
1 HP 64700-Series Emulators

Terminal Interface
Reference

HP Part No. 64740-97008
Printed in U.S.A.
January 1994

Edition 4

Notice

Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1987, 1988, 1989, 1994 Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the
prior written consent of Hewlett-Packard Company. The information
contained in this document is subject to change without notice.

AdvanceLink, Vectra and HP are trademarks of Hewlett-Packard
Company.

IBM and PC AT are registered trademarks of International Business
Machines Corporation.

MS-DOS is a trademark of Microsoft Corporation.

UNIX is a registered trademark of AT&T.

Torx is a registered trademark of Camcar division of Textron, Inc.

Hayes and SmartModem are registered trademarks of Hayes
Microcomputer Products.

Hewlett-Packard
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure
by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1)(ii) of the Rights in Technical Data and Computer
Software Clause at DFARS 252.227-7013. Hewlett-Packard Company,
3000 Hanover Street, Palo Alto, CA 94304 U.S.A. Rights for
non-DOD U.S. Government Departments and Agencies are as set forth
in FAR 52.227-19(c)(1,2).

1Printing History New editions are complete revisions of the manual. The date on the title
page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was issued.
Many product updates and fixes do not require manual changes and,
conversely, manual corrections may be done without accompanying
product changes. Therefore, do not expect a one to one correspondence
between product updates and manual revisions.

Edition 1
Edition 2
Edition 3
Edition 4

64740-90901E1187, November 1987
64740-90901E1288, December 1988
64740-97003, July 1989
64740-97008, January 1994

Using this Manual

This manual is a complete reference to all HP 64700 Terminal Interface
commands and non-processor specific numeric and analyzer
expressions.

The manual:

Shows you the correct syntax for each command.

Explains what the command does.

Explains some of the side effects of a command (for example,
that the emulator may break to the monitor when the
command is executed).

Shows examples of how to use the command in the context of
making a measurement.

Lists other related commands with a brief description of
function.

The manual does not:

Give you a complete tutorial on using the emulator. Refer to
the Emulator User’s Guide for your particular emulator for
tutorial information.

1Organization

Chapter 1 Contains all HP 64700 Terminal Interface commands in alphabetical
order. Each new command starts on an odd page.

Chapter 2 Contains information on numeric and analyzer expressions which apply
to all emulators. (Information on numeric expressions which are
specific to certain emulators (such as address syntax) is given in the
Emulator User’s Guide for that emulator.)

Appendix A Lists the 68000 microprocessor assembly language program used in
several of the command examples. A listing for a similar program for
the 80186 microprocessor is also given; you can modify the examples
slightly to make them work with the 80186 emulator.

Appendix B Gives a complete description of the binary/hexadecimal trace list dump
format. This format allows you to write host interface programs which
post process the trace list to allow you to display the trace in any style
you wish. It is the only way that external timing analyzer information
may be recovered from the trace.

Appendix C Contains descriptions of error messages that can occur while using the
Terminal Interface. The error messages are listed in numerical order,
and each description includes the cause of the error and the action you
should take to remedy the situation. Error messages described in this
appendix are "generic"; that is, they can occur in any of the HP 64700
emulators. Errors specific to a particular emulator are described in the
Emulator User’s Guide.

Appendix D Contains information on entering commands. Included are descriptions
of emulator prompts, command recall and abort, multiple commands on
the same line, and comments in commands.

1Manual Conventions Syntax diagrams used in this manual are interpreted as shown in the
following diagram.

All command syntax diagrams
start with the command name. If
there are two names, separated by
a "/", then either command
perfoms the same function; OR,
the first command operates on one
section of the emulator, the second
on another (such as the emulation
and external analyzers).

Operators such as "=" appear
either in circles or bubbles; they
have the same function in either
case.

All command lines must be
terminated by a carriage return.

This indicates a required space in
all of the command diagrams. You
should only insert the number of
spaces shown on the diagram, as
some commands are sensitive to
additional spacing.

Command options are shown in
bubbles such as this one. (Some
operators are also depicted in
bubbles.)

All identifiers in rectangles
(except for <RETURN>) indicate
syntatic items which are further
defined, either in the command
description text, or by another set
of syntax pages. (For example,
<NAME> is completely defined
under the equ command;
<EXPR> has its own set of
descriptive pages.)

Contents

1 Emulator Commands

Summary of Commands . 1-1
b . b 1
bc . bc 1
bnct . bnct 1
bp . bp 1
cf . cf 1
cim . cim 1
cl . cl 1
cmb . cmb 1
cmbt . cmbt 1
cov . cov 1
cp . cp 1
dt . dt 1
dump . dump 1
echo . echo 1
equ . equ 1
es . es 1
help,? . help 1
init . init 1
lan . lan 1
lanpv . lanpv 1
load . load 1
m . m 1
mac . mac 1
map . map 1
mo . mo 1
po . po 1
pv . pv 1
r . r 1
reg . reg 1
rep . rep 1
rst . rst 1

Contents-1

rx . rx 1
s . s 1
ser . ser 1
stty . stty 1
sym . sym 1
t,xt . t 1
ta . ta 1
tarm,xtarm . tarm 1
tcf,xtcf . tcf 1
tck,xtck . tck 1
tcq,xtcq . tcq 1
telif,xtelif . telif 1
tf,xtf . tf 1
tg,xtg . tg 1
tgout,xtgout . tgout 1
th,xth . th 1
tif,xtif . tif 1
tinit . tinit 1
tl, xtl . tl 1
tlb,xtlb . tlb 1
tp,xtp . tp 1
tpat,xtpat . tpat 1
tpq,xtpq . tpq 1
trng,xtrng . trng 1
ts,xts . ts 1
tsck,xtsck . tsck 1
tsq,xtsq . tsq 1
tsto,xtsto . tsto 1
tx,xtx . tx 1
ver . ver 1
w . w 1
x . x 1
xteq . xteq 1
xtgq . xtgq 1
xtm . xtm 1
xtmo . xtmo 1
xtsp . xtsp 1
xtt . xtt 1
xttd . xttd 1
xttq . xttq 1
xtv . xtv 1

2-Contents

2 Expressions

ANALYZER_EXPR ANALYZER_EXPR 1
COMPLEX_EXPR COMPLEX_EXPR 1
EXPR . EXPR 1
SIMPLE_EXPR SIMPLE_EXPR 1

A Sample Programs

68000 Sample Program . A-1
Loading the 68000 Sample Program A-3

80186 Sample Program . A-5
Symbol Files . A-7

Loading a Symbol File . A-12
8051 Sample Program . A-13

B Binary/Hexadecimal Trace List Format

Transfer Protocol . B-1
Trace List Records . B-1

No Trigger Record . B-2
Empty Trace Record . B-3
New State Data Record . B-3
More State Data Record . B-6
Trace State Record . B-7
New Timing Data Record . B-8
More Timing Data Record B-12
Trace Sample Records . B-13

C Error Messages

Emulator Error Messages . C-1
General Emulator and System Error/Status Messages C-7
Analyzer Error Messages . C-56

D Command Entry

Prompts . D-1
Command Line Editing . D-3

Input Mode . D-3
Control Mode . D-3
Changing Modes . D-5

Command Abort . D-6
Command Recall . D-6

Contents-3

Multiple Commands . D-7
Commenting . D-7

4-Contents

1

Emulator Commands

This chapter consists of HP 64700-Series Emulator/Analyzer Terminal
Interface commands and descriptions. The syntax, functional
description, parameters, default values, examples of command usage,
and related commands are included.

1Summary of
Commands

COMMAND DESCRIPTION

b Break the emulator to monitor

bc Specify break conditions

bnct Specify BNC signal drivers and receivers

bp Insert or modify software breakpoints

cf Set emulator specific configuration items

cim Copy target memory to emulation memory

cl Control command line editing

cmb Enable/disable CMB interaction

cmbt Specify drivers and receivers of CMB trigger

Emulator Commands 1-1

cov Measure percentage of memory locations accessed

cp Copy memory blocks

dt Set or display system date/time

dump Dump memory to a host file

echo Echo character strings or expressions

equ Equate names to expressions

es Display emulator status

help,? Display help information for commands

init Initialize the emulator

lan Set configuration parameters

lanpv Performance verification on LAN interface

load Load user programs into emulation or target
memory

m Display/modify memory locations

mac Define command macros

map Map emulation and target system memory

mo Set global memory access and display modes

po Assign ports, redefine prompt, dump command files

pv Run emulator/analyzer performance verification

r Run the emulator from current PC or specified
location

1-2 Emulator Commands

reg Display/modify processor registers

rep Repeat a group of HP 64700 commands

rst Reset the emulation microprocessor

rx Specify starting address for coordinated emulator
run

s Step the emulation processor

ser Search emulation or target memory for values

stty Set data communications parameters

sym Manage the emulator symbol table

t,xt Start an analyzer trace

ta Display analyzer line activity

tarm,xtarm Specify arming condition for analyzers

tcf,xtcf Set analyzer configuration to easy or complex

tck,xtck Specify analyzer master clock qualifiers

tcq,xtcq Specify analyzer trace tag count qualifier

telif,xtelif Specify sequencer secondary branch qualifier

tf,xtf Specify the trace list display format

tg,xtg Specify a trigger condition for the analyzer

tgout,xtgout Specify signals to drive upon analyzer trigger

th,xth Halt the analyzer

tif,xtif Specify sequencer primary branch qualifiers

Emulator Commands 1-3

tinit Reset trace specification

tl,xtl Display/dump current trace list

tlb,xtlb Define labels for analyzer input lines

tp,xtp Specifies location of trigger state in trace list

tpat,xtpat Specify analyzer complex configuration patterns

tpq,xtpq Specify trace prestore qualifier

trng,xtrng Specify a complex configuration range qualifier

ts,xts Display status of analysis trace

tsck,xtsck Specify analyzer slave clocks

tsq,xtsq Manipulate the trace sequencer

tsto,xtsto Specify analyzer trace storage qualifiers

tx,xtx Set analyzer to trace on receipt of CMB
/EXECUTE

ver Display Terminal Interface firmware version
number

w Wait for specified event

x Start synchronous CMB execution

xteq Specify external timing analyzer edge trigger

xtgq Specify external timing analyzer glitch trigger

xtm Specify external timing analyzer mode

xtmo Specify external analyzer mode

1-4 Emulator Commands

xtsp Define external timing analyzer sample period

xtt Specify external timing analyzer trigger condition

xttd Specify external timing analyzer trigger delay

xttq Specify external timing analyzer transition trigger

xtv Set threshold voltages for external analyzer probes

Emulator Commands 1-5

2Notes

1-6 Emulator Commands

1b

Summary Break the emulator to monitor

Syntax

Function The b command issues a break to the emulator, causing it to stop
executing the user program and begin execution of the monitor
program. If the emulator is in the reset state when a break occurs, it
will be released from reset and will begin execution within the
emulation monitor.

Parameters None.

Defaults None.

Examples To break the emulation microprocessor into the monitor, type:

U> b

You will see:

M>

Related Commands r (runs the user program from the current pc or a specified address)

s (steps the user program a number of instructions from the current pc
or a specified address)

b 1

1Notes

2 b

1bc

Summary Specify break conditions

Syntax

Function The bc command allows you to set break conditions for the emulation
system. You can independently enable or disable six different break
conditions: write to ROM, software breakpoints, breaks due to
assertion of the BNC or CMB trigger signals, and breaks due to the
assertion of the internal trig1 and trig2 signals. This allows you to
have the emulator break to the monitor upon error conditions (such as
write to ROM or finding a software breakpoint in a piece of code it
never should have reached), or break to the monitor when an analyzer
measurement has completed.

When you use the bc command, the emulator may break into the
monitor while each enable/disable is being executed. If the emulator
was executing your program when the bc command was received, it
will return to your program when finished executing the command. If
you request only a display of the current break conditions, the emulator
does not break to the monitor.

A hardware reset which occurs during processing of the bc command
may result in the particular break condition being left in an unknown

bc 1

state. If this occurs, a display of the break conditions will show a
question mark "?" instead of -e or -d next to the break condition.

Parameters

-e Enables the indicated break conditions (which
must be specified immediately following the -e
on the command line).

-d Disables the indicated break conditions (which
must be specified immediately following the -d
on the command line).

Note The options -e and -d cannot both be specified within the same bc
command.

rom Enable/disable emulator breaks to monitor on
occurrence of a write to ROM by the user
program.

Note A microprocessor like the 68000 with a pipeline architecture begins
execution of the next instruction before it completes execution of the
current instruction. Since a write to ROM cannot be detected until the
bus cycle which causes it completes, situations will arise where
instructions after the instruction that caused the write to ROM to occur
will execute.

bp Enable/disable recognition of software
breakpoints inserted with the bp command.

2 bc

Note The "breakpoints" break condition should not be disabled
(bc -d bp) while the emulator is running user code. If this command is
entered while the emulator is running user code, and the emulator is
executing code in the area where the breakpoints are being modified,
program execution may be unreliable. (Breakpoints are modified as a
result of the bc -d bp command because enabled breakpoints are
replaced by the original opcodes when the "breakpoints" break
condition is disabled.)

bnct Enable/disable breaks generated by assertion of
the bnct (rear panel BNC) signal. Note that
this signal may also drive either the trig1 or
trig2 signals; or, it may drive both.

cmbt Enable/disable breaks upon assertion of the
CMB (Coordinated Measurement Bus) trigger
signal. Note that the CMB trigger signal may
also drive either the trig1 or trig2 signals; or, it
may drive neither or both.

trig1 Enable/disable breaks generated by assertion of
the trig1 (trace trigger one) signal. Refer to the
tgout, bnct, and cmbt commands for
information on specifying drivers and receivers
of the trig1 signal.

trig2 Enable/disable breaks generated by assertion of
the trig2 (trace trigger two) signal. Refer to the
tgout, bnct, and cmbt commands for
information on specifying drivers and receivers
of the trig2 signal.

Defaults If no parameters are specified, the enable/disable status of all six break
conditions is displayed.

Examples To display the status of all six break conditions, type:

M> bc

bc 3

You will see something similar to the following:

 bc -e bp #enable
 bc -d rom #disable
 bc -d bnct #disable
 bc -d cmbt #disable
 bc -d trig1 #disable
 bc -d trig2 #disable

To enable breaks on write to ROM and upon assertion of the trig1
signal, and disable software breakpoints and breaks generated by the
trig2 signal, type:

M> bc -e rom trig1
M> bc -d bp trig2

Related Commands bnct (specify drivers and receivers of the rear panel BNC signal)

cmbt (specify drivers and receivers of the CMB trigger signal)

bp (set/delete software breakpoints)

map (specify whether memory locations are mapped as RAM or ROM)

tgout (specify whether the trig1 and/or trig2 signals are to be driven
when the analyzer finds the trigger condition)

4 bc

1bnct

Summary Specify BNC signal drivers and receivers

Syntax

Function The bnct command allows you to specify which of the internal
trig1/trig2 trigger signals will drive and/or receive the rear panel BNC
trigger. You can specify the signals individually, as an ORed condition
for drive, or as an ANDed condition for receive; or, you can specify
that the signals are not to be driven or received.

Normally, you would use this command to cross-trigger instruments.
For example, you may wish to trigger a digitizing oscilloscope hooked
to various timing signals when the emulation analyzer finds a certain
state, or, you may wish to do the converse and trigger the HP 64700’s
analyzer when an oscilloscope finds its trigger.

Parameters

-d The -d parameter indicates that the BNC port
will drive the triggers, trig1 and trig2, to the
emulator’s internal analyzer.

bnct 1

-r The -r parameter causes the BNC port to
receive the triggers, trig1 and trig2, from the
analyzer, and send them out the BNC port.

none If you specify none with the -d option, then the
rear panel BNC signal will not drive either of
the analyzer triggers. If you specify none with
the -r option, the rear panel BNC will not
receive trig1 or trig2 from the internal analyzer.

trig1 If trig1 is specified, then the internal "trig1"
signal will drive or receive the BNC signal,
depending on whether you specified the -d or -r
option.

trig2 If you specify trig2 , then the internal "trig2"
signal will drive or receive the BNC signal,
depending on whether you specified the -d or -r
option.

Note You can also specify that both the trig1 and trig2 signals are to drive
or receive the BNC signal. To do this, place a comma between the two
signals on the command line.

Defaults If no options are specified, the current setting of bnct is displayed.
Upon powerup, bnct is set to bnct -d none -r none.

If you specify one of the -d or -r options without the other, the other
option is left in the same state it was in before the command was
entered.

Examples To view the current bnct setting, type:

M> bnct

2 bnct

You will see:
bnct -d none -r none

If you want to trigger an instrument hooked to the BNC when the HP
64700 analyzer finds its trigger, you might do the following:

M> tcf -e
M> tg addr=2000
M> tgout trig1
M> bnct -d none -r trig1

By specifying this command sequence, the external instrument will be
triggered when the emulation processor reaches the trigger pattern of
address=2000.

The reverse situation is where you want to trigger the HP 64700
analyzer when an external instrument finds its trigger. Type:

M> bnct -d trig1 -r none
M> tarm =trig1
M> tg arm

Note You should not set up an analyzer in an emulator to both drive and
receive the same trigger signal. For example, if you issued the
commands tg arm, tarm =trig1 , tgout trig1, and bnct -d trig1 -r
trig1 , then the analyzer trig1 signal will become latched in a feedback
loop and will remain latched until the loop is broken. To break the
loop, you must first disable the signal’s source, then momentarily
disable either the drive or receive function. In this case, the commands
tgout none and bnct -d none will break the loop.

Related Commands bc (break conditions; can be used to specify that the emulator will
break into the emulation monitor upon receipt of one of the trig1 /trig2
signals)

cmbt (coordinated measurement bus trigger; used to specify which
internal signals will be driven or received by the HP 64700 coordinated
measurement bus)

bnct 3

tarm (analyzer trace arm; used to specify arming (begin to search for
trigger) conditions for the analyzer -- trig1/trig2 can be used to arm the
analyzer)

tgout (specifies which of the trig1/trig2 signals are to be driven when
the analyzer trigger is found)

4 bnct

1bp

Summary Insert or modify software breakpoints

Syntax

Function The bp command is used to insert, delete, display, or modify the status
of software breakpoints.

Note Not all emulators support software breakpoints. Refer to the Emulator
User’s Guide supplied with your particular emulator to determine
whether or not software breakpoints are supported.

There are four different operations to maintain the software breakpoint
table.

Inserting Breakpoints

Specifying only an address inserts the breakpoint instruction in
memory and makes a breakpoint table entry corresponding to that
address. If a software break instruction already exists at the address
specified, an error message is generated and the current bp command is
aborted.

bp 1

Enabling Breakpoints

Enabling a breakpoint at a specified address causes the system to search
the breakpoint table for that address; if it exists in the table, the
breakpoint instruction is written to memory at the corresponding
address.

Disabling Breakpoints

Disabling the breakpoint for a specified address again causes a search
for a breakpoint table entry; if found, the original contents of the
address (before the breakpoint was defined) are written to the
corresponding memory location. The contents of the breakpoint table
are unchanged, except to indicate that the particular breakpoint is now
inactivated.

Note When the breakpoint table is displayed with the bp command, the
enable/disable status of each breakpoint is tested by reading the
memory locations in question. If a software break instruction is found,
the breakpoint is displayed as enabled; if not, the breakpoint is
displayed as disabled.

2 bp

Note Software breakpoints should not be set, enabled, disabled, or removed
while the emulator is running user code. Also, you should not disable
the "breakpoints" break condition (bc -d bp) while the emulator is
running user code.

If any of these commands are entered while the emulator is running
user code, and the emulator is executing code in the area where the
breakpoint is being modified, program execution may be unreliable.

The problem occurs when the software breakpoint instruction (or the
original opcode) is partially written in the emulation memory location
while the emulation processor is fetching from that location; an illegal
opcode may result. This problem does not occur when breakpoints are
in target RAM because the emulation processor breaks into the monitor
to enable or disable software breakpoints.

Removing Breakpoints

Removing a breakpoint causes a search for a corresponding breakpoint
table entry; if found, the original memory contents are written to the
specified address, and the entry is removed from the breakpoint table.

When a software breakpoint instruction inserted by bp is executed by
your program, it is removed from memory and marked disabled in the
breakpoint table.

A status message indicates that a software breakpoint was found.

If the emulator executes a software break instruction that was placed by
you (either through your compiler or via memory modification) and not
by the bp command, an "undefined breakpoint" error message is
generated.

If the emulator is executing in the user program when you define or
modify breakpoints, it may break into the monitor for each breakpoint
defined or modified. Whether or not it will do this depends on the
location of the breakpoint in memory (breaks to the monitor are
required if the location is in target RAM), and whether your particular
emulator must break to the monitor for accesses to that memory type
(breaks into the monitor are not necessary if the location is in dual-port

bp 3

emulation memory). If a break to the monitor is required, the emulator
will return to user program execution after breakpoint definition or
modification.

In general, you should only define software breakpoints at memory
locations which contain user program instructions. If you set
breakpoints at other locations, it is unlikely that they will ever be
executed. The only exception to this might be in a case where you
suspect that your program is jumping into a data block and attempting
to execute code; setting a software breakpoint in this area will allow
you to verify the problem (and stop a runaway program).

Remember that any operation which modifies memory or the memory
map will alter the existing breakpoints. For example, if you load a new
program in the same address range where breakpoints reside, the
breakpoints will be destroyed. Changing the memory map will prevent
the emulator from placing new breakpoints or enabling existing
breakpoints.

You cannot define breakpoints until you have enabled them with the bc
-e bp command. If you disable the software breakpoint feature with the
bc -d bp command, the breakpoints currently defined will remain in the
breakpoint table, but will be disabled and will remain in that state until
the breakpoint feature is reenabled and the specified breakpoints are
reenabled (bc -e bp and bp -e <ADDRESS>).

Parameters

<ADDRESS> The <ADDRESS> parameter allows you to
specify the address location where the software
breakpoint is to be inserted. If you specify
options -d, -a, or -h, then the address specifies
the location of the breakpoint to be deleted,
activated, or inactivated. For these options, you
may specify the character * as the address
specifier, indicating that the operation is to be
performed on all of the addresses present in the
software breakpoint table.

4 bp

Note The default for the <ADDRESS> parameter is a hexadecimal
expression, however, other numeric bases may be specified. Refer to
the <ADDRESS> syntax pages and the Emulator User’s Guide for
your particular emulator for information on specifying address
information.

Note The memory access mode for writing breakpoints is set by the mo
(mode) command; if the mode is set to byte access and an odd address
location is specified, an invalid instruction may be inserted for
processors that expect alignment of opcodes on even byte boundaries.

-r Deletes the software breakpoint(s) at the
addresses specified. If the address specified
does not contain a breakpoint instruction, an
error will be returned. When the breakpoint is
deleted, the original memory contents are
restored, then the address is removed from the
breakpoint table.

-e Enables (activates) the breakpoint(s) at the
address(es) specified. This installs the
necessary breakpoint instruction in memory. If
the breakpoint is already enabled, no action is
taken.

-d Disables (deactivates or "hits") the
breakpoint(s) at the address(es) specified. The
breakpoints remain in the breakpoint definition
table and can be reset by using the bp -e
<ADDRESS> command. If the breakpoint is
already disabled, no action is taken.

Defaults If no parameters are specified, the current status of all breakpoints is
displayed. Upon powerup or init initialization, the breakpoint table is
cleared and the breakpoint feature is disabled.

bp 5

Examples The following examples use the 68000 sample program from Appendix
A.

Assume that you need to verify that the processor is reaching the
COMMAND_A, OUTPUT, and LOOP routines at addresses 202c,
2052 and 2064 respectively. You can insert software breakpoints at
these addresses and run the program to each successive breakpoint.
First, you must enable the software breakpoint feature. Type:

M> bc -e bp

Now define the breakpoints at the start of each routine by typing:

M> bp 202c 2052 2064

You can view the current breakpoint settings by typing:

M> bp

You will see:

 ### BREAKPOINT FEATURE IS ENABLED ###
 bp 000202c #enabled
 bp 0002052 #enabled
 bp 0002064 #enabled

Note the headline that says "BREAKPOINT FEATURE IS
ENABLED". If you disable the software breakpoint feature with bc -d
bp, this will read "BREAKPOINT FEATURE IS DISABLED" and
you will not be able to define any new breakpoints (those already
defined are not removed by bc -d bp).

Now, run the program from the start and modify the command input
area at address 3000 by typing:

M> r 2000
U> m 3000=41

Since the command input was "A", the program will reach the software
breakpoint entered at 202c hex. You will see:

!STATUS 615! Software breakpoint: 000202c@sp

You can run the processor to the next breakpoint by typing:

M> r

This is possible because the breakpoint is removed from location 202c
after it is "hit"; the original instruction is returned to 202c.

6 bp

You will see:
!STATUS 615! Software breakpoint: 0002052@sp

Now run the processor to the last breakpoint by typing:

M> r

You will see:
!STATUS 615! Software breakpoint: 0002064@sp

If desired, you can run the processor from this breakpoint by typing:

M> r

To break back to the monitor, type:

U> b

Now look at the status of the breakpoint table. Type:

M> bp

You will see:

 ### BREAKPOINT FEATURE IS ENABLED ###
 bp 000202c #disabled
 bp 0002052 #disabled
 bp 0002064 #disabled

Since all of the breakpoints were "hit" (executed by the processor), they
are now disabled. You can reenable the existing breakpoints by typing:

M> bp -e 202c 2052 2064

You could also type bp -e * to reenable all breakpoints in the table.

View the reenabled breakpoints by typing:

M> bp

You will see:

 ### BREAKPOINT FEATURE IS ENABLED ###
 bp 000202c #enabled
 bp 0002052 #enabled
 bp 0002064 #enabled

If you want to disable a particular breakpoint, for example, the one at
location 202c hex, type:

bp 7

M> bp -d 202c

You can see the changes in the table by typing:

M> bp

You will see:

 ### BREAKPOINT FEATURE IS ENABLED ###
 bp 000202c #disabled
 bp 0002052 #enabled
 bp 0002064 #enabled

Note that the breakpoint at location 202c is now listed as disabled. Run
the processor and enter a "command" into the sample program by
typing:

M> r 2000
U> m 3000=41

!STATUS 615! Software breakpoint: 0002052@sp

Notice that the first breakpoint encountered is the first one enabled in
the breakpoint table, that is, the breakpoint at 2052 hex. The
breakpoint at 202c hex was not found; since it is disabled, no software
break instruction was inserted in the code.

Run to the next breakpoint by typing:

M> r

!STATUS 615! Software breakpoint: 0002064@sp

To see the current status of the breakpoint table, type:

M> bp

You will see:

 ### BREAKPOINT FEATURE IS ENABLED ###
 bp 000202c #disabled
 bp 0002052 #disabled
 bp 0002064 #disabled

Again, all breakpoints are disabled; the one at 202c through your
explicit bp -d 202c command, the others from being "hit" during the
program run.

8 bp

To completely remove the breakpoint at 202c from the breakpoint
table, type:

M> bp -r 202c

Now type:

M> bp

You will see:

 ### BREAKPOINT FEATURE IS ENABLED ###
 bp 0002052 #disabled
 bp 0002064 #disabled

As you can see, the breakpoint at address 202c has been removed from
the table.

You can reenable all breakpoints in the table by typing:

M> bp -e *
M> bp

You will see:

 ### BREAKPOINT FEATURE IS ENABLED ###
 bp 0002052 #enabled
 bp 0002064 #enabled

Conversely, you can disable all breakpoints in the table by typing:

M> bp -d *
M> bp

You will see:

 ### BREAKPOINT FEATURE IS ENABLED ###
 bp 0002052 #disabled
 bp 0002064 #disabled

Finally, if you want to remove all breakpoints in the table, type:

M> bp -r *
M> bp

You will see:

 ### BREAKPOINT FEATURE IS ENABLED ###
M>

bp 9

Note that the breakpoint feature is still enabled, though there are no
breakpoints defined in the table. To disable the breakpoint feature, use
the command bc -d bp.

Related Commands bc (enable/disable breakpoint conditions (including bp))

cf (set instruction type used for software breakpoint (only available on
some processors))

mo (defines memory access and display modes; the bp command uses
the currently defined modes when writing software breakpoints into
memory)

10 bp

1cf

Summary Set emulator specific configuration items

Syntax

Function The cf command allows you to modify various emulator specific
configuration parameters. For example, cf will allow you to specify
whether the clock source is in the user system or in the emulator. Each
emulator has its own unique set of configuration items. For complete
details, refer to the <CONFIG_ITEMS> syntax pages in the Emulator
User’s Guide for your particular emulator.

Parameters Refer to the Emulator User’s Guide for your emulator.

Defaults If no parameters are specified, the current configuration settings are
displayed. Refer to the Emulator User’s Guide regarding the default
settings for your emulator.

Examples Refer to the Emulator User’s Guide for your emulator.

Related Commands help (you can get an on line display of the configuration items for a
particular emulator by typing help cf. To obtain more information
regarding a particular configuration item, type help cf <config_item>).

cf 1

1Notes

2 cf

1cim

Summary Copy target system memory to emulation memory

Syntax

Function The cim command allows you to copy an image of target memory into
emulation memory. You might wish to do this for the following
reasons:

You want to set software breakpoints to track down a problem. If your
target memory is ROM, you cannot set breakpoints without
programming new ROMs; however, you can easily copy the code to
emulation memory and set or modify the breakpoints.

You want to test a code patch, and your target memory is in ROM as
above.

You would like to perform execution coverage measurements with the
cov command to find out how much of your software in the target is
being accessed. (You need to move the code into emulation memory
since the cov command only works with memory mapped as eram
(emulation RAM) or erom (emulation ROM).)

Note that you may need to modify your memory map for this command
to work correctly. Essentially, you need to map the addresses of the
target system range you wish to copy to emulation memory space.
Refer to the examples below.

Parameters

<ADDRESS> Specifies the lower, and possibly upper,
addresses of the range you want to copy.

cim 1

Although the default for <ADDRESS> is an
expression in which the default base is
hexadecimal, certain emulators allow
specification of additional address items such as
function codes. (You could also specify an
equate defined with the equ command.) Refer
to the Emulator User’s Guide for your
particular emulator for further information on
address specification.

.. The two periods ".." are used as a separator
between the lower and upper address
boundaries of the range to be copied. Note that
no additional spaces are inserted; if they are, a
error message is generated. You can use
"<ADDRESS>.." to specify the range from that
address through the next 127 bytes.

Defaults None; at least one address range must be specified; both the lower
boundary and upper boundary can be the same; but in any case, the
upper boundary must be greater than or equal to the lower boundary.

Examples If you have target system ROM from 2000 hex to 2fff hex, and you
would like to insert a breakpoint at 2010 hex, type the following:

R> map

You might see something similar to the following (dependent on your
system memory map):

 # remaining number of terms : 5
 # remaining emulation memory : 1f800h bytes
 map 001000..001fff tram # term 1
 map 002000..002fff trom # term 2
 map other tram

Now you can delete the target ROM mapper term and substitute an
emulation memory ROM term.

Type:

R> map -d 2
R> map 2000..2fff erom

2 cim

To view the modified map, type:

R> map

You will see:

 # remaining number of terms : 5
 # remaining emulation memory : 1e800h bytes
 map 001000..001fff tram # term 1
 map 002000..002fff erom # term 2
 map other tram

Note that the emulator will now direct references to addresses 2000
through 2fff to emulation memory and ignores the presence of target
system memory within that range. However, the cim command
explicitly ignores the map; all cim address references refer to target
system memory ranges. Now copy the code resident in the target ROM
to emulation ROM by typing:

M> cim 2000..2fff

Now you can set the breakpoint by typing:

M> bc -e bp
M> bp 2010

Note The memory addresses copied from the target system must have
equivalent addresses already mapped to emulation memory before the
cim command is executed; otherwise, an error message will be
generated.

Related Commands map (allows you to define the location and type of various memory
address ranges)

cov (allows you to measure the percentage of memory locations
accessed by your program within a particular range)

cim 3

1Notes

4 cim

1cl

Summary Control command line editing

Syntax

Function You can enable command line editing to include the ability to
manipulate command text lines.

Command line editing has two typing modes. The normal command
entry is input mode. The input mode functions like normal (canonical)
command entry. The control mode allows command modification.

Refer to the appendix on "Command Entry" for more information about
command line editing.

Parameters

-d This option disables command line editing.

-e This option enables command line editing.

-l This option allows you to set the column length for
the command line. This value can be from 40 to
132 columns.

Defaults Command line editing is disabled.

cl 1

Examples To set the number of columns in the command line to 80, enter:

cl -l 80

With command line editing enabled, to add text to the previously
executed command, enter:

<ESC> k

A

<additional text>

To display on-line help information for the cl command, enter:

help cl

The result on screen resembles:

cl - set or display command line editing mode

 cl - display command line editing mode
 cl -e - enable command line editing mode
 cl -d - disable command line editing
 cl -l <columns> - number of columns for command line

--- VALID <columns> SELECTIONS ---
 range 40 to 132

--- Editing Mode Commands ---
 <ESC>- enter command editing mode
 i - insert before current character a - insert after current character
 A - append to end of line x - delete current character
 dd - delete command line D - delete to end of line
 $ - move cursor to end of line 0 - move cursor to start of line
 ^ - move cursor to start of line h - move left one character
 l - move right one character k - fetch previous command
 j - fetch next command r - replace current character

 /<string> - find previous command in history matching <string>
 n - fetch previous command matching <string>
 N - fetch next command matching <string>

Related Commands none

2 cl

1cmb

Summary Enable/disable CMB interaction

Syntax

Function The cmb command allows you to enable or disable interaction on the
CMB (Coordinated Measurement Bus). The CMB allows you to make
complex measurements involving cross-triggering of multiple HP
64700 analyzers and other HP 64000 system instruments, and
synchronous emulator runs and breaks.

The cmb command only affects the ability for multiple emulators to
run or break in a synchronized fashion; the analyzer trigger capability is
unaffected by the cmb command.

Interaction Enabled

When interaction is enabled via the cmb -e command, the emulator will
run code beginning at the address specified via the rx command when
the CMB /EXECUTE (/ means active low) pulse is received.

The CMB READY line is driven false while the emulator is running in
the monitor. The line goes to the true state whenever execution
switches to the user program.

cmb 1

Note Notice that if the rx command is given, CMB interaction is enabled just
as if a cmb -e command was issued. Refer to the syntax pages for the
rx command for further information.

Interaction Disabled

When interaction is disabled via the cmb -d command, the emulator
ignores the actions of the /EXECUTE and READY lines. In addition,
the emulator does not drive the READY line.

Parameters

-e The -e option enables interaction between the
emulator and the Coordinated Measurement
Bus.

-d The -d option disables interaction between the
emulator and the Coordinated Measurement
Bus.

Defaults If no options are supplied, the current state of CMB enable/disable is
displayed.

Examples To view the current state of CMB interaction, type:

M> cmb

You will see:
cmb -d #cmb currently disabled

To enable CMB interaction, type:

M> cmb -e

To disable interaction, type:

M> cmb -d

2 cmb

Related Commands rx (allows you to specify the starting address for user program
execution when the CMB /EXECUTE line is asserted)

tx (controls whether or not the emulation analyzer is started when the
/EXECUTE line is asserted)

x (pulses the /EXECUTE line, initiating a synchronous execution
among emulators connected to the CMB and enabled)

Also, refer to the Coordinated Measurement Bus User’s Guide for
further information on CMB operation.

cmb 3

1Notes

4 cmb

1cmbt

Summary Specify drivers and receivers of the CMB trigger signal

Syntax

Function The cmbt command allows you to specify which of the internal
trig1/trig2 trigger signals will drive and/or receive the rear panel CMB
(Coordinated Measurement Bus) trigger. You can specify the signals
individually, as an ORed condition for drive, or as an ANDed condition
for receive; or, you can specify that the signals are not to be driven
and/or received.

You use this command to trigger other HP 64700 analyzers and
possibly HP 64000 system instruments. For example, you may wish to
start a trace on another HP 64700 analyzer when the analyzer in this
emulator finds its trigger; or, you may wish to do the converse and
trigger the analyzer in this emulator when another emulation analyzer
finds its trigger.

Parameters

-d The -d parameter causes the CMB to drive the
trigger signals, trig1 and trig2, to the emulator’s
internal analyzer.

cmbt 1

-r The -r parameter causes the CMB to receive the
trigger signals, trig1 and trig2, from the
analyzer.

none If you specify none with the -d option, then the
CMB trigger signal will not drive either of the
analyzer triggers. If you specify none with the
-r option, the rear panel CMB will not receive
trig1 or trig2 from the internal analyzer.

trig1 If trig1 is specified, then the internal "trig1"
signal will drive or receive the CMB trigger
signal, depending on whether you specified the
-d or -r option.

trig2 If you specify trig2 , then the internal "trig2"
signal will drive or receive the CMB trigger
signal, depending on whether you specified the
-d or -r option.

Note You can also specify that both the trig1 and trig2 signals are to be
driven and/or received. To do this, place a comma between the two
signals on the command line.

Defaults If no options are specified, the current setting of cmbt is displayed.
Upon powerup, cmbt is set to cmbt -d none -r none.

Examples To view the current cmbt setting, type:

M> cmbt

You will see:
cmbt -d none -r none

2 cmbt

If you want to trigger the analyzer in another HP 64700 emulator
hooked to the CMB, you might do the following:

M> tcf -e
M> tg addr=2000
M> tgout trig1
M> cmbt -d none -r trig1

By specifying this command sequence, the other HP 64700 analyzer
will receive a trigger signal from its CMB when the emulation
processor in this HP 64700 reaches the trigger pattern of address=2000.

To set the other HP 64700 analyzer to break to monitor upon receiving
the CMB trigger, use the following command sequence:

M> cmbt -r trig1
M> bc -e cmbt

You might want to have an external instrument arm the analyzer in one
emulator which then arms a second analyzer attached through the
CMB. The second emulator then breaks to monitor when it finds its
trigger condition. Use the following command sequence in the first
emulator:

M> bnct -d trig1 -r none
M> tarm =trig1
M> tsq -i 3
M> tif 1 arm
M> tif 2 addr=2000
M> tgout trig2
M> cmbt -d trig2 -r none

Now, on the second emulator, type:

M> cmbt -d trig1 -r none
M> tarm =trig1
M> tsq -i 3
M> tif 1 arm
M> tif 2 addr=2018
M> tgout trig2
M> bc -e trig2

cmbt 3

Note You should not set up an analyzer in an emulator to both drive and
receive the same trigger signal. For example, if you issued the
commands tg arm, tarm =trig1 , tgout trig1, and cmbt -d trig1 -r
trig1 , then the analyzer trig1 signal will become latched in a feedback
loop and will remain latched until the loop is broken. To break the
loop, you must first disable the signal’s source, then momentarily
disable either the drive or receive function. In this case, the commands
tgout none and cmbt -d none will break the loop.

Related Commands bc (break conditions; can be used to specify that the emulator will
break into the emulation monitor upon receipt of one of the trig1 /trig2
signals)

bnct (BNC trigger; used to specify which internal signals will be
driven or received by the rear panel BNC connector)

cmb (Used to enable or disable interaction on the CMB. This does not
affect whether measurement instruments can exchange triggers over the
CMB; it only controls run/break interaction between multiple
emulators)

tarm (analyzer trace arm; used to specify arming (begin to search for
trigger) conditions for the analyzer -- trig1/trig2 can be used to arm the
analyzer)

tgout (specifies which of the trig1/trig2 signals are to be driven when
the analyzer trigger is found)

4 cmbt

1cov

Summary Measure percentage of memory locations accessed

Syntax

Function The cov command allows you to measure the percentage of memory
locations accessed within a certain range. Each memory location has a
flag indicating whether or not it has been accessed; the flag is set
automatically when the address of that location appears on the
emulation processor bus.

The percentage accessed is calculated by dividing the number of
different locations accessed (no location is counted more than once) by
the number of different locations within the range and multiplying by
100.

Coverage measurements can only be performed on address ranges
mapped to emulation memory. If you wish to perform coverage
measurements on target system memory ranges, you can remap
memory and copy the target system memory to emulation memory
using the cim command.

Parameters

-r The -r parameter resets the results from the
previous coverage measurement and sets all of
the coverage data bits to the NOT-ACCESSED
state.

cov 1

The -r option cannot be used in conjunction
with other parameters.

-a The -a option produces a list of locations within
the specified memory range that were accessed.

-n The -n option produces a list of locations within
the specified memory range that were not
accessed; the percentage measurement given is
in terms of locations not accessed..

<ADDRESS> Specifies the lower, and possibly upper,
memory address boundaries for the coverage
measurement. The default is a hexadecimal
number; other bases may be specified. Certain
emulators allow additional processor specific
addressing information for <ADDRESS>; refer
to the Emulator User’s Guide for your
particular emulator for further information.

Multiple address ranges for coverage testing
can be specified; a space character must be
included between each range specification.

.. The separator between the lower and upper
address boundaries is two periods." Notice that
no additional spaces are inserted. You can use
"<ADDRESS>.." to specify a range from the
address through the next 127 bytes.

Note Overlapping ranges in the cov command will result in an incorrect
coverage percentage.

Defaults At least one address range must be specified. All of the coverage flags
are reset at powerup or by init .

2 cov

Examples If you would like to measure the memory coverage of the 68000
sample program shown in appendix A, type the following after loading
the program:

M> cov -r

Note You should make a habit of resetting the coverage information before
making measurements. This is because any activity which accesses
memory, even loading memory with your programs using modify
memory, will cause the coverage bits to be set for those memory
locations, leading to inaccurate measurement results.

M> r 2000
U> m 3000=41

This memory modification command causes the program to run some
of the output routines; it will access more memory locations. Now
display the coverage:

U> cov 2000..2071

You will see:

 percentage of memory accessed: % 68.4

To reset the coverage data (which clears the coverage memory in
preparation for another measurement), type:

U> cov -r

To display the coverage on the overhead routines of the program (INIT,
CLEAR and READ_INPUT), type:

U> cov 2000..2071

You will see:

 percentage of memory accessed: % 8.7

You should generally reset the coverage information between
measurements for the most accurate results. (The only exception might
be if you just need to specify additional address ranges for a
measurement.)

cov 3

Type:

U> cov -r
U> m 3000=43
U> cov -n 1000..1038 2000..2071

You will see:

 # coverage list - list of address ranges NOT accessed
 0001000..0001029
 0002000..000200b
 000202c..0002047

 percentage of memory NOT accessed: % 47.9

Note that the percentage is expressed in terms of memory locations
which were not accessed.

You can also display a list of the locations actually accessed within the
range. Type:

U> cov -a 1000..1038 2000..2071

You will see:

 # coverage list - list of address ranges accessed
 000102a..0001038
 000200c..000202b
 0002048..0002071

 percentage of memory accessed: % 52.0

Related Commands cim (allows you to copy target system memory images into emulation
memory for coverage measurements)

4 cov

1cp

Summary Copy memory blocks

Syntax

Function The cp command allows you to copy a block of data from one region of
memory to another. For example, you might want copy a data table in
your program to a buffer space so you can try some of your algorithms
for processing data in that buffer.

When cp is executed, the data from the specified range is copied to the
destination address, with the lower boundary data going to the
destination address, lower boundary + 1 to destination + 1, and so on
until the upper boundary of the source range is copied. If the source or
destination addresses reside within the target system, the emulator will
break to the background monitor and will return to foreground after the
copy is completed.

If memory mapped as guarded is encountered in the source or
destination range during the copy, the command is aborted; however,
all locations modified prior to accessing guarded memory are left in the
modified state.

Parameters <DEST_ADDR>

Specifies the lower boundary of the destination
range. The processor specific conventions for
<ADDRESS> can be used for complete address
specification including function codes or
segmentation. Refer to the Emulator User’s
Guide for your particular emulator for details.

cp 1

<ADDRESS> Specifies the lower, and possibly upper,
memory address boundaries of the source range
to be copied. The default is a hexadecimal
number; other bases may be specified. Certain
emulators allow additional processor specific
addressing information for <ADDRESS>; refer
to the Emulator User’s Guide for your
particular emulator for further information.

.. The separator between the lower and upper
address boundaries is two periods (..). Notice
that no additional spaces are inserted. You can
use "<ADDRESS>.." to specify a range from
the address through the next 127 bytes.

Defaults Exactly one address range must be specified.

Examples You can use the cp command to move the data area of the 68000
sample program (from Appendix A) from a base address of 1000 hex to
a base address of 5000 hex. First, let’s look at the original data area.
Type:

M> m -db 1000..1038

You will see:

 001000..00100f 00 00 30 00 00 00 40 00 54 48 49 53 20 49 53 20
 001010..00101f 4d 45 53 53 41 47 45 20 41 54 48 49 53 20 49 53
 001020..00102f 20 4d 45 53 53 41 47 45 20 42 49 4e 56 41 4c 49
 001030..001038 44 20 43 4f 4d 4d 41 4e 44

Now you can copy the block to a base address of 5000 hex. Type:

M> cp 5000=1000..1038

To view the new block, type:

M> m 5000..5038

2 cp

You will see:

 005000..00500f 00 00 30 00 00 00 40 00 54 48 49 53 20 49 53 20
 005010..00501f 4d 45 53 53 41 47 45 20 41 54 48 49 53 20 49 53
 005020..00502f 20 4d 45 53 53 41 47 45 20 42 49 4e 56 41 4c 49
 005030..005038 44 20 43 4f 4d 4d 41 4e 44

The new block is identical to the old.

Related Commands cim (copies a memory image from the target system to emulation
memory)

m (allows you to display or modify memory locations or ranges)

map (used to define the type and location of memory used by the
emulator)

ser (used to search memory ranges for a specific set of data values)

cp 3

1Notes

4 cp

1dt

Summary Set or display system date/time

Syntax

Function The dt command allows you to set or display the current date and time
stored by the HP 64700 series emulators.

Note The emulator system date & time clock is reset when power is cycled.

Parameters

<yymmdd> This variable sets the date. yy are the last two
digits of the current year; mm specify the
current month, and dd specify the day of the
month.

Note If yy is greater than 50, the year is assumed to be in the 20th century (in
other words, 19yy). If yy is less than 50, the year is assumed to be in
the 21st century (in other words, 20yy).

dt 1

<hh:mm:ss> This variable sets the time in 24 hour format.
hh specify the hour, mm specify the minutes,
and ss specify the seconds. Notice that the only
difference between the date and time variables
is the presence of colons; therefore, if you
forget the colons while trying to reset the time,
you will actually change the date setting.

Defaults If no parameters are specified, the current date and time settings are
displayed.

Examples To display the current date and time settings at emulator powerup, type:

M> dt

You will see:
January 01, 1988 0:00:21

To set the date to August 18, 1987, type:

M> dt 870818

To set the date to August 18, 1987 and the time to 11:05:00, type:

M> dt 870818 11:05:00 (order of the two
arguments is not significant)

Related Commands None

2 dt

1dump

Summary Dump memory to a host file

Syntax

Function The dump command allows you to dump the contents of emulation
and/or target system memory to a host file. The contents can be
dumped in HP, Tektronix hex, Intel hex, and Motorola S-record
formats by specifying various options on the command line.

If you are uploading the file in HP file format using the HP 64000
transfer software, record checking is performed automatically by the
transfer protocol.

Parameters

-h The -h option indicates that the memory
contents will be dumped in HP absolute file
format.

-b Specifying the -b option indicates that the
records will be sent in binary; this is only valid
with -h (HP file format).

dump 1

-x If you specify -x, the records will be sent in
hexadecimal; this is only valid with the -h
option (HP file format).

-i Specify the -i option if you need to have the file
transferred in Intel hex record format. Note
that the various options for HP file format
transfer (such as -x, -b, and -e) are invalid with
this format.

-m Specify the -m option if you need to have the
file transferred in Motorola S-record format.

-t Specify the -t option if you need to have the file
transferred in Tektronix hex format.

-c Specifying -c along with an ASCII hexadecimal
character indicates that the character specified
should be sent to the host at the end of the file
upload.

<HEX_CHAR> <HEX_CHAR> is an ASCII character to be
sent to the host at the end of the upload process.
The character is used to close the host file
which is receiving the uploaded data.

<ADDRESS> Specifies the lower, then upper, address
boundaries of the memory range to be dumped.
The default is a hexadecimal number; other
bases and expressions may be supplied. Refer
to the <EXPR> syntax pages for details. In
addition, many microprocessors allow special
address information such as segmentation or
function codes to be specified; refer to the
<ADDRESS> syntax pages in the Emulator
User’s Guide for details.

Defaults None; a file format and address range must be specified.

2 dump

Note Note that the HP 64000 format ".X" file created with a "dump -hx"
command has records that contain 136 fewer bytes of data than the file
format standard allows. Because of this, HP 64000 format ".X" files
which are created with the dump command may take longer to be
processed by consumers of the ".X" file (depending on how the
consumer processes sequential records).

Related Commands load (used to load emulation memory from a host computer file)

dump 3

1Notes

4 dump

1echo

Summary Echo character strings or expressions

Syntax

Function The echo command allows you to display ASCII strings or the results
of evaluated expressions on the standard output device. You must
enclose strings in single open quote marks (‘) (ASCII 60 hex) or double
quotation marks (") (ASCII 22 hex). A string not enclosed in
delimiters will be evaluated as an expression and the result will be
echoed. In addition, you may supply a backslash with a two digit hex
constant; the corresponding ASCII character(s) will be echoed.

Echoing strings or ASCII characters is particularly useful within
macros, command files, and repeats where you wish to prompt the user
to perform some action during a "wait for any keystroke" command
(see syntax for w). The expression capability is useful as a quick
calculator.

Note that all options may combined within the same echo command as
long as they are separated by spaces.

Parameters

<STRING> Any set of ASCII characters enclosed between
single open quote marks (‘), or double quotes
("). Since the command buffer is limited to 256

echo 1

characters, the maximum number of characters
in a string is 248.

Note Many keyboards (and printers) actually represent the single open quote
mark (ASCII 60 hexadecimal) as an accent grave mark. The correct
character in any case is the one encoded as ASCII 60 hexadecimal. The
correct double quotation mark is ASCII 22 hexadecimal.

Note A character which is used as a delimiter cannot be used within the
string. For example, the string "Type "C"" is incorrect and will return
an error. The string ‘Type "C"‘ is correct.

<EXPR> A valid expression (refer to the expression
syntax pages for descriptions of valid
expressions). The expression will be evaluated
and the result will be echoed. Note that no
delimiters are used to define the start and end of
the expression.

<nn> "nn" is the hex code for any valid ASCII
character. More than one character can be
echoed with a single command; each "nn" must
be preceded by a backslash. A total of 62
ASCII characters can be represented within a
single echo command.

This capability is particularly useful for sending
non-displaying control characters to a terminal;
refer to the examples below.

Defaults Echo nothing.

2 echo

Examples To echo the string "Set S1 to OFF" to the standard output, type the
following:

M> echo "Set S1 to OFF"

OR

M> echo ‘Set S1 to OFF‘

You will see:
Set S1 to OFF

Alternatively, you could use the ASCII character evaluation capability
to do the same thing by typing the following:

M> echo \53 \65 \74 \20 \53 \31 \20 \74 \6f \20
\4f \46 \46

You will see:
SET S1 to OFF

However, a more useful application of the backslash option is to send a
terminal control characters. Type:

M> echo \1b "H" \1b "J" \1b "&dBSet S1 to OFF"

The above command sends "<ESC>H<ESC>J<ESC>&dB Set S1 to
OFF" to the terminal. On an HP 2392A this homes the cursor, clears
the screen, sets the video mode to inverse video, and writes the
message "Set S1 to OFF". Therefore, the user would see the message
"Set S1 to OFF" in inverse video at the upper left hand corner of an
otherwise blank screen.

echo 3

You might combine this with a macro command as part of a procedure.
For example, type:

M> mac PROMPT={echo "Set S1 to OFF";w}
M> PROMPT

You will see:
Set S1 to OFF
Waiting for any keystroke...

To calculate the value of the expression (1f + 1e), type:

M> echo 1f+1e

You will see:
03dh

See the syntax pages for expr for more details on construction of
various expressions.

Note When using echo to calculate results of expressions, be aware that all
operations are carried out on 32-bit two’s complement signed integers.
Results greater than 32 bits are truncated.

Related Commands expr (details on what constitutes valid expressions)

mac (grouping a set of commands under a label for later execution)

rep (grouping a set of commands for immediate repetition)

w (wait command, allows user specified delays)

4 echo

1equ

Summary Equate names to expressions

Syntax

Function The equ command allows you to equate arithmetic values with names
that you can easily remember; these names can then be used in other
commands to reference the value. This is useful in defining trigger
patterns for the analyzer and in other applications.

Multiple equates may be defined on the same command line, separated
by a space.

Note Each equate is translated to its actual value at the time of command
entry. For example, if you specify an equate count=21h; and an
expression start=2000h, then the command tg addr=start count will
be entered into the system as tg addr=start 33. At this point,
redefining the value of addr or count would not change the address
expression or the occurrence counter for the trigger.

equ 1

Parameters

<NAME> You use <NAME> to assign a character string
to the expression. <NAME> must be an
alphanumeric designator no greater than 31
characters in length, beginning with an alpha
character or underscore and including only
alphanumeric characters or underscores
thereafter. If <NAME> is specified without an
expression, then the existing definition for that
name is displayed. If <NAME> is specified as
* , and the -d option is not given, then the
definitions for all equates is displayed.
However, if -d is supplied, then the equate table
is cleared.

Note Certain HP 64700-Series Emulators may predefine equates, such as
those which equate names to certain processor status bit patterns. You
should be careful not to delete these equates, as they are useful in
specifying analyzer trace qualifiers.

<EXPR> An arithmetic expression to be assigned to
<NAME>. The default is a hexadecimal
number. Refer to the <EXPR> syntax pages in
this manual for further details.

Note The combination of a single equ command with all names and
expressions cannot exceed 255 characters. The number of equates and
symbols that may be defined is limited only by available system
memory; thus, it is dependent on the number of macros defined and on
any emulator control code loaded by a high level software interface for
the emulator (such as the HP 64700 PC Interface).

2 equ

-d The -d option allows you to delete an existing
equate. If you specify -d and <NAME>, then
the named equate is deleted. If <NAME> is
given as * , then all equates are deleted.

Defaults If no parameters are specified, then the current table of all equates is
displayed. If <NAME> is specified, then only the equate for that
particular name is displayed.

Examples If you are working with the 68000 sample program in Appendix A, you
can predefine some equates to make it easier to set up analyzer and run
specifications.

For example, to equate the string "start" to the address value 2000 hex,
type:

M> equ start=2000

You can also make labels for arrays by using the power of the
expression specifications. For example, to define equates for the
message labels in the 68000 emulator tutorial program (included in the
appendix), type:

M> equ msgtbl=1008h msgsize=17T
M> equ msga=msgtbl+0*msgsize
msgb=msgtbl+1*msgsize invmsg=msgtbl+2*msgsize

To see the newly defined list of equates, type:

M> equ

equ 3

You will see:

 ### Equates ###
 equ cyc6800=0xxxxx0xxy
 equ dma=0xx011xxxy
 equ grd=0xxxxxxxy
 equ intack=0xx111xxxy
 equ invmsg=102ah
 equ msga=1008h
 equ msgb=1019h
 equ msgsize=11h
 equ msgtbl=1008h
 equ read=0xxxxxx1xy
 equ start=2000h
 equ supdata=0xx101xxxy
 equ supprog=0xx110xxxy
 equ userdata=0xx001xxxy
 equ userprog=0xx010xxxy
 equ write=0xxxxxx0xy
 equ wrrom=0x0xxxx0xy

(Note that the HP 64700 Emulator for the 68000 predefines some
equates for use in tracing various status conditions.)

These can now be used to create analyzer trigger expressions. For
example, you may want to have the analyzer trigger on the program
start plus an access to any one of the messages. To do this, type:

M> tinit

(Initializes the analyzer.)

M> tcf -c

(Sets trace configuration to complex configuration.)

M> tsq -t 3

(Sets trigger term as third sequencer term.)

M> tpat p1 addr=start

(Defines p1 to be the equate "start.")

M> tpat p2 addr=msga

(Defines p2 to be the equate "msga.")

M> tpat p3 addr=msgb

(Defines p3 to be the equate "msgb.")

M> tpat p4 addr=invmsg

(Defines p4 to be the equate "invmsg.")

M> tif 1 p1 2

(Jump from term 1 to term 2 upon finding "start.")

4 equ

M> tif 2 p2|p3|p4 3

(Jump to trigger term if "msga","msgb","invmsg" accessed.)

M> trng addr=1008..1038

(Defines a range specifier of the message area.)

M> tsto r

(Analyzer stores only accesses to the message area.)

M> tp s

(Positions trigger at beginning of trace list.)

M> t

(Begins trace.)

M> r start

(Starts program run at equate "start.")

The next three commands successively enter "command A", "command
B" and an "unrecognized command" into the program’s input area.

U> m 3000=41
U> m 3000=42
U> m 3000=43
U> tl -1..52

equ 5

You will see:

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 -1 002000 2479 supr prog --- +
 0 001008 54 supr data rd byte 14.15 S +
 1 004000 54 supr data wr byte 0.400 uS +
 2 002068 0001 supr prog 0.400 uS +
 3 00206A 66F8 supr prog 0.400 uS +
 4 00206C 4EF9 supr prog 0.400 uS +
 5 002064 12D8 supr prog 0.600 uS +
 6 001009 48 supr data rd byte 0.800 uS .
 7 00100A 49 supr data rd byte 3.000 uS .
 8 00100B 53 supr data rd byte 3.000 uS .
 9 00100C 20 supr data rd byte 3.000 uS .
 10 00100D 49 supr data rd byte 3.000 uS .
 11 00100E 53 supr data rd byte 3.000 uS .
 12 00100F 20 supr data rd byte 3.000 uS .
 13 001010 4D supr data rd byte 3.000 uS .
 14 001011 45 supr data rd byte 3.000 uS .
 15 001012 53 supr data rd byte 3.000 uS .
 16 001013 53 supr data rd byte 3.000 uS .
 17 001014 41 supr data rd byte 3.000 uS .
 18 001015 47 supr data rd byte 3.000 uS .
 19 001016 45 supr data rd byte 3.000 uS .
 20 001017 20 supr data rd byte 3.000 uS .
 21 001018 41 supr data rd byte 3.000 uS .
 22 001019 54 supr data rd byte 2.701 S .
 23 00101A 48 supr data rd byte 3.000 uS .
 24 00101B 49 supr data rd byte 3.000 uS .
 25 00101C 53 supr data rd byte 3.000 uS .
 26 00101D 20 supr data rd byte 3.000 uS .
 27 00101E 49 supr data rd byte 3.000 uS .
 28 00101F 53 supr data rd byte 3.000 uS .
 29 001020 20 supr data rd byte 3.000 uS .
 30 001021 4D supr data rd byte 3.000 uS .
 31 001022 45 supr data rd byte 3.000 uS .
 32 001023 53 supr data rd byte 3.000 uS .
 33 001024 53 supr data rd byte 3.000 uS .
 34 001025 41 supr data rd byte 3.000 uS .
 35 001026 47 supr data rd byte 3.000 uS .
 36 001027 45 supr data rd byte 3.000 uS .
 37 001028 20 supr data rd byte 3.000 uS .
 38 001029 42 supr data rd byte 3.000 uS .
 39 00102A 49 supr data rd byte 3.375 S .
 40 00102B 4E supr data rd byte 3.000 uS .
 41 00102C 56 supr data rd byte 3.000 uS .
 42 00102D 41 supr data rd byte 3.000 uS .
 43 00102E 4C supr data rd byte 3.000 uS .
 44 00102F 49 supr data rd byte 3.000 uS .
 45 001030 44 supr data rd byte 3.000 uS .
 46 001031 20 supr data rd byte 3.000 uS .
 47 001032 43 supr data rd byte 3.000 uS .
 48 001033 4F supr data rd byte 3.000 uS .
 49 001034 4D supr data rd byte 3.000 uS .
 50 001035 4D supr data rd byte 3.000 uS .
 51 001036 41 supr data rd byte 3.000 uS .
 52 001037 4E supr data rd byte 3.000 uS .

6 equ

As you can see from the listing above, the program accessed all three of
the program message areas.

You can remove equates from the table either individually or all at
once. Type:

M> equ -d start
M> equ

You will see:

 ### Equates ###
 equ cyc6800=0xxxxx0xxy
 equ dma=0xx011xxxy
 equ grd=0xxxxxxxy
 equ intack=0xx111xxxy
 equ invmsg=102ah
 equ msga=1008h
 equ msgb=1019h
 equ msgsize=11h
 equ msgtbl=1008h
 equ read=0xxxxxx1xy
 equ supdata=0xx101xxxy
 equ supprog=0xx110xxxy
 equ userdata=0xx001xxxy
 equ userprog=0xx010xxxy
 equ write=0xxxxxx0xy
 equ wrrom=0x0xxxx0xy

Notice that the equate for the name start has been removed. Now type:

M> equ -d *
M> equ

You will see:

 ### Equates ###

Now all of the equates have been deleted.

equ 7

You can also use equates for more subtle applications. For example,
suppose you want to take 5 traces of the sample 68000 program, with
the trigger at address 2010. You would like to have each trace
numbered.

Enter the following commands:

M> tg addr=2010
M> equ c=0
M> mac numtrclist={t;w -m;equ c=c+1;echo
"trace # " c;tl}
M> r 2000
M> rep 5 tlist

You will see five trace lists, each sequentially numbered, displayed on
screen. You could use this feature in combination with a host logging
program or redirection of your terminal display to printer to
continuously monitor operation of a system. (To further aid your
troubleshooting, you could also display the date and time of each trace
sample using the dt command.)

Related Commands tg, tpat, tif, telif, and others. (equ provides an easy way to name
expressions to use in setting up trigger or branch conditions)

r, m, bp (equates may be used to specify run addresses, memory
addresses, or breakpoint addresses)

8 equ

1es

Summary Display emulator status

Syntax

Function The es command displays the current status of emulation activity. The
following types of information may be displayed:

processor status -- running/in monitor/reset

slow bus cycle

slow clock

emulation halted due to halt input from target system or output
from processor

emulation in "wait" state due to input signal (ready, sync,
DTACK) from target system

emulation in monitor due to bus grant to the target system

The exact messages and information displayed varies slightly
depending on the emulator in use.

The emulator will not break to the monitor to obtain information.
Therefore, any information that can only be obtained while in the
monitor will not be displayed if the emulator is not in the monitor.

Parameters None.

Defaults Does not apply.

es 1

Examples These examples were constructed using the 68000 emulator, running
the sample program from Appendix A.

M> es

 M68000--Running in monitor

M> r 2000
U> es

 M68000--Running user program

U> rst
R> es

 M68000--Emulation reset

R> cf clk=ext
c> es

 M68000--Slow clock

Related Commands ta (allows you to display activity on emulation and external analyzer
lines)

ts (allows you to display the current status of the emulation analyzer)

2 es

1help,?

Summary Display help information for commands

Syntax

Function The help (?) command lets you display syntax, description and
examples for any HP 64700 emulator Terminal Interface command.
You may display a brief description for anything from a single
command to command groups or the entire command set. Detailed
information is available for single commands.

You may enter a question mark ? instead of typing help; it performs the
same function.

Parameters

-s This option switches in the abbreviated help
mode; only the expanded name of each
command is displayed next to the command.

<COMMAND_
NAME>

If the name of an individual command is
specified, only the detailed help information is
displayed for that command.

<COMMAND_
GROUP>

Specifying the name of a command group lists
the commands available within that group.

help 1

Note If you specify "*" for <COMMAND_NAME> or
<COMMAND_GROUP>, information for all commands will be
displayed.

Defaults The help command without any parameters provides a list of command
groups.

Examples To display general help information listing the command groups and
information regarding the use of the help command, type:

M> help

You will see:

 help - display help information

 help <group> - print help for desired group
 help -s <group> - print short help for desired group
 help <command> - print help for desired command
 help - print this help screen

 --- VALID <group> NAMES ---
 gram - system grammar
 proc - processor specific grammar

 sys - system commands
 emul - emulation commands
 trc - analyzer trace commands
 * - all command groups

To display the short version of the help listing, which lists only the
command groups and the commands available in the group, type:

M> ? -s

(Note that we typed the question mark symbol instead of help. You
could use either with the same results.)

2 help

You will see:

 sys : ?, bnct, cmbt, dt, echo, equ, help, init, mac, po, pv, rep,
 stty, ver, w, x, xp
 emul : b, bc, bp, cf, cim, cmb, cov, cp, dump, es, io, load, m,
 map, mo, r, reg, rst, rx, s, ser
 trc : t, ta, tarm, tcf, tck, tcq, telif, tf, tg, tgout, th, tif,
 tinit, tl, tlb, tp, tpat, tpq, trng, ts, tsck, tsq, tsto, tx

To display the same listing of commands for only one of the command
groups, type:

M> help -s emul

You will see:

 emul : b, bc, bp, cf, cim, cmb, cov, cp, dump, es, io, load, m,
 map, mo, r, reg, rst, rx, s, ser

You can display more information about each of the available memory
commands by leaving out the -s flag. Type:

M> help emul

You will see:

 emul - emulation commands

 b......break to monitor cp.....copy memory mo.....modes
 bc.....break condition dump...dump memory r......run user code
 bp.....breakpoints es.....emulation status reg....registers
 cf.....configuration io.....input/output rst....reset
 cim....copy target image load...load emul memory rx.....run at CMB execute
 cmb....CMB interaction m......memory s......step
 cov....coverage map....memory mapper ser....search memory

help 3

Finally, to display specific information for the m command, type:

M> help m

You will see:

 m - display or modify processor memory space

 m <addr> - display memory at address
 m -d<dtype> <addr> - display memory at address with display option
 m <addr>..<addr> - display memory in specified address range
 m -dm <addr>..<addr> - display memory mnemonics in specified range
 m <addr>.. - display 128 byte block starting at address A
 m <addr>=<value> - modify memory at address to <value>
 m -d<dtype> <addr>=<value> - modify memory with display option
 m <addr>=<value>,<value> - modify memory to data sequence
 m <addr>..<addr>=<value>,<value> - fill range with repeating sequence

 --- VALID <dtype> MODE OPTIONS ---
 w - display size is 2 byte(s)
 b - display size is 1 byte(s)
 l - display size is 4 byte(s)
 m - display processor mnemonics

Related Commands None.

4 help

1init

Summary Initialize the emulator

Syntax

init - limited initialization; resets emulation and analysis
 products
 but not environment (macros, equates, date & time, etc..)
init -c - complete initialization; does not run system memory
 integrity tests
init -p - powerup initialization; run from reset with complete
 system verification tests
init -r - powerup initialization; run from reset with complete
 system verification tests
 ignore all optional products
 do not use flash ROM

Function The init command allows you to re-initialize the emulator. Powerup,
complete, and limited initializations are available through various
options. In most cases you should only use this command if the
emulator is not responsive to other commands.

If you wish to change other configuration parameters without
initializing the emulator, there are commands available for that
purpose. Refer to the list under "Related Commands" at the end of this
chapter.

Parameters

-p The -p option causes a powerup initialization
sequence. This initializes the operating system,
data communications, emulation and analyzer
boards, and runs extensive performance
verification.

-c The -c option causes a complete initialization
sequence. Everything is initialized as defined
by the powerup sequence with the exception of
the performance verification.

init 1

-r Specifies a complete initialization with system
verification tests (as with -p), but optional
products and the flash ROM are ignored.

Note Note that the init -c, init -p , or init -r commands cause a loss of system
memory. If these commands are used in macros, commands that follow
them will not be executed.

Defaults If no options are specified, a limited initialization sequence is
performed. The operating system and data communications are not
affected but all of the emulation and analysis boards are reset. For
example, a limited initialization would not change macro definitions,
system date and time, or the data communications parameters, but the
emulation memory map and breakpoint list would be reset to their
default states.

Examples To perform a powerup initialization sequence, type:

m> init -p

You will see:

 Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under copyright laws.

 HP64700 Series Emulation System
 Version: B.01.00 04Jan94

 HP64742 Motorola 68000 emulator
 HP64740 Emulation Analyzer

To perform a complete initialization sequence, which resets the entire
emulator without executing performance verification, type:

m> init -c

2 init

You will see:

 Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under copyright laws.

 HP64700 Series Emulation System
 Version: B.01.00 04Jan94

 HP64742 Motorola 68000 emulator
 HP64740 Emulation Analyzer

To perform a limited initialization sequence, resetting only the
emulator and analyzer, type:

m> init

You will see:
Limited initialization completed

Related Commands cf (change emulation configuration)

dt (set system date and time)

map (define the emulation memory map)

stty (set data communications parameters)

tinit (reset the analyzer to powerup defaults)

init 3

1Notes

4 init

1lan

Summary set configuration parameters

Syntax

lan - display the current lan configuration
lan -l - startup lan if not already started
lan -b - enable BNC
lan -a - enable AUI
lan -i <ip_addr> - set Internet Protocol address
lan -g <ip_addr> - set Internet Protocol Gateway address
lan -p <port> - set TCP service port number

Parameters

-l Selects the LAN interface without having to
change the HP 64700 configuration switch
settings. Note that the serial interface is always
active.

-b Selects the LAN interface’s BNC connector
without having to change the HP 64700
configuration switch settings.

-a Selects the LAN interface’s AUI connector
without having to change the HP 64700
configuration switch settings.

-i <ip_addr> Internet Address in dot notation (for example,
192.6.94.2).

-g <ip_addr> Gateway Address in dot notation (for example,
192.6.94.2).

-p <port> Any number that is likely to be unused (for
example, 6470).

lan 1

1Notes

2 lan

1lanpv

Summary Performance verification on LAN interface

Syntax

lanpv -b - testing performed through BNC connector
lanpv -a - testing performed through AUI connector
lanpv -v - print the error code value

Function To run performance verification, the connector under test must be
removed from the network and capped with a terminator.

Parameters

-b Tests the LAN interface through its BNC
connector.

-a Tests the LAN interface through its 15-pin AUI
connector.

-v Prints the error code value.

lanpv 1

1Notes

2 lanpv

1load

Summary Load user programs into emulation or target memory

Syntax

Function The load command lets you load program code into emulation or target
memory. Various file formats are supported via options to the load
command. The destination of the program code is determined by the
information contained in the program file. Additional options allow
you to load only target memory or emulation memory as desired.

If a load error occurs, the current load procedure is aborted. However,
records which were successfully loaded will remain in memory.

For processors which use function codes, the function code information
in the program file must conform to the specifications of the emulation

load 1

memory mapper. For information on specifying emulator function
codes, refer to the Emulator User’s Guide for your particular emulator.
You should also refer to the manuals supplied with your assembler or
high-level language to determine how those tools specify function
codes for your processor.

Parameters

Note At least one dash (-) must be included before any parameters are
specified. It is optional to include or omit dashes for succeeding
parameters.

-i Specifies that the program code will be in Intel
hex file format.

-m Specifies that the program code will be in
Motorola S-record file format.

-t Specifies that the program code will be in
Tektronix hex file format.

-h Specifies that the program code will be in HP
file format. In this case, the file is expected to
be transferred using the HP 64000 Hosted
Development System transfer protocol.

-e Load only those portions of program code
which would reside in memory mapped to
emulation memory space. (Refer to the map
command.)

-u Load only those portions of program code
which would reside in memory mapped to
target memory space. (Refer to the map
command.)

-q The program code will be transferred in quiet
mode. If -q is not specified, the emulator

2 load

controller will write a "#" for each record
successfully received and processed.

S This allows you to download a symbol file
from the host computer into the emulator. This
option is valid for HP 64700 emulators that
support the use of symbols.

<LOAD_OPTS> This represents all options to the load
command that are specific to a particular HP
64700-Series Emulator. Refer to your
Emulator Terminal Interface User’s Guide to
see if your emulator supports any other load
command options.

<FILE> This represents the absolute file to load into the
emulator.

-b When using the HP file format, the program is
expected to be in binary.

-x When using the HP file format, the program is
expected to be in hex.

-p When using Intel, Motorola or Tektronix file
formats, this option sets up a protocol checking
scheme using ASCII ACK /NAK characters. If
using this option, the host should send one
record at a time and wait for the emulator to
return an ASCII ACK character between
records. If the emulator returns an ASCII NAK
instead, there has been an error in data
transmission. When the emulator receives the
EOF character, it will return only the normal
emulator prompt since data transmission is
complete.

If, during the transfer, the host receives a NAK
for a record, it should retransmit the record
until an ACK is received or until a timeout
value is reached, whichever occurs first.

load 3

-f You specify the -f option if you are loading a
foreground monitor into an HP 64700 emulator
which supports a foreground monitor. Not all
HP 64700 emulators which allow foreground
monitors require this option for loading the
monitor. Refer to the Emulator User’s Guide
for your particular emulator for further
information on the use of this option.

-g Certain emulators allow you to insert user code
into the background monitor. This code directs
the background monitor to perform certain
functions unique to your target system. The -g
option lets you load this special code. Refer to
the Emulator User’s Guide for your particular
emulator for further information on the use of
this option.

Note When you load an absolute file, the incoming data is examined for
valid records (in the specified format). If the data being sent does not
contain any valid records, the emulator will wait forever looking for
valid records. The process must be terminated be entering a <CTRL>c.

Defaults At least one file format option must be specified.

4 load

Examples To connect to the emulator’s ftp interface, enter the following
command (use any name and password):

$ ftp 15.35.226.210
Connected to 15.35.226.210.
220 User connected to HP64700
Name (15.35.226.210:guest):
Password (15.35.226.210:guest):
230-
 NOTICE

 This utility program is unsupported. It is provided at no cost.
 Hewlett-Packard makes no warranty on its quality or fitness for
 a particular purpose.

 FTP on the HP64700 serves as a means for downloading absolute files to the
 emulation environment. The file transfer can be be performed as follows:

 1. The data mode type must be set to IMAGE (binary)

 2. Store the file using options to indicate the file format. The following
 example uses PUT as the host command for sending the file. This may be
 different for your ftp implementation.

 put <file_name> <options>
 <file_name> - host file to be loaded.
 <options> - The options are preceeded by a minus (-). The available
 options vary for individual emulators. All support HP OLS, Intel hex,
 Motorola S-records, and Extended Tek Hex. Emulator specific options can
 be viewed by issuing a Terminal Mode help for the load command.

 put hpfile.X -h #to download an HP OLS file
 put intelfile -i #to download an Intel Hex file
 put motfile -m #to download a Motorola S-record file
 put tekfile -t #to download an Extended Tek Hex file

230

To set up ftp for binary file transfers:
ftp> binary
200 Type set to I

To download the HP 64000 format absolute file into the emulator:
ftp> put cmd_rdr.X -h
200 Port ok
150
226-
R>
226 Transfer completed
3332 bytes sent in 0.20 seconds (16.27 Kbytes/sec)

To exit out of the ftp interface:
ftp> quit
221 Goodbye
$

load 5

Related Commands dump (allows you to transfer emulation memory contents to a host)

6 load

1m

Summary Display/modify memory locations

Syntax

Function The m command allows you to display and modify emulation and
target system memory. Options allow you to specify the display mode,
specific address or addresses for display or modification, and the data
values to be inserted.

If the selected address range for display or modification includes
memory within the user’s target system, the emulation processor will
be broken to background upon execution of the command. After the
command is complete, the processor will be returned to foreground
execution if no errors occurred.

m 1

Note The method of specifying address information varies among different
types of microprocessors. Refer to the address syntax pages in the
Emulator User’s Guide for your particular emulator for specific address
information. Remember that specifying an address a particular way in
one command will affect the way you need to specify it for all
commands. For example, if you use function codes in specifying a
memory map, you will also need to use function codes within the
address information for the m command to display or modify those
ranges of memory.

Parameters

-d The -d option allows you to set the display
mode for memory accesses.

<DISPLAY_
MODE>

A one-character mnemonic specifying the
display mode to use in creating memory
displays. The allowable display modes are
specific to the microprocessor in use; some
typical modes are b (byte), w (word) and m
(mnemonic). Refer to the mode syntax pages
in the Emulator User’s Guide for your emulator
to determine the correct display modes. If no
display mode is specified, the global display
mode set via the mo command is used as a
default.

<ADDRESS> Specifies the address to be displayed or
modified. As noted in the syntax, an address
followed by two periods and another address
specifies a range of addresses to display or
modify. Address notation is specific to each
microprocessor. For example, the 68000
emulator allows the use of function codes in
specifying address information, whereas the
Z80 emulator does not. However, for all
processors the address default representation is
a hexadecimal number. Refer to the

2 m

<ADDRESS> syntax pages in the Emulator
User’s Guide for your emulator for examples of
correct address specifications.

Note If you specify only the first address of a range followed by two periods
and omit the second address of the range, 128 bytes of the range
starting at the first address specified are selected for display or
modification.

<EXPR> Data value to which a particular location is to
be modified. If a range of locations is to be
modified to a sequence of data values, the
values must be separated by commas. Refer to
the examples for details.

Note The way the data item is handled depends on the <DISPLAY_MODE>
in effect. For example, if the display mode is byte, and the data items
1a, 3f, and 66 are entered as 1a3f66, the location specified will be
modified to 66 hex. If the display mode is word, the location will be
modified to 3f66 hex. And if the display mode is long word, the
location will be modified to 1a3f66. Note that data may be specified in
decimal, octal, or binary in addition to the hexadecimal default. (Refer
to the <EXPR> syntax pages for information on specifying numeric
bases.) Conversely, if you specify the value 33 hex for modification in
byte mode, the value 33 is entered; in word mode, the value 0033 is
entered; in long word mode, the value 000033 is entered. In other
words, if the value supplied is shorter than the mode in effect, it is
padded with leading zeros.

Defaults At least one address must be specified. If no display mode is specified
the display mode set by the mo command is used. Data items specified
in memory modification are repeated as a group to fill the address
range specified (see the examples below for clarification). The
memory <DISPLAY_MODE> defaults to the last value specified, or

m 3

the default format for the emulator in use upon powerup initialization
(varies dependent on the microprocessor being emulated).

Examples

Note These examples were constructed using the 68000 emulator, but
without the use of function codes. For information on using function
codes or other microprocessor specific address specifiers, refer to the
<ADDRESS> syntax pages in the Emulator User’s Guide for your
particular emulator.

To display the memory range 1000 hex through 101f hex in byte
format, type:

M> m -db 1000..101f

You will see:

 001000..00100f 00 00 30 00 00 00 40 00 54 48 49 53 20 49 53 20
 001010..00101f 4d 45 53 53 41 47 45 20 41 54 48 49 53 20 49 53

To display the same address range in word format, type:

M> m -dw 1000..101f

You will see:

 001000..00100f 0000 3000 0000 4000 5448 4953 2049 5320
 001010..00101f 4d45 5353 4147 4520 4154 4849 5320 4953

To display the range in long word format (32 bits), type:

M> m -dl 1000..101f

You will see:

 001000..00100f 00003000 00004000 54484953 20495320
 001010..00101f 4d455353 41474520 41544849 53204953

For areas of memory that contain code, you may wish to display
memory contents as assembler mnemonics. Type:

M> m -dm 2000..201f

4 m

You will see:

 002000 2479000010 MOVEA.L 0001000,A2
 002006 2679000010 MOVEA.L 0001004,A3
 00200c 14bc0000 MOVE.B #000,[A2]
 002010 1012 MOVE.B [A2],D0
 002012 0c000000 CMPI.B #000,D0
 002016 67f8 BEQ.B 0002010
 002018 0c000041 CMPI.B #041,D0
 00201c 6700000e BEQ.W 000202C

Note The instruction disassembler assumes that the first address location
disassembled contains the first byte of an opcode; therefore, if you
specify an address location that does not contain an opcode, the
memory display will be incorrect.

Note For the above examples, you should remember that the
<DISPLAY_MODE> parameters vary depending on what modes are
supported by your particular emulator. Refer to the mode syntax pages
supplied with the Emulator User’s Guide for your particular emulator
for details on supported display modes for that emulator.

Remember that display modes default to the last one specified.
Therefore, if you would like to examine data areas after using the
mnemonic display mode, you should change the mode. Also, you can
display more than a couple of rows of memory at a time. Type:

M> m -db 1000..10ff

m 5

You will see:

 001000..00100f 00 00 30 00 00 00 40 00 54 48 49 53 20 49 53 20
 001010..00101f 4d 45 53 53 41 47 45 20 41 54 48 49 53 20 49 53
 001020..00102f 20 4d 45 53 53 41 47 45 20 42 49 4e 56 41 4c 49
 001030..00103f 44 20 43 4f 4d 4d 41 4e 44 00 ff ef ff ff ff ff
 001040..00104f ff df bf ff 7f df ef ff ff dc 7f de ff df ff df
 001050..00105f ff cf ff df ff df ff df ff df ff df ff d6 ff df
 001060..00106f ff ff f7 ff 3f ff 7e f7 fe ff ff ff ff f7 f7 ff
 001070..00107f ff ff f7 ff ff ff ff ff ff 7f df ef ff ef f7 ef
 001080..00108f ff df e7 ff f7 df f7 ff ff df f6 df f7 bf f7 ff
 001090..00109f f7 df f7 ff f7 ff f7 ff 77 df f7 df ff df f7 bf
 0010a0..0010af ff ff f7 ff ff ff ff f7 ef ff ff ff ff fd fe f7
 0010b0..0010bf ff df ff ff ff e7 bf ff ff d9 ff df ff ff ff ff
 0010c0..0010cf f7 df ff ff f6 ff fe df f7 df f7 ff f7 dd f7 ff
 0010d0..0010df f7 df bf ff f7 ff f6 ff bf ff ff ff f7 f7 f6 ff
 0010e0..0010ef ff fe ff ff ff f7 ff ff ff df ff ff cb ff fd fe
 0010f0..0010ff ff f7 ff ff fd ff ff ff ff ff ff ff ff f7 fd df

Let’s examine the memory modification capabilities. First, view the
contents of location 5000 hex by typing:

M> m 5000

You will see:
005000..005000 41

Now modify the contents of 5000 hex to the byte value 21 hex by
typing:

M> m 5000=21

Note Notice that the results of the memory modification are not
automatically displayed. To view the results of a modification, you
enter another m command.

To view the new value of location 5000 hex, type:

M> m 5000

You will see:
005000..005000 21

Or you can clear the contents of a memory range. Type:

M> m 5000..501f=00

6 m

To display the results, type:

M> m 5000..501f

You will see:

 005000..00500f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 005010..00501f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

You can also modify the contents of a range to some other hex value.
Type:

M> m 5000..501f=21

To view the results, type:

M> m 5000..501f

You will see:

 005000..00500f 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21
 005010..00501f 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21

A sequence of data items can be provided for modification. Type:

M> m 5000..501f=41,42,43

To view the results, type:

M> m 5000..501f

You will see:

 005000..00500f 41 42 43 41 42 43 41 42 43 41 42 43 41 42 43 41
 005010..00501f 42 43 41 42 43 41 42 43 41 42 43 41 42 43 41 42

Note When a sequence of data items is provided for memory modification,
the sequence is repeated until the entire range has been modified.

Microprocessors such as the 80186 which put most significant bytes in
upper memory locations are handled correctly by the emulator. These
examples were constructed on an 80186 emulator.

First, let’s modify a block of memory to a range of incrementing values
by typing:

m 7

R> m
700..7ff=0,1,2,3,4,5,6,7,8,9,0a,0b,0c,0d,0e,0f

Now, display that range in byte mode by typing:

R> m -db 700..

You will see:
 00700..0070f 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
 00710..0071f 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
 00720..0072f 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
 00730..0073f 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
 00740..0074f 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
 00750..0075f 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
 00760..0076f 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
 00770..0077f 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

Notice that the bytes were put in the proper positions. Now, display the
memory range in word mode:

R> m -dw 700..

You will see:
 00700..0070f 0100 0302 0504 0706 0908 0b0a 0d0c 0f0e
 00710..0071f 0100 0302 0504 0706 0908 0b0a 0d0c 0f0e
 00720..0072f 0100 0302 0504 0706 0908 0b0a 0d0c 0f0e
 00730..0073f 0100 0302 0504 0706 0908 0b0a 0d0c 0f0e
 00740..0074f 0100 0302 0504 0706 0908 0b0a 0d0c 0f0e
 00750..0075f 0100 0302 0504 0706 0908 0b0a 0d0c 0f0e
 00760..0076f 0100 0302 0504 0706 0908 0b0a 0d0c 0f0e
 00770..0077f 0100 0302 0504 0706 0908 0b0a 0d0c 0f0e

Notice that the bytes are swapped to represent significance. Now
display in double word mode:

R> m -dd 700..

You will see:
 00700..0070f 03020100 07060504 0b0a0908 0f0e0d0c
 00710..0071f 03020100 07060504 0b0a0908 0f0e0d0c
 00720..0072f 03020100 07060504 0b0a0908 0f0e0d0c
 00730..0073f 03020100 07060504 0b0a0908 0f0e0d0c
 00740..0074f 03020100 07060504 0b0a0908 0f0e0d0c
 00750..0075f 03020100 07060504 0b0a0908 0f0e0d0c
 00760..0076f 03020100 07060504 0b0a0908 0f0e0d0c
 00770..0077f 03020100 07060504 0b0a0908 0f0e0d0c

Again, the bytes were reordered to represent their significance.

8 m

If your emulator supports symbols, you can display those symbols
using the memory display mnemonic command. For example, using
an 8051 emulator and an example program, you may enter:

R> m -dm CMD_RDR:INIT..FILL_DEST+5

You will see:

 03000@x CMD_RDR:INIT MOV SP,#fe
 03003@x MD_RDR:READ_CMD MOVDPTR,#0000
 03006@x - MOV A,#00
 03008@x - MOVX @DPTR,A
 03009@x CMD_RDR:SCAN MOVXA,@DPTR
 0300a@x - JZ CMD_RDR:SCAN
 0300c@x - CJNE A,#41,CMD_RDR:CMD_B
 0300f@x - MOV R2,#12
 03011@x - MOV DPTR,#3100
 03014@x - SJMP CMD_RDR:WRITE_MSG
 03016@x CMD_RDR:CMD_B CJNE A,#42,CMD_RDR:CMD_I
 03019@x - MOV R2,#12
 0301b@x - MOV DPTR,#3112
 0301e@x - SJMP CMD_RDR:WRITE_MSG
 03020@x CMD_RDR:CMD_I MOV R2,#10
 03021@x - JBC90,3055
 03024@x - ADD A,#ea
 03026@x - XRL A,#ff
 03028@x - ADD A,#21
 0302a@x - MOV R3,A
 0302b@x - INC DPS
 0302d@x - MOV DPTR,#0001
 03030@x CMD_RDR:AGAIN INC DPS
 03032@x - MOVXA,@DPTR
 03033@x - INC DPTR
 03034@x - INC DPS
 03036@x - MOVX @DPTR,A
 03037@x - INC DPTR
 03038@x - DJNZ R2,CMD_RDR:AGAIN
 0303a@x - MOV A,#00
 0303c@x D_RDR:FILL_DEST MOVX @DPTR,A
 0303d@x - INC DPTR
 0303e@x - DJNZR3,CMD_RDR:FILL_DEST
 03040@x - INC DPS
 03042@x - SJMP CMD_RDR:READ_CMD

Note The command processor retains the name of the last module referenced.
If a symbol does not contain a module name, the list of global symbols
is searched. If the symbol is not found, the list of user symbols is
searched. If the symbol is still not found, the system searches the last
module referenced. If it doesn’t find it there, the rest of the modules
are searched.

m 9

Related Commands map (specify mapping of memory to emulation or user memory and to
RAM or ROM)

mo (specify global access and display modes)

io (display modify I/O locations (for processors which support
dedicated I/O))

10 m

1mac

Summary Define command macros

Syntax

Function The mac command allows you to save a group of commands under a
name of your choice. This allows you to instantly recall that command
group by typing in the assigned name; the emulator will then
preprocess the macro to expand the commands stored therein to a
normal command line; the command line is then executed as usual.

Nested macro calls are permitted and limited only by constraints of
system memory.

The commands within the macro definition are not checked for correct
syntax until the macro is executed; therefore, it is advisable to test the
command string before defining the macro.

The number of macros that can be created is limited to 100, but may be
less depending on the complexity of the macros defined.

mac 1

The length of the macro name combined with the macro definition is
limited only by the maximum HP 64700 command length of 255
characters; thus, the macro name and definition can be a maximum of
251 characters.

A command within a macro definition cannot contain the pound sign
character (#) unless the command is enclosed in a quoted string.
(Otherwise, text following the # is interpreted as a comment.) This
means there can be no matching brace at the end of the command. Use
the echo command to place comments in a macro definition.

Command line substitution is possible when invoking a macro. During
the macro definition, you may include pseudo-parameters which allow
you to substitute parameters, such as file names, when invoking the
macro.

Parameters

-d The -d parameter, in conjunction with the
macro <NAME>, deletes the macro defined by
<NAME>. If <NAME> is given as the
character "*" then all macros are deleted.

<NAME> This represents the name you assign to the
macro definition. Names can be any
combination of alphanumeric characters;
however, you cannot define a macro that has a
name identical to that of another HP 64700
Terminal Interface command.

If you specify a name which is the same as a
currently defined macro, that macro will be
overwritten by the new macro you define.

Note Certain HP 64700-Series emulators may predefine macros to aid you in
setting up configurations for certain emulation tasks, such as in-circuit
emulation.

2 mac

<COMMAND> This represents one or more emulator
commands, including names which are used to
define other macros. <NAME> and
<COMMAND> must be separated by an equal
sign (=), and the command string must be
enclosed with braces "{ }." Each
<COMMAND> must be separated from other
commands by a semicolon (;).

When using command substitution, you can
include pseudo-parameters in the form of
"&token&" in the macro definition. Do not
include any white space between the two "&"
symbols. When you execute the macro, include
the string to be substituted for &token& as a
parameter on the command line. The macro
will execute using the command expanded with
the string you substituted. See the Examples
section for more information.

-q This option sets the macro expansion echo to
quiet mode. In this mode, any macro that you
run will be executed without displaying the
expanded command string.

-v This option sets the macro expansion echo to
verbose mode. In this mode, any macro that
you run will first display the expanded
command string as a comment, and then will
execute the macro.

Defaults If no parameters are supplied, the current set of macro definitions is
displayed. If only <NAME> is supplied without a command string, the
macro defined by <NAME> is displayed.

mac 3

Examples Let’s define a macro that resets the emulator, then defines the memory
map, resets the processor and breaks into the monitor, then sets up the
stack pointer. Type:

M> mac setup={init;map 0..7fff eram;rst
-m;reg usp=7000}

To execute the command, type:

M> setup

You will see:

 # init ; map 0..7fff eram ; rst -m ; reg usp=7000
 All products re-initialized

To illustrate the changes caused by each command, let’s look at the
memory map and registers. Type:

M> map

You will see:

 # remaining number of terms : 6
 # remaining emulation memory : 17800h bytes
 map 000000..007fff eram # term 1
 map other tram

Type:

M> reg

You will see:

 reg pc=00000000 st=0000 d0=00000000 d1=00000000 d2=00000000 d3=00000000
 reg d4=00000000 d5=00000000 d6=00000000 d7=00000000 a0=00000000 a1=00000000
 reg a2=00000000 a3=00000000 a4=00000000 a5=00000000 a6=00000000 a7=00007000
 reg usp=00007000 ssp=00000006

You could define another macro called "echonwait" as follows:

M> mac echonwait={echo "Set S1 to OFF";w}

To see what macros are currently defined, type:

M> mac

4 mac

You will see:

 mac setup={init ; map 0..7fff eram ; rst -m ; reg usp=7000 }
 mac echonwait={echo "Set S1 to OFF" ; w}

To delete the macro named setup that we just defined, type:

M> mac -d setup

Verify that the macro named setup was in fact deleted by typing:

M> mac

You will see:

 mac echonwait={echo "Set S1 to OFF" ; w}

To delete the remaining macro, you can either specify it by name, or
simply type:

M> mac -d *

Now type:

M> mac

Since no macros remain, you will see:

M>

To define a macro with a pseudo-parameter that allows you to
substitute a file name, enter:

M> mac getfile={load -hbs"transfer -t
&file&"}

To use the macro with the pseudo-parameter, and substitute the
pseudo-parameter (&file&) with an example file name, enter:

M> getfile YOURFILE.o

If the macro expansion mode is set to verbose (-v option is used), you
will see the macro and associated parameters expand to include your
file name. For example, you will see:

load -hbs "transfer -t YOURFILE.o"

mac 5

Pseudo-parameters are replaced on a position-dependent scheme, where
the first pseudo-parameter encountered in the macro string is replaced
with the first parameter passed into the macro. The second
pseudo-parameter is replaced with the second parameter passed into the
macro, and so on.

As an example of multiple parameter substitution, let’s define a macro
that fills an arbitrary 100-byte block range with a user-defined value.
To do this, enter:

M> mac fill={equ start=&address&;m -db
start..start+100t=&value&}

To invoke the macro, enter:

M> fill 50 88

In this example, 50 will be substituted for &address&, and 88 will be
substituted for &value&. So, addresses 50 through 150 decimal will
contain the value 88.

Note You can define multiple pseudo-parameters in a macro using the same
name for both (or all) of them. Because pseudo-parameters are
position-dependent, the first pseudo-parameter will always be
substituted with the first parameter you pass into the macro, the second
pseudo-parameter with the second parameter you pass into the macro,
and so on.

Related Commands rep (repeat; allows you to repeat any command, including macros)

6 mac

1map

Summary Map emulation and target system memory

Syntax

Function The map command allows you to map address ranges to one of five
different classes of memory. For example, you may want to specify
that addresses 1000 through 2fff hex are in emulation RAM, and
addresses 3000 through 3fff hex (where your program code will reside)
are in emulation ROM. Later, when your target system hardware is
prototyped, you will be able to easily modify these specifications to
indicate that the address ranges actually reside in target system RAM or
ROM.

The emulation system assigns a term number to each address range
specified by you in the map command. Term numbers are assigned in
ascending order of address range. Therefore, if you map the addresses
0 through 100 (TERM_NUMBER_1) and 1000 through 1fff
(TERM_NUMBER_2), then specify another range of 300 through 3ff,
TERM_NUMBER_2 will be renumbered as TERM_NUMBER_3 and
the range 300 through 3ff will become TERM_NUMBER_2.

map 1

Remember to use the assigned term number when specifying mapper
terms to be deleted by the map -d <TERM_NUMBER> command.

Note The memory mapper re-assigns blocks of emulation memory after the
insertion or deletion of mapper terms. For example, if you modified
the contents of 300 through 3ff above, deleted TERM_NUMBER_1,
and displayed locations 300 through 3ff, you would notice the contents
of those locations are not the same as they were before deleting the
mapper term.

Mapper address block sizes vary with each individual emulator.
However, the block sizes for target memory and emulation memory on
a particular emulator are identical. If an address range smaller than a
multiple of the block size is entered as a map specification, the range is
rounded upwards to the nearest block size multiple.

When any map term is added or deleted the emulation processor will be
reset and held in the reset state until a break or run command is issued.

Note The processor remains reset in recognition of the fact that returning to
execution directly after mapper modification is most likely invalid.

Note Be sure to disable all breakpoints (bc -d bp) before changing the map.
Breakpoints are not cleared when the memory map is changed.
(Breakpoints are also not cleared when a file is loaded, or when
memory is manually modified.) After the new map and the program
are set up, you can re-enable the breakpoints by re-enabling the
breakpoints break condition (bc -e bp) and entering the bp -e *
command. When the list of breakpoints is displayed (bp), the memory
is checked to verify whether the breakpoint is still in memory.

Each type of emulator has its own default memory map at powerup. If
all mapper terms are deleted with the command map -d *, the "other"

2 map

range is unaffected. The number of map terms available depends on
the emulator in use; for example, the HP 64700 emulator for the 68000
has 7 map terms available while the emulator for the Z80 has 16 map
terms available. Refer to the Emulator User’s Guide for details on the
maximum number of map terms.

Parameters

<ADDRESS> The address values specify the address range to
be assigned to a particular memory type.
Whenever the emulation processor accesses the
range specified, it will be directed to the
memory type specified in the map.
Specification of address information defaults to
a hexadecimal value; some HP 64700
emulators, such as that for the 68000, allow
specification of additional address specifiers
such as function codes. Refer to the
<ADDRESS> syntax pages in the Emulator
User’s Guide for your emulator for details of
address specification.

other The address range other specifies all address
ranges not otherwise specified by mapper
terms. Certain HP 64700 emulators restrict
type definition of the "other" range to trom ,
tram , or grd.

eram Specifying eram indicates that the given
address range is to reside in emulation address
space and act as RAM (read/write).

erom Specifying erom indicates that the given
address range resides in emulation address
space; it is to act as ROM (read only). The bc
command allows you to specify that emulation
processor writes to this space or to space
designated as target ROM (trom) will cause an
emulation system break.

map 3

Current HP 64700 Emulators protect emulation
memory from being modified when a write to
emulation ROM occurs. (This feature may not
be supported in future HP 64700-Series
emulators.)

tram Specifying tram indicates that the given
address range lies within target system RAM
space. When the emulation processor accesses
an address within this range, the target system
data buffers will be enabled by a mapper signal
to complete the transaction.

trom Specifying trom indicates that the given
address range lies within target system ROM
space. As with the erom parameter above, the
bc command may be used to set up the
emulation system to break upon a write to these
address ranges. In any case, if target ROM
memory is actually implemented as RAM, and
the necessary write strobes are connected to this
memory, the emulator will allow the processor
to overwrite the memory locations.

grd The grd parameter indicates the given address
range is to be "guarded"; therefore, the
emulation system software should not know
that it exists. An emulation system break will
always be generated upon accesses to guarded
memory.

Defaults If the command map is entered with no parameters, the current
memory map is displayed.

Memory maps for each emulator type may differ. Refer to the
Emulator User’s Guide for your emulator for details.

Examples These examples were created with a HP 64700 68000 emulator,
without the use of function codes. The 68000 uses a default block size
of 512 bytes for both user and target system memory.

4 map

To view the power up memory map, type:

M> map

You will see:

 # remaining number of terms : 7
 # remaining emulation memory : 1f800h bytes
 map other tram

The first line lists the number of terms available for mapping (in this
case seven), the second line lists the number of bytes available in
emulation memory, and the last line lists the only map term. In this
case, all emulation memory is mapped as belonging to target system
RAM. You will notice in the examples below that the other term
doesn’t have a term number. (The other term does not occupy a term
number.)

Now let’s map some address ranges to various types of memory. Type:

M> map 0..1ff eram
R> map 0..3ff erom (notice that the emulator
is now reset)
R> map 1000..15ff tram
R> map 2000..201f trom

You can view the resulting changes by typing:

R> map

You will see:

 # remaining number of terms : 3
 # remaining emulation memory : 1f400h bytes
 map 000000..0001ff eram # term 1
 map 000200..0003ff erom # term 2
 map 001000..0015ff tram # term 3
 map 002000..0021ff trom # term 4
 map other tram

Note that term 4 has a greater address range than what you originally
specified (2000..21ff instead of 2000..201f). This is because the 68000
emulator defaults to map terms with a multiple of 512 byte blocks. The
system therefore rounded your map entry up to the nearest 512 byte
boundary while creating the map term.

map 5

You can map all other memory to "guarded"; the emulator will generate
a break if a guarded memory access occurs, notifying you that
something is probably awry with your program. Type:

R> map other grd

View the changes in the map:

R> map

You will see:

 # remaining number of terms : 2
 # remaining emulation memory : 1f400h bytes
 map 000000..0001ff eram # term 1
 map 000200..0003ff erom # term 2
 map 001000..0015ff tram # term 3
 map 002000..0021ff trom # term 4
 map 003000..0031ff trom # term 5
 map other grd

Maybe you decided term 4 really wasn’t what you wanted. Type:

R> map -d 4

View the changes:

R> map

6 map

You will see:

 # remaining number of terms : 3
 # remaining emulation memory : 1f400h bytes
 map 000000..0001ff eram # term 1
 map 000200..0003ff erom # term 2
 map 001000..0015ff tram # term 3
 map 003000..0031ff trom # term 4
 map other grd

Instead, what you really needed was an emulation ROM term from 400
through 5ff hex. Type:

R> map 400..5ff erom

You will see:

 # remaining number of terms : 2
 # remaining emulation memory : 1f400h bytes
 map 000000..0001ff eram # term 1
 map 000200..0003ff erom # term 2
 map 000400..0005ff erom # term 3
 map 001000..0015ff tram # term 4
 map 003000..0031ff trom # term 5
 map other grd

Notice that term 3 and term 4 were renumbered as term 4 and term 5;
the new entry was inserted as term 3. Mapper terms are arranged in
ascending address order.

To delete all of the map terms (reset the map), type:

R> map -d *

If you now type map, you’ll see the same display from the first
example.

Related Commands bc (break conditions; determines whether emulator breaks to monitor
upon write to space mapped as ROM)

m (memory display/modify)

bp (set/delete software breakpoints)

map 7

1Notes

8 map

1mo

Summary Set global memory access and display modes

Syntax

Function The mo command allows you to modify the global access and display
modes. Access mode is defined as the type of processor data cycles
used by the emulation monitor to access a portion of user memory.
Display mode is defined as the method used to display or modify data
resident in memory.

The options for the access and display mode vary for each
microprocessor type, as each processor supports different data types for
memory transactions. Refer to the Emulator User’s Guide for your
particular emulator for details on the supported modes.

Parameters

-a The -a parameter in combination with a single
character specifying mode type sets the global
access mode.

<ACCESS_
MODE>

A single character used to specify the global
access mode. Note that there is no space
between the -a parameter and the mode
specifier. Typical mode types are b (byte) and
w (word), although the types supported are

mo 1

dependent on the microprocessor in use. For
further information, see the syntax pages for
<MODE> in the Emulator User’s Guide for
your particular emulator.

-d The -d parameter in combination with a single
character sets the global display mode default.

<DISPLAY_
MODE>

A single character used to specify the global
display mode default. Note that there is no
space between the -d parameter and the mode
specifier. Typical mode types are b (byte), w
(word), l (long word), and m (mnemonic);
however, the types available are dependent on
the microprocessor in use. For further
information, see the syntax pages for <MODE>
in the Emulator User’s Guide for your
particular emulator.

Defaults If no parameters are specified, the current settings of the display and
access modes are displayed.

Examples The examples below were created on a Motorola 68000 emulator.

Note For examples of the effects of changing the display mode, refer to the
syntax pages for the m (memory) command in this manual.

To view the current settings of the access and display modes, type:

R> mo

You will see:
mo -ab -db

Now, to set the access mode to words, type:

R> mo -aw

2 mo

No response is returned when a mode setting is changed. To verify that
the mode status did in fact change, type:

R> mo

You will see:
mo -aw -db

To change the access mode to words and the display mode to long
words, type:

R> mo -aw -dl

To verify that the mode has changed, type:

R> mo

You will see:
mo -aw -dl

To change the access mode to words, and the display mode to
mnemonics, type:

R> mo -aw -dm

To reset the access and display modes to the powerup defaults, type:

R> mo -ab -db

Related Commands m (memory display/modify)

io (input/output display or modify)

mo 3

1Notes

4 mo

1po

Summary Assign ports, redefine prompt, dump command files

Syntax

Function The po command allows you to change the system prompt characters.

Parameters

-p The -p option allows you to change the
emulator’s command prompt to one specified
by <STRING>.

<STRING> <STRING> is any group of ASCII characters
enclosed by single open quotes (‘) or double (")
quote marks. This parameter, when used with
-p, allows you to specify a new emulator
command prompt.

Examples Upon powerup, the emulator prompt defaults to "". (The character
before the string, for example, R, M , U, etc., is used to indicate the
current emulator status and is NOT affected by redefining the prompt
string.)

po 1

For example, you may want to redefine the prompt string to your name
so that others who use the emulator will know you are currently using
the system.

The standard prompt is:

U>

To redefine it with a separator character plus your name and a prompt,
type:

U> po -p "\YOURID>"

You will see:
U\YOURID>

To redefine the prompt back to the original, type:

U\YOURID> po -p ">"

You will see:
U>

If several people use the system, you may want to define macros which
reset the prompt so each user knows who is currently using the
emulator. For example:

M> mac yourid={po -p "\YOURID>"}
M> mac herid={po -p "\HERID>"}
M> mac hisid={po -p "\HISID>"}

2 po

1pv

Summary Run emulator/analyzer performance verification

Syntax

Function The pv command runs performance verification on the emulator and
analyzer. The performance verification exercises all the emulator
hardware and software to high confidence level.

You should only run performance verification when the emulation
probe is not plugged into a target system. You should also make sure
to remove any conductive foam or plastic pin protectors from the
emulator probe, as these will cause failures during performance
verification.

Note When you use the pv command, the emulator is initialized as if power
were cycled. Therefore, all equates, macros, memory map,
configuration settings, system clock, software breakpoints, trace
specifications, and other configuration items you have altered will be
cleared. Do not use the pv command unless you can restore these items
from a host, or have documented them so you can restore their states
manually.

If pv reports failures, first check your hardware installation as
documented in the Hardware Installation and Configuration manual.
If the failures persist, call your local HP Sales and Service office for
assistance. A list of offices is provided in the Support Services guide.

Note that providing multiple commands such as pv 1;r is invalid; the
second command will not execute due to the system reset.

pv 1

Typing in <CTRL>-C to abort the pv command may result in incorrect
failure messages.

Parameters

<REPEAT_
COUNT>

<REPEAT_COUNT> allows you to specify
the number of times to repeat the performance
verification. This is a required parameter.

Defaults If no parameters are given, a warning message about initialization of
the emulator along with correct pv command syntax is displayed. To
actually execute the pv command, you must provide a
<REPEAT_COUNT> value.

Examples Executing pv with no parameters provides a warning display, along
with help for the correct syntax. Type:

M> pv

 ***** WARNING *****

 Running this pv (Performance Verification) command destroys
 the current system configuration by performing a cold system reboot
 after the command has completed. All system and emulation setups
 including the date, macros, equates, memory map, and configuration
 items will be returned to their default powerup states.

 The emulation probe should be disconnected from the target
 system before running this performance verification.

 To run pv type: "pv <repeat_count>"

To loop through the performance verification twice, type:

M> pv 2

2 pv

The example shown below is for an HP 68000 emulator.

 Testing: HP64742 Motorola 68000 emulator
 PASSED
 Number of tests: 1 Number of failures: 0
 Testing: HP64740 Emulation Analyzer
 PASSED
 Number of tests: 1 Number of failures: 0

 Testing: HP64742 Motorola 68000 emulator
 PASSED
 Number of tests: 2 Number of failures: 0
 Testing: HP64740 Emulation Analyzer
 PASSED
 Number of tests: 2 Number of failures: 0

 Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under copyright laws.

 HP64700 Series Emulation System
 Version: A.00.01 03Dec87 Unreleased

 HP64742 Motorola 68000 emulator
 HP64740 Emulation Analyzer
R>

Notice that the emulator initializes and returns to the reset state.

Related Commands init (reinitializes the emulator)

pv 3

1Notes

4 pv

1r

Summary Run the emulator from current PC or specified location

Syntax

Function The r command starts an emulation run. Execution begins at the
address specified by the <ADDRESS> parameter; if no address is
specified, execution begins at the address currently present in the
program counter.

Parameters

<ADDRESS> Specifies the address where execution is to
begin. If you specify $, the processor runs from
the current program counter value. If you
specify rst, the processor runs from its reset
address.

Note Different microprocessors have different addressing capabilities and so
do the emulators. Although <ADDRESS> defaults to a hexadecimal
number, each processor may allow specification of additional address
information (for example, the 68000 function codes). Refer to the
<ADDRESS> syntax pages in the Emulator User’s Guide for your
particular emulator.

r 1

Note Each emulator behaves differently on receiving a r rst command.
Refer to the Emulator User’s Guide for further information.

Defaults If no parameters are specified, the emulation run begins at the address
specified by the processor’s current program counter contents.

Examples To start your program running from address 2000 hex, type:

R> r 2000

U>

(Note that the prompt changes to indicate the emulator is running user
code.)

Now let’s issue a break command. Type:

U> b

M>

(Note that the prompt changes to indicate the emulator is running in the
emulation monitor.)

Let’s view the current program counter value. Type:

M> reg

You will see:

 reg pc=00002010 st=2004 d0=00000000 d1=00000000 d2=00000000 d3=00000000
 reg d4=00000000 d5=00000000 d6=00000000 d7=00000000 a0=00000000 a1=00000000
 reg a2=00003000 a3=00004000 a4=00000000 a5=00000000 a6=00000000 a7=00000006
 reg usp=00007000 ssp=00000006

To run the emulator from the current program counter value of 2012
hex, type:

M> r

U>

(Note the prompt changes again to indicate the emulator is running in
user code.)

2 r

Related Commands s (step; allows controlled stepping through program instructions)

rx (run only when CMB (Coordinated Measurement Bus) execute
pulse is received)

x (pulse the CMB execute line if resident on the CMB)

Refer to the CMB User’s Guide for information on the r command’s
effect on the CMB.

r 3

1Notes

4 r

1reg

Summary Display/modify processor registers

Syntax

Function The reg command allows you to display and modify emulation
processor register contents. Individual registers may be displayed or
modified; related groups of registers may be displayed; combinations
of display and modify are permitted on the same command line.

Parameters

<REG_NAME> The <REG_NAME> parameter allows you to
specify a specific register to display or modify.
The valid register names are microprocessor
dependent; therefore, refer to the
<REGISTERS> syntax pages in the Emulator
User’s Guide for your emulator for the list of
valid register names.

<REG_CLASS> The <REG_CLASS> parameter allows you to
specify an entire group of registers for display.
The group names vary from processor to
processor; therefore, refer to the
<REGISTERS> syntax pages in the Emulator
User’s Guide for your emulator for a list of the
valid register classes.

reg 1

<VALUE> To modify a register’s contents, supply the new
contents in the <VALUE> variable. This is a
numeric value (default is hexadecimal, other
number bases may be specified.)

Examples These examples were constructed using the HP 64700 Emulator for the
68000 microprocessor and the 68000 sample program listed in
Appendix A.

To view the register values before the program is run, type:

M> reg

You will see:

 reg pc=00000000 st=0000 d0=00000000 d1=00000000 d2=00000000 d3=00000000
 reg d4=00000000 d5=00000000 d6=00000000 d7=00000000 a0=00000000 a1=00000000
 reg a2=00000000 a3=00000000 a4=00000000 a5=00000000 a6=00000000 a7=00007000
 reg usp=00007000 ssp=00000006

Now let’s see how the register contents are affected by executing only
the MOVE.L INPUT_POINTER,A2 instruction which begins the
program at address 2000 hex. To do this, we will use the s (step)
command. Type:

M> s 1 2000

You will see:

 002000 2479000010 MOVEA.L 0001000,A2
 PC = 002006@sp

View the new register values by typing:

M> reg

You will see:

 reg pc=00002006 st=2000 d0=00000000 d1=00000000 d2=00000000 d3=00000000
 reg d4=00000000 d5=00000000 d6=00000000 d7=00000000 a0=00000000 a1=00000000
 reg a2=00003000 a3=00000000 a4=00000000 a5=00000000 a6=00000000 a7=00000006
 reg usp=00007000 ssp=00000006

Notice that the following registers have changed: The program counter
pc now points to the next instruction; the status register st bit 13 is set
to indicate that the processor is running in the supervisor state (since

2 reg

we did not set up the state, the default is supervisor state); and address
register a2 contains the value 3000 hex as a result of the move
instruction (long word contents of address 1000 hex were moved to a2).

Step the program again from the current program counter value:

M> s 1

You will see:

 002006@sp 2679000010 MOVEA.L 0001004,A3
 PC = 00200c@sp

Again, view the register contents:

M> reg

You will see:

 reg pc=0000200c st=2000 d0=00000000 d1=00000000 d2=00000000 d3=00000000
 reg d4=00000000 d5=00000000 d6=00000000 d7=00000000 a0=00000000 a1=00000000
 reg a2=00003000 a3=00004000 a4=00000000 a5=00000000 a6=00000000 a7=00000006
 reg usp=00007000 ssp=00000006

Note that the contents of address register a3 were modified by the
instruction just executed. Step the program again:

M> s 1

You will see:

 00200c@sp 14bc0000 MOVE.B #000,[A2]
 PC = 002010@sp

To see the effects of the instruction at location 2010 hex, we will
modify register d0. Type:

M> reg d0=050

Now execute the instruction at location 2010. Type:

M> s 1

You will see:

 002010@sp 1012 MOVE.B [A2],D0
 PC = 002012@sp

reg 3

This should have cleared d0, since the instruction at 200c hex cleared
the location pointed to by a2. In addition, the zero flag in the status
register should be set as a result of moving zeroes into d0. Verify this
by typing:

M> reg d0 st (note you can put more than one
register name on a line)

You will see:

 reg d0=00000000
 reg st=2004

Next, execute the compare instruction at location 2012 by typing:

M> s 1

You will see:

 002012@sp 0c000000 CMPI.B #000,D0
 PC = 002016@sp

Look at the register contents:

M> reg

You will see:

 reg pc=00002016 st=2004 d0=00000000 d1=00000000 d2=00000000 d3=00000000
 reg d4=00000000 d5=00000000 d6=00000000 d7=00000000 a0=00000000 a1=00000000
 reg a2=00003000 a3=00004000 a4=00000000 a5=00000000 a6=00000000 a7=00000006
 reg usp=00007000 ssp=00000006

Notice that the status register zero flag is still set after the compare. As
a result, the next instruction, a "branch if equal to zero", should return
the program counter to the beginning of the READ_INPUT loop. Type:

M> s 1

4 reg

You will see:

 002016@sp 67f8 BEQ.B 0002010
 PC = 002010@sp

Note that the program counter did return to the location of
READ_INPUT.

You can use the register modification ability to affect the processing of
such a loop. This can be handy if you’re checking program logic and
don’t have external hardware to change the value of an input port, or
don’t want to wait for a loop to time out. Since we’re back at
READ_INPUT, let’s try it. Type:

M> reg d0=41

Verify the register modification by typing:

M> reg d0

You will see:

 reg d0=00000041

Now step through the loop:

M> s 1

You will see:

 002012@sp 0c000000 CMPI.B #000,D0
 PC = 002016@sp

The compare instruction should have reset the zero flag in the status
register since the value of d0 was not zero. Type:

M> reg st

You will see:

 reg st=2000

As expected, the zero flag is reset. Now step the branch instruction:

M> s 1

reg 5

You will see:

 002016@sp 67f8 BEQ.B 0002010
 PC = 002018@sp

Notice that the program has now "fallen through" the READ_INPUT
loop and is ready to execute the next instruction at PROCESS_COMM.

The only <REG_CLASS> parameter supported by the 68000 emulator
is * (all). Therefore, typing reg and reg * produce the same results.

M> reg *

You will see:

 reg pc=00002010 st=2004 d0=00000000 d1=00000000 d2=00000000 d3=00000000
 reg d4=00000000 d5=00000000 d6=00000000 d7=00000000 a0=00000000 a1=00000000
 reg a2=00003000 a3=00004000 a4=00000000 a5=00000000 a6=00000000 a7=00000006
 reg usp=00007000 ssp=00000006

Other HP 64700 Emulators provide multiple register classes. For
example, on the HP 64700 emulator for the Z80 you could type:

M> reg *

This would display all the main registers:

 reg a=ff f=a8 bc=0bff de=0000 hl=0001 ix=0000 iy=0000 sp=003c pc=7f13

Or, you could display the alternate register set by typing:

M> reg alt

You will see:

 reg a’=00 f’=00 bc’=0000 de’=0000 hl’=0000

To display the Z80 interrupt registers, type:

M> reg int

6 reg

You will see:

 reg i=00 iff2=00 imode=00

By typing

M> reg all

You can display the complete register set:

 reg a=ff f=a8 bc=0bff de=0000 hl=0001 ix=0000 iy=0000 sp=003c pc=7f13 r=46
 reg a’=00 f’=00 bc’=0000 de’=0000 hl’=0000 i=00 iff2=00 imode=00

Related Commands s (step; allows you to step through program execution -- combination
with the reg command is useful in debugging)

reg 7

1Notes

8 reg

1rep

Summary Repeat a group of HP 64700 commands

Syntax

Function The rep command allows you to repeat a group of commands a
specified number of times. The command list is simply a group of
valid HP 64700 commands separated by semicolons and delimited by
braces.

Note Command macros that you define using the mac command can be used
within a command group for repetition.

No other command input will be accepted until the command group has
executed the indicated number of repetitions.

Parameters

<COUNT> An integer value specifying how many times
the command list should be executed. A count
of zero is a special case, meaning "repeat
forever" (the repetition can be terminated by
entering <CTRL>-C, which issues a break
signal to the emulator).

<COMMAND> Any valid HP 64700 Emulator command,
including previously defined macros, may be
specified with the options appropriate to the
command. The list of commands must be

rep 1

preceded by an opening brace and followed by
a closing brace. Also, the commands must be
separated by semicolons. The commands will
be executed in the same order as they are
specified on the command line.

Defaults None -- both a count and at least one command must be specified.

Examples The following example will show you how to simulate a repetitive
display of a memory block using ANSI terminal escape sequences, HP
64700 macros, and the rep command.

You need to load the program from Appendix A into the emulator. A
"priming" run is necessary to make sure all of the pointer registers are
set up correctly. Type:

M> r 2000

Now break the emulator into the monitor. Type:

U> b

You will need to modify the JMP CLEAR instruction to a JMP
PROCESS_COMM instruction so the emulator will repeatedly execute
the output routine. Type:

M> m 2071=10
M> m 3000=41

Next, you will set up two macros. The first will home the cursor and
clear the screen on an ANSI standard terminal; the second homes the
cursor, displays a memory block, then waits for 0 seconds (the actual
wait time is that required to process the command).

M> mac cls={echo \1b \5b \32 \4a}
M> mac mem={echo \1b \5b \31 \3b \31 \48; m -db
4000..401f; w 0}

Now start an emulation run at the PROCESS_COMM routine (if you
start it earlier the input location of 3000 hex will be cleared; the output
memory locations will not change as desired).

M> r 2010

Clear the terminal screen by typing:

2 rep

U> cls

Now, you can start a continuous repetitive display of the output
memory block by typing:

U> rep 0 mem

You will see the following display at the top of your screen. The
memory locations from 4000 through 4011 hex will change
continuously as they are alternately cleared and written by the sample
program.

 004000..00400f 00 48 00 00 20 49 00 00 4d 00 00 53 00 00 45 00
 004010..00401f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 waiting for 0 seconds...
 echo \1b \5b \31 \3b \31 \48 ; m -db 4000..401f ; w 0

To stop the command, enter <CTRL> C .

Related Commands mac (allows assignment of a name to a command group for easy recall
of a specified command sequence)

rep 3

1Notes

4 rep

1rst

Summary Reset the emulation microprocessor

Syntax

Function The rst command resets the emulation microprocessor. An option
allows you to specify that the processor should begin executing the
emulation monitor code immediately after the reset. If -m is not
specified, the emulation processor remains in the reset state. Note that
any commands which require the emulation processor to execute the
monitor code for command processing will not execute while the
processor is in the reset state; these include commands such as reg.

Commands or hardware signals which will take the emulator out of a
reset state include b, r , s, and the CMB /EXECUTE pulse.

Parameters

-m Causes the emulator to begin executing monitor
code immediately after the reset.

Defaults Reset and remain in the reset state.

Examples To reset the processor and keep it in the reset state, type:

M> rst

You will see:

R>

rst 1

To reset the processor and have it immediately commence emulation
monitor execution, type:

U> rst -m

You will see:

M>

Related Commands None

2 rst

1rx

Summary Specify starting address for emulation run upon CMB execution

Syntax

Function The rx command allows you to set the starting address for synchronous
CMB (Coordinated Measurement Bus) execution.

If the HP 64700 emulator is connected to the CMB, and the
CMB-EXECUTE pulse is detected, followed by the CMB-READY
line in the true state, the emulator will begin execution at the address
specified by the rx command. If no rx command has been issued,
execution begins at the current program counter value (same as rx $).

Execution will begin at the address specified by rx every time the
conditions listed above are met. For example, if you type the command
rx 100, the emulator will start executing at address 100 hex every time
the CMB-EXECUTE line is pulsed.

The rx command automatically turns on CMB interaction by
effectively performing the equivalent of a cmb -e command whether or
not you have done so.

rx 1

Parameters

<ADDRESS> The <ADDRESS> parameter specifies where to
start program execution when the CMB
EXECUTE pulse is detected. If $ is specified
for address, the current program counter value
is used (default). The <ADDRESS> parameter
numeric base default is hexadecimal; other
bases can be specified with the proper
extension. (See the expr syntax pages for a
description of supported bases.) Some
microprocessors, such as the MC68000, support
address extensions (function codes or other
types of extensions). These extensions may be
used in specifying <ADDRESS>.

For specific information on how to specify <ADDRESS> for a given
microprocessor, refer to the Emulator User’s Guide for your emulator.

Defaults If you enter the rx command without any address parameters, the
current address value setting is displayed. If no rx command has been
entered since initialization of the emulator, then the default setting is rx
$.

Examples To view the current address setting specified by rx , type:

M> rx

You will see:

rx $

If you want the emulator to begin executing a certain piece of code that
begins at address 2000 hex when the CMB-EXECUTE pulse is
received, type:

M> rx 2000

To view the new value of rx , type:

M> rx

2 rx

You will see:
rx 002000

Now return the rx setting to the default setting by typing:

M> rx $

Verify the changes:

M> rx

You will see:

rx $

To see what value would be used as $ if the CMB-EXECUTE pulse
was received, type:

M> reg pc

You will see something similar to the following (the address will most
likely be different on your system):

reg pc=0000044e

Note that this address would only be used if the processor was reset or
running in the emulation monitor. If a user program run occurs before
the CMB-EXECUTE line is pulsed, the program counter value is likely
to be different.

Related Commands cmb (enables or disables CMB interaction)

x (initiates a synchronous CMB interaction by pulsing the
CMB-EXECUTE line)

rx 3

1Notes

4 rx

1s

Summary Step the emulation processor one or more instructions

Syntax

Function The s command allows you to single-step the emulation processor
through a program. You can specify the number of steps to execute at a
single time; or, you can direct the emulator to step continuously. In
addition, you may specify the starting address for stepping.

If the emulator was in the run state (U> prompt) executing a user
program when you request the step, it will break to the monitor
program before executing the step.

Note When the Coordinated Measurement Bus (CMB) is being actively
controlled by another emulator, the step command (s) does not work
correctly. The emulator may end up running in user code (NOT
stepping). Disable CMB interaction (cmb -d) while stepping the
processor.

Parameters

-q If you enter the -q parameter, stepping will
occur in quiet mode; that is, the instructions and

s 1

program counter are not displayed upon
execution of each step.

-w If you enter the -w parameter, stepping will be
done in whisper mode; only the final program
counter value is displayed after the step is
executed.

<COUNT> The <COUNT> parameter allows you to
specify the number of steps to execute in
sequence before returning command control.
For example, if you specify s 5, then five
instructions will be executed in sequence.

The default base for <COUNT> is decimal.
Other number bases may be specified; see the
EXPR syntax pages for more information.

If you do not specify a value for <COUNT>,
then a value of one (1) is assumed. If you
specify a step count of zero (0), the emulator
interprets this as "step continuously".
Continuous stepping can be aborted with the
<CTRL>-C command; or, it will be terminated
upon receipt of an emulation break condition
such as a write-to ROM.

<ADDRESS> The <ADDRESS> parameter allows you to
specify the starting address for stepping. The
default is a hexadecimal value; see the EXPR
syntax pages for information on specifying
other number bases. Some microprocessors
support address extensions such as function
codes; these can generally be specified as part
of the <ADDRESS> parameter. Refer to the
Emulator User’s Guide for your emulator for
details.

If you substitute $ for the <ADDRESS>
parameter, the current program counter value
will be used as the <ADDRESS> value. The

2 s

same will occur if no address parameter is
specified.

Note If you specify a value for <ADDRESS>, then you must specify a value
for <COUNT>. Otherwise, the address value will be interpreted as a
step count; the emulator will step the number of locations specified.

Defaults If you specify s with no parameters, the processor is stepped one
instruction from the current program counter location. If you specify
<COUNT> but not <ADDRESS>, then the current program counter
value is specified for <ADDRESS>.

Examples The following examples use the 68000 sample program from Appendix
A of this manual.

If you want to step 1 instruction from the program’s start at address
2000 hex, type:

M> s 1 2000

You will see:

 0002000 2479000010 MOVEA.L 0001000,A2
 PC = 0002006@sp

Or, you could step all the way up to the READ_INPUT routine by
typing:

M> s 3 2000

You will see:

 0002000 2479000010 MOVEA.L 0001000,A2
 0002006@sp 2679000010 MOVEA.L 0001004,A3
 000200c@sp 14bc0000 MOVE.B #000,[A2]
 PC = 0002010@sp

s 3

Note that in both instances, the address and both the hexadecimal and
mnemonic version of the instruction are displayed, along with the
program counter value after the step. If you want to view all of the
processors register’s after the step, type:

M> reg

You will see:

 reg pc=00002010 st=2004 d0=00000000 d1=00000000 d2=00000000 d3=00000000
 reg d4=00000000 d5=00000000 d6=00000000 d7=00000000 a0=00000000 a1=00000000
 reg a2=00003000 a3=00004000 a4=00000000 a5=00000000 a6=00000000 a7=00000006
 reg usp=00007000 ssp=00000006

This allows you to verify that the information from the data area at
1000 hex and 1004 hex was moved to the A2 and A3 registers.

You can also step through the program in "quiet" mode. This inhibits
the display of any information about the stepping process. Type:

M> s -q 3 2000

This may be useful if you wish to step several locations but aren’t
interested in what’s occurring during the step process.

Or, you can step the processor and display only the final program
counter value after the step by using the "whisper" mode. Type:

M> s -w 3 2000

You will see:

 PC = 0002010@sp

You could use this option if you wanted to step several locations and
verify only the final program counter value. (For example, you might
want to know if the emulator reached a specific location within a
certain number of instructions.)

Remember that you must specify a step count value if you specify an
address. If you don’t, a <CTRL>-C will abort the stepping. Type:

M> s 2000

You will see: (note that the stepping starts at address 2010, not 2000)

 0002010@sp 1012 MOVE.B [A2],D0
 0002012@sp 0c000000 CMPI.B #000,D0

4 s

 0002016@sp 67f8 BEQ.B 0002010
 0002010@sp 1012 MOVE.B [A2],D0
 0002012@sp 0c000000 CMPI.B #000,D0
 0002016@sp 67f8 BEQ.B 0002010
 0002010@sp 1012 MOVE.B [A2],D0
 0002012@sp 0c000000 CMPI.B #000,D0
 0002016@sp 67f8 BEQ.B 0002010
 0002010@sp 1012 MOVE.B [A2],D0
 PC = 0002012@sp

(enter <CTRL>-C)

!STATUS 686! Stepping aborted; number steps completed: 10

You can also use the step capability in stepping through a loop. Type:

M> s 3 2010

You will see:

 0002010@sp 1012 MOVE.B [A2],D0
 0002012@sp 0c000000 CMPI.B #000,D0
 0002016@sp 67f8 BEQ.B 0002010
 PC = 0002010@sp

You can then modify some value which affects the loopback logic and
watch its effects on the processor instruction execution. Type:

M> m 3000=41

(This inputs a "command A" to the sample program.)

Now type:

M> s 4

 0002010@sp 1012 MOVE.B [A2],D0
 0002012@sp 0c000000 CMPI.B #000,D0
 0002016@sp 67f8 BEQ.B 0002010
 0002018@sp 0c000041 CMPI.B #041,D0
 PC = 000201c@sp

Note that the program exited the loop and has begun processing a
command.

You can assign values to label names using the equ command and then
use these labels in specifying step information. For example, the
number of instructions in the READ_INPUT loop is 3, it begins at
2010 hex. Type:

s 5

M> equ readcount=3
M> equ readinput=2010

Now type:

M> m 3000=00

(This modifies the command input area of the program to a null value.)

Now you can step through the loop, one iteration at a time:

M> s readcount readinput

You will see:

 0002010 1012 MOVE.B [A2],D0
 0002012@sp 0c000000 CMPI.B #000,D0
 0002016@sp 67f8 BEQ.B 0002010
 PC = 0002010@sp

If your emulator supports symbols, and you have symbols loaded, when
you execute a step command, you will see the module and symbol in
the output. For example, using the 8051 emulator, you may execute the
following command:

R> s 1 CMD_RDR:INIT

The result will resemble:

 03000@x CMD_RDR:INIT MOV SP,#fe
 PC = 03003@p

Related Commands r (run emulation processor from a specified address)

reg (view or modify processor register contents)

6 s

1ser

Summary Search emulation or target memory for values

Syntax

Function The ser command allows you to search memory for a data value, a
character string, or a combination of both. For every pattern match, the
starting address of the match is displayed.

Using the -d (display mode) option, the method of interpreting the
pattern supplied by the user can be altered. If no option is given, the
display mode used is taken from global default set by the mo
command.

If addresses specified in the search reside in target system memory, the
emulator is broken to the monitor and returned to the user program
when the command is completed.

Parameters

-d The -d operator, in combination with the
<DISPLAY_MODE> parameter, allows you to
specify the display mode used for the search.
As a result, you can alter the method used by

ser 1

the system for interpreting the display list data
and the resultant matches.

<DISPLAY_
MODE>

This is a single character specifying the display
mode to be used in the search. Most processors
support b, for byte; some processors optionally
support w (word) and l (long word). For
specific information on the
<DISPLAY_MODE> parameters supported by
your emulator, refer to the Emulator User’s
Guide.

<ADDRESS> You use <ADDRESS> to specify first the
lower, and possibly the upper, address
boundaries of the memory range to search for
the given data pattern. <ADDRESS> defaults
to a hexadecimal number; expressions may also
be provided. In addition, certain emulators
support additional processor specific addressing
information such as function codes. Refer to
the Emulator User’s Guide for your emulator
for further details.

.. The two periods (..) are used as a separator
between the lower and upper address boundary
specifications. Notice that no additional spaces
are inserted. You can use "<ADDRESS>.." to
specify the range from the address through the
next 127 bytes.

<EXPR> <EXPR> is a numeric expression to be used as
a reference pattern in the search. The default is
a hexadecimal number; other bases and
expressions may be specified. Refer to the
<EXPR> syntax for further information.

2 ser

<STRING> You specify <STRING> if you want to search
for an ASCII character pattern. Note that
<STRING> must be bounded by single open
quote marks (‘) or double quotes (").

Note Many keyboards (and printers) actually represent the single open quote
mark ‘ as an accent grave mark. In any case, the correct key is the one
which produces a character encoded as ASCII 60 hexadecimal. The
correct double quote mark is the character encoded as ASCII 22
hexadecimal.

Note If the character string you are searching for contains double quotes, you
must delimit the string with single open quotes and vice versa. For
example, the string "Type "C"" will return an error; the string ‘Type
"C"‘ is correct.

Note You can concatenate various combinations of <STRING> and
<VALUE> to form more complex search patterns by separating the
parameters with commas (,).

Defaults At least one address range and data pattern must be specified. If no
display mode is set with the -d option, the current global display mode
from the mo command is used.

Examples We will do some searches of the message area from the sample
program in Appendix A. Let’s look at the message area in byte form
first. Type:

M> m -db 1000..103f

ser 3

You will see:

 001000..00100f 00 00 30 00 00 00 40 00 54 48 49 53 20 49 53 20
 001010..00101f 4d 45 53 53 41 47 45 20 41 54 48 49 53 20 49 53
 001020..00102f 20 4d 45 53 53 41 47 45 20 42 49 4e 56 41 4c 49
 001030..00103f 44 20 43 4f 4d 4d 41 4e 44 ff ff e7 f7 fd fe ff

Now let’s search for the ASCII character string "THIS" (which consists
of the values 54,48,49, and 53 hexadecimal). Type:

M> ser 1000..103f="THIS"

You will see:

 pattern match at address: 001008
 pattern match at address: 001019

Note the correspondence of the first character found in the sequence
with the addresses of the data area shown above.

You can also combine searches for numeric values, numeric
expressions, and ASCII strings. Type:

M> ser -db 1000..103f=20,"MESSAGE",10+10

You will see:

 pattern match at address: 00100f
 pattern match at address: 001020

Now we will modify the display mode and notice the effect it has upon
the search. First, let’s look at the memory block in the new mode.
Type:

M> m -dw 1000..103f

You will see:

 001000..00100f 0000 3000 0000 4000 5448 4953 2049 5320
 001010..00101f 4d45 5353 4147 4520 4154 4849 5320 4953
 001020..00102f 204d 4553 5341 4745 2042 494e 5641 4c49
 001030..00103f 4420 434f 4d4d 414e 44ff ffe7 f7fd feff

Now search for the same string, but change the display mode, by typing:

M> ser -dw 1000..103f=20,"MESSAGE",20

4 ser

The search failed since the end of the expression was not on a word
boundary. (It would have been satisfied if the first and last 20’s resided
on word boundaries and if we searched for an additional space at the
end of the word "MESSAGE " that is, the word pattern 0020 4d45
5353 4147 4520 0020.) Now let’s do another search to illustrate the
effects of the display mode. Type:

M> ser -dw 1000..101f=0003

Again, the search is unsatisfied because 03 hex is not at the end of a
word boundary. Now type:

M> ser -dw 1000..101f=0030

You will see:

 pattern match at address: 001001

Now the pattern is found since it is on a word boundary at address
1001.

Now look at the same search patterns in long word display mode.
View the block by typing:

M> m -dl 1000..103f

You will see:

 001000..00100f 00003000 00004000 54484953 20495320
 001010..00101f 4d455353 41474520 41544849 53204953
 001020..00102f 204d4553 53414745 2042494e 56414c49
 001030..00103f 4420434f 4d4d414e 44ffffe7 f7fdfeff

Search for the pattern 030 hex by typing:

M> ser -dl 1000..101f=030

It isn’t found since it isn’t on a word boundary. Now type:

M> ser -dl 1000..101f=03000

You will see:

 pattern match at address: 001000

The match is found at the first location in the range.

ser 5

Related Commands cp (used to copy the contents of one memory range to another)

m (used to display/modify memory locations)

6 ser

1stty

Summary Set data communications parameters

Syntax

stty 1

Function The stty command allows you to modify the parameters of the data
communications ports without changing the configuration switch
settings.

The serial port, port A, may be modified by stty.

Note For further information on the meanings of various data
communications parameters, you may refer to the book entitled
Touring Datacomm: A Data Communications Primer. This book is
orderable from HP’s Direct Marketing Division under the part number
5957-4622. Another book which may be helpful is The RS-232
Solution, orderable from HP under the product number 92234X. You
also may need to refer to the hardware and software reference manuals
that are supplied with your terminal and/or host computer for further
information on required data communications parameters for links to
those devices.

Parameters

PARITY Parity for either port may be set odd, even,
zero, one, or none.

CHARACTER
SIZE

The length of each character sent by the system
may be set to 7 bits or 8 bits.

STOP BITS The number of stop bits used to terminate each
character may be set to one (1) or two (2).

BAUD RATE The baud rate (rate at which bits are transmitted
and received) may be set to one of the
following values: 300 1200 2400 4800 9600
19200 38400 57600 115200 230400 460800.

INTERFACE
TYPE

The type of interface may be set to either
RS-232 or RS-422.

RS-422 utilizes balanced transmission lines and
therefore can achieve much higher data rates

2 stty

with reliability over long distances than
RS-232. Otherwise, the interfaces are similar.

DATA COM-
MUNICATIONS
OR DATA
TERMINAL

Port A may be set to operate either as Data
Communications Equipment (DCE) or as Data
Terminal Equipment (DTE). This configures
the handshake lines and transmit/receive lines
for the proper signal to pin relationships on the
interface.

CARRIAGE
RETURN/
LINE FEED
MAPPING

You can select several different options for
terminating lines of output from the system,
depending on what is required by your
hardware. The following choices are available:

onlcr -- generate new-line and carriage-return
on output

ocrnl -- generate carriage-return and new-line
on output

ocr -- generate carriage-return on output

onl -- generate new-line on output

RTS/CTS
HANDSHAKE

The option crts enables the Request To
Send/Clear To Send handshake. Specifying
-crts disables this handshake.

DSR/DTR
STATUS

The option cdsr enables exchange and
recognition of the Data Set Ready/Data
Terminal Ready status lines. Specifying -cdsr
disables the exchange.

XON/XOFF
HANDSHAKE

If you specify xon, the system generates
XON/XOFF (DC1/DC3 characters) software
handshaking to control the amount of data
received at a given time. Specifying -xon
disables this handshake sequence.

stty 3

(When the emulator’s receive buffer is full, it
will send a DC3 (XOFF) character to the host
to stop transmission; when it is ready for more
data, it will send a DC1 (XON) character to
restart transmission.)

Note If you toggle the xon parameter when running at 1200 baud and below,
the stty command will return invalid characters. The PC Interface
attempts to do this when starting up and fails with a datacomm error.
To get around this problem, set switch 13 on the emulator’s back panel
(enable xon) to allow the PC Interface to start up successfully. In the
Terminal Interface, just enter another carriage return to regain proper
communications.

ECHO If you specify echo, all characters received by
the emulator datacomm are echoed back to the
sending system. Specifying -echo means the
system will not echo back characters received.

You will normally use this in conjunction with
the echo settings required by your host
computer and your terminal. Most
Hewlett-Packard systems will require that you
enable the echo feature, as HP host computers
automatically echo characters back to data
terminal devices.

4 stty

Defaults If no parameters are specified, the current settings are displayed. The
powerup default configurations are determined by the rear panel
configuration switches; refer to the HP 64700 Emulator Hardware
Installation and Configuration manual for more information.

Examples To display the current data communications setting for both ports, type:

M> stty

You will see:

stty A 9600 cs8 1stopb noparity dce rs232 -crts -cdsr xon onlcr echo

Now, set the baud rate to 1200 baud by typing:

M> stty 1200

To view the changed baud rate, type:

M> stty B

You will see:

stty A 1200 cs8 1stopb noparity dce rs232 -crts -cdsr xon onlcr echo

stty 5

1Notes

6 stty

1sym

Summary Manage the emulator symbol table

Syntax

Function The sym command defines, displays, or deletes symbols in the
emulator.

Three types of symbols are supported: global, local, and user. Global
symbols reference addresses anywhere in memory using an absolute
reference. Local symbols also use absolute addressing but are grouped
within a "module." User symbols are defined at the command line.
Global and local symbols cannot be defined at the command line.

The definition of a module for grouping local symbols depends on the
environment being used. For local symbols created by a high-level
language, a module might be a function, a procedure, or a separately
compilable source file. When you define local symbols through the use
of a symbol file, a module, in effect, becomes a technique to manage
the symbols. It can be a mnemonic device to refer to modules, or it can
be a simple way to group local symbols into a set for display and
deletion purposes since the sym command facilitates manipulation of
local symbols by their module name.

sym 1

Symbols are used like equated variables. When using symbols in
expressions, only the + and - operators can be used immediately before
and after the symbol name. The expression can contain literals and
equated (equ) labels, but not other symbols.

When using symbols, if a symbol and an equated value have the same
name, the equated value will be used.

The symbol table can be updated in three ways:

You can enter user symbols at the command line.

You can update it from an external "symbol file" using the
load -So command.

You can load an absolute file (such as an Intel OMF file)
which can contain symbols as well as program code.

A "symbol file" is a text file containing user-specified symbols. Refer
to a discussion of the symbol file in appendix A.

Note The sym command presently applies to some HP 64700-Series
emulators, and may apply to all HP 64700-Series emulators in the
future. If you are using an emulator that does not presently support
symbols, when you try to execute the sym command, a message will be
displayed indicating that symbols are not supported on your emulator.

If your emulator firmware is less than version A.02.00, you will not be
able to use the sym command because your emulator will not support
symbols. To verify the version number of your emulator firmware,
execute "ver" at the Terminal Interface prompt.

Even if your emulator firmware version is A.02.00 or greater, your HP
64700-Series emulator may not necessarily support symbols.

2 sym

Parameters

<ADDRESS> The <ADDRESS> parameter specifies the
value to assign to a user symbol.

-d The -d option deletes all symbols.

-du The -du option deletes user symbols. If a
<NAME> parameter is not included, all user
symbols are deleted. If a <NAME> parameter
is included, only user symbols matching the
entered name are deleted.

-dg The -dg option deletes all global symbols. No
option exists to delete one global symbol.

-dl The -dl option deletes local symbols in a
module. If a <NAME> parameter is not
included, all local symbols are deleted for all
modules. If a <NAME> parameter is included
to specify a module name, only local symbols
in the module matching the entered name are
deleted.

-g The -g option specifies the display of global
symbols. If a <NAME> parameter is not
included, all global symbols are displayed. If a
<NAME> parameter is included, only global
symbols matching the entered name are
displayed.

<NAME> This represents the symbol label to be defined
or referenced. The format of the symbol name
reference is determined by the type of symbol,
where:

name is a user symbol or module name

:name is a global symbol name

name: is a local module name

sym 3

module:name is a symbol name in a local
module.

In addition, symbols can be referenced using a
"wild card" expression when displaying and
deleting names. Only one wildcard character
can appear in a symbol name. An asterisk ("*")
character is used to represent zero or more
characters at the end of a symbol name. A
wildcard can be used in any of the following
symbol types:

name* represents a user symbol name
followed by zero or more of any character or
characters

:name* represents a global symbol name
followed by zero or more of any character or
characters

module:name* represents a local
module:symbol followed by zero or more of
any character or characters.

-l This option allows you to display local modules
and symbols. If a <NAME> parameter is not
included, all local modules are displayed. If a
<NAME> parameter is included, only local
symbols matching the symbol name or module
are displayed.

-u This option allows you to display user symbols.
If a <NAME> parameter is not included, all
user symbols are displayed. If a <NAME>
parameter is included, only user symbols
matching the entered name are displayed.

Defaults The sym command without any parameters displays all of the symbols
currently defined.

4 sym

Examples To display all symbols, enter:

M> sym

To display all global symbols, enter:

M> sym -g

To display a global symbol, enter:

M> sym -g :GLOB_SYM

To display a user symbol, enter:

M> sym -u mysymbol

To display all local modules, enter:

M> sym -l

To display symbols in a local module, enter:

M> sym -l LOCAL_MOD:

To display a symbol in a local module, enter:

M> sym -l MOD_NAME:SYM_NAME

To delete all global symbols, enter:

M> sym -dg

To define a user symbol, enter:

M> sym mysymbol=107h

To display all symbols or local modules whose names begin with
"symb", enter:

M> sym symb*

Related Commands equ (used to equate names to expressions)

load (used to load a program file with symbols, or a symbol text file)

sym 5

1Notes

6 sym

1t,xt

Summary Start an analyzer trace

Syntax

Function The t and xt commands start emulation and external traces,
respectively. These commands (or tx if making a synchronous CMB
execution) must be entered to actually begin a measurement; most other
trace commands are used only for specification of triggering,
sequencer, and storage parameters; or to display trace results or status.

If the external analyzer has been linked to the emulation analyzer via
the xtmo command, the xt command is invalid and both analyzers
begin a trace when the t command is entered.

Parameters None.

Defaults Does not apply.

Examples To begin a trace, enter:

M> t

You will see:
Emulation trace started

To halt a trace in process, enter:

M> th

t 1

You will see:
Emulation trace halted

Related Commands r (starts a user program run; normally will be specified after entering
the t command)

th (halts a trace in process)

ts (allows you to determine the current status of the emulation analyzer)

tx (specifies whether a trace is to begin upon start of CMB execution)

x (begins synchronous CMB execution)

xtmo (specifies whether or not the external analyzer bits are to be
treated as a separate analyzer or integrated with the emulation analyzer.
If associated with the emulation analyzer, the xt command is invalid;
the t command starts the trace on both analyzers.)

2 t

1ta

Summary Display analyzer line activity

Syntax

Function The ta command allows you to display the activity on each of the
analyzer input lines. Each signal may be low, high, or moving. These
are displayed as follows:

Each pod (group of 16 lines) is displayed on a single line with bit 0
(LSB) at the far right and bit 15 (MSB) on the far left. Each pod
represents the following analyzer bits:

Type of Signal Activity Symbol Displayed

Signal is Low 0

Signal is High 1

Signal is Moving ?

Pod Emulation Analyzer Bits External Analyzer Bits

Pod 1 Emulation Bits 0 thru 15 None

Pod 2 Emulation Bits 16 thru 31 None

Pod 3 Emulation Bits 32 thru 47 None

Pod 4 Emulation Bits 48 thru 63 None

ta 1

Parameters None.

Defaults Does not apply.

Examples To display the current status of analyzer signal activity, type:

M> ta

You will see a display similar to the following:

Pod 3 = 0??????? ????????
Pod 2 = 11?00110 00000000
Pod 1 = 00000?00 1??????0

You can interpret the results as follows:

Bit 15 of Pod 3 is low; all other Pod 3 bits are moving.

Bits 9,10,14 and 15 of Pod 2 are high, bit 13 is moving; all others are
low.

Bit 7 of Pod 1 is high; bits 1-6 and 10 are moving; all others are low.

Related Commands xtv (used to set the threshold voltages for the optional external analyzer
inputs; incorrect specification may show up as lack of activity in a ta
display)

2 ta

1tarm,xtarm

Summary Specify arming condition for analyzers

Syntax

Function The tarm (xtarm) command allows you to specify an arming condition
for the emulation and external analyzers. You can specify the arm
condition as the assertion of the trig1 or trig2 signals or as tarm
always. The arm condition may then be used in specifying the
analyzer trigger or in specifying branch conditions for the sequencer, as
well as count or prestore qualifiers.

If the analyzers are connected through use of the xtmo command, then
the xtarm command is invalid. In this case, the tarm command will
set the arming condition for the analyzer combination.

Parameters

=, != The operators = and != are used to respectively
indicate that the arm condition is equal to or not
equal to the specified trig1 or trig2 condition.

tarm 1

Note If the external analyzer is configured to operate as a timing analyzer
(xtmo -t) then the != operator is invalid when used in the xtarm
command as given to the external analyzer. Only the = operator will be
recognized.

trig1 If you specify tarm =trig1 as the arming
condition, then the assertion of the trig1 signal
will arm the analyzer. Conversely, if you
specify tarm !=trig1 , the analyzer will remain
armed until the trig1 signal is asserted. The
trig1 signal can be asserted from many sources
including the analyzer itself or the rear panel
BNC connector or the CMB. See bnct, cmbt,
and tgout for examples.

trig2 If you specify trig2 as the arming condition,
then the assertion of the trig2 signal will arm
the analyzer. Conversely, if you specify tarm
!=trig2 , the analyzer will remain armed until
the trig2 signal is asserted. The trig2 signal can
be asserted from many sources including the
analyzer itself or the rear panel BNC connector
or the CMB. See bnct, cmbt, and tgout for
examples.

always If you specify tarm always as the arming
condition, then the analyzer is continuously
armed.

Defaults If no parameters are supplied, the current tarm condition is displayed.
The default setting after powerup or tinit is tarm always.

Examples To view the current state of tarm , type:

M> tarm

2 tarm

You will see:
tarm always

You may want to hook an external instrument, such as a logic analyzer,
to the HP 64700 rear panel BNC port and have the external instrument
trigger an emulation analyzer trace. Type the following:

M> bnct -r trig1
M> tcf -c
M> tarm =trig1
M> tg arm

This will cause the emulation analyzer to trigger upon assertion of the
rear panel BNC signal. To return the analyzer to the continuously
armed state, type:

M> tarm always

Perhaps you want the analyzer to store only states received while there
is NOT a trigger signal on the CMB (Coordinated Measurement Bus).
To do this, type:

M> cmbt -r trig2
M> tcf -c
M> tarm !=trig2
M> tsto arm

Here, we’ve set the trig2 signal to receive the CMB trigger. Then we
set the emulation analyzer configuration to complex (this is required to
use the arm parameter in analyzer expressions). Next, we set the tarm
condition to the logical NOT of the trig2 signal; finally, we qualify
analyzer storage with the arm parameter.

Related Commands bc (can be used to cause the emulator to break to monitor execution
upon receipt of the trig1 and/or trig2 signals)

bnct (used to define connections between the internal trig1 and trig2
signals and the rear panel BNC connector)

cmbt (used to define connections between the internal trig1 and trig2
signals and the CMB trigger signal)

tgout (defines whether or not the trig1 or trig2 signals are driven when
the analyzer finds the trigger state)

tarm 3

1Notes

4 tarm

1tcf,xtcf

Summary Set the analyzer configuration to easy or complex

Syntax

Function The tcf (xtcf) commands are used to set the configuration for the
emulation (external) analyzer.

There are two possible configurations for the analyzer, an easy
configuration (tcf -e) and a complex configuration (tcf -c). Below,
each of the configurations is described briefly, along with some of the
commands that modify the analyzer in each configuration. The
command descriptions are not meant to be an exhaustive list of each
command’s features; you should refer to the syntax pages for that
particular command.

Easy Configuration

When in easy configuration (tcf -e), much of the complexity of the
analyzer is hidden from you. Some measurement power is lost; when
you need the full power of the analyzer, you can switch to complex
configuration.

Expressions. In easy configuration, all analyzer commands take the
general form of <command> <simple_expression>. The commands
that use this form are tcq, tif, telif, tg, tpq, and tsto. A simple
expression is the information that can fit into a single pattern or a single
range (see tpat, trng , and SIMPLE_EXPR syntax for further
information). Examples are addr=2105, data!=15 or data!=ff, and
addr=4012..401a.

tcf 1

Sequencing. The easy configuration allows you to have the analyzer
search for a simple expression; when it is found, it can then search for a
different simple expression. The ability to search for one expression,
then search for another expression based on the first is known as
sequencing.

In easy configuration, there are 4 sequencer terms available. Each has a
primary sequence branch, which always branches to the next sequencer
term (1 to 2, 2 to 3, and so on). The branch out of the last term defines
the trigger term. A global restart term is also available, which will
return the sequencer to term 1 if found. If both the primary branch and
global restart term are satisfied simultaneously, the primary branch is
always taken in preference to the restart.

Sequencer Manipulation. The simplest sequencer control is the tg
command. This defines a one term sequence with the trigger occurring
upon the branch out of the term. You can specify an occurrence count;
that is, the number of times the given trigger qualifier must be found to
satisfy the trigger condition.

You can exercise greater control over the easy configuration sequencer
using the tsq command. This command allows you to insert additional
sequence terms (up to the limit of four) or delete terms.

By using the tif command, you can define the primary branch condition
for each sequence level. You can also specify an occurrence count for
each branch condition. The primary branch out of the last sequence
term in the list defines the trigger condition.

The telif command specifies the global restart condition. If both a
primary branch and global restart condition are satisfied at the same
time, the primary branch is always taken. However, if the primary
branch has an occurrence count greater than one (1), and the global
restart is encountered before the occurrence count is satisfied for the
primary branch, the global restart is taken, and the primary branch
occurrence count is reset to zero.

2 tcf

Storage Specification. You can specify which events should be
stored by the analyzer using the tsto command. This is a global storage
qualifier; that is, the qualifier is identical for all sequencer terms.
Analyzer events that cause the sequencer to change states are always
stored, regardless of the storage qualifier.

State/Time Counts. You can set up the analyzer to count time
between states or count occurrences of a specific state using the tcq
command.

Prestore. The analyzer has a two stage prestore pipeline. You set up
the qualifier for this pipeline using the tpq command. When the
qualifier is found, the event is stored in the pipeline; when a real
storage event is found (matching the tsto qualifier), the pipeline is
flushed and placed into trace memory immediately prior to the storage
event. You can use the feature to observe the relationships between
certain program variables and program routines or between two
program routines. (For example, you might set a prestore state to a
condition required to execute a specific routine.)

Complex Configuration

The full analyzer capability is available to you in the complex
configuration (tcf -c). Using the multiple sequence terms, primary and
secondary branch capability, and powerful expression capability, you
can make just about any conceivable measurement.

Expressions. In complex configuration, all analyzer commands take
the general form of <command> <complex_expression>. The
commands that use this form are tcq, tif, telif, tg, tpq, and tsto. A
complex expression is made up of pattern, range and arm labels, tied
together with various operators that define the specific condition. Each
of the pattern and range labels must be previously assigned to a specific
simple expression using the tpat and trng commands. (These two
commands are only available in the complex configuration.) So, you
might define some pattern labels and a range label as follows:

U> tpat p1 addr=205a
U> tpat p5 data!=00
U> trng addr=4000..4011

tcf 3

And then make complex expressions as follows:

p1 or p5
r and p5
p1 | !r

See the <COMPLEX_EXPR> syntax pages for details on complex
expressions.

Sequencing. The complex configuration allows you to have the
analyzer search for a complex expression; when it is found, it can then
search for a different complex expression.

In complex configuration, there are always 8 sequencer terms. Each
has a primary sequence branch, which can branch to any sequencer
term (1 to 5, 2 to 8, and so on). A secondary branch is also available,
which branch to any sequencer term. If both the primary branch and
secondary branch are satisfied simultaneously, the primary branch is
always taken in preference to the secondary branch.

Sequencer Manipulation. The simplest sequencer control is the tg
command. As in easy configuration, this defines a two term sequence
with the trigger in the second term. You can specify an occurrence
count; that is, the number of times the given trigger qualifier must be
found to satisfy the trigger condition.

You can exercise greater control over the complex configuration
sequencer using the tsq command. Although you cannot add or delete
sequence terms in complex configuration (there are always eight), you
can specify the trigger term; you can also reset the sequencer (which
clears all the branch specifiers and storage qualifiers).

By using the tif command, you can define the primary branch condition
for each sequence level. You can also specify an occurrence count for
each branch condition, and the destination term for each branch.

The telif command specifies the secondary branch condition, which can
jump to any sequence term. If both a primary and secondary branch
condition are satisfied at the same time, the primary branch is always
taken. However, if the primary branch has an occurrence count greater
than one (1), and the secondary branch is encountered before the
occurrence count is satisfied for the primary branch, the secondary
branch is taken, and the primary branch occurrence count is reset to
zero.

4 tcf

Storage Specification. You can specify which events should be
stored by the analyzer using the tsto command. You may specify
different storage qualifiers for each sequencer term, allowing you to
precisely control the information captured by the analyzer. If you don’t
specify a term number when specifying the storage qualifier, the
storage qualifier for all terms is set to the same qualifier.

State/Time Counts, Prestore. The state/time counting and
prestore facilities are identical to those provided in the easy
configuration; however, you must specify a complex expression instead
of an easy expression in qualifying the state count or prestore.

Resetting the Analyzer Configuration.

When the analyzer configuration is changed, the entire analyzer
specification is reset. You can perform a reset back to the default
sequencer setup in either configuration by using the tsq -r command.

When the trace configuration is changed, the count qualifier (tcq/xtcq)
is reset to "none" (instead of "time") if the clock mode (tck/xtck) is fast
(F) or very fast (VF).

Parameters

-e Specifying -e sets the analyzer to the easy
configuration.

-c Specifying -c sets the analyzer to the complex
configuration.

Defaults If no parameters are supplied, the current analyzer configuration is
displayed. After powerup or tinit , the default analyzer configuration is
tcf -e.

Examples To display the current analyzer configuration after powerup, type:

M> tcf

tcf 5

You will see:

 tcf -e

To set the analyzer to complex configuration, type:

M> tcf -c

Related Commands tarm (used to set the analyzer arm specification; this specification can
only be used in analyzer expressions in complex configuration)

tcq (sets the expression for the trace count qualifier in either analyzer
configuration)

telif (sets the global restart in easy configuration, secondary branch
condition in complex configuration)

tg (used to set a trigger expression in either analyzer configuration)

tif (sets primary branch specification in either analyzer configuration)

tpat (used to label complex analyzer expressions with a pattern name;
the pattern name is then used by the analyzer setup commands. Only
valid in complex configuration)

tpq (specifies trace prestore qualifier in either analyzer configuration)

trng (defines a range of values to be used in complex analyzer
expressions)

tsto (specifies a qualifier to be used when storing analyzer states)

tsq (used to modify the trace sequencer’s number of terms and trigger
term)

xtmo (used to append or disconnect the external analyzer to/from the
emulation analyzer)

6 tcf

1tck,xtck

Summary Specify analyzer master clock qualifiers

Syntax

Function The tck (xtck) command allows specification of clock qualifiers,
master edges and maximum clock speed of the master clocks used for
the emulation and external analyzers.

The tck command is included with the system for the purpose of
internal system initialization and system control through high-level
software interfaces; you should generally not use this command.

If you are using the optional external analyzer, you will use the xtck
command to set the clock parameters for your external analysis traces.

tck 1

Changing the clock speed with the s <SPEED> option affects the tcq
command parameters. When speed is set to sS (slow), the tcq
command may either count states or time. When speed is set to sF
(fast), the tcq command may be used to count states but not time. If
clock speed is set to sVF (very fast), tcq cannot count either state or
time and should be set to tcq none.

The clocking options operate on five different clock signals: J, K, L, M
and N. Clocks L, M, and N are generated by the emulator; the
emulation master clock edges are set at powerup for the particular
emulator being used and should not be changed by the user. The J and
K clocks are the clock inputs on the external trace probe (if one is
present). These clock signals should only be used to clock the external
trace; they should not be used to clock the emulation trace although it
may occasionally be useful to use the external clock signals as
qualifiers for the emulation trace. The L and M clocks may also be
used to clock the external trace as well as the emulation trace.

When several clock edges are specified, any one of the edges clocks the
given trace. If several qualifiers (l or h) are specified, they are ORed so
that the trace is clocked when any of the qualifiers are met.

Parameters

b If the b option is specified, only background
monitor code will be qualified into the analyzer.

u If the u option is specified, only user code will
be qualified into the analyzer. This is the
default.

Note The u and b qualifiers are ORed with all of the other qualifiers
specified.

s The s option indicates that the maximum clock
speed is to be modified per a one or two letter
code immediately following.

2 tck

S Specifies a clock speed of SLOW; less than or
equal to 16 MHz.

F Specifies a clock speed of FAST; between 16
MHz and 20 MHz.

VF Specifies a clock speed of VERY FAST;
between 20 MHz and 25 MHz.

r Specifying r indicates that the analyzer is to be
clocked on the rising edge of the indicated
clock signal.

f Specifying f indicates that the analyzer is to be
clocked on the falling edge of the indicated
clock signal.

x Specifying x indicates that the analyzer should
be clocked on both the rising and falling edges
of the indicated clock signal.

l Specifying l indicates that the analyzer should
only be clocked by other clock signals when
this clock signal is low (less positive/more
negative voltage). Used as a qualifier
(example: clock on rising edge of J only if K is
low).

h Specifying h indicates that the analyzer should
only be clocked by other clock signals when
this clock signal is high (more positive/less
negative voltage). Used as a qualifier
(example: clock on both edges of K only if J is
high).

CLOCK
SIGNALS

The r, f, x, l, and h operators may be used on
the following clock signals: J, K, L, M or N.

Defaults If no parameters are specified, the current clock definitions are
displayed. After powerup or tinit , the u option is always set. Other

tck 3

clock options set at initialization depend on the particular emulator in
use and whether or not there is an external analyzer present.

Examples To display the current settings of the master clocks after powerup or a
tinit , type:

M> tck

You will see:

tck -r L -ub -s S

Here, the emulation analyzer is set to clock both user and background
code into the analyzer on the rising edge of L; the clock speed is less
than 16 MHz.

To trace user code on the falling edge of L when M is high, at a speed
between 16 and 20 MHz, type:

M> tck -u -f L -h M -s F

!ERROR 1239 : tck - clock speed not available with current count qualifier

Since the clock speed is fast, we cannot count time with tcq. Let’s
disable tcq and re-execute the command. Type:

M> tcq none
M> tck -u -f L -h M -s F

Now the command completed successfully. Verify the settings by
typing:

M> tck

You will see:

tck -f L -h M -u -s F

Now let’s add tracing of background code to the current clock settings.

M> tck -ub

Verify the changes by typing:

M> tck

4 tck

You will see:

tck -f L -ub -s F

You’ll note that the M clock qualifier was removed. If you modify any
of the qualifier, speed, or edge parameters, you must re-specify the
entire configuration for that particular parameter. The rest of the trace
clock specification is left alone. (In the example above, we modified
the qualifiers by changing -u to -ub; part of the original qualifier spec
was -h M. To retain this, we would have to specify -ub -h M.)

Let’s modify the external analyzer clocks. Type:

M> xtmo -s

This defines the external analyzer as an independent state analyzer.
Now type:

M> xtck -r J -h K -s VF

Here, we’ve set the external analyzer to clock on the rising edge of J,
but only when K is high. The clock rate is set to a rate between 20 and
25 MHz.

Verify the setting by typing:

M> xtck

You will see:

tck -r J -h K -s VF

Related Commands ta (display current trace signal activity. This can be useful after you
have modified the clocks for the external analyzer; you can issue a ta
command and verify that you are seeing activity on the signals of
interest.)

tcq (used to specify trace count qualifier for states, time, or none;
maximum clock speed set in tck affect which tcq parameters are valid)

tsck (used to define slave clock signals used by the analyzer; tck
defines the master clock signals. Default mode for tsck is off on all
pods.)

tck 5

xtv (specifies threshold voltages for external analyzer input lines; must
be set correctly to ensure that the J and K clock signals are recognized)

xtmo (specifies mode of operation for the external analyzer; that is,
whether it acts as an independent analyzer or is appended to the
emulation analyzer)

6 tck

1tcq,xtcq

Summary Specify analyzer trace tag count qualifier

Syntax

Function The tcq (xtcq) command allows you to specify a qualifier for the
emulation (external) trace tag counter.

When the tag counter is active, the analyzer counts occurrences of the
expression you specify (which may include simple or complex
expressions (depending on analyzer configuration), time, or none).
Each time a trace state is stored, the value of the counter is also stored
and the counter is reset. The tag counter shares trace memory with
stored states, so only half as many states can be captured by the
analyzer when the tag counter is active. (The analyzer can store 1024
states with tcq none, 512 states otherwise.)

Parameters

<ANALYZER_
EXPR>

<ANALYZER_EXPR> allows you to specify
an expression to be counted by the trace tag
counter. This expression consists of a
<SIMPLE_EXPR> in analyzer easy
configuration and a <COMPLEX_EXPR> in
complex configuration. Refer to the syntax
pages for expressions for specific details of
analyzer expressions. In either configuration,
the expression may consist of the states any
(count all states) or none (disable trace tag
counting).

tcq 1

Note The count qualifier tcq arm is not permitted in any configuration.

time If you specify time rather than an analyzer
expression, the trace tag counter measures the
amount of time between stored states.

Note The tcq time qualifier is only available when the analyzer clock speed
is set to the slow (S) speed setting (default). If the clock speed is set to
very fast (VF), then trace tag counting must be turned off by specifying
tcq none. Refer to the tck command (analyzer clock specification) for
further information.

Defaults If no parameters are given, the current count qualifier is displayed.
Upon powerup or after tinit initialization, the clock qualifier defaults to
the state tcq time.

Examples If you want to view the current tcq setting, type:

M> tcq

You will see:

 tcq time

To see the effects of counting no states, you can set up the following
measurement (this measurement uses the 68000 sample program in
Appendix A):

M> tg addr=2000
M> t
M> tcq none

 Emulation trace started

2 tcq

U> r 2000
U> th

 Emulation trace halted

Now, view the trace listing from the above measurement by typing:

U> tl -d

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 0 002000 MOVEA.L 0001000,A2 ********* +
 1 002002 0000 supr prog ********* .
 2 002004 1000 supr prog ********* .
 3 002006 MOVEA.L 0001004,A3 ********* .
 4 001000 0000 supr data rd word ********* .
 5 001002 3000 supr data rd word ********* .
 6 002008 0000 supr prog ********* .
 7 00200a 1004 supr prog ********* .
 8 00200c MOVE.B #000,[A2] ********* .
 9 001004 0000 supr data rd word ********* .

Note the asterisks in the count field; no states were counted. To count
time intervals, set up the following measurement:

U> tcq time
U> tg

 tg addr=2000

U> t

 Emulation trace started

U> r 2000
U> th

 Emulation trace halted

U> tl -d

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 -1 000004 2000 supr data rd word --- .
 0 002000 MOVEA.L 0001000,A2 0.400 uS +
 1 002002 0000 supr prog 0.400 uS .
 2 002004 1000 supr prog 0.400 uS .
 3 002006 MOVEA.L 0001004,A3 0.400 uS .
 4 001000 0000 supr data rd word 0.400 uS .
 5 001002 3000 supr data rd word 0.400 uS .
 6 002008 0000 supr prog 0.400 uS .
 7 00200a 1004 supr prog 0.400 uS .
 8 00200c MOVE.B #000,[A2] 0.400 uS .

tcq 3

Here, the relative amount of time measured between storage states is
0.400 uS. You can change the trace listing so that the time intervals are
displayed as an absolute value relative to the trigger state instead of the
last state stored. Type:

U> tf addr,h mne count,a seq
U> tl -td

(We used the -t option to tl to ensure the top states of the trace are
displayed).

 Line addr,H 68000 Mnemonic count,A seq
 ----- ------ ----------------------------------- --------- ---
 -1 000004 2000 supr data rd word -0.400 uS .
 0 002000 MOVEA.L 0001000,A2 0 +
 1 002002 0000 supr prog 0.400 uS .
 2 002004 1000 supr prog 0.800 uS .
 3 002006 MOVEA.L 0001004,A3 1.200 uS .
 4 001000 0000 supr data rd word 1.600 uS .
 5 001002 3000 supr data rd word 2.000 uS .
 6 002008 0000 supr prog 2.400 uS .
 7 00200a 1004 supr prog 2.800 uS .
 8 00200c MOVE.B #000,[A2] 3.200 uS .

Note that the time interval is now measured relative to the trigger state.
Let’s reset the trace format to count relative:

U> tf addr,h mne count,r seq

You may want to count the number of accesses to the input pointer
address of 3000 hex. To make such a measurement, type:

U> tsto addr!=3000
U> tcq addr=3000
U> t

Emulation trace started

U> r 2000
U> th

Emulation trace halted

4 tcq

U> tl -td 30

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 -1 000004 2000 supr data rd word --- .
 0 002000 MOVEA.L 0001000,A2 0 +
 1 002002 0000 supr prog 0 .
 2 002004 1000 supr prog 0 .
 3 002006 MOVEA.L 0001004,A3 0 .
 4 001000 0000 supr data rd word 0 .
 5 001002 3000 supr data rd word 0 .
 6 002008 0000 supr prog 0 .
 7 00200a 1004 supr prog 0 .
 8 00200c MOVE.B #000,[A2] 0 .
 9 001004 0000 supr data rd word 0 .
 10 001006 4000 supr data rd word 0 .
 11 00200e 0000 supr prog 0 .
 12 002010 MOVE.B [A2],D0 0 .
 13 003000 00 supr data wr byte 1 .
 14 002012 CMPI.B #000,D0 0 .
 15 003000 00 supr data rd byte 1 .
 16 002014 0000 supr prog 0 .
 17 002016 BEQ.B 0002010 0 .
 18 002018 CMPI.B #**,D0 0 .
 19 002010 MOVE.B [A2],D0 0 .
 20 002012 CMPI.B #000,D0 0 .
 21 003000 00 supr data rd byte 1 .
 22 002014 0000 supr prog 0 .
 23 002016 BEQ.B 0002010 0 .
 24 002018 CMPI.B #**,D0 0 .
 25 002010 MOVE.B [A2],D0 0 .
 26 002012 CMPI.B #000,D0 0 .
 27 003000 00 supr data rd byte 1 .
 28 002014 0000 supr prog 0 .

In the above listing, we’ve seen four different accesses to the address
specified. Using the tf command, you can specify that these accesses
are to be displayed as a count relative to the trigger state (as with
counting time). Type:

U> tf addr,h mne count,a seq
U> tl -td 30

tcq 5

 Line addr,H 68000 Mnemonic count,A seq
 ----- ------ ----------------------------------- --------- ---
 -1 000004 2000 supr data rd word 0 .
 0 002000 MOVEA.L 0001000,A2 0 +
 1 002002 0000 supr prog 0 .
 2 002004 1000 supr prog 0 .
 3 002006 MOVEA.L 0001004,A3 0 .
 4 001000 0000 supr data rd word 0 .
 5 001002 3000 supr data rd word 0 .
 6 002008 0000 supr prog 0 .
 7 00200a 1004 supr prog 0 .
 8 00200c MOVE.B #000,[A2] 0 .
 9 001004 0000 supr data rd word 0 .
 10 001006 4000 supr data rd word 0 .
 11 00200e 0000 supr prog 0 .
 12 002010 MOVE.B [A2],D0 0 .
 13 003000 00 supr data wr byte 1 .
 14 002012 CMPI.B #000,D0 1 .
 15 003000 00 supr data rd byte 2 .
 16 002014 0000 supr prog 2 .
 17 002016 BEQ.B 0002010 2 .
 18 002018 CMPI.B #**,D0 2 .
 19 002010 MOVE.B [A2],D0 2 .
 20 002012 CMPI.B #000,D0 2 .
 21 003000 00 supr data rd byte 3 .
 22 002014 0000 supr prog 3 .
 23 002016 BEQ.B 0002010 3 .
 24 002018 CMPI.B #**,D0 3 .
 25 002010 MOVE.B [A2],D0 3 .
 26 002012 CMPI.B #000,D0 3 .
 27 003000 00 supr data rd byte 4 .
 28 002014 0000 supr prog 4 .

Again, four accesses to address 3000 hex were recorded; however, the
occurrences are now displayed relative to the trigger state.

You can set up more complex count patterns in complex configuration.
For example, with the 68000 program, you might wish to count
occurrences of the CLEAR_LOOP routine without storing the states
associated with the routine. To make this measurement, first set the
analyzer to complex configuration by typing:

M> tcf -c

You next set up the patterns to use in the complex expressions. You’ll
need a pattern to trigger on; make this the address of the OUTPUT
routine. You will also need a data value of 00 to count only nulls
written to the output area. In addition, you will need two range values.
Since the analyzer only has one range variable, you can roughly
approximate a second range variable by using don’t care values in a
pattern expression.

6 tcq

Set up the patterns and range expression as follows:

M> tpat p1 addr=2052
M> tpat p5 data=00
M> tpat p6 addr!=10000001xxxxxxy
M> trng addr=4000..40ff

Now specify the count qualifier. You want to count all states where the
address range 4000 through 40ff is accessed when data is equal to zero.
Type:

M> tcq r and p5

However, you don’t want to store any of the states associated with the
clear routine. Type:

M> tsto 2 !r and p6

To set up the sequencer to trigger on term 2 after the address 2052 is
encountered, type:

M> tif 1 p1 2
M> tif 2 never
M> tsq -t 2

Now, begin the measurement by typing:

M> t

 Emulation trace started

M> r 2000
U> m 3000=41

(If you don’t modify the input area, the output routine will never
execute; thus, the analyzer will not find its trigger and no measurement
will occur.)

U> th

 Emulation trace halted

U> tf addr,h mne count,R seq
U> tl -td 10

tcq 7

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 0 002052 MOVEA.L A3,A1 --- +
 1 001008 54 supr data rd byte 32 .
 2 001009 48 supr data rd byte 0 .
 3 00100a 49 supr data rd byte 0 .
 4 00100b 53 supr data rd byte 0 .
 5 00100c 20 supr data rd byte 0 .
 6 00100d 49 supr data rd byte 0 .
 7 00100e 53 supr data rd byte 0 .
 8 00100f 20 supr data rd byte 0 .
 9 001010 4d supr data rd byte 0 .

Looking at line number 1 of the trace listing, you will see that the
counter has a value of 32. Thus, the condition where address was in the
range 4000 through 40ff hex with data equal to zero occurred 32 times.
Notice that the counter resets on the next state, since no further
occurrences of the count pattern were found.

Related Commands tck (used to specify the clock source and clock parameters for the
analyzer)

tp (specifies position of the trigger within the trace; note that tcq
affects the number of states the analyzer can store and therefore may
affect trigger positioning)

tpat (assigns analyzer expressions to pattern names in complex
configuration; the pattern names are then used to specify qualifiers in
other analyzer commands such as tcq)

trng (specifies a range of values to be used as a complex mode
qualifier; this range definition can be used as a count qualifier by tcq)

tsq (used to manipulate the trace sequencer)

xtmo (used to choose the external analyzer mode; the external analyzer
can operate as an independent state or timing analyzer, or it may be
appended to the emulation analyzer. If appended, the xtcq command
has no effect and the tcq command specifies the count qualifier for
both analyzers.)

8 tcq

1telif,xtelif

Summary Specify sequencer secondary branch qualifier

Syntax

Function The telif (xtelif) command allows you to set the global restart qualifier
(in easy configuration) for the emulation (external) analyzer sequencer.
In complex configuration, telif (xtelif) lets you set the secondary
branch qualifier for each term of the emulation (external) analyzer
sequencer.

Note The telif command is used as a global restart qualifier in easy
configuration and a secondary branch qualifier in complex
configuration. The hierarchy of the tif and telif commands is such that
either branch will be taken if found before the other; however, if both
branches are found simultaneously, the tif branch is always taken over
the telif branch.

telif 1

When in easy configuration, the sequencer will restart by jumping to
sequencer term number one (1) when the expression specified by telif
occurs.

When in complex configuration, the sequencer will branch to the
sequencer level specified by the <BRANCH_TO_TERM> parameter
when the expression specified is found. There are always eight
sequencer terms available. Position of the trigger term is defined with
the tsq command. If both the tif and telif expressions are satisfied
simultaneously, the tif branch is taken; otherwise, branching occurs
according to which expression is first satisfied.

Note If the tif expression for the given <TERM#> has a <COUNT>
parameter other than one (1), the counter is reset to zero (0) if the telif
branch is taken before the occurrence counter parameter is satisfied.
For example, if the tif counter parameter is 7, and the tif expression has
been found 5 times, then the telif expression is satisfied, the telif
branch will be taken and the tif counter will be reset from 5 to 0. This
might cause you difficulty if you happen to have telif branching back to
the same term; your occurrence condition may or may not be satisfied.

Parameters (Easy
Configuration)

<SIMPLE_EXPR> <SIMPLE_EXPR> lets you directly specify an
analyzer expression to use as a global restart
qualifier. For example, <SIMPLE_EXPR>
might consist of the expression addr=2000.
For detailed information on specification of
simple expressions, refer to the expression
syntax pages.

Parameters (Complex
Configuration)

<TERM#> <TERM#> lets you specify a sequencer term
number to associate with the given

2 telif

<COMPLEX_EXPR> . When you associate a
term number with a complex expression, that
expression is only used as a secondary branch
qualifier at the sequencer level specified by the
term number. If you specify <TERM#>
without an expression, the secondary branch
qualifier currently associated with that term
number is displayed.

<COMPLEX_
EXPR>

<COMPLEX_EXPR> allows you to specify
complicated analyzer expressions made up of
relationships between simple analyzer
expressions. When you create a complex
expression, you must first assign pattern names
(p1-p8) to simple expressions using the tpat
command. You then use the pattern names and
relational operators to create complex
expressions. For example, if you wish to
branch from term 1 to term 2 when
address=2000 and data=20 or when
address=2000 and data=42, you would use the
following commands:

U> tpat p1 addr=2000 and data=20

U> tpat p2 addr=2000 and data=42

U> telif 1 p1 | p2 2

The | symbol represents an intra-set OR
operator. For more information on complex
expressions, operators, and pattern sets, refer to
the expression syntax pages within this manual.

telif 3

<BRANCH_
TO_TERM>

The <BRANCH_TO_TERM> parameter
allows you to indicate the branch destination
when the <COMPLEX_EXPR> is found. For
example, you may wish to have the sequencer
branch from term 1 to term 3 after the
expression is found. This would be specified as
telif 1 <COMPLEX_EXPR> 3. If you do not
specify a term number, the default is to
increment the sequencer level (telif <TERM#>
<COMPLEX_EXPR> (<TERM#> + 1)).

Defaults If telif is entered with no parameters, the global restart qualifier or
secondary branch qualifiers (depending on analyzer configuration) for
all sequencer levels are displayed. If telif is entered with only a
<TERM#> parameter in complex configuration, the secondary branch
qualifier for only that term number is displayed.

Upon initialization via a powerup sequence or the tinit command, the
secondary branch specifiers are set to telif never.

In complex configuration, if <BRANCH_TO_TERM> is not
specified, the default is (<TERM#> + 1).

Note At sequencer term number 8, the default branch to condition is
<TERM#> ; that is, branch to the same term.

4 telif

Examples When the analyzer is in easy configuration, the telif command allows
you to specify a global restart qualifier. This means that the analyzer
will restart the sequencer when the qualifier is satisfied. To illustrate
this, you can create an example using the 68000 sample program from
Appendix A. In this example, the analyzer first looks for the
READ_INPUT routine, then the OUTPUT routine. However, if
anything other than 41 hex ("A") or 42 hex ("B") is input to the input
area, the analyzer will restart; that is, it will ignore the OUTPUT
routine and begin searching again for the READ_INPUT routine. In
this manner, you can have the analyzer record the OUTPUT routine
only when an "A" or "B" is input. To create the example, type:

U> tsq -i 2

This command inserts an extra sequence term. (Remember that the
analyzer is initialized in easy configuration with a one term sequencer;
you will need two terms for this measurement.) Now you must set up
the branch qualifiers. Type:

U> tif 1 addr=2010
U> tif 2 addr=2052

You can use the UNRECOGNIZED set up routine as the qualifier for
restarting the analyzer. Type:

U> telif addr=2048

Now make the measurement:

U> t

Emulation trace started

U> r 2000

To illustrate the restart, modify the input area value to an unrecognized
command. Type:

U> m 3000=43

Now check the trace status:

U> ts

telif 5

You will see:

 --- Emulation Trace Status ---
 NEW User trace running
 Arm ignored
 Trigger not in memory
 Arm to trigger ?
 States ? (512) ?..?
 Sequence term 2
 Occurrence left 1

Note that the trigger was not found. Another way to view this is as
follows:

U> tl

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 ** Trigger not in memory **

Even though the analyzer saw the value 2052 hex, it was told to ignore
it by the telif command instructing it to return and search for 2010 hex.
Now you can try satisfying the analyzer conditions. Type:

U> m 3000=41

U> ts

 --- Emulation Trace Status ---
 NEW User trace complete
 Arm ignored
 Trigger in memory
 Arm to trigger ?
 States 512 (512) -1..510
 Sequence term 3
 Occurrence left 1

U> tl -d

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 -1 002038 ORI.B #**,[A2]+ --- .
 0 002052 MOVEA.L A3,A1 0.600 uS +
 1 002054 MOVE.B #020,D1 0.400 uS .
 2 002056 0020 supr prog 0.400 uS .
 3 002058 MOVEA.L A3,A5 0.400 uS .
 4 00205a MOVE.B #000,[A5]+ 0.400 uS .
 5 00205c 0000 supr prog 0.400 uS .
 6 00205e SUBI.W #00001,D1 0.400 uS .
 7 004000 00 supr data wr byte 0.400 uS .
 8 002060 0001 supr prog 0.400 uS .

6 telif

In this instance, the address 2048 was never encountered by the
analyzer, so the sequencer was not restarted. Therefore, the trigger was
found and the trace completed.

In complex configuration, the telif command allows you to branch to
any sequence term from any other term. The example below is based
on a problem found in an incorrectly loaded version of the program
from Appendix A. Apparently, when commands "A" or "B" are
entered, the program does not execute the output routine.

Let’s insert a bug in the program to simulate this problem. Type:

U> m -db 2039=34

You can set up a measurement to trace the problem; although only one
telif command is used as a restart branch, it illustrates the branching
possible. First, initialize the analyzer and set it to complex
configuration by typing:

U> tinit
U> tcf -c

Now you can set up the patterns necessary. We want a pattern to start
the sequencer which indicates that the program has begun executing, so
we’ll just use the starting address of 2000 hex. We want to recognize
that a command "A" or "B" has been read, so we will set up patterns for
the address and command values. (Note the use of the newly defined
lowerdata label; this is set up because we don’t know what resides at
location 3001 hex and don’t want to bother finding out.) Finally, we
define patterns for OUTPUT and NOT OUTPUT addresses.

U> tpat p1 addr=2000
U> tpat p2 addr=3000
U> tpat p3 addr=2052
U> tpat p4 addr!=2052
U> tlb lowerdata 40..47
U> tpat p5 lowerdata=41
U> tpat p6 lowerdata=42

Now you can set up the branch conditions. By issuing the commands
below, you will specify that the sequencer transitions from term 1 to
term 2 when the program start address is recognized. Next, the
sequencer will transition from term 2 to term 3 when either a command
"A" or command "B" is read from the input area. Finally, if the
OUTPUT routine is not recognized within 20 states, the analyzer

telif 7

triggers. If OUTPUT is recognized before 20 additional states occur,
no problem was found and the sequencer branches back to term 2 (this
is the telif branch), looking for another command input. Note that the
trigger position is set to the end of the trace; this allows you to see the
events leading up to the trigger.

U> tif 1 p1 2
U> tif 2 p2 and p5|p6 3
U> tif 3 p4 4 20
U> tif 4 never
U> tsq -t 4
U> telif 3 p3 2
U> tp e

Now you can begin the measurement. Type:

U> t

Emulation trace started

U> r 2000
U> m 3000=41

(This command effectively enters a command "A" into the input area.)

U> ts

8 telif

--- Emulation Trace Status ---
 NEW User trace complete
 Arm ignored
 Trigger in memory
 Arm to trigger ?
 States 1024 (1024) -1022..1
 Sequence term 4
 Occurrence left 1

U> tl -d -20..0

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 -20 003000 41 supr data rd byte 0.400 uS +
 -19 002014 ORI.B #0f8,D0 0.400 uS .
 -18 002016 67f8 supr prog 0.400 uS .
 -17 002018 CMPI.B #041,D0 0.400 uS .
 -16 00201a 0041 supr prog 0.800 uS .
 -15 00201c BEQ.W 000202c 0.400 uS .
 -14 00201e 000e supr prog 0.400 uS .
 -13 00202c MOVE.B #011,D0 0.600 uS .
 -12 00202e 0011 supr prog 0.400 uS .
 -11 002030 MOVEA.L #000001008,A0 0.400 uS .
 -10 002032 0000 supr prog 0.400 uS .
 -9 002034 1008 supr prog 0.400 uS .
 -8 002036 BRA.W 000206c 0.400 uS .
 -7 002038 0034 supr prog 0.400 uS .
 -6 00206c JMP 000200c 0.600 uS .
 -5 00206e 0000 supr prog 0.400 uS .
 -4 002070 200c supr prog 0.400 uS .
 -3 00200c MOVE.B #000,[A2] 0.400 uS .
 -2 00200e 0000 supr prog 0.400 uS .
 -1 002010 MOVE.B [A2],D0 0.400 uS .
 0 003000 00 supr data wr byte 0.400 uS +

The trigger was found, indicating that after command "A" was read
(line -20), the OUTPUT routine was not accessed within 20 states. If
you look at the listing, you will notice that at state -6, the program
jumped to address 206c and then back to 200c; therefore, it avoided the
output routine entirely. To track down the problem, you can use the
memory mnemonic display capability on the COMMAND_A routine:

U> m -dm 202c..204e

 00202c 103c0011 MOVE.B #011,D0
 002030 207c000010 MOVEA.L #000001008,A0
 002036 60000034 BRA.W 000206C
 00203a 103c0011 MOVE.B #011,D0
 00203e 207c000010 MOVEA.L #000001019,A0
 002044 6000000c BRA.W 0002052
 002048 103c000f MOVE.B #00F,D0
 00204c 207c000010 MOVEA.L #00000102A,A0

telif 9

Notice that the branch instruction at 2036 jumps to 206c. The problem
is the relative branch value in location 2039 hex; it should be 1a rather
than 34. You can repair this using the following command:

U> m -db 2039=1a

See the tsq syntax pages for further examples of complex configuration
telif commands.

Related Commands tarm (allows you to specify that the trig1 or trig2 signal will arm the
analyzer. This arm condition can then be used as part of the secondary
branch qualifier)

tcf (used to select whether the analyzer is operated in easy
configuration or complex configuration)

tif (used to specify a primary branch specification for the analyzer)

tg (used to set up a simple trigger qualifier in either analyzer
configuration. Specifying the tg command overrides the current
sequencer specification and will modify the existing telif qualifier
stored in sequence term number 1)

tpat (used to assign pattern names to simple expressions for use in
specifying complex expressions. These complex expressions are used
to specify telif qualifiers in analyzer complex configuration)

trng (used to set up an expression which assigns a range of values to a
range variable. This range information may be used in specifying
complex telif qualifiers)

tsto (specifies a global trace storage qualifier in both easy & complex
configurations; also specifies a trace storage qualifier for each
sequencer term in complex configuration. Used to control the types of
information stored by the analyzer)

tsq (used to manipulate the trace sequencer)

xtmo (specifies whether the external analyzer operates as an
independent state or timing analyzer or is appended to the emulation
analyzer. If appended to the emulation analyzer, the xtelif command is
invalid; all secondary branch qualifiers are specified with the telif
command)

10 telif

1tf,xtf

Summary Specify the trace list display format

Syntax

Function The tf (xtf) command allows you to specify which pieces of
information from the emulation (external) analyzer trace will be
displayed by tl (xtl) (trace list) commands.

Each format item specifies a column of the trace list display. See
"Parameters" for a list of the possible format items.

Note Changing the trace format DOES NOT change the type of information
captured by the analyzer; it only specifies how the captured data should
be displayed.

tf 1

Parameters

<LABEL> If you specify <LABEL> , the analyzer bits
associated with that label will be displayed in a
column of the trace listing with <LABEL> as
the column header.

<BASE> <BASE> allows you to specify the numeric
base in which <LABEL> is to display. The
choices are Y (binary), Q or O (octal), T
(decimal), H (hexadecimal), or A (ASCII). The
specifiers are not case sensitive. In ASCII
mode, non printing characters are displayed as
periods (.). If <BASE> is not specified, the
default base is hexadecimal.

<WIDTH> This option allows you to set the width of the
address field to values from 4 to 50. If your
emulator supports symbols, by setting
<WIDTH> , you can view symbols in the
address field when you display memory
mnemonic.

<LABEL> , <BASE>, and <WIDTH> must
each be separated by a comma (,).

mne If you specify mne, the disassembled
mnemonic for each instruction captured by the
analyzer is displayed. To ensure correct
operation of mne, the labels addr, data, stat
and extra (if applicable) must be defined
according to their power up defaults for the
target processor being emulated; otherwise,
incorrect disassembly may occur. The mne
format item is only allowed with the tf
command, and not with xtf .

count If you specify count, the state or tag time
counter defined by tcq is displayed in the trace
list. If you have designated prestore states via

2 tf

the tpq command, these prestore states will be
flagged in the count column of the trace list.

a Specifying count,a causes the state/time
counter to display the count in absolute mode;
that is, each counter value is shown relative to
the trigger state. Therefore, states before the
trigger will show as negative values and states
after the trigger will show as positive values.
Prestore states do not have counts.

r Specifying count,r causes the state/time
counter to display the count in relative mode;
that is, each counter value is shown relative to
the previous state. As with count,a, prestore
states do not have counts.

seq If you specify seq, an indicator is printed for
each state which caused the sequencer to branch
from one term to another (whether the same
term or a different term).

Defaults If no parameters are given, the current settings of the trace format are
displayed. Upon powerup or after a tinit command, the trace format is
tf addr,H mne count,R seq. (This command is for the 68000
emulator; other HP 64700-Series emulators may have slightly different
tf definitions upon initialization.)

Note Various tf format items may be concatenated as desired on the
command line by including a space between each format item.

Examples The examples below were created using the 68000 sample program in
Appendix A.

To view the default trace format, type:

M> tf

 tf addr,H mne count,R seq

tf 3

With this specification, there will be four information columns in the
trace list. The first will be address in hexadecimal; the second is
disassembled processor mnemonics, the third is the state/time counter
value, and the fourth is the trace sequencer status. To see the resulting
trace list, you can trace part of the sample program.

M> tg addr=2000
M> t

 Emulation trace started

M> r 2000
U> tl -d

You will see:

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 -1 000004 2000 supr data rd word --- .
 0 002000 MOVEA.L 0001000,A2 0.400 uS +
 1 002002 0000 supr prog 0.400 uS .
 2 002004 1000 supr prog 0.400 uS .
 3 002006 MOVEA.L 0001004,A3 0.400 uS .
 4 001000 0000 supr data rd word 0.400 uS .
 5 001002 3000 supr data rd word 0.400 uS .
 6 002008 0000 supr prog 0.400 uS .
 7 00200a 1004 supr prog 0.400 uS .
 8 00200c MOVE.B #000,[A2] 0.400 uS .

Perhaps all the information you need is the address and data values in
hexadecimal. To put the trace list in that format, type:

U> tf addr,H data,H
U> tl -td

You will see:

 Line addr,H data,H
 ----- ------ ------
 -1 000004 2000
 0 002000 2479
 1 002002 0000
 2 002004 1000
 3 002006 2679
 4 001000 0000
 5 001002 3000
 6 002008 0000
 7 00200a 1004
 8 00200c 14bc

4 tf

Or maybe you would rather have the address in decimal format and the
data in binary. Type:

U> tf addr,T data,Y
U> tl -td

You will see:

 Line addr,T data,Y
 ----- -------- ----------------
 -1 00000004 0010000000000000
 0 00008192 0010010001111001
 1 00008194 0000000000000000
 2 00008196 0001000000000000
 3 00008198 0010011001111001
 4 00004096 0000000000000000
 5 00004098 0011000000000000
 6 00008200 0000000000000000
 7 00008202 0001000000000100
 8 00008204 0001010010111100

The processor status information is not part of the default trace format.
To display this information in binary, type:

U> tf addr,H mne stat,Y
U> tl -td

You will see:

 Line addr,H 68000 Mnemonic stat,Y
 ----- ------ ----------------------------------- --------
 -1 000004 2000 supr data rd word 11101110
 0 002000 MOVEA.L 0001000,A2 11110110
 1 002002 0000 supr prog 11110110
 2 002004 1000 supr prog 11110110
 3 002006 MOVEA.L 0001004,A3 11110110
 4 001000 0000 supr data rd word 11101110
 5 001002 3000 supr data rd word 11101110
 6 002008 0000 supr prog 11110110
 7 00200a 1004 supr prog 11110110
 8 00200c MOVE.B #000,[A2] 11110110

When you define labels for groups of analyzer input lines using the tlb
command, you can use these labels in trace format specifications.
Suppose you are interested in seeing what types of ASCII information
are transferred on the lower byte of the data bus. Type:

U> tlb lowerdata 40..47

tf 5

Now you can use this label in the trace format. Type:

U> tf addr,H mne lowerdata,A
U> tl -td

You will see:

 Line addr,H 68000 Mnemonic lowerdata,A
 ----- ------ ----------------------------------- -----------
 -1 000004 2000 supr data rd word .
 0 002000 MOVEA.L 0001000,A2 $
 1 002002 0000 supr prog .
 2 002004 1000 supr prog .
 3 002006 MOVEA.L 0001004,A3 &
 4 001000 0000 supr data rd word .
 5 001002 3000 supr data rd word 0
 6 002008 0000 supr prog .
 7 00200a 1004 supr prog .
 8 00200c MOVE.B #000,[A2] .

You can display the trace sequencer information also. To do this along
with a status display in hex, type:

U> tf addr,H mne stat,H seq
U> tl -td

You will see:

 Line addr,H 68000 Mnemonic stat,H seq
 ----- ------ ----------------------------------- ------ ---
 -1 000004 2000 supr data rd word ee .
 0 002000 MOVEA.L 0001000,A2 f6 +
 1 002002 0000 supr prog f6 .
 2 002004 1000 supr prog f6 .
 3 002006 MOVEA.L 0001004,A3 f6 .
 4 001000 0000 supr data rd word ee .
 5 001002 3000 supr data rd word ee .
 6 002008 0000 supr prog f6 .
 7 00200a 1004 supr prog f6 .
 8 00200c MOVE.B #000,[A2] f6 .

In addition, state/time counter information can be displayed. Type:

U> tf addr,H mne count seq

(The counter display defaults to count absolute unless specified
otherwise.)

U> tl -td

6 tf

You will see:

 Line addr,H 68000 Mnemonic count,A seq
 ----- ------ ----------------------------------- --------- ---
 -1 000004 2000 supr data rd word -0.400 uS .
 0 002000 MOVEA.L 0001000,A2 0 +
 1 002002 0000 supr prog 0.400 uS .
 2 002004 1000 supr prog 0.800 uS .
 3 002006 MOVEA.L 0001004,A3 1.200 uS .
 4 001000 0000 supr data rd word 1.600 uS .
 5 001002 3000 supr data rd word 2.000 uS .
 6 002008 0000 supr prog 2.400 uS .
 7 00200a 1004 supr prog 2.800 uS .
 8 00200c MOVE.B #000,[A2] 3.200 uS .

To change the counter display to count relative, type:

U> tf addr,H mne count,R seq
U> tl -td 0..28

You will see:

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 -1 000004 2000 supr data rd word --- .
 0 002000 MOVEA.L 0001000,A2 0.400 uS +
 1 002002 0000 supr prog 0.400 uS .
 2 002004 1000 supr prog 0.400 uS .
 3 002006 MOVEA.L 0001004,A3 0.400 uS .
 4 001000 0000 supr data rd word 0.400 uS .
 5 001002 3000 supr data rd word 0.400 uS .
 6 002008 0000 supr prog 0.400 uS .
 7 00200a 1004 supr prog 0.400 uS .
 8 00200c MOVE.B #000,[A2] 0.400 uS .
 9 001004 0000 supr data rd word 0.400 uS .
 10 001006 4000 supr data rd word 0.400 uS .
 11 00200e 0000 supr prog 0.400 uS .
 12 002010 MOVE.B [A2],D0 0.400 uS .
 13 003000 00 supr data wr byte 0.400 uS .
 14 002012 CMPI.B #000,D0 0.400 uS .
 15 003000 00 supr data rd byte 0.400 uS .
 16 002014 0000 supr prog 0.400 uS .
 17 002016 BEQ.B 0002010 0.400 uS .
 18 002018 CMPI.B #**,D0 0.400 uS .
 19 002010 MOVE.B [A2],D0 0.600 uS .
 20 002012 CMPI.B #000,D0 0.400 uS .
 21 003000 00 supr data rd byte 0.400 uS .
 22 002014 0000 supr prog 0.400 uS .
 23 002016 BEQ.B 0002010 0.400 uS .
 24 002018 CMPI.B #**,D0 0.400 uS .
 25 002010 MOVE.B [A2],D0 0.600 uS .
 26 002012 CMPI.B #000,D0 0.400 uS .
 27 003000 00 supr data rd byte 0.400 uS .
 28 002014 0000 supr prog 0.400 uS .

tf 7

Notice above the recurring CMPI.B instruction at location 2018, even
though the branch at location 2016 is constantly taken back to location
2010. The CMPI.B instruction is showing up because the processor is
prefetching this instruction; the HP 64700 emulator for the 68000
cannot determine whether or not prefetched instructions have actually
been executed.

Related Commands tl,xtl (displays the current data in emulation (external) trace memory
according to the specifications set up by tf)

tlb,xtlb (define labels which represent groups of emulation (external)
analyzer input lines; these labels may be used to create special trace list
displays by including the labels in the tf definition)

xtmo (defines whether the external analyzer acts as an independent
state/timing analyzer or is appended to the emulation analyzer)

8 tf

1tg,xtg

Summary Specify a trigger condition for the analyzer

Syntax

Function The tg (xtg) command sets a trigger condition for the emulation
(external) analyzer.

When the expression specified occurs the number of times specified in
the <COUNT> parameter, the analyzer has found its trigger.

The tg command modifies the current analyzer sequence specification.
(Refer to the tsq command description for further information
regarding the trace sequencer.) The manner in which the sequencer is
modified is dependent upon the analyzer configuration.

If the analyzer is in easy configuration (tcf -e), the sequencer is reduced
to a one term sequence triggering upon exit from term 1. The global
restart qualifier is set to never (telif never); the primary branch
condition is set to the specified trigger expression (tif 1 <EXPR>
<COUNT>).

If the analyzer is in complex configuration (tcf -c), the sequencer is
modified to trigger upon entrance to the second sequence term (tsq -t
2), the secondary branch qualifier is set to never (telif 2 never), and the
primary branch qualifier for term number 1 is set to the specified
expression (tif 1 <EXPR> 2 <COUNT>).

The analyzer storage qualifier (tsto) is not affected in either
configuration; therefore, the analyzer uses the storage qualifier from the
most recent tsto command.

tg 1

Parameters

<ANALYZER_
EXPR>

<ANALYZER_EXPR> allows you to specify
the expression to recognize as a trigger. This
expression consists of a <SIMPLE_EXPR> in
analyzer easy configuration and a
<COMPLEX_EXPR> when the analyzer is in
complex configuration. Refer to the syntax
pages for expressions for specific details of
analyzer expressions. In either configuration,
the expression may consist of the states any or
all (trigger on any state) or none or never
(don’t trigger the analyzer).

<COUNT> You use the <COUNT> parameter to specify
the number of times the expression
<ANALYZER_EXPR> must occur before the
trigger condition is satisfied. <COUNT> is
specified as a decimal integer value; if
<COUNT> is not specified, the default is one
(1).

Defaults If no parameters are specified, the current primary branch condition for
sequencer term 1 is displayed. Note that this is not necessarily the
trigger condition, depending on the analyzer commands leading up to
this point. (For more help on this concept, refer to the examples below,
other trace command descriptions, and the Analyzer User’s Guide.)
After powerup or tinit initialization, tg is set to tg any.

Examples These examples were created using the sample 68000 program in
Appendix A.

When operating the analyzer in easy configuration, using the tg
command resets the sequencer to a two term sequence with a primary
branch in term number one corresponding to the trigger condition. For
example, you may have been working with the following analyzer
sequence:

U> tsq

2 tg

You will see:

 tif 1 addr=2010
 tif 2 addr=2052
 tsto all
 telif addr=2048

Here, there are two sequence terms, with conditional branches from
term 1 to term 2 and from term 2 to the trigger. There is also a global
restart specification. Now, if you want to trigger the analyzer on the
32nd occurrence of address 205A, type:

U> tg addr=205a 32

To see the new sequencer specification, type:

U> tsq

 tif 1 addr=205a 32
 tsto all
 telif never

To proceed with the measurement, type:

U> t

 Emulation trace started

U> r 2000
U> m 3000=41

(This command inputs a "command" value for the program; otherwise,
the program will never execute the routine at 205a hex.)

U> tl -d

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 0 00205a MOVE.B #000,[A5]+ --- +
 1 00205c 0000 supr prog 0.400 uS .
 2 00205e SUBI.W #00001,D1 0.400 uS .
 3 00401f 00 supr data wr byte 0.400 uS .
 4 002060 0001 supr prog 0.400 uS .
 5 002062 BNE.B 000205a 0.400 uS .
 6 002064 MOVE.B [A0]+,[A1]+ 0.400 uS .
 7 002066 SUBI.W #00001,D0 0.800 uS .
 8 001008 54 supr data rd byte 0.400 uS .
 9 004000 54 supr data wr byte 0.400 uS .

tg 3

The trigger condition was found; line 0 shows the 32nd iteration of the
trigger value.

In analyzer complex configuration, a similar situation exists. The tg
command defines simple sequence specification and overwrites
sequencer terms 1 and 2 to create the new specification. For example,
assume you were working with the following sequencer definition:

U> tsq

 tif 1 p1 2
 tif 2 p2 and p5 | p6 3
 tif 3 p4 4 20
 tif 4 never
 tif 5 any 6
 tif 6 any 7
 tif 7 any 8
 tif 8 never
 tsq -t 4
 tsto 1 all
 tsto 2 all
 tsto 3 all
 tsto 4 all
 tsto 5 all
 tsto 6 all
 tsto 7 all
 tsto 8 all
 telif 1 never
 telif 2 never
 telif 3 p3 2
 telif 4 never
 telif 5 never
 telif 6 never
 telif 7 never
 telif 8 never

Notice that the trigger term is in term number 4; terms 1 through 3 have
various branch qualifiers specified which determine how the sequencer
advances to term 4. Assume that you’ve fixed the problem you were
troubleshooting with this sequence specification; now you just want to
trigger the analyzer on any command. First, you may need an extra
pattern definition. Type:

U> tpat

 tpat p1 addr=2000
 tpat p2 addr=3000
 tpat p3 addr=2052
 tpat p4 addr!=2052
 tpat p5 lowerdata=41
 tpat p6 lowerdata=42
 tpat p7 any
 tpat p8 any

4 tg

To trigger on any command (even unrecognized ones) you will need a
pattern where data is not equal to zero. Type:

U> tlb lowerdata 40..47
U> tpat p7 lowerdata!=00

Now you can define the trigger. Type:

U> tg p2 and p7

Note An occurrence count can also be specified for complex configuration
triggers; this particular example does not illustrate a count.

You might want to see how the sequencer has been modified. Type:

U> tsq

 tif 1 p2 and p7 2
 tif 2 never
 tif 3 p4 4 20
 tif 4 never
 tif 5 any 6
 tif 6 any 7
 tif 7 any 8
 tif 8 never
 tsq -t 2
 tsto 1 all
 tsto 2 all
 tsto 3 all
 tsto 4 all
 tsto 5 all
 tsto 6 all
 tsto 7 all
 tsto 8 all
 telif 1 never
 telif 2 never
 telif 3 p3 2
 telif 4 never
 telif 5 never
 telif 6 never
 telif 7 never
 telif 8 never

Notice that term 2 has been redefined as the trigger term (tsq -t 2 and
tif 2 never). This was done automatically by the tg command.
Sequencer term number 1 has been redefined with the new trigger
branch qualifier of tif 1 p2 and p7 2.

tg 5

To proceed with the measurement, type:

U> t

 Emulation trace started

U> r 2000
U> m 3000=23

(This command inputs an "unrecognized" command to the program.)

U> tl -d 21

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 0 003000 41 supr data rd byte --- +
 1 002014 ORI.B #0f8,D0 0.400 uS .
 2 002016 67f8 supr prog 0.400 uS .
 3 002018 CMPI.B #041,D0 0.400 uS .
 4 00201a 0041 supr prog 0.800 uS .
 5 00201c BEQ.W 000202c 0.400 uS .
 6 00201e 000e supr prog 0.400 uS .
 7 00202c MOVE.B #011,D0 0.600 uS .
 8 00202e 0011 supr prog 0.400 uS .
 9 002030 MOVEA.L #000001008,A0 0.400 uS .
 10 002032 0000 supr prog 0.400 uS .
 11 002034 1008 supr prog 0.400 uS .
 12 002036 BRA.W 0002052 0.400 uS .
 13 002038 001a supr prog 0.400 uS .
 14 002052 MOVEA.L A3,A1 0.600 uS .
 15 002054 MOVE.B #020,D1 0.400 uS .
 16 002056 0020 supr prog 0.400 uS .
 17 002058 MOVEA.L A3,A5 0.400 uS .
 18 00205a MOVE.B #000,[A5]+ 0.400 uS .
 19 00205c 0000 supr prog 0.400 uS .
 20 00205e SUBI.W #00001,D1 0.400 uS .

At line number zero (0) of the trace listing, you can see that the
analyzer did in fact trigger on address 3000 with data not equal to zero.

Related Commands bc (allows you to break the emulator to the monitor when various
conditions occur; you can have the emulator break upon analyzer
trigger by specifying tgout trig1 and bc -e trig1 (or you could use the
trig2 signal to perform the same function))

t (starts an emulation trace)

tarm (used to specify an analyzer arm condition; the analyzer will not
trigger until the arm condition is received if you specify tg arm)

6 tg

tcf (used to specify whether the analyzer is operated in easy or complex
configuration)

tpat (used to assign pattern names to simple analyzer expressions; the
pattern names are then used in creating complex analyzer expressions
which could be used with the tg command to trigger the analyzer)

trng (used to specify a range of values for a particular group of
analyzer lines; this range may be used in specifying complex analyzer
expressions for triggering the analyzer)

tsto (specifies which states encountered by the analyzer should be
stored in trace memory)

tsq (used to manipulate the trace sequencer. Note that the sequencer’s
current status is affected by the tg command.)

xtmo (specifies whether the external analyzer is treated as a separate
state or timing analyzer or is appended to the emulation analyzer. If
appended to the emulation analyzer, the xtg command is no longer
valid; tg sets the trigger condition for both analyzers.)

tg 7

1Notes

8 tg

1tgout,xtgout

Summary Specify signals to drive upon analyzer trigger

Syntax

Function The tgout (xtgout) command allows you to specify which of the
internal trig1 and/or trig2 signals will be driven when the emulation
analyzer (external analyzer) finds its trigger condition.

Note that if the analyzer is receiving trig1 or trig 2 via the tarm
command, then that signal cannot be driven, although no error message
will be issued to that effect.

If the external analyzer has been appended to the emulation analyzer
via the xtmo command, then the xtgout command is invalid and the
tgout command specifies the trigger signals to be driven when either
analyzer finds its trigger.

Parameters

none If none is specified, neither the trig1 nor trig2
signals are driven when the analyzer finds its
trigger state.

trig1 If trig1 is specified, then the trig1 signal is
driven by the analyzer when the trigger state is
found.

tgout 1

trig2 If trig2 is specified, then the trig2 signal is
driven by the analyzer when the trigger state is
found.

To specify that both trig1 and trig2 should be
driven when the analyzer trigger is found,
concatenate both options with a comma: tgout
trig1,trig2 .

Defaults If no parameters are specified, the current state of tgout is displayed.
Upon powerup or tinit , the default state is tgout none.

Examples You may wish to have the emulator break to monitor execution upon
receipt of the analyzer trigger. Type the following:

M> tcf -e
M> bc -e trig1
M> tgout trig1
M> tg addr=2000
M> r

The emulator will break to the emulation monitor when it encounters
the trigger state of address 2000 hexadecimal.

To display the state of tgout after powerup, type:

M> tgout

You will see:

tgout none

Related Commands bc (allows you to specify a break to emulation monitor when the tgout
condition is satisfied)

bnct (specifies whether or not trig1 and trig2 are used to drive and/or
receive the rear panel BNC connector signal line)

cmbt (specifies whether or not trig1 and trig2 are used to drive and/or
receive the CMB trigger signal)

tarm (used to specify that the analyzer will be armed upon assertion or
negation of trig1 or trig2)

2 tgout

1th,xth

Summary Halt the analyzer

Syntax

Function The th (xth) command stops an emulation (external) trace.

If the external analyzer has been appended to the emulation analyzer
with the xtmo command, the xth command is invalid and th halts both
the emulation and external trace in process.

The analyzer will stop driving the trig1 and trig2 signals when the
trace is halted. This may cause you difficulty in making measurements
with instruments connected to the BNC. For example, if you set the
HP 64700 analyzer to drive trig1 (tgout trig1) when the trigger
condition is found, then pipe this to the BNC connector with bnct -d
trig1 , the BNC signal will be driven high when the HP 64700 analyzer
finds its trigger while a trace is in progress; it will fall low when the
trace finishes.

You should start the HP 64700 trace after you have begun the external
instrument’s measurement. Otherwise, the following measurement
errors may occur, depending on the type of external instrument you are
using:

With an edge sensitive instrument, starting the instrument
after the HP 64700 finds the analyzer trigger will mean that
the instrument never sees the transition of the trig1 line and
therefore never triggers.

With a level sensitive instrument, starting the instrument after
the HP 64700 finds the trigger will mean that the instrument
triggers immediately; although many states of interest have
probably already passed.

th 1

Note If the analyzer trigger specification has not been found, you will need
to use the th command to halt the analyzer before you can display the
trace list.

Parameters None.

Defaults Does not apply.

Examples To start an emulation trace, type:

M> t

You will see:
Emulation trace started

To stop the emulation trace, type:

M> th

You will see:
Emulation trace halted

Related Commands t (used to start an analyzer trace)

ts (allows you to determine the current status of the emulation analyzer)

tx (starts an analyzer trace upon receipt of the CMB execute signal)

x (starts a synchronous CMB execution)

2 th

1tif,xtif

Summary Specify sequencer primary branch qualifiers

Syntax

Function The tif (xtif) command allows you to set the primary branch qualifier
for each term of the emulation (external) analyzer sequencer.

tif 1

Note The telif command is used as a global restart qualifier in easy
configuration and a secondary branch qualifier in complex
configuration. The hierarchy of the tif and telif commands is such that
either branch will be taken if found before the other; however, if both
branches are found simultaneously, the tif branch is always taken over
the telif branch.

When in easy configuration, the sequencer will increment to the next
sequencer level when the expression specified by tif occurs the number
of times specified by the <COUNT> parameter. There is a maximum
of four sequence levels; only one is available at initialization. If you
require more sequencer levels, you must insert them with the tsq
command. (The term you are specifying a primary branch for with the
tif command must be present in the sequence.) The branch out of the
last sequencer term constitutes the trigger.

When in complex configuration, the sequencer will branch to the
sequencer level specified by the <BRANCH_TO_TERM> parameter
when the expression specified occurs the number of times indicated in
the <COUNT> parameter. There are always eight sequencer terms
available. Position of the trigger term is defined with the tsq
command.

Parameters (Easy
configuration)

<TERM#> When you specify <TERM#>, it indicates
which sequencer term’s primary branch
qualifier is to be modified with the qualifier
specified in the <SIMPLE_EXPR> parameter.
If you specify <TERM#> without an
expression, the tif qualifier for that term
number is displayed.

2 tif

<SIMPLE_EXPR> <SIMPLE_EXPR> lets you directly specify an
analyzer expression to use as a storage
qualifier. For example, <SIMPLE_EXPR>
might consist of the expression addr=2000.
For detailed information on specification of
simple expressions, refer to the expression
syntax pages.

<COUNT> You use the <COUNT> parameter to specify
the number of times the expression
<SIMPLE_EXPR> must occur before the
primary branch condition is satisfied.
<COUNT> is specified as a decimal integer
value; if <COUNT> is not specified, the
default is one (1).

Parameters (Complex
configuration)

<TERM#> <TERM#> lets you specify a sequencer term
number to associate with the given
<COMPLEX_EXPR> . When you associate a
term number with a complex expression, that
expression is used as a branch qualifier at the
sequencer level specified by the term number.
If you specify <TERM#> without an
expression, the complex expression currently
associated with that term number is displayed.

<COMPLEX_
EXPR>

<COMPLEX_EXPR> allows you to specify
complicated analyzer expressions made up of
relationships between simple analyzer
expressions. When you create a complex
expression, you must first assign pattern names
(p1-p8) to simple expressions using the tpat
command. You then use the pattern names and
relational operators to create complex
expressions. For example, if you wish to
branch from term 1 to term 2 when
address=2000 and data=20 or when

tif 3

address=2000 and data=42, you would use the
following commands:

U> tpat p1 addr=2000 and data=20
U> tpat p2 addr=2000 and data=42
U> tif 1 p1 | p2 2

The | symbol represents an intra-set OR
operator. For more information on complex
expressions, operators, and pattern sets, refer to
the expression syntax pages within this manual.

<BRANCH_
TO_TERM>

The <BRANCH_TO_TERM> parameter
allows you to indicate the branch destination
when the <COMPLEX_EXPR> is found. For
example, you may wish to have the sequencer
branch from term 1 to term 3 after the
expression is found. This would be specified as
tif 1 <COMPLEX_EXPR> 3 . If you do not
specify a term number, the default is to
increment the sequencer level (tif <TERM#>
<COMPLEX_EXPR> (<TERM#> + 1)).

<COUNT> You use the <COUNT> parameter to specify
the number of times the expression
<COMPLEX_EXPR> must occur before the
primary branch condition is satisfied.
<COUNT> is specified as a decimal integer
value; if <COUNT> is not specified, the
default is one (1).

Note If you specify the <COUNT> parameter, you must also specify a
<BRANCH_TO_TERM> parameter. If you omit the
<BRANCH_TO_TERM> parameter when specifying <COUNT>,
the system will interpret the count as "branch to term" information; if
greater than eight (8), an error will be returned; otherwise, you will
have just specified an incorrect branch.

4 tif

Defaults If tif is entered with no parameters, the primary branch qualifiers for all
sequencer levels are displayed. If tif is entered with only a <TERM#>
parameter, the primary branch qualifier for only that term number is
displayed.

Upon initialization via a powerup sequence or the tinit command, the
primary branch specifiers are set to tif <TERM#> any (<TERM#> +
1).

In complex configuration, if <BRANCH_TO_TERM> is not
specified, the default is (<TERM#> + 1); if <COUNT> is not
specified, the default count is one (1).

Note At sequencer term number 8, the default branch to condition is
<TERM#> ; that is, branch to the same term.

Examples Given the example 68000 program from appendix A, you might want
to trigger the analyzer when INIT and CLEAR are executed,
CLEARLOOP is executed 32 times, and LOOP is executed the number
of times necessary to move message A or message B. Further, you
would like to position the trigger so that you can see all of the states
recorded up until the trigger state.

You can set up some equates of values to labels for use in the trace
qualifiers. Type:

U> equ init=2000
U> equ clear=200c
U> equ clearloop=205a
U> equ loop=2064
U> equ clearcount=32T
U> equ abloop=17T
U> equ unrecloop=0f

tif 5

Now you will need to insert additional sequencer terms. (The analyzer
defaults to one sequence term in the easy configuration after
initialization via tinit or powerup.) Type:

U> tsq -i 2
U> tsq -i 3
U> tsq -i 4

Next, set up the sequencer branch conditions. With the commands
given below, the analyzer will first look for the INIT routine, then the
CLEAR routine, then it will look for 32 occurrences of the
CLEARLOOP routine and 17 occurrences of the LOOP routine before
triggering. Type:

U> tif 1 addr=init
U> tif 2 addr=clear
U> tif 2 addr=clearloop clearcount
U> tif 4 addr=loop abloop

You can view the sequencer modifications by typing:

U> tsq

 tif 1 addr=init
 tif 2 addr=clear
 tif 3 addr=clearloop 32
 tif 4 addr=loop 17
 tsto all
 telif never

To position the trigger state at the end of the trace memory, type:

U> tp e

Now you can start the measurement. Type:

M> t

 Emulation trace started

6 tif

M> r 2000
U> m 3000=41

With the m command, you have effectively input a "command" "A" to
the program. Now look at the trace listing:

U> tl -d -20..0

This command lists the last 21 states of the trace. You will see:

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 -20 002066 SUBI.W #00001,D0 0.400 uS .
 -19 001015 47 supr data rd byte 0.400 uS .
 -18 00400d 47 supr data wr byte 0.400 uS .
 -17 002068 0001 supr prog 0.400 uS .
 -16 00206a BNE.B 0002064 0.400 uS .
 -15 00206c JMP ******** 0.400 uS .
 -14 002064 MOVE.B [A0]+,[A1]+ 0.600 uS .
 -13 002066 SUBI.W #00001,D0 0.400 uS .
 -12 001016 45 supr data rd byte 0.400 uS .
 -11 00400e 45 supr data wr byte 0.400 uS .
 -10 002068 0001 supr prog 0.400 uS .
 -9 00206a BNE.B 0002064 0.400 uS .
 -8 00206c JMP ******** 0.400 uS .
 -7 002064 MOVE.B [A0]+,[A1]+ 0.600 uS .
 -6 002066 SUBI.W #00001,D0 0.400 uS .
 -5 001017 20 supr data rd byte 0.400 uS .
 -4 00400f 20 supr data wr byte 0.400 uS .
 -3 002068 0001 supr prog 0.400 uS .
 -2 00206a BNE.B 0002064 0.400 uS .
 -1 00206c JMP ******** 0.400 uS .
 0 002064 MOVE.B [A0]+,[A1]+ 0.600 uS +

The trigger condition is the last state; this is where the analyzer has
found the 17th occurrence of the LOOP routine.

In complex configuration, you can set up even more complex
qualifiers. These can be used to store only execution between certain
addresses (windowing) until the trace memory is full. For example, if
you want to store only execution in the output routines for each
command of the sample program, use the following procedure.

First, initialize the analyzer and set it to complex configuration. Type:

M> tinit
M> tcf -c

tif 7

We will need to define an analyzer label for the lower 8 data bits so we
can correctly qualify byte wide data transfers. Type:

M> tlb lowerdata 40..47

Now we can define the analyzer patterns necessary to set up the
sequencer and storage qualifiers. Type:

M> trng addr=4000..4011
M> tpat p1 addr=200c
M> tpat p2 addr=3000
M> tpat p3 addr=2018
M> tpat p4 addr=2064
M> tpat p5 lowerdata!=00
M> tpat p6 addr=202c
M> tpat p7 addr=203a
M> tpat p8 addr=2048

Next, you need to define the sequencer pattern. With the commands
below, the sequencer will jump from term 1 to term 2 when the
CLEAR routine is found. It will jump from term 2 to term 3 when a
command is read (that is, data not equal to zero) from address 3000
hex. Next, it will jump from term 3 to term 4 when the
PROCESS_COMM routine is found. The next jump is from term 4 to
term 5 when any of the command setup routines
(COMMAND_A,COMMAND_B, or UNRECOGNIZED) is found.
An increment from term 5 to term 6 occurs when the LOOP routine is
found. Finally, the sequencer will jump from term 6 back to term 2
when the CLEAR routine is found in subsequent passes.

You may wonder why the branch from term 6 is identical to that of
term 1. This is done so that different store specifications can be made.
The first time the CLEAR routine is found, it is stored. On subsequent
passes, the CLEAR routine address is not stored.

To set up the sequencer branches, type the following commands:

M> tif 1 p1 2
M> tif 2 p2 and p5 3
M> tif 3 p3 4
M> tif 4 p6|p7|p8 5
M> tif 5 p4 6
M> tif 6 p1 2

8 tif

Set the trigger term at term number 2 by typing:

M> tsq -t 2

Now you can set up the storage conditions. Type:

M> tsto 1 p1
M> tsto 2 p2 and p5
M> tsto 3 p3
M> tsto 4 p6|p7|p8
M> tsto 5 p4
M> tsto 6 r and p5

To see the messages written to the output area, alter the trace listing
format as follows:

M> tf addr,H mne lowerdata,A seq

Now you can begin the measurement. Type:

M> t

 Emulation trace started

M> r 2000

The next three commands effectively "input" three different commands
to the program. The first two are "command A" and "command B"; the
third is unrecognized.

U> m 3000=41
U> m 3000=42
U> m 3000=43

Now view the resultant trace list by typing:

U> tl -d 0..63

tif 9

This displays the first 64 trace states. You will see:

 Line addr,H 68000 Mnemonic lowerdata,A seq
 ----- ------ ----------------------------------- ----------- ---
 0 00200c MOVE.B #**,[A2] . +
 1 003000 41 supr data rd byte A +
 2 002018 CMPI.B #**,D0 . +
 3 00202c MOVE.B #**,D0 . +
 4 002064 MOVE.B [A0]+,[A1]+ . +
 5 004000 54 supr data wr byte T .
 6 004001 48 supr data wr byte H .
 7 004002 49 supr data wr byte I .
 8 004003 53 supr data wr byte S .
 9 004004 20 supr data wr byte . .
 10 004005 49 supr data wr byte I .
 11 004006 53 supr data wr byte S .
 12 004007 20 supr data wr byte . .
 13 004008 4d supr data wr byte M .
 14 004009 45 supr data wr byte E .
 15 00400a 53 supr data wr byte S .
 16 00400b 53 supr data wr byte S .
 17 00400c 41 supr data wr byte A .
 18 00400d 47 supr data wr byte G .
 19 00400e 45 supr data wr byte E .
 20 00400f 20 supr data wr byte . .
 21 004010 41 supr data wr byte A .
 22 00200c MOVE.B #**,[A2] . +
 23 003000 42 supr data rd byte B +
 24 002018 CMPI.B #**,D0 . +
 25 00203a MOVE.B #**,D0 . +
 26 002064 MOVE.B [A0]+,[A1]+ . +
 27 004000 54 supr data wr byte T .
 28 004001 48 supr data wr byte H .
 29 004002 49 supr data wr byte I .
 30 004003 53 supr data wr byte S .
 31 004004 20 supr data wr byte . .
 32 004005 49 supr data wr byte I .
 33 004006 53 supr data wr byte S .
 34 004007 20 supr data wr byte . .
 35 004008 4d supr data wr byte M .
 36 004009 45 supr data wr byte E .
 37 00400a 53 supr data wr byte S .
 38 00400b 53 supr data wr byte S .
 39 00400c 41 supr data wr byte A .
 40 00400d 47 supr data wr byte G .
 41 00400e 45 supr data wr byte E .
 42 00400f 20 supr data wr byte . .
 43 004010 42 supr data wr byte B .
 44 00200c MOVE.B #**,[A2] . +
 45 003000 43 supr data rd byte C +
 46 002018 CMPI.B #**,D0 . +
 47 002048 MOVE.B #**,D0 . +
 48 002064 MOVE.B [A0]+,[A1]+ . +
 49 004000 49 supr data wr byte I .
 50 004001 4e supr data wr byte N .
 51 004002 56 supr data wr byte V .
 52 004003 41 supr data wr byte A .
 53 004004 4c supr data wr byte L .
 54 004005 49 supr data wr byte I .
 55 004006 44 supr data wr byte D .
 56 004007 20 supr data wr byte . .

10 tif

 57 004008 43 supr data wr byte C .
 58 004009 4f supr data wr byte O .
 59 00400a 4d supr data wr byte M .
 60 00400b 4d supr data wr byte M .
 61 00400c 41 supr data wr byte A .
 62 00400d 4e supr data wr byte N .
 63 00400e 44 supr data wr byte D .

If you look at the lowerdata column, you will see commands "A", "B",
and "C" entered, and the respective output messages. The analyzer
would continue to store states every time a new command is entered
until trace memory is filled; then it will stop storing new states.

Related Commands tarm (allows you to specify that the trig1 or trig2 signal will arm the
analyzer. This arm condition can then be used as part of the primary
branch qualifier)

tcf (used to select whether the analyzer is operated in easy
configuration or complex configuration)

telif (used to specify a secondary branch specification for the analyzer)

tg (used to set up a simple trigger qualifier in either analyzer mode.
Specifying the tg command overrides the current sequencer
specification and will modify the existing tif qualifier stored in
sequence term number 1)

tpat (used to assign pattern names to simple expressions for use in
specifying complex expressions. These complex expressions are used
to specify tif qualifiers in analyzer complex configuration)

trng (used to set up an expression which assigns a range of values to a
range variable. This range information may be used in specifying
complex tif qualifiers)

tsto (specifies a global trace storage qualifier in both easy and complex
configurations; also specifies a trace storage qualifier for each
sequencer term in complex configuration. Used to control the types of
information stored by the analyzer)

tsq (used to manipulate the trace sequencer)

tif 11

xtmo (specifies whether the external analyzer operates as an
independent state or timing analyzer or is appended to the emulation
analyzer. If appended to the emulation analyzer, the xtif command is
invalid; all primary branch qualifiers are specified with the tif
command)

12 tif

1tinit

Summary Reset trace specification

Syntax

Function The tinit command restores all trace specification items to their
powerup default values. See "Defaults."

Parameters None.

Defaults These are the powerup defaults for the trace specification:

Analyzer arm
tarm always

Trace Configuration
tcf -e

Note that if the trace configuration was complex, it is reset to easy
configuration.

Analyzer master clocks
tck -r L -u -s S

The analyzer clock configuration at powerup is dependent on the
particular HP 64700-Series Emulator in use.

Trace count qualifier
tcq time

tinit 1

Trace format
tf addr,H mne count,R seq

The trace format may vary depending on the particular emulator in use.

Trace trigger
tg any
tgout none

Analyzer signal line labels
Emulation trace labels
tlb addr 0..23
tlb data 32..47
tlb stat 24..31

These labels will vary according to the emulator in use.

Trigger Position
tp s

Trace Prestore Qualifier
tpq none

Trace sequencer (includes branch and store conditions)
tif 1 any
tsto all
telif never

Trace slave clocks
tsck -o 1
tsck -o 2
tsck -o 3

Trace Upon Execute?
tx -d # ignore the execute signal

2 tinit

Examples To reset the analyzer parameters to the powerup defaults, type:

M> tinit

When the M> prompt returns, the analyzer has been re-initialized.

Related Commands init (used to initialize selected portions of the emulator or the entire
emulator, dependent on the options given)

tinit 3

1Notes

4 tinit

1tl, xtl

Summary Display/dump current trace list

Syntax

Function The tl (xtl) command allows you to display the current emulation
(external) analyzer trace list information. Options are available which
allow you to specify disassembly of instructions, number of states to
display and starting state to display.

You may also dump the trace list to a host computer using the -b
(binary) or -x (hexadecimal) options in conjunction with the HP 64000
transfer software. This allows you to perform post processing of the
trace data on your host. See Appendix B of this manual for details on
the binary and hexadecimal trace list formats.

tl 1

If the trigger specification has not yet been satisfied, the trace list
cannot be displayed until the trace in progress is halted with the th
command. Entering the tl command before the trace is halted results in
the message "** Trigger not in memory ** ."

If the analyzer was halted before any states were captured, the message
"** No trace data ** " is displayed upon entry of the tl command.

Parameters

t Display the top states of the trace. If you have
specified the number of states to display with
the <COUNT> parameter, that number of
states is displayed. Otherwise, the default is to
display the same number of states as the last
time tl was invoked to display part (but not all)
of the trace.

n Display the next states of the trace. If you have
specified the number of states to display with
the <COUNT> parameter, that number of
states is displayed. Otherwise, the same
number of states will be displayed as the last
time you used tl to display part (but not all) of
the trace.

<COUNT> <COUNT> allows you to specify the number
of states to display with the -t or -n options.

h Normally, column headers are displayed at the
top of each trace list. These label the state
number, count, and each trace field specified by
the tf command. Specifying the -h option
allows you to suppress printing of the column
headers.

d Some emulators do not disassemble instruction
data in the trace list automatically (the 68000
emulator falls into this category). Specifying
the -d option results in disassembly of
instructions starting with the first state to be

2 tl

displayed. Other emulators may ignore this
option.

o Certain emulators allow specific inverse
assembler options for trace list instruction
disassembly. By specifying -o and
<IALOPTS> , you can control disassembly of
the trace list. Refer to your Emulator User’s
Guide for specific information on the
<IALOPTS> supported by your emulator.
Some emulators, such as the 68000, do not
support this option.

b The -b option dumps the trace list in binary
format using the HP 64000 transfer protocol.
Refer to Appendix B of this manual for details
on the binary trace list format.

x The -x option dumps the trace list in
hexadecimal format using the HP 64000
transfer protocol. Refer to Appendix B of this
manual for details on the hexadecimal trace list
format.

Note The -h, -d, and -o options cannot be used with either -b or -x. Also, the
-b and -x options cannot be used together.

s This allows you to display symbols in the
address column.

a This allows you to display absolute addresses in
the address column. This is the default.

e This allows you to display symbols and
absolute addresses in the address column.

tl 3

Note The HP 64700 remembers the last option specified for the address field
(-s, -a, or -e), and uses it for the next tl command if no other option is
specified.

* If you specify * , the entire trace list is
displayed. Notice that tl does not recognize
displaying the entire trace as the last default
count. (This helps avoid filling your screen
with lots of trace list data on subsequent tl
commands.)

<LOWER_
STATE>

If you specify <LOWER_STATE> , the trace
display starts with that state.

<UPPER_
STATE>

If you specify both <LOWER_STATE> and
<UPPER_STATE>, the trace list contains all
states between the lower and upper state
inclusive.

Note If you specify a lower state, it must be done without using the -t or -n
options, as the Terminal Interface will interpret your lower state
specification as a <COUNT> parameter. However, you can specify a
range of states while using these options; the range will be interpreted
and displayed correctly.

Defaults If no parameters are given, the trace list is displayed starting with the
first state that has not yet been displayed. The number of states
displayed is identical to the number of states displayed by the last tl
command.

For example, if the last trace list display was tl -td 5, then the next tl
command will start the display at state 6 and display a total of five
states.

The -a option is in effect by default, which causes the address field to
display absolute addresses.

4 tl

The trace list also defaults to the last disassembly state used (that is, if
-d was specified previously in a tl command, it will continue).

Examples Using the 68000 sample program from Appendix A, we will show
some simple trace list examples.

First, we will set up a trigger at the start of the program and take a
trace. Type:

M> tg addr=2000

M> t

Emulation trace started

M> r 2000

U> tl

The first tl command you issue after a trace has begun always displays
the top of the trace:

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 -1 000004 2000 supr data rd word --- .
 0 002000 2479 supr prog 0.400 uS +
 1 002002 0000 supr prog 0.400 uS .
 2 002004 1000 supr prog 0.400 uS .
 3 002006 2679 supr prog 0.400 uS .
 4 001000 0000 supr data rd word 0.400 uS .
 5 001002 3000 supr data rd word 0.400 uS .
 6 002008 0000 supr prog 0.400 uS .
 7 00200a 1004 supr prog 0.400 uS .
 8 00200c 14bc supr prog 0.400 uS .

U> tl

The next tl command issued starts with the first state not yet displayed:

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 9 001004 0000 supr data rd word 0.400 uS .
 10 001006 4000 supr data rd word 0.400 uS .
 11 00200e 0000 supr prog 0.400 uS .
 12 002010 1012 supr prog 0.400 uS .
 13 003000 00 supr data wr byte 0.400 uS .
 14 002012 0c00 supr prog 0.400 uS .
 15 003000 00 supr data rd byte 0.400 uS .
 16 002014 0000 supr prog 0.400 uS .
 17 002016 67f8 supr prog 0.400 uS .
 18 002018 0c00 supr prog 0.400 uS .

tl 5

If you now want to return to the top of the trace list and disassemble
instructions, type:

U> tl -td

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 -1 000004 2000 supr data rd word --- .
 0 002000 MOVEA.L 0001000,A2 0.400 uS +
 1 002002 0000 supr prog 0.400 uS .
 2 002004 1000 supr prog 0.400 uS .
 3 002006 MOVEA.L 0001004,A3 0.400 uS .
 4 001000 0000 supr data rd word 0.400 uS .
 5 001002 3000 supr data rd word 0.400 uS .
 6 002008 0000 supr prog 0.400 uS .
 7 00200a 1004 supr prog 0.400 uS .
 8 00200c MOVE.B #000,[A2] 0.400 uS .

You can also vary the number of states displayed. Type:

U> tl -td 5

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 -1 000004 2000 supr data rd word --- .
 0 002000 MOVEA.L 0001000,A2 0.400 uS +
 1 002002 0000 supr prog 0.400 uS .
 2 002004 1000 supr prog 0.400 uS .
 3 002006 MOVEA.L 0001004,A3 0.400 uS .

Remember that tl always displays the same number of states displayed
the last time tl was executed (but did not display the whole trace).

U> tl -n

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 4 001000 0000 supr data rd word 0.400 uS .
 5 001002 3000 supr data rd word 0.400 uS .
 6 002008 0000 supr prog 0.400 uS .
 7 00200a 1004 supr prog 0.400 uS .
 8 00200c MOVE.B #000,[A2] 0.400 uS .

Notice that only five states were displayed.

6 tl

You can also display a range of states:

U> tl -td 20..30

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 20 002012 CMPI.B #000,D0 0.400 uS .
 21 003000 00 supr data rd byte 0.400 uS .
 22 002014 0000 supr prog 0.400 uS .
 23 002016 BEQ.B 0002010 0.400 uS .
 24 002018 CMPI.B #**,D0 0.400 uS .
 25 002010 MOVE.B [A2],D0 0.600 uS .
 26 002012 CMPI.B #000,D0 0.400 uS .
 27 003000 00 supr data rd byte 0.400 uS .
 28 002014 0000 supr prog 0.400 uS .
 29 002016 BEQ.B 0002010 0.400 uS .
 30 002018 CMPI.B #**,D0 0.400 uS .

Remember, tl displays the same number of states displayed last time a
partial trace was displayed, and starts with the next undisplayed state:

U> tl

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 31 002010 MOVE.B [A2],D0 0.600 uS .
 32 002012 CMPI.B #000,D0 0.400 uS .
 33 003000 00 supr data rd byte 0.400 uS .
 34 002014 0000 supr prog 0.400 uS .
 35 002016 BEQ.B 0002010 0.400 uS .
 36 002018 CMPI.B #**,D0 0.400 uS .
 37 002010 MOVE.B [A2],D0 0.600 uS .
 38 002012 CMPI.B #000,D0 0.400 uS .
 39 003000 00 supr data rd byte 0.400 uS .
 40 002014 0000 supr prog 0.400 uS .
 41 002016 BEQ.B 0002010 0.400 uS .

Notice that 11 states were displayed, starting with state 31.

tl 7

To suppress display of the column headers, use the -h option:

U> tl -h

 42 002018 CMPI.B #**,D0 0.400 uS .
 43 002010 MOVE.B [A2],D0 0.600 uS .
 44 002012 CMPI.B #000,D0 0.400 uS .
 45 003000 00 supr data rd byte 0.400 uS .
 46 002014 0000 supr prog 0.400 uS .
 47 002016 BEQ.B 0002010 0.400 uS .
 48 002018 CMPI.B #**,D0 0.400 uS .
 49 002010 MOVE.B [A2],D0 0.600 uS .
 50 002012 CMPI.B #000,D0 0.400 uS .
 51 003000 00 supr data rd byte 0.400 uS .
 52 002014 0000 supr prog 0.400 uS .

You can also combine options (subject to the restrictions listed above
under the note on binary and hexadecimal trace dump formats):

U> tl -hnd 12

 53 002016 BEQ.B 0002010 0.400 uS .
 54 002018 CMPI.B #**,D0 0.400 uS .
 55 002010 MOVE.B [A2],D0 0.600 uS .
 56 002012 CMPI.B #000,D0 0.400 uS .
 57 003000 00 supr data rd byte 0.400 uS .
 58 002014 0000 supr prog 0.400 uS .
 59 002016 BEQ.B 0002010 0.400 uS .
 60 002018 CMPI.B #**,D0 0.400 uS .
 61 002010 MOVE.B [A2],D0 0.600 uS .
 62 002012 CMPI.B #000,D0 0.400 uS .
 63 003000 00 supr data rd byte 0.400 uS .
 64 002014 0000 supr prog 0.400 uS .

Related Commands t (starts an analyzer trace)

tf (specifies the display format for the trace)

th (halts a trace in process)

tlb (defines analyzer signal line labels; these may be used by tf in
specifying the trace list display format)

ts (allows you to determine the current status of the emulation analyzer)

8 tl

1tlb,xtlb

Summary Define labels for analyzer input lines

Syntax

Function The tlb (xtlb) command allows you to define new labels for emulation
(external) analyzer lines, as well as display or delete previously defined
analyzer labels. Since labels are pre-defined for the address, data, and
status lines of the emulation analyzer, xtlb will be the more frequently
used command.

<BIT>..<BIT> specifies the range of analyzer lines to be associated
with <LABEL>. Note that it is not necessary to specify an upper
boundary; if only one bit number is given, it is the only one that will be
associated with the given label.

The external analyzer has 16 lines that may be assigned to labels,
numbered 0 through 15, where 0 is the least significant bit. The
emulation analyzer, dependent on the particular emulator in use, has
between 32 and 80 lines, where 0 is the least significant bit.

In emulation analyzer labels, no more than 32 signal lines may be
assigned to a given label. Also, an emulation analyzer label may not
cross more than a multiple of 16 boundary. For example, a label cannot
be defined for emulation analyzer lines 15..32 since one multiple of 16

tlb 1

boundary is crossed from 15 to 16 and another boundary is crossed
from 31 to 32.

Labels can be made to overlap; for example, you may wish to define a
label for a particular status line or data bit so that you can easily track
its state in the trace list. See examples below.

The number of labels that can be defined is limited only by system
memory.

Parameters

-d If you specify the -d option with a <LABEL>,
the named label is deleted from the definition
table. If the given <LABEL> is currently used
in a trace specification or in the trace display
format (tf command), it will not be deleted until
removed from all of the specifications. If
<LABEL> is given as *, all labels are deleted.

-n Specifying -n causes the named <LABEL> to
be defined with negative polarity. That is, after
label definition, bits that are a one (1) refer to a
signal lower than the threshold voltage and bits
that are a zero (0) refer to a signal higher than
the threshold voltage. If -n is not specified, the
named <LABEL> defaults to positive polarity.

<LABEL> You use <LABEL> to specify a name for the
group of signals indicated by <BIT_RANGE>.
<LABEL> is an alphanumeric designator;
upper and lower case are distinguished. Labels
can have up to 31 characters. If <LABEL> is
supplied without an option, the named label is
displayed; if <LABEL> is given as *, all of the
label definitions are displayed.

2 tlb

<BIT#> <BIT#> specifies first the lower (or only), then
upper, bits of the range to be assigned to the
named <LABEL>. If more than one bit is
specified (creating a range), the bit numbers are
separated by two periods (..).

Defaults If no parameters are specified, the current label definitions are
displayed. Upon emulator powerup, or after a tinit command, the only
label definitions are the address, data, and status labels needed to
operate the emulation and optional external analyzer. All new label
definitions default to positive polarity unless the -n option is given.

Examples For the 68000 example program in appendix A, you can define a trace
label overlapping the lower byte of the data label, then use this new
label in a trace format specification so that you can see the message
being written to the program’s output area after a command is entered.

First, set the analyzer to complex configuration:

M> tcf -c

Now, you can define a label which will overlap the lower data bus byte.
Type:

M> tlb lowerdata 40..47

To view the label definitions, type:

M> tlb

You will see:
Emulation trace labels
tlb addr 0..23
tlb data 32..47
tlb lowerdata 40..47
tlb stat 24..31

If you want to view only the output write data on the lower data byte in
ASCII format, type:

M> tf lowerdata,A

tlb 3

To set up an analyzer specification, you must first define the pattern
and ranges to trigger and qualify the trace. Type:

M> tpat p1 addr=4000
M> tpat p5 lowerdata!=0
M> trng addr=4000..4011
M> tg p1

The analyzer will trigger when it encounters address 4000 hex (the
output area); it will only store data not equal to zero that is read from or
written to the output area (thus, it will not store the CLEAR_LOOP
activity, but only the LOOP activity).

Now start the trace:

M> t

Emulation trace started

Run the program and input a command to the program’s input area by
typing:

M> r 2000
U> m 3000=41

To view the results, type:

U> tl 0..17

 Line lowerdata,A
----- -----------
 0 .
 1 T
 2 H
 3 I
 4 S
 5 .
 6 I
 7 S
 8 .
 9 M
 10 E
 11 S
 12 S
 13 A
 14 G
 15 E
 16 .
 17 A

4 tlb

Related Commands tf (used to specify the trace list format; tlb <LABEL> definitions can
be specified as output columns in the trace listing through the tf
command)

tpat (trace pattern definition; labels defined in tlb can be used in
pattern definitions)

trng (trace range, used to specify a range of valid values to be used in a
trace specification; labels defined by tlb may be used in defining the
trace range)

xtv (threshold voltage setting for analyzer lines; tlb can be used to
define positive and negative logic for labels encompassing those lines)

tlb 5

1Notes

6 tlb

1tp,xtp

Summary Specifies location of trigger state in trace list

Syntax

Function The tp (xtp) command allows you to specify where the trigger state
will be positioned within the emulation (external) trace list.

If the trace tag counter (tcq) is disabled, the position number specified
has an accuracy of +/- 3 states; otherwise, the accuracy is +/- 1 state.

Parameters

-a Specifying -a along with a <POSITION>
parameter indicates that the trigger is to be
placed in the trace list with <POSITION>
number of states after the trigger position to the
end of the trace. That is, there will be
<POSITION> number of states between the
trigger position and the end of the trace. This
option is invalid for the external analyzer set to
timing mode (xtmo -t).

-b Specifying -b along with a <POSITION>
parameter indicates that the trigger is to be
placed in the trace list with <POSITION>
number of states before the trigger position to

tp 1

the beginning of the trace. That is, there will be
<POSITION> number of states between the
beginning of the trace and the trigger position.
This option is invalid for the optional external
analyzer set to timing mode (xtmo -t).

<POSITION> <POSITION> is a decimal value from 0 to
1023 (or 0 to 511 if tcq is in effect) specifying
the number of states positioned before or after
the trigger state, depending on the option
supplied.

s If you specify the s parameter, the trigger is
positioned at the start of the trace list.

c If you specify the c parameter, the trigger is
positioned at the center of the trace list.

e If you specify the e parameter, the trigger is
positioned at the end of the trace list.

Note The s, c, and e options are the only position parameters that are valid
for the optional external analyzer set to timing mode (xtmo -t).

Defaults If no parameters are supplied, the current trigger position setting is
displayed. Upon powerup or after tinit , the trigger position is tp s.

Examples The following examples were constructed using the 68000 sample
program from Appendix A.

To display the current setting of the trigger position, type:

M> tp

2 tp

You will see:

tp s

Now let’s define a trigger and try various positioning methods to see
the results. Type:

M> tg addr=2018
M> t

Emulation trace started

M> r 2000
M> m 3000=41
M> tl -d

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 0 002018 CMPI.B #**,D0 --- +
 1 002010 MOVE.B [A2],D0 0.600 uS .
 2 002012 CMPI.B #000,D0 0.400 uS .
 3 003000 00 supr data rd byte 0.400 uS .
 4 002014 0000 supr prog 0.400 uS .
 5 002016 BEQ.B 0002010 0.400 uS .
 6 002018 CMPI.B #**,D0 0.400 uS .
 7 002010 MOVE.B [A2],D0 0.600 uS .
 8 002012 CMPI.B #000,D0 0.400 uS .
 9 003000 00 supr data rd byte 0.400 uS .

Note that the trigger (always state zero (0)) is positioned at the start of
the trace. Let’s move it to the end of the trace and redo the trace by
typing:

M> tp e
M> t

Emulation trace started

M> m 3000=41
M> tl -d -10..1

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 -4
 -3 003000 00 supr data rd byte --- .
 -2 002014 ORI.B #0f8,D0 0.400 uS .
 -1 002016 67f8 supr prog 0.400 uS .
 0 002018 CMPI.B #**,D0 0.400 uS +
 1

tp 3

Here, the trigger has been positioned at the last state of the trace (note
that state 1 is empty). Now position the trigger at the center of the trace
list:

M> tp c
M> t

Emulation trace started

M> m 3000=41
M> tl -d -10..10

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 -3
 -2 002014 0000 supr prog --- .
 -1 002016 67f8 supr prog 0.400 uS .
 0 002018 0c00 supr prog 0.400 uS +
 1 002010 1012 supr prog 0.600 uS .
 2 002012 0c00 supr prog 0.400 uS .
 3 003000 00 supr data rd byte 0.400 uS .
 4 002014 0000 supr prog 0.400 uS .
 5 002016 67f8 supr prog 0.400 uS .
 6 002018 0c00 supr prog 0.400 uS .
 7 002010 1012 supr prog 0.600 uS .
 8 002012 0c00 supr prog 0.400 uS .
 9 003000 00 supr data rd byte 0.400 uS .
 10 002014 0000 supr prog 0.400 uS .

Here the trigger is positioned approximately at the center of the trace
list, with roughly 255 states preceding the trigger and 255 states
following the trigger. (Note that not all of the states preceding the
trigger have been filled.) Next, let’s position the trigger using the
"after" and "before" parameters. Type:

M> tp -a 10
M> t

Emulation trace started

M> m 3000=41
M> tl -d

4 tp

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 0 002018 CMPI.B #**,D0 --- +
 1 002010 MOVE.B [A2],D0 0.600 uS .
 2 002012 CMPI.B #000,D0 0.400 uS .
 3 003000 00 supr data rd byte 0.400 uS .
 4 002014 0000 supr prog 0.400 uS .
 5 002016 BEQ.B 0002010 0.400 uS .
 6 002018 CMPI.B #**,D0 0.400 uS .
 7 002010 MOVE.B [A2],D0 0.600 uS .
 8 002012 CMPI.B #000,D0 0.400 uS .
 9 003000 00 supr data rd byte 0.400 uS .
 10 002014 0000 supr prog 0.400 uS .
 11 002016 BEQ.B 0002010 0.400 uS .
 12

We asked for 10 states after the trigger to the end of trace and got 11.
This is within the specified accuracy of the system. Now try the
"before" parameter. Type:

M> tp -b 5
M> t

Emulation trace started

M> m 3000=41
M> tl -d

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 -4 002012 CMPI.B #000,D0 --- .
 -3 003000 00 supr data rd byte 0.400 uS .
 -2 002014 0000 supr prog 0.400 uS .
 -1 002016 BEQ.B 0002010 0.400 uS .
 0 002018 CMPI.B #**,D0 0.400 uS +
 1 002010 MOVE.B [A2],D0 0.600 uS .
 2 002012 CMPI.B #000,D0 0.400 uS .
 3 003000 00 supr data rd byte 0.400 uS .
 4 002014 0000 supr prog 0.400 uS .
 5 002016 BEQ.B 0002010 0.400 uS .
 6 002018 CMPI.B #**,D0 0.400 uS .
 7 002010 MOVE.B [A2],D0 0.600 uS .
 8 002012 CMPI.B #000,D0 0.400 uS .
 9 003000 00 supr data rd byte 0.400 uS .
 10 002014 0000 supr prog 0.400 uS .
 11 002016 BEQ.B 0002010 0.400 uS .
 12 002018 CMPI.B #**,D0 0.400 uS .
 13 002010 MOVE.B [A2],D0 0.600 uS .
 14 002012 CMPI.B #000,D0 0.400 uS .
 15 003000 00 supr data rd byte 0.400 uS .
 16 002014 0000 supr prog 0.400 uS .

Here we specified five states before the trigger and got 4, which again
is within the system’s positioning accuracy.

tp 5

Related Commands tcq (used to specify the trace count qualifier; affects the number of
states that can be stored by the analyzer)

tg (defines the trigger expression)

tl (used to display the trace list)

tsq (used to specify the trigger position within the trace sequencer;
reference the sequencer operation when deciding where to position the
trigger in the trace list, if you want to capture all of the sequence
conditions)

xtmo (specifies whether the external analyzer acts independently or is
appended to the emulation analyzer)

6 tp

1tpat,xtpat

Summary Specify analyzer complex configuration patterns

Syntax

Function The tpat (xtpat) command allows you to assign pattern names to
simple emulation (external) analyzer expressions. These pattern names
are then used in building complex expressions for other analyzer
commands.

The tpat command is only valid in the complex analyzer configuration
(tcf -c).

Parameters

p1 - p8 The labels p1 through p8 are the names
assigned to each simple expression. (The p in
the label must be lowercase.)

tpat 1

<SIMPLE_EXPR> <SIMPLE_EXPR> lets you directly specify an
analyzer expression to use as a storage
qualifier. For example, <SIMPLE_EXPR>
might consist of the expression addr=2000.
For detailed information on specification of
simple expressions, refer to the expression
syntax pages.

Note Simple expressions assigned to patterns are restricted from the standard
<SIMPLE_EXPR> definition in that you may not assign a range of
values to a given label; only one value is permitted. (However, in
actual practice, it is sometimes possible to circumvent this restriction
by careful choice of don’t care values in the expression.)

Also, patterns can be specified that encompass more bits than the
number of bits defined for the specified label. When this occurs, the
upper bits are truncated.

Defaults If no parameters are given, or if the pattern name is given as * , all eight
of the current pattern assignments are displayed. If one of the pattern
names is given, the expression assigned to that pattern is displayed.

Upon entering complex configuration after powerup or a tinit
initialization, all eight patterns are defined as tpat <pattern#> any.

Examples If you’re debugging the 68000 assembler program shown in Appendix
A, you might wish to trigger the analyzer upon entering any of the
output message setup routines, COMMAND_A, COMMAND_B, or
UNRECOGNIZED. In addition, you can equate these procedure
names to the address locations so they will be easier to remember.

2 tpat

First, set up the equates by typing:

M> equ commanda=202c
M> equ commandb=203a
M> equ unrecognized=2048

To use the pattern assignment command (tpat) you must put the
analyzer in complex configuration. Type:

M> tcf -c

Now set up the pattern assignments using the previously defined
equates:

M> tpat p1 addr=commanda
M> tpat p2 addr=commandb
M> tpat p3 addr=unrecognized

To set up a trigger when any one of the above patterns will trigger the
analyzer, type:

M> tg p1|p2|p3

Here, the intraset OR operator (|) is used to relate the patterns. Refer to
the syntax pages for <COMPLEX_EXPR> for details on how patterns
are combined to create complex expressions.

In another instance (still using the 68000 program from Appendix A),
you might want to be able to trigger the analyzer on various commands
received at the command input location (3000 hex). First, set up the
equates by typing:

M> equ inputpointer=3000
M> equ inputa=41
M> equ inputb=42
M> equ notacommand=00

Now set up various pattern combinations:

M> tpat p1 addr=inputpointer and data=inputa
M> tpat p2 addr=inputpointer and data=inputb
M> tpat p3 addr=inputpointer
M> tpat p5 data=inputa
M> tpat p6 data=inputb
M> tpat p7 data!=notacommand
M> tpat p8 data=notacommand

tpat 3

To trigger the analyzer when address=3000 and data=41 (an "A"
command):

M> tg p1

Or, you could trigger on a "B" command:

M> tg p2

If you want to trigger when an unrecognized command is read, type:

M> tg p3 and p5~p6~p8

Or, you could trigger when either command "A" or command "B" is
read:

M> tg p3 and p5|p6

You might want to trigger if any command is read:

M> tg p3 and p7

You should note that it is NOT necessary to use equates to associate
names with numeric patterns. To define p1 and p2 above, you could
type the following with the same results:

M> tpat p1 addr=3000 and data=41
M> tpat p2 addr=3000 and data=42

Related Commands tcf (defines whether the analyzer is in easy configuration or complex
configuration; the tpat command is only valid in complex
configuration)

tcq (specifies a trace count qualifier; tpat patterns may be used in
complex configuration qualifier specification)

telif (specifies a secondary branch qualifier in analyzer complex
configuration; tpat patterns may be used in qualifier specification)

tg (used to specify a simple trigger in either easy configuration or
complex configuration; tpat patterns may be used in complex
configuration trigger specification)

tif (used to specify a primary branch qualifier in either analyzer
configuration; tpat patterns may be used in complex configuration
branch specifications)

4 tpat

tpq (specifies a trace prestore qualifier; tpat patterns may be used in
qualifier specification)

trng (defines a range of values on a set of analyzer input lines; this
range may be used in conjunction with the patterns defined by tpat in
setting up complex analysis qualifiers)

tsq (used to manipulate the trace sequencer)

tsto (used to define global storage qualifiers in both analyzer
configurations; may also be used to define storage qualifiers for each
sequencer level in complex configuration. The patterns defined by tpat
may be used in complex configuration storage qualifier definition.)

xtmo (determines whether the external analyzer acts as an independent
state or timing analyzer or is appended to the emulation analyzer. If
appended, the xtpat command is no longer valid; tpat defines patterns
to be used across both analyzers.)

tpat 5

1Notes

6 tpat

1tpq,xtpq

Summary Specify trace prestore qualifier

Syntax

Function The tpq (xtpq) command allows you to specify a prestore qualifier for
the emulation (external) trace.

During the trace, the analyzer fills a two stage pipe with states that
satisfy the prestore qualifier. Each time a trace state is stored into the
trace buffer, the prestore qualifier is also stored and then cleared.
Therefore, up to two prestore events may be stored for each normal

tpq 1

store event; the prestore events in the trace buffer will correspond to the
most recent states that satisfied the prestore qualifier immediately prior
to a store event but following the previous store event.

Since the prestore memory shares trace memory with store events, the
number of store events recorded will be reduced by the number of
prestore states recorded.

Parameters

<ANALYZER_
EXPR>

<ANALYZER_EXPR> allows you to specify
the expression to be recognized as a prestore
state. This expression consists of a
<SIMPLE_EXPR> in analyzer easy
configuration and a <COMPLEX_EXPR>
when the analyzer is in complex configuration.
Refer to the syntax pages for expressions for
specific details of analyzer expressions. In
either configuration, the expression may consist
of the states any (prestore all states) or none
(disable prestore).

Defaults If no parameters are given, the current prestore qualifier setting is
displayed. Upon powerup or after tinit initialization, the prestore
qualifier defaults to tpq none.

Examples With the example 68000 program given in Appendix A, you might
want to prestore the command input that leads to the output routines.
To do this, you first need to set up a trigger state:

U> tg addr=2000

Then, set up a storage qualifier that will store only the message setup
and output routines:

U> tsto addr=202c..2071

2 tpq

Note Specifying a storage qualifier of tsto any will not produce the desired
results; the prestore qualifier will be ignored in favor of the regular
storage event.

Now set up the prestore qualifier by typing:

U> tpq addr=3000

Now you can proceed with the measurement. Type:

U> t

Emulation trace started

U> r 2000
U> m 3000=21

(This inputs a "command" value to the program.)

U> tl -d

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 0 002000 MOVEA.L ********,A2 --- +
 1 003000 00 supr data rd byte prestore .
 2 003000 21 supr data rd byte prestore .
 3 002048 MOVE.B #00f,D0 4.800 S .
 4 00204a 000f supr prog 0.400 uS .
 5 00204c MOVEA.L #00000102a,A0 0.400 uS .
 6 00204e 0000 supr prog 0.400 uS .
 7 002050 102a supr prog 0.400 uS .
 8 002052 MOVEA.L A3,A1 0.400 uS .
 9 002054 MOVE.B #020,D1 0.400 uS .

The prestore events are shown on lines 1 and 2.

You can make similar measurements within the analyzer’s complex
configuration. Using the pattern specification capability, you can
narrow down the prestore selections. For example, you might want to
prestore only those command inputs which are "unrecognized"; that is,
they are neither 41 hex, 42 hex, or 00 hex. First, you must set the
analyzer to complex configuration. Type:

U> tcf -c

tpq 3

When the analyzer enters complex configuration, the tcq count
qualifier is set to none. If it is not initialized to some other qualifier,
the prestore labels will not be shown in the trace display. For this
example, you can use the count time qualifier. Type:

U> tcq time

Now you need to define patterns for use in the trigger, store, and
prestore qualifiers. Type:

U> tpat p1 addr=2000
U> tpat p2 addr=3000
U> trng addr=202c..2071
U> tlb lowerdata 40..47
U> tpat p5 lowerdata=41
U> tpat p6 lowerdata=42
U> tpat p7 lowerdata=00

To set up the prestore qualifier so that only "unrecognized" commands
will be prestored, you need to construct an expression where address
=3000 and data is not equal to 41 or 42 or 00. Type:

U> tpq p2 and p5~p6~p7

Next, set up the analyzer trigger condition:

U> tif 1 p1 2
U> tif 2 never
U> tsq -t 2

You want the analyzer to store only the output routines. (If you let the
analyzer store all information, the prestore information will be
overridden in favor of the regular store states.) Type:

U> tsto 2 r

To proceed with the measurement, type:

U> t

Emulation trace started

U> r 2000
U> m 3000=41

Here, we have input a "command" of 41 -- one of the values that should
NOT result in a prestore state.

U> tl -d

4 tpq

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 0 002000 MOVEA.L ********,A2 --- +
 1 00202c MOVE.B #011,D0 3.054 S .
 2 00202e 0011 supr prog 0.400 uS .
 3 002030 MOVEA.L #000001008,A0 0.400 uS .
 4 002032 0000 supr prog 0.400 uS .
 5 002034 1008 supr prog 0.400 uS .
 6 002036 BRA.W 0002052 0.400 uS .
 7 002038 001a supr prog 0.400 uS .
 8 002052 MOVEA.L A3,A1 0.600 uS .
 9 002054 MOVE.B #020,D1 0.400 uS .

Since the command input (41 hex) did not satisfy the prestore qualifier,
no prestore states are shown in the trace listing. Now you can try it
again with an "unrecognized" command. Type:

U> t

Emulation trace started

U> r 2000
U> m 3000=21
U> tl -d

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 -1 000004 2000 supr data rd word --- .
 0 002000 MOVEA.L ********,A2 0.400 uS +
 1 003000 21 supr data rd byte prestore .
 2 002048 MOVE.B #00f,D0 3.527 S .
 3 00204a 000f supr prog 0.400 uS .
 4 00204c MOVEA.L #00000102a,A0 0.400 uS .
 5 00204e 0000 supr prog 0.400 uS .
 6 002050 102a supr prog 0.400 uS .
 7 002052 MOVEA.L A3,A1 0.400 uS .
 8 002054 MOVE.B #020,D1 0.400 uS .

The prestore state is shown on line 1 of the trace listing.

Related Commands tcf (specifies whether the analyzer is to operate in easy configuration or
complex configuration)

tsq (used to manipulate the trace sequencer)

tsto (used to specify a global storage qualifier for both easy
configuration and complex configuration; also used to specify
individual sequence term storage qualifiers in complex configuration)

xtmo (specifies whether the external analyzer will act as an
independent state or timing analyzer or whether it will be appended to

tpq 5

the emulation analyzer. If appended to the emulation analyzer, the
xtpq command has no effect; the tpq command sets the prestore
qualifier for both analyzers.)

6 tpq

1trng,xtrng

Summary Specify a complex configuration range qualifier

Syntax

Function The trng (xtrng) command lets you specify a range of acceptable
values for an emulation (external) trace label. This range may then be
used in complex qualifiers for the trace specification. The trng (xtrng)
command is only available in the analyzer’s complex configuration (see
tcf syntax pages).

There is no need for a not equals operator in specifying ranges, as the
trace specification commands which allow "range" as a parameter also
accept "not range" in the form !r .

If the optional external analyzer has been appended to the emulation
analyzer via the xtmo command, the xtrng command is invalid; trng
sets a range pattern to be used by both analyzers.

Parameters

any When you specify any, all possible patterns on
all labels will satisfy the range specification.

<LABEL> <LABEL> specifies the group of signal lines to
which a range is assigned. These might be
addr, data, or stat; or, they may be a label that
you have defined. See the tlb command syntax
pages for information on defining labels.

trng 1

<EXPR> <EXPR> allows you to specify first the lower,
then upper, boundaries of the range of patterns
to be considered valid range entries. For
example, to define the address range of 2000
through 21ff hex, you would specify the
<EXPR> range as 2000..21ff. Note the two
periods used as a separator between the lower
and upper range bounds; no additional spaces
are included.

Also, the first boundary specified must be less
than or equal to the second boundary specified
(example: trng addr=2000..21ff is correct;
trng addr=21ff..2000 is incorrect). You may
also specify a single value for the range
(example: trng addr=2000).

Refer to the <EXPR> syntax pages in this
manual for details on expression syntax.

Ranges can be specified that encompass more
bits than the number of bits defined for the
specified label.

Defaults If no parameters are supplied, the current range definition is displayed.
After powerup or tinit initialization, the trng command is set to trng
any. (Note that trng is not directly available after analyzer
initialization; the analyzer is set to easy configuration when initialized.
You must then switch to complex configuration to access trng .)

Note The tcf -e (set trace configuration to easy) command also will reset
trng . In other words, any trng defined when the analyzer was in
complex configuration is destroyed when the analyzer is set to easy
configuration; you cannot return to complex configuration and use the
old trng .

2 trng

Examples With the 68000 sample program in Appendix A, you may want to
trigger the analyzer on any access to the message storage area located
from 1008 through 1038 hexadecimal. To do this, type the following
commands:

M> tcf -c
M> trng addr=1008..1038
M> tg r
M> t

Emulation trace started

M> r 2000
U> m 3000=41
U> tl -d

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 0 001008 54 supr data rd byte --- +
 1 004000 54 supr data wr byte 0.400 uS .
 2 002068 ORI.B #0f8,D1 0.400 uS .
 3 00206a 66f8 supr prog 0.400 uS .
 4 00206c JMP ******** 0.400 uS .
 5 002064 MOVE.B [A0]+,[A1]+ 0.600 uS .
 6 002066 SUBI.W #00001,D0 0.400 uS .
 7 001009 48 supr data rd byte 0.400 uS .
 8 004001 48 supr data wr byte 0.400 uS .
 9 002068 0001 supr prog 0.400 uS .

The analyzer is set to complex configuration (it must be in complex
configuration to use the trng command); then "range" is defined as the
addresses from 1008 through 1038 hex. The emulation analyzer trigger
is then defined as the occurrence of range; a trace is started. You can
see that the trigger was found in line number 0 of the trace listing; the
program read the first byte of the message from the data area.

Related Commands tcf (sets analyzer to complex or easy configuration; analyzer must be in
complex configuration to utilize the trng command)

tcq (trace state/time counter; in complex configuration, states can be
counted using the range specification)

telif (specifies the sequencer secondary branch expression; in complex
configuration, this expression can include references to the range)

tg (specifies analyzer trigger; may trigger on references to range)

trng 3

tif (specifies the sequencer primary branch expression; in complex
configuration, branch expression may include range qualifier)

tpat (trace pattern definition; assigns pattern names to simple
expressions for later use in analyzer specifications. tpat essentially
commits only one pattern to a label; whereas trng allows a range of
values to be assigned to the range pattern)

tpq (defines trace prestore qualifier; the range specification may be
used in complex configuration prestore qualifier expressions)

tsq (trace sequencer definition)

tsto (defines trace storage qualifier; that is, specifies exactly what states
are actually to be stored by the analyzer. In complex configuration, this
can include states that fall within the specification defined by trng)

xtmo (specifies the mode of the external analyzer; either an
independent state or timing analyzer or an analyzer appended to the
emulation analyzer)

4 trng

1ts,xts

Summary Display status of analysis trace

Syntax

Function The ts (xts) command allows you to determine the current status of the
emulation (external) analyzer.

Trace Status Displays

The emulation and external state trace status is displayed in the
following form:

---[Emulation | External] Trace Status---
(NEW) [User | CMB] trace [complete | halted | running]
Arm [ignored | (not) received]
Trigger (not) found
Arm to trigger armcount
States visible (history) first..last
Sequence term term
Count remaining count

The external timing trace status is displayed in the following form:

--- External Timing Trace Status---
(NEW) [User | CMB] trace [complete | halted | running]
Arm [ignored | (not) received]
trace status
Arm to trigger armcount
Samples visible (history) first..last

The trace status header indicates whether this status is for the emulation
or external state trace.

ts 1

Whether the trace status is displayed as Emulation or External depends
on:

Presence of the optional external analyzer.

Whether you entered the ts (emulation trace status) or xts
(external trace status) command.

The current mode setting of the optional external analyzer. If
set as a state analyzer (xtmo -s), you can have an external state
trace status. If set as a timing analyzer (xtmo -t), there is a
different display for timing status (described below). If
appended to the emulation analyzer, the xts command is
invalid; the external analyzer acts as an extension to the
emulation analyzer and their status is reported under the
Emulation Trace Status.

Status Display Interpretation

The first line of the trace status indicates the initiator of the trace,
whether the trace is completed, running, or halted, and whether or not
this trace has been displayed.

NEW This trace has not been displayed. The tl (xtl)
command will clear this flag until the next trace
is started. Halting a trace that is running (as
opposed to complete), marks the trace as being
NEW even though the trace may have been
displayed while running. The next tl command
with no options will list the trace from the top.

User The operator initiated this trace with the t (xt)
command.

CMB This trace was initiated by a /EXECUTE pulse
on the CMB after a tx command was entered.

complete The trace has found its trigger and completed.

halted The trace was halted in response to a th (xth)
command.

2 ts

running The trace is still running; either the complete
sequencer specifications have not yet been
satisfied; or not enough qualified store states
have been found to fill trace memory.

The second line of the trace display indicates the analyzer arm status.

ignored The arm condition specified for this trace was
tarm always.

received The arm condition has been satisfied.

not received The arm condition was not satisfied. (If you
specified an arm condition but didn’t use it in
trigger qualification, this will be displayed if
the arm condition is not satisfied. However, the
analyzer may still find the correct trigger and
complete the trace.)

The third line of the state trace display indicates the trigger status.
Because of the pipelined analyzer architecture, it is possible that the
trace status may display "not found" when in fact the trigger has been
found. This will occur when not enough states satisfying the storage
specification are found to push the trigger out of the pipeline and into
trace memory. In any case, the trace will not be displayable until the
trigger is in trace memory (unless you halt the analyzer).

found The trigger condition has been found.

not found The trigger condition has not yet been satisfied.

ts 3

For the external timing status, the third line indicates the timing trace
status. This will be one of the following strings:

Tracepoint found

Trigger found - delaying

Pattern found - waiting for edge

Prestore complete - waiting for trigger

Waiting for prestore

Waiting for arm

The fourth line of the trace display indicates the amount of time that
passed between the arm signal and the trigger condition.

armcount This will be from -0.04 usec to 41.94288 ms.
The arm to trigger counter may underflow or
overflow, in which case "<-0.04 uS" or
">41.94288 mS" are reported, respectively. If
the arm signal was ignored, if the trigger was
not found, or if the clock setting (tck/xtck) is
fast (F) or very fast (VF), the character "?"
(unknown) is displayed.

The fifth line of the trace display indicates the number of states
displayable by tl . (Number of samples in the case of the external
timing trace.)

visible Number of states which can be displayed by tl
(xtl); this will be a number from 0 to 1024 (or 0
to 512 if tcq is active).

history Number of states which can be displayed if the
current trace is halted; this may include history
states which may be overwritten and thus
unavailable if the current trace runs to
completion.

first Number of the first state stored in trace
memory, relative to the trigger state. This will
be a number from -1024 to 0 (-512 to 0 if tcq is

4 ts

active). The character "?" is displayed if the
trigger state is not yet in memory.

last Number of the last state stored in trace
memory, relative to the trigger state. This will
be a number from -1 to 1023 (-1 to 511 if tcq is
active). The character ? is displayed if the
trigger state is not yet in memory.

The sixth line of the trace display indicates the current sequencer term
position. (Not used in the external timing trace status.)

term Current sequence term position (1 through 5 in
easy configuration; 1 through 8 in complex
configuration). If the trace is completed or
halted, the last sequence term number is
displayed. A "?" is displayed if the trace is
running and the sequencer is running too
quickly for the current term number to be read.

The seventh line of the trace display indicates the count qualifier status
for the primary branch condition of the current sequence term, see tif
for further details. (Not used in the external timing trace status.)

count Remaining number of occurrences of the
primary branch qualifier needed to satisfy the
qualifier so that the primary branch will be
taken. A "?" is displayed if the trace is running
and the counter is updating too quickly to be
read.

Whisper Mode Trace Display

If the -w option is given, an abbreviated version of the trace status is
given as follows:

Trace run status:

R - trace running

C - trace completed
H - trace halted

Trace arm status:

A - Arm has been received

ts 5

a - arm has not yet been received

x - arm signal is being ignored
Trace trigger status:

T - trace trigger has been found
t - trace trigger has not yet been found

Trace list status:

* - indicates that this trace has not been displayed

Parameters

-w The -w option indicates that the trace status
should be printed in whisper mode; this gives
an abbreviated version of the status. See
"Function" above for interpretation of the
whisper status information.

Defaults If the whisper option is not specified, the long version of trace status is
displayed.

Examples Let’s first start then halt a trace to look at the status. Type:

M> tg

 tg any

M> r 2000
U> t

You will see:
Emulation trace started

Now type:

U> th

You will see:
Emulation trace halted

To view the trace status, type:

U> ts

6 ts

You will see:

 --- Emulation Trace Status ---
 NEW User trace complete
 Arm ignored
 Trigger found
 Arm to trigger ?
 States 512 (512) 0..511
 Sequence term 2
 Occurrence left 1

Here, the trace was initiated by the user and has been completed but not
yet displayed. The arm condition is disabled and the trigger was found.
Since no arm was specified, the system cannot determine the amount of
time between the arm and the trigger, so it is displayed as a question
mark ?. There are 512 states in trace memory, with 0 being the first
state with respect to the trigger and 511 being the last. (Note that since
there are only 512 states, the trace count qualifier must be enabled).
The sequencer is on the second sequence term (which is the trigger
term for this example); the occurrence count is one (1) since the
sequencer has found the trigger term (remember that the last primary
branch qualifier (the trigger term) is tif 5 never).

Now, display the trace list by typing:

U> tl -d

You will see a display such as the following:

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 0 003000 00 supr data rd byte --- +
 1 002014 ORI.B #0f8,D0 0.400 uS .
 2 002016 67f8 supr prog 0.400 uS .
 3 002018 CMPI.B #**,D0 0.400 uS .
 4 002010 MOVE.B [A2],D0 0.600 uS .
 5 002012 CMPI.B #000,D0 0.400 uS .
 6 003000 00 supr data rd byte 0.400 uS .
 7 002014 0000 supr prog 0.400 uS .
 8 002016 BEQ.B 0002010 0.400 uS .
 9 002018 CMPI.B #**,D0 0.400 uS .

You can also display the short form of the status above by typing:

U> ts -w

You will see:
CxT

ts 7

Note that there is no * symbol. That is because we just issued a tl
command to display the trace.

Let’s look at another example. Set a trace trigger to a value that won’t
be found:

U> tg never

Now initiate a trace by typing:

U> t

Emulation trace started

To obtain the new trace status, type:

U> ts

You will see:

 --- Emulation Trace Status ---
 NEW User trace running
 Arm ignored
 Trigger not found
 Arm to trigger ?
 States ? (512) ?..?
 Sequence term 1
 Occurrence left 1

Now, we have a trace in process, initiated by the user; the trace list has
not yet been displayed. The arm condition is disabled; the trigger has
not yet been found. There are 512 states in trace memory; however,
since there is no trigger condition, the states have not been numbered
and will be overwritten by subsequently occurring states. The
sequencer is still on term one, looking for one occurrence of the trigger
pattern.

Display the short version of the same status by typing:

U> ts -w

You will see:
Rxt*

Note the * which indicates that the current trace list has not been
displayed.

8 ts

Now halt the trace in process by typing:

U> th

Emulation trace halted

You can display the trace list by typing:

U> tl -d

You will see:

 Line addr,H 68000 Mnemonic count,R seq
 ----- ------ ----------------------------------- --------- ---
 -512 002014 ORI.B #0f8,D0 --- .
 -511 002016 67f8 supr prog 0.400 uS .
 -510 002018 CMPI.B #**,D0 0.400 uS .
 -509 002010 MOVE.B [A2],D0 0.600 uS .
 -508 002012 CMPI.B #000,D0 0.400 uS .
 -507 003000 00 supr data rd byte 0.400 uS .
 -506 002014 0000 supr prog 0.400 uS .
 -505 002016 BEQ.B 0002010 0.400 uS .
 -504 002018 CMPI.B #**,D0 0.400 uS .
 -503 002010 MOVE.B [A2],D0 0.600 uS .

Now display the new trace status:

U> ts

 --- Emulation Trace Status ---
 User trace halted
 Arm ignored
 Trigger not found
 Arm to trigger ?
 States 512 (512) -512..-1
 Sequence term 1
 Occurrence left 1

Now the trace has been halted. The NEW flag is gone; therefore, the
current trace list has been displayed. The trigger was never found. The
"States" list indicates that 512 states are in memory; these are the last
512 states recorded by the analyzer up to the point where the analyzer
was halted.

To display the short form of this status, type:

U> ts -w

You will see:
Hxt

ts 9

For the external timing analyzer, a typical trace status display might be:

 --- External Timing Trace Status ---
 NEW User trace complete
 Arm ignored
 Tracepoint found
 Arm to trigger ?
 Samples 1024 (1024), -59..964

Related Commands es (allows you to determine general emulator status)

t (starts an emulation trace)

tarm (arm the analyzer based on state of the trig1 and trig2 signals)

tcq (specify trace tag counter; affects number of states that the analyzer
can store)

tg (specify the analyzer trigger state)

th (halt the current trace in process)

tif (specify sequencer primary branch condition and number of
occurrences)

tx (specify that trace is to begin upon receiving the CMB /EXECUTE
pulse)

x (begin a synchronous CMB execution)

10 ts

1tsck,xtsck

Summary Specify analyzer slave clocks

Syntax

tsck 1

Function The tsck (xtsck) command allows you to specify the slave clock edges
used for the emulation (external) analyzer trace.

Each analyzer pod has the capability of latching certain signals with a
slave clock instead of the master clock. (You set up the master clock
with the tck command.)

The xtsck command controls the slave clock for the optional external
analyzer. No pod number is necessary since the external analyzer has
only one pod.

Parameters

d The -d option allows you to specify that the
slave clock operates in demultiplexed mode. In
this mode, the lower 8 channels of the analyzer
pod (bits 0-7) are latched with the slave clock
and the upper 8 channels (bits 8 through 15) are
replaced with the lower 8 channels. In other
words, the upper 8 bits are identical to the
lower 8 at the pod.

However, the data is not clocked into the
analyzer itself until the next master clock
occurs. Therefore, if no slave clocks have
occurred since the last master clock, the data on
the lower 8 analyzer lines is identical to the
upper 8. If one or more slave clocks have
occurred since the last master clock, the data on
the lower 8 bits is the only data available to the
analyzer.

When using the -d option, you must specify one
of the -r , -f, or -x options to indicate the active
edge(s) of the slave clock.

m The -m option specifies that the slave clock
operates in mixed mode. In the mixed mode,
the lower 8 channels of the analyzer pod (bits
0-7) are latched with the slave clock, and the
master clock latches in the entire pod.
Therefore, if no slave clock has occurred since

2 tsck

the last master clock, the data on the lower 8
bits of the pod will be clocked into the analyzer
at the same time as the upper 8 bits. If more
than one slave clocks has occurred since the last
master clock, only the first slave clock data will
be available to the analyzer.

When using the -m option, you must specify
one of the -r , -f, or -x options to indicate the
active edge(s) of the slave clock.

<POD#> Specifies one of 5 groups of analyzer input
lines. These are as follows:

Note that you only need to specify pod 5 if you
are using the tsck command to operate on the
optional external analyzer. You would
typically do this only if you had logically
joined the analyzers using the xtmo command.

r Indicates that the pod should latch data on the
rising edge of the slave clock.

f Indicates that the pod should latch data on the
falling edge of the slave clock.

Pod # Analyzer Bits

1 Emulation 0 - 15

2 Emulation 16 - 31

3 Emulation 32 - 47

4 Emulation 48 - 63

5 External 0 - 15

tsck 3

x Indicates that the pod should latch data on both
edges of the slave clock.

CLOCK SIGNALS The r , f, and x operators may be used on the
following clock signals: J, K, L, M or N.
Clocks L , M , and N are generated by the
emulator. Clocks J and K are the external
clock inputs on the optional external analyzer’s
probe.

You should only use the external clock signals
in clocking the external state/timing trace; they
should not be used in clocking the emulation
analyzer trace. You may use L and M to clock
the external state trace as well as the emulator
trace.

If you specify multiple clocks, any one of the
clock edges (as defined by the r , f, and x
options) will clock the trace.

o If you specify -o with a <POD#>, the slave
clock is ignored on that pod. Remember that
you don’t need to specify <POD#> with the
xtsck command; this command operates only
on the single external analyzer pod.

Defaults If no parameters are specified, the current slave clock definitions are
displayed. The default for all slave clocks is off after powerup or tinit
initialization.

Examples To demultiplex pod 5 (external analyzer bits 0-15) with both edges of
the J clock, type:

M> tsck -d 5 -x J

To display the current state of the slave clock specifications, type:

M> tsck

4 tsck

You will see:

 tsck -o 1
 tsck -o 2
 tsck -o 3
 tsck -o 4
 tsck -d 5 -x J

Related Commands ta (allows you to display active signals on the analyzer input lines;
useful in verifying that you have selected the correct clock conditions)

tck (used to define master clock signals used by the analyzer; tsck
defines the slave clock signals. Default mode for tsck is off on all
pods.)

xtv (specifies threshold voltages for external analyzer input lines; must
be set correctly to ensure that the J and K clock signals are recognized)

xtmo (specifies mode of operation for the external analyzer; that is,
whether it acts as an independent analyzer or is appended to the
emulation analyzer)

tsck 5

1Notes

6 tsck

1tsq,xtsq

Summary Manipulate the trace sequencer

Syntax

Function The tsq (xtsq) command allows you to manipulate or display the
emulation (external) trace sequencer.

When the analyzer is in easy configuration (tcf -e), the sequencer has a
maximum of four sequence terms with a minimum of one term.

If the analyzer is in complex configuration (tcf -c), the sequencer
always has eight terms (although the particular sequencer setup may
mean that only two are ever accessed).

tsq 1

Parameters (Easy
Configuration)

t If the t option is specified, the trigger term is
displayed. The trace trigger occurs the first
time that this term is entered during a trace.
When in easy configuration, the trigger
condition is always the primary branch
condition for the last term in the defined
sequence.

r If you specify r , the sequencer is reset to a
simple one term sequence which stores all
states and triggers on the first occurrence of any
state. This is equivalent to issuing the
commands:

tg any
tsto any
telif never

i Specifying i in conjunction with a <TERM#>
inserts a new sequence term at <TERM#>.
The new sequence term will use the default
storage qualifier (which can be modified with
the tsto command). It will also use the
secondary branch qualifier (global restart in
easy configuration) specified by the telif
command.

If there is already a sequence term with number
<TERM#> , terms with number <TERM#>
and above will be renumbered (<TERM#>
becomes <TERM#> + 1) to make room for the
new term.

The primary branch qualifier for the new term
will be defined as tif <TERM#> any unless it
is the last term in the sequence (by definition,
the trigger term), in which case the primary
branch qualifier is set to tif <TERM#> never.

2 tsq

d Specifying d in conjunction with a <TERM#>
deletes the term specified and renumbers higher
numbered terms downward to fill the gap.

<TERM#> <TERM#> specifies a term number in the
range 1 through 4 to insert in the sequencer (-i)
or remove from the sequencer (-d). You must
insert terms in a contiguous manner; for
example, you cannot insert a term number 4 if
the sequencer only has two terms defined.
Instead, you must next insert a term numbered
1, 2 or 3.

Parameters (Complex
Configuration)

r If you specify -r , the sequencer is reset to an
eight term sequence with the trigger term at
term number 2. The sequencer will be set to
tsto any (store any state). All secondary
branch qualifiers are turned off (telif
<TERM#> never), and all primary branch
qualifiers will jump to the next higher
numbered term on any state (tif <TERM#>
any (<TERM#> +1)).

t Specifying -t by itself displays the trigger term.
You can define which term is to be the trigger
term by specifying -t along with a <TERM#>.
The analyzer will trigger on the first entrance to
the term from either a primary or secondary
branch.

<TERM#> <TERM#> specifies a term number in the
range 2 through 8 to use as the trigger term.

Defaults If no options are given, all of the sequencer storage and branch
qualifiers are displayed along with the trigger term position. Upon

tsq 3

powerup or after tinit initialization, the sequencer defaults to the
following state:

 tif 1 any
 tsto all
 telif never

In other words, the sequencer powers up with two sequence terms; the
second sequence term is the trigger term. Any state will cause a branch
from the first term to the second term; global restart is set to never and
all states are stored by the analyzer.

Switching analyzer configurations from easy to complex or vice versa
also resets the sequencer (that is, tcf -c or tcf -e).

Examples To view the state of the sequencer after powerup or a tinit , type:

M> tsq

You will see:

 tif 1 any
 tsto all
 telif never

Only one sequence term is used; it has a primary branch qualifier set to
any; the trigger occurs upon branching out of this term. All states
encountered are stored by the analyzer; the global restart term is
disabled. With this sequencer setup, the analyzer will immediately find
its trigger when a trace is initiated.

Now, let’s show how the sequencer may be manipulated using the
analyzer commands and the sequencer commands. Type:

M> telif addr=2020
M> tsq -i 2
M> tsq -i 3
M> tsq -i 4
M> tif 1 addr=2000
M> tif 2 addr=1008
M> tif 3 addr!=2020
M> tif 4 addr!=2020

4 tsq

Since we are in the easy analyzer configuration (tcf -e), the telif
command sets a global restart whenever address 2020 is encountered
by the analyzer. In addition, we set the primary branch qualifier for
term number 1 to the address value of 2000 hex and the primary branch
qualifier for term number 2 to the address value of 1008 hex. We’ve
also added additional terms to fill out the sequencer’s limit of four
terms in easy configuration. When terms are inserted, their primary
branch qualifier is initially set to tif <TERM#> any. Now view the
new sequencer arrangement by typing:

M> tsq

You will see:

 tif 1 addr=2000
 tif 2 addr=1008
 tif 3 addr!=2020
 tif 4 addr!=2020
 tsto all
 telif addr=2020

With this sequencer arrangement, the analyzer will first look for an
address value of 2000 hex. If found, it will branch to term number 2,
where it will look for an address of 1008 hex. If that value is found, the
analyzer will accept any value to branch through the next two terms
and then will trigger. All values found will be stored. Note that if the
analyzer finds the address 2020 hex while in terms 1 through 4, it will
immediately restart the sequencer at term 1; that is, it will again look
for an address value of 2000 hex.

tsq 5

To delete a sequencer term in easy configuration, type:

M> tsq -d 3

You can verify the deletion by typing:

M> tsq

You will see:

 tif 1 addr=2000
 tif 2 addr=1008
 tif 3 addr!=2020
 tsto all
 telif addr=2020

In complex configuration, the full power of the sequencer is available.
There are 8 sequencer terms; any term except term 1 can be the trigger
term; and each term has primary and secondary branch conditions
which dictate progression to other terms in the sequence. Let’s set the
analyzer to complex configuration and manipulate the sequencer. Type:

M> tcf -c

This sets the analyzer to complex configuration. Now let’s look at the
default trace sequencer setup. Type:

M> tsq

6 tsq

You will see:

 tif 1 any 2
 tif 2 any 3
 tif 3 any 4
 tif 4 any 5
 tif 5 any 6
 tif 6 any 7
 tif 7 any 8
 tif 8 never
 tsq -t 2
 tsto 1 all
 tsto 2 all
 tsto 3 all
 tsto 4 all
 tsto 5 all
 tsto 6 all
 tsto 7 all
 tsto 8 all
 telif 1 never
 telif 2 never
 telif 3 never
 telif 4 never
 telif 5 never
 telif 6 never
 telif 7 never
 telif 8 never

Here, the primary branch conditions are set to jump to the next term on
any condition. All of the secondary branch conditions have been
disabled. In addition, any state will be stored by the analyzer for each
term in the sequence, and the analyzer will trigger upon entry to term
number 2.

For the example below, refer to the 68000 program in Appendix A.
Suppose you were having a problem with this program in that the
system intermittently output MESSAGE_B when the command "A"
was input and vice versa. You would like to trigger the analyzer upon
such an occurrence. Type the following commands:

M> tpat p1 addr=2000
M> tpat p2 addr=3000
M> tpat p3 addr=206c
M> tpat p4 addr=1019
M> tpat p5 addr=1008
M> tpat p6 data=00
M> tpat p7 data=41
M> tpat p8 data=42

tsq 7

At this point, you may want to verify that all of your pattern entries are
correct. Type:

M> tpat

You will see:

 tpat p1 addr=2000
 tpat p2 addr=3000
 tpat p3 addr=206c
 tpat p4 addr=1019
 tpat p5 addr=1008
 tpat p6 data=00
 tpat p7 data=41
 tpat p8 data=42

Now, set the trigger term to term 6; then set up the primary and
secondary branch conditions. Type:

M> tsq -t 6
M> tif 1 p1 2
M> tif 2 p2 and p6 3
M> tif 3 p2 and p7 4
M> tif 4 p4 6
M> tif 5 p5 6
M> telif 3 p2 and p8 5
M> telif 4 p3 2
M> telif 5 p3 2

Now, verify all of the sequencer modifications by typing:

M> tsq

8 tsq

You will see:

 tif 1 p1 2
 tif 2 p2 and p6 3
 tif 3 p2 and p7 4
 tif 4 p4 6
 tif 5 p5 6
 tif 6 any 7
 tif 7 any 8
 tif 8 never
 tsq -t 6
 tsto 1 all
 tsto 2 all
 tsto 3 all
 tsto 4 all
 tsto 5 all
 tsto 6 all
 tsto 7 all
 tsto 8 all
 telif 1 never
 telif 2 never
 telif 3 p2 and p8 5
 telif 4 p3 2
 telif 5 p3 2
 telif 6 never
 telif 7 never
 telif 8 never

Refer to the resulting state diagram. When the program is run, the
sequencer will immediately look for the state address=2000. If found,
the sequencer branches to term number 2, where it looks for the state
where address=3000 AND data=00. This will be the point where the
input register is cleared by the CLEAR routine.

Note With microprocessors such as the 68000 and the 80186 family that
prefetch instructions, it is often more accurate to set up trace conditions
based upon data movement resulting from an instruction rather than the
instruction itself. When the data pattern is found, it is more likely that
the instruction actually executed. Such methods must be used with
care; in some programs several different routines may execute the same
data movement.

tsq 9

Next, the sequencer will advance to term number 3, where it will
simultaneously search for the pattern address=3000 AND data=41 and
the pattern address=3000 AND data=42. Essentially, you are now
looking for command input. If address=3000 AND data=41 is found,
command "A" has been input. To search for incorrect processing, the
sequencer now jumps to term number 4 and begins looking for the
pattern address=1019, meaning that it is searching for an access to the
MESSAGE_B data area. Conversely, if address=3000 AND data=42
are found, the sequencer jumps to term number 5 and looks for the
pattern address=1008, which is the MESSAGE_A data space. In
either case, if the pattern address=206c is found first, the sequencer
restarts at term 1; no error in processing was found.

If either of the tif patterns set up in term number 4 or 5 are satisfied, the
sequencer branches to term number 6, which is the trigger term.
Triggering of the analyzer occurs immediately upon entry to term
number 6. In other words, if the incorrect message area is accessed for
the command value input, the analyzer will trigger. Note that all states
are stored in each sequence term; this will leave a record of the events
leading up to the trigger state (it would be wise, however, to center the
trigger in the trace memory with the command tp c).

Related Commands tcf (defines whether analyzer is operated in complex configuration or
easy configuration)

10 tsq

telif (sets global restart qualifier in easy configuration; secondary
branch qualifier in complex configuration)

tg (defines the trigger qualifier)

tif (sets the primary branch qualifier in both easy and complex
configuration)

tsto (defines the analyzer global storage qualifier)

tsq 11

1Notes

12 tsq

1tsto,xtsto

Summary Specify analyzer trace storage qualifiers

Syntax

Function The tsto (xtsto) command allows you to specify a trace storage
qualifier for the emulation (external) analyzers. The expression
parameter, whether <SIMPLE_EXPR> or <COMPLEX_EXPR> ,
specifies the type of data to be stored by the analyzer.

If the analyzer is in easy configuration (tcf -e), the expression is
specified by <SIMPLE_EXPR> and this serves as a global storage
qualifier. In other words, the same expression is used as a storage
qualifier regardless of the current sequencer state.

If the analyzer is in complex configuration (tcf -c), the expression is
specified by <COMPLEX_EXPR> and may be assigned to a
sequencer state with the <TERM#> parameter. When an expression is
assigned to a specific term number, the analyzer will only store states
corresponding to the given expression when at the given sequencer
level. If no <TERM#> is given, the associated expression is defined as
global; the analyzer stores states satisfying the expression regardless of
the sequencer level.

tsto 1

Note Remember that the analyzer only stores states for a given sequence
term which satisfy the tsto qualifier for that term while at that
sequencer level. If you specify storage of items in a particular term
that occur after that term has been satisfied, the sequencer will no
longer be at that level and therefore won’t store the states you specified.

Parameters (Easy
Configuration)

<SIMPLE_
EXPR>

<SIMPLE_EXPR> lets you directly specify an
analyzer expression to use as a storage
qualifier. For example, <SIMPLE_EXPR>
might consist of the expression addr=2000.
For detailed information on specification of
simple expressions, refer to the expression
syntax pages.

Parameters (Complex
Configuration)

<TERM#> <TERM#> lets you specify a sequencer term
number to associate with the given
<COMPLEX_EXPR> . When you associate a
term number with a complex expression, that
expression is only used as a storage qualifier at
the sequencer level specified by the term
number. If you specify <TERM#> without an
expression, the complex expression currently
associated with that term number is displayed.
If you specify an expression without including
a <TERM#>, the expression is used as a global
storage qualifier; that is, the storage qualifiers
of all eight sequence terms are set to the same
value as the global storage qualifier you
specified.

2 tsto

Note If you’ve specified a global storage qualifier, you can override any of
the sequence term storage qualifiers by specifying the term number
along with the new qualifier. For example, you might specify a global
storage qualifier of tsto any; you could override this for term 3 by
specifying tsto 3 none.

<COMPLEX_
EXPR>

<COMPLEX_EXPR> allows you to specify
complicated analyzer expressions made up of
relationships between simple analyzer
expressions. When you create a complex
expression, you must first assign pattern names
(p1-p8) to simple expressions using the tpat
command. You then use the pattern names and
relational operators to create complex
expressions. For example, if you wish to store
only the states where address=2000 and
data=20 or the states address=2000 and
data=42, you would use the following
commands:

U> tpat p1 addr=2000 and data=20
U> tpat p2 addr=2000 and data=42
U> tsto p1 | p2

The "|" symbol represents an intra-set OR operator. For more
information on complex expressions, operators, and pattern sets, refer
to the expression syntax pages in this manual.

Defaults If no parameters are given, the current trace storage qualifier settings
are displayed. Upon powerup or after tinit initialization, the trace
storage qualifier defaults to tsto all. Using the tcf command to switch
from complex configuration to easy configuration or vice versa will
also reset the storage qualifier to tsto all.

Examples In the following example, we’ll look at a complex trace specification to
store only certain data moved by the 68000 sample program (see
Appendix A).

tsto 3

Specifically, we want the analyzer to store only the received command
(input at address location 3000 hex) and the written output message
(locations 4000 through 4011 hex). First, let’s initialize the analyzer
and set the trace configuration to complex by typing:

M> tinit
M> tcf -c

Next, we’ll set up a label to be used in qualifying the data reads and
writes. This label, called lowerdata, will overlap the analyzer’s
pre-defined data label. Type:

M> tlb lowerdata 40..47

Now we need to set up some patterns for the sequencer and storage
qualifiers. We would like to set up the sequencer so the analyzer must
recognize the program start at address 2000 hex, then an access to
address 3000 with data not equal to a null (00 hex), then trigger on
address 4000 hex with data not equal to a null (00 hex). We also want
to be able to store data during accesses to the address range 4000
through 4011 hex with data not equal to zero.

To do this, we’ll identify address patterns at 2000, 3000, and 4000 hex,
a data pattern not equal to zero, and a range pattern encompassing the
addresses 4000 through 4011 hex. Type:

M> tpat p1 addr=2000
M> tpat p2 addr=3000
M> tpat p3 addr=4000
M> tpat p5 lowerdata!=00
M> trng addr=4000..4011

Now you can set up the sequencer. Type:

M> tif 1 p1 2
M> tif 2 p2 and p5 3
M> tif 3 p3 and p5 4
M> tif 4 never
M> tsq -t 4

If you reference these commands with the patterns above, you’ll notice
that the sequencer transitions from term 1 to term 2 when the address
bus is equal to 2000 hex. It transitions between terms 2 and 3 when
address equals 3000 but data is not equal to zero (that is, a "command"
has been input). Finally, the sequencer transitions to term 4 (the trigger

4 tsto

term) when address equals 4000 but data does not equal zero (the
message write sequence starts).

Next, set up the storage qualifiers by typing:

M> tsto 1 none
M> tsto 2 none
M> tsto 3 p2 and p5
M> tsto 4 r and p5

While the sequencer is in states 1 and 2, no data will be stored by the
analyzer. When term 3 is reached, the analyzer will store all data
corresponding to address 3000 AND data not equal to zero. Finally, all
of the output message writes will be stored since they are in the range
4000 through 4011 hex with data not equal to zero. You can verify all
of these items by typing:

M> tsq

tsto 5

You will see the following displayed:

 tif 1 p1 2
 tif 2 p2 and p5 3
 tif 3 p3 and p5 4
 tif 4 never
 tif 5 any 6
 tif 6 any 7
 tif 7 any 8
 tif 8 never
 tsq -t 4
 tsto 1 none
 tsto 2 none
 tsto 3 p2 and p5
 tsto 4 r and p5
 tsto 5 all
 tsto 6 all
 tsto 7 all
 tsto 8 all
 telif 1 never
 telif 2 never
 telif 3 never
 telif 4 never
 telif 5 never
 telif 6 never
 telif 7 never
 telif 8 never

Now, set up the trace display format so it will show only the
information of interest by typing:

M> tf addr,H lowerdata,A

Now you can start the measurement. Type:

M> t

Emulation trace started

This begins the trace. Now start the program by typing:

M> r 2000

Input one of the valid "commands" by typing:

U> m 3000=41

The emulation processor will now halt. You can halt the trace by
typing:

h> th

Emulation trace halted

6 tsto

To display the stored analyzer information, type:

h> tl -2..17

You will see:

 Line addr,H lowerdata,A
 ----- ------ -----------
 -2 002000 $
 -1 003000 A
 0 004000 T
 1 004001 H
 2 004002 I
 3 004003 S
 4 004004 .
 5 004005 I
 6 004006 S
 7 004007 .
 8 004008 M
 9 004009 E
 10 00400A S
 11 00400B S
 12 00400C A
 13 00400D G
 14 00400E E
 15 00400F .
 16 004010 A
 17

The program start address has been stored, along with the command
read in by the program and the data written by the message output
routines.

Related Commands tcf (used to specify whether the analyzer is in easy configuration or
complex configuration)

telif (used to specify a global restart qualifier in easy configuration;
specifies a secondary branch qualifier for each sequencer level in
complex configuration)

tg (used to specify a trigger condition in either easy configuration or
complex configuration; overrides the current sequencer specification.
Note that tg does not affect tsto; therefore, the current tsto
specifications remain in effect whenever a tg command is entered)

tif (used to specify a primary branch qualifier in either analyzer
configuration)

tsto 7

tpat (used to assign pattern names to simple analyzer expressions for
use in constructing complex analyzer expressions; these expressions
can be used in specifying storage qualifiers for the tsto command)

trng (used to specify a range of values of a set of analyzer inputs; this
range information can be used in constructing complex configuration
qualifiers for the tsto command)

tsq (used to manipulate the trace sequencer)

8 tsto

1tx,xtx

Summary Set analyzer to trace on receipt of CMB /EXECUTE

Syntax

Function The tx command allows you to specify that the analyzer will begin a
measurement when the CMB /EXECUTE line is asserted.

If tx -e is given, enabling measurement on execute, the CMB trigger is
immediately driven true upon receiving the /EXECUTE signal. If the
analyzer is not driving either trig1 or trig2, it is then started. The CMB
trigger is then disabled and the HP 64700 waits for all other
participants in the measurement to release the CMB trigger. When the
last instrument releases the CMB trigger, the trigger will go false; at
this point any analyzers driving trig1 or trig2 will be started.

Parameters

-e If you specify the -e option, this emulator will
start an analysis measurement upon receiving
the CMB /EXECUTE signal.

-d If you specify the -d option, the emulation
analyzer will NOT start an analyzer
measurement upon receiving the CMB
/EXECUTE signal.

Defaults If no options are specified, the current state of tx enable/disable is
displayed. Upon powerup or after a tinit , the system defaults to tx -e.

tx 1

Examples You may want to set up a CMB measurement such that this emulator
starts running and an analyzer measurement begins at address location
2000 hex whenever the CMB /EXECUTE pulse is received. Type the
following commands:

M> cmbt -d none
M> tx -e
M> tx

You will see:

tx -e # start a measurement on the execute signal

M> tg addr=2000
M> rx 2000

The command cmbt -d none ensures that neither the trig1 or trig2
signals will be driving the CMB trigger line when the CMB
/EXECUTE pulse is received; thus, the measurement will start
immediately. Next, we enable trace on execute, and also execute a tx
command with no parameters to verify that it is enabled. A trigger and
a run at execute parameter is picked. Note that a cmb -e is not given;
rx effectively accomplishes the same thing.

To verify the powerup default state of tx, simply type:

M> tx

You will see:

tx -d # ignore the execute signal

Related Commands cmbt (specifies whether the CMB trigger signal is driven or received
by the internal trig1 and trig2 signals)

tarm (specifies the arm condition for the analyzer)

tg (specifies a trigger condition for the analyzer)

2 tx

1ver

Summary Display Terminal Interface software version number

Syntax

Function The ver command instructs the emulator to return the current emulator
Terminal Interface software version numbers. You should use this
command when you need to know the version number of your emulator
Terminal Interface software to compare it to the Firmware/Software
Compatibility Note for the HP 64700 PC Interface or Softkey Interface
software versions.

Parameters None.

Defaults Not applicable.

Examples To determine the current emulator Terminal Interface software version
numbers, type:

M> ver

The system returns a display similar to the following:

 Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under copyright laws.

 HP64700 Series Emulation System
 Version: A.00.00 20Nov87

 HP64742 Motorola 68000 emulator
 Version: A.00.00 20Nov87
 Speed: 12.5 MHz
 Memory: 126 KBytes

ver 1

 HP64740 Emulation Analyzer
 Version: A.00.00 20Nov87

Related Commands None.

2 ver

1w

Summary Wait for specified event

Syntax

Function The w command is used to program automatic waits into macros,
repeats, and command files. Normal operation is to wait for any
keystroke before executing the next operation; optionally, the wait can
be programmed for a specific time period or for completion of a
measurement in process (such as a trace).

Parameters

<NN> Wait for NN number of seconds before
proceeding.

-m Wait for completion of the current
measurement before proceeding.

Defaults Wait for any keystroke on the command port before proceeding.

Examples To cause the emulator to wait for any keystroke before proceeding to
the next command, type:

U> w

w 1

You might use this in a situation where you wish the operator to make a
judgement regarding some other condition before proceeding with the
next measurement. For example, if some LEDs in the target system
should reach a certain state before a measurement is made, use the
basic form of the wait command (w), which will allow the operator to
verify that the LEDs have reached the proper state; then proceed with
the next command by pressing any key.

To cause the emulator to wait for 32 seconds or for any keystroke, type:

U> w 32

This might be used where you know the desired system state will be
reached in a definite amount of time (or should be reached within that
time).

To have the emulator wait until another measurement is completed or
for any keystroke entry, type:

U> w -m

Note that the above examples, taken exactly as shown, don’t provide
you with a useful function -- they are provided only to show correct
examples of command line syntax. To use the wait command
effectively, it should be applied within macros, repeat commands, or
command files. Refer to the rep and mac commands for further
examples.

Related Commands None.

2 w

1x

Summary Start synchronous CMB execution

Syntax

Function The x command allows you to initiate a synchronous CMB
(Coordinated Measurement Bus) measurement execution.

When x is performed, the CMB /EXECUTE line is pulsed. If tx (trace
at execute) is enabled, an analyzer measurement will begin. If the
CMB is enabled via the cmb -e command, a break will occur, followed
by a run at execute as specified by the rx command.

The x command is available whether CMB and trace at execute are
enabled or not. Specifically, the cmb and tx commands control how
this HP 64700 emulator will respond when an /EXECUTE or READY
is detected. The x command only controls when this emulator will
issue an /EXECUTE signal.

Parameters None.

Defaults Does not apply.

Examples To initiate a synchronous CMB measurement and have this HP 64700
emulator participate in the measurement, type the following commands:

M> rx 2000
M> tcf -e
M> tg addr=2000
M> tx
M> x

x 1

This enables the CMB and sets the run at execute address to 2000. The
analyzer trigger is also set to 2000 hex and trace at execute is enabled.
Finally, the x command is issued, initiating the coordinated execution.
All other emulators connected to the CMB will respond as defined by
their rx , tx, and cmb commands.

Related Commands cmb (used to enable or disable interaction with the CMB)

rx (used to specify an address to start a program run when the
/EXECUTE pulse is received from the CMB)

tx (used to specify that an analyzer measurement should begin when
the /EXECUTE pulse is received from the CMB)

2 x

1xteq

Summary Specify external timing analyzer edge trigger

Syntax

Function The xteq command allows you to specify the channels which will
cause an edge trigger.

The trigger will occur following a valid duration of a pattern specified
by xtt when a transition occurs on any of the lines specified in xteq.
Note that xteq allows you to qualify the transitions to trigger only on
the rising edge or the falling edge of the given input lines.

Note that the timing trace information is only accessible through the
binary trace list option (tl -b).

xteq 1

Parameters

-r If you specify -r , the trigger will occur on the
rising edge of any signal on the input lines
specified by <BIT#> and <LABEL> .

-f If you specify -f, the trigger will occur on the
falling edge of any signal on the input lines
specified by <BIT#> and <LABEL> .

<BIT#> <BIT#> specifies the bit which will cause an
edge trigger. If <BIT#> is followed by .. and a
second <BIT#>, they specify the range of bits
which will cause a edge trigger.

<LABEL> <LABEL> , when specified with a bit range
(see <BIT#> above), specifies the bits to be
used within that label which will cause a edge
trigger. If <LABEL> is specified without a bit
range, all of the bits assigned to that label will
cause a edge trigger. See xtlb for information
on specifying labels.

Note Multiple combinations of <LABEL> and <BIT#> may be used,
separated by spaces. The combinations are ORed together to form a
single pattern. See the examples for details.

Note When specifying a range of bits to use within a label, notice that the bit
range specified is relative to the label, not to the input bit. For
example, if you define a label named STATUS with input bits 8..11,
then want to specify the least significant two bits of STATUS in a
trigger specification, you can use either STATUS:0..1 or simply the
range 8..9.

2 xteq

any, all If you specify any or all, any of the external
analyzer lines will cause an edge trigger for the
specified edge.

none, never If you specify none or never, none of the
external analyzer lines will cause an edge
trigger for the specified edge.

Defaults If no parameters are specified, the current edge qualifier is displayed.
Upon powerup or tinit initialization, the default setting is xteq -r any
-f any.

Examples Let’s specify some labels for a set of status bits and a set of timer
output bits to be viewed by the timing analyzer. Type:

M> xtlb STATUS 0..3
M> xtlb TIMER 8..11

Now we can set various edge qualifiers. For example, we may wish to
trigger when rising edges occur on timer bits 0 through 3, when the
analyzer finds the data pattern 1001 for more than 150 nanoseconds.
First, set up the analyzer by typing:

M> xtmo -t
M> xtm -s
M> xtt STATUS=1001 > 150 n

Now, we can set up the edge qualifier. This can be done in two ways.
Type:

M> xteq -r 8..11 -f none

To verify your choice, type:

M> xteq

You will see:
xteq -r 8..11 -f none

Or, you could type:

M> xteq -r TIMER:0..3 -f none

xteq 3

Again, to verify, type:

M> xteq

You will see:
xteq -r TIMER:0..3 -f none

The latter form of the command may be more useful in remembering
what your motives were in assigning various bit ranges; that is, it may
be helpful to remember that bits 0 through 3 were associated with the
TIMER label.

If you want to trigger whenever rising or falling edges occur on any of
the STATUS lines or TIMER lines, type:

M> xteq -r STATUS TIMER -f STATUS TIMER

Notice that this could alternately be specified as:

M> xteq -r 0..3 8..11 -f 0..3 8..11

Or as:

M> xteq -r STATUS:0..3 TIMER:0..3 -f
STATUS:0..3 TIMER:0..3

The last form of the command requires you to type more information.
All three versions will produce the same result.

Related Commands tlb,xtlb (specifies labels assigned to input lines for the emulation
(external) analyzer)

xtgq (specifies an glitch qualifier used in conjunction with xtt to
determine a valid trigger state)

xtm (specifies timing analyzer mode)

xtt (specifies timing analyzer trigger pattern and duration)

4 xteq

1xtgq

Summary Specify external timing analyzer glitch trigger

Syntax

Function The xtgq command allows you to specify the channels which will
cause a glitch trigger.

A glitch trigger will occur following a valid duration of a pattern as
specified in the xtt command while the pattern is still present. A less
than duration specified in xtt , or a timing mode other than xtm -g will
cause the xtgq command to be ignored.

You might use this command to look for glitch occurrences related to a
specific bit pattern.

Note that the timing information is only accessible through the binary
trace list option (tl -b).

xtgq 1

Parameters

<BIT#> <BIT#> specifies the bit which will cause a
glitch trigger. If <BIT#> is followed by .. and
a second <BIT#>, they specify the range of bits
which will cause a glitch trigger.

<LABEL> <LABEL> , when specified with a bit range
(see <BIT#> above), specifies the bits to be
used within that label which will cause a glitch
trigger. If <LABEL> is specified without a bit
range, all of the bits assigned to that label will
cause a glitch trigger. See xtlb for information
on specifying labels.

Note Multiple combinations of <LABEL> and <BIT#> may be used,
separated by spaces. The combinations are ORed together to form a
single pattern. See the examples for details.

Note When specifying bit positions within a particular label, notice that the
bit position specified are relative to the label and not the given analyzer
input line. For example, if you define a label named DATA with the
input bit range 8 through 15, then want to specify the two least
significant bits of DATA in a trigger qualifier, you can either specify
DATA:0..1 or simply the range 8..9.

any, all If you specify any or all, any of the external
analyzer lines will cause a glitch trigger.

none, never If you specify none or never, none of the
external analyzer lines will cause a glitch
trigger.

2 xtgq

Defaults If no parameters are specified, the current glitch qualifier is displayed.
Upon powerup or tinit initialization, the default setting is xtgq none.

Examples Let’s specify some labels for a set of data bits and a set of control bits
to be viewed by the timing analyzer. Type:

M> xtlb DATA 0..7
M> xtlb FC 8..10

Now we can set various glitch qualifiers. For example, we may wish to
trigger when glitches occur on data bits 0 through 4, when the analyzer
finds the data pattern 01101110 for more than three milliseconds. First,
set up the analyzer by typing:

M> xtmo -t
M> xtm -g
M> xtt DATA=01101110Y > 3 m

Now, we can set up the glitch qualifier. This can be done in two ways.
Type:

M> xtgq 0..4

To verify your choice, type:

M> xtgq

You will see:
xtgq 0..4

Or, you could type:

M> xtgq DATA:0..4

Again, to verify, type:

M> xtgq

You will see:
xtgq DATA:0..4

The latter form of the command may be more useful in remembering
what your motives were in assigning various bit ranges; that is, it may
be helpful to remember that bits 0 through 4 were associated with the
DATA label.

xtgq 3

If you want to trigger whenever glitches occur on any of the DATA
lines or on the FC lines, type:

M> xtgq DATA FC

Notice that this could alternately be specified as:

M> xtgq 0..10

Or as:

M> xtgq DATA:0..7 FC:0..3

The last form of the command requires you to type more information.
All three versions will produce the same result.

Related Commands tlb,xtlb (specifies labels assigned to input lines for the emulation
(external) analyzer)

xteq (specifies an edge qualifier used in conjunction with xtt to
determine a valid trigger state)

xtm (specifies timing analyzer mode; must be in mode xtm -g for xtgq
use)

xtt (specifies timing analyzer trigger pattern and duration)

4 xtgq

1xtm

Summary Specify external timing analyzer mode

Syntax

Function The xtm command allows you to specify the mode of operation for the
timing analyzer.

This command is only available if the HP 64700 emulator is equipped
with the external state/timing analyzer option.

Parameters

-s If -s is specified, the timing analyzer is in
standard mode and samples data at the period
selected by xtsp; up to 1024 samples can be
stored during a single trace.

-g If -g is specified, the timing analyzer is
operated in standard mode with glitch detection
added. Again, the sample rate is selected by
xtsp. When glitch mode is selected, the
maximum number of samples per trace is
reduced to 512.

xtm 1

-t When -t is specified, the timing analyzer is
operated in transitional mode. Data is only
stored when an input transition is detected. For
the analyzer to record these transitions
accurately, some trace memory must be
dedicated to storing the delta time between
transitions, so the number of state transitions
that can be stored is reduced to a maximum of
512.

Defaults If no parameters are supplied, the current mode setting for the timing
analyzer is displayed. Upon powerup or tinit , the timing analyzer
mode is set to xtm -t.

Examples To set up the external analyzer as an independent timing analyzer in
transitional mode, type:

M> xtmo -t
M> xtm -t

Related Commands xtmo (specifies whether to use the external analyzer as a separate state
analyzer, separate timing analyzer, or append the lines to the emulation
analyzer)

xtsp (defines the timing sample period)

2 xtm

1xtmo

Summary Specify external analyzer mode

Syntax

Function The xtmo command allows you to specify the mode of operation for
the external analyzer. The analyzer can be configured to run as an
independent state or timing analyzer; or, the external analyzer can be
associated with the emulation analyzer to synchronize measurements
made by the two analyzers.

Note If the emulation and external analyzers are clocking data off of the
same clock, the setup/hold times of the data on the external analyzer
probe inputs may not be met properly. The timing relationship between
a target system processor signal and the setup/hold time of the external
probe signals must be specified for each emulator. This is because each
emulator has unique circuitry that generates the emulation analyzer
clock and each processor has different timing requirements. Therefore,
each emulator must specify the setup/hold time requirements of the
external probe inputs with respect to a target processor signal.

xtmo 1

If the external analyzer has been associated with the internal analyzer
with the xtmo -e command, and trace specifications have been defined
referencing lines present on the external analyzer, the analyzer cannot
be reconfigured as an independent state or timing analyzer with the
xtmo -s or xtmo -t commands until the trace specifications referencing
the external analyzer lines are removed.

If the external analyzer is in the independent state or timing mode, and
an xtmo -e command is issued to append it to the emulation analyzer,
the trace specifications for the external analyzer lines are reinitialized.

Parameters

-s If you specify the -s parameter, the external
analyzer acts as an independent state analyzer.

-t If you specify the -t parameter, the external
analyzer acts as an independent timing analyzer.

-e If you specify the -e parameter, the external
analyzer is appended to the emulation analyzer.

Defaults If no parameters are specified, the current operation mode of the
external analyzer is displayed. Upon powerup, the default operation
mode is xtmo -e.

Examples To display the current operation mode of the external analyzer, type:

M> xtmo

You will see:
xtmo -e

If you want the external analyzer to function as an independent state
analyzer, type:

M> xtmo -s

Related Commands bnct (specifies whether trig1 and/or trig2 are to be driven or received
by the rear panel BNC connector)

2 xtmo

cmbt (specifies whether the trig1 and/or trig2 signals are to be driven
or received by the CMB trigger line)

tarm (specifies the arm condition for the analyzer)

tgout (specifies whether or not the trig1 and/or trig2 signals are to be
driven when the analyzer finds its trigger)

tx (specifies that the analyzer is to commence a trace upon receiving
the CMB execute pulse)

xtmo 3

1Notes

4 xtmo

1xtsp

Summary Define external timing analyzer sample period

Syntax

Function The xtsp command allows you to define the sample period for timing
analyzer measurements.

Larger sample periods enable coverage of more events; however, there
is the danger that some transitions may be missed if they change during
the sample period. Conversely, small sample periods virtually
guarantee recording of all transitions but allow the measurement of
only a small total number of events in time.

Parameters

<SAMPLE_
PERIOD>

<SAMPLE_PERIOD>, along with the n,u or
m parameters, defines the sample period for the
analyzer. This is an a integer value; the valid
range for <SAMPLE_PERIOD> is between
10 ns and 50 ms in a 1,2,5 sequence (that is, 10
ns, 20 ns, 50 ns,..., 50 ms) for standard timing
modes. For glitch mode valid periods are
between 20 ns and 50 ms in the same step
sequence. For transitional timing mode, the
only valid sample period is 10 ns.

n The n suffix indicates that the given sample
period is in nanoseconds.

xtsp 1

u The u suffix indicates that the given sample
period is in microseconds.

m The m suffix indicates that the given sample
period is in millseconds.

Defaults If no parameters are given, the current setting of the sample period is
displayed. Upon powerup or tinit initialization, the sample period
setting is xtsp 10 n.

Examples To set the timing analyzer sample period to 50 ns type:

M> xtm 50 n

To set the sample period to 200 us type:

M> xtm 200 u

And, to set the sample period to 50 ms, type:

M> xtm 50 m

You can display the current sample period setting after initialization by
typing:

M> tinit
M> xtm

You will see:
xtm 20 n

Related Commands xtm (defines the timing analyzer run mode; if mode is xtm -s or xtm
-g, then xtsp defines the amount of time between samples; if mode is
xtm -t, the timing analyzer runs in transitional mode; the sample period
(10 nanoseconds only) is used as a clock to measure the delta time
between transitions)

2 xtsp

1xtt

Summary Specify external timing analyzer trigger condition

Syntax

Function The xtt command lets you specify the timing analyzer trigger. The
trigger specification includes the trigger pattern and the duration of that
pattern.

If <SIMPLE_EXPR> is found but <DURATION> is not satisfied,
there is a 20 ns reset time before the analyzer will search for another
pattern.

Parameters

<SIMPLE_EXPR> <SIMPLE_EXPR> defines a simple
expression of the general form label=pattern.
Other expressions may be supplied also. Refer
to the syntax pages for <SIMPLE_EXPR> for
complete details on the types of simple analyzer
expressions that may be defined. Refer to the
tlb,xtlb syntax pages for information on
defining labels.

xtt 1

<DURATION> The <DURATION> parameter, in conjunction
with the greater than (>) and less than (<)
operators, and the n,u and m designators,
define a duration for which the trigger must be
present to satisfy the trigger condition.
<DURATION> is always expressed as an
integer value.

If > <DURATION> is specified,
<DURATION> must fall within the range of
30 ns to 10 ms in 10 ns increments. The trigger
will occur at the end of the specified duration.

If < <DURATION> is specified,
<DURATION> must fall within the range of
40 ns to 10 ms in 10 ns increments. The pattern
must remain stable for at least 20 ns; the trigger
will occur after the pattern changes states from
the designated pattern.

n The n suffix indicates that the duration is
specified in nanoseconds.

u The u suffix indicates that the duration is
specified in microseconds.

m The m suffix indicates that the duration is
specified in milliseconds.

Defaults If no parameters are specified, the current timing analyzer trigger
expression and duration are displayed. Upon powerup or tinit
initialization, the timing trigger is set to xtt any.

2 xtt

Examples To define two external analyzer labels named ATN and DATA, then
trigger on a certain pattern of those signals with a duration greater than
8 milliseconds, type the following commands:

M> xtmo -t
M> xtm -s
M> xtlb ATN 8
M> xtlb DATA 0..7
M> xtt ATN=1 and DATA=1XXXXXXXY > 8 m
M> xt

Related Commands xteq (specifies that certain timing channels will qualify the trace trigger
specified by xtt ; the pattern and duration are specified by xtt , the
trigger occurs when the signal transition specified by xteq occurs)

xtgq (specifies a glitch qualifier for xtt ; the trigger occurs after the
pattern and duration specified by xtt is satisfied when the glitch
specified by xtgq occurs)

xtlb (defines labels for external analyzer input lines)

xtm (sets the timing mode for the analyzer to standard, glitch, or
transitional)

xtt 3

1Notes

4 xtt

1xttd

Summary Specify external timing analyzer trigger delay

Syntax

Function The xttd command allows you to specify the amount of time to delay
the timing analyzer trigger after a valid trigger condition has occurred.

Parameters

<DELAY> <DELAY> , along with the n,u or m
parameters, defines the trigger delay period for
the analyzer. This is an a integer value; the
valid range for <DELAY> is between 0 and 10
ms in 10 ns increments.

n The n suffix indicates that the given delay is in
nanoseconds.

u The u suffix indicates that the given delay is in
microseconds.

m The m suffix indicates that the given delay is in
milliseconds.

Defaults If no parameters are given, the current setting of the delay is displayed.
Upon powerup or tinit initialization, the delay setting is xttd 0.

xttd 1

Examples To set the timing analyzer delay to 30 ns type:

M> xttd 30 n

To set the delay to 10 ms type:

M> xttd 10 m

Note that the delay period must be specified as an integer value; real
number values are not accepted (a syntax error message will be
displayed).

And, to set the delay to 3 ms, type:

M> xttd 3 m

You can display the current delay setting after initialization by typing:

M> tinit
M> xttd

You will see:
xttd 20 n

Related Commands xtt (specifies the timing analyzer trigger pattern and duration)

2 xttd

1xttq

Summary Specify external timing analyzer transition trigger

Syntax

Function The xttq command allows you to specify the channels which will cause
a transition record when the timing analyzer mode is set to transitional
(xtm -t).

Parameters

<BIT#> <BIT#> specifies the bit which will cause a
timing transition record. If <BIT#> is followed
by .. and a second <BIT#>, they specify the
range of bits which will cause a timing
transition.

xttq 1

<LABEL> <LABEL> , when specified with a bit range
(see <BIT#> above), specifies the bits to be
used within that label which will cause a timing
transition record. If <LABEL> is specified
without a bit range, all of the bits assigned to
that label will cause a timing transition record.
See xtlb for information on specifying labels.

Note Multiple combinations of <LABEL> and <BIT#> may be used,
separated by spaces. The combinations are ORed together to form a
single pattern. See the examples for details.

Note When specifying bit positions within a given label using the
construction <LABEL>:<BIT#>..<BIT#> , notice that the bit positions
given are relative to the label and not to the analyzer input bit position.
For example, if you define a label called TIMER with bit positions 8
through 11, and if you then want to set up a qualifier using the two
most significant bits of TIMER , you may either specify TIMER:2..3
or simply the range 10..11.

any, all If you specify any or all, any of the external
analyzer lines will cause a timing transition
record.

none, never If you specify none or never, none of the
external analyzer lines will cause a timing
transition record.

Defaults If no parameters are specified, the current transition qualifier is
displayed. Upon powerup or tinit initialization, the default setting is
xttq any.

2 xttq

Examples Let’s specify some labels for a set of data bits and a set of control bits
to be viewed by the timing analyzer. Type:

M> xtlb DATA 0..7
M> xtlb FC 8..10

Now we can set various transition qualifiers. For example, we may
wish to store when transitions occur on data bits 0 through 4. This can
be done in two ways. Type:

M> xttq 0..4

To verify your choice, type:

M> xttq

You will see:
xttq 0..4

Or, you could type:

M> xttq DATA:0..4

Again, to verify, type:
M> xttq

You will see:

xttq DATA:0..4

The latter form of the command may be more useful in remembering
what your motives were in assigning various bit ranges; that is, it may
be helpful to remember that bits 0 through 4 were associated with the
DATA label.

If you want to store information whenever transitions occur on the
DATA lines or on the FC lines, type:

M> xttq DATA FC

Notice that this could alternately be specified with either of the
following:

M> xttq 0..10

M> xttq DATA:0..7 FC:0..2

The last form of the command requires you to type unneeded
information. All three versions will produce the same result.

xttq 3

Related Commands tlb,xtlb (specifies labels assigned to input lines for the emulation
(external) analyzer)

xteq (specifies an edge qualifier used in conjunction with xtt to
determine a valid trigger state)

xtgq (specifies a glitch qualifier used in conjunction with xtt to
determine a valid trigger state)

xtm (specifies timing analyzer mode; must be in mode xtt -t
(transitional mode) for xttq to be useful)

xtt (specifies timing analyzer trigger pattern and duration)

4 xttq

1xtv

Summary Set threshold voltages for external analyzer probes

Syntax

Function The xtv command allows you to set the logic threshold voltages for the
external trace probes.

Parameters

-l The -l parameter indicates that the threshold
voltage specified is to be used for the lower 8
bits of the analyzer probe. These are bits 0
through 7 and the J clock.

-u The -u parameter indicates that the threshold
voltage specified is to be used for the upper 8
bits of the analyzer probe. These are bits 8
through 15 and the K clock.

<VOLTS> <VOLTS> is a number in the range of -9.9 to
9.9 which will set the specified bit range to that
threshold voltage.

xtv 1

TTL Specifying TTL sets the indicated probe’s
threshold voltage to a TTL
(transistor-transistor-logic) level; the specific
voltage used is 1.4 volts.

CMOS Specifying CMOS sets the indicated probe’s
threshold voltage to a CMOS logic level; the
specific voltage used is 2.5 volts.

ECL Specifying ECL sets the indicated probe’s
threshold voltage to ECL levels; the specific
voltage used is -1.3 volts.

Defaults If no parameters are specified, the current threshold voltage settings are
printed. Upon powerup or tinit initialization, the threshold voltage
settings are set to xtv -u TTL -l TTL .

Examples To set the threshold voltages for all external probes to ECL levels, type:

M> xtv -u ECL -l ECL

You can verify the setting by typing:

M> xtv

You will see:
xtv -u ECL -l ECL

If you need to make measurements on dual threshold voltages where
the upper threshold is -1.5 volts and the lower threshold is -3.2 volts,
you can double probe the signals (bit 0 and bit 8 connected to the same
line, and so on through bit 15) and type the following command:

M> xtv -u -1.5 -l -3.2

Note that this will require you to carefully interpret the xtl trace list
display, as xtl does not provide options for logical operations between
input signals. (That is, there are no provisions for only displaying one
bit and having that bit represent the output of some logical operation
between two input bits.)

2 xtv

Related Commands ta (allows you to view trace input signal activity; useful in verifying the
correct threshold levels)

xtv 3

1Notes

4 xtv

2

Expressions

This chapter includes information about these expression types:

ANALYZER_EXPR (expressions in trace specifications)

COMPLEX_EXPR (complex configuration expressions)

EXPR (numeric expressions)

SIMPLE_EXPR (easy configuration expressions)

The syntax, functional description, and related information is included
for each expression type.

Expressions 2-1

1Notes

2-2 Expressions

1ANALYZER_EXPR

Summary Expressions in trace specifications

Syntax

Description Analyzer expressions are used in specifying triggers, time qualifiers,
primary and secondary branch conditions, prestore qualifiers, and other
analyzer setup items. There are two types of analyzer expressions,
simple and complex.

In a simple expression, the analyzer label is related to a numeric
expression within an analyzer command. These expressions are
required when the analyzer is in easy configuration (tcf -e).

Some examples include:

tg addr=2000

tif 1 data=20..30

telif addr!=3000 or data!=5

In a complex expression, the relationship between an analyzer label
and an expression is assigned one of 8 pattern identifiers or a range
label. These patterns and the range are then used to create the actual
expressions. Complex expressions are required when the analyzer is in
complex configuration (tcf -c).

Some examples include:

First we assign a pattern name:

tpat p1 addr=2000

tpat p2 addr!=3000

tpat p5 data!=5

trng data=20..30

ANALYZER_EXPR 1

Then we create the actual complex expressions within the analyzer
commands:

tg p1

tif 1 r

(r specifies the range defined with the trng command)

telif 1 p2 or p5 3

Any syntax diagram in this manual which indicates
<ANALYZER_EXPR> means that a simple expression is required
when the analyzer is in easy configuration, and a complex expression is
required when the analyzer is in complex configuration.

Related Information See the <SIMPLE_EXPR> and <COMPLEX_EXPR> syntax pages for
complete details on each expression.

2 ANALYZER_EXPR

1COMPLEX_EXPR

Summary Complex configuration expressions

Syntax

COMPLEX_EXPR 1

Description In analyzer complex configuration (tcf -c) you use pattern labels, which
have been assigned to various simple expressions, to form complex
expressions.

Pattern Labels and Ranges

You assign pattern labels to simple expression using the tpat
command. For example:

tpat p1 addr=2000
tpat p2 data!=00
tpat p3 stat=dma
tpat p4 addr=2000 and data=23
tpat p5 addr!=2105 and data!=0fc

You use the trng command to provide assign the range label:

trng data=42..44

Sets

The pattern labels, along with the range and arm specifications, are
divided into two sets.

Set 1:

p1,p2,p3,p4,r,!r

Set 2:

p5,p6,p7,p8,arm

Intraset Operations

You use intraset operators to form relational expressions between
members of the same set. The operators are:

~ (intraset logical NOR)

| (intraset logical OR)

The operators must remain the same throughout a given intraset
expression. So, you could form the following types of intraset
expressions:

p1~p2~r

(Pattern 1 NOR pattern 2 NOR range.)

2 COMPLEX_EXPR

p2 | !r

(Pattern 2 OR (NOT range).)

p5 | arm

(Pattern 5 OR arm.)

p6 ~ p8

(Pattern 6 NOR pattern8.)

You cannot use the intraset operators to form expressions between set
1 and set 2. Also, remember that the intraset operator must remain the
same throughout the set. Therefore, the following examples are
invalid :

p2~p3|p4

(This is incorrect because the operator must remain the same
throughout the set.)

p2~p5

(You cannot use intraset operators for interset operations.)

Interset Operations

You use interset operators to form relational expressions between
members of set 1 and set 2. The operators are:

and (interset logical AND)

or (interset logical OR)

You can then form the following types of expressions:

(set 1 expression) and (set 2 expression)

(set 1 expression) or (set 2 expression)

The order of sets does not matter:

(set 2 expression) and (set 1 expression)

COMPLEX_EXPR 3

Combination

You can use both the intraset and interset operators to form very
powerful expressions.

p1~p2 and p5|arm
p3 or p6~p7~p8

However, you cannot repeat different sets to extend the expression.
The following is invalid:

p1~p2 and p5 and p3 and p7

DeMorgan’s Theorem and Complex Expressions

At first glance, it seems that you only have a few operators to form
logical expressions. However, using the combination of the simple and
complex expression operators, along with a knowledge of DeMorgan’s
Theorem, you can form virtually any expression you might need in
setting up an analyzer specification.

DeMorgan’s theorem in brief says that

A NOR B = (NOT A) AND (NOT B)

and

A NAND B = (NOT A) OR (NOT B)

The NOR function is provided as an intraset operator. However, the
NAND function is not provided directly. Suppose you wanted to set up
an analyzer trace of the condition

(addr=2000) NAND (data=23)

This can be done easily using the simple and complex expression
capabilities. First, you would define the simple expressions as the
inverse of the values you wanted to NAND:

tpat p1 addr!=2000
tpat p2 data!=23

Then you would OR these together using the intraset operators:

p1|p2

4 COMPLEX_EXPR

This is effectively the same as:

(NOT addr=2000) OR (NOT data=23) = (addr=2000)
NAND (data=23)

If you need an intraset AND operator, you can use the same theory.
Suppose you actually wanted:

(addr=2000) AND (data=23)

First, define the simple expressions as the inverse values:

tpat p1 addr!=2000
tpat p2 data!=23

Then you would NOR these together using the intraset operators:

p1~p2

This is effectively the same as:

(NOT addr=2000) NOR (NOT data=23) = (addr=2000)
AND (data=23)

Related Information See the <EXPR> syntax pages for information on numeric expression
specifications. See the <SIMPLE_EXPR> syntax pages for
information on the types of simple expressions that may be assigned
pattern names. Also, refer to the Emulator User’s Guide for your
emulator for information on address specifications.

COMPLEX_EXPR 5

1Notes

6 COMPLEX_EXPR

1EXPR

Summary Numeric expressions

Syntax

Description Numeric expressions are the root of all HP 64700 Terminal Interface
expression types, including analyzer expressions, address
specifications, equates, and expressions you might want to calculate
using the echo command.

The expression capability in the Terminal Interface is very powerful;
you may specify numbers in one of four different bases and use many
different arithmetic and logical operators to form more complex
expressions.

Terminal Interface expressions consist of other expressions (recursion)
and values, which may be modified by various operators. You may
change the precedence of operators by enclosing expressions within
parentheses.

Values

Values consist of numbers (in one of four bases), patterns
(hexadecimal, octal, or binary numbers that also include don’t care
values), labels (only labels pointing to other numbers or patterns,
assigned by the equ command), and symbols.

EXPR 1

Numbers are in hexadecimal, decimal, octal, or binary. You specify the
base as follows:

Y y Binary (example: 10010y)

Q q O o Octal (example: 377o or 377q)

T t Decimal (example: 197T)

H h Hexadecimal (example: 0A7fH) (Note that
hexadecimal numbers starting with any one of
the letter digits A-F must be prefixed with a
zero; otherwise the system will return an error
message)

If you do not specify a base, numbers default to hexadecimal or
decimal, depending on the context.

All numbers used in equates, echo, address specification, analyzer
expressions, and any other specification relating to a microprocessor
address, data or status value defaults to hexadecimal.

Numbers used to specify repeat count values, such as in the sequence
branch commands, trigger, step, repeat command, and so on, default to
decimal.

Patterns are hexadecimal, octal, or binary numbers which include don’t
care digits, specified by the letters X or x. The character ? represents a
pattern of all don’t care digits. For example:

1011xx11y

0A7Xh (equivalent to 000010100111xxxxy)

2x5Q (equivalent to 010xxx101y)

You will generally use patterns only in analyzer expressions. A place
where you might want to use don’t care values is to simulate a second
range variable in complex mode specifications. For example, you
might have:

trng addr=4000..4020

2 EXPR

And you need a second range of data from 11 through 14 hex.
Although it isn’t perfect, you can simulate a second range by assigning
a pattern label as follows:

tpat p1 data=00010XXXy

(This actually gives a range from 10 to 17 hex.)

Note Don’t care values are not allowed in expressions for the echo command.

Labels refer to names equated to numbers, patterns, or other
expressions using the equ command.

Operators

The expression capability includes a powerful set of operators, freeing
you from the need to calculate expressions before entering them into
other expressions. All operations are carried out on 32 bit two’s
complement signed integers (values which are not 32 bit will be padded
out with zeros when expression evaluation occurs).

The operators are listed in the following diagram and described in order
of evaluation precedence. As mentioned above, you may use
parentheses in the expression to change the order of evaluation.

Note If your emulator supports symbols, and you are using a symbol in an
expression, only the + and - operators are valid before and after the
symbol. For example: m -dm 100h+main-5

EXPR 3

- ~ Unary two’s complement, unary one’s
complement. Two’s complement is not
allowed on patterns containing don’t care bits.
This is the truth table for one’s complement:

0 => 1
1 => 0
X => X

Examples:

~1x0y = 0x1Y

-1101Y = 0011Y

4 EXPR

* / % Integer multiply, integer divide, integer
modulo. These operations are not allowed on
patterns containing don’t care bits.

Examples:

30afH*21 = 06468fH

23T%4T=3

0fa6/2 = 07d3h

+ - Addition, subtraction. Not allowed on patterns
containing don’t care bits.

Examples:

03dh+03fh = 07ch

1110Y-101Y = 1001Y

<< <<<
>> >>>

Shift left, rotate left, shift right, rotate right
(you must specify the number of locations to
shift or rotate after the operator).

Examples:

1x0Y<<1 = 1x00Y

1x0Y>>1 = 01xY

1x01Y>>>1 =
100000000000000000000000000001x0Y

0xxf0abcdH>>>4 = 0dxxf0abcH

EXPR 5

& This symbol (&) represents a bit-wise AND
operation. The truth table resembles:

For example:

10xxy&11x1Y = 10xxY

^ This symbol (^) represents a bit-wise exclusive
OR operation. The truth table resembles:

For example:

10xxY^11x1Y = 01xxY

^ 0 1 X

0 0 1 0

1 1 0 X

X 0 X X

& 0 1 X

0 0 0 0

1 0 1 X

X 0 X X

6 EXPR

| This symbol (|) represents a bit-wise inclusive
OR operation. The truth table resembles:

For example:

10xxY|11x1Y = 11x1Y

&& This symbol (&&) represents a bit-wise merge
operation. The truth table resembles:

An overlap, indicated by a * in the merge truth
table, may occur if two patterns specify
different values for a pattern bit. If an overlap
occurs, the first pattern’s value for that bit
overrides the second pattern’s value.

For example:

10xxY&&11x1Y = 10x1Y

&& 0 1 X

0 0 * 0

1 * 1 1

X 0 1 X

| 0 1 X

0 0 1 0

1 1 1 1

X 0 1 X

EXPR 7

Using Expressions in Addressing and Analyzer Expressions

You can use the expression evaluation capability to form more
powerful expressions for use in specifying addressing and analyzer
expressions. For example, suppose you want to trigger the analyzer on
the access to trap vector 13. Instead of calculating the address, since
you know the base address is 080 hex and each vector is 4 address
bytes, you can specify this as:

tg addr=(080h+(13T*4))

You could simplify the above even further using the equate command
to assign names to some of the values. For example:

equ trapvectorbase=080h

equ trapvectorlength=4

Then:

tg addr=(trapvectorbase+(13*trapvectorlength))

Related Information Refer to the <ANALYZER_EXPR>, <SIMPLE_EXPR>, and
<COMPLEX_EXPR> pages for information on the use of expressions
in forming analyzer expressions.

Refer to the echo and equ command syntax pages for information on
use of expressions in expression calculation and equates.

Refer to the <ADDRESS> syntax pages in the Emulator User’s Guide
for information on use of expressions in addressing.

8 EXPR

1SIMPLE_EXPR

Summary Easy configuration expressions

Syntax

Description

Easy Configuration

When the analyzer is in easy configuration (tcf -e), simple expressions
are used to set up trace qualifiers for sequencer branches, triggers, state
counting, and so on. These expressions can take the following forms:

label=expression

Examples addr=2000h

data=25h+20h

stat=0110xxxxY

label!=expression

SIMPLE_EXPR 1

Examples stat!=suprdata (notice that the expression can
also be an equate label)

data!=00

label=expression..expression

Examples addr=4000..401

data=41..42

label!=expression..expression

Examples addr!=1000..1038

data!=00..40

Note No more than one simple expression can exist at any given time which
is in the form of a range (expr..expr).

label=expression and label=expression

Examples addr=3000 and data=41

addr=start and data=00

label!=expression or label!=expression

Examples addr!=3000 or data!=41

2 SIMPLE_EXPR

Complex Configuration

In analyzer complex configuration (tcf -c), you assign each simple
expression a pattern name using the tpat command. These pattern
names are then combined to form complex expressions involving
relationships between multiple simple expressions.

With the exception of these two expressions:

label=expression..expression

label!=expression..expression

all of the simple expression types can be assigned pattern names by
tpat in complex configuration. To form ranges of expressions in
complex configuration, you use the trng command.

Examples tpat p1 addr!=3000 or data!=41

tpat p2 data=23

trng addr=1000..1038

(You don’t need the != relation in ranges because all complex
expressions provide for the logical not of the range specifier.)

Invalid Simple Expressions

The following simple expressions are invalid in either analyzer
configuration. If you need expressions of these types, you must switch
to complex configuration, assign pattern names to subparts of these
expressions, then combine them using the complex expression
capability.

label=expression and label!=expression

This is incorrect because you must use only the = relation with the and
operator. To represent this, switch to complex configuration and do the
following:

tpat p1 label=expression

tpat p5 label!=expression

SIMPLE_EXPR 3

Now, you would represent the above (incorrect) simple expression as a
complex expression of the form:

p1 and p5

label!=expression or label=expression

A similar problem exists here. You must use only the != relation with
the or operator. To represent this, switch to complex configuration and
do one of the following.

tpat p1 label!=expression

tpat p2 label=expression

You would represent the above (incorrect) simple expression as a
complex expression of the form:

p1 | p2

You could also do this:

tpat p1 label!=expression

tpat p5 label=expression

Represent this in complex form as:

p1 or p5

Refer to the <COMPLEX_EXPR> syntax pages for more details on
forming complex expressions.

Related Information See the <EXPR> syntax pages for information on numeric expression
specifications. Also, refer to the Emulator User’s Guide for your
emulator for information on address specifications.

4 SIMPLE_EXPR

A

Sample Programs

A copy of the 68000 sample program used in the examples in
this manual is included, along with brief instructions for
loading the program.

An 80186 version of the same program is included. Label
names and address locations of the routines vary from the
68000 version. You can modify the examples accordingly.

Information about loading and using symbol files for HP
64700-Series Emulators that support symbols is included.

An 8051 sample program is included. The 8051 Emulator
supports symbols, so this program allows you to become
familiar with using symbols.

168000 Sample
Program
FILE: ~/68kcode/newprog HEWLETT-PACKARD: 68000 Assembler
Sat Dec 12 11:15:27 1987 PAGE 1

LOCATION OBJECT CODE LINE SOURCE LINE

 1 "68000"
 2 DATA
 3
 4
 000000 0000 3000 5 INPUT_POINTER DC.L 00003000H
 000004 0000 4000 6 OUTPUT_POINTER DC.L 00004000H
 7
 000008 5448495320 8 MESSAGE_A ASCII "THIS IS MESSAGE A"
 00000D 4953204D45
 000012 5353414745
 000017 2041

Sample Programs A-1

 9
 000019 5448495320 10 MESSAGE_B ASCII "THIS IS MESSAGE B"
 00001E 4953204D45
 000023 5353414745
 000028 2042
 11
 00002A 494E56414C 12 INVALID_INPUT ASCII "INVALID COMMAND"
 00002F 494420434F
 000034 4D4D414E44
 13
 14 PROG
 15
 000000 2479 16 INIT MOVE.L INPUT_POINTER,A2
 000002 00000000
 000006 2679 17 MOVE.L OUTPUT_POINTER,A3
 000008 00000004
 18
 00000C 14BC 0000 19 CLEAR MOVE.B #00H,[A2]
 20
 000010 1012 21 READ_INPUT MOVE.B [A2],D0
 000012 0C00 0000 22 CMP.B #00h,D0
 000016 67F8 23 BEQ READ_INPUT
 24
 000018 0C00 0041 25 PROCESS_COMM CMP.B #41H,D0
 00001C 6700 000E 26 BEQ COMMAND_A
 000020 0C00 0042 27 CMP.B #42H,D0
 000024 6700 0014 28 BEQ COMMAND_B
 000028 6000 001E 29 BRA UNRECOGNIZED
 30
 00002C 103C 0011 31 COMMAND_A MOVE.B #11H,D0
 000030 207C 32 MOVE.L #MESSAGE_A,A0
 000032 00000008
 000036 6000 001A 33 BRA OUTPUT
 00003A 103C 0011 34 COMMAND_B MOVE.B #11H,D0
 00003E 207C 35 MOVE.L #MESSAGE_B,A0
 000040 00000019
 000044 6000 000C 36 BRA OUTPUT
 000048 103C 000F 37 UNRECOGNIZED MOVE.B #0FH,D0
 00004C 207C 38 MOVE.L #INVALID_INPUT,A0
 00004E 0000002A
 39
 40
 000052 224B 41 OUTPUT MOVE.L A3,A1
 42
 000054 123C 0020 43 CLEAR_OLD MOVE.B #20H,D1

FILE: ~/68kcode/newprog HEWLETT-PACKARD: 68000 Assembler
Sat Dec 12 11:15:27 1987 PAGE 2

LOCATION OBJECT CODE LINE SOURCE LINE

 000058 2A4B 44 MOVE.L A3,A5
 00005A 1AFC 0000 45 CLEAR_LOOP MOVE.B #00H,[A5]+
 00005E 0441 0001 46 SUBI #01H,D1
 000062 66F6 47 BNE CLEAR_LOOP
 48
 000064 12D8 49 LOOP MOVE.B [A0]+,[A1]+
 000066 0440 0001 50 SUBI #01H,D0
 00006A 66F8 51 BNE LOOP
 00006C 4EF9 52 JMP CLEAR
 00006E 0000000C
 53
 54

A-2 Sample Programs

Loading the 68000
Sample Program

Set up Memory Map and the Stack Pointer

Before you load the program, you must map memory and set up the
stack pointer. Here are the necessary commands:

M> map 1000..1fff eram
M> map 2000..2fff erom
M> map 3000..5fff eram
M> reg ssp=5000

Transferring Code from Computer Using ftp

To connect to the emulator’s ftp interface, enter the following
command (use any name and password):

$ ftp 15.35.226.210
Connected to 15.35.226.210.
220 User connected to HP64700
Name (15.35.226.210:guest):
Password (15.35.226.210:guest):
230-
 NOTICE

 55 END

Errors= 0
FILE: ~/68kcode/newprog CROSS REFERENCE TABLE PAGE 3

LINE# SYMBOL TYPE REFERENCES

 19 CLEAR P 52
 45 CLEAR_LOOP P 47
 43 CLEAR_OLD P
 31 COMMAND_A P 26
 34 COMMAND_B P 28
 16 INIT P
 5 INPUT_POINTER D 16
 12 INVALID_INPUT D 38
 49 LOOP P 51
 8 MESSAGE_A D 32
 10 MESSAGE_B D 35
 41 OUTPUT P 33, 36
 6 OUTPUT_POINTER D 17
 25 PROCESS_COMM P
 21 READ_INPUT P 23
 37 UNRECOGNIZED P 29

Sample Programs A-3

 This utility program is unsupported. It is provided at no cost.
 Hewlett-Packard makes no warranty on its quality or fitness for
 a particular purpose.

 FTP on the HP64700 serves as a means for downloading absolute files to the
 emulation environment. The file transfer can be be performed as follows:

 1. The data mode type must be set to IMAGE (binary)

 2. Store the file using options to indicate the file format. The following
 example uses PUT as the host command for sending the file. This may be
 different for your ftp implementation.

 put <file_name> <options>
 <file_name> - host file to be loaded.
 <options> - The options are preceeded by a minus (-). The available
 options vary for individual emulators. All support HP OLS, Intel hex,
 Motorola S-records, and Extended Tek Hex. Emulator specific options can
 be viewed by issuing a Terminal Mode help for the load command.

 put hpfile.X -h #to download an HP OLS file
 put intelfile -i #to download an Intel Hex file
 put motfile -m #to download a Motorola S-record file
 put tekfile -t #to download an Extended Tek Hex file

230

To set up ftp for binary file transfers:
ftp> binary
200 Type set to I

To download the HP 64000 format absolute file into the emulator:
ftp> put cmd_rdr.X -h
200 Port ok
150
226-
R>
226 Transfer completed
3332 bytes sent in 0.20 seconds (16.27 Kbytes/sec)

To exit out of the ftp interface:
ftp> quit
221 Goodbye
$

A-4 Sample Programs

180186 Sample
Program

FILE: cmd_rdr.S HEWLETT-PACKARD: 80186 Assembler

LOCATION OBJECT CODE LINE SOURCE LINE

 1 "80186"
 2 ORG 500H
 0500 3 Msgs
 0500 436F6D6D61 4 Msg_A DB "Command A entered "
 0505 6E64204120
 050A 656E746572
 050F 656420
 0512 456E746572 5 Msg_B DB "Entered B command "
 0517 6564204220
 051C 636F6D6D61
 0521 6E6420
 0524 496E76616C 6 Msg_I DB "Invalid Command "
 0529 696420436F
 052E 6D6D616E64
 0533 20
 0534 7 End_Msgs
 8
 9 ORG 400H
 10 ASSUME DS:ORG,ES:ORG
 11 **
 12 * The following instructions initialize segment
 13 * registers and set up the stack pointer.
 14 **
 0400 B80000 15 Init MOV AX,SEG Msg_A
 0403 8ED8 16 MOV DS,AX
 0405 B80000 17 MOV AX,SEG Cmd_Input
 0408 8EC0 18 MOV ES,AX
 040A 8ED0 19 MOV SS,AX
 040C BCF906 20 MOV SP,OFFSET Stk
 21 **
 22 * Clear previous command.
 23 **
 040F 26C6060006 24 Read_Cmd MOV Cmd_Input,#0
 0414 0090
 25 **
 26 * Read command input byte. If no command has been
 27 * entered, continue to scan for command input.
 28 **
 0416 26A00006 29 Scan MOV AL,Cmd_Input
 041A 3C00 30 CMP AL,#0
 041C 74F8 31 JE Scan
 32 **
 33 * A command has been entered. Check if it is
 34 * command A, command B, or invalid.
 35 **
 041E 3C41 36 Exe_Cmd CMP AL,#41H
 0420 7407 37 JE Cmd_A
 0422 3C42 38 CMP AL,#42H
 0424 740C 39 JE Cmd_B
 0426 E91200 40 JMP Cmd_I

Sample Programs A-5

 41 **
 42 * Command A is entered. CX = the number of bytes in
 43 * message A. SI = location of the message. Jump to
 44 * the routine which writes the messages.
 45 **
 0429 B91200 46 Cmd_A MOV CX,#Msg_B-Msg_A
 042C BE0005 47 MOV SI,OFFSET Msg_A
 042F E90F00 48 JMP Write_Msg
 49 **
 50 * Command B is entered.
 51 **
 0432 B91200 52 Cmd_B MOV CX,#Msg_I-Msg_B
 0435 BE1205 53 MOV SI,OFFSET Msg_B
 0438 E90600 54 JMP Write_Msg
 55 **
 56 * An invalid command is entered.
 57 **
 043B B91000 58 Cmd_I MOV CX,#End_Msgs-Msg_I
 043E BE2405 59 MOV SI,OFFSET Msg_I
 60 **
 61 * Message is written to the destination.
 62 **
 0441 8D3E0106 63 Write_Msg LEA DI,Msg_Dest
 0445 F3A4 64 REP MOVSB
 65 **
 66 * The rest of the destination area is filled
 67 * with zeros.
 68 **
 0447 C60500 69 Fill_Dest MOV BYTE PTR [DI],#0
 044A 47 70 INC DI
 044B 81FF2106 71 CMP DI,#Msg_Dest+20H
 044F 75F6 72 JNE Fill_Dest
 73 **
 74 * Go back and scan for next command.
 75 **
 0451 EBBC 76 JMP Read_Cmd
 77
 78 ORG 600H
 79 **
 80 * Command input byte.
 81 **
 0600 82 Cmd_Input DBS 1
 83 **
 84 * Destination of the command messages.
 85 **
 0601 86 Msg_Dest DDS 3EH
 06F9 87 Stk DWS 1 ; Stack area.
 88 END

Errors= 0

A-6 Sample Programs

1Symbol Files Versions of HP 64700-Series emulator firmware that support symbol
files can load an ASCII text file containing symbol definitions.

Three types of symbols can be defined: local, global, and user. Only
local and global symbols can be loaded from a symbol file; user
symbols can only be created with the sym command.

Global symbols are general memory references. They represent the
equivalent of "GLOBAL" or "PUBLIC" variables in compiled
programs.

Local symbols are grouped by "module." The primary purpose of a
module is to group local symbols, but can represent any arrangement of
local symbols desired. Local symbols created by a higher level
language processor are defined by implementation.

A module is usually a source file name, and symbols are function or
procedure names. In a symbol file, any organizational scheme can be
used to manage local symbols. While the module name can be
equivalent to a source file name, or some other physical or logical
entity, it is not necessary. Therefore, if memory is in short supply, you
can organize the "local" symbols to allow for easy deletion of old
symbols, and loading of new symbols that reference locations of
interest.

Address references for all symbol types are absolute addresses.

Sample Programs A-7

Note The sym command presently applies to some HP 64700-Series
emulators, and may apply to all HP 64700-Series emulators in the
future. If you are using an emulator that does not presently support
symbols, when you try to execute the sym command, a message will be
displayed indicating that symbols are not supported on your emulator.

If your emulator firmware is less than version A.02.00, you will not be
able to use the sym command because your emulator will not support
symbols. To verify the version number of your emulator firmware,
execute "ver" at the Terminal Interface prompt.

Even if your emulator firmware version is A.02.00 or greater, your
HP 64700-Series emulator may not necessarily support symbols.

Syntax A symbol file is an ASCII text file. The format of this file is
represented by:

A-8 Sample Programs

<WHITESPACE> This is one or more <SP> (space) or <HT>
(horizontal tab) characters or a
combination of these characters.

<RETURN> This is a <LF> (line feed) or <CR><LF>
(carriage return, line feed pair); a <CR>
(carriage return) alone is not recognized.

<ADDRESS> This is a valid address specification for the
emulator being used.

<MODULE> This defines a module name.

<LOCAL SYMBOL> This is a local symbol reference. A local
symbol definition line must include, or
follow, a module name, or an error will
occur when loading the file.

<GLOBAL SYMBOL> This is a global symbol reference.

<QUALIFIER> This allows you to specify label
hierarchies. Its use is dependent on the
implementation.

: This is the literal colon (":").

. This is the literal period (".").

This is the literal pound sign ("#").

Sample Programs A-9

Examples The examples presented are for the 8051 family emulators. Other
emulators will use a different address format. Refer to your Emulator
Terminal Interface User’s Guide for specific address format definitions.

Defining Local Symbols

Local symbols must include, or be preceded by, a module name
reference. Therefore, the files

#
:main 0@p
GetAttrib:
Buffer 100@p
Pointer 120@p
#

and
#
:main 0@p
GetAttrib:Buffer 100@p
GetAttrib:Pointer 120@p
#

will produce the same result when loaded.

After loading either symbol file, enter:

M> sym

You will see:

 sym main=00000@p
 sym GetAttrib:Buffer=00100@p
 sym GetAttrib:Pointer=00120@p

A-10 Sample Programs

Naming Array Elements

You may wish to load symbols that name elements of an array to make
referring to the array elements more explicit. If your array has four
elements, each element is 10h bytes long, and begins at 2000h, the
symbol file would contain the following:

#
ARRAY:
E1=2000@d
E2=2010@d
E3=2020@d
E4=2030@d
#

After loading the symbol file, enter:

M> sym

You will see, at least in part:

 sym ARRAY:E1=2000@d
 sym ARRAY:E2=2010@d
 sym ARRAY:E3=2020@d
 sym ARRAY:E3=2030@d

If you no longer need the references to ARRAY elements, you can
remove the symbols with the command:

M> sym -dl ARRAY

Sample Programs A-11

Loading a Symbol
File

Loading symbol files over the LAN is the same as loading absolute
files over the LAN, except that a different option is used with the "put"
command in ftp.

To connect to the emulator’s ftp interface, enter the following
command (use any name and password):

$ ftp 15.35.226.210
Connected to 15.35.226.210.
220 User connected to HP64700
Name (15.35.226.210:guest):
Password (15.35.226.210:guest):
230-
 NOTICE

 This utility program is unsupported. It is provided at no cost.
 Hewlett-Packard makes no warranty on its quality or fitness for
 a particular purpose.

.

.

.

To set up ftp for binary file transfers:
ftp> binary
200 Type set to I

To download the symbol file into the emulator:
ftp> put cmd_rdr.sym -S
200 Port ok
150
226-
R>
226 Transfer completed
1789 bytes sent in 4.78 seconds (0.37 Kbytes/sec)

To exit out of the ftp interface:
ftp> quit
221 Goodbye
$

A-12 Sample Programs

18051 Sample
Program

The HP 64700-Series 8051 Emulator supports the use of symbols. If
you are using an 8051 Emulator, you can use the following program to
become familiar with using symbols.

"8051"
DPS DATA 86H
 GLB Msgs,Init,Cmd_Input
 CSEG
 COMN
Msgs
Msg_A DB "Command A entered "
Msg_B DB "Entered B command "
Msg_I DB "Invalid Command "
End_Msgs

 PROG
**
* The following instructions initialize segment
* registers and set up the stack pointer.
**
Init MOV SP,#Stk
Read_Cmd MOV DPTR,#Cmd_Input
**
* Clear previous command.
**
 MOV A,#0
 MOVX @DPTR,A
**
* Read command input byte. If no command has been
* entered, continue to scan for command input.
**
Scan MOVX A,@DPTR
 JZ Scan
**
* A command has been entered. Check if it is
* command A, command B, or invalid.
**
 CJNE A,#41H,Cmd_B
**
* Command A is entered. Set up registers R2 and
* DPTR0 with the parameters expected by the
* "Write_Msg" routine. Call the routine. After
* return, go back and scan for next command.
**
 MOV R2,#Msg_B-Msg_A
 MOV DPTR,#Msg_A
 SJMP Write_Msg
Cmd_B CJNE A,#42H,Cmd_I
**
* Command B is entered.
**
 MOV R2,#Msg_I-Msg_B
 MOV DPTR,#Msg_B
 SJMP Write_Msg
**
* An invalid command is entered.
**
Cmd_I MOV R2,#End_Msgs-Msg_I
 MOV DPTR,#Msg_I

Sample Programs A-13

**
* The "Write_Msg" routine writes a message to the
* destination. The parameter passed in register
* R2 = the number of bytes in the message. The
* parameter passed in register DPTR0 = the location
* of the message.
**
Write_Msg MOV A,R2
 XRL A,#0FFH
 ADD A,#21H
 MOV R3,A
 INC DPS
 MOV DPTR,#Msg_Dest
Again INC DPS
 MOVX A,@DPTR
 INC DPTR
 INC DPS
 MOVX @DPTR,A
 INC DPTR
 DJNZ R2,Again
**
* The rest of the destination area is filled
* with zeros.
**
 MOV A,#0
Fill_Dest MOVX @DPTR,A
 INC DPTR
 DJNZ R3,Fill_Dest
 INC DPS
 SJMP Read_Cmd

 XSEG
**
* Command input byte.
**
Cmd_Input DS 1
**
* Destination of the command messages.
**
Msg_Dest DS 0FDH
Stk DS 1 ; Stack area.
 END Init

A-14 Sample Programs

B

Binary/Hexadecimal Trace List Format

The tl command supports two options, -b (binary) and -x
(hexadecimal) which allow you to dump the trace list to your host for
post processing. This is, in fact, the only way you can obtain timing
trace information from the optional external analyzer, as the Terminal
Interface does not currently provide support for translating timing data
to ASCII characters.

1Transfer Protocol When you request a binary trace list dump from the HP 64700
Emulator (-b option), the emulator sends the data using the HP 64000
transfer protocol. You must use an 8-bit communications channel to
successfully transfer the data (HP 64700 and the host device must both
be configured to send and receive 8 bits).

The hexadecimal trace list dump (-x option) also uses the HP 64000
transfer protocol, but does not require an 8-bit communications
channel. However, twice as many characters will be transmitted as
would be in the binary format.

1Trace List Records Six primary trace list records may be transferred. These are:

No Trigger Record

Empty Trace Record

New State Data Record

Binary/Hexadecimal Trace List Format B-1

More State Data Record

New Timing Data Record

More Timing Data Record

Each record has at least one byte. The first byte identifies the record
type.

Other fields in the record, containing one or more bytes of information,
provide additional information about the trace.

The Data Records contain secondary record structures which hold the
actual trace information. For the State Data Records, the secondary
record is the Trace State record; for the Timing Data Records, the
secondary record is the Trace Sample record.

Each record structure is accompanied by a diagram. Note that line
breaks in the diagram are not EOL characters in the record.

No Trigger Record

record type = 10000000

One byte indicating that the trigger condition of the current trace is not
in memory. Trace data cannot be displayed until the trigger condition
occurs and is placed in trace memory or until the trace is halted.
Therefore, this is the only record that will be sent when the trace list is
requested, since no others are available.

B-2 Binary/Hexadecimal Trace List Format

Empty Trace Record

record type = 01000000

One byte indicating that the most recent trace was halted before any
states were stored. Therefore, this will be the only record sent.

New State Data
Record

record type = 00000LH1

One byte indicating that this is the first trace list data displayed for the
current or most recent trace.

If L=1, this is the only record being sent. Otherwise, one or more More
Data Records follow.

If H=1, this record contains the highest numbered state this trace can
have. Therefore, this is the end of the trace list. If the state count for
this record is zero, the highest numbered state can be computed by
subtracting 1 from the start state.

state count

One byte indicating how many trace states are contained in this record.
This will be zero (0) if none of the requested states exist.

start state

Two bytes containing the starting state number (in the range -1024
through 1023), most significant byte first.

Binary/Hexadecimal Trace List Format B-3

lowest state

Two bytes containing the lowest state number in the entire trace list,
MSB first. Note that if the trace is halted after this record is sent,
lower-numbered states may be valid.

state size

One byte indicating how many bytes of trace data will be in each trace
state. This does not include the store cause or count data bytes.

arm time

Three bytes containing the time from arm to trigger, MSB first. The
lower 20 bits contain the absolute value of the actual time, in 40 ns
units.

Note The time alignment between HP 64700-Series emulators has a large
margin of error (+/- 100 ns) due to delay variances in the trigger paths.

B-4 Binary/Hexadecimal Trace List Format

The correlation between the arm time counter value and the value
displayed on screen should be as follows:

count time
----- --
0000h Arm occured an unknown amount of time after the trigger
0001h Arm occured an unknown amount of time after the trigger
0002h -40 ns - Arm input actually came after trigger was sampled but
 still caused arm state to occur before trigger
 internal to the elan chip.
0003h 0 ns
0004h 40 ns
0005h 80 ns
 . .
 . .
 . .
FFFFh 2.621280 ms This is now the maximum arm to trigger interval
 that can be displayed.

The highest 4 bits contain status flags as follows:

high nibble = XVS0

If X = 1, the arm time is invalid, either because the arm signal was
ignored (e.g., "tarm always"), or because the state analyzer clock speed
was fast or very fast (e.g., "xtck -s F"). The 20 bits of time value will
be 0.

If V = 1, the arm counter overflowed (if S = 0) or underflowed (if S =
1). For overflow, the 20 bits of time value contain the maximum time
value, (1^20)-4, representing 41.94288 ms. For underflow, the S flag is
set (see below), and the 20 bits of time value contain the absolute value
of the minimum count, -1, representing -40 ns.

If S = 1, the arm time is negative. The 20 bits of time value contain the
absolute value of the actual count.

count type

One ASCII character indicating the type of count data contained in
each trace state.

"T" indicates each trace state contains a time count.

"S" indicates each trace state contains a state count.

"N" indicates that no count data is available.

Binary/Hexadecimal Trace List Format B-5

first trace state..last trace state

Each of these records is in the trace state format described below. Each
record is n bytes in length; n is the state size value (described above)
plus one byte indicating the reason for storage of this state and an
optional two bytes with count data information.

More State Data
Record

record type = 0000NLH0

One byte indicating this is more data from the same trace as the most
recent New State Data Record.

If L=1, this is the last record sent. Otherwise additional More Data
Records follow.

If H=1, this record contains the highest numbered state in the trace; this
is the end of the trace list. If the state count for this record is zero (0),
the highest numbered state can be computed by subtracting one (1)
from the start state.

If N=1, this record contains a new lowest state. The starting state
number can change if the trace is halted; if it changes, it will always
become more negative. It can change a maximum of one time for a
given trace list. N=1 will never occur unless L=1.

B-6 Binary/Hexadecimal Trace List Format

state count

One byte indicating the number of trace states contained in this record.
This will be zero (0) if none of the requested states exist.

start state

Two bytes containing the starting state number (in the range
-1024..1023), most significant byte (MSB) first.

lowest state

Optional two bytes containing the lowest state number in the entire
trace list, most significant byte (MSB) first. These bytes are only
present if the record type has N=1.

first trace state..last trace state

Each of these records is in the trace state format described below. Each
record is a variable number of bytes in length. The length is the state
size value (described above) plus one byte indicating the reason for
storage of this state and an optional two bytes with count data
information.

Trace State Record

state type

One ASCII character indicating the reason this state was stored.

"Q" indicates this state satisfied a sequence branch qualifier (defined by
tif or telif).

"S" indicates this state satisfied the store qualifier (defined by tsto).

"P" indicates this state satisfied the prestore qualifier. The count data
field bytes below will be omitted for this state. Prestore states are
marked as such only if a state or time count was specified for the trace
(defined by tcq).

Binary/Hexadecimal Trace List Format B-7

count data

Optional two bytes containing the state or time count for this state. The
count value is relative to the previous non-prestore state. These bytes
are omitted if the count type field in the New State Data Record was
"N", or if this state is a prestore state (state type field in this record is
"P"). The count data is encoded as follows (first byte is on the left):

eeeeemmm mmmmmmmm

 e represents 5 bits of exponent.

m represents 11 bits of mantissa.

The value represented is (m*(2^e)) + (2^(11+e)) - (2^11)

Time counts are in 40 nanosecond units.

trace data

Trace data for this state, most significant byte (MSB) first. The length
of this trace data is given by the state size field in the New State Data
Record. Data from the optional external analyzer (provided only if the
analyzer is present) will be in the most significant 16 bits (two bytes).

New Timing Data
Record

record type = 00100LH1

One byte indicating this is the first trace list data displayed for the
current or most recent trace.

B-8 Binary/Hexadecimal Trace List Format

If L=1, this is the only record sent. Otherwise, one (1) or more More
Timing Data Records follow.

If H=1, this record contains the highest numbered sample in the trace;
this is the end of the trace list. If the sample count field for this record
is zero (0), the highest numbered sample can be computed by
subtracting one (1) from the start sample field.

sample count

One byte indicating how many trace samples are contained in this
record. This will be zero if no samples are present.

start sample

Two bytes containing the starting sample number (-1024..1023), most
significant byte (MSB) first.

lowest sample

Two bytes containing the lowest sample number in the entire trace list,
MSB first. Note that if the trace is halted after this record is sent,
lower-numbered samples may become valid.

Binary/Hexadecimal Trace List Format B-9

state size

One byte indicating the number of bytes of trace data in each trace
sample. Note the relationship to the count type field.

arm time

Three bytes containing the time from arm to trigger, MSB first. The
lower 20 bits contain the absolute value of the actual time, in 40 ns
units.

Note The time alignment between HP 64700-Series emulators has a large
margin of error (+/- 100 ns) due to delay variances in the trigger paths.

B-10 Binary/Hexadecimal Trace List Format

The correlation between the arm time counter value and the value
displayed on screen should be as follows:

count time
----- --
0000h Arm occured an unknown amount of time after the trigger
0001h Arm occured an unknown amount of time after the trigger
0002h -40 ns - Arm input actually came after trigger was sampled but
 still caused arm state to occur before trigger
 internal to the elan chip.
0003h 0 ns
0004h 40 ns
0005h 80 ns
 . .
 . .
 . .
FFFFh 2.621280 ms This is now the maximum arm to trigger interval
 that can be displayed.

The highest 4 bits contain status flags as follows:

high nibble = XVS0

If X = 1, the arm time is invalid, either because the arm signal was
ignored (e.g., "tarm always"), or because the state analyzer clock speed
was fast or very fast (e.g., "xtck -s F"). The 20 bits of time value will
be 0.

If V = 1, the arm counter overflowed (if S = 0) or underflowed (if S =
1). For overflow, the 20 bits of time value contain the maximum time
value, (1^20)-4, representing 41.94288 ms. For underflow, the S flag is
set (see below), and the 20 bits of time value contain the absolute value
of the minimum count, -1, representing -40 ns.

If S = 1, the arm time is negative. The 20 bits of time value contain the
absolute value of the actual count.

count type

One ASCII character indicating the type of count data contained in
each Trace Sample record.

"T" indicates the timing analyzer was set to transitional mode. Each
Trace Sample record contains a six byte field which contains the delta
time (in nanoseconds) since the last transition. A two-byte field
containing the trace data taken at the delta time interval is also in the
Trace Sample record.

Binary/Hexadecimal Trace List Format B-11

"S" indicates the timing analyzer was set to standard mode. Each Trace
Sample record contains only the two bytes of trace data.

"G" indicates the timing analyzer was set to glitch mode. Each trace
sample consists of a two-byte trace data field and a two-byte glitch data
field.

sample period

Four bytes containing the number of nanoseconds (ns) between
samples.

first trace sample..last trace sample

Trace Sample records of the size defined in the sample size field (note
relationship to the count type field).

More Timing Data
Record

record type = 0010NLH0

One byte indicating this is more data from the same trace as the most
recent New Timing Data Record.

If L=1, this is the last record sent. Otherwise, additional More Timing
Data Records follow.

If H=1, this record contains the highest-numbered sample in the trace;
this is the end of the trace list. If the sample count field for this record
is zero (0), the highest numbered sample can be computed by
subtracting one (1) from the start sample field.

If N=1, this record contains a new lowest sample. The starting sample
number can change if the trace is halted; if it changes, it will always
become more negative. It can only change once for a given trace list.
N=1 will only occur if L=1.

B-12 Binary/Hexadecimal Trace List Format

sample count

One byte indicating the number of Trace Sample records in this record.
This will be zero (0) if no Trace Samples are present (the analyzer did
not find the requested data in the last trace.)

start sample

Two bytes containing the starting sample number (in the range
-1024..1023), most significant byte (MSB) first.

lowest sample

Optional two bytes containing the lowest sample number in the entire
trace list, most significant byte (MSB) first. These two bytes are
present only if the record type has N=1.

first trace sample..last trace sample

Trace Sample records of the size defined in the sample size field (note
relationship to the count type field).

Trace Sample
Records

Trace Sample records are variant records which are components of the
New Timing Data Record and More Timing Data Record. The
structure of the Trace Sample Record depends on the count type field in
the Timing Data Records.

Binary/Hexadecimal Trace List Format B-13

Transitional Mode (count type = "T")

delta time

Six bytes of data defining the delta time (elapsed time) since the last
transition, in nanoseconds (ns).

trace data

Two bytes of trace data sampled at the delta time value given.

Standard Mode (count type = "S")

trace data

Two bytes of trace data sampled at the standard sampling period (see
the xtsp command).

Glitch Mode (count type = "G")

trace data

Two bytes of trace data sampled at the standard sampling period (see
the xtsp command).

glitch

Two bytes indicating the occurrences of glitches on any channel.

B-14 Binary/Hexadecimal Trace List Format

C

Error Messages

This appendix contains descriptions of error messages that can occur
while using the Terminal Interface. The error messages are listed in
numerical order, and each description includes the cause of the error
and the action you should take to remedy the situation.

Error messages described in this appendix are "generic"; that is, they
can occur in any of the HP 64700-Series emulators. Errors specific to a
particular emulator are described in the Emulator User’s Guide.

The HP 64700-Series emulators can return messages to the display only
when they are prompted to do so. Situations may occur where an error
is generated as the result of some command, but the error message is
not displayed until the next command (or a carriage return) is entered.

A maximum number of 8 error messages can be displayed at one time.
If more than 8 errors are generated, only the last 8 are displayed.

1Emulator Error
Messages

The following messages are used by most, but not all, of the HP
64700-Series Emulators. Some emulators may supplement or replace
these with messages of their own.

Error Messages C-1

Message 0 : Software breakpoints not supported

Cause

You attempted to enable software breakpoints with bc -e bp on an
emulator whose processor does not support a software breakpoint
instruction.

Action

Do not attempt to use software breakpoints. Instead, set the analyzer to
drive the trig1 or trig2 line upon finding trigger, specify the trigger
state as the address you wish to break on, trace, then run the emulator.
The emulator will break to monitor when the analyzer finds the trigger
state.

Message 1 : I/O port access not supported

Cause

You attempted to use the io command for an emulator whose processor
does not support separate I/O (such as the 68000).

Action

Use the m command to modify I/O ports on these emulators.

Message 20 : Attempt to change foreground monitor map term

Cause

The cf mon=fg command that sets up use of a foreground monitor also
maps a memory range for the monitor’s use. You attempted to alter
that term using the map command.

Action

Try using another memory range for the new map term. If you need to
have the range used by the foreground monitor, then switch to a
background monitor, delete the old foreground monitor map term, and

C-2 Error Messages

add the new term. Now you can return to using a foreground monitor;
remember you will need to reload the monitor code.

Message 40 : Restricted to real time runs

Cause

The cf rrt=en option is set (restrict to real time runs) and you have
entered a command which requires a temporary break to the monitor
for processing (such as a request to display target system memory
locations).

Action

Break to the monitor using the b command, then execute the desired
command. If your target system depends on continuous bus cycles to
avoid damage, then power it down before breaking to the monitor.

Message 61 : Emulator is in the reset state

Cause

This message is displayed if you request an operation that requires
entry into the emulation monitor, such as display of target system
memory locations.

Action

If the prompt is R>, indicating an emulation system reset, break to the
monitor using the b command, then retry the command. Otherwise,
release the target system reset, then retry the command.

Message 80 : Stack pointer is odd

Cause

You have attempted to modify the stack pointer to an odd value for a
processor that expects the stack to be aligned on a word boundary (such
as the 68000).

Error Messages C-3

Action

Modify the stack pointer to an even value.

Message 81 : Stack is in guarded memory

Cause

Your stack pointer pointed to a location in memory mapped as guarded;
you then attempted to run or step the emulation processor. The
emulator was unable to access the stack to complete the transition from
the monitor to the user program or vice versa.

Action

Either remap memory so the stack pointer points to a location in RAM,
or change the stack pointer value (either with your program or with the
cf command options, if available) to point to a location in RAM.

Message 82 : Stack is in target ROM

Cause

Your stack pointer pointed to a location in memory mapped as target
ROM; you then attempted to run or step the emulation processor. The
emulator was unable to access the stack to complete the transition from
the monitor to the user program or vice versa.

Action

Either remap memory so the stack pointer points to a location in RAM,
or change the stack pointer value (either with your program or with the
cf command options, if available) to point to a location in RAM.

C-4 Error Messages

Message 83 : Stack is in emulation ROM

Cause

Your stack pointer pointed to a location in memory mapped as
emulation ROM; you then attempted to run or step the emulation
processor. The emulator was unable to access the stack to complete the
transition from the monitor to the user program or vice versa.

Action

Either remap memory so the stack pointer points to a location in RAM,
or change the stack pointer value (either with your program or with the
cf command options, if available) to point to a location in RAM.

Message 84 : Program counter is odd

Cause

You attempted to modify the program counter to an odd value using the
reg command on a processor which expects even alignment of opcodes.

Action

Modify the program counter only to even numbered values.

Message 102 : Monitor failure; no clock input

Cause

The monitor is unable to run because no emulation processor clock is
available.

Action

If running out of circuit, choose configuration option cf clk=int ; if
running in-circuit, choose configuration option cf clk=ext and make
sure a clock meeting the microprocessor’s specifications is input to the
clock pin of the target system probe.

Error Messages C-5

Message 103 : Monitor failure; no processor cycles

Cause

The monitor is unable to run since the processor is not running. The
monitor is unable to determine the cause of the failure.

Action

If running in-circuit, troubleshoot the target system. If running out of
circuit, reinitialize the emulator and try the procedure again.

Message 104 : Monitor failure; bus grant

Cause

The monitor is unable to run. The emulation processor is not running
because it has granted the bus to another device.

Action

Wait until the processor has regained bus control, then retry the
operation.

Message 105 : Monitor failure; halted

Cause

The monitor is unable to run because the processor is halted (due to an
external halt line or a halt instruction).

Action

Release the external halt and retry the operation. If the processor halted
due to a halt instruction, try the rst command, then retry the operation.

C-6 Error Messages

Message 106 : Monitor failure; wait state

Cause

The monitor is unable to run because the processor is in a continuous
wait state.

Action

A continuous wait state may indicate target system problems.
Troubleshoot the wait line. If you were running out of circuit, try
initializing the emulator with init , then retry the procedure.

Message 107 : Monitor failure; bus error

Cause

The monitor is unable to run because the processor has encountered a
bus fault (such as the 68000 /BERR line).

Action

Release the /BERR line and determine why it was activated.

1General Emulator
and System
Error/Status
Messages

Message 201 : Out of system memory

Cause

Macros and equates that you have defined have used all of the available
system memory.

Error Messages C-7

Action

Delete some of the existing macros (mac -d <NAME>) and equates
(equ -d <NAME>), which will free additional memory.

Message 204 : FATAL SYSTEM SOFTWARE ERROR

205 : FATAL SYSTEM SOFTWARE ERROR

208 : FATAL SYSTEM SOFTWARE ERROR

Cause

The system has encountered an error from which it cannot recover.

Action

Write down the sequence of commands which caused the error. Cycle
power on the emulator and reenter the commands. If the error repeats,
call your local HP Sales and Service office for assistance.

Message 206 : Incompatible compatibility table entry.

Cause

The emulation firmware (ROM) is not compatible with the analysis or
system firmware in your HP 64700 emulation system.

Action

The ROMs in your emulator must be compatible with each other for
your emulation system to work correctly. Refer to the HP 64700-Series
Emulators Firmware/Software Compatibility Note supplied with your
HP 64700-Series documentation to determine the current ROM kit
number for your emulator. All emulation, analysis, and system ROMs
in the HP 64700 must be installed from the most current firmware kit
for that emulator. For more information contact your Hewlett-Packard
Representative.

C-8 Error Messages

Message 300 : Invalid option or operand

305 : Invalid option or operand: %s

Cause

You have specified incorrect option(s) to a command. %s, if printed,
indicates the incorrect option(s).

Action

Reenter the command with the correct syntax. Refer to the syntax
pages in this example for information.

Message 307 : Invalid expression: %s

Cause

You have entered an expression with incorrect syntax; therefore, it
cannot be evaluated. %s is the bad expression.

Action

Reenter the expression, following the syntax rules for that type of
expression. Refer to the command syntax pages to determine the
expression type; then refer to the expression syntax pages to determine
the correct syntax for that type.

Message 308 : Invalid number of arguments

Cause

You have either entered too many options to a command or an
insufficient number of options.

Action

Re-enter the command with correct syntax. Refer to the command
syntax pages in this manual for information.

Error Messages C-9

Message 310 : Invalid address: %s

Cause

You specified an invalid address value as an argument to a command
(other than an analyzer command). For example, you may have
specified digits that don’t correspond to the base specified, or you
forgot to precede a hexadecimal letter digit with a number (even zero
(0)).

Action

Re-enter the command and the address specification. See the
<ADDRESS> syntax pages in the Emulator User’s Guide and the
<EXPRESSION> syntax pages in this manual for information on
address specifications.

Message 311 : Invalid address range: %s

Cause

You specified an invalid address range as an argument to a command
(other than an analyzer command). For example, you may have
specified digits that don’t correspond to the base specified, or you
forgot to precede a hexadecimal letter digit with a number, or the upper
boundary of the range you specified is less than the lower boundary.

Action

Re-enter the command and the address specification. See the
<ADDRESS> syntax pages in the Emulator User’s Guide and the
<EXPRESSION> syntax pages in this manual for information on
address specifications. Also, make sure that the upper boundary
specification is greater than the lower boundary specification (the lower
boundary must always precede the upper boundary on the command
line).

C-10 Error Messages

Message 312 : Ambiguous address: %s

Cause

Certain emulators support segmentation or function code information in
addressing. The emulator is unable to determine which of two or more
address ranges you are referring to, based upon the information you
entered.

Action

Re-enter the command and fully specify the address, including
segmentation or function code information.

Message 313 : Missing option or operand

Cause

You have omitted a required option to the command.

Action

Re-enter the command with the correct syntax. Refer to the command
syntax pages in this manual for further information on required syntax.

Message 314 : Option conflict: %s

Cause

You have entered a command with two options which cannot be used
together. For example, you might have entered tl -bx; you cannot ask
for both a binary and hexadecimal trace list dump.

Action

Reenter the command, specifying only non-conflicting options. Refer
to the syntax pages for the command in this manual to determine which
options may be used together.

Error Messages C-11

Message 315 : Invalid count: %s

Cause

This error occurs when the emulation system expects a certain number
(of arguments, for example), but you specify a different number.

Action

Enter the number the system expects to receive.

Message 316 : Invalid range expression: %s

Cause

In the tl command, you specified an illegal range. For example, you
might have specified tl -10..a.

Action

Use only legitimate range numbers in the tl command (-1024..1023);
the second range value must be greater than the first.

Message 317 : Range out of bounds: %s

Cause

In the tl command, you specified a range number which was greater
than the number of states available in the analyzer. For example, you
might have specified tl -2048..2048; the analyzer only has 1024 states.

Action

Specify range numbers between -1024 and 1023.

C-12 Error Messages

Message 318 : Count out of bounds: %s

Cause

You specified an occurrence count less than 1 or greater than 65 535
for tg or tif . For example, you might have entered tif 1 any 2 69234.

Action

Re-enter the command, specifying a count value from 1 to 65535. For
example: tif 1 any 2 65535.

Message 319 : Invalid base: %s.

Cause

This error occurs if you have specified an invalid base in the tf or xtf
commands.

Action

Enter the help tf or help xtf command to view the valid base options.

Message 320 : Invalid label: %s

Cause

You tried to define a label with characters other than letters, digits, or
underscores.

Action

Re-enter the tlb command with a label consisting only of letters, digits,
or underscores.

Error Messages C-13

Message 321 : Label not defined: %s

Cause

You entered an analyzer expression in which the label was not present
in the analyzer label list. For example, if the label list includes addr,
data, and stat, you might have entered something such as tg
lowerdata=24t. This error also occurs if you try to delete a label that
does not exist.

Action

You can re-enter the command, using one of the previously defined
labels and adjust the expression as necessary to accommodate the fit of
that label to the analyzer input lines. Or, you can define a new label
using the tlb command, then re-enter the analyzer command using the
newly defined label.

Message 400 : Record checksum failure

Cause

During a transfer operation, the checksum specified in a file did not
agree with that calculated by the HP 64700.

Action

Retry the transfer operation. If the failure is repeated, make sure that
both your host and the HP 64700 data communications parameters are
configured correctly.

Message 401 : Records expected: %s; records received: %s

Cause

The HP 64700 received a different number of records than it expected
to receive during a transfer operation.

C-14 Error Messages

Action

Retry the transfer. If the failure is repeated, make sure that the data
communications parameters are set correctly on the host and on the HP
64700. Refer to the Hardware Installation and Configuration manual
for details.

Message 410 : File transfer aborted

Cause

A transfer operation was aborted due to a break received, most likely a
<CTRL> c from the keyboard.

Action

If you typed <CTRL> c, you probably did so because you thought the
transfer was about to fail. Retry the transfer, making sure to use the
correct command options. If you are unsuccessful, make sure that the
data communications parameters are set correctly on the host and on
the HP 64700, then retry the operation.

Message 411 : Severe error detected, file transfer failed

Cause

An unrecoverable error occurred during a transfer operation.

Action

Retry the transfer. If it fails again, make sure that the data
communications parameters are set correctly on the host and on the HP
64700. Also make sure that you are using the correct command
options, both on the HP 64700 and on the host.

Error Messages C-15

Message 412 : Retry limit exceeded, transfer failed

Cause

The limit for repeated attempts to send a record during a transfer
operation was exceeded, therefore the transfer was aborted.

Action

Retry the transfer. Make sure you are using the correct command
options for both the host and the HP 64700. The data communications
parameters need to be set correctly for both devices. Also, if you are in
a remote location from the host, it is possible that line noise may cause
the failure.

Message 413 : Transfer failed to start.

Cause

Communication link or transfer protocal incorrect.

Action

Check link and transfer options.

Message 415 : Timeout, receiver failed to respond.

Cause

Communication link or transfer protocal incorrect.

Action

Check link and transfer options.

C-16 Error Messages

Message 420 : Unknown mode: %s.

Cause

This error occurs when you have specified an unknown option in the
stty command.

Action

Enter the help stty command to view the valid options.

Message 425 : Load option conflict: %s and option: %s.

Cause

Two or more options in the load command cannot be used together.

Action

Enter the help load command to view the options that cannot be used
together.

Message 520 : Equate not defined: %s

Cause

You tried to delete an equate that did not exist in the equate table. For
example suppose the equates a=1 and b=2 were in the equate table. If
you typed equ -d c, you would receive the above error message.

Action

Use equ to display the list of named equates before deleting equates.

Error Messages C-17

Message 600 : Adjust PC failed during break.

Cause

System failure or target condition.

Action

Run performance verification (pv command), and check target system.

Message 602 : Break failed

Cause

The b command was unable to break the emulator to the monitor.

Action

Determine why the break failed, then correct the condition and retry the
command. See message 608.

Message 603 : Read PC failed during break.

Cause

System failure or target condition.

Action

Try again.

C-18 Error Messages

Message 604 : Disable breakpoint failed: %s.

Cause

System failure or target condition.

Action

Run performance verification (pv command), and check target system.

Message 605 : Undefined software breakpoint: %s

Cause

The emulator has encountered a software breakpoint in your program
that was not inserted with the bp command.

Action

If your processor allows different software breakpoint instructions,
either modify the ones you inserted in your code, or modify the ones
inserted by bp using your emulator’s configuration options (cf
command). If only one instruction is available, remove those inserted
in your code before assembly and link, then reinsert them using the bp
command.

Message 606 : Unable to run after CMB break.

Cause

System failure or target condition.

Action

Run performance verification (pv command), and check target system.

Error Messages C-19

Message 608 : Unable to break

Cause

This message is displayed if the emulator is unable to break to the
monitor because the emulation processor is reset, halted, or is otherwise
disabled.

Action

First, look at the emulation prompt and other status messages displayed
to determine why the processor is stopped. If reset by the emulation
controller, use the b command to break to the monitor. If reset by the
emulation system, release that reset. If halted, try rst -m to get to the
monitor. If there is a bus grant, wait for the requesting device to
release the bus before retrying the command. If there is no clock input,
perhaps your target system is faulty or you have configured the clock
wrong with cf clk. It’s also possible that you have configured the
emulator to restrict to real time runs, which will prohibit temporary
breaks to the monitor. Refer to Appendix D of this manual for a list of
emulation prompts and their meanings.

Message 610 : Unable to run.

Cause

System failure or target condition.

Action

Run performance verification (pv command), and check target system.

C-20 Error Messages

Message 611 : Break caused by CMB not ready

Cause

This status message is printed during coordinated measurements if the
CMB READY line goes false. The emulator breaks to the monitor.
When CMB READY is false, it indicates that one or more of the
instruments participating in the measurement is running in the monitor.

Action

None, information only.

Message 612 : Write to ROM break

Cause

This status message will be printed if you have set bc -e rom and the
emulation processor attempted a write to a memory location mapped as
ROM.

Action

None (except troubleshooting your program!)

Message 613 : Analyzer Break.

Cause

Status message.

Action

None.

Error Messages C-21

Message 614 : Guarded memory access break

Cause

This message is displayed if the emulation processor attempts to read or
write memory mapped as guarded.

Action

Troubleshoot your program; or, you may have mapped memory
incorrectly.

Message 615 : Software breakpoint: %s

Cause

This status message will be displayed if a software breakpoint entered
with bp and enabled with bc -e bp is encountered during a program
run. The emulator is broken to the monitor. The string %s indicates
the address where the breakpoint was encountered.

Action

None.

Message 616 : BNC trigger break

Cause

This status message will be displayed if you have set bc -e bnct and the
BNC trigger line is activated during a program run. The emulator is
broken to the monitor.

Action

None.

C-22 Error Messages

Message 617 : CMB trigger break

Cause

This status message will be displayed if you have set bc -e cmbt and
the CMB trigger line is activated during a program run. The emulator
is broken to the monitor.

Action

None.

Message 618 : trig1 break

Cause

This status message will be displayed if you have set the analyzer to
drive trig1 upon finding the trigger, bc -e trig1 is set, and the analyzer
has found the trigger condition while tracing a program run. The
emulator is broken to the monitor.

Action

None.

Message 619 : trig2 break

Cause

This status message will be displayed if you have set the analyzer to
drive trig2 upon finding the trigger, bc -e trig2 is set, and the analyzer
has found the trigger condition while tracing a program run. The
emulator is broken to the monitor.

Action

None.

Error Messages C-23

Message 620 : Unexpected software breakpoint

Cause

If you have enabled software breakpoints with bc -e bp, this message is
displayed if a software breakpoint instruction is encountered in your
program that was not inserted by bp and is therefore not in the
breakpoint table.

Action

If your processor allows different software breakpoint instructions,
either modify the ones you inserted in your code, or modify the ones
inserted by bp using your emulator’s configuration options (cf
command). If only one instruction is available, remove those inserted
in your code before assembly and link, then reinsert them using the bp
command.

Message 621 : Unexpected step break.

Cause

System failure.

Action

Run performance verification (pv command).

Message 622 : %s.

Cause

Monitor specific message.

Action

Refer to your Emulator User’s Guide for these message descriptions.

C-24 Error Messages

Message 623 : CMB execute break.

Cause

This message occurs when coordinated measurements are enabled and
an EXECUTE pulse causes the emulator to run; the emulator must
break before running.

Action

This is a status message; no action is required.

Message 624 : Configuration aborted.

Cause

Occurs when a <CTRL> c is entered during cf display command.

Action

None.

Message 625 : Invalid configuration value: %s

Cause

You have entered a configuration option incorrectly, such as typing cf
clk=ex instead of cf clk=ext.

Action

Re-enter the configuration command, specifying only the correct
options. Refer to the Emulator User’s Guide for a description of the
configuration options for your emulator.

Error Messages C-25

Message 626 : Configuration failed; setting unknown: %s=%s.

Cause

Target condition or system failure.

Action

Check target system, and run performance verification (pv command).

Message 627 : Invalid configuration item: %s

Cause

You specified a non-existent configuration item in the cf command.
For example, if your emulator only supports a background monitor,
you would see this message if you tried to enter cf mon=fg since there
is no mon configuration item for your emulator.

Action

Re-enter the command, specifying only configuration items that are
supported by your emulator. Refer to the <CONFIG_ITEMS> syntax
pages in your Emulator User’s Guide for further information.

Message 630 : Register access aborted.

Cause

Occurs when a <CTRL> c is entered during register display.

Action

None.

C-26 Error Messages

Message 631 : Unable to read registers in class: %s

Cause

The emulator was unable to read the registers you requested.

Action

To resolve this, you must look at the other status messages displayed.
Most likely, the emulator was unable to break to the monitor to perform
the register read. See message 608.

Message 632 : Unable to modify register: %s=%s

Cause

The emulator was unable to modify the register you requested.

Action

To resolve this, you must look at the other status messages displayed.
It’s likely that emulator was unable to break to the monitor to perform
the register modification. See message 608.

Message 634 : Display register failed: %s

Cause

The emulator was unable to display the register you requested.

Action

To resolve this, you must look at the other status messages displayed.
It’s likely that emulator was unable to break to the monitor to perform
the register display. See message 608.

Error Messages C-27

Message 636 : Register not writable: %s.

Cause

This error occurs when you attempt to modify a read only register.

Action

If this error occurs, you cannot modify the contents of the register with
the reg command.

Message 637 : Register class cannot be modified: %s

Cause

You tried to modify a register class instead of an individual register.

Action

You can only modify individual registers. Refer to the <REGISTERS>
syntax pages in the Emulator User’s Guide for a list of register names.

Message 640 : Unable to reset.

Cause

Target condition or system failure.

Action

Check target system, and run performance verification (pv command).

C-28 Error Messages

Message 641 : Unable to reset into monitor.

Cause

You have entered a rst -m command and the emulator is unable to
break into the monitor.

Action

Reload monitor (rst for background).

Message 650 : Unable to configure break on write to ROM

Cause

The emulator controller is unable to execute the bc -e rom command
correctly, possibly because the emulator was left in an unknown state
or because of a hardware failure.

Action

Initialize the emulator or cycle power. Then reenter the command. If
the same failure occurs, call your HP sales and service office.

Message 651 : Unable to configure break on software breakpoints

Cause

The emulator controller is unable to execute the bc -e bp command,
possibly because the emulator is in an unknown state or because of a
hardware failure.

Action

Initialize the emulator or cycle power, then re-enter the command. If
the same failure occurs, call your HP sales and service office.

Error Messages C-29

Message 652 : Break condition must be specified

Cause

You entered bc -e or bc -d without specifying a break condition to
enable or disable.

Action

Re-enter the bc command along with the enable/disable flag and the
break condition you wish to modify.

Message 653 : Break condition configuration aborted.

Cause

Occurs when <CTRL> c is entered during bc display.

Action

None.

Message 661 : Software breakpoint break condition is disabled

Cause

You entered the bp command and options; however, the software
breakpoint break condition is disabled.

Action

Enable the software breakpoint feature with bc -e bp, then enter the
desired breakpoints with bp.

C-30 Error Messages

Message 663 : Specified breakpoint not in list: %s

Cause

You tried to enable a software breakpoint (bp -e <ADDRESS>) that
was not previously defined. The string %s prints the address of the
breakpoint you attempted to enable.

Action

Insert the breakpoint into the table and memory by typing bp
<ADDRESS>.

Message 664 : Breakpoint list full; not added: %s

Cause

The software breakpoint table is already reached the maximum of 32
breakpoints. The breakpoint you just requested, with address %s, was
not inserted.

Action

Remove breakpoints that are no longer in use with bp -r
<ADDRESS>. Then insert the new breakpoint.

Message 665 : Enable breakpoint failed: %s.

Cause

System failure or target condition.

Action

Check memory mapping and configuration questions.

Error Messages C-31

Message 666 : Disable breakpoint failed: %s.

Cause

System failure or target condition.

Action

Check memory mapping and configuration questions.

Message 667 : Breakpoint code already exists: %s

Cause

You attempted to insert a breakpoint with bp <ADDRESS>; however,
there was already a software breakpoint instruction at that location
which was not already in the breakpoint table.

Action

Your program code is apparently using the same breakpoint instruction
as bp. If multiple breakpoint instructions are available on your
processor, either change those in your program code or modify the one
bp uses with your emulator’s configuration options (cf command). If
only one instruction is available, remove the breakpoints from your
program code and use bp to insert breakpoints.

Message 668 : Breakpoint not added: %s

Cause

You tried to insert a breakpoint in a memory location which was not
mapped or was mapped as guarded memory.

Action

Insert breakpoints only within memory ranges mapped to emulation or
target RAM or ROM.

C-32 Error Messages

Message 669 : Breakpoint remove aborted.

Cause

Occurs when <CTRL> c is entered during a bp -r command.

Action

None.

Message 670 : Breakpoint enable aborted.

Cause

Occurs when <CTRL> c is entered during a bp -e command.

Action

None.

Message 671 : Breakpoint disable aborted.

Cause

Occurs when <CTRL> c is entered during a bp -d command.

Action

None.

Error Messages C-33

Message 680 : Stepping failed.

Cause

Stepping has failed for some reason. For example in the HP 64742
68000 emulator, this message appears if the stack pointer is odd and
you enter a step command.

Action

Usually, this error message will occur with other error messages. Refer
to the descriptions of the accompanying error messages to find out
more about why stepping failed.

Message 682 : Invalid step count: %s

Cause

You specified an non-cardinal value for a step count in the s command
(such as entering s 22.1).

Action

Reenter the step command, using only cardinal values (positive
integers) for the step count.

Message 684 : Failed to disable step mode.

Cause

System failure.

Action

Run performance verification (pv command).

C-34 Error Messages

Message 685 : Stepping aborted

Cause

This message is displayed if a break was received during a s (step)
command with a stepcount of zero (0). The break could have been due
to any of the break conditions in bc or a <CTRL> c break.

Action

None.

Message 686 : Stepping aborted; number steps completed: %d

Cause

This message is displayed if a break was received during a s (step)
command with a stepcount greater than zero. The break could have
been due to any of the break conditions in bc or a <CTRL> c break.
The number of steps completed is displayed.

Action

None.

Message 688 : Step display failed.

Cause

System failure or target condition.

Action

Check memory mapping and configuration questions.

Error Messages C-35

Message 689 : Break due to cause other than step.

Cause

An activity other than a step command caused the emulator to break.
This could include any of the break conditions in a bc command or a
<CTRL> c break.

Action

None.

Message 692 : Trace error during CMB execute.

Cause

System failure.

Action

Run performance verification (pv command).

Message 693 : CMB execute; run started

Cause

This status message is displayed when you are making coordinated
measurements. The CMB /EXECUTE pulse has been received; the
emulation processor started running at the address specified by the rx
command.

Action

None; information only.

C-36 Error Messages

Message 694 : Run failed during CMB execute.

Cause

System failure or target condition.

Action

Run performance verification (pv command), and check target system.

Message 700 : Target memory access failed

Cause

This message is displayed if the emulator was unable to perform the
requested operation on memory mapped to the target system.

Action

In most cases, the problem results from the emulator’s inability to
break to the monitor to perform the operation. See message 608.

Message 702 : Emulation memory access failed.

Cause

System failure.

Action

Run performance verification (pv command).

Error Messages C-37

Message 707 : Request access to guarded memory: %s

Cause

The address or address range specified in the command included
addresses within a range mapped as guarded memory. When the
emulator attempts to access these during command processing, the
above message is printed, along with the specific address or addresses
accessed.

Action

Re-enter the command and specify only addresses or address ranges
within emulation or target RAM or ROM. Or, you can remap memory
so that the desired addresses are no longer mapped as guarded.

Message 710 : Memory range overflow.

Cause

On a word machine, typing "m -dw 0ffff" will cause a rounding error
that overflows physical memory.

Action

Reduce memory display request.

C-38 Error Messages

Message 720 : Invalid map term number: %s

Cause

You attempted to delete a mapper term that does not exist. For
example, you may have tried map -d 8 on the 68000 emulator, which
only has seven map terms. Or you may have tried map -d 2, when
only one mapper term has been defined.

Action

Use the map command to determine the numbers of the terms currently
mapped. Then delete the appropriate mapper term.

Message 721 : No map terms available; maximum number already defined

Cause

You tried to add more mapper terms than are available for this
emulator. For example, with the 68000 emulator, there are only 7
terms. If you had already defined memory types for these terms, then
tried to map another term, you would see the above error message.

Action

Either combine map ranges to conserve on the number of terms or
delete mapper terms that aren’t really needed to free another mapper
term.

Error Messages C-39

Message 723 : Invalid map address range: %s

Cause

You specified an invalid address range as an argument to the map
command. For example, you may have specified digits that don’t
correspond to the base specified, or you forgot to precede a
hexadecimal letter digit with a number, or the upper boundary of the
range you specified is less than the lower boundary.

Action

Re-enter the map command and the address specification. See the
<ADDRESS> syntax pages in the Emulator User’s Guide and the
<EXPRESSION> syntax pages in this manual for information on
address specifications. Also, make sure that the upper boundary
specification is greater than the lower boundary specification (the lower
boundary must always precede the upper boundary on the command
line).

Message 724 : Address not mappable: %s.

Cause

Trying to map an address that has a non-mappable function code. On
80C196, "map 0..40@I eram" is not mappable.

Action

Refer to the Emulator User’s Guide for information on addresses which
may have function codes.

C-40 Error Messages

Message 725 : Unable to load new memory map; old map reloaded.

Cause

There is not enough emulation memory left for this request.

Action

Reduce the amount of emulation memory requested.

Message 726 : Unable to reload old memory map; hardware state unknown.

Cause

System failure.

Action

Run performance verification (pv command).

Message 730 : Invalid memory map type: %s

Cause

You specified a memory type while mapping that is not one of the
supported types: eram, erom, tram , trom , or grd.

Action

Re-enter the map command, specifying only one of the five types listed
above.

Error Messages C-41

Message 731 : Invalid memory map attribute: %s.

Cause

Newer HP 64700 emulators may use a feature called memory map
attributes where an emulator specific item can be specified for any map
term. If the item is not recognized it is an error. For example, the
following command will cause the error: "map 0..100 eram bad_item".

Action

Refer to the Emulator User’s Guide for information on valid memory
map attributes.

Message 732 : Invalid memory type for ’other’ range: %s

Cause

Most emulators restrict the memory types for map other <type> to
tram , trom , or grd. If you see the above message, you have tried to
map the "other" range to eram or erom.

Action

Map the "other" range to tram , trom , or grd. Refer to the Emulator
User’s Guide for particular restrictions regarding the "other" type for
your emulator.

Message 734 : Map range overlaps with term: %d

Cause

You entered a map term whose address range overlaps with one already
mapped. For example, you may have entered a term map 1000..2fff
eram, then tried to enter a term map 2000..3fff erom.

Action

Re-enter the map term so that ranges do not overlap, or combine terms
and change the memory type. If you are using an emulator whose
processor supports segmentation or function codes, it is possible that

C-42 Error Messages

you did intend an overlap. If so, you need to more fully specify the
correct segment or function code for each memory range. Refer to the
<ADDRESS> syntax pages in the Emulator User’s Guide for
information.

Message 736 : Memory not mapped as emulation: %s.

Cause

This error occurs when a feature available only for emulation memory
is attempted with target memory. For example, this error occurs when
you attempt to perform coverage measurements (see the cov command)
on target memory.

Action

You must remap the address range as emulation memory.

Message 738 : Unable to reset coverage bit data.

Cause

System failure.

Action

Run performance verification (pv command).

Error Messages C-43

Message 740 : I/O port access failed

Cause

The emulator was unable to read or write the port specified in the io
command. This message is also printed if your processor does not
support separate I/O.

Action

If your processor does not support separate I/O, use the m command to
modify I/O ports. Otherwise, retry the operation, and make sure that
you are specifying a valid I/O address.

Message 750 : Copy image aborted; next destination: %s

752 : Copy memory aborted; next destination: %s

754 : Memory modify aborted; next address: %s

756 : Memory search aborted; next address: %s

758 : Coverage aborted; next address: %s

Cause

One of these message is displayed if a break occurs during processing
of the cim, cp, m, ser, or cov commands, respectively. The break
could result from any of the break conditions (except bp) or could have
resulted from a <CTRL> c break.

Action

Retry the operation. If breaks are occurring continuously, you may
wish to disable some of the break conditions with the bc command.

C-44 Error Messages

Message 800 : Invalid command: %s

Cause

You have entered a command which is not part of the standard
Terminal Interface command set (documented in this manual) and was
not found in the currently defined macros.

Action

Enter only commands defined in this manual or in the macro set. You
can display the macro set using mac. You can rename commands or
name command groups using the mac command.

Message 801 : Invalid command group: %s.

Cause

This error occurs when you specify an invalid group name in the help
-s <group> command.

Action

Enter the help command with no options for a listing of the valid group
names.

Message 802 : Invalid command format.

Cause

This error occurs when an invalid macro is entered, for example, mac
{help;{} .

Action

Refer to the mac command description.

Error Messages C-45

Message 807 : Macro list full; macro not added.

Cause

The maximum number of macros have been defined.

Action

You must delete macros before adding any new macros.

Message 809 : Macro buffer full; macro not added.

Cause

This error occurs when the memory reserved for macros is all used up.

Action

You must delete macros to reclaim memory in the macro buffer.

Message 812 : Invalid macro name: %s

Cause

You tried to delete a macro that did not exist; or you tried to define a
new macro with a name containing characters other than letters, digits,
or underscores.

Action

Use the mac command to display the names of macros in the macro
table before deleting them with mac -d <NAME>. Define new macro
names using only letters, digits, and underscore characters.

C-46 Error Messages

Message 813 : Command line too long; maximum line length: %d.

Cause

This error occurs when the command line exceeds the maximum
number of characters.

Action

Split the command line into two command lines.

Message 814 : Command line too complex.

Cause

There was not enough memory for the expressions in the command line.

Action

Split up the command line, or use fewer expressions.

Message 815 : Missing macro parameter: %s

Cause

This error occurred because you did not include a parameter with the
specified mac command for macro expansion.

Action

Enter the command again, and include the appropriate parameter for the
macro expansion.

Message 816 : Command line too complex.

Cause

Too many expression operators are used.

Error Messages C-47

Action

Split up the command line, or use fewer expressions.

Message 818 : Command line too complex.

Cause

A maximum nesting level has been exceeded for nested command
execution.

Action

Reduce the number of nesting levels.

Message 820 : Unmatched quote encountered

Cause

In entering a string, such as with the echo command, you didn’t
properly match the string delimiters (either ‘‘ or ""). For example, you
might have entered

echo "set S1 to off

Action

Re-enter the command and string, making sure to properly match
opening and closing delimiters. Note that both delimiters must be the
same character. For example: echo "set S1 to off".

Message 822 : Unmatched command group encountered

Cause

You entered the mac or rep command group without matching braces
{} . For example: mac test={rst -m;cf or rep 2 {rst -m;map.

C-48 Error Messages

Action

Re-enter the command, making sure to match braces around commands
you want grouped into the macro or repeat. For example: mac
test={rst -m;cf}.

Message 824 : Maximum number of arguments exceeded.

Cause

Exceeding the limit of 100 arguments per command.

Action

Reduce the number of arguments in the command.

Message 826 : Maximum argument buffer space exceeded.

Cause

Exceeding space limits for argument lists.

Action

Reduce request.

Message 840 : Invalid date: %s

Cause

You have specified the date format incorrectly in the dt command.

Action

Re-enter the command with the correct date format. Refer to the dt
command syntax pages in this manual for the correct format.

Error Messages C-49

Message 842 : Invalid time: %s

Cause

You have incorrectly specified the time format in the dt command.

Action

Re-enter the command with the correct time format. Refer to the dt
command syntax pages in this manual for the correct format.

Message 844 : Invalid repeat count: %s

Cause

You entered a non cardinal value for the repeat count in the rep
command, such as rep 22.1 <command_group>.

Action

Re-enter the rep command, specifying only a cardinal number (positive
integer) for the repeat count.

Message 850 : Attempt to load code outside of allocated bounds.

Cause

This error occurs when the lcd command attempts to load an absolute
file that contains code or data outside the range allocated for system
code.

Action

Generally, you will not use the lcd command. The lcd command is
intended to be used by high-level interfaces to the HP 64700.

C-50 Error Messages

Message 875 : Invalid syntax for global or user symbol name: %s

Cause

This error occurs when you enter a global or user symbol name with
incorrect syntax.

Action

Make sure that you enter the global or user symbol name using the
correct syntax. When specifying a global symbol, make sure that you
precede the global symbol with a colon (for example, :glb_sym).
When specifying a user symbol (created with the sym command), make
sure that you enter the name correctly without a colon.

Message 876 : Invalid syntax for local symbol or module: %s

Cause

This error occurs when you enter a local symbol or module name with
incorrect syntax.

Action

When entering a local symbol name using the sym command, make
sure that you specify the module name, followed by a colon, then the
symbol name (for example module:loc_sym). Make sure that you
specify the module name correctly.

Message 877 : Symbol not found: %s

Cause

This occurs when you try to enter a symbol name that doesn’t exist.

Action

Enter a valid symbol name.

Error Messages C-51

Message 878 : Symbol cannot contain wildcard in this context.

Cause

You tried to enter a global, local, or user symbol name using the
wildcard (*) incorrectly.

Action

When you enter the symbol name again, include the wildcard (*) at the
end of the symbol.

Message 879 : Symbol cannot contain text after the wildcard.

Cause

You tried to include text after the wildcard specified in the symbol
name (for example, sym*text).

Action

Enter the symbol again, but don’t include text after the wildcard (*).

Message 880 : Conflict between expected and received symbol information.

Cause

The information you supplied in a symbol definition is not what the HP
64700 expected to receive.

Action

Make sure that all symbols in the symbol file are defined correctly.
Verify that there are no spaces in the address definitions for the
symbols in the symbol file being downloaded.

C-52 Error Messages

Message 881 : Ascii symbol download failed.

Cause

This error occurs because the system is out of memory.

Action

You must either reduce the number of symbols to be loaded, or free up
additional system space and try the download again.

Message 882 : No module specified for local symbol.

Cause

This error occurs because you tried to specify a local symbol name
without specifying the module name where the symbol is located.

Action

Enter the module name where the local symbol is located, followed by
a colon, then the local symbol name.

Message 901 : Invalid firmware for emulation subsystem.

Cause

This error occurs when the HP 64700 system controller determines that
the emulation firmware (ROM) is invalid.

Action

This message is not likely to occur unless you have upgraded the
ROMs in your emulator. Be sure that the correct ROM is installed in
the emulation controller.

Error Messages C-53

Message 902 : Invalid analysis subsystem; product address: %s.

Cause

This error occurs when the HP 64700 system controller determines that
the analysis firmware (ROM) is invalid.

Action

This message is not likely to occur unless you have upgraded the
ROMs in your emulator. Be sure that the correct ROMs are installed in
the analyzer board.

Message 903 : Invalid ET subsystem; product address: %s.

Cause

Detects an invalid ET. Used only internally.

Action

None.

Message 904 : Invalid auxiliary subsystem; product address: %s.

Cause

For future products.

Action

None.

Message 911 : Lab firmware for emulation subsystem.

Cause

This message should never occur. It shows that you have an unreleased
version of emulation firmware.

C-54 Error Messages

Action

None.

Message 912 : Lab firmware analysis subsystem; product address: %s.

Cause

This message should never occur. It shows that you have an unreleased
version of analysis firmware.

Action

None.

Message 913 : Lab firmware subsystem; product address: %s.

Cause

This message should never occur. It shows that you have an unreleased
version of system controller firmware.

Action

None.

Message 914 : Lab firmware auxiliary subsystem; product address: %s.

Cause

This message should never occur. It shows that you have an unreleased
firmware version of the auxiliary subsystem.

Action

None.

Error Messages C-55

1Analyzer Error
Messages

Message 1000 : Conflicting disassembler option: <option>.

Cause

This error occurs when you attempt to specify inverse assembly options
(tl -o<ialopts>) which are not allowed with each other.

Action

You must not use conflicting inverse assembly options in the same
trace list command.

Message 1001 : Invalid disassembler option: <option>.

Cause

The <ialopts> option specified with the "tl -o" command is not valid.

Action

Refer to the appropriate Emulator User’s Guide for a list of the valid
options.

Message 1102 : Invalid bit range; crosses two multiples of 16: <sig#>..<sig#>.

Cause

This error occurs when defining trace labels. A trace label may not
contain trace signals crossing two 16-bit boundaries. For example, the
command "tlb name 1..32" will cause this error because "name"
contains signals which cross the 15-16 and 31-32 16-bit boundaries.

C-56 Error Messages

Action

Redefine your trace label so that no more than one 16-bit boundary is
crossed.

Message 1103 : Invalid bit range; out of bounds: <sig#>..<sig#>.

Cause

This error occurs when defining trace labels, and you have attempted to
assign non-existent trace signals to a label.

Action

Enter the trace activity command to view the trace signals present, and
use only these signals when defining trace labels.

Message 1104 : Invalid bit range; too wide: <sig#>..<sig#>

Cause

This error occurs when defining trace labels, and you have attempted to
assign more than 32 trace signals to a label.

Action

Use more than one trace label to define over 32 trace signals.

Error Messages C-57

Message 1105 : Unable to delete label; used by emulation analyzer: <label>.

Cause

This error occurs when you attempt to delete an emulation trace label
which is currently being used as a qualifier in the emulation trace
specification or is currently specified in the emulation trace format.

Action

Display the emulation trace sequencer specification in the easy
configuration, display the emulation trace patterns in the complex
configuration, or display the trace format to see where the label is used.
Also, you should check tcq and tpq for uses of that label. You must
change the pattern or format specification to remove the label before
you can delete it.

Message 1106 : Unable to delete label; used by external state analyzer: <label>.

Cause

This error occurs when you attempt to delete an external trace label
which is currently being used as a qualifier in the external state trace
specification or is currently specified in the external trace format.

Action

Display the external trace sequencer specification in the easy
configuration, display the external trace patterns in the complex
configuration, or display the external trace format to see where the
label is used. Also, check tcq and tpq for uses of that label. You must
change the pattern or format specification to remove the label before
you can delete it.

C-58 Error Messages

Message 1107 : Unable to delete label; used by external timing analyzer: <label>.

Cause

This error occurs when you attempt to delete an external trace label
which is currently being used as a qualifier in the external timing trace
specification.

Action

Remove the label from the external timing analyzer specifications, and
then delete the label.

Message 1108 : Unable to redefine label; used by emulation analyzer: <label>.

Cause

This error occurs when you attempt to redefine an emulation trace label
which is currently used as a qualifier in the emulation trace
specification.

Action

Display the emulation trace sequencer specification in the easy
configuration, display the emulation trace patterns in the complex
configuration, or display the emulation trace format to see where the
label is used. You must change the pattern or format specification to
remove the label before you can redefine it.

Error Messages C-59

Message 1109 : Unable to redefine label; used by external state analyzer: <label>.

Cause

This error occurs when you attempt to redefine an external trace label
which is currently used as a qualifier in the external state trace
specification.

Action

Display the external trace sequencer specification in the easy
configuration, or display the external trace patterns in the complex
configuration to see where the label is used. You must change the
pattern or format specification to remove the label before you can
redefine it.

Message 1110 : Unable to redefine label; used by external timing analyzer:
<label>.

Cause

This error occurs when you attempt to redefine an emulation or external
trace label which is currently being used as a qualifier in the external
timing trace specification.

Action

Remove the label from the external timing analyzer specifications, and
then redefine the label.

Message 1111 : Unable to redefine label; belongs to external analyzer: <label>.

Cause

This error occurs when you attempt to redefine an external analyzer
label with the emulation trace label command (for example, tlb xbits
0..16).

C-60 Error Messages

Action

Either use a different label name, or delete the external analyzer label
before defining a label of the same name for the emulation analyzer.

Message 1112 : Unable to redefine label; belongs to emulation analyzer: <label>.

Cause

This error occurs when you attempt to redefine an emulation analyzer
label with the external trace label command (for example, xtlb addr
0..19).

Action

Either use a different label name, or delete the emulation analyzer label
before defining a label of the same name for the external analyzer.

Message 1114 : Label belongs to external analyzer: <label>.

Cause

When the external analyzer is in an independent mode, this error occurs
when you attempt to use an external analyzer label in an emulation
trace command (for example, tg xlabel=0).

Action

Only use external trace labels in external trace commands (when the
external analyzer is in an independent mode).

Error Messages C-61

Message 1115 : Label belongs to emulation analyzer: <label>.

Cause

When the external analyzer is in an independent mode, this error occurs
when you attempt to use an emulation analyzer label in an external
trace command (for example, xtg addr=5).

Action

Only use emulation trace labels in emulation trace commands (when
the external analyzer is in an independent mode).

Message 1130 : Illegal base for count display.

Cause

When specifying the trace format, counts may only be displayed
relative or absolute. When counting states, the count is always
displayed as a decimal number.

Action

Respecify the trace format without using a base for the count column.
Also, you can use ",A" to specify that counts be displayed absolute, or
you can use ",R" to specify that counts be displayed relative.

Message 1131 : Illegal base for mnemonic disassembly display.

Cause

When specifying the trace format, you cannot specify a number base
for the column containing mnemonic information.

Action

Respecify the trace format without using a base for the mnemonic
column.

C-62 Error Messages

Message 1132 : Illegal base for sequencer display.

Cause

When specifying the trace format, you cannot specify a number base
for the column containing sequencer information.

Action

Respecify the trace format without using a base for the sequencer
column.

Message 1133 : Trace format command failed; using old format.

Cause

This error occurs when the trace format command fails for some
reason. This error message always occurs with another error message.

Action

Refer to the "Action" description for the other error message displayed.

Message 1137 : Mnemonic disassembly not supported for external trace.

Cause

This error occurs when you attempt to specify a mnemonic information
column in the external trace format. There is no mnemonic
disassembly for the external trace.

Action

Respecify the trace format without the mnemonic column.

Error Messages C-63

Message 1138 : Illegal width for symbol display: %s

Cause

This error occurs when the value specified for the trace format address
field width is not valid.

Action

Enter the tf command again, and specify the width of the address field
for symbol display within the range of 4 to 55.

Message 1139 : Illegal width for addr display, mne not specified.

Cause

This error occurs when you specify a width for the address field in the
tf command, but do not include the mne option.

Action

Enter the command again, and include the mne option.

Message 1140 : Symbol display unsupported.

Cause

This error occurs when you try to display symbols in the trace list, but
the emulator you are using doesn’t support symbols.

Action

Enter the tl command again, but don’t try to display symbols.

Message 1141 : Symbol display unavailable without mne field.

Cause

This error occurs when you try to display symbols, but have not
included the mne option to the tf command.

C-64 Error Messages

Action

Don’t try to display symbols unless the mne field has already been
specified.

Message 1202 : Trigger position out of bounds: <bounds>.

Cause

This error occurs when you attempt to specify a number of lines to
appear either before or after the trigger which is greater than the
number of lines allowed. The <bounds> string indicates the incorrect
range that you typed (not the correct limits on the range).

Action

Be sure that the trigger position specified is within the range -1024 to
1023.

Message 1207 : Invalid clock channel: <name>.

Cause

Valid clock channels are L, M, and N. If you have an external
analyzer, the J and K channels are also valid.

Action

Respecify the command using valid clock channels.

Message 1209 : Operator must be "and" or "or": <expression>.

Cause

When combining trace labels to specify trace patterns (in simple
expressions or with the tpat command), an operator of either "and" or
"or" must appear between the label qualifiers.

Error Messages C-65

Action

Refer to the "Expressions in Trace Commands" section of the "Getting
Started" chapter of the Analyzer User’s Guide for information on valid
patterns. Also refer to the "Expressions" chapter of the Reference
manual.

Message 1210 : Illegal mix of = and !=.

Cause

When combining trace labels to specify patterns (in simple expressions
or with the tpat command), all labels must either be equal to values or
not equal to values.

Action

Refer to the "Expressions in Trace Commands" section of the "Getting
Started" chapter of the Analyzer User’s Guide for information on valid
patterns. Also refer to the "Expressions" chapter of the Reference
manual.

Message 1211 : Illegal mix of and/or.

Cause

When combining trace labels to specify patterns (in simple expressions
or with the tpat command), all label qualifiers must either be ANDed
together or ORed together. You cannot mix these operators.

Action

Refer to the "Expressions in Trace Commands" section of the "Getting
Started" chapter of the Analyzer User’s Guide for information on valid
patterns. Also refer to the "Expressions" chapter of the Reference
manual.

C-66 Error Messages

Message 1212 : Conflict with overlapping label: <label>.

Cause

When combining trace labels to specify patterns (in simple expressions
or with the tpat command), you cannot combine labels which are
defined for common trace signals. For example, the following easy
configuration commands will result in this error: tlb low8 0..7; tlb
low16 0..15; tg low8=0 and low16=1.

Action

Either omit one of the overlapping labels, or redefine your labels so that
they do not contain common trace signals. You could also circumvent
this error by using don’t cares in the appropriate places; for the
example shown in cause, you could specify patterns tg low8=0xx0xY
and low16=1.

Message 1213 : Illegal mix of !=/and.

Cause

When combining trace labels to specify patterns (in simple expressions
or with the tpat command), labels which are not equal to values must be
ORed together so that the entire pattern specifies a "not equals"
condition.

Action

Refer to the "Expressions in Trace Commands" section of the "Getting
Started" chapter of the Analyzer User’s Guide for information on valid
patterns. Also refer to the "Expressions" chapter of the Reference
manual.

Error Messages C-67

Message 1214 : Illegal mix of =/or.

Cause

When combining trace labels to specify patterns (in simple expressions
or with the tpat command), labels which are equal to values must be
ANDed together so that the entire pattern specifies an "equals"
condition.

Action

Refer to the "Expressions in Trace Commands" section of the "Getting
Started" chapter of the Analyzer User’s Guide for information on valid
patterns. Also refer to the "Expressions" chapter of the Reference
manual.

Message 1215 : Comparator must be = or !=: <label>.

Cause

When combining trace labels to specify patterns (in simple expressions
or with the tpat command), the value of the label can only be specified
with the "=" or "!=" operators.

Action

Refer to the "Expressions in Trace Commands" section of the "Getting
Started" chapter of the Analyzer User’s Guide for information on valid
patterns. Also refer to the "Expressions" chapter of the Reference
manual.

Message 1217 : Illegal pattern name: <name>.

Cause

Valid pattern names are p1 through p8.

Action

Use only valid pattern names.

C-68 Error Messages

Message 1218 : Illegal comparator for range qualifier: !=.

Cause

When specifying a range with the trng command, you cannot use
the"!=" operator.

Action

Use the "!r" range name.

Message 1219 : Range cannot be combined with any other qualifier.

Cause

For example, the following easy configuration command will result in
this error: tsto addr=400..4ff and data=40.

Action

Do not attempt to combine labels when using range qualifiers.

Message 1221 : Range resource in use.

Cause

This error occurs when you attempt to use two different range
expressions in the "easy" configuration trace specification or when you
attempt to redefine the "complex" configuration range resource while it
is currently being used as a qualifier in the trace specification.

Action

Only one range expression may be used in the "easy" configuration
trace specification. In the "complex" configuration, display the
sequencer specification to see where the range resource is being used
and remove it; then, you can redefine the range resource.

Error Messages C-69

Message 1224 : Sequence term number out of range: <term>.

Cause

This error occurs when a sequencer qualification command (tif , telif ,
tsq, or tsto) specifies a non-existent sequence term. The easy
configuration sequencer may have a maximum of 4 sequence terms.
Eight sequence terms exist in the complex configuration sequencer.

Action

Re-enter the command using an existing sequence term.

Message 1225 : Sequence term not contiguous: <term>.

Cause

This error occurs when you attempt to insert a sequence term which is
not between existing terms or after the last term. For example, the
following easy configuration commands will result in this error: tg any;
tsq -i 4.

Action

Be sure that the sequence term you enter is either between existing
sequence terms or after the last sequence term.

Message 1226 : Too many sequence terms.

Cause

This error occurs when you attempt to insert more than 4 sequence
terms.

Action

Do not attempt to insert more than 4 sequence terms.

C-70 Error Messages

Message 1227 : Sequence term not defined: <term>.

Cause

This error occurs when you attempt to delete, or specify a primary
branch expression for, a sequence term number which is possible, but
which is not currently defined.

Action

Insert the sequence term, and respecify the primary branch expression
for that term.

Message 1228 : One sequence term required.

Cause

This error occurs when you attempt to delete terms from the sequencer
when only one term exists.

Action

At least one term must exist in the sequencer. Do not attempt to delete
sequence terms when only one exists.

Message 1234 : Invalid occurrence count: <number>.

Cause

Occurrence counts may be from 1 to 65535.

Action

Re-enter the command with a valid occurrence count.

Error Messages C-71

Message 1235 : Illegal threshold value: <value>.

Cause

Threshold voltage specifications may be from -6.4 V to +6.35 V in
increments of 0.05 V.

Action

Re-enter the command with a valid threshold voltage.

Message 1237 : Option specified more than once: <option>.

Cause

When specifying external threshold voltages, this error occurs when
you attempt to specify the threshold voltage for either the upper or
lower byte twice.

Action

You must re-enter the command so that the threshold voltage is only
specified once for each option (upper or lower byte).

Message 1239 : Clock speed not available with current count qualifier.

Cause

This error occurs when you attempt to specify a fast (F) or very fast
(VF) maximum qualified clock speed when counting time (tcq time).
This error also occurs when you attempt to specify a very fast (VF)
maximum qualified clock speed when counting states (for example, tcq
addr=400).

Action

Change the count qualifier; then, re-enter the command.

C-72 Error Messages

Message 1240 : Count qualifier not available with current clock speed.

Cause

This error occurs when you attempt to specify the "time" count
qualifier when the current maximum qualified clock speed is fast (F) or
very fast (VF). This error also occurs when you attempt to specify a
"state" count qualifier when the maximum qualified clock speed is fast
(F).

Action

Change the clock speed; then, change the count qualifier.

Message 1241 : Invalid qualifier resource or operator: <expression>.

Cause

When specifying complex expressions, you have either specified an
illegal pattern or used an illegal operator.

Action

Refer to the "Complex Expressions" section of the "Accessing Full
Analyzer Capability" chapter in the Analyzer User’s Guide for
information on valid patterns and operators. Also refer to the
"Expressions" chapter in the Reference manual.

Error Messages C-73

Message 1245 : Range qualifier not accessible in easy configuration.

Cause

This error occurs when you attempt to use the trng command in the
easy configuration.

Action

Changing into the complex configuration will allow you to use the trng
command; otherwise, specify the range in easy configuration command
expressions.

Message 1246 : Pattern qualifiers not accessible in easy configuration.

Cause

This error occurs when you attempt to use the tpat command in the easy
configuration.

Action

Changing into the complex configuration will allow you to use the tpat
command; otherwise, specify the patterns in easy configuration
command expressions.

Message 1248 : Range term used more than once

Cause

This error occurs when you attempt to use the range resource more than
once in a sequencer branch expression.

Action

You cannot use the range resource more than once in a sequencer
branch expression.

C-74 Error Messages

Message 1249 : Invalid qualifier expression: <expression>.

Cause

This error message is shown with the errors that occur when patterns,
the range, or the arm condition is used more than once within a set.
This error message also occurs when intraset operators are not the
same. For example, the following complex expression will result in
this error: p1 ~ p2 | p3.

Action

Refer to the "Complex Expressions" section of the "Accessing Full
Analyzer Capability" chapter in the Analyzer User’s Guide for
information on valid patterns and operators. Also refer to the
"Expressions" chapter in the Reference manual.

Message 1250 : Arm term used more than once

Cause

This error occurs when you attempt to use the "arm" qualifier more
than once in a sequencer branch expression.

Action

You cannot use the "arm" qualifier more than once in a sequencer
branch expression.

Message 1251 : Trigger term cannot be term 1.

Cause

This error occurs when to attempt to specify the first sequence term as
the trigger term. The trigger term may be any term but the first.

Action

Respecify the trigger term as any other sequence term.

Error Messages C-75

Message 1253 : Invalid pod number: <pod#>.

Cause

This error message occurs when you attempt to specify a slave clock
for a non-existent analyzer pod.

Action

Use the trace activity command to display the valid pod numbers, and
use only these numbers when entering commands.

Message 1257 : Pod belongs to external analyzer: <pod#>.

Cause

This error occurs when you attempt to specify a slave clock for the
external analyzer pod with the emulation analyzer’s trace slave clock
command. This error only occurs when the external analyzer is in its
independent state mode.

Action

Use the external trace slave clock command to specify a slave clock for
the external analyzer pod.

Message 1300 : Incompatible external trace mode.

Cause

This error message occurs when you attempt to use an external trace
command (other than xtv, xtlb , or xtmo) while the external analyzer is
aligned with the emulation analyzer. The message is also display if you
attempt to use external state trace commands when the external
analyzer is in timing mode; or if you attempt to use external timing
trace commands when the external analyzer is in state mode.

Action

Change the external trace mode, and re-enter the command.

C-76 Error Messages

Message 1301 : External label in use: <label>.

Cause

This error occurs when you attempt to select the external analyzer’s
independent state mode while an external trace label is currently used
as a qualifier in the emulation analyzer trace specification.

Action

Remove any external trace label qualifiers from emulation trace
specifications before selecting the external analyzer’s independent state
mode.

Message 1302 : Trig1 signal cannot be driven and received.

Cause

This error occurs when you attempt to specify the internal trig1 signal
as the trace arm condition while the same analyzer’s trigger output is
currently driving the trig1 signal. This error also occurs if you attempt
to specify that the trigger output drive the internal trig1 signal while
that signal is currently specified as the arm condition for the same
analyzer.

Action

You can either change the arm or the trigger output specification; in
either case, make sure that they do not use the same internal signal.

Message 1303 : Trig2 signal cannot be driven and received.

Cause

This error occurs when you attempt to specify the internal trig2 signal
as the trace arm condition while the same analyzer’s trigger output is
currently driving the trig2 signal. This error also occurs if you attempt
to specify that the trigger output drive the internal trig2 signal while
that signal is currently specified as the arm condition for the same
analyzer.

Error Messages C-77

Action

You can either change the arm or the trigger output specification; in
either case, make sure that they do not use the same internal signal.

Message 1304 : Analyzer trace running.

Cause

This error occurs when you attempt to change the external analyzer
mode while a trace is in progress.

Action

Halt the trace before changing the external analyzer mode.

Message 1305 : CMB execute; emulation trace started.

Cause

This status message informs you that an emulation trace measurement
has started as a result of a CMB execute signal (as specified by the "tx
-e" command).

Message 1306 : CMB execute; external trace started.

Cause

This status message informs you that an emulation trace measurement
has started as a result of a CMB execute signal (as specified by the "xtx
-e" command).

C-78 Error Messages

Message 2021 : Period not in 1/2/5 sequence: <period>.

Cause

This error message occurs when the external timing sample period is
not in a 1/2/5 sequence; for example, 10ns, 20ns, 50ns, 100ns, 200ns,
500ns, 1us, 2us, 5us, etc. Some examples of invalid sample period
specifications are: 12ns, 18ns, 25ns, 60ns, 80ns, etc.

Action

Use a number in the 1/2/5 sequence when specifying the external
timing sample period.

Message 2022 : Sample period out of bounds: <bounds>.

Cause

The external timing sample period must be between 10 ns and 50 ms
(in a 1/2/5 sequence).

Action

Re-enter the command with the sample period between the bounds
shown.

Message 2030 : Negated patterns not allowed in timing.

Cause

This error occurs when you attempt to specify a "not equals" expression
when defining the external timing trigger. You can only specify labels
which equal patterns (of 1’s, 0’s, or X’s).

Action

Do not attempt to specify negated timing patterns.

Error Messages C-79

Message 2031 : Invalid trigger duration: <duration>.

Cause

This error occurs when you attempt to specify an external timing
trigger duration which is in the valid range but is not a multiple of 10
ns.

Action

Re-enter the command with the trigger duration as a multiple of 10 ns.

Message 2032 : Trigger duration out of bounds: <bounds>.

Cause

This error occurs when you attempt to specify an external timing
trigger duration outside the valid range. A "greater than" duration must
fall within the range of 30 ns to 10 ms (and must be a multiple of 10
ns). A "less than" duration must fall within the range 40 ns to 10ms
(and must be a multiple of 10 ns).

Action

Re-enter the command with the trigger duration within the bounds
shown.

Message 2042 : Trigger delay out of bounds: <bounds>.

Cause

This error occurs when you attempt to specify an external timing
trigger delay outside the valid range. The external timing trigger delay
must be between 0 and 10 ms (in 10 ns increments).

Action

Re-enter the command with the trigger delay within the bounds shown.

C-80 Error Messages

D

Command Entry

The HP 64700-Series Emulators Terminal Interface provides several
features to ease command entry and simplify recognition of the current
emulator state.

Note The backspace key (or <CTRL> h, or DEL) will only backspace to the
start of the current line; this is true even if the command wraps to more
than one line.

1Prompts The HP 64700-Series Emulators use a variety of prompt characters to
describe the current emulation status. These are:

R Reset state from emulation system, resulted
from the rst command or another emulator
command which resets the emulator. Not a
target system reset.

U Running user program, resulted either from the
r command or /EXECUTE line asserted on the
CMB during a synchronized measurement.

M Running monitor program.

W Waiting for CMB to become READY. (See the
CMB User’s Guide.)

Command Entry D-1

T Waiting for target system reset to complete a r
rst command. (Will be shown only if r rst is
supported, see your Emulator User’s Guide.)

? Unknown state.

The following prompt characters may or may not be used by your
emulator:

c Slow or no clock input from target system
(displayed only if clk=ext in configuration).

r Emulator is reset by target system.

h Processor halted (by program or target system).

i Processor in idle state.

g Bus grant to target system device.

b Slow or no emulation processor bus cycles.

If multiple conditions occur which would call for more than one
prompt character, the priority of characters is as follows:

c R r h i g b U M W T ?

Note that the prompt character is unrelated to the prompt string, which
is set to > at powerup and may be modified using the po command.
The current prompt string is concatenated after the prompt character.

D-2 Command Entry

1Command Line
Editing

You can enable command line editing to include the ability to
manipulate command text lines. When command line editing is
enabled, a subset of the Korn shell (ksh) vi editing mode features is
implemented.

Command line editing has two typing modes. The normal command
entry is input mode. The input mode functions like normal (canonical)
command entry. The control mode allows command modification.

Input Mode The input mode allows for the use of the following:

 This deletes the previous character.

<CTRL> r This recalls the commands in the order last to first.

<CTRL> b This recalls the commands in the order first to last.

Note The recall <CTRL> r and <CTRL> b functions are the same as in
standard (non-command line editing) mode except that the cursor is
positioned at the start of the line instead of the end of the line.

Control Mode Enter the control mode by entering the ESC (033 octal) character.

Command Search

You can locate previously entered commands using the following:

k This option allows you to retrieve the previous
command. Each successive k command accesses
the next earlier command in the history list.

j This retrieves the next command. Each successive j
command accesses the next later command in the
history list.

Command Entry D-3

/<string> This allows you to find a previous command in the
history list matching <string>.

n This repeats a previous match search for matches
earlier in the history list.

N This repeats a previous match search for matches
later in the history list.

Cursor Movement

You can move the cursor using control mode commands

l This moves the cursor forward (right) one character.

h This moves the cursor back (left) one character.

$ This moves the cursor to the end of the line.

0 or ̂ This moves the cursor to the start of the line.

Command Modification

You edit the command using the control mode commands

i This inserts the cursor before the current position.

a This inserts the cursor after the current position.

A This allows you to append text to the end of the line.

r This allows you to replace the current character.

x This deletes the current character.

dd This deletes the current line.

D This deletes text from the current character to the
end of the line.

D-4 Command Entry

Changing Modes Use the cl command to display and change the command line editing
mode. The command

cl -e

enables command line editing, while

cl -d

disables command line editing. The default condition is commmand
line editing disabled.

Command Entry D-5

1Command Abort You can abort any command’s execution by typing:

<CTRL> c

You will generally use this to stop rep 0 <COMMAND> repeats.

1Command Recall The Terminal Interface provides you with two methods to recall up to
16 previous commands, which will save you typing time.

<CTRL> r recalls the previous command (last entered is recalled first,
as in a stack).

<CTRL> b recalls commands in backwards order (first entered is
recalled first, as in a queue).

For example, assume you entered the following equates:

R> equ b=1
R> equ c=2

Pressing <CTRL> r would display

R> equ c=2

Pressing <CTRL> b would display

R> equ b=1

D-6 Command Entry

1Multiple
Commands

You may issue multiple commands on the same command line by
separating them with the ; (semicolon) character. For example:

R> rst -m; map; cf

If you are using multiple commands in the mac (macro) or rep (repeat)
commands, they need to be enclosed in braces ({}) or they will be
misinterpreted. For example, using the sequence above:

M> rep 2 {rst -m;map;cf}

This sequence will repeat the command sequence in the braces twice.
Now look at the following:

M> rep 2 rst -m;map;cf

Here, only the rst -m command will be repeated; then the map
command will execute once and the cf command will execute once.

1Commenting You may include comments at the end of any command line using the #
character. Although these comments are not saved with the command
status, they can be useful to you in building a command file to be saved
on a host and downloaded to the emulator at a later time. For example,
you might want to comment some equates in a command file. Your file
could look like this:

equ start=2000 #beginning of program
equ clear=200c #clears input port
equ readinput=2010 #routine reading input port
equ messagelength=17T #length in bytes of each output message

Command Entry D-7

1Notes

D-8 Command Entry

Index

A abbreviated help mode, help 1
absolute count (in trace list), tcq 4, tf 3
absolute file

formats, dump 1, load 1
loading into memory, load 1

accent grave mark character, ser 3
access mode, mo 1
access to guarded memory, map 4
accuracy of trigger position, tp 1
active edges (slave clock), tsck 2/tsck 3
activity, analyzer line, ta 1
addition operator, EXPR 5
ADDRESS syntax

See your Emulator User’s Guide
all (analyzer keyword), tg 2, xteq 3, xtgq 2, xttq 2
analyzer

analyzer initialization, tinit 1
clock (master) specification, tck 1
complex config. pattern qualifier, tpat 1
complex config. range qualifier, trng 1
complex configuration, tcf 3
configuration, tcf 1
count qualifier, tcf 3, tcf 5, tcq 1
easy configuration, tcf 1
expressions, ANALYZER_EXPR 1, EXPR 8
expressions in complex config., COMPLEX_EXPR 1
expressions in easy config., SIMPLE_EXPR 1
expressions in the complex configuration, tcf 3
expressions in the easy configuration, tcf 1
See also external analyzer
halt trace, th 1
labels, tlb 1
line activity, ta 1
master clock specification, tck 1
performance verification, pv 1
prestore qualifier, tcf 3, tcf 5, tpq 1

Index-1

primary branches (sequencer), tif 1
sequencer, tsq 1
sequencer secondary branch qualifiers, telif 1
sequencing in the complex configuration, tcf 4
sequencing in the easy configuration, tcf 2
slave clocks, tsck 1
start, t 1
storage qualifiers, tsto 1
storage specification in the complex configuration, tcf 5
storage specification in the easy configuration, tcf 3
trace configuration reset, tcf 5
trace list, tl 1
trace list format, tf 1
trace status, ts 1
tracing background operation, tck 2
tracing foreground operation, tck 2
trigger condition, tg 1
trigger in feedback loop, bnct 3, cmbt 4
trigger output, tgout 1
trigger position, tp 1

ANALYZER_EXPR syntax, ANALYZER_EXPR 1
AND (bit-wise) operator, EXPR 6
and operator (analyzer expressions), SIMPLE_EXPR 3
and, interset logical AND operator, COMPLEX_EXPR 3
any (analyzer keyword), tg 2, tpq 2, xteq 3, xtgq 2, xttq 2
arm condition

analyzer status, ts 3
complex expressions, COMPLEX_EXPR 2
cross-arming, bnct 3, cmbt 3
specifying, tarm 1
time until trigger, ts 4, B-4, B-10

arming the analyzer, tarm 1
array labels, equ 3
ASCII strings, displaying on standard output, echo 1

B b (break) command, b 1
b, slow (or no) bus cycles emulation prompt, D-2
background operation, tracing, tck 2
bases (number), EXPR 2

default for step count, s 2
labels in trace list, tf 2

baud rate, communication ports, stty 2

2-Index

bc (break conditions) command, bc 1
binary number base specifier, EXPR 2
binary trace list format, tl 3, xteq 1, B-1
bit-wise operators

AND, EXPR 6
exclusive OR, EXPR 6
inclusive OR, EXPR 7
merge, EXPR 7

block (memory mapper)
re-assignment of emulation memory, map 2
sizes, map 2

BNC trigger signal, bc 1, bnct 1
bnct (BNC trigger drivers and receivers) command, bnct 1
bp (breakpoint modify) command, bp 1
branch qualifiers (sequencer)

primary, tif 1
secondary, telif 1

break, b 1
break conditions

BNC or CMB trigger signals, bc 1
software breakpoints, bc 1, bp 3
trig1 or trig2 internal signals, bc 1
write to ROM, bc 1

breakpoints
disabling, bp 2
enabling, bp 2
inserting, bp 1
removing, bp 3

breaks
guarded memory access, map 4
synchronous, cmb 1

bus cycles, slow, es 1, D-2
bus grant

emulation prompt (g), D-2
emulation status, D-2

C c, slow (or no) target clock emulation prompt, D-2
calculator for expressions, echo 1
cf (emulator configuration) command, cf 1
channels (analyzer)

demultiplexed slave clock mode, tsck 2
edge trigger, xteq 1

Index-3

glitch trigger, xtgq 1
mixed slave clock mode, tsck 2
transition record, xttq 1

cim (copy target memory image) command, cim 1, cov 1
cl (command line control) command, cl 1
clocks

specifying analyzer master, tck 1
specifying analyzer slave, tsck 1

cmb (coord. meas. bus enable/disable) command, cmb 1
CMB (Coordinated Measurement Bus)

enable/disable, cmb 1
start synchronous execution, x 1
trace at /EXECUTE, tx 1
trigger signal, bc 1, cmbt 1, tx 1

cmbt (CMB trigger drivers/receivers) command, cmbt 1
column headers in trace list

adding new columns, tf 2
suppressing, tl 2

commands
abort, D-6
comments, D-7
entry, D-1
help, help 1
help for group, help 1
macros, mac 1
maximum length of command line, mac 2
multiple on same line, D-7
recall, D-6
repeating a group of, rep 1
sym, sym 1

comments in commands, D-7
communications (data)

initialization, init 1
setting parameters, stty 1

complex analyzer configuration, tcf 3
pattern specifications, tpat 1
range specification, trng 1

complex expressions, COMPLEX_EXPR 4
COMPLEX_EXPR syntax, COMPLEX_EXPR 1
configuration

analyzer, tcf 1

4-Index

data communications switches, stty 2, stty 5
emulator, cf 1

control (CTRL) characters
b, command recall, D-6
c, command abort, load 4, pv 2, rep 1, s 2, D-6
non-displaying, echo 2
r, command recall, D-6

Coordinated Measurement Bus
See CMB

coordinated measurements
enable/disable, cmb 1

copy memory, cp 1
target memory image into emulation mem., cim 1

count (occurrence), tcf 2, tcf 4, tg 1/tg 2, tif 3, ts 5
reset if secondary branch taken, telif 2

count qualifier, tcf 3, tcf 5, tcq 1
counter, analyzer tag, tcq 1
cov (coverage measurements) command, cov 1
coverage measurements, cim 1
cp (copy memory) command, cp 1
cross-triggering, bnct 1, cmb 1, cmbt 3

D data communications
configuration switches, stty 2, stty 5
initialization, init 1
setting port parameters, stty 1

data cycles
monitor access to target memory, mo 1

date, setting emulation system, dt 1
decimal number base specifier, EXPR 2
delay (trigger), external timing analyzer, xttd 1
deleting sequencer terms, tsq 3
delimiters (string), echo 1/echo 2, ser 3
delta time

binary/hexadecimal trace list, xtm 2, B-11, B-14
DeMorgan’s theorem, COMPLEX_EXPR 4
demultiplexed (slave clock) mode, tsck 2
disassembly

memory display, m 5
trace list, tf 2, tl 2

display mode, mo 1
divide (integer) operator, EXPR 5

Index-5

download
user programs, load 1

drivers and receivers
BNC trigger signal, bnct 1
CMB trigger signal, cmbt 1
See also trig1 and trig2 internal signals

dt (set or display system date/time) command, dt 1
dual threshold measurements, xtv 2
dual-port emulation memory, bp 3
dump (upload memory) command, dump 1
duration (external timing trigger), xtt 2

E easy analyzer configuration, tcf 1
echo (display to standard output) command, echo 1, EXPR 1
edge trigger (external timing analyzer), xteq 1
edges (analyzer clock), rising, falling, both, tck 3
edges (analyzer slave clock), active, tsck 2/tsck 3
emulation break, b 1
emulation monitor

background, loading user code into, load 4
break command, b 1
breaks to the, bc 1
cycles used to access target memory, mo 1
execute after reset, rst 1
foreground, loading, load 4
running in (emulator status), es 1
searching target memory, ser 1

emulation RAM, mapping address ranges, map 1
emulation ROM, mapping address ranges, map 1
emulator

initialization, init 1
performance verification, pv 1
prompt, changing the, po 1
status, es 1

entry, command, D-1
equ (equate names to expressions) command, equ 1
equates, equ 1
eram, mapper parameter for emulation RAM, map 3
erom, mapper parameter for emulation ROM, map 3
error messages, C-1

analyzer, C-56
emulator, C-1

6-Index

general and system error/status, C-7
es (emulator status) command, es 1
exclusive OR (bit-wise) operator, EXPR 6
EXECUTE (CMB signal), cmb 1, ts 2, tx 1, x 1, D-1
EXPR (expressions) syntax, EXPR 1
expression calculator, echo 1
expressions, EXPR 1

analyzer, ANALYZER_EXPR 1
analyzer, complex configuration, tcf 3, COMPLEX_EXPR 4
analyzer, easy configuration, tcf 1, SIMPLE_EXPR 1
equating names to, equ 1
operators, EXPR 3

external analyzer
See also analyzer
See also external timing analyzer
mode, xtmo 1
probe threshold voltage, xtv 1
timing analyzer mode, xtm 1

external timing analyzer
edge trigger, xteq 1
glitch mode, xtm 1, B-12, B-14
glitch trigger, xtgq 1
mode, xtm 1
sample period, xtsp 1
standard mode, xtm 1, B-12, B-14
transition trigger, xttq 1
transitional mode, xtm 2, xttq 1, B-11, B-14
trigger condition, xtt 1
trigger delay, xttd 1

F fast (F) analyzer clock speed, tcf 5, tck 2
file formats

absolute, dump 1, load 1
foreground operation, tracing, tck 2
formats

absolute file, dump 1, load 1
binary trace list, tl 3, B-1
hexadecimal trace list, tl 3, B-1
memory display, m 2
trace list, tf 1

function codes, load 1, m 2

Index-7

G g, bus grant emulation prompt, D-2
glitch (external timing analyzer) mode, xtm 1, B-12, B-14
glitch trigger (external timing analyzer), xtgq 1
global access and display modes, mo 1
global restart qualifier, tcf 2, telif 1, tg 1, tif 2, tsq 2
global storage qualifier, tcf 3, tsto 1
grave mark character, ser 3
grd, mapper parameter for guarded memory, map 4
group (command), help 1
guarded memory access, map 4

H h, processor halted emulation prompt, D-2
H,h, hexadecimal number base specifier, EXPR 2
halt

emulation prompt, D-2
emulation status, es 1
trace, th 1
trace status, ts 2

handshaking (data communications), stty 3
headers in trace list

adding new columns, tf 2
suppressing, tl 2

help (on-line help) command, help 1
help, abbreviated mode, help 1
hexadecimal number base specifier, EXPR 2
hexadecimal trace list format, tl 3, B-1
history, trace status, ts 4

I i, idle state emulation prompt, D-2
idle state emulation prompt (i), D-2
image (target memory), copying to emulation RAM, cim 1
inclusive OR (bit-wise) operator, EXPR 7
independent state mode of external analyzer, xtmo 1
information (help), help 1
init (initialize the emulator) command, init 1
initialization

analyzer, tinit 1
emulator, init 1

inserting sequencer terms, tsq 2
internal signals, trig1 and trig2, bc 1, bnct 1, cmbt 1, tarm 1, th 1, tx 1
interset operators, COMPLEX_EXPR 3
intraset operators, COMPLEX_EXPR 2

8-Index

inverse assembler options, tl 3
inverse assembly, m 5
inverse values (complex analyzer expressions), COMPLEX_EXPR 4

J J clock (analyzer), tck 2

K K clock (analyzer), tck 2

L L clock (analyzer), tck 2
labels (trace)

defining analyzer, tlb 1
predefined, tlb 1

line activity (analyzer), ta 1
load (download user programs) command, load 1
loading the sample program, A-3
logical operators

See operators

M m (memory display/modify) command, m 1
M clock (analyzer), tck 2
M, running monitor program emulation prompt, D-1
mac (macro definition/display) command, mac 1
macros

limitations, mac 1
map (memory mapper) command, map 1
mapping memory, map 1
master clocks (analyzer), tck 1
maximum

analyzer clock speed, tck 2
command line length, mac 2
mapper terms, map 3
sequence levels in easy configuration, tif 2
sequence terms in easy configuration, tsq 1
trace state storage, xtm 1/xtm 2

measurements
analyzer, starting, t 1
coordinated, cmb 1
coverage, cov 1
dual threshold, xtv 2

memory
assess mode, mo 1
coverage/usage, cov 1
display mode, mo 1

Index-9

displaying, m 1
loading programs into, load 1
mapper block sizes, map 2
mapping, map 1
modifying, m 1
search, ser 1
upload to host file, dump 1

merge (bit-wise) operator, EXPR 7
messages

error, C-1
status, C-7

mixed (slave clock) mode, tsck 2
mnemonic

information in the trace list, tf 2
memory display mode, m 2, mo 2

mo (set access and display modes) command, mo 1
mode

abbreviated help, help 1
demultiplexed slave clock, tsck 2
external analyzer, xtmo 1
external timing analyzer, xtm 1
glitch (external timing analyzer), xtm 1, B-12, B-14
memory access, mo 1
memory display, mo 1
mixed slave clock, tsck 2
quiet, load 2, s 1
standard (external timing analyzer), xtm 1, B-12, B-14
transitional (external timing analyzer), xtm 2, xttq 1, B-11, B-14
whisper, s 2, ts 6

modulo (integer) operator, EXPR 5
monitor (emulation)

background, loading user code into, load 4
break command, b 1
breaks to the, bc 1
cycles used to access target memory, mo 1
execute after reset, rst 1
foreground, loading, load 4
running in (emulator status), es 1
searching target memory, ser 1

multiple traces, numbering, equ 8
multiply (integer) operator, EXPR 5

10-Index

N N clock (analyzer), tck 2
names

pattern, tpat 1
values, equ 1

NAND operator, COMPLEX_EXPR 4
never (analyzer keyword), tg 2, xteq 3, xtgq 2, xttq 2
no bus cycles emulation prompt (b), D-2
no target clock emulation prompt (c), D-2
No trace data (message), tl 2
none (analyzer keyword), tcq 1, tg 2, tpq 2, xteq 3, xtgq 2, xttq 2
NOR, intraset logical operator, COMPLEX_EXPR 2
notes

absolute files, loading in the wrong format, load 4
access mode for writing breakpoints, bp 5
address followed by two periods as a range, m 3
address specification, m 2, r 1
addresses default to hexadecimal base, bp 5
analyzer count qualifier cannot be arm condition, tcq 2
analyzer range expression, SIMPLE_EXPR 2
analyzer should not drive and receive same signal, bnct 3, cmbt 4
analyzer, "tcq time" only if "tck -s S", tcq 2
arm to trigger time alignment between emulators, B-4, B-10
asterisk (*) in help command, help 2
bc command, cannot enable and disable in same, bc 2
bit range is relative to label, xteq 2, xtgq 2, xttq 2
breakpoint display status checking, bp 2
breakpoints, disabling while running user code, bc 3
cim command and memory mapping, cim 3
coverage bits, reset before performing measurements, cov 3
coverage ranges that overlap, cov 2
dashes (-) when specifying command parameters, load 2
data communications references, stty 2
date and time are reset when power is cycled, dt 1
date assumes year is in 20th century, dt 1
display mode and memory modification, m 3
don’t care values are not allowed in echo command, EXPR 3
dump creates non-standard HP absolute files, dump 3
emulation memory block re-assignment, map 2
equate limits, equ 2
equates, new values not updated in commands, equ 1
equates, predefined, equ 2

Index-11

notes (continued)
external analyzer probe setup/hold times, xtmo 1
extra instruction executed on break, bc 2
init -c, -r, or -p cause system memory loss, init 2
macros allowed within rep commands, rep 1
macros, predefined, mac 2
map change requires breakpoint disable, map 2
master clock qualifiers: tck -u, tck -b, tck 2
memory display is not updated, m 6
memory map modification causes emulator reset, map 2
memory ranges modified by a sequence of values, m 7
memory, disassembling for mnemonic display, m 5
occurrence counts in complex analyzer configuration, tg 5
occurrence counts in complex configuration, tif 4
operations are on thirty-two-bit signed integers, echo 4
primary and secondary branch qualifiers satisfied, telif 1, tif 2
pv command re-initializes emulator, pv 1
range not allowed in pattern specifications, tpat 2
range reset when trace configuration reset to easy, trng 2
run from reset function varies with emulators, r 2
rx command enables CMB interaction, cmb 2
search patterns, specifying complex, ser 3
sequence term count reset, telif 2
sequencer term 8 default, telif 4, tif 5
single open quote, ASCII character, echo 2, ser 3
software breakpoint modification while running, bp 3
software breakpoints, not all emulators support, bp 1
step count must be specified with address, s 3
step does not work correctly while CMB enabled, s 1
storage qualifiers and the sequencer, tsto 2
storage qualifiers, global, tsto 3
string delimiter character should not be in string, echo 2
strings should not contain string delimiter character, ser 3
trace format does not affect information captured, tf 1
trace list command options, mutually exclusive, tl 3
trace list from a specific state, tl 4
trace states, displaying when trigger not found, th 2
trace states, storing all defeats prestore, tpq 3
tracing states in processors that prefetch, tsq 9
trig1 and trig2 can both drive/receive BNC, bnct 2
trig1 and trig2 can both drive/receive CMB trigger, cmbt 2

12-Index

notes (continued)
xon toggling with baud rates of 1200 or below, stty 4
xtarm does not allow "!=" when in timing mode, tarm 2
xteq command, multiple labels and bits, xteq 2
xtgq command, multiple labels and bits, xtgq 2
xttq command, multiple labels and bits, xttq 2

numbering multiple traces, equ 8
numbers, software version, ver 1
numeric expressions, EXPR 1
numeric search in memory, ser 2

O O,o, octal number base specifier, EXPR 2
occurrence count, tcf 2, tcf 4, tg 1/tg 2, tif 3, ts 5

reset if secondary branch taken, telif 2
octal number base specifier, EXPR 2
one’s complement (unary) operator, EXPR 4
operators, EXPR 3

combining intraset and interset, COMPLEX_EXPR 4
interset, COMPLEX_EXPR 3
intra-set OR (analyzer), tsto 3
intraset, COMPLEX_EXPR 2
precedence, EXPR 3

OR (bit-wise) operator, EXPR 7
or operator (analyzer expressions), SIMPLE_EXPR 4
or, interset logical OR operator, COMPLEX_EXPR 3
OR, intraset logical operator, COMPLEX_EXPR 2
other, mapper parameter for unmapped memory, map 3
overlap

bit-wise merge, EXPR 7
trace labels, tlb 2

P p1 - p8, trace pattern labels, tpat 1
parameters, data communications, stty 1
pattern

expressions, EXPR 1
labels, COMPLEX_EXPR 2
names, tpat 1
qualifier (complex analyzer config.), tpat 1

percent of memory usage, cov 1
performance verification, pv 1
pipeline

analyzer architecture, ts 3

Index-13

analyzer prestore, tcf 3
po (specify port control) command, po 1
polarity, trace labels, tlb 2
ports (data communications)

setting parameters, stty 1
position of trigger state in trace, tp 1
powerup initialization, init 1
precedence, operator, EXPR 3
predefined macros, mac 2
predefined trace labels, tlb 1
prestore qualifier, tcf 3, tcf 5, tpq 1
primary branches (analyzer sequencer), tif 1
probe

emulator, pv 1
external analyzer, clock channels, tck 2, tsck 4
external analyzer, setup/hold times, xtmo 1
external analyzer, threshold voltages, xtv 1

processor halted emulation prompt (h), D-2
program counter symbol ($), r 1
prompt (emulator), changing the, po 1
prompts, D-1

priority, D-2
protocol (transfer), dump 1, load 2, tl 3, B-1
protocol checking, load 3
pv (performance verification) command, pv 1

Q Q,q, octal number base specifier, EXPR 2
qualifiers

analyzer count, tcq 1
analyzer master clock, tck 1
analyzer pattern, tpat 1
analyzer prestore, tpq 1
analyzer range, trng 1
analyzer storage, tsto 1
external timing edge trigger, xteq 1
external timing glitch trigger, xtgq 1
global restart, tcf 2, telif 1, tg 1, tif 2, tsq 2
sequencer primary branch, tif 1
sequencer secondary branch, telif 1

question mark (?)
arm to trigger time, ts 7
break conditions display, bc 2

14-Index

on-line help command, help 1
unknown state emulation prompt, D-2

quiet mode, load 2, s 1
quote marks, echo 2, po 1, ser 3

R r (run user program) command, r 1
r, reset by target system emulation prompt, D-2
R, reset emulation prompt, D-1
range qualifier (complex analyzer config.), trng 1
ranges, COMPLEX_EXPR 2
READY (CMB signal), cmb 1, x 1, D-1
recall, command, D-6
receivers and drivers

BNC trigger signal, bnct 1
CMB trigger signal, cmbt 1
See also trig1 and trig2 internal signals

record checking, dump 1
record, transition, xttq 1
reg (register display/modify) command, reg 1
relational expressions, COMPLEX_EXPR 2/COMPLEX_EXPR 3
relational operators, telif 3, tif 3, tsto 3
relative counts in trace list, tcq 4, tf 3
rep (repeat commands) command, rep 1
repeating commands, rep 1
reset

break during, b 1
breakpoints, bp 5
coverage, cov 1
emulation microprocessor, rst 1
emulation prompt (R), D-1
emulator, due to mapper modification, map 2
init command, init 2
occurrence count, telif 2
range qualifier and trace configuration, trng 2
run from, r 1
sequencer, tsq 2
system date and time, dt 1
trace configuration, tcf 5
trace specification, tinit 1
trace tag counter, tcq 1

reset by target system emulation prompt (r), D-2
restart (global) qualifier, tcf 2, telif 1, tg 1, tif 2, tsq 2

Index-15

ROM, break on writes to, bc 1
rotate left/right operator, EXPR 5
RS-232 (data communications), stty 2
RS-422, data communications, stty 2
rst (reset emulation processor) command, rst 1
running monitor program emulation prompt (M), D-1
running user program emulation prompt (U), D-1
runs, synchronous, cmb 1

S s (step the emulation processor) command, s 1
sample period (external timing analyzer), xtsp 1, B-12
sample programs, A-1

68000, A-1
80186, A-5

semicolon (command separator), mac 3, rep 1, D-7
sequencer (analyzer), tsq 1

complex configuration, tcf 4
easy configuration, tcf 2
primary branches, tif 1
secondary branch qualifiers, telif 1

sequencer terms
deleting, tsq 2/tsq 3

ser (search memory for values) command, ser 1
sets (complex config. trace spec.), COMPLEX_EXPR 2
shift left/right operator, EXPR 5
short help, help 2
signals

analyzer clocks, tck 2, tsck 4
analyzer, defining labels for, tlb 1
arm, ts 4
BNC trigger, bc 1, bnct 1
CMB /EXECUTE, cmb 1, rst 1, ts 2, tx 1, x 1, D-1
CMB READY, cmb 1, x 1, D-1
CMB trigger, bc 1, cmbt 1
external analyzer, threshold voltages, xtv 1
internal trig1 and trig2, bc 1, tarm 1, th 1, tx 1
trigger output, tgout 1

SIMPLE_EXPR syntax, SIMPLE_EXPR 1
single-step emulation processor, s 1
slave clocks (analyzer), tsck 1

demultiplexed mode, tsck 2
mixed mode, tsck 2

16-Index

slow (S) analyzer clock speed, tck 2, tcq 2
slow bus cycles emulation prompt (b), D-2
slow clock emulator status, es 1
slow target clock emulation prompt (c), D-2
software breakpoints, bp 1

break condition enable/disable, bc 1
disabling, bp 2
enabling, bp 2
inserting, bp 1
programs in ROM, cim 1
pv command effect on, pv 1
removing, bp 3

software version numbers, ver 1
standard (external timing analyzer) mode, xtm 1, B-12, B-14
states (trace)

maximum with/without count, tcq 1
prestore, tpq 1
status, ts 4
visible, ts 4

status
analyzer, ts 1
emulator, es 1

storage (trace) specification, tsto 1
complex configuration, tcf 5
easy configuration, tcf 3

string delimiters, echo 1/echo 2, ser 3
string search in memory, ser 3
stty (set data communications parameters) command, stty 1
subtraction operator, EXPR 5
switches, data communications configuration, stty 2, stty 5
sym (symbol) command, sym 1
symbol names, creating, equ 1
symbols

$, program counter, r 1
*, trace status, ts 6, ts 8
?, help command, help 2
|, intraset or, telif 3, tif 4, tsto 3

synchronous emulator execution, x 1
synchronous runs and breaks, cmb 1
system clock, dt 1, pv 1
system date/time, dt 1

Index-17

T t (start trace) command, t 1
T, waiting for target reset emulation prompt, D-2
T,t, decimal number base specifier, EXPR 2
ta (trace activity display) command, ta 1
tag counter (analyzer), tcq 1
target system RAM, mapping address ranges, map 1
target system ROM, mapping address ranges, map 1
tarm (specify arm condition) command, tarm 1
tcf (set easy/complex configuration) command, tcf 1
tck (specify master clock) command, tck 1
tcq (specify count qualifier) command, tcq 1
telif (specify secondary branch qualifiers) command, telif 1
terms, analyzer sequencer, tcf 2, tcf 4, tsq 1
terms, memory mapper, map 1
tf (specify trace list format) command, tf 1
tg (specify trigger condition) command, tg 1
tgout (specify signal driven on trigger) command, tgout 1
th (trace halt) command, th 1

listing traces, tl 2
threshold voltages (external analyzer), xtv 1
tif (specify primary branch qualifiers) command, tif 1
time (analyzer keyword), tcq 1
time, setting emulation system, dt 1
timing analyzer

See external timing analyzer
tinit (trace initialization) command, tinit 1
tl (trace list) command, tl 1
tlb (define labels for analyzer lines) command, tlb 1
tp (trigger position in trace list) command, tp 1
tpat (complex config. trace patterns) command, tpat 1
tpq (specify prestore qualifier) command, tpq 1
trace configuration reset, tcf 5
trace labels, tlb 1

predefined, tlb 1
trace list, tl 1

header suppression, tl 2
trace list format, tf 1

binary/hexadecimal, B-1
trace status, ts 1
tram, mapper parameter for target RAM, map 4
transfer memory to host file, dump 1

18-Index

transfer, HP 64000 utility, dump 1, load 2, tl 3, B-1
transition record (external timing analyzer), xttq 1
transitional (external timing analyzer) mode, xtm 2, xttq 1, B-11, B-14
trig1 and trig2 internal signals, bc 1, bnct 1, cmbt 1, tarm 1, th 1, tx 1
trigger

condition, tg 1
cross-triggering, cmb 1
delay (external timing analyzer), xttd 1
edge (external timing analyzer), xteq 1
external timing analyzer, xtt 1
glitch (external timing analyzer), xtgq 1
"not in memory" message, tl 2
position, tp 1

trng (specify complex config. range) command, trng 1
trom, mapper parameter for target ROM, map 4
truth tables for logical operators, EXPR 3
ts (display trace status) command, ts 1
tsck (specify slave clocks) command, tsck 1
tsq (manipulate trace sequencer) command, tsq 1
tsto (specify trace storage qualifier) command, tsto 1
two’s complement (unary) operator, EXPR 4
tx (trace on CMB /EXECUTE) command, tx 1

U U, running user program emulation prompt, D-1
unary ones’s complement operator, EXPR 4
unary two’s complement operator, EXPR 4
undefined breakpoint error, bp 3
unknown state emulation prompt (?), D-2
upload memory to host, dump 1

V value expressions, EXPR 1
values, equating with names, equ 1
variant records, B-13
ver (display software version numbers) command, ver 1
verifying performance, pv 1
very fast (VF) analyzer clock speed, tcf 5, tck 2, tcq 2
voltages, threshold, xtv 1

W w (wait for specified event) command, w 1
W, waiting for CMB READY emulation prompt, D-1
wait (in command sequence), w 1
waiting for CMB READY emulation prompt (W), D-1

Index-19

waiting for target reset emulation prompt (T), D-2
whisper mode, s 2, ts 6
write to emulation ROM, map 4
write to target ROM, map 4

X x (start synchronous CMB execution) command, x 1
XOR (bit-wise) operator, EXPR 6
xt (start trace) command, t 1
xtarm (specify arm condition) command, tarm 1
xtcf (set easy/complex configuration) command, tcf 1
xtck (specify master clock) command, tck 1
xtcq (specify count qualifier) command, tcq 1
xtelif (specify secondary branch qualifiers) command, telif 1
xteq (external timing edge trigger) command, xteq 1
xtf (specify trace list format) command, tf 1
xtg (specify trigger condition) command, tg 1
xtgout (specify signal driven on trigger) command, tgout 1
xtgq (external timing glitch trigger) command, xtgq 1
xth (trace halt) command, th 1
xtif (specify primary branch qualifiers) command, tif 1
xtl (trace list) command, tl 1
xtlb (define labels for analyzer lines) command, tlb 1
xtm (external timing analyzer mode) command, xtm 1
xtmo (specify external analyzer mode) command, xtmo 1
xtp (trigger position in trace list) command, tp 1
xtpat (complex config. trace patterns) command, tpat 1
xtpq (specify prestore qualifier) command, tpq 1
xtrng (specify complex config. range) command, trng 1
xts (display trace status) command, ts 1
xtsck (specify slave clocks) command, tsck 1
xtsp (external timing sample period) command, xtsp 1
xtsq (manipulate trace sequencer) command, tsq 1
xtsto (specify trace storage qualifier) command, tsto 1
xtt (external timing trigger condition) command, xtt 1
xttd (external timing trigger delay) command, xttd 1
xttq (external timing transition trigger) command, xttq 1
xtv (external analyzer threshold voltages) command, xtv 1
xtx (trace on CMB /EXECUTE) command, tx 1

Y Y,y, binary number base specifier, EXPR 2

20-Index

	Using this Manual
	Contents
	Emulator Commands
	Expressions
	Sample Programs
	Binary/Hexadecimal Trace List Format
	Error Messages
	Command Entry
	Index

