/A cackarc

User’'s Guide

HP B1444A
Softkey Driven Editor

Certification and Warranty

Certification

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard further
certifies that its calibration measurements are traceable to the United States
National Bureau of Standards, to the extent allowed by the Bureau'’s calibration
facility, and to the calibration facilities of other International Standards
Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in materials and
workmanship for a period of 90 days from date of installation. During the warranty
period, HP will, at its option, either repair or replace products which prove to be
defective.

Warranty service of this product will be performed at Buyer’s facility at no charge
within HP service travel areas. Outside HP service travel areas, warranty service
will be performed at Buyer’s facility only upon HP’s prior agreement and Buyer
shall pay HP’s round trip travel expenses. In all other cases, products must be
returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping
charges to HP and HP shall pay shipping charges to return the product to Buyer.
However, Buyer shall pay all shipping charges, duties, and taxes for products
returned to HP from another country. HP warrants that its software and firmware
designated by HP for use with an instrument will execute its programming
instructions when properly installed on that instrument. HP does not warrant that
the operation of the instrument, or software, or firmware will be uninterrupted or
error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,
unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer's sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance agreements are
available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

Safety

Summary of Safe Procedures

The following general safety precautions must be observed during all phases of
operation, service, and repair of this instrument. Failure to comply with these
precautions or with specific warnings elsewhere in this manual violates safety
standards of design, manufacture, and intended use of the instrument.
Hewlett-Packard Company assumes no liability for the customer’s failure to
comply with these requirements.

Ground The Instrument

To minimize shock hazard, the instrument chassis and cabinet must be connected to
an electrical ground. The instrument is equipped with a three-conductor ac power
cable. The power cable must either be plugged into an approved three-contact
electrical outlet or used with a three-contact to two-contact adapter with the
grounding wire (green) firmly connected to an electrical ground (safety ground) at
the power outlet. The power jack and mating plug of the power cable meet
International Electrotechnical Commission (IEC) safety standards.

Do Not Operate In An Explosive Atmosphere

Do not operate the instrument in the presence of flammable gases or fumes.
Operation of any electrical instrument in such an environment constitutes a definite
safety hazard.

Keep Away From Live Circuits

Operating personnel must not remove instrument covers. Component replacement
and internal adjustments must be made by qualified maintenance personnel. Do not
replace components with the power cable connected. Under certain conditions,
dangerous voltages may exist even with the power cable removed. To avoid
injuries, always disconnect power and discharge circuits before touching them.

Do Not Service Or Adjust Alone

Do not attempt internal service or adjustment unless another person, capable of
rendering first aid and resuscitation, is present.

Warning

Do Not Substitute Parts Or Modify Instrument

Because of the danger of introducing additional hazards, do not install substitute
parts or perform any unauthorized modification of the instrument. Return the
instrument to a Hewlett-Packard Sales and Service Office for service and repair to
ensure that safety features are maintained.

Dangerous Procedure Warnings
Warnings, such as the example below, precede potentially dangerous procedures
throughout this manual. Instructions contained in the warnings must be followed.

Dangerous voltages, capable of causing death, are present in this instrument. Use
extreme caution when handling, testing, and adjusting.

Vi

4

Safety Symbols Used In Manuals

The following is a list of general definitions of safety symbols used on equipment
or in manuals:

Instruction manual symbol: the product is marked with this symbol when it is
necessary for the user to refer to the instruction manual in order to protect against
damage to the instrument.

Indicates dangerous voltage (terminals fed from the interior by voltage exceeding
1000 volts must be marked with this symbol).

>rotective conductor terminal. For protection against electrical shock in case of a
ault. Used with field wiring terminals to indicate the terminal which must be
connected to ground before operating the equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal common,
as well as providing protection against electrical shock in case of a fault. A
terminal marked with this symbol must be connected to ground in the manner
described in the installation (operating) manual before operating the equipment.

Frame or chassis terminal. A connection to the frame (chassis) of the equipment
vhich normally includes all exposed metal structures.

Alternating current (power line).

Direct current (power line).

Alternating or direct current (power line).

The Note sign denotes important information. It calls your attention to a procedure,
practice, condition, or similar situation which is essential to highlight.

vii

Caution The Caution sign denotes a hazard. It calls your attention to an operating
procedure, practice, condition, or similar situation, which, if not correctly
performed or adhered to, could result in damage to or destruction of part or all of
the product.

Warning The Warning sign denotes a hazard. It calls your attention to a procedure, practice,
condition or the like, which, if not correctly performed, could result in injury or
death to personnel.

viii

How To Use This Manual

This manual contains information about operating the Softkey Driven Editor. At
the beginning of each chapter there is a summary of the information which you will
find in that particular chapter. The appendices of this manual contain additional
information which either supplements that in the chapters, or which helps explain
the use of the Softkey Driven Editor.

When you use this manual and have a specific action you want to take, or a specific
subject of interest, the following summary may be helpful. Refer to the action or
subject of interest in the left-hand column. Then locate the chapter or appendix in
the right-hand column for the action or information which meets your needs.

IF YOU WANT TO:

THEN REFER TO:

Learn About the Softkey Driven Editor

Chapter 1 - This chapter provides a description of

the Softkey Driven Editor and its features, the
relationship to your operating system and to the
64000 editor, as well as other information about
finding answers and updating software.

Prepare to Use the Editor

Chapter 2 - This chapter tells you about

procedures for installing the Editor, how to modify

your .profile for easier use, how to invoke the
Editor and its options, and about use of your
terminal for keyboard entry.

Learn Editor Modes and Structure

Chapter 3 - This chapter has information ahb
how the Softkey Driven Editor is structured, the
levels of softkeys available, a functional
description of its three modes, how shell
commands are used with the Editor, and how to
recover files from "crashed" edit sessions.

HP

out

IF YOU WANT TO:

THEN REFER TO:

Get Started At Creating And Editing Text Files
And Commands

Chapter 4 - This chapter includes descriptions
the keyboard entry, the display format, creating
editing files, and entering and editing command
files.

Learn Details About Commands Available And
The Syntax For Using The Commands

Chapter 5 - This chapter has descriptions,
examples, definitions, and parameters which ap

to use of the Editor. It includes syntax examples

and detailed syntax diagrams, and cross-referer
to other commands.

Find Help Or Solve Problems While Using The
Editor

Chapter 6 - This chapter describes some poss
problems or questions which may arise while yo
are using the Softkey Driven Editor. It describes
sources for answers, and points to specific
bothersome areas.

Find The Meaning And Explanation For Softkey
Driven Editor Status And Error Messages

Appendix A - This appendix contains a listing @
the messages which appear during an edit sess
to let you know when an error has been made o
when a choice is available to the User.

Use The while Command In Conjunction With
Other Commands

Appendix B - This appendix contains the truth
values related to executing the while command
the truth value returned at the end of that
command.

and

T

Yy

ces

ble
u

D

=

ion

and

Contents

General Information

Chapter Overview 2

Editor Description 3

Description of the Softkey Driven Editor 3

Editor Relationship to Your Operating System and the HP 64000
What's in This Manual? 4

Using This and Other Manuals 4

Suggestions for Learning the Editor 4

Where to Find Terms and Conventions 5

Finding Answers and Help 5

Determining Software Revision Numbers 6

Software Materials Subscription and Response Center 6

Preparation for Use

Chapter Overview 8

Installing Editor Software on Your Operating System 8
System Administration Tasks 9

" profile" and Operating System Shell Variables 9
Changing Your ".profile" File 9

Using Shell Variables 10

Invoking the Editor and Options 12

Data Terminal Configuration 14

Modes, Structure, and Operating System Connections

Chapter Overview 16

Editor Structure 16

General Description 16

Importance of Tab Characters 17

Editor Softkey Levels 17

Operating System Interrupts of the Editor 18
Editor Functional Modes 19

Command Mode Description 19

INSERT Mode Description 20

Xi

REVISE Mode Description 21

Recovery of Saved Files 22

"purge" Command to Move Files 23

“rcvr" Command for Recovery 23

"dirrec" Command for Directory Listing 24
Recovery of "Crashed" Edit Sessions 24

Using the skpreserve" Command is Required 24
"skrecover" Command File 25

4 Getting Started

Chapter Overview 30

Understanding the Keyboard and Display 30
Keyboard Layout and Labels 31

Keyboard Input and Functions 32

Display Format Description 37

Creating, Saving, Ending, and Modifying Files 40
Creating a New File 41

Saving the File 41

Ending the Edit Session 41

Changing an

Existing File 42

Entering and Editing Command Files 42

5 Editor Command Syntax

Chapter Overview 46

Easier Entry of Commands 46
Command and Variable Summary 47
Syntax Conventions 49

Introduction to Softkey Driven Editor Syntax 50
Command Line Entries 50

Syntax for Variables and Commands 50
command 51

conditional command 53

loner command 55

<ICMD!> 56

CMDFILE 57

<COLUMN> 58

<COUNT> 59

<DIR> 60

<FILE> 61

Xii

LIMIT 63

<LINE+> 64

<LINE#> 65

<#LINES> 66

<PARMS> 67

POINT 68

<SPACES> 70
<STRING> 71

<#TIMES> 73

<TIME> 74

WHATCHAR 75

autotab 77

(change directory) cd 79
cmdfile (command file) 80
(column_numbers) colm_num

copy 84
delete 85
edit 86
end 88
extract 90
find 91
help 93
insert 95

(MODE) INSERT* 96
join 98
<LINE+-> 100

list 102

merge 106
range 108
renumber 110
repeat 111
replace 112

retrieve 116
REVISE* (MODE) 117
save 118

split 120
tabset 122
wait 124
while 125

(Shell Command) ! 127

82

Xiii

6 Help and Problem-Solving

Chapter Overview 130

Error and Status Messages 131

"man" Pages and Editor "help" 131

Understanding Strings 132

Recovery of Files and Session "Crashes 132

Questions and Possible Answers 133

Why Aren’'t My Control Characters Entered or Displayed? 133
Why Doesn’t My File Print Okay Outside the Editor? 133

Why Do | Get a Syntax Error When | Enter a File Name? 133
Why Doesn’'t My "Make" File Work Any More? 134

Why Do | Sometimes Get Strange Characters Displayed On-Screen?

Editor Status and Error Messages

Introduction 136

Invoking Editor status/error messages 136
Command status/error messages 138
skpreserve status/error messages 156
skrecover status/error messages 157
Purge status/error messages 159

rcvr status/error messages 160

dirrec status/error messages 161

Editor Command Truth Tables
Introduction 164

Comparison with HP 64000 Editor

Introduction 168

List Command 168

Control Characters 169

Command Separators and Comments 169
Command Files 169

Find and Replace Commands 170

Other Differences 171

Index

134

Xiv

Installation Notice

General Information

Chapter 1: General Information

Chapter Overview

Chapter Overview

This chapter provides the following information to help introduce you to both
the Softkey Driven Editor and to this manual. Here are some of the subjects
which are in this chapter:

Brief description of features and editing capability.

A description of the relationship between the Softkey Driven Editor and
your operating system.

How this manual is organized, including how to get started. Also a
reference to "Using This Manual"and about other manuals you should
have access to.

How to find answers and help when you cant find something or dont
understand something.

A reference to information about the Software Materials Subscription
(SMS), which will keep youwrrent with new software.

Reference to information about the Response Center, a technical
assistance subscription service.

Chapter 1: General Information
Editor Description

Editor Description

Description of the Softkey Driven Editor

The HP B1444A Softkey Driven Etdir provides text entry and text
manipulation commands in a softkey-driventedivhich fadlitates revising
source code and text files. It includes all the features found in thHE1BI0®
workstation editor, enhanced to take advantage of your operating system.
Command files written for the H&®4000 workstation ethr are compatible

with the Softkey Driven Editor and it is compatible with files developed using
the 'vi" editor supplied with your operating system.

Displays from the editor support a virtual screen-widtB44f characters on

each line. The screen is easily scrolled left and right to let you view all parts of
the text. Displays are compatible with HP terminals, HP bit-mapped
monitors, and your operating system window manager on th@0a® Series
300/400 and Series 700.

Commands, variables, and functions appear on softkeys which tragkaper
syntax for your next entry. For more experienced users, automatin@ond
completion (done as partial commands are typed in, then completed with the
Tab key) provides an efficient way for you to entemeooands for execution.
There are both standard and enhanced edit functions, including global search
and replace capability. Other functions omeoands include character and
string "wildcards"; extract, retrieve, and merge for efficient editing of files; and
split and join commands to alter lines as you wish.

Editor Relationship to Your Operating System and the
HP 64000

The Softkey Driven Editor runs on the B00 Series 300/400 and HP 9000
Series 700 computers witlhyr operating system. This editor is similar to the
HP 64000 Logic Development System (LDS) workstationtaegdbut is

enhanced by your operating system complitib Compatibility of your shell
commands and efir conmands make building and execution of commands
an easier task. Use of your shell variables and your .profile directory make it
easyto access the Editor and to move back and forth between the Editor and
your operating system shell.

Chapter 1: General Information
What's in This Manual?

Use of your operating system and thdighto create, edit, and execute
command files from the ewir make other parts of your development tools
easier to access and use. Command files built in thereail help to get

more efficient use of emulation, analysis, and assembler/linker/compiler
features. To obtain full capability for comand files, logging commands, and
directory changes, you also must have User Interface Software (also called
"pmon") installed on your operating system; see chapter 2.

What's in This Manual?

Using This and Other Manuals

Refer to the "Using This Manual” section at the front of this manual for a
guide to locating chapters and appendices which will help you with specific
needs. Also refer to the table of contents and the index to locate specific
paragraph topics or subjects.

Suggestions for Learning the Editor

It will depend on gur previous experience with other editors and systems as to
how much familiarization is needed before you begin to feel comfortable with
using the Softkey Driven Editor. Looking at the table of contents for each
chapter will help you to learn which areas are famili@ugd and which ones

may contain new information. If you study chapters 2, 3, and 4 in order, you
then will be able to use the ¢dli, having learned its modes and its structure.
You should refer to the comand syntax information in chapter 5 so you are
familiar with the syntax examples and diagrams there, and can refer to them as
guestions arise.

If you have previously used the HP 64000 workstatiohoe@dind are fanfiar

with most aspects of your operating system, you may need only to refer to the
syntax chapter to refresh a concept or to look up relatively minor points about
how certain commands or variables operate. Also, if you have used the HP
64000 edior, you may want to look at appendix C which describes differences
between the HP 64000 ¢di and the Softkey Driven Editor.

Chapter 1: General Information
What's in This Manual?

Where to Find Terms and Conventions

Where possible, this manual orporates standard terms and definitions,
especially regarding your operating system. When practical, terms which may
be unfamiliar to most users and terms which are unique to the Softkey Driven
Editor are defined in text as close asgible to the use of the term. One
important convention is that keywords which you enter from softkeys are
shown inboldface type like thisto make it easier for you to identify the
commands and variables in text. Command parameters entered from the
keyboard are shown in standard type like this. The syntax conventions used
for commands and variables are shown near the beginning of chapter 5.

Finding Answers and Help

Looking in the table of contents and in the index will ofpeavide the clue as

to where to find answers. In addition, chapter 6 contains a summary of how
you might approach finding help and solving problems. Some questions and
subjects covered there may be helpful. There also is an on-line manual which
has information about the editor. And, lastly, there is a Hewlett-Packard
Response Center technical service to which you can subscribe for answers and
problem-solving related to the HF2000-U X software and system usage.

Chapter 1: General Information
Determining Software Revision Numbers

Determining Software Revision Numbers

You can determine the revision number, in the form "Rev YY.XX", of your
software product by entering:

more /system/producameproductrev

where "productame"is actually the model number of hrduct 81444, no

letter suffix, for the Softkey Driven Editor).

For example, to determine the software revision number for this Editor, enter:
more /system/Bl44gfoductrev

You then will see the following information on the screen:

B1444-19XXX SOFTKEY EDITOR HP9000/XX0 Rev YY.XX
dd/mmm/yy hh:mm:ss

The software version appears on the STATUS line when you enter the editor
by way of the directory /usr/hp64000/bin. The software version appears on the
STATUS line (until your first keystroke) as follows:

sk: YY.XX (c) 1986, Hewlett-Packard Company

Software Materials Subscription and Response
Center

Hewlett-Packard offers a Software Materials Subscription (SMS) to provide
timely and comprehensive information for your development environment.
Also, there is a technical assistance subscription service avahablegh a
Response Center. SMS and the Response Center are describediR the "
Support ServiceManual (supplied with this manual).

Installation Notice

Preparation for Use

Chapter 2: Preparation for Use

Chapter Overview

Chapter Overview
This chapter provides information to help you prepare for using the Softkey
Driven Editor on your operating system, including the following:

» Information about procedures to install and to update software for the
Softkey Driven Editor.

» Using your operating system shell and your ".profile" file to make it easier
to use the editor with your operating system.

 Howto invoke the editor and available options.

* What you should consider when configuring the data terminal to be used
for keyboard entry with the Softkey Driven Editor.

Note

Installing Editor Software on Your Operating
System

Software for the Softkey Driven Editotliveside on the hard disk of your
operating system (HP 9000 Series 700 or Series 300/400 computer which
supports your terminal. Initial software and subsequent upddtbsw

installed by your operating system System Administrator. It ismevtended

that the System Administrator perform the tasks outlined in a following
paragraph in this chapter under the heading "System Administration Tasks".
Some of the tasks are required on a "first-time-only" basis. If these are not
performed, your abty to recover from an edior “crash” might not be
successful.

Additional software is required in order to use command files with the
Softkey Driven Editor. To use oumand files with the ethr on the operating
system (installed on an HP 9000 Series 300/400 and 700 computers), the HP
B1471 64000-U X Operating Emanment software is required. For more
information, contact your local HP Sales/Service Office.

Chapter 2: Preparation for Use
System Administration Tasks

System Administration Tasks

Involvement of the System Administrator with the Softkey Drivent&rdaill

be minimal, usually only at installation time or for an update. Here are so
tasks to be performed by the System Administrator after installing the So
Driven Editor software:

1. Ifthere are enough users on the system using the Softkey Driven Editor,
as well as other development tool applications, then you might find it
worthwhile to add théusr/hp64000/bindirectory to the PATH shell
variable in théetc/profile file.

2. The System Administrator should also modify féte/rc file to allow for
the "crash" "skrecover" command to work. The modification required is to
add the lineskpreservein the section of thetc/rc file that covers
"miscellaneous housekeeping". A good place for thisroand is near
"expreserve(l)". The "skpreserve"command moves anyaeany files for
users from the "/tmp" directory to thesr/preservedirectory, where the
skrecover commandmay be used to recover them. The "skpreserve"
command also sends mail to the owners of theptary files, informing
the owners that crashed edit sessions have been preserved.

“profile"and Operating System Shell Variables

Changing Your ".profile" File

You can use the ".profile” file in your $HOME directory to set options for
your operation system s&on and to perform many functions automatically.
(The following information applies only to users with "sh" or "ksh". If you use
“csh", you should check your manuals to see how to adisimpe same

tasks.) If you do not have a .profile, it can be creatsdyear, if one exists, it
can be modified using the information about shell variables in the following
paragraph. After changing your .profile, you can make it active by doing one
of the following: (1) Log out of the operating system and then log back in,
which causes the .profile to be executed; or (2) Re-execute the .profile from

Chapter 2: Preparation for Use
"profile” and Operating System Shell Variables

your $3HOME directory (or the directory where the .profile is located) by
typing ". .profile" from the shell.

Using Shell Variables

Shell variables added to your .profildlwnake many tasks easier. Here are
some examples of what you may wish to add to your .profile, followed by brief
explanations of why each is useful:

PATH= $PATH:/usr/hp64000/bin
HP64KPATH= ..3HOME/bin

PRINTER=Ipr
MAXREC=15
SKTOP=

EDITOR=/usr/bin/sk
export HP64KPATH PRINTER MAXREC SKTOP
export EDITOR

The/usr/hp64000/bindirectory contains the "sk" editor, and it should be added
to the search path you use unless the $PATH variable already contains it. This
may be checked by executing "echo $PATH" from your shell and looking for

this directory name.

The $HP64KPATH shell variable is used to control which directories are
searched when the user tries to execute a command file. If the filename has a
relative path, then the directories specified by the HP64KPATH shell variable
are searched from left to right until the command fil®isfd. The search is
relative from the directory and not just within it. If no file is found, then an
error is generated. If this shell variable is not defined, then all relative
flenames check only thaicrent directory.

Setting up "PRINTER4p will allow the Softkey Driven Edor to use this
shell variable when kst printer command is invoked. The shell variable
should be set to some shelhemand which Wi cause the output to be
spooled to the printer. Also, thisroonand kould accept standard input
when no argument is given, as with(1)".

The $MAXREC shell variable is also used by the "sk" editor in the context of
putting files being overwritten into your user’s recovery directory. Since the
default number of files in the recovery directory is 128, you may want to select
a smaller number to minimize disk usage.

10

Chapter 2: Preparation for Use
"profile" and Operating System Shell Variables

The SKTOP shell variable can be used to control the placement of the
softkeys, STATUS, and command lines for the Softkey Drivetdg das well

as for other shell commands. Depending on how this shell variable is set, it
will cause most operating system applications to place the softkeys, STATUS,
and command lines at the top of the display. This action is similar to the "-yga
option of the editor as defined in the following, but the SKTOP shell varia

can apply to selected operating system applications.

The SKTOP shell variable can be made to fit your individual needs with
variations as follows:

SKTOP= This will affect most operating system features
available on the system.

SKTOP=sk This will affect only the "sk" &ati.

SKTOP=all Same as SKTOP= (see above).

SKTOP=sk:pmon: This allows setting only selected
individual applications (separated by colons).

The EDITOR shell variable will set the default tdifor various operating
system applications, such as for "mailx(1)". If this is defined as shown above,
and exported, then the "sk" editor is invoked rather than "ed(1)" or "vi(1)", for
example.

It is crucial that you export the new shell variables, so other programs, such as
"sk", can use them.

Other shell variables may be defined by the user as desired. The shell variables
may then be accessed by the user from the command line. Thisis
accomplished by typing a dollar sign, or '$’, followed by the shell variable

name. The shell variable name may also be enclosed by braces, "{}", if the
name is followed by characters that are not part ofit. Therdhen it sees

the shell variable, will then search for apexted shell variable and, if found,

will replace the dollar sign andame with the valuessigned by the user. The

shell variable may be used anywhere on the command line, including within
filenames.

11

Chapter 2: Preparation for Use
Invoking the Editor and Options

Invoking the Editor and Options

The Softkey Driven Editor is invoked as "sk" from your operating system shell.
The syntax for the command, along with the explanation for its options, is:

sk[-c][-n][-v][-f<NUMBER>][-t<NUMBER>]
[-i<FILE1>][<FILE2>]

where these definitions apply:

-c This option turns off the column number information which tracks the
cursor location in thtNSERT* andREVISE* modes. This accomplishes
the same thing as tte®lm_num off (column_numbers off) command
from the editor.

-n This option prevents the conversion of tab characters to spaces when
loading the initial file. This gives the same result asthgab _c
(no_tab_convert) for thedit command.

-v This option will locate the STATUS line, oumand line, and softkey
labels at the top of the terminal display, instead of at the bottom by
default. This option may be your own preference, or, with some terminals,
it may avoid up-and-down bouncing of these lines when you use the up
arrow and down arrow keys, which may occur when the STATUS,
command, and softkey lines are at the bottom of the display.

-f<NUMBER>

This option allows the user to preset the tabstops that are used in the
INSERT andREVISE modes of the editor. This option does not affect
the conversion of tab characters when reading or writing files. Instead, it
performs the same function as thbset fixed < NUMBER> command,
which affects which column the cursor moves to when a tab or shift-tab
key is pressed. Tabstopdlwe positioned every NUMBER columns,
starting in column 1.

12

Chapter 2: Preparation for Use
Invoking the Editor and Options

-t <NUMBER>

This option controls how tab characters are converted into spaces when
the initial file is read into the editor. The default action is to place
tabstops every eight (8) columns and to interpret tab characters as m
the text cursor to those positions. The -t <NUMBER> option lets yo
enter the number which causes tabstops to be placed at fixed interval
starting with column 1. This option is the equivalent oftdie conv
(tab_convert) option to thedit command.

-i<FILE1>

This option lets you change the name of the initial edit file after it is read
from the disk (or as created if not already existing). A file could be read in
with one name, but saved later under a different name. This option is the
same as thimto < FILE2> used with theedit command in the ethr.

<FILE2>

This would be the name of a file to be read into theoedilf this rame is

not entered, a new, emptyfile is created in the editor. Tab characters will
be handled as specified by the two related tab options above. If neither
the "-n"nor "-t" option is used, the default action would be to convert tabs
as if a "-t8" option were used. For more details, seeditecommand

syntax in chapter 5. The "< FILE2> " option acts the same as the

"< FILE1>"option used with thedit command.

13

Chapter 2: Preparation for Use
Invoking the Editor and Options

Data Terminal Configuration

In general, you should configure your data terminal being used for the Softkey
Driven Editor as specified in the manuals for your operating system computer,
either the HP 9000 Series 300/400 or the HP 9000 Series 700. If you
experience occasional problems with the data transfer rate which creates
"garbage" on the display, you can redraw the display to its last "clean"
appearance by using CTRL | (lowercase L). If you have frequent problems
with "garbage" being created, it may be necessary to reduce the baud rate.
Depending on the number of sessions and the type of activity on the system,
reducing the baud rate will solve most data trangfeblems with the screen
display of the Softkey Driven Editor. Terminal display problems, if they occur,
are likely to be observed with large jumps in a file and with large data files,
such as when you use NEXT page, PREV page, Home-Up, or Home-Down.
This could also happen if you press a key repeatedly or hold it down, as with
the Return, Insert Char, efETC-- softkey.

14

Installation Notice

Modes, Structure, and Operating
System Connections

Chapter 3: Modes, Structure, and Operating System Connections

Chapter Overview

Chapter Overview

This chapter provides the following information:
» A description of how the Softkey Driven Editor is structured.
» A description of the four levels of softkeys.

* Functional descriptions of the three editor modesi@and INSERT*,
andREVISE*).

» Information about your shell comands used for inteupts and about
other operating system connections.

» Descriptions of how to recover "saved" files inadvertently overwritten and
of how to recover from "crashed" edit sessions.

Editor Structure

General Description

The Softkey Driven Editor is based on the structure and operation of an editor
originally developed for the HP 64000 Logic Development System (LDS).
However, the Softkey Driven Editor operation has been enhanced by use of
your shell conmands and techniques. If you previously have used and are
familiar with the HP 64000 LDS etdir, you may wish to look at appendix C
which describes most of the areas of difference between that editor and the
Softkey Driven Editor. In general, the edit file is considered to be any desired
number of lines. (The editor can display a line number g9899. It can

still work for files with more lines than this, but only the last five digits are
displayed.) Each line consists of 240 charactessmnally spaces are appended
to each line to equal 240 total characters.

16

Chapter 3: Modes, Structure, and Operating System Connections
Editor Softkey Levels

Importance of Tab Characters

Tab characters exist within the editor only as single control characters. For
normal operation, the Tab key moves the cursor to the next tabstop (as
defined by the tabset command), rather than inserting a tab character. Thus,
when you are editing files where tab characters are to be preserved as control
characters, use care to chooserthetab_c(no tabconvert) option. Or, you

can choose th&b_conv(tabconvert) option which will expand tab characters
into spaces. Ifthis expansion is done, the tab character is expanded into the
number of spaces required to move to, but not including, the next tabstop
One other important item for you to note is that the Softkey Driven Editor
strips-off (removes) all trailing spaces in all cases; this could be critical if th
spaces are needed, as in checksums. There is more information about
tabconversion in chapter 5 undsfit andend syntax.

Editor Softkey Levels

When you enter the Softkey Driven Editor, softkey labéllshgplay the first
level of commands. The furthest right labdl show --ETC-- which stands for
"et cetera", simply meaning "and others". $3irg the-ETC-- softkey will

display "other" labels on successive levels. Therearelévels of softkeys

which are accessed in a circular fashion wiirC--. Most softkeys on the

four levels provide additional softkey labels for entering furthenro@ands or
variables (other softkeys provide information on the STATUS line as to what
you should do next). The four levels of softkeys appear as follows:

FIRST LEVEL:

INSERT REVISE delete find replace < LINE+ -> end --ETC--
SECOND LEVEL:

merge copy extract retrieve join split list --ETC--
THIRD LEVEL:

renumber repeat tabset range autotab save edit --ETC--
FOURTH LEVEL:

while insert colm_num log help (blank) WHATCHAR --ETC--

17

Chapter 3: Modes, Structure, and Operating System Connections
Operating System Interrupts of the Editor

Operating System Interrupts of the Editor

Certain shell commands (signald)limterrupt the editor or cmmands being
executed from the editor. This use of interrupt signals is important in such
instances as a phone/modem hangup or having entered an infinite loop in the
while command. Most etir commands W run to their completion before

any interrupt signal takes effect. However, themowands which will

terminate prematurely with an intept are:

copy merge
edit renumber
end repeat
extract replace
find save

join while

list

If one of these specified commands is terminated prematurely by aruiote
an error message appears on screen. Interrupt signals whifiest the
editor are as follows:

CTRL | (requires keystrokes of "control"key and "|). Thil gause the
editor to terminate whatever it is doing and to exit immediately.
Anytemporary files Wil be removed and theucrent text file will
be lost. This signal will take effect at anytime. (USBTdRL | is
equivalent to the operating system signal SIGQUIT ; consult your
operating system references for more about this signal. Also, the
stty setting for ‘quit’ may be different from CTRL | . To see what
control character 'quit’is set to, do a "stty -a" command from the
shell. If the stty settings are different from CTRL |, then that
control sequence should be used.)

18

Chapter 3: Modes, Structure, and Operating System Connections
Editor Functional Modes

CTRLc This signal will terminate mmaturely the commands specified
previously and return you to the @onand mode. If you are
already in the Command mode, the signali®igd. It is also
ignored if you are already in either tREVISE*, INSERT*,
TABSET*, or RANGE* mode. CTRL c is equivalent to your
operating system signal SIGINT; consult your operating system
references for more about this signal.)

SIGHUP This signal is generated by a modem hangup and it causes the
editor to terminate any currentroonand inprocess. When this
happens, a "crash" recovery file is created which can be used t
re-create your current editssgon ("skpreserve" is invoked
automatically). (Consult your operating system references for
more about this signal.)

SIGKILL This signal cannot be intercepted or ignored. When it occurs, the
edit session is terminated immediately and no temporary files are
removed. However, recovery is possible in the same way as for a
“crashed" session (user needs to invoke "skpreserve"). (Consult
your operating system references for more about this signal.)

Editor Functional Modes

There are three functional modes to the Softkey Driven Editanrtand,
INSERT, andREVISE. Your edit sesion always will be in one of these three
modes. Each of these modes is covered in chapter 5, Edibtom@od Syntax.
The following paragraphs provide a brief description of the modes.

Command Mode Description

The Command mode is usedissue both edor conmands and shell

commands from the command line. This mode allows you to execute
commands, to build commands for execution, and to log commands to a file.
Comments can be added in the Command mode by preceding them with a "# "
(number sign). Cmmands and comments are entered on the command line
from the keyboard with up to 240 characters displayed on-screen as three
separate lines on standard terminals. The entire command line is accessed by

19

Chapter 3: Modes, Structure, and Operating System Connections
Editor Functional Modes

using the roll-up and roll-down keys. Thercent line in the text (source) file

is indicated bya > symbolin the left margin of the edit area. To fully utilize
command files, logging commands, and directory changes, User Interface
Software (also called "pmon") must be part of the system; see chapter 2.

You can enter the Command mode in several ways:

1. From your operating system shell, you can invoke the Softkey Driven
Editor (refer to chapter 2) and specify a file to be edited. This places you
on the command line, from which you either can invoke commands or
enter thdNSERT* or REVISE* mode to edit the file.

2. From theNSERT* or REVISE* mode, pressing either key the second
time will put your session in the Command mode (beforegsiag the key
the second time, STATUS line message reads "To leave, press
INSERT*/REVISE* key again").

3. From either théNSERT* or REVISE* mode, you can press any
command softkey and move tporarily to the Conmand mode. From
there you can execute a command, which when compleligétwrn you
to your current line of text (this is true except for end, which, of course,
takes you out of the edit session). However, once you are on rimaard
line from eitheNSERT* or REVISE* mode, if you now clear the
command line, you remain in the Command mode. (Command line is
cleared either by using the Backspace key or the "kill" character from your
operating system stty setting. If you cannot execute themand or if you
change your mind, it Wbe necessary to clear thernmand line before
you can re-enter eithékSERT* or REVISE* mode.)

The Command mode is exited by psing either théNSERT or REVISE
softkey. You also have the choice from the Command mode to exitdsierse
by pressingCTRL d simultaneously. This will display a message on the
command line reading "Do you really want to quit?" A "yes" ansviléexit

you to your operating system shell. A "no"answer leaves you on theand
line and the STATUS line reads "No changes lost, edit resumed".

INSERT Mode Description

TheINSERT* editor mode is used to enter new lines of text into the current
edit file, both for existing files and for files just being created. New lines are
identified bya > NEW symbol rather than by a line number, and the > NEW
line can be moved up and down in the file until either Return is pressed or the

20

Chapter 3: Modes, Structure, and Operating System Connections
Editor Functional Modes

INSERT* mode is exited. As each new line is created, by pressing R et
another > NEW line appears belowiit.

TheINSERT* mode is entered directly by invoking the Softkey Driven Editor
from your operating system shell with no filame specified. Another direct
way to enteiNSERT* mode is by pressing tHRSERT softkey from either of
the other editor modes. When you invoke the Softkey Driven Editor from
your operating shell with a fileame specified, it takes you to the Command
mode, from which you can press tINSERT softkey.

You can exit theNSERT* mode by pressing tHiREVISE softkey, to enter
that mode, or by pressing tiéSERT* softkey to move to the Command
mode. (Note, however, if you préREVISE from INSERT* and the file is
empty, a message appears reading 'ERROR: Unable toREWSE mode
since file is empty", and you are then left in the Command mode.)

Another way to exit thétNSERT* mode is to press simultaneou€iyRL d

keys which moves you to the command line and asks the question there "Do
you really want to quit?". A 'yes"responsil @xit you to your operating

system shell, while a "no" response sends you back ttNBERT* mode with

the STATUS line message "No changes lost, edit resumed".

You can move temporarily to the @mnand mode by pssing any of the

command softkeys available from tiNSERT* mode (except foend, which

will exit you from the sssion to your operating system shell). As that

command is completed, you are placed back inNIsERT* mode. (If you do

not execute a command after teomarily leavindNSERT* edit mode

--because of a syntax problem or because you changed your mind-- to re-enter
INSERT*, you first must clear the command line either with the Backspace

key or by pressing the "kill" key, as defined muy operating system stty

setting, and then pressillgSERT again.)

REVISE Mode Description

TheREVISE* editor mode is used to enter changes in the current edit file for
existing (saved or nonempty) files. The current line is indicated by the >
symbol in the left margin and the cursor is positioned at the current column
for text entry. You can move about in the file, making changes by typing over
text or by using the various keyboard functions to modify the file.

TheREVISE* mode is entered directly for a current edit file from either the
Command mode dNSERT* mode by pressing tiREVISE softkey. (If you
try to enterREVISE mode and youNSERT* file is empty --that is, has no

21

Chapter 3: Modes, Structure, and Operating System Connections
Recovery of Saved Files

lines/text in it-- a message appears reading "ERROR: Unable to enter
REVISE mode since file is empty", and you are left in the Command mode.)

You exit theREVISE* mode either by pressing tieSERT softkey to enter
that mode, or by pressing tREVISE* softkey to move to the Command
mode.

Another way to exit th&@EVISE* mode is to press simultaneou€yRL d

keys which moves you to the command line and asks the question there "Do
you really want to quit?". A '"yes"responsi exit to your operating system
shell, while a "no" response sends you back tadRBE¥ISE* mode with the
STATUS line message "No changes lost, edit resumed".

You can move temporarily to the @mnand mode by pssing any of the
command softkeys available from tREVISE* mode; if you then issue a
command, as that command is completed, you are placed backREWEBE*
mode. (As witHNSERT* mode, if you temporarily move to thernmand

line but do not execute a command, to re-enteiRIB¥ISE* edit mode, first

you must clear the command line either with the Backspace key or with the
“kill" character, as defined inoyir operating system stty setting, and then press
REVISE again.)

Recovery of Saved Files

If you have an operating system directory called $SHOME/.recover (a directory
off your user's SHOME directory), the Softkey Driven Editor will

automatically protect you from overwriting a file with thaveor end

command. When yoissue asaveor endcommand, the etbr checks to see if
that file already exists. Ifit exists, the editor next checks to see if you have a
$HOME/.recover directory, and, if so, moves the file about to be overwritten
into your SHOME/.recover directory. The operating systevn command

allows you to retrieve files from the $HOME/.recover directory; see operating
system fcvr" Command For Recovery in this chapter.

22

Chapter 3: Modes, Structure, and Operating System Connections
'purge” Command to Move Files

'burge" Command to Move Files

You can use the shell commapuarge to move files listed on the oamand
line into your user's SHOME/.recover directory. Ifthat directory does not
exist, then no purge is done. (For information about $SHOME/.recover
directory, see "Recovery Of Saved Files" in this chapter.) Ifafile is placed in
the $SHOME/.recover directory, it is renamed as a number and added to the
directoryfile. Also, if the SMAXREC count for the directory is exceeded, t
oldest file in the $HOME/.recover directory is deleted to make room for th
newest file. This command is invoked as:

purge filel [file2 . . . filen]

Note that any links to other files will be lost at this time. The user must
re-create these links if this file is to be recovered at some future time.

'revr* Command for Recovery

The shell commancttvr retrieves files from your user’s SHOME/.recover
directory. If more than one file has been purged with the sameafihenthe

one purged lastiWbe recovered first. You can use either absolute or relative
file names. Ifthe file name is relatigeot starting with a "/ "), the current
directoryis used to create an absolute path name. A search for that path name
is made in the $SHOME/.recover/directory file and if it is found, the sought file
is moved back to its original position. The $HOME/.recover/directory entry is
removed. You must use the complete file name because wild-card characters
will not be expandedasrectly by the shell. For examplegvr a*' would be
expanded using the files starting with "a" in the current directory, not by using
only those purged files that start with "a". The rcymasand is invoked as:

revr filel [file2 ... filen]
If a file is to be recovered to a directory other than the one it was purged from,

or if the file is to be recovered under a different name, the following command
may be used for each file to be recovered:

rcvr -f newname oldname

23

Chapter 3: Modes, Structure, and Operating System Connections
"dirrec” Command for Directory Listing

If multiple links to the original file exist, it may be necessary to remove the
original file and all files linked to it, move or recover the backup copyto the
original filename, and then relink to all other paths.

"dirrec” Command for Directory Listing

If you have a $HOME/.recover directory for use in protection against
overwriting files (see Recovery of Saved Files in this chapter), you can use the
shell commandiirrec to produce disting of that directory. This works much

like thell(1) shell command. Thiesting will appear in order from newest file

to oldest file. Note that an absolute path is given for each file, which must be
matched in order for a file to be recovered with ihwe command.

Recovery of 'Crashed" Edit Sessions

The ability to recover an editsgon lost due to a variety of possible causes,
usually referred to as a "crash", is always important to you as a user. Some
possible causes of such a "crash"include: g@bhslae or modem hang-up, a
system problem, a power failure, an accidental catastrophic signal which
cannot be recalled or canceled, or other unanticipated reasons. The Softkey
Driven Editor provides the procedures to allow recovery from a "crash". The
"skrecovel' command wl allow you to recover all, or nearly all, of asston

which "crashed", as well as the list ofuy sessions which have "crashed". This
recovery requires thasKpreserve be run prior to the use of thektecover'
command.

Using the skpreserve" Command is Required

Having the operating systerskpreserve' command invoked onoyr system

after you experience a "crash"is required if you expect to recover any files
which were being edited at the time. If a computer system is recovering from a
power failure or is being initializedsKpreserve will be executed

automatically (see System Administration Tasks in chapter 2). When
"skpreserve has been invoked, it will sen@dyr mail informing each user that

24

Note

Chapter 3: Modes, Structure, and Operating System Connections
Recovery of 'Crashed" Edit Sessions

a crashed edit session has been saved for them.sKieedver -d command
can then be used to get a list of fiemmes that represents these "crashed" edit
sessions.

Normally, to handle a catastrophic system failuskpteserve will be invoked
during the multi-tasking initialization. If a user has a "crash"due to a
phone/modem hang-usKpreserve' is invoked automatically for that user

only. For "crashes" due to some other reason, such as a SIGKILL signal, the
user may invokeskpreserve to affect only those temporary files owned by th
user. However, if theskpreservé command is executed while the user (or
someone else using the same login) is in an edit session, the user will get
mail message that there has been a "crash" for the file being edited, even
though that edit ssion itself has not "crashed".

"skrecover" Command File

If your edit sssion experiences a "crash” and you receive mail that a
recoverable file exists, thekrecover' command may be used to gdish of
“crashed" recoverable files, as well as to recover them. Options to the
"skrecovel’ command are:

skrecover[-d][-r][-u][-n FILEID][-f FILE]
[-t NUMBER][FILE]

where the following definitions apply:

-d This option MUST BE USED ALONE, with
none of the otherskrecover' options or file
names at the same time. Using tdeption
alone provides your own uskst of recoverable
files with their absolute path names; the date/time
of the "crash"; a unique file id for that "crashed"
session; and the name, if any, of the edit file at the
time of the "crash”. If the file had no name, the
listing uses "> > No fileame <<". The full
path name must be used when recovering a file.

-r This option may be used to cause a recovery file to
be removed. This is useful if the user has no
desire to recover the "crashed" edit session. If

25

Chapter 3: Modes, Structure, and Operating System Connections

Recovery of 'Crashed" Edit Sessions

-n FILEID

-f FILE

more than one file exists with the same name,
then the-n option should be used in conjunction
with this option to make sure the correct recovery
file is removed. A filename is required, unless an
unnamed edit ssion is to be removed. Note that
the edit session cannot be recovered once the
recover file is removed with this option.

This option will inform the $krecover command
that it is okay to overwrite an existing file, if there
isone. Ifyou do not use the option, and a file

with the same name as the recovery file already
exists, an error message is displayed and the
recover commandilnot work until you have

done one of the following: (1) enter theoption

if it is okay to overwrite; (2) delete, rename, or
move the existing file; or (3) use tHeoption to
rename the file being recovered. The reason this
decision must be made is that part of the recovery
process is to purge the file to your user
$HOME/.recover directory, if it exists, or to delete
the file (for information about SHOME/.recover
directory, see that heading in this chapter). When
this purge, delete, or rame is done, the recovery
of the "crashed" edit session continues.

This option identifies a specific "crashed" edit
session with a unique file id number, obtained
only by using thed option. This would be used if
more than one "crashed" session exists with the
same file name in it. In that case, if the file id is
not used, then the "crashed" session listed first
with the-d option will be recovered first.

This option allows you to change the name under
which the recovered file is to be saved. You must
use this option if the file being recovered did not
have a name when the "crash"wioed (the
"skrecover -d'command wl inform you of the

valid names for recoverable files). If the file name

26

Chapter 3: Modes, Structure, and Operating System Connections
Recovery of 'Crashed" Edit Sessions

used for this option does not start with a "/ ", it is
taken to be relative to your current directory.

-t NUMBER This option lets you choose to have tabconversion
of the file being recovered. The default without
this option is to keep all the white space in the file
as spaces, that is, no tabconversion would occur.
If you use this option, enter a number from 1
through239. For more information about
tabconversion, see tlemd or savecommand
syntaxin chapter 5.

FILE This option refers to the name of the recoverable
file. If this file is relative (does not start with "/ "),
the current directory is used to build an absolute
path name; otherwise, it uses the absolute path.
This file name is then compared with file names
from the directory generated by thekpreserve
command after the "crash”, and a file owned by the
user will be recovered. Ifthe file did not have a
name at the time of the "crash", then this file
name would not be used. In other words, a
missing file ame matches amnnamed edit
session.

27

Installation Notice

Getting Started

Chapter 4: Getting Started

Chapter Overview

Note

Chapter Overview

This chapter provides information to help you get started using the Softkey
Driven Editor:

» A description of the typical keyboard used with the Editor.

» A description of the display format and information available during an
edit session.

» Basicinformation to get you started using the Softkey Driven Editor to
create, modify, end, and save both edit and command files.

» Explanations of editing technigues for new and existing files.

» Descriptions of how to enter, edit, and use command files.

Chapter 2 explains ways for you to invoke the Softkey Driven Editor.

Understanding the Keyboard and Display

When you use the Softkey Driven Editor, your input from the keyboard and
the output you see on the display will vary somewhat, according to the
terminal keyboard and CRT display. Explanations of the keyboard functions
in this manual and descriptions of the data and messages displayed will be
based on a typical data terminal. Differences in keyboard labels are noted
where applicable, and the only major differences in what you see on a display
unit will be the number of lines or columns which are on-screen at a time. The
information which follows about the keyboard and display will be helpful in
familiarizing yourself with the features and operation of the Editor.

30

Chapter 4: Getting Started
Understanding the Keyboard and Display

Keyboard Layout and Labels

Knowing your keyboard layout and key labeli nelp you make decisions
about entering commands and text quickly and accurately.

As an example, the standard keyboard used with the HP 9000 Series 300/400
and Series 700 is shown in the following figure. The descriptions of Keyboard
Input And Functions which follow are based on the labels and keystrokes used
with that "standard" keyboard. More information about the standard keyboard
is located in thédP9000 Application Execution Environment Useravialand

the HP 9000 Peripheral Installation Installation Guid&or more information

about use of the converted HP 64000 development station keyboard, see the
converted development station manuals.

s N
Reset) Stop 1 f2 3 f4 Menu | User =} f6 7 8 Clear |f Clear
Break [Systel fine ||display

~ ! @ # $ % . & * () ‘ + ‘ Back Insert De\e(e * / +
) 1 2 3 4 5 7 8 9 0 space line J{line
Tab w E T v { | Insert) Delete 7 Enter
=1 r |1 \ char char
OO0 e (O
DEL)(shift z X [§ v N M N ? Shift) [Select {Next 1 2 3 =
ESC | Tab
: / -
Print Extend Exten:
Enter char char
.

/

Standard Keyboard

31

Chapter 4: Getting Started
Understanding the Keyboard and Display

Keyboard Input and Functions

To enter commands or text into files with the Softkey Drivert@&@dinput will
come from three keyboard sources: (1) standard alphanumeric character
keys, such as: abcl123; (2) function keys which allow modification of the text
being entered; and (3) the special set of eight double-size keys, commonly
called softkeys because the labels which appear on the display to identify their
functions are not fixed, but rather are changed by software programs to give a
variety of commands. The eight keys acgmally labeled f1 f2 f3 4 5 6 {7

f8 on the keyboard and provide the power of quick, easy entry of both
operating system and editormmands. The following descriptiondieover
primarily the keyboard functions which provide either a céjpgbo use

standard keyboard keystrokes in a specialized way or which modify the
standard (expected) use of the keyboard. The way in which you can use the
softkeys to provide very efficient entry and editing of text files andrmand

files is covered in chapter 5, Editor @mand Syntax.

Here are descriptions of keyboard functions which have special meaning when
you use the Softkey Driven Editor (they are divided into two groups, one-key
functions and two-key functions):

ONE-KEY FUNCTIONS (require pressing only one key)

CURSOR There are two differences in howthese keys
KEYS operate, one which you might expect and one you
might not. Here is how these operate:

Left-arrow, Right-arrow. As you would expect,
these keys move the cursor left and right on either
the command line (80 characters wide) or in the
text file area (240 columns wide). However, since
only 72 columns are displayed on the typical
terminal, if you move the cursor beyond that on
the right, your text Wl begin to shift to the left
whether or not you actually enter characters
beyond column 72. To return to the left-hand
margin of the text, you can press Return, or use
the < or Shift Tab (backtab). On the command
line, the cursor moves left or right normally,
shifting to the previous or next line as you reach
the left or right margins.

32

Insert
Char

Delete
Char

CLEARTO
END OF
LINE

Chapter 4: Getting Started
Understanding the Keyboard and Display

Up-arrow, Down-arrow. As you would expect,
these keys move the cursor up or down to change
your current line of text. However, in the
Command mode when the command line exceeds
80 characters, the Up and Down Arrows operate
differently. When the command line is under 80
characters, these keys move the current line,
indicated on-screen by >, up and down in the file.
When the command line exceeds 80 characters,
these keys move the cursor between lines of the
command line until one of itolindaries is
reached, at which time they operate normally
again. (This is different from HP 64000 &ati;
appendix C lists differences.)

(insert character) This inserts characters at the
cursor position and pushes text (including the
character under the cursor) to the right in all
modes. The "I"enunciator appears at the right of
the STATUS line when Insert Char is enabled.
All special keys automatically turn Insert Char off.
In the Softkey Driven Editor, there is no
"placeholder" symbol (underlined caret) as there
is on the HP 64000 LDS (see appendix C for a
summary of differences).

(delete character) This will delete the character
under the cursor, which shifts all characters
following the cursor on the line to the left by one
character. In the Insert Char mode, the Delete
Char keyturns the Insert Char off.

This function uses the Clear Line keyin a
different way, namely, to clear text from the
current cursor position to the end of the line in all
modes.

33

Chapter 4: Getting Started
Understanding the Keyboard and Display

Delete
Line

Insert
Line

Tab

Next
Prev

(delete line key) This function deletes the current
text line and places the cursor on the next line (if
there isone). In theNSERT*, TAB*, or

RANGE* modes, Delete Line key only clears the
line.

(insert line key) This will insert a new line
following the current line and position the cursor
at the beginning of the text line. In ti¢SERT*
mode, Insert Line key acts like a Return would. It
does not function iTAB* or RANGE* mode.

This key moves the cursor to the right from the
current location to the next tabstop in the
INSERT* andREVISE* modes. In the Command
mode, Tab produces a much different result: if
you enter a partial command and press Tab, the
editor wll attempt to complete the comand

entry. If the entry forms the beginning of a unique
command keyword, then that entire command
keyword is placed on the command line. Ifitis
not a unigue command keyword, variousgible
keywords are displayed on the STATUS line for
your selection provided that these keywords
match the text on the command thus far. Also, if
all of the possible keywords share more
characters, then those characters will also be
placed on the command line until the keywords
diverge. If Insert Char is on when Tab is pressed,
Insert Char is turned off.

(next page, previous page) These keys remove the
current page displayed and display the next or the
previous "page" of lines, respectively. On standard
terminals, the Softkey Driven Editor displays 19
lines per text page.

34

Home Up

Chapter 4: Getting Started
Understanding the Keyboard and Display

(up-left arrow) In thREVISE* mode, this moves
the current line to the first line in the file, with the
cursor in column 1. In theNSERT*, TAB*, or
RANGE* mode, the current line becomes the line
just before all other lines in the file, with the
cursor in column 1. In the Command mode,
"home up" moves the current line to the START
line; the cursor remains on the command line.

TWO-KEY FUNCTIONS (require pressing two keys)

Home Down

Backtab

Clear
Line

(Shift up-left arrow) In thREVISE* mode, this
moves the current line to the last line in the file,
with the cursor in column 1. In tHRSERT*,
TAB*, or RANGE* mode, the current line will
follow all other lines in the file, with the cursor in
column 1. In the Command mode, "home down"
moves the current line to the last line of the file,
or to the START line if the file is empty; the
cursor remains on the command line.

(usually Shift Tab keys) In tiéSERT* or

REVISE mode, this moves the cursor to the left
from its present location to the previous tabstop.
In the Command mode, Shift Tab moves the
cursor to the start of the previous keyword (shell
command or edor softkey entry). This can save
you time when you need to make changes on the
command line.

This uses the "kill* character fronoyr operating
system stty setting (typically TRL u) to clear the
current line, REGARDLESS OF WHETHER

OR NOT THE KEYBOARD HAS A CLEAR

LINE key. (See "Clear To End Of Line"under
One-Key Functions earlier in this chapter, which
explains that the Clear Line key clears FROM the
cursor position to the END of the line and NOT
necessarily the entire line.)

35

Chapter 4: Getting Started
Understanding the Keyboard and Display

Recall > >

Recall < <

Exit
Editor

Redraw
Display

Control
Char-
acters

This use€TRLr to recall previous commands
from the newest to the oldest (in the buffer), and
places the recalled command on the command
line.

This use€TRL b to recall previous commands
from the oldest to the newest (in the buffer), and
places the recalled command on the command
line.

PressindCTRL d will allow you to exit a sssion
without saving any text or comands. Pr&sing

CTRL d from any editor mode refers you to the
guestion on the command line: "Do you really
want to quit?". If you answer "yes" and press
Return, you ¥ exit the Softkey Driven Edor to
your operating system shell (current file contents
are NOT saved). Ifyou answer "no", the message
“No changes lost, edit resumed" appears and your
session continues.

UsingCTRL | (lower-case L) will refresh the
on-screen display from currememory in case
the display becomes scrambled ("garbage") from
data transmissioproblems.

CTRL v can be used to enter control characters
into the editor. A control character is entered by
first pressingCTRL v, followed by the control
character itself. For example, to enter the control
charactelCTRL | (lower-case L) into the editor,
you would pres€TRL v, and therCTRL |
(lower-case L), entered by pressing the CTRL key
and | (lower-case L) at the same time. A control
character is displayed as a single ".". The
WHATCHAR softkey is available in thREVISE*
andINSERT* modes to determine whethera "."
in text is really a control character or a period.
SeeWHATCHAR syntaxin chapter 5 for more
information.

36

Chapter 4: Getting Started
Understanding the Keyboard and Display

Display Format Description

Displays on your terminal screerllwprovide you with a good picture of what

is happening in real-time with your editsseon. There are four sections in the
display: (1) softkeylabel line, (2) STATUS line, (3) text entry area, and (4)
command line. Each of these sectipnavides useful information about the
session, and these sections are described in the following paragraphs. Refer to
the following figure for all of the descriptions.

TEXT AREA

Displays 72 columns onh standard terminal
(May expand depending on CRT; moximum = 240)

Y N

Cursor Location
(Not present in
Command mode)

Legging Tommands
Command
insert character
TEXT AREA | Command
Displays ;.Ja.rsmg
19 lines on | Ic.‘:h]grsaecrt[er
standard terminal
{May expand ‘__/ = INSERT
depending on CRT) R = REVISE
t = TABSET
r = RANGE

STATUS: (messoges oppear here) Column' seseees

- Command Line
- Displays 3 lines of 8@ characters each

|
R
t
3
.

Softkey Label
" Line

NOTE: Softkey label line, command lines, and status
line optlionally oppeor ovbove data areo.

CRT Display Format - Softkey Driven Editor

37

Chapter 4: Getting Started
Understanding the Keyboard and Display

Softkey Label Line

These labels correspond to the special set of eight keys on the top row of the
terminal keyboard. There are four levels of softkey labels, each accessed in
turn with the--ETC-- softkey at the right end on each level. The labels are
changed to display commands and variables which are entereddsmprihe
corresponding softkey, and other keys as required, on the terminal. Softkey,
command, and STATUS lines can be put at the top of the displayskwth

option or with SKTOP shell variable from the operating system shell (see
chapter 2). For more information, refer to Editor Softkey Levels in chapter 3
and Editor Conmand Syntax in chapter 5.

Status Line

The STATUS line provides you with messages related to your exipse
including entry of commands. It displays a message almutsgssion status
(such as "STATUS: Editing/users/norm/notes"); softkey prompts (such as
"ENTER: An operating system file name"); andox messages (such as
"ERROR: syntaxerror"). Editor status messages ammarized in appendix

A. STATUS, command, and softkey lines can be put at the top of the display
with sk -voption or with SKTOP shell variable from the operating system
shell (see chapter 2 for more information).

Other important information also appears on the STATUS line. A "Column”
label indicates the column number where the cursor is currently located in the
INSERT* or REVISE* mode (column number can be turned off with the
colm_numcommand).

At the right end of the STATUS line is a series of eight indicator dot positions
related to the editor modes. As you change to the various editor modes, you
will see enunciator letters as reminders to you of the current status of the
editor. The letters appear onlyin the 1st, 2nd, 4th, 6th, and 8th positions of
the dots. Refer to the previous figure for the following explanation of each
letter.

For the Command mode:

Letter "L"in the left-hand dot position shows that commands are being
logged to a file.

Letter "I"in second-from-left dot position shows Insert Char is on.

38

Chapter 4: Getting Started
Understanding the Keyboard and Display

Letter "R"in fourth-from-left dot position shows that entries on the
command line are syntacticallgrmect and could be executed at that point
by pressing the Ratn key.

For the other mode$NSERT*, REVISE*, TABSET*, andRANGE*):

Letter "i"in sixth-from-left dot position shows Insert Char is on.

Letter "I"in right-hand dot position shows session is inINM®ERT*
mode.

Letter "R"in right-hand dot position shows session is inRE¥ISE*
mode.

Letter "t"in right-hand dot position shows session is iNTTABSET*
mode.

Letter "r"in right-hand dot position shows session is inRIAAIGE*
mode.

Text Area

The displayed text area consists of 19 lines and 72 columns on a typical
terminal. The area displayed may be expanded on bit-mapped displays of the
HP 9000 Series 300/400 and Series 700 computepwi the window manager
environment. The first eight columns on-screen consist of blanks, a line
number (as applicable), and a line label as follows:

> Designates the current line in the file being edited.

Line # Shown as a decimal number to indicate the sequence of lines in
your file or its current sequence if a renumbemorand has been
given.

START Indicates the beginning of the text file; precedes first line of text.

NEW Designates lines added during the current editisa which have
not been renumbered by the renumber command.

END Indicates the end of the current text file.

TAB Line is displayed when the tabset command is executed. Shows T
where current tabstops are set.

39

Chapter 4: Getting Started
Creating, Saving, Ending, and Modifying Files

RANGE Whenrangeis executed, a line of R's (RRR...RR) indicates the
current range of columns.

Command Line

The command line is accesséddugh the Command mode and is used to
execute Softkey Driven Editor pimands and shell commands. The command
line shows only three lines on-screen at one time, although you can continue
to enter commands far beyond those three lines of 80 columns each.
Individual commands are separated by a semicolon (;), and comments are
entered by using a number sign (#) preceding each comment. Command,
STATUS, and softkey lines can be put at the top of the displayskith

option or with SKTOP shell variable from the operating system shell. Also
refer to Editor Functional Modes in chapter 3 for more information about use
of the command line. The Command mode is explained in chapter 5,
including syntax entries fdNSERT* andREVISE* modes which temporarily
access the command line when a command softkey is pressed.

Creating, Saving, Ending, and Modifying Files

No matter whether you are creating a new file, editing an existing file, saving
either new or old files, or ending a file, you will be given various options on
softkeys or will be asked to answer questions aimed at avgidotgems. If

you will first study and learn the edr functional modes covered in chapter 3,
understand the keyboard and display in this chapter, and become familiar with
the editor coomand and variable syntax descriptions in chaptes, yery

first edit session on the Softkey Driven Editall e both a continuing

learning process and a success.

The following paragraphs describe some of the basic procedures and steps you
will need to follow or observe as you create, save, end, and modify files using
the Softkey Driven Editor. Because text ongoand file entry is an individual
activity tailored to your needs, with frequent options and branches,

step-by-step procedures are nosgible to detail. The following are

reminders and very general procedures for creating, saving, ending, and editing.

40

Chapter 4: Getting Started
Creating, Saving, Ending, and Modifying Files

Creating a New File

When you enter the editor from the operating system shell and do not have a
file name, you are placed in ti¢SERT* mode with an empty file, on a NEW
line. The edit cursor is at the start of the line. Your first keystroked character
will appear on the display and you can continue entering up to 240 characters
on that line. Each time you press Return, another NEW text line appears.
You may wish to do some formatting for your text entry wétlbsetand

autotab, and decide whether or not to display column numbers (a
convenience, but, if on, it could affect data transfer rates).

If you wish to execute an editormanand duringgur entry of the new file,
choose the anmand(s) from the softkeys available and press the softkey(s).
You will exit temporarily fromINSERT* mode to the Command mode, wher
the command keyword appears. Complete the command entry, presa,Re
and the command is executed (if syntax was okay) and you are put back in
INSERT* mode, where your text entry continues. If you also selected the
commandog (log_commandsdn, the command which was executed is
entered into the log file you designated. The executed commands can be
recalled for use again wWitBTRL r (new-to-old) orCTRL b (old-to-new).

You are now ready to save or to end your edisiea.

Saving the File

At anytime during entry of the file, you can choose to save the current text file
by pressing the softkey labeledveand giving it a file name. Thisilhplace a
copy of the file on your system disk, and your edéisgen continues.

As part of saving the file, you have the choice tdato conv(tabconvert) or

not. If you wish to save disk space or if you are editing a "make" file, then you
will want to use the tabconvert option. If you need help on this, see syntaxfor
savein chapter 5.

When you have completed entry into the file, it can be preserved wignthe
command (a file name must be given in order for the file to be saved).

Ending the Edit Session

When you have finished entering text or commands, you can pressdhe
softkey. To keep the file just entered, it must have a file name.

41

Chapter 4: Getting Started
Entering and Editing Command Files

As part of ending the session, you have the choice tald@onv(tabconvert)

or not. If you wish to save disk space or if you are editing a "'make" file, then
you will want to use the tabconvert option. If you need help on this, see syntax
for end in chapter 5.

After executingend, the edit session ends and you return to the shell.

Changing an
Existing File

To make changes in an existing file, you can access it from the operating
system shell or from the editor. In either case, you can enter changes by using
commands and the keyboard functions defined earlier in this chapter.

From the operating system shell, you would invoke the editor and the file by
entering the commandK’, with any options you choose, followed by the
name of the file. From the @édr command line, you entexdit, followed by

the name of the file, and press Ret. From the command line, you can
execute commands or use INSERT or REVISE mode. When changes are
completed, yowendthe file.

Note

Entering and Editing Command Files

Another of the useful features of the Softkey Driven Editor msroand files
and the logging of commands during an edésgen. Command files, which are
more fully described in the User’s Guide, allow you to create a file of
commands and invoke this file as if you had just entered them. Anotligy fac
of command files is that you can use parameter substitution to make a
command file meet more general applications.

You must have installed User Interface Software (also referred to as "pmon")
in order to have full use of command files, logging commands, and changing
directories. See "Installing Bdir Software On Your Operating System"in
chapter 2 for information about where the User Interface Software is available.

42

Chapter 4: Getting Started
Entering and Editing Command Files

There are two approaches you can take toward creatmmaad files. One
approach is to use theg (log_commands) command ttose canmands

executed during an edit session in a file. This log file then can be edited and
modified as needed to make it into a command file. Some changes you might
make are: adding comments to the command file (by prefacing the comments
with "#"); and adding parameters whiclihmake the conmand file more

generally useful. To add parameters, a PARM line must be inserted at the start
of the command file with Bst of pamameters to be used. Also, parameters

must be inserted into the command file as you wish to use them.

The alternative approach to making awoand file is to enter the commands
as text during an edit session. The resulting file can be saved and executed
later as a command file.

When you use either approach, some key points shoulgnbembered:

1. Enter the entire command, not just the abbreviation on the softkey. A
commands must be syntacticaloreect. An advantage of logging
commands is that they must be syntacticallyect in order to be logged.

2. Onlycommands which are executed on the command line are logged. Text
entered or modified in thiNSERT* or REVISE* mode, as well as
keystrokes, such as keyboard cursor ement and delete linejilNOT
be logged.

3. Some control characters cannot be generated using the keyboard. These
control characters areCTRL s andCTRL q (used for terminal/computer
handshakes); andTRL ¢ andCTRL | (both signals). The only way these
characters can be created is to use their octal value as paeptdae
command so the character is inserted into the text. An example of
creating a&CTRL ¢ character in a file might be:

replace "aword" with "aword\003"

4. Other control characters can be created on the command line by using the
CTRL v sequence before the control character itself. This will create a " . "
on the command line which caot be differentiated from a period (if you
edit a command file, you can use WWBIATCHAR softkeyto find the
character and its numerical equivalent). An alternative way is to use the
octal equivalent for any character ifired or replacecommand, as in the

preceding example.

43

Chapter 4: Getting Started
Entering and Editing Command Files

5. Some strings in command filedlmeed to delimit quote characters
within the string. Ifthe quote characters around the string are the caret
(*), then any double or single quote characters within the string should
be delimited with a backslash. It is not necessary to delimit quotes if the
entire string is defined with single or double quote characters. Not
delimiting the quote characters in a caret-quoted string can cause
following lines to be concatenated to the line containing the string, which
will probably result in syntax errors when theneoand file is executed.
An example of correctly-delimited oomands might be:

replace © hello® with ~ Check the \"in this string®
insert This is another " character without delimiter’

44

Installation Notice

Editor Command Syntax

Chapter 5: Editor Command Syntax

Chapter Overview

Chapter Overview

This chapter provides the following information:

» A description of system features which allow easier entry of commands.
A summary of edbr conmands.

» Definitions of conventions used in the syntax diagrams.

* Functional descriptions, examples, and parameters for syntax of all editor
commands.

Easier Entry of Commands

Several features have been designed into the Softkey Driven Editor which
make it easy to use and quite compatible with your operating system. These
features are listed and described in the following:

» Softkeys. Softkeys, with labels displayed optionally either at the top or the
bottom of the screen, are used to enter nearly all commands. These
defined softkeys provide fast wonand entry, and minimizer@rs.

e Command Completion. You need to type only the first character(s) of a
command keyword feugh to uniquely identify the keyword), and press
the Tab key. The system will then complete the keyword for you.

» Command Line Recall. Commands may be recalled from a buffer by
pressingCTRLr (from newest to oldest command)@FRL b (from
oldest to newest command).

» Command Line Erase. Allows corrections by erasing the current
command line with the k" character from gur operating system stty
setting, then entering the correchumand.

* Multiple Commands On One Line. You can enter more than one
command on the same command line by separating the commands with a
semicolon (;).

46

Chapter 5: Editor Command Syntax
Command and Variable Summary

» Change Directory. You can change your operating system directory while
in the Softkey Driven Editor by using the cdhmmand (hidden; not on a

softkey).

» Operating System Filters and Pipes.You can specify operating system
filters and pipes as the destination for information withlistecommand.

See the description @it command in this chapter for ddsa

Command and Variable Summary

Editor caonmands and the variables used with the commands are summarized
in the following table. The table also identifies those commands and variables

which are "hidden", that is, accessed by typing them in from the keyboard.

Commands and Variables Summary

COMMANDS
autotab log_commands
cd (change directory) * merge
column_numbers range
copy renumber
delete repeat
edit replace

47

Chapter 5: Editor Command Syntax
Command and Variable Summary

Commands and Variables Summary (Cont'd)

COMMANDS
end retrieve
extract save
find split
help tabset
insert wait*
join while
LINE+ - 1*
list Fr=
VARIABLES
ICMD! LINE #
CMDFILE* PARMS*
COLUMN POINT
COUNT SPACES
DIR STRING
FILE # TIMES
LIMIT TIME*
LINE+ - WHATCHAR
* Indicates a hidden command or variable; must be entered from keyboard

48

Chapter 5: Editor Command Syntax
Syntax Conventions

Syntax Conventions

The conventions used in the command and variable syntax diagrams in this
chapter are as follows:

This symbol indicates a command keyword entered bysurg a softkey. The
keyword is shown as it appears on the command line and may not be the same
as the softkey label.

This symbol contains either prompts indicating thatpagters must be
entered from the keyboard or else it references additional syntax diagrams.
Softkey prompts are enclosed by the "< "and "> " delimiter symbols and are
shown exactly as they appear on the softkey label.

References to additional syntax diagrams may be shown in uppercase
characters with no delimiter symbols.

A circle denotes operators and delimiters used in expressions and comm
lines.

Whenever keywords entered from softkeys appear in text or examples, th
shown in boldface italics, for examptmpy. Command parameters which are
entered from the keyboard are shown in standard type.

49

Chapter 5: Editor Command Syntax
Introduction to Softkey Driven Editor Syntax

Introduction to Softkey Driven Editor Syntax

Using the Softkey Driven Editor involves a combination of entry from the
keyboard of your terminal and entry from the softkeys which have different
functions as their labels change. It is the syntax (that is, the structure and
relationship) of the keyboard and softkey entries which enables your most
efficient use of the editor.

Command Line Entries

To help understand the syntaxfor the first entry you make on the command
line, you should become fahar with the diagrams for "Cmmand",

"Conditional Command", and "Loner Command" which follow the next
paragraph. Note especially that only the Conditional Commands may be used
to construct multiple ammands.

Syntax for Variables and Commands

Descriptions and syntax diagrams (where applicable) for commands and
variables are given separately, in two groups, with each group given in
alphabetical order (see grolists in the previous table). Thesegpings are
shown after the syntax descriptions for Conditional and Loner Commands.
For each group, the syntax heading appears as a major heading preceding the
information associated with it.

50

Chapter 5: Editor Command Syntax
command

Syntax

Function

Default Value

Examples

Parameters

Description

command

COMMAND
7—{ CONDITIONAL COMMAND ’—T
e
N

= LONER COMMAND
INSERT

The Command mode allows you to enter either loner (single) or condition
commands on the command line, which then may be: (1) invoked from th
editor; (2) logged to a lodfile for subsequent use; or (3) edited for desired
changes.

Waiting for softkey, keystroke, or Return.

Refer to the syntax diagrams for individual commands.

Refer to the syntax diagrams for individual commands.

Editor canmands or shell comman{sreceded by "" exclamation point) may
be executed from the command line. Also, comments may be entered on the
command line by preceding them with a ‘thimber sign). From the

command line, you can enter either tNSERT or REVISE mode by pressing
the corresponding softkey. For more information on the conditional and
loner commands, refer to the two syntax diagrams following this one. For
information about temporarily entering the@mand mode from either
INSERT* or REVISE*, refer to the command syntax for each mode and to the
"Editor Functional Modes" heading in chapter 3.

51

Chapter 5: Editor Command Syntax

command

HP 64000-U X can expand shell variables on thmmmand line and also in
command files. Onlythose shell variables beginning with “$" followed by an
identifier will be sipported. An identifier is a sequence of letters, digits, or
underscores beginning with a letter or underscore. The identifier may be
enclosed by braces, "{}", or entered directly following the "$" symbol. Braces
are required when the identifier is followed by a letter, digit, or underscore
that is not to be interpreted as part of iésne. Expansion of shell variables
involves the replacement of the shell variable by the definition of that shell
variable. If the shell variable is not defined within the user’s environment, the
shell variable will be replaced by a null string.

For example, assume a directory named /users/softkeys exists, and the shell
variable "S" is used to represent the word "soft". By specifying the directory as
lusers/${S}keys, the correct result is obtained. However, if you attempt to
specify the directory as /users/$Skeys, HP 64000-U X looks for the value of the
variable "Skeys". This is not the result we expected. You will not get the
intended result unless "Skeys" is already defined to be "softkeys". To include "$"
as part of a command, you must put a backslash (Wit bf the "$".

Otherwise, the system will try to expand the shell variable which is designated
by "$"and any text that follows it.

You can examine the current values of all shell variables defined in your
environment with the UNIX command "env".

52

Chapter 5: Editor Command Syntax
conditional command

Syntax

Function

conditional command

conditional command

—>< find D—/
k—(copy)J
—)C split)—/
—)Crenumber)—/
—>< tobset)—/
k—»Coutotob)—/
—>< insert)—J

A conditional command is either invoked from thetedbr used to build a
multiple command for execution within a while command. Conditional
commands retrn a truth value (true or false) aswsunarized in appendix B.

53

Chapter 5: Editor Command Syntax

conditional command
Default Value,
Examples, and

Parameters

Refer to the syntax diagrams for individual commands.

54

Chapter 5: Editor Command Syntax
loner command

loner command

Syntax
loner command
end
> save F—
M eait =
N R
N
\—)»(\ogicommomds v—/
>{ cd -~
\—>< wait
> help]
N> <CMDFILES>
Function Loner commands are invoked as single commands and may not be used in

constructing multiple ammands for execution within a while command.
Loner commands do not ret a truth value.

Default Value,
Examples, and

Parameters Refer to the syntax diagrams for individual commands.

55

Chapter 5: Editor Command Syntax
<ICMD!>

<ICMD!>

Syntax Example(s) list <!CMD!>

Function <ICMD!> is a prompting softkey which appears with tisecommand.
When it appears, you may enter a shell command, preceded and followed by !,
which, if then executed, would list file text to that shelhenand. This
command may be any type ofjut. The user should be sure that the
command entered imorect. Note that this explanation applies only to the
softkey labeled& !CMD!> and not to the invoking of a shell command by use
of the exclamation point "!", which is covered in the command syntax section.

Default Value Prompts for entry of a shell command, preceded and followed by "!".

Example(s) list!col-x| Ipr-q!

56

Chapter 5: Editor Command Syntax

CMDFILE
CMDFILE
Syntax Example(s) CMDFILE (command file)
Function CMDFILE stands for "command file", and it represents a hidden command

which is entered from the keyboard. You can type on the command line the
name of a command fileqarce file) which contains a series of valid shell
commands. Note that additional software is required in order to use
command files with the Softkey Driven Edii; for information on this, see
cmdfile command syntax Description in this chapter or the "livsgeE ditor
Software Your Operating System" heading in chapter 2. For more
information on CMDFILE variable, see Description under this same syntax
heading.

Default Value Displays prompting softkey PARMS> (PARAMETERS) when command
file needs parameters.

Example(s) GETSAMP
FIRSTTEST PARM1 PARM2 PARM3

Description Command files can be initiated from any of the development@mvient
features, including the Editor. @onand files do nottep procesing until
either: the end of the command file; the last feature is terminated; a syntax
error occurs; or a signal (such as SIGINT) interrupts tinencand file. You
can invoke a command file from within another command file, but the
original command file W wait for the second ammand file to be completed
before continuing. (This is different from the previous editor for the HP
64000 Logic Development System. Refer to appendix C for a description of
these differences.) Command files may not be used tdramhs complex
command during an edit sson.

57

Chapter 5: Editor Command Syntax

< COLUMN>

Syntax Example(s)

Function

Default Value

Example(s)

< COLUMN>

split at column < COLUMN>
range < COLUMN> thru < COLUMN>

< COLUMN> is a prompting variable for entry of any column number in the
edit file related to a command to be executed. You can enter any positive
integer from 1 throug@40.

none

split at column 5
range 5thru 15

58

Chapter 5: Editor Command Syntax

< COUNT>
< COUNT>
Syntax Example(s) while count < COUNT>
Function < COUNT> is a prompting variable for a repetition count. It isused as a loop

counter with the while cnmand. You can enter any positive integer; if no
value is used, defaults to 1.

Default Value If no value is used, defaults to 1.

Example(s) while count 37 do delete doend
while count do insert"hello" doend

59

Chapter 5: Editor Command Syntax
<DIR>

<DIR>

Syntax Example(s) cd < DIR>
(Note that the shell command cd for "change directory"is a hidden command,
and must be entered from the keyboard. When cd is enteBd&> appears
on a softkey).

Function < DIR> is a prompting softkey for a new directogme. It allows you to
specify a different directory and use "cd"to move the edit session from one
directory to another. The DIR> softkey appears only when the hidden
command "cd"is entered from the keyboared will NOT change the
directory of the edit session, that is, where the current textifllbevsaved.

Default Value Defaults to user's HOME directory.

Example(s) cd newdir

60

Chapter 5: Editor Command Syntax

< FILE>
<FILE>
Syntax Example(s) list < FILE> help
Function The variable< FILE> is a prompting softkey for entry of a filame. Simple

file names are esdly parsed by the scanner of the Softkey Drivent@di
However, complex filenames, such as ones which include a hyphen (-) or
certain other characters, may require use of quotation marks or an escape
sequence to avoid a syntax error. For more information, see Description
under this same syntax heading.

Default Value Prompts for file name.
Example(s) edit oldfile into newfile
Description Since some complex file names are not readily parsed by ttor ,gdiu may

have to either enclose the file name in quotes (as a string, with no spaces) or
use the backslash (\) escape character. Examples of using an escape character
would be \3file (to escape the 3) and a\-file (to escape the -). One wayto
determine if quotes or an escape may be needed is to enter the command and
see if a syntax error occurs. Another way to determine this is to watch the "R"
enunciator (at the right-hand end of the STATUS line, fourth dot position

from the left); if that "R"is present, the editor i8l§tarsing and the< FILE>

should be accepted. Fileames may be either absolute or relative. An

absolute file name begins with a "slash" character, "/", and this indicates that
the path starts at the root directory. A relative fégene does not begin with a
"I"and the path is relative to the current directory.

As noted earlier, shell variables may be used as part of a filename if the shell
variable has been defined and exported before the edibse To use the

shell variable, just enter the shell variable as part of the filename. The 7/’
delimiter will terminate the variableame.

61

Chapter 5: Editor Command Syntax

< FILE>

If other text immediately follows the shell variable, then the variable name can
be enclosed in braces, {}. Onlythe variable naniktiven be removed and

the following text will be appended to the re@atent text. Also, since the '$’

is used to signal the start of a shell variable name, the user may babtet

finding filenames that include such a character within it. Such characters must
be escaped with a backslash. Otherwise, the editidrytto search for a shell
variable with that name amtobably replace theame with a null string.

62

Chapter 5: Editor Command Syntax

LIMIT

LIMIT

Syntax

Function The variable LIMIT represents thleru or until options as used with the
variable POINT, or as used with th# option. These options are used to
define a line range over which a command is to operate. For more
information, see Description under this same syntax heading.

Default Value none

Example(s) thru start
until +5
thru “function”

Description The range for LIMIT extends up or down from the current line, depending on

the options used. The keywoaltdu is used to include the line indicated in the
LIMIT. The keyworduntil, however, will include up to, but not including, the
line indicated in the LIMIT. Also, if the indicated LIMIT exceeds the file
boundaries, then either the start or the end of the filéevused for that
boundary, even if the keywordtil is used. The keyworall includes the

entire file as the range. Refer to the variable POINT for more information
about variables such &sSTRING> and< LINE+ -> , which are used to
complete a LIMIT statement.

63

Chapter 5: Editor Command Syntax

< LINE+ ->

Syntax Example(s)

Function

Default Value

Example(s)

Description

<LINE+ ->

find < STRING> thru < LINE+ ->

< LINE+ -> variable is a prompting softkey which allows you to define a
POINT for use with LIMIT in a command being executed relative to the
current line. (< LINE+ -> also appears as ancoandprompt softkey,

allowing you to move to desired lines in a file being edited; refer to syntax for
commands.) For more information, see Description under this same syntax
heading.

none

find "hello"thru + 35
replace’A’ with B’ thru 22

If you use< LINE+ -> to specify a relative line outside the file boundaries
(that is, a line position which would be greater than the number of lines
preceding or following the current line), then either the first (if -) or the last
(if +) line of the file becomes the current line; a messalieyieu the number
of lines moved.

If an absolute (unsigned) number greater than the current line number is
specified and that line does not exist, the next higher-numbered line from the
sought line is first found, and the line before that one (whether numbered or
NEW) becomes the new current text line. Similarly, if an absolute number
lower than the current line number is specified and that line does not exist, the
next lower-numbered line from the sought line is first found, and the line after
that one (whether numbered or NEW) becomes the new current text line. If
the sought line is below or above the file boundary, the START line or the last
line, respectively, will be used as the nawrent line.

64

Chapter 5: Editor Command Syntax

<LINE #>
<LINE #>
Syntax Example(s) merge < FILE> from < LINE # > thru < LINE # >
Function The variable< LINE # > is a prompting softkey, which appears only with

mergeto provide a start or stop point to a file being merged. Any existing line
in the file may be used, providing that tih@m line number is lower than the
thru number. For line values outside file boundariessemecommand

syntax.

Default Value from < LINE # > : Defaults to first line ok FILE> .
thru < LINE # > : Defaults to last line of FILE> .

Example(s) merge afile from 5thru 37
merge/tmp/bfilethru 10

65

Chapter 5: Editor Command Syntax

<#LINES>

Syntax Example(s)

Function

Default Value

Example(s)

<#LINES>

join < # LINES>

Variable< # LINES> is a prompting softkey, appearing only with jbi&
command to specify how many lines after therent line are to be joined into
a single line. Aoin command fds if the number of characters (including
spaces) in the lines to be joined exceeds 240. Also refeintcommand
syntaxin this chapter.

none

join 2

66

Chapter 5: Editor Command Syntax
<PARMS>

< PARMS>

Syntax Example(s) "Command File’k PARMS>
("Command File"represents a hidden command which must be entered from
the keyboard.

Function The variable< PARMS> is a prompting softkey which stands for
"parameters”. It is accessed only when you type in the name of any command
file (source file) with a series of valid shellmmands. As you type in the
name of the command file, ifit needs parameter(s) text, the Softkey Driven
Editor will prompt you with the softkey labeledPARMS> . If a space is
required as part of a parameter, the paramétauld be placed within
guotation marks.

Default Value none

Example(s) FIRSTTEST< PARMS>

67

Chapter 5: Editor Command Syntax

POINT
POINT
Syntax
POINT
> end
Function The variable POINT represents the optistest, end < STRING> ,
< LINE+ -> , used with the variable LIMITtlfru, until) to complete the
definition of a range over which a command is to operate. For more
information, see Description under this same syntax heading and the syntax
heading for< STRING> .
Default Value none (see Description below for definitionsstdrt andend)
Example(s) thru < STRING>
until < LINE+ ->
Description The keywordstart refers to the first line in the file. Similarlgndrefers to the

last line in the file.

< STRING> means any ASCII string and it is a pattern-matcher, such as that
used in thdind command. However STRING> used as a POINT is slightly
different in that it will match anywhere on a line, regardless of tineeat

range setting. The lines searched will always begin with the line following the
current line and continue through the end of the file. UseSQIFRING> as a
POINT will not affect a previous STRING> used in either &nd

< STRING> orreplace < STRING> command.

68

Chapter 5: Editor Command Syntax
POINT

< LINE+ -> as a POINT has the same meaning ydufimd under its separate
syntax as a variable, which is: Anyline number in the file or a signed offset
from the current line; and the specified line may be above or below the current
line. (< LINE+-> also appears as a command in editing text; see its command
syntax for more information.)

69

Chapter 5: Editor Command Syntax

< SPACES>

Syntax Example(s)

Function

Default Value

Example(s)

< SPACES>

edit a file into bfile tab_conv < SPACES>
tabset fixed < SPACES>

The variable< SPACES> appears as a prompting softkey for thle_convand
thetabsetcommands. Wur entry is especially important for the

tab-conversion option since you must choose whether or not to preserve any
tab characters used as control characters. More information about
tab-conversion is in chapter 3 and in gdit andendcommand syntax. For
tabset fixed < SPACES> (values 1 througB39) lets you specify where fixed
tabstops are located.

tabset fixed < SPACES=> If no entry, defaults to 16 starting at column 1 (1,
17, 33, etc.).
tab_conv < SPACES>: If no entry, defaults to 8 spaces per tabstop.

tabset fixed4
endafiletab_conv4

70

Chapter 5: Editor Command Syntax

< STRING>
< STRING>
Syntax Example(s) find < STRING> LIMIT
replace < STRING> with < STRING> LIMIT
Function The< STRING> variable is a prompting softkey for you to enter a series of

ASCII characters delimited on both ends by either: double quotes (*); single
quotes (); or carets (*). A string defined in this way is used with commands
such adind, insert, replace andsplit, and with LIMIT variableshru and

until. A string can include the delimiter if it is preceded by a backslash (\) as
an escape character. Other characters normally can be used without change in
a string. The way a string is used depends on the command and on the LIMIT.
For more information, refer to Description under this same syntax heading

and to the syntax fdmd andreplace

Default Value Depends on command usage; refer to syntax for individual commands.

Example(s) find "ABC" all
replace"ABC" with "DEF"thru end

Description When< STRING> is used with thénsert command, all characters in the
string are inserted into the edit file on a new line (for escaped characters, only
the character itself is on the new line).

< STRING>, when used with a LIMIT ofind or replacecommand, is

basically a pattern-matcher which can look for a match of known, or even
unknown, characters on a line. A simple example would be to change all
occurrences of the word "apples" to the word "oranges" by stegjitece

"apples" with "orangeghru end. Other characters used in a matching string
also will be taken as literals and must match exactly in the text, as with
"apples". Use of strings as pattern-matchers is made more powerful and
versatile in the Softkey Driven Editor by use of "anycharacter"and "anystring".
The definitions of what can be specified in a pattern-match are as follows:

anycharacter. Using anycharacter lets you match any single character.
After the first delimiter of a string is entered, the anychar softkey appears.

71

Chapter 5: Editor Command Syntax

< STRING>

Pressing this softkey places a ? in the string; the "?" may occur anywhere
within the string. This type of match may be used where there is a fixed
number of intervening characters, or if you do not care what character is
matched. The replace command uses both a matching string and a
replacement string. For its operation with "?", refer to the replace
command syntax in this chapter.

anystring: Using anystring lets you match any number of characters,
including none (the null string). The preferred match is the smallest
number of characters. After the first delimiter of a string is entered, the
anystring softkey appears. Pressing this softkey places a * in the string,
representing anystring, which may occur anywhere within the string. An
example of using anystring is to find or replace occurrences of strings
which begin with the letter "a"and end with a period ".". The pattern
would be "a*.". The replace command uses both a matching string and a
replacement string. For its operation with ™", refer to the replace

command syntax in this chapter.

In thereplacecommand, it is not valid to have a pattern-matcher which is
either empty or which consists entirely of anystrings (for example, "**").
However, this pattern-matcher is allowed for finel command since it is the
equivalent of the null string (which always matches at the start of the current
range).

A backslash (\) can be used as an escape which will allow findingreoces

of *, ?,or $ inafile. For example, if the exact string sought is a*b and this
string is used for the pattern-matcher, a match would occur for any string
consisting of the letter "a", followed by any number of other characters, and
ending with the letter "b". However, if the string "a*b" is used, the match will

be exactly a*b . If the stringto be matched includes a \, it must be escaped, as
in "\\". If any other character preceded bya \, for example, "\a", is to be
matched, a second backslash must be added, making "\\a". Use of the backslash
to escape characters for pattern-matching is the same for the first string used
with thereplacecommand; refer to theplacecommand syntax.

Using an octal number in a string is a special case which requires the backslash
as an escape. The octal string can be used in either the matching or the
replacement string, represented A", where the first digit can be 0

through 3, the second and third digits from 0 through 7. All three digits must

be used for recognition of the string. An example to replace ASCII character
DEL (octal 177) with ESC (octal 033) iseplace™\177"with "\033". You can

enter control or other nondisplayable characters in octal equivalefimdoor
replacestrings.

72

Chapter 5: Editor Command Syntax
<#TIMES>

Syntax Example(s)

Function

Default Value

Example(s)

<#TIMES>

repeat < # TIMES>

The Variable< # TIMES> is a prompting softkey which appears with the
repeatcommand to allow specifying the number of times thant text line
is to be duplicated and inserted into the text.

1 (that is, one time)

repeat 2

73

Chapter 5: Editor Command Syntax

<TIME>

Syntax Example(s)

Function

Default Value

Syntax Example(s)

<TIME>

wait < TIME>
("wait"is a hidden command which must be entered from the keyboard. When
wait is entered TIME> appears on a softkey.)

The Variable< TIME> is a prompting softkey which appears only with the
"‘wait" command and is used to specify how long execution of a command file is
halted before it continues. Time for the temporary halt is entered in seconds.
When the command file is halted, pseng CTRL c overrides the specified

time, and procssing starts again.

Will wait for SIGINT signal(pressing CTRL c at the same time) to continue.

wait 10 seconds

74

Chapter 5: Editor Command Syntax

WHATCHAR
WHATCHAR
Syntax Example(s) REVISE*, --ETC--, --ETC--, --ETC--, WHATCHAR
Function WHATCHAR is a softkey which can be accessed from eithetNB&ERT* or

REVISE* mode to allow you to determine quickly what character is actually
located under the cursor. Whe&MHATCHAR is pressed, the character under
the cursor is identified on the STATUS line, along with its decimal,
hexadecimal, and octal values. The first value is followed by a "D"to denote
the decimal equivalent of the character. Similarly, the second value is prefixed
with "0Ox"to denote the hex equivalent, and the third value is prefixed by a "0"
to denote the octal value. For more information, see Description under this
same syntax heading.

Default Value none

Example(s) The following examples require access from eithedN&ERT* or the
REVISE* mode, then locating the cursor under the character, and pressing the
WHATCHAR softkey:

Example 1. If the character under the cursor is a control character, such as
CTRL d (which appears as an the display), the STATUS line reads:

Control character (4D, 0x4, 0004)
Example 2. If the character under the cursor actually is a period (a "." on the
display) the STATUS line reads:

Normal character (46D, 0x2e, 0056)
Example 3. Ifthe character under the cursor is a normal character, such as a
"Z"(a Z on the display), the STATUS line reads:

Normal character Z (90D, Ox5a, 0132)

75

Chapter 5: Editor Command Syntax

WHATCHAR

Description

Use of theWHATCHAR softkeyto determine the character under the cursor
is important since most terminals display.atd represent control characters.
Thus you can interrogate the editor to learn what a displayedttally
represents. For instance, the first example above shows how a displayed "
represents the control character CTRL d, which was entered from the
keyboard byuse of: CTRLv CTRL d. (Refer to chapter 4 for information
about keyboard functions, such as using CTRL v to enter control characters
into the editor.)

The Softkey Driven Editor displays the same information about normal
characters and may be useful at other times as well.

76

Chapter 5: Editor Command Syntax
autotab

autotab

Syntax

autotab

autotab % RFTURN

of f

> column

COLUMN

Function Theautotab command allows automatic positioning of the cursor on the
current line when using tHBISERT or REVISE mode. Location of the cursor
depends on whether or nok& OLUMN> number has been specified and on
whether or not there is text on the current line, or, if the current line is blank,
on previous lines. For more information, see Description under this same
syntax heading.

Default Value autotab column < COLUMN> : If no column number entered, defaults to the
previous column selection or to 1 if no previous value was used.
autotab only: autotab status toggles, that is, alternates betwaeandoff
each time selection is made and "Return"is pressed.

Example(s) autotab
autotab column
autotab column 37
autotab on (or off)

77

Chapter 5: Editor Command Syntax

autotab

Description

Whenautotab columnis selected and@COLUMN> number is specified (1
through240 allowed), the cursor is tgtned to that column. Fautotab

column numbers larger than 72, the display is shifted so the specified column
and cursor are in the center of the display.

Whenautotab is turnedon without pressingcolumn, the position of the cursor
depends on whether you are in iINGERT* or REVISE* mode, as follows:

INSERT* : Cursor is placed in the same column as the first nonblank
character in the next lower-numbered, nonblank line.

REVISE* : Cursor is placed in same column as first nonblank character
on current line. If current line is blank, cursor is placed in same column as
the first nonblank character in next lower-numbered, nonblank line.

When autotab column is selected andkn@OLUMN> number is specified,

the cursor is placed in the same column specified previously, or, if no column
was specified previously, the cursor is returned to column 1 as a default. Each
time autotab only is selected and Return is pressed aiifeff setting toggles,

that is, alternates. Current setting is shown on the STATUS line.

78

Chapter 5: Editor Command Syntax
(change directory) cd

Syntax

Function

Default Value

Example(s)

Description

(change directory) cd

cd % RETURN

o]

The command "cd"is a hidden command (that is, not on a softkey) which is
entered by typing it from the keyboard. When cd is entered, the softkey

< DIR> appears as a prompt for you to enter the directory to which you wish
to move during the edit session. For more information, see Description u
this same syntax heading.

If no directory specified fox DIR> softkey: Defaults to user's HOME
directory.

cd newdir

The cd command operates in the same way as the cd command of the
operating system shell. The cd command makes the specified directory
become the current directory for the rest of the edsiee or until another cd
command is executed. Note that doing a cd command in a shell that was
invoked from the editor does not affect the current directory of the Softkey
Driven Editor.

Also, observe that using the cd command in the Softkey DrivetoEdibes

not change where the current text fildl tve saved. This is because the
current text file is given an absolute path using the current directory at the
time of executing thedit command. However, doing a cd commaridlaffect
saveandedit commands for text files from that point on.

79

Chapter 5: Editor Command Syntax
cmdfile (command file)

Syntax Example(s)

Function

Default Value

Example(s)

Description

Note

cmdfile (command file)

cmdfile (command file)

"cmdfile” stands for "command file", and it represents a hidden command (that
is, not on a softkey) which is entered from the keyboard. You can type on the
command line the name of a command fileuize file) which contains a series

of valid shell commands. For more information, see Description under this
same syntax heading.

Defaults to a prompting softkeyPARMS> (PARAMETERS) when a
command file requires parameters.

GETSAMP
FIRSTTEST PARM1 PARM2 PARM3

Additional software is required in order to use command files with the
Softkey Driven Editor. To use oumand files with the ethr on the operating
system (installed on an HP 9000 Series 300/400 and 700 computers), the HP
B1471 64000-U X Operating Emanment software is required. For more
information, contact your local HP Sales/Service Office.

Command files can be initiated from any of the operating system features,
including the Editor. Cmmand files do nottep procesing until either: the

end of the command file; the last feature is terminated; a sym@x@ccurs;

or a signal (such as SIGINT or SIGQUIT) intepts the command file. You

can invoke a command file from within another command file, but the original
command file Wl wait for the second ammand file to be completed before
continuing. (This is different from the previous editor for the4B00 LDS.
Refer to appendix C for a description of these differences.) Command files
may not be used to construct a complexotand during an edit ssion.

To execute a command file, you would enter a file name and any parameters
the command file might require. If the file name is absolute (begins with "/"),
the file name is used$as"to find the coomand file for execution. However,

80

Chapter 5: Editor Command Syntax
cmdfile (command file)

if the file name is relative (does not begin with a /"), then a more complex
search is made to find that command file. If the HP64KPATH shell variable
was defined and exported by the user, then each directory in that shell variable
will be searched from left to right until either a validhamand file iséund or
there are no more directories to be searched. If no HP64KPATH shell
variable is defined or if it is not exported, then only the current directory is
searched. To be a valid command file, the file must be readable, but not
executable (that is, the execution bit is not set). If a valid command file is not
found, an error message is generated. This method of searchingimacal

files occurs for the initial command file as well as for any command file
invoked from within a command file.

For example, given the following HP64KPATH shell variable:

HP64KPATH= /bin:.:/usr/bin
export HP64KPATH

If a relative file name (for example, "cmdfile") was entered, the following
search is made:

/bin/cmdfile
Jemdfile < == Note that this fileame is relative to the

user’s current directory
lusr/bin/cmdfile

If a valid command file isdfund, the search is stopped and thamand file is
then executed.

81

Chapter 5: Editor Command Syntax
(column_numbers) colm_num

Syntax

(column_numbers) colm_num

column_numbers

(Co\umm mumberS/

Function

Default Value

Example(s)

Description

RETURN

The commandaolm_numis a softkey, standing for column numbers, which
offers the choice of displaying or not displaying the column number at which
the cursor is located during tiRSERT*, REVISE*, range, andtabset

modes. For more information, see Description under this same syntax
heading.

If colm_numisoff, and no selection is made: Default®to(toggles).
If colm_numison, and no selection is made: Defaultofb(toggles).

colm_num
colm_num on(or colm_num off)

The column number is labeled "Column"and appears along the STATUS line
whencolm_numis turnedon. If you do not need the column number
information, you may wish to turn dff to reduce the amount of data being
transferred to your terminal, which could improve the data transfer rate.

Note that ifcolm_numis pressed, but no selectionavfor off is made and
Return is pressed, the display of column numbers toggles, that is, it switches to
the opposite setting.

82

Chapter 5: Editor Command Syntax
(column_numbers) colm_num

Normally,colm_numison, but this may be changed by choosing the -c option
when you invoke the Softkey Driven Editor from your operating system shell;
the -c option will secolm_num off.

83

Chapter 5: Editor Command Syntax
copy

copy

Syntax

copy

copy % RETURN

Function Thecopycommand places a copy of a line, or lines, as defined by a LIMIT,
from the current edit file, into a temporary storage buffer, allowing you to
choose whether the copied lines are appended (added) to the lines already in
the buffer or whether the copied lines overwrite (delete) text in the buffer.
Copied lines are not deleted from the current text file. (Also, see separate
syntax heading for LIMIT variable.) For more information, see Description
under this same syntax heading.

Default Value If no LIMIT is specified: Defaults t@opyof current line of text only.

Example(s) copy
copy append thru+ 7
copy append until"PRQ"
copy thru start

Description The temporary storage buffer foopyis shared witkextract, and the buffer
contents are not protected unless you usappendcommand. Otherwise, if
the LIMIT is not found, an@ppendis not used, text which was previously in
the buffer is lost! Theetrieve command (see that syntax heading) gives access
to the contents of the buffer.

The range for copyincludes the current text line as one boundary and the
value specified by LIMIT as the other boundary.

Once text has been copied, the last line in the range becomes the new current
line of text.

84

Chapter 5: Editor Command Syntax

delete
delete
Syntax
delete
(delete } ;JT RETURN
|
Function Thedeletecommand allows you to remove a line, or lines, from threemt
text file, with a range defined by LIMIT (see separate syntax heading for
LIMIT variable). The deleted text is NOT recoverable. For more
information, see Description under this same syntax heading.
Default Value If no LIMIT is specified: Defaults tdeleteof current line of text only.
Example(s) delete
delete until"JNZ"
delete all
delete thru end
Description If a LIMIT is specified, but LIMIT is not found, no text is deleted. The range

for deleteincludes the current text line as one boundary and the value
specified by LIMIT as the other boundary.

Once text has been deleted, the first line of text following the deleted line, or
lines, of text becomes the new current line of text.

85

Chapter 5: Editor Command Syntax

edit
edit
Syntax
edit
edit
e o e J
C .
> RETURN ‘
oCian_camen o] csprces> |
no tab convert
Function Theedit command allows you to continue an edgssen with a new or an
existing file. Ifedit is selected after the current file has been changed, you may
either save that file or else specify that those changes be lost before
continuing. For more information, especially about the importance of
tabconversion, see Description under this same syntax heading.
Default Value edit: Defaults to a new, empty file with no file name.
edit FILElinto FILE2: No default for FILE2; must specify its file name.
edit afiletab_conv < SPACES> If not specified, defaults to 8 spaces per
tabstop.
Example(s) edit
edit file

edit into newfile

edit infile into outfile
edit afileno_tab ¢
edit bfile tab_conv4

86

Description

Chapter 5: Editor Command Syntax
edit

When an edit session is started with no file name given, therdxigins in
theINSERT* mode, with a new line. If the file name given for an edisgm

is a relative path, the current directory is searched for the file. If the given file
name is an absolute path, the specified location in the file system is searched
for the file. If the sought file is not found, or is in some way protected from
reading, an error message is reported on-screen, and you would begin an edit
session with an empty file. When a file name is given for the eskiseand

no option for tabconversion is selected, tab characters will be converted
automatically to spaces, using the rule of one tabstop equals eight (8) spaces.

For text where a tab character is to represent a control character, you should
use theno_tab_c(for no tab-convert) option to prevent the tab character from
being converted into spaces. This option may be useful for assembly-type files
with embedded tab characters.

The tab_conv option is used when tab characters represent the next tabstop
position for the cursor, as determined bytie conv < SPACES>command,
which defaults to tabstopsin columns 1,9, 17, etc. As aline oftext is read into
the editor, tab characters are converted into the number of spaces neede
move to, but not including, the next tabstop position.

The way in which a file is read into the editor does not affect usavebr end

on that file. The default for writing the file is to do no tabconversion, and the
resulting file will not contain tab characters unless they were entered as
control characters, or if the edit command includedtab ¢

87

Chapter 5: Editor Command Syntax

end
end
Syntax
end
end =|| RETURN
nosave
Function Theendcommand is used to close an edgssen by placing a copy of the

Default Value

Example(s)

Description

current edit file onto the system disk. If, however, tbhsaveoption is

selected, the edit session ends, without saving the current edit file, regardless
of any text changes made. For more information, see Description under this
same syntax heading.

end Defaults to destination file from edit command, with no tabconversion.
end tab_conv < SPACES> If not specified, defaults to 8 spaces per tabstop.

end

end afile
endafiletab_conv4
endafiletab_conv
end nosave

When you end an edit session and the file is to be saved, a check is made to see
if the destination file named from tleelit command already exists. If a file

with that name already exists, a check is made to see if you have a private
recovery directory. If there is a recovery directory, the existing file is moved

there before the new file is saved. Also, checks are made to see that the path
to the destination file allows for the file to be written; if this is not allowable,

an error is reported, and the edissen is continued.

88

Chapter 5: Editor Command Syntax
end

If you specifyendto a file name other than tharcent file, a check is made to
see if that file name already exists. If it exists, you then must specify whether
or not that file should be overwritten. As noted above, if you are overwriting
an existing file and a private recovery directory exists, then the existing file is
moved to that recovery directory before the newfile is saved. If you are in an
edit session where the current file does not havenaerand you try to end the
edit session without specifying a destination file, an error is reported and the
session continues.

An edit session will end with no tabconversion unless you sptabifgonv.

With no tabconversion, tab characters will not be used to replace spaces even
though that might save disk space. With no tabconversion, the file can be
printed or edited and it will be exactly as it appears in thsedi

For "make" files, use tabconversion so the file is acceptable to the "make"
command.

89

Chapter 5: Editor Command Syntax

extract

Syntax

extract

extract

extract)

Function

Default Value

Example(s)

Description

RETURN
mam

Theextract command removes a line, or lines, as defined by LIMIT, from the
current edit file, and places the line, or lines, in a temporary storage buffer,
allowing you to choose whether the extracted lines are appended (added) to
the lines already in the buffer or whether the extracted lines overwrite (delete)
text in the buffer. Extracted lines are deleted from the current text file. (See
separate syntax heading for LIMIT variable.) For more information, see
Description under this same syntax heading.

If no LIMIT is specified: Defaults textract of current line of text only.

extract

extract until "ADD"
extract thru 26
extract append all

The temporary storage buffer fextract is shared witlcopy, and the buffer
contents are not protected unless you usappendcommand. Otherwise, if
the LIMIT is not found an@ppendis not used, text which was previously in
the buffer idLOST! Theretrieve command (see that syntax heading) gives
access to the current contents of the buffer.

The range foextract includes the current text line as one boundary and the
value specified by LIMIT as the other boundary.

Once text has been extracted, the line following the last line extracted becomes
the new current line of text.

90

Chapter 5: Editor Command Syntax
find

find

Syntax

find

find % RETURN
> FIND STRING = LIMIT

Function Using thefind command causes a pattern-matching search olitrent text
file for an occurrence of STRING> within boundaries defined by LIMIT and
by the range of columns specified by thage command. To beofund, the
first character of the string must occur within the specified range. For more
information, see Description under this same syntax heading.

Default Value find < STRING> : Defaults to string from last previous find @place
command, or to the null string (always matches) if no previous one is specified.
find < STRING> LIMIT: LIMIT defaults to include first line after current
line through the end of the file.

Example(s) find
find "a*b" thru 35
find "he?lo"thru end

Description When a defined string is found, the STATUS line displays "Found at column: "
and shows the column number where the first character of the string occurs.
In addition, the text line indicator appears on the line where the match was
found, and in th&@EVISE* mode the edit cursor moves to the first character
in the located string. In tH&ISERT* mode, a NEW line is inserted
immediately after the line on which the string was found; the edit cursor is at
start of that line.

After the last string within LIMIT is found, anothénd execution from that
point will result in a STATUS linergor message that the string has not been
found. Also, find< STRING> locates onlythe first occurrence of

91

Chapter 5: Editor Command Syntax

find

< STRING> in each line included in the LIMIT specification. (Tiamge
command necows the< STRING> search to specific columns.)

If LIMIT is after the current text line, thiind search begins on the line
immediately following the current text line. If LIMIT is before the current text
line, thefind search begins with the line immediately preceding the current
text line and proceeds backwards through the file to LIMIT (sucthas:

start).

Since the< STRING> default is to the last executédd or replacecommand,
you can make repeated searches with fewer keystrokes (@sipgdR eturn
from the command line; or by psgindfind followed by Return from either
INSERT* or REVISE* mode).

92

Chapter 5: Editor Command Syntax

help
help
Syntax
help
\—z{ LONER COMMAND}i
\—>< system commands >—/

Function Thehelp commandrovides you with odine help information for the Softkey
Driven Editor caonmands, variables, and modes of operation. The information
appears on-screen and also may be listed to a printer (usitigtthe
command). For more information, see Description under this same syntax
heading.

Default Value none

Example(s) help delete

help WHATCHAR

93

Chapter 5: Editor Command Syntax

help

Description

Thehelp command is available by mging either thaelp softkey, typing the

word "help"on the command line, or typing "?". When either action is taken,
topics on which help is available appear on softkeys (four levels, accessed in
turn with--ETC--). When one of the softkeys is pressed, the topic will appear
on the command line, and when Re#t is pressed, the information appears
on-screen. The information is displayed by using the shell command
"more(1)". The various options to this command apptiaigh normally you

will press only the Space bar to continue paghrgtigh the information.

Once the information has been displayed, the screen will be redrawn and the
edit session will continue.

94

Chapter 5: Editor Command Syntax
insert

Syntax

Function

Default Value

Example(s)

Description

insert

insert

insert % RETURN
> <STRING>

Theinsert editor conmand allows you to create a new line in a text file from
the command line, whout actually entering either tlREVISE* or INSERT*
editor mode. This editor comandinsert is useful for inserting text, even
blank lines, in the form of @ STRING> . (The editor modéNSERT* is a
different softkey, which is used for either inserting successive lines in a file
as the text entry mode when creating new files; it is described in the next s
heading and in chapter 4.) For more information, see Description under t
same syntax heading.

insert < STRING> : If no string is defined, defaults to insert a blank line
(same as insert).

insert
insert "this is a new line"

A new line added by thiasert command is placed immediately after the
current text line (shown by line indicator >). An inserted striiidoe placed
starting in column 1, regardless of whether oragbtabis on.

A blank line is inserted by default if no string is defined. Strings up to 240
characters are allowed (anything beyond 246usd¢ated). However, to

maintain compatibility with the HP 64000 LDS &ati, you should limit string

length to 232 characters or less (see appendix C for a description of differences
between the Softkey Driven Editor and the 64®00 LDS edir).

95

Chapter 5: Editor Command Syntax

(MODE) INSERT*

Syntax Example(s)

Function

Default Value

Syntax Example(s)

Description

(MODE) INSERT*

INSERT*

TheINSERT* editor mode is used to enter new lines of text into the current
edit file, whether into an existing file or one being created. It is one of three
Editor modes (the other two are @mand andREVISE*), and it is entered
only by pressing the softkey label®ISERT, located at the left on the first
level of softkeys. (The editor oumandinsert is a different softkey, which is
used to create new lines, including strings, from the Command rmseet is
described in the immediately preceding syntax heading.) For more
information, see Description under this same syntax heading.

none

INSERT (press softkeyto enter mode)
INSERT* (press softkey to exit mode)

In theINSERT* mode, entire lines of text are added. Each new line is

prefixed with NEW rather than a line number. The current text line is
indicated by the symbol "> "and that line can be moved up and down in the file
until either Return is pressed or tNSERT* mode is exited. Each time a

new line is created, by pressing Ret, another NEW line appears below it.
WhenINSERT* is exited, if the current new line is empty, that line is removed
rather than being inserted into the text file.

You can exit theNSERT* mode either by pressing tIREVISE softkey to
enter theREVISE* mode, or by pressing tHRSERT* softkey which will take
you to the Command mode on the command line.

96

Chapter 5: Editor Command Syntax
(MODE) INSERT*

When you are in thiNSERT* mode, you can press any command softkey and
move temporarily to the Gomand mode. When you then execute a
command, you are placed back in tNSERT* mode on a new empty line.
However, if you cannot execute thenbmand or if you changeoyr mind, it

will be necessary to clear thersmand line before you can re-enter the
INSERT* mode. The command line is cleared either by using the Backspace
key or the "kill" character fromour operating system stty setting. Once the
command line has been cleared, you can re-entdNSBERT* mode by

pressing Reatrn or theINSERT key.

97

Chapter 5: Editor Command Syntax

join
join
Syntax
join
(join) % RETURN
<# LINES>
Function Thejoin command takes a range of lines and joins them into a single line. The
range is defined by using the current line as one of the boundaries and the line
specified by the LIMIT ok # LINES> as the other boundary. For more
information, see Description under this same syntax heading.
Default Value join <LIMIT> : Ifno<LIMIT> isdefined, defaults to join current line with
next line.
Example(s) join
join 2
join thru end
join thru -1
Description When you specify a LIMIT, it is possible to join a line, or lines, either

preceding or following the current line. For exampjl@n“thru -1"would join
the immediately preceding line to the current line of text. IlEAINES>
option allows a number to be entered which specifies the number of lines
following the current line to be joined to it. If the number of lines specified
does not exist (before the end of the file), then an error is reported.

Lines are joined from the lower-numbered line (that is, uppermost on the
display) to successive higher-numbered lines contained incinedaries. The
lines are joined by finding the last nonblank

98

Chapter 5: Editor Command Syntax
join

character on the first line to be joined and the first nonblank character on the
second line to be joined, and then inserting a single space between them as a
delimiter. Ifaline to be joined is blank, no spaces are inserted for it, nor is a
delimiter-space inserted.

Once the specified lines are joined, the resulting line appears at the lower line
position, with the same line number as beforejoirecommand executed. All
other lines in the join range are deleted.

Thejoin fails if the result is a line of greater than 240 characters, or if the
range specified is not found.

99

Chapter 5: Editor Command Syntax

< LINE+ ->

Syntax Example(s)

Function

Default Value

Example(s)

Description

<LINE+ ->

REVISE* < LINE+ ->
INSERT* < LINE+ ->

The< LINE+ -> prompting conmand softkey allows you to move
immediately to either an existing numbered line or to a new current text line
which is a relative number (that is, + or -) of lines away. An absolute,
unsigned number may be used to select a specific numbered line in the file,
while a relative, signed number may be used to specify a line above or below
the current line position. For more information, see Description under this
same syntax heading.

none

6
-7
+53
0
9999

If you are in either théiNSERT* or REVISE* mode and pressLINE+ -> |

you are temporarily placed in thermmand mode. From there you can enter
either an absolute or relative number to select a desired new current line.
From theINSERT* mode, if you press LINE+ -> and move to the command
line, enter 0 and press Return, a NEW line is inserted as your new current line
just after the START line. On the other hand, fromREYISE* mode, if

you press LINE+ -> and move to the command line, then enter 0 and press
Return, the first line of text (regardless of its number) becomes your current
line.

If you are in the Command mode, enter 0 and pressrRegthe START line
will be indicated by > (cursolemains on command line). At this point, the
START line is accessible only for positioning, and ihicat be modified.

100

Chapter 5: Editor Command Syntax
<LINE+ ->

When you us& LINE+ -> to specify a relative line outside the file boundaries
(that is, a line position which would be greater than the number of lines
preceding or following the current line), then either the first (if -) or the last
(if +) line of the file becomes the current line; a messalieyi@u the number

of lines moved.

If an absolute (unsigned) number greater than the current line number is
specified and that line does not exist, the next higher-numbered line from the
sought line is first found, and the line before that one (whether numbered or
NEW) becomes the new current text line. Similarly, if an absolute number
lower than the current line number is specified and that line does not exist, the
next lower-numbered line from the sought line is first found, and the line after
that one (whether numbered or NEW) becomes the new current text line. If
the sought line is below or above the file boundary, the START line or the last
line, respectively, will be used as the nawrent line.

101

Chapter 5: Editor Command Syntax
list

list

Syntax

list

printer

4#{ <ICMD!>

<FILE>

noappend

)

>{ RETURN

> REVISE

CONDITIONAL COMMAND %‘J/
4444>{LONER COMMAND%““*

> INSERT
\\ra%ir system _commands j}g*‘/

> WHATCHAR

102

Function

Default Value

Example(s)

Description

Chapter 5: Editor Command Syntax
list

Thelist command allows you to output file text loélp command text to a file,

a printer, or to a shell command, using either numberechoumbered

format. It includes options which let you specify whether or not the text being
listed will be added to or will overwrite anytext in the file being listed to (this
is different from the HP 64000 LDS edr; refer to appendix C). Another

option lets you define the LIMIT range over which tis¢ command is to
operate. For more information, see Description under this same heading.

LIMIT defaults to current line of text.

list LSTFILE

list printer numbered all
list MAXINT thru 47
list printer help delete

Doing alist to a file willnormally cause the text to be appended to any exist
text. If you wish for the entire file to be overwritten (deleted), you can spe
thenoappendoption. Also, if the user has a $HOME/.recover directory, a ¢
of an existing file will be placed there before the listing occurs.

Since the default is to listhnumbered text, thiested textnormally would

have no line number information. However, if you selectriimabered

format, the output will be listed exactly asitrcently exists in the editor. The
numberedformat would mean that new linede labeled with NEW rather
than being assigned a line number.

If helptext is listed, it will be exactly as it appears on-screen fohéhe

command. Note that there is no tabconversion feat@ommand, so the

output will contain only spaces unless thierent edit file already has
unexpanded tab characters. Also, "help"text may contain tab characters since
the help information is simply a text file that exists on the disk.

list operates over a range which includes the current line of text as one
boundary, and the value specified in LIMIT as the other boundary. (Refer to
the LIMIT variable syntax.)

Thelist printer option depends on the $PRINTER shell variable which is
initialized before the Softkey Driven Editor is invoked. This shell variable
contains a shell command which can be executed to invoke the printer on your
operating system. This shell command must accept stangauntlin order for

103

Chapter 5: Editor Command Syntax

list

a listing to be generated. An example of setting this shell variable in your
"profile"is:

PRINTER =Ip

export PRINTER

This shell variable indicates that the shell commdpds to be invoked
whenevellist printer command is executed. It isjrartant that the shell
variable PRINTER be exported. More information about this and about
setting your ".profile"is located in chapter 2.

If list is used with an incorrect somand or file which causes the screen to
become filled with "garbage" characters, a CTRL | (lower-case L) will refresh
the display from currenhemory.

104

Chapter 5: Editor Command Syntax
list

Syntax

log_commands

{log_ commands) > off RETURN

Function log, standing for log commands, is used to control whether or not a command
built and invoked from the Softkey Driven Editor is toliseéed to a log file for
later use. For more information, see Description under this same syntax

heading.
Default Value Defaults to append (added to) contents of designated log file.
Example(s) log to afile noappend
log off
Description Uses for log (commands) include both building command files and keeping

track of commands invoked during an edgsen. All commands executed
from the command lineiwbe placed in the log file. Text entered or modified
in theINSERT* or REVISE* modes will NOT be logged; the use of keys, such
as the cursor keys and delete line, also will NOT be logged.

Also, remember that commandaslwmormally be added (appended) to the
designated log file. If you wish for newer commands being logged to overwrite
those in the log file, you must choose tteappendoption.

Logging of commands, as with executing command files, continues until the
command either iasrned off or until the last development environment
feature is terminated.

The letter "L" will appear on theneinciator line while commands are being
logged to a file.

105

Chapter 5: Editor Command Syntax

merge

merge
Syntax

merge
< merge
U/
thru H <LINE #> }—] W
C % RETURN
tmbcomvert)—L <SPACES>
no_tab_convert

Function Themergecommand is used to combine an entire filportions of a file into

your current edit file, with options to select the range (LIMIT) over which the

command is to operate and tooose whether or not tabconversion is to

occur. For more information, see Description under this same syntax heading.
Default Value merge < FILE> : Defaults to either the current file being edited or the last

merge file.

merge from < LINE # > : Defaults to first line o& FILE> .

merge thru < LINE # > : Defaults to last line of FILE> .

merge tab_conv < SPACES> Defaults to tabstops every 8 spaces if no entry

is made.
Example(s) merge afile

merge bfile from 5thru 37
merge/tmp/cfilethru 10
mergedfile tab_conv4
mergeefileno_tab_c

106

Description

Chapter 5: Editor Command Syntax
merge

Text merged from a file is added following the current text line, and the last
line added from a file becomes the new current line.

If the line number specified in merffem < LINE # > is greater than the
number of lines in the file, the merge is not done.

However, if the line number fahru < LINE # > is greater than the total
number of lines in the file, the merge is done through the end of the file,
providing thefrom < LINE # > used is valid (that is, less than or equal to the
total number of lines in the file, as described above).

Tab characters from the text being merged are handled according to the
options selected for thmergecommand. Théab_convoption should be

selected if tab characters are used to represent movement of the cursor to the
next tabstop. In this case, you can select the numbeSBACES> between
tabstops or you can use the default action which places fixed tabstops every 8
spaces (that is, at 1, 9, 17, etc.). Wah_cony, when a line of text being

merged is read into the editor, the tab characters iil bavconverted into

the number of spaces needed to move to but not including the next tabst
special case occurs if 1 is chosen€d8PACES>, as that will cause tab

characters to be replaced with a single space.

If the text being merged contains tab characters that are meaningful as control
characters, then the_tab_c(no_tab_convert) optionilvprevent conversion
of tab characters into spaces.

Note that the tabconvert options for the text being merged do not affect how
tab characters in the current edissien will be tored; the tabconversion for
saving depends entirely upon that speafigeor endcommand.

107

Chapter 5: Editor Command Syntax
range

range

Syntax

range
{ range % RETURN
<COLUMN> L(thru) <COLUMN>

>{ 1l

a

Function Therange command defines the width in columns of text to whicliiradl and
replacecommands are restricted. (As noted under the syntax description for
POINT variable, the setting feaange command does not affect the
< STRING> searches.) The value entered for titmes < COLUMN> option
must be greater than or equal to the value forahge < COLUMN> option.

Default Value range < COLUMN> : Defaultsto 1 (one) if no entry, or if number is not
within 1 to 240.
range thru < COLUMN> : Defaults to 240 if number is not within irbugh
240, or if not specified, defaults to same number as ra@@LUMN> .

Example(s) range
range 5thru 15
range thru 200
range 16

Description As indicated in the Default Value above, if values entered for either
< COLUMN> are not within 1 througRB40, a default will be set depending
upon which column number isin error. Ifthe fitxcOLUMN> entryisin
error, itis set to 1. If the secordCOLUMN> entryisin error, it is set t340.

108

Chapter 5: Editor Command Syntax
range

If the range command is executedthiout any options, then tHRANGE mode

is entered to allow visual setting of the range. In this mode, the current range
of columns will be shown on-screen as a line of R’s, th&® RRRRRR, etc.

The cursor appears in column 1, regardless of the autotab setting. The line of
R’s can now be moved anywhere within the file, much like inlNV&ERT*

mode, and it also may be modified. Pressing eitheuReir theRANGE*

softkey causes the new line settings to take effect.

When you leave theange mode with a blank line, then the range defaults to
the maximum of 1 througR40, If the range line is not blank, the new range is
set using the leftmost and rightmost nonblank characters.

109

Chapter 5: Editor Command Syntax

renumber
renumber

Syntax

renumber
renumber % RETURN

Function Therenumber command W renumber the text lines in airent edit file after
lines have been added or deleted. Lines will be renumbered consecutively
starting with 1 from the first line through the last line of text. You may wish to
renumber text lines any time after you have made extensive changes by adding
NEW lines or deleting text.

Default Value none

Example(s) renumber

110

Chapter 5: Editor Command Syntax

repeat

repeat

Syntax

repeat
repeat RETURN
<# TIMES>

Function Therepeatcommand wi duplicate the arrent line of text a specified number
of times and insert the duplicated line(s) immediately after the current line of
text. The last inserted line becomes the new current line. Anynonzero v
may be used for the number of times the line is to be duplicated. Ifthe cu
line is the START line wherepeatis invoked, then the first text line is the
one which is repeated.

Default Value repeat < # TIMES> : Defaultsto 1, that is, repeats once.

Example(s) repeat

repeat2

111

Chapter 5: Editor Command Syntax
replace

replace

Syntax

replace

(replace
> FIND STRING 1{ with }— REP_ACE STRNGJ }
(% RETURN

Function Thereplacecommand allows searching for the first string whichgfrid
within the range defined by LIMIT, will be replaced by the second string. It
only has to find the beginning character of the first (matching) string within
the range limit. It is not possible to replace a null string, so the matching
string cannot be empty. For more information, see Description under this
same syntax heading.

Default Value replace < STRING> : Defaults to string used in previous replace or find
command.
replace < STRING> with < STRING> : with < STRING> defaults to
< STRING> from previougeplacecommand, or to null string if no previous
replacecommand used.
replace LIMIT : Defaults to current line if no LIMIT defined.

Example(s) replace "hello"with "HELLO" all
replace "m?c*n"with "M?cn"thru end
replace"s + 3 *"with "(5+ 3) * 7"

Description The first string, aseplace < STRING1>, is a matching string which is
searched for with the range and LIMIT boundaries. This search is identical to
thefind < STRING> command, except that iilhhkmatch multiple ocarrences
on the same line. The first character in this string must be found within the
specified range for the string to be recognized. If this matching string

112

Chapter 5: Editor Command Syntax
replace

< STRING1> is found, it is deleted from the line and thith < STRING2>

is put in its place. The search for the next possible match on that line begins
with the character following the last character in the text matched by the
search string.

Note that the default for STRING1> in the replace command may come
from the last executefthd or replacecommand, and the default for

< STRING2> may come from the previousplacecommand. This defaulting
action allows you to alternafimd andreplacecommands whout having to
define< STRING1> and< STRING2> each time.

Thereplacecommand makes special use of "anycharacter", represented by "?",
and of "anystring", represented by ™" in tike&STRING1> pattern-matcher

and the< STRING2> replacement string. (Also refer to the syntax for

< STRING> variable.) Use of anycharacter and anystring inréipiace

command is explained in the following paragraphs.

USING anycharacter: The "?"is useki$S TRING2> to insert text matched
by "?"in< STRING1>. Ifno "?"was used ik STRING1>, then a space is
inserted at every occurrence of a "?%<i8TRING2> (the "?"is removed in all
cases). However, if "?"is used9¥rSTRING1> (the pattern-matcher), then
the "?"in< STRING2> matches the character of the "?%<ISTRING1> on a
one-on-one basis. Ifthere are more "XIiBTRING2> than in

< STRING1>, theywrap around to begin matching at the start of

< STRING1> again.

USING anystring: The ™"is used mn STRING2> to insert text matched by
"'in <STRING1>. If no ™" was used ik STRING1>, then no text is
inserted into< STRING2> , the replacement string (the ™" is removed in all
cases). However, if *"is used mSTRING1>, then the ™*"in< STRING2>
matches the ™"text ik STRING1> on a one-to-one basis. Ifthere are more
"*"in < STRING2> than in< STRING1>, theywrap around to begin
matching at the start &fSTRING1> again.

It is not valid to have a pattern-matche8TRING1> which is either empty
or which consists entirely of anystrings, asaplace™*" with "hello".
However, this is valid for the replacement strin§ TRING2> , as inreplace
"a*b*d" with "*",

Here are some examples for use of "?"and ™", using "ABCDEF" as the text.
Range is restricted to column 1 for the first example, and to columns 1
through 3 for the other examples.

113

Chapter 5: Editor Command Syntax

replace

replace"B*D" with "DDD"
RESULT: ABCDEF, because, due to the range, the search
string "B*D" is not found.

replace"B" with "?"
RESULT: "A CDEF", because the "?" default, which is a
blank, was substituted for B.

replace"C" with ™"
RESULT: "ABDEF", because the "*" default null string was
substituted for C.

replace "?172?3" with "?1?2,73?1"
where: 2= "A", 22= "B", and 3= "C".
RESULT: "ABCADEF", because only one match occurs due
to the range restriction. The "extra" ? in string 2 wraps
around and begins matching at the start of string 1 again.

replace *C" with "**C"where: * = "AB"
RESULT: "ABABCDEF", because the additional "*" match
in string 2 wraps around and reuses the "AB" from string 1.

replace™D?172" with D?1?7*
where: *= "ABC"; = "E";and 2= "F".
RESULT: "DEFABC", because of the placement of "?"and
" characters.

A backslash (\) can be used as an escape which will allow findingreoces

of *, ?, or $ inafile. For example, if the exact string sought is "a*b", a

match would occur for any string consisting of the letter "a", followed by any
number of other characters, and ending with the letter "b". However, if the
string "a*b" is used, the match will be exactly "a*b". If the string to be

matched includes a \, it must be escaped, as in "\\". If any other character
preceded bya\, for example, "\a", is to be matched, a second backslash must be
added, making "\\a". Use of the backslash to escape characters for
pattern-matching is the same for the first string used witheplace

command, covered in the command syntax section.

Using an octal number in a string is a special case which requires the backslash
as an escape. The octal string can be used in either the matching or the
replacement string, represented ly\", where the first digit can be 0

through 3, the second and third digits from 0 through 7. All three digits must

be used for recognition of the string. An example in a replace command to
replace ASCII character DEL (octhr7) with ESC (octal 033) would be:

114

Chapter 5: Editor Command Syntax
replace

replace "\177" with "\033"

You can enter control characters in octal equivalent on the command line for
thefind or replacestrings.

115

Chapter 5: Editor Command Syntax

retrieve
retrieve
Syntax
retrieve
retrieve RETURN
<# TIMES>
Function Theretrieve commandorovides access to the contents of the temporary

Default Value

Example(s)

storage buffer used with thepyandextract commands by placing a copy, or
copies, of that storage buffer text into the current edit file, immediately
following the current line of text. The last line of text retrieved from the
temporary storage buffer becomes the new current line. You specify the
number of copies of text with the# TIMES> option, which accepts any
positive integer. If no entryis made fo## TIMES> , the text is copied only
one time.

retrieve <# TIMES> : If no number entered, defaults to 1 (once).

retrieve
retrieve 2

116

Chapter 5: Editor Command Syntax
REVISE* (MODE)

Syntax Example(s)

Function

Default Value

Syntax Example(s)

Description

REVISE* (MODE)

REVISE*

TheREVISE* editor mode is used to change existing lines of text. It is one of
the three editor modes (the other two aren@and andNSERT*), and it is
entered by pressing the softkey labeREVISE, located second from the left

on the first level of softkeys. For more information, see Description under
this same syntax heading.

none

REVISE (press softkey to enter mode)
REVISE* (press softkey to exit mode)

In theREVISE* mode, you can move about the file and modify text by writi
over it or inserting text at any desired line or column in the file. The current
text line is indicated by the symbol > in the left-hand column and the cursor
is positioned at the current column.

You can exit th&REVISE* mode either by pressing tidSERT softkey to
enter thdNSERT* mode, or by pressing tiREVISE* softkey which will take
you to the Command mode on the command line.

When you are in thREVISE* mode, you can press any command softkey and
move temporarily to the Gomand mode. When you then execute a
command, you are placed back in REVISE* mode at the previous location

in the text file. However, if you cannot execute thmowand or if you change
your mind, it wll be necessary to clear themmmand line before you can
re-enter theREVISE* mode. The command line is cleared either by using the
Back Space key or the "kill" character froouy operating system stty setting.
Once the command line has been cleared, you can re-entREYh8E*

mode by pressing Retn or theREVISE key.

117

Chapter 5: Editor Command Syntax
save

save

Syntax

save

‘ save >|| RETURN

Function Thesavecommand is used to place a copy of theent edit file onto the
system disk, and is similar to tead command except that widave the edit
session continues rather than returning to the shell. For more information,
see Description under this same syntax heading.

Default Value save: Defaults to current destination filame.
save tab_conv < SPACES> If not specified, defaults to 8 spaces per tabstop.

Example(s) save
saveafile
save/tmp/bfile
savebfile tab_conv4

Description When you enter aavecommand, a check is made to see if the destination file
already exists. If a file with that name already exists, and it is not the same as
the current edit file ame, you W be asked whether or not the file stiiculd
be saved. Ifyour answer is "yes", and if you have created a $SHOME/.recover
directory, the old file copy is moved to the recovery directory before the file
being saved is written to the disk.

118

Chapter 5: Editor Command Syntax
save

A savewill be done with no tabconversion unless you spéablyconv With
no tabconversion, tab characters will not be used to replace spaces even
though that might save disk space. With no tabconversion, the file can be
printed or edited and it will be exactly as it appears in thedi

For "make" files, use tabconversion so the file is acceptable to the "make"
command.

119

Chapter 5: Editor Command Syntax

split

Syntax

split

split

(split >|| RETURN
3 at }

Function

Default Value

Example(s)

Description

[»(_column)} COLUMN
\—>‘ POINT

Thesplit command allows you to split a line of text into two lines at a specific
POINT, including specification of a line number, a column number, and even
a< STRING>. Thisresults in two lines, with the second one beinga NEW
line containing the text following the POINT at which the split occurred,
which now starts in column 1. For more information, see Description under
this same syntax heading.

split at POINT : Defaults to current edit line and column position.

split

split at column 30
split at -5

split at 5column 5
split at "h*o"

If no option is specified fosplit, the current cursor position is used in
INSERT* or REVISE* mode, or column 1 of the current linesflit is invoked
from Command mode (would insert blank line preceding the line used for the

split).

120

Chapter 5: Editor Command Syntax
split

A special case occurs when you ergplit at < STRING> . If no column is
indicated, the line split occurs at the column where the start of the string
match occurs. For example, if the string were "hello", the split would be done
on the line following the current line where "hello" first appears, and in the
column where the "h"in "hello" occurs. If a column number is indicated, the
split is done at that column, and not at the column where the string match was
made. The range boundaries are not used to restdstigp® matches for a

< STRING> .

121

Chapter 5: Editor Command Syntax

tabset
tabset
Syntax
tabset
tabset > default ‘% RETURN
fixed H <SPACES>
Function Thetabsetcommand is used to define the column positions the cursor moves

Default Value

Example(s)

Description

to when Tab or Shift Tab (backtab) is pressed while you are in either the
REVISE* or INSERT* mode. There is always a tabstop in column 1,
regardless of other settings, and the initial (and default) settingnewVide
tabstops every 16 columns (that is, columns 1, 17, 33, etc.). For more
information, see Description under this same syntax heading.

tabset default: Places tabstops in every 16 columns starting with column 1.

tabset

tabset5 10 15 20
tabset fixed4
tabset default

Note thattabsetonly affects how the Tab key worksINSERT* and
REVISE* modes. It does not affect text or tab control characters in text.

You can reset tabstops to standardize the appearance of text or to create
tables. Fotabset < COLUMN>, you can enter any number from 1 through
240 for any number of tatips. Thetabset fixed< SPACES> command is
used to set tabstops at ever§PACES> columns, starting at column 1; the

122

Chapter 5: Editor Command Syntax
tabset

valid values are from 1 throud@B9. Theabset defaultcommand resets to a
default which is the same asabset fixed16 command. Any values outside of
the valid range are ignored.

When thetabsetcommand has been executed and any newdpbsssigned,

you are automatically placed in ti@BSET* mode, and current tabstop
positions are denoted by the letter "T"in each position. TRBSET* mode

is similar to thdNSERT* mode in that the line of T's can now be modified
and it can be moved anywhere within the file. The final tab settings are
determined by the nonblank characters on this linesdirg either Retrn or

the TABSET* softkey will remove the tabset display line and cause the tabset
specification to take effect.

123

Chapter 5: Editor Command Syntax
wait

wait

Syntax

wait

{ wait) RETURN

Function The '"wait" command is a hidden command, which only can be entered from
the keyboard, and which will causenemand files to be halted tqrararily,
either for a specified number of seconds or until CTRL cis pressed. After the
wait period, the command file continugcessing from that point. Note that
CTRL cis only appropriate if the ‘intr’ stty option is set to that character. Ifa
different character is set, then that control sequence should be used instead of
CTRL c. The wait commandilwshow the orrect character to use.

Default Value wait< TIME> : Press CTRL cto continue pr@esing.

Example(s) wait 10 seconds

124

Chapter 5: Editor Command Syntax
while

while

Syntax

while

count > do —
> <COUNT>

CONDITIONAL COMMANDS

&

CONDITIONAL
COMMANDS

Function Thewhile command allows repeated execution otedcommands based on
the result of a test clause. Thkile command is allowed with all editor
commands EXCEPT the following (all of which could cause drastic results if
allowed):

cd

CMDFILE
column_numbers
edit

end

help
log_commandsRsave
wait

|

For more information, see Description under this same syntax heading.

125

Chapter 5: Editor Command Syntax

while

Default Value

Example(s)

Description

< COUNT> : If no number entered, defaults to 1 (one).

while count5do insert "hello"; delete thru + 2 doend
while count 10;find "aline"do delete doend
while find “"change'tlo replace with "newstuff'doend

Execution of thevhile command involves two sets of commands called a "Test
Clause"and a "Body Clause". The "Test Clause" consists of one or more editor
commands which are all executed at the beginning of each iteration of the
while command. The allowable commands, exceptions noted above in
Function, are assigned truth values for this use. For exaayit#ab, insert,

range, andtabsetcommands are always true. Truth values for the other
commands aressigned based on the results when they are executed.
Appendix B contains a summary of the truth values.

If the "Test Clause"returns a true valueeaning that execution of all
commands in it retrned a true value, then the "Body Clause" is executed.
However, if the "Test Clause" result is false, meaning that one or more of the
editor conmands in it rairned a false value, then thile command is
terminated. Note that all commands in the "Test Claudeievexecuted to
determine its truth value.

The truth value for thehile statement itself dependgon the truth value of

the "Body Clause". Before thehile statement begins, the "Body Clause" is
assumed to have a true value. After each iteration when all the commands in
the "Body Clause" are executed, the value is set depending on the result
returned. Ifthe "Body Clause"is empty or if all the staénts ratrned a true
value, the "Body Clause" value is set to true. However, if one or more of the
statements in the "Body Clause" was false, the value is set to false. After
further iterations, when the "Test Clause" finally fails, the value of its last
"Body Clause" execution is returned.

Thecountcommand is used to control the number of iterations fonttile
command. In the "Test Clause", thmuat is evaluated as true as long as the
number of iterations of thehile command is less than or equal to the value of
the< COUNT> variable. If no number is entered f0ICOUNT> , it defaults

to 1. Ifcount < COUNT> is used in any other location than mentioned here,
it has no effect on the truth value.

126

Chapter 5: Editor Command Syntax
(Shell Command) !

Syntax

(Shell Command) !

@

Function

Default Value

Example(s)

Description

RETURN

<CMD>

The "I"represents Shell Command, which is a hidden command, and it all
you to invoke shell commands from the Command modleowit having to
end the edit session. It does not allow you to move text from or to the edi
with the "I"command. For more information, see Description under this s
syntax heading.

shell command : Wl invoke a shell, using the SHELL variable, if set.

lls /users

Ish

Isk anotherfile

luucp anothersystem\!~ /afile ~ !

Once the shell command has terminated, you must press a keyto cause the
display to be redrawn for the current edit state. Any shell vafithzand may

be used by prefixing it with ! and following it with !. Ifthe ""is a part of the
shell command, it must be escaped with a backslash (\).

127

Chapter 5: Editor Command Syntax
(Shell Command) !

Here is a brief explanation for the examples shown above:
lls lusers: Lists directory for /users.

Ish: Moves to a new shell temporarily; exit that shell back to the editor with
CTRL d.

Isk: Starts a different edit session.

luucp anothersystem\!~ /afile ~ I: Gets a file from another computer system
and moves it to the public directory. Note backslash (\) to escape ! inside
command.

128

Installation Notice

Help and Problem-Solving

Chapter 6: Help and Problem-Solving
Chapter Overview

Chapter Overview

This chapter provides the following information t&si&t you in finding
answers to both general and specific questions or problems while you are using
the Softkey Driven Editor:

* What is the meaning of amrer or status message displayed on my
screen?

e Can | get answers by reading the operating system "man" (manual) pages
and is there help built into the editor?

* What should | look at to get a better understanding about strings,
especially as used fimd andreplacecommands?

* Where do | look for information about recovering saved files, and
especially what happens if my session "crashes"?

* Have some of my other questions about problems with #itees, control
characters, and strange on-screen displays been answered somewhere in
this manual?

130

Chapter 6: Help and Problem-Solving
Error and Status Messages

Error and Status Messages

While you are using the Softkey Driven Editor, messagkappear on the
STATUS line and some messages or questions appear along the command
line. Most of the messages and questions have sufficient information in them
to let you proceed or correct a problem pointed out by the Editor.

Chapter 5, which covers editorrmonand syntax, and chapter 3, which covers
editor modes and operating system connectioitih&lp your understanding

of the terminology used in the messages and questions. Those chapters also
will give you a better idea of why the message or question appears on-screen
just as you have completed a particular action or keystroke.

Finally, appendix A contains a listing and explanations for all of the on-screen
messages and questions which you may encounter in using the editor.

'man" Pages and Editor "help"

In addition to this printed manual, there are two other sources of informat
much of which contains the same information as in this manual. You can
access "man" pages from the operating system shell for the various Softke
Driven Editor shell coomands such &, purge, rcvr, dirrec, skpreserve and
skrecover. This is usually done by entering the shell command: "man

< subject>". In addition, the editor hatelp command which is described in
chapter 5. It is accessible from a softkey in alt@dinodes, with the
convenience of pressing any of the softkeys displayed for information about
the subject represented by the label on the softkey. In other words, if you want
to read an explanation on-screen aboutjohrecommand, you would first

press thénelp softkey (or just type "help”, from the keyboard, on thenownd

line), and then press th@in softkey. Information begins appearing on-screen
and you move to additional information (when the message at the bottom of
the screen says "more") by pressing the Space bar.

131

Chapter 6: Help and Problem-Solving
'‘man” Pages and Editor "help”

Understanding Strings

Strings are a very powerful tool to use in checking and modifying large files. If
you have questions in general about strings and their use with the editor, you
can refer to the syntax farSTRING> as a variable in chapter 5. For further
information about strings, tHfend andreplacecommand syntaxin chapter 5
should be helpful. In particular, the syntax for teglacecommand has some
examples involving use of anycharacter (*?") and anystring (") to help clarify
how those editor tools work.

Recovery of Files and Session "Crashes

There are two aspects of recovering files: 1.) moving files into and out of your
$HOME/.recover directory; and 2.) recovering files which are being edited
when some sort of "crash" occurs (such as a power failure or a phone/modem
hang-up). Chapter 3 provides you with the information about using shell
commandspurge", "rcvr”, and tirrec" to manipulate files into and out of your
$HOME/.recover directory. If you should be unfortunate enough to have a
“crash" occur during an edit session, you can find information in chapter 3
about what to do and what happens to allow you to recover most, if not all, of
the files involved in the session. (This involves thl@écovel' command, run

by you after Skpreserve has been run as explained in chapter 2.)

132

Chapter 6: Help and Problem-Solving
Questions and Possible Answers

Questions and Possible Answers

The following paragraphs contain some questions about subjects on which you
may encounter a problem, along with some information which may help you
find a solution or at least point the way to a possible solution.

Why Aren’t My Control Characters Entered or Displayed?

Control characters are entered into the editor by a two-step method: You
pressCTRL v, followed by the control character. For example, to enter a
CTRLI (lower-case L), you first typ€TRL v and therCTRL | (pressing the

control key and the letter at the same time). A control character is shown as a
"." Inthe text area of the Softkey Driven Editor, you can use the

WHATCHAR softkey with the cursor positioned over the "period", and find

what the real character is, as well as its numerical value in decimal,
hexadecimal, or octal. The subject of entering control characters is discussed
in chapters 3 and 5.

Why Doesn’t My File Print Okay Outside the Editor?
The problem probably is caused by conversion of tab characters. The edi.

normally does not have tab charactersin it. When a file is sent to the pri
using thelist command, there are only spaces in the file and the printout
should look exactly like the text inside the editor. The problem usually occurs
when the file is saved to the disk from the editor. If the file was saved using
thetabconvert option, then tab characters are used whenever space can be
saved in the disk file. Then, when the file is sent to the printer, the tab
characters can cause the output to look quite different. The solution is to
either save the file without thiebconvert option (using the default) or to
convert the tabs to spaces before sending the file to the printer using the
"expand(1)" shell command. See the syntaxin chapter 5 for more
information.

Why Do | Get a Syntax Error When | Enter a File Name?

The likely problem has to do with the scanner of the Softkey Driven Editor.
The standard file name format used by théards any rame starting with a
letter, followed by any number of letters and/or numbers. A pogsibledem

is that the file name you entered is a "token" used by thereduch as the

133

Chapter 6: Help and Problem-Solving
Questions and Possible Answers

word "copy", which is also an editormmonand. Another pssilility is that the

file name has some strange characters, such as "-"or "@", or starts with a
number. The solution to getting the file accepted is to escape the offending
character with a backslash "\". For example, to edit the file named "copy", the
command might look like thisetlit \copy". To edit a file where the name
contains a "-", the command could leelit the\-file". Another solution is to

put the entire file name in quotes, asedit the-file™. However, if "$"is part

of the file name, you must escape the "$"regardless of whether the file name is
quoted or not. Otherwise, the "$" will be taken as part of a shell variable and
will be replaced by any text that it matches.

Why Doesn’t My 'Make" File Work Any More?

One of the requirements for a "make" file to work is that tab characters must
be used in front of all gamands that are to be executed as part of the make(1)
process. The problem can occur in using the editor because the default action
for saving a file is to save with only spaces and no tab characters. In this way,
the "make" file no longer will be acceptable to make(1). The solution is to
re-edit the file using the editor, and to save the file usingath@nvert

option, thus putting tab characters back into the file.

Why Do | Sometimes Get Strange Characters Displayed
On-Screen?

This may occur when you are scrolling up and down in a file or when you make
a large jump from one place in the file to another. It may be caused by the
terminal being used. In some cases, the terminal is not able to keep up with
the baud rate of transmission of the computer. When this happens, the data is
scrambled on the display into what is commonly called "garbage". The best
solution for this is to lower the baud rate for your terminal and the computer

it is networked to. If this change in baud rate appears to solve the problem,
you should inform your System Administrator so the baud rate is changed as
far as the computer is concerned. This should involve changing the "getty" file
in the "fetc/inittab" and "/etc/gettydefs" files to reflect the new baud rate. The
change procedure is documented in the manual available to the System
Administrator. The change made does not take effect until the computer is
brought back into the multi-user state.

134

Installation Notice

Editor Status and Error Messages

Chapter A: Editor Status and Error Messages
Introduction

Introduction

The Softkey Driven Editor displays error and status messages on the STATUS
line and on the command line. The messages and questions relate to editor
modes, to editor gnmand syntax, and to various shell commands. The
messages are summarized in this appendix, along with explanations of the
meaning oipurpose for the message or question.

COMMAND
MESSAGE
EXPLANATION

Invoking Editor status/error messages

display size is NUMBER lines by NUMBER columns.
It must be at least 24 by 80.

The Softkey Driven Editor Wonly work on displays that are at least 24
lines and 80 columns in size. The editdlf stop if you attempt to run it
in a window that is smaller than 24 lines by 80 columns.

terminal initialization failed

Problem with window system.

usage: sk [-c] [-n] [-V] [-f number] [-t number] [-i fileime] [filename]
Bad option or filename while invoking eédr from shell.

136

Chapter A: Editor Status and Error Messages
Introduction
$HOME/.recover directory not accessible
Protection on SHOME/.recover directory has been set so user can't
modify it, or the SHOME/.recover directory doesn't exist.
Maximum number of recoverable files available is NUMBER
MAXREC shell variable set outside of limits from 1128.

syntax error

Command not formedoerectly. If an 'R’appears in the right corner of
the STATUS line, then the command is syntacticallyect.

Keyword completion not possible
No valid keywords are possible given therent conmand line.

Possible tokens: CMAND_LIST
A list of valid keywords given theuerent canmand line.

Response pipe create
An internal problem occurred while trying to create a pipe to the feeder.

Data pipe create
An internal problem occurred while trying to create a pipe to the feeder.

exec of feeder
An internal problem occurred while trying to exec the feeder.

Cannot status input
The feeder does not respond to the editor.

No homedown in shell escape
The terminal is not able to do a homedown.

yacc stack overflow
Command too complexor too large to be parsed.

yacc reduce stack overflow
Command too complexor too large to be parsed.

Disk full, line truncated
System disk is full, editor cannot write data.

137

Chapter A: Editor Status and Error Messages

Introduction

Disk full, some data was lost
System disk is full, editor cannot write data.

Disk error, line truncated
Error occurred on system disk, editor cannot write data.

Number overflows a 32-bit integer
Entered number is too large.

Command status/error messages

autotab
Autotab is now off
Autotab mode is now off.
Autotab is nowon
Autotab mode is now on.
Autotab in columnar mode, column: NUMBER
Autotab mode to a specific column is now on.

cd
Working directory is DIRECTORY
The change directory command worked.

< CMDFILE>
Can't execute command file - No feeder

The command file aganot be executed since the file
$HP64000/lib/feeder does not exist.

138

Chapter A: Editor Status and Error Messages
Introduction

Can't execute commandfile - Feeder rev. NUMBER != Feature rev.
NUMBER

The command file aanot be executed since the file
$HP64000/lib/feeder revision number does not match the editor
internal revision number.

Define parameter

If the user did not specify enough pareters, then the gdr will
prompt for them.

Parameter >130 characters

The size of the parameter is greater than maximum of 130
characters.

Parameter name is invalid or longer than 30 chars

The parameter name given in the command file is too long or
incorrect.

Parameter must be specified
A parameter must be entered.
Missing paemeters in nested invocation

When invoking a command file from another command file, all
parameters must be defined.

CMDFILE :not a text file
The command file to be executed is natoamal text file.

column_numbers
Column number updating on

Column number updating to the status line during the REVISE,
INSERT, range, and tabset modes is turned on.

Column number updating off

Column number updating to the status line during the REVISE,
INSERT, range, and tabset modes is turned off.

139

Chapter A: Editor Status and Error Messages
Introduction

copy
String not matched; no lines copied

The match string used as part of the limit was not found.

Lines copied: NUMBER
The indicated number of lines have been copied to the internal
buffer.

delete

String not matched; no lines deleted
The match string used as part of the limit was not found.

Lines deleted: NUMBER
The indicated number of lines have been deleted.

edit
Invalid tab conversion; using default

The tab conversion value entered was less than 1 or greater than
239, so default of 8 was used.

Do you want to lose changes?

Occurs ifthe current edit file has been modified. If the answer is
anything but 'yes' or 'y, then the edit session continues without
losing those changes. If the answer is yes’or Y, then the modified
current file is lost and the new file is edited.

Answer is too long

The answer to the question was too long.
No changes lost, edit resumed

The answer to the question was something other than ‘yes’or V.
file FILE is read protected

The file to be edited is read-protected, so it cannot be read.

140

Chapter A: Editor Status and Error Messages
Introduction
edit (Contd)
file FILE is not ordinary

The file to be edited is not an ordinary text file, so it cannot be
edited.

file FILE is not accessible

The file either does not exist or the path to that file is protected.
As aresult, the file cannot be edited.

Loading FILE
File is being loaded into editor.
Editing new file

An edit session is begun without any data or fdene. The user
is placed in the INSERT* mode.

Editing into FILE

An edit session is begun without any data, but is given aafiten
The user is placed in the INSERT* mode.

Editing FILE
This file is been loaded into the editor.
Editing FILE, truncation

This file has been loaded, but some lines were truncated due to
being over 240 characters long.

Interrupt, editing FILE

This file has been loaded, but loading of the file was interrupte
so some data may be missing.

Interrupt, editing FILE, truncation

This file is being edited, but some lines were truncated due to
being over 240 characters long. Also, loading of the file was
interrupted, so some data may bissing.

Editing FILE into FILE

The first file has been loaded into the editor and its current name
is the second.

Editing FILE into FILE, truncation

The first file has been loaded into the editor and its current name
is the second. Some lines were truncated due to being over 240
characters long.

141

Chapter A: Editor Status and Error Messages

Introduction

end

Interrupt, editing FILE into FILE

The first file has been loaded into the editor and its current name
is the second. Also, loading of the file was interrupted, so some
data may be missing.

Interrupt, editing FILE into FILE, truncation

The first file has been loaded into the editor and its current name
is the second. Some lines were truncated due to being over 240
characters long. Also, loading of the file was interrupted, so some
data may be missing.

Invalid tab conversion; using default

The tab conversion value entered was less than 1 or greater than
239, so default of 8 was used.

Can't update recoverable files directory

Protection on $HOME/.recover/directory has been set so user
can't modify it.

Can' set permissions on recoverable list

Protection on SHOME/.recover/directory has been set so user
cant modify it.

No destination file

No file name was given to thewent edit file nor was one used as
part of the command.

file FILE already exists, delete old?

If writing to an existing file with a name other than therent

edit file, then this question is asked. If the answer is yes’, or Y,

then the existing file is either put in the recovery directory or
removed. The file is then written to disk. If the answer is

anything else, then no action occurs and the edit session continues.

Answer is too long
The answer to the question was too long.
File FILE not deleted, edit resumed
The answer to the query was something other than yes’or .

142

Chapter A: Editor Status and Error Messages
Introduction
end (Cont'd)
Unable to purge FILE, no save made

The purging of the file to the recovery directory failed, so the
current edit file could not be written. The recovery directory is
possibly read- or writ@rotected.

File FILE is a directory or special file, edit resumed

The file to be saved to is an existing directory or special file, which
is not allowed.

File FILE not accessible, edit resumed
Part of the path for the file is protected against writing.
writing FILE
The file is being written to disk.
error opening file FILE
Some internal error occurred while opening the file for writing.
Interrupt, wrote NUMBER lines
The writing of the file was interrupted, so it may not be
completely written.
extract
String not matched; no lines extracted
The match string used as part of the limit was not found.
Lines extracted: NUMBER

The indicated number of lines have been extracted and placed
the internal buffer.

find
Can't have two *’s next to each other; no find made
Illegal match string in find command.
String not matched; no find occurred
The match string used as part of the limit was not found.
Finding™ MATCHSTRING"
Indicates that a find command is executing.

143

Chapter A: Editor Status and Error Messages

Introduction

find (Cont'd)

Invalid limit
The limit specified for the find command wilegal or invalid.
Interrupt,® MATCHSTRING” not found

The find command was inteupted before the pattern could be
found.

Found at column: NUMBER
Indicates the column position of the found pattern.
A MATCHSTRING” not found
The string could not be found in the given limit and range margins.
NUMBER: Too many ? or * in matching string
More than 240 ? and/or * used in the pattern.
NUMBER: matching string overflow
The pattern was too large for internal storage.

help

Finding help text

The help file is being searched.
Help softkeys are not defined properly

The help file contains lines that are not in the proper format.
$HP64000 is the only emanment variable allowed

The help file may only contain the $HP64000 shell variable as part
of the file names.

(MALLOC) unable to allocate memory
No memory was available for the help command.
Help file did not close

The editor was not able to close the help file for some internal
reason.

144

Chapter A: Editor Status and Error Messages
Introduction
insert
Data lost due to truncation
The inserted line was greater than 240 characters, so some
characters were lost.
INSERT
To leave, press INSERT key again

Indicates how to leave the INSERT* mode to return to the
command mode.

Null character not allowed
User cannot enter a null character as text.
Text line number or + /- offset from current line
User temporarily leaves INSERT* mode. Enter a line number
and press Return. The editoithmove to the line and resume
editing the file in the INSERT* mode.
join
String not matched; no strings joined
The match string used as part of the limit was not found.
Join: range error
Bad limit for join.
Interrupt, no join occurred
An interrupt occurred before the join could complete.
Join: line too long

The resulting line was longer than 240 characters.
Number of lines joined: NUMBER
Indicates the number of joined lines.

<LINE+ ->
Line not present

An absolute line value was given, so the editor uses the nearest
existing line number for positioning.

145

Chapter A: Editor Status and Error Messages

Introduction

< LINE+-> (Contd)

list

Line not present, plus NUMBER

Given offset would go outside of the current file, so the editor
uses the end of file.

Line not present, minus NUMBER

Given offset would go outside of the current file, so the editor
uses the START line.

Jumping to NUMBER

Going to a specific line.
Jumpingto line O

Goingto the START line.
Jumping to new line

Goingto a line without a line number.

String not matched; no lines listed

The match string used as part of the limit was not found.
Listing ...

Listing is proceeding.
Invalid limit

A bad range was given for listing.
Tried to list to directory or special file

The file name given was a directory or special file.
Cannot access file

The path to the given file is write-protected.
Unable to purge FILE

The editor was unable to purge the existing file so it could be
listed to.

Cant open FILE
The editor was not able to open the designated file for writing.

146

Chapter A: Editor Status and Error Messages
Introduction
list (Contd)

Interrupt,listed NUMBER lines

An interrupt occurred durinigsting.
Listed NUMBER lines

Indicates the number of lines listed.
PRINTER environment variable not defined

In order to use the printer’ option, the PRINTER shell variable
must be defined and exported.

PRINTER environment variable must not be blanks
The PRINTER shell variable must be assigned a shelhtand.
Command must not be blanks

When using a shell command as a destination folighe
command, it must not be left blank.

Hit return to continue

After using a shell command as a destinationifting, the user
must press a key to cause the display to be redrawn in case some
output was generated.

Listed help text

Help text was listed.
Help softkeys are not defined properly

The help file contains lines that are not in the proper format.
$HP64000 is the only ema@nment variable allowed

The help file may only contain the $HP64000 shell variable as
of the file names.

(MALLOC) unable to allocate memory
No memory was available for the help command.
Help file did not close

The editor was not able to close the help file for some internal
reason.

error is NUMBER
Some error occurred whilesting.

147

Chapter A: Editor Status and Error Messages
Introduction
list (Contd)
error in closing file; FILENAME
Some error occurred while closing the file that listed to.
error in closing file; error is NUMBER
Some error occurred while closing the file that listed to.

log_commands
Appending commands to LOGFILE until "log off"
Logging to a file, appending to its contents.
Logging commands to LOGFILE until "log off"
Logging to a file, overwriting the current file contents.
Appended NUMBER lines to LOGFILE

When logging is turned off, indicates the number of lines
appended to the log file.

Logged NUMBER linesto LOGFILE

When logging is turned off, indicates the number of lines written
to the log file.

No log file active
When using the log_commands off command and no logging is
occurring.
merge
Invalid Line specification
Bad limit given for merge command.
No merge file name given

No file name was specifiator does the current editsson have
a file name.

file FILE not accessible

The file to be merged either does not exist or a part of its path is
read-protected.

file FILE read protected
The file to be merged is read-protected.

148

Chapter A: Editor Status and Error Messages
Introduction
merge (Cont'd)

file FILE not ordinary

The file to be merged is either a directory or a special file.
error opening file FILE

The editor was not able to open the file.
Merging ...

A merge is occurring.
Interrupt, merged NUMBER lines, truncation

The merge command was intepted, having merged some lines,
with some of those lines being over 240 characters in length and
requiring truncation.

Merged NUMBER lines, truncation

The merge command merged some lines, with some of those lines
being over 240 characters in length and requiningdation.

Interrupt, merged NUMBER lines

The merge command was intepted, having merged some
number of lines.

Merged NUMBER lines

The merge command merged some number of lines.
Merged NUMBER lines, NUMBER nulls

Nulls are removed from merged text.

range
Range column NUMBER
The current range is for the specified column.
Range columns NUMBER thru NUMBER
The current range is from the first column to the second column.

Insert line key not implemented
The 'insert line' key is not defined for the range mode.

149

Chapter A: Editor Status and Error Messages
Introduction
range (Contd)
Range is now columns NUMBER thru NUMBER
The resulting range after using the range mode is from the first
NUMBER column to the second NUMBER column.
renumber
Renumbering
Renumbering is occurring.
Lines of text: NUMBER
The number of lines in the current file.

repeat
Repeat: range error
A bad limit for the repeat command.
No repeat made, repeat value 0
A value of 0 was used, so no repeat was made.
Repeating
Repeating is occurring.
Lines repeated: NUMBER
The number of lines actually repeated.

replace

Can't have two *’s next to each other; no replacement made
Illegal match string in replace command.

String not matched; no strings replaced
The match string used as part of the limit was not found.

Illegal range - No replacements made
Invalid limit was given for replace command.

No replacement string available

No replacement string was given and no previous replacement
string was available.

150

Chapter A: Editor Status and Error Messages
Introduction

replace (Contd)

Null matching string - No replacements made
The first pattern-matching string cannot be the null string.
replacing MATCHSTRING” with » REPLACESTRING”
Replacement is oacring.
Interrupt, no replaements made

The replace command was intepted before any replaments
could be made.

Interrupt, replaced NUMBER occurrences, truncation occurred

The replace command was intepted. The replace oumand
had replaced some strings, the result of which was that some lines
were truncated when their length exceedéd characters.

Replaced NUMBER occurrences, truncation occurred

The replace command had replaced some strings, the result of
which was that some lines were truncated when their length
exceeded 240 characters.

Interrupt, replaced NUMBER occurrences

The replace command was intepted, having replaced some
number of strings.

Replaced NUMBER occurrences

The replace command replaced allweences of the string in the
given limit and range.

No replacements made

The replace command was not able to find anyences of the
pattern in the given limit and range.

NUMBER: Too many ? or * in matching string

More than 240 ? and/or * used in the pattern.
NUMBER: matching string overflow

The pattern was too large for internal storage.

151

Chapter A: Editor Status and Error Messages
Introduction
retrieve
NUMBER lines retrieved
Indicates the number of lines retrieved from the internal buffer.

REVISE
To leave, press REVISE key again

Indicates how to leave the REVISE* mode to return to the
command mode.

Unable to enter REVISE mode since file is empty

If there are no lines in the current file, then the user may not enter
the REVISE* mode.

Must exit REVISE mode since file is empty

Since there are no lines in the current file, the user must leave the
REVISE* mode.

Null character not allowed
User cannot enter a null character as text.

Text line number or + /- offset from current line
User temporarily leaves REVISE* mode. Enter a line number
and press Return. The editoithmove to the line and resume
editing the file in the REVISE* mode.

save
Invalid tab conversion; using default

The tab conversion value entered was less than 1 or greater than
239, so default of 8 was used.

Can't update recoverable files directory

Protection on SHOME/.recover/directory has been set so user
cant modify it.

Can't set permissions on recoverable list

Protection on $HOME/.recover/directory has been set so user
cant modify it.

No destination file

No file name was given to thewent edit file nor was one used as
part of the command.

152

Chapter A: Editor Status and Error Messages
Introduction
save (Cont'd)
file FILE already exists, delete old?

If writing to an existing file with a name other than therent

edit file, then this question is asked. If the answer is 'yes'or V,
then the existing file is either put in the recovery directory or
removed. The file is then written to disk. If the answer is anything
else, then no action occurs and the edit session continues.

Answer is too long

The answer to the question was too long.
File FILE not deleted, edit resumed

The answer to the query was something other than ‘yes'or V.
Unable to purge FILE, no save made

The purging of the file to the recovery directory failed, so the
current edit file could not be written. The recovery directory is
possibly read- or writ@rotected.

File FILE is a directory or special file, edit resumed

The file to be saved to is an existing directory or special file, which
is not allowed.

File FILE not accessible, edit resumed

Part of the path for the file is protected against writing.
writing FILE

The file is being written to disk.
Saved FILE

The file has been written to the disk.

error opening file FILE
Some internal error occurred while opening the file for writing.
Interrupt, wrote NUMBER lines

The writing of the file was interrupted, so it may not be
completely written.

153

Chapter A: Editor Status and Error Messages
Introduction
split
String not matched; no split occurred
The match string used as part of the limit was not found.
Split: line NUMBER not found

The split command was not able to find the line that was to be
split (as in an empty file).

Split: illegal column NUMBER
A column value was given that was less than 1 or greater than 240.

tabset
Using default value

The tab value entered was less than 1 or greater than 239, so
default of 16 was used.

Insert line key not implemented
The insert line’key is not defined for the tabset mode.
Too many variable tab positions
Too many tab positions were entered for the tabset command.
wait
Waiting for SIGINT (ctrl-c) or NUMBER seconds

To continue, either a CTRL ¢ must be pressed or some number of
seconds must pass.

Waiting for SIGINT (ctrl-c)
To continue, a CTRL ¢ must be pressed.
Not able to get system time

The editor was not able to determine the system time used for
waiting.

154

Chapter A: Editor Status and Error Messages
Introduction

Executing shell command ...
The shell command is being executed.
Hit return to continue

After a shell command has completed, this message informs the
user that a key must be pressed to continue. After the keyis
pressed, the display is redrawn and the edit session continues.

Can't homedown when escaping to the shell
The terminal is not able to do a homedown before executing the
shell command.
WHATCHAR
Control character CONTROLCHARACTER (nnD,0xnn,0nnn)

The character under the cursor is a control character, with the
given decimal (nnD), hexadecimal (Oxnn), and octal (Onnn) values.

Space character (nnD,0xnn,0Onnn)

The character under the cursor is the space character, with the
given decimal, hexadecimal, and octal values.

Normal character CHARACTER (nnD,0xnn,0nnn)

The character under the cursor is a normal character, with the
given decimal, hexadecimal, and octal values.

ESC character (nnD,0xnn,0nnn)

The character under the cursor is the ESC character, with the
given decimal, hexadecimal, and octal values.

DEL character (nnD,0xnn,0nnn)

The character under the cursor is the DEL character, with the
given decimal, hexadecimal, and octal values.

Unknown character (nnD,0xnn,0nnn)

Editor cannot display type of character under cursor if greater
than 127 decimal (7F hex, 177 octal).

155

Chapter A: Editor Status and Error Messages
Introduction
CTRLd
Do you really want to quit?

This query occurs when a CTRL d is pressed. If the user wishes to
leave the editor, a yes’or 'y answer is needed. Otherwise, the edit
session continues.

Answer is too long
The answer to the question was too long.
No changes lost, edit resumed
The answer to the question was something other than yes'or .

CTRLrorCTRLb
Recall buffer empty

No commands have been placed in the recall buffer, so nothing
can be recalled.

Recall buffer broken
Internal problem with the recall ounand.

skpreserve status/error messages

usage: skpreserve

The skpreserve command does not allow any options to be used in
invoking it.
Unable to open temporary directory DIRECTORY

The directory where the crashed edit sessions reside could not be
opened. This may be due to a protection problem.

Couldn't copy file TMPFILE to PRESERVEFILE

Due to being on different file systems, an attempt was made to
copy the temporary file to the preserve directory. This was not
possible for some internal reason.

Couldn't link file TMPFILE to PRESERVEFILE

Some internal error occurred while trying to link the temporary
file to the preserve file.

156

Chapter A: Editor Status and Error Messages
Introduction

Couldn't unlink TMPFILE

Some internal problem has prevented the link from being
removed.

Error while trying to open pipe for rieg
Some system error caused the mail message to not be sent.
Error on closing pipe

Some system error caused the pipe, used to mail the message, to
close improperly.

skrecover status/error messages
usage: skrecover [-d] [-r] [-u] [-n fileid] [-t number] [-f file] [file]

User did not follow the syntax for the command. For example, the
-d’option may not be used with any other option.

No filename available, use -f option

Recovery of an unnamed ediss®n requires that the -f option
be used to give the recovered file a name.

Cant find recovery file for an unnamed file

The user is trying to recover an unnamed file and that filect
be found.

Cant find recovery file for FILE
The user is trying to recover a file and that file cannot be found
unknown option: NUMBER

The recovery file has bad data in it, so complete recovery may
be possible.

Recovery file incomplete, some data may be lost.

The recovery file is missing some data, so complete recovery may
not be possible.

copy: error
delete: error
extract: error

An error occurred during the recovery process. Some data may be
lost.

157

Chapter A: Editor Status and Error Messages

Introduction

File FILE exists, no save made

The -u option was not used, so an existing file will not be
overwritten. $HOME/.recover directory not accessible.

Protection on $HOME/.recover directory has been set so user
can't modify it, or the $3HOME/.recover directory doesn' exist.

Maximum number of recoverable files available is NUMBER

The shell variable MAXREC was set to a bad value or a number
greater than 128.

Can't update recoverable files directory

Protection on $HOME/.recover/directory has been set so user
can't modify it.

Can' set permissions on recoverable list

Protection on $HOME/.recover/directory has been set so user
can't modify it.

Unable to open temporary directory DIRECTORY

The temporary directory where the crashed edisis@s originally
resided could not be opened. This may be due to a protection
problem.

Can't unlink FILE

Some internal problem has prevented the link from being
removed.

Unable to write file FILE

The skrecover command is not able to write the file due to either
an existing file or not being able to open a file to write to.

Unable to purge existing file FILE, no save made

The purging of an existing file did not work, so the ed#sgen
could not be recovered.

Disk full, some data was lost

The system disk being written to is full, so the recovery of the edit
session is not possible.

158

Chapter A: Editor Status and Error Messages
Introduction

Purge status/error messages

no $HOME shell variable

The user does not have a $HOME shell variable defined and
exported.

Maximum number of records available is NUMBER

The shell variable MAXREC was set to a bad value or a number
greater than 128.

Can't open recover file directory

Protection on $HOME/.recover directory has been set so user
can't modify it, or the $3HOME/.recover directory doesnt exist.

Can' copy file across file system

An error occurred while trying to copy the file between file
systems.

Cant link to file
Some internal problem has prevented the link from being made.
Can't unlink old file

Some internal problem has prevented the link from being
removed.

Can't update recoverable files directory

Protection on SHOME/.recover/directory has been set so user
cant modify it.

Can't set permissions on recoverable list

Protection on SHOME/.recover/directory has been set so user
cant modify it.

FILE purged
The purge to the SHOME/.recover directory worked.
Cant purge FILE

The purge command was unable to place the file in the
$HOME/.recover directory.

159

Chapter A: Editor Status and Error Messages

Introduction

rcvr status/error messages

usage: rcevr [-f newfile] file [file2 ...]
Indicates when bad options are used.
Only one file may be recovered when using -f option

Recovery of more than one file was attempted while using the -f
option, which is not allowed.

no $HOME shell variable

The user does not have a $HOME shell variable defined and
exported.

file FILE not found

The file does not exist in the recovery directory. This may be due
to the fact that an absolute path must be matched. If a relative file
name is entered as part of the rcvr command, thenuttrertt
directory will be used as part of the absolute path to that file.

File FILE already exists
The rcvr command W not overwrite an existing file.
Can't open recover file directory

Protection on $HOME/.recover directory has been set so user
can't modify it, or the $HOME/.recover directory doesnt exist.

Not able to copy file across file system

An error occurred while trying to copy the file between file
systems.

Not able to link to old file
Some internal problem has prevented the link from being made.
Can't unlink recoverable alias

Some internal problem has prevented the link from being
removed.

Can't update recoverable files directory

Protection on $HOME/.recover/directory has been set so user
cant modify it.

Can't set permissions on recoverable list

Protection on $HOME/.recover/directory has been set so user
cant modify it.

160

Chapter A: Editor Status and Error Messages
Introduction

FILE recovered
The recovery worked for the given file.
FILE not recovered
The rcvr command was unable to recover the file.

dirrec status/error messages

No personal recovery directory
The user does not have a $HOME/.recover directory.

161

Installation Notice

Editor Command Truth Tables

Chapter B: Editor Command Truth Tables

Introduction

Introduction

Editor truth values in the following table are related to the "Test Clause"
which is executed at the beginning of each iteration of the while command. It
also affects the "Body Clause" as to what truth value is returned at the end of
the while command. For more information on the while command, refer to
the syntaxin chapter 5.

Editor Command Truth Values

Command Value
autotab true
copy true if lines copied

false if O lines copied

delete true if lines deleted
false if O lines deleted

extract true if lines extracted
false if O lines extracted

find true if string found
false if string not found

insert true

join true if lines joined
false if no lines joined

list true if lines listed
false if O lines listed

164

Command

<LINE+ ->

merge

range

renumber

repeat

replace

retrieve

split

tabset

while

Chapter B: Editor Command Truth Tables
Introduction

Value

true if line is found
false if line not found

true if file merged
false if no lines merged

true

true if lines renumbered
false if O lines renumbered (empty file)

true if lines repeated
false if O lines repeated

true if strings replaced
false if no strings replaced

true if lines retrieved
false if O lines retrieved

true if line split
false if no split occurs

true

true if body is not empty and all statements in body tr
during last loop; or true if body is empty

false if body is not empty and one or more statement
were false during last loop

165

Chapter B: Editor Command Truth Tables
Introduction

The following editor commands have no truth value and may NOT be used in
multiple constructs:

cd

< CMDFILE>
column_numbers
edit

end

help
log_commands
save

wait

|

166

Installation Notice

Comparison with HP 64000 Editor

Chapter C: Comparison with HP 64000 Editor

Introduction

Introduction

The Softkey Driven Editor is based on the B¥®00 workstation ethr, but

has been enhanced to take advantage of your development environment. If
you are familiar with and have used the HP 64000 workstatidoregiou will

note some differences between that editor and the Softkey Driven Editor.
These differences and others of less significance are referenced where
appropriate throughout this manual. The following ismmary of some
differences and a description of how this may affect your approach to using the
Softkey Driven Editor.

List Command

In the HP 64000 workstation edr, thelist command writes to a file with the
"listing" extension, which file would always be overwritten. On the operating
system, these extensions are no longer separate from the file name. For user
file protection, on the Softkey Driven Editor, thi& command appends to
existing text unless the user specifically directs the command to overwrite the
file; this is intended to minimize text loss. Also, if a $HOME/.recover

directory exists, a copy of an existing file will be placed there before the listing
takes place.

168

Chapter C: Comparison with HP 64000 Editor
Control Characters

Control Characters

In the HP 64000 workstation edr, control characters are entered with a
special key and are displayed with a special character on-screen. With the
Softkey Driven Editor, control characters are entered with a two-step
sequence. First you preS3RL v, followed by the control character. For
example, with the Softkey Driven Editor, you would en@&RL L by pressing
the following sequence of key&€TRL v CTRL L. This will generate a "."

which represents the control character. If this "."is on the command line, then
the user will be unable to identify whether it is a period or a control character.
Ifthe ""is in the text area, th&HATCHAR softkey may be used from the

REVISE* or INSERT* mode to identify it.

Command Separators and Comments

In the HP 64000 workstation &dr, multiple conmands are separated by a
backslash "\"and comments are started with a semicolon "; ". Because the
operating system uses the backslash as an escape character, multiple
commands on the Softkey Driven Ealiare separated by semicolons";". On
the Softkey Driven Editor, coments start with a number symbol "# ". Both
editors allow cooments anywhere on the command line and they continue
until the end of the line.

Command Files

Command files on the HB4000 edior were chained, whereas on the Softkey
Driven Editor, canmand files are nestable. This means that on the Softke
Driven Editor, when a ecomand file is invoked from another command file,
the original command file waits for the second command file to finish befo
continues. Ifthe command file call is the last line in the command file, then it
will "chain” like the HP 64000 ethr. On the HR®4000, the call to the second
command file causes the first command file to terminate. Because of this

169

Chapter C: Comparison with HP 64000 Editor
Find and Replace Commands

difference, it may be necessaryto do some editing of HP 6400 aad files
to ensure that they witlin with the Softkey Driven Editor.

Find and Replace Commands

In the HP 64000 workstation &dr, the anychar and anystring softkeys
produce an enhanced "c"and "s", respectively, on therand line. These
are, in realityCTRL X andCTRL V characters.

In the Softkey Driven Editor, the anycharacter and anystring softkeys still
exist, but they produce the characters *?’, for anycharacter, and *’, for
anystring.

Editing of existing HP 64000 comand files Wl be necessary to convert these
control characters to their new equivalents. Also, if * or *?’ characters were
used in the old replace or find strings, then they will need to be escaped with
the '\’ backslash character so the character *' or '?’ will be matched, rather
than the anystring or anychar. The following command file that operates on
the current edit file might be useful (thesemenands might cause unexpected
results if thefind or replacecommands are on the same line as other editor
commands):

escape '?’and * characters in find commands

0

while find find’ do replace "\?" with "\\?"; replace "*" with "*"; -1 doend

escape ?’and * characters in replace commands

0

while find replace’do replace "\?" with "\W\?"; replace "*" with "*"; -1 doend
convert® xand ~ vto ? and *in find commands

0

while find find’ do replace "\030" with "?"; replace "026" with "*"; -1 doend

convert® xand ~ vto ? and * in replace commands

0

while find replace’do replace "\030" with "?"; replace "026" with "*"; -1 doend

170

Chapter C: Comparison with HP 64000 Editor
Other Differences

Other Differences

There are some other minor differences between the Softkey Driven Editor
and the HP 64000 workstation &afi. The following is dist of some other
differences, which may be helpful reminders if you have previously worked
with the HP 64000 ethr.

* Operation of the up-arrow and down-arrow keys. In them@and mode
of the Softkey Driven Editor, these keys operate differently. Refer to
"Keyboard Input And Functions"in chapter 4.

» Use of a "placeholder" symbol for Insert Char: There is no "placeholder”
symbol in the Softkey Driven Editor, whereas there was an underlined
caret symbol for this function in the HP 64000tedi

171

Index

ICMD! prompt softkey56

Ishell command! syntax{,27/128
"skpreserve" command for "crashe24,
#LINES prompt softkey66
#TIMES prompt softkey73
$HOME directory 22
$HOME/.recover directon2?2/23
$HP64KPATH shell variablg,0
$MAXREC shell variable10
$PATH shell variablel0

$shell variable, HP64KPATH,0
--ETC-- softkey 38

.profile directory3

.profile file, changing/creatin®
.profile file, making it active9

absolute file nameg1, 81
absolute file name23

absolute path79, 87

absolute path nama3

all, as LIMIT, 63

all, used with LIMIT,63
answers5

answers to some possible questidi3g/134
anycharacter strin@1, 113
anystring string72, 113
automatic command completiad,
autotab4l

autotab command syntak7/78

backslash character escape)
backslash escapgé?, 128
backslash escape forll27
backslash escape for®, 72, 114
backslash escape for72, 114
backslash escape for72, 114

173

backslash escape for file nar6&, 134

backslash escape for string with an octal numisr,
backslash escape for string with octal vallLig}
backslash escape for strin@g, 114

Backtab (Shift Tab) key85

baud rate problem&34

baud rate, changing "getty" file to reflect chang}
baud rate, reducing4

body clause for while commant26

cd (change directory},7, 79

change directory (cdf7

change directory command synt&,
changing an existing filel2

character identificatiory,5

characters, decimal valugs

characters, hex valués

characters, octal valuéb

clear command lin€0, 46

Clear Line key33

Clear Line keys35

cmdfile (hidden command) synta&y, 80
CMDFILE command syntaXy7, 80/81
colm_num commanci8

column number sk option -t2

column numbers command synt8%/83
COLUMN prompt softkey58

command completiod6

command completion, automati,
command entry6

command entry completion using Tab k&%,
command error messagéss

command file compatibility3

command file differences between editd@9
command files4, 8, 52, 57, 74, 80, 105, 124
command files, creating3

command files, entering and editid@/44
command files, parameter substitutidg,
command interrupt4,8

command line40

command line clea6

command line comment$9, 40

174

command line entrie§0
command line erasépb
command line placemerit]l
command line recalB6, 46
command model,9
command mode cursor operatis,
command mode descriptiot®
command separator differences between edit66,
command status messagk33
command syntaX§1/52

autotab,/7/78

change directory (cdy9

CMDFILE, 57, 80/81

column numbers32/83

command51/52

conditional commandg3/54

copy,84

delete 85

edit,86/87

end,88/89

extract,90

find, 91/92

help,93/94

insert,95

INSERT* (mode) 96/97

join, 98/99

LIMIT, 63

list, 102/105

loner commandg5

merge,106/107

POINT, 68/69

range,108/109

renumber]110

repeatl11l

replace112/115

retrieve,116

REVISE* (mode)117

save,118/119

shell command!]127/128

split, 120/121

tabset122/123

175

wait, 124

WHATCHAR, 75/76

while, 125/126
commands not used in multiple construt&6
commands summary,//48
commands, loggingi2
comments differences between editd69
comments on command link), 40
comparison with HP 64000 editd§7/171
compatibility

command file3

display,3

operating systeng
conditional command synta&3/54
configuration, data terminal4
control "pipe",18
control character, shown as "1'33
control characterg0, 75/76, 87, 107, 122
control characters differences between editt69,
control characters not generated using keybd&d,
control characters, created using octal vad@e,
control characters, creating on command K,
control characters, enterint33
control characters, octal value replacemgbb,
control characters, why are they not display&3
control characters, why are they not entet@3,
conventions and terms,
conventions, syntax9
conversion of tab characters, problems wi88
copy append optio®4
copy command syntag4
COUNT prompt softkey59
count, with while command,26
crash recovery filel9
crash skrecover commarg,
crashed edit sessions, recovery2dfi27
crashed sessioh9
crashes, recovery frorh32
creating a new file41
creating command fileg,3

176

creating files40/41

CTRL d,36

CTRL "pipe",43

CTRL |,18, 43

CTRL b,36, 41, 46

CTRL c,19, 43, 74, 124
CTRL d,20/22, 36, 75/76, 128
CTRL,14, 36, 104
CTRL q,43

CTRLT,36, 41, 46

CTRL s,43

CTRL u,35

CTRL v, 36, 43, 76, 133
current line designator (39
cursor keys32

cursor operatior32

data terminal configuratiod4

decimal value of charactergh

Delete Char key33

delete command synta85

Delete Line key34

delimiter symbols49

description, softkey driven editd,

differences between editors
command file 169
command separatdtf9
comments169
control characterd,69
down-arrow key171
find command170
placeholder symbol for Insert Chat§1
replace command,70
up-arrow key 171

differences between SK and HP 64000 editb88,

DIR prompt softkey60

directory listing, shell comman@d4

directory, .profile3

dirrec command?4

dirrec error messagessl

dirrec status messagds$1

disk space, saving1

177

display compatibility 3

display format descriptior87

display preference sk option 42

display redrawingl4

display scrambled,34

display text are&39

display with sk -v option38

display, garbage od4

display, placing softkeys, STATUS, and command lines atltbp,
display, understandin§0/39

display: softkey, command, and STATUS lines at 8&,
display: softkey, command, and STATUS lines at 84,40
dot profile (.profile) file, changing/creating,

down-arrow key33

down-arrow key differences between editdral

E echo $PATH]10
edit command42
edit command syntag6/87
editor
familiarization,4
featuresd
moving between editor and the shall,
suggestions for learning,
using command files wittg
editor access}
editor command synta®6
editor command truth tables63/166
editor crash, recover fror8,
editor description]l6
editor functional mode4,9/21
editor options12/14
editor relationship to the operating syst@m,
EDITOR shell variablel1l
editor structurel6
editor syntax, introductiors0
editor, comparison with HP 64000 editb6,7/171
editor, differences with HP 64000 editt68
editor, invoking,12/14
editor, sk,11
end comman#41
end command synta&8/89

178

end softkey41

end, as a POINTB8

ending a file42

ending files40/41

ending the edit sessiofl

entering and editing command filé2/44
entries, command lin&0

enunciator letters on STATUS Ilirg8
erase command lind6

error and status message3l

error message displayd3

error message$35/161

exclamation mark (!) for commandsl, 56, 127
Exit Editor keys 36

expand(1) shell commanti33

extract append optioA0D

extract command synta80

features, softkey driven edit@®,
file
modifying, 42
file name in quoteg1
file name problems - don't use editor "tokeris33
file name problems, strange charact&8z}
file name sk option -i FILE11,3
file name sk option FILE2,3
file name syntax errof,33
FILE prompt softkey61/62
file, overwriting,22
files
command42/44
creating40/41
ending,40/41
modifying, 40/41
saving,40/41
filters and pipes47
find command43
find command differences between editd&)
find command syntaX§1/92
find string in replace commanti]1 2

179

garbage on the display4, 36, 104, 134

getting started29/44

getty file, changing to reflect change in baud rb84,
guide to using manuad,

halting command fileg7

halting command files (temporarilyj4, 124
help,5, 129/134

help command 31

help command synta®3/94

help text,103

help using HP-UX "man" (manual) pag&8,1/132
hex value of characters5

hidden commands summa#y,

HOME directory,9

Home Down key35

Home Up key35

Insert Char key33

insert command syntaQ5

Insert Line key34

INSERT model9, 42

INSERT mode descriptio20
INSERT* (mode) command synta36/97
INSERT* mode 39/41

installing software8

interrupts,18

invoking editor and optiond2/14
invoking editor error messagds36
invoking editor status messag#86

join command syntaX8/99

keyboard functions32
keyboard functions with special meanig,
keyboard input32
keyboard keys
Backtab 35
Clear Line 33, 35
Control Character86
Delete Char33
Delete Line 34
Exit Editor, 36

180

Home Down 35

Home Up,35

Insert Char33

Insert Line 34

left-arrow and right-arron32

Next-Prev34

Recall<,36

Recall>,36

Redraw Display36

Tab,34

up-arrow and down-arrov@3
keyboard labels31
keyboard layout31
keyboard, understanding0/39
keywords 5
kill character from your operating system stty setté,
kill character, clear command lin&)
kill character, stty settin@0

learning suggestiond,

left-arrow key,32

LIMIT syntax, 63

LIMIT variable with delete comman85
LIMIT variable with extract comman@0
LIMIT variable with find command91
LIMIT variable with join command)8
LIMIT variable with list commandl 03
LIMIT variable with replace command;12
line #,39

LINE # prompt softkey65

LINE+- as a POINT64

LINE+- prompt softkey64, 100/101
LINE+-, as a POINT68

list command differences between editd&3
list command syntax,02/105

list help text 103

list printer shell variablel0, 104

log command file43

log command file, adding comments 48,
log command file, adding parameters48,
log on comman}1

log_commands commardi3

181

log_commands noappend optids
logging commands}2
loner command syntasb

make file 41

make file, tabconversiod,19

make file, why doesn't it worki,34
manual (man) pages and editor h&fp1/132
matching string71/72, 114

merge command syntak06/107
messages, command errbds
messages, command statli33
messages, dirrec errdl
messages, dirrec stati§1
messages, invoking editor errtB6
messages, invoking editor statli36
messages, purge err@g9
messages, purge statis9
messages, rcvr errdr60
messages, rcvr statdg0
messages, skpreserve erfd6
messages, skpreserve stalif§
messages, skrecover errtb,/
messages, skrecover statlfsy
messages, status and erf@], 135/161
mode indicators38

modifying a file,42

modifying files,40/41

multiple commands0, 53, 55
multiple commands on a linéD
multiple commands on one ling§

NEW line, 41

new lines, entering,0

Next key,34

null string,52, 62, 72, 91, 112, 114
number of lines,with join comman@é3
number of times, with repeat commafd1
number of times, with retrieve commanid6

octal value of charactergb
octal value replacement for control charactét$,
operating system and HP 64000 relationship,

182

options, editor12/14
overwriting a file,22

parameter substitution, command filég,
PARMS prompt softkeyg7
pattern-matche;2
pattern-matcher searci
pattern-matcher string8, 72, 113/114
pipes47
placeholder symbol (underlined car&3,
placeholder symbol for Insert Char differences between ediftts,
pmon,4
pmon (user interface softwar&Q
pmon (user interface software) for command fiigs,
POINT syntax68/69
POINT variable , with split commanti20
preparation for us@/14
Prev key 34
printer listing,104
PRINTER shell variablel03
PRINTER=Ip, setting ud,0
printing file outside editor, problems with33
problem solving5, 129/134
prompt softkey

ICMD!, 56

#LINES, 66

#TIMES, 73

COLUMN, 58

COUNT, 59

DIR, 60

FILE, 61/62

LINE #, 65

LINE+-, 64, 100/101

PARMS,67

SPACES70

STRING,71/72

TIME, 74
prompts, softkey49
purge command, used to move fil2s,
purge error messagdf9
purge status messagas9

183

guestions and possible answér33/134

range commandiO

range command syntak08/109
RANGE* mode,39

rcvr command23/24

rcvr error message$60

rcvr status messagd<,0

Recall Keys36

recall, command linel6

recover from an editor crash,
recoverable file27

recoverable file25

recovery directory, default number of fildg)
recovery of "crashed" edit sessiop4/27
recovery of files132

recovery of saved file®2
recovery of session "crashe$32
redraw displayl4

Redraw Display keysS6

relative file name27, 61, 81
relative file name<23

relative path87

renumber command syntali.0
repeat command syntak] 1
replace commandi3

replace command differences between edifiof8,
replace command syntak] 2/115
replace STRING examplek]3
replacement string,2, 113/114
response centes,

retrieve command syntak16
REVISE model9, 42

revise mode descriptio@1
REVISE* (mode) syntaxi17
REVISE* mode 39/40

revision numbers, softwaré,
right-arrow key 32

save commandil
save command syntak18/119
saving files40/41

184

saving the file41
scrambled display.,4, 36
screen width3
scrolling,3
searching directorie40
setting up "PRINTER=Ip"10
shell
csh,9
ksh,9
sh,9
shell variables3
shell variable, SMAXREC10
shell variable, SPATHIO
shell variable, EDITOR]1
shell variable, list printet,0
shell variable, SKTOP,1
shell variables9/10
shell variables, added to .profilE)
shell variables, othet1
SIGHUP signall9
SIGINT signal,19
SIGKILL signal,19
signal interruptsl8
SIGQUIT signal 18
sk command42
sk editor,11
SK editor, comparison with HP 64000 editb®,7/171
SK editor, difference with HP 64000 edit©68
sk option -c12
sk option -f NUMBER 12
sk option -i FILE1,13
sk option -n12
sk option -t NUMBER 13
sk option -v,12
sk option FILE213
skpreserve command for "crashe”,
skpreserve error messagest
skpreserve status messades
skrecover command for "crashes;' 25
skrecover error messagés,/
skrecover option®5

185

skrecover status messagesy
SKTOP shell variablel, 1

softkey driven editor descriptio8,
softkey driven editor feature3,
softkey label line38

softkey levels17

softkey line placement,1

softkey prompts49

software installation, system administratr,
software materials subscriptid,
software revision numbers,
software update$,

SPACES prompt softkey0

split command syntaxX,20/121
standard keyboar@1

START line of text39

start, as a POINTG8

status and error messagé3l
STATUS line descriptior38
STATUS line message38
STATUS line placement,1
status messagek35/161

string (with replace) examplekl3
STRING prompt softkey71/72
string wrap around,13

string, as a POINTG8

string, in find command/1, 91
string, in insert command,1, 95
string, in replace commandl, 112
string, in split command;1
strings understanding32

stty setting20, 22

syntax conventiongl9

syntax error, file namé,33
syntax for commands0

syntax for variable§0

system administration task,

T tab characterd,2/13
tab characters, importance o,
tab conversion prevention sk option 182,
tab conversion sk option -t NUMBER3

186

tab conversion when invoking sk?/13
Tab key 34

Tab key, command entry completion usi@g,
tab_conv command,1/42
tabconversion for "make" commargg, 119
tabconversion for edit commargh
tabconversion for end commar@8
tabconversion for merge commai@p
tabconversion for save commanid9
tabconversion of file being recoveré,
tabconvert optioM1, 134

tabconvert option, problems usirig3
tabset41

tabset command syntak?2/123

tabset default] 22

TABSET* mode 39

tabstop preset sk option -f NUMBER2
terminal baud rate problents}
terminal configurationl4

terminal display problem&4

terms and conventions,

test clause for while commarit6

text area39

text area of displayd9

text entry,3

text manipulation3

thru, as LIMIT,63

TIME prompt softkeyy4

truth tables, editor commant3/166
truth values for while commani26

understanding keyboard and displa®/39

until, as LIMIT, 63

up-arrow key33

up-arrow key differences between editdral

user interface software (pmo#d),80

user interface software (pmon) for command fies,

variables summaryl7/48
variables, shel3

wait command syntax,24
WHATCHAR command syntax,5/76

187

WHATCHAR softkey,36, 43

WHATCHAR, used to find characters numerical vall@3
WHATCHAR, used to identify characterk33

while command synta®{,25/126

while command, used with conditional variablE26
wildcards,3

188

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and

fitness for a particular purpose.Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software
on equipment that is not furnished by Hewlett-Packard.

© Copyright 1986, 1987, 1989, 1990, 1991, Hewlett-Packard Company.

This document contains proprietary information, which is protected by copyright.
All rights are reserved. No part of this document may be photocopied, reproduced
or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject
to change without notice.

UNIX is a registered trademark of AT&T.

TORX is a registered trademark of Camcar Division of Textron, Inc.

Hewlett-Packard Company

Logic Systems Division

8245 North Union Boulevard
Colorado Springs, CO 80920, U.S.A

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the U.S.
Government is subject to restrictions set forth in subparagraph (C) (1) (ii) of the
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304

Printing History

New editions are complete revisions of the manual. The date on the title page
changes only when a new edition is published.

A software code may be printed before the date; this indicates the version level of
the software product at the time the manual was issued. Many product updates
and fixes do not require manual changes, and manual corrections may be done
without accompanying product changes. Therefore, do not expect a one-to-one
correspondence between product updates and manual revisions.

Edition 1
Edition 2
Edition 3
Edition 4
Edition 5

Edition 6

64790-90901 E0686, June 1986 (Preliminary)
64790-90901 E0587, May 1987
64790-97000, July 1989

64790-97001, July 1990

64790-97002, February 1991

B1444-97000, November 1991

	How To Use This Manual
	Contents
	General Information
	Preparation for Use
	Modes, Structure, and Operating System Connections
	Getting Started
	Editor Command Syntax
	Help and Problem-Solving
	Editor Status and Error Messages
	Editor Command Truth Tables
	Comparison with HP 64000 Editor
	Index

