32 target system. You need to carefully decide how the
processor will be configured and the corresponding SIM values.

Methods for Configuring EMSIM Register Values
There are two methods you can use to configure EMSIM register values:
e Copy values from the SIMs into the EMSIM registers.

e Manually define each of the EMSIM values using the debugger interface.

Note The HP E3490A Software Probe supports configuration of the internal
registers in the System Integration Module (SIM) and other important
Module Configuration Registers and Base Address Registers. To simplify the
interface, all configurable registers will be referred to as SIM registers even if
they are technically part of another module.

Note Some registers can only be written once after processor reset.

95

Chapter 5: Configuring the Emulator
Using the EMSIM Registers

If you set the EMSIM values, then reset and break, the EMSIM values will be
written to the SIM registers. If your initialization code then attempts to write
to one of the "write once after reset" registers, the writes will fail. In this case,

you must use the Execution - Run...From Reset command to correctly
execute the initialization code.

See Also

"Internal Representation of SIM and EMSIM Registers" in the HP £3490A
Software Probe User’s Guide.

96

Chapter 5: Configuring the Emulator
Using the EMSIM Registers

To view the SIM register differences

Choose the Settings - Emulator Config - Information... (ALT, S, E, T)
command.

Select "Show differences for M6833x and emsim registers" from the
Synchronize SIM registers list.

Choose the Apply/Results button to display the differences in the .
viewing area.

To synchronize to the 6833x SIM registers

Choose the Settings - Emulator Config - Information... (ALT, S, E, T)
command.

Select "Synchronize from ’33x sim regs, copy to emsim regs" from the
Synchronize SIM registers list.

Choose the Apply/Results button.

This is useful if initialization code that configures the 6833x SIM exists, but
you don’t know what its values are. In this case, you can use the default
configuration, run from reset to execute the initialization code, and
synchronize the EMSIM registers to match the 6833x SIM.

97

Chapter 5: Configuring the Emulator
Using the EMSIM Registers

To synchronize to the EMSIM registers

1 Choose the Settings — Emulator Config - Information... (ALT, S, E, I)

command.

Select "Synchronize from emsim regs, copy to '33x registers" from the
Synchronize SIM registers list.

Choose the Apply/Results button.

The emsim register values are copied to the 6833x registers automatically
each time a break to the monitor from emulation reset occurs. Copying the
emsim registers ensures that the 6833x is prepared to properly access
memory when a program is downloaded to the emulator.

Note (for HP E3490A Software Probe only) Some registers can only be
written once after processor reset. If you set the EMSIM values, then reset
and break, the EMSIM values will be written to the SIM registers. If your
initialization code then attempts to write to one of the "write once after reset"
registers, the writes will fail. In this case, you must use the

Execution —» Run...From Reset command to correctly execute the
initialization code.

To reset the EMSIM registers to processor defaults

Choose the Settings - Emulator Config - Information... (ALT, S, E, T)
command.

Select "Default the emsim register set" from the Synchronize SIM
registers list.

Choose the Apply/Results button.

This resets the EMSIM registers to the processor’s default (power-up) values.

98

Chapter 5: Configuring the Emulator
Verifying the Emulator Configuration

Verifying the Emulator Configuration

This section shows you how:

e To check for configuration inconsistencies

e To display information about chip selects

e To display information about bus interface ports

¢ To display information about the memory map

¢ To display information about the reset mode configuration

e To display assembly code for setting up the SIM

To check for configuration inconsistencies

Choose the Settings - Emulator Config - Information... (ALT, S, E, T)
command.

Select "Check emulator configuration" from the Config and SIM
Programming Info. list.

Choose the Display Info. button to display the information in the
viewing area.

This command:

* Checks for inconsistencies between the reset mode configuration value
and the EMSIM registers.

* Compares corresponding values in the SIM and EMSIM register sets.

99

Chapter 5: Configuring the Emulator
Verifying the Emulator Configuration

To display information about chip selects

1 Choose the Settings — Emulator Config - Information... (ALT, S, E, I)
command.

2 Select "Chip selects in SIM (processor) register set" or "Chip selects
in EMSIM (emulator) register set" from the Config and SIM
Programming Info. list.

3 Choose the Display Info. button to display the information in the
viewing area.

The resulting display shows how the chip selects are assigned, the base
address of each, and other information from the option register.

To display information about bus interface ports

1 Choose the Settings - Emulator Config - Information... (ALT, S, E, I)
command.

2 Select "Bus interface ports in SIM (processor) register set" or "Bus
interface ports in EMSIM (emulator) register set" from the Config and
SIM Programming Info. list.

3 Choose the Display Info. button to display the information in the
viewing area.

The resulting display shows the pin assignments for Port C, Port E, and Port
F.

100

Chapter 5: Configuring the Emulator
Verifying the Emulator Configuration

To display information about the memory map

1 Choose the Settings — Emulator Config - Information... (ALT, S, E, I)
command.

2 Select "Memory map & correlation with CSs, IM reg blk & RAM" from
the Config and SIM Programming Info. list.

3 Choose the Display Info. button to display the information in the .
viewing area.

The resulting display shows detailed information about the memory map.

To display information about the reset mode
configuration

1 Choose the Settings — Emulator Config - Information... (ALT, S, E, I)
command.

2 Select "Reset mode configuration value and operation" from the
Config and SIM Programming Info. list.

3 Choose the Display Info. button to display the information in the
viewing area.

The resulting display shows the data bus size and global chip select memory
access size.

101

Chapter 5: Configuring the Emulator
Verifying the Emulator Configuration

To display assembly code for setting up the SIM

1 Choose the Settings — Emulator Config - Information... (ALT, S, E, I)
command.

2 Select "Assembly listing matching current EMSIM registers" from the
Config and SIM Programming Info. list.

3 Choose the Display Info. button to display the information in the
viewing area.

The resulting display shows the assembly language program that will initialize
the processor as defined by the current EMSIM register contents.

102

Chapter 5: Configuring the Emulator
Setting Up the BNC Port (Emulator Only)

Setting Up the BNC Port (Emulator Only)

This section shows you how:
e To output the trigger signal on the BNC port

e To receive an arm condition input on the BNC port

To output the trigger signal on the BNC port

Choose the Settings - BNC - Outputs Analyzer Trigger (ALT, S, B, O)
command.

The HP 64700 Series emulators have a BNC port for connection with external
devices such as logic analyzers or oscilloscopes.

This command enables the trigger signal from the internal analyzer to be fed
to external devices.

To receive an arm condition input on the BNC port

Choose the Settings - BNC - Input to Analyzer Arm (ALT, S, B, I)
command.

The HP 64700 Series emulators have a BNC port for connection with external
devices such as logic analyzers or oscilloscopes.

This command allows an external trigger signal to be used as an arm (enable)
condition for the internal analyzer.

103

Chapter 5: Configuring the Emulator
Saving and Loading Configurations

Saving and Loading Configurations

This section shows you how:
e To save the current emulator configuration

e Toload an emulator configuration

To save the current emulator configuration

Choose the File - Save Emulator Config... (ALT, F, V) command.

In the file selection dialog box, enter the name of the file to which the
emulator configuration will be saved.

Choose the OK button.

This command saves the current hardware, memory map, and monitor
settings to a command file.

Saved emulator configuration files can be loaded later by choosing the
File - Load Emulator Config... (ALT, F, E) command or by choosing the
File - Run Cmd File... (ALT, F, R) command.

See Also

"File - Save Emulator Config... (ALT, F, V)" in the "Menu Bar Commands"
section of the "Reference" information.

104

Chapter 5: Configuring the Emulator
Saving and Loading Configurations

To load an emulator configuration

1 Choose the File - Load Emulator Config... (ALT, F, E) command.

2 Select the name of the emulator configuration command file to load
from the file selection dialog box.

3 Choose the OK button.

This command lets you reload emulator configurations that have previously
been saved.

Emulator configurations consist of hardware, memory map, and monitor
settings.

105

Chapter 5: Configuring the Emulator
Setting the Real-Time Options

Setting the Real-Time Options

This section shows you how:
e To allow or deny monitor intrusion
e To turn polling ON or OFF

The monitor program is executed by the emulation microprocessor when
target system memory, memory-mapped I/O, and microprocessor registers
are displayed or edited. Also, periodic polling to update the Memory, I/O,
WatchPoint, and Register windows can cause monitor program execution.

This means that when the user program is running and monitor intrusion is
allowed, the user program can be temporarily interrupted in order to display
or edit target system memory, to display or edit registers, or to update
window contents.

If it is important that your program execute without these kinds of
interruptions, you should deny monitor intrusion. You can still display and
edit target system memory and microprocessor registers, but you must
specifically break emulator execution from the user program into the
monitor.

When monitor intrusion is denied, polling to update window contents is
automatically turned OFF.

When monitor intrusion is allowed, you can turn OFF polling for particular
windows to lessen the number of interruptions during user program
execution.

106

Chapter 5: Configuring the Emulator
Setting the Real-Time Options

To allow or deny monitor intrusion

To deny monitor intrusion, choose the RealTime — Monitor
Intrusion - Disallowed (ALT, R, T, D) command.

To allow monitor intrusion, choose the RealTime — Monitor
Intrusion - Allowed (ALT, R, T, A) command.

When you deny monitor intrusion, any debugger command that may interrupt
a running user program is prevented. This ensures the user program execute
in real time.

When you allow monitor intrusion, debugger commands that may temporarily
interrupt user program execution are allowed.

The current setting is shown by a check mark (V) next to the command.

To turn polling ON or OFF

To turn I/O window polling ON or OFF, choose the RealTime - I/O
Polling — ON (ALT, R, I, O) or RealTime - I/O Polling - OFF (ALT, R,
I, F) command.

To turn WatchPoint window polling ON or OFF, choose the
RealTime — Watchpoint Polling - ON (ALT, R, W, O) or
RealTime — Watchpoint Polling - OFF (ALT, R, W, F) command.

To turn Memory window polling ON or OFF, choose the
RealTime - Memory Polling - ON (ALT, R, M, O) or
RealTime —» Memory Polling - OFF (ALT, R, M, F) command.

When the user program is running and monitor intrusion is denied, polling is
automatically turned OFF.

107

Chapter 5: Configuring the Emulator
Setting the Real-Time Options

When the user program is running and monitor intrusion is allowed, you can
turn polling OFF to reduce the number of user program interrupts made in
order to update I/O, WatchPoint, and Memory window contents.

The current settings are shown by check marks (V) next to the command.

108

Debugging Programs

109

Debugging Programs

This chapter contains information on loading and debugging programs.

Loading and Displaying Programs

Displaying Symbol Information

Stepping, Running, and Stopping the Program

Using Breakpoints and Break Macros

Displaying and Editing Variables

Displaying and Editing Memory

Displaying and Editing I/O locations

Displaying and Editing Registers

Tracing Program Execution (Emulator Only)

Setting Up Custom Trace Specifications (Emulator Only)
Programming Target Flash Memory (HP E3490A Only)

110

Chapter 6: Debugging Programs
Loading and Displaying Programs

Loading and Displaying Programs

This section shows you how:

e Toload user programs

e To display source code only

e To display source code mixed with assembly instructions
¢ To display source files by their names

e To specify source file directories

e To search for function names in the source files

e To search for addresses in the source files

* To search for strings in the source files

To load user programs

Choose the File - Load Object... (ALT, F, L) command.

Select the function code of the memory space into which the
program should be loaded.

Select the file to be loaded.
Choose the Load button to load the program.

Programs are only loaded into the memory ranges mapped with the same
Sfunction code.

With this command, you can load any IEEE-695 object file created with any
of the Microtec or HP programming tools for 6833x (CPU32).

111

Chapter 6: Debugging Programs
Loading and Displaying Programs

To display source code only

1 Position the cursor on the starting line to be displayed.

2 From the Source window control menu, choose the Display — Source

Only (ALT, -, D, S) command.

The Source window may be toggled between the C source only display and
the C source/mnemonic mixed display.

The display starts from the line containing the cursor.

The source only display shows line numbers with the source code.

To display source code mixed with assembly
instructions

Position the cursor on the starting line to be displayed.

From the Source window control menu, choose the Display —» Mixed
Mode (ALT, -, D, M) command.

The mnemonic display contains the address, data, and disassembled
instruction mnemonics intermixed with the C source lines.

112

Chapter 6: Debugging Programs
Loading and Displaying Programs

Example C Source/Mnemonic Mode Display
Filenams : <:swhpehrtoh,oms S, deomsh sanel =Y sangel s - o
| #oois §

001003a8x 0x4=550000 LINEK.W As, 20000
#0019 init_datai) :
00100528 Oxdebaloza JSR (init_data. BJ)
001004282 Oxd=T1 LIOE
#ooz0 wiil=(l)
#onz1 {
ooz corvrart (Inessacs i4) ;
gol100442xc N2 520001 MMOVE.L sangpl &\ Iness sy 3.
O01004 ax Ox=d=lalisan JSF [convart, B
00100428x OMd4aT1 OF
#0023 messags id = nedbt nmessadgs (nessoggs
Oo100502x D=2 £5390001 MFOVE.L sanplas s Insssacrs id,
0100562 Oxd=bhanlod J5R [hawt messacys, PO
001005%a@x Omxd=T1 el
001005<cEx O0xS02f ADDD . L #2, A7

To display source files by their names

Make the Source window the active window, and choose the

Display — Select Source... (ALT, -, D, L) command from the Source

window’s control menu.

Select the desired file.

Choose the Select button.

Choose the Close button.

Note

The contents of assembly language source files cannot be displayed.

113

Chapter 6: Debugging Programs
Loading and Displaying Programs

To specify source file directories

Make the Source window the active window, and choose the
Display — Select Source... (ALT, -, D, L) command from the Source
window’s control menu.

Choose the Directory... button.

Enter the directory name in the Directory text box.

Choose the Add button.

Choose the Close button to close the Search Directories dialog box.
Choose the Close button to close the Select Source dialog box.

If the source files associated with the loaded object file are in different
directories than the object file, you must identify the directories in which the
source files can be found.

You can also specify them source file directories by setting the SRCPATH
environment variable in MS-DOS as follows:

set SRCPATH=<full path 1>;<full path 2>

114

Chapter 6: Debugging Programs
Loading and Displaying Programs

To search for function names in the source files

From the Source window’s control menu, choose the
Search - Function... (ALT, -, R, F) command.

Select the function to be searched.

Choose the Find button.

Choose the Close button.
Disassembled instructions are displayed in the Source window for assembly .

language source files.

To search for addresses in the source files

From the Source window’s control menu, choose the
Search — Address... (ALT, -, R, A) command.

Type or paste the address into the Address text box.
Choose the Find button.
Choose the Close button.

Disassembled instructions are displayed in the Source window for assembly
language source files.

115

Chapter 6: Debugging Programs
Loading and Displaying Programs

To search for strings in the source files

From the Source window’s control menu, choose the
Search - String... (ALT, -, R, S) command.

Type or paste the string into the String text box.
Select whether the search should be case sensitive.

Select whether the search should be down (forward) or up
(backward).

Choose the Find Next button. Repeat this step to search for the next
occurrence of the string.

Choose the Cancel button to close the dialog box.

116

Chapter 6: Debugging Programs
Displaying Symbol Information

Displaying Symbol Information

This section shows you how:

To display program module information

To display function information

To display external symbol information

To display local symbol information

To display global assembler symbol information
To display local assembler symbol information
To create a user-defined symbol

To display user-defined symbol information

To delete a user-defined symbol

To display the symbols containing the specified string

117

Chapter 6: Debugging Programs
Displaying Symbol Information

To display program module information

From the Symbol window’s control menu, choose the
Display - Modules (ALT, -, D, M) command.

Example

To display function information

From the Symbol window’s control menu, choose the
Display - Functions (ALT, -, D, F) command.

The name, type, and address range for the functions in the program are
displayed.

Function Information Display

Functicons

charng= status int ooiloil4s. .001015k
corrart int o0l00&a<. .001010f
comvart casae int 0010110, .0010147
init_Aata int 00100&6a . .00100ak
main int 001003& . .0010069
naxt messadgs int 001015«<. .001016fF

118

Chapter 6: Debugging Programs
Displaying Symbol Information

To display external symbol information

¢ From the Symbol window’s control menu, choose the
Display — Externals (ALT, -, D, E) command.

The name, type, and address of the global variables in the program are

displayed.
Example External Symbol Information Display

Extarnals

khange_status int () oo1014g
comnrart int (1) a0100ac
convart. case int () 0010110
init _data int [00i006a
main int [001003a
next messaoge int (1 001015¢
sanplahhdata =t_data [] o0l1066s
sanplahhdatal char [(*) ool10a5a6
zanplathdatal char [(*) 001065a
sanplat hInessags 14 int 0010664
sanplahy sanple war int a010660

119

Chapter 6: Debugging Programs
Displaying Symbol Information

To display local symbol information

1 From the Symbol window’s control menu, choose the
Display - Locals... (ALT, -, D, L) command.

2 Type or paste the function for which the local variable information is
to displayed.

3 Choose the OK button.

The name, type, and offset from the stack frame of the local variables in the
selected function are displayed.

Example Local Symbol Information Display

Locals in conwvert cassa

Hat s=t_data [*) Qoo0oos
TS <har [+ 46

120

Chapter 6: Debugging Programs
Displaying Symbol Information

To display global assembler symbol information

From the Symbol window’s control menu, choose the Display — Asm
Globals (ALT, -, D, G) command.

The name and address for the global assembler symbols in the program are
displayed.

To display local assembler symbol information .

From the Symbol window’s control menu, choose the Display — Asm
Locals... (ALT, -, D, A) command.

Type or paste the module for which the local variable information is
displayed.

Choose the OK button.

The name and address for the local assembler variables in the selected
module are displayed.

121

Chapter 6: Debugging Programs
Displaying Symbol Information

Example

To create a user-defined symbol

From the Symbol window’s control menu, choose the User
defined - Add... (ALT, -, U, A) command.

Type the symbol name in the Symbol Name text box.
Type the address in the Address text box.
Choose the OK button.

User-defined symbols, just as standard symbols, can be used as address
values when entering commands.

To add the user-defined symbol "jmp_start":

= User Defined Symbol Add

Symbol Hame:

|imp_stalt |
Address:

|EaBi |

Cancel §

122

Chapter 6: Debugging Programs
Displaying Symbol Information

To display user-defined symbol information

* From the Symbol window’s control menu, choose the Display — User
defined (ALT, -, D, U) command.

The command displays the name and address for the user-defined symbols.

Example User-Defined Symbol Information Display

User defined symbols
jog_start ao0o&eas

To delete a user-defined symbol

1 From the Symbol window’s control menu, choose the Display — User
defined (ALT, -, D, U) command to display the user-defined symbols.

2 Select the user-defined symbol to be deleted.

3 From the Symbol window’s control menu, choose the User
defined - Delete (ALT, -, U, D) command.

123

Chapter 6: Debugging Programs
Displaying Symbol Information

To display the symbols containing the specified string

1 From the Symbol window’s control menu, choose the
FindString - String... (ALT, -, F, S) command.

2 Type or paste the string in the String text box. The search will be
case-sensitive.

3 Choose the OK button.

To restore the original nonselective display, redisplay the symbolic
information.

124

Chapter 6: Debugging Programs
Stepping, Running, and Stopping the Program

Stepping, Running, and Stopping the Program

This section shows you how:

e To step a single line or instruction

e To step over a function

¢ To step multiple lines or instructions

¢ To run the program until the specified line

e To run the program until the current function return
¢ To run the program from a specified address

e To stop program execution

¢ To reset the processor

To step a single line or instruction

Choose the Execution - Single Step (ALT, E, N) command.

Or, press the F2 key.
In the source display mode, this command executes the C source code line at
the current program counter address.

In the source/mnemonic mixed display mode, the command executes the
microprocessor instruction at the current program counter address.

Once the source line or instruction has executed, the next program counter
address highlighted.

125

Chapter 6: Debugging Programs
Stepping, Running, and Stopping the Program

To step over a function

» Choose the Execution - Step Over (ALT, E, O) command.

¢ Or, press the F3 key.

This command steps a single source line or assembly language instruction,
except when the source line contains a function call or the assembly
instruction makes a subroutine call. In these cases, the entire function or
subroutine is executed.

In the source/mnemonic mixed display mode, the command does not
distinguish between the following two types of instructions:

JSR
BSR

Example

= e - et oS St cAeTren™, Sangel =t Sangerl = -

madir (=read)

i
dmndit _datail) :
edadil=1 1]

drnit HAata (wmodid) S* ITrnditiali
i

=angrdl = S
A =T T e W
=s=tropridata[0] -rnessacg=. <da
Aata[0] =s=tatuu=s = ORICSIAL
stropew(Aatal[l] -mmessags . Jda
Satall] c=statun=s = ORTCSIRATL

When the current program counter is at line 22, choosing the
Execution - Step Over (ALT, E, O) command steps over the "convert"
function. Once the function has been stepped over, the program counter
indicates line 23.

126

Chapter 6: Debugging Programs
Stepping, Running, and Stopping the Program

To step multiple lines or instructions

1 Choose the Execution - Step... (ALT, E, S) command.

2 Select one of the Current PC, Start Address, or Address options.
(Enter the starting address when the Address option is selected.)

3 In the Count text box, type the number of lines to be single-stepped.
4 Choose the Execute button.
5 Choose the Close button to close the dialog box.

The Current PC option starts single-stepping from the current PC address.
The Start Address option starts single-stepping from the transfer address.
The Address option starts single-stepping from the address specified in the
text box.

In the source only display mode, the command steps the number of C source
lines specified. In the source/mnemonic mixed display mode, the command
steps the number of microprocessor instructions specified.

When the step count specified in the Count text box is 2 or greater, the count
decrements by one as each line or instruction executes. A count of 1 remains
in the Count text box. Also, in the Source window, the highlighted line that
indicates the current program counter moves for each step.

To step over functions, select the Over check box.

127

Chapter 6: Debugging Programs
Stepping, Running, and Stopping the Program

Note

To run the program until the specified line

Position the cursor in the Source window on the line that you want to
run to.

Choose the Execution - Run to Cursor (ALT, E, C) command.

Execution stops immediately before the cursor-selected line.

Because this command uses breakpoints, you cannot use it when programs
are stored in target system ROM.

If the specified address is not reached within the number of milliseconds
specified by StepTimerLen in the B3624.INI file, a dialog box appears, asking
you to cancel the command by choosing the Stop button. When the Stop
button is chosen, program execution stops, the breakpoint is deleted, and the
processor transfers to the RUNNING IN USER PROGRAM status.

This can be done more quickly by using the pop-up menu available with the
right mouse button.

To run the program until the current function return

Choose the Execution - Run to Caller (ALT, E, T) command.

The Execution - Run to Caller (ALT, E, T) command executes the program
from the current program counter address up to the return from the current
function.

128

Chapter 6: Debugging Programs
Stepping, Running, and Stopping the Program

Note The debugger cannot properly run to the function return when the current
program counter is at the first line of the function (immediately after its
entry point). Before running to the caller, use the Execution- Single Step
(ALT, E, N) command to step past the first line of the function.

To run the program from a specified address

1 Choose the Execution - Run... (ALT, E, R) command.

2 Select one of the Current PC, Start Address, User Reset, or Address
options. (Enter the address when the Address option is selected.)

3 Choose the Run button.

The Current PC option executes the program from the current program
counter address.

The Start Address option executes the program from the transfer address.

The User Reset option resets the emulation processor and lets the emulator
run and fetch its stack pointer and program counter value from memory.

The Address option executes the program from the address specified.

To stop program execution

» Choose the Execution - Break (ALT, E, B) command, or press the F4
key.

As soon as the Execution - Break (ALT, E, B) command is chosen, the
emulator starts running in the monitor.

129

Chapter 6: Debugging Programs
Stepping, Running, and Stopping the Program

To reset the processor

Choose the Execution - Reset (ALT, E, E) command.

Once the command has been completed, the processor remains reset,
depending on the selection you made for RealTime — Monitor Intrusion,
described below:

e Ifyou selected RealTime — Monitor Intrusion — Allowed, then monitor
interaction is allowed as required to update register and memory
windows. When updating register and memory windows, the processor
leaves the reset state to execute the required monitor code.

e Ifyou selected RealTime — Monitor Intrusion - Disallowed, the processor
will remain in the reset state; the register and memory windows will not
be updated.

If a foreground monitor is selected, it will automatically be loaded when this
command is executed. This is done to make sure the foreground monitor
code is intact.

In addition to loading the foreground monitor, the emulation SIM registers
(EMSIM) are copied into the processor SIM registers. This happens
automatically. If you do not want the values in the processor SIM registers
changed to the values in the EMSIM registers, synchronize the values of the
SIM registers into the EMSIM registers before resetting the processor.

130

Chapter 6: Debugging Programs
Using Breakpoints and Break Macros

Using Breakpoints and Break Macros

This section shows you how:

e To set a breakpoint

e To disable a breakpoint

e To delete a single breakpoint

e To list the breakpoints and break macros

* To set a break macro

* To delete a single break macro

e To delete all breakpoints and break macros

A breakpoint is an address you identify in the user program where program
execution is to stop. Breakpoints let you look at the state of the target
system at particular points in the program.

A break macro is a breakpoint followed by any number of macro commands
(which are the same as command file commands).

Because breakpoints are set by replacing opcodes in the program, you cannot
set breakpoints or break macros in programs stored in target system ROM.

All breakpoints are deleted when RTC is exited.

131

Chapter 6: Debugging Programs
Using Breakpoints and Break Macros

To set a breakpoint
1 Position the cursor on the line where you wish to set a breakpoint.

2 Choose the Breakpoint - Set at Cursor (ALT, B, S) command.

When you run the program and the breakpoint is hit, execution stops
immediately before the breakpoint line. The current program counter
location is highlighted.

Example To set a breakpoint at line 56:

RealTime C Debugger
File Execution QEEEIOLINE Variable Trace RealTime Assemble... Settings
Window Help Set at Cursor

Delete at Cursor

Filename : c: [S)Etl Mta:;ll--- samplessample.c
HaRaz elete acro Y
ee43 Edit ct st_data s*datd /% Case conv
H#ae44 =
#an45 char =mes;
#HaB46 forimes = dat—-rmessage; *mes ¥= ‘“@'; mes++)
#Hap47? if{*mes »>= 'a' && =mes <= ‘=z'1
#Hap48 =*mes = *mes — ‘a’ + ‘'A’;
#Han4? else if{=*mes >= 'A' && =*mes <= 'Z'>
H#Haasa *mes = *mes —"A' + 'a’;
#aas1 H
H#HAans 2
#an53 change_status{int st)> #* Change status of the
#AR54 {
H#AA55 if{zt == ORIGINAL>
#aus6 | return {COMUERTED? ;
L7 else

Note This can be done more quickly by using the pop-up menu available with the
right mouse button.

132

Chapter 6: Debugging Programs
Using Breakpoints and Break Macros

To disable a breakpoint

Choose the Breakpoint - Edit... (ALT, B, E) command.
Select the breakpoint to be disabled.

Choose the Enable/Disable button. Notice that "DI" appears next to
the breakpoint in the list.

To close the dialog box, choose the Close button.

You can reenable a breakpoint in the same manner by choosing the .
Breakpoint - Edit... (ALT, B, E) command, selecting a disabled breakpoint

from the list, and choosing the Enable/Disable button.

To delete a single breakpoint

Position the cursor on the line that has the breakpoint to be deleted,
and choose the Breakpoint - Delete at Cursor (ALT, B, D) command.

Or:

Choose the Breakpoint - Edit... (ALT, B, E) command.
Select the breakpoint to be deleted.

Choose the Delete button.

Choose the Close button.

The Breakpoint - Edit... (ALT, B, E) command allows you to delete all the
breakpoints and break macros at once with the Delete All button.

133

Chapter 6: Debugging Programs
Using Breakpoints and Break Macros

To list the breakpoints and break macros

Choose the Breakpoint - Edit... (ALT, B, E) command.

The command displays breakpoints followed by break macro commands in
parentheses.

The Breakpoint Edit dialog box also allows you to delete breakpoints and
break macros.

To set a break macro

Position the cursor on the line where you wish to set a break macro.
Choose the Breakpoint - Set Macro... (ALT, B, M) command.

Select the Add Macro check box in the Breakpoint Edit dialog box.
Specify the macro command in the Macro Command text box.
Choose the Set button.

To add another macro command, repeat steps 4 and 5.

To exit the Breakpoint Edit dialog box, choose the Close button.

The debugger automatically executes the specified macro commands when
the break macro line is reached.

To add macro commands after an existing macro command, position the

cursor on the macro command before choosing Breakpoint— Set Macro...
(ALT, B,M).

134

Chapter 6: Debugging Programs
Using Breakpoints and Break Macros

To add macro commands to the top of an existing break macro, position the
cursor on the line that contains the BP marker before choosing
Breakpoint - Set Macro... (ALT, B, M).

Example To set "EVALUATE" and "RUN" break macros:

Position the cursor on line 47; then, choose the Breakpoint - Set Macro...
(ALT, B, M) command.

Select the Add Macro check box.

Enter "EVALUATE *mes" in the Macro Command text box.

= Breakpoint Edit
Set
Breakpoint Address: | sample\\ 000471 |
[Add Macro Set
Macro Command: |EVﬁLUﬁTE *mes |

[] Global Disable and Delete All

™ Current Breakpoints

Enable/Disable || Delete | [Delete an |

Choose the Set button.

Enter "RUN" in the Macro Command text box.

135

Chapter 6: Debugging Programs
Using Breakpoints and Break Macros

Set

Breakpoint Address: | sample\\ {00047 2 |

[Add Macro Set
Macro Command: |HUN| |

= Breakpoint Edit

[] Global Disable and Delete All

Current Breakpoints

EN 000051 ci@x samplet\\ #0047 [EVALUATE *mes]

Enable/Disable || Delete | [Delete an |

Choose the Set button.

Choose the Close button.

The break macro is displayed in the Source window as shown below.

Filenams : <:3hp'rochndsxdems sanplet sanple. o
| #ooz3s
#0037 conrart (int 1d) j* Message Conversion * /7
#0038 {
#0039 contrart casse(data+id)
#0040 data[id] .=tatus = changs_ statusi(data[id] .=status=);
#0041 H
#0042
#0043 convart cassa(struct st _Jdata *dat) f* Case convarsion
#0042 {
#0045 char *mas;
#0045 for(mes = dat-=nessadge; *mes L= 'ZW0'; omes++)
#004a7.1 EVALUATE *mes
#0047, 2 FILH
EF #0047 if(*mes == 'a' && *mes <= 'Z')
$o04s +mes = *mes - 'a' + ‘A
#0042 else 1f(*mes == 55 FInes <= 'E')

136

Chapter 6: Debugging Programs
Using Breakpoints and Break Macros

To delete a single break macro

1 Position the cursor on the line that contains the break macro to be
deleted.

2 Choose the Breakpoint - Delete Macro (ALT, B, L) command.

To delete a single macro command that is part of a break macro, position the

cursor on the macro command before choosing Breakpoint— Delete Macro
(ALT, B, L).

The Breakpoint - Edit... (ALT, B, E) command allows you to delete all the
breakpoints and break macros at once by choosing the Delete All button.
Also, by selecting the Global Disable and Delete All check box, you can delete
all breakpoints and break macros and prevent creation of new breakpoints
and break macros.

137

Chapter 6: Debugging Programs
Using Breakpoints and Break Macros

To delete all breakpoints and break macros

1 Choose the Breakpoint - Edit... (ALT, B, E) command.
2 Choose the Delete All button.

3 Select the Global Disable and Delete All check box.

4 Choose the Close button.

The Breakpoint - Edit... (ALT, B, E) command allows you to delete all the
breakpoints and break macros at once with the Delete All button. Also, you
can delete all breakpoints and break macros and prevent creation of new
breakpoints and break macros by selecting the Global Disable and Delete All
check box.

138

Chapter 6: Debugging Programs
Displaying and Editing Variables

Displaying and Editing Variables

This section shows you how:
e To display a variable
e To edit a variable

* To monitor a variable in the WatchPoint window

To display a variable .

Position the mouse pointer over the variable in the Source window
and double-click the left mouse button.

Choose the Variable - Edit... (ALT, V, E) command.

Choose the Update button to read the contents of the variable and
display the value in the dialog box.

To exit the Variable dialog box, choose the Close button.

Note that you can update the contents of an auto variable only while the
program executes within the scope function.

139

Chapter 6: Debugging Programs
Displaying and Editing Variables

To edit a variable

Position the mouse pointer over the variable in the Source window
and double-click the left mouse button.

Choose the Variable - Edit... (ALT, V, E) command.

Choose the Modify button. This opens the Variable Modify dialog
box.

Type the desired value in the Value text box. The value must be of
the type specified in the Type field.

= Variable Modify

Yariable: mes

Type: char

Yalue: |41| |

Choose the OK button.
Choose the Close button.

Note that you can change the contents of an auto variable only while the
program executes within the scope function.

140

Chapter 6: Debugging Programs
Displaying and Editing Variables

To monitor a variable in the WatchPoint window

Highlight the variable in the Source window by either double-clicking
the left mouse button or by holding the left mouse button down and
dragging the mouse pointer over the variable.

Choose the Variable - Edit... (ALT, V, E) command.

Choose the "to WP" button.

Choose the Close button. .

To open the WatchPoint window, choose the Window — WatchPoint
command.

Note that you can only monitor an auto variable in the WatchPoint window
when the program executes within the scope function.

141

Chapter 6: Debugging Programs
Displaying and Editing Memory

Displaying and Editing Memory

This section shows you how:

e To display memory

¢ To edit memory

e To copy memory to a different location

e Tomodify a range of memory with a value

e To search memory for a value or string

To display memory

1 Choose the RealTime — Memory Polling - ON (ALT, R, M, O)
command.

2 Choose the Window - Memory command.
3 Double-click one of the addresses.

4 Use the keyboard to enter the address of the memory locations to be
displayed.

5 Pressthe Enter key.

An address may be entered as a value or symbol. You can also select the
desired address by using the scroll bar.

To change the size of the data displayed, access the Memory window’s
control menu,; then, choose the Display — Byte (ALT, -, D, Y), Display - 16
Bits (ALT, -, D, 1), or Display — 32 Bits (ALT, -, D, 3) command. When the
Display — Byte (ALT, -, D, Y) command is chosen, ASCII values are also
displayed.

142

Chapter 6: Debugging Programs
Displaying and Editing Memory

To specify whether memory is displayed in a single-column or multicolumn
format, access the Memory window’s control menu; then, choose the
Display — Linear (ALT, -, D, L) or Display - Block (ALT, -, D, B) command.
When the Display — Linear (ALT, -, D, L) command is chosen, symbolic
information associated with an address is also displayed.

The Memory window display is updated periodically. When the window
displays the contents of target system memory, user program execution is
temporarily suspended as the display is updated. To prevent program
execution from being temporarily suspended (and the Memory window from
being updated), choose the RealTime - Monitor Intrusion - Disallowed (ALT,
R, T, D) command to activate the real-time mode.

Example Memory Displayed in Byte Format

boiooon This is
0010002 61 20 73 61 6D 70 6C 65 a sanple
0010010 20 70 72 6F 67 72 61 6D procyram
0010018 00 00 S5 70 70 &5 72 20 . .Uppsr
0010020 61 6E 64 20 4C &6F 77 65 and Leness
0010028 72 20 43 61 73 65 20 43 r Cassa C
0010030 6F 6E 76 6% 72 73 69 6F ocmversio
0010038 SE 00 00 OO0 00 00 00 00 n.......
0010040 00 00 00 OO 00 00 00 00
0010042 00 00 00 OO 00 00 00 00
0010050 00 00 00 OO0 00 00 00 00
0010058 00 00 00 OO0 00 00 00 00
0010080 00 00 00 OO 00 00 00 00
0010088 00 00 00 OO 00 00 00 00
0010070 00 00 00 OO0 00 00 00 00
0010072 00 00 00 OO0 00 00 00 00
0010080 00 00 OO0 OO 00 00 00 00

143

Chapter 6: Debugging Programs
Displaying and Editing Memory

To edit memory

Assuming the location you wish to edit has already been displayed (and
Memory window polling is turned ON):

1 Double-click the location you wish to edit.

2 Use the keyboard to enter a new value.

3 Press the Enter key. Notice that the next location is highlighted.
4 Repeat steps 2 and 3 to edit successive locations.

Editing the contents of target system memory causes user program execution
to be temporarily interrupted. You cannot modify the contents of target
memory when the emulator is running the user program and monitor
intrusion is disallowed.

144

Chapter 6: Debugging Programs
Displaying and Editing Memory

To copy memory to a different location

From the Memory window’s control menu, choose the
Utilities —» Copy... (ALT, -, U, C) command.

Enter the starting address of the range to be copied in the Start text
box.

Enter the end address of the range to be copied in the End text box.
Enter the address of the destination in the Destination text box. .
Choose the Execute button.

To close the Memory Copy dialog box, choose the Close button.

145

Chapter 6: Debugging Programs
Displaying and Editing Memory

10

To copy target system memory into emulation
memory

Because the processor cannot read target system memory when it is
in the EMULATION RESET state, choose the Execution — Break
(ALT, E, B) command, or press the F4 key, to break execution into
the monitor.

From the Memory window’s control menu, choose the
Utilities - Store... (ALT, -, U, S) command.

Enter the starting address in the Start text box.
Enter the end address in the End text box.

Enter a file name in the File Name text box.
Choose the Export button.

Re-map the address range as emulation memory.

From the Memory window’s control menu, choose the
Utilities —» Load... (ALT, -, U, L) command.

Enter the file name in the File Name text box.
Choose the Import button.

This procedure is used to gain access to features that are only available with
emulation memory (like breakpoints).

The following commands cannot be used when programs are stored in target
system ROM. However, you can use these commands if you copy the
contents of target system ROM into emulation memory:

Breakpoint — Set at Cursor (ALT, B, S)
Breakpoint - Delete at Cursor (ALT, B, D)

146

Chapter 6: Debugging Programs
Displaying and Editing Memory

Breakpoint - Set Macro... (ALT, B, M)
Breakpoint - Delete Macro (ALT, B, L))
Execution - Run to Cursor (ALT, E, C)
Execution - Run to Caller (ALT, E, T)

To modify a range of memory with a value

From the Memory window’s control menu, choose the

Utilities - Fill... (ALT, -, U, F) command. .
Enter the desired value in the Value text box.

Enter the starting address of the memory range in the Start text box.

Enter the end address in the End text box.

Select one of the Size options.

Choose the Execute button.

The Byte, 16 Bit, or 32 Bit size option specifies the size of the values that are
used to fill memory.

147

Chapter 6: Debugging Programs
Displaying and Editing Memory

To search memory for a value or string

1 From the Memory window’s control menu, choose the Search... (ALT,
-, R) command.

2 Enter in the Value or String text box the value or string to search for.
3 Enter the starting address in the Start text box.

4 Enter the end address in the End text box.

5 Choose the Execute button.

6 Choose the Close button.

When the specified data is found, the location at which the value or string
was found is displayed in the Memory window.

Example To search addresses 6000h through Offffh, for the string "This":

= Search Memory

Yalue: | | | Search 2

Shring: | This | Cloze g

Start: | 6000 |
End: | Ofif |

Size: @ byte ' 16 Bits ' 32 Bits

148

Chapter 6: Debugging Programs
Displaying and Editing I/O Locations

Displaying and Editing I/O Locations

This section shows you how:
e To display I/O locations
e To edit an I/O location

With the 6833x microprocessor, I/O locations are memory-mapped.

To display I/O locations .

Choose the Window - I/O command.

From the I/O window’s control menu, choose the Define... (ALT, -, D)
command.

Enter the address in the Address text box.

Select whether the size of the I/O location is a Byte or 16 Bits.
Choose the Set button.

Choose the Close button.

The Window - I/O command displays the contents of the specified I/0
locations.

The debugger periodically reads the I/O locations and displays the latest
status in the I/O window. To prevent the debugger from reading the I/O
locations (and updating the I/O window), choose the RealTime - I/O
Polling - OFF (ALT, R, I, F) command.

149

Chapter 6: Debugging Programs
Displaying and Editing 1/0 Locations

Example To display the contents of address 2000:

B oseng ||

Set
Address: | 2000 |
Size: @® byte ' 16 Bits
Space: & Mem

140 set
address: 000002000, zize: byte

To edit an I/O location

1 Display the I/O value to be changed with the Window - I/O command.
2 Double-click the value to be changed.

3 Use the keyboard to enter a new value.

4 Press the Enter key.

To confirm the modified values, press the Enter key for every changed value.

Editing the 1/0 locations temporarily halts user program execution. You
cannot modify I/O locations while the user program executes in the real-time
mode or when I/O polling is turned OFF.

150

Chapter 6: Debugging Programs
Displaying and Editing Registers

Displaying and Editing Registers
This section shows you how:
e To display registers

e To edit registers

To display registers

Choose the Window - Register command.

The register values displayed in the window are periodically updated to show
you how the values change during program execution. The decoded flag
register flags allow you to identify the register status at a glance.

When the Register window is updated, user program execution is temporarily
interrupted. To prevent the user program from being interrupted (and the
Register window from being updated), choose the RealTime - Monitor
Intrusion - Disallowed (ALT, R, T, D) command to activate the real-time
mode.

151

Chapter 6: Debugging Programs
Displaying and Editing Registers

Example

Register Contents Displayed in the Register Window

UALUE

HAAAA56A
2784

ARARAAA1
FFFFAAAA
H8a80808
42984805
1BAA7AFE
AABA4483
1B2397C8
F2823864
HAABG6A1 8
HAANG AL A
HAAA61 44
31585A48
81868838
2385A62C
A8Aa7FD4
A08A7FD4
ARANRAAA
H8887FD4

DESCRIPTION

Program Countepr

Status

Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register

Uzer Stack Pointer
Supervisor Stack Pointer

152

Chapter 6: Debugging Programs
Displaying and Editing Registers

To edit registers

1 Display the register contents by choosing the Window - Basic
Registers or More Windows... command. If you select More
Windows..., the Select Window dialog box will open and offer you the
following register windows to select:

¢ SIM Registers

¢ Emulator SIM Registers

* RAM Registers

¢ Emulation RAM Registers
* QSM Registers

* TPU Registers

e Test and Misc Registers
2 Double-click the value to be changed.
3 Use the keyboard to enter a new value.
4 Press the Return key.

Modifying register contents temporarily interrupts program execution. You
cannot modify register contents while the user program is running and
monitor intrusion is disallowed.

Note that register values are not actually changed until the Return key is
pressed.

Double-clicking the status register (st) contents opens the Register Bit Fields
dialog box which you can use to set or clear individual bit fields.

153

Chapter 6: Debugging Programs
Tracing Program Execution (Emulator Only)

Tracing Program Execution (Emulator Only)

This section shows you how:

* To trace function flow

e To trace callers of a specified function

¢ To trace execution within a specified function
e To trace accesses to a specified variable

e To trace before a particular variable value and break
e To trace until the command is halted

e To stop a running trace

e To repeat the last trace

e To display bus cycles

e To display absolute or relative counts

¢ To change the disassembly of bus cycle data

e To display dequeued trace data

How the Analyzer Works

When you trace program execution, the analyzer captures microprocessor
address bus, data bus, and control signal values at each clock cycle. The
values captured for one clock cycle are collectively called a state. A traceis a
collection of these states stored in analyzer memory (also called trace
memory).

The trigger condition tells the analyzer when to store states in trace memory.
The trigger position specifies whether states are stored before, after, or about
the state that satisfies the trigger condition.

The store condition limits the kinds of states that are stored in trace memory.

When the states stored are limited by the store condition, up to two states
which satisfy the prestore condition may be stored when they occur before
the states that satisfy the store condition.

154

Note

Chapter 6: Debugging Programs
Tracing Program Execution (Emulator Only)

After a captured state satisfies the trigger condition, a trace becomes
complete when trace memory is filled with states that satisfy the store and
prestore conditions.

The analyzer traces unexecuted instructions due to prefetching done by the
MiCroprocessor.

Trace Window Contents

When traces are completed, the Trace window is automatically opened to
display the trace results.

Each line in the trace shows the trace buffer state number, the type of state,
the module name and line number, the function name, the source file
information, and the time information for the state (relative to the other
lines, by default).

When bus cycles are included, the address, data, and disassembled
instruction or bus cycle status mnemonics are shown.

155

Chapter 6: Debugging Programs

Tracing Program Execution (Emulator Only)

Note

Example

To trace function flow

Choose the Trace - Function Flow (ALT, T, F) command.

The command stores function entry points, and the resulting trace shows
program execution flow.

The command traces C function entry points only. It does not trace
execution for assembly language routines.

When using the MCC68K compiler, you must specify the -Kf option when
compiling programs in order for the debugger to be able to trace function

flow.

Function Flow Trace

Trace - Loading Data [Frame: 1]

state Ly meduleass#line :function Sourcs

| 2 EBD sanplz=A#0038 :comvert { 15,04 uz~Ta |+
6 BB sanmplsat #0044 rcovart cass | 13.42 u=
10 SED sanpl="#0054 s Charge statn | 254 .5 uZ
14 SEQ sanpls" #0062 rnaxt message { 25.282 uz
12 EED sanplea' #0032 rcotrert { 15.12 u=
22 EED sanpl=tS #0044 rootrvart _casse 13.42 u=
26 EEQ sanpls=" #0054 s Chang= statu { 219.3 us
30 EED sanpls #0062 rhaxt Imessags | 24 .72 us
534 EEG sanplehhW #0032 s oorert { 15.72 u=
32 EEQ sanplstS #0044 soonvaert case { 13.482 us
12 EED) sarmpl="0 #0054 s Chateys statn | 277 .4 1=
46 EEQ sanpls="S #0062 tnaxt message | 24.62 u=
50 SED sanpls= #0038 s coart { 15.16 us
54 EED sampl=“ #0044 soomvert case | 13.42 us

156

Chapter 6: Debugging Programs
Tracing Program Execution (Emulator Only)

To trace callers of a specified function
1 Double-click the function name in one of the debugger windows.

2 Choose the Trace - Function Caller... (ALT, T, C) command.
3 Choose the OK button.

This command stores the first executable statement of the specified function
and prestores statements that execute before it. The prestored statements
show the caller of the function.

To identify interrupts in program execution, trace the caller of the interrupt
process routine using the Trace — Function Caller... (ALT, T, C) command.

For Assembler symbols, the system traces the last two instructions executed
before the specified Assembler symbol is reached. Specifying the first
symbol of a subroutine enables the system to trace the caller of the
subroutine.

Note The analyzer may fail in tracing the caller due to prefetching in 6833x. To
avoid this failure, specify the function by a value of its address + 2.

157

Chapter 6: Debugging Programs
Tracing Program Execution (Emulator Only)

Example To trace the caller of "next_message":
Double-click "next_message".

Choose the Trace - Function Caller... (ALT, T, C) command.

ME68332 RealTime C Debugger
File Execution Breakpoint Yariable BRealTime Assemble...
Window Help Function Flow

Settings

= Source Function Caller...
Filename : <:\hp\rtoymdixhdenessamplsey| Function Statement...
#0054 VYariable Access...
0000101488% Ox4e560000 LINK.W A5,| Yariable Break...
#0055 if(=t == CORIGIMAL) Edit...
00001014c8x Ox4aa=0002 TST.L (g0 -
0000101508x Ox6604 ENE.E zo0| Trigger Store...
#0056 raturn (COMNVERTED| Find Then Trigger...
0000101528x 0x7001 MOVED ¥50 ecouence
0000101548x OxE002 ERA.E 200 qQ
ﬁggg; e turn (ORTCTMAL) Until Halt
raturn
0000101568x 0x7000 MOVED #20 ﬂa"_ C+F7
#0059 B Again F7¥
0000101588% Ox4aSe UNLE 25
00001015a8x Ox4275 ETE
#0060
#0061 Aiint id) /* Changs message to
#0062
0000101528% Ox42560000 LIME.W A6, $20000

mechlat s H#line s funchtion

1 FRE =samplz\\#0059 :changs statu

3 sarplat W #0062 shnawt message | 172.7 us

4 FRE sanpl="#0025 sroain messacs id praestors

& sanplat #0062 thaxt messags | 19.88 us

T FRE sanpl="" #0059 s Chang= statu } pPrastors

=] samplet 0062 rhaxt Imessags | 252 .6 u=
10 FRE =sanpl=" #0023 sroain messacs id praestors
12 sarplah W #0062 thaxt messags 19.92 u=
13 FRE sanpl=" #0059 s charng= statn } prastora
15 sarplay #0062 tnaxt messages | 311 .4 us
16 FRE sanpls=' #0023 rrain messacs id prestors
12 sarplat W #0062 shnawt message | 19.92 us=
19 FRE s=sanpl=" #0059 s chang=_statn) prastors
21 sanplat #0062 thaxt messags | 231 .68 us

You can see how prefetching affects tracing by choosing the Display - Mixed
Mode (ALT, -, D, M) command from the Trace window’s control menu.

158

Chapter 6: Debugging Programs
Tracing Program Execution (Emulator Only)

To trace execution within a specified function
1 Double-click the function name in the Source window.

2 Choose the Trace — Function Statement... (ALT, T, S) command.

This command traces C functions only. It does not trace execution of
assembly language subroutines.

Example To trace execution within "next_message":

Double-click "next_message."

Choose the Trace - Function Statement... (ALT, T, S) command.

M68332 RealTime C Debugger
File Execution Breakpoint Y¥ariable RBealTime Assemble... Settings

Window Help Function Flow
Source Function Caller...
R e e gy Function Statement...
#0052 Yariable Access...
#0053 changs status(int st) Variable Break...
#0054 { Edit...
0000101428x Ox42S60000 LIME.W A5, -
#0055 if(st == ORIGIMAL) Trigger Store...
00001014cRx Ox4aa20002 TST.L (50| Find Then Trigger...
0000101508x OxE604 EME.E 200l oo ence
#0056 raturn (OCHNVERTED qQ
D00DI0I5amk 0xg003 DEm.E foo| LNl Halt
#0057 e e ’ : Halt Ct+F7
#0058 return (CRICINAL)| Again F7
0000101568% 07000 MOVEQ #z200000000, DO
#0059
0000101528x Oxdebe UIMLE a8
00001015a8x Oxda75 RTS
#0060
#0061 int id) /* Changse messags to

The Trace window becomes active and displays the results. You can see how

prefetching affects tracing by choosing the Display — Mixed Mode (ALT, -, D,
M) command from the Trace window’s control menu.

159

Chapter 6: Debugging Programs
Tracing Program Execution (Emulator Only)

To trace accesses to a specified variable
1 Double-click the global variable name in the Source window.

2 Choose the Trace - Variable Access... (ALT, T, V) command.

The command also traces access to the Assembler symbol specified by its
name and size.

Example To trace access to "message_id":
Double-click "message_id."

Choose the Trace - Variable Access... (ALT, T, V) command.

ME65332 RealTime C Debugger
File Execution Breakpoint WYariable RealTime Assemble... Settings

Window Help Function Flow
Source Function Caller...
Filename : <:3hp'rtohmsSxhdemo sampl e, Function Statement...
#0017 rein (void) Yariable Access...
#001e { Variable Break...
00001003a8x 0x42560000 LIME.W 26.| Edit...
#0019 init_datai) -
0000100326y Oxdebaliz2a JER {in| Trigger Store...
00001004285 OxdaTl MOP Find Then Trigger...
xgggg 1;&1119(1] Sequence...
3333300448 D:(.2f390§gll‘l‘!§é;'émissage_ Untl Halt
-4 . Sar
00001004aRx Oxd=ba00ald JER [ﬂalt_ C+F7
00001004e8x Ox4aTl MNOE Again F¥
#0023 i] = next messagz(messags 14)
0000100508x 0x2£5390001 MOWE.L zampleh \nessage_id, - (AT)
0000100568x Oxd=hallld JER [naxt_messags, BC)
00001005aRx Oxd=T1 MOP

The Trace window becomes active and displays the trace results.

160

Chapter 6: Debugging Programs
Tracing Program Execution (Emulator Only)

To trace before a particular variable value and break
1 Double-click the desired global variable.
2 Choose the Trace - Variable Break... (ALT, T, B) command.
3 Enter the value in the Value text box.
4 Choose the OK button.

The Trace - Variable Break... (ALT, T, B) command breaks execution as soon
as the specified value is written to the specified global variable.

The command also breaks execution at the Assembler symbol specified by its
name and size.

Note The analyzer uses the DSACK status bits to determine whether the processor
is performing a 16-bit or 8-bit operation. If the DSACK status bits are not
being used to carry valid DSACK status information, the resulting trace may
never trigger. The DSACK status bits do not carry valid DSACK status
information when the SIM register pepar is configured to use the DSACK
lines as I/0 pins, or when the processor is executing out of memory in
address ranges where DSACKSs are provided internally by chip selects.

161

Chapter 6: Debugging Programs
Tracing Program Execution (Emulator Only)

Example

To break execution as soon as "message_id" contains "0":
Double-click "message_id."

Choose the Trace - Variable Break... (ALT, T, B) command.

MEG3I3Z2 RealTime C Debugger

File Execution Breakpoint Yariable BealTime Assemble... Settings
Window Help Function Flow
Source Function Caller...

Filename : <:%hpsrbcyosxo,deno, sampl e, Function Statement...

#0017 e (void) Yariable Access._..
#oois i VYariable Break...

D0001003a8x Ox42560000 LINK.W a5, Edit..

#0019 init_datai); -

0000100328x Oxd4abaln2a JER tin| Irigger Store...

0000100428 0xd4=T1 el Find Then Trigger...

#0020 whilail) -

#oo0z1 i Sequence...

#oozz conrvert(messadg:s | Uptil Halt

O00o0o0l10044ex 0x2£590001 MOVE.L zam .,

00001004a@x Oxd=ba0060 JSR [< ﬂa"_ Cu+F7
00001004=Rx Oxdavl &galn F7

#0023 =l = next messags (messadgse 14)
000010050Rx 0x2f390001 MOVE.L sanplah\essags 14, - (A7)
0000100568x Oxd4aba0lnd JSR [naxt_messags, PC)
00001005a8x Oxd=7l MNOF

Enter "0" in the Value text box.

= Variahle Break Trace

Wanable:

| message_id | Cancel

Value:

[0 |

Choose the OK button.

The debugger halts execution as soon as the program writes "0" to the
"message_id" variable. Once execution has halted, the Trace window
becomes active and displays the results.

162

Chapter 6: Debugging Programs
Tracing Program Execution (Emulator Only)

To trace until the command is halted

1 To start the trace, choose the Trace — Until Halt (ALT, T, U)
command.

2 When you are ready to stop the trace, choose the Trace - Halt (ALT,
T, H) command.

This command is useful, for example, in tracing program execution that leads
to a processor halted state or to a break to the monitor.

To stop a running trace

e Choose the Trace - Halt (ALT, T, H) command.
The command is used to:
Stop the trace initiated with the Trace - Until Halt (ALT, T, U) command.

Force termination of the trace that cannot be completed due to absence
of the specified state.

Stop a trace before the trace buffer becomes full.

To repeat the last trace

e Choose the Trace - Again (ALT, T, A) command, or press the F7 key.

The Trace - Again (ALT, T, A) command traces program execution using the
last trace specification stored in the HP 64700.

163

Chapter 6: Debugging Programs
Tracing Program Execution (Emulator Only)

To display bus cycles

1 Place the cursor on the line from which you wish to display the bus
cycles.

2 From the Trace window’s control menu, choose the Display — Mixed
Mode (ALT, -, D, M) command or the Display — Bus Cycle Only (ALT,
-, D, C) command.

The Display — Mixed Mode (ALT, -, D, M) command displays each source line
followed by the bus cycles associated with it.

The Display - Bus Cycle Only (ALT, -, D, C) command displays the bus
cycles without the source lines.

The display starts from the cursor-selected line.

To hide the bus cycles, choose the Display — Source Only (ALT, -, D, S)
command from the Trace window’s control menu.

Example Bus Cycles Displayed in Trace with "Mixed Mode" selected:
Trace - Loading Data [Frame: 1) ME
state typ modulessHiline =function source j
| sanplexsi#BB54 :change_statwu £ 0202020 0———————— TG
8 SEQ ARRAAAS4a 4e56507@ incomplete instr.: ~4E56.7 ————————— TG
1 SEQ #A0RA6A42 8787878 supr data wr hyte 3.688 us
2 EEqQ ABPARGA43 8787845 zupr data rd hyte A.168 us
sanples#BBs4 :change_statu < 4.128 uS"IG
3 SEq ABPHAAS4a 4e567845 incomplete dinstr.: ~4E56-7 B.280 ub
4 SEG ABRARGA43 65656565 supr data wr hyte J_688 us
5 SEq AAPAAGA44 52656565 supr data rd hyte @_.2688 us
samples#BB54 :change_statu { 4.128 ul
6 SEQ ARRAAAS4a 4e566565 incomplete dinstr.: ~#4E56-7 B_.248 ub
7 SEQ ARRAAGA44 22727222 supr data wr hyte J.688 us
8 SEQ AAPAAGA45 22287272 supr data rd hyte @_.2688 us
samples#BB54 :change_statu { 4.128 ul
9 SEQ APABAOS4a 4567272 incomplete instr.: /4E56-7 B.248 uf

164

Chapter 6: Debugging Programs
Tracing Program Execution (Emulator Only)

To display absolute or relative counts

From the Trace window’s control menu, choose the
Display — Count - Absolute (ALT, -, D, C, A) or
Display — Count - Relative (ALT, -, D, C, R) command.

Choosing the Display — Count - Relative (ALT, -, D, C, R) command selects
the relative mode where the state-to-state time intervals are displayed.

Choosing the Display — Count — Absolute (ALT, -, D, C, A) command selects
the absolute mode where the trace time is displayed as the total time elapsed
since the analyzer has been triggered.

To change the disassembly of bus cycle data

From the Trace window’s control menu, choose the Display - From
State... (ALT, -, D, F) command.

In the State text box, enter the number of the state where you want
disassembly to start.

If the bus cycle data is being dequeued, enter the number of the
operand cycle state caused by the instruction cycle state you are
disassembling from.

Choose the OK button.

If you see disassembled bus cycle information in the Trace window that does
not look correct, you can use the Display — From State... (ALT, -, D, F)
command to change the state where disassembly begins.

165

Chapter 6: Debugging Programs
Tracing Program Execution (Emulator Only)

To display dequeued trace data

From the Trace window’s control menu, choose the
Display — Options — Dequeue ON (ALT, -, D, O, O) command.

During 6833x program execution, operand cycles may not appear on the bus
immediately after the instruction cycles that cause them because the 6833x
microprocessor prefetches instructions into (and executes them out of) an
instruction pipeline. Consequently, when you trace microprocessor
execution, the captured bus cycle data may be difficult to read and
understand.

The Display — Options - Dequeue ON (ALT, -, D, O, O) command shuffles bus
cycle states in the Trace window so that operand cycles immediately follow
the instruction cycles that caused them, and unexecuted instructions are
removed from the display.

To turn OFF dequeueing, choose the Display — Options — Dequeue OFF
(ALT, -, D, O, F) command from the Trace window’s control menu.

166

Note

Note

Chapter 6: Debugging Programs
Setting Up Custom Trace Specifications (Emulator Only)

Setting Up Custom Trace Specifications
(Emulator Only)

This section shows you how:

To set up a "Trigger Store" trace specification

To set up a "Find Then Trigger" trace specification
To set up a "Sequence" trace specification

To edit a trace specification

To trace "windows" of program execution

To store the current trace specification

To load a stored trace specification

The analyzer traces unexecuted instructions due to prefetching in 6833x.

Analyzer memory is unloaded two states at a time. If you use a storage
qualifier to capture states that do not occur often, it is possible that one of
these states has been captured and stored but cannot be displayed because
another state must be stored before the pair can be unloaded. When this
happens, you can stop the trace measurement to see all stored states.

When Do I Use the Different Types of Trace Specifications?

When you wish to trigger the analyzer on the occurrence of one state, use the
"Trigger Store" dialog box to set up the trace specification.

When you wish to trigger the analyzer on the occurrence of one state
followed by another state, or one state followed by another state but only
when that state occurs before a third state, use the "Find Then Trigger"
dialog box to set up the trace specification.

When you wish to trigger the analyzer on a sequence of more than two states,
use the "Sequence" dialog box to set up the trace specification.

167

Chapter 6: Debugging Programs
Setting Up Custom Trace Specifications (Emulator Only)

To set up a "Trigger Store" trace specification

1 Choose the Trace - Trigger Store... (ALT, T, T) command.

2 Specify the trigger condition using the Address, Data, and/or Status
text boxes within the Trigger group box.

3 Specify the trigger position by selecting the trigger start, trigger
center, or trigger end option in the Trigger group box.

4 Specify the store condition using the Address, Data, and/or Status
text boxes within the Store group box.

5 Choose the OK button to set up the analyzer and start the trace.

The Trace - Trigger Store... (ALT, T, T) command opens the Trigger Store
Trace dialog box:

= Trigger Store Trace
™ Trigger :
o Address Data Status
Daer | | Wy
End Address .
@ trigger start _} trigger center) trigger end
 Store
Address Data Status
NOT
= | || | | | (3]
End Address

A group of Address, Data, and Status text boxes combine to form a state
qualifier. You can specify an address range by entering a value in the End
Address box. By selecting the NOT check box, you can specify all states
other than those identified by the address, data, and status values.

168

Example

Example

Chapter 6: Debugging Programs
Setting Up Custom Trace Specifications (Emulator Only)

To trace execution after the "convert_case" function:

Choose the Trace - Trigger Store... (ALT, T, T) command.

Enter "convert_case" in the Address text box in the Trigger group box.

= Trigger Store Trace
i
naget Address Data Status
LI NOT |cun\rert_case| | | | | | @
End Address
()] tnigger start O tnigger center O tnigger end
[Store
Address Data Status
HOT
= | || || | 2
End Address
Choose the OK button.

To trace execution before and after the "convert_case" function and store

only states with "write" status:

= Trigger Store Trace
[Trigger
99 Address Data Status
D NOT |cun\rert_case | | | | | @
End Address
O tnigger start ()] tnigger center] tnigger end
[Store
Address Data Status
HOT
= | || |]
End Address

169

Chapter 6: Debugging Programs
Setting Up Custom Trace Specifications (Emulator Only)

Example To specify the trigger condition as any address in the range 1000h through
1fffh:
= Trigger Store Trace
—Tri ;
rager Address Data Status :
[INoT fi000 || | | | [
End Address
@ trigger start _} trigger center) trigger end
[Store
Address Data Status
Lwor | || | | | [
End Address

170

Chapter 6: Debugging Programs
Setting Up Custom Trace Specifications (Emulator Only)

To set up a "Find Then Trigger" trace specification

Choose the Trace - Find Then Trigger... (ALT, T, D) command.

Specify the sequence, which is made up of the enable, trigger store,
trigger, and store conditions.

Specify the restart, count, and prestore conditions.

Specify the trigger position by selecting the trigger start, trigger
center, or trigger end option.

If you want emulator execution to break to the monitor when the
trigger condition occurs, select the Break On Trigger check box.

Choose the OK button to set up the analyzer and start the trace.

The Trace - Find Then Trigger... (ALT, T, D) command opens the Find then
Trigger Trace dialog box:

= Find then Trigger Trace
[Sequence Hestart: no slale |
Enable Stora: -
3 Count: time

Prestore: no state

Enable: | any state

Triagor Store: | ik M @ wrigoer start

Tringer: | any zlate } trigger center
Stole: any stale g O trigger end)
I:I Breck on Trgger

Pattern/Range: [Select with:Double-Click)

rao oo
o
oD
SRERR
W W WL

Choosing the enable, trigger, store, count, or prestore buttons opens a
Condition dialog box that lets you select "any state," "no state," trace patterns

171

Chapter 6: Debugging Programs
Setting Up Custom Trace Specifications (Emulator Only)

"a" through "h," "range," or "arm" as the condition. Patterns "a" through "h,"
"range," and "arm" are grouped into two sets, and resources within a set may
be combined using the "or" or "nor" logical operators. Resources from the two
sets may be combined using the OR or AND logical operators.

] no state | oK a

set2

Oor [Ode O Og

[1d [range [] AND On O am
1 not range Cror Y nor
Cror O onor

Comt [T

The range and pattern resources are defined by double-clicking on the
resource name in the Pattern/Range list box.

If you double-click on a pattern name, the Trace Pattern dialog box is opened
to let you specify address, data, and status values. By selecting the NOT
check box, you can specify all states other than those identified by the
address, data, and status values. The Direct check box lets you specify
status values other than those that have been predefined.

HOT: [Tok 1
| | Cancel g
| .

Status:

bernr read
cpu_spec

data

dataread

datawrite

dmaread

dmawrite

prog

] Direct:

172

Example

Chapter 6: Debugging Programs
Setting Up Custom Trace Specifications (Emulator Only)

If you double-click on the range resource (bottom of the Pattern/Range list
box), the Trace Range dialog box is opened to let you select either the
Address range or the Data range option and enter the minimum and
maximum values in the range.

Minimum:

M aximum:

To trace execution after the "convert_case" function:
Choose the Trace - Find Then Trigger... (ALT, T, D) command.

Choose the Trigger button (default: any state).

Select "a."
|:| any state D no state | 1] .4 g
[ztate

zetl zet2

Blid Ob Oe |Oor |[Ode Of Oa

% d l|:| range [] AND Lh [am

not range Oor O nor
® or) nor
Comt [

Choose the OK button.

Double-click "a" in the Pattern/Range list box.

173

Chapter 6: Debugging Programs
Setting Up Custom Trace Specifications (Emulator Only)

Enter "convert_case" in the Address text box in the Trace Pattern dialog box.

[NOT | [1].4 3
Address: | Cancel g
|

| converl_case

Data: ||

Status:

berr read
Cpu_spc

data

dataread

datawrite

dmaread

dmawrite

prog

] Direct:

Choose the OK button in the Trace Pattern dialog box.

= Find then Trigger Trace
[Sequence Hestart: no slale |
able Store: %
En L} ars any stale Count: time
Enable: | any state Prestore:
Triggeor Storc: tal .
| ar?-"s o @ trigger start
Trinoes: I A) trigger center
Stole: any stale g < trigger end A
[] Breck on Trgger

Pattern/Range: [Select with:Double-Click)

Aconvert_case D: 5:
A D

Tan oo
nmnnnn

oI
2R=
bttt

Choose the OK button in the Find then Trigger Trace dialog box.

Example

Chapter 6: Debugging Programs

Setting Up Custom Trace Specifications (Emulator Only)

Stole: any stale g

Pattern/Range: [Select with:Double-Click)

O trigger end
[] Breck on Trgger

To trace about the "next_message" function when it follows the
"change_status" function and store all states after the "change_status"

function:
= Find then Trigger Trace
[Sequence Hestart: no skale . oK ;

Enable Store: Count: -

Enable: ount: time | Cancel ;
nable: | a Prestore: no state

Triggcr Storc:

—naa | b At trioger start
Trinoes: | h # trigger center

Help

A-change_status D: 5:
Acnext_meszage D: 5:

rao oo
o
roD
292
@@

*

175

Chapter 6: Debugging Programs
Setting Up Custom Trace Specifications (Emulator Only)

3

To set up a "Sequence" trace specification

Sequence trace specifications let you trigger the analyzer on a sequence of
several captured states.

There are eight sequence levels. When a trace is started, the first sequence
level is active. You select one of the remaining sequence levels as the level
that, when entered, will trigger the analyzer. Each level lets you specify two
conditions that, when satisfied by a captured state, will cause branches to
other levels:

if (state matches primary branch condition)

then GOTO (level associated with primary branch)
else if (state matches secondary branch condition)

then GOTO (level associated with secondary branch)
else

stay at current level

Note that if a state matches both the primary and secondary branch
conditions, the primary branch is taken.

Each sequence level also has a store condition that lets you specify the states
that get stored while at that level.

Choose the Trace - Sequence... (ALT, T, Q) command.

Specify the primary branch, secondary branch, and store conditions
for each sequence level you will use.

Specify which sequence level to trigger on. The analyzer triggers on
the entry to the specified level. Therefore, the condition that causes
a branch to the specified level actually triggers the analyzer.

Specify the count and prestore conditions.

Specify the trigger position by selecting the trigger start, trigger
center, or trigger end option.

176

Chapter 6: Debugging Programs
Setting Up Custom Trace Specifications (Emulator Only)

6 If you want emulator execution to break to the monitor when the
trigger condition occurs, select the Break On Trigger check box.

7 Choose the OK button to set up the analyzer and start the trace.

The Trace - Sequence... (ALT, T, Q) command calls the Sequence Trace
Setting dialog box, where you make the following trace specifications:

[Sequence T o ;
. rigger On: 3
Primary Secondary oger O A Vo
Eranch: ta Hianch: o Store: -
Count: ume g
1 any ztate no =tate 1 1 g anr #late
"

@ nigger stan Load. .
anp tlate F pipger centes

no state 1 lm r hiipger end) 5o

[Break an Trigger

any state

2
%
A

o 1), Compoe] |
| any ztate ﬁ | no state ;l g | any zlate i HIEeE
| <]
| =1

2
=
4

anp ztate

il

Pattem/Hange: [2elec| with:Double-Click]
a n D 5

rnrn
FERRSE
W4 b

mEam T
L

Choosing the primary branch, secondary branch, store, count, or prestore
buttons opens a Condition dialog box that lets you select "any state," '"no
state," trace patterns "a" through "h," "range," or "arm" as the condition.
Patterns "a" through "h," "range," and "arm" are grouped into two sets, and
resources within a set may be combined using the "or" or "nor" logical
operators. Resources in the two sets may be combined using the OR or AND
logical operators.

L] no state
set?
Ha e Qe (Hor |Oe OOf O g
e
9 or) nor
ror 2 nor
R —

177

Chapter 6: Debugging Programs
Setting Up Custom Trace Specifications (Emulator Only)

The range and pattern resources are defined by double-clicking on the
resource name in the Pattern/Range list box.

If you double-click on a pattern name, the Trace Pattern dialog box is opened
to let you specify address, data, and status values. By selecting the NOT
check box, you can specify all states other than those identified by the
address, data, and status values. The Direct check box lets you specify
status values other than those that have been predefined.

| | Cancel g
|

Status:

bernr read
cpu_spec

data

dataread

datawrite

dmaread

dmawrite

prog

] Direct:

If you double-click on the range resource at the bottom of the Pattern/Range
list box, the Trace Range dialog box is opened to let you select either the
Address range option or the Data range option and enter the minimum and
maximum values in the range.

Minimum:

M aximum:

178

Example

Chapter 6: Debugging Programs

Setting Up Custom Trace Specifications (Emulator Only)

[Sequence

Frimany Secandary

Eranch: o Hianch: L]
1 I la m | no state 1 1 g | any zlate 1
2 | any ztate ﬁ | no state ; 1 g | anr zlate i
k] | anp ztate 4 | no state 1 any late ;
4 | anp ztate L | no state 1 anm zlate ;

Pattem/Hange: [2elec| with:Double-Click]

To specify address "convert_case" as the trigger condition:

Trigger On:

Count:

Prectore:

@ nigger stan
- nipger center
< tipger end

[Break an Trigger

a = MAconvert_case 0: b:
b= AD:%5:
e = AD:5:
d- ADS
e = A D5

Example

[Sequence
Primary Secondary
Eranch: ta Hianch: o Store:
1 | a ﬁ | no =tate 1 1 g | y slate 1
2 b 3|| nostatz {11 | anpstate |
k] | anp ztate 4 | no state 1 any late ;
4 | anp ztate L | no state 1 anm zlate i

Pattem/Hange: [2elec| with:Double-Click]

To specify execution of "convert_case" and "next_message" as the trigger
sequence:

Trigger On:

Count: dme

[ga]

@ nigger stan L]
oad...

O et e

o nipger end S |

[Break an Trigger

a = MAconvert_case 0: b:
b = Ancit_mcszagc D 5:
e = A5
d- ADS
e = A D5

179

Chapter 6: Debugging Programs
Setting Up Custom Trace Specifications (Emulator Only)

To edit a trace specification

1 Choose the Trace - Edit... (ALT, T, E) command.

2 Using the Sequence Trace dialog box, edit the trace specification as

desired.
Choose the OK button.

You can use this command to edit trace specifications, including trace
specifications that are automatically set up. For example, you can use this
command to edit the trace specification that is set up when the

Trace - Function Flow (ALT, T, F) command is chosen.

To trace "windows" of program execution

Because pairs of sequence levels are used to capture window enable
and disable states both before and after the trigger, choose the
Trace - Sequence... (ALT, T, Q) command.

Set up the sequence levels, patterns, and other trace options (as
described below) in the Sequence Trace dialog box.

Choose the OK button.

When you trace "windows" of program execution, you store states that occur
between one state and another state. Storing states that occur between two
states is different from the trace specification set up by the

Trace - Statement... (ALT, T, S) command, which stores states in a function’s
range of addresses.

In a typical windowing trace specification, sequence levels are paired. The
first sequence level searches for the window enable state, and no states are
stored while searching. When the window enable state is found, the second

180

Chapter 6: Debugging Programs
Setting Up Custom Trace Specifications (Emulator Only)

sequence level stores the states you're interested in while searching for the
window disable state.

If you want to store the window of code execution before and after the
trigger condition, use two sets of paired sequence levels: one window
enable/disable pair of sequence levels before the trigger, and another
disable/enable pair after the trigger as shown below.

WHILE STORING __FND ECSEON GO TO
no stafe window enablz ﬂ no s afe

stote
any state frigger state window disable ;

siafre

any state window disable no s ale

state

window enablz

no statfe 3

state

Notice that the order of the second sequence level pair is swapped. In
sequence level 2, if the analyzer finds the trigger condition while searching
for the window disable state, it will branch to sequence level 3 where it
continues its search for the window disable state. After this, the analyzer will
remain in sequence levels 3 and 4 until the trace memory is filled, completing
the trace.

181

Chapter 6: Debugging Programs

Setting Up Custom Trace Specifications (Emulator Only)

Example

[Sequence
Primary Secondary
Branch: to Branch: to Store:
1 | e 2 | no state 1 no state |
2| anpstate 131 d 1] [any state |
3 | d g 4 § | no state g 1 g | any state g
4 | e g 3 § | no state g 1 g | no state g

Pattern/Hange: [Select with:Double-Chick]

Trigger On:

Count:

To trace the window of code execution between lines 46 and 51 of the sample
program, triggering on any state in the window:

= Sequence Trace

Prestore:

- trigger start

) trigger center
9] trigger end

[Break on Trigger

(1.0 =S B =y -1}
L LI | 1 §

A D: 5
A D: 5
A D: 5
A-zampled\\H0051 D: S:prog
A:zample\\H0046 D: 5:prog

Clear g

Notice that the analyzer triggers on the entry to sequence level 3. The
primary branch condition in level 2 actually specifies the trigger condition.

To store the current trace specification

1 Choose the Trace - Edit... (ALT, T, E) command.

2 Choose the Save... button.

3 Specify the name of the trace specification file.

4 Choose the OK button.

You can also store trace specifications from the Trigger Store Trace, Find
Then Trigger Trace, or Sequence Trace dialog boxes.

The extension for trace specification files defaults to ".TRC".

182

Chapter 6: Debugging Programs
Setting Up Custom Trace Specifications (Emulator Only)

To load a stored trace specification

Choose the Trace - Trigger Store... (ALT, T, T), Trace - Find Then
Trigger... (ALT, T, D), Trace — Sequence... (ALT, T, Q), or
Trace - Edit... (ALT, T, E) command.

Choose the Load... button.
Select the desired trace specification file.
Choose the OK button.

A "Trigger Store" trace specification file can be loaded into any of the trace
setting dialog boxes. A "Find Then Trigger" trace specification file can be
loaded into either the Find Then Trigger Trace or Sequence Trace dialog
boxes. A "Sequence" trace specification file can only be loaded into the
Sequence Trace dialog box.

183

Chapter 6: Debugging Programs
Programming Target Flash Memory (E3490A Only)

Programming Target Flash Memory (E3490A
Only)

This section shows you how:
e To program or erase a part

You can use the HP E3490A Software Probe to program flash memory on
your target system.

Target system configuration

Prior to erasing or programming parts through the HP E3490A Software
Probe, you must to establish any necessary options on the target system.
This can include enabling the programming voltage (Vpp), disabling write
protection, or properly setting the chip selects in the SIM. The chip selects
in the SIM can be set through the configuration process. The documentation
on the target system can provide information on such things as establishing
the Vpp and disabling any target based write protection. The HP E3490A
Software Probe accomplishes the FLASH ROM erasure and programming,
through standard target bus writes and reads.

Supported parts

The HP E3490A Software Probe can program standard Intel and AMD parts,
and equivalent parts from other manufacturers. Supported algorithms include
the Intel quick-pulse (or the identical AMD Flashrite), Intel Auto, AMD 5V
embedded, and AMD 12V embedded algorithms.

Supported file sizes

There is no file size limit.

184

Chapter 6: Debugging Programs
Programming Target Flash Memory (E3490A Only)

To program or erase a part
1 Create a file which contains the data to be flashed.

2 Set the necessary options (if any) on your target system to allow
flash programming.

3 Choose the File - Flash Programming... command.
4 Select the appropriate options to program your flash memory.

5 Program the part by clicking on OK or Apply in the dialog box.

185

186

Part 3

Reference

Descriptions of the product in a dictionary or encyclopedia format.

187

Part3

188

Command File and Macro Command
Summary

189

Command File and Macro Command Summary

This section lists the Real-Time C Debugger break macro and command file
commands, providing syntax and brief description for each of the listed
commands. For details on each command, refer to the command
descriptions.

The characters in parentheses can be ignored for shortcut entry.

Run Control Commands
Command Param_1 Param_2 Param_3 Param_4 Operation

BRE(AK) Breaking execution
COM(E) Run to cursor-indicated

line
OVE(R) Stepping over
OVE(R) count Repeated a number of times
OVE(R) count address From specified address
OVE(R) count STA(RT) From transfer address
RES(ET) Resetting processor
RET(URN) Until return
RUN From current address
RUN address From specified address
RUN STA(RT) From transfer address
RUN RES(ET) From reset
STE(P) Stepping
STE(P) count Repeated a number of times
STE(P) count address From specified address
STE(P) count STA(RT) From transfer address

Variable and Memory Commands
Command Param_1 Param_2 Param_3 Param_4 Operation

MEM(ORY) address Changing address displayed
MEM(ORY) address TO value Edit memory, display size
MEM(ORY) size address TO value Edit memory, specify size

MEM(ORY) FIL(L) size addr-range value Filling memory contents
MEM(ORY) COP(Y) size addr-range address Copying memory contents

MEM(ORY) LOA(D) format filename Loading memory from a file
MEM(ORY) STO(RE) format addr-range filename Storing memory to a file
MEM(ORY) BYT(E) Byte format display

MEM(ORY) WOR(D) 16-Bit format display
MEM(ORY) ABS(OLUTE) Single-column display
MEM(ORY) BLO(CK) Multi-column display
MEM(ORY) LON(G) 32-Bit format display

10 SET size space address Registering 1/0 display

10 DEL(ETE) size space address Deleting I/O display

10 size space address TO value Editing /0

VAR(IABLE) address TO value Editing variable

WP SET address Registering watchpoint

WP DEL(ETE) address Deleting watchpoint

WP DEL(ETE) ALL Deleting all watchpoints

190

Chapter 7: Command File and Macro Command Summary
Command File and Macro Command Summary

Breakpoint Commands
Command Param_1 Param_2 Param_3 Param_4 Operation

MODE BKP(TBREAK) ON|OFF Deletes all/prevents new
breakpoints

BM SET linenumber command Setting break macro
BM SET plinenum command Setting break macro
BM DEL(ETE) linenumber Deleting break macro
BM DEL(ETE) plinenum Deleting break macro
BP SET address Setting breakpoint

BP DEL(ETE) address Deleting breakpoint

BP DEL(ETE) ALL Deleting breakpoint

BP DISABLE address Disabling a breakpoint
BP ENABLE address Enabling a breakpoint

EVA(LUATE) address
EVA(LUATE) "strings"
EVA(LUATE) CLE(AR)

Expression window display
Printing string
Clearing Expression window

Window Open/Close Command
Command Param_1 Param_2 Param_3 Param_4 Operation

DIS(PLAY) window-name Opening the named window
ICO(NIC) window-name Closing the named window

Configuration Command
Command Param_1 Param_2 Param_3 Param_4 Operation

MON(ITOR) STA(RT) Starting monitor
MON(ITOR) mon-item mon-ans Setting up monitor
MON(ITOR) END Ending monitor

CON(FIG) STA(RT) Starting configuration
CON(FIG) config-item config-ans Executing configuration
CON(FIG) END Ending configuration

CFGBDM config-item config-ans Ending configuration
MAP STA(RT) Starting mapping

MAP addr-range memtype func-code attribute Executing mapping
MAP OTHER memtype func-code Mapping OTHER area
MAP END Ending mapping

MOD(E) MNE(MONIC) ON Enabling Mnemonic display

MOD(E) MNE(MONIC) OFF Enabling Source display
MOD(E) REA(LTIME) ON Enabling real-time mode
MOD(E) REA(LTIME) OFF Disabling real-time mode

MOD(E) IOG(UARD) ON
MOD(E) IOG(UARD) OFF
MOD(E) MEM(ORYPOLL) ON
MOD(E) MEM(ORYPOLL) OFF
MOD(E) WAT(CHPOLL) ON

Enabling 1/0O guard
Disabling 1/0O guard
Enabling Memory polling
Disabling Memory polling
Enabling WatchPoint polling

MOD(E) WAT(CHPOLL) OFF Disabling WatchPoint
polling

MOD(E) LOG ON Enabling log file output

MOD(E) LOG OFF Disabling log file output

MOD(E) BNC IN Setting BNC input

MOD(E) BNC ouT Setting BNC output

MOD(E) SYM(BOLCASE) ON Case sensitive symbol
search

MOD(E) SYM(BOLCASE) OFF Case insensitive sym.
search

MOD(E) TRA(CE) DIS(PLAY) FRO(M) state-num Change bus cycle

disassembly

191

Chapter 7: Command File and Macro Command Summary
Command File and Macro Command Summary

MOD(E) TRA(CE) DIS(PLAY) ALI(GN) state-num Operand state when

dequeueing
MOD(E) TRA(CE) DIS(PLAY) DEQ(UEUE) Dequeue bus cycle data
MOD(E) TRA(CE) DIS(PLAY) NOD(EQUEUE) Display bus data as
captured
MOD(E) DOW(NLOAD) ERR(ABORT) Error causes load abort
MOD(E) DOW(NLOAD) NOE(RRABORT) Load continues after error
MOD(E) SOU(RCE) ASK(PATH) Prompt for source paths
MOD(E) SOU(RCE) NOA(SKPATH) Don’t prompt for source
paths
MOD(E) TRACECLOCK BACKGROUND Trace background cycles
MOD(E) TRACECLOCK BOTH Trace all processor cycles
MOD(E) TRACECLOCK USER Trace user program cycles

File Command
Command Param_1 Param_2 Param_3 Param_4 Operation

FIL(E) SOU(RCE) modulename Displaying source file

FIL(E) OBJ(ECT) filename func-code Loading object

FIL(E) SYM(BOL) filename func-code Loading symbol

FIL(E) BIN(ARY) filename func-code Loading data

FIL(E) APPEND filename func-code Appending symbol

FIL(E) CHA(INCMD) filename Chaining command files

FIL(E) COM(MAND) filename Executing command file

FIL(E) LOG filename Specifying command log file

FIL(E) RER(UN) Re-executes command file

FIL(E) CON(FIGURATION) LOA(D) filename Loads config. from file

FIL(E) CON(FIGURATION) STO(RE) filename Stores configuration to
file

FIL(E) ENV(IRONMENT) LOA(D) filename Loads environment from file

FIL(E) ENV(IRONMENT) SAV(E) filename Stores environment to file

Trace Commands
Command Param_1 Param_2 Param_3 Param_4 Operation

TRA(CE) FUN(CTION) FLO(W) Tracing function flow
TRA(CE) FUN(CTION) CAL(L) funcname Tracing function call
TRA(CE) FUN(CTION) STA(TEMENT) funcname Tracing statement
TRA(CE) VAR(IABLE) ACC(ESS) address Tracing access to variable
TRA(CE) VAR(IABLE) BRE(AK) address value Setting breakpoint variable
TRA(CE) STO(P) Stopping tracing

TRA(CE) ALW(AYS) Tracing until halt

TRA(CE) AGA(IN) Restarting tracing

TRA(CE) SAV(E) filename Storing trace specification
TRA(CE) LOA(D) filename Loading trace specification
TRA(CE) CUS(TOMIZE) Starts trace w/loaded spec.
TRA(CE) DIS(PLAY) MIX(ED) Enabling source+bus display
TRA(CE) DIS(PLAY) SOU(RCE) Enabling source display
TRA(CE) DIS(PLAY) BUS Enabling bus display
TRA(CE) DIS(PLAY) ABS(OLUTE) Displaying absolute time
TRA(CE) DIS(PLAY) REL(ATIVE) Displaying relative time
TRA(CE) COP(Y) DISPLAY Copying trace display
TRA(CE) COP(Y) ALL Copying trace results

TRA(CE) FIN(D) TRI(GGER) Centers trigger in window
TRA(CE) FIN(D) STA(TE) state-num Centers state in window
TRA(CE) COP(Y) SPE(C) Copying specification

192

Chapter 7: Command File and Macro Command Summary
Command File and Macro Command Summary

Symbol Window Commands
Command Param_1 Param_2 Param_3 Param_4 Operation

SYM(BOL) LIS(T) MOD(ULE) Displaying module
SYM(BOL) LIS(T) FUN(CTION) Displaying function
SYM(BOL) LIS(T) EXT(ERNAL) Displaying global symbol
SYM(BOL) LIS(T) INT(ERNAL) funcname Displaying local symbol
SYM(BOL) LIS(T) GLO(BAL) Displaying global asm
symbol
SYM(BOL) LIS(T) LOC(AL) modulename Displaying local asm symbol
SYM(BOL) ADD usersymbol address Adding user-defined symbol
SYM(BOL) DEL(ETE) usersymbol Deleting user-defined
symbol
SYM(BOL) DEL(ETE) ALL Deleting all user symbols
SYM(BOL) MAT(CH) "strings" Displaying matched string
SYM(BOL) COP(Y) DIS(PLAY) Copying symbol display
SYM(BOL) COP(Y) ALL Copying all symbols

Command File Control Command
Command Param_1 Param_2 Param_3 Param_4 Operation

EXIT Exiting command file
EXIT VAR(IABLE) address value Exiting with variable cont.
EXIT REG(ISTER) regname value Exiting with register cont.
EXIT MEM(ORY) size address value Exiting with memory
contents
EXIT 10 BYTE/WORD address value Exiting with 1/O contents
WAIT MON(ITOR) Wait until MONITOR status
WAIT RUN Wait until RUN status
WAIT UNK(NOWN) Wait until UNKNOWN status
WAIT SLO(W) Wait until SLOW CLOCK
status
WAIT TGT(RESET) Wait until TARGET RESET
WAIT SLE(EP) Wait until SLEEP status
WAIT GRA(NT) Wait until BUS GRANT status
WAIT NOB(US) Wait until NOBUS status
WAIT TCO(M) Wait until end of trace
WAIT THA(LT) Wait until halt
WAIT TIM(E) seconds Wait a number of seconds

Miscellaneous Commands
Command Param_1 Param_2 Param_3 Param_4 Operation

ASM address user_symbol "inst_string" In-line assembler

BEE(P) Sounding beep

BUTTON label "command" Adds button to Button
window

QUI(T) Exiting debugger

COP(Y) TO filename Specifying copy destination

COP(Y) SOU(RCE) Copying Source window

COP(Y) REG(ISTER) Copying Register window

COP(Y) MEM(ORY) Copying Memory window

COP(Y) WAT(CHPOINT) Copying WatchPoint window

COP(Y) BAC(KTRACE) Copying BackTrace window

COP(Y) IO Copying 1/O window

COP(Y) EXP(RESSION) Calling Expression window

CUR(SOR) address Positioning cursor

CUR(SOR) PC Finding current PC

DIR(ECTORY) directoryname Directory for source search

NOP Non-operative

193

Chapter 7: Command File and Macro Command Summary
Command File and Macro Command Summary

REG(ISTER) regname TO value Editing register contents

SEA(RCH) STR(ING) direction case strings Searching string

SEA(RCH) FUN(CTION) funcname Selecting function

SEA(RCH) MEM(ORY) size addr-range value Searching memory

SEA(RCH) MEM(ORY) STR(ING) "strings" Searching memory for string

TER(MCOM) ti-command Terminal Interface command
Parameters

Parameter Description Notation

address Address See "Reference."

addr-range Address range

attribute For emulation memory NONE, DSI, BYTE, or DSI_BYTE.
(in HP 64782 Emulator)
Overlay for emulation NONE, BLK1 - BLK6
memory (in HP 64749)

case Case sensing

command Macro command Commands listed in the "Reference."
config-ans Setting See "Reference."
config-item Configuration See "Reference.”
count Count Decimal notation

direction Search direction

directoryname Directory name

filename File name

format Memory file format

funcname Function name

func-code Function code

label Button label

linenumber Line number

memtype Memory type

modulename Module name

mon-ans Setting See "Reference."
mon-item Configuration See "Reference.”
plinenum Macro line number line number.macro number (ex. 34.1)
regname Register name

seconds Time in seconds

size Data size

space Memory or 1/O space

strings String "string"

usersymbol User-defined symbol See "Reference."
value Value See "Reference.”

window-name Window name 1st 3 characters, see "Reference.”

194

Expressions in Commands

195

Expressions in Commands

When you enter values and addresses in commands, you can use:

Numeric constants (hexadecimal, decimal, octal, or binary values).
Symbols (identifiers).
Function codes.

C operators (pointers, arrays, structures, unions, unary minus operators)
and parentheses (specifying the order of operator evaluation).

196

Chapter 8: Expressions in Commands
Numeric Constants

Numeric Constants

All numeric constants are assumed to be hexadecimal, except when the
number refers to a count; count values are assumed to be decimal. By
appending a suffix to the numeric value, you can specify its base.

The debugger expressions support the following numeric constants with or
without radix:

Hexadecimal Alphanumeric strings starting with "0x" or "0X" and
consisting of any of ’0’ through ’9’, ’A’ through 'F’, or 'a’
through 'f’ (for example: 0x12345678, OXFFFF0000).

Alphanumeric strings starting with any of '0’ through ’9’,
ending with 'H’ or 'h’, and consisting of any of ’0’ through
'9’, A’ through 'F’, or ’a’ through 'f’ (for example:
12345678H, OFFFF0000h).

Alphanumeric strings starting with any of ’0’ through ’9’
and consisting of any of 0’ through ’9’, ’A’ through 'F’, or ’a’
through 'f’ (for example: 12345678, OFFFF0000).

Hexadecimal strings starting with alphabetical characters
must be preceded by 0. For example, FF40H must be
entered as OFF40H.

Decimal Numeric strings consisting of any of ’0’ through ’9’ and
ending with "T” or 't’ (for example: 128T, 1000t).

Octal Numeric strings consisting of any of 0’ through ’7’ and
ending with O’ or ’o’ (not zero) (for example: 2000, 3770).

Binary Numeric strings consisting of ’0’ or ’1’ and ending with 'Y’ or
'y’ (for example: 10000000y, 11001011Y).

Don’t Care Numeric strings containing "X’ or ’x’ values. All numeric
strings must begin with a numeric value. For example,
x1x0y must be entered as 0x1x0y.

197

Chapter 8: Expressions in Commands

Symbols

Symbols

The debugger expressions support the following symbols (identifiers):
e Symbols defined in C source code.
e Symbols defined in assembly language source code.

¢ Symbols added with the Symbol window control menu’s User
defined - Add... (ALT, -, U, A) command.

¢ Line number symbols.

Symbol expressions may be in the following format (where bracketed parts
are optional):

[module_name\\]symbol_name[,format_spec]

Module Name

The module names include C/Assembler module names as follows:

Assembler (file_path)asm_file_name
module name

C module name source_file name
(without extension)
Symbol Name

The symbol names include symbols defined in C/Assembler source codes,
user-defined symbols, and line number symbols:

User-defined Strings consisting of up to 256 characters including:

symbols alphanumeric characters, _ (underscore), and ? (question
mark).

Line number #source_file line_number

symbols

198

Examples

Chapter 8: Expressions in Commands
Symbols

The symbol names can also include either * or & to explicitly specify the
evaluation of the symbol.

Symbol address &symbol_name

Symbol data *symbol_name

Format Specification

The format specifications define the variable display format or size for the
variable access or break tracing:

String S

Decimal d (current size), d8 (8 bit), d16 (16 bit), d32 (32 bit)
Unsigned u (current size), u8 (8 bit), ul6 (16 bit), u32 (32 bit)
decimal

Hexadecimal x (current size), x8 (8 bit), x16 (16 bit), x32 (32 bit)

Some example symbol expressions are shown below:
sample\\#22,x32

Display the address of line number 22 in the module
"sample," formatted as a 32-bit hex number. This form
(with the format specification) is used in the watchpoint
window, expression window, etc.

sample\\#22

Refer to the address of line number 22 in the module
"sample." This form (without the format specification) is
used in the trace specification, memory display window,
etc.

data[2].message,s

Display the structure element "message" in the third
element of the array "data" as a string,.

199

Chapter 8: Expressions in Commands
Symbols

dat - message,s

Display the structure element "message" pointed to by the
"dat" pointer as a string.

dat - message,x32
Display the structure element "message" pointed to by the
"dat" pointer as a 32-bit hex number.
sample\\data[1].status,d32
Display the structure element "status" in the second

element of the array "data" that is in the module "sample"
as a 32-bit decimal integer.

&data[0]

Refer to the address of the first element of the array "data."
*1000
Does not do anything. (It displays dashes, as an indication

of a parsing error.) Note that you cannot use constants as
an address.

200

Chapter 8: Expressions in Commands
Function Codes

Function Codes

Addresses can be specified with any of the function codes. The function
codes are appended to the addresses, preceded by @ (for example:
Oa3bc@sp).

You must include a function code when referring to an address that was
mapped with a function code other than X. This general rule is true except
when:

e Specifying addresses in trace commands (because address qualifiers are
compared with values captured on the address bus -- function code
information is captured as part of the bus cycle status).

e Referring to a program counter address (because the function code is
determined by the Supervisor/User status flag bit).

C Operators

The debugger expressions support the following C operators. The order of
operator evaluation can be modified using parentheses '(" and ’)’; however, it
basically follows C conventions:

Pointers *and &’
Arrays Tand '
Structures or unions >’ and "->"

Unary minus -

201

202

Menu Bar Commands

203

Menu Bar Commands

This chapter describes the commands that can be chosen from the menu bar.
Command descriptions are in the order they appear in the menu bar (top to
bottom, left to right).

* File - Load Object... (ALT, F, L)

¢ File - Flash Programming... (ALT, F, F)

e File -~ Command Log - Log File Name... (ALT, F, C, N)
¢ File -~ Command Log - Logging ON (ALT, F, C, O)
* File - Command Log - Logging OFF (ALT, F, C, F)
¢ File - Run Cmd File... (ALT, F, R)

* File - Load Debug... (ALT, F, D)

e File -~ Save Debug... (ALT, F, S)

e File -~ Load Emulator Config... (ALT, F, E)
e File » Save Emulator Config... (ALT, F, V)
e File - Copy Destination... (ALT, F, P)

* File - Exit (ALT, F, X)

* File - Exit HW Locked (ALT, F, H)

e Execution-Run (ALT, E, U)

¢ Execution - Run to Cursor (ALT, R C)

e Execution - Run to Caller (ALT, E, T)

e Execution-Run... (ALT, E, R)

e Execution - Single Step (ALT, E, N)

e Execution - Step Over (ALT, E, O)

e Execution - Step... (ALT, E, S)

e Execution - Break (ALT, E, B)

e« Execution - Reset (ALT, E, E)

¢ Breakpoint - Set at Cursor (ALT, B, S)

e Breakpoint- Delete at Cursor (ALT, B, D)
e Breakpoint - Set Macro... (ALT, B, M)

e Breakpoint - Delete Macro (ALT, B, L)

* Breakpoint- Edit... (ALT, B, E)

e Variable - Edit... (ALT, V, E)

e Trace - Function Flow (ALT, T, F)

e Trace - Function Caller... (ALT, T, C)

e Trace - Function Statement... (ALT, T, S)
e Trace - Variable Access... (ALT, T, V)

204

Chapter 9: Menu Bar Commands

Trace - Variable Break... (ALT, T, B)

Trace - Edit... (ALT, T, E)

Trace - Trigger Store... (ALT, T, T)

Trace - Find Then Trigger... (ALT, T, D)

Trace - Sequence... (ALT, T, Q)

Trace - Until Halt (ALT, T, U)

Trace - Halt (ALT, T, H)

Trace - Again (ALT, T, A)

RealTime — Monitor Intrusion - Disallowed (ALT, R, T, D)
RealTime — Monitor Intrusion - Allowed (ALT, R, T, A)
RealTime - I/O Polling — ON (ALT, R, I, O)

RealTime - I/O Polling — OFF (ALT, R, [, F)

RealTime - Watchpoint Polling - ON (ALT, R, W, O)

RealTime - Watchpoint Polling - OFF (ALT, R, W, F)
RealTime - Memory Polling - ON (ALT, R, M, O)

RealTime — Memory Polling - OFF (ALT, R, M, F)

Assemble... (ALT, A)

Settings - Emulator Config - Hardware... (ALT, S, E, H)
Settings - Emulator Config - Memory Map... (ALT, S, E, M)
Settings - Emulator Config -~ Monitor... (ALT, S, E, O)

Settings - Emulator Config - Information... (ALT, S, E,)
Settings - Communication... (ALT, S, C)

Settings - BNC - Outputs Analyzer Trigger (ALT, S, B, D)
Settings - BNC - Input to Analyzer Arm (ALT, S, B, R)
Settings - Font... (ALT, S, F)

Settings — Tabstops... (ALT, S, T)

Settings — Symbols — Case Sensitive -~ ON (ALT, S, S, C, O)
Settings — Symbols — Case Sensitive - OFF (ALT, S, S, C, F)
Settings —» Extended - Trace Cycles - User (ALT, S, X, T, U)
Settings —» Extended - Trace Cycles - Monitor (ALT, S, X, T, M)
Settings —» Extended - Trace Cycles - Both (ALT, S, X, T, B)
Settings —» Extended - Load Error Abort - ON (ALT, S, X, L, O)
Settings —» Extended - Load Error Abort - OFF (ALT, S, X, L, F)
Settings —» Extended - Source Path Query - ON (ALT, S, X, S, O)
Settings —» Extended - Source Path Query - OFF

(ALT, S, X, S, F)

Window - Cascade (ALT, W, C)

Window - Tile (ALT, W, T)

206

Chapter 9: Menu Bar Commands

e Window - Arrange Icons (ALT, W, A)

e Window - 1-9 <win_name> (ALT, W, 1-9)

e Window - More Windows... (ALT, W, M)

e Help - About Debugger/Emulator... (ALT, H, D)

206

Chapter 9: Menu Bar Commands
File - Load Object... (ALT, F, L)

File - Load Object... (ALT, F, L)

Loads the specified object file and symbolic information into the debugger.
Program code is loaded into emulation memory or target system RAM.
Object files are typically IEEE-695 format absolute files. Some software

development tools that generate this format are:

¢ Microtec MCC68K Compiler
¢ Microtec ASM68K Assembler
¢ Microtec LNK68K Linker

e HP AXLS CC68000 Compiler
e HP AXLS AS68K Assembler

e« HP AXLS LD68K Linker

You can also load Motorola S-Record and Intel Hexadecimal format files;
however, no symbolic information from these files will be loaded.

Load Object File Dialog Box

Choosing the File - Load Object... (ALT, F, L) command opens the following
dialog box:

= Load Object File

Current: CAHPARTCAM3ZXADEMOASAN [[oad |
File Name: [\DEMO\SAMPLEASAMPLE X

Browse.

Bytes Loaded: | 0|

] Symbols Only
] pata Only
] Symbolz Append

Current Shows the currently loaded object file.

File Name Specifies the object file to be loaded. The system defaults
the file extension to ".x".

207

Chapter 9: Menu Bar Commands
File - Load Object... (ALT, F, L)

Fcode

Bytes Loaded

Symbols Only

Data Only

Symbols Append

Load

Cancel

Browse...

Assigns any of the function codes to the destination
memory area.

Displays the loaded data in Kbytes.

Loads only the symbolic information. This is used when
programs are already in memory (for example, when the
debugger is exited and re-entered without turning OFF
power to the target system or when code is in target
system ROM).

Loads program code but not symbols.
Appends the symbols from the specified object file to the
currently loaded symbols. This lets you debug code loaded

from multiple object files.

Starts loading the specified object file and closes the dialog
box.

Closes the dialog box without loading the object file.

Opens a file selection dialog box from which you can select
the object file to be loaded.

Command File Command

FIL(E) OBJ(ECT) file_name func_code
Loads the specified object file and symbols into the debugger.

FIL(E) SYM(BOL) file_name func_code
Loads only the symbolic information from the specified object file.

FIL(E) BIN(ARY) file_name func_code
Loads only the program code from the specified object file.

FIL(E) APP(END) file_name func_code
Appends the symbol information from the specified object file to the
currently loaded symbol information.

208

Chapter 9: Menu Bar Commands
File - Load Object... (ALT, F, L)

See Also

"To load user programs" in the "Loading and Displaying Programs" section of
the "Debugging Programs" chapter.

209

Chapter 9: Menu Bar Commands
File - Flash Programming... (ALT, F, F)

File - Flash Programming... (ALT, F, F)

(HP E3490A Software Probe Only.)

Programs flash memory parts in the target system.

This dialog box provides a mechanism to control programming and erasing of
flash memory on the target system. It does this by issuing background cycles
on the target system bus. The target system’s SIM registers and other
hardware must be set up to respond to bus cycles for the flash memory prior
to executing any FLASH operations.

= Flash Programming

File Hame: ||

| Browse

Flash ®

Size of ROM

Databus Width

Erase (7 Algorithm |Intelﬂuick-F‘uIse ||E|
ROM Start address | |

ROM Width (in bytes) ®1 &2 (4

| | Apply

@1 2 O4

Status:

Flash

Erase

Algorithm

Choose Flash to download code into the flash device from
an absolute, Motorola S-Record, or Intel Hex file.

Choose Erase to erase all or selected sectors of the flash
device, depending on the capabilities of the device.

Lets you select select the algorithm to use for the flash
device. The algorithm is selected from one of four currently
supported. If you do not know which algorithm to use for
your part, consult the data sheet for your part, or see if it is

210

Chapter 9: Menu Bar Commands
File - Flash Programming... (ALT, F, F)

in the partial list of parts and their algorithms at the end of
this help. The four currently supported algorithms are:

AMD 12V Embedded

AMD 5V Embedded

Intel Auto

Intel Quick-Pulse (or AMD Flashrite)

ROM Start Use this field to enter the starting address on the target
address bus for the Flash ROM device. You may enter a number or
symbol from your target program.

Size of ROM Use this field to enter the size (in bytes) of the Flash ROM
device. You may enter a number or symbol from your
target program.

ROM Width (in Use these buttons to select the width of the Flash ROM
bytes) device itself.

File Name Use this field to enter the name of the file which contains
the data to be programmed into the Flash ROM device.
This field is used only for the Program operation.

Browse Opens a file selection dialog to pick a file.
Sector This section will be active if you have selected the Erase
Addresses operation. The addresses for the sectors may be specified

as numbers or using program symbols. You may specify up
to six sectors at once. To erase more than six, simply enter
the additional sectors after applying the erase function
with the first six. For the Intel QuickPulse, AMD 12V
Embedded, and AMD 5V Sector algorithms, the entire part
will be erased if you do not specify any sectors.

Status Displays status information and error messages.

OK Applies the values specified, and closes the dialog box.
Cancel Closes the dialog box.
Apply Applies the values specified, without closing the dialog box.

211

Chapter 9: Menu Bar Commands
File - Flash Programming... (ALT, F, F)

FLASH Device List

Following is a partial list of FLASH devices family, part designation, package,
and algorithm to use. Be sure to consult your manufacturer’s data sheet to
verify the algorithm selection before programming.

FAMILY Part Package Algorithm

AMD 12V Bulk Erase Am28F256 32-pin PLCC Intel Quick-Pulse
Am28F512 32-pin PLCC Intel Quick-Pulse
Am28F010 32-pin PLCC Intel Quick-Pulse
Am28F020 32-pin PLCC Intel Quick-Pulse
Am28F256A 32-pin PLCC AMD 12V Embedded
Am28F512A 32-pin PLCC AMD 12V Embedded
Am28F010A 32-pin PLCC AMD 12V Embedded
Am28F020A 32-pin PLCC AMD 12V Embedded

AMD 5V only Secor erase Am29F010 32-pin PLCC AMD 5V Embedded
Am29F100 AMD 5V Embedded
Am29F200 AMD 5V Embedded
Am29F040 44-pin SOP AMD 5V Embedded
Am29F400 AMD 5V Embedded
Am29F016 AMD 5V Embedded

Intel FlashFile 28F032SA Intel Auto
28F016SA Intel Auto
28F008SA Intel Auto

Intel Boot Block 28F400BX 44-pin SO Intel Auto
28F200B Intel Auto
28F001B Intel Auto

Intel Bulk erase 28F020 32-pin PLCC Intel Quick-Pulse
28F010 32-pin PLCC Intel Quick-Pulse

28F512 32-pin PLCC Intel Quick-Pulse

28F256A 32-pin PLCC Intel Quick-Pulse

Mitsubishi M5M28F101 32-pin PLC Intel Quick-Pulse
M5M28F10 Intel Quick-Pulse

M5M28F400 44-pin SOP Intel Quick-Pulse
M5M28F016 Intel Auto

Tl TMS28F010A 32-pin PLC Intel Quick-Pulse
TMS28F010 32-pin PLC Intel Quick-Pulse
TMS28F512A 32-pin PLC Intel Quick-Pulse
TMS28F210 Intel Quick-Pulse
TMS28F400 Intel Auto

Hitachi 28F4001 32-pin DIP Intel Quick-Pulse
28F101 Intel Quick-Pulse

SGS-Thomson 28F410 44-pin SOP Intel Auto
28F420 44-pin SOP Intel Auto

NOT SUPPORTED
Atmel

Hitachi HN28F101
Toshiba

212

Chapter 9: Menu Bar Commands
File - Command Log — Log File Name... (ALT, F, C, N)

File -~ Command Log - Log File Name... (ALT, F, C, N)

Lets you name a new command log file.

The current command log file is closed and the specified command log file is
opened. The default command log file name is "log.cmd".

Command log files can be executed with the File - Run Cmd File... (ALT, F,
R) command.

The File -~ Command Log - Logging OFF (ALT, F, C, F) command stops the
logging of executed commands.

This command opens a file selection dialog box from which you can select the
command log file. Command log files have a ".CMD" extension.

Command File Command
FIL(E) LOG filename
See Also

"To create a command file" in the "Using Command Files" section of the
"Using the Debugger Interface" chapter.

213

Chapter 9: Menu Bar Commands
File - Command Log — Logging ON (ALT, F, C, O)

File - Command Log - Logging ON (ALT, F, C, O)
Starts command log file output.

The File - Command Log - Log File Name... (ALT, F, C, N) command
specifies the destination file.

Command File Command
MOD(E) LOG ON

See Also

"To create a command file" in the "Using Command Files" section of the
"Using the Debugger Interface" chapter.

214

Chapter 9: Menu Bar Commands
File - Command Log — Logging OFF (ALT, F, C, F)

File -~ Command Log - Logging OFF (ALT, F, C, F)
Stops command log file output.

The File - Command Log - Log File Name... (ALT, F, C, N) command
specifies the destination file.

Command File Command
MOD(E) LOG OFF

See Also

"To create a command file" in the "Using Command Files" section of the
"Using the Debugger Interface" chapter.

215

Chapter 9: Menu Bar Commands
File - Run CmdFile... (ALT, F, R)

File - Run Cmd File... (ALT, F, R)

Executes the specified command file.

Command files can be:

¢ Files created with the File - Command Log - Log File Name...
(ALT, F, C, N) command.

* Configuration files having .CMD extension.

Command files are stored as ASCII text files so they can be created or edited
with ASCII text editors.

Command File Execution Dialog Box

Choosing the File — Run Cmd File... (ALT, F, R) command opens the
following dialog box:

= Run Command File

File Name: [C:\HPARTCAM33X\DEMO\SAMPLE \sampdemo. |

Directory: c:\hphirtcim33xidemo\sample

log.cmd g g
swarnae
sampdemo.cmd

sampemul.cmd

Browse. .. g

Parameters:
| [Help |
Executing:
FILE COMFIGURATION LOAD zampemul cmd
File Name Lets you enter the name of the command file to be

executed.

216

Chapter 9: Menu Bar Commands
File > Run Cmd File... (ALT, F, R)

Directory Shows the current directory and the command files in that
directory. You can select the command file name from this
list.

Parameters Lets you specify up to five parameters that replace

placeholders $1 through $5 in the command file.
Parameters must be separated by blank spaces.

Executing Shows the command being executed.

Execute Executes the command file.

Stop Stops command file execution.

Close Closes the dialog box.

Browse... Opens a file selection dialog box from which you can select

the command file name.

Command File Command
FIL(E) COM(MAND) filename args

See Also

"To execute a command file" in the "Using Command Files" section of the
"Using the Debugger Interface" chapter.

217

Chapter 9: Menu Bar Commands
File - Load Debug... (ALT, F, D)

File - Load Debug... (ALT, F, D)

Loads a debug environment file.

This command opens a file selection dialog box from which you select the
debug environment file.

Debug environment files have the extension "ENV".
Debug environment files contain information about:
e Breakpoints.

e Variables in the WatchPoint window.

e The directory that contains the currently loaded object file.

Command File Command
FIL(E) ENV(IRONMENT) LOA(D) filename

218

Chapter 9: Menu Bar Commands
File - Save Debug... (ALT, F, S)

File - Save Debug... (ALT, F, S)

Saves a debug environment file.

This command opens a file selection dialog box from which you select the
debug environment file.

The following information is saved in the debug environment file:
e Breakpoints.
* Variables in the WatchPoint window.

e The directory that contains the currently loaded object file.

Command File Command
FIL(E) ENV(IRONMENT) SAV(E) filename

219

Chapter 9: Menu Bar Commands
File - Load Emulator Config... (ALT, F, E)

File - Load Emulator Config... (ALT, F, E)

Loads a hardware configuration command file.

This command opens a file selection dialog box from which you select the
hardware configuration file.

Emulator configuration command files contain:

* Hardware configuration settings.

* Memory map configuration settings (emulator only).
* Monitor configuration settings (emulator only).

* EMSIM register values (HP E3490A Software Probe only).

Command File Command
FIL(E) CON(FIGURATION) LOA(D) filename

See Also

"To load an emulator configuration" in the "Saving and Loading
Configurations" section of the "Configuring the Emulator" chapter.

220

Chapter 9: Menu Bar Commands
File - Save Emulator Config... (ALT, F, V)

File » Save Emulator Config... (ALT, F, V)

Saves the current hardware configuration to a command file.

The following information is saved in the emulator configuration file:

e Hardware configuration settings.

* EMSIM register values.

EMRAM register values, if RAM is present in the emulated processor.
* Memory map configuration settings (emulator only).

* Monitor configuration settings (emulator only).

Exceptions to the above list when using the HP E3490A Software
Probe

In the B3624.1NI file for the emulator product (C:\HP\RTC\M33X\B3624.INI
or C:\HP\RTC\M332\B3624.INI), you will find a variable named
SoftProbeType. The setting of SoftProbeType determines what will be
available for display on screen, and what will be saved when you store the
emulator configuration file.

e If you wish to display and save all of the EMSIM and EMRAM register
values for a specific member of the 683xx family of microprocessors, set
SoftProbeType=<specific processor number>. (For example, to display
and save all EMSIM and EMRAM values for the 68332 microprocessor,
set SoftProbeType=68332.) EMRAM register values are only saved if the
specified processor has RAM registers.

e Ifyou set SoftProbeType=683xx (default), no EMSIM or EMRAM
registers will be available for display, and none will be saved in the
emulator configuration file.

The selection of SoftProbeType=683xx provides versatility when connecting
the emulator to several different members of the 683xx processor family.
The selection of SoftProbeType=<specific processor number> provides the
best support for the specified processor, but only limited support for all of
the other processors who are members of the 683xx processor family.

221

Chapter 9: Menu Bar Commands
File - Save Emulator Config... (ALT, F, V)

Command File Command
FIL(E) CON(FIGURATION) STO(RE) filename

See Also

"To save the current emulator configuration" in the "Saving and Loading
Configurations" section of the "Configuring the Emulator" chapter.

222

Chapter 9: Menu Bar Commands
File » Copy Destination... (ALT, F, P)

File - Copy Destination... (ALT, F, P)

Names the listing file to which debugger information may be copied.

The contents of most of the debugger windows can be copied to the
destination listing file by choosing the Copy - Window command from the
window’s control menu.

The Symbol and Trace windows’ control menus provide the Copy — All
command for copying all of the symbolic or trace information to the
destination listing file.

This command opens a file selection dialog box from which you select the
name of the output list file. Output list files have the extension ".LST".

Command File Command
COP(Y) TO filename

See Also

"To change the list file destination" in the "Working with Debugger Windows"
section of the "Using the Debugger Interface" chapter.

223

Chapter 9: Menu Bar Commands
File - Exit (ALT, F, X)

File - Exit (ALT, F, X)
Exits the debugger.

Command File Command
QUI(T)
See Also

"To exit the debugger" in the "Starting and Exiting the Debugger" section of
the "Using the Debugger Interface" chapter.

File - Exit HW Locked (ALT, F, H)

224

Chapter 9: Menu Bar Commands
File - Exit HW Locked (ALT, F, H)

File - Exit HW Locked (ALT, F, H)

Exits the debugger and locks the emulator hardware.

When the emulator hardware is locked, your user name and ID are saved in
the HP 64700 and other users are prevented from accessing it.

You can restart the debugger and resume your debug session after reloading
the symbolic information with the File - Load Object... (ALT, F, L) command.

If you have any breakpoints set when you exit the debugger, you will have to
reset the breakpoints when you restart the debugger. All breakpoints are
deleted when RTC is exited.

Command File Command
QUI(T) LOC(KED)

See Also

Settings — Communication... (ALT, S, C)

225

Chapter 9: Menu Bar Commands
File Selection Dialog Boxes

File Selection Dialog Boxes

File selection dialog boxes are used with several of the debugger commands.
An example of a file selection dialog box is shown below.

= Log File Name

File Hame: Directones:

| 333hdemuhsamplehlug.cmd | c:h_Am3dxvdemorzample

log.cmd % = e:s

sampdemo.cmd = hp
sampemul_cmd = rte

[= m33x
[=r demo
= zample

Lizt Filez of Type: Drives:
|Lug Files[=.CMD] | = c: ms-dos_5

File Name You can select the name of the file from the list box and
edit it in the text box.

List Files of Type Lets you choose the filter for files shown in the File Name
list box.

Directories You can select the directory from the list box. The
selected directory is shown above the list box.

Drives Lets you select the drive name whose directories are
shown in the Directories list box.

OK Selects the named file and closes the dialog box.
Cancel Cancels the command and closes the dialog box.
Help If this button is available, it opens a help window for

viewing the associated help information.

226

Chapter 9: Menu Bar Commands
Execution - Run (F5), (ALT, E, U)

Execution - Run (F5), (ALT, E, U)
Runs the program from the current program counter address.

Command File Command
RUN

227

Chapter 9: Menu Bar Commands
Execution - Run to Cursor (ALT, E, C)

Execution - Run to Cursor (ALT, E, C)

Runs from the current program counter address up to the Source window
line that contains the cursor.

This command sets a breakpoint at the cursor-selected source line and runs
from the current program counter address; therefore, it cannot be used when
programs are in target system ROM.

If the cursor-selected source line is not reached within the number of
milliseconds specified by StepTimerLen in the B3624.INI file, a dialog box
appears from which you can cancel the command. When the Stop button is
chosen, program execution stops, the breakpoint is deleted, and the
processor continues RUNNING IN USER PROGRAM.

Command File Command
COM(E) address
See Also

"To run the program until the specified line" in the "Stepping, Running, and
Stopping" section of the "Debugging Programs" chapter.

228

Chapter 9: Menu Bar Commands
Execution - Run to Caller (ALT, E, T)

Execution - Run to Caller (ALT, E, T)

Executes the user program until the current function returns to its caller.

Because this command determines the address at which to stop execution
based on stack frame data and object file function information, the following
restrictions are imposed:

¢ A function cannot properly return immediately after its entry point
because the stack frame for the function has not yet been generated.
Use the Step command to single-step the function before using the
Execution - Run to Caller (ALT, E, T) command.

e An assembly language routine cannot properly return, even it follows C
function call conventions, because there is no function information in the
object file.

¢ Aninterrupt function cannot properly return because it uses a stack in a
different fashion from standard functions.

Command File Command
RET(URN)

See Also

"To run the program until the current function return" in the "Stepping,
Running, and Stopping" section of the "Debugging Programs" chapter.

229

Chapter 9: Menu Bar Commands
Execution - Run... (ALT, E, R)

Execution - Run... (ALT, E, R)

Executes the user program starting from the specified address.

This command sets the processor status to RUNNING IN USER PROGRAM.

Note If you try to run from an address whose symbol is START, STA, RESET, or
RES (or any upper- or lower-case variation), the debugger instead runs from
the start address or reset address, respectively, because these are the
keywords used with the RUN command. To fix this problem, use START+0,
STA+0, RESET+0, or RES+0 to force the symbol to be evaluated as an
address.

Run Dialog Box

Choosing the Execution —» Run... (ALT, E, R) command opens the following
dialog box:

Cancel

) User Beset
O Addreszs:

Current PC Specifies that the program run from the current program
counter address.

Start Address Specifies that the program run from the transfer address
defined in the object file.

230

Chapter 9: Menu Bar Commands
Execution - Run... (ALT, E, R)

User Reset Resets the emulation processor and lets the emulator run
and fetch its stack pointer and program counter value from
memory.

Address Lets you enter the address from which to run. Because the

function code is determined from the memory map, do not
include one with the address.

Run Initiates program execution from the specified address;
then it closes the dialog box.

Cancel Cancels the command and closes the dialog box.

Command File Command

RUN
Executes the user program from the current program counter address.

RUN STA(RT)
Executes the user program from the transfer address defined in the object
file.

RUN RES(ET)
Drives the target reset line and begins executing from the contents of
exception vector 0.

RUN address
Executes the user program from the specified address.

See Also

"To run the program from a specified address" in the "Stepping, Running, and
Stopping" section of the "Debugging Programs" chapter.

231

Chapter 9: Menu Bar Commands
Execution - Single Step (F2), (ALT, E, N)

Execution - Single Step (F2), (ALT, E, N)

Executes a single instruction or source line at the current program counter
address.

A single source line is executed when in the source only display mode, unless
no source is available or an assembly language program is loaded; in these
cases, a single assembly language instruction is executed.

When in the mnemonic mixed display mode, a single assembly language
instruction is executed.

Command File Command
STE(P)
See Also

"To step a single line or instruction" in the "Stepping, Running, and Stopping"
section of the "Debugging Programs" chapter.

Execution - Step Over (ALT, E, O)
Execution - Step... (ALT, E, S)

232

Chapter 9: Menu Bar Commands
Execution - Step Over (F3), (ALT, E, O)

Execution - Step Over (F3), (ALT, E, O)

Executes a single instruction or source line at the current program counter
except when the instruction or source line makes a subroutine or function
call, in which case the entire subroutine or function is executed.

This command is the same as the Execution - Single Step (ALT, E, N)
command except when the source line contains a function call or the
assembly instruction makes a subroutine call (with the BSR or JSR
instructions). In these cases, the entire function or subroutine is executed.

Command File Command
OVE(R)
See Also

"To step over a function" in the "Stepping, Running, and Stopping" section of
the "Debugging Programs" chapter.

233

Chapter 9: Menu Bar Commands
Execution - Step... (ALT, E, S)

Note

Execution - Step... (ALT, E, S)

Single-steps the specified number of instructions or source lines, starting
from the specified address.

Single source lines are executed when in the source only display mode,
unless no source is available or an assembly language program is loaded; in
these cases, single assembly language instructions are executed.

When in the mnemonic mixed display mode, single assembly language
instructions are executed.

If you try to step from an address whose symbol is START or STA (or any
upper- or lower-case variation), the debugger instead steps from the start
address because these are the keywords used with the STEP and OVER
commands. To fix this problem, use START+0 or STA+0 to force the symbol
to be evaluated as an address.

Step Dialog Box
Choosing the Execution - Step... (ALT, E, S) command opens the following
dialog box:
™ From
® Current PC
O Start Address
) Address:
| | (k]
(1 Over
Gount :
oun [] Follow PC
Current PC Specifies that stepping start from the current program

counter address.

234

Start Address

Address

Count

Over

Follow PC

Step

Close

Stop

Chapter 9: Menu Bar Commands
Execution - Step... (ALT, E, S)

Specifies that stepping start from the start address or
transfer address.

Lets you enter the address from which to single-step.

Indicates the step count. The count decrements by one for
every step and stops at 1.

If the source line to be executed contains a function call or
the assembly language instruction to be executed contains
a subroutine call, this option specifies that the entire
function or subroutine be executed.

If you check the Follow PC box, stepping will provide more
detail because it will follow the PC for each step, and
update the Source window after each step. Leaving this
box unchecked speeds the stepping process; the steps will
be counted, but the content of the Source window will not
be updated until stepping is completed.

Single-steps the specified number of instructions or source
lines, starting from the specified address.

Closes the dialog box.

Stops single-stepping.

Command File Command

STE(P) count

Single-steps the specified number of instructions or source lines, starting
from the current program counter address.

STE(P) count address
Single-steps the specified number of instructions or source lines, starting
from the specified address.

STE(P) count STA(RT)
Single-steps the specified number of instructions or source lines, starting
from the transfer address defined in the object file.

235

Chapter 9: Menu Bar Commands
Execution - Step... (ALT, E, S)

OVE(R) count

Single-steps the specified number of instructions or source lines, starting
from the current program counter address. If an instruction or source line
makes a subroutine or function call, the entire subroutine or function is
executed.

OVE(R) count address

Single-steps the specified number of instructions or source lines, starting
from the specified address. If an instruction or source line makes a
subroutine or function call, the entire subroutine or function is executed.

OVE(R) count STA(RT)

Single-steps the specified number of instructions or source lines, starting
from the transfer address defined in the object file. If an instruction or
source line makes a subroutine or function call, the entire subroutine or
function is executed.

See Also

"To step multiple lines or instructions" in the "Stepping, Running, and
Stopping" section of the "Debugging Programs" chapter.

Execution - Single Step (ALT, E, N)
Execution - Step Over (ALT, E, O)

236

Chapter 9: Menu Bar Commands
Execution - Break (F4), (ALT, E, B)

Execution - Break (F4), (ALT, E, B)

Stop user program execution and break into the monitor.

This command can also be used to break into the monitor when the processor
isin the EMULATION RESET status.

Once the command has been completed, the processor transfers to the
RUNNING IN MONITOR status.

Command File Command
BRE(AK)
See Also

"To stop program execution" in the "Stepping, Running, and Stopping"
section of the "Debugging Programs" chapter.

237

Chapter 9: Menu Bar Commands
Execution - Reset (ALT, E, E)

Execution - Reset (ALT, E, E)

Resets the emulation microprocessor.

If a foreground monitor is being used, it will automatically be loaded when
this command is chosen.

While the processor is in the EMULATION RESET state, no display or
modification is allowed for the contents of target system memory or registers.
Therefore, before you can display or modify target system memory or
processor registers, you must use the Execution - Break (ALT, E, B)
command to break into the monitor.

Note that if the RealTime — Monitor Intrusion —» Allowed (ALT, R, T, A)
command is chosen, the emulation microprocessor may switch immediately
from reset to running in monitor, for example, to update the contents of a
register window.

Command File Command
RES(ET)
See Also

"To reset the processor" in the "Stepping, Running, and Stopping" section of
the "Debugging Programs" chapter.

238

Chapter 9: Menu Bar Commands
Breakpoint — Set at Cursor (ALT, B, S)

Breakpoint - Set at Cursor (ALT, B, S)

Sets a breakpoint at the cursor-selected address in the Source window.

The Breakpoint — Set at Cursor (ALT, B, S) command replaces the original
instruction at the specified address with a BGND instruction, and the
breakpoint marker, "BP", appears beside that line.

When a breakpoint is hit (that is, when the BGND instruction is executed),
program execution stops immediately before the instruction or source code
line at which the breakpoint is set, and the emulator begins execution in the
monitor program.

A set breakpoint remains active until it is deleted. When you delete the
breakpoint, the original instruction is restored in the user program.

Because breakpoints are set by replacing program opcodes with breakpoint
instructions, they cannot be set in programs stored in target system ROM. In
addition, breakpoints do not function properly when set at addresses where
no opcode is found.

The Breakpoint - Set at Cursor (ALT, B, S) command may cause BP markers
to appear at two or more addresses. This happens when a single instruction
is associated with two or more source lines. You can select the mnemonic
display mode to verify that the breakpoint is set at a single address.

Command File Command
BP SET address

See Also

"To set a breakpoint" in the "Using Breakpoints and Break Macros" section of
the "Debugging Programs" chapter.

239

Chapter 9: Menu Bar Commands
Breakpoint - Delete at Cursor (ALT, B, D)

Breakpoint - Delete at Cursor (ALT, B, D)

Deletes the breakpoint set at the cursor-selected address in the Source
window.

This command is only applicable to lines that contain "BP" markers (which
indicate set breakpoints). Once the breakpoint is deleted, the original
instruction is replaced.

Command File Command
BP DEL(ETE) address
See Also

"To delete a single breakpoint" in the "Using Breakpoints and Break Macros"
section of the "Debugging Programs" chapter.

Breakpoint - Edit... (ALT, B, E)

240

Chapter 9: Menu Bar Commands
Breakpoint - Set Macro... (ALT, B, M)

Breakpoint — Set Macro... (ALT, B, M)

Sets a break macro immediately before the cursor-selected address in the
Source window.

Break macro lines are marked with the "BP" breakpoint marker, and the
corresponding addresses or line numbers are displayed in decimal format.

When a break macro is hit, program execution stops immediately before
executing the instruction or source code line at which the break macro is set.
Then, the commands associated with the break macro are executed. When a
"RUN" command is set as the last command in the break macro, the system
executes the break macro and resumes program execution.

The break macro remains active until it is deleted with the
Breakpoint - Delete Macro (ALT, B, L) command or the Breakpoint - Edit...
(ALT, B, E) command.

Because break macros use breakpoints, they cannot be set at addresses in
target system ROM.

Additional commands can be added to existing break macros as follows:

¢ When a source code line or disassembled instruction is cursor-selected,
the additional command is inserted at the top of the list of commands.

¢ When a macro command line is cursor-selected, the additional command
is inserted immediately following the cursor-selected command.

241

Chapter 9: Menu Bar Commands
Breakpoint - Set Macro... (ALT, B, M)

Breakpoint Edit Dialog Box

Choosing the Breakpoint — Set Macro... (ALT, B, M) command opens the
following dialog box:

= Breakpoint Edit

Set

Breakpoint Address: | sample\\ 000471 |

[Add Macro Set
Macro Command: |EVﬁLUﬁTE *mes |

[] Global Disable and Delete All

™ Current Breakpoints

Enable/Disable || Delete | [Delete an |
Breakpoint Displays the specified line number or address followed by a
Address decimal point and the break macro line number.
Add Macro Activates the Macro Command text box.

Macro Command

Set

Global Disable
and Delete All

Specifies the command to be added to the break macro.

Inserts the specified macro command at the location
immediately preceding the specified source line or address,
or inserts the macro command at the location immediately
following the specified break macro line.

Two or more commands can be associated with a break
macro by entering the first command and choosing Set,
then entering the second command and choosing Set, and
so on. Commands execute in the order of their entry.

Disables and deletes all current breakpoints and break
macros.

242

Chapter 9: Menu Bar Commands
Breakpoint - Set Macro... (ALT, B, M)

Current Displays the addresses and line numbers of the current
Breakpoints breakpoints and break macros. Allows you to select
breakpoints or break macros to be deleted.

Enable/Disable Enable/Disable the selected breakpoint and break macro.

Delete Deletes the selected breakpoints or break macros from the
Current Breakpoints list box.

Delete All Deletes all breakpoints and break macros from the Current
Breakpoints list box.
Close Closes the dialog box.

Command File Command
BM SET address command
See Also

"To set a break macro" in the "Using Breakpoints and Break Macros" section
of the "Debugging Programs" chapter.

243

Chapter 9: Menu Bar Commands
Breakpoint - Delete Macro (ALT, B, L)

Breakpoint — Delete Macro (ALT, B, L)

Removes the break macro set at the cursor-indicated address in the Source
window.

This command is only applicable to lines that contain "BP" markers (which
indicate set breakpoints) or break macro lines.

When a source code line is cursor-selected, this command removes the
breakpoint and all the macros commands set at the line.

When a break macro line is cursor-selected, this command removes the single
macro command at the line.

Command File Command
BM DEL(ETE) address

See Also

"To delete a single break macro" in the "Using Breakpoints and Break Macros"
section of the "Debugging Programs" chapter.

Breakpoint - Edit... (ALT, B, E)

244

Chapter 9: Menu Bar Commands
Breakpoint - Edit... (ALT, B, E)

Breakpoint - Edit... (ALT, B, E)

Lets you set, list, or delete breakpoints and break macros. Breakpoints are
always globally enabled on initial entry into the RTC interface.

Breakpoint Edit Dialog Box

Choosing the Breakpoint — Edit... (ALT, B, E) command opens the following
dialog box:

= Breakpoint Edit

Set
Breakpoint Address: | sampleh\ {10032 |
&4 Add Macro

Macro Command: | |

[Global Disable and Delete All

" Current Breakpoints

D1 000051 cigix sample\\#0047 [EVALUATE *mes
EN 0000552@x% sample\\H#0056

Enable/Disable]| Delete { | Delete Al

Breakpoint Lets you specify the address at which to set a breakpoint or
Address a break macro.
Add Macro When selected, this specifies that a break macro should be

included with the breakpoint.

Macro Command Lets you specify the macro to be included with the
breakpoint.

Set Sets a breakpoint with or without a break macro at the
specified address.

Global Disable ~ When selected, all existing breakpoints are deleted (not
and Delete All simply disabled), and no new breakpoints can be added.

245

Chapter 9: Menu Bar Commands
Breakpoint Edit... (ALT, B, E)

Current
Breakpoints

Enable/Disable

Delete

Delete All

Close

Displays the addresses and line numbers of the current
breakpoints and break macros. Allows you to select the
breakpoints or break macros to be enabled/disabled or
deleted.

Disables or enables the selected breakpoints or breakpoint
macros in the Current Breakpoints list box.

Enabled breakpoints begin with EN in the Current
Breakpoints list and show "BP" at the start of the line in the
Source window list.

Disabled breakpoints begin with DI in the Current
Breakpoints list and show "bp" at the start of the line in the

Source window list.

Deletes the selected breakpoints or break macros from the
Current Breakpoints list box.

Deletes all the breakpoints and break macros from the
Current Breakpoints list box.

Closes the dialog box.

Command File Command
MOD(E) BKP(TBREAK) ON|OFF

BP DEL(ETE) ALL

BP DIS(ABLE) address

BP ENA(BLE) address

See Also

"To disable a breakpoint" and
"To list the breakpoints and break macros" in the "Using Breakpoints and
Break Macros" section of the "Debugging Programs" chapter.

246

Chapter 9: Menu Bar Commands
Variable - Edit... (ALT, V, E)

Variable Edit... (ALT, V, E)

Displays or modifies the contents of the specified variable or copies it to the
WatchPoint window.

A dynamic variable can be registered as a watchpoint when the current
program counter is in the function in which the variable is declared. If the
program counter is not in this function, the variable name is invalid and an
error results.

Variable Edit Dialog Box

Choosing the Variable - Edit... (ALT, V, E) command opens the following
dialog box:

= Variahle Edit

Yariable:

Type: char

[VYalue

72 (48H) 'H'

[[Update | [Modiy.. | [towp |

Variable Specifies the name of the variable to be displayed or
modified. The contents of the clipboard, usually a variable
selected from another window, automatically appears in
this text box.

Type Displays the type of the specified variable.

Value Displays the contents of the specified variable.

247

Chapter 9: Menu Bar Commands
Variable - Edit... (ALT, V, E)

Update

Modify

to WP

Close

Reads and displays the contents of the variable specified in
the Variable text box.

Modifies the contents of the specified variable. Choosing
this button opens the Variable Modify Dialog Box, which
lets you edit the contents of the variable.

Adds the specified variable to the WatchPoint window.

Closes the dialog box.

Command File Command

VARI(ABLE) variable TO data
Replaces the contents of the specified variable with the specified value.

See Also

"To display a variable" and
"To monitor a variable in the WatchPoint window" in the "Displaying and
Editing Variables" section of the "Debugging Programs" chapter.

"Symbols" in the "Expressions in Commands" chapter.

248

Chapter 9: Menu Bar Commands
Variable Modify Dialog Box

Variable Modify Dialog Box

Choosing the Modify button in the Variable Edit dialog box opens the
following dialog box, where you enter the new value and choose the OK
button to confirm the new value.

= Variable Modify

Yariable: “mes

Type: char Cancel g

Value: [41] |
Variable Shows the variable to be edited.
Type Indicates the type of the variable displayed in the Variable
field.
Value Lets you enter the new value of the variable.
OK Replaces the contents of the specified variable with the

specified value and closes the dialog box.

Cancel Cancels the command and closes the dialog box.

See Also

"To edit a variable" in the "Displaying and Editing Variables" section of the
"Debugging Programs" chapter.

249

Chapter 9: Menu Bar Commands
Trace - Function Flow (ALT, T, F)

Note

Trace - Function Flow (ALT, T, F) Emulator Only

Traces function flow by storing function entry points in the trace buffer.

The analyzer identifies function entry points by looking for the following
sequence:
1 A program fetch of the LINK instruction.

2 A data write (the first word of the stack pointer push). If a non-program
fetch state is captured before the data write, the sequence restarts.

3 A second data write (the second word of the stack pointer push). If any
other state is captured, the sequence restarts.

4 Any program fetch. The sequence is repeated to identify the next
function entry point.

Assembly language functions can also be traced provided they comply with C
function call conventions.

When using the MCC68K compiler, you must specify the -Kf option when
compiling programs in order for the debugger to be able to trace function
flow. (The -Kf option creates frame pointers for functions.)

Command File Command
TRA(CE) FUN(CTION) FLO(W)
See Also

"To trace function flow" in the "Tracing Program Execution" section of the
"Debugging Programs" chapter.

250

Chapter 9: Menu Bar Commands
Trace - Function Caller... (ALT, T, C)

Trace - Function Caller... (ALT, T, C) Emulator Only

Traces the caller of the specified function.

The function name can be selected from another window (in other words,
copied to the clipboard) before choosing the command; it will automatically
appear in the dialog box that is opened.

The analyzer stores only the execution of the function entry point and
prestores execution states that occur before the function entry point. These
prestored states correspond to the function call statements and identify the
caller of the function.

When assembly language programs are used, you can specify the assembler
symbol for a subroutine instead of a C function name, and the prestored
states will show the instructions that called the subroutine.

Note Because of prefetching by the 6833x processor, the analyzer may fail in
tracing the caller.

Function Caller Trace Dialog Box

Choosing the Trace — Function Caller... (ALT, T, C) command opens the
following dialog box:

= Function Caller Trace

Function: IT;
[next_messagd | [_Cancet]

Function Lets you enter the function whose callers you want to
trace.

OK Executes the command and closes the dialog box.

Cancel Cancels the command and closes the dialog box.

251

Chapter 9: Menu Bar Commands
Trace - Function Caller... (ALT, T, C)

Command File Command

TRA(CE) FUNC(TION) CAL(L) address

See Also

"To trace callers of a specified function" in the "Tracing Program Execution"
section of the "Debugging Programs" chapter.

252

Chapter 9: Menu Bar Commands
Trace - Function Statement... (ALT, T, S)

Trace - Function Statement... (ALT, T, S) Emulator Only

Traces execution within the specified function.

The function name can be selected from another window (in other words,
copied to the clipboard) before choosing the command; it will automatically
appear in the dialog box that is opened.

The analyzer stores execution states in the function’s address range.

Because the analyzer is set up based on function information from the object
file, this command cannot be used to trace non-C functions.

Note The analyzer traces unexecuted instructions due to prefetching by 6833x
Pprocessor.

Function Statement Trace Dialog Box

Choosing the Trace — Function Statement... (ALT, T, S) command opens the
following dialog box:

= Function Statement Trace
Function: | 0K g

| next_message | Cancel g

Function Lets you enter the function whose execution you want to
trace.

OK Traces within the specified function and closes the dialog
box.

Cancel Cancels the command and closes the dialog box.

253

Chapter 9: Menu Bar Commands
Trace - Function Statement... (ALT, T, S)

Command File Command

TRA(CE) FUNC(TION) STA(TEMENT) address

See Also

"To trace execution within a specified function" in the "Tracing Program
Execution" section of the "Debugging Programs" chapter.

264

Chapter 9: Menu Bar Commands
Trace - Variable Access... (ALT, T, V)

Trace - Variable Access... (ALT, T, V) Emulator Only

Traces accesses to the specified variable.

The variable name can be selected from another window (in other words,
copied to the clipboard) before choosing the command; it will automatically
appear in the dialog box that is opened.

You can specify any of the external or static variables, or the variables having
a fixed address throughout the course of program execution.

The analyzer stores only accesses within the range of the variable and
prestores execution states that occur before the access. These prestored
states correspond to the statements that access the variable.

Variable Access Dialog Box

Choosing the Trace — Variable Access... (ALT, T, V) command opens the
following dialog box:

= Variable Access Trace
Yariable: | ;

1].4
ncel

[message_id | [cancet]

Variable Lets you enter the variable name.

OK Traces accesses to the specified variable and closes the
dialog box.

Cancel Cancels the command and closes the dialog box.

Command File Command
TRA(CE) VAR(IABLE) ACC(ESS) address

265

Chapter 9: Menu Bar Commands
Trace - Variable Access... (ALT, T, V)

See Also

"To trace accesses to a specified variable" in the "Tracing Program Execution"
section of the "Debugging Programs" chapter.

256

Chapter 9: Menu Bar Commands
Trace - Variable Break... (ALT, T, B)

Trace — Variable Break... (ALT, T, B) Emulator Only

Traces before, and breaks program execution when, a value is written to a
variable.

The variable name can be selected from another window (in other words,
copied to the clipboard) before choosing the command; it will automatically
appear in the dialog box that is opened.

You can specify any of the external or static variables, or the variables having
a fixed address throughout the course of program execution.

Variable Break Dialog Box

Choosing the Trace — Variable Break... (ALT, T, B) command opens the
following dialog box:

= Variable Break Trace

Yanable:

| message_id

¥Yalue:

o

Variable Lets you enter the variable name.

Value Lets you enter the value that, when written to the variable,
triggers the analyzer.

OK Starts the trace and closes the dialog box.

Cancel Cancels the command and closes the dialog box.

Command File Command
TRA(CE) VAR(IABLE) BRE(AK) address data

257

Chapter 9: Menu Bar Commands
Trace - Variable Break... (ALT, T, B)

See Also

"To trace before a particular variable value and break" in the "Tracing
Program Execution" section of the "Debugging Programs" chapter.

258

Chapter 9: Menu Bar Commands
Trace — Edit... (ALT, T, E)

Trace - Edit... (ALT, T, E) Emulator Only

Edits the trace specification of the last trace command.

This command is useful for making modifications to the last entered trace
command, even if the analyzer was set up automatically as with the
Trace - Function or Trace — Variable commands.

Trace specifications are edited with Sequence Trace Setting dialog box.

Command File Command

TRA(CE) SAV(E) filename
Stores the current trace specification to a file.

TRA(CE) LOA(D) filename
Loads the specified trace setting file.

TRA(CE) CUS(TOMIZE)
Traces program execution using the loaded trace setting file.

See Also

"To edit a trace specification" in the "Setting Up Custom Trace Specifications"
section of the "Debugging Programs" chapter.

Trace - Sequence... (ALT, T, Q)

259

Chapter 9: Menu Bar Commands
Trace - Trigger Store... (ALT, T, T)

Note

Trace - Trigger Store... (ALT, T, T) Emulator Only

Traces program execution as specified in the Trigger Store Trace dialog box.

You can enter address, data, and status values that qualify the state(s) that,
when captured by the analyzer, will be stored in the trace buffer or will
trigger the analyzer.

Data values are 16-bit values (because the data bus is 16 bits wide). To
identify byte values on the data bus, use "don’t cares" as shown below:

12xx
0xx34
Status values identify the types of microprocessor bus cycles. You may

select status values from a predefined list.

The analyzer traces unexecuted instructions due to prefetching by the 6833x
processor.

260

Chapter 9: Menu Bar Commands
Trace - Trigger Store... (ALT, T, T)

Trigger Store Trace Dialog Box

Choosing the Trace - Trigger Store... (ALT, T, T) command opens the

following dialog box:
= Trigger Store Trace
I :
HE..'..ger... Address Data Status
HOT!
D | | | | | | @ Cancel
End Address

@ trigger start

_} trigger center) trigger end

 Store
Address Data Status
Lot | || | | | [
End Address

Trigger This box groups the items that make up the trigger
condition.

NOT Specifies any state that does not match the Address, Data,
and Status values.

Address Specifies the address portion of the state qualifier.

End Address Specifies the end address of an address range.

Data Specifies the data portion of the state qualifier.

Status Specifies the status portion of the state qualifier.

trigger start Specifies that states captured after the trigger condition be

trigger center

trigger end

stored in the trace buffer.

Specifies that states captured before and after the trigger
condition be stored in the trace buffer.

Specifies that states captured before the trigger condition
be stored in the trace buffer.

261

Chapter 9: Menu Bar Commands
Trace - Trigger Store... (ALT, T, T)

Store

OK

Cancel

Clear

Load...

Save...

This box groups the items that make up the store condition.
Starts the specified trace and closes the dialog box.

Cancels the trace setting and closes the dialog box.
Restores the dialog box to its default state.

Opens a file-selection dialog box from which you select the
name of a trace specification file previously saved from the
Trigger Store Trace dialog box. Trace specification files

have the extension ".TRC".

Opens a file-selection dialog box from which you select the
name of the trace specification file.

Command File Command

TRA(CE) LOA(D) filename
Loads the specified trace setting file.

TRA(CE) CUS(TOMIZE)
Traces program execution using the loaded trace setting file.

See Also

"To set up a "Trigger Store’ trace specification" in the "Setting Up Custom
Trace Specifications" section of the "Debugging Programs" chapter.

262

Chapter 9: Menu Bar Commands
Trace — Find Then Trigger... (ALT, T, D)

Trace - Find Then Trigger... (ALT, T, D) Emulator Only

Traces program execution as specified in the Find Then Trigger Trace dialog
box.

This command lets you set up a two-level, sequential trace specification that
works like this:

1 Once the trace starts, the analyzer stores (in the trace buffer) the states
that satisfy the Enable Store condition while searching for a state that
satisfies the Enable condition.

2 After the Enable condition has been found, the analyzer stores the states
that satisfy the Trigger Store condition while searching for a state that
satisfies the Trigger condition.

3 After the Trigger condition has been found, the analyzer stores the states
that satisfy the Store condition.

If any state during the sequence satisfies the Restart condition, the sequence
starts over.

You can enter address, data, and status values that qualify state(s) by setting
up pattern or range resources. These patterns and range resources are used
when defining the various conditions.

A trace is complete when the trace buffer is full.

Note The analyzer traces unexecuted instructions due to prefetching by the 6833x
processor.

263

Chapter 9: Menu Bar Commands
Trace - Find Then Trigger... (ALT, T, D)

Find Then Trigger Trace Dialog Box

Choosing the Trace - Find Then Trigger... (ALT, T, D) command opens the
following dialog box:

= Find then Trigger Trace
[Sequence Hestart: no slale |

Enable Stora: Count: pr
Enable: | any state Prestore: no state
Trigger Storc: | any state]|, | e 3

@ trigger start
Trinoes: | any zhate) trigger center

Stoie: any stale g O trigger end
_ [Breok on Trgger

Pattern/Range: [Select with:Double-Click)

rao oo
o
oD
SRERR
W W WL

The Sequence group box specifies a two-term, sequential trigger condition.
It also lets you specify store conditions during the sequence.

Enable Store Qualifies the states that get stored (in the trace buffer)
while searching for a state that satisfies the enable

condition.

Enable Specifies the condition that causes a transfer to the next
sequence level.

Trigger Store Qualifies the states that get stored while the analyzer
searches for the trigger condition.

Trigger Specifies the trigger condition.

Store Qualifies the states that get stored after the trigger
condition is found.

Restart Specifies the condition that restarts the sequence.

264

Chapter 9: Menu Bar Commands
Trace — Find Then Trigger... (ALT, T, D)

Count Specifies whether time or the occurrences of a particular
state are counted; you can also turn counts OFF. See the
Condition Dialog Boxes.

Prestore Qualifies the states that may be stored before each
normally stored state. Up to two states may be prestored
for each normally stored state. Prestored states can be
used to show from where a function is called or a variable
is accessed.

trigger start The state that satisfies trigger condition is positioned at
the start of the trace, and states that satisfy the Store
condition will be stored after the trigger. In this case, the
states that satisfy the Enable Store and Trigger Store
conditions will not appear in the trace.

trigger center The state that satisfies the trigger condition is positioned in
the center of the trace, and states that satisfy the store
conditions will be stored before and after the trigger.

trigger end The state that satisfies the trigger condition is positioned
at the end of the trace, and states that satisfy the Enable
Store and Trigger Store conditions will be stored before the
trigger. In this case, states that satisfy the Store condition
will not appear in the trace.

Break on When selected, this option specifies that execution break
Trigger into the monitor when the analyzer is triggered.

Pattern/Range Specifies the trace patterns for the state conditions.
Double-clicking the desired pattern or range in the
Pattern/Range list box opens the Trace Pattern Dialog Box
or the Trace Range Dialog Box, where you specify the
desired trace pattern or range.

Clicking the Sequence, Restart, Count, or Prestore buttons
causes the Condition Dialog Boxes to be opened. This
dialog box lets you select or combine patterns or ranges to
specify the condition.

265

Chapter 9: Menu Bar Commands
Trace - Find Then Trigger... (ALT, T, D)

OK Starts the specified trace and closes the dialog box.
Cancel Cancels trace setting and closes the dialog box.

Clear Restores the dialog box to its default state.

Load... Opens a file selection dialog box from which you select the

name of a trace specification file previously saved from the
Trigger Store Trace or Find Then Trigger Trace dialog
boxes. Trace specification files have the extension ".TRC".

Save... Opens a file selection dialog box in which you specify a
name to identify a file containing the present trace
specification.

Command File Command

TRA(CE) LOA(D) filename
Loads the specified trace setting file.

TRA(CE) CUS(TOMIZE)
Traces program execution using the loaded trace setting file.

See Also

"To set up a 'Find Then Trigger’ trace specification" in the "Setting Up
Custom Trace Specifications" section of the "Debugging Programs" chapter.

266

Chapter 9: Menu Bar Commands
Trace - Sequence... (ALT, T, Q)

Trace - Sequence... (ALT, T, Q) Emulator Only

Traces program execution as specified in the Sequence Trace dialog box.

This command lets you set up a multi-level sequential trace specification that
works like this:

1 Once the trace starts, the analyzer stays on sequence level 1 until the
primary or secondary branch condition is found. (If a state satisfies both
primary and secondary branch conditions, the primary branch is taken.)
Once the primary or secondary branch condition is found, the analyzer
transfers to the sequence level specified by the "to" button.

2 The analyzer stays at the next sequence level until its primary or
secondary branch condition is met; then, the analyzer transfers to the
sequence level specified by the "to" button.

3 When the analyzer reaches the sequence level specified in Trigger On,
the analyzer is triggered.

4 During the above described operation, the analyzer stores the states
specified in the Store text box.

The trace is complete when the trace buffer is full.

Note The analyzer traces unexecuted instructions due to prefetching by the 6833x
processor.

267

Chapter 9: Menu Bar Commands
Trace - Sequence... (ALT, T, Q)

Sequence Trace Dialog Box

Choosing the Trace — Sequence... (ALT, T, Q) command opens the following

dialog box:
[Sequence 1 | 10 o ;
. rigger On: 3
Primary Secondary i oger O pernenrovnrer]
Eranch: o Hianch: L] H -
Count: ume g

-

| any state m | 1 :

| any ztate ﬁ | no state ; 1 g any slate i Frestore: L““”Ehw{wg
| |

| |

any :late

@ nigger stan 3
anp ztate no state 1 any slate ;

F pipger centes

no state 1 ane zlate ; 2 nigger end Sawm__ i

[Break an Trigger

Pattem/Range: [Selec! with:Double-Click]

a A D:

4
anp ztate L

]

mEam T
L
FERR

The Sequence group box specifies primary and secondary branch conditions
for transferring from one sequence level to another. It also specifies store
conditions for each of the eight sequence levels.

Primary Branch Specifies the condition for transferring to the sequence
level specified in the "to" text box.

Secondary Specifies the condition for transferring to the sequence

Branch level specified in the "to" text box. Secondary branches are
used to do things like restart the sequence if a particular
state is found.

Store Specifies the states to be stored in the trace buffer at each
sequence level.

Page Toggles the display between sequence levels 1 through 4
and levels 5 through 8.
Trigger On Specifies the sequence level whose entry triggers the

analyzer. See the Sequence Number Dialog Box.

268

Chapter 9: Menu Bar Commands
Trace - Sequence... (ALT, T, Q)

Count Specifies whether time or the occurrences of a particular
state are counted; you can also turn counts OFF. See the
Condition Dialog Boxes.

Prestore Qualifies the states that may be stored before each
normally stored state. Up to two states may be prestored
for each normally stored state. Prestored states can be
used to show from where a function is called or a variable
is accessed.

trigger start The state that satisfies trigger condition is positioned at
the start of the trace, and states that satisfy the store
conditions will be stored after the trigger.

trigger center The state that satisfies the trigger condition is positioned in
the center of the trace, and states that satisfy the store
conditions will be stored before and after the trigger.

trigger end The state that satisfies the trigger condition is positioned
at the end of the trace, and states that satisfy the store
conditions will be stored before the trigger.

Break on When selected, this option specifies that execution break
Trigger into the monitor when the analyzer is triggered.

Pattern/Range Specifies the trace patterns for the state conditions.
Double-clicking the desired pattern or range in the
Pattern/Range list box opens the Trace Pattern Dialog Box
or the Trace Range Dialog Box, where you specify the
desired trace pattern or range.

Clicking the Primary Branch, Secondary Branch, Store,
Count, or Prestore buttons causes the appropriate

Condition dialog box to be opened. This dialog box lets
you select or combine patterns or ranges to specify the

condition.
OK Starts the specified trace and closes the dialog box.
Cancel Cancels trace setting and closes the dialog box.

269

Chapter 9: Menu Bar Commands
Trace - Sequence... (ALT, T, Q)

Clear

Load...

Save...

Restores the dialog box to its default state.

Opens a file selection dialog box from which you select the
name of a trace specification file previously saved from any
of the trace setting dialog boxes. Trace specification files
have the extension " TRC".

Opens a file selection dialog box from which you select the
name of the trace specification file.

Command File Command

TRA(CE) LOA(D) filename
Loads the specified trace setting file.

TRA(CE) CUS(TOMIZE)
Traces program execution using the loaded trace setting file.

See Also

"To set up a ’Sequence’ trace specification" in the "Setting Up Custom Trace
Specifications" section of the "Debugging Programs" chapter.

270

Chapter 9: Menu Bar Commands
Trace - Until Halt (ALT, T, U)

Trace - Until Halt (ALT, T, U) Emulator Only

Traces program execution until the Trace - Halt (ALT, T, H) command is
chosen.

This command is useful in tracing execution that leads to a processor halt or
a break to the background monitor. Before executing the program, choose
the Trace - Until Halt (ALT, T, U) command. Then, run the program. After
the processor has halted or broken into the background monitor, choose the
Trace - Halt (ALT, T, H) command to stop the trace. The execution that led
up to the break or halt will be displayed.

Command File Command
TRA(CE) ALW(AYS)
See Also

"To trace until the command is halted" in the "Tracing Program Execution"
section of the "Debugging Programs" chapter.

271

Chapter 9: Menu Bar Commands

Trace - Halt (ALT, T, H)

Trace - Halt (ALT, T, H) Emulator Only

Stops a running trace.

This command stops a currently running trace whether the trace was started
with the Trace - Until Halt (ALT, T, U) command or another trace command.

As soon as the analyzer stops the trace, stored states are displayed in the
Trace window.

Command File Command
TRA(CE) STO(P)
See Also

"To stop a running trace" in the "Tracing Program Execution" section of the
"Debugging Programs" chapter.

272

Chapter 9: Menu Bar Commands
Trace - Again (F7), (ALT, T, A)

Trace - Again (F7), (ALT, T, A) Emulator Only

Traces program execution using the last trace specification stored in the HP
64700.

If you haven’t entered a trace command since you started the debugger, the
last trace specification stored in the HP 64700 may be a trace specification
set up by a different user; in this case, you cannot view or edit the trace
specification.

Command File Command
TRA(CE) AGA(IN)
See Also

"To repeat the last trace" in the "Tracing Program Execution" section of the
"Debugging Programs" chapter.

273

Chapter 9: Menu Bar Commands
Condition Dialog Boxes

Condition Dialog Boxes Emulator Only

Choosing the buttons associated with enable, trigger, primary branch,
secondary branch, store, or prestore conditions opens the following dialog
box:

[l no ztate

zet?

Ha Ob Oe |Oor [Oe Ot Oa
Od Drange [] AND O h [am

D not range 0‘ or G‘ nor

O or O nor
Com [T

Choosing the button associated with the count condition opens the following
dialog box:

] no state | time

zet2

Oa Ob Oc |“O0R |Oe O Oa

Edlmrange) AND On O am
not range Cror 2 nor
o O onor

no state No state meets the specified condition.
any state Any state meets the specified condition.

time The analyzer counts time for each state stored in the trace.

274

Chapter 9: Menu Bar Commands
Condition Dialog Boxes

state This group box lets you qualify the state that will meet the
specified condition. You can qualify the state as one of the
patterns "a" through "h," the "range," or the "arm," or you
can qualify the state as a combination of the patterns,
range, or arm by using the interset or intraset operators.

abcdefgh The patterns that qualify states by identifying the
address, data, and/or status values.

The values for a pattern are specified by selecting one
of the patterns in the Pattern/Range list box and
entering values in the Trace Pattern Dialog Box.

range Identifies a range of address or data values.
The values for a range are specified by selecting the
range in the Pattern/Range list box and entering values
in the Trace Range Dialog Box.

not range Identifies all values not in the specified range.

arm Identifies the condition that arms (in other words,

activates) the analyzer. The analyzer can be armed by
an input signal on the BNC port.

or/nor You can combine patterns within the set1 or set2
group boxes with these logical operators.

You can create the AND and NAND operators by
selecting NOT when defining patterns and applying
DeMorgan’s law (the / character is used to represent a
logical NOT):

AND AandB = /(/Aor/B) NOR
NAND /(Aand B)= /Aor/B OR

OR/AND You can combine patterns from the setl and set2
group boxes with these logical operators.

275

Chapter 9: Menu Bar Commands

Condition Dialog Boxes

Count

OK

Cancel

See Also

Appearing in Trace Condition dialog boxes, this value
specifies the number of occurrences of the state that
will satisfy the condition.

Applies the state qualifier to the specified condition and
closes the dialog box.

Closes the dialog box.

"To set up a Find Then Trigger’ trace specification" and
"To set up a ’Sequence’ trace specification" in the "Setting Up Custom Trace
Specifications" section of the "Debugging Programs" chapter.

Trace - Find Then Trigger... (ALT, T, D)
Trace - Sequence... (ALT, T, Q)

276

Chapter 9: Menu Bar Commands
Trace Pattern Dialog Box

Trace Pattern Dialog Box Emulator Only

Selecting one of the patterns in the Pattern/Range list box opens the
following dialog box:

CIiNDT: [Tox]
Address: | | Cancel g
Data: | | .
Status: Clear .3
berr read
cpu_spc
data
dataread
datawrite
dmaread
dmawrite
prog
O Direct:

NOT Lets you specify all values other than the address, data,

and/or status values specified.

Address Lets you enter the address value for the pattern.
Data Lets you enter the data value for the pattern.
Status Lets you select the status value for the pattern.
Direct Lets you enter a status value other than one of the

predefined status values.

Clear Clears the values specified for the pattern.
OK Applies the values specified for the pattern, and closes the
dialog box.

277

Chapter 9: Menu Bar Commands
Trace Pattern Dialog Box

Cancel Closes the dialog box.

See Also

"To set up a 'Find Then Trigger’ trace specification" and
"To set up a 'Sequence’ trace specification" in the "Setting Up Custom Trace
Specifications" section of the "Debugging Programs" chapter.

Trace - Find Then Trigger... (ALT, T, D)
Trace - Sequence... (ALT, T, Q)

278

Chapter 9: Menu Bar Commands
Trace Range Dialog Box

Trace Range Dialog Box Emulator Only

Selecting the range at the bottom of the Pattern/Range list box opens the
following dialog box:

Bus

M aximum:

Address Selects a range of address values.

Data Selects a range of data values.

Minimum Lets you enter the minimum value for the range.

Maximum Lets you enter the maximum value for the range.

OK Applies the values specified for the range, and closes the
dialog box.

Cancel Closes the dialog box.

Clear Clears the values specified for the range.

279

Chapter 9: Menu Bar Commands
Trace Range Dialog Box

See Also

"To set up a 'Find Then Trigger’ trace specification" and
"To set up a 'Sequence’ trace specification" in the "Setting Up Custom Trace
Specifications" section of the "Debugging Programs" chapter.

Trace - Find Then Trigger... (ALT, T, D)
Trace - Sequence... (ALT, T, Q)

280

Chapter 9: Menu Bar Commands
Sequence Number Dialog Box

Sequence Number Dialog Box Emulator Only

Choosing the buttons associated with "to" or Trigger On opens the following
dialog box:

= Sequence Number
O} O '
@ 2 6
3 7
4 8
1-8 These options specify the sequence level.
OK Applies the selected sequence level and closes the dialog
box.
Cancel Closes the dialog box.

See Also

"To set up a 'Sequence’ trace specification" in the "Setting Up Custom Trace
Specifications" section of the "Debugging Programs" chapter.

Trace - Sequence... (ALT, T, Q)

281

Chapter 9: Menu Bar Commands
RealTime - Monitor Intrusion - Disallowed (ALT, R, T, D)

RealTime — Monitor Intrusion - Disallowed (ALT, R,
T, D)
Activates the real-time mode.

When the user program is running in real-time mode, no command that
would normally cause temporary suspension of program execution is allowed.
Also, the system hides:

* The Register window.

e Target system memory in the Memory window.

* Target system I/O locations in the I/O window.

e Target system memory variables in the WatchPoint window.
e Target system memory in the Source window.

While the processor is in the RUNNING REALTIME IN USER PROGRAM
state, no display or modification is allowed for the contents of target system
memory or registers. Therefore, before you can display or modify target
system memory or processor registers, you must use the Execution - Break
(ALT, E, B) command to stop user program execution and break into the
monitor.

Command File Command
MOD(E) REA(LTIME) ON

See Also

"To allow or deny monitor intrusion" in the "Setting the Real-Time Options"
section of the "Configuring the Emulator" chapter.

282

Chapter 9: Menu Bar Commands
RealTime — Monitor Intrusion - Allowed (ALT, R, T, A)

RealTime — Monitor Intrusion — Allowed
(ALT, R, T, A)
Deactivates the real-time mode.

Commands that cause temporary breaks to the monitor during program
execution are allowed.

Command File Command
MOD(E) REA(LTIME) OFF

See Also

"To allow or deny monitor intrusion" in the "Setting the Real-Time Options"
section of the "Configuring the Emulator" chapter.

283

Chapter 9: Menu Bar Commands
RealTime - /0 Polling - ON (ALT, R, I, O)

RealTime - I/O Polling - ON (ALT, R, I, O)
Enables access to I/0.

Command File Command
MOD(E) IOG(UARD) OFF

See Also

"To turn polling ON or OFF" in the "Setting the Real-Time Options" section of
the "Configuring the Emulator" chapter.

284

Chapter 9: Menu Bar Commands
RealTime - /0 Polling — OFF (ALT, R, I, F)

RealTime - I/O Polling - OFF (ALT, R, I, F)

Disables access to I/0.

When polling is turned OFF, values in the I/O window are updated on entry to
the monitor. When monitor intrusion is not allowed during program
execution, the I/O window is not updated and contents are replaced by
dashes (-).

Command File Command
MOD(E) IOG(UARD) ON
See Also

"To turn polling ON or OFF" in the "Setting the Real-Time Options" section of
the "Configuring the Emulator" chapter.

285

Chapter 9: Menu Bar Commands
RealTime - Watchpoint Polling - ON (ALT, R, W, O)

RealTime — Watchpoint Polling - ON (ALT, R, W, O)

Turns ON polling to update values displayed in the WatchPoint window.

When polling is turned ON, temporary breaks in program execution occur
when the WatchPoint window is updated.

Command File Command
MOD(E) WAT(CHPOLL) ON

See Also

"To turn polling ON or OFF" in the "Setting the Real-Time Options" section of
the "Configuring the Emulator" chapter.

286

Chapter 9: Menu Bar Commands
RealTime - Watchpoint Polling - OFF (ALT, R, W, F)

RealTime — Watchpoint Polling - OFF (ALT, R, W, F)

Turns OFF polling to update values displayed in the WatchPoint window.

When polling is turned OFF, values in the WatchPoint window are updated
on entry to the monitor. When monitor intrusion is not allowed during
program execution, the WatchPoint window is not updated and contents are
replaced by dashes (-).

Command File Command
MOD(E) WAT(CHPOLL) OFF

See Also

"To turn polling ON or OFF" in the "Setting the Real-Time Options" section of
the "Configuring the Emulator" chapter.

287

Chapter 9: Menu Bar Commands
RealTime — Memory Polling—ON (ALT, R, M, O)

RealTime — Memory Polling - ON (ALT, R, M, O)

Turns ON polling to update target memory values displayed in the Memory
window.

When polling is turned ON, temporary breaks in program execution occur
when target system memory locations in the Memory window are updated.
When monitor intrusion is not allowed during program execution, the
contents of target memory locations are replaced by dashes (-).

Also, when polling is turned ON, you can modify the addresses displayed or
contents of memory locations by double-clicking on the address or value,
using the keyboard to type in the new address or value, and pressing the
Enter key.

Command File Command
MOD(E) MEM(ORYPOLL) ON

See Also

"To turn polling ON or OFF" in the "Setting the Real-Time Options" section of
the "Configuring the Emulator" chapter.

288

Chapter 9: Menu Bar Commands
RealTime — Memory Polling - OFF (ALT, R, M, F)

RealTime — Memory Polling — OFF (ALT, R, M, F)

Turns OFF polling to update target memory values displayed in the Memory
window.

When polling is turned OFF, values in the Memory window are updated on
entry to the monitor.

Also, when polling is turned OFF, you cannot modify the addresses displayed
or contents of memory locations by double-clicking on the address or value.

Command File Command
MOD(E) MEM(ORYPOLL) OFF

See Also

"To turn polling ON or OFF" in the "Setting the Real-Time Options" section of
the "Configuring the Emulator" chapter.

289

Chapter 9: Menu Bar Commands

Assemble... (ALT, A)

Assemble... (ALT, A)

In-line assembler.

This command lets you modify programs by specifying assembly language
instructions which are assembled and loaded into program memory.

Assembler Dialog Box

Choosing the Assemble... (ALT, A) command opens the following dialog box:

Label

Address

Mnemonic

Assemble

Close

Label: |main

| Aszzemble 3

|
Address: [sample\\#0017 | [Close]
|

Mnemonic: | MOVE.L D4.DY

Lets you assign a user-defined symbol to the specified
address.

Lets you enter the address at which the assembly language
instruction will be loaded.

Lets you enter the assembly language instruction to be
assembled.

Assembles the instruction in the Mnemonic text box, and
loads it into memory at the specified address.

Closes the dialog box.

Command File Command

ASM address label "inst_string"

290

Chapter 9: Menu Bar Commands
Settings — Emulator Config — Hardware... (ALT, S, E, H)

Settings — Emulator Config - Hardware... (ALT, S, E,
H)

Specifies the emulator configuration.

Hardware Config Dialog Box for Emulators

Choosing the Settings — Emulator Config - Hardware... (ALT, S, E, H)
command opens the following dialog box:

= Hardware Configuration

Emulation Mode @ PO ACT |
Emulation Clock ® Internal ©) External =
Memoiy Lag Ofnatte O Disable

Taroet BERE on Pand Mes Aooesess O Peadle O Bladde

Yoot DSADE on Pl Mew Acceasey L) Prelle (O Disable m

Nintemnal RAM to Use for Show Cycles @ rambar 0 stam) seamd O srami

Tri-State Yoltage Value

IBreak on write to ROM (Y Enable ® Disable

[Reset Mode Configuration

Source for Reset Mode Value ® Emulator Target

Emulator Driven Reset Mode Yalue
Ereen Chanling Heast Mode Yahe l:l

Emulation Mode ACT stands for Analysis Control Tool. Generally, the ACT
mode provides better electrical transparency than the
Normal mode, but there are other trade-offs to consider.

In the ACT mode:
m Emulation memory is not available.
m The external clock source may be either a crystal
or oscillator.

291

Chapter 9: Menu Bar Commands
Settings — Emulator Config - Hardware... (ALT, S, E, H)

m The emulation microprocessor must either be in
the target system or plugged into the emulator
probe.

In the Normal mode:

m The emulator provides 512 Kbytes of emulation
memory.

m The external clock source must be an oscillator.

m The emulation microprocessor is on the emulation
control board.

Emulation Clock If you selected Emulation Mode Normal, then select

Memory Tag

Target BERR on
Emul Mem
Accesses

Internal clock when the target system provides a low
frequency crystal and uses the 6833x clock synthesizer; the
internal crystal is 32.768 kHz. Select External if the target
system provides a signal at the system clock frequency to
the 6833x.

If you are using the emulator in ACT mode, you must use
an external target system clock.

The external target system clock must be an oscillator
unless you are using the emulator in ACT mode, in which
case, the external target system clock may be a crystal.

This selection is only available when using the HP 64749
emulator product. Tag memory applies only to accesses
within emulation memory. For each byte of emulation
memory, there is an associated bit of emulation memory
that can be used as tag memory. When a state is captured
by the analyzer, additional tag-memory bits are sent along
with it. One bit is sent for each valid byte that is
transferred. You can use the tag memory bits for status
qualification in analyzer specifications. If you select Enable
for Memory Tag, the byte-identification tag bits will be sent
to the analyzer anytime execution is within emulation
memory. If you select Disable for Memory Tag, no tag bits
will be sent along with captured states.

This selection is only available when using the HP 64749
emulator product. When enabled, the connection is
complete for driving internal M6833x BERR’s to the target,

292

Chapter 9: Menu Bar Commands
Settings — Emulator Config — Hardware... (ALT, S, E, H)

and for delivering target BERR activity to the M6833x.
When disabled, internal M6833x BERRs will not be driven
to the target, and the M6833x will not respond to target
BERR activity.

Target DSACK This selection is only available when using the HP 64749
on Emul Mem emulator product. The target DSACK selection for the HP
Accesses 64782 emulator product is made in the memory map.

This selection is only available if you selected Emulation
Mode Normal. If you Enable target DSACK on emulation
memory accesses, termination of emulation memory
accesses will not occur until the target system provides a
DSACK. If you Disable target DSACK on emulation
memory accesses, target system DSACKs will be ignored
and emulation memory accesses will be terminated with
DSACKSs generated by the emulator.

Internal RAM to This option only applies to the HP 64782 emulator product.

Use for Show This selection chooses the internal RAM that will be

Cycles represented by the addresses generated in the show cycles
mode. The show cycles mode is discussed in the Reference
chapter. The answer you give for this configuration
question will depend on the processor you are emulating.

This question has no meaning for the 68331 because that
processor has no internal RAM. For the 68332 and 68334,
the only choice is rambar because they only have one
internal RAM. The 68336 has two internal RAMs: rambar,
and sram. In the 68335, there are three internal RAMs:
rambar, sram0, and sraml. All processors that have
internal RAM have a rambar. For ease of configuration,
invalid choices are grayed out for the processor you are
emulating.

Tri-State Voltage This option only applies to the HP 64782 emulator product.

Value The voltage you specify will be applied to the tristate input
of the target processor during tristate conditions. Normally
you can specify "auto" and operation will be correct. If you
are working with a target processor that requires a lower
voltage, you can specify it here.

293

Chapter 9: Menu Bar Commands
Settings — Emulator Config —» Hardware... (ALT, S, E, H)

Break on write
to ROM

Reset Mode
Configuration

When enabled, this selection causes the emulator to stop
execution of the target program and break into the
emulation monitor whenever the target program attempts
to write to a memory address mapped as ROM. RAM
memory in the emulation or target system will be changed
by processor writes, even if that memory has been
characterized as ROM.

When disabled, the emulator will not stop execution of the
target program and break to the monitor when the target

program attempts to write to a memory address mapped as
ROM.

When in the Normal Emulation Mode, you can use this field
to specify the data pattern that is driven onto the data bus
during reset to configure the chip select and port pins.

When the emulator is the source for the Reset Mode Value:

If you enter the value "auto", the reset mode
configuration value will be generated by the emulator.
It will set the SIM to be compatible with the EMSIM
register set.

If you enter any other value, the value you specify will
be internally driven onto the data bus to configure the
chip select and port pins.

When the target system is the source for the Reset Mode
Value:

If you enter the value OH, the emulator will not
perform any error checking of the value externally
driven.

If you enter any other value, the value you specify will
be compared with the value externally driven for
additional error checking.

294

Chapter 9: Menu Bar Commands
Settings — Emulator Config — Hardware... (ALT, S, E, H)

OK Stores the current modification and closes the dialog box.
Cancel Cancels the current modification and closes the dialog box.
Apply Loads the configuration settings into the emulator.

Command File Command
CON(FIG) MOD(E) NOR(MAL)/ACT

CON(FIG) CLO(CK) INT(ERNAL)/EXT(ERNAL)

CON(FIG) TAG ENA(BLE)/DIS(ABLE)

CON(FIG) BER(R) ENA(BLE)/DIS(ABLE)

CON(FIG) DSA(CK) ENA(BLE)/DIS(ABLE)

CON(FIG) RAM(CYCLE) RAMBAR/SRAM/SRAM1/SRAM2
CON(FIG) TRI(STATE) auto AUTO/<voltage> <voltage>

CON(FIG) BRK(WRITEROM) DIS(ABLE)/ENA(BLE)

CON(FIG) RST(CFG) EMU(LATOR)/TAR(GET) AUT(O)/<number>

Any of the above command file commands must be preceded and followed by
the respective start and end commands:

CON(FIG) STA(RT)
Starts the configuration option command section.

CON(FIG) END
Ends the configuration option command section.

See Also
"Setting the Hardware Options" in the "Configuring the Emulator" chapter.

295

Chapter 9: Menu Bar Commands
Settings — Emulator Config — Hardware... (ALT, S, E, H)

Hardware Config Dialog Box for the HP E3490A Software Probe

Choosing the Settings — Emulator Config - Hardware... (ALT, S, E, H)
command opens the following dialog box:

Processor Clock Rate |BHHz_tD_1 bMHz | @ Cancel E

Processor Type The processor type determines which registers are
available in the Real-Time C Debugger.

Processor Clock The processor clock rate determines the maximum rate
Rate that the HP E3490A Software Probe can communicate with
the target processor through the BDM port.

Command File Command
CFGBDM SPEED 4/8/16/20

CFGBDM TYPE 68331/68332/68333/68334/
68335/38336/68337/6833X

See Also
"To specify the processor type" in the "Configuring the Emulator" chapter.

"Setting the Hardware Options" in the "Configuring the Emulator" chapter.
The HP E3490A Software Probe User’s Guide

296

Chapter 9: Menu Bar Commands
Settings — Emulator Config - Memory Map... (ALT, S, E, M)

Settings — Emulator Config — Memory Map... (ALT, S,
E, M)

Emulator Only

Maps memory ranges.

Up to 8 ranges of memory can be mapped when using the HP 64782, and up
to 12 ranges of memory can be mapped when using the HP 64749. The
resolution of mapped ranges is 256 bytes (that is, the memory ranges must
begin on 256-byte boundaries and must be at least 256 bytes in length).

The emulator provides two slots on the probe for emulation memory
modules. The amount of emulation memory that can be mapped depends on
the number and size of memory modules installed.

Emulation memory is made available to the mapper in blocks. When you map
an address range to emulation memory, at least one block is assigned to the
range. When a block of emulation memory is assigned to a range, it is no
longer available, even though part of the block may not be used. Emulation
memory in either slot of the emulator probe is divided into four equal blocks.

When you map ranges of emulation memory, blocks are allocated so as to
leave the greatest amount of emulation memory available.

297

Chapter 9: Menu Bar Commands
Settings — Emulator Config - Memory Map... (ALT, S, E, M)

Memory Map Dialog Box

Choosing the Settings — Emulator Config - Memory Map... (ALT, S, E, M)
command opens the Memory Configuration dialog box. If you are using the

HP 64782 Emulator, the Memory Configuration dialog box will appear as

shown in the first display below. If you are using the HP 64749 Emulator, the
Memory Configuration dialog box will appear as shown in the second display:

= Memory Configuration

Define Map Term

N

[Type
® eram) erom) guarded
O tram O trom

" Emulation Memory Attributes
#® none

 interlock with target /DSACK

 emulate & bit wide memory

"' emulate 8 bit mem locked to target

[~ Default

® wam) trom) guarded

| LClosze E | Help

|

" Current Map

0000000..0000tf erom
0006000..000FFff eram
0010000..0010fff eram

Available: 256 Kbytes

| Delete | | Deletean §

Define Map Term

Start: I:I

Func Code:

Twpe
® eram O erom guarded
2 tram 3 trom

[Emulation Memory Overlay

@ none 2 blk1) blk2 O blk 3
> blk4 O blkS5 bk 6

[Default

® tram > trom > guarded

= Memory Configuration

| Close g | Help

J

[Current Map

0000000..0000fff erom
0006000..000fFf eram
001 0000..001Dfff eram

Avwailable: 4164 Kbytes

Delete | | Deletesan 3

298

Start

End

Func Code

Type

Emulation
Memory
Attributes

Chapter 9: Menu Bar Commands

Settings — Emulator Config — Memory Map... (ALT, S, E,

Specifies the starting address of the address range to be
mapped.

Specifies the end address of the address range to be
mapped.

Assigns any of the function codes to the address range.
is only necessary to specify a function code other than X
when mapping overlapping address ranges for different

M)

It

memory spaces. When mapping overlapping ranges, you

can only select function codes that haven'’t already been

selected in previous mappings of the present address range.

Lets you select the memory type of the specified address
range. You can map ranges as emulation RAM, emulation

ROM, target system RAM, target system ROM, or as
guarded memory.

If an address characterized as "guarded" is accessed during
execution of the target program, emulator execution will

break into the monitor.

If an address characterized as ROM is accessed for a write

transaction during execution of the target program,
emulator execution will break into the monitor program,
these breaks are enabled in the hardware configuration.

Emulation memory attributes are only offered in the HP
64782 Memory Configuration dialog box. These options
specify whether or not emulation memory accesses will

if

require the /DSACK signal from the target system before

they can be terminated, and whether the emulation
memory will emulate 8-bit or 16-bit (default) memory
hardware.

If you select "interlock with target /DSACK", bus cycles
that access emulation memory will only be terminated

when a /DSACK signal is received from the target system.
Otherwise, bus cycles that access emulation memory will

be terminated by an emulator-generated /DSACK signal.

299

Chapter 9: Menu Bar Commands
Settings — Emulator Config — Memory Map... (ALT, S, E, M)

Emulation
Memory Overlay

Apply

Default

Current Map
Available

Delete

Delete All

Close

By using "interlock with target /DSACK", you can ensure
that the emulator and target system will stay in sync. The
risk of making this selection is that your code may access a
range of memory where the target system does not return
/DSACK. In this address range, the emulator will stop
functioning. You will need to reset the emulator and
unselect "interlock with target /DSACK".

You can select "interlock with target /DSACK" and "emulate
8 bit wide memory" together by selecting "emulate 8 bit
mem locked to target."

Emulation memory overlay is only offered in the HP 64749
Memory Configuration dialog box. These options specify
that the address range defined above accesses the code
stored in the selected block, which also responds to at least
one other range of addresses. For example, blk1l could
respond to accesses of addresses 0 through Offf and
addresses 41000 through 41fff. If the code in these
addresses is the same, memory overlay makes more
efficient use of the memory hardware resource.

Maps the address range specified in the Define Map Term
group box.

Specifies whether unmapped memory ranges are target
system RAM, target system ROM, or guarded memory.

Lists currently mapped ranges.
Indicates the amount of emulation memory available.

Deletes the address range highlighted in the Current Map
list box.

Deletes all of the address ranges in the Current Map list
box.

Closes the dialog box.

300

Chapter 9: Menu Bar Commands
Settings — Emulator Config - Memory Map... (ALT, S, E, M)

Command File Command

MAP address_range mem_type func_code overlay

Maps the specified address range with the specified memory type and
function code. The Emulation Memory Attributes can be NONE, DSI (for
interlock with target /DSACK), BYTE (for emulate 8 bit wide memory), and
DSI_BYTE (for emulate 8 bit mem locked to target). The overlay attributes
can be: NONE and BLK1 through BLKG6.

MAP OTH(ER) mem_type
Specifies the type and treatment of the non-mapped memory addresses.

Any of the above command file commands must be preceded and followed by
the respective start and end commands:

MAP STA(RT)
Starts the memory mapping command section.

MAP END
Ends the memory mapping command section.

See Also
"Mapping Memory" in the "Configuring the Emulator" chapter.

301

Chapter 9: Menu Bar Commands
Settings — Emulator Config — Monitor... (ALT, S, E, O)

Settings — Emulator Config — Monitor... (ALT, S, E, O)

Emulator Only
Selects the type of monitor program and other monitor options. INote tnat

the foreground monitor selection is only available when using the HP 64782
6833x Emulator.

Target system interrupts are blocked during background monitor operation,
but they may be enabled during foreground monitor operation.

Monitor Config Dialog Box

Choosing the Settings — Emulator Config - Monitor... (ALT, S, E, O)
command opens the following dialog box:

= Monitor Configuration
O Background O Foreground 1] 4 Apply

@'Qser Foreground | Cancel ‘ Help

 Foreground Settings

Monitor Address 0 Browse...

Monitor Name: | |

Select interrupt priority level for foreground monitor

MOTE: Must rezet processor to cause load of Monitor filel

Background/ Select between the background monitor (which is

Foreground/ implemented with the 6833x Background Debug Mode

User Foreground (BDM)), the foreground monitor (which runs out of the
same address space as your programs), or the user
foreground monitor (which is your customized version of
the foreground monitor).

Monitor Address When a foreground monitor is selected, this is the 4-Kbyte
boundary address (ending in 000h) that is the base address
of the 4-Kbyte block of memory occupied by the monitor.

302

Chapter 9: Menu Bar Commands
Settings — Emulator Config — Monitor... (ALT, S, E, O)

4 Kbytes of emulation memory must be mapped at this
address.

Monitor Name Lets you enter the name of the user foreground monitor
object file. The default is
C\HP\RTC\M33X\FFGMON\FGMON.X (if C:\HPARTC\M33X
was the installation path chosen when installing the
debugger software).

Browse... Opens a file selection dialog box from which you can select
the foreground monitor object file to be loaded.

Select interrupt This option lets you run the foreground monitor at a
priority level for lowered interrupt priority level in order to allow critical
foreground target system interrupts to be processed.
monitor
When it’s safe to lower the interrupt level, the foreground
monitor will set the interrupt priority mask to either the
level entered or the level in effect before monitor entry,
whichever is greater.

OK Modifies the monitor configuration as specified and closes
the dialog box.

If you have selected a foreground monitor, it is loaded
automatically after each Emulation - Reset (ALT, E, E)

command.

Cancel Cancels the monitor configuration and closes the dialog
box.

Apply Same as the OK button, except the dialog is left open.

Command File Command
MON(ITOR) TYP(E) BAC(KGROUND)

MON(ITOR) TYP(E) FOR(EGROUND)
MON(ITOR) TYP(E) USE(RFOREGROUND)

MON(ITOR) ADD(RESS) address

303

Chapter 9: Menu Bar Commands
Settings — Emulator Config — Monitor... (ALT, S, E, O)

MON(ITOR) FIL(ENAME) file_name
MON(ITOR) INT(ERRUPT) pri_level

Any of the above command file commands must be preceded and followed by
the respective start and end commands:

MON(ITOR) STA(RT)
Starts the monitor option command section.

MON(ITOR) END
Ends the monitor option command section.

See Also
"Selecting the Type of Monitor" in the "Configuring the Emulator" chapter.

304

Chapter 9: Menu Bar Commands
Settings — Emulator Config — Information... (ALT, S, E, I)

Settings - Emulator Config — Information... (ALT, S, E,
D

This command lets you:

e Check the emulator configuration for inconsistencies.

e Display decoded and formatted information about the emulator
configuration.

e Synchronize the 6833x system integration module (SIM) registers to the
emulator’s EMSIM registers.
Configuration Information Dialog Box

Two list boxes let you select the operation. Each has a button that confirms
the selection. The results are displayed in the viewing area.

= Configuration Information

Config amd STHM Programming Info.

Synchronize STM regicsters
| [] | 2pp1y/Recmts |

306

Chapter 9: Menu Bar Commands
Settings — Emulator Config - Information... (ALT, S, E, 1)

Config and SIM
Programming Info.

You can select:

Check emulator configuration which displays error
messages that result from inconsistencies between
related configuration values. These errors should be
resolved for the emulator to operate correctly. In
addition, status messages about expectations and
limitations of the emulator are displayed.

Chip selects in SIM (processor) register set which
shows how chip selects are defined.

Chip selects in EMSIM (emulator) register set which
shows how chip selects are defined.

Bus interface ports in SIM (processor) register set
which shows how bus interface ports are defined.

Bus interface ports in EMSIM (emulator) register set
which shows how bus interface ports are defined.

Memory map & correlation with CSs, IM reg blk & RAM
which shows the memory map and its correlation with
chip selects, internal module register block, and RAM.

Reset mode configuration value and operation which
shows how the reset mode configuration is defined.

Assembly listing matching current EMSIM registers
which shows the assembly language code that would
initialize the processor to be the same as the current
EMSIM register set.

Display Info. Performs the selected operation and displays the results in
the viewing area.

306

Chapter 9: Menu Bar Commands
Settings — Emulator Config — Information... (ALT, S, E, I)

Synchronize SIM You can select:

registers

Apply/Results

Copy

Done

See Also

Synchronize from ’33x sim regs, copy to emsim regs which
programs the emulator’s EMSIM registers from the 6833x
SIM. This is useful if initialization code that configures the
6833x SIM exists, but you don’t know what its values are.
In this case, you can use the default configuration, run
from reset to execute the initialization code, and
synchronize the EMSIM registers to match the 6833x SIM.

Synchronize from emsim regs, copy to '33x registers which
transfers the programming of the EMSIM registers into the
6833x SIM. This happens automatically each time a break
to the monitor from emulation reset occurs; this ensures
that the 6833x is prepared to properly access memory
when a program is downloaded to the emulator.

Show differences for M6833x and emsim registers Which
compares corresponding values in the SIM and EMSIM
register sets and shows differences between the two. If no
differences are found, no registers will be shown in the list.

Default the emsim register set which resets the EMSIM
registers to default processor values.

Performs the selected operation and displays the results in
the viewing area.

Opens a file selection dialog box that lets you can select
the file to which information in the viewing area is copied.

Closes the dialog box.

"Using the EMSIM Registers" in the "Configuring the Emulator" chapter.

"Verifying the Emulator Configuration" in the "Configuring the Emulator"

chapter.

307

Chapter 9: Menu Bar Commands
Settings — Communication... (ALT, S, C)

Settings -~ Communication... (ALT, S, C)

Choosing this command opens the RTC Emulation Connection Dialog Box
which lets you identify and set up the communication channel between the
personal computer and the HP 64700.

RTC Emulation Connection Dialog Box

Choosing the Settings - Communication... (ALT, S, C) command opens the
following dialog box:

= RTC Emulation Connection

[Current Connection Statug
Address: 15.6.263.153 Uszer Mame: Chriz 5mith
Status: Mot Connected User ID: h678
Transport: HP-ARFPA

RTC Core Version Information

A_04.50 20Jul95 Unreleazed
B3621AAJ4 68302 REAL-TIME C DEBUGGER

" New Emulator Connection Setup

Tranzport Selection:

| User Mame: |Chiis Smith
Uzer ID: a678

Current Connection Status

This part of the dialog box shows the current
communication settings.

RTC Core Version Information

Displays software version information.

308

Chapter 9: Menu Bar Commands
Settings - Communication... (ALT, S, C)

New Emulator Connection Setup

Transport Lets you choose the type of connection to be made to the

Selection HP 64700. Double-clicking causes the current connection
to be tried with the given transport. Single-clicking selects
the transport for use with the Setup button.

User Name This name tells the HP 64700 and other users who you are.
When other users attempt to access the HP 64700 while
you are using it or while it is locked, a message tells them
you're using it.

User ID Another method of identifying yourself to the HP 64700
and other users. This is primarily useful in a mixed UNIX
and MS-DOS environment; when a UNIX user tries to
unlock an emulator, the user ID is used to look into the
/ete/passwd entry on the UNIX host for the user name.

If your HP 64700 is on the LAN, we recommend that you
change User Name and User ID so that other users can
easily tell if an emulator is in use and by whom. Also, if you
don’t change the User Name/ID from the defaults, the

File - Exit HW Locked (ALT, F, H) command has no effect
because all users are identical.

Setup Opens a transport-specific dialog box which usually allows
you to change the address and unlock the emulator

In the LAN Setup dialog boxes, enter the IP address or
network name of the HP 64700.

In the RS232C Setup dialog box, select the baud rate and
the name of the port (for example, COM1, COM2, etc.) to
which the HP 64700 is connected.

In the HP-RS422 Setup dialog box, select the baud rate and
specify the I/O address you want to use for the HP 64037
card. The I/O address must be a hexadecimal number from
100H through 3F8H, ending in 0 or 8, that does not conflict
with other cards in your PC.

309

Chapter 9: Menu Bar Commands
Settings — Communication... (ALT, S, C)

The Connect button in any of these Setup dialog boxes
starts the debugger with the specified communication
settings.

Close Either closes the Real-Time C Debugger, if the current
connection failed, or simply closes the dialog box.

The Real-Time C Debugger does not allow you to change connection or
transport information without leaving the debugger and reentering it.
However, any changes you make will be put in the .INI file and take effect the
next time you enter the debugger (assuming that you do not override the .INI
information on the command line).

The command line options for connection and transport (-E and -T) take
precedence over the values in the .INI file.

310

Chapter 9: Menu Bar Commands
Settings — BNC — Outputs Analyzer Trigger (ALT, S, B, O)

Settings - BNC - Outputs Analyzer Trigger
(ALT; Sa B: O) Emulator Only
Specifies that the analyzer trigger signal be driven on the BNC port.

Selecting the emulator BNC port for output enables the trigger signals to be
fed to external devices (for example, logic analyzers) during tracing.

CAUTION Do not drive the BNC beyond the range of 0 to 5 volts. Doing so may cause
permanent damage to the HP 64700.

The BNC’s drivers can drive 50-ohm loads.

The following is a logical diagram of the BNC connection. The physical
implementation and values of resistors are not exact; this diagram is just to
help you understand the BNC interface:

arm on rising edge

clear arm at start of new frace

BNC
500N

5000

300 |

+5 volfs
— Jutput
bl
FraRE drive high from frigger unfil

83620801 start of next trace

When a trace starts, it stops driving the output (so if nothing else is driving
the line, it will fall low due to the 500-ohm pull-down resistor).

When the trigger point is found, the BNC starts driving the output high. It
will stay high until the start of the next trace.

311

Chapter 9: Menu Bar Commands
Settings — BNC - Outputs Analyzer Trigger (ALT, S, B, 0)

Command File Command
MOD(E) BNC OUT(PUT_TRIGGER)

See Also

"To output the trigger signal on the BNC port" in the "Setting Up the BNC
Port" section of the "Configuring the Emulator" chapter.

312

Chapter 9: Menu Bar Commands
Settings — BNC — Input to Analyzer Arm (ALT, S, B, I)

Settings - BNC - Input to Analyzer Arm (ALT, S, B, I)

Allows the analyzer to receive an arm signal from the BNC port.

This command allows an external trigger signal to be used as an arm (enable)
condition for the internal analyzer. The internal analyzer will arm (or enable)
on a positive edge TTL signal.

CAUTION Do not drive the BNC beyond the range of 0 to 5 volts. Doing so may cause
permanent damage to the HP 64700.

You can use the arm condition when setting up custom trace specifications
with the Trace - Find Then Trigger... (ALT, T, D) or Trace - Sequence...
(ALT, T, Q@) commands. For example, you can trigger on the arm condition
or enable the storage of states on the arm condition. The "arm" condition
may be selected in "set2" of the Trace Condition or Count Condition dialog
boxes.

The BNC port is internally terminated with about 500 ohms; if using a 50 ohm
driver, use an external 50 ohm termination (such as the HP 10100C 50 Ohm
Feedthrough Termination) to reduce bouncing and possible incorrect
triggering.

Command File Command
MOD(E) BNC INP(UT_ARM)

See Also

"To receive an arm condition input on the BNC port" in the "Setting Up the
BNC Port" section of the "Configuring the Emulator" chapter.

Settings - BNC - Outputs Analyzer Trigger (ALT, S, B, O) for a logical
schematic of the BNC interface.

313

Chapter 9: Menu Bar Commands
Settings — Font... (ALT, S, F)

Settings - Font... (ALT, S, F)
Selects the fonts used in the debugger windows.

Font Dialog Box

Choosing the Settings — Font... (ALT, S, F') command opens the following
dialog box:

Font: Font Style: Size:

| Regular |1 4

Courier 9
T Courier Hew Italic

Fixedsys Bold

MS LineDraw Bold Italic

AaBbhYyZ=

Font Lets you select the font to be used in the Real-Time C
Debugger interface. The "T" shaped icon indicates a
TrueType font.

Font Style Lets you select the typeface, for example, regular, bold,
italic, etc.

Size Lets you select the size of the characters.

Sample Shows you what the selected font looks like.

OK Sets the font, and closes the dialog box.

Cancel Cancels font setting, and closes the dialog box.

314

Chapter 9: Menu Bar Commands
Settings — Font... (ALT, S, F)
See Also

"To change the debugger window fonts" in the "Working with Debugger
Windows" section of the "Using the Debugger Interface" chapter.

315

Chapter 9: Menu Bar Commands
Settings — Tabstops... (ALT, S, T)

Settings — Tabstops... (ALT, S, T)
Sets the number of spaces between tab stops.

Source Tab Dialog Box

Choosing the Settings — Tabstops... (ALT, S, T) command opens the following
dialog box:

Tab width in zource
window dizplay:

[

Tab width in Enter the number of spaces between tab stops. This also
source window affects the tab width for source lines in the Trace window.
display The number must be between 1 and 20.

OK Sets the tab stops, and closes the dialog box.

Cancel Cancels tab stop setting, and closes the dialog box.

See Also

"To set tab stops in the Source window" in the "Working with Debugger
Windows" section of the "Using the Debugger Interface" chapter.

316

Chapter 9: Menu Bar Commands
Settings — Symbols - Case Sensitive -~ ON (ALT, S, S, C, O)

Settings — Symbols — Case Sensitive -~ ON
(ALT, 5, 5, G, O)

Symbol database search is case sensitive.

Command File Command
MOD(E) SYM(BOLCASE) ON

See Also
Settings — Symbols — Case Sensitive - OFF (ALT, S, S, C, F)

Settings - Symbols - Case Sensitive - OFF
(ALT, S, 5, C, F)

Symbol database search is not case sensitive.

If there are case conflicts (for example, FOO and foo), no warning is given,
and you cannot predict which symbol will be used. The symbol that is used
depends on what type of symbols FOO and foo are and how they were input
by the symbol section of the object file.

Command File Command
MOD(E) SYM(BOLCASE) OFF

See Also
Settings — Symbols - Case Sensitive -~ ON (ALT, S, S, C, O)

317

Chapter 9: Menu Bar Commands
Settings — Extended - Trace Cycles — User (ALT, S, X, T, U)

Settings — Extended - Trace Cycles - User (ALT, S, X,
T? U) Emulator Only
Traces foreground emulation microprocessor operation.

This is the normal setting.

Command File Command
MOD(E) TRA(CECLOCK) USE(R)
See Also

Settings —» Extended - Trace Cycles »Monitor (ALT, S, X, T, M)
Settings — Extended - Trace Cycles —»Both (ALT, S, X, T, B)

Settings — Extended - Trace Cycles - Monitor (ALT, S,
X, T, M) Emulator Only
Traces background emulation microprocessor operation.

This is rarely a useful setting when debugging programs.

Command File Command
MOD(E) TRA(CECLOCK) BAC(KGROUND)

See Also

Settings — Extended - Trace Cycles - User (ALT, S, X, T, U)
Settings —» Extended - Trace Cycles - Both (ALT, S, X, T, B)

318

Chapter 9: Menu Bar Commands
Settings — Extended - Trace Cycles — Both (ALT, S, X, T, B)

Settings — Extended - Trace Cycles — Both (ALT, S, X,
T, B)

Emulator Only

Traces both foreground and background emulation microprocessor operation.

Command File Command
MOD(E) TRA(CECLOCK) BOT(H)

See Also

Settings — Extended - Trace Cycles - User (ALT, S, X, T, U)
Settings — Extended - Trace Cycles »Monitor (ALT, S, X, T, M)

319

Chapter 9: Menu Bar Commands
Settings — Extended - Load Error Abort— ON (ALT, S, X, L, O)

Settings — Extended — Load Error Abort - ON (ALT, S,
X? L? O) Emulator Only
An error during an object file or memory load causes an abort.

Normally, when an error occurs during an object file or memory load, you
want the load to stop so that you can fix whatever caused the error.

Command File Command
MOD(E) DOW(NLOAD) ERR(ABORT)

See Also
Settings —» Extended - Load Error Abort - OFF (ALT, S, X, L, F)

Settings — Extended - Load Error Abort — OFF (ALT,
S, X, L, F) Emulator Only

An error during an object file or memory load does not cause an abort.

If you expect certain errors during an object file or memory load, for
example, if part of the file is located at "guarded" memory or "target ROM,"
you can choose this command to continue loading in spite of the errors.

Command File Command
MOD(E) DOW(NLOAD) NOE(RRABORT)

See Also
Settings —» Extended - Load Error Abort - ON (ALT, S, X, L, O)

320

Chapter 9: Menu Bar Commands
Settings - Extended - Source Path Query - ON (ALT, S, X, S, 0)

Settings — Extended - Source Path Query - ON (ALT,
S? X? S7 O)
You are prompted for source file paths.

When the debugger cannot find source file information for the Source or
Trace windows, it may prompt you for source file paths depending on the
MODE SOURCE setting.

Command File Command
MOD(E) SOU(RCE) ASK(PATH)

See Also
Settings —» Extended - Source Path Query - OFF (ALT, S, X, S, F)

Settings — Extended - Source Path Query - OFF (ALT,
S, X, S, F)

You are not prompted for source file paths.

You can turn off source path prompting, for example, to avoid annoying
dialog interactions when tracing library functions for which no source files
are available.

Command File Command
MOD(E) SOU(RCE) NOA(SKPATH)

See Also
Settings — Extended - Source Path Query - ON (ALT, S, X, S, O)

321

Chapter 9: Menu Bar Commands
Window — Cascade (ALT, W, C)

Window - Cascade (ALT, W, C)

Arranges, sizes, and overlaps windows.

Windows are sized, evenly, to be as large as possible.

Window - Tile (ALT, W, T)

Arranges and sizes windows so that none are overlapped.

Windows are sized evenly.

Window - Arrange Icons (ALT, W, A)

Rearranges icons in the Real-Time C Debugger window.

Icons are distributed evenly along the lower edge of the Real-Time C
Debugger window.

322

Chapter 9: Menu Bar Commands
Window - 1-9 (ALT, W, 1-9)

Window — 1-9 (ALT, W, 1-9)

Opens the window associated with the number.

The nine most recently opened windows appear in the menu list. If the
window you wish to open is not on the list, choose the Window — More
Windows... (ALT, W, M) command.

Windows are closed just as are ordinary MS Windows, that is, by opening the
control menu and choosing Close or by pressing CTRL+F4.

The debugger has the following windows:

BackTrace

Button

Expression

/0

Memory

Source

Status

Symbol

Trace

WatchPoint

Basic Registers

SIM Registers
Emulator SIM Registers
RAM Registers
Emulation RAM Registers
QSM Registers

TPU Registers

Test and Misc Registers

For details on each of these windows, refer to the "Debugger Windows"
section in the "Concepts" information.

Command File Command
DIS(PLAY) window-name
Opens the specified window.

ICO(NIC) window-name
Closes the specified window.

323

Chapter 9: Menu Bar Commands
Window - 1-9 (ALT, W, 1-9)
See Also

"To open debugger windows" in the "Working with Debugger Windows"
section of the "Using the Debugger Interface" chapter.

324

Chapter 9: Menu Bar Commands
Window — More Windows... (ALT, W, M)

Window — More Windows... (ALT, W, M)

Presents a list box from which you can select the window to be opened.

Select Window Dialog Box

Choosing the Window — More Windows... (ALT, W, M) command opens the
following dialog box:

= Select Window

Expression

Watch Point
Back Trace
Trace - Loading Data [Fram
Status
Symbol

1] 4 3 |Eancel§

OK Opens the window selected in the list box.

Cancel Closes the dialog box.

Command File Command

DIS(PLAY) window-name
Opens the specified window. Use the first three characters of the window
name, or, if the window name is "Basic Registers," use "REG."

ICO(NIC) window-name
Closes the specified window. Use the first three characters of the window
name, or, if the window name is "Basic Registers," use "REG."

See Also

"To open debugger windows" in the "Working with Debugger Windows"
section of the "Using the Debugger Interface" chapter.

325

Chapter 9: Menu Bar Commands
Help - About Debugger/Emulator... (ALT, H, D)

Help —» About Debugger/Emulator... (ALT, H, D)

Provides information on the Real-Time C Debugger.

Choosing the Help — About Debugger/Emulator... (ALT, H, D) command
opens a dialog box containing the version information on the current
Real-Time C Debugger and emulator.

326

Chapter 9: Menu Bar Commands
Source Directory Dialog Box

Source Directory Dialog Box

When the source file associated with a symbol cannot be found in the current
directory, the following dialog box is opened:

= Source Directory
Module: - ok g
Directory: | |

Module Shows the symbol whose source file could not be found.

Directory Lets you enter the directory in which the source file
associated with the symbol may be found.

OK Adds the directory entered in the Directory text box to the
source file search path.

Cancel Closes the dialog box.

327

Chapter 9: Menu Bar Commands
WAIT Command Dialog Box

WAIT Command Dialog Box

This dialog box appears when the WAIT command is included in a command
file, break macro, or button.

Choosing the STOP button cancels the WAIT command.

328

10

Window Control Menu Commands

329

Window Control Menu Commands

This chapter describes the commands that can be chosen from the control
menus in debugger windows.

* Common Control Menu Commands

* Button Window Commands

¢ Expression Window Commands

* /O Window Commands

¢ Memory Window Commands

e Register Window Commands

* Source Window Commands

e Symbol Window Commands

¢ Trace Window Commands (Emulator Only)

¢ WatchPoint Window Commands

330

Chapter 10: Window Control Menu Commands
Common Control Menu Commands

Common Control Menu Commands

This section describes commands that appear in the control menus of most of
the debugger windows:

Copy- Window (ALT, -, P, W)

* Copy - Destination... (ALT, -, P, D)

Copy - Window (ALT, -, P, W)

Copies the current window contents to the destination file specified with the
File - Copy Destination... (ALT, F, P) command.

Command File Command
COP(Y) BAC(KTRACE)
COP(Y) BUT(TON)
COP(Y) EXP(RESSION)

COP(Y) IO

COP(Y) MEM(ORY)
COP(Y) REG(ISTER)
COP(Y) SOU(RCE)
COP(Y) WAT(CHPOINT)

See Also

"To copy window contents to the list file" in the "Working with Debugger
Windows" section of the "Using the Debugger Interface" chapter.

331

Chapter 10: Window Control Menu Commands
Common Control Menu Commands

Copy - Destination... (ALT, -, P, D)

Names the listing file to which debugger information may be copied.

This command opens a file selection dialog box from which you can select the
listing file. Listing files have the extension ".LST".

Command File Command
COP(Y) TO filename

See Also

"To change the list file destination" in the "Working with Debugger Windows"
section of the "Using the Debugger Interface" chapter.

332

Chapter 10: Window Control Menu Commands
Button Window Commands

Button Window Commands

This section describes the following command:

. Edit... (ALT, -, E)

Edit... (ALT, -, E)

Lets you define and label buttons in the Button window.

You can set up buttons to execute commonly used commands or command
files.

Note that the Copy —» Window command will generate a listing file that
contains a header followed by commands needed to recreate the buttons. By
removing the header, this file may be used as a command file.

Alternatively, you can log commands to a command file as you edit the
buttons (refer to "To create a command file" in the "Using Command Files"
section of the "Using the Debugger Interface" chapter). To recreate the
buttons, just run the command file that you created while editing the buttons.

333

Chapter 10: Window Control Menu Commands
Button Window Commands

Button Edit Dialog Box

Choosing the Edit... (ALT, -, E) command opens the following dialog box:

I Edit

Command: |FILE COMMAND cmdfile2.cmd |

Mame:

(] | (oo

[Button Definitions

[Cmd1] FILE COMMAND cmdfilel.cmd

Delete | | Deleteal |

Command

Name

Add

Button
Definitions

Specifies the command to be associated with the button.
Command syntax is described at the bottom of most help
topics under the "Command File Command" heading. Also,
look in the "Command File and Macro Command Summary"
chapter in the "Reference" part.

You can only enter a single command here; if you want a
series of commands to be executed when this button is
used, put them in a command file and use the command
"FILE COMMAND filename," where "filename" is the name
of your command file.

Specifies the button label to be associated with the
command.

Adds the button to the button window.

Lists the currently defined buttons. You can select button
definitions for deletion by clicking on them.

334

Chapter 10: Window Control Menu Commands
Button Window Commands

Delete Deletes the button definition selected in the Button
Definitions list box.

Delete All Deletes all buttons from the Button window.

Close Closes the dialog box.

Command File Command
BUTTON label "command"
See Also

"To create buttons that execute command files" in the "Using Command
Files" section of the "Using the Debugger Interface" chapter.

335

Chapter 10: Window Control Menu Commands
Expression Window Commands

Expression Window Commands
This section describes the following commands:

e (lear (ALT, -,R)

e Evaluate... (ALT, -, E)

Clear (ALT, -, R)
Erases the contents of the Expression window.

Command File Command
EVA(LUATE) CLE(AR)

336

Chapter 10: Window Control Menu Commands
Expression Window Commands

Evaluate... (ALT, -, E)
Evaluates expressions and displays the results in the Expression window.

Evaluate Expression Dialog Box

Choosing the Evaluate... (ALT, -, E) command opens the following dialog
box:

= Evaluate Expression
Expression: I Evaluate ;

| &message_ic‘ |

Expression Lets you enter the expression to be evaluated.

Evaluate Makes the evaluation and places the results in the
Expression window.

Close Closes the dialog box.

Command File Command
EVA(LUATE) address

EVA(LUATE) "strings"

See Also

"Symbols" in the "Expressions in Commands" chapter.

337

Chapter 10: Window Control Menu Commands

1/0 Window Commands

I/O0 Window Commands

This section describes the following command:

« Define... (ALT, -, D)

Define... (ALT, -, D)

Adds or deletes memory mapped I/O locations from the I/O window.

I/0 Setting Dialog Box
Choosing the Edit — Definition... command opens the following dialog box:

B oSeng]|

[Set
Address: | 2000 |

Size: @ byte 16 Bits
Space: & Mem

170 set
address: 000002000, size: byte

338

Chapter 10: Window Control Menu Commands
I/0 Window Commands

Address Specifies the address of the I/O location to be defined.

Size Specifies the data format of the I/O location to be defined.
You can select the Byte or 16 Bits option.

Space Specifies whether the I/O location is in memory or I/O
space.

Set Adds the specified /O location.

I/0 set Displays the information on the I/O locations that have
been set.

Delete Deletes the I/O locations selected in the I/O set list box.

Close Closes the dialog box.

Command File Command

IO BYTE/WORD/LONG IOSPACE/MEMORY address TO data
Replaces the contents of the specified I/0 address with the specified value in
the specified size.

IO SET BYTE/WORD/LONG IOSPACE/MEMORY address
Registers the 1/0 address to be displayed in the specified size.

IO DEL(ETE) BYTE/WORD/LONG IOSPACE/MEMORY address
Deletes the 1/0 specified with its address and size.

See Also
"Displaying and Editing I/O Locations" in the "Debugging Programs" chapter.

339

Chapter 10: Window Control Menu Commands
Memory Window Commands

Memory Window Commands

This section describes the following commands:
* Display - Linear (ALT, -, D, L)

* Display - Block (ALT, -, D, B)

* Display - Byte (ALT, -, D, Y)

* Display - 16 Bits (ALT, -, D, 1)

* Display - 32 Bits (ALT, -, D, 3)

e Search... (ALT, -, R)

e Utilities - Copy... (ALT, -, U, C)

» Utilities » Fill... (ALT, -, U, F)

» Utilities - Load... (ALT, -, U, L))

e Utilities - Store... (ALT, -, U, S)

Display - Linear (ALT, -, D, L)
Displays memory contents in single column format.

Command File Command
MEM(ORY) ABS(OLUTE)

340

Chapter 10: Window Control Menu Commands
Memory Window Commands

Display - Block (ALT, -, D, B)
Displays memory contents in multicolumn format.

Command File Command
MEM(ORY) BLO(CK)

Display - Byte (ALT, -, D, Y)
Displays memory contents as bytes.

Command File Command
MEM(ORY) BYTE

Display - 16 Bit (ALT, -, D, 1)

Displays memory contents as 16-bit values.

Command File Command
MEM(ORY) WORD

Display — 32 Bit (ALT, -, D, 3)
Displays memory contents as 32-bit values.

Command File Command
MEM(ORY) LONG

341

Chapter 10: Window Control Menu Commands
Memory Window Commands

Search... (ALT, -, R)

Searches for a value or string in a range of memory.

When the value or string is found, the location is displayed in the Memory
window. Choose the Window - Memory command to open the window.

The value or string can be selected from another window (in other words,
copied to the clipboard) before choosing the command; the contents of the
clipboard will automatically appear in the dialog box that is opened.

Search Memory Dialog Box
Choosing the Search... (ALT, -, R) command opens the following dialog box:

= Search Memory

Yalue: | | | Search 3
Shring: | This | Cloze g
Start: | 6000 |

End: | Ofif |

Size: @ byte ' 16 Bits ' 32 Bits

Value Lets you enter a value.

String Lets you enter a string.

Start Lets you enter the starting address of the memory range to
search.

End Lets you enter the end address of the memory range to
search.

Size Selects the data size using the Byte, 16 Bits, or 32 Bits

option buttons.

Execute Searches for the specified value or string.

342

Chapter 10: Window Control Menu Commands
Memory Window Commands

Close Closes the dialog box.

Command File Command
SEA(RCH) MEM(ORY) BYTE/WORD/LONG addr_range value

SEA(RCH) MEM(ORY) STR(ING) "string"

See Also

"To search memory for a value or string" in the "Displaying and Editing
Memory" section of the "Debugging Programs" chapter.

343

Chapter 10: Window Control Menu Commands
Memory Window Commands

Utilities —» Copy... (ALT, -, U, C)

Copies the contents of one memory area to another.

Memory Copy Dialog Box

Choosing the Utilities » Copy... (ALT, -, U, C) command opens the following

dialog box:

Start

End

Destination

Size

Execute

Close

= Memory Copy

Start: |I]I]I]I]I]l]l]@x || Copy 3

End: [0000087 @+ | T Crose]

Destination | 64000 |

Size: @ bpte O 16 Bitz ' 32 Bits

Lets you enter the starting address of the source memory
area.

Lets you enter the end address of the source memory area.

Specifies the starting address of the destination memory
area.

Selects the data size using the Byte, 16 Bits, or 32 Bits
option buttons.

Copies the memory contents.

Closes the dialog box.

Command File Command
MEM(ORY) COP(Y) size address_range address

344

Chapter 10: Window Control Menu Commands
Memory Window Commands

See Also

"To copy memory to a different location" in the "Displaying and Editing
Memory" section of the "Debugging Programs" chapter.

Utilities - Fill... (ALT, -, U, F)
Fills a range of memory with a specified value.

Memory Fill Dialog Box

Choosing the Utilities - Fill... (ALT, -, U, F) command opens the following
dialog box:

= Memory Fill

Yalue: ||]
Start: (0000000
End: |oo00DB7 @

Size: @ byte 16 Bits 0 32 Bits

Value Lets you enter the filling value.

Start Lets you enter the starting address of the memory area to
be filled.

End Lets you enter the end address of the memory area to be
filled.

Size Selects the size of the filling value. If the value specified is

larger than can fit in the size selected, the upper bits of the
value are ignored. You can select the size using the Byte,
16 Bits, or 32 Bits option buttons.

Execute Executes the command.

345

Chapter 10: Window Control Menu Commands
Memory Window Commands

Close Closes the dialog box.

Command File Command
MEM(ORY) FIL(L) size address_range data

See Also

"To modify a range of memory with a value" in the "Displaying and Editing
Memory" section of the "Debugging Programs" chapter.

Utilities - Load... (ALT, -, U, L)
Loads memory contents from a previously stored file.

Load Binary File Dialog Box

Choosing the Utilities — Load... (ALT, -, U, L) command opens the following
dialog box:

= Load Binary File

File Mame: [C:\hp\tcim3zaidatadal | [Load §

Bytes Loaded: | [|| | Cancel g

Browse. . g

Record Format: Motorola S-Record

File Name Lets you enter the name of the file to load memory from.

Bytes Loaded After you choose the Import button, this box shows the
number of bytes that are loaded.

Record Format Lets you specify the format of the file from which you're
loading memory. You can load Motorola S-Record or Intel
Hexadecimal format files.

346

Chapter 10: Window Control Menu Commands
Memory Window Commands

Load Starts the memory load.
Cancel Closes the dialog box.
Browse... Opens a file selection dialog box from which you can select

the file name.
Command File Command
MEM(ORY) LOA(D) MOT(OSREC) filename

MEM(ORY) LOA(D) INT(ELHEX) filename

See Also

"To copy target system memory into emulation memory" in the "Displaying
and Editing Memory" section of the "Debugging Programs" chapter.

Utilities - Store... (ALT, -, U, S)

347

Chapter 10: Window Control Menu Commands
Memory Window Commands

Utilities — Store... (ALT, -, U, S)
Stores memory contents to a binary file.

Store Binary File Dialog Box

Choosing the Utilities - Store... (ALT, -, U, S) command opens the following
dialog box:

= Store Binary File

File Name: [C:\hpArtcAm33atdata.dat |

Bytes Stored: | I]|

Record Format: Motorola S-Record

B
Stark: D00006010@x| End: 000006090y m

File Name Lets you enter the name of the file to which memory
contents are stored.

Bytes Stored After you choose the Export button, this box shows the
number of bytes that are stored.

Record Format Lets you specify the format of the file to which you're
storing memory. You can select Motorola S-Record or Intel
Hexadecimal formats.

Start Lets you enter the starting address of the memory range to
be stored.

End Lets you enter the ending address of the memory range to
be stored.

Store Starts the memory store.

Cancel Closes the dialog box.

348

Chapter 10: Window Control Menu Commands
Memory Window Commands

Browse... Opens a file selection dialog box from which you can select
a file name.

Command File Command
MEM(ORY) STO(RE) MOT(OSREC) addr-range filename

MEM(ORY) STO(RE) INT(ELHEX) addr-range filename

See Also

"To copy target system memory into emulation memory" in the "Displaying
and Editing Memory" section of the "Debugging Programs" chapter.

Utilities - Load... (ALT, -, U, L))

349

Chapter 10: Window Control Menu Commands
Register Window Commands

Register Window Commands

This section describes the following commands:

* Copy - Registers (ALT, -, P, R)

Copy - Registers (ALT, -, P, R)

Copies the current Register window contents to the destination file specified
with the File - Copy Destination... (ALT, F, P) command.

Command File Command
COP(Y) REG(ISTER)

350

Chapter 10: Window Control Menu Commands
Register Window Commands

Register Bit Fields Dialog Box

When a register has bit-fields, double-clicking on its value will cause a dialog
box to pop up. The register value may be edited by changing the whole value
or by editing individual bit-fields in the dialog box.

Register Bit Fields

Status - st
Edited value: 2711
Original ¥alue: 271t

Description

Trace Enable
Mo trace

Supervisor/Uzer State
Supervisor

Heamvad

Heamvad

Extend

Megative

Value
[o]
|
[o]
Interrupt Priority Mask 10-8
[o]
&
&
2

Zero

When editing in the dialog box, a carriage-return is the same as choosing the
OK button. To end an edit of a field within the dialog box without quitting,
use the Tab key.

The description beside a bit field name tells you what has been selected.
This description changes when you change the contents of the bit field.

Edited Value Shows the register value that corresponds to the selections
made below. You can also change the register’s value by
modifying the value in this text box.

351

Chapter 10: Window Control Menu Commands
Register Window Commands

Original Value Shows the value of the register when the dialog box was
opened. If the register could not be read, XXXXXXXX’ is

displayed.
OK Modifies the register as specified, and closes the dialog box.
Cancel Closes the dialog box without modifying the register.

352

Chapter 10: Window Control Menu Commands
Source Window Commands

Source Window Commands

This section describes the following commands:
* Display - Mixed Mode (ALT, -, D, M)

* Display - Source Only (ALT, -, D, S)

* Display - Select Source... (ALT, -, D, L))

e Search- String... (ALT, -, R, S)

e Search - Function... (ALT, -, R, F)

e Search- Address... (ALT, -, R, A)

e Search- Current PC (ALT, -, R, C)

Display - Mixed Mode (ALT, -, D, M) (Emulator Only)
Chooses the source/mnemonic mixed display mode.

Command File Command
MOD(E) MNE(MONIC) ON

See Also

"To display source code mixed with assembly instructions" in the "Loading
and Displaying Programs" section of the "Debugging Programs" chapter.

363

Chapter 10: Window Control Menu Commands
Source Window Commands

Display - Source Only (ALT, -, D, S)
Chooses the source only display mode.

Command File Command
MOD(E) MNE(MONIC) OFF
See Also

"To display source code only" in the "Loading and Displaying Programs"
section of the "Debugging Programs" chapter.

354

Chapter 10: Window Control Menu Commands
Source Window Commands

Display - Select Source... (ALT, -, D, L)

Displays the contents of the specified C source file in the Source window.

This command is disabled before the object file is loaded or when no source
is available for the loaded object file.

Select Source Dialog Box

Choosing the Display — Select Source... (ALT, -, D, L) command opens the
following dialog box:

= Select Source

Source Files:

Help §

Source Files Lists C source files associated with the loaded object file.
You can select the source file to be displayed from this list.

Select Switches the Source window contents to the selected
source file.

Close Closes the dialog box.

Directory Opens the Search Directories Dialog Box from which you
can add directories to the search path.

Command File Command
FIL(E) SOU(RCE) module_name

365

Chapter 10: Window Control Menu Commands
Source Window Commands

See Also

"To display source files by their names" in the "Loading and Displaying
Programs" section of the "Debugging Programs" chapter.

Search - String... (ALT, -, R, S)

Searches for, and displays, a string in the Source window.

The search starts from the current cursor position in the Source window,
may be either forward or backward, and may be case sensitive.

The string can be selected from another window (in other words, copied to
the clipboard) before choosing the command; it will automatically appear in
the dialog box that is opened.

Search String Dialog Box

Choosing the Search - String... (ALT, -, R, S) command opens the following
dialog box:

= Search String

Find What: [sample] | [Find Mext]

Direction

(] Match Case ’70 Up ® Down

Find What Lets you enter the string.

Match Case Selects or deselects case matching,

Up Specifies that the search be from the current cursor
position backward.

Down Specifies that the search be from the current cursor

position forward.

356

Chapter 10: Window Control Menu Commands
Source Window Commands

Find Next Searches for the string,.

Close Closes the dialog box.

Command File Command

SEA(RCH) STR(ING) FOR/BACK ON/OFF strings
Searches the specified string in the specified direction with the case
matching option ON or OFF.

See Also

"To search for strings in the source files" in the "Loading and Displaying
Programs" section of the "Debugging Programs" chapter.

Search - Function... (ALT, -, R, F)

Searches for, and displays, a function in the Source window.

The object file and symbols must be loaded before you can choose this
command.

Note This command displays the source file based on the function information in
the object file. Depending on the structure of the function, the command
may fail in displaying the declaration of the function.

357

Chapter 10: Window Control Menu Commands
Source Window Commands

Search Function Dialog Box

Choosing the Search - Function... (ALT, -, R, F) command opens the
following dialog box:

= Search Function
Function: I Find a

change_status
convert
converl_case
init_data

next_meszzage

Function Lets you select the function to search for.
Find Searches the specified function.
Close Closes the dialog box.

Command File Command
SEA(RCH) FUNC(TION) func_name
See Also

"To search for function names in the source files" in the "Loading and
Displaying Programs" section of the "Debugging Programs" chapter.

358

Chapter 10: Window Control Menu Commands
Source Window Commands

Search - Address... (ALT, -, R, A)

Searches for, and displays, an address in the Source window.

Address expressions such as function names or symbols can be selected from
another window (in other words, copied to the clipboard) before choosing
the command; the contents of the clipboard will automatically appear in the
dialog box that is opened.

Search Address Dialog Box

Choosing the Search - Address... (ALT, -, R, A) command opens the following
dialog box:

= Search Address

Address:

|6a6

Address Lets you enter the address to search for.
Find Searches for the specified address.
Close Closes the dialog box.

Command File Command

CUR(SOR) address
When used before the COME command, this command can be used to run to
a particular address.

See Also

"To search for addresses in the source files" in the "Loading and Displaying
Programs" section of the "Debugging Programs" chapter.

3569

Chapter 10: Window Control Menu Commands
Source Window Commands

Search - Current PC (ALT, -, R, C)

Searches for, and displays, the location of the current program counter in the
Source window.

Command File Command

CUR(SOR) PC
This command can be used to show the current PC in the Source window.

360

Chapter 10: Window Control Menu Commands
Source Window Commands

Search Directories Dialog Box

Choosing the Directories... button in the Select Source dialog box opens the
following dialog box:

= Search Directories

Directory : ||

Directory

Search Source

Directories

Add

Delete

Close

See Also

Source Search Directories

C:AHPARTCAM 33:\DEMOASAMPLE

Lets you enter the directory to be added to the source file
search path.

Lists the directories in the source file search path.
Adds the directory entered in the Directory text box to the
source file search path.

Deletes the directory in the Directory text box from the
source file search path.

Closes the dialog box.

"To specify source file directories" in the "Loading and Displaying Programs"
section of the "Debugging Programs" chapter.

361

Chapter 10: Window Control Menu Commands
Symbol Window Commands

Symbol Window Commands

This section describes the following commands:
* Display - Modules (ALT, -, D, M)

e Display - Functions (ALT, -, D, F)

* Display - Externals (ALT, -, D, E)

e Display - Locals... (ALT, -, D, L)

e Display - Asm Globals (ALT, -, D, G)
¢ Display - Asm Locals... (ALT, -, D, A)
» Display - User defined (ALT, -, D, U)
* Copy- Window (ALT, -, P, W)

* Copy-All (ALT, -, P, A)

* FindString - String... (ALT, -, D, M)

e User defined - Add... (ALT, -, U, A)

e User defined - Delete (ALT, -, U, D)

e User defined - Delete All (ALT, -, U, L)

Display — Modules (ALT, -, D, M)
Displays the symbolic module information from the loaded object file.

Command File Command
SYM(BOL) LIS(T) MOD(ULE)

362

Chapter 10: Window Control Menu Commands
Symbol Window Commands

See Also

"To display program module information" in the "Displaying Symbol
Information" section of the "Debugging Programs" chapter.

Display - Functions (ALT, -, D, F)

Displays the symbolic function information from the loaded object file.

The Symbol window displays the name, type and address range for C
functions.

Command File Command
SYM(BOL) LIS(T) FUN(CTION)

See Also

"To display function information" in the "Displaying Symbol Information"
section of the "Debugging Programs" chapter.

Display — Externals (ALT, -, D, E)

Displays the global variable information from the loaded object file.

The Symbol window displays the name, type and address for global variables.

Command File Command
SYM(BOL) LIS(T) EXT(ERNAL)

See Also

"To display external symbol information" in the "Displaying Symbol
Information" section of the "Debugging Programs" chapter.

363

Chapter 10: Window Control Menu Commands
Symbol Window Commands

Display - Locals... (ALT, -, D, L))

Displays the local variable information on the specified function.

The function name can be selected from another window (in other words,
copied to the clipboard) before choosing the command; the clipboard
contents automatically appear in the dialog box that is opened.

The Symbol window displays the name, type and offset from the frame
pointer for the local variables for the specified function.

Local Symbol Dialog Box

Choosing the Display — Locals... (ALT, -, D, L) command opens the following
dialog box:

= Local Symbol

Function:

| converl_case |

Function Selects the function for which the local variable
information is displayed.

OK Executes the command and closes the dialog box.

Cancel Cancels the command and closes the dialog box.

Command File Command
SYM(BOL) LIS(T) INT(ERNAL) function

See Also

"To display local symbol information" in the "Displaying Symbol Information"
section of the "Debugging Programs" chapter.

364

Chapter 10: Window Control Menu Commands
Symbol Window Commands

Display - Asm Globals (ALT, -, D, G)

Displays the global Assembler symbol information from the loaded object file.

The Symbol window displays the name and address for the global assembler
symbols.

Command File Command
SYM(BOL) LIS(T) GLO(BALS)
See Also

"To display global assembler symbol information" in the "Displaying Symbol
Information" section of the "Debugging Programs" chapter.

365

Chapter 10: Window Control Menu Commands
Symbol Window Commands

Display - Asm Locals... (ALT, -, D, A)

Displays the local symbol information from the specified module.

The module name can be selected from another window (in other words,
copied to the clipboard) before choosing the command; the clipboard
contents automatically appear in the dialog box that is opened.

The Symbol window displays the name and address for the local symbols for
the specified module.
Assembler Symbol Dialog Box

Choosing the Display - Asm Locals... (ALT, -, D, A) command opens the
following dialog box:

= Assembler Symbol

Module:

| sample

Module Selects the module for which the local symbols are
displayed.

OK Executes the command and closes the dialog box.

Cancel Cancels the command and closes the dialog box.

Command File Command
SYM(BOL) LIS(T) LOC(AL) module

See Also

"To display local assembler symbol information" in the "Displaying Symbol
Information" section of the "Debugging Programs" chapter.

366

Chapter 10: Window Control Menu Commands
Symbol Window Commands

Display - User defined (ALT, -, D, U)

Displays the user-defined symbol information.

The Symbol window displays the name and address for the user-defined
symbols.

The User defined —» Add... (ALT, -, D, U) command adds the user-defined
symbols.

Command File Command
SYM(BOL) LIS(T) USE(R)
See Also

"To display user-defined symbol information" in the "Displaying Symbol
Information" section of the "Debugging Programs" chapter.

Copy - Window (ALT, -, P, W)

Copies the information currently displayed in the Symbol window to the
specified listing file.

The listing file is specified with the File - Copy Destination... (ALT, F, P)
command.

Command File Command
SYM(BOL) COP(Y) DIS(PLAY)
See Also

"To copy window contents to the list file" in the "Working with Debugger
Windows" section of the "Using the Debugger Interface" chapter.

367

Chapter 10: Window Control Menu Commands
Symbol Window Commands

Copy — All (ALT, -, P, A)
Copies all the symbol information to the specified listing file.

The listing file is specified with the File - Copy Destination... (ALT, F, P)
command.

Command File Command
SYM(BOL) COP(Y) ALL

FindString - String... (ALT, -, F, S)

Displays the symbols that contain the specified string.

This command performs a case-sensitive search.

Symbol Matches Dialog Box

Choosing the FindString - String... (ALT, -, F, S) command opens the
following dialog box:

String:

|i"it | Cancel
String Specifies the string.
OK Executes the command and closes the dialog box.
Cancel Cancels the command and closes the dialog box.

368

Chapter 10: Window Control Menu Commands
Symbol Window Commands

Command File Command

SYM(BOL) MAT(CH) string

See Also

"To display the symbols containing the specified string" in the "Displaying
Symbol Information" section of the "Debugging Programs" chapter.

User defined - Add... (ALT, -, U, A)

Adds the specified user-defined symbol.

User-defined symbols may be used in debugger commands just like other
program symbols.

The symbol name must satisfy the following requirements:

* The name must begin with an alphabetical, _ (underscore), or ?
character.

* The following characters must be any of alphanumerical, _ (underscore),
or ? characters.

¢ The maximum number of characters is 256.

369

Chapter 10: Window Control Menu Commands
Symbol Window Commands

User defined Symbol Dialog Box

Choosing the User defined - Add... (ALT, -, U, A) command opens the
following dialog box:

= User Defined Symbol Add

Symbol Hame:

| imp_start |
Address:

| EaEﬂ |

Symbol Name Specifies the symbol to be added.

Address Specifies the address of the symbol.
OK Executes the command and closes the dialog box.
Cancel Cancels the command and closes the dialog box.

Command File Command
SYM(BOL) ADD symbol_nam address

See Also

"To create a user-defined symbol" in the "Displaying Symbol Information"
section of the "Debugging Programs" chapter.

370

Chapter 10: Window Control Menu Commands
Symbol Window Commands

User defined - Delete (ALT, -, U, D)

Deletes the specified user-defined symbol.

This command deletes the user-defined symbol selected in the Symbol
window.

Command File Command
SYM(BOL) DEL(ETE) symbol_nam
See Also

"To delete a user-defined symbol" in the "Displaying Symbol Information"
section of the "Debugging Programs" chapter.

User defined - Delete All (ALT, -, U, L)
Deletes all the user-defined symbols.

Command File Command
SYM(BOL) DEL(ETE) ALL

371

Chapter 10: Window Control Menu Commands
Trace Window Commands (Emulator Only)

Trace Window Commands (Emulator Only)

This section describes the following commands:

* Display - Mixed Mode (ALT, -, D, M)

* Display - Source Only (ALT, -, D, S)

¢ Display - Bus Cycle Only (ALT, -, D, C)

* Display - Count - Absolute (ALT, -, D, C, A)

¢ Display - Count - Relative (ALT, -, D, C, R)

e Display - From State... (ALT, -, D, F)

» Display - Options - Dequeue ON (ALT, -, D, O, O)
« Display - Options - Dequeue OFF (ALT, -, D, O, F)
* Copy- Window (ALT, -, P, W)

e Copy-All (ALT, -, P, A)

e Search-Trigger (ALT, -, R, T)

e Search- State... (ALT, -, R, S)

e Trace Spec Copy - Specification (ALT, -, T, S)

e Trace Spec Copy - Destination... (ALT, -, T, D)

Display - Mixed Mode (ALT, -, D, M)
Chooses the source/mnemonic mixed display mode.

Command File Command
TRA(CE) DIS(PLAY) MIX(ED)

372

Chapter 10: Window Control Menu Commands
Trace Window Commands (Emulator Only)

See Also

"To display source code mixed with assembly instructions" in the "Loading
and Displaying Programs" section of the "Debugging Programs" chapter.

Display - Source Only (ALT, -, D, S)
Selects the source only display mode.

Command File Command
TRA(CE) DIS(PLAY) SOU(RCE)

See Also

"To display bus cycles" in the "Tracing Program Execution" section of the
"Debugging Programs" chapter.

Display — Bus Cycle Only (ALT, -, D, C)

Selects the bus cycle only display mode.

Command File Command
TRA(CE) DIS(PLAY) BUS

See Also

"To display bus cycles" in the "Tracing Program Execution" section of the
"Debugging Programs" chapter.

373

Chapter 10: Window Control Menu Commands
Trace Window Commands (Emulator Only)

Display — Count — Absolute (ALT, -, D, C, A)

Selects the absolute mode (the total time elapsed since the trigger) for count
information.

Command File Command
TRA(CE) DIS(PLAY) ABS(OLUTE)

See Also

"To display absolute or relative counts" in the "Tracing Program Execution"
section of the "Debugging Programs" chapter.

Display — Count - Relative (ALT, -, D, C, R)

Selects the relative mode (the time interval between the current and
previous cycle) for count information.

Command File Command
TRA(CE) DIS(PLAY) REL(ATIVE)

See Also

"To display absolute or relative counts" in the "Tracing Program Execution"
section of the "Debugging Programs" chapter.

374

Chapter 10: Window Control Menu Commands
Trace Window Commands (Emulator Only)

Display - From State... (ALT, -, D, F)

Changes disassembly of bus cycle data in the Trace window.

Bus cycle data in the Trace window is always disassembled. However,
because assumptions are made about where instructions start in the captured
data, the disassembly may not always be correct. If you see disassembled
information that does not look correct, you can use this command to change
the point where disassembly starts.

Trace Disassemble From Dialog Box

Choosing the Display - From State... (ALT, -, D, F) command opens the
following dialog box:

= Trace Disassemble From...
State: ||I] |
Dequeued Data
Align From State: ICI

Cancel g

State Enter the number of the state where you wish to start
disassembly.

Dequeued Data When trace data is being dequeued (in other words, when

Align From State captured states are shuffled so that operand cycles appear
with the instruction cycles that caused them), this box lets
you enter the number of the operand cycle state that was
caused by the instruction cycle listed in the State field

above.

OK Disassembles and displays the trace data, and closes the
dialog box.

Cancel Cancels the command and closes the dialog box.

375

Chapter 10: Window Control Menu Commands
Trace Window Commands (Emulator Only)

Command File Command

MOD(E) TRA(CE) DIS(PLAY) FRO(M) state-num
Specifies the state you want to disassemble from.

MOD(E) TRA(CE) DIS(PLAY) ALI(GN) state-num

When trace data is being dequeued, this command specifies the first operand
cycle state associated with the instruction cycle state you are disassembling
from.

See Also

"To change the disassembly of bus cycle data" in the "Tracing Program
Execution" section of the "Debugging Programs" chapter.

Display — Options — Dequeue ON (ALT, -, D, O, O)

Dequeues bus cycle data in the Trace window.

This command shuffles bus cycle states in the Trace window so that operand
cycles immediately follow the instruction cycles that caused them. And,
unexecuted instructions are removed from the display.

The trace list dequeueing feature is available in the HP 64782 product, but
not in the HP 64749.

When dequeueing bus cycle data, ?TAKEN? may appear in disassembled
branch instructions when the dequeuer is not able to determine whether the
branch was taken. If, later in the trace list, you see the branch was taken,
you may need to restart disassembly at the state that contains the branch
destination (by using the Display — From State... (ALT, -, D, F) command in
the Trace window’s control menu).

Command File Command
MOD(E) TRA(CE) DIS(PLAY) DEQ(UEUE)
See Also

"To display dequeued trace data" in the "Tracing Program Execution" section
of the "Debugging Programs" chapter.

376

Chapter 10: Window Control Menu Commands
Trace Window Commands (Emulator Only)

Display - Options —» Dequeue OFF (ALT, -, D, O, F)

Turns OFF dequeueing of bus cycle data in the Trace window. The trace list
dequeueing feature is available in the HP 64782 product, but not in the HP
64749.

Command File Command
MOD(E) TRA(CE) DIS(PLAY) NOD(EQUEUE)
See Also

"To display dequeued trace data" in the "Tracing Program Execution" section
of the "Debugging Programs" chapter.

Copy - Window (ALT, -, P, W)

Copies the information currently in the Trace window to the specified listing
file.

The listing file is specified with the File - Copy Destination... (ALT, F, P)
command.

Command File Command
TRA(CE) COP(Y) DIS(PLAY)
See Also

"To copy window contents to the list file" in the "Working with Debugger
Windows" section of the "Using the Debugger Interface" chapter.

377

Chapter 10: Window Control Menu Commands
Trace Window Commands (Emulator Only)

Copy — All (ALT, -, P, A)
Copies all the trace information to the specified listing file.

The listing file is specified with the File » Copy Destination... (ALT, F, P)
command.

Command File Command
TRA(CE) COP(Y) ALL

Search - Trigger (ALT, -, R, T)
Positions the trigger state at the top of the Trace window.

Command File Command
TRA(CE) FIN(D) TRI(GGER)

378

Chapter 10: Window Control Menu Commands
Trace Window Commands (Emulator Only)

Search - State... (ALT, -, R, S)

Positions the specified state at the top of the Trace window.

Search Trace State Dialog Box

Choosing the Search - State... (ALT, -, R, S) command opens the following
dialog box:

= Search Trace State
| Find ;

| Cloze g

State Lets you enter the trace state number to search for.
Find Searches for the specified trace state.
Close Closes the dialog box.

Command File Command
TRA(CE) FIN(D) STA(TE) state_num

379

Chapter 10: Window Control Menu Commands
Trace Window Commands (Emulator Only)

Trace Spec Copy - Specification (ALT, -, T, S)
Copies the current trace specification to the listing file.

Command File Command
TRA(CE) COP(Y) SPE(C)

Trace Spec Copy - Destination... (ALT, -, T, D)

Names the listing file to which debugger information may be copied.

This command opens a file selection dialog box from which you can select the
listing file. Listing files have the extension ".LST".

Command File Command
COP(Y) TO filename

380

Chapter 10: Window Control Menu Commands
WatchPoint Window Commands

WatchPoint Window Commands

This section describes the following command:

« Edit...

Edit... (ALT, -, E)

Registers or deletes watchpoints.

Variables can be selected from another window (in other words, copied to the
clipboard) before choosing the Edit... (ALT, -, E) command from the
WatchPoint window’s control menu, and they will automatically appear in the
dialog box that is opened.

Dynamic variables can be registered and displayed in the WatchPoint window
when the current program counter is in the function in which the variable is
declared. If the current program counter is not in the function, the variable
name is invalid and results in an error.

381

Chapter 10: Window Control Menu Comman
WatchPoint Window Commands

ds

WatchPoint Dialog Box

Choosing the Edit

... (ALT, -, E) command from the WatchPoint window’s

control menu opens the following dialog box:

= Edit Watch Point

rSet

Yanable:

Cloze g

mes

watch Pointz Set

mes

Delete | | Delete Al |

Variable

Watch Points
Set

Set

Delete

Delete All

Close

Lets you enter the name of the variable to be registered as
a watchpoint. The contents of the clipboard, usually a
variable selected from another window, automatically
appears in this text box.

Lists the current watchpoints and allows you to select the
watchpoint to be deleted.

Copies the specified variable to the WatchPoint window.
Deletes the variable selected in the Watch Points Set box.
Deletes all the watchpoints.

Closes the dialog box.

382

Chapter 10: Window Control Menu Commands
WatchPoint Window Commands

Command File Command

WP SET address
Registers the specified address as a watchpoint.

WP DEL(ETE) address
Deletes the specified watchpoint.

WP DEL(ETE) ALL
Deletes all the current watchpoints.
See Also

"To monitor a variable in the WatchPoint window" in the "Displaying and
Editing Variables" section of the "Debugging Programs" chapter.

"Symbols" in the "Expressions in Commands" chapter.

383

384

11

Window Pop-Up Commands

385

Window Pop-Up Commands

This chapter describes the commands that can be chosen from the pop-up
menus in debugger windows. Pop-Up menus are accessed by clicking the
right mouse button in the window.

¢ BackTrace Window Pop-Up Commands

¢ Source Window Pop-Up Commands

386

Chapter 11: Window Pop-Up Commands
BackTrace Window Pop-Up Commands

BackTrace Window Pop-Up Commands

e Source at Stack Level

Source at Stack Level

For the cursor-selected function in the BackTrace window, this command
displays the function call in the Source window.

387

Chapter 11: Window Pop-Up Commands
Source Window Pop-Up Commands

Source Window Pop-Up Commands

e Set Breakpoint

e (Clear Breakpoint
* Evaluate It

* Add to Watch

¢ Run to Cursor

Set Breakpoint

Sets a breakpoint on the line containing the cursor. Refer to the
Breakpoint - Set at Cursor (ALT, B, S) command.

Clear Breakpoint

Deletes the breakpoint on the line containing the cursor. Refer to the
Breakpoint - Delete at Cursor (ALT, B, D) command.

Evaluate It

Evaluates the clipboard contents and places the result in the Expression
window. Refer to the Evaluate... (ALT, -, E) command available from the
Expression window’s control menu.

388

Chapter 11: Window Pop-Up Commands
Source Window Pop-Up Commands

Add to Watch

Adds the selected variable (that is, the variable copied to the clipboard) to
the WatchPoint window. Refer to the Variable - Edit... (ALT, V, E) command.

Run to Cursor

Executes the program up to the Source window line containing the cursor.
Refer to the Execution - Run to Cursor (ALT, R C) command.

389

390

12

Other Command File and Macro
Commands

391

Other Command File and Macro Commands

This chapter describes the commands that are only available in command
files, break macros, or buttons.

« BEEP

 EXIT

* FILE CHAINCMD
 FILE RERUN

« NOP
« TERMCOM
« WAIT

392

Chapter 12: Other Command File and Macro Commands
BEEP

BEEP

Sounds beep during command file or break macro execution.

Command File Command
BEEP

393

Chapter 12: Other Command File and Macro Commands
EXIT

EXIT
Exits, or conditionally exits, command file execution.

Command File Command
EXIT
Exits command file execution.

EXIT VAR(IABLE) address value
Exits command file execution if the variable contains the value.

EXIT REG(ISTER) regname value
Exits command file execution if the register contains the value.

EXIT MEM(ORY) BYTE/WORD/LONG address value
Exits command file execution if the memory location contains the value.

EXIT 10 BYTE/WORD address value
Exits command file execution if the I/O location contains the value.

394

Chapter 12: Other Command File and Macro Commands
FILE CHAINCMD

FILE CHAINCMD

Chains command file execution.

This command lets you run one command file from another nonrecursively; in
other words, control is not returned to the original command file.

By contrast, the FILE COMMAND command is recursive; if you use the FILE
COMMAND command to run one command file from another, control will be
returned to the original command file. FILE COMMAND commands can be
nested four levels deep.

Command File Command
FILE CHAINCMD filename

395

Chapter 12: Other Command File and Macro Commands
FILE RERUN

FILE RERUN

Starts command file execution over again.

This command is useful for looping stimulus files or running a demo or other
command file continuously.

Command File Command
FILE RERUN

396

Chapter 12: Other Command File and Macro Commands
NOP

NOP

No operation.

This command may be used to prefix comment lines in command files.

Command File Command
NOP

NOP comments

397

Chapter 12: Other Command File and Macro Commands

TERMCOM

TERMCOM

Sends Terminal Interface commands to the HP 64700.

The HP 64700 Card Cage contains a low-level Terminal Interface, which
allows you to control the emulator’s functions directly. You can use the
TERMCOM command to bypass the RTC Interface and send commands
directly to the low-level Terminal Interface.

There is no window in the RTC Interface where you can execute TERMCOM
commands directly. The only way to execute them with the RTC Interface is
to make them part of a command file and then run the command file from an
RTC Interface window.

You may need to start a unique target system that requires emulator
intervention that is only available through the Terminal Interface. You can
create the command file and then execute it at the appropriate time using a
command such as File - Run Cmd File..., and place the name of your
command file in the Run Command File dialog box.

The danger in using Terminal Interface commands via the TERMCOM
command is that the RTC Interface may not be updated to know the state of
the emulator. Some Terminal Interface commands can be executed by using
the TERMCOM command, and the RTC Interface will not know that they
were executed. Other Terminal Interface commands can be executed and
the RTC Interface will be updated immediately. For example:

¢ Ifyou have a command in your command file that changes the setting of
RealTime - Monitor Intrusion - Disallowed/Allowed, (such as, TERMCOM
"cfrrt=en"), the RTC Interface will not know about this change and will
continue to try to operate according to the earlier setting. In this case,
the RTC Interface may try to update its displays when the emulator is set
to deny monitor access to the registers and memory.

¢ Ifyou have a command in your command file that writes a value to
memory (such as, TERMCOM "00000..00£ff=0"), the Memory window will
be updated immediately to show the new value, assuming you have
chosen RealTime — Monitor Intrusion — Allowed.

398

Chapter 12: Other Command File and Macro Commands
TERMCOM

Do not use the following Terminal Interface commands with the RTC
TERMCOM command:

stty, po, xp: These commands will change the operation of the
communications channel, and are likely to hang the RTC Interface.

echo, mac: These commands may confuse the communications
protocols in use in the channel.

wait: The pod will enter a wait state, blocking access by the RTC
Interface.

init, pv: These will reset the emulator and end your session.

t: This will confuse the functions of trace status polling and unload.

Refer to your "Terminal Interface User’s Guide" for more information about
Terminal Interface commands.

Command File Command
TERMCOM "ti-command"

399

Chapter 12: Other Command File and Macro Commands
WAIT

WAIT

Inserts wait delays during command file execution.

Command File Command
WAI(T) MON(ITOR)
Waits until MONITOR status.

WAI(T) RUN
Waits until RUN status.

WAI(T) UNK(NOWN)
Waits until UNKNOWN status.

WAI(T) SLO(W)
Waits until SLOW CLOCK status.

WAI(T) TGT(RESET)
Waits until TARGET RESET status.

WAI(T) SLE(EP)
Waits until SLEEP status.

WAI(T) GRA(NT)
Waits until BUS GRANT status

WAI(T) NOB(US)
Waits until NOBUS status.

WAI(T) TCO(M)
Waits until the trace is complete.

WAI(T) THA(LT)
Wait until the trace is halted.

WAI(T) TIM(E) seconds
Waits for a number of seconds.

400

13

Error Messages

401

Error Messages

This chapter helps you find details about the following error messages:

Bad RS-232 port name

Bad RS-422 card I/O address

Could not open initialization file

Could not write Memory

Error occurred while processing Object file
General RS-232 communications error
General RS-422 communications error
HP 64700 locked by another user

HP 64700 not responding

Incorrect DLL version

Incorrect LAN Address (HP-ARPA, Windows for Workgroups)
Incorrect LAN Address (Novell)
Incorrect LAN Address (WINSOCK)
Internal error in communications driver
Internal error in Windows

Interrupt execution (during run to caller)
Interrupt execution (during step)
Interrupt execution (during step over)
Invalid transport name

LAN buffer pool exhausted

LAN communications error

LAN MAXSENDSIZE is too small

402

LAN Socket error

Object file format ERROR

Out of DOS Memory for LAN buffer
Out of Windows timer resources
PC is out of RAM memory

Timed out during communications

Chapter 13: Error Messages

403

Chapter 13: Error Messages

Bad RS-232 port name

Bad RS-232 port name

RS-232 port names must be of the form "COM<number>" where <number> is
a decimal number from 1 to the number of communications ports within your
PC.

Bad RS-422 card I/0 address

The RS-422 card’s I/O address must be a hexadecimal number from 100H
through 3F8H whose last digit is 0 or 8 (example 100, 108, 110). Select an
I/0O address that does not conflict with the other cards in your PC.

Could not open initialization file

The initialization file was not found in the same directory where the
executable file was found.

For example, if the application file is b3624.EXE, the initialization file
b3624.INI is expected to be found in the same directory.

To fix this problem, you may be able to find the initialization file and move it
to the same directory as the executable file, or you can create a new
initialization file from the default initialization file. For example:

COPY b3624DEF.INI Bxxxx.INI

Note that the above command is the DOS COPY command. Do not use the
ksh ’cp b3624DEF .INI Bxxxx.INI' command. Use only the DOS 'COPY
b3624DEF .INI b3624.INI’ command.

If you cannot find the default initialization file either, you can re-install the
debugger software.

For correct operation, make certain the b3624.INI file has both read and
write permission.

404

Chapter 13: Error Messages
Could not write Memory

Could not write Memory

You may see this error message when trying to load a file or perform any
other task that requires use of the monitor. The emulation monitor is used to
load files, which requires writing to memory. If you have chosen

RealTime — Monitor Intrusion - Disallowed the monitor will not be usable,
and Execution - Reset may prevent use of the monitor in some emulators.

Choose RealTime - Monitor Intrusion — Allowed, and Execution — Break to
ensure that the emulation monitor is running. The Status window should
show Emulator: RUNNING IN MONITOR.

With this setup, the emulator should be able to write to Memory.

If you are still unable to load a file, select "Symbols Only" in the Load Object
File dialog box and try to load the file. If Symbols Only will not load, the
problem is in your symbols.

Choose "Data Only" in the Load Object File dialog box and try to load the file.
If the symbols loaded, but the data fails to load, the problem is in your
program code.

Call your local HP representative.

405

Chapter 13: Error Messages
Error occurred while processing Object file

Error occurred while processing Object file

The following is a list of typical reasons why an error might occur while
processing an object file. There are many other possible reasons.

e Bad record in the object file.

e File is in wrong format.

¢ File does not follow OMF Specifications correctly.
¢ No memory mapped.

e Attempt to write to guarded memory.

e Emulator restricted to real-time runs. Enter the command,
"RealTime — Monitor Intrusion - Allowed".

* Emulator not executing the monitor. Enter the command,
"Execution - Break".

Another message often occurs along with this message. View the help
information for the other message, if available.

Call your local HP representative.

406

Chapter 13: Error Messages
General RS-232 communications error

General RS-232 communications error

In general, these messages indicate that the RS-232 communication has
intermittent errors. Sometimes you will get this message if you power on the
emulator, or when you try to connect to the emulator. In that case, simply
retry the connection (by double-clicking on the RS232C driver line in the
selection box); if you connect with no problems the second time, you can
ignore the original message.

If you get this message other than during connection, you can try to fix the
problem by:

¢ Reducing the length of the RS-232 cable between the PC and the HP
64700.

¢ Reducing the number of tasks running under Windows.
* Reducing the baud rate (the default is 19200).

For further information, refer to the paragraph titled, "If you have RS-232
connection problems" in the Communications Help screen, or in Chapter 15,
"Installing the Debugger" in the Real-Time C Debugger User’s Guide.

General RS-422 communications error

In general, these messages indicate that the RS-422 communication has
intermittent errors. Sometimes you will get this message if you power on the
emulator, or when you try to connect to the emulator. In that case, simply
retry the connection (by double-clicking on the HP-RS422 driver line in the
selection box); if you connect with no problems the second time, you can
ignore the original message.

If you get this message other than during connection, you can try to fix the
problem by:

¢ Reducing the number of tasks running under Windows.

e Reducing the baud rate (the default is 230400).

407

Chapter 13: Error Messages
HP 64700 locked by another user

HP 64700 locked by another user

Because it is possible to destroy another user’s measurement by choosing the
Unlock button in the error dialog box, check with the other user before
unlocking the HP 64700.

Note that if the other user is actually using an interface to the HP 64700, an
Unlock request will fail.

HP 64700 not responding

The HP 64700 has not responded within the timeout period. There are
several possible causes of this error. For example, a character could have
dropped during RS-232 communications, or some network problem could
have disrupted communications.

Usually, you must cycle power to the HP 64700 to fix this problem.

See also: The description for the error message titled, "Timed out during
communications."

Incorrect DLL version

The version of the dynamic link libraries (.DLLs) used by the Real-Time C
Debugger does not match the version of the main program ((EXE).

If you have two versions of the debugger on your system, you may see this
message when you try to execute both of them at the same time, or when you
execute one version and then the other without restarting Windows. Once
DLLs have been loaded into Windows memory, they stay there until you exit
Windows. Therefore, exit windows, restart windows, and try again.

This message will also appear if you have somehow loaded a version of the
DLLs that is different from the version of the executable. In this case, you
must reload your software.

408

Chapter 13: Error Messages
Incorrect LAN Address (HP-ARPA, Windows for Workgroups)

Note

Incorrect LAN Address (HP-ARPA, Windows for
Workgroups)

A LAN address can be one of two types: an IP address, or a host name.

An [P address consists of four digits separated by dots. Example:
15.6.28.0

A hostname is a name that is related (mapped) to an IP address by a
database. For example, the file \LANMAN.DOS\ETC\HOSTS (HP-ARPA) or
\WINDOWS\HOSTS (Windows for Workgroups) may contain entries of the
form:

systeml 15.6.28.0

The directory of the "hosts" file may be different on your system.

If "HP Probe" or "DNR" (Domain Name Resolution) is available on your PC,
those are consulted first for a mapping between the hostname and the IP
address. If the hostname is not found by that method, or if those services are
unavailable, the local "hosts" file is consulted for the mapping.

Note that if "Probe" is available on your system but unable to resolve the
address, there will be a delay of about 15-seconds while Probe is attempting
to find the name on the network.

409

Chapter 13: Error Messages
Incorrect LAN Address (Novell)

Note

Incorrect LAN Address (Novell)

A LAN address can be one of two types: an IP address, or a host name.

An [P address consists of four digits separated by dots. Example:
15.6.28.0

A hostname is a name that is related (mapped) to an IP address by a
database. For example, the file \WET\TCP\HOSTS may contain entries of the
form:

systeml 15.6.28.0

The directory of the "hosts" file may be different on your system. Also, all
files defined by the PATH TCP_CFG setting under "Protocol TCPIP" in the
NET.CFG files are searched.

Note

Incorrect LAN Address (WINSOCK)

A LAN address can be one of two types: an IP address, or a host name.

An [P address consists of four digits separated by dots. Example:
15.6.28.0

A hostname is a name that is related (mapped) to an IP address by a
database. For example, the hosts file may contain entries of the form:

systeml 15.6.28.0

Because WINSOCK is a standard interface to many LAN software vendors,
you need to read your LAN vendor’s documentation before specifying the
LAN address.

410

Chapter 13: Error Messages
Internal error in communications driver

Internal error in communications driver

These types of errors typically occur because other applications have used up
a limited amount of some kind of global resource (such as memory or
sockets).

You usually have to reboot the PC to free the global resources used by the
communications driver.

Internal error in Windows

These types of errors typically occur because other applications have used up
a limited supply of some kind of global resource (such as memory, sockets,
tasks, or handles).

You usually have to reboot the PC to free the global resources used by
Windows.

Interrupt execution (during run to caller)

The Return dialog box appears when running to the caller of a function and
the caller is not found within the number of milliseconds specified by
StepTimerLen in the .INI file of the debugger application.

You can cancel the run to caller command by choosing the STOP button,
which causes program execution to stop, the breakpoint to be deleted, and
the processor to transfer to the RUNNING IN USER PROGRAM status.

411

Chapter 13: Error Messages
Interrupt execution (during step)

Interrupt execution (during step)

The Step dialog box appears when stepping a source line or assembly
instruction and the source line or instruction does not execute within the
number of milliseconds specified by StepTimerLen in the .INI file of the
debugger application.

You can cancel the step command by choosing the STOP button, which
causes program execution to stop, the breakpoint to be deleted, and the
processor to transfer to the RUNNING IN USER PROGRAM status.

Interrupt execution (during step over)

The Step dialog box appears when stepping over a function or subroutine and
the function or subroutine does not execute within the number of
milliseconds specified by StepTimerLen in the .INI file of the debugger
application.

You can cancel the step-over command by choosing the STOP button, which
causes program execution to stop, the breakpoint to be deleted, and the
processor to transfer to the RUNNING IN USER PROGRAM status.

412

Chapter 13: Error Messages
Invalid transport name

Invalid transport name

The transport name chosen does not match any of the possible transport
names (RS232C, HP-ARPA, Novell-WP, WINSOCK1.1, WA4WG-TCP, or
HP-RS422).

The transport name can be specified either on the command line with the -t
option or in the .INI file:

[Port]
Transport=<transport name>

Choosing an appropriate transport in the dialog box that follows this error
message will correct the entry in the .INI file, but if the error is in the
command line option, you must modify the command line (by using the
"Properties..." command in the Program Manager).

LAN buffer pool exhausted

The LAN buffer pool is used as a temporary buffer between the time the
debugger sends data and the time the LAN actually sends it. When this pool
is exhausted, the debugger cannot send any data across the LAN.

The size of the sockets buffer pool is configured in the network installation
procedure. The size and number of LAN buffer pools can be changed by
editing your network configuration file.

413

Chapter 13: Error Messages
LAN communications error

LAN communications error

This message may appear after any kind of LAN error.

Refer to the documentation for your LAN software for descriptions of the
types of problems that can cause LAN errors.

LAN MAXSENDSIZE is too small

This message indicates you have configured your LAN with a value or
MAXSENDSIZE that is less than 100 bytes. Note that the default is 1024
bytes.

The Real-Time C Debugger requires at least 100 bytes for this parameter.

To fix this, change the following entry in your PROTOCOL.INI file and reboot
your PC:

[SOCKETS]
MAXSENDSIZE

LAN socket error

A TCP-level error has occurred on the network. See your network
administrator.

414

Chapter 13: Error Messages
Object file format ERROR

Object file format ERROR

This message is typically caused by one of two conditions:

¢ Bad format file. Perhaps there is a bad record within the file. If you
have a file format verifier, submit your file to it to determine whether or
not all records are in the correct format.

¢ Unknown construct. Perhaps the construct of your file is unfamiliar to
the reader.

To respond to this error message, verify the file format, and ensure that the
reader can understand the file format in use.

If these steps do not solve the problem, call your local HP representative.

415

Chapter 13: Error Messages
Out of DOS Memory for LAN buffer

Out of DOS Memory for LAN buffer

This means that there is not enough memory in the lower 1 Mbyte of address
space (that is, conventional memory) for the LAN driver to allocate a buffer
to communicate with the LAN TSR.

When you are in windows, and execute the DOS command "mem", you
cannot see the memory that is in the lower 1 Mbyte that is used by the
windows program. If you have the Microsoft program "heapwalker", you can
use it to see what programs have allocated space in the address range 0
through FFFFF.

To fix this, you can:

¢ Reduce the number of TSRs running on your PC (before Windows starts)
that use conventional memory.

¢ Reconfigure your network to have fewer sockets or modules loaded, or to
be configured for fewer total connections.

¢ Use a different memory manager to reduce your network memory usage,
such as QEMM.

416

Chapter 13: Error Messages
Out of Windows timer resources

Out of Windows timer resources

The debugger is not able to acquire the timer resources it needs.

There are a limited number of timer resources in Windows. You may be able
to free timer resources by closing other applications.

PC is out of RAM memory

The debugger is not able to acquire the memory it needs because other
applications are using it, or because of fragmented memory.

You may be able to free memory by closing other applications, or you might
have to reboot the PC to cause memory to be unfragmented.

417

Chapter 13: Error Messages
Timed out during communications

Timed out during communications

The HP 64700 has not responded within the timeout period. There are
various causes for this error. For example, a character could have been
dropped during RS-232 communications or some network problem could
have disrupted communications.

The timeout period for reading and writing to the HP 64700 is defined by
TimeoutSeconds in either the [RS232C], [HP-ARPA], [Novell-WP], or
[HP-RS422] section of the b3624.INI file. For example, if you are using the
RS-232C transport:

[RS232C]
TimeoutSeconds=<seconds>

The number of seconds can be between 1 and 32767. The default is 20
seconds.

If you are using RS-232C or RS-422 transport ...

The TimeoutSeconds value is also used for connecting to the HP 64700 (as
well as for reading and writing).

If you are using HP-ARPA or Novell-WP transport ...

If there are several gateways or bridges between the PC and the emulator,
larger values of TimeoutSeconds may be reasonable.

The timeout period for connecting to the HP 64700 is defined in the
PROTOCOLL.INI file.

[TCPIP_XFR]
TCPCONNTIMEOUT=<seconds>

The default connection timeout is 30 seconds.

The remainder of this discussion shows you how to overcome the problem of
"connection timed out" during large memory fill operations.

The RTC interface sends the memory fill operation to the emulator as a single
command. While the command is executing in the emulator, the emulator
cannot respond to inquiries from the interface about its status. If the
memory fill takes long enough, the connection will time out.

418

Chapter 13: Error Messages
Timed out during communications

Emulators for some microprocessors take up to one minute per megabyte to
perform a memory fill operation. Timeout default values for RTC interfaces
shipped from HP are typically 45 seconds.

First Workaround. Modify the TimeoutSeconds field (discussed above) to
increase the TimeoutSeconds value. Then exit the interface and restart it (to
ensure that the new value of TimeoutSeconds is read). You may experiment
with several values of TimeoutSeconds to find the value that allows you to do
a memory fill. The problem with this workaround is that all timeouts will take
this new longer time, and you may find this annoying when you are not doing
memory fill operations.

Second Workaround. Create a command file that contains TERMCOM
commands to write to small portions of the overall memory to be filled. For
example, suppose the following Memory window command causes the
emulator to time out, "Memory - Utilities - Fill - 0 to ffff".

You might make a command file named memfill.cmd, and place the following
commands in it:

TERMCOM "m 00000..00fff=0"
TERMCOM "m 01000..01fff=0"
TERMCOM "m 02000..02fff=0"
TERMCOM "m 03000..03fff=0"
TERMCOM "m 04000..04fff=0"
TERMCOM "m 05000..05fff=0"
TERMCOM "m 06000..06fff=0"
TERMCOM "m 07000..07fff=0"
TERMCOM "m 08000..08fff=0"
TERMCOM "m 09000..09fff=0"
TERMCOM "m 0a000..0afff=0"
TERMCOM "m 0b000..0bfff=0"
TERMCOM "m 0c000..0cfff=0"
TERMCOM "m 0d000..0dfff=0"
TERMCOM "m 0e000..0efff=0"
TERMCOM "m 0f000..0ffff=0"

When you choose File - Run Cmd File ... and select your memfill.cmd file, it
will not exceed the timeout value. This is because the emulator will be able
to respond to inquiries from the interface between execution of each of the
TERMCOM commands in your command file.

419

420

Part 4

Concept Guide

Topics that explain concepts and apply them to advanced tasks.

421

Part4

422

14

Concepts

423

Concepts

This chapter describes the following topics.

Debugger Windows

Compiler/Assembler Specifications

Monitor Programs

Trace Signals and Predefined Status Values
SIM and RAM Implementations

424

Chapter 14: Concepts
Debugger Windows

Debugger Windows

This section describes the following debugger windows:
* BackTrace

* DButton

¢ Expression

« J/O

e Memory

* Register
* Source

* Status

e Symbol
* Trace

e WatchPoint

425

Chapter 14: Concepts
Debugger Windows

The BackTrace Window

The BackTrace window displays the function associated with the current
program counter value and this function’s caller functions in backward order.
Applicable addresses are prefixed with module\#linenum information. The
current arguments of these functions are also displayed.

Backtrace

bampl o4 $49 ¢ s comvart_casa(dat=000006010)
samplat\#39 rconvart (1d=A2 :0)
samplat\§22: cmain)

caya\\0000642
cayva\\000a0Gc
entrAN00006ac

The BackTrace window is updated when program execution stops at an
occurrence of breakpoint, break, or Step command.

The BackTrace window lets you copy text strings, to the clipboard by
double-clicking words or by holding down the left mouse button and dragging
the mouse pointer.

By clicking the right mouse button in the BackTrace window, you can access
the Source at Stack Level pop-up menu command. Cursor-select a function
in the BackTrace window and choose this command to display (in the Source
window) the code that called the function.

See Also

"BackTrace Window Pop-Up Commands" in the "Window Pop-Up Commands"
chapter.

426

Chapter 14: Concepts
Debugger Windows

The Button Window

The Button window contains user-defined buttons that, when chosen,
execute debugger commands or command files.

The Button window’s conitrol menu provides the Edit... (ALT, -, E)
command which lets you add and delete buttons from the window.

See Also
"Using Command Files" in the "Using the Debugger Interface" chapter.

"Button Window Commands" in the "Window Control Menu Commands"
chapter.

427

Chapter 14: Concepts
Debugger Windows

The Expression Window

The Expression window displays the results of the EVALUATE commands in
command files or break macros.

Expression A
#mes : 181 (65H> ‘e’
*mes @ 32 (2@8H> '
=mes : 112 (7@H> ‘p’
*mes = 114 (7P2H> '’
*mes : 111 (6FH) ‘o’
#mes : 183 (6VH> ‘g’
*mes I 114 (72H> *'»’
*mes : 97 (61H> ‘a’
*mes : 18? (6DH> 'm’
=mes : B5 (GGH> ‘I’
=mes : 112 (7@H> ‘'p’

When a variable name is specified with the EVALUATE command, the
Expression window displays the evaluation of the variable. When a quoted
string of ASCII characters is specified with the EVALUATE command, the
Expression window displays the string.

The Expression window’s control menu provides the Evaluate... (ALT, -, E)
command which lets you evaluate expressions and see the results in the
window.

See Also

"Expression Window Commands" in the "Window Control Menu Commands"
chapter.

428

Chapter 14: Concepts
Debugger Windows

The I/O Window

The I/O window displays the contents of the I/O locations.

51515451515 I |

You can modify the contents of I/0 locations by double-clicking on the value,
using the keyboard to type in the new value, and pressing the Enter key.

The I/O window contents are updated periodically when the processor is
running the user program.

If a location is in target system memory, a temporary break from the user
program into the monitor program must occur in order for the debugger to
update or modify that location’s contents. If it’s important that the user
program execute without these types of interruptions, you should disallow
monitor intrusion. Even when monitor intrusion is allowed, you can stop
temporary breaks during the window update by turning polling OFF'.

See Also
"Displaying and Editing I/O Locations" in the "Debugging Programs" chapter.

"TI/O Window Commands" in the "Window Control Menu Commands" chapter.

429

Chapter 14: Concepts
Debugger Windows

The Memory Window

The Memory window displays memory contents.

boiooaon
0010002 61 20 73
0010010 20 70 72
0010012 00 00 55
0010020 61 6E 64
0010028 72 20 43

Thi= i=

a sSangls=
Proxyrarn
. Upprar
ared Licfige
r Cass= O

0oi0030 &F &E Ta crvarsio
0010032 &E 00 OO0 00 OO0 00 00 00 me.o....-
0010040 00 00 OO OO0 OO OO0 OO0 0O
0010042 00 00 OO OO0 OO OO0 OO0 OO
0010050 00 00 00 00 00 00 00 00
0010052 00 00 OO0 OO0 00 00 00 00
0010050 00 00 OO0 OO0 00 00 00 00
0010052 00 00 OO0 OO0 OO0 00 00 00
00100v0 00 00 00 OO0 00 00 00 00
0010072 00 00 00 OO0 00 00 00 00
0010020 00 00 00 00 00 00 00 00

The Memory window has control menu commands that let you change the
format of the memory display and the size of the locations displayed or
modified. When the absolute (single-column) format is chosen, symbols
corresponding to addresses are displayed. When data is displayed in byte
format, ASCII characters for the byte values are also displayed.

When Memory window polling is turned ON, you can modify the addresses
displayed or contents of memory locations by double-clicking on the address
or value, using the keyboard to type in the new address or value, and
pressing the Enter key.

The Memory window contents are updated periodically when the processor is
running the user program.

If a location is in target system memory, a temporary break from the user
program into the monitor program must occur in order for the debugger to
update or modify that location’s contents. If it’s important that the user
program execute without these types of interruptions, you should disallow
monitor intrusion. Even when monitor intrusion is allowed, you can stop
temporary breaks during the window update by turning polling OFF.

430

Chapter 14: Concepts
Debugger Windows

See Also
"Displaying and Editing Memory" in the "Debugging Programs" chapter.

"Memory Window Commands" in the "Window Control Menu Commands"
chapter.

The Register Windows

The Register windows display the contents of registers. There is a separate
window for each class of registers. For example, the Basic Registers are in
one class of registers.

Basic Registers

NAME UALUE DESCRIPTION
PC BB0AA56H Program Counter
5T 2704 Status

DA AAABAAAL Register dA

D1 FFFFAAAA Register di

D2 APBBBBRA Register d2

D3 429B48A5 Register d3

D4 1BAAVAFE Register d4

D5 AABA4483 Register d5

D6 1B23927C8 Regiszter db

D? F2B823864 Register d?

AR AAARGALA Register aB

Al BPABAGAGE Register al

A2 BBBAG144 Register a2

A3 31585A4B Register al

A4 B1868838B Register ad

A% 2385A62C Register ab

A6 BBAA7FD4 Register ab

A7 BEAA?FD4 Register a?

USF AB0PBARA User Stack Pointer
£5F @88@YFD4 Supervisor Stack Pointer

Each register is represented by a row which holds a mnemonic name, a
current value, and a description of the register contents.

The registers may be edited by either single clicking or double-clicking on the
value. A single click puts you in a mode where the left or right arrow keys
may be used for placement of the cursor. Double-clicking puts you in one of
two modes; either a Register Bit Fields dialog pops up or the value is
highlighted. When the value is highlighted, the backspace key will erase the
value and a completely new value may be entered. This mode is applicable to

431

Chapter 14: Concepts
Debugger Windows

registers where the value is considered a single number and is not divided by
any bit-fields.

The Register windows’ contents are updated periodically when the processor
is running the user program and monitor intrusion is allowed.

A temporary break from the user program into the monitor program must
occur in order for the debugger to update or modify register contents. If it is
important that the user program execute without these types of
interruptions, you should disallow monitor intrusion.

See Also
"Displaying and Editing Registers" in the "Debugging Programs" chapter.

"Register Window Commands" in the "Window Control Menu Commands"
chapter.

The Source Window

The Source window displays source files, optionally with disassembled
instructions intermixed.

The Source window contains a cursor whose position is used when setting or
deleting breakpoints or break macros or when running the program up to a
certain line.

The Source window lets you copy strings, usually variable or function names
to be used in commands, to the clipboard by double-clicking words or by
holding down the left mouse button and dragging the mouse pointer.

The Source window also provides commands in the control menu that let
you select whether disassembled instruction mnemonics should appear
intermixed with the C source code.

432

Chapter 14: Concepts
Debugger Windows

By clicking the right mouse button in the Source window, you can also access
pop-up menu commands.

Filanhams -

< Wt e TS S Jarness, Sanel & Sangpl e o

EF #0023

Filename

Source Lines

Disassembled
Instructions

#oo1s o
O01005a@ Oxd=5a0000 LIRE .W A, 20000
#0019 init_datai) s
010035 ==L Oxd=2bali2a J5R (init data. B2
01004282 Oxd =71 J =
#00z0 whila(l)
#0021 1
EFP #00zz cornvert (Inessage_id)

:BP 00100448 Ox2f5390001 MOWE.L - ;
OO01004 538 O=d=l=al0so JZ5F [connvaert, B
001004 =R Oxd=71 IoP

EF 00100508z Ox21f390001 MoOWVE.L sanpl = s Inessagys i

0100558 Oxd=baflod JER [naxt messacrs, BC)
O01005a8=x Oxxd=71 LIoF
001005cR=x Ox502fF ADDD . L #2487

Iessagds 19 = nexbt nessags (messacgs

The name of the displayed source file appears at the top of
the window.

C source code is displayed when available. Source lines are
preceded by the corresponding line numbers.

When programs are written in assembly language or when
no C source code is available, disassembled instruction
mnemonics are displayed.

The interface will only support display in either trace or
source windows of source lines numbered less than 32,000.

In the Mnemonic Display mode, disassembled instruction
mnemonics are intermixed with the source lines.
Disassembled lines contain address, data, and mnemonic
information.

When symbolic information is available for the address, the
corresponding symbol line precedes the disassembled
instruction, displayed in the module_name\\symbol_name
format.

433

Chapter 14: Concepts
Debugger Windows

Note

Current PC The line associated with the current program counter is
highlighted.
Scroll Bars For C source files, the display scrolls within the source

files. For assembly language programs or programs for
which no source code is available, the display scrolls for all
the memory space.

"BP" Marker The breakpoint marker, "BP", appears at the beginning of
the breakpoint lines or break macro lines.

Break Macro Decimal points following line numbers or addresses
Lines indicate break macro lines.

When programs are stored in target system memory and the emulator is
running in real time, source code cannot be displayed.

See Also

"Loading and Displaying Programs,"

"Stepping, Running, and Stopping the Program,"

"Using Breakpoints and Break Macros," and

"Source Window Commands" in the "Window Control Menu Commands"
chapter.

"Source Window Pop-Up Commands" in the "Window Pop-Up Commands"
chapter.

"To set colors in the Source window" in the "Working with Debugger
Windows" section of the "Using the Debugger Interface" chapter.

434

Chapter 14: Concepts
Debugger Windows

The Status Window

The Status window shows:

* Emulator status.

* Trace status.

* Scope of the current program counter value.

* Progress of symbols being loaded from a file.

* Last five asynchronous messages from the emulator.

Status
- IIr1-E= I FESTT Tl
HALTED
I-EOTTE
FILE LinAD OOMPLETE

Emulation Processor Status Messages

EMULATOR IN RESET STATE
The processor is being reset from the emulator.

RUNNING USER PROGRAM)
The processor is executing a target (user) program.

RUNNING MONITOR PROGRAM
The processor is executing the emulation monitor.

WAITING FOR CMB TO BECOME READY

The emulator has been set up for coordinated starting and stopping with
other emulators. It is waiting for one of the emulators to drive the
Coordinated Measurement Bus (CMB) EXECUTE line.

CPU IN WAIT STATE
The processor is waiting for a cycle termination from the target system. This
message is only seen in the HP 64782 emulator.

435

Chapter 14: Concepts
Debugger Windows

NO MONITOR COMMUNICATION

The emulator is not able to communicate with the monitor program. This
communication is essential to use of most emulation features. This message
is only seen in the HP 64782 emulator.

UNKNOWN STATE

The emulator is in an unknown state. You will probably have to reset the
emulation processor, initialize the emulator, or cycle power to initialize the
emulator. This message is only seen in the HP 64749 emulator.

NO TARGET SYSTEM CLOCK
No clock source from the target system.

NO DSACK NOR BERR

The emulator has stopped in the middle of a bus cycle and is in a wait state.
Look at the address and type of cycle and make sure the target system
provides a bus cycle termination at this address. If it does, the most likely
cause is either that the target system missed the "start of cycle" indication
from the emulator or that the emulator missed the "cycle termination”
indication from the target system. This message is only seen in the HP 64749
emulator.

NO TARGET POWER

If this status remains after target system powerup, check the mechanical
installation of the probe, check the target system power supply voltage, or
check for blown fuses. This message is only seen in the HP 64782 emulator.

TARGET SYSTEM RESET ACTIVE
The processor is being reset from the emulated system.

PROCESSOR HALTED
The processor has double-bus faulted.

NO BUS CYCLES
No bus cycles are occurring. This message is only seen in the HP 64782
emulator.

BUS GRANTED
The processor has been granted the bus by the external arbiter (/BG is
asserted).

NO EXTERNAL BUS CYCLES
No bus cycles are occurring external to the emulation processor. This
message is only seen in the HP 64749 emulator.

436

Chapter 14: Concepts
Debugger Windows

Other Emulator Status Messages

The Status window may also contain status messages other than the
emulation processor status messages described above:

ACCESS TO GUARD BREAK
Program execution has stopped due to a write to a location mapped as
guarded memory.

BREAKPOINT HIT AT address
The breakpoint specified in the assembled line was hit and program
execution stopped at "address".

BREAKPOINT HIT AT module_name#line_number
The breakpoint specified in the source code line was hit and program
execution stopped at "line_number" in "module".

TRACE TRIGGER BREAK

The analyzer trigger caused program execution to break into the monitor (as
specified by selecting the Break On Trigger option in the trace setting dialog
box).

UNDEFINED BREAKPOINT at address
The breakpoint instruction occurred at "address", but it was not inserted by a
breakpoint set command.

WRITE TO ROM BREAK
Program execution has stopped due to a write to location mapped as ROM.
These types of breaks must be enabled in the emulator configuration.

Trace Status Messages

COMPLETE
The trace completed because the trace buffer is full. The results are
displayed in the Trace window.

HALTED

The trace was halted before the trace buffer was filled. The status indicates
that the trace was halted immediately after the emulator powerup, or that the
trace was force-terminated by the user. In the TRACE HALTED status, the
analyzer displays the contents of the trace buffer before the halt in the Trace
window.

RUNNING | CAPTURING
The trace has been started and the trigger condition has occurred, but there
have not been enough states matching the store condition to fill trace

437

Chapter 14: Concepts
Debugger Windows

memory. Contents of the trace buffer cannot be displayed during the TRACE

RUNNING status; you must halt the trace before you can display the contents
of the trace buffer.

RUNNING | WAITING FOR TRIGGER
The trace has been started, but the trigger condition has not occurred.

438

Chapter 14: Concepts
Debugger Windows

The Symbol Window

The Symbol window displays information on the following types of symbols:
e Modules

e Functions

¢ (Global symbols

¢ Local symbols

¢ (Global Assembler symbols
¢ Local Assembler symbols
¢ User-defined symbols

The Symbol window has control menu commands that let you display
various types of symbols, add or delete user-defined symbols, copy Symbol
window information, or search for symbols that contain a particular string.

The Symbol window lets you copy symbols to the clipboard by clicking the
left mouse button. The symbol information can then be pasted from the
clipboard in other commands.

Functions

chang= status int ooi0i142. 001015k
consraert int o0ld0a<. .001010f
convertcase int ooi0l1ia,. .0010147
init_data int 00100&a. -00100ak
main int o01005a. .0010059
naxt messadgs int 001015«<. .001016fF

Symbols are displayed with "type" and "address" values where appropriate.

See Also
"Displaying Symbol Information" in the "Debugging Programs" chapter.

"Symbol Window Commands" in the "Window Control Menu Commands"
chapter.

439

Chapter 14: Concepts
Debugger Windows

The Trace Window (Emulator Only)

The Trace window displays trace results and shows source code lines that
correspond to the execution captured by the analyzer. Optionally, bus cycle
states can be displayed along with the source code lines.

The Trace window has control menu commands that let you display bus
cycles, specify whether count information should be shown absolute or
relative, or copy information from the window.

The Trace window opens automatically when a trace is complete.

Trace - Loading Data [Frame: 1]

=tate typ mednlet#linse funcbtion 2o os

| 2 BEQ sanpls"M #0032 soonert { 15.04
6 BB sanmplsat #0044 rcovart cass | 13.42 u=
10 SED sanpl="#0054 s Charge statn | 254 .5 uZ
14 SEQ sanpls" #0062 rnaxt message { 25.282 uz
12 EED sanplea' #0032 rcotrert { 15.12 u=
22 EED sanpl=tS #0044 rootrvart _casse 13.42 u=
26 EEQ sanpls=" #0054 s Chang= statu { 219.3 us
30 EED sanpls #0062 rhaxt Imessags | 24 .72 us
534 EEG sanplehhW #0032 s oorert { 15.72 u=
32 EEQ sanplstS #0044 soonvaert case { 13.482 us
12 EED) sarmpl="0 #0054 s Chateys statn | 277 .4 1=
46 EEQ sanpls="S #0062 tnaxt message | 24.62 u=
50 SED sanpls= #0038 s coart { 15.16 us

sarplah W #0044 carmvart__case | .

For each line in the Trace window, the trace buffer state number, the type of
state, the module name and source file line number, the function name, the
source line, and the time count information are displayed.

The << and >> buttons let you move between the multiple frames of trace
data that are available with newer analyzers for the HP 64700.

The type of state can be a sequence level branch (SEQ), a state that satisfies
the prestore condition (PRE), or a normal state that matches the store
conditions (in which case the type field is empty).

Bus cycle states show the address and data values that have been captured
as well as the disassembled instruction or status mnemonics.

On startup, the system defaults to the source only display mode, where only
source code lines are displayed. The source/bus cycle mixed display mode
can be selected by using the Trace window control menu’s Display - Mixed

440

Chapter 14: Concepts
Debugger Windows

Mode (ALT, -, D, M) command. In the source/bus cycle mixed display mode,
each source code line is immediately followed by the corresponding bus
cycles.

The trace buffer stores bus cycles only. The system displays source lines in
the Trace window based on execution bus cycles.

See Also

"Tracing Program Execution" and "Setting Up Custom Trace Specifications"
in the "Debugging Programs" chapter.

"Trace Window Commands" in the "Window Control Menu Commands"
chapter.

441

Chapter 14: Concepts
Debugger Windows

The WatchPoint Window

The WatchPoint window displays the contents of variables that have been
registered with the Variable - Edit... (ALT, V, E) command or with the Edit...
(ALT, -, E) command in the WatchPoint window’s control menu.

WatchPoint
*mes = 65 (41H>» ‘A’

The contents of dynamic variables are displayed only when the current
program counter is in the function in which the variable is declared.

You can modify the contents of variables by double-clicking on the value,
using the keyboard to type in the new value, and pressing the Enter key.

The WatchPoint window lets you copy text strings, to the clipboard by
double-clicking words or by holding down the left mouse button and dragging
the mouse pointer.

See Also
"Displaying and Editing Variables" in the "Debugging Programs" chapter.

"WatchPoint Window Commands" in the "Window Control Menu Commands"
chapter.

442

Chapter 14: Concepts
Compiler/Assembler Specifications

Compiler/Assembler Specifications

This section describes:

* IEEE-695 Object Files

e Compiling Programs with MCC68K
e Compiling Programs with AxLS

IEEE-695 Object Files

This section addresses the IEEE-695 object files compiled or assembled with
the following compilers and assemblers:

¢ Microtec MCC68K Compiler
* Microtec ASM68K Assembler
e« HP AxLS Compiler

* HP AxLS Assembler

Assembly Language Source File Display

The IEEE-695 object files do not contain assembly language source file
information. Instead, memory contents are disassembled.

Mnemonic Display

An assembly language instruction preceding or following a function entry
point may have multiple corresponding source code lines. For this type of
instruction, the Source window in the Mnemonic Display mode shows
multiple corresponding disassembled lines having the same address.

Single-Stepping Loop Control Statements

The system may fail in single-stepping such loop control statements as
"while", "for", or "do while" statement.

443

Chapter 14: Concepts

Compiler/Assembler Specifications

Pragma Statement and Debugger Display

When a "pragma' statement is used to describe an assembly language
instruction in C source files, the source information is generated as follows in
the IEEE-695 object files:

* A pragma instruction has a single line number.

e The address for the pragma instruction indicates the address for the first
line of the instruction.

* The line number for the pragma instruction indicates the line number for
the last line of the instruction.

This imposes the following display restriction on the Real-Time C Debugger:

The Source window in the Mnemonic Display mode shows lines in a
pragma instruction all at one time as listed below.

#0010 #pragma asm
#0011 nop

#0012 nop

#0013 #pragma endasm
0001000 00 NOP
0001001 00 NOP

During single-stepping, the last line of the pragma instruction is
highlighted while the program counter indicates the first line.

#0010 #pragma asm
#0011 nop

#0012 nop

#0013 #pragma endasm

Program counter indicating line 11
Highlighted line 12

Only the last line of the pragma instruction is displayed in the trace
results.

444

Chapter 14: Concepts
Compiler/Assembler Specifications

Compiling Programs with MCC68K
1 Compile the source files with the mcc68k command.
2 Assemble the source files with the asm68k command.
3 Link the object files with the Ink68k command.

Required Compiler/Assembler/Linker

Compiler Microtec MCC68K Compiler
Assembler Microtec ASM68K Assembler
Linker Microtec LNK68K Linker
Compiling

For compiling, use the mcc68k command in your Microtec C Compiler with
the following option switches:

-8 Outputs debugging information.
-Gf Generates fully-qualified path names for input files.
-nOg Disables global flow optimization.
-nOR Disables register variables.
-Kf Creates frame pointers for functions.

Note The -nOg and -nOR options allow the debugger to display arguments during
backtracing.

Note The -Kf option allows the debugger to trace function flow.

445

Chapter 14: Concepts
Compiler/Assembler Specifications

Assembling

For assembling, use the asm68k command in your Microtec Assembler with
the following option switch:

-fd Creates local symbols.
Linking

For linking, use the Ink68k command in your Microtec Linker. Specify the
IEEE-695 file format for the load module.

Example To compile and link sample.c user program into a load module, execute the
following command, where sample.k is the linker command file:

A> mcc68k -g -Gf -Kf -nOg -nOR -l -esample.k -osample.x
sample.c -WI,-m > sample.Ist

Compiling Programs with AxXLS
1 Compile the source files with the cc68k command.
2 Assemble the source files with the as68k command.
3 Link the object files with the 1d68k command.

Required Compiler/Assembler/Linker

Compiler HP AxLS CC68K Compiler
Assembler HP AxLS AS68K Assembler
Linker HP AxLS LD68K Linker

446

Chapter 14: Concepts
Compiler/Assembler Specifications

Compiling

For compiling, use the cc68k command in your HP AxXLS C Compiler with the
following option switches:

-We,-F Disables register variables.

Note The -We,-F option allows the debugger to display arguments during
backtracing.
Assembling

For assembling, use the as68k command in your HP AXLS Assembler without
any option switch.
Linking

For linking, use the 1d68k command in your HP AxLS Linker. Specify the
IEEE-695 file format for the load module.

Note The Real-Time C Debugger does not support simulated I/0 locations. You
can use the -N compiler option to use a linker command file that does not
include the simulated I/0O library.

Example To compile and link sample.c user program into a load module, execute the
following command, where sample.k is the linker command file:

cc68k -p CPU32 -N -Wec,-F -Lix -k sample.k -0 sample.x
sample.c

447

Chapter 14: Concepts

Monitor Programs (Emulator Only)

Monitor Programs (Emulator Only)

This section describes:

e Monitor Program Options

e Assembling and Linking the Foreground Monitor with MCC68K
* Assembling and Linking the Foreground Monitor with AxXLS

e Setting Up the Trace Vector

* Notes on Foreground Monitors

The foreground monitor source file is included with the debugger software
for the HP 64782 emulator and can be found in the C\RTC\M33X\FGMON
directory (if C:\HP\RTC\M33X was the installation path chosen when
installing the debugger software). The HP 64749 has only a background
monitor.

Monitor Program Options (Emulator Only)

The emulation monitor program is a program that the emulation
microprocessor executes as directed by the HP 64700 system controller. The
emulation monitor program gives the system controller access to the target
system.

For example, when you modify target system memory, the system controller
writes a command code to a communications area and switches, or breaks,
emulation processor execution into the monitor program. The monitor
program reads the command code (and any associated parameters) from the
communications area and executes the appropriate machine instructions to
modify the target system locations. After the monitor has performed its task,
emulation processor execution returns to what it was doing before the break.

The emulation monitor program can execute out of a separate, internal
memory system known as background memory. A monitor program
executing out of background memory is known as a background monitor
program.

448

Chapter 14: Concepts
Monitor Programs (Emulator Only)

The emulation monitor program can also execute out of the same memory
system as user programs. This memory system is known as foreground
memory and consists of emulation memory and target system memory. A
monitor program executing out of foreground memory is known as a
foreground monitor program. Foreground monitor programs must exist in
emulation memory.

The HP 647682 emulator firmware includes both background and foreground
monitor programs and lets you select either. You can also load and use a
customized foreground monitor program, if needed. The HP 64749 emulator
firmware includes only a background monitor.

Background Monitor

Interrupts from the target system are disabled during background monitor
execution. If your programs have strict real-time requirements for servicing
target system interrupts, you must use a foreground monitor program.

Foreground Monitor

A foreground monitor source file is provided with the HP 64782 emulator. It
can be assembled, linked, and loaded into the debugger.

A foreground monitor has the following advantages and disadvantages:
Advantages

¢ The foreground monitor executes as a part of the user program, and
target system interrupts can be enabled during monitor program
execution for applications that have strict real-time processing
requirements.

¢ The foreground monitor can be customized.
Disadvantages

¢ A foreground monitor occupies processor memory space.

449

Chapter 14: Concepts

Monitor Programs (Emulator Only)

Assembling and Linking the Foreground Monitor with
MCC68K (Emulator Only)

The foreground monitor can be assembled and linked with the Microtec
Assembler/Linker.

To assemble the foreground monitor, enter:

C> asm68k -l fgmon.s > fgmon.Ist

To link the foreground monitor, enter:

C> Ink68k -c fgmon.k -m -o fgmon.x > fgmon.map

Link command file (fgmon.k) contains:

format ieee
load fgmon.obj
end

Assembling and Linking the Foreground Monitor with
AxLS (Emulator Only)

The foreground monitor can be assembled and linked with an HP
Assembler/Linker.

To assemble the foreground monitor, enter:

as68k -L fgmon.s > fgmon.Ist

To link the foreground monitor, enter:

Id68k -c fgmon.k -L > fgmon.map

Link command file (fgmon.k) contains:

name fgmon
load fgmon.o
end

450

Chapter 14: Concepts
Monitor Programs (Emulator Only)

Setting Up the Trace Vector (Emulator Only)

The foreground monitor uses the 6833x trace vector for single-stepping. The
trace exception vector in the target system must point to the TRACE_ENTRY
address in the foreground monitor program. In the default foreground
monitor, the TRACE_ENTRY address is equal to the Monitor Address plus
680H. If the trace exception vector does not contain the correct value, the
emulator attempts to temporily change the trace a-line and f-line exception
vectors to the TRACE_ENTRY address.

Notes on Foreground Monitors (Emulator Only)

User Program Out of Control

A user program that runs out of control may damage the foreground monitor
residing in the user memory space; if this happens, you must reload the
foreground monitor. An Execution- Reset (ALT, E, E) command will
automatically reload the foreground monitor.

451

Chapter 14: Concepts
Trace Signals and Predefined Status Values (Emulator Only)

Trace Signals and Predefined Status Values
(Emulator Only)

This section shows how emulation-bus analyzer trace signals are assigned to
microprocessor address bus, data bus, and control signals. The assignments
of analyzer trace signals are different in the HP 64782 Emulator from the
assignments in the HP 64749 Emulator. The assignments of analyzer trace
signals in the HP 64782 Emulator are shown first, followed by the
assignments of analyzer trace signals in the HP 64749 Emulator.

HP 64782 Emulation-Bus Analyzer Trace Signals

Trace
Signals Signal Name Signal Description

0-18 A0-A18 Address Lines 0-18
19-23 Al19-A23 Address Lines 19-23

48 BACKGROUND 0 = In monitor or RESET.
1 = Not in monitor and not RESET.

49 FCO CPU function codes
50 FC1 (output from translation RAM).
51 FC2

Address Lines 19-23 and the function code
lines from the translation RAM pass their
signals directly when the processor has
been configured to supply these signals.
If the processor has been configured to
supply chip selects on these lines, one of
the following three bus values will be
driven on the function code lines, based
on chip select programming:
011b - Chip select programming does not
differentiate between supervisor
and user.
100b - Chip select is supervisor.
000b - Chip select is user.

52 R/W 0 = Write bus cycle.

1 = Read bus cycle.
53 SI1Z0 Processor SIZ signals. These may be
54 Siz1 configured as I/O pins. These signals

are SIZ0/S1Z1 when trace signals 63:62
(HIBYTE/LOWBYTE) are 0:0.

55 MAPBYTE 0 = Memory mapper has been programmed
so that current emulation memory
address is byte wide.
1 = Memory mapper has been programmed
so that current emulation memory
address is word wide.

452

Chapter 14: Concepts
Trace Signals and Predefined Status Values (Emulator Only)

56 DSACKO Processor DSACK signals, which may
57 DSACK1 be configured as 1/O pins.

58 BERR 0 = Bus error.
1 = No bus error.

59 HALT 0 = Processor halt.
1 = Processor not halted.

60 CODE 0 = Instruction fetch.
1 = Data transfer.

61 FLUSH 0 = First instruction fetch following
any program transfer.
1 = No program transfer.

62 LOWBYTE Translation RAM signals that
63 HIBYTE describe the bus cycle.

63:62

0:0 - Use SIZ1, SIZ0 bits

(trace signals 54:53)

0:1 - Low byte transfer.

1:0 - High byte transfer.

1:1 - Word transfer.

Predefined status values for trace signals 48-63 are listed below.

HP 64782 Predefined Status Values
Qualifier Status Bits (63-48) Description

berr Oxxxx XOxx xxxx xxxxb Bus error cycle.

data Oxxx1 xxxx xxxx xxxxb Data transfer bus cycle.

flush 0xx0x xxxx xxxx xxxxb Instruction pipe flush and
program transfer.

halt 0xxxXx OXxx xxxx xxxxb Processor halt.

hibyte 00xxx Xxxx xxxx xxxxb High byte bus transfer.

lobyte 0X0xx Xxxx xxxx Xxxxb Low byte bus transfer.

prog 0xxx0 xxxx xxxx xxxxb Instruction fetch bus cycle.

read Oxxxx xxxx xxx1 xxxxb Read bus cycle.

write OXXXX XXXX XXX0 Xxxxb Write bus cycle.

453

Chapter 14: Concepts
Trace Signals and Predefined Status Values (Emulator Only)

HP 64749 Emulation-Bus Analyzer Trace Signals

Trace
Signals Signal Name Signal Description

0-18 A0-A18 Address Lines 0-18
19-23 Al19-A23 Address Lines 19-23

24 FCO CPU function codes
25 FC1 (output from translation RAM).
26 FC2

Address Lines 19-23 and the function code
lines from the translation RAM pass their
signals directly when the processor has
been configured to supply these signals.
If the processor has been configured to
supply chip selects on these lines, one of
the following three bus values will be
driven on the function code lines, based
on chip select programming:
011b - Chip select programming does not
differentiate between supervisor
and user.
100b - Chip select is supervisor.
000b - Chip select is user.

27 LOWBYTE Translation RAM signals that
28 HIBYTE describe the bus cycle.

28:27

0:0 - Use SIZ1, SIZ0 bits

(trace signals 47:46)

0:1 - Low byte transfer.

1:0 - High byte transfer.

1:1 - Word transfer.

29 SI1Z0 Translation RAM SIZ signals.
30 SIz1

31 SHOW_CYCLE Processor show internal bus cycles.

32 UNUSED
33 UNUSED
34 UNUSED
35 UNUSED
36 UNUSED

37 FETCH 0 = Instruction fetch.
1 = Data transfer.

38 FLUSH 0 = First instruction fetch following
any program transfer.
1 = No program transfer.
39 RMC CPU RMC line.

40 HALT 0 = Processor halt.
1 = Processor not halted.

41 BERR 0 = Bus error.
1 = No bus error.

454

Chapter 14: Concepts

Trace Signals and Predefined Status Values (Emulator Only)

42 R/W 0 = Write bus cycle.
1 = Read bus cycle.
43 COVvo Analyzer tag bits.
44 Covi
45 DMA Indicates DMA handshake occurred.
46 SI1Z0 Processor SIZ signals. These may be
a7 Si1z1 configured as 1/O pins.
48-62 DO0-D15 Processor Data 0-15.

Predefined status values for trace signals 24-47 are listed below.

HP 64749 Predefined Status Values

Qualifier Status Bits (47-24) Description

berr OXXXX XXOX XXXX XXXX XXXX XXxxXb Bus error cycle.

cpu_spc OXXXX XXXX XXXX XXXX XXXX Xx111b CPU space access.

data OXXXX XXXX XXOX XXXX XXXX XXXXb

dma OXXIX XXXX XXXX XXXX XXXX XXXXb

ds_byte OXXXX XXXX XXXX XXXX XXXX 1xxxb DSACK byte
acknowledge.

ds_word OXXXX XXXX XXXX XXXX XXXX Oxxxb DSACK word
acknowledge.

prog OXXXX XXXX XX1X XXXX XXXX XXXXD

prog_tfr OXXXX XXXX XL1X XXXX XXXX XXXXb

read OXXXX XLXX XXXX XXXX XXXX XXXXD

siz_byte 001xx XXXX XXXX XXXX X1xX Xxxxxb One byte remaining
in transfer.

siz_word 0LO0xXX XXXX XXXX XXXX X1xx xxxxb Two bytes remaining
in transfer.

siz_3byt 0L11xX XXXX XXXX XXXX X1xX Xxxxb Three bytes
remaining in
transfer.

siz_long 000xX XXXX XXXX XXXX X1xx xxxxb Four bytes
remaining in
transfer.

tag0 OXXX0 OXXX XXXX XXXX XXXX XXXXb

tagl OXXX0 LXXX XXXX XXXX XXXX XXXXb

tag2 OXXXL OXXX XXXX XXXX XXXX XXXXb

tag3 OXXXL IXXX XXXX XXXX XXXX XXXXD

Data access.
DMA access.

Program fetch cycle.
Program transfer.
Read bus cycle.

Tag memory = 00.
Tag memory = 01.
Tag memory = 10.
Tag memory = 11.

455

Chapter 14: Concepts

SIM and RAM Implementations (Emulator Only)

SIM and RAM Implementations (Emulator
Only)

This section describes the way the internal 6833x SIM and RAM are
supported in this emulator:

¢ Emulator Support of the SIM and RAM
e Emulator Support of Processor Internal RAM
¢ Show Cycles used to see Internal Bus Cycles

e SIM/RAM Synchronization and Information

456

Chapter 14: Concepts
SIM and RAM Implementations (Emulator Only)

Emulator support of the SIM and RAM (Emulator
Only)

The 6833x processors provide an array of on-chip peripherals which are
configured and used via memory mapped registers. These registers directly
control many aspects of the external operation of the processor. The most
notable of these on-chip peripherals is the SIM (System Integration Module).
For example, address bits A19 through A23 can be configured as either
address bits, chip select control signals, or discrete output port signals.
Selection of these alternative uses drastically changes the external behavior
of the processor. Internal to the processor, the full 24-bit address and bus
control signals are always maintained. What is seen external to the processor
is determined by the current contents of the SIM register set.

Most of the 6833x processors also have internal, on-board, static RAM which

can be configured to be addressable anywhere within the address range. The

processor RAM register set is used to enable this on-board RAM and to define
where it is currently positioned in the 24-bit address space.

The emulator needs access to the full 24-bit address, function codes, and
other control signals for proper operation of the emulation bus analyzer and
the emulation memory system. To provide this access when these signals are
not available external to the processor, an external bus decoder is designed
into the emulator. Its purpose is to recreate these signals.

The following is a view of the emulator implementation:
Address, FCx, Bus Arbitration,

ar Chip selects,
or Discrete /0 Lines

— Emulation -
Bus Andlyzer
Torget —P\ GBFTn External —P\
System _l// —l// Bus Decader
Emulation
— Memory
24-bit address
54782801 FCx and =lZx

457

Chapter 14: Concepts

SIM and RAM Implementations (Emulator Only)

The emulator ensures that the emulation-bus analyzer and the emulation
memory system will have access to the equivalent of the internal processor
24-bit address bus, function codes, and size information. The external bus
decoder circuitry can recreate these signals for all possible combinations of
processor pin usage that make sense to the target system. The external bus
decoder must be given knowledge of how the processor pins will be used.
This knowledge is defined by the EMSIM and EMRAM register sets.

Because the emulation-bus analyzer always receives the full 24-bit address,
you can trace activity based upon the way the code was written, not on the
chip selects that are used to access the code. The analyzer can display
address symbols in the trace list and accept symbolic address information
entered in trace commands.

Because the emulation memory system also receives the full 24-bit address,
memory can be allocated (mapped) between the target system and emulation
(overlay) memory based upon the full address, not upon chip selects and a
subset of the full address bus. When a program download is performed, the
program information can be properly directed to emulation or target memory
based upon the full 24-bit address contained in the executable file.

The concept of register copies has been implemented in order to accomplish
external bus decoding. As part of the emulator configuration, you can
indicate the desired SIM and RAM values by loading the EMSIM and EMRAM
copy registers. Once these register copies have been loaded, memory
resources (either emulation or target memory) can be accessed in the same
manner that the processor will access them when running target code. Note
that the default programming of the EMSIM and EMRAM registers is exactly
the same as the reset values of the SIM and RAM registers, as defined by the
Motorola 6833x User Manuals.

In addition to providing the programming knowledge for the external bus
decoder, the EMSIM and EMRAM registers provide a very helpful feature.
Suppose the emulator user wants to load target memory RAM which has been
implemented to be accessible via processor chip selects. In order to access
this memory, the processor SIM registers must typically be changed from the
reset default values. This can be done by individually modifying each SIM
register or by running some processor initialization code. If the EMSIM
registers hold the desired values, it can also be done by simply transferring
the EMSIM registers into the SIM registers. As a convenience to you, this
transfer is performed automatically each time the monitor is entered from
emulation reset. This is the only time that this transfer is performed

458

Chapter 14: Concepts
SIM and RAM Implementations (Emulator Only)

automatically. You can manually transfer the EMSIM to the SIM, or transfer
the SIM to the EMSIM, or display their differences at any time.

Emulator support of processor internal RAM
(Emulator Only)

Most members of the 6833x family of processors have one or more internal
RAM modules. For example, the 68335 has three internal RAM modules.
These internal RAM modules can be used like any other system RAM. That
is, their memory hardware can be assigned to support any desired address
range within the 6833x address space.

The address range that a particular internal RAM module will support, and
the qualifiers that might additionally be assigned to that address range, are
defined by the values contained within registers in the 4K Module Control
Block of the processor. The values of these registers are supplied to the
emulator as part of the EMRAM copy. The emulator uses this information to
determine where memory accesses should be routed, based on the current
emulator memory map.

The emulator cannot emulate internal RAM modules when the internal RAM
is enabled. Internal RAM accesses will typically not be seen outside the
processor; therefore, emulation memory will be ignored. The only way to get
the processor to access emulation memory which has been mapped to the
same address range as internal RAM is to disable the internal RAM, by
resetting the processor. Note that internal RAM accesses may be seen
externally by the analyzer using the show cycles feature, discussed under
Show Cycles used to see Internal Bus Cycles.

By default, the internal RAM modules in 6833x processors are turned off. The
internal RAMs are enabled and positioned by loading the EMRAM registers.
The contents of the EMRAM registers are automatically copied to the RAM
registers each time the emulator enters the monitor from emulation reset.

459

Chapter 14: Concepts

SIM and RAM Implementations (Emulator Only)

Show cycles used to see internal bus cycles
(Emulator Only)

Typically, when the processor accesses internal resources (either the Module
Control Block, or internal RAM), the bus cycles are not available external to
the processor. These bus cycles can be made available by enabling a feature
of the 6833x processor called show cycles. In order to capture a trace of
activity involving these internal resources, the 6833x processor’s show cycles
feature is used to make activity available to the analyzer. Two control bits in
the SIM_MCR register must be set to enable the show cycles feature.
Specifically, these control bits are bits 8 and 9 of the Module Control
Register. These two bits control external bus arbitration in addition to show
cycles. Refer to the Motorola 6833x User Manual for detailed information of
how to program these bits.

The external-bus decoder within the emulator will automatically decode
these "show" bus cycles if the following two conditions are met:

e Condition 1: Show cycles are enabled as described above.
e Condition 2: The /DS signal is available external to the processor.

If the pin that carries the /DS signal is programmed as a portE 1/O pin, the
processor is not able to indicate a show cycle and the analyzer will not be
able to display show cycles in a trace.

The external-bus decoder within the emulator will automatically decode
these "show" bus cycles so the emulation-bus analyzer can correctly capture
them. Note that the external-bus decoder can only correctly decode one
internal RAM space at a time. For processors with multiple internal RAM
spaces, the emulator user must select which RAM space will be decoded by
answering a configuration question.

If an emulated processor has two internal RAM spaces enabled at the same
time, one at address 0, and one at address 0x200000, a configuration question
will ask you which internal RAM space to decode. If you answer the one at
address 0, then when execution is within the range controlled by the internal
RAM at address 0, decoding will be correct. When execution is within the
range controlled by the RAM at address 0x200000, captured address
information will not be correct. The address information will indicate that
the accessed addresses were within the range beginning at 0, not 0x200000.

460

Chapter 14: Concepts
SIM and RAM Implementations (Emulator Only)

Note that even though the upper address information will be incorrect, all
other information in the trace will be correct.

SIM/RAM synchronization and information

Synchronize SIM registers

This capability is found in the Configuration Information dialog box. It lets
you compare and transfer register values between the SIM and EMSIM
register sets. Even though the word "emsim" is used in the command, all
operations also include the RAM and EMRAM register sets.

Synchronize from '33x sim regs, copy to emsim regs

To transfer the current values of the EMSIM registers into the SIM registers.
Values are transferred automatically each time a break to the monitor from
emulation reset occurs. Automatic value transfer ensures that the processor
is prepared to properly access memory when a program is downloaded to the
emulator.

Synchronize from emsim regs, copy to '33x registers

To transfer the current values of the SIM registers into the EMSIM registers.
Transferring SIM values into the EMSIM registers is useful if initialization
code that configures the processor SIM exists, but you don’t know its values.
In this case, you can use the default configuration, run from reset to execute
the initialization code, and configure the emulator to match the processor
SIM.

Show differences for M6833x and emsim registers

To show current differences between the SIM registers and the EMSIM
registers. You will see a list of all registers whose values are different
between the SIM and the EMSIM. Use this to compare the programming
between the SIM and EMSIM.

Default the emsim register set
To reset the EMSIM registers to default processor values.

Config and SIM Programming Info.

Display information about emulator configuration and processor SIM
programming.

461

Chapter 14: Concepts

SIM and RAM Implementations (Emulator Only)

Check emulator configuration

The emulator configuration is checked for inconsistencies. Any
inconsistencies and potential problems found during the check are listed.
You must resolve any items in the list to ensure correct operation of the
emulator.

Chip selects in SIM (processor) register set

Chip selects in the SIM (processor) register set are listed in a table. Use the
table to see how the SIM registers have configured the chip-select pins of the
processor.

Chip selects in EMSIM (emulator) register set

Chip selects in the EMSIM (emulator) register set are listed in a table. Use
the table to see how the EMSIM registers have configured the chip-select
pins of the emulation copy.

Bus interface ports in SIM (processor) register set

Bus interface ports in the SIM (processor) register set are listed in a table.
Use the table to see how the SIM registers have configured the external bus
interface pins of Port C, Port E, and Port F.

Bus interface ports in EMSIM (emulator) register set

Bus interface ports in the EMSIM (emulator) register set are listed in a table.
Use the table to see the SIM register values that will be loaded into the
processor SIM when the monitor is entered from emulation reset.

Memory map & correlation with CSs, IM reg blk & RAM
Detailed information about the memory map is shown in a table. Use the
table to check the way the memory map has been configured.

Reset mode configuration value and operation

Reset mode configuration value and operation is shown in a table. The
configuration value will be driven onto the data bus to configure the
processor when it comes out of reset. The meaning of each data bit in the
value is shown.

Assembly listing matching current EMSIM registers
Assembly language program to initialize the processor SIM and RAM based
on the current contents of the EMSIM and EMRAM register sets.

462

Part 5

Installation Guide

Instructions for installing the product.

463

Part5

464

15

Installing the Debugger

465

Installing the Debugger

This chapter shows you how to install the Real-Time C Debugger.

Requirements

If you are using the HP E3490A Software Probe
Before Installing the Debugger

Step 1. Connect the HP 64700 to the PC

Step 2. Install the debugger software

Step 3. Start the debugger

Step 4. Check the HP 64700 system firmware version

Optimizing PC Performance for the Debugger

466

Chapter 15: Installing the Debugger
Requirements

Requirements

e IBM compatible or NEC PC with an 80486 microprocessor and 8
megabytes of memory.

e« MS Windows 3.1, set up with 20 megabytes of swap space.
* VGA Display.

¢ 3 Megabytes available disk space.

If you are using an emulator:

e Serial port, HP 64037 RS-422 port, or Novell LAN with Lan Workplace for
DOS or Microsoft Lan Manager with HP ARPA Services.

e Revision A.04.00 or greater of HP 64700 system firmware. The last step
in this chapter shows you how to check the firmware version number.

If you are using an HP E3490A Software Probe:
e Serial port.

e Novell LAN with Lan workplace for DOS or Microsoft Lan Manager with
HP ARPA Services.

467

Chapter 15: Installing the Debugger
If You Are Using the HP E3490A Software Probe

If You Are Using the HP E3490A Software
Probe

1 Connect the HP E3490A Software Probe to the PC as described in the
"HP E3490A Software Probe User’s Guide" manual.

2 Skip to "Step 2. Install the debugger software."

468

Chapter 15: Installing the Debugger
Before Installing the Debugger

Before Installing the Debugger

Install MS Windows according to its installation manual. The
Real-Time C Debugger must run under MS Windows in the 386
enhanced mode.

To ensure your PC is running in the 386 Enhanced Mode, double-click the
PIF Editor in the Main or Accessories window. Choose the Mode pulldown in
the PIF Editor menu bar. A check mark should be beside "386 Enhanced" in
the Mode pulldown.

If the HP 64700 is to communicate with the PC via LAN:

Make sure the HP 64700 LAN interface is installed (see the "HP 64700 Series
Installation/Service" manual).

Install the LAN card into the PC, and install the required PC networking
software.

Obtain the Internet Address, the Gateway Address, and the Subnet Mask to
be used for the HP 64700 from your Network Administrator. These three
addresses are entered in integer dot notation (for example, 192.35.12.6).

If the HP 64700 is to communicate with the PC via RS-422:

Install the HP 64037 RS-422 interface card into the PC. The Real-Time C
Debugger includes software that configures the RS-422 interface.

469

Chapter 15: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

Step 1. Connect the HP 64700 to the PC

You can connect the HP 64700 to an RS-232 serial port on the PC, the Local
Area Network that the PC is on, or an HP 64037 RS-422 interface that has
been installed in the PC.

e To connect via RS-232
e To connect via LAN

e To connect via RS-422

To connect via RS-232

Set the HP 64700 configuration switches for RS-232C communication.
Locate the COMM CONFIG switches on the HP 64700 rear panel, and
set them as shown below.

64700E21

Notice that switches 1 through 3 are set to 001, respectively. This sets the
baud rate to 19200.

Notice also that switches 12 and 13 are set to 1 and 0, respectively. This sets
the RTS/CTS hardware handshake which is needed to make sure all
characters are processed.

470

Chapter 15: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

2 Connect an RS-232C modem cable from the PC to the HP 64700 (for
example, an HP 24542M 9-pin to 25-pin cable or an HP 13242N 25-pin
to 25-pin cable).

If you want to build your own RS-232 cable, follow one of the pin-outs for HP
cables shown in the following figure.

1324ZN R5-232-C 25-25 pin 24547M RS-732-C 9-25 pin
CPU HP 64700 CPU HP 64700
25-pin M 25-pin M S-pin M 25-pin M
Chassis GND | 1] T ‘ 1 1] DD\ 1 T | | 8
ol 27 = N E
RD|3] B El 013 || 2
RTS| 4] ‘ ‘ | 4] DTR| 4| | 20|
CTS| 5] ‘ ‘ 5| Signal GND| 5| || | 7]
DSR| 6] ‘ ‘ | 6] DSR| 6] ‘ ‘ | 6
Signal GND| 7 ‘ ‘ 1 7] RTS| 7] 1 | 4]
o8] casfel [
M 1 9 2] N 22|
12| \ \ 12|
5] \ \ 15 DCD = Data Carrier Defect
7] \ \ 7| RD = Receive Data
19 ‘ ‘ M| TD Transmit Jatfa
DTRPO| ‘ ‘ 20| DTR = Dafa Terminal Ready
D2 Do GND = Grouni
5 N 5 DSR = Data Set Ready
— \ \ i RTS = Request to Send
P4 o z3 CTS = Clear to Send
gch700b1

You can also use an RS-232C printer cable, but you must set HP 64700
configuration switch 4 to 1.

3 Turn ON power to the HP 64700.

The power switch is located on the lower left-hand corner of the front panel.
The power lamp at the lower right-hand corner of the front panel will light.

471

Chapter 15: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

4 Start MS Windows in the 386 enhanced mode.

5 Verify RS-232 communication by using the Terminal program that is

found in the Windows "Accessories" group box.

Double-click on the "Terminal" icon to open the Terminal window. Then,
choose the Settings - Communications... (ALT, S, C) command, and select:
19200 Baud Rate, 8 Data Bits, 1 Stop Bit, Parity None, Hardware Flow
Control, and the PC’s RS-232 interface connector. Choose the OK button.

You should now be able to press the Enter key in the Terminal window to see
the HP 64700’s Terminal Interface prompt (for example, "R>", "M>", or "U>".
The "->" prompt indicates the present firmware does not match the emulator
probe, or there is no probe connected). If you see the prompt, you have
verified RS-232 communication. If you do not see the prompt, refer to "If you
cannot verify RS-232 communication".

If you will be using the RS-232 connection for the debugger, exit the
Terminal program and go to "Step 2. Install the debugger software".

If you will be using the LAN connection, go to "To connect via LAN".

472

Chapter 15: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

To connect via LAN

1 Set the HP 64700 LAN parameters.

If you're setting the HP 64700 LAN parameters for the first time, you must
connect the HP 64700 to the PC via RS-232 before you can access the HP
64700 Terminal Interface. Follow the steps in "To connect via RS-232" and
then return here.

If you're changing the LAN parameters of an HP 64700 that is already on the
LAN, you can use the "telnet <HP 64700 IP address>" command to access the
HP 64700 Terminal Interface.

Once the HP 64700 Terminal Interface has been accessed, display the
current LAN parameters by entering the "lan" command:

R>lan

lan -i 15.6.25.117

lan -g 15.6.24.1

lan -s 255.255.248.0 <<- HP 64700A ONLY
lan -p 6470

Ethernet Address : 08000909BBC1

The "lan -i" line shows the Internet Address (or IP address). The Internet
Address must be obtained from your Network Administrator. The value is
entered in integer dot notation. For example, 192.35.12.6 is an Internet
Address. You can change the Internet Address with the "lan -i <new IP>"
command.

The "lan -g" line shows the Gateway Address which is also an Internet
address and is entered in integer dot notation. This entry is optional and will
default to 0.0.0.0, meaning all connections are to be made on the local
network or subnet. If connections are to be made to workstations on other
networks or subnets, this address must be set to the address of the gateway
machine. The gateway address must be obtained from your Network
Administrator. You can change the Gateway Address with the "lan -g <new
gateway address>" command.

The "lan -s" line will be shown if you are using the HP 64700A, and will not be
shown if you are using the HP 64700B. If this line is not shown, the Subnet
Mask is automatically configured. If this line is shown, it shows the Subnet
Mask in integer dot notation. This entry is optional and will default to 0.0.0.0.
The default is valid only on networks that are not subnetted. (A network is

473

Chapter 15: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

subnetted if the host portion of the Internet address is further partitioned
into a subnet portion and a host portion.) If the network is subnetted, a
subnet mask is required in order for the emulator to work correctly. The
subnet mask should be set to all "1"s in the bits that correspond to the
network and subnet portions of the Internet address and all "0"s for the host
portion. The subnet mask must be obtained from your Network
Administrator. You can change the Subnet Mask with the "lan -s <new
subnet mask>" command .

Both the PC’s subnet mask and the emulator’s subnet mask must be identical
unless they communicate via a gateway or a bridge. Unless your Network
Administrator states otherwise, make them the same. You can check the
PC’s subnet mask with the "Iminst" command if you are using HP-ARPA. If
you are using Novell LAN WorkPlace, make sure the file \NET.CFG has the
entry "ip_netmask <subnet mask>" in the section "Protocol TCPIP".

The "lan -p" line shows the base TCP service port number. The host
computer interfaces communicate with the HP 64700 through two TCP
service ports. The default base port number is 6470. The second port has
the next higher number (default 6471). If the service port is not 6470, you
must change it with the "lan -p 6470" command.

The Internet Address and any other LAN parameters you change are stored
in nonvolatile memory and will take effect the next time the HP 64700 is
powered off and back on again.

Exit the Terminal or telnet program.
Turn OFF power to the HP 64700.

Connect the HP 64700 to the LAN. This connection can be made
using either the 15-pin AUI connector or the BNC connector.

DO NOT use both connectors. The LAN interface will not work with both
connected at the same time.

474

Chapter 15: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

5 Set the HP 64700 configuration switches for LAN communication.

LAN

BNC THIN LAN
CONNECTOR

ﬁﬁ BOOTP
ﬁ DISABLED

1 MS70030

LAN

15-PIN AUl
CONNECTOR

ﬁﬁ BOOTP
ﬁ DISABLED
/‘ MS70031
Switch 16 must be set to one (1) indicating that a LAN connection is being

made.

Switch 15 should be zero (0) if you are connecting to the BNC connector or
set to one (1) if a 15 pin AUI connection is made.

Switch 14 should be zero (0).

Set all other switches to zero (0).

475

Chapter 15: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

6 Turn ON power to HP 64700.

7 Verify LAN communication by using a "telnet <HP 64700 IP address>"
command. This connection will give you access to the HP 64700
Terminal Interface.

You should now be able to press the Enter key in the telnet window to see
the HP 64700’s Terminal Interface prompt (for example, "R>", "M>", "U>",
etc.). If you see the prompt, you have verified LAN communication. If you
cannot connect to the HP 64700’s IP address, refer to "If you cannot verify
LAN communication".

476

Chapter 15: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

To connect via RS-422

Before you can connect the HP 64700 to the PC via RS-422, the HP 64037
RS-422 Interface must have already been installed into the PC.

Set the HP 64700 configuration switches for RS-422 communication.
Locate the COMM CONFIG switches on the HP 64700 rear panel, and
set them as shown below.

64700E27

Notice that switches 1 through 3 are set to 111, respectively. This sets the
baud rate to 230400.

Notice that switch 5 is set to 1. This configures the 25-pin port for RS-422
communication.

Notice also that switches 12 and 13 are set to 1 and 0, respectively. This sets
the RT'S/CTS hardware handshake which is needed to make sure all
characters are processed.

Connect the 17355M cable (which comes with the HP 64037
interface) from the PC to the HP 64700.

Turn ON power to the HP 64700.

The power switch is located on the lower left-hand corner of the front panel.
The power lamp at the lower right-hand corner of the front panel will light.

477

Chapter 15: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

If you cannot verify RS-232 communication

If the HP 64700 Terminal Interface prompt does not appear in the Terminal
window:

Make sure that you have connected the emulator to the proper power source
and that the power light is lit.

Make sure that you have properly configured the data communications
switches on the emulator and the data communications parameters on your
controlling device. You should also verify that you are using the correct
cable.

The most common type of data communications configuration problem
involves the configuration of the HP 64700 as a DCE or DTE device and the
selection of the RS-232 cable. If you are using the wrong type of cable for the
device selected, no prompt will be displayed.

When the RS-232 port is configured as a DCE device (S4 is set to 0), a
modem cable should be used to connect the HP 64700 to the host computer
of terminal. Pins 2 and 3 at one end of a modem cable are tied to pins 2 and 3
at the other end of the cable.

When the RS-232 port is configured as a DTE device (S4 is set to 1), a printer
cable should be used to connect the HP 64700 to the host computer of
terminal. Pins 2 and 3 at one end of a printer cable are swapped and tied to
pins 3 and 2, respectively, at the other end of the cable.

If you suspect that you may have the wrong type of cable, try changing the S4
setting and turning power to the HP 64700 OFF and then ON again.

478

Chapter 15: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

If you cannot verify LAN communication

Use the "telnet" command on the host computer to verify LAN
communication. After powering up the HP 64700, it takes a minute before
the HP 64700 can be recognized on the network. After a minute, try the
"telnet <internet address>" command.

» If "telnet" does not make the connection:

[] Make sure that you have connected the emulator to the proper power source
and that the power light is lit.

[] Make sure that the LAN cable is connected. Refer to your LAN
documentation for testing connectivity.

[] Make sure the HP 64700 rear panel communication configuration switches
are set correctly. Switch settings are only used to set communication
parameters in the HP 64700 when power is turned OFF and then ON.

[] Make sure that the HP 64700’s Internet Address is set up correctly. You
must use the RS-232 port to verify this that the Internet Address is set up
correctly. While accessing the emulator via the RS-232 port, run
performance verification on the HP 64700’s LAN interface with the "lanpv"
command.

« If "telnet" makes the connection, but no Terminal Interface prompt
(for example, R>, M>, U>, etc.) is supplied:

[] It’s possible that the HP 64000 software is in the process of running a
command (for example, if a repetitive command was initiated from telnet in
another window). You can use CTRL+c to interrupt the repetitive command
and get the Terminal Interface prompt.

[] It’s also possible for there to be a problem with the HP 64700 firmware while
the LAN interface is still up and running. In this case, you must turn OFF
power to the HP 64700 and turn it ON again.

479

Chapter 15: Installing the Debugger
Step 2. Install the debugger software

Step 2. Install the debugger software

1 If you are updating or re-installing the debugger software, you may
want to save your B3624.INI file because it will be overwritten by the
installation process.

2 Start MS Windows in the 386 enhanced mode.

3 Insert the 6833x REAL-TIME C DEBUGGER Disk 1 of 2 into floppy
disk drive A or B.

4 Choose the File - Run... (ALT, F, R) command in the Windows
Program Manager. Enter "a:\setup" (or "b:\setup" if you installed the
floppy disk into drive B) in the Command Line text box.

Command Line:

| b:‘setup |

] Run Minimized

Then, choose the OK button.

480

Chapter 15: Installing the Debugger
Step 2. Install the debugger software

The welcome screen will appear. Choose the Continue button to proceed
with the installation. To exit the installation procedure, choose the Exit

button. To see details of the platform requirements to support this interface,
choose the Details button.

= HP Real-Time C Setup

Welcome to the Setup program for the
Hewlett-Packard Real -Time C Debugger.

Thiz Setup program will install the software For the
Real-Time C Debugger along with demo filez and
support files.

Select Continue to move through the setup process and
install the Real-Time C product onto your hard disk.
Select Exit to end the inztallation procezs. Select
Details for a list of the minimum platform requirements.

[Exit | [Detaits }

You will be asked to select the model number that corresponds to your
emulator. The HP64782 emulator model number is the new version of the
6833x emulator product. By default, the HP64782 is the model number
shown in the Model Number field. The HP64749 only supports the 68331 and
68332 emulators. It is the older version of the 6833x emulator.

= Select Emulator Model Number

Select the model number that corresponds to your emulator.
The 64749 only supports the 68331 and 68332 processors.
The 64782 zupportz all the 6833x processors.

Only one model number can be supported at a time. 1f you

want to change to the other model, you must reinstall the
product.

Model Humber: | | @

nguntinuea | Back g | Exit g

Once you have selected the correct model number, choose the Continue
button. To back up to the preceding "Welcome" screen, choose the Back
button. To exit the installation procedure, choose the Exit button.

481

Chapter 15: Installing the Debugger
Step 2. Install the debugger software

You will be asked to enter the installation path. The default installation path
is C:\HP\RTC\M33X for the HP64782, and C:\HP\RTC\M332 for the HP64749.
The default installation path "M33X" is shown wherever files are discussed in
these instructions.

= Installation Path for HP Real-Time C

The zetup program will copy the HP
Real-Time C product into the following

directory.

Path: |C:\HPARTCAM33X)

The program group "HP Real-Time C Debugger™ will
be added to the Program Manager. Items for the
Debugger and Help filez will be created. Additions
to the Extenszions zection of the zystem file
"WIM_IMI" will be made.

L%untinuea | Back g | Exit § | Help é

You will be asked to enter your user ID. This information is important if the
HP 64700 is on the LAN and may be accessed by other users. It tells other
users who is currently using, or who has locked, the HP 64700. This
information can be modified while using the Real-Time C Debugger by
choosing the Settings — Communication... (ALT, S, C) command.

= User |dentification

It iz important that you fill in the following information. Failure to do so
will result in the emulator locking Feature not funchioning properly.

UserName should be your name, initials, or login. The maximum length
iz 25 characters.

UserName: |Chris Smith

The UserdD zhould be a unigue identification number, For example,
your phone extension or your userid number. The maximum length is 8

digits.
UserlD: |EE?B |
| Continue é | Back g | Ezit é ‘ Help g

482

Chapter 15: Installing the Debugger
Step 2. Install the debugger software

You will be asked to select the type of connection to be made to the
HP 64700. This information can be modified while using the Real-Time C
Debugger by choosing the Settings - Communication... (ALT, S, C) command.

= Real-Time C Emulation Connection

Select the communication channel to be used between the
personal computer and the emulator.

Transport: HP-ARPA |

Enter the connection name. An example for R5232C would be
COM1. For HP-ABPA . use the emulator lan IP address or the
emulator's network name. For HP-R5422, use the address of
the HPG64037 card.

Connection: | 15.6.25.24 |

|§untinue§ | Back § | Exit g | Help §

When using the HP-RS422 transport, the connection name is the I/O address
you want to use for the HP 64037 card. Enter a hexadecimal number from
100H through 3F8H, ending in 0 or 8, that does not conflict with other cards
in your PC.

After you have specified the type of connection, files will be copied to your
hard disk. (The B3624.TMP and B3624.HLP files are larger than most of the
other files and take longer to copy.) Fill out your registration information
while waiting for the files to be copied.

If the Setup program detects that one or more of the files it needs to install
are currently in use by Windows, a dialog box informs you that Windows
must be restarted. You can either choose to restart Windows or not. If you
don’t choose to restart Windows, you can either run the _MSSETUP.BAT
batch file (in the same directory that the debugger software is installed in)
after you have exited Windows or reinstall the debugger software later when
you are able to restart Windows.

483

Chapter 15: Installing the Debugger
Step 3. Start the debugger

Step 3. Start the debugger

1 If the "HP Real-Time C Debugger" group box is not opened, open it by

double-clicking in the icon.
Double-click the "M6833x Real-Time C Debugger" icon.

If you have problems connecting to the HP 64700, refer to:
e Ifyou have RS-232 connection problems

e Ifyou have LAN connection problems

e Ifyou have RS-422 connection problems

If you have problems connecting to the HP E3490A Software Probe, refer to
the "HP E3490A Software Probe User’s Guide" manual.

If you have RS-232 connection problems

Remember that Windows 3.1 only allows two active RS-232 connections at a
time. To be warned when you violate this restriction, choose Always Warn
in the Device Contention group box under 386 Enhanced in the Control
Panel.

Use the "Terminal" program (usually found in the Accessories windows
program group) and set up the "Communications..." settings as follows:

Baud Rate: 19200 (or whatever you have chosen for the emulator)
Data Bits: 8

Parity: None

Flow Control: Hardware

Stop Bits: 1

484

Chapter 15: Installing the Debugger
Step 3. Start the debugger

When you are connected, hit the Enter key. You should get a prompt back.
If nothing echos back, check the switch settings on the back of the emulator.

Switches 1 thru 3 set the baud rate as follows:

S1 S2 S3

0 0 0 9600
0 0 1 19200
0 1 0 2400

Switches 12 and 13 must be set to 1 and 0, respectively. This sets the
RTS/CTS hardware handshake, which is needed to make sure all characters
are processed.

All other switches should be in the "0" position, especially switch 16 on the
HP 64700 (which selects LAN/Serial interface).

Remember that if you change any of the switch positions, you must turn OFF
power to the HP 64700 and turn it ON again before the changes will take
effect.

 If the switches are in the correct position and you still do not get a
prompt when you press return, check the following:

[] Turn off power to the HP 64700 and then turn it on again. Press return to
see if you get a prompt.

[] Check to make sure the RS-232 cable is connected to the correct port on
your PC, and that the cable is appropriate for connecting the PC to a DCE
device. If the cable is intended to connect the PC to a DTE device, set
switch 4 to "1" (which makes the emulator a DTE device), turn OFF power to
the HP 64700, turn power ON, and try again.

[] Check to make sure your RS-232 cable has the RTS, CTS, DSR, DCD, and
DTR pins supported. If your PC RS-232 connection is a 9-pin male
connection, HP cable number 24542M will work (set switch 4 to 0 if you use
this cable). If your PC has a 25-pin RS-232 connector, HP cable number
13242N will work (set switch 4 to 0).

485

Chapter 15: Installing the Debugger
Step 3. Start the debugger

 If you wish to build your own RS-232 cable, refer to "To connect via

RS-232" in the paragraph titled, "Step 1. Connect the HP 64000 to the
PC" earlier in this chapter.

When using certain RS-232 cards, connecting to an RS-232 port where
the HP 64700 is turned OFF (or not connected) will halt operation of
the PC. The only way to restore operation is to reboot the PC.
Therefore, HP recommends you always turn ON the HP 64700 before
attempting to connect via RS-232.

If RTC reports overrun errors or simply times out, RTC may be
overrunning the serial interface. In this case, try the following:

Stop all unnecessary TSR’s and other applications to allow the processor to
service the serial interface more often.

Overrun errors may occur when the serial interface card is not sufficiently
buffered. Check to make sure your serial interface card uses the 165650AF
UART, or better. Use the DOS command, "MSD", and when the window
opens, select "COM Ports..." to see the UART chip used in your serial
interface card.

486

Chapter 15: Installing the Debugger
Step 3. Start the debugger

If you have LAN connection problems
L] Tryto "ping" the emulator:

ping <hostname or IP address>

(] If the emulator does not respond:

e Check that switch 16 on the emulator is "1" (emulator is attached to LAN,
not RS-232 or RS-422).

¢ Check that switch 15 on the emulator is in the correct position for your
LAN interface (either the AUI or the BNC).

Remember, if you change any switch settings on the emulator, the changes
do not take effect until you turn OFF emulator power and turn it ON again.

[] If the emulator still does not respond to a "ping," you need to verify the IP
address and subnet mask of the HP 64700. To do this, connect the HP 64700
to a terminal (or to the Terminal application on the PC), change the
emulator’s switch settings so it is connected to RS-232, and enter the "lan"
command. The output looks something like this:

lan -i 15.6.25.117

lan -g 15.6.24.1

lan -s 255.255.248.0

lan -p 6470

Ethernet Address : 08000909BBC1

The important outputs (as far as connecting) are:

"lan -i"; this shows the internet address is 15.6.25.117 in this case. If the
Internet address (IP) is not what you expect, you can change it with the lan
-1 <new IP>’ command.

"lan -s"; shows the subnet mask is 255.255.248 (the upper 21 bits --
255.255.248.0 == FF.FF.F8.0). If the subnet mask is not what you expect,
you can change it with the lan -s <new subnet mask>’ command.

"lan -p"; shows the port is 6470. If the port is not 6470, you must change it
with the "lan -p 6470" command.

Both the PC’s subnet mask and the emulator’s subnet mask must be identical
unless they communicate via a gateway or a bridge. Unless your Network

487

Chapter 15: Installing the Debugger
Step 3. Start the debugger

Administrator states otherwise, make them the same. If you are using
HP-ARPA, you can check the PC’s subnet mask with the "Iminst" command in
a DOS window. If you are using Novell LAN WorkPlace, make sure the file
\WNET.CFG has the entry "ip_netmask <subnet mask>" in the section
"Protocol TCPIP." If you are using Windows for Workgroups, you can check
the PC’s subnet mask by looking in the [TCPIP] section of the
PROTOCOLL.INI file or by looking in the Microsoft TCP/IP Configuration
dialog box. If you are using WINSOCK, refer to your LAN software
documentation for subnet mask information.

Occasionally the emulator or the PC will "lock up" the LAN due to excessive
network traffic. If this happens, all you can do is turn OFF power to the HP
64700 or PC and turn it back ON, again. If this happens two frequently, you
can try placing a gateway between the emulator/PC and the rest of your
network.

If you have LAN DLL errors

The various LAN transport selections require the following DLLs:
HP-ARPA WSOCKETS.DLL.

Novell-WP WLIBSOCK.DLL.

W4WG-TCP WSOCKETS.DLL. (Windows for Workgroups)

WINSOCKI.1 WINSOCK.DLL.

These DLLs are included with LAN software. The required DLL must be in
your search path. This will be the case if your network software is installed.

488

Chapter 15: Installing the Debugger
Step 3. Start the debugger

If you have RS-422 connection problems

[] Make sure the HP 64700 switch settings match the baud rate chosen when
attempting the connection.

Switches 1 thru 3 set the baud rate as follows:

S1 S2 S3

1 1 1 230400
1 1 0 115200
1 0 1 38400

1 0 0 57600

0 1 1 1200

0 1 0 2400

0 0 1 19200

0 0 0 9600
Switch 5 must be set to 1 to configure the HP 64700 for RS-422
communication.

Switches 12 and 13 must be set to 1 and 0, respectively. This sets the
RTS/CTS hardware handshake, which is needed to make sure all characters
are processed.

All other switches should be in the "0" position, especially the switch that
determines LAN/Serial interface (switch 16 on HP 64700).

Remember that if you change any of the switch positions, you must turn OFF
power to the HP 64700 and turn it ON again before the changes will take
effect.

[] If the switches are in the correct position and you still do not get a prompt
when you hit return, try turning OFF the power to the HP 64700 and tuning it
ON again.

(] If you still don’t get a prompt, make sure the HP 17355M RS-422 cable is
connected to the correct port on your PC.

489

Chapter 15: Installing the Debugger
Step 4. Check the HP 64700 system firmware version

Step 4. Check the HP 64700 system firmware
version

Choose the Help - About Debugger/Emulator... (ALT, H, D) command.

The version information under HP 64700 Series Emulation System must show
A.04.00 or greater. If the version number is less than A.04.00, you must
update your HP 64700 system firmware as described in the
Installing/Updating HP 64700 Firmware chapter.

490

Chapter 15: Installing the Debugger
Optimizing PC Performance for the Debugger

Optimizing PC Performance for the Debugger

The Real-Time C Debugger is a memory and I/O intensive Windows program.
Slow user interface performance may be caused by many things:

e Underpowered PC -- The Real-Time C Debugger requires an IBM
compatible or NEC PC with an 80486 class microprocessor, 8 megabytes
of memory, and 20 megabytes of MS Windows swap space. Because RAM
is faster than swap, performance is best when there is enough RAM to
accommodate all of the Real-Time C Debugger’s memory usage (which is
directly related to the size of your programs and the amount of debug
information in them).

e Improperly configured PC -- Windows configuration may have a very
significant effect on performance. The Windows swap file settings are
very important (see the Virtual Memory dialog box under 386 Enhanced
in the Control Panel). The larger the swap file, the better the
performance. Permanent swap has superior performance.

e Disk performance (due to Windows swap file access and Windows dialog
and string resource accesses from the debugger ".EXE" file) -- The disk
speed has a direct impact on performance of the Real-Time C Debugger.
Use of SMARTDrive or other RAM disk or caching software will improve
the performance.

Various PC performance measurement and tuning tools are commercially
available. Optimizing your PC performance will improve debugger interface
performance and, of course, all your other PC applications will benefit as well.

491

492

16

Installing/Updating HP 64700
Firmware

493

Note

Installing/Updating HP 64700 Firmware

This chapter shows you how to install or update HP 64700 firmware.

If you are using an HP 647004, it must contain the optional Flash EPROM
memory card before you can install or update HP 64700 system firmware.
Flash EPROM memory is standard in the HP 64700B card cage.

The firmware, and the program that downloads it into the HP 64700, are
included with the debugger on floppy disks labeled HP 64700 EMUL/ANLY
FIRMWARE.

The steps to install or update HP 64700 firmware are:

e Step 1. Connect the HP 64700 to your PC

e Step 2. Install the firmware update utility

e Step 3. Run PROGFLASH to update HP 64700 firmware

e Step 4. Verify emulator performance

494

Chapter 16: Installing/Updating HP 64700 Firmware
Step 1. Connect the HP 64700 to the PC

Step 1. Connect the HP 64700 to the PC .

1 Set the COMM CONFIG switches for RS-232C communication. To do
this, locate the DIP switches on the HP 64700 rear panel, and set
them as shown below.

Notice that switches 12 and 13 are set to 1 and 0, respectively. This sets the
RTS/CTS hardware handshake, which is needed to make sure all characters
are processed. Switches 1, 2, and 3 are set to 0. This sets the baud rate to
9600. Switch settings are read during the HP 64700 power up routine.

2 Connect an RS-232C modem cable from the PC to the HP 64700 (for
example, an HP 24542M 9-pin to 25-pin cable or an HP 13242N 25-pin
to 25-pin cable).

You can also use an RS-232C printer cable, but if you do, you MUST set
COMM CONFIG switch 4 to 1.

3 Turn ON power to the HP 64700.

The power switch is located on the lower left-hand corner of the front panel.
The power lamp at the lower right-hand corner of the front panel will light.

495

Chapter 16: Installing/Updating HP 64700 Firmware
Step 1. Connect the HP 64700 to the PC

4 Start MS Windows in the 386 enhanced mode.

To ensure your PC is running in the 386 Enhanced Mode, double-click the
PIF Editor in the Main or Accessories window. Choose the Mode pulldown in
the PIF Editor menu bar. A check mark should be beside "386 Enhanced" in
the Mode pulldown.

Verify RS-232 communication by using the Terminal program that is
found in the Windows "Accessories" group box.

Double-click on the "Terminal" icon to open the Terminal window. Then,
choose the Settings - Communications... (ALT, S, C) command, and select:
9600 Baud Rate, 8 Data Bits, 1 Stop Bit, Parity None, Hardware Flow Control,
and the PC’s RS-232 interface connector to which the RS-232 cable is
attached (example: COM1). Choose the OK button.

You should now be able to press the Enter key in the Terminal window to see
the HP 64700’s Terminal Interface prompt (for example, p>, R>, M>, and U>.
A -> prompt indicates the present firmware does not match the emulator
probe, or there is no probe connected). If you see the prompt, you have
verified RS-232 communication. If you do not see the prompt, refer to "If you
cannot verify RS-232 communication" in Chapter 15.

6 Exit the Terminal window.

496

Chapter 16: Installing/Updating HP 64700 Firmware
Step 2. Install the firmware update utility

Step 2. Install the firmware update utility

The firmware update utility and emulation and analysis firmware require
about 1.5 Mbytes of disk space.

Start MS Windows in the 386 enhanced mode.

Insert the HP 64700 EMUL/ANLY FIRMWARE Disk 1 of 2 into floppy
disk drive A or B.

Choose the File - Run... (ALT, F, R) command in the Windows
Program Manager. Enter "a:\setup" (or "b:\setup" if you installed the
floppy disk into drive B) in the Command Line text box.

Command Line:
| b:hsetup |

[] Run Minimized

Then, choose the OK button. Follow the instructions on the screen.

You will be asked to enter the installation path. The default installation path

is C:\HP64700.
B instaiition Path for HPG4700 Firmware Uty |

% The setup program will copy the 64700
Firmware Update Utility into the following
directory.

Path: |C:AHPE4700

The file 64700tab will be placed in the "tables”
subdirectory. You may need to modify this emulator
device table to reflect your PC setup.

Continue | | Ext 1 [ielp

497

Chapter 16: Installing/Updating HP 64700 Firmware
Step 2. Install the firmware update utility

Wait until the Setup Exit Message dialog box appears. This indicates
installation of the firmware update utility is complete.

4 After completing the installation, use the editor of your choice and

edit the C:\CONFIG.SYS file to include these lines:

BREAK=ON
FILES=20

BREAK=ON allows the system to check for two break conditions:
CTRL+Break, and CTRL+c.

FILES=20 allows 20 files to be accessed concurrently. This number must be
at LEAST 20 to allow the firmware update utility to operate properly.

If you installed the files in a path other than the default (C:\HP64700),
edit the CAAUTOEXEC.BAT and C:\HP64700\BIN\FLASH.BAT files as
follows:

Edit AUTOEXEC.BAT to set the HP64700 and HPTABLES
environment variables. For example:

SET HP64700=C:\<installation_path>
SET HPTABLES=C:\<installation_path>\TABLES

Edit FLASH.BAT to identify the location of PROGFLAS.EXE. For
example:

C:\<installation_path>\PROGFLAS.EXE

Edit the <installation_path>\TABLES\64700TAB file to indicate the
communications connection you will use, as follows:

The default <installation_path>\TABLES\64700TAB file contains entries to
establish the communications connection for COM1 and COM2. The content
of this file is:

EMUL_COM1 unknown COM1 OFF 9600 NONE O

N18
EMUL_COM2 unknown COM2 OFF 9600 NONE ON 1 8

498

Chapter 16: Installing/Updating HP 64700 Firmware
Step 2. Install the firmware update utility

If you are using COM3 or COM4 port to update your firmware, you need to
edit the <installation_path>\TABLES\64700TAB file. Either add another line
or modify one of the existing lines. For example:

EMUL_COMS3 my_emul COM3 OFF 9600 NONE ON 1 8
EMUL_COM4 unknown COM4 OFF 9600 NONEON 1 8

Ensure the Interrupt Request Line for the selected COMx port is set
to its default value. To check the default value:

1 Choose Control Panel in the Main window.

2 Choose Ports in the Control Panel window.

3 Choose the COMx port you are using and click Settings....

4 (Click Advanced... in the Settings for COMx dialog box.

5 Select the default value for the Interrupt Request Line in the Advanced

Settings for COMx dialog box. The default settings are:

COM1 and COM3 =IRQ 4
COM2 and COM4 =IRQ 3

Exit Windows and reboot your PC to activate the changes made to
the CONFIG.SYS and AUTOEXEC.BAT files (CTRL+ALT+DEL).
Installation of the firmware update utility is now complete.

499

Chapter 16: Installing/Updating HP 64700 Firmware
Step 3. Run PROGFLASH to update HP 64700 firmware

Step 3. Run PROGFLASH to update HP 64700
firmware

Start MS Windows in the 386 enhanced mode.

If the "HP 64700 Firmware Utility" group box is not opened, open it
by double-clicking the icon.

Double-click the "PROGFLASH" icon. (You can abort the
PROGFLASH command by pressing CTRL+c.)

Enter the number that identifies the emulator you want to update.
For example, enter "1" if you want to update the emulator identified
by the line, "1 emul_coml my_emul."

Enter the number that identifies the product whose firmware you
want to update. For example, if this product is listed as number 12,
enter "12":

Product
1 64782
2 E3490

12 64772

Enter "y" to enable status messages.

500

Chapter 16: Installing/Updating HP 64700 Firmware
Step 3. Run PROGFLASH to update HP 64700 firmware

The PROGFLASH command downloads code from files on the host computer
into Flash EPROM memory in the HP 64700. During this download, you will
see messages similar to the following:

Rebooting HP64700...with init -r

Downloading flash programming code:

'Thp64700/lib/npf.X’

Checking Hardware id code...

Erasing Flash ROM

Downloading ROM code: 'tThp64700/update/647??.X’
Code start 280000H
Code size 29ABAH

Finishing up...

Rebooting HP64700...
Flash programming SUCCEEDED

You can display firmware version information and verify the update by
choosing the Help — About Debugger/Emulator... (ALT, H, D) command in
the Real-Time C Debugger.

501

Chapter 16: Installing/Updating HP 64700 Firmware
Step 4. Verify emulator performance

Step 4. Verify emulator performance

¢ Do the performance verification procedure shown in the
Installation/Service/Terminal Interface User’s Guide.

502

Glossary

Defines terms that are used in the debugger help information.

analyzer An instrument that captures data on signals of interest at discreet
periods. The emulation bus analyzer captures emulator bus cycle
information synchronously with the processor’s clock signal.

arm condition A condition that enables the analyzer. The analyzer is
always armed unless you set the analyzer up to be armed by a signal received
on the BNC port; when you do this, you can identify the arm condition in the
trace specification by selecting arm in the Condition dialog boxes.

background memory A separate memory system, internal to the emulator,
out of which the background monitor executes.

background monitor program An emulation monitor program that
executes out of background memory.

break on trigger Causes emulator execution to break into the monitor
when the trigger condition is found. This is known as a hardware breakpoint,
and it lets you break on a wider variety of conditions than a software
breakpoint (which replaces an opcode with a break instruction); however,
depending on the speed of the processor, the actual break point may be
several cycles after the one that caused the trigger.

breakpoint An address you identify in the user program where program
execution is to stop. Breakpoints let you look at the state of the target
system at particular points in the program.

break macro A breakpoint followed by any number of macro commands
(which are the same as command file commands).

control menu The menu that is accessed by clicking the control menu box
in the upper left corner of a window. You can also access control menus by
pressing the "ALT" and "-" keys.

503

Glossary

count condition Specifies whether time or the occurrences of a particular
state are counted for each state in the trace buffer.

embedded microprocessor system The microprocessor system that the
emulator plugs into.

emulation memory Memory provided by the emulator that can be used in
place of memory in the target system.

emulation monitor A program, executed by the emulation microprocessor
(as directed by the emulation system controller), that gives the emulator
access to target system memory, microprocessor registers, and other target
system resources.

emulator An instrument that performs just like the microprocessor it
replaces, but at the same time, it gives you information about the operation of
the processor. An emulator gives you control over target system execution
and allows you to view or modify the contents of processor registers, target
system memory, and I/O resources.

enable condition Specifies the first condition in a two-step sequential
trigger condition.

enable store condition Specifies which states get stored in the trace
buffer while the analyzer searches for the enable condition.

foreground memory The memory system out of which user programs
execute. Foreground memory is made up of emulation memory and target
system memory.

foreground monitor program An emulation monitor program that
executes out of the same memory system as user programs. This memory
system is known as foreground memory and is made up of emulation memory
and target system memory. The emulator only allows foreground monitor
programs in emulation memory.

guarded memory Memory locations that should not be accessed by user
programs. These locations are specified when mapping memory. If the user
program accesses a location mapped as guarded memory, emulator execution
breaks into the monitor.

504

Glossary

macro Refers to a break macro, which is a breakpoint followed by any
number of macro commands (which are the same as command file
commands).

monitor A program, executed by the emulation microprocessor (as directed
by the emulation system controller), that gives the emulator access to target
system memory, microprocessor registers, and other target system resources.

object file An Intel OMF format absolute file that can be loaded into
emulation or target system memory and executed by the debugger.

pop-up menu A menu that is accessed by clicking the right mouse button in
a window.

prestore condition Specifies the states that may be stored before each
normally stored state. Up to two states may be prestored for each normally
stored state.

primary branch condition Specifies a condition that causes the analyzer
to begin searching at another level.

restart condition Specifies the condition that restarts the two-step
sequential trigger. In other words, if the restart condition occurs while the
analyzer is searching for the trigger condition, the analyzer starts looking for
the enable condition again.

secondary branch condition Specifies a condition that causes the
analyzer to begin searching at another level. If a state satisfies both the
primary and secondary branch conditions, the primary branch will be taken.

sequence levels Levels in the analyzer that let you specify a complex
sequential trigger condition. For each level, the analyzer searches for
primary and secondary branch conditions. You can specify a different store
condition for each level. The Page button toggles the display between
sequence levels 1 through 4 and sequence levels 5 through 8.

state qualifier A combination of address, data, and status values that
identifies particular states captured by the analyzer.

status values Values that identify the types of microprocessor bus cycles
recognized by the analyzer. You can include status values (along with

505

Glossary

address and data values) when specifying trigger and store conditions. The
status values defined for the 6833x emulator are listed under "Predefined
Status Values" at the end of Chapter 14, "Concepts."

store condition Specifies which states get stored in the trace buffer.

In the "Find Then Trigger" trace set up, the store condition specifies the
states that get stored after the trigger.

In the "Sequence" trace set up, each sequence level has a store condition that
specifies the states that get stored while looking for the primary or secondary
branch conditions.

target system The microprocessor system that the emulator plugs into.

trace state The information captured by the analyzer on a particular
microprocessor bus cycle.

transfer address The program’s starting address defined by the software
development tools and included with the symbolic information in the object
file.

trigger The captured analyzer state about which other captured states are
stored. The trigger state specifies when the trace measurement is taken.

trigger condition Specifies the condition that causes states to be stored in
the trace buffer.

trigger position Specifies whether the state that triggered the analyzer
appear at the start, center, or end of the trace buffer. In other words, the
trigger position specifies whether states are stored after, about, or before the
trigger.

trigger store condition Specifies which states get stored in the trace
buffer while the analyzer searches for the trigger condition.

watchpoint A variable that has been placed in the WatchPoint window
where its contents can be readily displayed and modified.

506

Index

abort, during object file or memory load, 320
absolute count information, displaying, 165, 374
ACT mode, selecting, 73
adapters, 66
Add to Watch command, 389
addresses, searching, 115, 359
analyzer, 503-506
editing the trace specification, 180, 259
halting, 163, 272
repeating last trace, 163, 273
setting up with "Find Then Trigger", 171, 263-266
setting up with "Sequence", 176, 267-270
setting up with "Trigger Store", 168, 260-262
trace signals, 452-455
tracing until halt, 163, 271
arguments, function, 426, 445-446
arm condition, 103, 171, 176, 274-276, 313, 503-506
arrays (C operators), 201
ASCII values in Memory window, 142, 430
Assemble... (ALT, A) command, 290
assembler, in-line, 290
assembling foreground monitor with AXLS, 450
assembling foreground monitor with mcc68k, 450
assembly code for setting up the SIM, displaying, 102
assembly language instructions
stepping multiple, 127, 234-236
stepping single, 125, 232
assembly language source files, 443
auto variables, 139-141
AUTOEXEC.BAT file, 497-499
AxLS, compiling programs with, 446

507

Index

B background memory, 503-506
background monitor program, 503-506
selecting, 89, 302-304
tracing, 318-319
BackTrace window, 426
displaying source files, 387
Bad RS-232 port name, 404
Bad RS-422 card I/O address, 404
baud rate
RS-232, 308
RS-422, 308
beep, sounding from command file, 393
BERR on emulation memory accesses, enabling/disabling, 75
binary values, how to enter, 197
blocks (emulation memory), size of, 297-301
BNC port
driving the trigger signal, 311-312
output trigger signal, 103
receiving an arm condition from, 313
receiving an arm condition input, 103
setting up, 103
BP marker, 11, 13, 35, 37, 134, 239-244, 432
break into monitor, 129, 237
break macros, 503-506
command summary, 190-194
deleting, 137, 244
listing, 134, 245-246
preventing new, 137
setting, 134, 241-243
break on writes to ROM, enabling or disabling, 78
Breakpoint - Delete at Cursor (ALT, B, D) command, 240
Breakpoint - Delete Macro (ALT, B, L) command, 244
Breakpoint - Edit... (ALT, B, E) command, 245-246
Breakpoint - Set at Cursor (ALT, B, S) command, 239
Breakpoint - Set Macro... (ALT, B, M) command, 241-243
breakpoints, 503-506
deleting, 13, 37, 133, 138, 240
disabling and enabling, 133
listing, 134, 245-246
preventing new breakpoints, 138
setting, 11, 35, 132, 239

508

Index

bus cycle dequeueing
turning OFF, 166, 377
turning ON, 166, 376
bus cycle disassembly, changing, 165, 375
bus cycles only, displaying, 373
bus cycles, displaying, 164
bus interface ports, displaying information, 100
Button window, 427
editing, 62, 333
buttons that execute command files, creating, 62

C operators, 201
callers (of a function), tracing, 23, 157, 251-252
chain command files, 395
chip selects, displaying information, 100
Clear Breakpoint command, 388
clipboard, 51
clock speed, specifying BDM, 81-82
clock, selecting internal or external, 74
colors in the Source window, setting, 59
command files

chain, 395

command summary, 190-194

comments, 397

creating, 60, 213

executing, 61, 216-217

executing at startup, 53, 61

exiting execution, 394

inserting wait delays, 400

locating cursor, 359

nesting, 395

parameters, 216-217

rerun, 396

sounding beep, 393

turning logging on or off, 214-215

which include Terminal Interface commands, 398-399
command line options, 53-54, 61

for connection and transport, 308
command summary, 190-194
commands

EMSIM/EMRAM utility, 461

menu bar, 204

509

Index

comments in command files, 397
communications (emulator), setting up, 308-310
concepts of show cycles, 460
concepts of the SIM/EMSIM and RAM/EMRAM, 457
CONFIG.SYS file, 497-499
configuration

checking for inconsistencies, 99

demo program, 31-32

emulator, 291-296

of the reset mode, setting up, 79

setting up, 79

saving and loading, 104-105
connecting to many 683xx processors, 221-222
connection problems

LAN, 487

RS-232, 484

RS-422, 489
connection, command line option, 308
control menu, 503-506
Copy - Destination... (ALT, -, P, D) command, 332
Copy - Registers (ALT, -, P, R) command, 350
Copy —» Window (ALT, -, P, W) command, 331
Could not open initialization file, 404
Could not write Memory, 405
count conditions, 274-276, 503-506
count information

displaying absolute, 165, 374

displaying relative, 165, 374
CTRL key and double-clicks, 51
current PC in Source window, 360
cursor, locating cursor from command file, 359
cursor-select, 11, 35
cut and paste, 51
cycles, concepts of show cycles, 460

510

Index

D DCE or DTE selection and RS-232 cable, 478
debugger
arranging icons in window, 322
cascaded windows, 322
exiting, 25, 46, 54, 224
exiting locked, 225
installing software, 480-483
opening windows, 56, 323-325
starting, b, 30, 53, 484-489
startup options, 54
tiled windows, 322
decimal values, how to enter, 197
deleting all breakpoints, 138
demo program, 4, 28
configuration, 31-32
loading, 9, 31-32
mapping memory, 7-8
running, 12, 36
DeMorgan’s law, 274-276
dequeueing
turning OFF, 166, 377
turning ON, 166, 376
dialog box
breakpoints, 245-246
file selection, 226
directories, search path, 361
directories, source, 327
disassembly, changing in Trace window, 165, 375
display fonts, changing, 6
display mode
mixed, 112
source only, 112
toggling, 353-354, 372
display of EMSIM/EMRAM registers not available, 221-222
Display — Select Source... (ALT, -, D, L) command, 355
DLL errors, 488
do while statements (C), single-stepping, 443
don’t care values, how to enter, 197
double-clicks and the CTRL key, 51
DSACK with emulation memory, 297-301

511

Index

DSACK, enabling/disabling on emul mem accesses, 76
dynamic variables, 247-248, 381, 442

E edit breakpoints, 245-246
8-bit emulation memory, specifying, 297-301
embedded microprocessor system, 503-506
EMRAM, details of, 459
EMSIM registers
copying to 6833x SIM registers, 98
differences between SIM registers and, 97
E3490A, 94
emulator, 93
loading with 6833x SIM register values, 97
resetting to processor defaults, 98
using the, 93-98
EMSIM/EMRAM
concepts, 457
displaying and saving, 221-222
utility commands, 461
emulation memory, 503-506
block size, 297-301
copying target system memory into, 146
emulation microprocessor, resetting, 130, 238
emulation monitor, 503-506
emulator, 503-506
emulator configuration, 70, 291-296
loading, 105, 220
aving, 104, 221-222
verifying, 99-102
emulator hardware options, setting, 71-79
emulator mode, selecting, 73
emulator probe
plugging into the target system, 66
unplugging from demo target system, 65
enable condition, 503-506
enable store condition, 503-506
environment
loading, 218
saving, 219

512

Index

environment variables, 114

HP64700 , 497-499

HPTABLES, 497-499

PATH, 497-499
error messages, 402

Bad RS-232 port name, 404

Bad RS-422 card I/O address, 404

Could not open initialization file, 404

Could not write Memory, 405

Error occurred while processing Object file, 406

general RS-232 communications error, 407

general RS-422 communications error, 407

HP 64700 locked by another user, 408

HP 64700 not responding, 408

Incorrect DLL version, 408

Incorrect LAN Address (HP-ARPA, Windows for Workgroups), 409

Incorrect LAN Address (Novell), 410

Incorrect LAN Address (WINSOCK), 410

Internal error in communications driver, 411

Internal error in Windows, 411

Interrupt execution (during run to caller), 411

Interrupt execution (during step over), 412

Interrupt execution (during step), 412

Invalid transport name, 413

LAN buffer pool exhausted, 413

LAN communications error, 414

LAN MAXSENDSIZE is too small, 414

LAN socket error, 414

Object file format ERROR, 415

Out of DOS Memory for LAN buffer, 416

Out of DOS Windows timer resources, 417

PC is out of RAM memory, 417

Timed out during communications, 418-419
ethernet address, 473
Evaluate It command, 388
Execution - Break (F4), (ALT, E, B) command, 237
Execution - Reset (ALT, E, E) command, 238
Execution - Run (F5), (ALT, E, U) command, 227
Execution - Run to Caller (ALT, E, T) command, 229
Execution - Run to Cursor (ALT, E, C) command, 228
Execution - Run... (ALT, E, R) command, 230-231

513

Index

Execution - Single Step (F2), (ALT, E, N) command, 232
Execution - Step Over (F3), (ALT, E, O) command, 233
Execution - Step... (ALT, E, S) command, 234-236
exiting command file execution, 394
Expression window, 428

clearing, 336

displaying expressions, 337
expressions, 196

displaying, 337
external clock, selecting, 74
externals, displaying symbol information, 119, 363

file selection dialog boxes, 226
File - Command Log - Log File Name... (ALT, F, C, N) command, 213
File - Command Log - Logging OFF (ALT, F, C, F) command, 215
File - Command Log — Logging ON (ALT, F, C, O) command, 214
File - Copy Destination... (ALT, F, P) command, 223
File - Exit (ALT, F, X) command, 224
File - Exit HW Locked (ALT, F, H) command, 225
File - Flash Programming... (ALT, F, F) command, 210-212
File - Load Debug... (ALT, F, D) command, 218
File - Load Emulator Config... (ALT, F, E) command, 220
File - Load Object... (ALT, F, L) command, 207-209
File - Run Cmd File... (ALT, F, R) command, 216-217
File - Save Debug... (ALT, F, S) command, 219
File - Save Emulator Config... (ALT, F, V) command, 221-222
firmware
ensuring performance after update, 502
using PROGFLASH to update, 500-501
firmware update
connecting the HP 64700 to the PC, 495-496
installing utility, 497-499
firmware version information, 326
flash memory
programming, 184-185
programming and erasing, 185
flash programming, 210-212

514

Index

fonts
changing, 58
settings, 314-315
sizing, 6
for statements (C), single-stepping, 443
foreground memory, 503-506
foreground monitor program, 503-506
foreground monitor
assembling and linking with AXLS, 450
assembling and linking with mcc68k, 450
electing, 90-91, 302-304
foreground operation, tracing, 318-319
function arguments, 426, 445-446
function codes, 84, 201
function keys, 52
functions
displaying symbol information, 118, 363
running until return, 18, 42, 128, 229
searching, 115, 357
stepping over, 18, 43, 126, 233
tracing callers, 23, 157, 251-252
tracing execution within, 159, 253-254
tracing flow, 22, 156, 250

gateway, 487

gateway address, 473

general RS-232 communications error, 407
general RS-422 communications error, 407
global assembler symbols, displaying, 121, 365
global symbols, displaying, 119, 363

global variables, 119, 160-161, 363

glossary, 503-506

guarded memory, 84, 297-301, 435, 503-506

hardware options
emulator, 72-79
HP E3490A, 80-83
setting, 71
hardware requirements, 467
hardware, locking on exit, 225
help for error messages, 402
Help - About Debugger/Emulator... (ALT, H, D) command, 326

515

Index

hexadecimal values, how to enter, 197
hostname, 308-310
HP-ARPA LAN transport DLL, 488
HP 64037 card, I/O address, 308
HP 64700
connecting to the PC, 470-479
connecting via LAN, 473
connecting via RS-232, 470
connecting via RS-422, 477
HP 64700 firmware
ensuring performance after update, 502
using PROGFLASH to update, 500-501
HP 64700 firmware update
connecting the HP 64700 to the PC, 495-496
installing utility, 497-499
HP 64700 LAN port number, 487
HP 64700 locked by another user, 408
HP 64700 not responding, 408
HP 64700 switch settings
LAN, 487
RS-232, 484
RS-422, 489
HP E3490A hardware options, setting, 80-83
HP64700 environment variable, 497-499
HPTABLES environment variable, 497-499

I 1/0 address for HP 64037 card, 308
I/O locations
displaying, 149
editing, 150
guarding, 284-285
specifying, 338
I/O window, 429
turning polling ON or OFF, 107
icon, for a different emulator, 54
icons (debugger window), arranging, 322
IEEE-695 object files, 443
in-line assembler, 290
inconsistencies, checking configuration for, 99
Incorrect DLL version, 408
Incorrect LAN Address (HP-ARPA, Windows for Workgroups), 409
Incorrect LAN Address (Novell), 410

516

Index

Incorrect LAN Address (WINSOCK), 410
information on EMSIM/EMRAM, 461

NI file, 308

installation path, 480-483

internal clock, selecting, 74

Internal error in communications driver, 411
Internal error in Windows, 411

internal RAM for show cycles, 77

internals, displaying symbol information, 120, 364
Internet Address, 308-310, 473, 479

Interrupt execution (during run to caller), 411
Interrupt execution (during step over), 412
Interrupt execution (during step), 412
interset operators, 274-276

intraset operators, 274-276

intrusion, monitor, 107, 282-283

Invalid transport name, 413

IP address, 308, 487

labels, 198-200, 290
LAN buffer pool exhausted, 413
LAN cards, 467, 469
LAN communication, 308-310, 484-489
LAN communications error, 414
LAN connection problems, 487
LAN MAXSENDSIZE is too small, 414
LAN socket error, 414
LAN, connecting HP 64700, 473
levels, trace sequence, 176, 180, 267-270, 281
limitations, Symbol window, 439
line (source file), running until, 19, 44, 128, 228
line numbers missing in Source window, 59
link level address, 473
linking foreground monitor with AxXLS, 450
linking foreground monitor with mcc68k, 450
list file
changing the destination, 57
copying window contents to, 57
listing files, specifying, 223, 332
loading file error, 405
local assembler symbols, displaying, 121, 366
local symbols, displaying, 120, 364

517

Index

local variables, 120-121, 364

lock hardware on exit, 225

log (command) files, 60, 213-217
logical operators, 171, 176, 274-276

macro, 503-506
MCC68K, compiling programs with, 445
memory
abort during load, 320
copying, 145, 344
displaying, 142
editing, 144
loading from stored file, 346
mapping, 84-87, 297-301
mapping for demo program, 7-8
modifying a range, 147, 345
searching for a value or string in, 148
storing to a binary file, 348
tag enabling/disabling, 75
memory (target system), copying into emulation memory, 146
memory map, displaying information, 101
memory mapping
block size, 297-301
resolution of mapped ranges, 84
memory type, 84, 297-301
Memory window, 430
displaying 16-bit values, 341
displaying 32-bit values, 341
displaying bytes, 341
displaying multicolumn format, 341
displaying single-column format, 340
turning polling ON or OFF, 107
Menu Bar Commands, 204
messages, error, 402
microprocessor, resetting, 130, 238
mixed display mode, 112, 3563, 372, 443
mode of reset, 79
mode, either ACT or Normal, selecting, 73
monitor, 448-451, 503-506
monitor intrusion, 107, 238, 282-283, 440

518

Index

monitor program
concepts, 448-451
notes, 451
options, 448
monitor, selecting the type, 88-92

nesting command files, 395

network name, 308

no-operation command, 397

noabort, during object file or memory load, 320
Normal mode, selecting, 73

Novell LAN transport DLL, 488

numeric constants, 197

object files, 503-506

abort during load, 320

format ERROR, 415

IEEE-695, 443

loading, 111, 207-209

loading the foreground monitor, 90-91
operators

C, 201

interset, 274-276

intraset, 274-276

logical, 171, 176, 274-276
optimization option, compiler, 445
options

command line, 54

monitor program, 448
Out of DOS Memory for LAN buffer, 416
Out of Windows timer resources, 417

parameters, command file, 216-217

paste, cut and, 51

PATH environment variable, 497-499

path for source file search, 114, 361

paths for source files, prompting, 321

patterns, trace, 171, 176, 263-270, 274-278

PC is out of RAM memory, 417

PC, connecting HP 64700, 470-479

PC, locating in Source window, 360

performance (PC), optimizing for the debugger, 491

519

Index

performance verification after firmware update, 502
PGA adapter, 66
pin protectors, 66
ping command, 487
platform requirements, 467
pointers (C operators), 201
polling for debugger windows, turning ON or OFF, 107
pop-up menus, 503-506

accessing, 386
port name, RS-232, 308
port

BNC, 103, 274-276, 311-313

communication, 308-310
power

turning OFF, 65

turning ON, 67
pragma statements (C), source file information, 443
prestore condition, 171, 176, 263-270, 440, 503-506
primary branch condition, 176, 267-270, 503-506
probe (emulator)

plugging into the target system, 66

unplugging from demo target system, 65
processor, resetting, 130, 238
683xx processors, connecting, 221-222
PROGFLASH firmware update utility, 500-501
program counter, 125, 129, 227, 230-231, 234-236, 432
program modules, displaying symbol information, 118, 362
program notes, monitor, 451
program options, monitor, 448
programs

compiling with AxLS, 446

compiling with MCC68K, 445

concepts of monitor, 448-451

demo, 4, 28

loading, 111, 207-209

running, 129, 227, 230-231

stopping execution, 129

qualifier, state, 168, 260-262

520

Index

RAM cycles, seeing internal cycles, 460
RAM/EMRAM concepts, 457, 4569
real-time mode

disabling, 107, 283

enabling, 107, 282

setting, 106-108
RealTime - /O Polling - OFF (ALT, R, I, F) command, 285
RealTime - I/O Polling - ON (ALT, R, I, O) command, 284
RealTime - Memory Polling - OFF (ALT, R, M, F) command, 289
RealTime - Memory Polling - ON (ALT, R, M, O) command, 288
RealTime — Monitor Intrusion - Allowed (ALT, R, T, A) command, 283
RealTime — Monitor Intrusion - Disallowed (ALT, R, T, D) command, 282
RealTime — Watchpoint Polling - OFF (ALT, R, W, F) command, 287
RealTime - Watchpoint Polling - ON (ALT, R, W, O) command, 286
register bit fields, 351
register variables, 445-446
Register windows, 431

copying information from, 350
registers

displaying, 20-21, 45, 151

editing, 153
relative count information, displaying, 165, 374
requirements

hardware, 467

platform, 467
rerun command files, 396
reset mode configuration

displaying information, 101

setting up, 79
reset

emulator, 130, 238

emulator status, 435

running from target system, 129, 230-231
resolution, memory mapper, 84
restart condition, 171, 263-266, 503-506
restriction on number of RS-232 connections, 484
return (function), running until, 18, 42, 128, 229
ROM

enabling or disabling breaks on writes to, 78

flash programming, 210-212

521

Index

RS-232
cable and DCE or DTE selection, 478
connection problems, 484
connections restriction, 484
connecting HP 64700, 470
RS-422
connecting HP 64700, 477
connection problems, 489
RTC Emulation Connection dialog box, 308
Run to Cursor command, 389

saving EMSIM/EMRAM, 221-222

screen fonts, changing, 6

search path, 488

search path for source files, 114, 361

Search - Address... (ALT, -, R, A) command, 359

Search - Current PC (ALT, -, R, C) command, 360

Search - Function... (ALT, -, R, F) command, 357

Search - String... (ALT, -, R, S) command, 356

Search... (ALT, -, R) command, 342

secondary branch condition, 176, 267-270, 503-506

seeing internal RAM cycles, 460

sequence levels, 281, 503-506

service ports, TCP, 473

Set Breakpoint command, 388

set up trace vector, 451

Settings - BNC - Input to Analyzer Arm (ALT, S, B, I) command, 313
Settings - BNC - Outputs Analyzer Trigger (ALT, S, B, O) command, 311-312
Settings — Communication... (ALT, S, C) command, 308-310

Settings — Emulator Config - Hardware... (ALT, S, E, H) command, 291-296
Settings — Emulator Config - Information... (ALT, S, E, I) command, 305-307
Settings — Emulator Config - Memory Map... (ALT, S, E, M)

command, 297-301

Settings — Emulator Config —» Monitor... (ALT, S, E, O) command, 302-304
Settings - Extended - Load Error Abort - OFF (ALT, S, X, L, F)

command, 320

Settings - Extended - Load Error Abort - ON (ALT, S, X, L., O) command, 320
Settings - Extended - Source Path Query - OFF (ALT, S, X, S, F)

command, 321

Settings - Extended - Source Path Query - ON (ALT, S, X, S, O)

command, 321

522

Index

Settings — Extended - Trace Cycles —Both (ALT, S, X, T, B) command, 319
Settings — Extended - Trace Cycles - Monitor (ALT, S, X, T, M)
command, 318
Settings — Extended - Trace Cycles - User (ALT, S, X, T, U) command, 318
Settings — Font... (ALT, S, F) command, 314-315
Settings — Symbols — Case Sensitive - OFF (ALT, S, S, C, F) command, 317
Settings — Symbols — Case Sensitive -~ ON (ALT, S, S, C, O) command, 317
Settings — Tabstops... (ALT, S, T) command, 316
show cycles
concepts of, 460
internal RAM supported, 77
SIM registers
copying to EMSIM registers, 97
differences between EMSIM registers and, 97
loading with EMSIM register values, 98
SIM, displaying assembly code for setting up the, 102
SIM/EMSIM and RAM/EMRAM concepts, 457
single-step one line, 13, 41
software, installing debugger, 480-483
Source at Stack Level command, 387
source directory, 327
source display mode, toggling, 3563-354
source file line, running until, 19, 44, 128, 228
source files
displaying, 10, 33-34, 113, 355
displaying from BackTrace window, 387
information generated for pragma statements, 443
prompting for paths, 321
searching for addresses, 115, 359
searching for function names, 115, 357
searching for strings, 116, 356
specifying search directories, 114
source lines
stepping multiple, 127, 234-236
stepping single, 125, 232
source only
displaying, 112, 373
displaying in Memory window, 353-354

523

Index

Source window, 432
line numbers missing, 59
locating current PC, 360
setting colors, 59
setting tabstops, 58
toggling the display mode, 353-354
SRCPATH environment variable, 114
startup options, 54
state qualifier, 168, 260-262, 503-506
status values, 4562-455, 503-506
Status window, 435
step multiple lines, 14
step one line, 13, 41
store, 168, 260-262
store conditions, 274-276, 503-506
strings
displaying symbols containing, 124, 368
searching memory for, 148, 342
searching source files, 116, 356
structures (C operators), 201
subnet mask, 473, 487
subroutines, stepping over, 233
Symbol window, 439
copying information, 367-368
searching for strings, 368
symbols, 198-200
synchronizing EMSIM/EMRAM, 461
system setup, 469

T tab stop settings, 316
tabstops in the Source window, setting, 58
tag memory, enabling/disabling, 75
?TAKEN? in bus cycle disassembly, 376
target BERR on emulation memory accesses, enabling/disabling, 75
target DSACK enabling/disabling on emul mem accesses, 76
target system, 503-506
target system memory, copying into emulation memory, 146
TCP service ports, 473
telnet, 473, 479
TERMCOM command, 398-399
Terminal Interface commands, 398-399
text, selecting, 51

524

Index

Timed out during communications, 418-419
TimeoutSeconds, 418-419
top of screen commands, 204
trace dequeueing
turning OFF, 166, 377
turning ON, 166, 376
trace disassembly, changing, 165, 375
trace display mode, toggling, 372
trace foreground/background operation, 318-319
trace patterns, 171, 176, 263-270, 274-278
trace range, 279-280
trace settings, 274-276
trace signals, 452-455
trace specification
copying, 380
editing, 180, 259
loading, 183
specifying the destination, 380
storing, 182
trace state, 503-506
searching for in Trace Window, 379
trace vector, setting up, 451
Trace window, 440
copying information, 377-378
displaying absolute count information, 374
displaying bus cycles only, 373
displaying relative count information, 374
displaying source only, 373
toggling the display mode, 372
trace, setting up a sequence, 176
Trace - Again (F'7), (ALT, T, A) command, 273
Trace - Edit... (ALT, T, E) command, 259
Trace - Find Then Trigger... (ALT, T, D) command, 263-266
Trace - Function Caller... (ALT, T, C) command, 251-252
Trace - Function Flow (ALT, T, F') command, 250
Trace - Function Statement... (ALT, T, S) command, 253-254
Trace - Halt (ALT, T, H) command, 272
Trace - Sequence... (ALT, T, Q) command, 267-270
Trace - Trigger Store... (ALT, T, T) command, 260-262
Trace - Until Halt (ALT, T, U) command, 271
Trace - Variable Access... (ALT, T, V) command, 255-256

525

Index

Trace - Variable Break... (ALT, T, B) command, 257-258
transfer address, 12, 36, 127, 129, 230-231, 234-236, 503-506
transport selection, 308
transport, command line option, 308
trigger, 168, 260-262, 503-506
condition, 168, 503-506
position, 168, 503-506
state, searching for in Trace window, 378
store condition, 168, 503-506
tristate voltage value, specifying, 78
tutorial
emulator, 4
E3490A, 28
type of memory, 84, 297-301

unary minus operator, 201
unions (C operators), 201
unlock emulator, 308
user ID, 308, 480-483
user name, 308
User Program Out of Control, 451
user programs, loading, 111
user-defined symbols

creating, 122, 369

deleting, 123, 371

displaying, 123, 367
Utilities - Copy... (ALT, -, U, C) command, 344
Utilities - Fill... (ALT, -, U, F) command, 345
Utilities - Load... (ALT, -, U, L) command, 346
Utilities - Store... (ALT, -, U, S) command, 348
utility commands for EMSIM/EMRAM, 461

526

Index

value of tristate voltage, 78
values, searching memory for, 148, 342
Variable - Edit... (ALT, V, E) command, 247-248
variables
auto, 139-141
displaying, 15, 38, 139
dynamic, 247-248, 381, 442
editing, 16, 39, 140, 247-249
environment, 114
global, 119, 160-161, 363
local, 120-121, 364
monitoring in the WatchPoint window, 17, 40, 141
register, 445-446
tracing a particular value and breaking, 161, 257-258
tracing accesses, 24, 160, 255-256
vector, trace, 451
verification of emulator performance, 502
verifying the emulator configuration, 99-102
version information, 326, 490

WAIT command, 328
wait delays, inserting in command files, 400
watchpoint, 503-506
WatchPoint window, 442

monitoring variables in, 17, 40, 141

turning polling ON or OFF, 107
watchpoints, editing, 381
while statements (C), single-stepping, 443
window contents, copying to the list file, 57
Window - 159 (ALT, W, 1-9) command, 323-324
Window — Arrange Icons (ALT, W, A) command, 322
Window - Cascade (ALT, W, C) command, 322
Window — More Windows... (ALT, W, M) command, 325
Window - Tile (ALT, W, T) command, 322
windows (debugger), opening, 323-325
Windows for Workgroups LAN transport DLL, 488
WINSOCK LAN transport DLL, 488
WINSOCK.DLL, 488
WLIBSOCK.DLL, 488
WSOCKETS.DLL, 488

527

Index

windows of program execution, tracing, 180
writes to ROM, enabling or disabling breaks on, 78

528

Certification and Warranty

Certification

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard
further certifies that its calibration measurements are traceable to the United
States National Bureau of Standards, to the extent allowed by the Bureau’s
calibration facility, and to the calibration facilities of other International
Standards Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in
materials and workmanship for a period of 90 days from date of installation.
During the warranty period, HP will, at its option, either repair or replace
products which prove to be defective.

Warranty service of this product will be performed at Buyer’s facility at no
charge within HP service travel areas. Outside HP service travel areas,
warranty service will be performed at Buyer’s facility only upon HP’s prior
agreement and Buyer shall pay HP’s round trip travel expenses. In all other
cases, products must be returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay
shipping charges to HP and HP shall pay shipping charges to return the
product to Buyer. However, Buyer shall pay all shipping charges, duties, and
taxes for products returned to HP from another country. HP warrants that its
software and firmware designated by HP for use with an instrument will
execute its programming instructions when properly installed on that
instrument. HP does not warrant that the operation of the instrument, or
software, or firmware will be uninterrupted or error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,
unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the

implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance agreements
are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service
Office.

Safety

Summary of Safe Procedures

The following general safety precautions must be observed during all phases
of operation, service, and repair of this instrument. Failure to comply with
these precautions or with specific warnings elsewhere in this manual violates
safety standards of design, manufacture, and intended use of the instrument.
Hewlett-Packard Company assumes no liability for the customer’s failure to
comply with these requirements.

Ground The Instrument

To minimize shock hazard, the instrument chassis and cabinet must be
connected to an electrical ground. The instrument is equipped with a
three-conductor ac power cable. The power cable must either be plugged
into an approved three-contact electrical outlet or used with a three-contact
to two-contact adapter with the grounding wire (green) firmly connected to
an electrical ground (safety ground) at the power outlet. The power jack and
mating plug of the power cable meet International Electrotechnical
Commission (IEC) safety standards.

Do Not Operate In An Explosive Atmosphere

Do not operate the instrument in the presence of flammable gases or fumes.
Operation of any electrical instrument in such an environment constitutes a
definite safety hazard.

Keep Away From Live Circuits

Operating personnel must not remove instrument covers. Component
replacement and internal adjustments must be made by qualified
maintenance personnel. Do not replace components with the power cable
connected. Under certain conditions, dangerous voltages may exist even with
the power cable removed. To avoid injuries, always disconnect power and
discharge circuits before touching them.

WARNING

Do Not Service Or Adjust Alone

Do not attempt internal service or adjustment unless another person, capable
of rendering first aid and resuscitation, is present.

Do Not Substitute Parts Or Modify Instrument

Because of the danger of introducing additional hazards, do not install
substitute parts or perform any unauthorized modification of the instrument.
Return the instrument to a Hewlett-Packard Sales and Service Office for
service and repair to ensure that safety features are maintained.

Dangerous Procedure Warnings

Warnings, such as the example below, precede potentially dangerous
procedures throughout this manual. Instructions contained in the warnings
must be followed.

Dangerous voltages, capable of causing death, are present in this instrument.
Use extreme caution when handling, testing, and adjusting.

4

Safety Symbols Used In Manuals

The following is a list of general definitions of safety symbols used on
equipment or in manuals:

Instruction manual symbol: the product is marked with this symbol when it is
necessary for the user to refer to the instruction manual in order to protect
against damage to the instrument.

Indicates dangerous voltage (terminals fed from the interior by voltage
exceeding 1000 volts must be marked with this symbol).

Protective conductor terminal. For protection against electrical shock in case
of a fault. Used with field wiring terminals to indicate the terminal which
must be connected to ground before operating the equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal
common, as well as providing protection against electrical shock in case of a
fault. A terminal marked with this symbol must be connected to ground in the
manner described in the installation (operating) manual before operating the
equipment.

Frame or chassis terminal. A connection to the frame (chassis) of the
equipment which normally includes all exposed metal structures.

Alternating current (power line).

Direct current (power line).

Alternating or direct current (power line).

Caution

Warning

The Caution sign denotes a hazard. It calls your attention to an operating
procedure, practice, condition, or similar situation, which, if not correctly
performed or adhered to, could result in damage to or destruction of part or
all of the product.

The Warning sign denotes a hazard. It calls your attention to a procedure,
practice, condition or the like, which, if not correctly performed, could result
in injury or death to personnel.

	Real-Time C Debugger — Overview
	In This Book
	Contents
	Quick Start Guide
	Getting Started with an Emulator
	Getting Started with an HP E3490A Software Probe

	User’s Guide
	Using the Debugger Interface
	Plugging the Emulator into Target Systems
	Configuring the Emulator
	Debugging Programs

	Reference
	Command File and Macro Command Summary
	Expressions in Commands
	Menu Bar Commands
	Window Control Menu Commands
	Window Pop-Up Commands
	Other Command File and Macro Commands
	Error Messages

	Concept Guide
	Concepts

	Installation Guide
	Installing the Debugger
	Installing/Updating HP 64700 Firmware

	Glossary
	Index
	Certification and Warranty
	Safety

