
User’s Guide

Real-Time C Debugger for
Motorola 6830x-Family
Emulator/Analyzer

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection
with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1996, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the prior
written consent of Hewlett-Packard Company. The information contained in
this document is subject to change without notice.

MS-DOS(R) is a U.S. registered trademark of Microsoft Corporation.

HP-UX 9.* and 10.0 for HP 9000 Series 700 and 800 computers are X/Open
Company UNIX 93 branded products.

TrueType(TM) is a U.S. trademark of Apple Computer, Inc.

UNIX(R) is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited.

Windows or MS Windows is a U.S. trademark of Microsoft Corporation.

Hewlett-Packard

P.O. Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the
U.S. Government is subject to restrictions as set forth in subparagraph (c)
(1)(ii) of the Rights in Technical Data and Computer Software Clause at
DFARS 252.227-7013. Hewlett-Packard Company, 3000 Hanover Street, Palo
Alto, CA 94304 U.S.A. Rights for non-DOD U.S. Government Departments
and Agencies are as set forth in FAR 52.227-19(c)(1,2).

2

Printing History

New editions are complete revisions of the manual. The date on the title
page changes only when a new edition is published.

A software code may be printed before the date; this indicates the version
level of the software product at the time the manual was issued. Many
product updates and fixes do not require manual changes, and manual
corrections may be done without accompanying product changes. Therefore,
do not expect a one-to-one correspondence between product updates and
manual revisions.

Edition 1 B3638-97000, July 1996

Edition 2 B3638-97001, November 1996

Safety, Certification and Warranty

Safety and certification and warranty information can be found at the end of
this manual on the pages before the back cover.

3

Real-Time C Debugger — Overview

The Real-Time C Debugger is an MS Windows application that lets you debug
C language programs for embedded microprocessor systems.

The debugger controls HP 64700 emulators and analyzers either on the local
area network (LAN) or connected to a personal computer with an RS-232C
interface or the HP 64037 RS-422 interface. It takes full advantage of the
emulator’s real-time capabilities to allow effective debug of C programs while
running in real-time.

The debugger is an MS Windows application

• You can display different types of debugger information in different
windows, just as you display other windows in MS Windows applications.

• You can complete a wide variety of debug-related tasks without exiting
the debugger. You can, for example, edit files or compile your programs
without exiting the debugger.

• You can cut text from the debugger windows to the clipboard, and
clipboard contents may be pasted into other windows or dialog boxes.

The debugger communicates at high speeds

• You can use the HP 64700 LAN connection or the RS-422 connection for
high-speed data transfer (including program download). These
connections give you an efficient debugging environment.

You can debug programs in C context

• You can display C language source files (optionally with intermixed
assembly language code).

• You can display program symbols.
• You can display the stack backtrace.
• You can display and edit the contents of program variables.
• You can step through programs, either by source lines or assembly

language instructions.
• You can step over functions.
• You can run programs until the current function returns.
• You can run programs up to a particular source line or assembly language

instruction.

4

• You can set breakpoints in the program and define macros (which are
collections of debugger commands) that execute when the breakpoint is
hit. Break macros provide for effective debugging without repeated
command entry.

You can display and modify processor resources

• You can display and edit the contents of memory locations in
hexadecimal or as C variables.

• You can display and edit the contents of microprocessor registers
including on-chip peripheral registers.

• You can display and modify individual bits and fields of bit-oriented
registers.

You can trace program execution

• You can trace control flow at the C function level.
• You can trace the callers of a function.
• You can trace control flow within a function at the C statement level.
• You can trace all C statements that access a variable.
• You can trace before, and break program execution on, a C variable being

set to a specified value.
• You can make custom trace specifications.

You can debug your program while it runs continuously at full speed

• You can configure the debugger to prevent it from automatically
initiating any action that may interrupt user program execution. This
ensures that the user program executes in real time, so you can debug
your design while it runs in a real-world operating mode.

• You can inspect and modify C variables and data structures without
interrupting execution.

• You can set and clear breakpoints without interrupting execution.
• You can perform all logic analysis functions, observing C program and

variable activity, without interrupting program execution.

5

In This Book

This book documents the Real-Time C Debugger for 6830x. It is organized
into five parts whose chapters are described below.

Part 1. Quick Start Guide

Chapter 1 quickly shows you how to use the debugger.

Part 2. User’s Guide

Chapter 2 shows you how to use the debugger interface.
Chapter 3 shows you how to configure the emulator.
Chapter 4 shows you how to plug the emulator into target systems.
Chapter 5 shows how to perform the tasks that you can use to debug
programs.

Part 3. Reference

Chapter 6 contains a summary of the debugger commands as they are
used in command files and break macros.
Chapter 7 describes the format for expressions used in commands.
Chapter 8 describes commands that appear in the menu bar.
Chapter 9 describes commands that appear in debugger window control
menus.
Chapter 10 describes commands that appear in pop-up menus.
Chapter 11 describes commands that are only available in command files
and break macros.
Chapter 12 describes error messages and provides recovery information.

Part 4. Concept Guide

Chapter 13 contains conceptual (and more detailed) information on
various topics.

Part 5. Installation Guide

Chapter 14 shows you how to install the debugger.
Chapter 15 shows you how to install or update HP 64700 firmware.

6

Contents

Part 1 Quick Start Guide

1 Getting Started

Step 1. Start the debugger 25
Step 2. Adjust the fonts and window size 26
Step 3. Set the reset value for the supervisor stack pointer and program
 counter 27
Step 4. Map memory for the demo program 29
Step 5. Load the demo program 31
Step 6. Display the source file 32
Step 7. Set a breakpoint 33
Step 8. Run the demo program 34
Step 9. Delete the breakpoint 35
Step 10. Single-step one line 36
Step 11. Single-step 10 lines 37
Step 12. Display a variable 38
Step 13. Edit a variable 39
Step 14. Monitor a variable in the WatchPoint window 40
Step 15. Run until return from current function 41
Step 16. Step over a function 42
Step 17. Run the program to a specified line 43
Step 18. Display register contents 44
Step 19. Trace function flow 46
Step 20. Trace a function’s callers 47
Step 21. Trace access to a variable 49
Step 22. Exit the debugger 50

7

Part 2 User’s Guide

2 Using the Debugger Interface

How the Debugger Uses the Clipboard 55

Debugger Function Key Definitions 56

Starting and Exiting the Debugger 57

To start the debugger 57
To exit the debugger 58
To create an icon for a different emulator 58

Working with Debugger Windows 60

To open debugger windows 60
To copy window contents to the list file 61
To change the list file destination 61
To change the debugger window fonts 62
To set tab stops in the Source window 62
To set colors in the Source window 63

Using Command Files 64

To create a command file 64
To execute a command file 65
To create buttons that execute command files 66

3 Configuring the Emulator

Setting the Hardware Options 69

To select the emulator clock source 70
To select the processor data bus width 71
To specify the target memory access size 71
To specify the TRAP number for software breakpoints 72
To enable or disable breaks on writes to ROM 73
To enable or disable the target /BERR signal 74
To enable or disable freeze of peripherals during monitor execution 75
To enable or disable buffering of the chip-select lines to the target
system 76

Contents

8

To enable or disable buffering of the function-code lines to the target
system 77
To enable or disable buffering of the read/write line to the target system 78
To enable or disable buffering of the strobe lines to the target system 79
To enable or disable buffering of the write-enable lines to the target
system 80
To enable or disable drive of background monitor cycles to the target
system 81
To enable or disable driving /DTACK high (deassert) after each
assertion 82
To enable or disable target system interrupts 83
To enable or disable tracing of DMA cycles 83
To specify initial values for the SSP and PC 84
To specify control of the /DTACK signal 85
To specify the use of the /IACK7/PB0 pin 86
To specify operation during an Interrupt 7 occurrence 87

Mapping Memory 88

To map memory 88

Using the EMSIM Registers 91

EMSIM registers in the emulator 91
To view the SIM register differences 93
To synchronize to the 6830x SIM registers 93
To synchronize to the EMSIM registers 94
To reset the EMSIM registers to processor defaults 94

Verifying the Emulator Configuration 95

To check for configuration inconsistencies 95
To check emulator clock setup 96
To display information about chip selects 96
To display information about bus interface ports 97
To display information about the memory map 97
To display information about the reset mode configuration 98
To display assembly code for setting up the SIM 98

Setting Up the BNC Port 99

To output the trigger signal on the BNC port 99
To receive an arm condition input on the BNC port 99

Contents

9

Saving and Loading Configurations 100

To save the current emulator configuration 100
To load an emulator configuration 101

Setting the Real-Time Options 102

To allow or deny monitor intrusion 103
To turn polling ON or OFF 104

4 Plugging the Emulator into Target Systems

Connecting the Emulator Probe 107

To plug in the emulator probe 107

Configuring the Emulator for In-Circuit Operation 108

Step 1. Understand the important concepts 108
Step 2. Set up your chip selects 110
Step 3. Reprogram chip-select base addresses 112
Step 4. Know your interrupt mode 115
Step 5. Set up the DTACK signals 117
Step 6. If emulator status shows HALTED 118
Step 7. Choose the correct target memory access size 120
Step 8. Check your DTACK pullup resistor! 121
If you have problems 123

5 Debugging Programs

Loading and Displaying Programs 129

To load user programs 129
To display source code only 130
To display source code mixed with assembly instructions 130
To display source files by their names 131
To specify source file directories 132
To search for function names in the source files 133
To search for addresses in the source files 133
To search for strings in the source files 134

Contents

10

Displaying Symbol Information 135

To display program module information 136
To display function information 136
To display external symbol information 137
To display local symbol information 138
To display global assembler symbol information 139
To display local assembler symbol information 139
To create a user-defined symbol 140
To display user-defined symbol information 141
To delete a user-defined symbol 142
To display the symbols containing the specified string 142

Stepping, Running, and Stopping the Program 143

To step a single line or instruction 143
To step over a function 144
To step multiple lines or instructions 145
To run the program until the specified line 146
To run the program until the current function return 146
To run the program from a specified address 147
To stop program execution 147
To reset the processor 148

Using Breakpoints and Break Macros 149

To set a breakpoint 150
To disable a breakpoint 151
To delete a single breakpoint 151
To list the breakpoints and break macros 152
To set a break macro 152
To delete a single break macro 155
To delete all breakpoints and break macros 156

Displaying and Editing Variables 157

To display a variable 157
To edit a variable 158
To monitor a variable in the WatchPoint window 159

Contents

11

Displaying and Editing Memory 160

To display memory 160
To edit memory 162
To copy memory to a different location 163
To copy target system memory into emulation memory 164
To modify a range of memory with a value 165
To search memory for a value or string 166

Displaying and Editing I/O Locations 167

To display I/O locations 167
To edit an I/O location 168

Displaying and Editing Registers 169

To display registers 169
To edit registers 171

Tracing Program Execution 172

To trace function flow 174
To trace callers of a specified function 175
To trace execution within a specified function 177
To trace accesses to a specified variable 178
To trace before a particular variable value and break 179
To trace until the command is halted 181
To stop a running trace 181
To repeat the last trace 181
To identify bus arbitration cycles in the trace 182
To display bus cycles 182
To display absolute or relative counts 183

Setting Up Custom Trace Specifications 184

To set up a "Trigger Store" trace specification 185
To set up a "Find Then Trigger" trace specification 188
To set up a "Sequence" trace specification 193
To edit a trace specification 197
To trace "windows" of program execution 197
To store the current trace specification 199
To load a stored trace specification 200

Contents

12

Part 3 Reference

6 Command File and Macro Command Summary

WAIT Command Dialog Box 208

7 Expressions in Commands

Numeric Constants 211
Symbols 212
Function Codes 215
C Operators 215

8 Menu Bar Commands

File→Load Object... (ALT, F, L) 221
File→Command Log→Log File Name... (ALT, F, C, N) 224
File→Command Log→Logging ON (ALT, F, C, O) 225
File→Command Log→Logging OFF (ALT, F, C, F) 226
File→Run Cmd File... (ALT, F, R) 227
File→Load Debug... (ALT, F, D) 229
File→Save Debug... (ALT, F, S) 230
File→Load Emulator Config... (ALT, F, E) 231
File→Save Emulator Config... (ALT, F, V) 232
File→Copy Destination... (ALT, F, P) 233
File→Exit (ALT, F, X) 234
File→Exit HW Locked (ALT, F, H) 235
File Selection Dialog Boxes 236
Execution→Run (F5), (ALT, E, U) 237
Execution→Run to Cursor (ALT, E, C) 238
Execution→Run to Caller (ALT, E, T) 239
Execution→Run... (ALT, E, R) 240
Execution→Single Step (F2), (ALT, E, N) 242
Execution→Step Over (F3), (ALT, E, O) 243
Execution→Step... (ALT, E, S) 244
Execution→Break (F4), (ALT, E, B) 248
Execution→Reset (ALT, E, E) 249
Breakpoint→Set at Cursor (ALT, B, S) 250
Breakpoint→Delete at Cursor (ALT, B, D) 251
Breakpoint→Set Macro... (ALT, B, M) 252

Contents

13

Breakpoint→Delete Macro (ALT, B, L) 255
Breakpoint→Edit... (ALT, B, E) 256
Variable→Edit... (ALT, V, E) 258
Variable Modify Dialog Box 260
Trace→Function Flow (ALT, T, F) 261
Trace→Function Caller... (ALT, T, C) 262
Trace→Function Statement... (ALT, T, S) 264
Trace→Variable Access... (ALT, T, V) 266
Trace→Variable Break... (ALT, T, B) 268
Trace→Edit... (ALT, T, E) 270
Trace→Trigger Store... (ALT, T, T) 271
Trace→Find Then Trigger... (ALT, T, D) 274
Trace→Sequence... (ALT, T, Q) 278
Trace→Until Halt (ALT, T, U) 282
Trace→Halt (ALT, T, H) 283
Trace→Again (F7), (ALT, T, A) 284
Condition Dialog Boxes 285
Trace Pattern Dialog Box 288
Trace Range Dialog Box 290
Sequence Number Dialog Box 292
RealTime→Monitor Intrusion→Disallowed (ALT, R, T, D) 293
RealTime→Monitor Intrusion→Allowed (ALT, R, T, A) 294
RealTime→I/O Polling→ON (ALT, R, I, O) 295
RealTime→I/O Polling→OFF (ALT, R, I, F) 296
RealTime→Watchpoint Polling→ON (ALT, R, W, O) 297
RealTime→Watchpoint Polling→OFF (ALT, R, W, F) 298
RealTime→Memory Polling→ON (ALT, R, M, O) 299
RealTime→Memory Polling→OFF (ALT, R, M, F) 300
Assemble... (ALT, A) 301
Settings→Emulator Config→Hardware... (ALT, S, E, H) 302
Settings→Emulator Config→Memory Map... (ALT, S, E, M) 311
Settings→Emulator Config→Information... (ALT, S, E, I) 314
Settings→Communication... (ALT, S, C) 318
Settings→BNC→Outputs Analyzer Trigger (ALT, S, B, O) 321
Settings→BNC→Input to Analyzer Arm (ALT, S, B, I) 323
Settings→Font... (ALT, S, F) 324
Settings→Tabstops... (ALT, S, T) 326
Settings→Symbols→Case Sensitive→ON (ALT, S, S, C, O) 327
Settings→Symbols→Case Sensitive→OFF (ALT, S, S, C, F) 327

Contents

14

Settings→Extended→Trace Cycles→User (ALT, S, X, T, U) 328
Settings→Extended→Trace Cycles→Monitor (ALT, S, X, T, M) 328
Settings→Extended→Trace Cycles→Both (ALT, S, X, T, B) 329
Settings→Extended→Load Error Abort→ON (ALT, S, X, L, O) 330
Settings→Extended→Load Error Abort→OFF (ALT, S, X, L, F) 330
Settings→Extended→Source Path Query→ON (ALT, S, X, S, O) 331
Settings→Extended→Source Path Query→OFF (ALT, S, X, S, F) 331
Window→Cascade (ALT, W, C) 332
Window→Tile (ALT, W, T) 332
Window→Arrange Icons (ALT, W, A) 332
Window→1-9 (ALT, W, 1-9) 333
Window→More Windows... (ALT, W, M) 334
Help→About Debugger/Emulator... (ALT, H, D) 335
Source Directory Dialog Box 336
WAIT Command Dialog Box 337

9 Window Control Menu Commands

Common Control Menu Commands 341

Copy→Window (ALT, -, P, W) 341
Copy→Destination... (ALT, -, P, D) 342

Button Window Commands 343

Edit... (ALT, -, E) 343

Device Regs Window Commands 346

Continuous Update (ALT, -, U) 346

Expression Window Commands 347

Clear (ALT, -, R) 347
Evaluate... (ALT, -, E) 348

I/O Window Commands 349

Define... (ALT, -, D) 349

Memory Window Commands 351

Display→Linear (ALT, -, D, L) 351
Display→Block (ALT, -, D, B) 352

Contents

15

Display→Byte (ALT, -, D, Y) 352
Display→16 Bit (ALT, -, D, 1) 352
Display→32 Bit (ALT, -, D, 3) 352
Search... (ALT, -, R) 353
Utilities→Copy... (ALT, -, U, C) 355
Utilities→Fill... (ALT, -, U, F) 356
Utilities→Image... (ALT, -, U, I) 357
Utilities→Load... (ALT, -, U, L) 359
Utilities→Store... (ALT, -, U, S) 360

Register Window Commands 362

Copy→Registers (ALT, -, P, R) 362
Register Bit Fields Dialog Box 363

Source Window Commands 365

Display→Mixed Mode (ALT, -, D, M) 365
Display→Source Only (ALT, -, D, S) 366
Display→Select Source... (ALT, -, D, L) 366
Search→String... (ALT, -, R, S) 367
Search→Function... (ALT, -, R, F) 369
Search→Address... (ALT, -, R, A) 370
Search→Current PC (ALT, -, R, C) 371
Search Directories Dialog Box 372

Symbol Window Commands 373

Display→Modules (ALT, -, D, M) 373
Display→Functions (ALT, -, D, F) 374
Display→Externals (ALT, -, D, E) 374
Display→Locals... (ALT, -, D, L) 375
Display→Asm Globals (ALT, -, D, G) 376
Display→Asm Locals... (ALT, -, D, A) 376
Display→User defined (ALT, -, D, U) 378
Copy→Window (ALT, -, P, W) 378
Copy→All (ALT, -, P, A) 379
FindString→String... (ALT, -, F, S) 379
User defined→Add... (ALT, -, U, A) 380
User defined→Delete (ALT, -, U, D) 381
User defined→Delete All (ALT, -, U, L) 382

Contents

16

Trace Window Commands 383

Display→Mixed Mode (ALT, -, D, M) 383
Display→Source Only (ALT, -, D, S) 384
Display→Bus Cycle Only (ALT, -, D, C) 384
Display→Count→Absolute (ALT, -, D, C, A) 385
Display→Count→Relative (ALT, -, D, C, R) 385
Copy→Window (ALT, -, P, W) 386
Copy→All (ALT, -, P, A) 386
Search→Trigger (ALT, -, R, T) 387
Search→State... (ALT, -, R, S) 387
Trace Spec Copy→Specification (ALT, -, T, S) 388
Trace Spec Copy→Destination... (ALT, -, T, D) 388

WatchPoint Window Commands 389

Edit... (ALT, -, E) 389

10 Window Pop-Up Commands

BackTrace Window Pop-Up Commands 395

Source at Stack Level 395

Source Window Pop-Up Commands 396

Set Breakpoint 396
Clear Breakpoint 396
Evaluate It 396
Add to Watch 397
Run to Cursor 397

11 Other Command File and Macro Commands

BEEP 401
EXIT 402
FILE CHAINCMD 403
FILE RERUN 404
NOP 405
TERMCOM 406
WAIT 408

Contents

17

12 Error Messages

Error Messages 410

Bad RS-232 port name 411
Bad RS-422 card I/O address 411
Could not open initialization file 411
Could not write Memory 412
EMIPLCR value is not consistent with VCCSYN/MODCLK 413
Error occurred while processing Object file 415
General RS-232 communications error 416
General RS-422 communications error 416
HP 64700 locked by another user 417
HP 64700 not responding 417
Incorrect DLL version 417
Incorrect LAN Address (HP-ARPA, Windows for Workgroups) 418
Incorrect LAN Address (Novell) 419
Incorrect LAN Address (WINSOCK) 419
Internal error in communications driver 420
Internal error in Windows 420
Interrupt execution (during run to caller) 420
Interrupt execution (during step) 421
Interrupt execution (during step over) 421
Invalid transport name 422
LAN buffer pool exhausted 422
LAN communications error 423
LAN MAXSENDSIZE is too small 423
LAN socket error 423
Object file format ERROR 424
Out of DOS Memory for LAN buffer 425
Out of Windows timer resources 426
PC is out of RAM memory 426
Timed out during communications 427

Contents

18

Part 4 Concept Guide

13 Concepts

Debugger Windows 433

The BackTrace Window 434
The Button Window 435
Device Regs Window 436
Device Register Dialogs 437
The Expression Window 438
The I/O Window 439
The Memory Window 440
The Register Window 441
The Source Window 443
The Status Window 446
The Symbol Window 449
The Trace Window 450
The WatchPoint Window 452

Compiler/Assembler Specifications 453

IEEE-695 Object Files 453
Compiling Programs with MCC68K 455
Compiling Programs with AxLS 456

Trace Signals and Predefined Status Values 458

Contents

19

Part 5 Installation Guide

14 Installing the Debugger

Requirements 463

Before Installing the Debugger 464

Step 1. Connect the HP 64700 to the PC 465

To connect via RS-232 465
To connect via LAN 468
To connect via RS-422 472
If you cannot verify RS-232 communication 473
If you cannot verify LAN communication 474

Step 2. Install the debugger software 475

Step 3. Start the debugger 478

If you have RS-232 connection problems 478
If you have LAN connection problems 481
If you have LAN DLL errors 482
If you have RS-422 connection problems 483

Step 4. Check the HP 64700 system firmware version 484

Optimizing PC Performance for the Debugger 485

15 Installing/Updating HP 64700 Firmware

Step 1. Connect the HP 64700 to the PC 489
Step 2. Install the firmware update utility 491
Step 3. Run PROGFLASH to update HP 64700 firmware 494
Step 4. Verify emulator performance 496

Glossary

Index

Contents

20

Part 1

Quick Start Guide

A few task instructions to help you get comfortable.

21

Part 1

22

1

Getting Started

23

Getting Started

This tutorial helps you get comfortable by showing you how to perform some
measurements on a demo program. This tutorial shows you how to:

1 Start the debugger.
2 Adjust the fonts and window size.
3 Set the reset value for the supervisor stack pointer and program counter.
4 Map memory for the demo program.
5 Load the demo program.
6 Display the source file.
7 Set a breakpoint.
8 Run the demo program.
9 Delete the breakpoint.
10 Single-step one line.
11 Single-step 10 lines.
12 Display a variable.
13 Edit a variable.
14 Monitor a variable in the WatchPoint window.
15 Run until return from current function.
16 Step over a function.
17 Run the program to a specified line.
18 Display register contents.
19 Trace function flow.
20 Trace a function’s callers.
21 Trace access to a variable.
22 Exit the debugger.

Demo Programs

Demo programs are included with the Real-Time C Debugger in the
C:\HP\RTC\M30X\DEMO directory (if C:\HP\RTC\M30X was the installation
path chosen when installing the debugger software).

Subdirectories exist for the SAMPLE demo program, which is a simple C
program that does case conversion on a couple strings, and for the ECS demo
program, which is a somewhat more complex C program for an
environmental control system.

24

Each of these demo program directories contains a README file that
describes the program and batch files that show you how the object files were
made.

This tutorial shows you how to perform some measurements on the SAMPLE
demo program.

Step 1. Start the debugger

• Open the HP Real-Time C Debugger group box and double-click the
6830X debugger icon.

Or:

1 Choose the File→Run (ALT, F, R) command in the Windows Program
Manager.

2 Enter the debugger startup command, C:\HP\RTC\M30X\B3638.EXE
(if C:\HP\RTC\M30X was the installation path chosen when installing
the debugger software).

3 Choose the OK button.

If an emulator status message appears on screen, choose the OK button. You
will satisfy the emulator status problem in a later step.

Chapter 1: Getting Started
Step 1. Start the debugger

25

Step 2. Adjust the fonts and window size

The first time RTC is used, a default window and font size is used. This may
not be the best for your display. You may change the font type and size with
the Settings→Font... command, and change the window size by using
standard Windows 3.1 methods (moving the mouse to the edge of the
window and dragging the mouse to resize the window).

1 Choose the Settings→Font... (ALT, S, F) command.

2 Choose the Font, Font Style, and Size desired in the Font dialog box.

3 Choose the OK button to apply your font selections and close the
Font dialog box.

The sizes of the RTC window, as well as the sizes of the windows within RTC,
and the fonts used will be saved in the B3638.INI file and reused when you
enter RTC the next time.

Chapter 1: Getting Started
Step 2. Adjust the fonts and window size

26

Step 3. Set the reset value for the supervisor stack
pointer and program counter

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Under Initial Values for SSP and PC:

a. Deselect the Values read from reset vector in memory check box.
b. Enter "003000" in the Supervisor Stack Pointer text box.
c. Enter "000000" in the Program Counter text box.

3 Choose the OK button.

Chapter 1: Getting Started
Step 3. Set the reset value for the supervisor stack pointer and program counter

27

The 6830x emulator requires the supervisor stack pointer to be set to an even
address in emulation RAM or in target system RAM.

When you break the emulation processor from the EMULATION RESET state
into the RUNNING IN MONITOR state, the supervisor stack pointer is set to
the address specified.

You can also set the supervisor stack pointer by modifying the SSP register in
the Register window.

Note Breaking into the monitor from a state other than EMULATION RESET does
not cause the supervisor stack pointer to be modified. (The
Execution→Reset (ALT, E, E) command places the emulator in the
EMULATION RESET state.)

Chapter 1: Getting Started
Step 3. Set the reset value for the supervisor stack pointer and program counter

28

Step 4. Map memory for the demo program

By default, the emulator assumes all memory addresses are in RAM space in
your target system. If you wish to load some of your target program in
emulation memory, or identify some of your memory addresses as ROM or
Guarded, those specifications must be entered in the memory map.

The demo program reserves addresses 400h-2fffh for ROM and 0h-3ffh and
6000h-0ffffh for RAM. Map these address ranges as emulation memory.

Because the BAR and SCR registers are located in the exception vector table
(at 0F0H and 0F4H), the exception vector table (0 through 3FFH) is mapped
as emulation RAM.

The internal memory space of the 6830x must be mapped as target RAM.

1 Choose the Settings→Emulator Config→Memory Map... (ALT, S, E,
M) command.

2 Enter "0" in the Start text box.

3 Tab the cursor to the End text box and enter "3ff".

4 Select "eram" in the Type option box.

5 Choose the Apply button.

6 Enter "400" in the Start text box, enter "0fff" in the End text box,
select "erom" in the Type option box, and choose the Apply button.

7 Enter "1000" in the Start text box, enter "2fff" in the End text box,
select "eram" in the Type option box, and choose the Apply button.

8 Enter "6000" in the Start text box and "0ffff" in the End text box,
select "eram" in the Type option box, and choose the Apply button.

Chapter 1: Getting Started
Step 4. Map memory for the demo program

29

9 Select "tram" in the Default group box. This maps all memory ranges
not listed in the Current Map as target system RAM. The 6830x
internal memory space is not listed in the Current Map; therefore, it
is mapped as target system RAM.

10 Choose the Close button.

Chapter 1: Getting Started
Step 4. Map memory for the demo program

30

Step 5. Load the demo program

1 Choose the File→Load Object... (ALT, F, L) command.

2 Choose the Browse button and select the sample program object file,
C:\HP\RTC\M30X\DEMO\SAMPLE\SAMPLE.X (if C:\HP\RTC\M30X
was the installation path chosen when installing the debugger
software).

3 Choose the OK button in the Object File Name dialog box.

4 Choose the Load button.

Chapter 1: Getting Started
Step 5. Load the demo program

31

Step 6. Display the source file

To display the sample.c source file starting from the main function:

1 If the Source window is not open, double-click on the Source window
icon to open the window. Or, choose the Window→Source
command.

2 From the Source window’s control menu, choose
Search→Function... (ALT, -, R, F) command.

3 Select "main".

4 Choose the Find button.

5 Choose the Close button.

6 From the Source window’s control menu, choose Display→Source
Only (ALT, -, D, S) command.

The window displays sample.c source file, starting from main function.

Chapter 1: Getting Started
Step 6. Display the source file

32

Step 7. Set a breakpoint

To set a breakpoint on line 22 in sample.c:

1 Cursor-select line 22 (that is, move the mouse pointer over line 22
and click the left mouse button).

2 Choose the Breakpoint→Set at Cursor (ALT, B, S) command.

Notice that line 22 is marked with "BP" which indicates a breakpoint has been
set on the line.

Note This can be done more quickly by using the pop-up menu available with the
right mouse button.

Chapter 1: Getting Started
Step 7. Set a breakpoint

33

Step 8. Run the demo program

To run the demo program from the transfer address:

1 Choose the Execution→Reset (ALT, E, E) command followed by the
Execution→Break (ALT, E, B) command to initialize the supervisor
stack pointer.

2 Choose the Execution→Run... (ALT, E, R) command.

3 Select the Start Address option.

4 Choose the Run button.

Notice the demo program runs until line 22. The highlighted line indicates
the current program counter.

Chapter 1: Getting Started
Step 8. Run the demo program

34

Step 9. Delete the breakpoint

To delete the breakpoint set on line 22:

1 Cursor-select line 22.

2 Choose the Breakpoint→Delete at Cursor (ALT, B, D) command.

The "BP" marker disappears in the Source window.

Chapter 1: Getting Started
Step 9. Delete the breakpoint

35

Step 10. Single-step one line

To single-step the demo program from the current program counter:

• Choose the Execution→Single Step (ALT, E, N) command. Or, press
the F2 key.

Notice the C statement executed and the program counter is at the "convert"
function.

Chapter 1: Getting Started
Step 10. Single-step one line

36

Step 11. Single-step 10 lines

To single-step 10 consecutive executable statements from the current PC line:

1 Choose the Execution→Step... (ALT, E, S) command.

2 Select the Current PC option.

3 Enter "10" in the Count text box.

4 Choose the Step button. Notice that the step count decrements by
one as the program executes step by step. The step count stops at 0.

5 Choose the Close button.

Chapter 1: Getting Started
Step 11. Single-step 10 lines

37

Step 12. Display a variable

To display the contents of auto variable "*mes":

1 Drag "*mes" on line 45 in the Source window until it is highlighted.

2 Choose the Variable→Edit... (ALT, V, E) command.

The Variable text box displays "*mes".

Notice the Value list box displays the contents of "*mes".

Note You can only register or display an auto variable as a watchpoint while the
program counter is within the function in which the variable name is declared.

Chapter 1: Getting Started
Step 12. Display a variable

38

Step 13. Edit a variable

To edit the contents of variable "*mes":

1 In the Variable Edit dialog box, choose the Modify button.

2 Enter "41" in the Value text box.

3 Choose the OK button.

4 Notice the contents of the variable in the Value list box has changed
to "41".

Chapter 1: Getting Started
Step 13. Edit a variable

39

Step 14. Monitor a variable in the WatchPoint window

The WatchPoint window lets you define a set of variables that may be looked
at and modified often. For these types of variables, using the WatchPoint
window is more convenient than using the Variable→Edit... (ALT, V, E)
command.

To monitor the variable "*mes" in the WatchPoint window:

1 In the Variable Edit dialog box, choose the "to WP" button.

2 Choose the Close button.

3 Choose the Window→WatchPoint command.

Notice the variable "*mes" has been registered as a watchpoint.

Chapter 1: Getting Started
Step 14. Monitor a variable in the WatchPoint window

40

Step 15. Run until return from current function

To execute the program until "convert_case" (the current PC function)
returns to its caller:

1 Choose the Execution→Run to Caller (ALT, E, T) command.

The program executes until the line that called "convert_case".

2 Choose the Execution→Single Step (ALT, E, N) command (or press
the F2 key) to go to the line that follows the return from the
"convert_case:" function.

Chapter 1: Getting Started
Step 15. Run until return from current function

41

Step 16. Step over a function

To step over "change_status":

• Choose the Execution→Step Over (ALT, E, O) command. Or, press
the F3 key.

The "change_status" function executes, and the program counter indicates
line 41.

Chapter 1: Getting Started
Step 16. Step over a function

42

Step 17. Run the program to a specified line

To execute the demo program to the first line of "next_message":

1 Cursor-select line 63.

2 Choose the Execution→Run to Cursor (ALT, E, C) command.

The program executes and stops immediately before line 63.

Chapter 1: Getting Started
Step 17. Run the program to a specified line

43

Step 18. Display register contents

1 Choose the Window→Basic Registers command.

The Basic Registers window opens and displays the register contents. The
display is updated periodically.

2 To see the effects of preventing monitor intrusion (running in
real-time mode), choose the RealTime→Monitor
Intrusion→Disallowed (ALT, R, T, D) command.

Chapter 1: Getting Started
Step 18. Display register contents

44

3 To run the program, choose the Execution→Run (ALT, E, U)
command. Or, press the F5 key.

Notice that register contents are replaced with "----" in the display. This
shows the debugger cannot update the register display. In order for the
emulator to update its register display, the emulation monitor must interrupt
target program execution while it reads the registers.

4 Choose the RealTime→Monitor Intrusion→Allowed (ALT, R, T, A)
command to deselect the real-time mode. Notice that the contents of
the registers are updated periodically.

Chapter 1: Getting Started
Step 18. Display register contents

45

Step 19. Trace function flow

• Choose the Trace→Function Flow (ALT, T, F) command.

The Trace window becomes active and displays execution flow as shown
below.

The command traces, and stores in trace memory, only the entry points to
functions. This lets you check program execution flow.

If the display you have on screen does not look like the trace list above, from
the Trace window’s control menu, choose the Display→Source Only (ALT, -,
D, S) command.

Chapter 1: Getting Started
Step 19. Trace function flow

46

Step 20. Trace a function’s callers

To trace the caller of "next_message":

1 Double-click "next_message" in the Trace window or on line 61 in the
Source window.

2 Choose the Trace→Function Caller... (ALT, T, C) command.

3 Choose the OK button.

The Trace window becomes active and displays the caller as shown below.

Chapter 1: Getting Started
Step 20. Trace a function’s callers

47

This command stores the first statement of a function and prestores
statements that occur before the first statement (notice the state type PRE).
The prestored statements show the caller of the function. In the above
example, "next_message" is called by line 23 of "main". Because the first
statement of "next_message" is prefetched after "change_status", these states
are also included in the trace.

Chapter 1: Getting Started
Step 20. Trace a function’s callers

48

Step 21. Trace access to a variable

To trace access to variable "message_id":

1 Double-click "message_id" in the Trace window or on line 22 in the
Source window.

2 Choose the Trace→Variable Access... (ALT, T, V) command.

3 Choose the OK button.

The Trace window becomes active and displays accesses to "message_id" as
shown below.

Chapter 1: Getting Started
Step 21. Trace access to a variable

49

Line 23 displays twice because it accessed "message_id" twice for read and
write.

Step 22. Exit the debugger

1 Choose the File→Exit (ALT, F, X) command.

2 Choose the OK button.

This will end your Real-Time C Debugger session.

If you had problems when using the Getting Started tutorial, refer to the
Installation/Service/Terminal Interface User’s Guide for Motorola
6830x-Family Emulator/Analyzer, HP 64798.

Chapter 1: Getting Started
Step 22. Exit the debugger

50

Part 2

User’s Guide

A complete set of task instructions and problem-solving guidelines, with a
few basic concepts.

51

Part 2

52

2

Using the Debugger Interface

53

Using the Debugger Interface

This chapter contains general information about using the debugger interface.

• How the Debugger Uses the Clipboard

• Debugger Function Key Definitions

• Starting and Exiting the Debugger

• Working with Debugger Windows

• Using Command Files

54

How the Debugger Uses the Clipboard

Whenever something is selected with the standard windows double-click, it is
placed on the clipboard. The clipboard can be pasted into selected fields by
clicking the right mouse button.

Double-clicks are also used in the Register and Memory windows to make
values active for editing. These double-clicks also copy the current value to
the clipboard, destroying anything you might have wanted to paste into the
window (for example, a symbol into the memory address field). In situations
like this, you can press the CTRL key while double-clicking to prevent the
selected value from being copied to the clipboard. This allows you to, for
example, double-click on a symbol, CTRL+double-click to activate a register
value for editing, and click the right mouse button to paste the symbol value
into the register.

Many of the Real-Time C Debugger commands and their dialog boxes open
with the clipboard contents automatically pasted in the dialog box. This
makes entering commands easy. For example, when tracing accesses to a
program variable, you can double-click on the variable name in one of the
debugger windows, choose the Trace→Variable Access... (ALT, T, V)
command, and click the OK button without having to enter or paste the
variable name in the dialog box (since it is has automatically been pasted in
the dialog box).

Chapter 2: Using the Debugger Interface
How the Debugger Uses the Clipboard

55

Debugger Function Key Definitions

F1 Accesses context sensitive help. Context sensitive help is
available for windows, dialog boxes, and menu items (with
Ctrl+F1).

F2 Executes a single source line from the current program
counter address (or a single instruction if disassembled
mnemonics are mixed with source lines in the Source
window).

F3 Same as F2 except when the source line contains a
function call (or the assembly instruction makes a
subroutine call); in these cases, the entire function (or
subroutine) is executed.

F4 Break emulator execution into the monitor. You can use
this to stop a running program or break into the monitor
from the processor reset state.

F5 Runs the program from the current program counter
address.

Shift-F4 Tiles the open debugger windows.

Shift-F5 Cascades the open debugger windows.

F7 Repeats the trace command that was entered last.

Ctrl+F7 Halts the current trace.

Chapter 2: Using the Debugger Interface
Debugger Function Key Definitions

56

Starting and Exiting the Debugger

This section shows you how:

• To start the debugger

• To exit the debugger

• To create an icon for a different emulator

To start the debugger

• Double-click the debugger icon.

Or:

1 Choose the File→Run (ALT, F, R) command in the Windows Program
Manager.

2 Enter the debugger filename, C:\HP\RTC\M30X\B3638.EXE (if
C:\HP\RTC\M30X was the installation path chosen when installing the
debugger software).

3 Choose the OK button.

You can execute a command file when starting the debugger by using the
"-C<command_file>" command line option.

Chapter 2: Using the Debugger Interface
Starting and Exiting the Debugger

57

To exit the debugger

1 Choose the File→Exit (ALT, F, X) command.

2 Choose the OK button.

This will end your Real-Time C Debugger session.

To create an icon for a different emulator

1 Open the "HP Real-Time C Debugger" group box, or make it active by
positioning the mouse in the window and clicking the left button.

2 Choose the File→New... (ALT, F, N) command in the Windows
Program Manager.

3 Select the Program Item option and choose OK.

4 In the Description text box, enter the icon description.

5 In the Command Line text box, enter the
"C:\HP\RTC\M30X\B3638.EXE -T<transport> -E<connectname>"
command (if C:\HP\RTC\M30X was the installation path chosen when
installing the debugger software). The "-T" and "-E" startup options
allow you to bypass the transport and connect name definitions in
the B3638.INI file.

<Transport> should be one of the supported transport options (for example,
HP-ARPA, RS232C, etc.).

<Connectname> should identify the emulator for the type of transport. For
example, if the HP-ARPA transport is used, <connectname> should be the
hostname or IP address of the HP 64700; if the RS232C transport is used,
<connectname> should be COM1, COM2, etc.

Chapter 2: Using the Debugger Interface
Starting and Exiting the Debugger

58

6 In the Working Directory text box, enter the directory that contains
the debugger program (for example, C:\HP\RTC\M30X).

7 Choose the OK button.

Chapter 2: Using the Debugger Interface
Starting and Exiting the Debugger

59

Working with Debugger Windows

This section shows you how:

• To open debugger windows

• To copy window contents to the list file

• To change the list file destination

• To change the debugger window fonts

• To set tab stops in the Source window

• To set colors in the Source window

To open debugger windows

• Double-click the icon for the particular window.

• Or, choose the particular window from the Window→ menu.

• Or, choose the Window→More Windows... (ALT, W, M) command,
select the window to be opened from the dialog box, and choose the
OK button.

Chapter 2: Using the Debugger Interface
Working with Debugger Windows

60

To copy window contents to the list file

• From the window’s control menu, choose the Copy→Windows
(ALT, -, P, W) command.

The information shown in the window is copied to the destination list file.

You can change the name of the destination list file by choosing the
Copy→Destination... (ALT, -, P, D) command from the window’s control
menu or by choosing the File→Copy Destination... (ALT, F, P) command.

To change the list file destination

• Choose the File→Copy Destination... (ALT, F, P) command, and
select the name of the new destination list file.

• Or, from the window’s control menu, choose the
Copy→Destination... (ALT, -, P, D) command, and select the name of
the new destination list file.

Information copied from windows will be copied to the selected destination
file until the destination list file name is changed again.

List file names have the ".LST" extension.

Chapter 2: Using the Debugger Interface
Working with Debugger Windows

61

To change the debugger window fonts

1 Choose the Settings→Font (ALT, S, F) command.

2 Select the font, font style, and size. Notice that the Sample box
previews the selected font.

3 Choose the OK button.

To set tab stops in the Source window

1 Choose the Settings→Tabstops (ALT, S, T) command.

2 Enter the tab width. This width is also used for source lines in the
trace window.

3 Choose the OK button.

The tab width must be between 1 and 20.

Chapter 2: Using the Debugger Interface
Working with Debugger Windows

62

To set colors in the Source window

1 Exit the RTC interface and find the initialization file (B3638.INI). It
should be in the directory where you installed the RTC product
(C:\HP\RTC\, by default).

2 Edit the initialization file to find the "color" entry. You will see:

[Color]
ColorMode=ON|OFF
ColorPc=<color>
ColorSource=<color>
ColorMne=<color>

Where: <color> may be any of the following: RED, GREEN, BLUE, YELLOW,
PINK, PURPLE, AQUA, ORANGE, SLATE, or WHITE.

• The <color> entry may be in upper-case or lower-case letters.

• When ColorMode=ON, these are the default colors:

• ColorPC=GREEN
• ColorSource=RED
• ColorMne=BLUE

• The default color is black if an option is given a null value.

• The options under [Color] set colors as follows:

• ColorPc sets the color of the line of the current program counter.
• ColorSource sets the color of the line numbers of source lines.
• ColorMne sets the color of the address of all mnemonic lines.

Note If you have set ColorMode=ON while using a monochrome display, you may
see no line numbers in the Source window. Items that will be presented in
color on a color display may not be seen at all on a monochrome display.

Chapter 2: Using the Debugger Interface
Working with Debugger Windows

63

Using Command Files

This section shows you how:

• To create a command file

• To execute a command file

• To create buttons that execute command files

A command file is an ASCII text file containing one or more debugger
commands. All the commands are written in a simple format, which makes
editing easy. The debugger commands used in command files are the same
as those used with break macros. For details about the format of each
debugger command, refer to the "Reference" information.

To create a command file

1 Choose the File→Command Log→Log File Name... (ALT, F, C, N)
command.

2 Enter the command file name.

3 Choose the File→Command Log→Logging ON (ALT, F, C, O)
command.

4 Choose the commands to be stored in the command file.

5 Once the commands have been completed, choose the
File→Command Log→Logging OFF (ALT, F, C, F) command.

Command files can also be created by saving the emulator configuration.

Chapter 2: Using the Debugger Interface
Using Command Files

64

To execute a command file

1 Choose the File→Run Cmd File... (ALT, F, R) command.

2 Select the command file to be executed.

3 Choose the Execute button.

You can execute command files that have been created by logging commands.

Also, emulator configurations can be restored by executing the associated
command file.

You can execute a command file when starting the debugger by using the
"-C<command_file>" command line option.

Example Command File Being Executed

Chapter 2: Using the Debugger Interface
Using Command Files

65

To create buttons that execute command files

1 Activate the Button window by clicking on the Button window icon
or by choosing the Window→Button command.

2 From the Button window’s control menu, choose the Edit... (ALT, -,
E) command.

3 In the Command text box, enter "FILE COMMAND", a space, and the
name of the command file to be executed.

4 Enter the button label in the Name text box.

5 Choose the Add button.

6 Choose the Close button.

Once a button has been added, you can click on it to run the command file.

You can also set up buttons to execute other debugger commands.

Chapter 2: Using the Debugger Interface
Using Command Files

66

3

Configuring the Emulator

67

Configuring the Emulator

This chapter contains information about configuring the emulator.

• Setting the Hardware Options

• Mapping Memory

• Using the EMSIM Registers

• Verifying the Emulator Configuration

• Setting Up the BNC Port

• Saving and Loading Configurations

• Setting the Real-Time Options

Chapter 3: Configuring the Emulator

68

Setting the Hardware Options

This section shows you how:

• To select the emulator clock source

• To select the processor data bus width

• To specify the target memory access size

• To specify the TRAP number for software breakpoints

• To enable or disable breaks on writes to ROM

• To enable or disable the target /BERR signal

• To enable or disable freeze of peripherals during monitor execution

• To enable or disable buffering of the chip-select lines to the target system

• To enable or disable buffering of the function-code lines to the target
system

• To enable or disable buffering of the read/write line to the target system

• To enable or disable buffering of the strobe lines to the target system

• To enable or disable buffering of the write-enable lines to the target
system

• To enable or disable drive of background monitor cycles to the target
system

• To enable or disable driving /DTACK high (deassert) after each assertion

• To enable or disable target system interrupts

• To enable or disable tracing of DMA cycles

• To specify initial values for the SSP and PC

• To specify control of the /DTACK signal

• To specify the use of the /IACK7/PB0 pin

• To specify operation during an Interrupt 7 occurrence

Chapter 3: Configuring the Emulator
Setting the Hardware Options

69

To select the emulator clock source

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select either the Internal or External option for the emulator clock
source.

3 Choose the OK button to exit the Hardware Config dialog box.

The emulator can operate from either the target system clock (External) or
from a clock module installed on the emulator probe (Internal). On the
emulator probe, you can install either an oscillator or a crystal. The target
system clock (if used) must be supplied from an oscillator.

By default, a 20-MHz oscillator is installed on the emulator probe. You can
remove this oscillator and install a different clock source, if desired. A wide
variety of clock selections can be made when using this emulator. For
specific details of how to select and install a different clock module, refer to
the Installation/Service/Terminal Interface manual supplied with the emulator.

Note Changing the clock source selection resets the emulator.

Chapter 3: Configuring the Emulator
Setting the Hardware Options

70

To select the processor data bus width

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select either the 8 bits or 16 bits option for the Processor data width.

3 Choose the OK button to exit the Hardware Config dialog box.

The Processor data width selection is only used when the emulator is
operating with the demo board. This lets you choose whether the demo
board will operate as if it has an 8-bit or 16-bit bus width.

When the emulator is operating with a target system, the emulator
automatically selects the appropriate data bus width, using the target system
BUSW pin.

To specify the target memory access size

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select either the 8 bits or 16 bits option for the Target memory access.

3 Choose the OK button to exit the Hardware Config dialog box.

All target system memory accesses occur in the specified size.

If the processor bus width is set to 8 bits, either by the BUSW pin or by the 8
bits Processor data width selection in the Hardware Config dialog box, target
memory will be accessed in bytes regardless of the selection you make here.

Chapter 3: Configuring the Emulator
Setting the Hardware Options

71

T To specify the TRAP number for software breakpoints

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Enter a number from 0 to 0fh in the "Trap Number for Software
breakpoint" text box.

3 Choose the OK button to exit the Hardware Config dialog box.

When breakpoints are set, the program opcodes are replaced with the
specified TRAP instruction. The number indicates the exception vector to
use in processing the TRAP.

You should select a trap number that is not used by your program code.

Note Changing the TRAP instruction number cancels all the current breakpoints.
Any breakpoints defined in target memory must be deleted by using one of
the breakpoint commands.

Chapter 3: Configuring the Emulator
Setting the Hardware Options

72

To enable or disable breaks on writes to ROM

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select or deselect the Enable break on write to ROM check box.

3 Choose the OK button to exit the Hardware Config dialog box.

When the check box is selected, a running program breaks into the monitor
when it writes to a location mapped as ROM.

When the check box is deselected, program writes to locations mapped as
ROM do not cause breaks into the monitor.

In either case, writes to RAM hardware that is mapped as ROM will modify
the memory content.

Chapter 3: Configuring the Emulator
Setting the Hardware Options

73

To enable or disable the target /BERR signal

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select or deselect the Enable Target BERR Signal check box.

3 Choose the OK button to exit the Hardware Config dialog box.

When the check box is selected, the target system /BERR and the emulator
/BERR signals are tied together.

When the check box is deselected, the target system /BERR and the emulator
/BERR signals are disconnected. The 6830x can still generate /BERR,
however the target system will not see this signal. The emulator will also not
respond to target system bus errors.

Chapter 3: Configuring the Emulator
Setting the Hardware Options

74

To enable or disable freeze of peripherals during
monitor execution

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select or deselect the Enable Background Freeze check box.

3 Choose the OK button to exit the Hardware Config dialog box.

Selecting the check box makes the emulator assert the processor /FRZ line
when the emulator is executing the background monitor program. This
freezes the activity of selected processor peripherals. In this case, no
interrupts can be serviced.

Deselecting the check box allows all processor peripherals, including a
coprocessor, to run when the emulator is executing in the background
monitor.

Chapter 3: Configuring the Emulator
Setting the Hardware Options

75

To enable or disable buffering of the chip-select lines
to the target system

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select or deselect the Enable buffer of CS lines to target check box.

3 Choose the OK button to exit the Hardware Config dialog box.

When the check box is deselected (default), the emulator will have the least
impact on timing and VOH within the target system, but the emulator will add
some capacitance to the chip-select lines.

When the check box is selected, chip-select performance will improve if
capacitance is an issue, but system timing may be degraded by the delay in
the buffer circuit, and VOH may be lowered. In a CMOS target system, the
low VOH may degrade system performance.

Chapter 3: Configuring the Emulator
Setting the Hardware Options

76

To enable or disable buffering of the function-code
lines to the target system

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select or deselect the Enable buffer of FC lines to target check box.

3 Choose the OK button to exit the Hardware Config dialog box.

When the check box is deselected (default), the emulator will have the least
impact on timing and VOH within the target system, but the emulator will add
some capacitance to the function-code lines.

When the check box is selected, function-code performance will improve if
capacitance is an issue, but system timing may be degraded by the delay in
the buffer circuit, and VOH may be lowered. In a CMOS target system, the
low Voh may degrade system performance.

Chapter 3: Configuring the Emulator
Setting the Hardware Options

77

To enable or disable buffering of the read/write line to
the target system

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select or deselect the Enable buffer of R/W line to target check box.

3 Choose the OK button to exit the Hardware Config dialog box.

When the check box is deselected (default), the emulator will have the least
impact on timing and VOH within the target system, but the emulator will add
some capacitance to the read/write line.

When the check box is selected, read/write performance will improve if
capacitance is an issue, but system timing may be degraded by the delay in
the buffer circuit, and VOH may be lowered. In a CMOS target system, the
low Voh may degrade system performance.

Chapter 3: Configuring the Emulator
Setting the Hardware Options

78

To enable or disable buffering of the strobe lines to
the target system

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select or deselect the Enable buffer of strobe lines to target check
box.

3 Choose the OK button to exit the Hardware Config dialog box.

When the check box is deselected (default), the emulator will have the least
impact on timing and VOH within the target system, but the emulator will add
some capacitance to the strobe lines (address strobe, data strobe, and
/IACK7 strobe).

When the check box is selected, strobe performance will improve if
capacitance is an issue, but system timing may be degraded by the delay in
the buffer circuit, and VOH may be lowered. In a CMOS target system, the
low Voh may degrade system performance.

Chapter 3: Configuring the Emulator
Setting the Hardware Options

79

To enable or disable buffering of the write-enable
lines to the target system

1 Choose the Settings→Emulator Config→Hardware (ALT, S, E, H)
command.

2 Select or deselect the Enable buffer of WE lines to target check box.

3 Choose the OK button to exit the Hardware Config dialog box.

When the check box is deselected (default), the emulator will have the least
impact on timing and VOH within the target system, but the emulator will add
some capacitance to the write-enable lines.

When the check box is selected, write-enable performance will improve if
capacitance is an issue, but system timing may be degraded by the delay in
the buffer circuit, and VOH may be lowered. In a CMOS target system, the
low Voh may degrade system performance.

Chapter 3: Configuring the Emulator
Setting the Hardware Options

80

To enable or disable drive of background monitor
cycles to the target system

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select or deselect the Enable drive of BKG cycles to target check box.

3 Choose the OK button to exit the Hardware Config dialog box.

When the check box is deselected (default), chip-select lines will not be
driven to the target system during monitor program execution, and all
strobes (address, data, /IACK7, etc.) will be hidden from the target system.

When the check box is selected, chip-select lines will be driven to the target
system during monitor program execution, and all write transactions will be
changed to read transactions on the read/write line. Select the check box if
you need to keep a watchdog timer alive on your target system.

Chapter 3: Configuring the Emulator
Setting the Hardware Options

81

To enable or disable driving /DTACK high (deassert)
after each assertion

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select or deselect the Enable DTACK drive high check box.

3 Choose the OK button to exit the Hardware Config dialog box.

This selection only applies when the /DTACK signal is supplied by the
emulator.

If selected (default), the emulator drives the /DTACK signal high for 5 to 10
ns after each /DTACK from the emulator. This does not affect /DTACK from
the target system or from the chip selects. This ensures that /DTACK will be
deasserted before the next cycle so it will be used properly.

If deselected and your target system is running at a high processor speed,
/DTACK may be recognized because it was asserted by a previous cycle. This
causes the emulator to run at 0 wait states.

Chapter 3: Configuring the Emulator
Setting the Hardware Options

82

To enable or disable target system interrupts

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select or deselect the Enable target system interrupts check box.

3 Choose the OK button to exit the Hardware Config dialog box.

When the check box is selected, the emulator detects interrupts from the
target system while running the user program. Target system interrupts are
ignored when the emulator is running in the background monitor.

When the check box is deselected, the emulator ignores any interrupt from
the target system.

To enable or disable tracing of DMA cycles

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select or deselect the Enable tracing of DMA cycles check box.

3 Choose the OK button to exit the Hardware Config dialog box.

When the check box is deselected (default), no DMA cycles are included in
the activity captured during an analyzer trace. This reserves trace memory
for storage of executions of the high level target program code.

When the check box is selected, DMA cycles will be included with any other
activity captured during an analyzer trace. Traces of DMA cycles may not be
as accurate as traces of high level target code because of differences in the
timing of the DMA cycles and the timing of target program cycles. In the
analyzer, you can qualify a trace to capture only DMA cycles, if desired.

Chapter 3: Configuring the Emulator
Setting the Hardware Options

83

To specify initial values for the SSP and PC

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select or deselect the Values read from reset vector in memory check
box.

3 Choose the OK button to exit the Hardware Config dialog box.

Normally, if you run the emulator from reset, the processor fetches the
values for the SSP and PC from the reset vector table (the SSP at offset 0 and
the PC at offset 4). There are cases where the SSP and PC values cannot be
fetched from the reset vector table. For example, if you reset the emulator,
break to the emulation monitor, and then run the emulator, the SSP and PC
values will not be read from the reset vector table. In these cases, the SSP
and PC values will be read from the values you enter here.

If you select the Values read from reset vector in memory check box
(default), the emulation microprocessor will initialize its Supervisor Stack
Pointer and Program Counter with values obtained from the reset vector.

If you deselect the Values read from reset vector in memory check box, the
supervisor stack pointer and program counter will be initialized with the
values you type into the Supervisor Stack Pointer and Program Counter text
boxes.

Chapter 3: Configuring the Emulator
Setting the Hardware Options

84

To specify control of the /DTACK signal

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select one of the four entries within the DTACK Control box.

3 Choose the OK button to exit the Hardware Config dialog box.

If you select the Map interlock for Emulation memory entry (default), the
emulator will refer to the memory map and the /DTACK specifications
defined there for each address range.

If you select Target DTACK always, the emulator will ignore the /DTACK
specifications in the memory map and use the /DTACK signal from the target
system for all activity. In this mode, the /DTACK signal from the target
system will even be used during monitor program execution. Choose (Enable
driving backgrnd cycles to target) if you are going to use the monitor because
the target system sends no /DTACK signal during monitor execution.

If you select Emul. DTACK always, 0 wait states, the emulator will ignore the
/DTACK specifications in the memory map and use the /DTACK signal from
the emulator for all activity. Choose 0 wait states for fastest system
performance.

If you select Emul. DTACK always, 1 wait state, the emulator will ignore the
/DTACK specifications in the memory map and use the /DTACK signal from
the emulator for all activity. Choose 1 wait state to slow the system if you are
having trouble with target system startup.

Chapter 3: Configuring the Emulator
Setting the Hardware Options

85

To specify the use of the /IACK7/PB0 pin

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select one of the three entries within the IACK7 Pin Usage control
box.

3 Choose the OK button to exit the Hardware Config dialog box.

This selection tells the emulator how the target system uses the /IACK7/PB0
pin. If the pin is /IACK7, the emulator will block it when executing the
monitor program if you choose not to "Enable driving backgrnd cycles to
target" in this Hardware Config dialog box. If the pin is PB0, it is never
blocked.

If you select Emulator register set determines usage, the Port B Control
Register PBCNT in the emulation microprocessor determines the use of the
/IACK7/PB0 pin. The emulator will read bit 0 of the PBCNT register to
determine whether or not to block this pin when executing the monitor
program.

If you select Use IACK7/PB0 pin as IACK7, this tells the emulator that the pin
is being used as /IACK7. When the emulator is executing the monitor
program, it may block this pin.

If you select Use IACK7/PB0 pin as PB0, this tells the emulator that the pin is
being used as PB0. The emulator will not block the signal on this pin during
any execution.

Chapter 3: Configuring the Emulator
Setting the Hardware Options

86

To specify operation during an Interrupt 7 occurrence

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select one of the four entries within the Interrupt 7 Operation control
box.

3 Choose the OK button to exit the Hardware Config dialog box.

This selection tells the emulator how the target system receives and
processes interrupts. This way, the emulator can process interrupts
correctly.

If you select Emulator register set determines operation, this tells the
emulator that the Global Interrupt Mode Register GIMR in the emulation
microprocessor determines the method of servicing an Interrupt 7 request.
In this case, the emulator will use the value in the GIMR register to process
interrupts.

If you select Normal mode of operation, the emulator will use the values of
/IPL2 through /IPL0 to determine the interrupt level and to process it.

If you select Dedicated level mode of operation, the emulator will detect
/IRQ7, /IRQ6, and /IRQ1 to recognize interrupt requests and process them.
The three lines are programmed to be level sensitive.

If you select Dedicated edge mode of operation, the emulator will detect
/IRQ7, /IRQ6, and /IRQ1 to recognize interrupt requests and process them.
The three lines are programmed to be edge sensitive.

Chapter 3: Configuring the Emulator
Setting the Hardware Options

87

When the modeMapping Memory

This section shows you how:

• To map memory

To map memory

1 Choose the Settings→Emulator Config→Memory Map... (ALT, S, E,
M) command.

2 Specify the starting address in the Start text box.

3 Specify the end address in the End text box.

4 If necessary, select the function code from the Function Code
drop-down list.

5 Select the memory type in the Type option box.

6 Select or deselect Interlock DTACKs for the mapped range.

7 Select or deselect Dual port for the mapped range.

8 Choose the Apply button.

9 Repeat steps 2 through 8 for each range to be mapped.

10 Choose the Close button to exit the Memory Map dialog box.

Chapter 3: Configuring the Emulator
Mapping Memory

88

You can map up to 8 address ranges (map terms). The minimum amount of
emulation memory that can be allocated to a range varies between 512 and
1024 bytes, depending on the capacity of the memory board used.

It is only necessary to specify function codes when mapping overlapping

ranges for different memory spaces. When mapping overlapping ranges, you
can only select function codes that haven’t already been selected for
previously mapped ranges.

You can specify one of the following memory types for each map term:

eram Specifies "emulation RAM".

erom Specifies "emulation ROM".

tram Specifies "target RAM".

trom Specifies "target ROM".

guarded Specifies "guarded memory".

When breaks on writes to ROM are enabled in the emulator configuration,
any access from the user program to any memory area mapped as ROM stops
the emulator. The content of RAM hardware mapped as ROM will be
modified by a write to ROM.

For non-mapped memory areas, select any of the memory types in the
Default option box.

Note that the internal memory space of the 6830x must be mapped as target
RAM. The BAR and SCR registers (located at 0F0H and 0F4H in the
exception vector table) may be mapped as emulation RAM, but you should
use the register commands to modify or examine these locations.

If you select Interlock DTACKs, Data Transfer Acknowledge will only be
recognized if it is received from the target system. If you are executing the
background monitor, the target system MUST provide a /DTACK signal to
terminate monitor cycles.

If you deselect Interlock DTACKS, emulation memory and background
monitor cycles are terminated by a /DTACK signal generated by the emulator.

Chapter 3: Configuring the Emulator
Mapping Memory

89

If you select Dual port, the associated address range will be stored in one or
more of the built-in 8-Kbyte blocks of dual-port emulation memory. If you
deselect Dual port, the associated address range will be stored in one of the
SIMM memory modules installed on the emulators’s run-control probe, if
available.

You should map all memory ranges used by your programs before loading
programs into memory.

To delete a map term, first select it in the Map list box; then, choose the
Delete button.

Example To map addresses 6000h through 0ffffh as an emulation RAM having "X"
function code, specify the mapping term as shown below.

Choose the Apply button to register the current map term.

Then, choose the Close button to quit mapping.

Chapter 3: Configuring the Emulator
Mapping Memory

90

Using the EMSIM Registers

This section shows you how:

• To view the SIM register differences

• To synchronize to the 6830x SIM registers

• To synchronize to the EMSIM registers

• To reset the EMSIM registers to processor defaults

The 6830x processor contains a System Integration Module (SIM) which has
the external bus interface, 4 chip selects, and other circuitry to reduce
external logic in a typical microprocessor system. The SIM can be
programmed or configured in a variety of ways to suit the need of various
systems.

EMSIM registers in the emulator

The 6830x processor contains a System Integration Module (SIM) which has
the external bus interface, 4 chip selects, and other circuitry to reduce
external logic in a typical microprocessor system. The SIM can be
programmed or configured in a variety of ways to suit the need of various
systems.

The 6830x emulator contains circuitry that accommodates the flexibility of
the SIM and maintains consistent emulation features.

The 6830x SIM is configured through the registers in the SIM register class;
these registers control how the 6830x uses external signal lines to access
memory.

The emulator is configured through the registers in the EMSIM register class.
These registers control how the emulator interprets the signals from the
6830x when accessing emulation memory and passing information to the
analysis trace.

Normally, the SIM and EMSIM registers should be programmed with the same
values so they will be working together.

Chapter 3: Configuring the Emulator
Using the EMSIM Registers

91

Normally, the emulator is programmed through the EMSIM registers to match
the programming of the 6830x SIM as it will exist after all of the boot-up
configuration is complete. This programming can be done before the boot-up
code is run. In fact, the programming of the EMSIM registers is part of the
configuration, and will be loaded along with the memory map and other
configuration items when a configuration file is loaded.

The default programming of the EMSIM registers matches the reset values of
the 6830x SIM (refer to the Motorola MC6830x User’s Manual for specific
values).

Note that the emulator is programmed solely from the EMSIM register set
and is therefore static with respect to the application program. No attempt is
made to update the programming of the emulator by tracking instructions
that will program the 6830x SIM.

Chapter 3: Configuring the Emulator
Using the EMSIM Registers

92

 To view the SIM register differences

1 Choose the Settings→Emulator Config→Information... (ALT, S, E, I)
command.

2 Select "Show differences for M6830x and emsim registers" from the
Synchronize SIM registers list.

3 Choose the Apply/Results button to display the differences in the
viewing area.

 To synchronize to the 6830x SIM registers

1 Choose the Settings→Emulator Config→Information... (ALT, S, E, I)
command.

2 Select "Synchronize from 30x sim regs, copy to emsim regs" from the
Synchronize SIM registers list.

3 Choose the Apply/Results button.

This is useful if initialization code that configures the 6830x SIM exists, but
you don’t know what its values are. In this case, you can use the default
configuration, run from reset to execute the initialization code, and
synchronize the EMSIM registers to match the 6830x SIM.

Chapter 3: Configuring the Emulator
Using the EMSIM Registers

93

 To synchronize to the EMSIM registers

1 Choose the Settings→Emulator Config→Information... (ALT, S, E, I)
command.

2 Select "Synchronize from emsim regs, copy to 30x registers" from the
Synchronize SIM registers list.

3 Choose the Apply/Results button.

The emsim register values are copied to the 6830x registers automatically
each time a break to the monitor from emulation reset occurs. Copying the
emsim registers ensures that the 6830x is prepared to properly access
memory when a program is downloaded to the emulator.

 To reset the EMSIM registers to processor defaults

1 Choose the Settings→Emulator Config→Information... (ALT, S, E, I)
command.

2 Select "Default the emsim register set" from the Synchronize SIM
registers list.

3 Choose the Apply/Results button.

This resets the EMSIM registers to the processor’s default (power-up) values.

Chapter 3: Configuring the Emulator
Using the EMSIM Registers

94

Verifying the Emulator Configuration

This section shows you how:

• To check for configuration inconsistencies

• To check emulator clock setup

• To display information about chip selects

• To display information about bus interface ports

• To display information about the memory map

• To display information about the reset mode configuration

• To display assembly code for setting up the SIM

 To check for configuration inconsistencies

1 Choose the Settings→Emulator Config→Information... (ALT, S, E, I)
command.

2 Select "Check emulator configuration" from the Config and SIM
Programming Info. list.

3 Choose the Display Info. button to display the information in the
viewing area.

This command:

• Checks for inconsistencies between the reset mode configuration value
and the EMSIM registers.

• Compares corresponding values in the SIM and EMSIM register sets.

Chapter 3: Configuring the Emulator
Verifying the Emulator Configuration

95

 To check emulator clock setup

1 Choose the Settings→Emulator Config→Information... (ALT, S, E, I)
command.

2 Select "Emulator clock, CLKOUT, & MODCK information" from the
Config and SIM Programming Info. list.

3 Choose the Display Info. button to display the information in the
viewing area.

This command:

• Checks whether the clock is internal (supplied from a plug-in module on
the emulator probe) or external (supplied from the target system).

• Checks the type of hardware module supplying the clock signal.

• Checks the clock frequency.

 To display information about chip selects

1 Choose the Settings→Emulator Config→Information... (ALT, S, E, I)
command.

2 Select "Chip selects in SIM (processor) registers" or "Chip selects in
EMSIM (emulator) registers" from the Config and SIM Programming
Info. list.

3 Choose the Display Info. button to display the information in the
viewing area.

The resulting display shows how the chip selects are assigned, the base
address of each, and other information from the option register.

Chapter 3: Configuring the Emulator
Verifying the Emulator Configuration

96

 To display information about bus interface ports

1 Choose the Settings→Emulator Config→Information... (ALT, S, E, I)
command.

2 Select "Bus interface A ports in SIM (processor) regs", "Bus interface
A ports in EMSIM (emulator) regs", "Bus interface B ports in SIM
(processor) regs", "Bus interface B ports in EMSIM (emulator) regs",
"Bus interface N ports in SIM (processor) regs", or "Bus interface N
ports in EMSIM (emulator) regs" from the Config and SIM
Programming Info. list.

3 Choose the Display Info. button to display the information in the
viewing area.

The resulting display shows the pin assignments for Port A, Port B, or Port N,
as selected.

 To display information about the memory map

1 Choose the Settings→Emulator Config→Information... (ALT, S, E, I)
command.

2 Select "Memory map & correlation with CSs, etc..." from the Config
and SIM Programming Info. list.

3 Choose the Display Info. button to display the information in the
viewing area.

The resulting display shows detailed information about the memory map.

Chapter 3: Configuring the Emulator
Verifying the Emulator Configuration

97

 To display information about the reset mode
configuration

1 Choose the Settings→Emulator Config→Information... (ALT, S, E, I)
command.

2 Select "Reset mode configuration value and operation" from the
Config and SIM Programming Info. list.

3 Choose the Display Info. button to display the information in the
viewing area.

The resulting display shows the data bus size and global chip select memory
access size.

 To display assembly code for setting up the SIM

1 Choose the Settings→Emulator Config→Information... (ALT, S, E, I)
command.

2 Select "Assembly listing matching current EMSIM registers" from the
Config and SIM Programming Info. list.

3 Choose the Display Info. button to display the information in the
viewing area.

The resulting display shows the assembly language program that will initialize
the processor as defined by the current EMSIM register contents.

Chapter 3: Configuring the Emulator
Verifying the Emulator Configuration

98

Setting Up the BNC Port

This section shows you how:

• To output the trigger signal on the BNC port

• To receive an arm condition input on the BNC port

To output the trigger signal on the BNC port

• Choose the Settings→BNC→Outputs Analyzer Trigger (ALT, S, B, O)
command.

The HP 64700 Series emulators have a BNC port for connection with external
devices such as logic analyzers or oscilloscopes.

This command enables the trigger signal from the internal analyzer to be fed
to external devices.

To receive an arm condition input on the BNC port

• Choose the Settings→BNC→Input to Analyzer Arm (ALT, S, B, R)
command.

The HP 64700 Series emulators have a BNC port for connection with external
devices such as logic analyzers or oscilloscopes.

This command allows an external trigger signal to be used as an arm (enable)
condition for the internal analyzer.

Chapter 3: Configuring the Emulator
Setting Up the BNC Port

99

Saving and Loading Configurations

This section shows you how:

• To save the current emulator configuration

• To load an emulator configuration

To save the current emulator configuration

1 Choose the File→Save Emulator Config... (ALT, F, V) command.

2 In the file selection dialog box, enter the name of the file to which the
emulator configuration will be saved.

3 Choose the OK button.

This command saves the current hardware, memory map, and monitor
settings to a command file.

Saved emulator configuration files can be loaded later by choosing the
File→Load Emulator Config... (ALT, F, E) command or by choosing the
File→Run Cmd File... (ALT, F, R) command.

See Also

File→Save Emulator Config... (ALT, F, V) in the "Menu Bar Commands"
section of the "Reference" information.

Chapter 3: Configuring the Emulator
Saving and Loading Configurations

100

To load an emulator configuration

1 Choose the File→Load Emulator Config... (ALT, F, E) command.

2 Select the name of the emulator configuration command file to load
from the file selection dialog box.

3 Choose the OK button.

This command lets you reload emulator configurations that have previously
been saved.

Emulator configurations consist of hardware, memory map, and monitor
settings.

Chapter 3: Configuring the Emulator
Saving and Loading Configurations

101

Setting the Real-Time Options

This section shows you how:

• To allow or deny monitor intrusion

• To turn polling ON or OFF

The monitor program is executed by the emulation microprocessor when
target system memory, memory-mapped I/O, and microprocessor registers
are displayed or edited. Also, periodic polling to update the Memory, I/O,
WatchPoint, and Register windows can cause monitor program execution.

This means that when the user program is running and monitor intrusion is
allowed, the user program must be temporarily interrupted in order to
display or edit target system memory, display or edit registers, or update
window contents.

If it’s important that your program execute without these kinds of
interruptions, you should deny monitor intrusion. You can still display and
edit target system memory and microprocessor registers, but you must
specifically break emulator execution from the user program into the monitor
first.

When monitor intrusion is denied, polling to update window contents is
automatically turned OFF.

When monitor intrusion is allowed, you can turn polling for particular
windows OFF to lessen the number of interruptions during user program
execution.

Chapter 3: Configuring the Emulator
Setting the Real-Time Options

102

To allow or deny monitor intrusion

• To deny monitor intrusion, choose the RealTime→Monitor
Intrusion→Disallowed (ALT, R, T, D) command.

• To allow monitor intrusion, choose the RealTime→Monitor
Intrusion→Allowed (ALT, R, T, A) command.

When you deny monitor intrusion, any debugger command that may interrupt
a running user program is prevented. This ensures the user program execute
in real-time.

When you allow monitor intrusion, debugger commands that may temporarily
interrupt user program execution are allowed.

The current setting is shown by a check mark (√) next to the command.

Chapter 3: Configuring the Emulator
Setting the Real-Time Options

103

To turn polling ON or OFF

• To turn I/O window polling ON or OFF, choose the RealTime→I/O
Polling→ON (ALT, R, I, O) or RealTime→I/O Polling→OFF (ALT, R,
I, F) command.

• To turn WatchPoint window polling ON or OFF, choose the
RealTime→Watchpoint Polling→ON (ALT, R, W, O) or
RealTime→Watchpoint Polling→OFF (ALT, R, W, F) command.

• To turn Memory window polling ON or OFF, choose the
RealTime→Memory Polling→ON (ALT, R, M, O) or
RealTime→Memory Polling→OFF (ALT, R, M, F) command.

When the user program is running and monitor intrusion is denied, polling is
automatically turned OFF.

When the user program is running and monitor intrusion is allowed, you can
turn polling OFF to reduce the number of user program interrupts made in
order to update I/O, WatchPoint, and Memory window contents.

The current settings are shown by check marks (√) next to the command.

Chapter 3: Configuring the Emulator
Setting the Real-Time Options

104

4

Plugging the Emulator into Target
Systems

105

Plugging the Emulator into Target Systems

This chapter contains information about plugging the emulator into target
systems and configuring the emulator so that it operates correctly.

• Connecting the Emulator Probe

• Configuring the Emulator for In-Circuit Operation

For additional help when connecting the emulator to a target system, refer to
the Installation/Service/Terminal Interface User’s Guide for Motorola
6830x-Family Emulator/Analyzer, HP 64798.

106

Connecting the Emulator Probe

This section shows you how:

• To plug-in the emulator probe

To plug in the emulator probe

To prevent emulator and probe components from being damaged by static
electricity, store and use the emulator in a place resistant to static electricity.

1 Turn OFF power to the target system.

2 Turn OFF power to the emulator.

3 Remove the processor from the target system.

4 Connect the probe to the target system as shown in the HP 64798
Installation/Service/Terminal Interface User’s Guide for the Motorola
6830x-Family Emulator/Analyzer.

5 Turn ON power to the emulator.

6 Turn ON power to the target system.

Turning ON power to the emulator before turning ON power to the target
system will prevent damage to sensitive components in the target system.

7 Start the debugger.

Chapter 4: Plugging the Emulator into Target Systems
Connecting the Emulator Probe

107

Configuring the Emulator for In-Circuit
Operation

Many users of the 6830x emulator encounter problems when first plugging
the emulator into their target system. This section should help you avoid or
quickly correct most of those problems.

• Step 1. Understand the important concepts

• Step 2. Set up your chip selects

• Step 3. Reprogram chip-select base addresses

• Step 4. Know your interrupt mode

• Step 5. Set up the DTACK signals

• Step 6. If emulator status shows HALTED

• Step 7. Choose the correct target memory access size

• Step 8. Check your DTACK pullup resistor!

• If you have problems

Step 1. Understand the important concepts

There are a few basic concepts related to 6830x emulation that should be
understood before you begin. Understanding these concepts will help you
avoid common startup problems.

Accessing Memory that is Enabled by a Chip-Select

Nearly all 6830x target systems rely on the built-in chip-selects for at least
some accesses to memory. The important concept to remember is that the
6830x emulator does not automatically set up any chip-selects for you other
than chip-select zero, which is automatically set up by the 6830x itself.

If you attempt to access memory that is dependent on a chip-select being
programmed, without first ensuring that that chip-select is programmed,

Chapter 4: Plugging the Emulator into Target Systems
Configuring the Emulator for In-Circuit Operation

108

some type of failure will result. This most often causes problems when you
are trying to do commands such as load memory, display memory, run, or
step.

Setting the Interrupt Mode to Dedicated or Normal

The 6830x has two basic types of external interrupts: Normal mode and
Dedicated mode. In Normal mode, three lines are used to indicate interrupt
levels 0 through 7, or no interrupt. This normal mode scheme is just like the
one used on traditional 680X0 devices. In Dedicated mode, the three lines
each have a dedicated purpose, one for each of the interrupts level 1, 6, and 7.

Why is this important? The emulator uses a level 7 interrupt to accomplish
what is known as a "break" from the user program to the emulation monitor
program. The monitor is needed for tasks such as display/modify of target
memory and 6830x registers, as well as single-stepping. In order to initiate a
level 7 interrupt, the emulator must know what interrupt mode the 6830x has
been programmed for. An emulator configuration option is used to indicate
which mode the 6830x will be in. If the 6830x is not in that mode when a
break is attempted, the break will either fail or lead to unexpected interrupts.

Note that although the 6830x emulator uses the level 7 interrupt, you are free
to use the level 7 interrupt for your own purposes. This is because the
emulator is able to differentiate between a target system-generated interrupt
and and an emulator-generated interrupt.

The Freeze Pin and the Monitor

The 6830x has a hardware input pin called FRZ which can be used to "freeze"
selected on-chip peripherals. The default emulator configuration asserts the
FRZ pin whenever the emulator is running in the monitor. In this state, the
watchdog timer will not be serviced. However, knowing that the FRZ pin is
asserted during monitor operation allows you to freeze the watchdog timer
during this time.

If you wish to allow the watchdog timer to run during execution of the
monitor, choose Settings→Emulator Config→Hardware... (ALT, S, E, H) and
deselect the Enable Background Freeze check box in the Hardware Config
dialog box. With this selection, all processor peripherals will run, a
coprocessor will run (if in use), and interrupts will be serviced while the
emulator is executing in the monitor.

Chapter 4: Plugging the Emulator into Target Systems
Configuring the Emulator for In-Circuit Operation

109

On-Chip Locations

Most of the special features of the 6830x are controlled via a 4-Kbyte block of
on-chip locations (RAM and special registers). The address of that 4-Kbyte
block is determined by the value written to the BAR. When you configure the
emulator, you must map that 4-Kbyte block of memory as target RAM.
Mapping that block as "guarded" or "emulation" memory will prevent proper
operation or result in guarded memory access errors.

Any display or modify of on-chip locations, including registers, requires the
emulation monitor program. If you do a display or modify of these locations
or registers while running your program, the emulator will briefly break into
the monitor, perform the display or modify, then return to your program.

Step 2. Set up your chip selects

Failure to set up the chip-select registers is by far the most common cause of
problems when using the 6830x emulator. If you remember that load,
modify/display, step and run commands often rely on valid chip-select
settings, you can avoid most of the common mistakes made by users.

The 6830x has four chip-selects, only one of which is enabled after a reset
condition. Nearly all 6830x target systems rely on at least one chip-select for
accesses to memory. If you are going to access any target memory that relies
on a chip-select, then you MUST be sure that the appropriate chip-select
registers are initialized first. In some cases, even executing code from
emulation memory will require that you first initialize your chip selects. This
can be done in one of two ways:

Method 1: Using a Command File to Set Up Chip Selects

Use a series of commands or a command file that modifies the registers to the
values you will need. For example, here is a command file that sets up CS0
and CS1.

RESET
BREAK
REG bar TO 800h
REG or0 TO 3fc2h
REG br0 TO 0001h

Chapter 4: Plugging the Emulator into Target Systems
Configuring the Emulator for In-Circuit Operation

110

REG or1 TO 1f80h
REG br1 TO 0801h

Note It is important that you first modify the BAR register BEFORE you attempt to
modify the chip-select registers because the location of those registers is
calculated based on the value in the BAR.

The above example will map the Internal system registers to location
800XXXH, and then initialize CS0 as a read-only, 1 wait-state block from 0
through 01FFFFH and CS1 as a read-write, 0 wait-state block from 400000H
through 43FFFFH.

If you are going to load your initialization code into target RAM using the
emulator, you must use Method 1.

Method 2: Using Your Initialization Code to Set Up Chip Selects

Execute a small section of your initialization code that sets up the proper
values in the chip-select registers, and break into the monitor immediately
after that, using either a software or analysis breakpoint.

For example, assuming you have the area from 0 through 01FFFFH mapped
as emulation ROM and have already written your code to initialize the
chip-select registers, you should load that code, set a breakpoint, and then
run from a reset condition. When the breakpoint is hit, the chip-selects will
have been properly initialized. Here is an example program that will
demonstrate this:

 XDEF CS_INIT
 ORG $0
 DC.L $440000 ; Stack begins at $43FFFE
 DC.L $400 ; Reset initialization code

 ORG $400
 MOVE.W #$0800,$F2 ; Set up the BAR for $800XXX
 MOVEA.L #$800000,A0
 MOVE.W #$3F02,($832,A0) ; OR0 - 512K, read-only, 1 wait-state
 MOVE.W #$0001,($830,A0) ; BR0 - base address 0
 MOVE.W #$1F80,($836,A0) ; OR1 - 256K, read-write, 0 wait-state
 MOVE.W #$0801,($834,A0) ; BR1 - base address $400000
 NOP
CS_INIT NOP
 NOP

Assuming you have loaded the above example into emulation memory, you
can now set a breakpoint on CS_INIT and run from reset.

Chapter 4: Plugging the Emulator into Target Systems
Configuring the Emulator for In-Circuit Operation

111

If your initialization code is loaded in target ROM, you will not be able to set a
software breakpoint there. In this case, you should use an analysis
breakpoint by tracing about CS_INIT, selecting the break on trigger option,
and running from reset.

Note When using the trace command with the "break on trigger" option, be sure to
select an address that is at least two words after the instruction you expect to
be executed. This ensures that the analyzer does not break on a "prefetch" of
that instruction.

When the emulator breaks into the monitor, the chip-select registers will
have been initialized to the values you’re using. You can now use display,
modify, load, step, or run commands because the chip-selects are properly
initialized.

Step 3. Reprogram chip-select base addresses

If you are not going to be changing the base address of chip-select 0 from
address 0, or changing the base address registers of the other chip-selects
after initial setup, you should skip this step. Dealing with chip-selects whose
base addresses are being changed is probably the most difficult challenge you
will face with the 6830x emulator.

Before you can successfully emulate in this mode, it is important that you
understand how the 6830x uses chip-selects. When you enter memory map
terms in your configuration, you will notice that you enter all address ranges
without the option to qualify a specific range with a chip-select number.
What this means is that the emulation memory mapper cannot "track"
changes made to the base address of any chip-selects. Any emulation
memory ranges you map respond based on the value on the address bus (and
optionally the function code). The chip-select signals are not used by the
emulator to decode memory map terms.

What does this mean? This means if you are going to be mapping a block of
memory to either emulation RAM or emulation ROM and are going to be
changing the base address of that block, you must ensure that valid code or
data exists at BOTH blocks of memory. For example, if you have boot code

Chapter 4: Plugging the Emulator into Target Systems
Configuring the Emulator for In-Circuit Operation

112

that originally exists at address 0 and chip-select 0 is later reprogrammed
with a base address of 400000H, you must ensure that the code exists at both
0 and at 400000H. If you are executing your code from target memory, this is
easy, since your target hardware will be designed to decode memory based
on chip-select 0 being active, not based on the full address (A23-A1).

Here is an example of how you can emulate a setup where the chip-select
base addresses are being changed. The technique of switching the RAM and
ROM addresses closely follows an example that Motorola provides in Revision
2 of the MC68302 User’s Manual.

We start with the following memory map:

000000..00FFFF@x eram
400000..41FFFF@x eram
800000..800FFF@x tram

and use the following program:

 XDEF SWITCHED
 ORG $400000
 DC.L $10000 ; Stack begins at $0FFFE
 DC.L RESET-$400000 ; Reset initialization code
 DC.L BUS_ERROR
 DC.L ADDR_ERROR

 ORG $400400
RESET MOVE.W #$0800,$F2 ; Set up the BAR for $800XXX
 MOVEA.L #$800000,A0
 MOVE.W #$3FC2,($832,A0) ; OR0 - 128K, read-only, 1 wait-state
 MOVE.W #$0001,($830,A0) ; BR0 - base address 0
 MOVE.W #$1FE0,($836,A0) ; OR1 - 64K, read-write, 0 wait-state
 MOVE.W #$0801,($834,A0) ; BR1 - base address $400000
 NOP
CP_VECTORS MOVEA.L #0,A3 ; pointer to vector table
 MOVEA.L #$400000,A4 ; where to copy it
DO_COPY MOVE.L (A3)+,(A4)+
 CMPA.L #$400,A3 ; at the end?
 BNE DO_COPY
 NOP ; now the vector table is in ROM and RAM
 NOP
CS_INIT NOP

; the following instructions move code into on-chip RAM, then jump to it.
; A2 is used to point to where ROM WILL be.

 MOVEA.L #SWITCHED,A2
 MOVEA.L A0,A1
 MOVE.L #$317CA001,(A1)+
 MOVE.L #$0834317C,(A1)+
 MOVE.L #$C8010830,(A1)+
 MOVE.W #$4ED2,(A1)+
 JMP (A0)
 NOP
SWITCHED NOP ; it’s switched now!!!!!!!

Chapter 4: Plugging the Emulator into Target Systems
Configuring the Emulator for In-Circuit Operation

113

 NOP
 MOVE.L 0,D0 ; read vector 0
 NOP

BUS_ERROR JMP BUS_ERROR
ADDR_ERROR JMP ADDR_ERROR

What happens first? The first thing that needs to be done is for you to copy
your startup code that will exist in ROM beginning at 400400H to address
400H because what will eventually be address 400400H is address 400H
immediately following a reset (because chip-select 0 maps to address 0). To
do this, choose the Utilities→Copy... (ALT, -, U, C) command from the
Memory window’s control menu, enter 400000h as the start address, enter
401fffh as the end address, and enter 0 as the destination address.

This will cause the first 8 Kbytes of code that was loaded at 400000H to be
copied to emulation RAM beginning at 0. Doing this will make the emulator
act like your target system will at reset. Now you can simply set a breakpoint
on SWITCHED and run from reset.

When the emulator breaks into the monitor, chip-select 0 will have been
programmed for address range 400000H through 41FFFFH, and chip-select 1
will have been programmed for address range 0 through 0FFFFH. Your
program can now modify RAM at address 0.

Note that an important limitation of this method is that if a target system
reset occurs while your program is running, the program will fail. This is
because after a reset, chip-select 0 will again map to address 0, but your code
is no longer at address 0. In order to put your code at 0, you would again
need to choose the Utilities→Copy... (ALT, -, U, C) command from the
Memory window’s control menu, enter 400000h as the start address, enter
401fffh as the end address, and enter 0 as the destination address.

There are other ways that you can debug a system that reprograms the base
addresses of chip-selects. Another approach would be to debug your system
in two separate steps. First, you can debug your initialization code. Once
your initialization code is debugged, you can configure the emulator and map
memory based on what your final chip-select addresses will be. You can then
use a command file to set the chip-selects to their final addresses. This may
require some vector table changes.

Still another approach is to use only target memory in areas where
chip-selects are used. This doesn’t require any special steps since your
target memory will "track" the chip-select changes.

Chapter 4: Plugging the Emulator into Target Systems
Configuring the Emulator for In-Circuit Operation

114

Step 4. Know your interrupt mode

If your target does not use dedicated mode interrupts, you can skip this step.

One of the more common problems users encounter is not being able to
break into the monitor (ERROR: break failed). A common cause of this is
selecting the dedicated interrupt mode in the emulator hardware
configuration, but failing to ensure that the 6830x is programmed for
dedicated mode interrupts.

The emulator is configured to use normal mode interrupts by default. If you
will be setting up the 6830x for dedicated mode interrupts, choose the
Settings→Emulator Config→ Hardware... (ALT, S, E, H) command and select
the dedicated Interrupt Mode option.

The interrupt mode of the 6830x is determined by the value programmed in
the GIMR register. If you are using dedicated mode interrupts, you must set
the most significant bit of the GIMR register BEFORE you attempt to step or
break. Similar to setting up chip-selects, you have two options for making
sure you have a valid interrupt mode:

Method 1: Using a Command File to Set the Interrupt Mode

Use a series of commands or a command file that modifies the GIMR to force
the 6830x to be in dedicated mode. For example, here is a command file that
sets up the GIMR for dedicated mode:

RESET
BREAK
REG bar TO 800h
REG gimr TO 8700h

Note It is important that you first modify the BAR register BEFORE attempting to
modify the GIMR register because the location of that register is calculated
based on the value in the BAR.

Note that doing a break when the 6830x is in a reset state does not require a
level 7 interrupt, and therefore will work regardless of the interrupt mode
setting.

Chapter 4: Plugging the Emulator into Target Systems
Configuring the Emulator for In-Circuit Operation

115

Method 2: Using Your Initialization Code to Set the Interrupt Mode

Execute a small section of initialization code that sets the GIMR register to
the proper value, and break into the monitor immediately after that using
either a software or analysis breakpoint.

Here is an example that shows how this works using an analysis breakpoint.
In this case, an analysis breakpoint is useful because it will confirm that
everything is working properly (if you use a software breakpoint the emulator
does not issue a level 7 interrupt, so that would not test the interrupt mode):

Start with the following program loaded in either emulation or target memory:

 XDEF CS_INIT,GIMR_INIT
 ORG $0
 DC.L $440000 ; Stack begins at $43FFFE
 DC.L $400 ; Reset initialization code

 ORG $400
 MOVE.W #$0800,$F2 ; Set up the BAR for $800XXX
 MOVEA.L #$800000,A0
 MOVE.W #$3F02,($832,A0) ; OR0 - 512K, read-only, 1 wait-state
 MOVE.W #$0001,($830,A0) ; BR0 - base address 0
 MOVE.W #$1F80,($836,A0) ; OR1 - 256K, read-write, 0 wait-state
 MOVE.W #$0801,($834,A0) ; BR1 - base address $400000
 NOP
CS_INIT NOP
 NOP
 MOVE.W #$8740,($812,A0) ; set for dedicated mode interrupt
 NOP
 NOP
GIMR_INIT NOP
 NOP
 NOP
 NOP

Assuming you have loaded the above example into emulation or target
memory, you can now trace about GIMR_INIT, selecting the break on trigger
option, and run from reset.

When the emulator breaks into the monitor, the 6830x will be in dedicated
mode. You can now use the step and break command.

Note that if you are just starting to debug your initialization code, and would
like to step through each of your startup instructions, you should use Method
1.

Chapter 4: Plugging the Emulator into Target Systems
Configuring the Emulator for In-Circuit Operation

116

Step 5. Set up the DTACK signals

Probably the least understood configuration options relate to the interlocking
and source for the DTACK signal. Selecting the options correctly is easy
once you know a little bit about your target system.

Selecting the DTACK sources for chip-selects CS0 through CS3 is easy. If
you will be programming a chip-select to generate DTACK internally (as is
most often the case) you should select "internal"; otherwise, select "external".
You may notice that the default for CS0 is "internal" and all others "external".
This is because the 6830x CS0 is configured to generate an internal DTACK
by default.

If you select the "Map interlock for Emulation memory" entry (default) in the
DTACK Control box of the Hardware Config dialog box, the emulator will
refer to the memory map and the DTACK specifications defined there for
each address range. In the memory map, you can select or deselect
"Interlock DTACKs" for each mapped address range. If "Interlock DTACKs"
is selected, the emulator is forced to wait for your target system to assert the
DTACK signal whenever an access occurs to emulation memory (AND there
is no internally generated DTACK for this cycle).

The "Target DTACK always" option in the DTACK Control box of the
Hardware Config dialog box is not selected by default and can most often be
left that way. When do you need to select it? If ALL of the following are true:

• Your target system asserts DTACK for all areas of memory you will use.

AND

• Your target system inserts at least one wait state for each area.

AND

• You are going to map all areas as emulation RAM or emulation ROM.

What does this do? Using target system DTACKs simply ensures that the
emulation memory accesses will have the same number of wait states as your
final target system has.

What will happen if ALL of the above are true and you choose to use
emulator-generated DTACKs instead of target system DTACKs? In the best
case scenario, your code will run faster in the emulator than it will in your
target system. This is because an area mapped as emulation memory will

Chapter 4: Plugging the Emulator into Target Systems
Configuring the Emulator for In-Circuit Operation

117

always terminate with the number of wait states selected for the emulator,
even if it overlays an address where your target system inserts wait states.

In the worst case scenario, where you should, but do not depend on target
system DTACKs, reads or writes to your target memory will fail. This can
happen if your target system DTACK circuitry gets confused when the
emulator fails to "wait" for your target system to assert DTACK.

If you select Emul. DTACK always, 0 (or 1) wait states, the emulator will
ignore the DTACK specifications in the memory map and use the DTACK
signal from the emulator for all activity. Choose 0 wait states for fastest
system performance. Choose 1 wait state to slow the system if you are
having trouble with target system startup.

Step 6. If emulator status shows HALTED

Most users will encounter an emulator status of HALTED at one time or
another. This almost always is caused by a double-bus fault, although under
rare conditions, it can be caused by the target asserting the "HALT" pin.
Note that the 6830x emulator NEVER asserts the HALT pin itself.

A double-bus fault occurs if the 6830x encounters an exception while
processing another exception. For example, if a bus error occurs and the
6830x begins to process that bus error, then fetches an odd-address from the
vector table location 08H, a double-bus fault will occur.

Most users will encounter a halted condition at least once. You can avoid this
problem by making sure you have a "good" stack (that includes making sure
that any needed chip-selects are programmed BEFORE any stack accesses
occur) and making sure that your bus error and address error exception
vector table entries (at 08H and 0CH) point to valid addresses.

If you are encountering a HALTED emulator status, you should initiate an
analyzer trace before you run or step. Choose the Trace→Until Halt (ALT, T,
U) command. This trace command means "trace all cycles, but NEVER
trigger" and is useful because when the processor halts, the analyzer will have
the last X states (based on which type analyzer card and mode you are using)
in its buffer. By halting the trace with the Trace→Halt (ALT, T, H)
command, you will be able to unload the trace buffer and see exactly what
caused the double-bus fault.

Chapter 4: Plugging the Emulator into Target Systems
Configuring the Emulator for In-Circuit Operation

118

The 6830x will halt itself if a double-bus fault occurs. Only a target system
reset, or emulator reset command will clear the HALTED emulator status.

Here is an example where a Trace→Until Halt (ALT, T, U) command was
used to find the cause of a double-bus fault:

 XDEF CS_INIT,GIMR_INIT
 ORG $0
 DC.L $440000 ; Stack begins at $43FFFC
 DC.L $400 ; Reset initialization code

 ORG $400
 MOVE.W #$0800,$F2 ; Set up the BAR for $800XXX
 MOVEA.L #$800000,A0
 MOVE.W #$3F02,($832,A0) ; OR0 - 512K, read-only, 1 wait-state
 MOVE.W #$0001,($830,A0) ; BR0 - base address 0
 MOVE.W #$0001,-(A7) ; push parameter
 JSR CHKSUM ; jump to checksum subroutine
 MOVE.W #$1F80,($836,A0) ; OR1 - 256K, read-write, 0 wait-state
 MOVE.W #$0801,($834,A0) ; BR1 - base address $400000
 NOP
CS_INIT NOP
 ...

The memory map used in this configuration includes:

000000..01FFFF@x eram
400000..43FFFF@x tram

After choosing the Trace→Until Halt (ALT, T, U) command followed by the
Execution→Run... (ALT, E, R) command, selecting the User Reset option,
and choosing OK, the Status window shows the emulator is HALTED. At this
point, the Trace→Halt (ALT, T, H) command is chosen to stop the trace and
display the results.

Looking at the trace we see:

state typ module\#line :function source
--
 -14 00040C MOVE.W #03F02,00832(A0) 0.640 nS
 -13 00040E 3F02 sprog rd word 0.600 nS
 -12 000410 0832 sprog rd word 0.640 nS
 -11 000412 MOVE.W #00001,00830(A0) 0.600 nS
 -10 800832 3F02 sdata wr word IAC 0.280 nS
 -9 000414 0001 sprog rd word 0.280 nS
 -8 000416 0830 sprog rd word 0.320 nS
 -7 000418 MOVE.W #00001,-(A7) 0.320 nS
 -6 800830 0001 sdata wr word IAC 0.240 nS
 -5 00041A 0001 sprog rd word 0.320 nS
 -4 00041C JSR 0000446 0.320 nS
 -3 00041E 0446 sprog rd word 0.320 nS
 -2 43FFFE 0001 sdata wr word 1.020 mS
 -1 43FFFC 041E sdata wr word 1.020 mS

Chapter 4: Plugging the Emulator into Target Systems
Configuring the Emulator for In-Circuit Operation

119

What to look for:

state -7 A push of 0001 onto the stack is initiated. The stack
pointer is already set to 44000H. The memory below there
is accessed using chip-select 1, but the registers for
chip-select 1 have not been initialized yet.

state -2 The processor does a write of 0001 to location 43FFFEH as
a result of the instruction at -7, but because the chip-select
that would provide DTACK has not yet been initialized, the
cycle is not terminated normally. The 1.02 mS time count
indicates an internally generated bus error (BERR).

state -1 Because of the bus error in the previous cycle, the 6830x
will immediately begin to process a bus-error exception.
The first thing it will try to do is write the low word of the
program counter value to the stack. But again, because the
chip-select register has not been initialized, this stack write
will also fail with a bus error, hence the double-bus fault!

This trace shows how valuable the time stamp can be, not just in highlighting
cycles that are unusually long, but also in showing the effect of
reprogramming of OR1. You can see how the program fetch on line -11 took
approximately 600 ns, but the program fetch on line -9 took only 280 ns. This
is a result of the write to OR1 on line -10 which changed the internal DTACK
generation from 6 wait states to 1 state.

Many users capture a trace that shows the processor halting, but fail to take
the time to analyze the information in the trace. Examining a trace carefully
will often help you find the exact cause of a problem.

Step 7. Choose the correct target memory access size

Whenever the emulator accesses either target memory or an on-chip location,
it uses the monitor program to do so. The monitor program will use either a
"MOVE.B" or "MOVE.W" instruction for this access. You can control this by
selecting either "8 bits" or "16 bits" for the "Target memory access" hardware
configuration option.

Chapter 4: Plugging the Emulator into Target Systems
Configuring the Emulator for In-Circuit Operation

120

The default value is "16 bits", and this should be acceptable for most cases.
There are cases, however, where a target system design allows only byte
accesses to a particular area of memory, and you may wish to select "8 bits".
You may also find that you need the access size set to "8 bits" sometimes and
"16 bits" at other times.

Step 8. Check your DTACK pullup resistor!

It wouldn’t be fair to solve all these 6830x plug-in problems and not give the
hardware engineer a chance to help out, so there’s one last thing you should
check before you begin.

Different from the typical 68000 family device, the DTACK signal on the
6830x is bi-directional and will be driven low by the 6830x on all cycles where
DTACK is internally generated. This calls for an open-collector design in
almost all cases. Have your hardware engineer check the value of the pull-up
resistor used on the DTACK signal and make sure that it is approximately 1K
ohms. Any value higher than 1K ohms will likely cause problems.

Lowering the value of the pullup resistor ensures that the DTACK signal rises
quickly enough. If the DTACK signal rises too slowly you may see incorrect
reads from target memory. Why is this? The emulator does alter the
characteristics of the DTACK signal (higher capacitive loading and different
drive characteristics) and can prevent the DTACK signal from rising to a
logic high before the next cycle starts. If DTACK is still seen as a logic low
when the next cycle starts, that cycle may be terminated with 0 wait states.

The diagram below shows how a DTACK signal that does not rise quickly
enough can cause problems. On the start of the second cycle, the DTACK
signal is still seen as low. Even if this is an address configured for a
chip-select that has an internally generated DTACK, the slow rising external
DTACK will cause problems because the 6830x will sample the DTACK as an
input even on cycles programmed for internal DTACK generation. A cycle
that should have been a 1 wait-state cycle terminates without any wait-states
and results in bad data being read.

Chapter 4: Plugging the Emulator into Target Systems
Configuring the Emulator for In-Circuit Operation

121

Chapter 4: Plugging the Emulator into Target Systems
Configuring the Emulator for In-Circuit Operation

122

If you have problems

Listed below are common problems and their most common causes.

Problem: You get "ERROR: Stepping failed" when trying to step.

Cause: This is most likely caused by an invalid stack. In order to
step, the emulator will first modify the values on the stack,
and then execute an RTE. If the stack pointer points to an
invalid address, or the chip-select needed to access the
stack is not initialized, the stack reads caused by the RTE
will result in a double-bus fault.

Fix: Make sure the stack pointer is pointing to a legitimate
address and that any chip-selects for that address are
initialized.

Problem: You get "ERROR: Break failed" when trying to step.

Cause: You have configured the emulator for dedicated mode
interrupts but have not put the 6830x in dedicated mode
by modifying the GIMR and setting the most significant bit.
Or, the instruction that you single-stepped resulted in a
double-bus fault and the processor is now halted.

Fix: Make sure that the processor is set for the correct
interrupt mode before single-stepping. If the interrupt
mode is correct, then use the trace command before
stepping so that you see what went wrong.

Chapter 4: Plugging the Emulator into Target Systems
Configuring the Emulator for In-Circuit Operation

123

Problem: You get "ERROR: BERR during background access to

supervisor stack" when you first try to step or run.

Cause: This problem occurs when the emulator attempts to modify
the stack so that your run or step command will begin from
the proper address. The emulator will try to modify the
stack and then use an RTE to force the program counter
and status register to the proper values. In this case, a bus
error occurred when the emulator attempted to modify the
stack.

Fix: Make sure the stack pointer is pointing to a legitimate
address and that any chip-selects for that address are
initialized.

Problem: You get "ERROR: Monitor failure; bus error" when trying to

do a display, modify, or load command.

Cause: This error means that when the emulator tries to read
from, or write to, a memory location mapped as target RAM
or ROM, a bus error exception occurred. This can have
many causes, but most often is caused when you try to
access memory that relies on a chip-select signal, but have
not initialized the chip-select registers first.

Fix: Make sure that your chip-select registers are properly
initialized.

Chapter 4: Plugging the Emulator into Target Systems
Configuring the Emulator for In-Circuit Operation

124

Problem: Whenever you break into the monitor you have problems

with the SCC portion of your program.

Cause: The emulator asserts the FRZ pin when it breaks into the
monitor and this in turn "freezes" the Communications
Processor. Based on what type of SCC setup you have, and
what type of activity is occurring at the time of the break,
you may experience unexpected SCC errors or activity.
Note that the default emulator configuration selection for
the Enable Background Freeze check box in the Hardware
Config dialog box causes the FRZ pin to be asserted during
the entire time the emulator is running in the monitor.
This freezes activity of certain processor peripherals and
prevents servicing of interrupts.

Fix: Deselect the Enable Background Freeze check box in the
Hardware Config dialog box. This will prevent assertion of
the FRZ pin. Or avoid setting any breakpoints while
debugging SCC functions. By using the trace analyzer, you
can capture a real-time log of SCC-related bus activity.
Remember, if you deselect the Enable Background Freeze
check box, all processor peripherals will run, a coprocessor
will run (if in use), and interrupts will be serviced while the
emulator is executing in the monitor.

Chapter 4: Plugging the Emulator into Target Systems
Configuring the Emulator for In-Circuit Operation

125

Problem: The emulator status shows HALTED

Cause: A double-bus fault has occurred, or the target system has
asserted the HLT pin. This is almost always caused by a
double-bus fault. Most often, a bus error or address error
exception fails to complete correctly because of an invalid
stack or vector table entry.

Fix: Make sure you have a valid stack and valid vector table
entries. Refer to "Step 6. If emulator status shows
HALTED" for troubleshooting information.

Problem: Incorrect data is read from target RAM or ROM.

Cause: This is most often caused by a slow rising DTACK signal.
The DTACK signal is usually pulled high with a resistor.
Any resistor value above 1K ohms will usually result in
some target memory cycles that are terminated with 0 wait
states regardless of how the chip-select registers are
programmed.

Fix: Make sure that the pullup resistor on DTACK is no higher
than 1K ohms. Refer to "Step 8. Check your DTACK pullup
resistor!" for more information.

For additional help when connecting the emulator to a target system, refer to
the Installation/Service/Terminal Interface User’s Guide for Motorola
6830x-Family Emulator/Analyzer, HP 64798.

Chapter 4: Plugging the Emulator into Target Systems
Configuring the Emulator for In-Circuit Operation

126

5

Debugging Programs

127

Debugging Programs

This chapter contains information on loading and debugging programs.

• Loading and Displaying Programs

• Displaying Symbol Information

• Stepping, Running, and Stopping the Program

• Using Breakpoints and Break Macros

• Displaying and Editing Variables

• Displaying and Editing Memory

• Displaying and Editing I/O Locations

• Displaying and Editing Registers

• Tracing Program Execution

• Setting Up Custom Trace Specifications

128

Loading and Displaying Programs

This section shows you how:

• To load user programs

• To display source code only

• To display source code mixed with assembly instructions

• To display source files by their names

• To specify source file directories

• To search for function names in the source files

• To search for addresses in the source files

• To search for strings in the source files

To load user programs

1 Choose the File→Load Object... (ALT, F, L) command.

2 Select the function code of the memory space into which the
program should be loaded.

3 Select the file to be loaded.

4 Choose the Load button to load the program.

Programs are only loaded into the memory ranges mapped with the same
function code.

With this command, you can load any IEEE-695 object file created with any
of the Microtec or HP programming tools for 68000.

Chapter 5: Debugging Programs
Loading and Displaying Programs

129

To display source code only

1 Position the cursor on the starting line to be displayed.

2 From the Source window control menu, choose the Display→Source
Only (ALT, -, D, S) command.

The Source window may be toggled between the C source only display and
the C source/mnemonic mixed display.

The display starts from the line containing the cursor.

The source only display shows line numbers with the source code.

To display source code mixed with assembly
instructions

1 Position the cursor on the starting line to be displayed.

2 From the Source window control menu, choose the Display→Mixed
Mode (ALT, -, D, M) command.

The mnemonic display contains the address, data, and disassembled
instruction mnemonics intermixed with the C source lines.

Chapter 5: Debugging Programs
Loading and Displaying Programs

130

Example C Source/Mnemonic Mode Display

To display source files by their names

1 Make the Source window the active window, and choose the
Display→Select Source... (ALT, -, D, L) command from the Source
window’s control menu.

2 Select the desired file.

3 Choose the Select button.

4 Choose the Close button.

Note The contents of assembly language source files cannot be displayed.

Chapter 5: Debugging Programs
Loading and Displaying Programs

131

To specify source file directories

1 Make the Source window the active window, and choose the
Display→Select Source... (ALT, -, D, L) command from the Source
window’s control menu.

2 Choose the Directory... button.

3 Enter the directory name in the Directory text box.

4 Choose the Add button.

5 Choose the Close button to close the Search Directories dialog box.

6 Choose the Close button to close the Select Source dialog box.

If the source files associated with the loaded object file are in different
directories from the object file, you must identify the directories in which the
source files can be found.

You can also specify them source file directories by setting the SRCPATH
environment variable in MS-DOS as follows:

set SRCPATH=<full path 1>;<full path 2>

Chapter 5: Debugging Programs
Loading and Displaying Programs

132

To search for function names in the source files

1 From the Source window’s control menu, choose the
Search→Function... (ALT, -, R, F) command.

2 Select the function to be searched.

3 Choose the Find button.

4 Choose the Close button.

Disassembled instructions are displayed in the Source window for assembly
language source files.

To search for addresses in the source files

1 From the Source window’s control menu, choose the
Search→Address... (ALT, -, R, A) command.

2 Type or paste the address into the Address text box.

3 Choose the Find button.

4 Choose the Close button.

Disassembled instructions are displayed in the Source window for assembly
language source files.

Chapter 5: Debugging Programs
Loading and Displaying Programs

133

To search for strings in the source files

1 From the Source window’s control menu, choose the
Search→String... (ALT, -, R, S) command.

2 Type or paste the string into the String text box.

3 Select whether the search should be case sensitive.

4 Select whether the search should be down (forward) or up
(backward).

5 Choose the Find Next button. Repeat this step to search for the next
occurrence of the string.

6 Choose the Cancel button to close the dialog box.

Chapter 5: Debugging Programs
Loading and Displaying Programs

134

Displaying Symbol Information

This section shows you how:

• To display program module information

• To display function information

• To display external symbol information

• To display local symbol information

• To display global assembler symbol information

• To display local assembler symbol information

• To create a user-defined symbol

• To display user-defined symbol information

• To delete a user-defined symbol

• To display the symbols containing the specified string

Chapter 5: Debugging Programs
Displaying Symbol Information

135

To display program module information

• From the Symbol window’s control menu, choose the
Display→Modules (ALT, -, D, M) command.

To display function information

• From the Symbol window’s control menu, choose the
Display→Functions (ALT, -, D, F) command.

The name, type, and address range for the functions in the program are
displayed.

Example Function Information Display

Chapter 5: Debugging Programs
Displaying Symbol Information

136

To display external symbol information

• From the Symbol window’s control menu, choose the
Display→Externals (ALT, -, D, E) command.

The name, type, and address of the global variables in the program are
displayed.

Example External Symbol Information Display

Chapter 5: Debugging Programs
Displaying Symbol Information

137

To display local symbol information

1 From the Symbol window’s control menu, choose the
Display→Locals... (ALT, -, D, L) command.

2 Type or paste the function for which the local variable information is
to displayed.

3 Choose the OK button.

The name, type, and offset from the stack frame of the local variables in the
selected function are displayed.

Example Local Symbol Information Display

Chapter 5: Debugging Programs
Displaying Symbol Information

138

To display global assembler symbol information

• From the Symbol window’s control menu, choose the Display→Asm
Globals (ALT, -, D, G) command.

The name and address for the global assembler symbols in the program are
displayed.

To display local assembler symbol information

1 From the Symbol window’s control menu, choose the Display→Asm
Locals... (ALT, -, D, A) command.

2 Type or paste the module for which the local variable information is
displayed.

3 Choose the OK button.

The name and address for the local assembler variables in the selected
module are displayed.

Chapter 5: Debugging Programs
Displaying Symbol Information

139

To create a user-defined symbol

1 From the Symbol window’s control menu, choose the User
defined→Add... (ALT, -, U, A) command.

2 Type the symbol name in the Symbol Name text box.

3 Type the address in the Address text box.

4 Choose the OK button.

User-defined symbols, just as standard symbols, can be used as address
values when entering commands.

Example To add the user-defined symbol "jmp_start":

Chapter 5: Debugging Programs
Displaying Symbol Information

140

To display user-defined symbol information

• From the Symbol window’s control menu, choose the Display→User
defined (ALT, -, D, U) command.

The command displays the name and address for the user-defined symbols.

Example User-Defined Symbol Information Display

Chapter 5: Debugging Programs
Displaying Symbol Information

141

To delete a user-defined symbol

1 From the Symbol window’s control menu, choose the Display→User
defined (ALT, -, D, U) command to display the user-defined symbols.

2 Select the user-defined symbol to be deleted.

3 From the Symbol window’s control menu, choose the User
defined→Delete (ALT, -, U, D) command.

To display the symbols containing the specified string

1 From the Symbol window’s control menu, choose the
FindString→String... (ALT, -, F, S) command.

2 Type or paste the string in the String text box. The search will be
case-sensitive.

3 Choose the OK button.

To restore the original non-selective display, redisplay the symbolic
information.

Chapter 5: Debugging Programs
Displaying Symbol Information

142

Stepping, Running, and Stopping the Program

This section shows you how:

• To step a single line or instruction

• To step over a function

• To step multiple lines or instructions

• To run the program until the specified line

• To run the program until the current function return

• To run the program from a specified address

• To stop program execution

• To reset the processor

To step a single line or instruction

• Choose the Execution→Single Step (ALT, E, N) command.

• Or, press the F2 key.

In the source display mode, this command executes the C source code line at
the current program counter address.

In the source/mnemonic mixed display mode, the command executes the
microprocessor instruction at the current program counter address.

Once the source line or instruction has executed, the next program counter
address highlighted.

Chapter 5: Debugging Programs
Stepping, Running, and Stopping the Program

143

To step over a function

• Choose the Execution→Step Over (ALT, E, O) command.

• Or, press the F3 key.

This command steps a single source line or assembly language instruction
except when the source line contains a function call or the assembly
instruction makes a subroutine call. In these cases, the entire function or
subroutine is executed.

In the source/mnemonic mixed display mode, the command does not
distinguish between the following two types of instructions:

JSR

BSR

Example

When the current program counter is at line 22, choosing the
Execution→Step Over (ALT, E, O) command steps over the "convert"
function. Once the function has been stepped over, the program counter
indicates line 23.

Chapter 5: Debugging Programs
Stepping, Running, and Stopping the Program

144

To step multiple lines or instructions

1 Choose the Execution→Step... (ALT, E, S) command.

2 Select one of the Current PC, Start Address, or Address options.
(Enter the starting address when the Address option is selected.)

3 In the Count text box, type the number of lines to be single-stepped.

4 Choose the Execute button.

5 Choose the Close button to close the dialog box.

The Current PC option starts single-stepping from the current PC address.
The Start Address option starts single-stepping from the transfer address.
The Address option starts single-stepping from the address specified in the
text box.

In the source only display mode, the command steps the number of C source
lines specified. In the source/mnemonic mixed display mode, the command
steps the number of microprocessor instructions specified.

When the step count specified in the Count text box is 2 or greater, the count
decrements by one as each line or instruction executes. A count of 0 remains
in the Count text box. Also, in the Source window, the highlighted line that
indicates the current program counter moves for each step.

To step over functions, select the Over check box.

Chapter 5: Debugging Programs
Stepping, Running, and Stopping the Program

145

To run the program until the specified line

1 Position the cursor in the Source window on the line that you want to
run to.

2 Choose the Execution→Run to Cursor (ALT, E, C) command.

Execution stops immediately before the cursor-selected line.

Because this command uses breakpoints, you cannot use it when programs
are stored in target system ROM.

If the specified address is not reached within the number of milliseconds
specified by StepTimerLen in the B3638.INI file, a dialog box appears, asking
you to cancel the command by choosing the Stop button. When the Stop
button is chosen, the program execution stops, the breakpoint is deleted, and
the processor transfers to the RUNNING IN USER PROGRAM status.

Note This can be done more quickly by using the pop-up menu available with the
right mouse button.

To run the program until the current function return

• Choose the Execution→Run to Caller (ALT, E, T) command.

The Execution→Run to Caller (ALT, E, T) command executes the program
from the current program counter address up to the return from the current
function.

Chapter 5: Debugging Programs
Stepping, Running, and Stopping the Program

146

Note The debugger cannot properly run to the function return when the current
program counter is at the first line of the function (immediately after its
entry point). Before running to the caller, use the Execution→Single Step
(ALT, E, N) command to step past the first line of the function.

To run the program from a specified address

1 Choose the Execution→Run... (ALT, E, R) command.

2 Select one of the Current PC, Start Address, User Reset, or Address
options. (Enter the address when the Address option is selected.)

3 Choose the Run button.

The Current PC option executes the program from the current program
counter address. The Start Address option executes the program from the
transfer address.

The User Reset option initiates program execution on receiving a RESET
signal from the target system. The reset wait status can be cleared with the
Execution→Reset (ALT, E, E) command.

The Address option executes the program from the address specified.

To stop program execution

• Choose the Execution→Break (ALT, E, B) command, or press the F4
key.

As soon as the Execution→Break (ALT, E, B) command is chosen, the
emulator starts running in the monitor.

Chapter 5: Debugging Programs
Stepping, Running, and Stopping the Program

147

To reset the processor

• Choose the Execution→Reset (ALT, E, E) command.

Once the command has been completed, the processor remains reset if
monitor intrusion is disallowed. If monitor intrusion is allowed, the emulation
microprocessor may switch immediately from reset to running in monitor, for
example, to update the contents of a register window.

Chapter 5: Debugging Programs
Stepping, Running, and Stopping the Program

148

Using Breakpoints and Break Macros

This section shows you how:

• To set a breakpoint

• To disable a breakpoint

• To delete a single breakpoint

• To list the breakpoints and break macros

• To set a break macro

• To delete a single break macro

• To delete all breakpoints and break macros

A breakpoint is an address you identify in the user program where program
execution is to stop. Breakpoints let you look at the state of the target
system at particular points in the program.

A break macro is a breakpoint followed by any number of macro commands
(which are the same as command file commands).

Because breakpoints are set by replacing opcodes in the program, you cannot
set breakpoints or break macros in programs stored in target system ROM.

All breakpoints are deleted when RTC is exited.

Chapter 5: Debugging Programs
Using Breakpoints and Break Macros

149

To set a breakpoint

1 Position the cursor on the line where you wish to set a breakpoint.

2 Choose the Breakpoint→Set at Cursor (ALT, B, S) command.

When you run the program and the breakpoint is hit, execution stops
immediately before the breakpoint line. The current program counter
location is highlighted.

Example To set a breakpoint at line 56:

Note This can be done more quickly by using the pop-up menu available with the
right mouse button.

Chapter 5: Debugging Programs
Using Breakpoints and Break Macros

150

To disable a breakpoint

1 Choose the Breakpoint→Edit... (ALT, B, E) command.

2 Select the breakpoint to be disabled.

3 Choose the Enable/Disable button. Notice that "DI" appears next to
the breakpoint in the list.

4 To close the dialog box, choose the Close button.

You can reenable a breakpoint in the same manner by choosing the
Breakpoint→Edit... (ALT, B, E) command, selecting a disabled breakpoint
from the list, and choosing the Enable/Disable Button.

To delete a single breakpoint

• Position the cursor on the line that has the breakpoint to be deleted,
and choose the Breakpoint→Delete at Cursor (ALT, B, D) command.

Or:

1 Choose the Breakpoint→Edit... (ALT, B, E) command.

2 Select the breakpoint to be deleted.

3 Choose the Delete button.

4 Choose the Close button.

The Breakpoint→Edit... (ALT, B, E) command allows you to delete all the
breakpoints and break macros at once with the Delete All button.

Chapter 5: Debugging Programs
Using Breakpoints and Break Macros

151

To list the breakpoints and break macros

• Choose the Breakpoint→Edit... (ALT, B, E) command.

The command displays breakpoints followed by break macro commands in
parentheses.

The Breakpoint Edit dialog box also allows you to delete breakpoints and
break macros.

To set a break macro

1 Position the cursor on the line where you wish to set a break macro.

2 Choose the Breakpoint→Set Macro... (ALT, B, M) command.

3 Select the Add Macro check box in the Breakpoint Edit dialog box.

4 Specify the macro command in the Macro Command text box.

5 Choose the Set button.

6 To add another macro command, repeat steps 4 and 5.

7 To exit the Breakpoint Edit dialog box, choose the Close button.

The debugger automatically executes the specified macro commands when
the break macro line is reached.

To add macro commands after an existing macro command, position the
cursor on the macro command before choosing Breakpoint→Set Macro...
(ALT, B, M).

Chapter 5: Debugging Programs
Using Breakpoints and Break Macros

152

To add macro commands to the top of an existing break macro, position the
cursor on the line that contains the BP marker before choosing
Breakpoint→Set Macro... (ALT, B, M).

Example To set "EVALUATE" and "RUN" break macros:

Position the cursor on line 47; then, choose the Breakpoint→Set Macro...
(ALT, B, M) command.

Select the Add Macro check box.

Enter "EVALUATE *mes" in the Macro Command text box.

Choose the Set button.

Enter "RUN" in the Macro Command text box.

Chapter 5: Debugging Programs
Using Breakpoints and Break Macros

153

Choose the Set button.

Choose the Close button.

The break macro is displayed in the Source window as shown below.

Chapter 5: Debugging Programs
Using Breakpoints and Break Macros

154

To delete a single break macro

1 Position the cursor on the line that contains the break macro to be
deleted.

2 Choose the Breakpoint→Delete Macro (ALT, B, L) command.

To delete a single macro command that is part of a break macro, position the
cursor on the macro command before choosing Breakpoint→Delete Macro
(ALT, B, L).

The Breakpoint→Edit... (ALT, B, E) command allows you to delete all the
breakpoints and break macros at once by choosing the Delete All button.
Also, by selecting the Global Disable and Delete All check box, you can delete
all breakpoints and break macros and prevent creation of new breakpoints
and break macros.

Chapter 5: Debugging Programs
Using Breakpoints and Break Macros

155

To delete all breakpoints and break macros

1 Choose the Breakpoint→Edit... (ALT, B, E) command.

2 Choose the Delete All button.

3 Select the Global Disable and Delete All check box.

4 Choose the Close button.

The Breakpoint→Edit... (ALT, B, E) command allows you to delete all the
breakpoints and break macros at once with the Delete All button. Also, you
can delete all breakpoints and break macros and prevent creation of new
breakpoints and break macros by selecting the Global Disable and Delete All
check box.

Chapter 5: Debugging Programs
Using Breakpoints and Break Macros

156

Displaying and Editing Variables

This section shows you how:

• To display a variable

• To edit a variable

• To monitor a variable in the WatchPoint window

To display a variable

1 Position the mouse pointer over the variable in the Source window
and double-click the left mouse button.

2 Choose the Variable→Edit... (ALT, V, E) command.

3 Choose the Update button to read the contents of the variable and
display the value in the dialog box.

4 To exit the Variable dialog box, choose the Close button.

Note that you can update the contents of an auto variable only while the
program executes within the scope function.

Chapter 5: Debugging Programs
Displaying and Editing Variables

157

To edit a variable

1 Position the mouse pointer over the variable in the Source window
and double-click the left mouse button.

2 Choose the Variable→Edit... (ALT, V, E) command.

3 Choose the Modify button. This opens the Variable Modify dialog
box.

4 Type the desired value in the Value text box. The value must be of
the type specified in the Type field.

5 Choose the OK button.

6 Choose the Close button.

Note that you can change the contents of an auto variable only while the
program executes within the scope function.

Chapter 5: Debugging Programs
Displaying and Editing Variables

158

To monitor a variable in the WatchPoint window

1 Highlight the variable in the Source window by either double-clicking
the left mouse button or by holding the left mouse button down and
dragging the mouse pointer over the variable.

2 Choose the Variable→Edit... (ALT, V, E) command.

3 Choose the "to WP" button.

4 Choose the Close button.

5 To open the WatchPoint window, choose the Window→WatchPoint
command.

Note that you can only monitor an auto variable in the WatchPoint window
when the program executes within the scope function.

Chapter 5: Debugging Programs
Displaying and Editing Variables

159

Displaying and Editing Memory

This section shows you how:

• To display memory

• To edit memory

• To copy memory to a different location

• To copy target system memory into emulation memory

• To modify a range of memory with a value

• To search memory for a value or string

To display memory

1 Choose the RealTime→Memory Polling→ON (ALT, R, M, O)
command.

2 Choose the Window→Memory command.

3 Double-click one of the addresses.

4 Use the keyboard to enter the address of the memory locations to be
displayed.

5 Press the Enter key.

An address may be entered as a value or symbol. You can also select the
desired address by using the scroll bar.

To change the size of the data displayed, access the Memory window’s
control menu; then, choose the Display→Byte (ALT, -, D, Y), Display→16
Bits (ALT, -, D, 1), or Display→32 Bits (ALT, -, D, 3) command. When the

Chapter 5: Debugging Programs
Displaying and Editing Memory

160

Display→Byte (ALT, -, D, Y) command is chosen, ASCII values are also
displayed.

To specify whether memory is displayed in a single-column or multicolumn
format, access the Memory window’s control menu; then, choose the
Display→Linear (ALT, -, D, L) or Display→Block (ALT, -, D, B) command.
When the Display→Linear (ALT, -, D, L) command is chosen, symbolic
information associated with an address is also displayed.

The Memory window display is updated periodically. When the window
displays the contents of target system memory, user program execution is
temporarily suspended as the display is updated. To prevent program
execution from being temporarily suspended (and the Memory window from
being updated), choose the RealTime→Monitor Intrusion→Disallowed (ALT,
R, T, D) command to activate the real-time mode.

Example Memory Displayed in Byte Format

Chapter 5: Debugging Programs
Displaying and Editing Memory

161

To edit memory

Assuming the location you wish to edit has already been displayed (and
Memory window polling is turned ON):

1 Double-click the location you wish to edit.

2 Use the keyboard to enter a new value.

3 Press the Enter key. Notice that the next location is highlighted.

4 Repeat steps 2 and 3 to edit successive locations.

Editing the contents of target system memory causes user program execution
to be temporarily interrupted. You cannot modify the contents of target
memory when the emulator is running the user program and monitor
intrusion is disallowed.

Chapter 5: Debugging Programs
Displaying and Editing Memory

162

To copy memory to a different location

1 From the Memory window’s control menu, choose the
Utilities→Copy... (ALT, -, U, C) command.

2 Enter the starting address of the range to be copied in the Start text
box.

3 Enter the end address of the range to be copied in the End text box.

4 Enter the address of the destination in the Destination text box.

5 Choose the Execute button.

6 To close the Memory Copy dialog box, choose the Close button.

Chapter 5: Debugging Programs
Displaying and Editing Memory

163

To copy target system memory into emulation
memory

1 Map the address range to be copied as emulation memory.

2 Because the processor cannot read target system memory when it is
in the EMULATION RESET state, choose the Execution→Break
(ALT, E, B) command, or press the F4 key, to break execution into
the monitor.

3 From the Memory window’s control menu, choose the
Utilities→Image... (ALT, -, U, I) command.

4 Enter the starting address in the Start text box.

5 Enter the end address in the End text box.

6 Choose the Execute button.

7 To exit the Memory Image Copy dialog box, choose the Close button.

This command is used to gain access to features that are available with
emulation memory (like breakpoints).

The following commands cannot be used when programs are stored in target
system ROM. However, you can use these commands if you copy the
contents of target system ROM into emulation memory with the
Utilities→Image... (ALT, -, U, I) command:

Breakpoint→Set at Cursor (ALT, B, S)
Breakpoint→Delete at Cursor (ALT, B, D)
Breakpoint→Set Macro... (ALT, B, M)
Breakpoint→Delete Macro (ALT, B, L)
Execution→Run to Cursor (ALT, E, C)
Execution→Run to Caller (ALT, E, T)
Settings→Coverage→Coverage ON (ALT, S, V, O)
Settings→Coverage→Coverage Reset (ALT, S, V, R)

Chapter 5: Debugging Programs
Displaying and Editing Memory

164

Example To copy the contents of addresses 0h through ffffh with "X" function code
from target system memory to the corresponding emulation memory address
range:

To modify a range of memory with a value

1 From the Memory window’s control menu, choose the
Utilities→Fill... (ALT, -, U, F) command.

2 Enter the desired value in the Value text box.

3 Enter the starting address of the memory range in the Start text box.

4 Enter the end address in the End text box.

5 Select one of the Size options.

6 Choose the Execute button.

The Byte, 16 Bit, or 32 Bit size option specifies the size of the values that are
used to fill memory.

Chapter 5: Debugging Programs
Displaying and Editing Memory

165

To search memory for a value or string

1 From the Memory window’s control menu, choose the Search... (ALT,
-, R) command.

2 Enter in the Value or String text box the value or string to search for.

3 Enter the starting address in the Start text box.

4 Enter the end address in the End text box.

5 Choose the Execute button.

6 Choose the Close button.

When the specified data is found, the location at which the value or string
was found is displayed in the Memory window.

Example To search addresses 6000h through 0ffffh, for the string "This":

Chapter 5: Debugging Programs
Displaying and Editing Memory

166

Displaying and Editing I/O Locations

This section shows you how:

• To display I/O locations

• To edit an I/O location

With the 6830x microprocessor, I/O locations are memory-mapped.

To display I/O locations

1 Choose the Window→I/O command.

2 From the I/O window’s control menu, choose the Define... (ALT, -, D)
command.

3 Enter the address in the Address text box.

4 Select whether the size of the I/O location is a Byte or 16 Bits.

5 Choose the Set button.

6 Choose the Close button.

The Window→I/O command displays the contents of the specified I/O
locations.

The debugger periodically reads the I/O locations and displays the latest
status in the I/O window. To prevent the debugger from reading the I/O
locations (and updating the I/O window), choose the RealTime→I/O
Polling→OFF (ALT, R, I, F) command.

Chapter 5: Debugging Programs
Displaying and Editing I/O Locations

167

Example To display the contents of address 2000:

To edit an I/O location

1 Display the I/O value to be changed with the Window→I/O command.

2 Double-click the value to be changed.

3 Use the keyboard to enter a new value.

4 Press the Enter key.

To confirm the modified values, press the Enter key for every changed value.

Editing the I/O locations temporarily halts user program execution. You
cannot modify I/O locations while the user program executes in the real-time
mode or when I/O polling is turned OFF.

Chapter 5: Debugging Programs
Displaying and Editing I/O Locations

168

Displaying and Editing Registers

This section shows you how:

• To display registers

• To edit registers

To display registers

• Choose the Window→Basic Registers command (or name any
desired set of registers).

The register values displayed in the window are periodically updated to show
you how the values change during program execution. The decoded flag
register flags allow you to identify the register status at a glance.

When a register window is updated, user program execution is temporarily
interrupted. To prevent the user program from being interrupted (and the
register window from being updated), choose the RealTime→Monitor
Intrusion→Disallowed (ALT, R, T, D) command to activate the real-time
mode.

Chapter 5: Debugging Programs
Displaying and Editing Registers

169

Example Register contents Displayed in the Basic Registers Window

Chapter 5: Debugging Programs
Displaying and Editing Registers

170

To edit registers

1 Display the register contents by choosing the Window→Basic
Registers command (or any desired set of registers).

2 Double-click the value to be changed.

3 Use the keyboard to enter a new value.

4 Press the Enter key.

Modifying register contents temporarily interrupts program execution. You
cannot modify register contents while the user program is running and
monitor intrusion is disallowed.

Note that register values are not actually changed until the Enter key is
pressed.

Double-clicking the status register (st) contents opens the Register Bit Fields
dialog box which you can use to set or clear individual bit fields.

Chapter 5: Debugging Programs
Displaying and Editing Registers

171

Tracing Program Execution

This section shows you how:

• To trace function flow

• To trace callers of a specified function

• To trace execution within a specified function

• To trace accesses to a specified variable

• To trace before a particular variable value and break

• To trace until the command is halted

• To stop a running trace

• To repeat the last trace

• To identify bus arbitration cycles in the trace

• To display bus cycles

• To display absolute or relative counts

How the Analyzer Works

When you trace program execution, the analyzer captures microprocessor
address bus, data bus, and control signal values at each clock cycle. The
values captured for one clock cycle are collectively called a state. A trace is a
collection of these states stored in analyzer memory (also called trace
memory).

The trigger condition tells the analyzer when to store states in trace memory.
The trigger position specifies whether states are stored before, after, or about
the state that satisfies the trigger condition.

The store condition limits the kinds of states that are stored in trace memory.

When the states stored are limited by the store condition, up to two states
which satisfy the prestore condition may be stored when they occur before
the states that satisfy the store condition.

Chapter 5: Debugging Programs
Tracing Program Execution

172

After a captured state satisfies the trigger condition, a trace becomes
complete when trace memory is filled with states that satisfy the store and
prestore conditions.

Note The analyzer traces unexecuted instructions due to prefetching in 6830x.

Trace Window Contents

When traces are completed, the Trace window is automatically opened to
display the trace results.

Each line in the trace shows the trace buffer state number, the type of state,
the module name and line number, the function name, the source file
information, and the time information for the state (relative to the other
lines, by default).

When bus cycles are included, the address, data, and disassembled
instruction or bus cycle status mnemonics are shown.

Chapter 5: Debugging Programs
Tracing Program Execution

173

To trace function flow

• Choose the Trace→Function Flow (ALT, T, F) command.

The command stores function entry points, and the resulting trace shows
program execution flow.

The command traces C function entry points only. It does not trace
execution for assembly language routines.

Note When using the MCC68K compiler, you must specify the -Kf option when
compiling programs in order for the debugger to be able to trace function
flow.

Example Function Flow Trace

Chapter 5: Debugging Programs
Tracing Program Execution

174

To trace callers of a specified function

1 Double-click the function name in one of the debugger windows.

2 Choose the Trace→Function Caller... (ALT, T, C) command.

3 Choose the OK button.

This command stores the first executable statement of the specified function
and prestores statements that execute before it. The prestored statements
show the caller of the function.

To identify interrupts in program execution, trace the caller of the interrupt
process routine using the Trace→Function Caller... (ALT, T, C) command.

For Assembler symbols, the system traces the last two instructions executed
before the specified Assembler symbol is reached. Specifying the first
symbol of a subroutine enables the system to trace the caller of the
subroutine.

Note The analyzer may fail in tracing the caller due to prefetching in 6830x. To
avoid this failure, specify the function by a value of its address + 2.

Chapter 5: Debugging Programs
Tracing Program Execution

175

Example To trace the caller of "next_message":

Double-click "next_message".

Choose the Trace→Function Caller... (ALT, T, C) command.

The Trace window becomes active and displays the trace results.

You can see how prefetching affects tracing by choosing the Display→Mixed
Mode (ALT, -, D, M) command from the Trace window’s control menu.

Chapter 5: Debugging Programs
Tracing Program Execution

176

To trace execution within a specified function

1 Double-click the function name in the Source window.

2 Choose the Trace→Function Statement... (ALT, T, S) command.

This command traces C functions only. It does not trace execution of
assembly language subroutines.

Example To trace execution within "next_message":

Double-click "next_message".

Choose the Trace→Function Statement... (ALT, T, S) command.

The Trace window becomes active and displays the results. You can see how
prefetching affects tracing by choosing the Display→Mixed Mode (ALT, -, D,
M) command from the Trace window’s control menu.

Chapter 5: Debugging Programs
Tracing Program Execution

177

To trace accesses to a specified variable

1 Double-click the global variable name in the Source window.

2 Choose the Trace→Variable Access... (ALT, T, V) command.

The command also traces access to the Assembler symbol specified by its
name and size.

Example To trace access to "message_id":

Double-click "message_id".

Choose the Trace→Variable Access... (ALT, T, V) command.

The Trace window becomes active and displays the trace results.

Chapter 5: Debugging Programs
Tracing Program Execution

178

To trace before a particular variable value and break

1 Double-click the desired global variable.

2 Choose the Trace→Variable Break... (ALT, T, B) command.

3 Enter the value in the Value text box.

4 Choose the OK button.

The Trace→Variable Break... (ALT, T, B) command breaks execution as soon
as the specified value is written to the specified global variable.

The command also breaks execution at the Assembler symbol specified by its
name and size.

Chapter 5: Debugging Programs
Tracing Program Execution

179

Example To break execution as soon as "message_id" contains "0":

Double-click "message_id".

Choose the Trace→Variable Break... (ALT, T, B) command.

Enter "0" in the Value text box.

Choose the OK button.

The debugger halts execution as soon as the program writes "0" to the
"message_id" variable. Once execution has halted, the Trace window
becomes active and displays the results.

Chapter 5: Debugging Programs
Tracing Program Execution

180

To trace until the command is halted

1 To start the trace, choose the Trace→Until Halt (ALT, T, U)
command.

2 When you are ready to stop the trace, choose the Trace→Halt (ALT,
T, H) command.

This command is useful, for example, in tracing program execution that leads
to a processor halted state or to a break to the monitor.

To stop a running trace

• Choose the Trace→Halt (ALT, T, H) command.

The command is used to:

Stop the trace initiated with the Trace→Until Halt (ALT, T, U) command.

Force termination of the trace that cannot be completed due to absence
of the specified state.

Stop a trace before the trace buffer becomes full.

To repeat the last trace

• Choose the Trace→Again (ALT, T, A) command, or press the F7 key.

The Trace→Again (ALT, T, A) command traces program execution using the
last trace specification stored in the HP 64700.

Chapter 5: Debugging Programs
Tracing Program Execution

181

To identify bus arbitration cycles in the trace

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select the Tag Bus Arbitration for Analyzer option.

3 Choose the OK button to confirm your selection.

When the Tag Bus Arbitration for Analyzer option is selected, a state is
stored in trace memory when a bus arbitration cycle occurs.

Bus arbitration tag states can be identified using the dma predefined status
value.

To display bus cycles

1 Place the cursor on the line from which you wish to display the bus
cycles.

2 From the Trace window’s control menu, choose the Display→Mixed
Mode (ALT, -, D, M) command or the Display→Bus Cycle Only (ALT,
-, D, C) command.

The Display→Mixed Mode (ALT, -, D, M) command displays each source line
followed by the bus cycles associated with it.

The Display→Bus Cycle Only (ALT, -, D, C) command displays the bus
cycles without the source lines.

The display starts from the cursor-selected line.

To hide the bus cycles, choose the Display→Source Only (ALT, -, D, S)
command from the Trace window’s control menu.

Chapter 5: Debugging Programs
Tracing Program Execution

182

Example Bus Cycles Displayed in Trace with "Mixed Mode" selected:

To display absolute or relative counts

• From the Trace window’s control menu, choose the
Display→Count→Absolute (ALT, -, D, C, A) or
Display→Count→Relative (ALT, -, D, C, R) command.

Choosing the Display→Count→Relative (ALT, -, D, C, R) command selects
the relative mode where the state-to-state time intervals are displayed.

Choosing the Display→Count→Absolute (ALT, -, D, C, A) command selects
the absolute mode where the trace time is displayed as the total time elapsed
since the analyzer has been triggered.

Chapter 5: Debugging Programs
Tracing Program Execution

183

Setting Up Custom Trace Specifications

This section shows you how:

• To set up a "Trigger Store" trace specification

• To set up a "Find Then Trigger" trace specification

• To set up a "Sequence" trace specification

• To edit a trace specification

• To trace "windows" of program execution

• To store the current trace specification

• To load a stored trace specification

Note The analyzer traces unexecuted instructions due to prefetching in 6830x.

Note Analyzer memory is unloaded two states at a time. If you use a storage
qualifier to capture states that do not occur often, it’s possible that one of
these states has been captured and stored but cannot be displayed because
another state must be stored before the pair can be unloaded. When this
happens, you can stop the trace measurement to see all stored states.

When Do I Use the Different Types of Trace Specifications?

When you wish to trigger the analyzer on the occurrence of one state, use the
"Trigger Store" dialog box to set up the trace specification.

When you wish to trigger the analyzer on the occurrence of one state
followed by another state, or one state followed by another state but only
when that state occurs before a third state, use the "Find Then Trigger"
dialog box to set up the trace specification.

When you wish to trigger the analyzer on a sequence of more than two states,
use the "Sequence" dialog box to set up the trace specification.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

184

To set up a "Trigger Store" trace specification

1 Choose the Trace→Trigger Store... (ALT, T, T) command.

2 Specify the trigger condition using the Address, Data, and/or Status
text boxes within the Trigger group box.

3 Specify the trigger position by selecting the trigger start, trigger
center, or trigger end option in the Trigger group box.

4 Specify the store condition using the Address, Data, and/or Status
text boxes within the Store group box.

5 Choose the OK button to set up the analyzer and start the trace.

The Trace→Trigger Store... (ALT, T, T) command opens the Trigger Store
Trace dialog box:

A group of Address, Data, and Status text boxes combine to form a state

qualifier. You can specify an address range by entering a value in the End
Address box. By selecting the NOT check box, you can specify all states
other than those identified by the address, data, and status values.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

185

Example To trace execution after the "convert_case" function:

Choose the Trace→Trigger Store... (ALT, T, T) command.

Enter "convert_case" in the Address text box in the Trigger group box.

Choose the OK button.

Example To trace execution before and after the "convert_case" function and store
only states with "write" status:

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

186

Example To specify the trigger condition as any address in the range 1000h through
1fffh:

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

187

To set up a "Find Then Trigger" trace specification

1 Choose the Trace→Find Then Trigger... (ALT, T, D) command.

2 Specify the sequence, which is made up of the enable, trigger store,
trigger, and store conditions.

3 Specify the restart, count, and prestore conditions.

4 Specify the trigger position by selecting the trigger start, trigger
center, or trigger end option.

5 If you want emulator execution to break to the monitor when the
trigger condition occurs, select the Break On Trigger check box.

6 Choose the OK button to set up the analyzer and start the trace.

The Trace→Find Then Trigger... (ALT, T, D) command opens the Find then
Trigger Trace dialog box:

Choosing the enable, trigger, store, count, or prestore buttons opens a
Condition dialog box that lets you select "any state", "no state", trace patterns

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

188

"a" through "h", "range", or "arm" as the condition. Patterns "a" through "h",
"range", and "arm" are grouped into two sets, and resources within a set may
be combined using the "or" or "nor" logical operators. Resources from the two
sets may be combined using the OR or AND logical operators.

The range and pattern resources are defined by double-clicking on the
resource name in the Pattern/Range list box.

If you double-click on a pattern name, the Trace Pattern dialog box is opened
to let you specify address, data, and status values. By selecting the NOT
check box, you can specify all states other than those identified by the
address, data, and status values. The Direct check box lets you specify
status values other than those that have been predefined.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

189

If you double-click on the range resource (bottom of the Pattern/Range list
box), the Trace Range dialog box is opened to let you select either the
Address range or the Data range option and enter the minimum and
maximum values in the range.

Example To trace execution after the "convert_case" function:

Choose the Trace→Find Then Trigger... (ALT, T, D) command.

Choose the Trigger button (default: any state).

Select "a".

Choose the OK button.

Double-click "a" in the Pattern/Range list box.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

190

Enter "convert_case" in the Address text box in the Trace Pattern dialog box.

Choose the OK button in the Trace Pattern dialog box.

Choose the OK button in the Find then Trigger Trace dialog box.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

191

Example To trace about the "next_message" function when it follows the
"change_status" function and store all states after the "change_status"
function:

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

192

To set up a "Sequence" trace specification

Sequence trace specifications let you trigger the analyzer on a sequence of
several captured states.

There are 8 sequence levels. When a trace is started, the first sequence level
is active. You select one of the remaining sequence levels as the level that,
when entered, will trigger the analyzer. Each level lets you specify two
conditions that, when satisfied by a captured state, will cause branches to
other levels:

if (state matches primary branch condition)
 then GOTO (level associated with primary branch)
else if (state matches secondary branch condition)
 then GOTO (level associated with secondary branch)
else
 stay at current level

Note that if a state matches both the primary and secondary branch
conditions, the primary branch is taken.

Each sequence level also has a store condition that lets you specify the states
that get stored while at that level.

1 Choose the Trace→Sequence... (ALT, T, Q) command.

2 Specify the primary branch, secondary branch, and store conditions
for each sequence level you will use.

3 Specify which sequence level to trigger on. The analyzer triggers on
the entry to the specified level. Therefore, the condition that causes
a branch to the specified level actually triggers the analyzer.

4 Specify the count and prestore conditions.

5 Specify the trigger position by selecting the trigger start, trigger
center, or trigger end option.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

193

6 If you want emulator execution to break to the monitor when the
trigger condition occurs, select the Break On Trigger check box.

7 Choose the OK button to set up the analyzer and start the trace.

The Trace→Sequence... (ALT, T, Q) command calls the Sequence Trace
Setting dialog box, where you make the following trace specifications:

Choosing the primary branch, secondary branch, store, count, or prestore
buttons opens a Condition dialog box that lets you select "any state", "no
state", trace patterns "a" through "h", "range", or "arm" as the condition.
Patterns "a" through "h", "range", and "arm" are grouped into two sets, and
resources within a set may be combined using the "or" or "nor" logical
operators. Resources in the two sets may be combined using the OR or AND
logical operators.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

194

The range and pattern resources are defined by double-clicking on the
resource name in the Pattern/Range list box.

If you double-click on a pattern name, the Trace Pattern dialog box is opened
to let you specify address, data, and status values. By selecting the NOT
check box, you can specify all states other than those identified by the
address, data, and status values. The Direct check box lets you specify
status values other than those that have been predefined.

If you double-click on the range resource at the bottom of the Pattern/Range
list box, the Trace Range dialog box is opened to let you select either the
Address range option or the Data range option and enter the minimum and
maximum values in the range.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

195

Example To specify address "convert_case" as the trigger condition:

Example To specify execution of "convert_case" and "next_message" as the trigger
sequence:

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

196

To edit a trace specification

1 Choose the Trace→Edit... (ALT, T, E) command.

2 Using the Sequence Trace dialog box, edit the trace specification as
desired.

3 Choose the OK button.

You can use this command to edit trace specifications, including trace
specifications that are automatically set up. For example, you can use this
command to edit the trace specification that is set up when the
Trace→Function Flow (ALT, T, F) command is chosen.

To trace "windows" of program execution

1 Because pairs of sequence levels are used to capture window enable
and disable states both before and after the trigger, choose the
Trace→Sequence... (ALT, T, Q) command.

2 Set up the sequence levels, patterns, and other trace options (as
described below) in the Sequence Trace dialog box.

3 Choose the OK button.

When you trace "windows" of program execution, you store states that occur
between one state and another state. Storing states that occur between two
states is different from the trace specification set up by the
Trace→Statement... (ALT, T, S) command, which stores states in a function’s
range of addresses.

In a typical windowing trace specification, sequence levels are paired. The
first sequence level searches for the window enable state, and no states are
stored while searching. When the window enable state is found, the second

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

197

sequence level stores the states you’re interested in while searching for the
window disable state.

If you want to store the window of code execution before and after the
trigger condition, use two sets of paired sequence levels: one window
enable/disable pair of sequence levels before the trigger, and another
disable/enable pair after the trigger as shown below.

Notice that the order of the second sequence level pair is swapped. In
sequence level 2, if the analyzer finds the trigger condition while searching
for the window disable state, it will branch to sequence level 3 where it
continues its search for the window disable state. After this, the analyzer will
remain in sequence levels 3 and 4 until the trace memory is filled, completing
the trace.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

198

Example To trace the window of code execution between lines 46 and 51 of the sample
program, triggering on any state in the window:

Notice that the analyzer triggers on the entry to sequence level 3. The
primary branch condition in level 2 actually specifies the trigger condition.

To store the current trace specification

1 Choose the Trace→Edit... (ALT, T, E) command.

2 Choose the Save... button.

3 Specify the name of the trace specification file.

4 Choose the OK button.

You can also store trace specifications from the Trigger Store Trace, Find
Then Trigger Trace, or Sequence Trace dialog boxes.

The extension for trace specification files defaults to ".TRC".

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

199

To load a stored trace specification

1 Choose the Trace→Trigger Store... (ALT, T, T), Trace→Find Then
Trigger... (ALT, T, D), Trace→Sequence... (ALT, T, Q), or
Trace→Edit... (ALT, T, E) command.

2 Choose the Load... button.

3 Select the desired trace specification file.

4 Choose the OK button.

A "Trigger Store" trace specification file can be loaded into any of the trace
setting dialog boxes. A "Find Then Trigger" trace specification file can be
loaded into either the Find Then Trigger Trace or Sequence Trace dialog
boxes. A "Sequence" trace specification file can only be loaded into the
Sequence Trace dialog box.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

200

Part 3

Reference

Descriptions of the product in a dictionary or encyclopedia format.

201

Part 3

202

6

Command File and Macro Command
Summary

203

Command File and Macro Command
Summary

This section lists the Real-Time C Debugger break macro and command file
commands, providing syntax and brief description for each of the listed
commands. For details on each command, refer to the command
descriptions.

The characters in parentheses can be ignored for shortcut entry.

Run Control Commands

Command Param_1 Param_2 Param_3 Param_4 Operation
BRE(AK) Breaking execution
COM(E) Run to cursor-indicated line
OVE(R) Stepping over
OVE(R) count Repeated a number of times
OVE(R) count address From specified address
OVE(R) count STA(RT) From transfer address
RES(ET) Resetting processor
RET(URN) Until return
RUN From current address
RUN address From specified address
RUN STA(RT) From transfer address
RUN RES(ET) From reset
STE(P) Stepping
STE(P) count Repeated a number of times
STE(P) count address From specified address
STE(P) count STA(RT) From transfer address

Variable and Memory Commands

Command Param_1 Param_2 Param_3 Param_4 Operation
MEM(ORY) address Changing address displayed
MEM(ORY) address TO value Edit memory, display size
MEM(ORY) size address TO value Edit memory, specify size
MEM(ORY) FIL(L) size addr-range value Filling memory contents
MEM(ORY) COP(Y) size addr-range address Copying memory contents
MEM(ORY) IMA(GE) size addr-range Copying target memory
MEM(ORY) LOA(D) MOT(OSREC) filename Loading memory from a
 Motorola S-record file
MEM(ORY) LOA(D) INT(ELHEX) filename Loading memory from an
 Intel Hexadecimal file
MEM(ORY) STO(RE) MOT(OSREC) addr-range filename Storing memory to a
 Motorola S-record file
MEM(ORY) STO(RE) INT(ELHEX) addr-range filename Storing memory to an
 Intel Hexadecimal file
MEM(ORY) BYT(E) Byte format display
MEM(ORY) WOR(D) 16-Bit format display
MEM(ORY) ABS(OLUTE) Single-column display

204

MEM(ORY) BLO(CK) Multi-column display
MEM(ORY) LON(G) 32-Bit format display
IO SET size space address Registering I/O display
IO DEL(ETE) size space address Deleting I/O display
IO size space address TO value Editing I/O
VAR(IABLE) address TO value Editing variable
WP SET address Registering watchpoint
WP DEL(ETE) address Deleting watchpoint
WP DEL(ETE) ALL Deleting all watchpoints

Breakpoint Commands

Command Param_1 Param_2 Param_3 Param_4 Operation
MODE BKP(TBREAK) ON|OFF Deletes all/prevents new
breakpoints
BM SET linenumber command Setting break macro
BM SET plinenum command Setting break macro
BM DEL(ETE) linenumber Deleting break macro
BM DEL(ETE) plinenum Deleting break macro
BP SET address Setting breakpoint
BP DEL(ETE) address Deleting breakpoint
BP DEL(ETE) ALL Deleting breakpoint
BP DISABLE address Disabling a breakpoint
BP ENABLE address Enabling a breakpoint
EVA(LUATE) address Expression window display
EVA(LUATE) "strings" Printing string
EVA(LUATE) CLE(AR) Clearing Expression window

Window Open/Close Command

Command Param_1 Param_2 Param_3 Param_4 Operation
DIS(PLAY) window-name Opening the named window
ICO(NIC) window-name Closing the named window

Configuration Command

Command Param_1 Param_2 Param_3 Param_4 Operation
CON(FIG) STA(RT) Starting configuration
CON(FIG) config-item config-ans Executing configuration
CON(FIG) END Ending configuration
MAP STA(RT) Starting mapping
MAP addr-range memtype func-code attribute Executing mapping
MAP OTHER memtype func-code Mapping OTHER area
MAP END Ending mapping
MOD(E) MNE(MONIC) ON Enabling Mnemonic display
MOD(E) MNE(MONIC) OFF Enabling Source display
MOD(E) REA(LTIME) ON Enabling real-time mode
MOD(E) REA(LTIME) OFF Disabling real-time mode
MOD(E) IOG(UARD) ON Enabling I/O guard
MOD(E) IOG(UARD) OFF Disabling I/O guard
MOD(E) MEM(ORYPOLL) ON Enabling Memory polling
MOD(E) MEM(ORYPOLL) OFF Disabling Memory polling
MOD(E) WAT(CHPOLL) ON Enabling WatchPoint polling
MOD(E) WAT(CHPOLL) OFF Disabling WatchPoint polling
MOD(E) LOG ON Enabling log file output
MOD(E) LOG OFF Disabling log file output
MOD(E) BNC IN Setting BNC input
MOD(E) BNC OUT Setting BNC output
MOD(E) SYM(BOLCASE) ON Case sensitive symbol search
MOD(E) SYM(BOLCASE) OFF Case insensitive sym. search
MOD(E) DOW(NLOAD) ERR(ABORT) Error causes load abort

Chapter 6: Command File and Macro Command Summary

205

MOD(E) DOW(NLOAD) NOE(RRABORT) Load continues after error
MOD(E) SOU(RCE) ASK(PATH) Prompt for source paths
MOD(E) SOU(RCE) NOA(SKPATH) Don’t prompt for src paths
MOD(E) TRACECLOCK BACKGROUND Trace background cycles
MOD(E) TRACECLOCK BOTH Trace all processor cycles
MOD(E) TRACECLOCK USER Trace user program cycles

File Command

Command Param_1 Param_2 Param_3 Param_4 Operation
FIL(E) SOU(RCE) modulename Displaying source file
FIL(E) OBJ(ECT) filename func-code Loading object
FIL(E) SYM(BOL) filename func-code Loading symbol
FIL(E) BIN(ARY) filename func-code Loading data
FIL(E) APPEND filename func-code Appending symbol
FIL(E) CHA(INCMD) filename Chaining command files
FIL(E) COM(MAND) filename Executing command file
FIL(E) LOG filename Specifying command log file
FIL(E) RER(UN) Re-executes command file
FIL(E) CON(FIGURATION) LOA(D) filename Loads config. from file
FIL(E) CON(FIGURATION) STO(RE) filename Stores configuration to file
FIL(E) ENV(IRONMENT) LOA(D) filename Loads environment from file
FIL(E) ENV(IRONMENT) SAV(E) filename Stores environment to file

Trace Commands

Command Param_1 Param_2 Param_3 Param_4 Operation
TRA(CE) FUN(CTION) FLO(W) Tracing function flow
TRA(CE) FUN(CTION) CAL(L) funcname Tracing function call
TRA(CE) FUN(CTION) STA(TEMENT) funcname Tracing statement
TRA(CE) VAR(IABLE) ACC(ESS) address Tracing access to variable
TRA(CE) VAR(IABLE) BRE(AK) address value Setting breakpoint variable
TRA(CE) STO(P) Stopping tracing
TRA(CE) ALW(AYS) Tracing until halt
TRA(CE) AGA(IN) Restarting tracing
TRA(CE) SAV(E) filename Storing trace specification
TRA(CE) LOA(D) filename Loading trace specification
TRA(CE) CUS(TOMIZE) Starts trace w/loaded spec.
TRA(CE) DIS(PLAY) MIX(ED) Enabling source+bus display
TRA(CE) DIS(PLAY) SOU(RCE) Enabling source display
TRA(CE) DIS(PLAY) BUS Enabling bus display
TRA(CE) DIS(PLAY) ABS(OLUTE) Displaying absolute time
TRA(CE) DIS(PLAY) REL(ATIVE) Displaying relative time
TRA(CE) COP(Y) DISPLAY Copying trace display
TRA(CE) COP(Y) ALL Copying trace results
TRA(CE) FIN(D) TRI(GGER) Centers trigger in window
TRA(CE) FIN(D) STA(TE) state-num Centers state in window
TRA(CE) COP(Y) SPE(C) Copying specification

Symbol Window Commands

Command Param_1 Param_2 Param_3 Param_4 Operation
SYM(BOL) LIS(T) MOD(ULE) Displaying module
SYM(BOL) LIS(T) FUN(CTION) Displaying function
SYM(BOL) LIS(T) EXT(ERNAL) Displaying global symbol
SYM(BOL) LIS(T) INT(ERNAL) funcname Displaying local symbol
SYM(BOL) LIS(T) GLO(BAL) Displaying global asm symbol
SYM(BOL) LIS(T) LOC(AL) modulename Displaying local asm symbol
SYM(BOL) ADD usersymbol address Adding user-defined symbol
SYM(BOL) DEL(ETE) usersymbol Deleting user-defined symbol
SYM(BOL) DEL(ETE) ALL Deleting all user symbols

Chapter 6: Command File and Macro Command Summary

206

SYM(BOL) MAT(CH) "strings" Displaying matched string
SYM(BOL) COP(Y) DIS(PLAY) Copying symbol display
SYM(BOL) COP(Y) ALL Copying all symbols

Command File Control Command

Command Param_1 Param_2 Param_3 Param_4 Operation
EXIT Exiting command file
EXIT VAR(IABLE) address value Exiting with variable cont.
EXIT REG(ISTER) regname value Exiting with register cont.
EXIT MEM(ORY) size address value Exiting with memory contents
EXIT IO BYTE/WORD address value Exiting with I/O contents
WAIT MON(ITOR) Wait until MONITOR status
WAIT RUN Wait until RUN status
WAIT UNK(NOWN) Wait until UNKNOWN status
WAIT SLO(W) Wait until SLOW CLOCK status
WAIT TGT(RESET) Wait until TARGET RESET
WAIT SLE(EP) Wait until SLEEP status
WAIT GRA(NT) Wait until BUS GRANT status
WAIT NOB(US) Wait until NOBUS status
WAIT TCO(M) Wait until end of trace
WAIT THA(LT) Wait until halt
WAIT TIM(E) seconds Wait a number of seconds

Miscellaneous Commands

Command Param_1 Param_2 Param_3 Param_4 Operation
ASM address usersymbol "inst-string" In-line assembler
BEE(P) Sounding beep
BUTTON label "command" Adds button to Button window
BUTTON DELETE label Deletes button from Button
 window
BUTTON DELETEALL Deletes all buttons from
 Button window
QUI(T) Exiting debugger
COP(Y) TO filename Specifying copy destination
COP(Y) SOU(RCE) Copying Source window
COP(Y) REG(ISTER) Copying Register window
COP(Y) MEM(ORY) Copying Memory window
COP(Y) WAT(CHPOINT) Copying WatchPoint window
COP(Y) BAC(KTRACE) Copying BackTrace window
COP(Y) IO Copying I/O window
COP(Y) EXP(RESSION) Copying Expression window
CUR(SOR) address Positioning cursor
CUR(SOR) PC Finding current PC
DIR(ECTORY) directoryname Directory for source search
NOP Non-operative
REG(ISTER) regname TO value Editing register contents
SEA(RCH) STR(ING) direction case strings Searching string
SEA(RCH) FUN(CTION) funcname Selecting function
SEA(RCH) MEM(ORY) size addr-range value Searching memory
SEA(RCH) MEM(ORY) STR(ING) "strings" Searching memory for string
TER(MCOM) ti-command Terminal Interface command

Chapter 6: Command File and Macro Command Summary

207

Parameters

Parameter Description Notation
address Address See "Reference".
addr-range Address range
attribute Memory map attributes See "Reference".
case Case sensing
command Macro command Commands listed in the "Reference".
config-ans Setting See "Reference".
config-item Configuration See "Reference".
count Count Decimal notation
direction Search direction
directoryname Directory name
filename File name
format Memory file format
funcname Function name
func-code Function code
label Button label
linenumber Line number
memtype Memory type
modulename Module name
plinenum Macro line number line number.macro number (ex. 34.1)
regname Register name
seconds Time in seconds
size Data size
space Memory or I/O space
strings String "string"
usersymbol User-defined symbol See "Reference".
value Value See "Reference".
window-name Window name
 (1st 3 characters) See "Reference."

WAIT Command Dialog Box

This dialog box appears when the WAIT command is included in a command
file, break macro, or button.

Choosing the STOP button cancels the WAIT command.

Chapter 6: Command File and Macro Command Summary

208

7

Expressions in Commands

209

Expressions in Commands

When you enter values and addresses in commands, you can use:

• Numeric constants (hexadecimal, decimal, octal, or binary values).

• Symbols (identifiers).

• Function codes.

• C operators (pointers, arrays, structures, unions, unary minus operators)
and parentheses (specifying the order of operator evaluation).

210

Numeric Constants

All numeric constants are assumed to be hexadecimal, except when the
number refers to a count; count values are assumed to be decimal. By
appending a suffix to the numeric value, you can specify its base.

The debugger expressions support the following numeric constants with or
without radix:

Hexadecimal Alphanumeric strings starting with "0x" or "0X" and
consisting of any of ’0’ through ’9’, ’A’ through ’F’, or ’a’
through ’f’ (for example: 0x12345678, 0xFFFF0000).

Alphanumeric strings starting with any of ’0’ through ’9’,
ending with ’H’ or ’h’, and consisting of any of ’0’ through
’9’, ’A’ through ’F’, or ’a’ through ’f’ (for example:
12345678H, 0FFFF0000h).

Alphanumeric strings starting with any of ’0’ through ’9’
and consisting of any of ’0’ through ’9’, ’A’ through ’F’, or ’a’
through ’f’ (for example: 12345678, 0FFFF0000).

Hexadecimal strings starting with alphabetical characters
must be preceded by 0. For example, FF40H must be
entered as 0FF40H.

Decimal Numeric strings consisting of any of ’0’ through ’9’ and
ending with ’T’ or ’t’ (for example: 128T, 1000t).

Octal Numeric strings consisting of any of ’0’ through ’7’ and
ending with ’O’ or ’o’ (not zero) (for example: 200o, 377O).

Binary Numeric strings consisting of ’0’ or ’1’ and ending with ’Y’ or
’y’ (for example: 10000000y, 11001011Y).

Don’t Care Numeric strings containing ’X’ or ’x’ values. All numeric
strings must begin with a numeric value. For example,
x1x0y must be entered as 0x1x0y.

Chapter 7: Expressions in Commands
Numeric Constants

211

Symbols

The debugger expressions support the following symbols (identifiers):

• Symbols defined in C source code.

• Symbols defined in assembly language source code.

• Symbols added with the Symbol window control menu’s User
defined→Add... (ALT, -, U, A) command.

• Line number symbols.

Symbol expressions may be in the following format (where bracketed parts
are optional):

[module_name\\]symbol_name[,format_spec]

Module Name

The module names include C/Assembler module names as follows:

Assembler
module name

(file_path)asm_file_name

C module name source_file_name
(without extension)

Symbol Name

The symbol names include symbols defined in C/Assembler source codes,
user-defined symbols, and line number symbols:

User-defined
symbols

Strings consisting of up to 256 characters including:
alphanumeric characters, _ (underscore), and ? (question
mark).

Line number
symbols

#source_file_line_number

Chapter 7: Expressions in Commands
Symbols

212

The symbol names can also include either * or & to explicitly specify the
evaluation of the symbol.

Symbol address &symbol_name

Symbol data *symbol_name

Format Specification

The format specifications define the variable display format or size for the
variable access or break tracing:

String s

Decimal d (current size), d8 (8 bit), d16 (16 bit), d32 (32 bit)

Unsigned
decimal

u (current size), u8 (8 bit), u16 (16 bit), u32 (32 bit)

Hexadecimal x (current size), x8 (8 bit), x16 (16 bit), x32 (32 bit)

Examples Some example symbol expressions are shown below:

sample\\#22,x32

Display the address of line number 22 in the module
"sample," formatted as a 32-bit hex number. This form
(with the format specification) is used in the watchpoint
window, expression window, etc.

sample\\#22

Refer to the address of line number 22 in the module
"sample." This form (without the format specification) is
used in the trace specification, memory display window,
etc.

data[2].message,s

Display the structure element "message" in the third
element of the array "data" as a string.

Chapter 7: Expressions in Commands
Symbols

213

dat →message,s

Display the structure element "message" pointed to by the
"dat" pointer as a string.

dat →message,x32

Display the structure element "message" pointed to by the
"dat" pointer as a 32-bit hex number.

sample\\data[1].status,d32

Display the structure element "status" in the second
element of the array "data" that is in the module "sample"
as a 32-bit decimal integer.

&data[0]

Refer to the address of the first element of the array "data."

*1000

Does not do anything. (It displays dashes, as an indication
of a parsing error.) Note that you cannot use constants as
an address.

Chapter 7: Expressions in Commands
Symbols

214

Function Codes

Addresses can be specified with any of the function codes. The function
codes are appended to the addresses, preceded by @ (for example:
0a3bc@up).

You must include a function code when referring to an address that was
mapped with a function code other than X. This general rule is true except
when:

• Specifying addresses in trace commands (because address qualifiers are
compared with values captured on the address bus -- function code
information is captured as part of the bus cycle status).

• Referring to a program counter address (because the function code is
determined by the Supervisor/User status flag bit).

C Operators

The debugger expressions support the following C operators. The order of
operator evaluation can be modified using parentheses ’(’ and ’)’; however, it
basically follows C conventions:

Pointers ’*’ and ’&’

Arrays ’[’ and ’]’

Structures or unions ’.’ and "->"

Unary minus ’-’

Chapter 7: Expressions in Commands
Function Codes

215

216

8

Menu Bar Commands

217

Menu Bar Commands

This chapter describes the commands that can be chosen from the menu bar.
Command descriptions are in the order they appear in the menu bar (top to
bottom, left to right).

• File→Load Object... (ALT, F, L)
• File→Command Log→Log File Name... (ALT, F, C, N)
• File→Command Log→Logging ON (ALT, F, C, O)
• File→Command Log→Logging OFF (ALT, F, C, F)
• File→Run Cmd File... (ALT, F, R)
• File→Load Debug... (ALT, F, D)
• File→Save Debug... (ALT, F, S)
• File→Load Emulator Config... (ALT, F, E)
• File→Save Emulator Config... (ALT, F, V)
• File→Copy Destination... (ALT, F, P)
• File→Exit (ALT, F, X)
• File→Exit HW Locked (ALT, F, H)
• Execution→Run (ALT, E, U)
• Execution→Run to Cursor (ALT, R C)
• Execution→Run to Caller (ALT, E, T)
• Execution→Run... (ALT, E, R)
• Execution→Single Step (ALT, E, N)
• Execution→Step Over (ALT, E, O)
• Execution→Step... (ALT, E, S)
• Execution→Break (ALT, E, B)
• Execution→Reset (ALT, E, E)
• Breakpoint→Set at Cursor (ALT, B, S)
• Breakpoint→Delete at Cursor (ALT, B, D)
• Breakpoint→Set Macro... (ALT, B, M)
• Breakpoint→Delete Macro (ALT, B, L)
• Breakpoint→Edit... (ALT, B, E)
• Variable→Edit... (ALT, V, E)
• Trace→Function Flow (ALT, T, F)
• Trace→Function Caller... (ALT, T, C)
• Trace→Function Statement... (ALT, T, S)

218

• Trace→Variable Access... (ALT, T, V)
• Trace→Variable Break... (ALT, T, B)
• Trace→Edit... (ALT, T, E)
• Trace→Trigger Store... (ALT, T, T)
• Trace→Find Then Trigger... (ALT, T, D)
• Trace→Sequence... (ALT, T, Q)
• Trace→Until Halt (ALT, T, U)
• Trace→Halt (ALT, T, H)
• Trace→Again (ALT, T, A)
• RealTime→Monitor Intrusion→Disallowed (ALT, R, T, D)
• RealTime→Monitor Intrusion→Allowed (ALT, R, T, A)
• RealTime→I/O Polling→ON (ALT, R, I, O)
• RealTime→I/O Polling→OFF (ALT, R, I, F)
• RealTime→Watchpoint Polling→ON (ALT, R, W, O)
• RealTime→Watchpoint Polling→OFF (ALT, R, W, F)
• RealTime→Memory Polling→ON (ALT, R, M, O)
• RealTime→Memory Polling→OFF (ALT, R, M, F)
• Assemble... (ALT, A)
• Settings→Emulator Config→Hardware... (ALT, S, E, H)
• Settings→Emulator Config→Memory Map... (ALT, S, E, M)
• Settings→Emulator Config→Information... (ALT, S, E, I)
• Settings→Communication... (ALT, S, C)
• Settings→BNC→Outputs Analyzer Trigger (ALT, S, B, O)
• Settings→BNC→Input to Analyzer Arm (ALT, S, B, I)
• Settings→Font... (ALT, S, F)
• Settings→Tabstops... (ALT, S, T)
• Settings→Symbols→Case Sensitive→ON (ALT, S, S, C, O)
• Settings→Symbols→Case Sensitive→OFF (ALT, S, S, C, F)
• Settings→Extended→Trace Cycles→User (ALT, S, X, T, U)
• Settings→Extended→Trace Cycles→Monitor (ALT, S, X, T, M)
• Settings→Extended→Trace Cycles→Both (ALT, S, X, T, B)
• Settings→Extended→Load Error Abort→ON (ALT, S, X, L, O)
• Settings→Extended→Load Error Abort→OFF (ALT, S, X, L, F)
• Settings→Extended→Source Path Query→ON (ALT, S, X, S, O)
• Settings→Extended→Source Path Query→OFF (ALT, S, X, S, F)
• Window→Cascade (ALT, W, C)
• Window→Tile (ALT, W, T)
• Window→Arrange Icons (ALT, W, A)

Chapter 8: Menu Bar Commands

219

• Window→1-9 <win_name> (ALT, W, 1-9)
• Window→More Windows... (ALT, W, M)
• Help→About Debugger/Emulator... (ALT, H, D)

Chapter 8: Menu Bar Commands

220

File→Load Object... (ALT, F, L)

Loads the specified object file and symbolic information into the debugger.

Program code is loaded into emulation memory or target system RAM.

Object files must be IEEE-695 format absolute files. Some software
development tools that generate this format are:

Microtec MCC68K Compiler

Microtec ASM68K Assembler

Microtec LNK68K Linker

HP AxLS CC68000 Compiler

HP AxLS AS68K Assembler

HP AxLS LD68K Linker

You can also load Motorola S-Record and Intel Hexadecimal format files;
however, no symbolic information from these files will be loaded.

Load Object File Dialog Box

Choosing the File→Load Object... (ALT, F, L) command opens the following
dialog box:

Chapter 8: Menu Bar Commands
File→Load Object... (ALT, F, L)

221

Current Shows the currently loaded object file.

File Name Specifies the object file to be loaded. The system defaults
the file extension to ".x".

Fcode Assigns any of the function codes to the destination
memory area.

Bytes Loaded Displays the loaded data in Kbytes.

Symbols Only Loads only the symbolic information. This is used when
programs are already in memory (for example, when the
debugger is exited and reentered without turning OFF
power to the target system or when code is in target
system ROM).

Data Only Loads program code but not symbols.

Symbols
Append

Appends the symbols from the specified object file to the
currently loaded symbols. This lets you debug code loaded
from multiple object files.

Load Starts loading the specified object file and closes the dialog
box.

Cancel Closes the dialog box without loading the object file.

Browse... Opens a file selection dialog box from which you can select
the object file to be loaded.

Command File Command

FIL(E) OBJ(ECT) file_name func_code
Loads the specified object file and symbols into the debugger.

FIL(E) SYM(BOL) file_name func_code
Loads only the symbolic information from the specified object file.

FIL(E) BIN(ARY) file_name func_code
Loads only the program code from the specified object file.

Chapter 8: Menu Bar Commands
File→Load Object... (ALT, F, L)

222

FIL(E) APP(END) file_name func_code
Appends the symbol information from the specified object file to the
currently loaded symbol information.

See Also

"To load user programs" in the "Loading and Displaying Programs" section of
the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
File→Load Object... (ALT, F, L)

223

File→Command Log→Log File Name... (ALT, F, C, N)

Lets you name a new command log file.

The current command log file is closed and the specified command log file is
opened. The default command log file name is "log.cmd".

Command log files can be executed with the File→Run Cmd File... (ALT, F,
R) command.

The File→Command Log→Logging OFF (ALT, F, C, F) command stops the
logging of executed commands.

This command opens a file selection dialog box from which you can select the
command log file. Command log files have a ".CMD" extension.

Command File Command

FIL(E) LOG filename

See Also

"To create a command file" in the "Using Command Files" section of the
"Using the Debugger Interface" chapter.

Chapter 8: Menu Bar Commands
File→Command Log→Log File Name... (ALT, F, C, N)

224

File→Command Log→Logging ON (ALT, F, C, O)

Starts command log file output.

The File→Command Log→Log File Name... (ALT, F, C, N) command
specifies the destination file.

Command File Command

MOD(E) LOG ON

See Also

"To create a command file" in the "Using Command Files" section of the
"Using the Debugger Interface" chapter.

Chapter 8: Menu Bar Commands
File→Command Log→Logging ON (ALT, F, C, O)

225

File→Command Log→Logging OFF (ALT, F, C, F)

Stops command log file output.

The File→Command Log→Log File Name... (ALT, F, C, N) command
specifies the destination file.

Command File Command

MOD(E) LOG OFF

See Also

"To create a command file" in the "Using Command Files" section of the
"Using the Debugger Interface" chapter.

Chapter 8: Menu Bar Commands
File→Command Log→Logging OFF (ALT, F, C, F)

226

File→Run Cmd File... (ALT, F, R)

Executes the specified command file.

Command files can be:

• Files created with the File→Command Log→Log File Name... (ALT, F, C,
N) command.

• Configuration files having .CMD extension.

Command files are stored as ASCII text files so they can be created or edited
with ASCII text editors.

Command File Execution Dialog Box

Choosing the File→Run Cmd File... (ALT, F, R) command opens the
following dialog box:

Chapter 8: Menu Bar Commands
File→Run Cmd File... (ALT, F, R)

227

File Name Lets you enter the name of the command file to be
executed.

Directory Shows the current directory and the command files in that
directory. You can select the command file name from this
list.

Parameters Lets you specify up to five parameters that replace
placeholders $1 through $5 in the command file.
Parameters must be separated by blank spaces.

Executing Shows the command being executed.

Execute Executes the command file.

Stop Stops command file execution.

Close Closes the dialog box.

Browse... Opens a file selection dialog box from which you can select
the command file name.

Command File Command

FIL(E) COM(MAND) filename args

See Also

"To execute a command file" in the "Using Command Files" section of the
"Using the Debugger Interface" chapter.

Chapter 8: Menu Bar Commands
File→Run Cmd File... (ALT, F, R)

228

File→Load Debug... (ALT, F, D)

Loads a debug environment file.

This command opens a file selection dialog box from which you select the
debug environment file.

Debug environment files have the extension ".ENV".

Debug environment files contain information about:

• Breakpoints.

• Variables in the WatchPoint window.

• The directory that contains the currently loaded object file.

Command File Command

FIL(E) ENV(IRONMENT) LOA(D) filename

Chapter 8: Menu Bar Commands
File→Load Debug... (ALT, F, D)

229

File→Save Debug... (ALT, F, S)

Saves a debug environment file.

This command opens a file selection dialog box from which you select the
debug environment file.

The following information is saved in the debug environment file:

• Breakpoints.

• Variables in the WatchPoint window.

• The directory that contains the currently loaded object file.

Command File Command

FIL(E) ENV(IRONMENT) SAV(E) filename

Chapter 8: Menu Bar Commands
File→Save Debug... (ALT, F, S)

230

File→Load Emulator Config... (ALT, F, E)

Loads a hardware configuration command file.

This command opens a file selection dialog box from which you select the
hardware configuration file.

Emulator configuration command files contain:

• Hardware configuration settings.

• Memory map configuration settings.

• Monitor configuration settings.

Command File Command

FIL(E) CON(FIGURATION) LOA(D) filename

See Also

"To load an emulator configuration" in the "Saving and Loading
Configurations" section of the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
File→Load Emulator Config... (ALT, F, E)

231

File→Save Emulator Config... (ALT, F, V)

Saves the current hardware configuration to a command file.

The following information is saved in the emulator configuration file:

• Hardware configuration settings.

• Memory map configuration settings.

• Monitor configuration settings.

Command File Command

FIL(E) CON(FIGURATION) STO(RE) filename

See Also

"To save the current emulator configuration" in the "Saving and Loading
Configurations" section of the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
File→Save Emulator Config... (ALT, F, V)

232

File→Copy Destination... (ALT, F, P)

Names the listing file to which debugger information may be copied.

The contents of most of the debugger windows can be copied to the
destination listing file by choosing the Copy→Window command from the
window’s control menu.

The Symbol and Trace windows’ control menus provide the Copy→All
command for copying all of the symbolic or trace information to the
destination listing file.

This command opens a file selection dialog box from which you select the
name of the output list file. Output list files have the extension ".LST".

Command File Command

COP(Y) TO filename

See Also

"To change the list file destination" in the "Working with Debugger Windows"
section of the "Using the Debugger Interface" chapter.

Chapter 8: Menu Bar Commands
File→Copy Destination... (ALT, F, P)

233

File→Exit (ALT, F, X)

Exits the debugger.

Command File Command

QUI(T)

See Also

"To exit the debugger" in the "Starting and Exiting the Debugger" section of
the "Using the Debugger Interface" chapter.

File→Exit HW Locked (ALT, F, H)

Chapter 8: Menu Bar Commands
File→Exit (ALT, F, X)

234

File→Exit HW Locked (ALT, F, H)

Exits the debugger and locks the emulator hardware.

When the emulator hardware is locked, your user name and ID are saved in
the HP 64700 and other users are prevented from accessing it.

You can restart the debugger and resume your debug session after reloading
the symbolic information with the File→Load Object... (ALT, F, L) command.

If you have any breakpoints set when you exit the debugger, you will have to
reset the breakpoints when you restart the debugger. All breakpoints are
deleted when RTC is exited.

Command File Command

QUI(T) LOC(KED)

See Also

Settings→Communication... (ALT, S, C)

Chapter 8: Menu Bar Commands
File→Exit HW Locked (ALT, F, H)

235

File Selection Dialog Boxes

File selection dialog boxes are used with several of the debugger commands.
An example of a file selection dialog box is shown below.

File Name You can select the name of the file from the list box and
edit it in the text box.

List Files
of Type

Lets you choose the filter for files shown in the File Name
list box.

Directories You can select the directory from the list box. The
selected directory is shown above the list box.

Drives Lets you select the drive name whose directories are
shown in the Directories list box.

OK Selects the named file and closes the dialog box.

Cancel Cancels the command and closes the dialog box.

Help If this button is available, it opens a help window for
viewing the associated help information.

Chapter 8: Menu Bar Commands
File Selection Dialog Boxes

236

Execution→Run (F5), (ALT, E, U)

Runs the program from the current program counter address.

Command File Command

RUN

Chapter 8: Menu Bar Commands
Execution→Run (F5), (ALT, E, U)

237

Execution→Run to Cursor (ALT, E, C)

Runs from the current program counter address up to the Source window
line that contains the cursor.

This command sets a breakpoint at the cursor-selected source line and runs
from the current program counter address; therefore, it cannot be used when
programs are in target system ROM.

If the cursor-selected source line is not reached within the number of
milliseconds specified by StepTimerLen in the B3638.INI file, a dialog box
appears from which you can cancel the command. When the Stop button is
chosen, program execution stops, the breakpoint is deleted, and the
processor continues RUNNING IN USER PROGRAM.

Command File Command

COM(E) address

See Also

"To run the program until the specified line" in the "Stepping, Running, and
Stopping" section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Execution→Run to Cursor (ALT, E, C)

238

Execution→Run to Caller (ALT, E, T)

Executes the user program until the current function returns to its caller.

Because this command determines the address at which to stop execution
based on stack frame data and object file function information, the following
restrictions are imposed:

• A function cannot properly return immediately after its entry point
because the stack frame for the function has not yet been generated.
Use the Step command to single-step the function before using the
Execution→Run to Caller (ALT, E, T) command.

• An assembly language routine cannot properly return, even it follows C
function call conventions, because there is no function information in the
object file.

• An interrupt function cannot properly return because it uses a stack in a
different fashion from standard functions.

Command File Command

RET(URN)

See Also

"To run the program until the current function return" in the "Stepping,
Running, and Stopping" section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Execution→Run to Caller (ALT, E, T)

239

Execution→Run... (ALT, E, R)

Executes the user program starting from the specified address.

This command sets the processor status to RUNNING IN USER PROGRAM.

Note If you try to run from an address whose symbol is START, STA, RESET, or
RES (or any upper- or lower-case variation), the debugger instead runs from
the start address or reset address, respectively, because these are the
keywords used with the RUN command. To fix this problem, use START+0,
STA+0, RESET+0, or RES+0 to force the symbol to be evaluated as an
address.

Run Dialog Box

Choosing the Execution→Run... (ALT, E, R) command opens the following
dialog box:

Current PC Specifies that the program run from the current program
counter address.

Start Address Specifies that the program run from the transfer address

defined in the object file.

Chapter 8: Menu Bar Commands
Execution→Run... (ALT, E, R)

240

User Reset The emulator drives the target reset line and begins
executing from the contents of exception vector 0 (this will
occur within a few cycles of the /RESET signal).

Address Lets you enter the address from which to run. Because the
function code is determined from the memory map, do not
include one with the address.

Run Initiates program execution from the specified address,
then close the dialog box.

Cancel Cancels the command and closes the dialog box.

Command File Command

RUN
Executes the user program from the current program counter address.

RUN STA(RT)
Executes the user program from the transfer address defined in the object
file.

RUN RES(ET)
Drives the target reset line and begins executing from the contents of
exception vector 0.

RUN address
Executes the user program from the specified address.

See Also

"To run the program from a specified address" in the "Stepping, Running, and
Stopping" section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Execution→Run... (ALT, E, R)

241

Execution→Single Step (F2), (ALT, E, N)

Executes a single instruction or source line at the current program counter
address.

A single source line is executed when in the source only display mode, unless
no source is available or an assembly language program is loaded; in these
cases, a single assembly language instruction is executed.

When in the mnemonic mixed display mode, a single assembly language
instruction is executed.

Command File Command

STE(P)

See Also

"To step a single line or instruction" in the "Stepping, Running, and Stopping"
section of the "Debugging Programs" chapter.

Execution→Step Over (ALT, E, O)
Execution→Step... (ALT, E, S)

Chapter 8: Menu Bar Commands
Execution→Single Step (F2), (ALT, E, N)

242

Execution→Step Over (F3), (ALT, E, O)

Executes a single instruction or source line at the current program counter
except when the instruction or source line makes a subroutine or function
call, in which case the entire subroutine or function is executed.

This command is the same as the Execution→Single Step (ALT, E, N)
command except when the source line contains a function call or the
assembly instruction makes a subroutine call (with the BSR or JSR
instructions). In these cases, the entire function or subroutine is executed.

Command File Command

OVE(R)

See Also

"To step over a function" in the "Stepping, Running, and Stopping" section of
the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Execution→Step Over (F3), (ALT, E, O)

243

Execution→Step... (ALT, E, S)

Single-steps the specified number of instructions or source lines, starting
from the specified address.

Single source lines are executed when in the source only display mode,
unless no source is available or an assembly language program is loaded; in
these cases, single assembly language instructions are executed.

When in the mnemonic mixed display mode, single assembly language
instructions are executed.

Note If you try to step from an address whose symbol is START or STA (or any
upper- or lower-case variation), the debugger instead steps from the start
address because these are the keywords used with the STEP and OVER
commands. To fix this problem, use START+0 or STA+0 to force the symbol
to be evaluated as an address.

Chapter 8: Menu Bar Commands
Execution→Step... (ALT, E, S)

244

Step Dialog Box

Choosing the Execution→Step... (ALT, E, S) command opens the following
dialog box:

Current PC Specifies that stepping start from the current program
counter address.

Start Address Specifies that stepping start from the start address or
transfer address.

Address Lets you enter the address from which to single-step.

Count Indicates the step count. The count decrements by one for
every step and stops at 0.

Over If the source line to be executed contains a function call or
the assembly language instruction to be executed contains
a subroutine call, this option specifies that the entire
function or subroutine be executed.

Follow PC If you check the Follow PC box, stepping will provide more
detail because it will follow the PC for each step, and
update the Source window after each step. Leaving this
box unchecked speeds the stepping process; the steps will
be counted, but the content of the Source window will not
be updated until stepping is completed.

Chapter 8: Menu Bar Commands
Execution→Step... (ALT, E, S)

245

Step Single-steps the specified number of instructions or source
lines, starting from the specified address.

Close Closes the dialog box.

Stop Stops single-stepping.

Command File Command

STE(P) count
Single-steps the specified number of instructions or source lines, starting
from the current program counter address.

STE(P) count address
Single-steps the specified number of instructions or source lines, starting
from the specified address.

STE(P) count STA(RT)
Single-steps the specified number of instructions or source lines, starting
from the transfer address defined in the object file.

OVE(R) count
Single-steps the specified number of instructions or source lines, starting
from the current program counter address. If an instruction or source line
makes a subroutine or function call, the entire subroutine or function is
executed.

OVE(R) count address
Single-steps the specified number of instructions or source lines, starting
from the specified address. If an instruction or source line makes a
subroutine or function call, the entire subroutine or function is executed.

OVE(R) count STA(RT)
Single-steps the specified number of instructions or source lines, starting
from the transfer address defined in the object file. If an instruction or
source line makes a subroutine or function call, the entire subroutine or
function is executed.

See Also

"To step multiple lines or instructions" in the "Stepping, Running, and
Stopping" section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Execution→Step... (ALT, E, S)

246

Execution→Single Step (ALT, E, N)
Execution→Step Over (ALT, E, O)

Chapter 8: Menu Bar Commands
Execution→Step... (ALT, E, S)

247

Execution→Break (F4), (ALT, E, B)

Stop user program execution and break into the monitor.

This command can also be used to break into the monitor when the processor
is in the EMULATION RESET status.

Once the command has been completed, the processor transfers to the
RUNNING IN MONITOR status.

Command File Command

BRE(AK)

See Also

"To stop program execution" in the "Stepping, Running, and Stopping"
section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Execution→Break (F4), (ALT, E, B)

248

Execution→Reset (ALT, E, E)

Resets the emulation microprocessor.

While the processor is in the EMULATION RESET state, no display or
modification is allowed for the contents of target system memory or registers.
Therefore, before you can display or modify target system memory or
processor registers, you must use the Execution→Break (ALT, E, B)
command to break into the monitor.

Note that if the RealTime→Monitor Intrusion→Allowed (ALT, R, T, A)
command is chosen, the emulation microprocessor may switch immediately
from reset to running in monitor, for example, to update the contents of a
register window.

Command File Command

RES(ET)

See Also

"To reset the processor" in the "Stepping, Running, and Stopping" section of
the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Execution→Reset (ALT, E, E)

249

Breakpoint→Set at Cursor (ALT, B, S)

Sets a breakpoint at the cursor-selected address in the Source window.

The breakpoint marker "BP" appears on lines at which breakpoints are set.

When a breakpoint is hit, program execution stops immediately before
executing the instruction or source code line at which the breakpoint is set.

A set breakpoint remains active until it is deleted.

Because breakpoints are set by replacing program opcodes with breakpoint
instructions, they cannot be set in programs stored in target system ROM. In
addition, breakpoints do not function properly when set at addresses where
no opcode is found.

The TRAP instruction is used as the breakpoint instruction. The TRAP
number is specified with the Settings→Emulator Config→Hardware... (ALT,
S, E, H) command.

The Breakpoint→Set at Cursor (ALT, B, S) command replaces the original
instruction at the specified address with a TRAP instruction. When the
emulator detects the TRAP instruction, it breaks to the monitor and restores
the original instruction. When the emulator detects a TRAP instruction that
was not inserted as a breakpoint, the emulator breaks and transfers to the
"UNDEFINED BREAKPOINT at address" status.

The Breakpoint→Set at Cursor (ALT, B, S) command may cause BP markers
to appear at two or more addresses. This happens when a single instruction
is associated with two or more source lines. You can select the mnemonic
display mode to verify that the breakpoint is set at a single address.

Command File Command

BP SET address

See Also

"To set a breakpoint" in the "Using Breakpoints and Break Macros" section of
the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Breakpoint→Set at Cursor (ALT, B, S)

250

Breakpoint→Delete at Cursor (ALT, B, D)

Deletes the breakpoint set at the cursor-selected address in the Source
window.

This command is only applicable to lines that contain "BP" markers (which
indicate set breakpoints). Once the breakpoint is deleted, the original
instruction is replaced.

Command File Command

BP DEL(ETE) address

See Also

"To delete a single breakpoint" in the "Using Breakpoints and Break Macros"
section of the "Debugging Programs" chapter.

Breakpoint→Edit... (ALT, B, E)

Chapter 8: Menu Bar Commands
Breakpoint→Delete at Cursor (ALT, B, D)

251

Breakpoint→Set Macro... (ALT, B, M)

Sets a break macro immediately before the cursor-selected address in the
Source window.

Break macro lines are marked with the "BP" breakpoint marker, and the
corresponding addresses or line numbers are displayed in decimal format.

When a break macro is hit, program execution stops immediately before
executing the instruction or source code line at which the break macro is set.
Then, the commands associated with the break macro are executed. When a
"RUN" command is set as the last command in the break macro, the system
executes the break macro and resumes program execution.

The break macro remains active until it is deleted with the
Breakpoint→Delete Macro (ALT, B, L) command or the Breakpoint→Edit...
(ALT, B, E) command.

Because break macros use breakpoints, they cannot be set at addresses in
target system ROM.

Additional commands can be added to existing break macros as follows:

• When a source code line or disassembled instruction is cursor-selected,
the additional command is inserted at the top of the list of commands.

• When a macro command line is cursor-selected, the additional command
is inserted immediately following the cursor-selected command.

Chapter 8: Menu Bar Commands
Breakpoint→Set Macro... (ALT, B, M)

252

Breakpoint Edit Dialog Box

Choosing the Breakpoint→Set Macro... (ALT, B, M) command opens the
following dialog box:

Breakpoint
Address

Displays the specified line number or address followed by a
decimal point and the break macro line number.

Add Macro Activates the Macro Command text box.

Macro Command Specifies the command to be added to the break macro.

Set Inserts the specified macro command at the location
immediately preceding the specified source line or address,
or inserts the macro command at the location immediately
following the specified break macro line.

Two or more commands can be associated with a break
macro by entering the first command and choosing Set,
then entering the second command and choosing Set, and
so on. Commands execute in the order of their entry.

Chapter 8: Menu Bar Commands
Breakpoint→Set Macro... (ALT, B, M)

253

Global Disable
and Delete All

Disables and deletes all current breakpoints and break
macros.

Current
Breakpoints

Displays the addresses and line numbers of the current
breakpoints and break macros. Allows you to select
breakpoints or break macros to be deleted.

Enable/Disable Enable/Disable the selected breakpoint and break macro.

Delete Deletes the selected breakpoints or break macros from the
Current Breakpoints list box.

Delete All Deletes all breakpoints and break macros from the Current
Breakpoints list box.

Close Closes the dialog box.

Command File Command

BM SET address command

See Also

"To set a break macro" in the "Using Breakpoints and Break Macros" section
of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Breakpoint→Set Macro... (ALT, B, M)

254

Breakpoint→Delete Macro (ALT, B, L)

Removes the break macro set at the cursor-indicated address in the Source
window.

This command is only applicable to lines that contain "BP" markers (which
indicate set breakpoints) or break macro lines.

When a source code line is cursor-selected, this command removes the
breakpoint and all the macros commands set at the line.

When a break macro line is cursor-selected, this command removes the single
macro command at the line.

Command File Command

BM DEL(ETE) address

See Also

"To delete a single break macro" in the "Using Breakpoints and Break Macros"
section of the "Debugging Programs" chapter.

Breakpoint→Edit... (ALT, B, E)

Chapter 8: Menu Bar Commands
Breakpoint→Delete Macro (ALT, B, L)

255

Breakpoint→Edit... (ALT, B, E)

Lets you set, list, or delete breakpoints and break macros. Breakpoints are
always globally enabled on initial entry into the RTC interface.

Breakpoint Edit Dialog Box

Choosing the Breakpoint→Edit... (ALT, B, E) command opens the following
dialog box:

Breakpoint
Address

Lets you specify the address at which to set a breakpoint or
a break macro.

Add Macro When selected, this specifies that a break macro should be
included with the breakpoint.

Macro
Command

Lets you specify the macro to be included with the
breakpoint.

Set Sets a breakpoint with or without a break macro at the
specified address.

Chapter 8: Menu Bar Commands
Breakpoint→Edit... (ALT, B, E)

256

Global Disable
and Delete All

When selected, all existing breakpoints are deleted (not
simply disabled), and no new breakpoints can be added.

Current
Breakpoints

Displays the addresses and line numbers of the current
breakpoints and break macros. Allows you to select the
breakpoints or break macros to be enabled/disabled or
deleted.

Enable/Disable Disables or enables the selected breakpoints or breakpoint
macros in the Current Breakpoints list box.

Enabled breakpoints begin with EN in the Current
Breakpoints list and show "BP" at the start of the line in the
Source window list.

Disabled breakpoints begin with DI in the Current
Breakpoints list and show "bp" at the start of the line in the
Source window list.

Delete Deletes the selected breakpoints or break macros from the
Current Breakpoints list box.

Delete All Deletes all the breakpoints and break macros from the
Current Breakpoints list box.

Close Closes the dialog box.

Command File Command

MOD(E) BKP(TBREAK) ON|OFF

BP DEL(ETE) ALL

BP DIS(ABLE) address

BP ENA(BLE) address

See Also

"To disable a breakpoint" and
"To list the breakpoints and break macros" in the "Using Breakpoints and
Break Macros" section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Breakpoint→Edit... (ALT, B, E)

257

Variable→Edit... (ALT, V, E)

Displays or modifies the contents of the specified variable or copies it to the
WatchPoint window.

A dynamic variable can be registered as a watchpoint when the current
program counter is in the function in which the variable is declared. If the
program counter is not in this function, the variable name is invalid and an
error results.

Variable Edit Dialog Box

Choosing the Variable→Edit... (ALT, V, E) command opens the following
dialog box:

Variable Specifies the name of the variable to be displayed or
modified. The contents of the clipboard, usually a variable
selected from the another window, automatically appears
in this text box.

Type Displays the type of the specified variable.

Value Displays the contents of the specified variable.

Chapter 8: Menu Bar Commands
Variable→Edit... (ALT, V, E)

258

Update Reads and displays the contents of the variable specified in
the Variable text box.

Modify Modifies the contents of the specified variable. Choosing
this button opens the Variable Modify Dialog Box, which
lets you edit the contents of the variable.

to WP Adds the specified variable to the WatchPoint window.

Close Closes the dialog box.

Command File Command

VARI(ABLE) variable TO data
Replaces the contents of the specified variable with the specified value.

See Also

"To display a variable" and
"To monitor a variable in the WatchPoint window" in the "Displaying and
Editing Variables" section of the "Debugging Programs" chapter.

"Symbols" in the "Expressions in Commands" chapter.

Chapter 8: Menu Bar Commands
Variable→Edit... (ALT, V, E)

259

Variable Modify Dialog Box

Choosing the Modify button in the Variable Edit dialog box opens the
following dialog box, where you enter the new value and choose the OK
button to confirm the new value.

Variable Shows the variable to be edited.

Type Indicates the type of the variable displayed in the Variable
field.

Value Lets you enter the new value of the variable.

OK Replaces the contents of the specified variable with the
specified value and closes the dialog box.

Cancel Cancels the command and closes the dialog box.

See Also

"To edit a variable" in the "Displaying and Editing Variables" section of the
"Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Variable Modify Dialog Box

260

Trace→Function Flow (ALT, T, F)

Traces function flow by storing function entry points in the trace buffer.

The analyzer identifies function entry points by looking for the following
sequence:

1 A program fetch of the LINK instruction.

2 A data write (the first word of the stack pointer push). If a non-program
fetch state is captured before the data write, the sequence restarts.

3 A second data write (the second word of the stack pointer push). If any
other state is captured, the sequence restarts.

4 Any program fetch. The sequence is repeated to identify the next
function entry point.

Assembly language functions can also be traced provided that they comply
with C function call conventions.

Note When using the MCC68K compiler, you must specify the -Kf option when
compiling programs in order for the debugger to be able to trace function
flow. (The -Kf option creates frame pointers for functions.)

Command File Command

TRA(CE) FUN(CTION) FLO(W)

See Also

"To trace function flow" in the "Tracing Program Execution" section of the
"Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace→Function Flow (ALT, T, F)

261

Trace→Function Caller... (ALT, T, C)

Traces the caller of the specified function.

The function name can be selected from another window (in other words,
copied to the clipboard) before choosing the command; it will automatically
appear in the dialog box that is opened.

The analyzer stores only the execution of the function entry point and
prestores execution states that occur before the function entry point. These
prestored states correspond to the function call statements and identify the
caller of the function.

When assembly language programs are used, you can specify the assembler
symbol for a subroutine instead of a C function name, and the prestored
states will show the instructions that called the subroutine.

Note Because of prefetching by the 6830x processor, the analyzer may fail in
tracing the caller.

Function Caller Trace Dialog Box

Choosing the Trace→Function Caller... (ALT, T, C) command opens the
following dialog box:

Function Lets you enter the function whose callers you want to trace.

OK Executes the command and closes the dialog box.

Cancel Cancels the command and closes the dialog box.

Chapter 8: Menu Bar Commands
Trace→Function Caller... (ALT, T, C)

262

Command File Command

TRA(CE) FUNC(TION) CAL(L) address

See Also

"To trace callers of a specified function" in the "Tracing Program Execution"
section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace→Function Caller... (ALT, T, C)

263

Trace→Function Statement... (ALT, T, S)

Traces execution within the specified function.

The function name can be selected from another window (in other words,
copied to the clipboard) before choosing the command; it will automatically
appear in the dialog box that is opened.

The analyzer stores execution states in the function’s address range.

Because the analyzer is set up based on function information from the object
file, this command cannot be used to trace non-C functions.

Note The analyzer traces unexecuted instructions due to prefetching by 6830x
processor.

Function Statement Trace Dialog Box

Choosing the Trace→Function Statement... (ALT, T, S) command opens the
following dialog box:

Function Lets you enter the function whose execution you want to
trace.

OK Traces within the specified function and closes the dialog
box.

Cancel Cancels the command and closes the dialog box.

Chapter 8: Menu Bar Commands
Trace→Function Statement... (ALT, T, S)

264

Command File Command

TRA(CE) FUNC(TION) STA(TEMENT) address

See Also

"To trace execution within a specified function" in the "Tracing Program
Execution" section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace→Function Statement... (ALT, T, S)

265

Trace→Variable Access... (ALT, T, V)

Traces accesses to the specified variable.

The variable name can be selected from another window (in other words,
copied to the clipboard) before choosing the command; it will automatically
appear in the dialog box that is opened.

You can specify any of the external or static variables, or the variables having
a fixed address throughout the course of program execution.

The analyzer stores only accesses within the range of the variable and
prestores execution states that occur before the access. These prestored
states correspond to the statements that access the variable.

Variable Access Dialog Box

Choosing the Trace→Variable Access... (ALT, T, V) command opens the
following dialog box:

Variable Lets you enter the variable name.

OK Traces accesses to the specified variable and closes the
dialog box.

Cancel Cancels the command and closes the dialog box.

Command File Command

TRA(CE) VAR(IABLE) ACC(ESS) address

Chapter 8: Menu Bar Commands
Trace→Variable Access... (ALT, T, V)

266

See Also

"To trace accesses to a specified variable" in the "Tracing Program Execution"
section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace→Variable Access... (ALT, T, V)

267

Trace→Variable Break... (ALT, T, B)

Traces before, and breaks program execution when, a value is written to a
variable.

The variable name can be selected from another window (in other words,
copied to the clipboard) before choosing the command; it will automatically
appear in the dialog box that is opened.

You can specify any of the external or static variables, or the variables having
a fixed address throughout the course of program execution.

Variable Break Dialog Box

Choosing the Trace→Variable Break... (ALT, T, B) command opens the
following dialog box:

Variable Lets you enter the variable name.

Value Lets you enter the value that, when written to the variable,
triggers the analyzer.

OK Starts the trace and closes the dialog box.

Cancel Cancels the command and closes the dialog box.

Command File Command

TRA(CE) VAR(IABLE) BRE(AK) address data

Chapter 8: Menu Bar Commands
Trace→Variable Break... (ALT, T, B)

268

See Also

"To trace before a particular variable value and break" in the "Tracing
Program Execution" section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace→Variable Break... (ALT, T, B)

269

Trace→Edit... (ALT, T, E)

Edits the trace specification of the last trace command.

This command is useful for making modifications to the last entered trace
command, even if the analyzer was setup automatically as with the
Trace→Function or Trace→Variable commands.

Trace specifications are edited with Sequence Trace Setting dialog box.

Command File Command

TRA(CE) SAV(E) filename
Stores the current trace specification to a file.

TRA(CE) LOA(D) filename
Loads the specified trace setting file.

TRA(CE) CUS(TOMIZE)
Traces program execution using the loaded trace setting file.

See Also

"To edit a trace specification" in the "Setting Up Custom Trace Specifications"
section of the "Debugging Programs" chapter.

Trace→Sequence... (ALT, T, Q)

Chapter 8: Menu Bar Commands
Trace→Edit... (ALT, T, E)

270

Trace→Trigger Store... (ALT, T, T)

Traces program execution as specified in the Trigger Store Trace dialog box.

You can enter address, data, and status values that qualify the state(s) that,
when captured by the analyzer, will be stored in the trace buffer or will
trigger the analyzer.

Data values are 16-bit values (because the data bus is 16 bits wide). To
identify byte values on the data bus, use "don’t cares" as shown below:

Data at an even address: 12xx

Data at an odd address: 0xx34

Status values identify the types of microprocessor bus cycles. You may
select status values from a predefined list.

Note The analyzer traces unexecuted instructions due to prefetching by the 6830x
processor.

Trigger Store Trace Dialog Box

Choosing the Trace→Trigger Store... (ALT, T, T) command opens the
following dialog box:

Chapter 8: Menu Bar Commands
Trace→Trigger Store... (ALT, T, T)

271

Trigger This box groups the items that make up the trigger
condition.

NOT Specifies any state that does not match the Address, Data,
and Status values.

Address Specifies the address portion of the state qualifier.

End Address Specifies the end address of an address range.

Data Specifies the data portion of the state qualifier.

Status Specifies the status portion of the state qualifier.

trigger start Specifies that states captured after the trigger condition be
stored in the trace buffer.

trigger center Specifies that states captured before and after the trigger
condition be stored in the trace buffer.

trigger end Specifies that states captured before the trigger condition
be stored in the trace buffer.

Store This box groups the items that make up the store condition.

OK Starts the specified trace and closes the dialog box.

Cancel Cancels the trace setting and closes the dialog box.

Clear Restores the dialog box to its default state.

Load... Opens a file selection dialog box from which you select the
name of a trace specification file previously saved from the
Trigger Store Trace dialog box. Trace specification files
have the extension ".TRC".

Save... Opens a file selection dialog box from which you select the
name of the trace specification file.

Chapter 8: Menu Bar Commands
Trace→Trigger Store... (ALT, T, T)

272

Command File Command

TRA(CE) LOA(D) filename
Loads the specified trace setting file.

TRA(CE) CUS(TOMIZE)
Traces program execution using the loaded trace setting file.

See Also

"To set up a ’Trigger Store’ trace specification" in the "Setting Up Custom
Trace Specifications" section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace→Trigger Store... (ALT, T, T)

273

Trace→Find Then Trigger... (ALT, T, D)

Traces program execution as specified in the Find Then Trigger Trace dialog
box.

This command lets you set up a two level sequential trace specification that
works like this:

1 Once the trace starts, the analyzer stores (in the trace buffer) the states
that satisfy the Enable Store condition while searching for a state that
satisfies the Enable condition.

2 After the Enable condition has been found, the analyzer stores the states
that satisfy the Trigger Store condition while searching for a state that
satisfies the Trigger condition.

3 After the Trigger condition has been found, the analyzer stores the states
that satisfy the Store condition.

If any state during the sequence satisfies the Restart condition, the sequence
starts over.

You can enter address, data, and status values that qualify state(s) by setting
up pattern or range resources. These patterns and range resources are used
when defining the various conditions.

A trace is complete when the trace buffer is full.

Note The analyzer traces unexecuted instructions due to prefetching by the 6830x
processor.

Chapter 8: Menu Bar Commands
Trace→Find Then Trigger... (ALT, T, D)

274

Find Then Trigger Trace Dialog Box

Choosing the Trace→Find Then Trigger... (ALT, T, D) command opens the
following dialog box:

The Sequence group box specifies a two term sequential trigger condition. It
also lets you specify store conditions during the sequence.

Enable Store Qualifies the states that get stored (in the trace buffer)
while searching for a state that satisfies the enable
condition.

Enable Specifies the condition that causes a transfer to the next
sequence level.

Trigger Store Qualifies the states that get stored while the analyzer
searches for the trigger condition.

Trigger Specifies the trigger condition.

Store Qualifies the states that get stored after the trigger
condition is found.

Restart Specifies the condition that restarts the sequence.

Chapter 8: Menu Bar Commands
Trace→Find Then Trigger... (ALT, T, D)

275

Count Specifies whether time or the occurrences of a particular
state are counted; you can also turn counts OFF. See the
Condition Dialog Boxes.

Prestore Qualifies the states that may be stored before each
normally stored state. Up to two states may be prestored
for each normally stored state. Prestored states can be
used to show from where a function is called or a variable
is accessed.

trigger start The state that satisfies trigger condition is positioned at
the start of the trace, and states that satisfy the Store
condition will be stored after the trigger. In this case, the
states that satisfy the Enable Store and Trigger Store
conditions will not appear in the trace.

trigger center The state that satisfies the trigger condition is positioned in
the center of the trace, and states that satisfy the store
conditions will be stored before and after the trigger.

trigger end The state that satisfies the trigger condition is positioned
at the end of the trace, and states that satisfy the Enable
Store and Trigger Store conditions will be stored before the
trigger. In this case, states that satisfy the Store condition
will not appear in the trace.

Break on
Trigger

When selected, this option specifies that execution break
into the monitor when the analyzer is triggered.

Pattern/Range Specifies the trace patterns for the state conditions.
Double-clicking the desired pattern or range in the
Pattern/Range list box opens the Trace Pattern Dialog Box
or the Trace Range Dialog Box, where you specify the
desired trace pattern or range.

Clicking the Sequence, Restart, Count, or Prestore buttons
causes the Condition Dialog Boxes to be opened. This
dialog box lets you select or combine patterns or ranges to
specify the condition.

Chapter 8: Menu Bar Commands
Trace→Find Then Trigger... (ALT, T, D)

276

OK Starts the specified trace and closes the dialog box.

Cancel Cancels trace setting and closes the dialog box.

Clear Restores the dialog box to its default state.

Load... Opens a file selection dialog box from which you select the
name of a trace specification file previously saved from the
Trigger Store Trace or Find Then Trigger Trace dialog
boxes. Trace specification files have the extension ".TRC".

Save... Opens a file selection dialog box in which you specify a
name to identify a file containing the present trace
specification.

Command File Command

TRA(CE) LOA(D) filename
Loads the specified trace setting file.

TRA(CE) CUS(TOMIZE)
Traces program execution using the loaded trace setting file.

See Also

"To set up a ’Find Then Trigger’ trace specification" in the "Setting Up
Custom Trace Specifications" section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace→Find Then Trigger... (ALT, T, D)

277

Trace→Sequence... (ALT, T, Q)

Traces program execution as specified in the Sequence Trace dialog box.

This command lets you set up a multilevel sequential trace specification that
works like this:

1 Once the trace starts, the analyzer stays on sequence level 1 until the
primary or secondary branch condition is found. (If a state satisfies both
primary and secondary branch conditions, the primary branch is taken.)
Once the primary or secondary branch condition is found, the analyzer
transfers to the sequence level specified by the "to" button.

2 The analyzer stays at the next sequence level until its primary or
secondary branch condition is met; then, the analyzer transfers to the
sequence level specified by the "to" button.

3 When the analyzer reaches the sequence level specified in Trigger On,
the analyzer is triggered.

4 During the above described operation, the analyzer stores the states
specified in the Store text box.

The trace is complete when the trace buffer is full.

Note The analyzer traces unexecuted instructions due to prefetching by the 6830x
processor.

Chapter 8: Menu Bar Commands
Trace→Sequence... (ALT, T, Q)

278

Sequence Trace Dialog Box

Choosing the Trace→Sequence... (ALT, T, Q) command opens the following
dialog box:

The Sequence group box specifies primary and secondary branch conditions
for transferring from one sequence level to another. It also specifies store
conditions for each of the eight sequence levels.

Primary Branch Specifies the condition for transferring to the sequence
level specified in the "to" text box.

Secondary
Branch

Specifies the condition for transferring to the sequence
level specified in the "to" text box. Secondary branches are
used to do things like restart the sequence if a particular
state is found.

Store Specifies the states to be stored in the trace buffer at each
sequence level.

Page Toggles the display between sequence levels 1 through 4
and levels 5 through 8.

Trigger On Specifies the sequence level whose entry triggers the
analyzer. See the Sequence Number Dialog Box.

Chapter 8: Menu Bar Commands
Trace→Sequence... (ALT, T, Q)

279

Count Specifies whether time or the occurrences of a particular
state are counted; you can also turn counts OFF. See the
Condition Dialog Boxes.

Prestore Qualifies the states that may be stored before each
normally stored state. Up to two states may be prestored
for each normally stored state. Prestored states can be
used to show from where a function is called or a variable
is accessed.

trigger start The state that satisfies trigger condition is positioned at
the start of the trace, and states that satisfy the store
conditions will be stored after the trigger.

trigger center The state that satisfies the trigger condition is positioned in
the center of the trace, and states that satisfy the store
conditions will be stored before and after the trigger.

trigger end The state that satisfies the trigger condition is positioned
at the end of the trace, and states that satisfy the store
conditions will be stored before the trigger.

Break on
Trigger

When selected, this option specifies that execution break
into the monitor when the analyzer is triggered.

Pattern/Range Specifies the trace patterns for the state conditions.
Double-clicking the desired pattern or range in the
Pattern/Range list box opens the Trace Pattern Dialog Box
or the Trace Range Dialog Box, where you specify the
desired trace pattern or range.

Clicking the Primary Branch, Secondary Branch, Store,
Count, or Prestore buttons causes the Condition Dialog
Boxes to be opened. This dialog box lets you select or
combine patterns or ranges to specify the condition.

OK Starts the specified trace and closes the dialog box.

Cancel Cancels trace setting and closes the dialog box.

Chapter 8: Menu Bar Commands
Trace→Sequence... (ALT, T, Q)

280

Clear Restores the dialog box to its default state.

Load... Opens a file selection dialog box from which you select the
name of a trace specification file previously saved from any
of the trace setting dialog boxes. Trace specification files
have the extension ".TRC".

Save... Opens a file selection dialog box from which you select the
name of the trace specification file.

Command File Command

TRA(CE) LOA(D) filename
Loads the specified trace setting file.

TRA(CE) CUS(TOMIZE)
Traces program execution using the loaded trace setting file.

See Also

"To set up a ’Sequence’ trace specification" in the "Setting Up Custom Trace
Specifications" section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace→Sequence... (ALT, T, Q)

281

Trace→Until Halt (ALT, T, U)

Traces program execution until the Trace→Halt (ALT, T, H) command is
chosen.

This command is useful in tracing execution that leads to a processor halt or
a break to the background monitor. Before executing the program, choose
the Trace→Until Halt (ALT, T, U) command. Then, run the program. After
the processor has halted or broken into the background monitor, choose the
Trace→Halt (ALT, T, H) command to stop the trace. The execution that led
up to the break or halt will be displayed.

Command File Command

TRA(CE) ALW(AYS)

See Also

"To trace until the command is halted" in the "Tracing Program Execution"
section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace→Until Halt (ALT, T, U)

282

Trace→Halt (ALT, T, H)

Stops a running trace.

This command stops a currently running trace whether the trace was started
with the Trace→Until Halt (ALT, T, U) command or another trace command.

As soon as the analyzer stops the trace, stored states are displayed in the
Trace window.

Command File Command

TRA(CE) STO(P)

See Also

"To stop a running trace" in the "Tracing Program Execution" section of the
"Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace→Halt (ALT, T, H)

283

Trace→Again (F7), (ALT, T, A)

Traces program execution using the last trace specification stored in the
HP 64700.

If you haven’t entered a trace command since you started the debugger, the
last trace specification stored in the HP 64700 may be a trace specification
set up by a different user; in this case, you cannot view or edit the trace
specification.

Command File Command

TRA(CE) AGA(IN)

See Also

"To repeat the last trace" in the "Tracing Program Execution" section of the
"Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace→Again (F7), (ALT, T, A)

284

Condition Dialog Boxes

Choosing the buttons associated with enable, trigger, primary branch,
secondary branch, store, or prestore conditions opens the following dialog
box:

Choosing the button associated with the count condition opens the following
dialog box:

no state No state meets the specified condition.

any state Any state meets the specified condition.

time The analyzer counts time for each state stored in the trace.

Chapter 8: Menu Bar Commands
Condition Dialog Boxes

285

state This group box lets you qualify the state that will meet the
specified condition. You can qualify the state as one of the
patterns "a" through "h", the "range", or the "arm", or you
can qualify the state as a combination of the patterns,
range, or arm by using the interset or intraset operators.

a b c d e f g h The patterns that qualify states by identifying the
address, data, and/or status values.

The values for a pattern are specified by selecting one
of the patterns in the Pattern/Range list box and
entering values in the Trace Pattern Dialog Box.

range Identifies a range of address or data values.

The values for a range are specified by selecting the
range in the Pattern/Range list box and entering values
in the Trace Range Dialog Box.

not range Identifies all values not in the specified range.

arm Identifies the condition that arms (in other words,
activates) the analyzer. The analyzer can be armed by
an input signal on the BNC port.

or/nor You can combine patterns within the set1 or set2
group boxes with these logical operators.

You can create the AND and NAND operators by
selecting NOT when defining patterns and applying
DeMorgan’s law (the / character is used to represent a
logical NOT):

AND A and B = /(/A or /B) NOR
NAND /(A and B) = /A or /B OR

OR/AND You can combine patterns from the set1 and set2
group boxes with these logical operators.

Chapter 8: Menu Bar Commands
Condition Dialog Boxes

286

Count Appearing in Trace Condition dialog boxes, this value
specifies the number of occurrences of the state that
will satisfy the condition.

OK Applies the state qualifier to the specified condition and
closes the dialog box.

Cancel Closes the dialog box.

See Also

"To set up a ’Find Then Trigger’ trace specification" and
"To set up a ’Sequence’ trace specification" in the "Setting Up Custom Trace
Specifications" section of the "Debugging Programs" chapter.

Trace→Find Then Trigger... (ALT, T, D)
Trace→Sequence... (ALT, T, Q)

Chapter 8: Menu Bar Commands
Condition Dialog Boxes

287

Trace Pattern Dialog Box

Selecting one of the patterns in the Pattern/Range list box opens the
following dialog box:

NOT Lets you specify all values other than the address, data,
and/or status values specified.

Address Lets you enter the address value for the pattern.

Data Lets you enter the data value for the pattern.

Status Lets you select the status value for the pattern.

Direct Lets you enter a status value other than one of the
predefined status values.

Clear Clears the values specified for the pattern.

OK Applies the values specified for the pattern, and closes the
dialog box.

Chapter 8: Menu Bar Commands
Trace Pattern Dialog Box

288

Cancel Closes the dialog box.

See Also

"To set up a ’Find Then Trigger’ trace specification" and
"To set up a ’Sequence’ trace specification" in the "Setting Up Custom Trace
Specifications" section of the "Debugging Programs" chapter.

Trace→Find Then Trigger... (ALT, T, D)
Trace→Sequence... (ALT, T, Q)

Chapter 8: Menu Bar Commands
Trace Pattern Dialog Box

289

Trace Range Dialog Box

Selecting the range at the bottom of the Pattern/Range list box opens the
following dialog box:

Address Selects a range of address values.

Data Selects a range of data values.

Minimum Lets you enter the minimum value for the range.

Maximum Lets you enter the maximum value for the range.

OK Applies the values specified for the range, and closes the
dialog box.

Cancel Closes the dialog box.

Clear Clears the values specified for the range.

See Also

"To set up a ’Find Then Trigger’ trace specification" and
"To set up a ’Sequence’ trace specification" in the "Setting Up Custom Trace
Specifications" section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace Range Dialog Box

290

Trace→Find Then Trigger... (ALT, T, D)
Trace→Sequence... (ALT, T, Q)

Chapter 8: Menu Bar Commands
Trace Range Dialog Box

291

Sequence Number Dialog Box

Choosing the buttons associated with "to" or Trigger On opens the following
dialog box:

1-8 These options specify the sequence level.

OK Applies the selected sequence level and closes the dialog
box.

Cancel Closes the dialog box.

See Also

"To set up a ’Sequence’ trace specification" in the "Setting Up Custom Trace
Specifications" section of the "Debugging Programs" chapter.

Trace→Sequence... (ALT, T, Q)

Chapter 8: Menu Bar Commands
Sequence Number Dialog Box

292

RealTime→Monitor Intrusion→Disallowed (ALT, R,
T, D)

Activates the real-time mode.

When the user program is running in real-time mode, no command that
would normally cause temporary suspension of program execution is allowed.
Also, the system hides:

• The Register window.

• Target system memory in the Memory window.

• Target system I/O locations in the I/O window.

• Target system memory variables in the WatchPoint window.

• Target system memory in the Source window.

While the processor is in the RUNNING REALTIME IN USER PROGRAM
state, no display or modification is allowed for the contents of target system
memory or registers. Therefore, before you can display or modify target
system memory or processor registers, you must use the Execution→Break
(ALT, E, B) command to stop user program execution and break into the
monitor.

Command File Command

MOD(E) REA(LTIME) ON

See Also

"To allow or deny monitor intrusion" in the "Setting the Real-Time Options"
section of the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
RealTime→Monitor Intrusion→Disallowed (ALT, R, T, D)

293

RealTime→Monitor Intrusion→Allowed (ALT, R, T, A)

Deactivates the real-time mode.

Commands that cause temporary breaks to the monitor during program
execution are allowed.

Command File Command

MOD(E) REA(LTIME) OFF

See Also

"To allow or deny monitor intrusion" in the "Setting the Real-Time Options"
section of the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
RealTime→Monitor Intrusion→Allowed (ALT, R, T, A)

294

RealTime→I/O Polling→ON (ALT, R, I, O)

Enables access to I/O.

Command File Command

MOD(E) IOG(UARD) OFF

See Also

"To turn polling ON or OFF" in the "Setting the Real-Time Options" section of
the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
RealTime→I/O Polling→ON (ALT, R, I, O)

295

RealTime→I/O Polling→OFF (ALT, R, I, F)

Disables access to I/O.

When polling is turned OFF, values in the I/O window are updated on entry to
the monitor. When monitor intrusion is not allowed during program
execution, the I/O window is not updated and contents are replaced by
dashes (-).

Command File Command

MOD(E) IOG(UARD) ON

See Also

"To turn polling ON or OFF" in the "Setting the Real-Time Options" section of
the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
RealTime→I/O Polling→OFF (ALT, R, I, F)

296

RealTime→Watchpoint Polling→ON (ALT, R, W, O)

Turns ON polling to update values displayed in the WatchPoint window.

When polling is turned ON, temporary breaks in program execution occur
when the WatchPoint window is updated.

Command File Command

MOD(E) WAT(CHPOLL) ON

See Also

"To turn polling ON or OFF" in the "Setting the Real-Time Options" section of
the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
RealTime→Watchpoint Polling→ON (ALT, R, W, O)

297

RealTime→Watchpoint Polling→OFF (ALT, R, W, F)

Turns OFF polling to update values displayed in the WatchPoint window.

When polling is turned OFF, values in the WatchPoint window are updated
on entry to the monitor. When monitor intrusion is not allowed during
program execution, the WatchPoint window is not updated and contents are
replaced by dashes (-).

Command File Command

MOD(E) WAT(CHPOLL) OFF

See Also

"To turn polling ON or OFF" in the "Setting the Real-Time Options" section of
the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
RealTime→Watchpoint Polling→OFF (ALT, R, W, F)

298

RealTime→Memory Polling→ON (ALT, R, M, O)

Turns ON polling to update target memory values displayed in the Memory
window.

When polling is turned ON, temporary breaks in program execution occur
when target system memory locations in the Memory window are updated.
When monitor intrusion is not allowed during program execution, the
contents of target memory locations are replaced by dashes (-).

Also, when polling is turned ON, you can modify the addresses displayed or
contents of memory locations by double-clicking on the address or value,
using the keyboard to type in the new address or value, and pressing the
Enter key.

Command File Command

MOD(E) MEM(ORYPOLL) ON

See Also

"To turn polling ON or OFF" in the "Setting the Real-Time Options" section of
the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
RealTime→Memory Polling→ON (ALT, R, M, O)

299

RealTime→Memory Polling→OFF (ALT, R, M, F)

Turns OFF polling to update target memory values displayed in the Memory
window.

When polling is turned OFF, values in the Memory window are updated on
entry to the monitor.

Also, when polling is turned OFF, you cannot modify the addresses displayed
or contents of memory locations by double-clicking on the address or value.

Command File Command

MOD(E) MEM(ORYPOLL) OFF

See Also

"To turn polling ON or OFF" in the "Setting the Real-Time Options" section of
the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
RealTime→Memory Polling→OFF (ALT, R, M, F)

300

Assemble... (ALT, A)

In-line assembler.

This command lets you modify programs by specifying assembly language
instructions which are assembled and loaded into program memory.

Assembler Dialog Box

Choosing the Assemble... (ALT, A) command opens the following dialog box:

Label Lets you assign a user-defined symbol to the specified
address.

Address Lets you enter the address at which the assembly language
instruction will be loaded.

Mnemonic Lets you enter the assembly language instruction to be
assembled.

Assemble Assembles the instruction in the Mnemonic text box, and
loads it into memory at the specified address.

Close Closes the dialog box.

Command File Command

ASM address label "inst_string"

Chapter 8: Menu Bar Commands
Assemble... (ALT, A)

301

Settings→Emulator Config→Hardware... (ALT, S, E,
H)

Specifies the emulator configuration.

Hardware Config Dialog Box

Choosing the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command opens the following dialog box:

Clock Source Specifies the Internal or an External clock as the emulation
microprocessor clock source.

Processor data
width

Specifies the size of the processor data bus when the demo
board is attached. When connected to the target system,
this selection is ignored and the target system BUSW pin
determines target bus width.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Hardware... (ALT, S, E, H)

302

Target memory
access

Specifies the size used to access target system memory.

Trap Number
for Software
Breakpoint

Specifies the breakpoint trap instruction number.

Enable break on
Write to ROM

Enables or disables breaks to the monitor when the user
program writes to memory mapped as ROM.

Enable Target
BERR Signal

Enables or disables /BERR input from the target system.

Enable
Background
Freeze

Asserts the processor /FRZ line when the emulator is
executing the background monitor program. This freezes
the activity of selected peripherals.

Enable buffer
of CS lines
to target

Enables or disables buffering of the chip-select lines to the
target system.

Enable buffer
of FC lines
to target

Enables or disables buffering of the function-code lines to
the target system.

Enable buffer
of R/W line
to target

Enables or disables buffering of the read/write line to the
target system.

Enable buffer
of strobe lines
to target

Enables of disables buffering of the address strobe, data
strobe, and /IACK7 strobe lines to the target system.

Enable buffer
of WE lines
to target

Enables or disables buffering of the write-enable lines to
the target system.

Enable driving
backgrnd cycles
to target

Enables or disables driving the background monitor cycles
(chip selects, address, data, and /IACK7 strobes) to the
target system during execution of the background monitor.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Hardware... (ALT, S, E, H)

303

Enable DTACK
drive high

Enables or disables driving the /DTACK signal high (to
deassert it) after each assertion. This only affects /DTACK
supplied by the emulator.

Enable target
system
interrupts

Enables and disables interrupts from the target system.

Enable tracing
of DMA cycles

Enables or disables storage of DMA cycles with other trace
data in the analyzer trace memory.

Initial Values
for SSP
and PC

Specifies the source for the values to be loaded into the
Supervisor Stack Pointer and Program Counter. Normally,
these values are obtained from the reset vector at offsets 0
and 4 (for SSP and PC, respectively).

Values read
from reset
vector in
memory

This selection (default) causes the emulation
microprocessor to initialize its SSP and PC with values
obtained from the reset vector.

Supervisor Stack
Pointer

When the monitor program is entered immediately after a
processor reset, the Supervisor Stack Pointer is initialized
with the value you enter in this field, which is typically the
same as the value at reset vector offset 0.

Program
Counter

When the monitor program is entered immediately after a
processor reset, the Program Counter is initialized with the
value you enter in this field, which is typically the same as
the value at reset vector offset 4.

DTACK Control Specifies the source of the /DTACK signal during runs in
emulation.

Map interlock
for Emulation
memory

This selection (default) causes the emulator to refer to the
memory map and use the /DTACK specifications defined
there for each address range.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Hardware... (ALT, S, E, H)

304

Target DTACK
always

Causes the emulator to ignore the /DTACK specifications
in the memory map and use the /DTACK signal from the
target system for all activity. Choose "Enable driving
backgrnd cycles to target" if you are going to use the
monitor because the target system sends no /DTACK signal
during monitor execution.

Emul. DTACK
always, 0 wait
states

Causes the emulator to ignore the /DTACK specifications
in the memory map, and use the /DTACK signal from the
emulator for all activity. Choose 0 wait states for fastest
system performance.

Emul. DTACK
always, 1 wait
state

Causes the emulator to ignore the /DTACK specifications
in the memory map, and use the /DTACK signal from the
emulator for all activity. Choose 1 wait state to slow the
system if you are having trouble with target system startup.

IACK7 Pin
Usage

Tells the emulator how the target system uses the
/IACK7/PB0 pin. If the pin is /IACK7, the emulator will
block it when executing the monitor program if you choose
not to "Enable driving backgrnd cycles to target" in this
Hardware Config dialog box. If the pin is PB0, it is never
blocked.

Emulator
register set
determines
usage

The Port B Control Register PBCNT in the emulation
microprocessor determines the use of the /IACK7/PB0 pin.
The emulator will read bit 0 of the PBCNT register to
determine whether or not to block this pin when executing
the monitor program.

Use IACK7/PB0
pin as IACK7

Tells the emulator that the pin is used as /IACK7. When
the emulator is executing the monitor program, it may
block this pin.

Use IACK7/PB0
as PB0

Tells the emulator that the pin is used as PB0. The
emulator will not block the signal on this pin during any
execution.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Hardware... (ALT, S, E, H)

305

Interrupt 7
Operation

Tells the emulator how the target system receives and
processes interrupts. This way, the emulator can process
interrupts correctly.

Emulator
register set
determines
operation

The emultor will use the value in the Global Interrupt Mode
Register GIMR in the emulation microprocessor to process
interrupts.

Normal mode
of operation

The emulator will use the values of /IPL2 - /IPL0 to
determine the interrupt level and to process it.

Dedicated level
mode of
operation

The emulator will detect /IRQ7, /IRQ6, and /IRQ1 to
recognize interrupt requests and process them. The three
lines are programmed to be level sensitive.

Dedicated
edge mode
of operation

The emulator will detect /IRQ7, /IRQ6, and /IRQ1 to
recognize interrupt requests and process them. The three
lines are programmed to be edge sensitive.

OK Stores the current modification and closes the dialog box.

Cancel Cancels the current modification and closes the dialog box.

Apply Loads the configuration settings into the emulator.

Command File Command

CON(FIG) CLO(CK) INT(ERNAL)
Selects the internal clock.

CON(FIG) CLO(CK) EXT(ERNAL)
Selects the external clock.

CON(FIG) DAT(ABUS) 8
Specifies an 8-bit wide data bus.

CON(FIG) DAT(ABUS) 16
Specifies a 16-bit wide data bus.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Hardware... (ALT, S, E, H)

306

CON(FIG) MEM(ACCESS) 8
Specifies that target memory is accessed in 8-bit byte-sized locations.

CON(FIG) MEM(ACCESS) 16
Specifies that target memory is accessed in 16-bit word-sized locations.

CON(FIG)SWT(RAP) value
Specifies the breakpoint trap instruction number.

CON(FIG) BRK(WRROM) ENA(BLE)
Enables breaks to the monitor when writes to ROM occur.

CON(FIG) BRK(WRROM) DIS(ABLE)
Disables breaks to the monitor when writes to ROM occur.

CON(FIG) BER(R) ENA(BLE)
Enables /BERR input from the target system.

CON(FIG) BER(R) DIS(ABLE)
Disables /BERR input from the target system.

CON(FIG) BKG(FRZ) EN(ABLE)
Enables assertion of the processor /FRZ line when the emulator is executing
in the background monitor.

CON(FIG) BKG(FRZ) DIS(ABLE)
Disables assertion of the processor /FRZ line when the emulator is executing
in the background monitor.

CON(FIG) CSB(UF) ENA(BLE)
Enables buffering of the chip-select lines to the target system.

CON(FIG) CSB(UF) DIS(ABLE)
Disables buffering of the chip-select lines to the target system.

CON(FIG) FCB(UF) ENA(BLE)
Enables buffering of the function-code lines to the target system.

CON(FIG) FCB(UF) DIS(ABLE)
Disables buffering of the function-code lines to the target system.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Hardware... (ALT, S, E, H)

307

CON(FIG) RWB(UF) ENA(BLE)
Enables buffering of the read/write line to the target system.

CON(FIG) RWB(UF) DIS(ABLE)
Disables buffering of the read/write line to the target system.

CON(FIG) STR(BSBUF) ENA(BLE)
Enables buffering of the strobe lines (address, data, and /IACK7) to the
target system.

CON(FIG) STR(BSBUF) DIS(ABLE)
Disables buffering of the strobe lines (address, data, and /IACK7) to the
target system.

CON(FIG) WEB(UF) ENA(BLE)
Enables buffering of the write-enable lines to the target system.

CON(FIG) WEB(UF) DIS(ABLE)
Disables buffering of the write-enable lines to the target system.

CON(FIG) DBC ENA(BLE)
Enables Driving Background Cycles (during monitor execution) to the target
system.

CON(FIG) DBC DIS(ABLE)
Disables Driving Background Cycles (during monitor execution) to the target
system.

CON(FIG) DRV(DTACK) ENA(BLE)
Enables driving /DTACK high (to deassert it) after each emulator-supplied
/DTACK.

CON(FIG) DRV(DTAC) DIS(ABLE)
Disables driving /DTACK high (to deassert it) after each emulator-supplied
/DTACK.

CON(FIG) TAR(GETINT) ENA(BLE)
Enables interrupts from the target system.

CON(FIG) TAR(GETINT) DIS(ABLE)
Disables interrupts from the target system.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Hardware... (ALT, S, E, H)

308

CON(FIG) TRC(DMA) ENA(BLE)
Enables analyzer traces of internal DMA cycles.

CON(FIG) TRC(DMA) DIS(ABLE)
Disables analyzer traces of internal DMA cycles.

CON(FIG)VAL(SINIT) RES(ETVECTOR)
Specifies initialization of SSP and PC with values obtained from the reset
vector.

CON(FIG) VAL(SINIT) USE(RSUPPLIED)
Specifies initialization of SSP and PC with values specified by CON(FIG)
INI(TSSP) and INI(TPC).

CON(FIG)SSP(INIT) value
Specifies the initial value for the SSP in the emulation processor.

CON(FIG) PCI(NIT) value
Specifies the initial value for the PC in the emulation processor.

CON(FIG) DTA(CK) MAP(LOCK)
Specifies that the memory map entries govern whether the emulator /DTACK
or the target system /DTACK will terminate cycles.

CON(FIG) DTA(CK) TAR(GET)
Specifies that the target system /DTACK signal terminates cycles. Choose
CON(FIG) DBC ENA(BLE) if you are going to use the monitor.

CON(FIG) DTA(CK) 0WA(IT)
Specifies that the /DTACK signal from the emulator be used to terminate
cycles. The 0WAIT selection will run your program fastest.

CON(FIG) DTA(CK) 1WA(IT)
Specifies that the /DTACK signal from the emulator be used to terminate
cycles. Use 1WAIT when running slow hardware at fast clock speeds.

CON(FIG) IAC(K7) AUT(O)
Specifies the PBCNT register determines use of the /IACK7/PB0 pin. The
emulator blocks /IACK7 when executing monitor code unless you choose
CON(FIG) DBC ENA(BLE).

CON(FIG) IAC(K7) ENA(BLE)
Specifies the pin is used as /IACK7. When executing the monitor, the
emulator may block this pin.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Hardware... (ALT, S, E, H)

309

CON(FIG) IAC(K7) DIS(ABLE)
Specifies the pin is used as PB0.

CON(FIG) INT(R) AUT(O)
Specifies reading the GIMR register to know how to process interrupts.

CON(FIG) INT(R) NOR(MAL)
Specifies reading /IPL2-/IPL0 to determine the interrupt level and to process
it.

CON(FIG)INT(R) LEV(EL)
Specifies reading /IRQ7, /IRQ6, and /IRQ1 to recognize interrupt requests.
These lines are level sensitive.

CON(FIG) INT(R) EDG(E)
Specifies reading /IRQ7, /IRQ6, and /IRQ1 to recognize interrupt requests.
These lines are edge sensitive.

Any of the above command file commands must be preceded and followed by
the respective start and end commands:

CON(FIG) STA(RT)
Starts the configuration option command section.

CON(FIG) END
Ends the configuration option command section.

See Also

"Setting the Hardware Options" in the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Hardware... (ALT, S, E, H)

310

Settings→Emulator Config→Memory Map... (ALT, S,
E, M)

Maps memory ranges.

You can map up to 8 address ranges (map terms). The minimum amount of
emulation memory that can be allocated to a range is 512 bytes for 128-Kbyte
memory boards and 1024 bytes for 512-Kbyte memory boards.

You can map ranges as emulation RAM, emulation ROM, target system RAM,
target system ROM, or as guarded memory.

Guarded memory accesses cause emulator execution to break into the
monitor program.

Writes to locations mapped as ROM will cause emulator execution to break
into the monitor program if these breaks are enabled in the hardware
configuration. Even so, emulation writes will modify the content of RAM
memory that has been mapped as ROM.

Memory Map Dialog Box

Choosing the Settings→Emulator Config→Memory Map... (ALT, S, E, M)
command opens the following dialog box:

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Memory Map... (ALT, S, E, M)

311

Start Specifies the starting address of the address range to be
mapped.

End Specifies the end address of the address range to be
mapped.

Func Code Assigns any of the function codes to the address range. It
is only necessary to specify a function code other than X
(any function code) when mapping overlapping address
ranges for different memory spaces. When mapping
overlapping ranges, you can only select function codes that
have not already been used for other members in the set of
overlapping addresses.

Type Lets you select the memory type of the specified address
range.

Interlock
DTACKs

Specifies that within the associated address range,
accesses to emulation memory will be terminated by target
system /DTACK (Data Transfer Acknowledge) instead of
the emulation /DTACK signal.

Dual port Specifies that one of the 8-Kbyte dual-port emulation
memories will be used to contain the associated address
range. (Dual-ported memory can be accessed by the host
controller without the emulation monitor program, which
means that your program executes uninterrupted during
the access.)

Apply Maps the address range specified in the Define Map Term
group box.

Default Specifies whether unmapped memory ranges are target
system RAM, target system ROM, or guarded memory.

Current Map Lists currently mapped ranges.

Available Indicates the amount of emulation memory available.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Memory Map... (ALT, S, E, M)

312

Delete Deletes the address range selected in the Current Map list
box.

Delete All Deletes all of the address ranges in the Current Map list
box.

Close Closes the dialog box.

Command File Command

MAP addr-range memtype func_code attribute
Maps the specified address range with the specified memory type, function
code, and attribute. Attributes can be dp (dual-port memory), dti (use target
/DTACK instead of emulation /DTACK), and dti,dp (both attributes).

MAP OTH(ER) memtype
Specifies the memory type of the non-mapped memory area.

Any of the above command file commands must be preceded and followed by
the respective start and end commands:

MAP STA(RT)
Starts the memory mapping command section.

MAP END
Ends the memory mapping command section.

See Also

"Mapping Memory" in the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Memory Map... (ALT, S, E, M)

313

 Settings→Emulator Config→Information... (ALT, S, E,
I)

This command lets you:

• Check the emulator configuration for inconsistencies.

• Display decoded and formatted information about the emulator
configuration.

• Synchronize the 6830x system integration module (SIM) registers to the
emulator’s EMSIM registers.

Configuration Information Dialog Box

Two list boxes let you select the operation. Each has a button that confirms
the selection. The results are displayed in the viewing area.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Information... (ALT, S, E, I)

314

Config and SIM
Programming Info.

You can select:

Check emulator configuration which displays error
messages that result from inconsistencies between
related configuration values. These errors should be
resolved for the emulator to operate correctly. In
addition, status messages about expectations and
limitations of the emulator are displayed.

Emulator clock, CLKOUT, & MODCK information
which shows whether the emulator clock is internal or
external, the type of clock source hardware, and the
clock frequency.

Chip selects in SIM (processor) registers which shows
how chip selects are defined.

Chip selects in EMSIM (emulator) registers which
shows how chip selects are defined.

Bus interface A ports in SIM (processor) regs which
shows the definitions of pins in bus interface port A.

Bus interface A ports in EMSIM (emulator) regs which
shows the definitions of pins in bus interface port A.

Bus interface B ports in SIM (processor) regs which
shows the definitions of pins in bus interface port B.

Bus interface B ports in EMSIM (emulator) regs which
shows the definitions of pins in bus interface port B.

Bus interface N ports in SIM (processor) regs which
shows the definitions of pins in bus interface port N.

Bus interface N ports in EMSIM (emulator) regs which
shows the definitions of pins in bus interface port N.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Information... (ALT, S, E, I)

315

Memory map & correlation with CSs, etc... which
shows the memory map and its correlation with chip
selects, internal module register block, and RAM.

Reset mode configuration value and operation which
shows how the reset mode configuration is defined.

Assembly listing matching current EMSIM registers
which shows the assembly language code that would
initialize the processor to be the same as the current
EMSIM register set.

Display Info. Performs the selected operation and displays the results in
the viewing area.

Synchronize SIM
registers

You can select:

Synchronize from 30x sim regs, copy to emsim regs which
programs the emulator’s EMSIM registers from the 6830x
SIM. This is useful if initialization code that configures the
6830x SIM exists, but you don’t know what its values are.
In this case, you can use the default configuration, run
from reset to execute the initialization code, and
synchronize the EMSIM registers to match the 6830x SIM.

Synchronize from emsim regs, copy to 30x registers which
transfers the programming of the EMSIM registers into the
6830x SIM. This happens automatically each time a break
to the monitor from emulation reset occurs; this ensures
that the 6830x is prepared to properly access memory
when a program is downloaded to the emulator.

Show differences for M6830x and emsim registers which
compares corresponding values in the SIM and EMSIM
register sets and shows differences between the two. If no
differences are found, no registers will be shown in the list.

Default the emsim register set which resets the EMSIM
registers to default processor values.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Information... (ALT, S, E, I)

316

Apply/Results Performs the selected operation and displays the results in
the viewing area.

Copy Opens a file selection dialog box that lets you can select
the file to which information in the viewing area is copied.

Close Closes the dialog box.

See Also

"Using the EMSIM Registers" in the "Configuring the Emulator" chapter.

"Verifying the Emulator Configuration" in the "Configuring the Emulator"
chapter.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Information... (ALT, S, E, I)

317

Settings→Communication... (ALT, S, C)

Choosing this command opens the RTC Emulation Connection Dialog Box
which lets you identify and set up the communication channel between the
personal computer and the HP 64700.

RTC Emulation Connection Dialog Box

Choosing the Settings→Communication... (ALT, S, C) command opens the
following dialog box:

Current Connection Status

This part of the dialog box shows the current
communication settings.

RTC Core Version Information

Displays software version information.

Chapter 8: Menu Bar Commands
Settings→Communication... (ALT, S, C)

318

New Emulator Connection Setup

Transport
Selection

Lets you choose the type of connection to be made to the
HP 64700. Double-clicking causes the current connection
to be tried with the given transport. Single-clicking selects
the transport for use with the Setup button.

User Name This name tells the HP 64700 and other users who you are.
When other users attempt to access the HP 64700 while
you are using it or while it is locked, a message tells them
you’re using it.

User ID Another method of identifying yourself to the HP 64700
and other users. This is primarily useful in a mixed UNIX
and MS-DOS environment; when a UNIX user tries to
unlock an emulator, the user ID is used to look into the
/etc/passwd entry on the UNIX host for the user name.

If your HP 64700 is on the LAN, we recommend that you
change User Name and User ID so that other users can
easily tell if an emulator is in use and by whom. Also, if you
don’t change the User Name/ID from the defaults, the
File→Exit HW Locked (ALT, F, H) command has no effect
because all users are identical.

Setup Opens a transport-specific dialog box which usually allows
you to change the address and unlock the emulator

In the LAN Setup dialog boxes, enter the IP address or
network name of the HP 64700.

In the RS232C Setup dialog box, select the baud rate and
the name of the port (for example, COM1, COM2, etc.) to
which the HP 64700 is connected.

In the HP-RS422 Setup dialog box, select the baud rate and
specify the I/O address you want to use for the HP 64037
card. The I/O address must be a hexadecimal number from
100H through 3F8H, ending in 0 or 8, that does not conflict
with other cards in your PC.

Chapter 8: Menu Bar Commands
Settings→Communication... (ALT, S, C)

319

The Connect button in any of these Setup dialog boxes
starts the debugger with the specified communication
settings.

Close Either closes the Real-Time C Debugger, if the current
connection failed, or simply closes the dialog box.

The Real-Time C Debugger does not allow you to change connection or
transport information without leaving the debugger and reentering it.
However, any changes you make will be put in the .INI file and take effect the
next time you enter the debugger (assuming that you do not override the .INI
information on the command line).

The command line options for connection and transport (-E and -T) take
precedence over the values in the .lNI file.

Chapter 8: Menu Bar Commands
Settings→Communication... (ALT, S, C)

320

Settings→BNC→Outputs Analyzer Trigger (ALT, S, B,
O)

Specifies that the analyzer trigger signal be driven on the BNC port.

Selecting the emulator BNC port for output enables the trigger signals to be
fed to external devices (for example, logic analyzers) during tracing.

CAUTION Do not drive the BNC beyond the range of 0 to 5 volts. Doing so may cause
permanent damage to the HP 64700.

The BNC’s drivers can drive 50 ohm loads.

The following is a logical diagram of the BNC connection. The physical
implementation and values of resistors are not exact; this diagram is just to
help you understand the BNC interface:

When a trace starts, it stops driving the output (so if nothing else is driving
the line, it will fall low due to the 500 ohm pull-down resistor).

When the trigger point is found, the BNC starts driving the output high. It
will stay high until the start of the next trace.

Command File Command

MOD(E) BNC OUT(PUT_TRIGGER)

Chapter 8: Menu Bar Commands
Settings→BNC→Outputs Analyzer Trigger (ALT, S, B, O)

321

See Also

"To output the trigger signal on the BNC port" in the "Setting Up the BNC
Port" section of the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
Settings→BNC→Outputs Analyzer Trigger (ALT, S, B, O)

322

Settings→BNC→Input to Analyzer Arm (ALT, S, B, I)

Allows the analyzer to receive an arm signal from the BNC port.

This command allows an external trigger signal to be used as an arm (enable)
condition for the internal analyzer. The internal analyzer will arm (or enable)
on a positive edge TTL signal.

CAUTION Do not drive the BNC beyond the range of 0 to 5 volts. Doing so may cause
permanent damage to the HP 64700.

You can use the arm condition when setting up custom trace specifications
with the Trace→Find Then Trigger... (ALT, T, D) or Trace→Sequence...
(ALT, T, Q) commands. For example, you can trigger on the arm condition
or enable the storage of states on the arm condition. The "arm" condition
may be selected in "set2" of the Trace Condition or Count Condition dialog
boxes.

The BNC port is internally terminated with about 500 ohms; if using a 50 ohm
driver, use an external 50 ohm termination (such as the HP 10100C 50 Ohm
Feedthrough Termination) to reduce bouncing and possible incorrect
triggering.

Command File Command

MOD(E) BNC INP(UT_ARM)

See Also

Settings→BNC→Outputs Analyzer Trigger (ALT, S, B, O) for a logical
schematic of the BNC interface.

"To receive an arm condition input on the BNC port" in the "Setting Up the
BNC Port" section of the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
Settings→BNC→Input to Analyzer Arm (ALT, S, B, I)

323

Settings→Font... (ALT, S, F)

Selects the fonts used in the debugger windows.

Font Dialog Box

Choosing the Settings→Font... (ALT, S, F) command opens the following
dialog box:

Font Lets you select the font to be used in the Real-Time C
Debugger interface. The "T" shaped icon indicates a
TrueType font.

Font Style Lets you select the typeface, for example, regular, bold,
italic, etc.

Size Lets you select the size of the characters.

Sample Shows you what the selected font looks like.

OK Sets the font, and closes the dialog box.

Cancel Cancels font setting, and closes the dialog box.

Chapter 8: Menu Bar Commands
Settings→Font... (ALT, S, F)

324

See Also

"To change the debugger window fonts" in the "Working with Debugger
Windows" section of the "Using the Debugger Interface" chapter.

Chapter 8: Menu Bar Commands
Settings→Font... (ALT, S, F)

325

Settings→Tabstops... (ALT, S, T)

Sets the number of spaces between tab stops.

Source Tab Dialog Box

Choosing the Settings→Tabstops... (ALT, S, T) command opens the following
dialog box:

Tab width in
source window
display

Enter the number of spaces between tab stops. This also
affects the tab width for source lines in the Trace window.

OK Sets the tab stops, and closes the dialog box.

Cancel Cancels tab stop setting, and closes the dialog box.

See Also

"To set tab stops in the Source window" in the "Working with Debugger
Windows" section of the "Using the Debugger Interface" chapter.

Chapter 8: Menu Bar Commands
Settings→Tabstops... (ALT, S, T)

326

Settings→Symbols→Case Sensitive→ON (ALT, S, S,
C, O)

Symbol database search is case sensitive.

Command File Command

MOD(E) SYM(BOLCASE) ON

See Also

Settings→Symbols→Case Sensitive→OFF (ALT, S, S, C, F)

Settings→Symbols→Case Sensitive→OFF (ALT, S, S,
C, F)

Symbol database search is not case sensitive.

If there are case conflicts (for example, FOO and foo), no warning is given,
and you cannot predict which symbol will be used. The symbol that is used
depends on what type of symbols FOO and foo are and how they were input
by the symbol section of the object file.

Command File Command

MOD(E) SYM(BOLCASE) OFF

See Also

Settings→Symbols→Case Sensitive→ON (ALT, S, S, C, O)

Chapter 8: Menu Bar Commands
Settings→Symbols→Case Sensitive→ON (ALT, S, S, C, O)

327

Settings→Extended→Trace Cycles→User (ALT, S, X,
T, U)

Traces foreground emulation microprocessor operation.

This is the normal setting.

Command File Command

MOD(E) TRA(CECLOCK) USE(R)

See Also

Settings→Extended→Trace Cycles→Monitor (ALT, S, X, T, M)
Settings→Extended→Trace Cycles→Both (ALT, S, X, T, B)

Settings→Extended→Trace Cycles→Monitor (ALT, S,
X, T, M)

Traces background emulation microprocessor operation.

This is rarely a useful setting when debugging programs.

Command File Command

MOD(E) TRA(CECLOCK) BAC(KGROUND)

See Also

Settings→Extended→Trace Cycles→User (ALT, S, X, T, U)
Settings→Extended→Trace Cycles→Both (ALT, S, X, T, B)

Chapter 8: Menu Bar Commands
Settings→Extended→Trace Cycles→User (ALT, S, X, T, U)

328

Settings→Extended→Trace Cycles→Both (ALT, S, X,
T, B)

Traces both foreground and background emulation microprocessor operation.

Command File Command

MOD(E) TRA(CECLOCK) BOT(H)

See Also

Settings→Extended→Trace Cycles→User (ALT, S, X, T, U)
Settings→Extended→Trace Cycles→Monitor (ALT, S, X, T, M)

Chapter 8: Menu Bar Commands
Settings→Extended→Trace Cycles→Both (ALT, S, X, T, B)

329

Settings→Extended→Load Error Abort→ON (ALT, S,
X, L, O)

An error during an object file or memory load causes an abort.

Normally, when an error occurs during an object file or memory load, you
want the load to stop so that you can fix whatever caused the error.

Command File Command

MOD(E) DOW(NLOAD) ERR(ABORT)

See Also

Settings→Extended→Load Error Abort→OFF (ALT, S, X, L, F)

Settings→Extended→Load Error Abort→OFF (ALT,
S, X, L, F)

An error during an object file or memory load does not cause an abort.

If you expect certain errors during an object file or memory load, for
example, if part of the file is located at "guarded" memory or "target ROM,"
you can choose this command to continue loading in spite of the errors.

Command File Command

MOD(E) DOW(NLOAD) NOE(RRABORT)

See Also

Settings→Extended→Load Error Abort→ON (ALT, S, X, L, O)

Chapter 8: Menu Bar Commands
Settings→Extended→Load Error Abort→ON (ALT, S, X, L, O)

330

Settings→Extended→Source Path Query→ON (ALT,
S, X, S, O)

You are prompted for source file paths.

When the debugger cannot find source file information for the Source or
Trace windows, it may prompt you for source file paths depending on the
MODE SOURCE setting.

Command File Command

MOD(E) SOU(RCE) ASK(PATH)

See Also

Settings→Extended→Source Path Query→OFF (ALT, S, X, S, F)

Settings→Extended→Source Path Query→OFF (ALT,
S, X, S, F)

You are not prompted for source file paths.

You can turn off source path prompting, for example, to avoid annoying
dialog interactions when tracing library functions for which no source files
are available.

Command File Command

MOD(E) SOU(RCE) NOA(SKPATH)

See Also

Settings→Extended→Source Path Query→ON (ALT, S, X, S, O)

Chapter 8: Menu Bar Commands
Settings→Extended→Source Path Query→ON (ALT, S, X, S, O)

331

Window→Cascade (ALT, W, C)

Arranges, sizes, and overlaps windows.

Windows are sized, evenly, to be as large as possible.

Window→Tile (ALT, W, T)

Arranges and sizes windows so that none are overlapped.

Windows are sized evenly.

Window→Arrange Icons (ALT, W, A)

Rearranges icons in the Real-Time C Debugger window.

Icons are distributed evenly along the lower edge of the Real-Time C
Debugger window.

Chapter 8: Menu Bar Commands
Window→Cascade (ALT, W, C)

332

Window→1-9 (ALT, W, 1-9)

Opens the window associated with the number.

The nine most recently opened windows appear in the menu list. If the
window you wish to open is not on the list, choose the Window→More
Windows... (ALT, W, M) command.

Windows are closed just as are ordinary MS Windows, that is, by opening the
control menu and choosing Close or by pressing CTRL+F4.

For details on each of the debugger windows, refer to the "Debugger
Windows" section in the "Concepts" information.

Command File Command

DIS(PLAY) window-name
Opens the specified window. Use the first three characters of the window
name, or, if the window name is "Basic Registers," use "REG."

ICO(NIC) window-name
Closes the specified window. Use the first three characters of the window
name, or, if the window name is "Basic Registers," use "REG."

See Also

"To open debugger windows" in the "Working with Debugger Windows"
section of the "Using the Debugger Interface" chapter.

Chapter 8: Menu Bar Commands
Window→1-9 (ALT, W, 1-9)

333

Window→More Windows... (ALT, W, M)

Presents a list box from which you can select the window to be opened.

Select Window Dialog Box

Choosing the Window→More Windows... (ALT, W, M) command opens the
following dialog box:

OK Opens the window selected in the list box.

Cancel Closes the dialog box.

Command File Command

DIS(PLAY) window-name
Opens the specified window. Use the first three characters of the window
name, or, if the window name is "Basic Registers," use "REG."

ICO(NIC) window-name
Closes the specified window. Use the first three characters of the window
name, or, if the window name is "Basic Registers," use "REG."

See Also

"To open debugger windows" in the "Working with Debugger Windows"
section of the "Using the Debugger Interface" chapter.

Chapter 8: Menu Bar Commands
Window→More Windows... (ALT, W, M)

334

Help→About Debugger/Emulator... (ALT, H, D)

Provides information on the Real-Time C Debugger.

Choosing the Help→About Debugger/Emulator... (ALT, H, D) command
opens a dialog box containing the version information on the current
Real-Time C Debugger and emulator.

Chapter 8: Menu Bar Commands
Help→About Debugger/Emulator... (ALT, H, D)

335

Source Directory Dialog Box

When the source file associated with a symbol cannot be found in the current
directory, the following dialog box is opened:

Module Shows the symbol whose source file could not be found.

Directory Lets you enter the directory in which the source file
associated with the symbol may be found.

OK Adds the directory entered in the Directory text box to the
source file search path.

Cancel Closes the dialog box.

Chapter 8: Menu Bar Commands
Source Directory Dialog Box

336

WAIT Command Dialog Box

This dialog box appears when the WAIT command is included in a command
file, break macro, or button.

Choosing the STOP button cancels the WAIT command.

Chapter 8: Menu Bar Commands
WAIT Command Dialog Box

337

338

9

Window Control Menu Commands

339

Window Control Menu Commands

This chapter describes the commands that can be chosen from the control

menus in debugger windows.

• Common Control Menu Commands

• Button Window Commands

• Device Regs Window Commands

• Expression Window Commands

• I/O Window Commands

• Memory Window Commands

• Register Window Commands

• Source Window Commands

• Symbol Window Commands

• Trace Window Commands

• WatchPoint Window Commands

340

Common Control Menu Commands

This section describes commands that appear in the control menus of most of
the debugger windows:

• Copy→Window (ALT, -, P, W)

• Copy→Destination... (ALT, -, P, D)

Copy→Window (ALT, -, P, W)

Copies the current window contents to the destination file specified with the
File→Copy Destination... (ALT, F, P) command.

Command File Command

COP(Y) BAC(KTRACE)

COP(Y) BUT(TON)

COP(Y) EXP(RESSION)

COP(Y) IO

COP(Y) MEM(ORY)

COP(Y) REG(ISTER)

COP(Y) SOU(RCE)

COP(Y) WAT(CHPOINT)

See Also

"To copy window contents to the list file" in the "Working with Debugger
Windows" section of the "Using the Debugger Interface" chapter.

Chapter 9: Window Control Menu Commands
Common Control Menu Commands

341

Copy→Destination... (ALT, -, P, D)

Names the listing file to which debugger information may be copied.

This command opens a file selection dialog box from which you can select the
listing file. Listing files have the extension ".LST".

Command File Command

COP(Y) TO filename

See Also

"To change the list file destination" in the "Working with Debugger Windows"
section of the "Using the Debugger Interface" chapter.

Chapter 9: Window Control Menu Commands
Common Control Menu Commands

342

Button Window Commands

This section describes the following command:

• Edit... (ALT, -, E)

Edit... (ALT, -, E)

Lets you define and label buttons in the Button window.

You can set up buttons to execute commonly used commands or command
files.

Note that the Copy→Window command will generate a listing file that
contains a header followed by commands needed to recreate the buttons. By
removing the header, this file may be used as a command file.

Alternatively, you can log commands to a command file as you edit the
buttons (refer to To create a command file in the "Using Command Files"
section of the "Using the Debugger Interface" chapter). To recreate the
buttons, just run the command file that you created while editing the buttons.

Chapter 9: Window Control Menu Commands
Button Window Commands

343

Button Edit Dialog Box

Choosing the Edit... (ALT, -, E) command opens the following dialog box:

Command Specifies the command to be associated with the button.
Command syntax is described at the bottom of most help
topics under the "Command File Command" heading. Also,
look in the "Command File and Macro Command Summary"
chapter in the "Reference" part.

You can only enter a single command here; if you want a
series of commands to be executed when this button is
used, put them in a command file and use the command
"FILE COMMAND filename," where "filename" is the name
of your command file.

Name Specifies the button label to be associated with the
command.

Add Adds the button to the button window.

Button
Definitions

Lists the currently defined buttons. You can select button
definitions for deletion by clicking on them.

Chapter 9: Window Control Menu Commands
Button Window Commands

344

Delete Deletes the button definition selected in the Button
Definitions list box.

Delete All Deletes all buttons from the Button window.

Close Closes the dialog box.

Command File Command

BUTTON label "command"

BUTTON DELETE label

BUTTON DELETEALL

See Also

"To create buttons that execute command files" in the "Using Command
Files" section of the "Using the Debugger Interface" chapter.

Chapter 9: Window Control Menu Commands
Button Window Commands

345

Device Regs Window Commands

This section describes the following command:

• Continuous Update (ALT, -, U)

Continuous Update (ALT, -, U)

Specifies whether the Device Regs window contents should be continuously
updated while running programs.

A check mark (√) next to the command shows that continuous update is
active.

Chapter 9: Window Control Menu Commands
Device Regs Window Commands

346

Expression Window Commands

This section describes the following commands:

• Clear (ALT, -, R)

• Evaluate... (ALT, -, E)

Clear (ALT, -, R)

Erases the contents of the Expression window.

Command File Command

EVA(LUATE) CLE(AR)

Chapter 9: Window Control Menu Commands
Expression Window Commands

347

Evaluate... (ALT, -, E)

Evaluates expressions and displays the results in the Expression window.

Evaluate Expression Dialog Box

Choosing the Evaluate... (ALT, -, E) command opens the following dialog box:

Expression Lets you enter the expression to be evaluated.

Evaluate Makes the evaluation and places the results in the
Expression window.

Close Closes the dialog box.

Command File Command

EVA(LUATE) address

EVA(LUATE) "strings"

See Also

"Symbols" in the "Expressions in Commands" chapter.

Chapter 9: Window Control Menu Commands
Expression Window Commands

348

I/O Window Commands

This section describes the following command:

Define... (ALT, -, D)

Define... (ALT, -, D)

Adds or deletes memory mapped I/O locations from the I/O window.

I/O Setting Dialog Box

Choosing the Edit→Definition... command opens the following dialog box:

Chapter 9: Window Control Menu Commands
I/O Window Commands

349

Address Specifies the address of the I/O location to be defined.

Size Specifies the data format of the I/O location to be defined.
You can select the Byte or 16 Bits option.

Space Specifies whether the I/O location is in memory or I/O
space.

Set Adds the specified I/O location.

I/O set Displays the information on the I/O locations that have
been set.

Delete Deletes the I/O locations selected in the I/O set list box.

Close Closes the dialog box.

Command File Command

IO BYTE/WORD/LONG IOSPACE/MEMORY address TO data
Replaces the contents of the specified I/O address with the specified value in
the specified size.

IO SET BYTE/WORD/LONG IOSPACE/MEMORY address
Registers the I/O address to be displayed in the specified size.

IO DEL(ETE) BYTE/WORD/LONG IOSPACE/MEMORY address
Deletes the I/O specified with its address and size.

See Also

"Displaying and Editing I/O Locations" in the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
I/O Window Commands

350

Memory Window Commands

This section describes the following commands:

• Display→Linear (ALT, -, D, L)

• Display→Block (ALT, -, D, B)

• Display→Byte (ALT, -, D, Y)

• Display→16 Bits (ALT, -, D, 1)

• Display→32 Bits (ALT, -, D, 3)

• Search... (ALT, -, R)

• Utilities→Copy... (ALT, -, U, C)

• Utilities→Fill... (ALT, -, U, F)

• Utilities→Image... (ALT, -, U, I)

• Utilities→Load... (ALT, -, U, L)

• Utilities→Store... (ALT, -, U, S)

Display→Linear (ALT, -, D, L)

Displays memory contents in single column format.

Command File Command

MEM(ORY) ABS(OLUTE)

Chapter 9: Window Control Menu Commands
Memory Window Commands

351

Display→Block (ALT, -, D, B)

Displays memory contents in multicolumn format.

Command File Command

MEM(ORY) BLO(CK)

Display→Byte (ALT, -, D, Y)

Displays memory contents as bytes.

Command File Command

MEM(ORY) BYTE

Display→16 Bit (ALT, -, D, 1)

Displays memory contents as 16-bit values.

Command File Command

MEM(ORY) WORD

Display→32 Bit (ALT, -, D, 3)

Displays memory contents as 32-bit values.

Command File Command

MEM(ORY) LONG

Chapter 9: Window Control Menu Commands
Memory Window Commands

352

Search... (ALT, -, R)

Searches for a value or string in a range of memory.

When the value or string is found, the location is displayed in the Memory
window. Choose the Window→Memory command to open the window.

The value or string can be selected from another window (in other words,
copied to the clipboard) before choosing the command; the contents of the
clipboard will automatically appear in the dialog box that is opened.

Search Memory Dialog Box

Choosing the Search... (ALT, -, R) command opens the following dialog box:

Value Lets you enter a value.

String Lets you enter a string.

Start Lets you enter the starting address of the memory range to
search.

End Lets you enter the end address of the memory range to
search.

Size Selects the data size using the Byte, 16 Bits, or 32 Bits
option buttons.

Execute Searches for the specified value or string.

Chapter 9: Window Control Menu Commands
Memory Window Commands

353

Close Closes the dialog box.

Command File Command

SEA(RCH) MEM(ORY) BYTE/WORD/LONG addr_range value

SEA(RCH) MEM(ORY) STR(ING) "string"

See Also

"To search memory for a value or string" in the "Displaying and Editing
Memory" section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Memory Window Commands

354

Utilities→Copy... (ALT, -, U, C)

Copies the contents of one memory area to another.

Memory Copy Dialog Box

Choosing the Utilities→Copy... (ALT, -, U, C) command opens the following
dialog box:

Start Lets you enter the starting address of the source memory
area.

End Lets you enter the end address of the source memory area.

Destination Specifies the starting address of the destination memory
area.

Size Selects the data size using the Byte, 16 Bits, or 32 Bits
option buttons.

Execute Copies the memory contents.

Close Closes the dialog box.

Command File Command

MEM(ORY) COP(Y) size address_range address

Chapter 9: Window Control Menu Commands
Memory Window Commands

355

See Also

"To copy memory to a different location" in the "Displaying and Editing
Memory" section of the "Debugging Programs" chapter.

Utilities→Fill... (ALT, -, U, F)

Fills a range of memory with a specified value.

Memory Fill Dialog Box

Choosing the Utilities→Fill... (ALT, -, U, F) command opens the following
dialog box:

Value Lets you enter the filling value.

Start Lets you enter the starting address of the memory area to
be filled.

End Lets you enter the end address of the memory area to be
filled.

Size Selects the size of the filling value. If the value specified is
larger than can fit in the size selected, the upper bits of the
value are ignored. You can select the size using the Byte,
16 Bits, or 32 Bits option buttons.

Execute Executes the command.

Chapter 9: Window Control Menu Commands
Memory Window Commands

356

Close Closes the dialog box.

Command File Command

MEM(ORY) FIL(L) size address_range data

See Also

"To modify a range of memory with a value" in the "Displaying and Editing
Memory" section of the "Debugging Programs" chapter.

Utilities→Image... (ALT, -, U, I)

Copies the contents of a target system memory range into the corresponding
emulation memory range.

You can copy programs that are in target system ROM to emulation memory.
Once the program code is in emulation memory, you can use features like
breakpoints, run until, etc.

The address range must be mapped as emulation memory before choosing
this command.

Memory Image Dialog Box

Choosing the Utilities→Image... (ALT, -, U, I) command opens the following
dialog box:

Chapter 9: Window Control Menu Commands
Memory Window Commands

357

Start Lets you enter the starting address of the memory area.

End Lets you enter end address of the memory area.

Size Selects the data size using the Byte, 16 Bits, or 32 Bits
option buttons.

Execute Copies the target system memory into emulation memory.

Close Closes the dialog box.

Command File Command

MEM(ORY) IMA(GE) size address_range

See Also

"To copy target system memory into emulation memory" in the "Displaying
and Editing Memory" section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Memory Window Commands

358

Utilities→Load... (ALT, -, U, L)

Loads memory contents from a previously stored file.

Load Binary File Dialog Box

Choosing the Utilities→Load... (ALT, -, U, L) command opens the following
dialog box:

File Name Lets you enter the name of the file to load memory from.

Bytes Loaded After you choose the Import button, this box shows the
number of bytes that are loaded.

Record Format Lets you specify the format of the file from which you’re
loading memory. You can load Motorola S-Record or Intel
Hexadecimal format files.

Load Starts the memory load.

Cancel Closes the dialog box.

Browse... Opens a file selection dialog box from which you can select
the file name.

Command File Command

MEM(ORY) LOA(D) MOT(OSREC) filename

MEM(ORY) LOA(D) INT(ELHEX) filename

Chapter 9: Window Control Menu Commands
Memory Window Commands

359

See Also

"To copy target system memory into emulation memory" in the "Displaying
and Editing Memory" section of the "Debugging Programs" chapter.

Utilities→Store... (ALT, -, U, S)

Utilities→Store... (ALT, -, U, S)

Stores memory contents to a binary file.

Store Binary File Dialog Box

Choosing the Utilities→Store... (ALT, -, U, S) command opens the following
dialog box:

File Name Lets you enter the name of the file to which memory
contents are stored.

Bytes Stored After you choose the Export button, this box shows the
number of bytes that are stored.

Record Format Lets you specify the format of the file to which you’re
storing memory. You can select Motorola S-Record or Intel
Hexadecimal formats.

Chapter 9: Window Control Menu Commands
Memory Window Commands

360

Start Lets you enter the starting address of the memory range to
be stored.

End Lets you enter the ending address of the memory range to
be stored.

Store Starts the memory store.

Cancel Closes the dialog box.

Browse... Opens a file selection dialog box from which you can select
a file name.

Command File Command

MEM(ORY) STO(RE) MOT(OSREC) addr-range filename

MEM(ORY) STO(RE) INT(ELHEX) addr-range filename

See Also

"To copy target system memory into emulation memory" in the "Displaying
and Editing Memory" section of the "Debugging Programs" chapter.

Utilities→Load... (ALT, -, U, L)

Chapter 9: Window Control Menu Commands
Memory Window Commands

361

Register Window Commands

This section describes the following command:

Copy→Registers (ALT, -, P, R)

Copy→Registers (ALT, -, P, R)

Copies the current Register window contents to the destination file specified
with the File→Copy Destination... (ALT, F, P) command.

Command File Command

COP(Y) REG(ISTER)

Chapter 9: Window Control Menu Commands
Register Window Commands

362

Register Bit Fields Dialog Box

When a register has bit-fields, a dialog will pop-up and the register value may
be edited by changing the whole value or by editing individual bit-fields.

When editing in the dialog box, a carriage-return is the same as choosing the
OK button. To end an edit of a field within the dialog box without quitting,
use the Tab key.

Edited Value Shows the register value that corresponds to the selections
made below. You can also change the register’s value by
modifying the value in this text box.

Original Value Shows the value of the register when the dialog box was
opened. If the register could not be read, ’XXXXXXXX’ is
displayed.

Chapter 9: Window Control Menu Commands
Register Window Commands

363

OK Modifies the register as specified, and closes the dialog box.

Cancel Closes the dialog box without modifying the register.

Chapter 9: Window Control Menu Commands
Register Window Commands

364

Source Window Commands

This section describes the following commands:

• Display→Mixed Mode (ALT, -, D, M)

• Display→Source Only (ALT, -, D, S)

• Display→Select Source... (ALT, -, D, L)

• Search→String... (ALT, -, R, S)

• Search→Function... (ALT, -, R, F)

• Search→Address... (ALT, -, R, A)

• Search→Current PC (ALT, -, R, C)

Display→Mixed Mode (ALT, -, D, M)

Chooses the source/mnemonic mixed display mode.

Command File Command

MOD(E) MNE(MONIC) ON

See Also

"To display source code mixed with assembly instructions" in the "Loading
and Displaying Programs" section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Source Window Commands

365

Display→Source Only (ALT, -, D, S)

Chooses the source only display mode.

Command File Command

MOD(E) MNE(MONIC) OFF

See Also

"To display source code only" in the "Loading and Displaying Programs"
section of the "Debugging Programs" chapter.

Display→Select Source... (ALT, -, D, L)

Displays the contents of the specified C source file in the Source window.

This command is disabled before the object file is loaded or when no source
is available for the loaded object file.

Select Source Dialog Box

Choosing the Display→Select Source... (ALT, -, D, L) command opens the
following dialog box:

Chapter 9: Window Control Menu Commands
Source Window Commands

366

Source Files Lists C source files associated with the loaded object file.
You can select the source file to be displayed from this list.

Select Switches the Source window contents to the selected
source file.

Close Closes the dialog box.

Directory Opens the Search Directories Dialog Box from which you
can add directories to the search path.

Command File Command

FIL(E) SOU(RCE) module_name

See Also

"To display source files by their names" in the "Loading and Displaying
Programs" section of the "Debugging Programs" chapter.

Search→String... (ALT, -, R, S)

Searches for, and displays, a string in the Source window.

The search starts from the current cursor position in the Source window,
may be either forward or backward, and may be case sensitive.

The string can be selected from another window (in other words, copied to
the clipboard) before choosing the command; it will automatically appear in
the dialog box that is opened.

Chapter 9: Window Control Menu Commands
Source Window Commands

367

Search String Dialog Box

Choosing the Search→String... (ALT, -, R, S) command opens the following
dialog box:

Find What Lets you enter the string.

Match Case Selects or deselects case matching.

Up Specifies that the search be from the current cursor
position backward.

Down Specifies that the search be from the current cursor
position forward.

Find Next Searches for the string.

Close Closes the dialog box.

Command File Command

SEA(RCH) STR(ING) FOR/BACK ON/OFF strings
Searches the specified string in the specified direction with the case
matching option ON or OFF.

See Also

"To search for strings in the source files" in the "Loading and Displaying
Programs" section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Source Window Commands

368

Search→Function... (ALT, -, R, F)

Searches for, and displays, a function in the Source window.

The object file and symbols must be loaded before you can choose this
command.

Note This command displays the source file based on the function information in
the object file. Depending on the structure of the function, the command
may fail in displaying the declaration of the function.

Search Function Dialog Box

Choosing the Search→Function... (ALT, -, R, F) command opens the
following dialog box:

Function Lets you select the function to search for.

Find Searches the specified function.

Close Closes the dialog box.

Command File Command

SEA(RCH) FUNC(TION) func_name

Chapter 9: Window Control Menu Commands
Source Window Commands

369

See Also

"To search for function names in the source files" in the "Loading and
Displaying Programs" section of the "Debugging Programs" chapter.

Search→Address... (ALT, -, R, A)

Searches for, and displays, an address in the Source window.

Address expressions such as function names or symbols can be selected from
another window (in other words, copied to the clipboard) before choosing
the command; the contents of the clipboard will automatically appear in the
dialog box that is opened.

Search Address Dialog Box

Choosing the Search→Address... (ALT, -, R, A) command opens the following
dialog box:

Address Lets you enter the address to search for.

Find Searches for the specified address.

Close Closes the dialog box.

Chapter 9: Window Control Menu Commands
Source Window Commands

370

Command File Command

CUR(SOR) address
When used before the COME command, this command can be used to run

to a particular address.

See Also

"To search for addresses in the source files" in the "Loading and Displaying
Programs" section of the "Debugging Programs" chapter.

Search→Current PC (ALT, -, R, C)

Searches for, and displays, the location of the current program counter in the
Source window.

Command File Command

CUR(SOR) PC
This command can be used to show the current PC in the Source window.

Chapter 9: Window Control Menu Commands
Source Window Commands

371

Search Directories Dialog Box

Choosing the Directories... button in the Select Source dialog box opens the
following dialog box:

Directory Lets you enter the directory to be added to the source file
search path.

Search Source
Directories

Lists the directories in the source file search path.

Add Adds the directory entered in the Directory text box to the
source file search path.

Delete Deletes the directory in the Directory text box from the
source file search path.

Close Closes the dialog box.

See Also

"To specify source file directories" in the "Loading and Displaying Programs"
section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Source Window Commands

372

Symbol Window Commands

This section describes the following commands:

• Display→Modules (ALT, -, D, M)

• Display→Functions (ALT, -, D, F)

• Display→Externals (ALT, -, D, E)

• Display→Locals... (ALT, -, D, L)

• Display→Asm Globals (ALT, -, D, G)

• Display→Asm Locals... (ALT, -, D, A)

• Display→User defined (ALT, -, D, U)

• Copy→Window (ALT, -, P, W)

• Copy→All (ALT, -, P, A)

• FindString→String... (ALT, -, D, M)

• User defined→Add... (ALT, -, U, A)

• User defined→Delete (ALT, -, U, D)

• User defined→Delete All (ALT, -, U, L)

Display→Modules (ALT, -, D, M)

Displays the symbolic module information from the loaded object file.

Command File Command

SYM(BOL) LIS(T) MOD(ULE)

Chapter 9: Window Control Menu Commands
Symbol Window Commands

373

See Also

"To display program module information" in the "Displaying Symbol
Information" section of the "Debugging Programs" chapter.

Display→Functions (ALT, -, D, F)

Displays the symbolic function information from the loaded object file.

The Symbol window displays the name, type and address range for C
functions.

Command File Command

SYM(BOL) LIS(T) FUN(CTION)

See Also

"To display function information" in the "Displaying Symbol Information"
section of the "Debugging Programs" chapter.

Display→Externals (ALT, -, D, E)

Displays the global variable information from the loaded object file.

The Symbol window displays the name, type and address for global variables.

Command File Command

SYM(BOL) LIS(T) EXT(ERNAL)

See Also

"To display external symbol information" in the "Displaying Symbol
Information" section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Symbol Window Commands

374

Display→Locals... (ALT, -, D, L)

Displays the local variable information on the specified function.

The function name can be selected from another window (in other words,
copied to the clipboard) before choosing the command; the clipboard
contents automatically appear in the dialog box that is opened.

The Symbol window displays the name, type and offset from the frame
pointer for the local variables for the specified function.

Local Symbol Dialog Box

Choosing the Display→Locals... (ALT, -, D, L) command opens the following
dialog box:

Function Selects the function for which the local variable
information is displayed.

OK Executes the command and closes the dialog box.

Cancel Cancels the command and closes the dialog box.

Command File Command

SYM(BOL) LIS(T) INT(ERNAL) function

See Also

"To display local symbol information" in the "Displaying Symbol Information"
section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Symbol Window Commands

375

Display→Asm Globals (ALT, -, D, G)

Displays the global Assembler symbol information from the loaded object file.

The Symbol window displays the name and address for the global assembler
symbols.

Command File Command

SYM(BOL) LIS(T) GLO(BALS)

See Also

"To display global assembler symbol information" in the "Displaying Symbol
Information" section of the "Debugging Programs" chapter.

Display→Asm Locals... (ALT, -, D, A)

Displays the local symbol information from the specified module.

The module name can be selected from another window (in other words,
copied to the clipboard) before choosing the command; the clipboard
contents automatically appear in the dialog box that is opened.

The Symbol window displays the name and address for the local symbols for
the specified module.

Chapter 9: Window Control Menu Commands
Symbol Window Commands

376

Assembler Symbol Dialog Box

Choosing the Display→Asm Locals... (ALT, -, D, A) command opens the
following dialog box:

Module Selects the module for which the local symbols are
displayed.

OK Executes the command and closes the dialog box.

Cancel Cancels the command and closes the dialog box.

Command File Command

SYM(BOL) LIS(T) LOC(AL) module

See Also

"To display local assembler symbol information" in the "Displaying Symbol
Information" section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Symbol Window Commands

377

Display→User defined (ALT, -, D, U)

Displays the user-defined symbol information.

The Symbol window displays the name and address for the user-defined
symbols.

The User defined→Add... (ALT, -, D, U) command adds the user-defined
symbols.

Command File Command

SYM(BOL) LIS(T) USE(R)

See Also

"To display user-defined symbol information" in the "Displaying Symbol
Information" section of the "Debugging Programs" chapter.

Copy→Window (ALT, -, P, W)

Copies the information currently displayed in the Symbol window to the
specified listing file.

The listing file is specified with the File→Copy Destination... (ALT, F, P)
command.

Command File Command

SYM(BOL) COP(Y) DIS(PLAY)

See Also

"To copy window contents to the list file" in the "Working with Debugger
Windows" section of the "Using the Debugger Interface" chapter.

Chapter 9: Window Control Menu Commands
Symbol Window Commands

378

Copy→All (ALT, -, P, A)

Copies all the symbol information to the specified listing file.

The listing file is specified with the File→Copy Destination... (ALT, F, P)
command.

Command File Command

SYM(BOL) COP(Y) ALL

FindString→String... (ALT, -, F, S)

Displays the symbols that contain the specified string.

This command performs a case-sensitive search.

Symbol Matches Dialog Box

Choosing the FindString→String... (ALT, -, F, S) command opens the
following dialog box:

String Specifies the string.

OK Executes the command and closes the dialog box.

Cancel Cancels the command and closes the dialog box.

Chapter 9: Window Control Menu Commands
Symbol Window Commands

379

Command File Command

SYM(BOL) MAT(CH) string

See Also

"To display the symbols containing the specified string" in the "Displaying
Symbol Information" section of the "Debugging Programs" chapter.

User defined→Add... (ALT, -, U, A)

Adds the specified user-defined symbol.

User-defined symbols may be used in debugger commands just like other
program symbols.

The symbol name must satisfy the following requirements:

• The name must begin with an alphabetical, _ (underscore), or ?
character.

• The following characters must be any of alphanumerical, _ (underscore),
or ? characters.

• The maximum number of characters is 256.

User defined Symbol Dialog Box

Choosing the User defined→Add... (ALT, -, U, A) command opens the
following dialog box:

Chapter 9: Window Control Menu Commands
Symbol Window Commands

380

Symbol Name Specifies the symbol to be added.

Address Specifies the address of the symbol.

OK Executes the command and closes the dialog box.

Cancel Cancels the command and closes the dialog box.

Command File Command

SYM(BOL) ADD symbol_nam address

See Also

"To create a user-defined symbol" in the "Displaying Symbol Information"
section of the "Debugging Programs" chapter.

User defined→Delete (ALT, -, U, D)

Deletes the specified user-defined symbol.

This command deletes the user-defined symbol selected in the Symbol
window.

Command File Command

SYM(BOL) DEL(ETE) symbol_nam

See Also

"To delete a user-defined symbol" in the "Displaying Symbol Information"
section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Symbol Window Commands

381

User defined→Delete All (ALT, -, U, L)

Deletes all the user-defined symbols.

Command File Command

SYM(BOL) DEL(ETE) ALL

Chapter 9: Window Control Menu Commands
Symbol Window Commands

382

Trace Window Commands

This section describes the following commands:

• Display→Mixed Mode (ALT, -, D, M)

• Display→Source Only (ALT, -, D, S)

• Display→Bus Cycle Only (ALT, -, D, C)

• Display→Count→Absolute (ALT, -, D, C, A)

• Display→Count→Relative (ALT, -, D, C, R)

• Copy→Window (ALT, -, P, W)

• Copy→All (ALT, -, P, A)

• Search→Trigger (ALT, -, R, T)

• Search→State... (ALT, -, R, S)

• Trace Spec Copy→Specification (ALT, -, T, S)

• Trace Spec Copy→Destination... (ALT, -, T, D)

Display→Mixed Mode (ALT, -, D, M)

Chooses the source/mnemonic mixed display mode.

Command File Command

TRA(CE) DIS(PLAY) MIX(ED)

See Also

"To display source code mixed with assembly instructions" in the "Loading
and Displaying Programs" section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Trace Window Commands

383

Display→Source Only (ALT, -, D, S)

Selects the source only display mode.

Command File Command

TRA(CE) DIS(PLAY) SOU(RCE)

See Also

"To display bus cycles" in the "Tracing Program Execution" section of the
"Debugging Programs" chapter.

Display→Bus Cycle Only (ALT, -, D, C)

Selects the bus cycle only display mode.

Command File Command

TRA(CE) DIS(PLAY) BUS

See Also

To display bus cycles in the "Tracing Program Execution" section of the
"Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Trace Window Commands

384

Display→Count→Absolute (ALT, -, D, C, A)

Selects the absolute mode (the total time elapsed since the trigger) for count
information.

Command File Command

TRA(CE) DIS(PLAY) ABS(OLUTE)

See Also

"To display absolute or relative counts" in the "Tracing Program Execution"
section of the "Debugging Programs" chapter.

Display→Count→Relative (ALT, -, D, C, R)

Selects the relative mode (the time interval between the current and
previous cycle) for count information.

Command File Command

TRA(CE) DIS(PLAY) REL(ATIVE)

See Also

"To display absolute or relative counts" in the "Tracing Program Execution"
section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Trace Window Commands

385

Copy→Window (ALT, -, P, W)

Copies the information currently in the Trace window to the specified listing
file.

The listing file is specified with the File→Copy Destination... (ALT, F, P)
command.

Command File Command

TRA(CE) COP(Y) DIS(PLAY)

See Also

"To copy window contents to the list file" in the "Working with Debugger
Windows" section of the "Using the Debugger Interface" chapter.

Copy→All (ALT, -, P, A)

Copies all the trace information to the specified listing file.

The listing file is specified with the File→Copy Destination... (ALT, F, P)
command.

Command File Command

TRA(CE) COP(Y) ALL

Chapter 9: Window Control Menu Commands
Trace Window Commands

386

Search→Trigger (ALT, -, R, T)

Positions the trigger state at the top of the Trace window.

Command File Command

TRA(CE) FIN(D) TRI(GGER)

Search→State... (ALT, -, R, S)

Positions the specified state at the top of the Trace window.

Search Trace State Dialog Box

Choosing the Search→State... (ALT, -, R, S) command opens the following
dialog box:

State Lets you enter the trace state number to search for.

Find Searches for the specified trace state.

Close Closes the dialog box.

Command File Command

TRA(CE) FIN(D) STA(TE) state_num

Chapter 9: Window Control Menu Commands
Trace Window Commands

387

Trace Spec Copy→Specification (ALT, -, T, S)

Copies the current trace specification to the listing file.

Command File Command

TRA(CE) COP(Y) SPE(C)

Trace Spec Copy→Destination... (ALT, -, T, D)

Names the listing file to which debugger information may be copied.

This command opens a file selection dialog box from which you can select the
listing file. Listing files have the extension ".LST".

Command File Command

COP(Y) TO filename

Chapter 9: Window Control Menu Commands
Trace Window Commands

388

WatchPoint Window Commands

This section describes the following command:

Edit...

Edit... (ALT, -, E)

Registers or deletes watchpoints.

Variables can be selected from the another window (in other words, copied to
the clipboard) before choosing the Edit... (ALT, -, E) command from the
WatchPoint window’s control menu, and they will automatically appear in the
dialog box that is opened.

Dynamic variables can be registered and displayed in the WatchPoint window
when the current program counter is in the function in which the variable is
declared. If the current program counter is not in the function, the variable
name is invalid and results in an error.

Chapter 9: Window Control Menu Commands
WatchPoint Window Commands

389

WatchPoint Dialog Box

Choosing the Edit... (ALT, -, E) command from the WatchPoint window’s
control menu opens the following dialog box:

Variable Lets you enter the name of the variable to be registered as
a watchpoint. The contents of the clipboard, usually a
variable selected from the another window, automatically
appears in this text box.

Watch Points
Set

Lists the current watchpoints and allows you to select the
watchpoint to be deleted.

Set Copies the specified variable to the WatchPoint window.

Delete Deletes the variable selected in the Watch Points Set box.

Delete All Deletes all the watchpoints.

Close Closes the dialog box.

Chapter 9: Window Control Menu Commands
WatchPoint Window Commands

390

Command File Command

WP SET address
Registers the specified address as a watchpoint.

WP DEL(ETE) address
Deletes the specified watchpoint.

WP DEL(ETE) ALL
Deletes all the current watchpoints.

See Also

"To monitor a variable in the WatchPoint window" in the "Displaying and
Editing Variables" section of the "Debugging Programs" chapter.

"Symbols" in the "Expressions in Commands" chapter.

Chapter 9: Window Control Menu Commands
WatchPoint Window Commands

391

392

10

Window Pop-Up Commands

393

Window Pop-Up Commands

This chapter describes the commands that can be chosen from the pop-up
menus in debugger windows. Pop-Up menus are accessed by clicking the
right mouse button in the window.

• BackTrace Window Pop-Up Commands

• Source Window Pop-Up Commands

394

BackTrace Window Pop-Up Commands

• Source at Stack Level

Source at Stack Level

For the cursor-selected function in the BackTrace window, this command
displays the function call in the Source window.

Chapter 10: Window Pop-Up Commands
BackTrace Window Pop-Up Commands

395

Source Window Pop-Up Commands

• Set Breakpoint

• Clear Breakpoint

• Evaluate It

• Add to Watch

• Run to Cursor

Set Breakpoint

Sets a breakpoint on the line containing the cursor. Refer to the
Breakpoint→Set at Cursor (ALT, B, S) command.

Clear Breakpoint

Deletes the breakpoint on the line containing the cursor. Refer to the
Breakpoint→Delete at Cursor (ALT, B, D) command.

Evaluate It

Evaluates the clipboard contents and places the result in the Expression
window. Refer to the Evaluate... (ALT, -, E) command available from the
Expression window’s control menu.

Chapter 10: Window Pop-Up Commands
Source Window Pop-Up Commands

396

Add to Watch

Adds the selected variable (that is, the variable copied to the clipboard) to
the WatchPoint window. Refer to the Variable→Edit... (ALT, V, E) command.

Run to Cursor

Executes the program up to the Source window line containing the cursor.
Refer to the Execution→Run to Cursor (ALT, R C) command.

Chapter 10: Window Pop-Up Commands
Source Window Pop-Up Commands

397

398

11

Other Command File and Macro
Commands

399

Other Command File and Macro Commands

This chapter describes the commands that are only available in command
files, break macros, or buttons.

• BEEP

• EXIT

• FILE CHAINCMD

• FILE RERUN

• NOP

• TERMCOM

• WAIT

400

BEEP

Sounds beep during command file or break macro execution.

Command File Command

BEEP

Chapter 11: Other Command File and Macro Commands
BEEP

401

EXIT

Exits, or conditionally exits, command file execution.

Command File Command

EXIT
Exits command file execution.

EXIT VAR(IABLE) address value
Exits command file execution if the variable contains the value.

EXIT REG(ISTER) regname value
Exits command file execution if the register contains the value.

EXIT MEM(ORY) BYTE/WORD/LONG address value
Exits command file execution if the memory location contains the value.

EXIT IO BYTE/WORD address value
Exits command file execution if the I/O location contains the value.

Chapter 11: Other Command File and Macro Commands
EXIT

402

FILE CHAINCMD

Chains command file execution.

This command lets you run one command file from another nonrecursively; in
other words, control is not returned to the original command file.

By contrast, the FILE COMMAND command is recursive; if you use the FILE
COMMAND command to run one command file from another, control will be
returned to the original command file. FILE COMMAND commands can be
nested four levels deep.

Command File Command

FILE CHAINCMD filename

Chapter 11: Other Command File and Macro Commands
FILE CHAINCMD

403

FILE RERUN

Starts command file execution over again.

This command is useful for looping stimulus files or running a demo or other
command file continuously.

Command File Command

FILE RERUN

Chapter 11: Other Command File and Macro Commands
FILE RERUN

404

NOP

No operation.

This command may be used to prefix comment lines in command files.

Command File Command

NOP

NOP comments

Chapter 11: Other Command File and Macro Commands
NOP

405

TERMCOM

Sends Terminal Interface commands to the HP 64700.

The HP 64700 Card Cage contains a low-level Terminal Interface, which
allows you to control the emulator’s functions directly. You can use the
TERMCOM command to bypass the RTC Interface and send commands
directly to the low-level Terminal Interface.

There is no window in the RTC Interface where you can execute TERMCOM
commands directly. The only way to execute them with the RTC Interface is
to make them part of a command file and then run the command file from an
RTC Interface window.

You may need to start a unique target system that requires emulator
intervention that is only available through the Terminal Interface. You can
create the command file and then execute it at the appropriate time using a
command such as File→Run Cmd File..., and place the name of your
command file in the Run Command File dialog box.

The danger in using Terminal Interface commands via the TERMCOM
command is that the RTC Interface may not be updated to know the state of
the emulator. Some Terminal Interface commands can be executed by using
the TERMCOM command, and the RTC Interface will not know that they
were executed. Other Terminal Interface commands can be executed and
the RTC Interface will be updated immediately. For example:

• If you have a command in your command file that changes the setting of
RealTime→Monitor Intrusion→Disallowed/Allowed, (such as, TERMCOM
"cf rrt=en"), the RTC Interface will not know about this change and will
continue to try to operate according to the earlier setting. In this case,
the RTC Interface may try to update its displays when the emulator is set
to deny monitor access to the registers and memory.

• If you have a command in your command file that writes a value to
memory (such as, TERMCOM "00000..00fff=0"), the Memory window will
be updated immediately to show the new value, assuming you have
chosen RealTime→Monitor Intrusion→Allowed.

Chapter 11: Other Command File and Macro Commands
TERMCOM

406

Do not use the following Terminal Interface commands with the RTC
TERMCOM command:

• stty, po, xp: These commands will change the operation of the
communications channel, and are likely to hang the RTC Interface.

• echo, mac: These commands may confuse the communications
protocols in use in the channel.

• wait: The pod will enter a wait state, blocking access by the RTC
Interface.

• init, pv: These will reset the emulator and end your session.

• t: This will confuse the functions of trace status polling and unload.

Refer to your "Terminal Interface User’s Guide" for more information about
Terminal Interface commands.

Command File Command

TERMCOM "ti-command"

Chapter 11: Other Command File and Macro Commands
TERMCOM

407

WAIT

Inserts wait delays during command file execution.

Command File Command

WAI(T) MON(ITOR)
Waits until MONITOR status.

WAI(T) RUN
Waits until RUN status.

WAI(T) UNK(NOWN)
Waits until UNKNOWN status.

WAI(T) SLO(W)
Waits until SLOW CLOCK status.

WAI(T) TGT(RESET)
Waits until TARGET RESET status.

WAI(T) SLE(EP)
Waits until SLEEP status.

WAI(T) GRA(NT)
Waits until BUS GRANT status

WAI(T) NOB(US)
Waits until NOBUS status.

WAI(T) TCO(M)
Waits until the trace is complete.

WAI(T) THA(LT)
Wait until the trace is halted.

WAI(T) TIM(E) seconds
Waits for a number of seconds.

Chapter 11: Other Command File and Macro Commands
WAIT

408

12

Error Messages

409

Error Messages

This chapter helps you find details about the following error messages:

• Bad RS-232 port name
• Bad RS-422 card I/O address
• Could not open initialization file
• Could not write Memory
• EMIPLCR value is not consistent with VCCSYN/MODCLK
• Error occurred while processing Object file
• General RS-232 communications error
• General RS-422 communications error
• HP 64700 locked by another user
• HP 64700 not responding
• Incorrect DLL version
• Incorrect LAN Address (HP-ARPA, Windows for Workgroups)
• Incorrect LAN Address (Novell)
• Incorrect LAN Address (WINSOCK)
• Internal error in communications driver
• Internal error in Windows
• Interrupt execution (during run to caller)
• Interrupt execution (during step)
• Interrupt execution (during step over)
• Invalid transport name
• LAN buffer pool exhausted
• LAN communications error
• LAN MAXSENDSIZE is too small
• LAN Socket error
• Object file format ERROR
• Out of DOS Memory for LAN buffer
• Out of Windows timer resources
• PC is out of RAM memory
• Timed out during communications

Refer to the end of Chapter 4 for further discussions of specific error
conditions.

410

Bad RS-232 port name

RS-232 port names must be of the form "COM<number>" where <number> is
a decimal number from 1 to the number of communications ports within your
PC.

Bad RS-422 card I/O address

The RS-422 card’s I/O address must be a hexadecimal number from 100H
through 3F8H whose last digit is 0 or 8 (example 100, 108, 110). Select an
I/O address that does not conflict with the other cards in your PC.

Could not open initialization file

The initialization file was not found in the same directory where the
executable file was found.

For example, if the application file is b3638.EXE, the initialization file
b3638.INI is expected to be found in the same directory.

To fix this problem, you may be able to find the initialization file and move it
to the same directory as the executable file, or you can create a new
initialization file from the default initialization file. For example:

COPY b3638DEF.INI Bxxxx.INI

Note that the above command is the DOS COPY command. Do not use the
ksh ’cp b3638DEF.INI Bxxxx.INI’ command. Use only the DOS ’COPY
b3638DEF.INI b3638.INI’ command.

If you cannot find the default initialization file either, you can re-install the
debugger software.

For correct operation, make certain the b3638.INI file has both read and
write permission.

Chapter 12: Error Messages
Bad RS-232 port name

411

Could not write Memory

You may see this error message when trying to load a file or perform any
other task that requires use of the monitor. The emulation monitor is used to
load files, which requires writing to memory. If you have chosen
RealTime→Monitor Intrusion→Disallowed the monitor will not be usable,
and Execution→Reset may prevent use of the monitor in some emulators.

Choose RealTime→Monitor Intrusion→Allowed, and Execution→Break to
ensure that the emulation monitor is running. The Status window should
show Emulator: RUNNING IN MONITOR.

With this setup, the emulator should be able to write to Memory.

If you are still unable to load a file, select "Symbols Only" in the Load Object
File dialog box and try to load the file. If Symbols Only will not load, the
problem is in your symbols.

Choose "Data Only" in the Load Object File dialog box and try to load the file.
If the symbols loaded, but the data fails to load, the problem is in your
program code.

Call your local HP representative.

Chapter 12: Error Messages
Could not write Memory

412

EMIPLCR value is not consistent with
VCCSYN/MODCLK

This means you are running the emulator with a crystal and the EMIPLCR
(emulator’s copy of clock control register, IPLCR) needs to be reconfigured.
It has provided a system clock frequency outside the frequency specification
(10 MHz to 25 MHz when using a crystal).

To see the results of this error condition, open the Configuration Information
window in the RTC interface. The last two lines on the display show the
present multiplication factor (MF+1), and the resulting system clock
frequency.

The Multiplication Factor bits (MF11-0 of EMIPLCR) select the
multiplication factor applied to your target system clock (EXTAL). You can
select any multiplication factor from 1 (MF11-0 = 000h) to 4096 (MF11-0 =
FFFh). You must select a multiplication factor for your EXTAL that results
in a system frequency of 10 MHz to 25 MHz.

Open the System Registers window and select a new value for IPLCR that
provides the required multiplication factor in bits MF11-MF0.

Any time a new value is written into the MF11-MF0 bits, the IMP PLL will
lose the lock condition for 2500 EXTAL clocks. During the non-locked
period, all clocks generated by the IMP PLL will be disabled. Then the IMP
PLL will relock.

Example:

In the following example, the value of MF11-0 is 000h and the emulator is
using a 32.768 kHz clock crystal. The emulator generates the message,
"EMIPLCR value is not consistent with VCCSYN/MODCLK."

By choosing Settings→Emulator Config→Information..., you see:

The clock configuration is set for internal clock
The emulator clock header is set for 32.768 KHz crystal
CLKO Drive mode is full strength
IMP PLL is enabled
Multiplication Factor (MF+1) is 1
Frequency is 0 MHz - Slow Clock

Chapter 12: Error Messages
EMIPLCR value is not consistent with VCCSYN/MODCLK

413

You open the System Registers window and write the value 190h to register
IPLCR. This sets MF11-0 for a multiplication factor of 401 (MF11-0 = 400,
plus the constant 1). This gives a system clock frequency of 13.140 MHz,
which is within the 10 MHz to 25 MHz system clock frequency range.

The clock configuration is set for internal clock
The emulator clock header is set for 32.768 KHz crystal
CLKO Drive mode is full strength
IMP PLL is enabled
Multiplication Factor (MF+1) is 401
Frequency is 13.140 MHz

Chapter 12: Error Messages
EMIPLCR value is not consistent with VCCSYN/MODCLK

414

Error occurred while processing Object file

The following is a list of typical reasons why an error might occur while
processing an object file. There are many other possible reasons.

• Bad record in the object file.

• File is in wrong format.

• File does not follow OMF Specifications correctly.

• No memory mapped.

• Attempt to write to guarded memory.

• Emulator restricted to real-time runs. Enter the command,
"RealTime→Monitor Intrusion→Allowed".

• Emulator not executing the monitor. Enter the command,
"Execution→Break".

Another message often occurs along with this message. View the help
information for the other message, if available.

Call your local HP representative.

Chapter 12: Error Messages
Error occurred while processing Object file

415

General RS-232 communications error

In general, these messages indicate that the RS-232 communication has
intermittent errors. Sometimes you will get this message if you power on the
emulator, or when you try to connect to the emulator. In that case, simply
retry the connection (by double-clicking on the RS232C driver line in the
selection box); if you connect with no problems the second time, you can
ignore the original message.

If you get this message other than during connection, you can try to fix the
problem by:

• Reducing the length of the RS-232 cable between the PC and the HP
64700.

• Reducing the number of tasks running under Windows.

• Reducing the baud rate (the default is 19200).

For further information, refer to the paragraph titled, "If you have RS-232
connection problems" in the Communications Help screen, or in Chapter 15,
"Installing the Debugger" in the Real-Time C Debugger User’s Guide.

General RS-422 communications error

In general, these messages indicate that the RS-422 communication has
intermittent errors. Sometimes you will get this message if you power on the
emulator, or when you try to connect to the emulator. In that case, simply
retry the connection (by double-clicking on the HP-RS422 driver line in the
selection box); if you connect with no problems the second time, you can
ignore the original message.

If you get this message other than during connection, you can try to fix the
problem by:

• Reducing the number of tasks running under Windows.

• Reducing the baud rate (the default is 230400).

Chapter 12: Error Messages
General RS-232 communications error

416

HP 64700 locked by another user

Because it is possible to destroy another user’s measurement by choosing the
Unlock button in the error dialog box, check with the other user before
unlocking the HP 64700.

Note that if the other user is actually using an interface to the HP 64700, an
Unlock request will fail.

HP 64700 not responding

The HP 64700 has not responded within the timeout period. There are
several possible causes of this error. For example, a character could have
dropped during RS-232 communications, or some network problem could
have disrupted communications.

Usually, you must cycle power to the HP 64700 to fix this problem.

See also: The description for the error message titled, "Timed out during
communications."

Incorrect DLL version

The version of the dynamic link libraries (.DLLs) used by the Real-Time C
Debugger does not match the version of the main program (.EXE).

If you have two versions of the debugger on your system, you may see this
message when you try to execute both of them at the same time, or when you
execute one version and then the other without restarting Windows. Once
DLLs have been loaded into Windows memory, they stay there until you exit
Windows. Therefore, exit windows, restart windows, and try again.

This message will also appear if you have somehow loaded a version of the
DLLs that is different from the version of the executable. In this case, you
must reload your software.

Chapter 12: Error Messages
HP 64700 locked by another user

417

Incorrect LAN Address (HP-ARPA, Windows for
Workgroups)

A LAN address can be one of two types: an IP address, or a host name.

An IP address consists of four digits separated by dots. Example:

15.6.28.0

A hostname is a name that is related (mapped) to an IP address by a
database. For example, the file \LANMAN.DOS\ETC\HOSTS (HP-ARPA) or
\WINDOWS\HOSTS (Windows for Workgroups) may contain entries of the
form:

system1 15.6.28.0

Note The directory of the "hosts" file may be different on your system.

If "HP Probe" or "DNR" (Domain Name Resolution) is available on your PC,
those are consulted first for a mapping between the hostname and the IP
address. If the hostname is not found by that method, or if those services are
unavailable, the local "hosts" file is consulted for the mapping.

Note that if "Probe" is available on your system but unable to resolve the
address, there will be a delay of about 15-seconds while Probe is attempting
to find the name on the network.

Chapter 12: Error Messages
Incorrect LAN Address (HP-ARPA, Windows for Workgroups)

418

Incorrect LAN Address (Novell)

A LAN address can be one of two types: an IP address, or a host name.

An IP address consists of four digits separated by dots. Example:

15.6.28.0

A hostname is a name that is related (mapped) to an IP address by a
database. For example, the file \NET\TCP\HOSTS may contain entries of the
form:

system1 15.6.28.0

Note The directory of the "hosts" file may be different on your system. Also, all
files defined by the PATH TCP_CFG setting under "Protocol TCPIP" in the
NET.CFG files are searched.

Incorrect LAN Address (WINSOCK)

A LAN address can be one of two types: an IP address, or a host name.

An IP address consists of four digits separated by dots. Example:

15.6.28.0

A hostname is a name that is related (mapped) to an IP address by a
database. For example, the hosts file may contain entries of the form:

system1 15.6.28.0

Note Because WINSOCK is a standard interface to many LAN software vendors,
you need to read your LAN vendor’s documentation before specifying the
LAN address.

Chapter 12: Error Messages
Incorrect LAN Address (Novell)

419

Internal error in communications driver

These types of errors typically occur because other applications have used up
a limited amount of some kind of global resource (such as memory or
sockets).

You usually have to reboot the PC to free the global resources used by the
communications driver.

Internal error in Windows

These types of errors typically occur because other applications have used up
a limited supply of some kind of global resource (such as memory, sockets,
tasks, or handles).

You usually have to reboot the PC to free the global resources used by
Windows.

Interrupt execution (during run to caller)

The Return dialog box appears when running to the caller of a function and
the caller is not found within the number of milliseconds specified by
StepTimerLen in the .INI file of the debugger application.

You can cancel the run to caller command by choosing the STOP button,
which causes program execution to stop, the breakpoint to be deleted, and
the processor to transfer to the RUNNING IN USER PROGRAM status.

Chapter 12: Error Messages
Internal error in communications driver

420

Interrupt execution (during step)

The Step dialog box appears when stepping a source line or assembly
instruction and the source line or instruction does not execute within the
number of milliseconds specified by StepTimerLen in the .INI file of the
debugger application.

You can cancel the step command by choosing the STOP button, which
causes program execution to stop, the breakpoint to be deleted, and the
processor to transfer to the RUNNING IN USER PROGRAM status.

Interrupt execution (during step over)

The Step dialog box appears when stepping over a function or subroutine and
the function or subroutine does not execute within the number of
milliseconds specified by StepTimerLen in the .INI file of the debugger
application.

You can cancel the step-over command by choosing the STOP button, which
causes program execution to stop, the breakpoint to be deleted, and the
processor to transfer to the RUNNING IN USER PROGRAM status.

Chapter 12: Error Messages
Interrupt execution (during step)

421

Invalid transport name

The transport name chosen does not match any of the possible transport
names (RS232C, HP-ARPA, Novell-WP, WINSOCK1.1, W4WG-TCP, or
HP-RS422).

The transport name can be specified either on the command line with the -t
option or in the .INI file:

[Port]
Transport=<transport name>

Choosing an appropriate transport in the dialog box that follows this error
message will correct the entry in the .INI file, but if the error is in the
command line option, you must modify the command line (by using the
"Properties..." command in the Program Manager).

LAN buffer pool exhausted

The LAN buffer pool is used as a temporary buffer between the time the
debugger sends data and the time the LAN actually sends it. When this pool
is exhausted, the debugger cannot send any data across the LAN.

The size of the sockets buffer pool is configured in the network installation
procedure. The size and number of LAN buffer pools can be changed by
editing your network configuration file.

Chapter 12: Error Messages
Invalid transport name

422

LAN communications error

This message may appear after any kind of LAN error.

Refer to the documentation for your LAN software for descriptions of the
types of problems that can cause LAN errors.

LAN MAXSENDSIZE is too small

This message indicates you have configured your LAN with a value or
MAXSENDSIZE that is less than 100 bytes. Note that the default is 1024
bytes.

The Real-Time C Debugger requires at least 100 bytes for this parameter.

To fix this, change the following entry in your PROTOCOL.INI file and reboot
your PC:

[SOCKETS]
MAXSENDSIZE

LAN socket error

A TCP-level error has occurred on the network. See your network
administrator.

Chapter 12: Error Messages
LAN communications error

423

Object file format ERROR

This message is typically caused by one of two conditions:

• Bad format file. Perhaps there is a bad record within the file. If you
have a file format verifier, submit your file to it to determine whether or
not all records are in the correct format.

• Unknown construct. Perhaps the construct of your file is unfamiliar to
the reader.

To respond to this error message, verify the file format, and ensure that the
reader can understand the file format in use.

If these steps do not solve the problem, call your local HP representative.

Chapter 12: Error Messages
Object file format ERROR

424

Out of DOS Memory for LAN buffer

This means that there is not enough memory in the lower 1 Mbyte of address
space (that is, conventional memory) for the LAN driver to allocate a buffer
to communicate with the LAN TSR.

When you are in windows, and execute the DOS command "mem", you
cannot see the memory that is in the lower 1 Mbyte that is used by the
windows program. If you have the Microsoft program "heapwalker", you can
use it to see what programs have allocated space in the address range 0
through FFFFF.

To fix this, you can:

• Reduce the number of TSRs running on your PC (before Windows starts)
that use conventional memory.

• Reconfigure your network to have fewer sockets or modules loaded, or to
be configured for fewer total connections.

• Use a different memory manager to reduce your network memory usage,
such as QEMM.

Chapter 12: Error Messages
Out of DOS Memory for LAN buffer

425

Out of Windows timer resources

The debugger is not able to acquire the timer resources it needs.

There are a limited number of timer resources in Windows. You may be able
to free timer resources by closing other applications.

PC is out of RAM memory

The debugger is not able to acquire the memory it needs because other
applications are using it, or because of fragmented memory.

You may be able to free memory by closing other applications, or you might
have to reboot the PC to cause memory to be unfragmented.

Chapter 12: Error Messages
Out of Windows timer resources

426

Timed out during communications

The HP 64700 has not responded within the timeout period. There are
various causes for this error. For example, a character could have been
dropped during RS-232 communications or some network problem could
have disrupted communications.

The timeout period for reading and writing to the HP 64700 is defined by
TimeoutSeconds in either the [RS232C], [HP-ARPA], [Novell-WP], or
[HP-RS422] section of the b3638.INI file. For example, if you are using the
RS-232C transport:

[RS232C]
TimeoutSeconds=<seconds>

The number of seconds can be between 1 and 32767. The default is 20
seconds.

If you are using RS-232C or RS-422 transport ...

The TimeoutSeconds value is also used for connecting to the HP 64700 (as
well as for reading and writing).

If you are using HP-ARPA or Novell-WP transport ...

If there are several gateways or bridges between the PC and the emulator,
larger values of TimeoutSeconds may be reasonable.

The timeout period for connecting to the HP 64700 is defined in the
PROTOCOL.INI file.

[TCPIP_XFR]
TCPCONNTIMEOUT=<seconds>

The default connection timeout is 30 seconds.

The remainder of this discussion shows you how to overcome the problem of
"connection timed out" during large memory fill operations.

The RTC interface sends the memory fill operation to the emulator as a single
command. While the command is executing in the emulator, the emulator
cannot respond to inquiries from the interface about its status. If the
memory fill takes long enough, the connection will time out.

Chapter 12: Error Messages
Timed out during communications

427

Emulators for some microprocessors take up to one minute per megabyte to
perform a memory fill operation. Timeout default values for RTC interfaces
shipped from HP are typically 45 seconds.

First Workaround. Modify the TimeoutSeconds field (discussed above) to
increase the TimeoutSeconds value. Then exit the interface and restart it (to
ensure that the new value of TimeoutSeconds is read). You may experiment
with several values of TimeoutSeconds to find the value that allows you to do
a memory fill. The problem with this workaround is that all timeouts will take
this new longer time, and you may find this annoying when you are not doing
memory fill operations.

Second Workaround. Create a command file that contains TERMCOM
commands to write to small portions of the overall memory to be filled. For
example, suppose the following Memory window command causes the
emulator to time out, "Memory→Utilities→Fill→0 to ffff".

You might make a command file named memfill.cmd, and place the following
commands in it:

TERMCOM "m 00000..00fff=0"
TERMCOM "m 01000..01fff=0"
TERMCOM "m 02000..02fff=0"
TERMCOM "m 03000..03fff=0"
TERMCOM "m 04000..04fff=0"
TERMCOM "m 05000..05fff=0"
TERMCOM "m 06000..06fff=0"
TERMCOM "m 07000..07fff=0"
TERMCOM "m 08000..08fff=0"
TERMCOM "m 09000..09fff=0"
TERMCOM "m 0a000..0afff=0"
TERMCOM "m 0b000..0bfff=0"
TERMCOM "m 0c000..0cfff=0"
TERMCOM "m 0d000..0dfff=0"
TERMCOM "m 0e000..0efff=0"
TERMCOM "m 0f000..0ffff=0"

When you choose File→Run Cmd File→... and select your memfill.cmd file, it
will not exceed the timeout value. This is because the emulator will be able
to respond to inquiries from the interface between execution of each of the
TERMCOM commands in your command file.

428

Part 4

Concept Guide

Topics that explain concepts and apply them to advanced tasks.

429

Part 4

430

13

Concepts

431

Concepts

This chapter describes the following topics.

• Debugger Windows

• Compiler/Assembler Specifications

• Trace Signals and Predefined Status Values

432

Debugger Windows

This section describes the following debugger windows:

• BackTrace

• Button

• Device Regs

• Expression

• I/O

• Memory

• Register

• Source

• Status

• Symbol

• Trace

• WatchPoint

Chapter 13: Concepts
Debugger Windows

433

The BackTrace Window

The BackTrace window displays the function associated with the current
program counter value and this function’s caller functions in backward order.
Applicable addresses are prefixed with module\#linenum information. The
current arguments of these functions are also displayed.

The BackTrace window is updated when program execution stops at an
occurrence of breakpoint, break, or Step command.

The BackTrace window lets you copy text strings, to the clipboard by
double-clicking words or by holding down the left mouse button and dragging
the mouse pointer.

By clicking the right mouse button in the BackTrace window, you can access
the Source at Stack Level popup menu command. Cursor-select a function in
the BackTrace window and choose this command to display (in the Source
window) the code that called the function.

See Also

"BackTrace Window Pop-Up Commands" in the "Window Pop-Up Commands"
chapter.

Chapter 13: Concepts
Debugger Windows

434

The Button Window

The Button window contains user-defined buttons that, when chosen,
execute debugger commands or command files.

The Button window’s control menu provides the Edit... (ALT, -, E)
command which lets you add and delete buttons from the window.

See Also

"Using Command Files" in the "Using the Debugger Interface" chapter.

"Button Window Commands" in the "Window Control Menu Commands"
chapter.

Chapter 13: Concepts
Debugger Windows

435

Device Regs Window

The Device Regs window shows all of the internal registers that are used to
control various devices. Each register is represented by a row which holds a
mnemonic name, a current value, and a description of the register contents.

The registers may be edited by either single clicking or double-clicking on the
value. A single click puts you in a mode where the left or right arrow keys
may be used for placement of the cursor. Double-clicking puts you in one of
two modes; either a Register Bit Fields dialog pops up or the value is
highlighted. When the value is highlighted, the backspace key will erase the
value and a completely new value may be entered. This mode is applicable to
registers where the value is considered a single number and is not divided by
any bit-fields.

See Also

"Device Regs Window Commands" in the "Window Control Menu Commands"
chapter.

Chapter 13: Concepts
Debugger Windows

436

Device Register Dialogs

When a register has bit-fields, a dialog will pop-up and the register value may
be edited by changing the whole value or by editing individual bit-fields.

When editing in the dialog box, a carriage-return is the same as choosing the
OK button. To end an edit of a field within the dialog box without quitting,
use the Tab key.

Edited Value Shows the register value that corresponds to the selections
made below. You can also change the register’s value by
modifying the value in this text box.

Original Value Shows the value of the register when the dialog box was
opened. If the register could not be read, ’XXXXXXXX’ is
displayed.

OK Modifies the register as specified, and closes the dialog box.

Cancel Closes the dialog box without modifying the register.

Chapter 13: Concepts
Debugger Windows

437

The Expression Window

The Expression window displays the results of the EVALUATE commands in
command files or break macros.

When a variable name is specified with the EVALUATE command, the
Expression window displays the evaluation of the variable. When a quoted
string of ASCII characters is specified with the EVALUATE command, the
Expression window displays the string.

The Expression window’s control menu provides the Evaluate... (ALT, -, E)
command which lets you evaluate expressions and see the results in the
window.

See Also

"Expression Window Commands" in the "Window Control Menu Commands"
chapter.

Chapter 13: Concepts
Debugger Windows

438

The I/O Window

The I/O window displays the contents of the I/O locations.

You can modify the contents of I/O locations by double-clicking on the value,
using the keyboard to type in the new value, and pressing the Enter key.

The I/O window contents are updated periodically when the processor is
running the user program.

If a location is in target system memory, a temporary break from the user
program into the monitor program must occur in order for the debugger to
update or modify that location’s contents. If it’s important that the user
program execute without these types of interruptions, you should disallow
monitor intrusion. Even when monitor intrusion is allowed, you can stop
temporary breaks during the window update by turning polling OFF.

See Also

"Displaying and Editing I/O Locations" in the "Debugging Programs" chapter.

"I/O Window Commands" in the "Window Control Menu Commands" chapter.

Chapter 13: Concepts
Debugger Windows

439

The Memory Window

The Memory window displays memory contents.

The Memory window has control menu commands that let you change the
format of the memory display and the size of the locations displayed or
modified. When the absolute (single-column) format is chosen, symbols
corresponding to addresses are displayed. When data is displayed in byte
format, ASCII characters for the byte values are also displayed.

When Memory window polling is turned ON, you can modify the addresses
displayed or contents of memory locations by double-clicking on the address
or value, using the keyboard to type in the new address or value, and
pressing the Enter key.

The Memory window contents are updated periodically when the processor is
running the user program.

If a location is in target system memory, a temporary break from the user
program into the monitor program must occur in order for the debugger to
update or modify that location’s contents. If it’s important that the user
program execute without these types of interruptions, you should disallow
monitor intrusion. Even when monitor intrusion is allowed, you can stop
temporary breaks during the window update by turning polling OFF.

Chapter 13: Concepts
Debugger Windows

440

See Also

"Displaying and Editing Memory" in the "Debugging Programs" chapter.

"Memory Window Commands" in the "Window Control Menu Commands"
chapter.

The Register Window

The Register window displays contents of registers.

You can modify register contents by double-clicking on the register value,
using the keyboard to type in the new value, and pressing the Enter key.
When you double-click on the Status Register (st) in the Basic Registers
window, a dialog box opens and allows you to set or clear individual bits. The

Chapter 13: Concepts
Debugger Windows

441

same occurs when you open any other register window and click on a register
whose bits can be modified individually.

The Register window contents are updated periodically when the processor is
running the user program and monitor intrusion is allowed.

A temporary break from the user program into the monitor program must
occur in order for the debugger to update or modify register contents. If it’s
important that the user program execute without these types of
interruptions, you should disallow monitor intrusion.

See Also

"Displaying and Editing Registers" in the "Debugging Programs" chapter.

"Register Window Commands" in the "Window Control Menu Commands"
chapter.

Chapter 13: Concepts
Debugger Windows

442

The Source Window

The Source window displays source files, optionally with disassembled
instructions intermixed.

The Source window contains a cursor whose position is used when setting or
deleting breakpoints or break macros or when running the program up to a
certain line.

The Source window lets you copy strings, usually variable or function names
to be used in commands, to the clipboard by double-clicking words or by
holding down the left mouse button and dragging the mouse pointer.

The Source window also provides commands in the control menu that let
you select whether disassembled instruction mnemonics should appear
intermixed with the C source code.

By clicking the right mouse button in the Source window, you can also access
pop-up menu commands.

Chapter 13: Concepts
Debugger Windows

443

Filename The name of the displayed source file appears at the top of
the window.

Source Lines C source code is displayed when available. Source lines are
preceded by the corresponding line numbers.

When programs are written in assembly language or when
no C source code is available, disassembled instruction
mnemonics are displayed.

The interface will only support display in either trace or
source windows of source lines numbered less than 32,000.

Disassembled
Instructions

In the Mnemonic Display mode, disassembled instruction
mnemonics are intermixed with the source lines.
Disassembled lines contain address, data, and mnemonic
information.

When symbolic information is available for the address, the
corresponding symbol line precedes the disassembled
instruction, displayed in the module_name\\symbol_name
format.

Current PC The line associated with the current program counter is
highlighted.

Scroll Bars For C source files, the display scrolls within the source
files. For assembly language programs or programs for
which no source code is available, the display scrolls for all
the memory space.

"BP" Marker The breakpoint marker, "BP", appears at the beginning of
the breakpoint lines or break macro lines.

Break Macro
Lines

Decimal points following line numbers or addresses
indicate break macro lines.

Chapter 13: Concepts
Debugger Windows

444

Note When programs are stored in target system memory and the emulator is
running in real-time, source code cannot be displayed.

See Also

"Loading and Displaying Programs",
"Stepping, Running, and Stopping the Program", and
"Using Breakpoints and Break Macros" in the "Debugging Programs" chapter.

"Source Window Commands" in the "Window Control Menu Commands"
chapter.
"Source Window Pop-Up Commands" in the "Window Pop-Up Commands"
chapter.
"To set colors in the Source window" in the "Working with Debugger
Windows" section of the "Using the Debugger Interface" chapter.

Chapter 13: Concepts
Debugger Windows

445

The Status Window

The Status window shows:

• Emulator status.

• Trace status.

• Scope of the current program counter value.

• Progress of symbols being loaded from a file.

• Last five asynchronous messages from the emulator.

Emulation Processor Status Messages

EMULATION RESET
The emulation processor is being held in the reset state by the emulator.

RUNNING IN MONITOR
The emulation processor is executing the monitor program.

RUNNING IN USER PROGRAM
The emulation processor is executing the user program.

RUNNING REALTIME IN USER PROGRAM
The emulation processor is executing the user program in the real-time mode
where:

• Any command that would temporarily interrupt user program execution
is disabled.

Chapter 13: Concepts
Debugger Windows

446

• Any on-screen information that would be periodically updated by
temporarily interrupting user program execution (target system memory
or register contents, for example) is disabled.

WAITING FOR TARGET RESET
The emulation processor is waiting for a RESET signal from the target
system. User program execution starts on reception of the RESET signal.

SLOW CLOCK
No proper clock pulse is supplied from the external clock.

EMULATION RESET BY TARGET
The emulation processor is being held in a reset state by a RESET signal from
the target system.

BUS GRANT TO TARGET SYSTEM DEVICE
The bus is granted to some device in the target system.

NO BUS CYCLE
The bus cycle is too slow or no bus cycle is provided.

HALTED
The emulation processor has halted.

UNKNOWN STATE
The emulation processor is in an unknown state.

Other Emulator Status Messages

The Status window may also contain status messages other than the
emulation processor status messages described above:

BREAK POINT HIT AT module_name#line_number
The breakpoint specified in the source code line was hit and program
execution stopped at "line_number" in "module".

BREAKPOINT HIT AT address
The breakpoint specified in the assembled line was hit and program
execution stopped at "address".

UNDEFINED BREAKPOINT at address
The breakpoint instruction occurred at "address", but it was not inserted by a
breakpoint set command.

Chapter 13: Concepts
Debugger Windows

447

WRITE TO ROM BREAK
Program execution has stopped due to a write to location mapped as ROM.
These types of breaks must be enabled in the emulator configuration.

ACCESS TO GUARD BREAK
Program execution has stopped due to a write to a location mapped as
guarded memory.

TRACE TRIGGER BREAK
The analyzer trigger caused program execution to break into the monitor (as
specified by selecting the Break On Trigger option in the trace setting dialog
box).

Trace Status Messages

TRACE RUNNING
The trace has been started and trace memory has yet to be filled; this could
be because the trigger condition has not occurred or, if the trigger condition
has occurred, there have not been enough states matching the store
condition to fill trace memory. Contents of the trace buffer cannot be
displayed during the TRACE RUNNING status; you must halt the trace before
you can display the contents of the trace buffer.

TRACE HALTED
The trace was halted before the trace buffer was filled. The status indicates
that the trace was halted immediately after the emulator powerup, or that the
trace was force-terminated by the user. In the TRACE HALTED status, the
analyzer displays the contents of the trace buffer before the halt in the Trace
window.

TRACE COMPLETE
The trace completed because the trace buffer is full. The results are
displayed in the Trace window.

Chapter 13: Concepts
Debugger Windows

448

The Symbol Window

The Symbol window displays information on the following types of symbols:

• Modules
• Functions
• Global symbols
• Local symbols
• Global Assembler symbols
• Local Assembler symbols
• User-defined symbols

The Symbol window has control menu commands that let you display
various types of symbols, add or delete user-defined symbols, copy Symbol
window information, or search for symbols that contain a particular string.

The Symbol window lets you copy symbols to the clipboard by clicking the
left mouse button. The symbol information can then be pasted from the
clipboard in other commands.

Symbols are displayed with "type" and "address" values where appropriate.

See Also

"Displaying Symbol Information" in the "Debugging Programs" chapter.

Symbol Window Commands" in the "Window Control Menu Commands"
chapter.

Chapter 13: Concepts
Debugger Windows

449

The Trace Window

The Trace window displays trace results and shows source code lines that
correspond to the execution captured by the analyzer. Optionally, bus cycle
states can be displayed along with the source code lines.

The Trace window has control menu commands that let you display bus
cycles, specify whether count information should be absolute or relative, or
copy information from the window.

The Trace window opens automatically when a trace is complete.

For each line in the Trace window, the trace buffer state number, the type of
state, the module name and source file line number, the function name, the
source line, and the time count information are displayed.

The << and >> buttons let you move between the multiple frames of trace
data that are available with newer analyzers for the HP 64700.

The type of state can be a sequence level branch (SEQ), a state that satisfies
the prestore condition (PRE), or a normal state that matches the store
conditions (in which case the type field is empty).

Bus cycle states show the address and data values that have been captured
as well as the disassembled instruction or status mnemonics.

On startup, the system defaults to the source only display mode, where only
source code lines are displayed. The source/bus cycle mixed display mode

Chapter 13: Concepts
Debugger Windows

450

can be selected by using the Trace window control menu’s Display→Mixed
Mode (ALT, -, D, M) command. In the source/bus cycle mixed display mode,
each source code line is immediately followed by the corresponding bus
cycles.

The trace buffer stores bus cycles only. The system displays source lines in
the Trace window based on execution bus cycles.

See Also

"Tracing Program Execution" and
"Setting Up Custom Trace Specifications" in the "Debugging Programs"
chapter.

"Trace Window Commands" in the "Window Control Menu Commands"
chapter.

Chapter 13: Concepts
Debugger Windows

451

The WatchPoint Window

The WatchPoint window displays the contents of variables that have been
registered with the Variable→Edit... (ALT, V, E) command or with the Edit...
(ALT, -, E) command in the WatchPoint window’s control menu.

The contents of dynamic variables are displayed only when the current
program counter is in the function in which the variable is declared.

You can modify the contents of variables by double-clicking on the value,
using the keyboard to type in the new value, and pressing the Enter key.

The WatchPoint window lets you copy text strings, to the clipboard by
double-clicking words or by holding down the left mouse button and dragging
the mouse pointer.

See Also

"Displaying and Editing Variables" in the "Debugging Programs" chapter.

"WatchPoint Window Commands" in the "Window Control Menu Commands"
chapter.

Chapter 13: Concepts
Debugger Windows

452

Compiler/Assembler Specifications

This section describes:

• IEEE-695 Object Files

• Compiling Programs with MCC68K

• Compiling Programs with AxLS

IEEE-695 Object Files

This section addresses the IEEE-695 object files compiled or assembled with
the following compilers and assemblers:

• Microtec MCC68K Compiler

• Microtec ASM68K Assembler

• HP AxLS Compiler

• HP AxLS Assembler

Assembly Language Source File Display

The IEEE-695 object files do not contain assembly language source file
information. Instead, memory contents are disassembled.

Mnemonic Display

An assembly language instruction preceding or following a function entry
point may have multiple corresponding source code lines. For this type of
instruction, the Source window in the Mnemonic Display mode shows
multiple corresponding disassembled lines having the same address.

Single-Stepping Loop Control Statements

The system may fail in single-stepping such loop control statements as
"while", "for", or "do while" statement.

Chapter 13: Concepts
Compiler/Assembler Specifications

453

Pragma Statement and Debugger Display

When a "pragma" statement is used to describe an assembly language
instruction in C source files, the source information is generated as follows in
the IEEE-695 object files:

• A pragma instruction has a single line number.

• The address for the pragma instruction indicates the address for the first
line of the instruction.

• The line number for the pragma instruction indicates the line number for
the last line of the instruction.

This imposes the following display restriction on the Real-Time C Debugger:

The Source window in the Mnemonic Display mode shows lines in a
pragma instruction all at one time as listed below.

#0010 #pragma asm
#0011 nop
#0012 nop
#0013 #pragma endasm
0001000 00 NOP
0001001 00 NOP

During single-stepping, the last line of the pragma instruction is highlighted
while the program counter indicates the first line.

#0010 #pragma asm
#0011 nop
#0012 nop
#0013 #pragma endasm

Program counter indicating line 11

Highlighted line 12

Only the last line of the pragma instruction is displayed in the trace
results.

Chapter 13: Concepts
Compiler/Assembler Specifications

454

Compiling Programs with MCC68K

1 Compile the source files with the mcc68k command.

2 Assemble the source files with the asm68k command.

3 Link the object files with the lnk68k command.

Required Compiler/Assembler/Linker

Compiler Microtec MCC68K Compiler

Assembler Microtec ASM68K Assembler

Linker Microtec LNK68K Linker

Compiling

For compiling, use the mcc68k command in your Microtec C Compiler with
the following option switches:

-g Outputs debugging information.

-Gf Generates fully-qualified path names for input files.

-nOg Disables global flow optimization.

-nOR Disables register variables.

-Kf Creates frame pointers for functions.

Note The -nOg and -nOR options allow the debugger to display arguments during
backtracing.

Note The -Kf option allows the debugger to trace function flow.

Chapter 13: Concepts
Compiler/Assembler Specifications

455

Assembling

For assembling, use the asm68k command in your Microtec Assembler with
the following option switch:

-fd Creates local symbols.

Linking

For linking, use the lnk68k command in your Microtec Linker. Specify the
IEEE-695 file format for the load module.

Example To compile and link sample.c user program into a load module, execute the
following command, where sample.k is the linker command file:

A> mcc68k -g -Gf -Kf -nOg -nOR -l -esample.k -osample.x
sample.c -Wl,-m > sample.lst

Compiling Programs with AxLS

1 Compile the source files with the cc68000 command.

2 Assemble the source files with the as68k command.

3 Link the object files with the ld68k command.

Required Compiler/Assembler/Linker

Compiler HP AxLS CC68000 Compiler

Assembler HP AxLS AS68K Assembler

Linker HP AxLS LD68K Linker

Chapter 13: Concepts
Compiler/Assembler Specifications

456

Compiling

For compiling, use the cc68000 command in your HP AxLS C Compiler with
the following option switches:

-Wc,-F Disables register variables.

Note The -Wc,-F option allows the debugger to display arguments during
backtracing.

Assembling

For assembling, use the as68k command in your HP AxLS Assembler without
any option switch.

Linking

For linking, use the ld68k command in your HP AxLS Linker. Specify the
IEEE-695 file format for the load module.

Note The Real-Time C Debugger does not support simulated I/O locations. You
can use the -N compiler option to use a linker command file that does not
include the simulated I/O library.

Example To compile and link sample.c user program into a load module, execute the
following command, where sample.k is the linker command file:

cc68000 -N -Wc,-F -Lix -k sample.k -o sample.x sample.c

Chapter 13: Concepts
Compiler/Assembler Specifications

457

Trace Signals and Predefined Status Values

This section describes how emulation analyzer trace signals are assigned to
microprocessor address bus, data bus, and control signals.

Emulation Analyzer Trace Signals

Trace
Signals Signal Name Signal Description
------- ----------- --------------------------------------
0-23 A0-A23 Address Lines 0-23
24-31 STATUS Status Lines
32-47 D0-D15 Processor Data 0-15
48 EDMA External DMA
49 BCLR Bus Clear Signal
50-53 CS3-0 Chip Select Signals
54 BERR Bus Error Signal
55 ROM ROM Memory Access Cycle
56 GRD Guarded Memory Access Cycle
57-60 PB11-8 Port B pins 11-8
61-63 IPL0-2 Interrupt Priority Level

Predefined Status Values

Qualifier Status Bits (31-24) Description
--------- ------------------- -------------------------------
bgd 00xxx xxxxy Emulator in background.
byte 0xxxx xxx0y Byte cycle.
data 0xxx0 1xxxy Data cycle.
dma 0x1xx xxxxy Bus released to DMA device.
ext_cyc 0xxxx x0xxy External processor cycle.
fgd 01xxx xxxxy Emulator in foreground.
int_cyc 0xxxx x1xxy Internal processor cycle.
intack 0xx11 1xxxy Interrupt acknowledge cycle.
not_dma 0x0xx xxxxy Bus not released to DMA device.
prog 0xxx1 0xxxy Program cycle.
read 0xxxx xx1xy Memory read.
sup 0xx1x xxxxy Supervisor data cycle.
supdata 0xx10 1xxxy Supervisor cycle.
supprog 0xx11 0xxxy Supervisor program cycle.
user 0xx0x xxxxy User cycle.
userdata 0xx00 1xxxy User data cycle.
userprog 0xx01 0xxxy User program cycle.
word 0xxxx xxx1y Word cycle.
write 0xxxx xx0xy Memory write.

Chapter 13: Concepts
Trace Signals and Predefined Status Values

458

Part 5

Installation Guide

Instructions for installing the product.

459

Part 5

460

14

Installing the Debugger

461

Installing the Debugger

This chapter shows you how to install the Real-Time C Debugger.

• Requirements

• Before Installing the Debugger

• Step 1. Connect the HP 64700 to the PC

• Step 2. Install the debugger software

• Step 3. Start the debugger

• Step 4. Check the HP 64700 system firmware version

• Optimizing PC Performance for the Debugger

462

Requirements

• IBM compatible or NEC PC with an 80486 microprocessor and 8
megabytes of memory.

• MS Windows 3.1, set up with 20 megabytes of swap space.

• VGA Display.

• 3 Megabytes available disk space.

• Serial port, HP 64037 RS-422 port, or Novell LAN with Lan Workplace for
DOS or Microsoft Lan Manager with HP ARPA Services.

• Revision A.04.00 or greater of HP 64700 system firmware. The last step
in this chapter shows you how to check the firmware version number.

Chapter 14: Installing the Debugger
Requirements

463

Before Installing the Debugger

• Install MS Windows according to its installation manual. The
Real-Time C Debugger must run under MS Windows in the 386
enhanced mode.

To ensure your PC is running in the 386 Enhanced Mode, double-click the
PIF Editor in the Main or Accessories window. Choose the Mode pulldown in
the PIF Editor menu bar. A check mark should be beside "386 Enhanced" in
the Mode pulldown.

• If the HP 64700 is to communicate with the PC via LAN:

Make sure the HP 64700 LAN interface is installed (see the "HP 64700 Series
Installation/Service" manual).

Install the LAN card into the PC, and install the required PC networking
software.

Obtain the Internet Address, the Gateway Address, and the Subnet Mask to
be used for the HP 64700 from your Network Administrator. These three
addresses are entered in integer dot notation (for example, 192.35.12.6).

• If the HP 64700 is to communicate with the PC via RS-422:

Install the HP 64037 RS-422 interface card into the PC. The Real-Time C
Debugger includes software that configures the RS-422 interface.

Chapter 14: Installing the Debugger
Before Installing the Debugger

464

Step 1. Connect the HP 64700 to the PC

You can connect the HP 64700 to an RS-232 serial port on the PC, the Local
Area Network that the PC is on, or an HP 64037 RS-422 interface that has
been installed in the PC.

• To connect via RS-232

• To connect via LAN

• To connect via RS-422

To connect via RS-232

1 Set the HP 64700 configuration switches for RS-232C communication.
Locate the COMM CONFIG switches on the HP 64700 rear panel, and
set them as shown below.

Notice that switches 1 through 3 are set to 001, respectively. This sets the
baud rate to 19200.

Notice also that switches 12 and 13 are set to 1 and 0, respectively. This sets
the RTS/CTS hardware handshake which is needed to make sure all
characters are processed.

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

465

2 Connect an RS-232C modem cable from the PC to the HP 64700 (for
example, an HP 24542M 9-pin to 25-pin cable or an HP 13242N 25-pin
to 25-pin cable).

If you want to build your own RS-232 cable, follow one of the pin-outs for HP
cables shown in the following figure.

You can also use an RS-232C printer cable, but you must set HP 64700
configuration switch 4 to 1.

3 Turn ON power to the HP 64700.

The power switch is located on the lower left-hand corner of the front panel.
The power lamp at the lower right-hand corner of the front panel will light.

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

466

4 Start MS Windows in the 386 enhanced mode.

5 Verify RS-232 communication by using the Terminal program that is
found in the Windows "Accessories" group box.

Double-click on the "Terminal" icon to open the Terminal window. Then,
choose the Settings→Communications... (ALT, S, C) command, and select:
19200 Baud Rate, 8 Data Bits, 1 Stop Bit, Parity None, Hardware Flow
Control, and the PC’s RS-232 interface connector. Choose the OK button.

You should now be able to press the Enter key in the Terminal window to see
the HP 64700’s Terminal Interface prompt (for example, "R>", "M>", or "U>".
The "->" prompt indicates the present firmware does not match the emulator
probe, or there is no probe connected). If you see the prompt, you have
verified RS-232 communication. If you do not see the prompt, refer to "If you
cannot verify RS-232 communication".

If you will be using the RS-232 connection for the debugger, exit the
Terminal program and go to "Step 2. Install the debugger software".

If you will be using the LAN connection, go to "To connect via LAN".

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

467

To connect via LAN

1 Set the HP 64700 LAN parameters.

If you’re setting the HP 64700 LAN parameters for the first time, you must
connect the HP 64700 to the PC via RS-232 before you can access the HP
64700 Terminal Interface. Follow the steps in "To connect via RS-232" and
then return here.

If you’re changing the LAN parameters of an HP 64700 that is already on the
LAN, you can use the "telnet <HP 64700 IP address>" command to access the
HP 64700 Terminal Interface.

Once the HP 64700 Terminal Interface has been accessed, display the
current LAN parameters by entering the "lan" command:

R>lan
lan -i 15.6.25.117
lan -g 15.6.24.1
lan -s 255.255.248.0 <<- HP 64700A ONLY
lan -p 6470
Ethernet Address : 08000909BBC1

The "lan -i" line shows the Internet Address (or IP address). The Internet
Address must be obtained from your Network Administrator. The value is
entered in integer dot notation. For example, 192.35.12.6 is an Internet
Address. You can change the Internet Address with the "lan -i <new IP>"
command.

The "lan -g" line shows the Gateway Address which is also an Internet
address and is entered in integer dot notation. This entry is optional and will
default to 0.0.0.0, meaning all connections are to be made on the local
network or subnet. If connections are to be made to workstations on other
networks or subnets, this address must be set to the address of the gateway
machine. The gateway address must be obtained from your Network
Administrator. You can change the Gateway Address with the "lan -g <new
gateway address>" command.

The "lan -s" line will be shown if you are using the HP 64700A, and will not be
shown if you are using the HP 64700B. If this line is not shown, the Subnet
Mask is automatically configured. If this line is shown, it shows the Subnet
Mask in integer dot notation. This entry is optional and will default to 0.0.0.0.
The default is valid only on networks that are not subnetted. (A network is

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

468

subnetted if the host portion of the Internet address is further partitioned
into a subnet portion and a host portion.) If the network is subnetted, a
subnet mask is required in order for the emulator to work correctly. The
subnet mask should be set to all "1"s in the bits that correspond to the
network and subnet portions of the Internet address and all "0"s for the host
portion. The subnet mask must be obtained from your Network
Administrator. You can change the Subnet Mask with the "lan -s <new
subnet mask>" command .

Both the PC’s subnet mask and the emulator’s subnet mask must be identical
unless they communicate via a gateway or a bridge. Unless your Network
Administrator states otherwise, make them the same. You can check the
PC’s subnet mask with the "lminst" command if you are using HP-ARPA. If
you are using Novell LAN WorkPlace, make sure the file \NET.CFG has the
entry "ip_netmask <subnet mask>" in the section "Protocol TCPIP".

The "lan -p" line shows the base TCP service port number. The host
computer interfaces communicate with the HP 64700 through two TCP
service ports. The default base port number is 6470. The second port has
the next higher number (default 6471). If the service port is not 6470, you
must change it with the "lan -p 6470" command.

The Internet Address and any other LAN parameters you change are stored
in nonvolatile memory and will take effect the next time the HP 64700 is
powered off and back on again.

2 Exit the Terminal or telnet program.

3 Turn OFF power to the HP 64700.

4 Connect the HP 64700 to the LAN. This connection can be made
using either the 15-pin AUI connector or the BNC connector.

DO NOT use both connectors. The LAN interface will not work with both
connected at the same time.

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

469

5 Set the HP 64700 configuration switches for LAN communication.

Switch 16 must be set to one (1) indicating that a LAN connection is being
made.

Switch 15 should be zero (0) if you are connecting to the BNC connector or
set to one (1) if a 15 pin AUI connection is made.

Switch 14 should be zero (0).

Set all other switches to zero (0).

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

470

6 Turn ON power to HP 64700.

7 Verify LAN communication by using a "telnet <HP 64700 IP address>"
command. This connection will give you access to the HP 64700
Terminal Interface.

You should now be able to press the Enter key in the telnet window to see
the HP 64700’s Terminal Interface prompt (for example, "R>", "M>", "U>",
etc.). If you see the prompt, you have verified LAN communication. If you
cannot connect to the HP 64700’s IP address, refer to "If you cannot verify
LAN communication".

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

471

To connect via RS-422

Before you can connect the HP 64700 to the PC via RS-422, the HP 64037
RS-422 Interface must have already been installed into the PC.

1 Set the HP 64700 configuration switches for RS-422 communication.
Locate the COMM CONFIG switches on the HP 64700 rear panel, and
set them as shown below.

Notice that switches 1 through 3 are set to 111, respectively. This sets the
baud rate to 230400.

Notice that switch 5 is set to 1. This configures the 25-pin port for RS-422
communication.

Notice also that switches 12 and 13 are set to 1 and 0, respectively. This sets
the RTS/CTS hardware handshake which is needed to make sure all
characters are processed.

2 Connect the 17355M cable (which comes with the HP 64037
interface) from the PC to the HP 64700.

3 Turn ON power to the HP 64700.

The power switch is located on the lower left-hand corner of the front panel.
The power lamp at the lower right-hand corner of the front panel will light.

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

472

If you cannot verify RS-232 communication

If the HP 64700 Terminal Interface prompt does not appear in the Terminal
window:

Make sure that you have connected the emulator to the proper power source
and that the power light is lit.

Make sure that you have properly configured the data communications
switches on the emulator and the data communications parameters on your
controlling device. You should also verify that you are using the correct
cable.

The most common type of data communications configuration problem
involves the configuration of the HP 64700 as a DCE or DTE device and the
selection of the RS-232 cable. If you are using the wrong type of cable for the
device selected, no prompt will be displayed.

When the RS-232 port is configured as a DCE device (S4 is set to 0), a
modem cable should be used to connect the HP 64700 to the host computer
of terminal. Pins 2 and 3 at one end of a modem cable are tied to pins 2 and 3
at the other end of the cable.

When the RS-232 port is configured as a DTE device (S4 is set to 1), a printer
cable should be used to connect the HP 64700 to the host computer of
terminal. Pins 2 and 3 at one end of a printer cable are swapped and tied to
pins 3 and 2, respectively, at the other end of the cable.

If you suspect that you may have the wrong type of cable, try changing the S4
setting and turning power to the HP 64700 OFF and then ON again.

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

473

If you cannot verify LAN communication

Use the "telnet" command on the host computer to verify LAN
communication. After powering up the HP 64700, it takes a minute before
the HP 64700 can be recognized on the network. After a minute, try the
"telnet <internet address>" command.

• If "telnet" does not make the connection:

Make sure that you have connected the emulator to the proper power source
and that the power light is lit.

Make sure that the LAN cable is connected. Refer to your LAN
documentation for testing connectivity.

Make sure the HP 64700 rear panel communication configuration switches
are set correctly. Switch settings are only used to set communication
parameters in the HP 64700 when power is turned OFF and then ON.

Make sure that the HP 64700’s Internet Address is set up correctly. You
must use the RS-232 port to verify this that the Internet Address is set up
correctly. While accessing the emulator via the RS-232 port, run
performance verification on the HP 64700’s LAN interface with the "lanpv"
command.

• If "telnet" makes the connection, but no Terminal Interface prompt
(for example, R>, M>, U>, etc.) is supplied:

It’s possible that the HP 64000 software is in the process of running a
command (for example, if a repetitive command was initiated from telnet in
another window). You can use CTRL+c to interrupt the repetitive command
and get the Terminal Interface prompt.

It’s also possible for there to be a problem with the HP 64700 firmware while
the LAN interface is still up and running. In this case, you must turn OFF
power to the HP 64700 and turn it ON again.

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

474

Step 2. Install the debugger software

1 If you are updating or re-installing the debugger software, you may
want to save your B3638.INI file because it will be overwritten by the
installation process.

2 Start MS Windows in the 386 enhanced mode.

3 Insert the 6830X REAL-TIME C DEBUGGER Disk 1 of 2 into floppy
disk drive A or B.

4 Choose the File→Run... (ALT, F, R) command in the Windows
Program Manager. Enter "a:\setup" (or "b:\setup" if you installed the
floppy disk into drive B) in the Command Line text box.

Then, choose the OK button. Follow the instructions on the screen.

Chapter 14: Installing the Debugger
Step 2. Install the debugger software

475

You will be asked to enter the installation path. The default installation path
is C:\HP\RTC\M30X. The default installation path is shown wherever files are
discussed in this manual.

You will be asked to enter your user ID. This information is important if the
HP 64700 is on the LAN and may be accessed by other users. It tells other
users who is currently using, or who has locked, the HP 64700. This
information can be modified while using the Real-Time C Debugger by
choosing the Settings→Communication... (ALT, S, C) command.

Chapter 14: Installing the Debugger
Step 2. Install the debugger software

476

You will be asked to select the type of connection to be made to the HP
64700. This information can be modified while using the Real-Time C
Debugger by choosing the Settings→Communication... (ALT, S, C) command.

When using the HP-RS422 transport, the connection name is the I/O address
you want to use for the HP 64037 card. Enter a hexadecimal number from
100H through 3F8H, ending in 0 or 8, that does not conflict with other cards
in your PC.

After you have specified the type of connection, files will be copied to your
hard disk. (The B3638.TMP and B3638.HLP files are larger than most of the
other files and take longer to copy.) Fill out your registration information
while waiting for the files to be copied.

If the Setup program detects that one or more of the files it needs to install
are currently in use by Windows, a dialog box informs you that Windows
must be restarted. You can either choose to restart Windows or not. If you
don’t choose to restart Windows, you can either run the _MSSETUP.BAT
batch file (in the same directory that the debugger software is installed in)
after you have exited Windows or reinstall the debugger software later when
you are able to restart Windows.

Chapter 14: Installing the Debugger
Step 2. Install the debugger software

477

Step 3. Start the debugger

1 If the "HP Real-Time C Debugger" group box is not opened, open it by
double-clicking in the icon.

2 Double-click the "M6830X Real-Time C Debugger" icon.

If you have problems connecting to the HP 64700, refer to:

• If you have RS-232 connection problems

• If you have LAN connection problems

• If you have RS-422 connection problems

If you have RS-232 connection problems

Remember that Windows 3.1 only allows two active RS-232 connections at a
time. To be warned when you violate this restriction, choose Always Warn
in the Device Contention group box under 386 Enhanced in the Control
Panel.

Use the "Terminal" program (usually found in the Accessories windows
program group) and set up the "Communications..." settings as follows:

Baud Rate: 19200 (or whatever you have chosen for the emulator)
Data Bits: 8
Parity: None
Flow Control: Hardware
Stop Bits: 1

Chapter 14: Installing the Debugger
Step 3. Start the debugger

478

When you are connected, hit the Enter key. You should get a prompt back.
If nothing echos back, check the switch settings on the back of the emulator.

Switches 1 thru 3 set the baud rate as follows:
S1 S2 S3
0 0 0 9600
0 0 1 19200
0 1 0 2400

Switches 12 and 13 must be set to 1 and 0, respectively. This sets the
RTS/CTS hardware handshake, which is needed to make sure all characters
are processed.

All other switches should be in the "0" position, especially switch 16 on the
HP 64700 (which selects LAN/Serial interface).

Remember that if you change any of the switch positions, you must turn OFF
power to the HP 64700 and turn it ON again before the changes will take
effect.

• If the switches are in the correct position and you still do not get a
prompt when you press return, check the following:

 Turn off power to the HP 64700 and then turn it on again. Press return to
see if you get a prompt.

Check to make sure the RS-232 cable is connected to the correct port on
your PC, and that the cable is appropriate for connecting the PC to a DCE
device. If the cable is intended to connect the PC to a DTE device, set
switch 4 to "1" (which makes the emulator a DTE device), turn OFF power to
the HP 64700, turn power ON, and try again.

Check to make sure your RS-232 cable has the RTS, CTS, DSR, DCD, and
DTR pins supported. If your PC RS-232 connection is a 9-pin male
connection, HP cable number 24542M will work (set switch 4 to 0 if you use
this cable). If your PC has a 25-pin RS-232 connector, HP cable number
13242N will work (set switch 4 to 0).

Chapter 14: Installing the Debugger
Step 3. Start the debugger

479

• If you wish to build your own RS-232 cable, refer to "To connect via
RS-232" in the paragraph titled, "Step 1. Connect the HP 64000 to the
PC" earlier in this chapter.

• When using certain RS-232 cards, connecting to an RS-232 port where
the HP 64700 is turned OFF (or not connected) will halt operation of
the PC. The only way to restore operation is to reboot the PC.
Therefore, HP recommends you always turn ON the HP 64700 before
attempting to connect via RS-232.

• If RTC reports overrun errors or simply times out, RTC may be
overrunning the serial interface. In this case, try the following:

Stop all unnecessary TSR’s and other applications to allow the processor to
service the serial interface more often.

Overrun errors may occur when the serial interface card is not sufficiently
buffered. Check to make sure your serial interface card uses the 16550AF
UART, or better. Use the DOS command, "MSD", and when the window
opens, select "COM Ports..." to see the UART chip used in your serial
interface card.

Chapter 14: Installing the Debugger
Step 3. Start the debugger

480

If you have LAN connection problems

Try to "ping" the emulator:

ping <hostname or IP address>

If the emulator does not respond:

• Check that switch 16 on the emulator is "1" (emulator is attached to LAN,
not RS-232 or RS-422).

• Check that switch 15 on the emulator is in the correct position for your
LAN interface (either the AUI or the BNC).

Remember, if you change any switch settings on the emulator, the changes
do not take effect until you turn OFF emulator power and turn it ON again.

If the emulator still does not respond to a "ping," you need to verify the IP
address and subnet mask of the HP 64700. To do this, connect the HP 64700
to a terminal (or to the Terminal application on the PC), change the
emulator’s switch settings so it is connected to RS-232, and enter the "lan"
command. The output looks something like this:

lan -i 15.6.25.117
lan -g 15.6.24.1
lan -s 255.255.248.0
lan -p 6470
Ethernet Address : 08000909BBC1

The important outputs (as far as connecting) are:

"lan -i"; this shows the internet address is 15.6.25.117 in this case. If the
Internet address (IP) is not what you expect, you can change it with the ’lan
-i <new IP>’ command.

"lan -s"; shows the subnet mask is 255.255.248 (the upper 21 bits --
255.255.248.0 == FF.FF.F8.0). If the subnet mask is not what you expect,
you can change it with the ’lan -s <new subnet mask>’ command.

"lan -p"; shows the port is 6470. If the port is not 6470, you must change it
with the "lan -p 6470" command.

Both the PC’s subnet mask and the emulator’s subnet mask must be identical
unless they communicate via a gateway or a bridge. Unless your Network

Chapter 14: Installing the Debugger
Step 3. Start the debugger

481

Administrator states otherwise, make them the same. If you are using
HP-ARPA, you can check the PC’s subnet mask with the "lminst" command in
a DOS window. If you are using Novell LAN WorkPlace, make sure the file
\\NET.CFG has the entry "ip_netmask <subnet mask>" in the section
"Protocol TCPIP." If you are using Windows for Workgroups, you can check
the PC’s subnet mask by looking in the [TCPIP] section of the
PROTOCOL.INI file or by looking in the Microsoft TCP/IP Configuration
dialog box. If you are using WINSOCK, refer to your LAN software
documentation for subnet mask information.

Occasionally the emulator or the PC will "lock up" the LAN due to excessive
network traffic. If this happens, all you can do is turn OFF power to the HP
64700 or PC and turn it back ON, again. If this happens two frequently, you
can try placing a gateway between the emulator/PC and the rest of your
network.

If you have LAN DLL errors

The various LAN transport selections require the following DLLs:

HP-ARPA WSOCKETS.DLL.

Novell-WP WLIBSOCK.DLL.

W4WG-TCP WSOCKETS.DLL. (Windows for Workgroups)

WINSOCK1.1 WINSOCK.DLL.

These DLLs are included with LAN software. The required DLL must be in
your search path. This will be the case if your network software is installed.

Chapter 14: Installing the Debugger
Step 3. Start the debugger

482

If you have RS-422 connection problems

RS-422 is only usable with Windows Version 3.1.

Make sure the HP 64700 switch settings match the baud rate chosen when
attempting the connection.

Switches 1 thru 3 set the baud rate as follows:
S1 S2 S3
1 1 1 230400
1 1 0 115200
1 0 1 38400
1 0 0 57600
0 1 1 1200
0 1 0 2400
0 0 1 19200
0 0 0 9600

Switch 5 must be set to 1 to configure the HP 64700 for RS-422
communication.

Switches 12 and 13 must be set to 1 and 0, respectively. This sets the
RTS/CTS hardware handshake, which is needed to make sure all characters
are processed.

All other switches should be in the "0" position, especially the switch that
determines LAN/Serial interface (switch 16 on HP 64700).

Remember that if you change any of the switch positions, you must turn OFF
power to the HP 64700 and turn it ON again before the changes will take
effect.

If the switches are in the correct position and you still do not get a prompt
when you hit return, try turning OFF the power to the HP 64700 and tuning it
ON again.

If you still don’t get a prompt, make sure the HP 17355M RS-422 cable is
connected to the correct port on your PC.

Chapter 14: Installing the Debugger
Step 3. Start the debugger

483

Step 4. Check the HP 64700 system firmware
version

• Choose the Help→About Debugger/Emulator... (ALT, H, D) command.

The version information under HP 64700 Series Emulation System must show
A.04.00 or greater. If the version number is less than A.04.00, you must
update your HP 64700 system firmware as described in the
Installing/Updating HP 64700 Firmware chapter.

Chapter 14: Installing the Debugger
Step 4. Check the HP 64700 system firmware version

484

Optimizing PC Performance for the Debugger

The Real-Time C Debugger is a memory and I/O intensive Windows program.
Slow user interface performance may be caused by many things:

• Underpowered PC -- The Real-Time C Debugger requires an IBM
compatible or NEC PC with an 80486 class microprocessor, 8 megabytes
of memory, and 20 megabytes of MS Windows swap space. Because RAM
is faster than swap, performance is best when there is enough RAM to
accommodate all of the Real-Time C Debugger’s memory usage (which is
directly related to the size of your programs and the amount of debug
information in them).

• Improperly configured PC -- Windows configuration may have a very
significant effect on performance. The Windows swap file settings are
very important (see the Virtual Memory dialog box under 386 Enhanced
in the Control Panel). The larger the swap file, the better the
performance. Permanent swap has superior performance.

• Disk performance (due to Windows swap file access and Windows dialog
and string resource accesses from the debugger ".EXE" file) -- The disk
speed has a direct impact on performance of the Real-Time C Debugger.
Use of SMARTDrive or other RAM disk or caching software will improve
the performance.

Various PC performance measurement and tuning tools are commercially
available. Optimizing your PC performance will improve debugger interface
performance and, of course, all your other PC applications will benefit as well.

Chapter 14: Installing the Debugger
Optimizing PC Performance for the Debugger

485

486

15

Installing/Updating HP 64700
Firmware

487

Installing/Updating HP 64700 Firmware

This chapter shows you how to install or update HP 64700 firmware.

Note If you are using an HP 64700A, it must contain the optional Flash EPROM
memory card before you can install or update HP 64700 system firmware.
Flash EPROM memory is standard in the HP 64700B card cage.

The firmware, and the program that downloads it into the HP 64700, are
included with the debugger on floppy disks labeled HP 64700 EMUL/ANLY
FIRMWARE.

The steps to install or update HP 64700 firmware are:

• Step 1. Connect the HP 64700 to your PC

• Step 2. Install the firmware update utility

• Step 3. Run PROGFLASH to update HP 64700 firmware

• Step 4. Verify emulator performance

488

Step 1. Connect the HP 64700 to the PC

1 Set the COMM CONFIG switches for RS-232C communication. To do
this, locate the DIP switches on the HP 64700 rear panel, and set
them as shown below.

Notice that switches 12 and 13 are set to 1 and 0, respectively. This sets the
RTS/CTS hardware handshake, which is needed to make sure all characters
are processed. Switches 1, 2, and 3 are set to 0. This sets the baud rate to
9600. Switch settings are read during the HP 64700 power up routine.

2 Connect an RS-232C modem cable from the PC to the HP 64700 (for
example, an HP 24542M 9-pin to 25-pin cable or an HP 13242N 25-pin
to 25-pin cable).

You can also use an RS-232C printer cable, but if you do, you MUST set
COMM CONFIG switch 4 to 1.

3 Turn ON power to the HP 64700.

The power switch is located on the lower left-hand corner of the front panel.
The power lamp at the lower right-hand corner of the front panel will light.

Chapter 15: Installing/Updating HP 64700 Firmware
Step 1. Connect the HP 64700 to the PC

489

4 Start MS Windows in the 386 enhanced mode.

To ensure your PC is running in the 386 Enhanced Mode, double-click the
PIF Editor in the Main or Accessories window. Choose the Mode pulldown in
the PIF Editor menu bar. A check mark should be beside "386 Enhanced" in
the Mode pulldown.

5 Verify RS-232 communication by using the Terminal program that is
found in the Windows "Accessories" group box.

Double-click on the "Terminal" icon to open the Terminal window. Then,
choose the Settings→Communications... (ALT, S, C) command, and select:
9600 Baud Rate, 8 Data Bits, 1 Stop Bit, Parity None, Hardware Flow Control,
and the PC’s RS-232 interface connector to which the RS-232 cable is
attached (example: COM1). Choose the OK button.

You should now be able to press the Enter key in the Terminal window to see
the HP 64700’s Terminal Interface prompt (for example, p>, R>, M>, and U>.
A -> prompt indicates the present firmware does not match the emulator
probe, or there is no probe connected). If you see the prompt, you have
verified RS-232 communication. If you do not see the prompt, refer to "If you
cannot verify RS-232 communication" in Chapter 14.

6 Exit the Terminal window.

Chapter 15: Installing/Updating HP 64700 Firmware
Step 1. Connect the HP 64700 to the PC

490

Step 2. Install the firmware update utility

The firmware update utility and emulation and analysis firmware require
about 1.5 Mbytes of disk space.

1 Start MS Windows in the 386 enhanced mode.

2 Insert the HP 64700 EMUL/ANLY FIRMWARE Disk 1 of 2 into floppy
disk drive A or B.

3 Choose the File→Run... (ALT, F, R) command in the Windows
Program Manager. Enter "a:\setup" (or "b:\setup" if you installed the
floppy disk into drive B) in the Command Line text box.

Then, choose the OK button. Follow the instructions on the screen.

You will be asked to enter the installation path. The default installation path
is C:\HP64700.

Chapter 15: Installing/Updating HP 64700 Firmware
Step 2. Install the firmware update utility

491

Wait until the Setup Exit Message dialog box appears. This indicates
installation of the firmware update utility is complete.

4 After completing the installation, use the editor of your choice and
edit the C:\CONFIG.SYS file to include these lines:

BREAK=ON
FILES=20

BREAK=ON allows the system to check for two break conditions:
CTRL+Break, and CTRL+c.

FILES=20 allows 20 files to be accessed concurrently. This number must be
at LEAST 20 to allow the firmware update utility to operate properly.

5 If you installed the files in a path other than the default (C:\HP64700),
edit the C:\AUTOEXEC.BAT and C:\HP64700\BIN\FLASH.BAT files as
follows:

• Edit AUTOEXEC.BAT to set the HP64700 and HPTABLES
environment variables. For example:

SET HP64700=C:\<installation_path>
SET HPTABLES=C:\<installation_path>\TABLES

• Edit FLASH.BAT to identify the location of PROGFLAS.EXE. For
example:

C:\<installation_path>\PROGFLAS.EXE

6 Edit the <installation_path>\TABLES\64700TAB file to indicate the
communications connection you will use, as follows:

The default <installation_path>\TABLES\64700TAB file contains entries to
establish the communications connection for COM1 and COM2. The content
of this file is:

EMUL_COM1 unknown COM1 OFF 9600 NONE ON 1 8
EMUL_COM2 unknown COM2 OFF 9600 NONE ON 1 8

Chapter 15: Installing/Updating HP 64700 Firmware
Step 2. Install the firmware update utility

492

If you are using COM3 or COM4 port to update your firmware, you need to
edit the <installation_path>\TABLES\64700TAB file. Either add another line
or modify one of the existing lines. For example:

EMUL_COM3 my_emul COM3 OFF 9600 NONE ON 1 8
EMUL_COM4 unknown COM4 OFF 9600 NONE ON 1 8

7 Ensure the Interrupt Request Line for the selected COMx port is set
to its default value. To check the default value:

1 Choose Control Panel in the Main window.

2 Choose Ports in the Control Panel window.

3 Choose the COMx port you are using and click Settings....

4 Click Advanced... in the Settings for COMx dialog box.

5 Select the default value for the Interrupt Request Line in the Advanced
Settings for COMx dialog box. The default settings are:

 COM1 and COM3 = IRQ 4
 COM2 and COM4 = IRQ 3

8 Exit Windows and reboot your PC to activate the changes made to
the CONFIG.SYS and AUTOEXEC.BAT files (CTRL+ALT+DEL).
Installation of the firmware update utility is now complete.

Chapter 15: Installing/Updating HP 64700 Firmware
Step 2. Install the firmware update utility

493

Step 3. Run PROGFLASH to update HP 64700
firmware

1 Start MS Windows in the 386 enhanced mode.

2 If the "HP 64700 Firmware Utility" group box is not opened, open it
by double-clicking the icon.

3 Double-click the "PROGFLASH" icon. (You can abort the
PROGFLASH command by pressing CTRL+c.)

4 Enter the number that identifies the emulator you want to update.
For example, enter "1" if you want to update the emulator identified
by the line, "1 emul_com1 my_emul."

5 Enter the number that identifies the product whose firmware you
want to update. For example, if this product is listed as number 12,
enter "12":

 Product
 1 64782
 2 E3490
 .
 .
 12 647??
 .

6 Enter "y" to enable status messages.

Chapter 15: Installing/Updating HP 64700 Firmware
Step 3. Run PROGFLASH to update HP 64700 firmware

494

The PROGFLASH command downloads code from files on the host computer
into Flash EPROM memory in the HP 64700. During this download, you will
see messages similar to the following:

Rebooting HP64700...with init -r

Downloading flash programming code:
’/hp64700/lib/npf.X’
Checking Hardware id code...
Erasing Flash ROM
Downloading ROM code: ’/hp64700/update/647??.X’
 Code start 280000H
 Code size 29ABAH
Finishing up...

Rebooting HP64700...
Flash programming SUCCEEDED

You can display firmware version information and verify the update by
choosing the Help→About Debugger/Emulator... (ALT, H, D) command in
the Real-Time C Debugger.

Chapter 15: Installing/Updating HP 64700 Firmware
Step 3. Run PROGFLASH to update HP 64700 firmware

495

Step 4. Verify emulator performance

• Do the performance verification procedure shown in the
Installation/Service/Terminal Interface User’s Guide.

Chapter 15: Installing/Updating HP 64700 Firmware
Step 4. Verify emulator performance

496

Glossary

Defines terms that are used in the debugger help information.

analyzer An instrument that captures data on signals of interest at discreet
periods. The emulation bus analyzer captures emulator bus cycle
information synchronously with the processor’s clock signal.

arm condition A condition that enables the analyzer. The analyzer is
always armed unless you set the analyzer up to be armed by a signal received
on the BNC port; when you do this, you can identify the arm condition in the
trace specification by selecting arm in the Condition dialog boxes.

background memory A separate memory system, internal to the emulator,
out of which the background monitor executes.

background monitor program An emulation monitor program that
executes out of background memory.

break on trigger Causes emulator execution to break into the monitor
when the trigger condition is found. This is known as a hardware breakpoint,
and it lets you break on a wider variety of conditions than a software
breakpoint (which replaces an opcode with a break instruction); however,
depending on the speed of the processor, the actual break point may be
several cycles after the one that caused the trigger.

breakpoint An address you identify in the user program where program
execution is to stop. Breakpoints let you look at the state of the target
system at particular points in the program.

break macro A breakpoint followed by any number of macro commands
(which are the same as command file commands).

control menu The menu that is accessed by clicking the control menu box
in the upper left corner of a window. You can also access control menus by
pressing the "ALT" and "-" keys.

497

count condition Specifies whether time or the occurrences of a particular
state are counted for each state in the trace buffer.

embedded microprocessor system The microprocessor system that the
emulator plugs into.

emulation memory Memory provided by the emulator that can be used in
place of memory in the target system.

emulation monitor A program, executed by the emulation microprocessor
(as directed by the emulation system controller), that gives the emulator
access to target system memory, microprocessor registers, and other target
system resources.

emulator An instrument that performs just like the microprocessor it
replaces, but at the same time, it gives you information about the operation of
the processor. An emulator gives you control over target system execution
and allows you to view or modify the contents of processor registers, target
system memory, and I/O resources.

enable condition Specifies the first condition in a two-step sequential
trigger condition.

enable store condition Specifies which states get stored in the trace
buffer while the analyzer searches for the enable condition.

foreground memory The memory system out of which user programs
execute. Foreground memory is made up of emulation memory and target
system memory.

foreground monitor program An emulation monitor program that
executes out of the same memory system as user programs. This memory
system is known as foreground memory and is made up of emulation memory
and target system memory. The 6830x emulator does not offer a foreground
monitor program.

guarded memory Memory locations that should not be accessed by user
programs. These locations are specified when mapping memory. If the user
program accesses a location mapped as guarded memory, emulator execution
breaks into the monitor.

Glossary

498

macro Refers to a break macro, which is a breakpoint followed by any
number of macro commands (which are the same as command file
commands).

monitor A program, executed by the emulation microprocessor (as directed
by the emulation system controller), that gives the emulator access to target
system memory, microprocessor registers, and other target system resources.

object file An Intel OMF format absolute file that can be loaded into
emulation or target system memory and executed by the debugger.

overlapping address ranges Two or more logical address ranges that are
identified by the same numerical values. For example, the following two
address ranges are overlapping:

1000..1fff@s
1000..1fff@u

Each range is accessed by translating the logical address along with the
function code, supervisor or user in this example. Address 1010@s is a
different physical location from address 1010@u.

pop-up menu A menu that is accessed by clicking the right mouse button in
a window.

prestore condition Specifies the states that may be stored before each
normally stored state. Up to two states may be prestored for each normally
stored state.

primary branch condition Specifies a condition that causes the analyzer
to begin searching at another level.

restart condition Specifies the condition that restarts the two-step
sequential trigger. In other words, if the restart condition occurs while the
analyzer is searching for the trigger condition, the analyzer starts looking for
the enable condition again.

secondary branch condition Specifies a condition that causes the
analyzer to begin searching at another level. If a state satisfies both the
primary and secondary branch conditions, the primary branch will be taken.

Glossary

499

sequence levels Levels in the analyzer that let you specify a complex
sequential trigger condition. For each level, the analyzer searches for
primary and secondary branch conditions. You can specify a different store
condition for each level. The Page button toggles the display between
sequence levels 1 through 4 and sequence levels 5 through 8.

state qualifier A combination of address, data, and status values that
identifies particular states captured by the analyzer.

status values Values that identify the types of microprocessor bus cycles
recognized by the analyzer. You can include status values (along with
address and data values) when specifying trigger and store conditions. The
status values defined for the 6830x emulator are listed under "Predefined
Status Values" at the end of Chapter 13, "Concepts."

store condition Specifies which states get stored in the trace buffer.

In the "Find Then Trigger" trace set up, the store condition specifies the
states that get stored after the trigger.

In the "Sequence" trace set up, each sequence level has a store condition that
specifies the states that get stored while looking for the primary or secondary
branch conditions.

target system The microprocessor system that the emulator plugs into.

trace state The information captured by the analyzer on a particular
microprocessor bus cycle.

transfer address The program’s starting address defined by the software
development tools and included with the symbolic information in the object
file.

trigger The captured analyzer state about which other captured states are
stored. The trigger state specifies when the trace measurement is taken.

trigger condition Specifies the condition that causes states to be stored in
the trace buffer.

Glossary

500

trigger position Specifies whether the state that triggered the analyzer
appear at the start, center, or end of the trace buffer. In other words, the
trigger position specifies whether states are stored after, about, or before the
trigger.

trigger store condition Specifies which states get stored in the trace
buffer while the analyzer searches for the trigger condition.

watchpoint A variable that has been placed in the WatchPoint window
where its contents can be readily displayed and modified.

Glossary

501

502

Index

A abort, during object file or memory load, 330
absolute count information, displaying, 183, 385
access size, target memory, 71, 120
Add to Watch command, 397
address strobe, buffering, 79
addresses, searching, 133, 370
analyzer, 497-501

editing the trace specification, 197, 270
halting, 181, 283
repeating last trace, 181, 284
setting up with "Find Then Trigger", 188, 274-277
setting up with "Sequence", 193, 278-281
setting up with "Trigger Store", 185, 271-273
trace signals, 458
tracing of DMA cycles, 83
tracing until halt, 181, 282

arguments, function, 434, 455-456
arm condition, 99, 188, 193, 285-287, 323, 497-501
arrays (C operators), 215
ASCII values in Memory window, 160, 440
Assemble... (ALT, A) command, 301
assembler, in-line, 301
assembly code for setting up the SIM, displaying, 98
assembly language instructions

stepping multiple, 145, 244-247
stepping single, 143, 242

assembly language source files, 453
auto variables, 157-159
AUTOEXEC.BAT file, 491-493
AxLS, compiling programs with, 456

503

B background memory, 497-501
background monitor program, 497-501
background operation, tracing, 328-329
BackTrace window, 434

displaying source files, 395
Bad RS-232 port name, 411
Bad RS-422 card I/O address, 411
baud rate, RS-232, 318
baud rate, RS-422, 318
beep, sounding from command file, 401
BERR signal (target), enabling or disabling, 74
binary values, how to enter, 211
BNC port

driving the trigger signal, 321-322
ouptut trigger signal, 99
receiving an arm condition from, 323
receiving an arm condition input, 99
setting up, 99

BP marker, 33, 35, 152, 250-255, 443
break into monitor, 147, 248
break macros, 497-501

command summary, 204
deleting, 155, 255
listing, 152, 256-257
preventing new, 155
setting, 152, 252-254

break on writes to ROM, enabling or disabling, 73
breakpoints, 497-501

deleting, 35, 151, 156, 251
disabling and enabling, 151
listing, 152, 256-257
preventing new breakpoints, 156
setting, 33, 150, 250
specifying TRAP number for, 72

Breakpoint→Delete at Cursor (ALT, B, D) command, 251
Breakpoint→Delete Macro (ALT, B, L) command, 255
Breakpoint→Edit... (ALT, B, E) command, 256-257
Breakpoint→Set at Cursor (ALT, B, S) command, 250
Breakpoint→Set Macro... (ALT, B, M) command, 252-254
bus arbitration cycles, identifying in the trace, 182
bus cycles only, displaying, 384

Index

504

bus cycles, displaying, 182
bus interface ports, displaying information, 97
bus width, selecting, 71
Button window, 435

editing, 66, 343
buttons that execute command files, creating, 66

C C operators, 215
callers (of a function), tracing, 47-48, 175, 262-263
chain command files, 403
chip selects

buffering lines, 76
displaying information, 96
reprogramming base addresses, 112
setting up, 110

Clear Breakpoint command, 396
clipboard, 55
clock crystal frequency error, 413-414
clock setup, checking configuration for, 96
clock source (emulator), selecting, 70
colors in the Source window, setting, 63
command files

chain, 403
command summary, 204
comments, 405
creating, 64, 224
executing, 65, 227-228
executing at startup, 57, 65
execution, exiting, 402
inserting wait delays, 408
locating cursor, 370
nesting, 403
parameters, 227-228
rerun, 404
sounding beep, 401
turning logging on or off, 225-226
which include Terminal Interface commands, 406-407

command line options, 57-58, 65
for connection and transport, 318

Index

505

command summary, 204
comments in command files, 405
communications (emulator), setting up, 318-320
CONFIG.SYS file, 491-493
configuration

emulator, 302-310
inconsistencies, checking for, 95
saving and loading, 100-101

configuring
chip selects, 76
emulator for in-circuit operation, 108-126
function-code lines, 77
read/write lines, 78
strobe lines, 79
write-enable lines, 80

connecting the emulator probe, 107
connection problems

LAN, 481
RS-232, 478
RS-422, 483

connection, command line option, 318
Continuous Update (ALT, -, U) command, 346
control menu, 497-501
Copy→Destination... (ALT, -, P, D) command, 342
Copy→Registers (ALT, -, P, R) command, 362
Copy→Window (ALT, -, P, W) command, 341
Could not open initialization file, 411
Could not write Memory, 412
count conditions, 285-287, 497-501
count information

displaying absolute, 183, 385
displaying relative, 183, 385

crystal, selecting, 70
CTRL key and double-clicks, 55
current PC in Source window, 371
cursor, locating cursor from command file, 370
cursor-select, 33
cut and paste, 55
cycles, driving monitor to target system, 81

Index

506

D data bus width, selecting, 71
data strobe, buffering, 79
DCE or DTE selection and RS-232 cable, 473
debugger

arranging icons in window, 332
cascaded windows, 332
exiting, 50, 58, 234
exiting locked, 235
installing software, 475-477
opening windows, 333-334
overview, 4
starting, 25, 57, 478-483
startup options, 58
tiled windows, 332
windows, opening, 60

decimal values, how to enter, 211
deleting all breakpoints, 156
demo board bus width, selecting, 71
demo programs, 24

loading, 31
mapping memory, 29-30
running, 34

DeMorgan’s law, 285-287
device register

dialog boxes, 437
window, 436

Device Regs window, continuous update, 346
dialog box, breakpoints, 256-257
dialog boxes, file selection, 236
directories

search path, 372
source, 336

display fonts, changing, 26
display mode

mixed, 130
source only, 130
toggling, 365-366, 383

Display→Select Source... (ALT, -, D, L) command, 366
DLL errors, 482
DMA cycles, tracing, 83
do while statements (C), single-stepping, 453

Index

507

don’t care values, how to enter, 211
double-clicks and the CTRL key, 55
DTACK

driving high to deassert, 82
interlock, 74
pullup resistor, 121
signals, 117
target, enabling or disabling on emulation memory accesses, 85

dynamic variables, 258-259, 389, 452

E edit breakpoints, 256-257
embedded microprocessor system, 497-501
EMIPLCR value is not consistent with VCCSYN/MODCLK, 413-414
EMSIM registers

copying to 6830x SIM registe, 94
differences between SIM registers and, 93
emulator, 91
loading with 6830x SIM regis, 93
resetting to processor defaults, 94
using the, 91-94

emulation memory, 497-501
accesses, enabling or disabling target DTACK, 85
copying target system memory into, 164, 357

emulation microprocessor, resetting, 148, 249
emulation monitor, 497-501
emulator, 497-501

clock source, selecting, 70
hardware options, setting, 69-87
probe, plugging-in, 107
status, HALTED, 118

emulator configuration, 68, 302-310
loading, 101, 231
saving, 100, 232
verifying, 95-98

enable condition, 497-501
enable store condition, 497-501
environment variables, 132

HP64700 , 491-493
HPTABLES, 491-493
PATH, 491-493

Index

508

environment
loading, 229
saving, 230

error messages, 410
Bad RS-232 port name, 411
Bad RS-422 card I/O address, 411
Could not open initialization file, 411
Could not write Memory, 412
EMIPLCR value is not consistent with VCCSYN/MODCLK, 413-414
Error occurred while processing Object file, 415
general RS-232 communications error, 416
general RS-422 communications error, 416
HP 64700 locked by another user, 417
HP 64700 not responding, 417
Incorrect DLL version, 417
Incorrect LAN Address (HP-ARPA, Windows for Workgroups), 418
Incorrect LAN Address (Novell), 419
Incorrect LAN Address (WINSOCK), 419
Internal error in communications driver, 420
Internal error in Windows, 420
Interrupt execution (during run to caller), 420
Interrupt execution (during step over), 421
Interrupt execution (during step), 421
Invalid transport name, 422
LAN buffer pool exhausted, 422
LAN communications error, 423
LAN MAXSENDSIZE is too small, 423
LAN socket error, 423
Object file format ERROR, 424
Out of DOS Memory for LAN buffer, 425
Out of DOS Windows timer resources, 426
PC is out of RAM memory, 426
Timed out during communications, 427

ethernet address, 468
Evaluate It command, 396
Execution→Break (F4), (ALT, E, B) command, 248
Execution→Reset (ALT, E, E) command, 249
Execution→Run (F5), (ALT, E, U) command, 237
Execution→Run to Caller (ALT, E, T) command, 239
Execution→Run to Cursor (ALT, E, C) command, 238
Execution→Run... (ALT, E, R) command, 240-241

Index

509

Execution→Single Step (F2), (ALT, E, N) command, 242
Execution→Step Over (F3), (ALT, E, O) command, 243
Execution→Step... (ALT, E, S) command, 244-247
exiting command file execution, 402
Expression window, 438

clearing, 347
displaying expressions, 348

expressions, 210
displaying, 348

externals, displaying symbol information, 137, 374

F file selection dialog boxes, 236
File→Command Log→Log File Name... (ALT, F, C, N) command, 224
File→Command Log→Logging OFF (ALT, F, C, F) command, 226
File→Command Log→Logging ON (ALT, F, C, O) command, 225
File→Copy Destination... (ALT, F, P) command, 233
File→Exit (ALT, F, X) command, 234
File→Exit HW Locked (ALT, F, H) command, 235
File→Load Debug... (ALT, F, D) command, 229
File→Load Emulator Config... (ALT, F, E) command, 231
File→Load Object... (ALT, F, L) command, 221-223
File→Run Cmd File... (ALT, F, R) command, 227-228
File→Save Debug... (ALT, F, S) command, 230
File→Save Emulator Config... (ALT, F, V) command, 232
firmware

ensuring performance after update, 496
using PROGFLASH to update, 494-495
version information, 335

firmware update
connecting the HP 64700 to the PC, 489-490
utility, installing, 491-493

fonts
changing, 62
settings, 324-325
sizing, 26

for statements (C), single-stepping, 453
foreground memory, 497-501
foreground monitor program, 497-501
foreground operation, tracing, 328-329
function arguments, 434, 455-456
function codes, 88, 215

Index

510

function keys, 56
function-code lines, buffering, 77
functions

displaying symbol information, 136, 374
running until return, 41, 146, 239
searching, 133, 369
stepping over, 42, 144, 243
tracing callers, 47-48, 175, 262-263
tracing execution within, 177, 264-265
tracing flow, 46, 174, 261

G gateway, 481
gateway address, 468
general RS-232 communications error, 416
general RS-422 communications error, 416
global assembler symbols, displaying, 139, 376
global symbols, displaying, 137, 374
global variables, 137, 178-179, 374
glossary, 497-501
guarded memory, 88, 311-313, 446, 497-501

H HALTED emulator status, 118
hardware

locking on exit, 235
options, setting, 69-87
requirements, 463

help for error messages, 410
Help→About Debugger/Emulator... (ALT, H, D) command, 335
hexadecimal values, how to enter, 211
high DTACK, driving, 82
hostname, 318-320
HP 64037 card, I/O address, 318
HP 64700 firmware

ensuring performance after update, 496
installing update utility, 491-493
update, connecting the HP 64700 to the PC, 489-490
using PROGFLASH to update, 494-495

HP 64700 LAN port number, 481
HP 64700 locked by another user, 417
HP 64700 not responding, 417

Index

511

HP 64700
connecting to the PC, 465-474
connecting via LAN, 468
connecting via RS-232, 465
connecting via RS-422, 472

HP 64700 switch settings
LAN, 481
RS-232, 478
RS-422, 483

HP-ARPA LAN transport DLL, 482
HP64700 environment variable, 491-493
HPTABLES environment variable, 491-493

I I/O locations
displaying, 167
editing, 168
guarding, 295-296
specifying, 349

I/O window, 439
turning polling ON or OFF, 104

IACK7 strobe, buffering, 79
IACK7/PB0 pin operation, selecting, 86
icon, for a different emulator, 58
icons (debugger window), arranging, 332
IEEE-695 object files, 453
in-circuit emulation problems, 123
in-circuit operation

configuring the emulator for, 108-126
important concepts, 108

in-line assembler, 301
inconsistencies, checking configuration for, 95
Incorrect DLL version, 417
Incorrect LAN Address (HP-ARPA, Windows for Workgroups), 418
Incorrect LAN Address (Novell), 419
Incorrect LAN Address (WINSOCK), 419
.INI file, 318
initial values for PC/SSP, specifying, 84
installation path, 475-477
Internal error in communications driver, 420
Internal error in Windows, 420
internals, displaying symbol information, 138, 375
Internet Address, 318-320, 468, 474

Index

512

interrupt 7 operation, specifying, 87
Interrupt execution

during run to caller, 420
during step over, 421
during step, 421

interrupt modes, 115
interrupts (target system), enabling or disabling, 83
interset operators, 285-287
intraset operators, 285-287
intrusion, monitor, 103, 293-294
Invalid transport name, 422
I/O address for HP 64037 card, 318
IP address, 318, 481

L labels, 212-214, 301
LAN buffer pool exhausted, 422
LAN cards, 463-464
LAN communication, 318-320, 478-483
LAN communications error, 423
LAN connection problems, 481
LAN MAXSENDSIZE is too small, 423
LAN socket error, 423
LAN, connecting HP 64700, 468
levels, trace sequence, 193, 197, 278-281, 292
limitations, Symbol window, 449
line (source file), running until, 43, 146, 238
line numbers missing in Source window, 63
link level address, 468
list file

changing the destination, 61
copying window contents to, 61

listing files, specifying, 233, 342
loading file error, 412
local assembler symbols, displaying, 139, 376
local symbols, displaying, 138, 375
local variables, 138-139, 375
lock hardware on exit, 235
log (command) files, 64, 224-228
logical operators, 188, 193, 285-287

Index

513

M macro, 497-501
MCC68K, compiling programs with, 455
Memory window, 440

displaying 16-bit values, 352
displaying 32-bit values, 352
displaying bytes, 352
displaying multicolumn format, 352
displaying single-column format, 351
turning polling ON or OFF, 104

memory
abort during load, 330
copying, 163, 355
displaying, 160
editing, 162
loading from stored file, 359
map, displaying information, 97
mapping, 88-90, 311-313
mapping for demo program, 29-30
modifying a range, 165, 356
searching for a value or string in, 166
storing to a binary file, 360
target system, copying into emulation memory, 164, 357
type, 88, 311-313

messages, error, 410
microprocessor, resetting, 148, 249
mixed display mode, 130, 365, 383, 453
monitor, 497-501

cycles, driving to target system, 81
intrusion, 103, 148, 249, 293-294, 450

N nesting command files, 403
network name, 318
no-operation command, 405
noabort, during object file or memory load, 330
Novell LAN transport DLL, 482
numeric constants, 211

Index

514

O Object file format ERROR, 424
object files, 497-501

abort during load, 330
IEEE-695, 453
loading, 129, 221-223

operators
C, 215
interset, 285-287
intraset, 285-287
logical, 188, 193, 285-287

optimization option, compiler, 455
options, command line, 58
oscillator, selecting, 70
Out of DOS Memory for LAN buffer, 425
Out of Windows timer resources, 426
overlapping address ranges, 497-501
overview, 4

P parameters, command file, 227-228
paste, cut and, 55
PATH environment variable, 491-493
path for source file search, 132, 372
paths for source files, prompting, 331
patterns, trace, 188, 193, 274-281, 285-289
PC is out of RAM memory, 426
PC

connecting HP 64700, 465-474
locating in Source window, 371

PC/SSP specifying initial values for, 84
performance (PC), optimizing for the debugger, 485
performance verification after firmware update, 496
ping command, 481
platform requirements, 463
plug-in problems, 123
pointers (C operators), 215
polling for debugger windows, turning ON or OFF, 104
pop-up menus, 497-501

accessing, 394
port name, RS-232, 318
port

BNC, 99, 285-287, 321-323
communication, 318-320

Index

515

pragma statements (C), source file information, 453
prestore condition, 188, 193, 274-281, 450, 497-501
primary branch condition, 193, 278-281, 497-501
probe, plugging in, 107
processor, resetting, 148, 249
PROGFLASH firmware update utility, 494-495
program counter, 143, 147, 237, 240-241, 244-247, 441, 443

setting the reset value, 27-28
program modules, displaying symbol information, 136, 373
programs

compiling with AxLS, 456
compiling with MCC68K, 455
demo, 24
loading, 129, 221-223
running, 147, 237, 240-241
stopping execution, 147

Q qualifier, state, 185, 271-273
quick start information, 23

R read/write lines, buffering, 78
real-time mode

disabling, 103, 294
enabling, 103, 293
options, setting, 102-104

RealTime→I/O Polling→OFF (ALT, R, I, F) command, 296
RealTime→I/O Polling→ON (ALT, R, I, O) command, 295
RealTime→Memory Polling→OFF (ALT, R, M, F) command, 300
RealTime→Memory Polling→ON (ALT, R, M, O) command, 299
RealTime→Monitor Intrusion→Allowed (ALT, R, T, A) command, 294
RealTime→Monitor Intrusion→Disallowed (ALT, R, T, D) command, 293
RealTime→Watchpoint Polling→OFF (ALT, R, W, F) command, 298
RealTime→Watchpoint Polling→ON (ALT, R, W, O) command, 297
register variables, 455-456
Register window, 441

copying information from, 362
registers

displaying, 44-45, 169
editing, 171

relative count information, displaying, 183, 385
requirements, hardware, 463

Index

516

requirements, platform, 463
rerun command files, 404
reset

emulator, 148, 249
emulator status, 446
mode configuration, displaying information, 98
running from target system, 147, 240-241
value for supervisor stack pointer and program counter, 27-28

restart condition, 188, 274-277, 497-501
restriction on number of RS-232 connections, 478
return (function), running until, 41, 146, 239
ROM

enabling or disabling breaks on writes to, 73
writes occurring, 73

RS-232
cable and DCE or DTE selection, 473
connection problems, 478
connections restriction, 478
connecting HP 64700, 465

RS-422
connection problems, 483
connecting HP 64700, 472

RTC Emulation Connection dialog box, 318
Run to Cursor command, 397

S screen fonts, changing, 26
search path, 482

for source files, 132, 372
Search→Address... (ALT, -, R, A) command, 370
Search→Current PC (ALT, -, R, C) command, 371
Search→Function... (ALT, -, R, F) command, 369
Search→String... (ALT, -, R, S) command, 367
Search... (ALT, -, R) command, 353
secondary branch condition, 193, 278-281, 497-501
sequence levels, 292, 497-501
service ports, TCP, 468
Set Breakpoint command, 396
Settings→BNC→Input to Analyzer Arm (ALT, S, B, I) command, 323
Settings→BNC→Outputs Analyzer Trigger (ALT, S, B, O) command, 321-322
Settings→Communication... (ALT, S, C) command, 318-320
Settings→Emulator Config→Hardware... (ALT, S, E, H) command, 302-310

Index

517

Settings→Emulator Config→Information... (ALT, S, E, I) command, 314-317
Settings→Emulator Config→Memory Map... (ALT, S, E, M)
command, 311-313
Settings→Extended→Load Error Abort→OFF (ALT, S, X, L, F)
command, 330
Settings→Extended→Load Error Abort→ON (ALT, S, X, L, O) command, 330
Settings→Extended→Source Path Query→OFF (ALT, S, X, S, F)
command, 331
Settings→Extended→Source Path Query→ON (ALT, S, X, S, O)
command, 331
Settings→Extended→Trace Cycles→Both (ALT, S, X, T, B) command, 329
Settings→Extended→Trace Cycles→Monitor (ALT, S, X, T, M)
command, 328
Settings→Extended→Trace Cycles→User (ALT, S, X, T, U) command, 328
Settings→Font... (ALT, S, F) command, 324-325
Settings→Symbols→Case Sensitive→OFF (ALT, S, S, C, F) command, 327
Settings→Symbols→Case Sensitive→ON (ALT, S, S, C, O) command, 327
Settings→Tabstops... (ALT, S, T) command, 326
SIM registers

copying to EMSIM registers, 93
differences between EMSIM registers and, 93
loading with EMSIM register values, 94

SIM, displaying assembly code for setting up the, 98
single-step one line, 36
software breakpoints, specifying TRAP number , 72
software, installing debugger, 475-477
Source at Stack Level command, 395
source directory, 336
source display mode, toggling, 365-366
source file line, running until, 43, 146, 238
source files

displaying, 32, 131, 366
displaying from BackTrace window, 395
information generated for pragma statements, 453
prompting for paths, 331
searching for addresses, 133, 370
searching for function names, 133, 369
searching for strings, 134, 367
specifying search directories, 132

Index

518

source lines
stepping multiple, 145, 244-247
stepping single, 143, 242

source only
displaying, 130, 384
displaying in Memory window, 365-366

Source window, 443
line numbers missing, 63
locating current PC, 371
setting colors, 63
setting tabstops, 62
toggling the display mode, 365-366

SRCPATH environment variable, 132
SSP/PC, specifying initial values for, 84
startup options, 58
state qualifier, 185, 271-273, 497-501
status register, editing, 363
status values, 458, 497-501
Status window, 446
step multiple lines, 37
step one line, 36
store, 185
store conditions, 285-287, 497-501
strings

displaying symbols containing, 142, 379
searching memory for, 166, 353
searching source files, 134, 367

strobe lines, buffering, 79
structures (C operators), 215
subnet mask, 468, 481
subroutines, stepping over, 243
supervisor stack pointer, setting the reset value, 27-28
Symbol window, 449

copying information, 378-379
searching for strings, 379

symbols, 212-214
system setup, 464

Index

519

T tabstop settings, 326
tabstops in the Source window, setting, 62
target BERR signal, enabling or disabling, 74
target DTACK, enabling or disabling on emulation memory accesses, 85
target memory access size, 120

selecting, 71
target system, 497-501

interrupts, enabling or disabling, 83
memory, copying into emulation memory, 164, 357

TCP service ports, 468
telnet, 468, 474
TERMCOM command, 406-407
Terminal Interface commands, 406-407
text, selecting, 55
Timed out during communications, 427
TimeoutSeconds, 427
trace

display mode, toggling, 383
foreground/background operation, 328-329
patterns, 188, 193, 274-281, 285-289
range, 290-291
setting up a sequence, 193
settings, 285-287
signals, 458

trace specification
copying, 388
editing, 197, 270
loading, 200
specifying the destination, 388
storing, 199

trace state, 497-501
searching for in Trace Window, 387

Trace window, 450
copying information, 386
displaying absolute count information, 385
displaying bus cycles only, 384
displaying relative count information, 385
displaying source only, 384
toggling the display mode, 383

Trace→Again (F7), (ALT, T, A) command, 284
Trace→Edit... (ALT, T, E) command, 270

Index

520

Trace→Find Then Trigger... (ALT, T, D) command, 274-277
Trace→Function Caller... (ALT, T, C) command, 262-263
Trace→Function Flow (ALT, T, F) command, 261
Trace→Function Statement... (ALT, T, S) command, 264-265
Trace→Halt (ALT, T, H) command, 283
Trace→Sequence... (ALT, T, Q) command, 278-281
Trace→Trigger Store... (ALT, T, T) command, 271-273
Trace→Until Halt (ALT, T, U) command, 282
Trace→Variable Access... (ALT, T, V) command, 266-267
Trace→Variable Break... (ALT, T, B) command, 268-269
tracing of DMA cycles, 83
transfer address, 34, 145, 147, 240-241, 244-247, 497-501
transport selection, 318
transport, command line option, 318
TRAP number for breakpoints, specifying, 72
trigger, 185, 497-501

condition, 185, 497-501
position, 185, 497-501
state, searching for in Trace window, 387
store condition, 185, 497-501

tutorial, 24
type of memory, 88, 311-313

U unary minus operator, 215
unions (C operators), 215
unlock emulator, 318
user ID, 318, 475-477
user name, 318
user programs, loading, 129
user-defined symbols

creating, 140, 380
deleting, 142, 381-382
displaying, 141, 378

Utilities→Copy... (ALT, -, U, C) command, 355
Utilities→Fill... (ALT, -, U, F) command, 356
Utilities→Image... (ALT, -, U, I) command, 357
Utilities→Load... (ALT, -, U, L) command, 359
Utilities→Store... (ALT, -, U, S) command, 360

V values, searching memory for, 166, 353
Variable→Edit... (ALT, V, E) command, 258-259

Index

521

variables
auto, 157-159
displaying, 38, 157
dynamic, 258-259, 389, 452
editing, 39, 158, 258-260
environment, 132
global, 137, 178-179, 374
local, 138-139, 375
monitoring in the WatchPoint window, 40, 159
register, 455-456
tracing a particular value and breaking, 179, 268-269
tracing accesses, 49, 178, 266-267

verification of emulator performance, 496
verifying the emulator configuration, 95-98
version information, 335, 484

W WAIT command, 208, 337
wait delays, inserting in command files, 408
watchdog timer, keeping alive, 81
watchpoint, 497-501
WatchPoint window, 452

monitoring variables in, 40, 159
turning polling ON or OFF, 104

watchpoints, editing, 389
while statements (C), single-stepping, 453
width of data bus, 71
window contents, copying to the list file, 61
Window→1-9 (ALT, W, 1-9) command, 333
Window→Arrange Icons (ALT, W, A) command, 332
Window→Cascade (ALT, W, C) command, 332
Window→More Windows... (ALT, W, M) command, 334
Window→Tile (ALT, W, T) command, 332
windows (debugger), opening, 333-334
Windows for Workgroups LAN transport DLL, 482
windows of program execution, tracing, 197
WINSOCK LAN transport DLL, 482
WINSOCK.DLL, 482
WLIBSOCK.DLL, 482
write-enable lines, buffering, 80
writes to ROM, enabling or disabling breaks on, 73
WSOCKETS.DLL, 482

Index

522

Certification and Warranty

Certification

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard
further certifies that its calibration measurements are traceable to the United
States National Bureau of Standards, to the extent allowed by the Bureau’s
calibration facility, and to the calibration facilities of other International
Standards Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in
materials and workmanship for a period of 90 days from date of installation.
During the warranty period, HP will, at its option, either repair or replace
products which prove to be defective.

Warranty service of this product will be performed at Buyer’s facility at no
charge within HP service travel areas. Outside HP service travel areas,
warranty service will be performed at Buyer’s facility only upon HP’s prior
agreement and Buyer shall pay HP’s round trip travel expenses. In all other
cases, products must be returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay
shipping charges to HP and HP shall pay shipping charges to return the
product to Buyer. However, Buyer shall pay all shipping charges, duties, and
taxes for products returned to HP from another country. HP warrants that its
software and firmware designated by HP for use with an instrument will
execute its programming instructions when properly installed on that
instrument. HP does not warrant that the operation of the instrument, or
software, or firmware will be uninterrupted or error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,
unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance agreements
are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service
Office.

Safety

Summary of Safe Procedures

The following general safety precautions must be observed during all phases
of operation, service, and repair of this instrument. Failure to comply with
these precautions or with specific warnings elsewhere in this manual violates
safety standards of design, manufacture, and intended use of the instrument.
Hewlett-Packard Company assumes no liability for the customer’s failure to
comply with these requirements.

Ground The Instrument

To minimize shock hazard, the instrument chassis and cabinet must be
connected to an electrical ground. The instrument is equipped with a
three-conductor ac power cable. The power cable must either be plugged
into an approved three-contact electrical outlet or used with a three-contact
to two-contact adapter with the grounding wire (green) firmly connected to
an electrical ground (safety ground) at the power outlet. The power jack and
mating plug of the power cable meet International Electrotechnical
Commission (IEC) safety standards.

Do Not Operate In An Explosive Atmosphere

Do not operate the instrument in the presence of flammable gases or fumes.
Operation of any electrical instrument in such an environment constitutes a
definite safety hazard.

Keep Away From Live Circuits

Operating personnel must not remove instrument covers. Component
replacement and internal adjustments must be made by qualified
maintenance personnel. Do not replace components with the power cable
connected. Under certain conditions, dangerous voltages may exist even with
the power cable removed. To avoid injuries, always disconnect power and
discharge circuits before touching them.

Do Not Service Or Adjust Alone

Do not attempt internal service or adjustment unless another person, capable
of rendering first aid and resuscitation, is present.

Do Not Substitute Parts Or Modify Instrument

Because of the danger of introducing additional hazards, do not install
substitute parts or perform any unauthorized modification of the instrument.
Return the instrument to a Hewlett-Packard Sales and Service Office for
service and repair to ensure that safety features are maintained.

Dangerous Procedure Warnings

Warnings, such as the example below, precede potentially dangerous
procedures throughout this manual. Instructions contained in the warnings
must be followed.

WARNING Dangerous voltages, capable of causing death, are present in this instrument.
Use extreme caution when handling, testing, and adjusting.

Safety Symbols Used In Manuals

The following is a list of general definitions of safety symbols used on
equipment or in manuals:

Instruction manual symbol: the product is marked with this symbol when it is
necessary for the user to refer to the instruction manual in order to protect
against damage to the instrument.

Indicates dangerous voltage (terminals fed from the interior by voltage
exceeding 1000 volts must be marked with this symbol).

Protective conductor terminal. For protection against electrical shock in case
of a fault. Used with field wiring terminals to indicate the terminal which
must be connected to ground before operating the equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal
common, as well as providing protection against electrical shock in case of a
fault. A terminal marked with this symbol must be connected to ground in the
manner described in the installation (operating) manual before operating the
equipment.

Frame or chassis terminal. A connection to the frame (chassis) of the
equipment which normally includes all exposed metal structures.

Alternating current (power line).

Direct current (power line).

Alternating or direct current (power line).

Caution The Caution sign denotes a hazard. It calls your attention to an operating
procedure, practice, condition, or similar situation, which, if not correctly
performed or adhered to, could result in damage to or destruction of part or
all of the product.

Warning The Warning sign denotes a hazard. It calls your attention to a procedure,
practice, condition or the like, which, if not correctly performed, could result
in injury or death to personnel.

	Real-Time C Debugger — Overview
	In This Book
	Contents
	Quick Start Guide
	Getting Started

	User’s Guide
	Using the Debugger Interface
	Configuring the Emulator
	Plugging the Emulator into Target Systems
	Debugging Programs

	Reference
	Command File and Macro Command Summary
	Expressions in Commands
	Menu Bar Commands
	Window Control Menu Commands
	Window Pop-Up Commands
	Other Command File and Macro Commands
	Error Messages

	Concept Guide
	Concepts

	Installation Guide
	Installing the Debugger
	Installing/Updating HP 64700 Firmware

	Glossary
	Index
	Certification and Warranty
	Safety

