
User’s Guide

HP B1444A
Softkey Driven Editor

Certification and Warranty

Certification

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard further
certifies that its calibration measurements are traceable to the United States
National Bureau of Standards, to the extent allowed by the Bureau’s calibration
facility, and to the calibration facilities of other International Standards
Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in materials and
workmanship for a period of 90 days from date of installation. During the warranty
period, HP will, at its option, either repair or replace products which prove to be
defective.

Warranty service of this product will be performed at Buyer’s facility at no charge
within HP service travel areas. Outside HP service travel areas, warranty service
will be performed at Buyer’s facility only upon HP’s prior agreement and Buyer
shall pay HP’s round trip travel expenses. In all other cases, products must be
returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping
charges to HP and HP shall pay shipping charges to return the product to Buyer.
However, Buyer shall pay all shipping charges, duties, and taxes for products
returned to HP from another country. HP warrants that its software and firmware
designated by HP for use with an instrument will execute its programming
instructions when properly installed on that instrument. HP does not warrant that
the operation of the instrument, or software, or firmware will be uninterrupted or
error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,
unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

iii

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance agreements are
available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

iv

Safety

Summary of Safe Procedures

The following general safety precautions must be observed during all phases of
operation, service, and repair of this instrument. Failure to comply with these
precautions or with specific warnings elsewhere in this manual violates safety
standards of design, manufacture, and intended use of the instrument.
Hewlett-Packard Company assumes no liability for the customer’s failure to
comply with these requirements.

Ground The Instrument

To minimize shock hazard, the instrument chassis and cabinet must be connected to
an electrical ground. The instrument is equipped with a three-conductor ac power
cable. The power cable must either be plugged into an approved three-contact
electrical outlet or used with a three-contact to two-contact adapter with the
grounding wire (green) firmly connected to an electrical ground (safety ground) at
the power outlet. The power jack and mating plug of the power cable meet
International Electrotechnical Commission (IEC) safety standards.

Do Not Operate In An Explosive Atmosphere

Do not operate the instrument in the presence of flammable gases or fumes.
Operation of any electrical instrument in such an environment constitutes a definite
safety hazard.

Keep Away From Live Circuits

Operating personnel must not remove instrument covers. Component replacement
and internal adjustments must be made by qualified maintenance personnel. Do not
replace components with the power cable connected. Under certain conditions,
dangerous voltages may exist even with the power cable removed. To avoid
injuries, always disconnect power and discharge circuits before touching them.

Do Not Service Or Adjust Alone

Do not attempt internal service or adjustment unless another person, capable of
rendering first aid and resuscitation, is present.

v

Do Not Substitute Parts Or Modify Instrument

Because of the danger of introducing additional hazards, do not install substitute
parts or perform any unauthorized modification of the instrument. Return the
instrument to a Hewlett-Packard Sales and Service Office for service and repair to
ensure that safety features are maintained.

Dangerous Procedure Warnings

Warnings, such as the example below, precede potentially dangerous procedures
throughout this manual. Instructions contained in the warnings must be followed.

Warning Dangerous voltages, capable of causing death, are present in this instrument. Use
extreme caution when handling, testing, and adjusting.

vi

Safety Symbols Used In Manuals

The following is a list of general definitions of safety symbols used on equipment
or in manuals:

Instruction manual symbol: the product is marked with this symbol when it is
necessary for the user to refer to the instruction manual in order to protect against
damage to the instrument.

Indicates dangerous voltage (terminals fed from the interior by voltage exceeding
1000 volts must be marked with this symbol).

Protective conductor terminal. For protection against electrical shock in case of a
fault. Used with field wiring terminals to indicate the terminal which must be
connected to ground before operating the equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal common,
as well as providing protection against electrical shock in case of a fault. A
terminal marked with this symbol must be connected to ground in the manner
described in the installation (operating) manual before operating the equipment.

Frame or chassis terminal. A connection to the frame (chassis) of the equipment
which normally includes all exposed metal structures.

Alternating current (power line).

Direct current (power line).

Alternating or direct current (power line).

Note The Note sign denotes important information. It calls your attention to a procedure,
practice, condition, or similar situation which is essential to highlight.

vii

Caution The Caution sign denotes a hazard. It calls your attention to an operating
procedure, practice, condition, or similar situation, which, if not correctly
performed or adhered to, could result in damage to or destruction of part or all of
the product.

Warning The Warning sign denotes a hazard. It calls your attention to a procedure, practice,
condition or the like, which, if not correctly performed, could result in injury or
death to personnel.

viii

How To Use This Manual

This manual contains information about operating the Softkey Driven Editor. At
the beginning of each chapter there is a summary of the information which you will
find in that particular chapter. The appendices of this manual contain additional
information which either supplements that in the chapters, or which helps explain
the use of the Softkey Driven Editor.

When you use this manual and have a specific action you want to take, or a specific
subject of interest, the following summary may be helpful. Refer to the action or
subject of interest in the left-hand column. Then locate the chapter or appendix in
the right-hand column for the action or information which meets your needs.

IF YOU WANT TO: THEN REFER TO:

Learn About the Softkey Driven Editor Chapter 1 - This chapter provides a description of
the Softkey Driven Editor and its features, the
relationship to your operating system and to the HP
64000 editor, as well as other information about
finding answers and updating software.

Prepare to Use the Editor Chapter 2 - This chapter tells you about
procedures for installing the Editor, how to modify
your .profile for easier use, how to invoke the
Editor and its options, and about use of your
terminal for keyboard entry.

Learn Editor Modes and Structure Chapter 3 - This chapter has information about
how the Softkey Driven Editor is structured, the
levels of softkeys available, a functional
description of its three modes, how shell
commands are used with the Editor, and how to
recover files from "crashed" edit sessions.

ix

IF YOU WANT TO: THEN REFER TO:

Get Started At Creating And Editing Text Files
And Commands

Chapter 4 - This chapter includes descriptions of
the keyboard entry, the display format, creating and
editing files, and entering and editing command
files.

Learn Details About Commands Available And
The Syntax For Using The Commands

Chapter 5 - This chapter has descriptions,
examples, definitions, and parameters which apply
to use of the Editor. It includes syntax examples
and detailed syntax diagrams, and cross-references
to other commands.

Find Help Or Solve Problems While Using The
Editor

Chapter 6 - This chapter describes some possible
problems or questions which may arise while you
are using the Softkey Driven Editor. It describes
sources for answers, and points to specific
bothersome areas.

Find The Meaning And Explanation For Softkey
Driven Editor Status And Error Messages

Appendix A - This appendix contains a listing of
the messages which appear during an edit session
to let you know when an error has been made or
when a choice is available to the User.

Use The while Command In Conjunction With
Other Commands

Appendix B - This appendix contains the truth
values related to executing the while command and
the truth value returned at the end of that
command.

x

Contents

1 General Information

Chapter Overview 2
Editor Description 3
Description of the Softkey Driven Editor 3
Editor Relationship to Your Operating System and the HP 64000 3
What’s in This Manual? 4
Using This and Other Manuals 4
Suggestions for Learning the Editor 4
Where to Find Terms and Conventions 5
Finding Answers and Help 5
Determining Software Revision Numbers 6
Software Materials Subscription and Response Center 6

2 Preparation for Use
Chapter Overview 8
Installing Editor Software on Your Operating System 8
System Administration Tasks 9
".profile" and Operating System Shell Variables 9
Changing Your ".profile" File 9
Using Shell Variables 10
Invoking the Editor and Options 12
Data Terminal Configuration 14

3 Modes, Structure, and Operating System Connections
Chapter Overview 16
Editor Structure 16
General Description 16
Importance of Tab Characters 17
Editor Softkey Levels 17
Operating System Interrupts of the Editor 18
Editor Functional Modes 19
Command Mode Description 19
INSERT Mode Description 20

xi

REVISE Mode Description 21
Recovery of Saved Files 22
"purge" Command to Move Files 23
"rcvr" Command for Recovery 23
"dirrec" Command for Directory Listing 24
Recovery of "Crashed" Edit Sessions 24
Using the skpreserve" Command is Required 24
"skrecover" Command File 25

4 Getting Started
Chapter Overview 30
Understanding the Keyboard and Display 30
Keyboard Layout and Labels 31
Keyboard Input and Functions 32
Display Format Description 37
Creating, Saving, Ending, and Modifying Files 40
Creating a New File 41
Saving the File 41
Ending the Edit Session 41
Changing an
 Existing File 42
Entering and Editing Command Files 42

5 Editor Command Syntax
Chapter Overview 46
Easier Entry of Commands 46
Command and Variable Summary 47
Syntax Conventions 49
Introduction to Softkey Driven Editor Syntax 50
Command Line Entries 50
Syntax for Variables and Commands 50
command 51
conditional command 53
loner command 55
<!CMD!> 56
CMDFILE 57
<COLUMN> 58
<COUNT> 59
<DIR> 60
<FILE> 61

xii

LIMIT 63
<LINE+-> 64
<LINE #> 65
<#LINES> 66
<PARMS> 67
POINT 68
<SPACES> 70
<STRING> 71
<#TIMES> 73
<TIME> 74
WHATCHAR 75
autotab 77
(change directory) cd 79
cmdfile (command file) 80
(column_numbers) colm_num 82
copy 84
delete 85
edit 86
end 88
extract 90
find 91
help 93
insert 95
(MODE) INSERT* 96
join 98
<LINE+-> 100
list 102
merge 106
range 108
renumber 110
repeat 111
replace 112
retrieve 116
REVISE* (MODE) 117
save 118
split 120
tabset 122
wait 124
while 125
(Shell Command) ! 127

xiii

6 Help and Problem-Solving
Chapter Overview 130
Error and Status Messages 131
"man" Pages and Editor "help" 131
Understanding Strings 132
Recovery of Files and Session "Crashes 132
Questions and Possible Answers 133
Why Aren’t My Control Characters Entered or Displayed? 133
Why Doesn’t My File Print Okay Outside the Editor? 133
Why Do I Get a Syntax Error When I Enter a File Name? 133
Why Doesn’t My "Make" File Work Any More? 134
Why Do I Sometimes Get Strange Characters Displayed On-Screen? 134

A Editor Status and Error Messages
Introduction 136
Invoking Editor status/error messages 136
Command status/error messages 138
skpreserve status/error messages 156
skrecover status/error messages 157
Purge status/error messages 159
rcvr status/error messages 160
dirrec status/error messages 161

B Editor Command Truth Tables
Introduction 164

C Comparison with HP 64000 Editor
Introduction 168
List Command 168
Control Characters 169
Command Separators and Comments 169
Command Files 169
Find and Replace Commands 170
Other Differences 171

Index

xiv

Installation Notice

General Information

Chapter Overview

This chapter provides the following information to help introduce you to both
the Softkey Driven Editor and to this manual. Here are some of the subjects
which are in this chapter:

• Brief description of features and editing capability.

• A description of the relationship between the Softkey Driven Editor and
your operating system.

• How this manual is organized, including how to get started. Also a
reference to "Using This Manual" and about other manuals you should
have access to.

• How to find answers and help when you can’t find something or don’t
understand something.

• A reference to information about the Software Materials Subscription
(SMS), which will keep you current with new software.

• Reference to information about the Response Center, a technical
assistance subscription service.

Chapter 1: General Information
Chapter Overview

2

Editor Description

Description of the Softkey Driven Editor

The HP B1444A Softkey Driven Editor provides text entry and text
manipulation commands in a softkey-driven editor which facilitates revising
source code and text files. It includes all the features found in the HP 64000
workstation editor, enhanced to take advantage of your operating system.
Command files written for the HP 64000 workstation editor are compatible
with the Softkey Driven Editor and it is compatible with files developed using
the "vi" editor supplied with your operating system.

Displays from the editor support a virtual screen-width of 240 characters on
each line. The screen is easily scrolled left and right to let you view all parts of
the text. Displays are compatible with HP terminals, HP bit-mapped
monitors, and your operating system window manager on the HP 9000 Series
300/400 and Series 700.

Commands, variables, and functions appear on softkeys which track the proper
syntax for your next entry. For more experienced users, automatic command
completion (done as partial commands are typed in, then completed with the
Tab key) provides an efficient way for you to enter commands for execution.
There are both standard and enhanced edit functions, including global search
and replace capability. Other functions or commands include character and
string "wildcards"; extract, retrieve, and merge for efficient editing of files; and
split and join commands to alter lines as you wish.

Editor Relationship to Your Operating System and the
HP 64000

The Softkey Driven Editor runs on the HP 9000 Series 300/400 and HP 9000
Series 700 computers with your operating system. This editor is similar to the
HP 64000 Logic Development System (LDS) workstation editor, but is
enhanced by your operating system compatibility. Compatibility of your shell
commands and editor commands make building and execution of commands
an easier task. Use of your shell variables and your .profile directory make it
easy to access the Editor and to move back and forth between the Editor and
your operating system shell.

Chapter 1: General Information
Editor Description

3

Use of your operating system and the ability to create, edit, and execute
command files from the editor make other parts of your development tools
easier to access and use. Command files built in the editor will help to get
more efficient use of emulation, analysis, and assembler/linker/compiler
features. To obtain full capability for command files, logging commands, and
directory changes, you also must have User Interface Software (also called
"pmon") installed on your operating system; see chapter 2.

What’s in This Manual?

Using This and Other Manuals

Refer to the "Using This Manual" section at the front of this manual for a
guide to locating chapters and appendices which will help you with specific
needs. Also refer to the table of contents and the index to locate specific
paragraph topics or subjects.

Suggestions for Learning the Editor

It will depend on your previous experience with other editors and systems as to
how much familiarization is needed before you begin to feel comfortable with
using the Softkey Driven Editor. Looking at the table of contents for each
chapter will help you to learn which areas are familiar ground and which ones
may contain new information. If you study chapters 2, 3, and 4 in order, you
then will be able to use the editor, having learned its modes and its structure.
You should refer to the command syntax information in chapter 5 so you are
familiar with the syntax examples and diagrams there, and can refer to them as
questions arise.

If you have previously used the HP 64000 workstation editor and are familiar
with most aspects of your operating system, you may need only to refer to the
syntax chapter to refresh a concept or to look up relatively minor points about
how certain commands or variables operate. Also, if you have used the HP
64000 editor, you may want to look at appendix C which describes differences
between the HP 64000 editor and the Softkey Driven Editor.

Chapter 1: General Information
What’s in This Manual?

4

Where to Find Terms and Conventions

Where possible, this manual incorporates standard terms and definitions,
especially regarding your operating system. When practical, terms which may
be unfamiliar to most users and terms which are unique to the Softkey Driven
Editor are defined in text as close as possible to the use of the term. One
important convention is that keywords which you enter from softkeys are
shown in boldface type like this to make it easier for you to identify the
commands and variables in text. Command parameters entered from the
keyboard are shown in standard type like this. The syntax conventions used
for commands and variables are shown near the beginning of chapter 5.

Finding Answers and Help

Looking in the table of contents and in the index will often provide the clue as
to where to find answers. In addition, chapter 6 contains a summary of how
you might approach finding help and solving problems. Some questions and
subjects covered there may be helpful. There also is an on-line manual which
has information about the editor. And, lastly, there is a Hewlett-Packard
Response Center technical service to which you can subscribe for answers and
problem-solving related to the HP 64000-UX software and system usage.

Chapter 1: General Information
What’s in This Manual?

5

Determining Software Revision Numbers

You can determine the revision number, in the form "Rev YY.XX", of your
software product by entering:

more /system/productname/productrev

where "productname" is actually the model number of the product (B1444, no
letter suffix, for the Softkey Driven Editor).

For example, to determine the software revision number for this Editor, enter:

more /system/B1444/productrev

You then will see the following information on the screen:

B1444-19XXX SOFTKEY EDITOR HP9000/XX0 Rev YY.XX
dd/mmm/yy hh:mm:ss

The software version appears on the STATUS line when you enter the editor
by way of the directory /usr/hp64000/bin. The software version appears on the
STATUS line (until your first keystroke) as follows:

sk: YY.XX (c) 1986, Hewlett-Packard Company

Software Materials Subscription and Response
Center

Hewlett-Packard offers a Software Materials Subscription (SMS) to provide
timely and comprehensive information for your development environment.
Also, there is a technical assistance subscription service available through a
Response Center. SMS and the Response Center are described in the "HP
Support Services" Manual (supplied with this manual).

Chapter 1: General Information
Determining Software Revision Numbers

6

Installation Notice

Preparation for Use

Chapter Overview

This chapter provides information to help you prepare for using the Softkey
Driven Editor on your operating system, including the following:

• Information about procedures to install and to update software for the
Softkey Driven Editor.

• Using your operating system shell and your ".profile" file to make it easier
to use the editor with your operating system.

• How to invoke the editor and available options.

• What you should consider when configuring the data terminal to be used
for keyboard entry with the Softkey Driven Editor.

Installing Editor Software on Your Operating
System

Software for the Softkey Driven Editor will reside on the hard disk of your
operating system (HP 9000 Series 700 or Series 300/400 computer which
supports your terminal. Initial software and subsequent updates will be
installed by your operating system System Administrator. It is recommended
that the System Administrator perform the tasks outlined in a following
paragraph in this chapter under the heading "System Administration Tasks".
Some of the tasks are required on a "first-time-only" basis. If these are not
performed, your ability to recover from an editor "crash" might not be
successful.

Note Additional software is required in order to use command files with the
Softkey Driven Editor. To use command files with the editor on the operating
system (installed on an HP 9000 Series 300/400 and 700 computers), the HP
B1471 64000-UX Operating Environment software is required. For more
information, contact your local HP Sales/Service Office.

Chapter 2: Preparation for Use
Chapter Overview

8

System Administration Tasks

Involvement of the System Administrator with the Softkey Driven Editor will
be minimal, usually only at installation time or for an update. Here are some
tasks to be performed by the System Administrator after installing the Softkey
Driven Editor software:

1. If there are enough users on the system using the Softkey Driven Editor,
as well as other development tool applications, then you might find it
worthwhile to add the /usr/hp64000/bin directory to the PATH shell
variable in the /etc/profile file.

2. The System Administrator should also modify the /etc/rc file to allow for
the "crash" "skrecover" command to work. The modification required is to
add the line skpreserve in the section of the /etc/rc file that covers
"miscellaneous housekeeping". A good place for this command is near
"expreserve(1)". The "skpreserve" command moves any temporary files for
users from the "/tmp" directory to the /usr/preserve directory, where the
skrecover command may be used to recover them. The "skpreserve"
command also sends mail to the owners of the temporary files, informing
the owners that crashed edit sessions have been preserved.

".profile" and Operating System Shell Variables

Changing Your ".profile" File

You can use the ".profile" file in your $HOME directory to set options for
your operation system session and to perform many functions automatically.
(The following information applies only to users with "sh" or "ksh". If you use
"csh", you should check your manuals to see how to accomplish the same
tasks.) If you do not have a .profile, it can be created easily, or, if one exists, it
can be modified using the information about shell variables in the following
paragraph. After changing your .profile, you can make it active by doing one
of the following: (1) Log out of the operating system and then log back in,
which causes the .profile to be executed; or (2) Re-execute the .profile from

Chapter 2: Preparation for Use
System Administration Tasks

9

your $HOME directory (or the directory where the .profile is located) by
typing ". .profile" from the shell.

Using Shell Variables

Shell variables added to your .profile will make many tasks easier. Here are
some examples of what you may wish to add to your .profile, followed by brief
explanations of why each is useful:

PATH= $PATH:/usr/hp64000/bin
HP64KPATH= .:$HOME/bin
PRINTER= lpr
MAXREC= 15
SKTOP=
EDITOR= /usr/bin/sk
export HP64KPATH PRINTER MAXREC SKTOP
export EDITOR

The /usr/hp64000/bin directory contains the "sk" editor, and it should be added
to the search path you use unless the $PATH variable already contains it. This
may be checked by executing "echo $PATH" from your shell and looking for
this directory name.

The $HP64KPATH shell variable is used to control which directories are
searched when the user tries to execute a command file. If the filename has a
relative path, then the directories specified by the HP64KPATH shell variable
are searched from left to right until the command file is found. The search is
relative from the directory and not just within it. If no file is found, then an
error is generated. If this shell variable is not defined, then all relative
filenames check only the current directory.

Setting up "PRINTER=lp will allow the Softkey Driven Editor to use this
shell variable when a list printer command is invoked. The shell variable
should be set to some shell command which will cause the output to be
spooled to the printer. Also, this command should accept standard input
when no argument is given, as with "lp(1)".

The $MAXREC shell variable is also used by the "sk" editor in the context of
putting files being overwritten into your user’s recovery directory. Since the
default number of files in the recovery directory is 128, you may want to select
a smaller number to minimize disk usage.

Chapter 2: Preparation for Use
".profile" and Operating System Shell Variables

10

The SKTOP shell variable can be used to control the placement of the
softkeys, STATUS, and command lines for the Softkey Driven Editor, as well
as for other shell commands. Depending on how this shell variable is set, it
will cause most operating system applications to place the softkeys, STATUS,
and command lines at the top of the display. This action is similar to the "-v"
option of the editor as defined in the following, but the SKTOP shell variable
can apply to selected operating system applications.

The SKTOP shell variable can be made to fit your individual needs with
variations as follows:

SKTOP= This will affect most operating system features
 available on the system.
SKTOP= sk This will affect only the "sk" editor.
SKTOP= all Same as SKTOP= (see above).
SKTOP= sk:pmon: This allows setting only selected
 individual applications (separated by colons).

The EDITOR shell variable will set the default editor for various operating
system applications, such as for "mailx(1)". If this is defined as shown above,
and exported, then the "sk" editor is invoked rather than "ed(1)" or "vi(1)", for
example.

It is crucial that you export the new shell variables, so other programs, such as
"sk", can use them.

Other shell variables may be defined by the user as desired. The shell variables
may then be accessed by the user from the command line. This is
accomplished by typing a dollar sign, or ’$’, followed by the shell variable
name. The shell variable name may also be enclosed by braces, "{}", if the
name is followed by characters that are not part of it. The editor, when it sees
the shell variable, will then search for an exported shell variable and, if found,
will replace the dollar sign and name with the value assigned by the user. The
shell variable may be used anywhere on the command line, including within
filenames.

Chapter 2: Preparation for Use
".profile" and Operating System Shell Variables

11

Invoking the Editor and Options

The Softkey Driven Editor is invoked as "sk" from your operating system shell.
The syntax for the command, along with the explanation for its options, is:

sk [-c] [-n] [-v] [-f < NUMBER>] [-t < NUMBER>]
[-i < FILE1>] [< FILE2>]

 where these definitions apply:

-c This option turns off the column number information which tracks the
cursor location in the INSERT* and REVISE* modes. This accomplishes
the same thing as the colm_num off (column_numbers off) command
from the editor.

-n This option prevents the conversion of tab characters to spaces when
loading the initial file. This gives the same result as the no_tab_c
(no_tab_convert) for the edit command.

-v This option will locate the STATUS line, command line, and softkey
labels at the top of the terminal display, instead of at the bottom by
default. This option may be your own preference, or, with some terminals,
it may avoid up-and-down bouncing of these lines when you use the up
arrow and down arrow keys, which may occur when the STATUS,
command, and softkey lines are at the bottom of the display.

-f < NUMBER>

This option allows the user to preset the tabstops that are used in the
INSERT and REVISE modes of the editor. This option does not affect
the conversion of tab characters when reading or writing files. Instead, it
performs the same function as the tabset fixed < NUMBER> command,
which affects which column the cursor moves to when a tab or shift-tab
key is pressed. Tabstops will be positioned every NUMBER columns,
starting in column 1.

Chapter 2: Preparation for Use
Invoking the Editor and Options

12

-t < NUMBER>

This option controls how tab characters are converted into spaces when
the initial file is read into the editor. The default action is to place
tabstops every eight (8) columns and to interpret tab characters as moving
the text cursor to those positions. The -t < NUMBER> option lets you
enter the number which causes tabstops to be placed at fixed intervals,
starting with column 1. This option is the equivalent of the tab_conv
(tab_convert) option to the edit command.

-i < FILE1>

This option lets you change the name of the initial edit file after it is read
from the disk (or as created if not already existing). A file could be read in
with one name, but saved later under a different name. This option is the
same as the into < FILE2> used with the edit command in the editor.

< FILE2>

This would be the name of a file to be read into the editor. If this name is
not entered, a new, empty file is created in the editor. Tab characters will
be handled as specified by the two related tab options above. If neither
the "-n" nor "-t" option is used, the default action would be to convert tabs
as if a "-t8" option were used. For more details, see the edit command
syntax in chapter 5. The "< FILE2> " option acts the same as the
"< FILE1> " option used with the edit command.

Chapter 2: Preparation for Use
Invoking the Editor and Options

13

Data Terminal Configuration

In general, you should configure your data terminal being used for the Softkey
Driven Editor as specified in the manuals for your operating system computer,
either the HP 9000 Series 300/400 or the HP 9000 Series 700. If you
experience occasional problems with the data transfer rate which creates
"garbage" on the display, you can redraw the display to its last "clean"
appearance by using CTRL l (lowercase L). If you have frequent problems
with "garbage" being created, it may be necessary to reduce the baud rate.
Depending on the number of sessions and the type of activity on the system,
reducing the baud rate will solve most data transfer problems with the screen
display of the Softkey Driven Editor. Terminal display problems, if they occur,
are likely to be observed with large jumps in a file and with large data files,
such as when you use NEXT page, PREV page, Home-Up, or Home-Down.
This could also happen if you press a key repeatedly or hold it down, as with
the Return, Insert Char, or --ETC-- softkey.

Chapter 2: Preparation for Use
Invoking the Editor and Options

14

Installation Notice

Modes, Structure, and Operating
System Connections

Chapter Overview

This chapter provides the following information:

• A description of how the Softkey Driven Editor is structured.

• A description of the four levels of softkeys.

• Functional descriptions of the three editor modes (Command, INSERT* ,
and REVISE*).

• Information about your shell commands used for interrupts and about
other operating system connections.

• Descriptions of how to recover "saved" files inadvertently overwritten and
of how to recover from "crashed" edit sessions.

Editor Structure

General Description

The Softkey Driven Editor is based on the structure and operation of an editor
originally developed for the HP 64000 Logic Development System (LDS).
However, the Softkey Driven Editor operation has been enhanced by use of
your shell commands and techniques. If you previously have used and are
familiar with the HP 64000 LDS editor, you may wish to look at appendix C
which describes most of the areas of difference between that editor and the
Softkey Driven Editor. In general, the edit file is considered to be any desired
number of lines. (The editor can display a line number up to 99999. It can
still work for files with more lines than this, but only the last five digits are
displayed.) Each line consists of 240 characters; normally spaces are appended
to each line to equal 240 total characters.

Chapter 3: Modes, Structure, and Operating System Connections
Chapter Overview

16

Importance of Tab Characters

Tab characters exist within the editor only as single control characters. For
normal operation, the Tab key moves the cursor to the next tabstop (as
defined by the tabset command), rather than inserting a tab character. Thus,
when you are editing files where tab characters are to be preserved as control
characters, use care to choose the no_tab_c (no tabconvert) option. Or, you
can choose the tab_conv (tabconvert) option which will expand tab characters
into spaces. If this expansion is done, the tab character is expanded into the
number of spaces required to move to, but not including, the next tabstop.
One other important item for you to note is that the Softkey Driven Editor
strips-off (removes) all trailing spaces in all cases; this could be critical if those
spaces are needed, as in checksums. There is more information about
tabconversion in chapter 5 under edit and end syntax.

Editor Softkey Levels

When you enter the Softkey Driven Editor, softkey labels will display the first
level of commands. The furthest right label will show --ETC-- which stands for
"et cetera", simply meaning "and others". Pressing the --ETC-- softkey will
display "other" labels on successive levels. There are four levels of softkeys
which are accessed in a circular fashion with --ETC--. Most softkeys on the
four levels provide additional softkey labels for entering further commands or
variables (other softkeys provide information on the STATUS line as to what
you should do next). The four levels of softkeys appear as follows:

FIRST LEVEL:

INSERT REVISE delete find replace < LINE+ -> end --ETC--

SECOND LEVEL:

merge copy extract retrieve join split list --ETC--

THIRD LEVEL:

renumber repeat tabset range autotab save edit --ETC--

FOURTH LEVEL:

while insert colm_num log help (blank) WHATCHAR --ETC--

Chapter 3: Modes, Structure, and Operating System Connections
Editor Softkey Levels

17

Operating System Interrupts of the Editor

Certain shell commands (signals) will interrupt the editor or commands being
executed from the editor. This use of interrupt signals is important in such
instances as a phone/modem hangup or having entered an infinite loop in the
while command. Most editor commands will run to their completion before
any interrupt signal takes effect. However, the commands which will
terminate prematurely with an interrupt are:

copy merge

edit renumber

end repeat

extract replace

find save

join while

list

If one of these specified commands is terminated prematurely by an interrupt,
an error message appears on screen. Interrupt signals which will affect the
editor are as follows:

CTRL | (requires keystrokes of "control" key and "| "). This will cause the
editor to terminate whatever it is doing and to exit immediately.
Any temporary files will be removed and the current text file will
be lost. This signal will take effect at any time. (Using CTRL | is
equivalent to the operating system signal SIGQUIT ; consult your
operating system references for more about this signal. Also, the
stty setting for ’quit’ may be different from CTRL | . To see what
control character ’quit’ is set to, do a "stty -a" command from the
shell. If the stty settings are different from CTRL | , then that
control sequence should be used.)

Chapter 3: Modes, Structure, and Operating System Connections
Operating System Interrupts of the Editor

18

CTRL c This signal will terminate prematurely the commands specified
previously and return you to the Command mode. If you are
already in the Command mode, the signal is ignored. It is also
ignored if you are already in either the REVISE* , INSERT* ,
TABSET* , or RANGE* mode. (CTRL c is equivalent to your
operating system signal SIGINT; consult your operating system
references for more about this signal.)

SIGHUP This signal is generated by a modem hangup and it causes the
editor to terminate any current command in process. When this
happens, a "crash" recovery file is created which can be used to
re-create your current edit session ("skpreserve" is invoked
automatically). (Consult your operating system references for
more about this signal.)

SIGKILL This signal cannot be intercepted or ignored. When it occurs, the
edit session is terminated immediately and no temporary files are
removed. However, recovery is possible in the same way as for a
"crashed" session (user needs to invoke "skpreserve"). (Consult
your operating system references for more about this signal.)

Editor Functional Modes

There are three functional modes to the Softkey Driven Editor: Command,
INSERT, and REVISE. Your edit session always will be in one of these three
modes. Each of these modes is covered in chapter 5, Editor Command Syntax.
The following paragraphs provide a brief description of the modes.

Command Mode Description

The Command mode is used to issue both editor commands and shell
commands from the command line. This mode allows you to execute
commands, to build commands for execution, and to log commands to a file.
Comments can be added in the Command mode by preceding them with a "# "
(number sign). Commands and comments are entered on the command line
from the keyboard with up to 240 characters displayed on-screen as three
separate lines on standard terminals. The entire command line is accessed by

Chapter 3: Modes, Structure, and Operating System Connections
Editor Functional Modes

19

using the roll-up and roll-down keys. The current line in the text (source) file
is indicated by a > symbol in the left margin of the edit area. To fully utilize
command files, logging commands, and directory changes, User Interface
Software (also called "pmon") must be part of the system; see chapter 2.

You can enter the Command mode in several ways:

1. From your operating system shell, you can invoke the Softkey Driven
Editor (refer to chapter 2) and specify a file to be edited. This places you
on the command line, from which you either can invoke commands or
enter the INSERT* or REVISE* mode to edit the file.

2. From the INSERT* or REVISE* mode, pressing either key the second
time will put your session in the Command mode (before pressing the key
the second time, STATUS line message reads "To leave, press
INSERT* /REVISE* key again").

3. From either the INSERT* or REVISE* mode, you can press any
command softkey and move temporarily to the Command mode. From
there you can execute a command, which when completed will return you
to your current line of text (this is true except for end, which, of course,
takes you out of the edit session). However, once you are on the command
line from either INSERT* or REVISE* mode, if you now clear the
command line, you remain in the Command mode. (Command line is
cleared either by using the Backspace key or the "kill" character from your
operating system stty setting. If you cannot execute the command or if you
change your mind, it will be necessary to clear the command line before
you can re-enter either INSERT* or REVISE* mode.)

The Command mode is exited by pressing either the INSERT or REVISE
softkey. You also have the choice from the Command mode to exit the session
by pressing CTRL d simultaneously. This will display a message on the
command line reading "Do you really want to quit?" A "yes" answer will exit
you to your operating system shell. A "no" answer leaves you on the command
line and the STATUS line reads "No changes lost, edit resumed".

INSERT Mode Description

The INSERT* editor mode is used to enter new lines of text into the current
edit file, both for existing files and for files just being created. New lines are
identified by a > NEW symbol rather than by a line number, and the > NEW
line can be moved up and down in the file until either Return is pressed or the

Chapter 3: Modes, Structure, and Operating System Connections
Editor Functional Modes

20

INSERT* mode is exited. As each new line is created, by pressing Return,
another > NEW line appears below it.

The INSERT* mode is entered directly by invoking the Softkey Driven Editor
from your operating system shell with no file name specified. Another direct
way to enter INSERT* mode is by pressing the INSERT softkey from either of
the other editor modes. When you invoke the Softkey Driven Editor from
your operating shell with a file name specified, it takes you to the Command
mode, from which you can press the INSERT softkey.

You can exit the INSERT* mode by pressing the REVISE softkey, to enter
that mode, or by pressing the INSERT* softkey to move to the Command
mode. (Note, however, if you press REVISE from INSERT* and the file is
empty, a message appears reading "ERROR: Unable to enter REVISE mode
since file is empty", and you are then left in the Command mode.)

Another way to exit the INSERT* mode is to press simultaneously CTRL d
keys which moves you to the command line and asks the question there "Do
you really want to quit?". A "yes" response will exit you to your operating
system shell, while a "no" response sends you back to the INSERT* mode with
the STATUS line message "No changes lost, edit resumed".

You can move temporarily to the Command mode by pressing any of the
command softkeys available from the INSERT* mode (except for end, which
will exit you from the session to your operating system shell). As that
command is completed, you are placed back in the INSERT* mode. (If you do
not execute a command after temporarily leaving INSERT* edit mode
--because of a syntax problem or because you changed your mind-- to re-enter
INSERT* , you first must clear the command line either with the Backspace
key or by pressing the "kill" key, as defined in your operating system stty
setting, and then pressing INSERT again.)

REVISE Mode Description

The REVISE* editor mode is used to enter changes in the current edit file for
existing (saved or nonempty) files. The current line is indicated by the >
symbol in the left margin and the cursor is positioned at the current column
for text entry. You can move about in the file, making changes by typing over
text or by using the various keyboard functions to modify the file.

The REVISE* mode is entered directly for a current edit file from either the
Command mode or INSERT* mode by pressing the REVISE softkey. (If you
try to enter REVISE mode and your INSERT* file is empty --that is, has no

Chapter 3: Modes, Structure, and Operating System Connections
Editor Functional Modes

21

lines/text in it-- a message appears reading "ERROR: Unable to enter
REVISE mode since file is empty", and you are left in the Command mode.)

You exit the REVISE* mode either by pressing the INSERT softkey to enter
that mode, or by pressing the REVISE* softkey to move to the Command
mode.

Another way to exit the REVISE* mode is to press simultaneously CTRL d
keys which moves you to the command line and asks the question there "Do
you really want to quit?". A "yes" response will exit to your operating system
shell, while a "no" response sends you back to the REVISE* mode with the
STATUS line message "No changes lost, edit resumed".

You can move temporarily to the Command mode by pressing any of the
command softkeys available from the REVISE* mode; if you then issue a
command, as that command is completed, you are placed back in the REVISE*
mode. (As with INSERT* mode, if you temporarily move to the command
line but do not execute a command, to re-enter the REVISE* edit mode, first
you must clear the command line either with the Backspace key or with the
"kill" character, as defined in your operating system stty setting, and then press
REVISE again.)

Recovery of Saved Files

If you have an operating system directory called $HOME/.recover (a directory
off your user’s $HOME directory), the Softkey Driven Editor will
automatically protect you from overwriting a file with the save or end
command. When you issue a save or end command, the editor checks to see if
that file already exists. If it exists, the editor next checks to see if you have a
$HOME/.recover directory, and, if so, moves the file about to be overwritten
into your $HOME/.recover directory. The operating system rcvr command
allows you to retrieve files from the $HOME/.recover directory; see operating
system "rcvr " Command For Recovery in this chapter.

Chapter 3: Modes, Structure, and Operating System Connections
Recovery of Saved Files

22

"purge" Command to Move Files

You can use the shell command purge to move files listed on the command
line into your user’s $HOME/.recover directory. If that directory does not
exist, then no purge is done. (For information about $HOME/.recover
directory, see "Recovery Of Saved Files" in this chapter.) If a file is placed in
the $HOME/.recover directory, it is renamed as a number and added to the
directory file. Also, if the $MAXREC count for the directory is exceeded, the
oldest file in the $HOME/.recover directory is deleted to make room for the
newest file. This command is invoked as:

purge file1 [file2 . . . filen]

Note that any links to other files will be lost at this time. The user must
re-create these links if this file is to be recovered at some future time.

"rcvr" Command for Recovery

The shell command rcvr retrieves files from your user’s $HOME/.recover
directory. If more than one file has been purged with the same file name, the
one purged last will be recovered first. You can use either absolute or relative
file names. If the file name is relative (not starting with a " / "), the current
directory is used to create an absolute path name. A search for that path name
is made in the $HOME/.recover/directory file and if it is found, the sought file
is moved back to its original position. The $HOME/.recover/directory entry is
removed. You must use the complete file name because wild-card characters
will not be expanded correctly by the shell. For example, "rcvr a*" would be
expanded using the files starting with "a" in the current directory, not by using
only those purged files that start with "a". The rcvr command is invoked as:

rcvr file1 [file2 . . . filen]

If a file is to be recovered to a directory other than the one it was purged from,
or if the file is to be recovered under a different name, the following command
may be used for each file to be recovered:

rcvr -f newname oldname

Chapter 3: Modes, Structure, and Operating System Connections
"purge" Command to Move Files

23

If multiple links to the original file exist, it may be necessary to remove the
original file and all files linked to it, move or recover the backup copy to the
original filename, and then relink to all other paths.

"dirrec" Command for Directory Listing

If you have a $HOME/.recover directory for use in protection against
overwriting files (see Recovery of Saved Files in this chapter), you can use the
shell command dirrec to produce a listing of that directory. This works much
like the ll (1) shell command. The listing will appear in order from newest file
to oldest file. Note that an absolute path is given for each file, which must be
matched in order for a file to be recovered with the rcvr command.

Recovery of "Crashed" Edit Sessions

The ability to recover an edit session lost due to a variety of possible causes,
usually referred to as a "crash", is always important to you as a user. Some
possible causes of such a "crash" include: a telephone or modem hang-up, a
system problem, a power failure, an accidental catastrophic signal which
cannot be recalled or canceled, or other unanticipated reasons. The Softkey
Driven Editor provides the procedures to allow recovery from a "crash". The
"skrecover" command will allow you to recover all, or nearly all, of a session
which "crashed", as well as the list of your sessions which have "crashed". This
recovery requires that "skpreserve" be run prior to the use of the "skrecover"
command.

Using the skpreserve" Command is Required

Having the operating system "skpreserve" command invoked on your system
after you experience a "crash" is required if you expect to recover any files
which were being edited at the time. If a computer system is recovering from a
power failure or is being initialized, "skpreserve" will be executed
automatically (see System Administration Tasks in chapter 2). When
"skpreserve" has been invoked, it will send your mail informing each user that

Chapter 3: Modes, Structure, and Operating System Connections
"dirrec" Command for Directory Listing

24

a crashed edit session has been saved for them. The "skrecover -d" command
can then be used to get a list of file names that represents these "crashed" edit
sessions.

Note Normally, to handle a catastrophic system failure, "skpreserve" will be invoked
during the multi-tasking initialization. If a user has a "crash" due to a
phone/modem hang-up, "skpreserve" is invoked automatically for that user
only. For "crashes" due to some other reason, such as a SIGKILL signal, the
user may invoke "skpreserve" to affect only those temporary files owned by the
user. However, if the "skpreserve" command is executed while the user (or
someone else using the same login) is in an edit session, the user will get a
mail message that there has been a "crash" for the file being edited, even
though that edit session itself has not "crashed".

"skrecover" Command File

If your edit session experiences a "crash" and you receive mail that a
recoverable file exists, the "skrecover" command may be used to get a list of
"crashed" recoverable files, as well as to recover them. Options to the
"skrecover" command are:

skrecover [-d] [-r] [-u] [-n FILEID] [-f FILE]
[-t NUMBER] [FILE]

where the following definitions apply:

-d This option MUST BE USED ALONE, with
none of the other "skrecover" options or file
names at the same time. Using the -d option
alone provides your own user list of recoverable
files with their absolute path names; the date/time
of the "crash"; a unique file id for that "crashed"
session; and the name, if any, of the edit file at the
time of the "crash". If the file had no name, the
listing uses "> > No file name < < " . The full
path name must be used when recovering a file.

-r This option may be used to cause a recovery file to
be removed. This is useful if the user has no
desire to recover the "crashed" edit session. If

Chapter 3: Modes, Structure, and Operating System Connections
Recovery of "Crashed" Edit Sessions

25

more than one file exists with the same name,
then the -n option should be used in conjunction
with this option to make sure the correct recovery
file is removed. A filename is required, unless an
unnamed edit session is to be removed. Note that
the edit session cannot be recovered once the
recover file is removed with this option.

-u This option will inform the "skrecover" command
that it is okay to overwrite an existing file, if there
is one. If you do not use the -u option, and a file
with the same name as the recovery file already
exists, an error message is displayed and the
recover command will not work until you have
done one of the following: (1) enter the -u option
if it is okay to overwrite; (2) delete, rename, or
move the existing file; or (3) use the -f option to
rename the file being recovered. The reason this
decision must be made is that part of the recovery
process is to purge the file to your user
$HOME/.recover directory, if it exists, or to delete
the file (for information about $HOME/.recover
directory, see that heading in this chapter). When
this purge, delete, or rename is done, the recovery
of the "crashed" edit session continues.

-n FILEID This option identifies a specific "crashed" edit
session with a unique file id number, obtained
only by using the -d option. This would be used if
more than one "crashed" session exists with the
same file name in it. In that case, if the file id is
not used, then the "crashed" session listed first
with the -d option will be recovered first.

-f FILE This option allows you to change the name under
which the recovered file is to be saved. You must
use this option if the file being recovered did not
have a name when the "crash" occurred (the
"skrecover -d" command will inform you of the
valid names for recoverable files). If the file name

Chapter 3: Modes, Structure, and Operating System Connections
Recovery of "Crashed" Edit Sessions

26

used for this option does not start with a " / ", it is
taken to be relative to your current directory.

-t NUMBER This option lets you choose to have tabconversion
of the file being recovered. The default without
this option is to keep all the white space in the file
as spaces, that is, no tabconversion would occur.
If you use this option, enter a number from 1
through 239. For more information about
tabconversion, see the end or save command
syntax in chapter 5.

FILE This option refers to the name of the recoverable
file. If this file is relative (does not start with " / "),
the current directory is used to build an absolute
path name; otherwise, it uses the absolute path.
This file name is then compared with file names
from the directory generated by the "skpreserve"
command after the "crash", and a file owned by the
user will be recovered. If the file did not have a
name at the time of the "crash", then this file
name would not be used. In other words, a
missing file name matches an unnamed edit
session.

Chapter 3: Modes, Structure, and Operating System Connections
Recovery of "Crashed" Edit Sessions

27

Installation Notice

Getting Started

Chapter Overview

This chapter provides information to help you get started using the Softkey
Driven Editor:

• A description of the typical keyboard used with the Editor.

• A description of the display format and information available during an
edit session.

• Basic information to get you started using the Softkey Driven Editor to
create, modify, end, and save both edit and command files.

• Explanations of editing techniques for new and existing files.

• Descriptions of how to enter, edit, and use command files.

Note Chapter 2 explains ways for you to invoke the Softkey Driven Editor.

Understanding the Keyboard and Display

When you use the Softkey Driven Editor, your input from the keyboard and
the output you see on the display will vary somewhat, according to the
terminal keyboard and CRT display. Explanations of the keyboard functions
in this manual and descriptions of the data and messages displayed will be
based on a typical data terminal. Differences in keyboard labels are noted
where applicable, and the only major differences in what you see on a display
unit will be the number of lines or columns which are on-screen at a time. The
information which follows about the keyboard and display will be helpful in
familiarizing yourself with the features and operation of the Editor.

Chapter 4: Getting Started
Chapter Overview

30

Keyboard Layout and Labels

Knowing your keyboard layout and key labels will help you make decisions
about entering commands and text quickly and accurately.

As an example, the standard keyboard used with the HP 9000 Series 300/400
and Series 700 is shown in the following figure. The descriptions of Keyboard
Input And Functions which follow are based on the labels and keystrokes used
with that "standard" keyboard. More information about the standard keyboard
is located in the HP9000 Application Execution Environment User’s Manual and
the HP 9000 Peripheral Installation Installation Guide. For more information
about use of the converted HP 64000 development station keyboard, see the
converted development station manuals.

Standard Keyboard

Chapter 4: Getting Started
Understanding the Keyboard and Display

31

Keyboard Input and Functions

To enter commands or text into files with the Softkey Driven Editor, input will
come from three keyboard sources: (1) standard alphanumeric character
keys, such as: abc123; (2) function keys which allow modification of the text
being entered; and (3) the special set of eight double-size keys, commonly
called softkeys because the labels which appear on the display to identify their
functions are not fixed, but rather are changed by software programs to give a
variety of commands. The eight keys are normally labeled f1 f2 f3 f4 f5 f6 f7
f8 on the keyboard and provide the power of quick, easy entry of both
operating system and editor commands. The following descriptions will cover
primarily the keyboard functions which provide either a capability to use
standard keyboard keystrokes in a specialized way or which modify the
standard (expected) use of the keyboard. The way in which you can use the
softkeys to provide very efficient entry and editing of text files and command
files is covered in chapter 5, Editor Command Syntax.

Here are descriptions of keyboard functions which have special meaning when
you use the Softkey Driven Editor (they are divided into two groups, one-key
functions and two-key functions):

ONE-KEY FUNCTIONS (require pressing only one key)

CURSOR
KEYS

There are two differences in how these keys
operate, one which you might expect and one you
might not. Here is how these operate:

Left-arrow, Right-arrow. As you would expect,
these keys move the cursor left and right on either
the command line (80 characters wide) or in the
text file area (240 columns wide). However, since
only 72 columns are displayed on the typical
terminal, if you move the cursor beyond that on
the right, your text will begin to shift to the left
whether or not you actually enter characters
beyond column 72. To return to the left-hand
margin of the text, you can press Return, or use
the < or Shift Tab (backtab). On the command
line, the cursor moves left or right normally,
shifting to the previous or next line as you reach
the left or right margins.

Chapter 4: Getting Started
Understanding the Keyboard and Display

32

Up-arrow, Down-arrow. As you would expect,
these keys move the cursor up or down to change
your current line of text. However, in the
Command mode when the command line exceeds
80 characters, the Up and Down Arrows operate
differently. When the command line is under 80
characters, these keys move the current line,
indicated on-screen by > , up and down in the file.
When the command line exceeds 80 characters,
these keys move the cursor between lines of the
command line until one of its boundaries is
reached, at which time they operate normally
again. (This is different from HP 64000 editor;
appendix C lists differences.)

Insert
Char

(insert character) This inserts characters at the
cursor position and pushes text (including the
character under the cursor) to the right in all
modes. The "I" enunciator appears at the right of
the STATUS line when Insert Char is enabled.
All special keys automatically turn Insert Char off.
In the Softkey Driven Editor, there is no
"placeholder" symbol (underlined caret) as there
is on the HP 64000 LDS (see appendix C for a
summary of differences).

Delete
Char

(delete character) This will delete the character
under the cursor, which shifts all characters
following the cursor on the line to the left by one
character. In the Insert Char mode, the Delete
Char key turns the Insert Char off.

CLEAR TO
END OF
LINE

This function uses the Clear Line key in a
different way, namely, to clear text from the
current cursor position to the end of the line in all
modes.

Chapter 4: Getting Started
Understanding the Keyboard and Display

33

Delete
Line

(delete line key) This function deletes the current
text line and places the cursor on the next line (if
there is one). In the INSERT* , TAB* , or
RANGE* modes, Delete Line key only clears the
line.

Insert
Line

(insert line key) This will insert a new line
following the current line and position the cursor
at the beginning of the text line. In the INSERT*
mode, Insert Line key acts like a Return would. It
does not function in TAB* or RANGE* mode.

Tab This key moves the cursor to the right from the
current location to the next tabstop in the
INSERT* and REVISE* modes. In the Command
mode, Tab produces a much different result: if
you enter a partial command and press Tab, the
editor will attempt to complete the command
entry. If the entry forms the beginning of a unique
command keyword, then that entire command
keyword is placed on the command line. If it is
not a unique command keyword, various possible
keywords are displayed on the STATUS line for
your selection provided that these keywords
match the text on the command thus far. Also, if
all of the possible keywords share more
characters, then those characters will also be
placed on the command line until the keywords
diverge. If Insert Char is on when Tab is pressed,
Insert Char is turned off.

Next
Prev

(next page, previous page) These keys remove the
current page displayed and display the next or the
previous "page" of lines, respectively. On standard
terminals, the Softkey Driven Editor displays 19
lines per text page.

Chapter 4: Getting Started
Understanding the Keyboard and Display

34

Home Up (up-left arrow) In the REVISE* mode, this moves
the current line to the first line in the file, with the
cursor in column 1. In the INSERT* , TAB* , or
RANGE* mode, the current line becomes the line
just before all other lines in the file, with the
cursor in column 1. In the Command mode,
"home up" moves the current line to the START
line; the cursor remains on the command line.

TWO-KEY FUNCTIONS (require pressing two keys)

Home Down (Shift up-left arrow) In the REVISE* mode, this
moves the current line to the last line in the file,
with the cursor in column 1. In the INSERT* ,
TAB* , or RANGE* mode, the current line will
follow all other lines in the file, with the cursor in
column 1. In the Command mode, "home down"
moves the current line to the last line of the file,
or to the START line if the file is empty; the
cursor remains on the command line.

Backtab (usually Shift Tab keys) In the INSERT* or
REVISE mode, this moves the cursor to the left
from its present location to the previous tabstop.
In the Command mode, Shift Tab moves the
cursor to the start of the previous keyword (shell
command or editor softkey entry). This can save
you time when you need to make changes on the
command line.

Clear
Line

This uses the "kill" character from your operating
system stty setting (typically CTRL u) to clear the
current line, REGARDLESS OF WHETHER
OR NOT THE KEYBOARD HAS A CLEAR
LINE key. (See "Clear To End Of Line" under
One-Key Functions earlier in this chapter, which
explains that the Clear Line key clears FROM the
cursor position to the END of the line and NOT
necessarily the entire line.)

Chapter 4: Getting Started
Understanding the Keyboard and Display

35

Recall > > This uses CTRL r to recall previous commands
from the newest to the oldest (in the buffer), and
places the recalled command on the command
line.

Recall < < This uses CTRL b to recall previous commands
from the oldest to the newest (in the buffer), and
places the recalled command on the command
line.

Exit
Editor

Pressing CTRL d will allow you to exit a session
without saving any text or commands. Pressing
CTRL d from any editor mode refers you to the
question on the command line: "Do you really
want to quit?". If you answer "yes" and press
Return, you will exit the Softkey Driven Editor to
your operating system shell (current file contents
are NOT saved). If you answer "no", the message
"No changes lost, edit resumed" appears and your
session continues.

Redraw
Display

Using CTRL l (lower-case L) will refresh the
on-screen display from current memory in case
the display becomes scrambled ("garbage") from
data transmission problems.

Control
Char-
acters

CTRL v can be used to enter control characters
into the editor. A control character is entered by
first pressing CTRL v , followed by the control
character itself. For example, to enter the control
character CTRL l (lower-case L) into the editor,
you would press CTRL v , and then CTRL l
(lower-case L), entered by pressing the CTRL key
and l (lower-case L) at the same time. A control
character is displayed as a single " . ". The
WHATCHAR softkey is available in the REVISE*
and INSERT* modes to determine whether a " . "
in text is really a control character or a period.
See WHATCHAR syntax in chapter 5 for more
information.

Chapter 4: Getting Started
Understanding the Keyboard and Display

36

Display Format Description

Displays on your terminal screen will provide you with a good picture of what
is happening in real-time with your edit session. There are four sections in the
display: (1) softkey label line, (2) STATUS line, (3) text entry area, and (4)
command line. Each of these sections provides useful information about the
session, and these sections are described in the following paragraphs. Refer to
the following figure for all of the descriptions.

CRT Display Format - Softkey Driven Editor

Chapter 4: Getting Started
Understanding the Keyboard and Display

37

Softkey Label Line

These labels correspond to the special set of eight keys on the top row of the
terminal keyboard. There are four levels of softkey labels, each accessed in
turn with the --ETC-- softkey at the right end on each level. The labels are
changed to display commands and variables which are entered by pressing the
corresponding softkey, and other keys as required, on the terminal. Softkey,
command, and STATUS lines can be put at the top of the display with sk -v
option or with SKTOP shell variable from the operating system shell (see
chapter 2). For more information, refer to Editor Softkey Levels in chapter 3
and Editor Command Syntax in chapter 5.

Status Line

The STATUS line provides you with messages related to your edit session,
including entry of commands. It displays a message about your session status
(such as "STATUS: Editing/users/norm/notes"); softkey prompts (such as
"ENTER: An operating system file name"); and error messages (such as
"ERROR: syntax error"). Editor status messages are summarized in appendix
A. STATUS, command, and softkey lines can be put at the top of the display
with sk -v option or with SKTOP shell variable from the operating system
shell (see chapter 2 for more information).

Other important information also appears on the STATUS line. A "Column"
label indicates the column number where the cursor is currently located in the
INSERT* or REVISE* mode (column number can be turned off with the
colm_num command).

At the right end of the STATUS line is a series of eight indicator dot positions
related to the editor modes. As you change to the various editor modes, you
will see enunciator letters as reminders to you of the current status of the
editor. The letters appear only in the 1st, 2nd, 4th, 6th, and 8th positions of
the dots. Refer to the previous figure for the following explanation of each
letter.

For the Command mode:

Letter "L" in the left-hand dot position shows that commands are being
logged to a file.

Letter "I" in second-from-left dot position shows Insert Char is on.

Chapter 4: Getting Started
Understanding the Keyboard and Display

38

Letter "R" in fourth-from-left dot position shows that entries on the
command line are syntactically correct and could be executed at that point
by pressing the Return key.

For the other modes (INSERT* , REVISE* , TABSET* , and RANGE*):

Letter "i" in sixth-from-left dot position shows Insert Char is on.

Letter "I" in right-hand dot position shows session is in the INSERT*
mode.

Letter "R" in right-hand dot position shows session is in the REVISE*
mode.

Letter "t" in right-hand dot position shows session is in the TABSET*
mode.

Letter "r" in right-hand dot position shows session is in the RANGE*
mode.

Text Area

The displayed text area consists of 19 lines and 72 columns on a typical
terminal. The area displayed may be expanded on bit-mapped displays of the
HP 9000 Series 300/400 and Series 700 computer without the window manager
environment. The first eight columns on-screen consist of blanks, a line
number (as applicable), and a line label as follows:

> Designates the current line in the file being edited.

Line # Shown as a decimal number to indicate the sequence of lines in
your file or its current sequence if a renumber command has been
given.

START Indicates the beginning of the text file; precedes first line of text.

NEW Designates lines added during the current edit session which have
not been renumbered by the renumber command.

END Indicates the end of the current text file.

TAB Line is displayed when the tabset command is executed. Shows T
where current tabstops are set.

Chapter 4: Getting Started
Understanding the Keyboard and Display

39

RANGE When range is executed, a line of R’s (RRR...RR) indicates the
current range of columns.

Command Line

The command line is accessed through the Command mode and is used to
execute Softkey Driven Editor commands and shell commands. The command
line shows only three lines on-screen at one time, although you can continue
to enter commands far beyond those three lines of 80 columns each.
Individual commands are separated by a semicolon (;), and comments are
entered by using a number sign (#) preceding each comment. Command,
STATUS, and softkey lines can be put at the top of the display with sk -v
option or with SKTOP shell variable from the operating system shell. Also
refer to Editor Functional Modes in chapter 3 for more information about use
of the command line. The Command mode is explained in chapter 5,
including syntax entries for INSERT* and REVISE* modes which temporarily
access the command line when a command softkey is pressed.

Creating, Saving, Ending, and Modifying Files

No matter whether you are creating a new file, editing an existing file, saving
either new or old files, or ending a file, you will be given various options on
softkeys or will be asked to answer questions aimed at avoiding problems. If
you will first study and learn the editor functional modes covered in chapter 3,
understand the keyboard and display in this chapter, and become familiar with
the editor command and variable syntax descriptions in chapter 5, your very
first edit session on the Softkey Driven Editor will be both a continuing
learning process and a success.

The following paragraphs describe some of the basic procedures and steps you
will need to follow or observe as you create, save, end, and modify files using
the Softkey Driven Editor. Because text or command file entry is an individual
activity tailored to your needs, with frequent options and branches,
step-by-step procedures are not possible to detail. The following are
reminders and very general procedures for creating, saving, ending, and editing.

Chapter 4: Getting Started
Creating, Saving, Ending, and Modifying Files

40

Creating a New File

When you enter the editor from the operating system shell and do not have a
file name, you are placed in the INSERT* mode with an empty file, on a NEW
line. The edit cursor is at the start of the line. Your first keystroked character
will appear on the display and you can continue entering up to 240 characters
on that line. Each time you press Return, another NEW text line appears.
You may wish to do some formatting for your text entry with tabset and
autotab, and decide whether or not to display column numbers (a
convenience, but, if on, it could affect data transfer rates).

If you wish to execute an editor command during your entry of the new file,
choose the command(s) from the softkeys available and press the softkey(s).
You will exit temporarily from INSERT* mode to the Command mode, where
the command keyword appears. Complete the command entry, press Return,
and the command is executed (if syntax was okay) and you are put back in the
INSERT* mode, where your text entry continues. If you also selected the
command log (log_commands) on, the command which was executed is
entered into the log file you designated. The executed commands can be
recalled for use again with CTRL r (new-to-old) or CTRL b (old-to-new).

You are now ready to save or to end your edit session.

Saving the File

At any time during entry of the file, you can choose to save the current text file
by pressing the softkey labeled save and giving it a file name. This will place a
copy of the file on your system disk, and your edit session continues.

As part of saving the file, you have the choice to do tab_conv (tabconvert) or
not. If you wish to save disk space or if you are editing a "make" file, then you
will want to use the tabconvert option. If you need help on this, see syntax for
save in chapter 5.

When you have completed entry into the file, it can be preserved with the end
command (a file name must be given in order for the file to be saved).

Ending the Edit Session

When you have finished entering text or commands, you can press the end
softkey. To keep the file just entered, it must have a file name.

Chapter 4: Getting Started
Creating, Saving, Ending, and Modifying Files

41

As part of ending the session, you have the choice to do tab_conv (tabconvert)
or not. If you wish to save disk space or if you are editing a "make" file, then
you will want to use the tabconvert option. If you need help on this, see syntax
for end in chapter 5.

After executing end, the edit session ends and you return to the shell.

Changing an
 Existing File

To make changes in an existing file, you can access it from the operating
system shell or from the editor. In either case, you can enter changes by using
commands and the keyboard functions defined earlier in this chapter.

From the operating system shell, you would invoke the editor and the file by
entering the command "sk", with any options you choose, followed by the
name of the file. From the editor command line, you enter edit, followed by
the name of the file, and press Return. From the command line, you can
execute commands or use the INSERT or REVISE mode. When changes are
completed, you end the file.

Entering and Editing Command Files

Another of the useful features of the Softkey Driven Editor is command files
and the logging of commands during an edit session. Command files, which are
more fully described in the User’s Guide, allow you to create a file of
commands and invoke this file as if you had just entered them. Another facility
of command files is that you can use parameter substitution to make a
command file meet more general applications.

Note You must have installed User Interface Software (also referred to as "pmon")
in order to have full use of command files, logging commands, and changing
directories. See "Installing Editor Software On Your Operating System" in
chapter 2 for information about where the User Interface Software is available.

Chapter 4: Getting Started
Entering and Editing Command Files

42

There are two approaches you can take toward creating command files. One
approach is to use the log (log_commands) command to store commands
executed during an edit session in a file. This log file then can be edited and
modified as needed to make it into a command file. Some changes you might
make are: adding comments to the command file (by prefacing the comments
with "# "); and adding parameters which will make the command file more
generally useful. To add parameters, a PARM line must be inserted at the start
of the command file with a list of parameters to be used. Also, parameters
must be inserted into the command file as you wish to use them.

The alternative approach to making a command file is to enter the commands
as text during an edit session. The resulting file can be saved and executed
later as a command file.

When you use either approach, some key points should be remembered:

1. Enter the entire command, not just the abbreviation on the softkey. All
commands must be syntactically correct. An advantage of logging
commands is that they must be syntactically correct in order to be logged.

2. Only commands which are executed on the command line are logged. Text
entered or modified in the INSERT* or REVISE* mode, as well as
keystrokes, such as keyboard cursor movement and delete line, will NOT
be logged.

3. Some control characters cannot be generated using the keyboard. These
control characters are: CTRL s and CTRL q (used for terminal/computer
handshakes); and CTRL c and CTRL | (both signals). The only way these
characters can be created is to use their octal value as part of a replace
command so the character is inserted into the text. An example of
creating a CTRL c character in a file might be:

replace "aword" with "aword\003"

4. Other control characters can be created on the command line by using the
CTRL v sequence before the control character itself. This will create a " . "
on the command line which cannot be differentiated from a period (if you
edit a command file, you can use the WHATCHAR softkey to find the
character and its numerical equivalent). An alternative way is to use the
octal equivalent for any character in a find or replace command, as in the
preceding example.

Chapter 4: Getting Started
Entering and Editing Command Files

43

5. Some strings in command files will need to delimit quote characters
within the string. If the quote characters around the string are the caret
(^), then any double or single quote characters within the string should
be delimited with a backslash. It is not necessary to delimit quotes if the
entire string is defined with single or double quote characters. Not
delimiting the quote characters in a caret-quoted string can cause
following lines to be concatenated to the line containing the string, which
will probably result in syntax errors when the command file is executed.
An example of correctly-delimited commands might be:

replace ^ hello^ with ^ Check the \" in this string^
insert ’This is another " character without delimiter’

Chapter 4: Getting Started
Entering and Editing Command Files

44

Installation Notice

Editor Command Syntax

Chapter Overview

This chapter provides the following information:

• A description of system features which allow easier entry of commands.

• A summary of editor commands.

• Definitions of conventions used in the syntax diagrams.

• Functional descriptions, examples, and parameters for syntax of all editor
commands.

Easier Entry of Commands

Several features have been designed into the Softkey Driven Editor which
make it easy to use and quite compatible with your operating system. These
features are listed and described in the following:

• Softkeys. Softkeys, with labels displayed optionally either at the top or the
bottom of the screen, are used to enter nearly all commands. These
defined softkeys provide fast command entry, and minimize errors.

• Command Completion. You need to type only the first character(s) of a
command keyword (enough to uniquely identify the keyword), and press
the Tab key. The system will then complete the keyword for you.

• Command Line Recall. Commands may be recalled from a buffer by
pressing CTRL r (from newest to oldest command) or CTRL b (from
oldest to newest command).

• Command Line Erase. Allows corrections by erasing the current
command line with the "kill" character from your operating system stty
setting, then entering the correct command.

• Multiple Commands On One Line. You can enter more than one
command on the same command line by separating the commands with a
semicolon (;).

Chapter 5: Editor Command Syntax
Chapter Overview

46

• Change Directory. You can change your operating system directory while
in the Softkey Driven Editor by using the cd command (hidden; not on a
softkey).

• Operating System Filters and Pipes. You can specify operating system
filters and pipes as the destination for information with the list command.
See the description of list command in this chapter for details.

Command and Variable Summary

Editor commands and the variables used with the commands are summarized
in the following table. The table also identifies those commands and variables
which are "hidden", that is, accessed by typing them in from the keyboard.

COMMANDS

autotab log_commands

cd (change directory) * merge

column_numbers range

copy renumber

delete repeat

edit replace

Commands and Variables Summary

Chapter 5: Editor Command Syntax
Command and Variable Summary

47

COMMANDS

end retrieve

extract save

find split

help tabset

insert wait*

join while

LINE+ - ! *

list ! ! *

VARIABLES

!CMD! LINE #

CMDFILE* PARMS*

COLUMN POINT

COUNT SPACES

DIR STRING

FILE # TIMES

LIMIT TIME*

LINE+ - WHATCHAR

* Indicates a hidden command or variable; must be entered from keyboard

Commands and Variables Summary (Cont’d)

Chapter 5: Editor Command Syntax
Command and Variable Summary

48

Syntax Conventions

The conventions used in the command and variable syntax diagrams in this
chapter are as follows:

This symbol indicates a command keyword entered by pressing a softkey. The
keyword is shown as it appears on the command line and may not be the same
as the softkey label.

This symbol contains either prompts indicating that parameters must be
entered from the keyboard or else it references additional syntax diagrams.
Softkey prompts are enclosed by the "< " and "> " delimiter symbols and are
shown exactly as they appear on the softkey label.

References to additional syntax diagrams may be shown in uppercase
characters with no delimiter symbols.

A circle denotes operators and delimiters used in expressions and command
lines.

Whenever keywords entered from softkeys appear in text or examples, they are
shown in boldface italics, for example, copy. Command parameters which are
entered from the keyboard are shown in standard type.

Chapter 5: Editor Command Syntax
Syntax Conventions

49

Introduction to Softkey Driven Editor Syntax

Using the Softkey Driven Editor involves a combination of entry from the
keyboard of your terminal and entry from the softkeys which have different
functions as their labels change. It is the syntax (that is, the structure and
relationship) of the keyboard and softkey entries which enables your most
efficient use of the editor.

Command Line Entries

To help understand the syntax for the first entry you make on the command
line, you should become familiar with the diagrams for "Command",
"Conditional Command", and "Loner Command" which follow the next
paragraph. Note especially that only the Conditional Commands may be used
to construct multiple commands.

Syntax for Variables and Commands

Descriptions and syntax diagrams (where applicable) for commands and
variables are given separately, in two groups, with each group given in
alphabetical order (see group lists in the previous table). These groupings are
shown after the syntax descriptions for Conditional and Loner Commands.
For each group, the syntax heading appears as a major heading preceding the
information associated with it.

Chapter 5: Editor Command Syntax
Introduction to Softkey Driven Editor Syntax

50

command

Syntax

Function The Command mode allows you to enter either loner (single) or conditional
commands on the command line, which then may be: (1) invoked from the
editor; (2) logged to a logfile for subsequent use; or (3) edited for desired
changes.

Default Value Waiting for softkey, keystroke, or Return.

Examples Refer to the syntax diagrams for individual commands.

Parameters Refer to the syntax diagrams for individual commands.

Description Editor commands or shell commands (preceded by "!" exclamation point) may
be executed from the command line. Also, comments may be entered on the
command line by preceding them with a "# " (number sign). From the
command line, you can enter either the INSERT or REVISE mode by pressing
the corresponding softkey. For more information on the conditional and
loner commands, refer to the two syntax diagrams following this one. For
information about temporarily entering the Command mode from either
INSERT* or REVISE* , refer to the command syntax for each mode and to the
"Editor Functional Modes" heading in chapter 3.

Chapter 5: Editor Command Syntax
command

51

HP 64000-UX can expand shell variables on the command line and also in
command files. Only those shell variables beginning with "$" followed by an
identifier will be supported. An identifier is a sequence of letters, digits, or
underscores beginning with a letter or underscore. The identifier may be
enclosed by braces, "{}", or entered directly following the "$" symbol. Braces
are required when the identifier is followed by a letter, digit, or underscore
that is not to be interpreted as part of its name. Expansion of shell variables
involves the replacement of the shell variable by the definition of that shell
variable. If the shell variable is not defined within the user’s environment, the
shell variable will be replaced by a null string.

For example, assume a directory named /users/softkeys exists, and the shell
variable "S" is used to represent the word "soft". By specifying the directory as
/users/${S}keys, the correct result is obtained. However, if you attempt to
specify the directory as /users/$Skeys, HP 64000-UX looks for the value of the
variable "Skeys". This is not the result we expected. You will not get the
intended result unless "Skeys" is already defined to be "softkeys". To include "$"
as part of a command, you must put a backslash (\) in front of the "$".
Otherwise, the system will try to expand the shell variable which is designated
by "$" and any text that follows it.

You can examine the current values of all shell variables defined in your
environment with the UNIX command "env".

Chapter 5: Editor Command Syntax
command

52

conditional command

Syntax

Function A conditional command is either invoked from the editor or used to build a
multiple command for execution within a while command. Conditional
commands return a truth value (true or false) as summarized in appendix B.

Chapter 5: Editor Command Syntax
conditional command

53

Default Value,

Examples, and

Parameters Refer to the syntax diagrams for individual commands.

Chapter 5: Editor Command Syntax
conditional command

54

loner command

Syntax

Function Loner commands are invoked as single commands and may not be used in
constructing multiple commands for execution within a while command.
Loner commands do not return a truth value.

Default Value,

Examples, and

Parameters Refer to the syntax diagrams for individual commands.

Chapter 5: Editor Command Syntax
loner command

55

< !CMD!>

Syntax Example(s) list < !CMD!>

Function < !CMD!> is a prompting softkey which appears with the list command.
When it appears, you may enter a shell command, preceded and followed by !,
which, if then executed, would list file text to that shell command. This
command may be any type of input. The user should be sure that the
command entered is correct. Note that this explanation applies only to the
softkey labeled < !CMD!> and not to the invoking of a shell command by use
of the exclamation point "!", which is covered in the command syntax section.

Default Value Prompts for entry of a shell command, preceded and followed by "!".

Example(s) list ! col -x | lpr -q !

Chapter 5: Editor Command Syntax
< !CMD!>

56

CMDFILE

Syntax Example(s) CMDFILE (command file)

Function CMDFILE stands for "command file", and it represents a hidden command
which is entered from the keyboard. You can type on the command line the
name of a command file (source file) which contains a series of valid shell
commands. Note that additional software is required in order to use
command files with the Softkey Driven Editor; for information on this, see
cmdfile command syntax Description in this chapter or the "Installing Editor
Software Your Operating System" heading in chapter 2. For more
information on CMDFILE variable, see Description under this same syntax
heading.

Default Value Displays prompting softkey < PARMS> (PARAMETERS) when command
file needs parameters.

Example(s) GETSAMP
FIRSTTEST PARM1 PARM2 PARM3

Description Command files can be initiated from any of the development environment
features, including the Editor. Command files do not stop processing until
either: the end of the command file; the last feature is terminated; a syntax
error occurs; or a signal (such as SIGINT) interrupts the command file. You
can invoke a command file from within another command file, but the
original command file will wait for the second command file to be completed
before continuing. (This is different from the previous editor for the HP
64000 Logic Development System. Refer to appendix C for a description of
these differences.) Command files may not be used to construct a complex
command during an edit session.

Chapter 5: Editor Command Syntax
CMDFILE

57

< COLUMN>

Syntax Example(s) split at column < COLUMN>
range < COLUMN> thru < COLUMN>

Function < COLUMN> is a prompting variable for entry of any column number in the
edit file related to a command to be executed. You can enter any positive
integer from 1 through 240.

Default Value none

Example(s) split at column 5
range 5 thru 15

Chapter 5: Editor Command Syntax
< COLUMN>

58

< COUNT>

Syntax Example(s) while count < COUNT>

Function < COUNT> is a prompting variable for a repetition count. It is used as a loop
counter with the while command. You can enter any positive integer; if no
value is used, defaults to 1.

Default Value If no value is used, defaults to 1.

Example(s) while count 37 do delete doend
while count do insert "hello" doend

Chapter 5: Editor Command Syntax
< COUNT>

59

< DIR>

Syntax Example(s) cd < DIR>
(Note that the shell command cd for "change directory" is a hidden command,
and must be entered from the keyboard. When cd is entered, < DIR> appears
on a softkey).

Function < DIR> is a prompting softkey for a new directory name. It allows you to
specify a different directory and use "cd" to move the edit session from one
directory to another. The < DIR> softkey appears only when the hidden
command "cd" is entered from the keyboard. !cd will NOT change the
directory of the edit session, that is, where the current text file will be saved.

Default Value Defaults to user’s HOME directory.

Example(s) cd newdir

Chapter 5: Editor Command Syntax
< DIR>

60

< FILE>

Syntax Example(s) list < FILE> help

Function The variable < FILE> is a prompting softkey for entry of a file name. Simple
file names are easily parsed by the scanner of the Softkey Driven Editor.
However, complex filenames, such as ones which include a hyphen (-) or
certain other characters, may require use of quotation marks or an escape
sequence to avoid a syntax error. For more information, see Description
under this same syntax heading.

Default Value Prompts for file name.

Example(s) edit oldfile into newfile

Description Since some complex file names are not readily parsed by the editor, you may
have to either enclose the file name in quotes (as a string, with no spaces) or
use the backslash (\) escape character. Examples of using an escape character
would be \3file (to escape the 3) and a\-file (to escape the -). One way to
determine if quotes or an escape may be needed is to enter the command and
see if a syntax error occurs. Another way to determine this is to watch the "R"
enunciator (at the right-hand end of the STATUS line, fourth dot position
from the left); if that "R" is present, the editor is still parsing and the < FILE>
should be accepted. File names may be either absolute or relative. An
absolute file name begins with a "slash" character, "/", and this indicates that
the path starts at the root directory. A relative file name does not begin with a
"/" and the path is relative to the current directory.

As noted earlier, shell variables may be used as part of a filename if the shell
variable has been defined and exported before the edit session. To use the
shell variable, just enter the shell variable as part of the filename. The ’/’
delimiter will terminate the variable name.

Chapter 5: Editor Command Syntax
< FILE>

61

If other text immediately follows the shell variable, then the variable name can
be enclosed in braces, ’{}’. Only the variable name will then be removed and
the following text will be appended to the replacement text. Also, since the ’$’
is used to signal the start of a shell variable name, the user may have trouble
finding filenames that include such a character within it. Such characters must
be escaped with a backslash. Otherwise, the editor will try to search for a shell
variable with that name and probably replace the name with a null string.

Chapter 5: Editor Command Syntax
< FILE>

62

LIMIT

Syntax

Function The variable LIMIT represents the thru or until options as used with the
variable POINT, or as used with the all option. These options are used to
define a line range over which a command is to operate. For more
information, see Description under this same syntax heading.

Default Value none

Example(s) thru start
until + 5
thru "function"

Description The range for LIMIT extends up or down from the current line, depending on
the options used. The keyword thru is used to include the line indicated in the
LIMIT. The keyword until , however, will include up to, but not including, the
line indicated in the LIMIT. Also, if the indicated LIMIT exceeds the file
boundaries, then either the start or the end of the file will be used for that
boundary, even if the keyword until is used. The keyword all includes the
entire file as the range. Refer to the variable POINT for more information
about variables such as < STRING> and < LINE+ -> , which are used to
complete a LIMIT statement.

Chapter 5: Editor Command Syntax
LIMIT

63

< LINE+ ->

Syntax Example(s) find < STRING> thru < LINE+ ->

Function < LINE+ -> variable is a prompting softkey which allows you to define a
POINT for use with LIMIT in a command being executed relative to the
current line. (< LINE+ -> also appears as a command prompt softkey,
allowing you to move to desired lines in a file being edited; refer to syntax for
commands.) For more information, see Description under this same syntax
heading.

Default Value none

Example(s) find "hello" thru + 35
replace ’A’ with ’B’ thru 22

Description If you use < LINE+ -> to specify a relative line outside the file boundaries
(that is, a line position which would be greater than the number of lines
preceding or following the current line), then either the first (if -) or the last
(if +) line of the file becomes the current line; a message tells you the number
of lines moved.

If an absolute (unsigned) number greater than the current line number is
specified and that line does not exist, the next higher-numbered line from the
sought line is first found, and the line before that one (whether numbered or
NEW) becomes the new current text line. Similarly, if an absolute number
lower than the current line number is specified and that line does not exist, the
next lower-numbered line from the sought line is first found, and the line after
that one (whether numbered or NEW) becomes the new current text line. If
the sought line is below or above the file boundary, the START line or the last
line, respectively, will be used as the new current line.

Chapter 5: Editor Command Syntax
< LINE+ ->

64

< LINE # >

Syntax Example(s) merge < FILE> from < LINE # > thru < LINE # >

Function The variable < LINE # > is a prompting softkey, which appears only with
merge to provide a start or stop point to a file being merged. Any existing line
in the file may be used, providing that the from line number is lower than the
thru number. For line values outside file boundaries, see merge command
syntax.

Default Value from < LINE # > : Defaults to first line of < FILE> .
thru < LINE # > : Defaults to last line of < FILE> .

Example(s) merge afile from 5 thru 37
merge /tmp/bfile thru 10

Chapter 5: Editor Command Syntax
< LINE # >

65

< # LINES>

Syntax Example(s) join < # LINES>

Function Variable < # LINES> is a prompting softkey, appearing only with the join
command to specify how many lines after the current line are to be joined into
a single line. A join command fails if the number of characters (including
spaces) in the lines to be joined exceeds 240. Also refer to join command
syntax in this chapter.

Default Value none

Example(s) join 2

Chapter 5: Editor Command Syntax
< # LINES>

66

< PARMS>

Syntax Example(s) "Command File" < PARMS>
("Command File" represents a hidden command which must be entered from
the keyboard.

Function The variable < PARMS> is a prompting softkey which stands for
"parameters". It is accessed only when you type in the name of any command
file (source file) with a series of valid shell commands. As you type in the
name of the command file, if it needs parameter(s) text, the Softkey Driven
Editor will prompt you with the softkey labeled < PARMS> . If a space is
required as part of a parameter, the parameter should be placed within
quotation marks.

Default Value none

Example(s) FIRSTTEST < PARMS>

Chapter 5: Editor Command Syntax
< PARMS>

67

POINT

Syntax

Function The variable POINT represents the options start, end, < STRING> ,
< LINE+ -> , used with the variable LIMIT (thru , until) to complete the
definition of a range over which a command is to operate. For more
information, see Description under this same syntax heading and the syntax
heading for < STRING> .

Default Value none (see Description below for definitions of start and end)

Example(s) thru < STRING>
until < LINE+ ->

Description The keyword start refers to the first line in the file. Similarly, end refers to the
last line in the file.

< STRING> means any ASCII string and it is a pattern-matcher, such as that
used in the find command. However, < STRING> used as a POINT is slightly
different in that it will match anywhere on a line, regardless of the current
range setting. The lines searched will always begin with the line following the
current line and continue through the end of the file. Use of < STRING> as a
POINT will not affect a previous < STRING> used in either a find
< STRING> or replace < STRING> command.

Chapter 5: Editor Command Syntax
POINT

68

< LINE+ -> as a POINT has the same meaning you will find under its separate
syntax as a variable, which is: Any line number in the file or a signed offset
from the current line; and the specified line may be above or below the current
line. (< LINE+ -> also appears as a command in editing text; see its command
syntax for more information.)

Chapter 5: Editor Command Syntax
POINT

69

< SPACES>

Syntax Example(s) edit a file into bfile tab_conv < SPACES>
tabset fixed < SPACES>

Function The variable < SPACES> appears as a prompting softkey for the tab_conv and
the tabset commands. Your entry is especially important for the
tab-conversion option since you must choose whether or not to preserve any
tab characters used as control characters. More information about
tab-conversion is in chapter 3 and in the edit and end command syntax. For
tabset fixed, < SPACES> (values 1 through 239) lets you specify where fixed
tabstops are located.

Default Value tabset fixed < SPACES>: If no entry, defaults to 16 starting at column 1 (1,
17, 33, etc.).
tab_conv < SPACES> : If no entry, defaults to 8 spaces per tabstop.

Example(s) tabset fixed 4
end afile tab_conv 4

Chapter 5: Editor Command Syntax
< SPACES>

70

< STRING>

Syntax Example(s) find < STRING> LIMIT
replace < STRING> with < STRING> LIMIT

Function The < STRING> variable is a prompting softkey for you to enter a series of
ASCII characters delimited on both ends by either: double quotes ("); single
quotes (’); or carets (^). A string defined in this way is used with commands
such as find, insert, replace, and split, and with LIMIT variables thru and
until . A string can include the delimiter if it is preceded by a backslash (\) as
an escape character. Other characters normally can be used without change in
a string. The way a string is used depends on the command and on the LIMIT.
For more information, refer to Description under this same syntax heading
and to the syntax for find and replace.

Default Value Depends on command usage; refer to syntax for individual commands.

Example(s) find "ABC" all
replace "ABC" with "DEF" thru end

Description When < STRING> is used with the insert command, all characters in the
string are inserted into the edit file on a new line (for escaped characters, only
the character itself is on the new line).

< STRING> , when used with a LIMIT or find or replace command, is
basically a pattern-matcher which can look for a match of known, or even
unknown, characters on a line. A simple example would be to change all
occurrences of the word "apples" to the word "oranges" by stating replace
"apples" with "oranges" thru end. Other characters used in a matching string
also will be taken as literals and must match exactly in the text, as with
"apples". Use of strings as pattern-matchers is made more powerful and
versatile in the Softkey Driven Editor by use of "anycharacter" and "anystring".
The definitions of what can be specified in a pattern-match are as follows:

anycharacter: Using anycharacter lets you match any single character.
After the first delimiter of a string is entered, the anychar softkey appears.

Chapter 5: Editor Command Syntax
< STRING>

71

Pressing this softkey places a ? in the string; the "?" may occur anywhere
within the string. This type of match may be used where there is a fixed
number of intervening characters, or if you do not care what character is
matched. The replace command uses both a matching string and a
replacement string. For its operation with "?", refer to the replace
command syntax in this chapter.

anystring: Using anystring lets you match any number of characters,
including none (the null string). The preferred match is the smallest
number of characters. After the first delimiter of a string is entered, the
anystring softkey appears. Pressing this softkey places a * in the string,
representing anystring, which may occur anywhere within the string. An
example of using anystring is to find or replace occurrences of strings
which begin with the letter "a" and end with a period "." . The pattern
would be "a*." . The replace command uses both a matching string and a
replacement string. For its operation with "*", refer to the replace
command syntax in this chapter.

In the replace command, it is not valid to have a pattern-matcher which is
either empty or which consists entirely of anystrings (for example, "**").
However, this pattern-matcher is allowed for the find command since it is the
equivalent of the null string (which always matches at the start of the current
range).

A backslash (\) can be used as an escape which will allow finding occurrences
of * , ? , or $ in a file. For example, if the exact string sought is a*b and this
string is used for the pattern-matcher, a match would occur for any string
consisting of the letter "a", followed by any number of other characters, and
ending with the letter "b". However, if the string "a*b" is used, the match will
be exactly a*b . If the string to be matched includes a \ , it must be escaped, as
in "\\". If any other character preceded by a \ , for example, "\a", is to be
matched, a second backslash must be added, making "\\a". Use of the backslash
to escape characters for pattern-matching is the same for the first string used
with the replace command; refer to the replace command syntax.

Using an octal number in a string is a special case which requires the backslash
as an escape. The octal string can be used in either the matching or the
replacement string, represented by "\nnn", where the first digit can be 0
through 3, the second and third digits from 0 through 7. All three digits must
be used for recognition of the string. An example to replace ASCII character
DEL (octal 177) with ESC (octal 033) is: replace "\177" with "\033". You can
enter control or other nondisplayable characters in octal equivalent for find or
replace strings.

Chapter 5: Editor Command Syntax
< STRING>

72

< # TIMES>

Syntax Example(s) repeat < # TIMES>

Function The Variable < # TIMES> is a prompting softkey which appears with the
repeat command to allow specifying the number of times the current text line
is to be duplicated and inserted into the text.

Default Value 1 (that is, one time)

Example(s) repeat 2

Chapter 5: Editor Command Syntax
< # TIMES>

73

< TIME>

Syntax Example(s) wait < TIME>
("wait" is a hidden command which must be entered from the keyboard. When
wait is entered < TIME> appears on a softkey.)

Function The Variable < TIME> is a prompting softkey which appears only with the
"wait" command and is used to specify how long execution of a command file is
halted before it continues. Time for the temporary halt is entered in seconds.
When the command file is halted, pressing CTRL c overrides the specified
time, and processing starts again.

Default Value Will wait for SIGINT signal (pressing CTRL c at the same time) to continue.

Syntax Example(s) wait 10 seconds

Chapter 5: Editor Command Syntax
< TIME>

74

WHATCHAR

Syntax Example(s) REVISE* , --ETC--, --ETC--, --ETC--, WHATCHAR

Function WHATCHAR is a softkey which can be accessed from either the INSERT* or
REVISE* mode to allow you to determine quickly what character is actually
located under the cursor. When WHATCHAR is pressed, the character under
the cursor is identified on the STATUS line, along with its decimal,
hexadecimal, and octal values. The first value is followed by a "D" to denote
the decimal equivalent of the character. Similarly, the second value is prefixed
with "0x" to denote the hex equivalent, and the third value is prefixed by a "0"
to denote the octal value. For more information, see Description under this
same syntax heading.

Default Value none

Example(s) The following examples require access from either the INSERT* or the
REVISE* mode, then locating the cursor under the character, and pressing the
WHATCHAR softkey:

Example 1. If the character under the cursor is a control character, such as
CTRL d (which appears as a . on the display), the STATUS line reads:

Control character (4D, 0x4, 0004)

Example 2. If the character under the cursor actually is a period (a "." on the
display) the STATUS line reads:

Normal character . (46D, 0x2e, 0056)

Example 3. If the character under the cursor is a normal character, such as a
"Z" (a Z on the display), the STATUS line reads:

Normal character Z (90D, 0x5a, 0132)

Chapter 5: Editor Command Syntax
WHATCHAR

75

Description Use of the WHATCHAR softkey to determine the character under the cursor
is important since most terminals display a "." to represent control characters.
Thus you can interrogate the editor to learn what a displayed "." actually
represents. For instance, the first example above shows how a displayed "."
represents the control character CTRL d, which was entered from the
keyboard by use of: CTRL v CTRL d . (Refer to chapter 4 for information
about keyboard functions, such as using CTRL v to enter control characters
into the editor.)

The Softkey Driven Editor displays the same information about normal
characters and may be useful at other times as well.

Chapter 5: Editor Command Syntax
WHATCHAR

76

autotab

Syntax

Function The autotab command allows automatic positioning of the cursor on the
current line when using the INSERT or REVISE mode. Location of the cursor
depends on whether or not a < COLUMN> number has been specified and on
whether or not there is text on the current line, or, if the current line is blank,
on previous lines. For more information, see Description under this same
syntax heading.

Default Value autotab column < COLUMN> : If no column number entered, defaults to the
previous column selection or to 1 if no previous value was used.
autotab only: autotab status toggles, that is, alternates between on and off
each time selection is made and "Return" is pressed.

Example(s) autotab
autotab column
autotab column 37
autotab on (or off)

Chapter 5: Editor Command Syntax
autotab

77

Description When autotab column is selected and a < COLUMN> number is specified (1
through 240 allowed), the cursor is returned to that column. For autotab
column numbers larger than 72, the display is shifted so the specified column
and cursor are in the center of the display.

When autotab is turned on without pressing column, the position of the cursor
depends on whether you are in the INSERT* or REVISE* mode, as follows:

INSERT* : Cursor is placed in the same column as the first nonblank
character in the next lower-numbered, nonblank line.

REVISE* : Cursor is placed in same column as first nonblank character
on current line. If current line is blank, cursor is placed in same column as
the first nonblank character in next lower-numbered, nonblank line.

When autotab column is selected and no < COLUMN> number is specified,
the cursor is placed in the same column specified previously, or, if no column
was specified previously, the cursor is returned to column 1 as a default. Each
time autotab only is selected and Return is pressed, the on/off setting toggles,
that is, alternates. Current setting is shown on the STATUS line.

Chapter 5: Editor Command Syntax
autotab

78

(change directory) cd

Syntax

Function The command "cd" is a hidden command (that is, not on a softkey) which is
entered by typing it from the keyboard. When cd is entered, the softkey
< DIR> appears as a prompt for you to enter the directory to which you wish
to move during the edit session. For more information, see Description under
this same syntax heading.

Default Value If no directory specified for < DIR> softkey: Defaults to user’s HOME
directory.

Example(s) cd newdir

Description The cd command operates in the same way as the cd command of the
operating system shell. The cd command makes the specified directory
become the current directory for the rest of the edit session or until another cd
command is executed. Note that doing a cd command in a shell that was
invoked from the editor does not affect the current directory of the Softkey
Driven Editor.

Also, observe that using the cd command in the Softkey Driven Editor does
not change where the current text file will be saved. This is because the
current text file is given an absolute path using the current directory at the
time of executing the edit command. However, doing a cd command will affect
save and edit commands for text files from that point on.

Chapter 5: Editor Command Syntax
(change directory) cd

79

cmdfile (command file)

Syntax Example(s) cmdfile (command file)

Function "cmdfile" stands for "command file", and it represents a hidden command (that
is, not on a softkey) which is entered from the keyboard. You can type on the
command line the name of a command file (source file) which contains a series
of valid shell commands. For more information, see Description under this
same syntax heading.

Default Value Defaults to a prompting softkey < PARMS> (PARAMETERS) when a
command file requires parameters.

Example(s) GETSAMP
FIRSTTEST PARM1 PARM2 PARM3

Description

Note Additional software is required in order to use command files with the
Softkey Driven Editor. To use command files with the editor on the operating
system (installed on an HP 9000 Series 300/400 and 700 computers), the HP
B1471 64000-UX Operating Environment software is required. For more
information, contact your local HP Sales/Service Office.

Command files can be initiated from any of the operating system features,
including the Editor. Command files do not stop processing until either: the
end of the command file; the last feature is terminated; a syntax error occurs;
or a signal (such as SIGINT or SIGQUIT) interrupts the command file. You
can invoke a command file from within another command file, but the original
command file will wait for the second command file to be completed before
continuing. (This is different from the previous editor for the HP 64000 LDS.
Refer to appendix C for a description of these differences.) Command files
may not be used to construct a complex command during an edit session.

To execute a command file, you would enter a file name and any parameters
the command file might require. If the file name is absolute (begins with " / "),
the file name is used "as-is" to find the command file for execution. However,

Chapter 5: Editor Command Syntax
cmdfile (command file)

80

if the file name is relative (does not begin with a "/"), then a more complex
search is made to find that command file. If the HP64KPATH shell variable
was defined and exported by the user, then each directory in that shell variable
will be searched from left to right until either a valid command file is found or
there are no more directories to be searched. If no HP64KPATH shell
variable is defined or if it is not exported, then only the current directory is
searched. To be a valid command file, the file must be readable, but not
executable (that is, the execution bit is not set). If a valid command file is not
found, an error message is generated. This method of searching for command
files occurs for the initial command file as well as for any command file
invoked from within a command file.

For example, given the following HP64KPATH shell variable:

HP64KPATH= /bin:.:/usr/bin
export HP64KPATH

If a relative file name (for example, "cmdfile") was entered, the following
search is made:

/bin/cmdfile
./cmdfile < = = Note that this file name is relative to the
 user’s current directory
/usr/bin/cmdfile

If a valid command file is found, the search is stopped and that command file is
then executed.

Chapter 5: Editor Command Syntax
cmdfile (command file)

81

(column_numbers) colm_num

Syntax

Function The command colm_num is a softkey, standing for column numbers, which
offers the choice of displaying or not displaying the column number at which
the cursor is located during the INSERT* , REVISE* , range, and tabset
modes. For more information, see Description under this same syntax
heading.

Default Value If colm_num is off, and no selection is made: Defaults to on (toggles).
If colm_num is on, and no selection is made: Defaults to off (toggles).

Example(s) colm_num
colm_num on (or colm_num off)

Description The column number is labeled "Column" and appears along the STATUS line
when colm_num is turned on. If you do not need the column number
information, you may wish to turn it off to reduce the amount of data being
transferred to your terminal, which could improve the data transfer rate.

Note that if colm_num is pressed, but no selection of on or off is made and
Return is pressed, the display of column numbers toggles, that is, it switches to
the opposite setting.

Chapter 5: Editor Command Syntax
(column_numbers) colm_num

82

Normally, colm_num is on, but this may be changed by choosing the -c option
when you invoke the Softkey Driven Editor from your operating system shell;
the -c option will set colm_num off.

Chapter 5: Editor Command Syntax
(column_numbers) colm_num

83

copy

Syntax

Function The copy command places a copy of a line, or lines, as defined by a LIMIT,
from the current edit file, into a temporary storage buffer, allowing you to
choose whether the copied lines are appended (added) to the lines already in
the buffer or whether the copied lines overwrite (delete) text in the buffer.
Copied lines are not deleted from the current text file. (Also, see separate
syntax heading for LIMIT variable.) For more information, see Description
under this same syntax heading.

Default Value If no LIMIT is specified: Defaults to copy of current line of text only.

Example(s) copy
copy append thru + 7
copy append until "PRQ"
copy thru start

Description The temporary storage buffer for copy is shared with extract, and the buffer
contents are not protected unless you use the append command. Otherwise, if
the LIMIT is not found, and append is not used, text which was previously in
the buffer is lost! The retrieve command (see that syntax heading) gives access
to the contents of the buffer.

The range for copy includes the current text line as one boundary and the
value specified by LIMIT as the other boundary.

Once text has been copied, the last line in the range becomes the new current
line of text.

Chapter 5: Editor Command Syntax
copy

84

delete

Syntax

Function The delete command allows you to remove a line, or lines, from the current
text file, with a range defined by LIMIT (see separate syntax heading for
LIMIT variable). The deleted text is NOT recoverable. For more
information, see Description under this same syntax heading.

Default Value If no LIMIT is specified: Defaults to delete of current line of text only.

Example(s) delete
delete until "JNZ"
delete all
delete thru end

Description If a LIMIT is specified, but LIMIT is not found, no text is deleted. The range
for delete includes the current text line as one boundary and the value
specified by LIMIT as the other boundary.

Once text has been deleted, the first line of text following the deleted line, or
lines, of text becomes the new current line of text.

Chapter 5: Editor Command Syntax
delete

85

edit

Syntax

Function The edit command allows you to continue an edit session with a new or an
existing file. If edit is selected after the current file has been changed, you may
either save that file or else specify that those changes be lost before
continuing. For more information, especially about the importance of
tabconversion, see Description under this same syntax heading.

Default Value edit: Defaults to a new, empty file with no file name.
edit FILE1 into FILE2: No default for FILE2; must specify its file name.
edit afile tab_conv < SPACES>: If not specified, defaults to 8 spaces per
tabstop.

Example(s) edit
edit file
edit into newfile
edit infile into outfile
edit afile no_tab_c
edit bfile tab_conv 4

Chapter 5: Editor Command Syntax
edit

86

Description When an edit session is started with no file name given, the editor begins in
the INSERT* mode, with a new line. If the file name given for an edit session
is a relative path, the current directory is searched for the file. If the given file
name is an absolute path, the specified location in the file system is searched
for the file. If the sought file is not found, or is in some way protected from
reading, an error message is reported on-screen, and you would begin an edit
session with an empty file. When a file name is given for the edit session and
no option for tabconversion is selected, tab characters will be converted
automatically to spaces, using the rule of one tabstop equals eight (8) spaces.

For text where a tab character is to represent a control character, you should
use the no_tab_c (for no tab-convert) option to prevent the tab character from
being converted into spaces. This option may be useful for assembly-type files
with embedded tab characters.

The tab_conv option is used when tab characters represent the next tabstop
position for the cursor, as determined by the tab_conv < SPACES> command,
which defaults to tabstops in columns 1, 9, 17, etc. As a line of text is read into
the editor, tab characters are converted into the number of spaces needed to
move to, but not including, the next tabstop position.

The way in which a file is read into the editor does not affect use of save or end
on that file. The default for writing the file is to do no tabconversion, and the
resulting file will not contain tab characters unless they were entered as
control characters, or if the edit command included no_tab_c.

Chapter 5: Editor Command Syntax
edit

87

end

Syntax

Function The end command is used to close an edit session by placing a copy of the
current edit file onto the system disk. If, however, the nosave option is
selected, the edit session ends, without saving the current edit file, regardless
of any text changes made. For more information, see Description under this
same syntax heading.

Default Value end: Defaults to destination file from edit command, with no tabconversion.
end tab_conv < SPACES>: If not specified, defaults to 8 spaces per tabstop.

Example(s) end
end afile
end afile tab_conv 4
end afile tab_conv
end nosave

Description When you end an edit session and the file is to be saved, a check is made to see
if the destination file named from the edit command already exists. If a file
with that name already exists, a check is made to see if you have a private
recovery directory. If there is a recovery directory, the existing file is moved
there before the new file is saved. Also, checks are made to see that the path
to the destination file allows for the file to be written; if this is not allowable,
an error is reported, and the edit session is continued.

Chapter 5: Editor Command Syntax
end

88

If you specify end to a file name other than the current file, a check is made to
see if that file name already exists. If it exists, you then must specify whether
or not that file should be overwritten. As noted above, if you are overwriting
an existing file and a private recovery directory exists, then the existing file is
moved to that recovery directory before the new file is saved. If you are in an
edit session where the current file does not have a name and you try to end the
edit session without specifying a destination file, an error is reported and the
session continues.

An edit session will end with no tabconversion unless you specify tab_conv.
With no tabconversion, tab characters will not be used to replace spaces even
though that might save disk space. With no tabconversion, the file can be
printed or edited and it will be exactly as it appears in the editor.

For "make" files, use tabconversion so the file is acceptable to the "make"
command.

Chapter 5: Editor Command Syntax
end

89

extract

Syntax

Function The extract command removes a line, or lines, as defined by LIMIT, from the
current edit file, and places the line, or lines, in a temporary storage buffer,
allowing you to choose whether the extracted lines are appended (added) to
the lines already in the buffer or whether the extracted lines overwrite (delete)
text in the buffer. Extracted lines are deleted from the current text file. (See
separate syntax heading for LIMIT variable.) For more information, see
Description under this same syntax heading.

Default Value If no LIMIT is specified: Defaults to extract of current line of text only.

Example(s) extract
extract until "ADD"
extract thru 26
extract append all

Description The temporary storage buffer for extract is shared with copy, and the buffer
contents are not protected unless you use the append command. Otherwise, if
the LIMIT is not found and append is not used, text which was previously in
the buffer is LOST! The retrieve command (see that syntax heading) gives
access to the current contents of the buffer.

The range for extract includes the current text line as one boundary and the
value specified by LIMIT as the other boundary.

Once text has been extracted, the line following the last line extracted becomes
the new current line of text.

Chapter 5: Editor Command Syntax
extract

90

find

Syntax

Function Using the find command causes a pattern-matching search of the current text
file for an occurrence of < STRING> within boundaries defined by LIMIT and
by the range of columns specified by the range command. To be found, the
first character of the string must occur within the specified range. For more
information, see Description under this same syntax heading.

Default Value find < STRING> : Defaults to string from last previous find or replace
command, or to the null string (always matches) if no previous one is specified.
find < STRING> LIMIT: LIMIT defaults to include first line after current
line through the end of the file.

Example(s) find
find "a*b" thru 35
find "he?lo" thru end

Description When a defined string is found, the STATUS line displays "Found at column: "
and shows the column number where the first character of the string occurs.
In addition, the text line indicator appears on the line where the match was
found, and in the REVISE* mode the edit cursor moves to the first character
in the located string. In the INSERT* mode, a NEW line is inserted
immediately after the line on which the string was found; the edit cursor is at
start of that line.

After the last string within LIMIT is found, another find execution from that
point will result in a STATUS line error message that the string has not been
found. Also, find < STRING> locates only the first occurrence of

Chapter 5: Editor Command Syntax
find

91

< STRING> in each line included in the LIMIT specification. (The range
command narrows the < STRING> search to specific columns.)

If LIMIT is after the current text line, the find search begins on the line
immediately following the current text line. If LIMIT is before the current text
line, the find search begins with the line immediately preceding the current
text line and proceeds backwards through the file to LIMIT (such as: thru
start).

Since the < STRING> default is to the last executed find or replace command,
you can make repeated searches with fewer keystrokes (by pressing Return
from the command line; or by pressing find followed by Return from either
INSERT* or REVISE* mode).

Chapter 5: Editor Command Syntax
find

92

help

 Syntax

Function The help command provides you with on-line help information for the Softkey
Driven Editor commands, variables, and modes of operation. The information
appears on-screen and also may be listed to a printer (using the list
command). For more information, see Description under this same syntax
heading.

Default Value none

Example(s) help delete
help WHATCHAR

Chapter 5: Editor Command Syntax
help

93

Description The help command is available by pressing either the help softkey, typing the
word "help" on the command line, or typing "?". When either action is taken,
topics on which help is available appear on softkeys (four levels, accessed in
turn with --ETC--). When one of the softkeys is pressed, the topic will appear
on the command line, and when Return is pressed, the information appears
on-screen. The information is displayed by using the shell command
"more(1)". The various options to this command apply, although normally you
will press only the Space bar to continue paging through the information.
Once the information has been displayed, the screen will be redrawn and the
edit session will continue.

Chapter 5: Editor Command Syntax
help

94

insert

Syntax

Function The insert editor command allows you to create a new line in a text file from
the command line, without actually entering either the REVISE* or INSERT*
editor mode. This editor command insert is useful for inserting text, even
blank lines, in the form of a < STRING> . (The editor mode INSERT* is a
different softkey, which is used for either inserting successive lines in a file, or
as the text entry mode when creating new files; it is described in the next syntax
heading and in chapter 4.) For more information, see Description under this
same syntax heading.

Default Value insert < STRING> : If no string is defined, defaults to insert a blank line
(same as insert).

Example(s) insert
insert "this is a new line"

Description A new line added by the insert command is placed immediately after the
current text line (shown by line indicator >). An inserted string will be placed
starting in column 1, regardless of whether or not autotab is on.

A blank line is inserted by default if no string is defined. Strings up to 240
characters are allowed (anything beyond 240 is truncated). However, to
maintain compatibility with the HP 64000 LDS editor, you should limit string
length to 232 characters or less (see appendix C for a description of differences
between the Softkey Driven Editor and the HP 64000 LDS editor).

Chapter 5: Editor Command Syntax
insert

95

(MODE) INSERT*

Syntax Example(s) INSERT*

Function The INSERT* editor mode is used to enter new lines of text into the current
edit file, whether into an existing file or one being created. It is one of three
Editor modes (the other two are Command and REVISE*), and it is entered
only by pressing the softkey labeled INSERT, located at the left on the first
level of softkeys. (The editor command insert is a different softkey, which is
used to create new lines, including strings, from the Command mode; insert is
described in the immediately preceding syntax heading.) For more
information, see Description under this same syntax heading.

Default Value none

Syntax Example(s) INSERT (press softkey to enter mode)
INSERT* (press softkey to exit mode)

Description In the INSERT* mode, entire lines of text are added. Each new line is
prefixed with NEW rather than a line number. The current text line is
indicated by the symbol "> " and that line can be moved up and down in the file
until either Return is pressed or the INSERT* mode is exited. Each time a
new line is created, by pressing Return, another NEW line appears below it.
When INSERT* is exited, if the current new line is empty, that line is removed
rather than being inserted into the text file.

You can exit the INSERT* mode either by pressing the REVISE softkey to
enter the REVISE* mode, or by pressing the INSERT* softkey which will take
you to the Command mode on the command line.

Chapter 5: Editor Command Syntax
(MODE) INSERT*

96

When you are in the INSERT* mode, you can press any command softkey and
move temporarily to the Command mode. When you then execute a
command, you are placed back in the INSERT* mode on a new empty line.
However, if you cannot execute the command or if you change your mind, it
will be necessary to clear the command line before you can re-enter the
INSERT* mode. The command line is cleared either by using the Backspace
key or the "kill" character from your operating system stty setting. Once the
command line has been cleared, you can re-enter the INSERT* mode by
pressing Return or the INSERT key.

Chapter 5: Editor Command Syntax
(MODE) INSERT*

97

join

Syntax

Function The join command takes a range of lines and joins them into a single line. The
range is defined by using the current line as one of the boundaries and the line
specified by the LIMIT or < # LINES> as the other boundary. For more
information, see Description under this same syntax heading.

Default Value join < LIMIT> : If no < LIMIT> is defined, defaults to join current line with
next line.

Example(s) join
join 2
join thru end
join thru -1

Description When you specify a LIMIT, it is possible to join a line, or lines, either
preceding or following the current line. For example, "join thru -1" would join
the immediately preceding line to the current line of text. The < # LINES>
option allows a number to be entered which specifies the number of lines
following the current line to be joined to it. If the number of lines specified
does not exist (before the end of the file), then an error is reported.

Lines are joined from the lower-numbered line (that is, uppermost on the
display) to successive higher-numbered lines contained in the boundaries. The
lines are joined by finding the last nonblank

Chapter 5: Editor Command Syntax
join

98

character on the first line to be joined and the first nonblank character on the
second line to be joined, and then inserting a single space between them as a
delimiter. If a line to be joined is blank, no spaces are inserted for it, nor is a
delimiter-space inserted.

Once the specified lines are joined, the resulting line appears at the lower line
position, with the same line number as before the join command executed. All
other lines in the join range are deleted.

The join fails if the result is a line of greater than 240 characters, or if the
range specified is not found.

Chapter 5: Editor Command Syntax
join

99

< LINE+ ->

Syntax Example(s) REVISE* < LINE+ ->
INSERT* < LINE+ ->

Function The < LINE+ -> prompting command softkey allows you to move
immediately to either an existing numbered line or to a new current text line
which is a relative number (that is, + or -) of lines away. An absolute,
unsigned number may be used to select a specific numbered line in the file,
while a relative, signed number may be used to specify a line above or below
the current line position. For more information, see Description under this
same syntax heading.

Default Value none

Example(s) 6
-7
+ 53
0
9999

Description If you are in either the INSERT* or REVISE* mode and press < LINE+ -> ,
you are temporarily placed in the command mode. From there you can enter
either an absolute or relative number to select a desired new current line.
From the INSERT* mode, if you press < LINE+ -> and move to the command
line, enter 0 and press Return, a NEW line is inserted as your new current line
just after the START line. On the other hand, from the REVISE* mode, if
you press < LINE+ -> and move to the command line, then enter 0 and press
Return, the first line of text (regardless of its number) becomes your current
line.

If you are in the Command mode, enter 0 and press Return, the START line
will be indicated by > (cursor remains on command line). At this point, the
START line is accessible only for positioning, and it cannot be modified.

Chapter 5: Editor Command Syntax
< LINE+ ->

100

When you use < LINE+ -> to specify a relative line outside the file boundaries
(that is, a line position which would be greater than the number of lines
preceding or following the current line), then either the first (if -) or the last
(if +) line of the file becomes the current line; a message tells you the number
of lines moved.

If an absolute (unsigned) number greater than the current line number is
specified and that line does not exist, the next higher-numbered line from the
sought line is first found, and the line before that one (whether numbered or
NEW) becomes the new current text line. Similarly, if an absolute number
lower than the current line number is specified and that line does not exist, the
next lower-numbered line from the sought line is first found, and the line after
that one (whether numbered or NEW) becomes the new current text line. If
the sought line is below or above the file boundary, the START line or the last
line, respectively, will be used as the new current line.

Chapter 5: Editor Command Syntax
< LINE+ ->

101

list

Syntax

Chapter 5: Editor Command Syntax
list

102

Function The list command allows you to output file text or help command text to a file,
a printer, or to a shell command, using either numbered or unnumbered
format. It includes options which let you specify whether or not the text being
listed will be added to or will overwrite any text in the file being listed to (this
is different from the HP 64000 LDS editor; refer to appendix C). Another
option lets you define the LIMIT range over which the list command is to
operate. For more information, see Description under this same heading.

Default Value LIMIT defaults to current line of text.

Example(s) list LSTFILE
list printer numbered all
list MAXINT thru 47
list printer help delete

Description Doing a list to a file will normally cause the text to be appended to any existing
text. If you wish for the entire file to be overwritten (deleted), you can specify
the noappend option. Also, if the user has a $HOME/.recover directory, a copy
of an existing file will be placed there before the listing occurs.

Since the default is to list unnumbered text, the listed text normally would
have no line number information. However, if you select the numbered
format, the output will be listed exactly as it currently exists in the editor. The
numbered format would mean that new lines will be labeled with NEW rather
than being assigned a line number.

If help text is listed, it will be exactly as it appears on-screen for the help
command. Note that there is no tabconversion for a list command, so the
output will contain only spaces unless the current edit file already has
unexpanded tab characters. Also, "help" text may contain tab characters since
the help information is simply a text file that exists on the disk.

list operates over a range which includes the current line of text as one
boundary, and the value specified in LIMIT as the other boundary. (Refer to
the LIMIT variable syntax.)

The list printer option depends on the $PRINTER shell variable which is
initialized before the Softkey Driven Editor is invoked. This shell variable
contains a shell command which can be executed to invoke the printer on your
operating system. This shell command must accept standard input in order for

Chapter 5: Editor Command Syntax
list

103

a listing to be generated. An example of setting this shell variable in your
".profile" is:

 PRINTER = lp
export PRINTER

This shell variable indicates that the shell command "lp" is to be invoked
whenever list printer command is executed. It is important that the shell
variable PRINTER be exported. More information about this and about
setting your ".profile" is located in chapter 2.

If list is used with an incorrect command or file which causes the screen to
become filled with "garbage" characters, a CTRL l (lower-case L) will refresh
the display from current memory.

Chapter 5: Editor Command Syntax
list

104

Syntax

Function log, standing for log commands, is used to control whether or not a command
built and invoked from the Softkey Driven Editor is to be listed to a log file for
later use. For more information, see Description under this same syntax
heading.

Default Value Defaults to append (added to) contents of designated log file.

Example(s) log to afile noappend
log off

Description Uses for log (commands) include both building command files and keeping
track of commands invoked during an edit session. All commands executed
from the command line will be placed in the log file. Text entered or modified
in the INSERT* or REVISE* modes will NOT be logged; the use of keys, such
as the cursor keys and delete line, also will NOT be logged.

Also, remember that commands will normally be added (appended) to the
designated log file. If you wish for newer commands being logged to overwrite
those in the log file, you must choose the noappend option.

Logging of commands, as with executing command files, continues until the
command either is turned off or until the last development environment
feature is terminated.

The letter "L" will appear on the enunciator line while commands are being
logged to a file.

Chapter 5: Editor Command Syntax
list

105

merge

Syntax

Function The merge command is used to combine an entire file or portions of a file into
your current edit file, with options to select the range (LIMIT) over which the
command is to operate and to choose whether or not tabconversion is to
occur. For more information, see Description under this same syntax heading.

Default Value merge < FILE> : Defaults to either the current file being edited or the last
merge file.
merge from < LINE # > : Defaults to first line of < FILE> .
merge thru < LINE # > : Defaults to last line of < FILE> .
merge tab_conv < SPACES> : Defaults to tabstops every 8 spaces if no entry
is made.

Example(s) merge afile
merge bfile from 5 thru 37
merge /tmp/cfile thru 10
merge dfile tab_conv 4
merge efile no_tab_c

Chapter 5: Editor Command Syntax
merge

106

Description Text merged from a file is added following the current text line, and the last
line added from a file becomes the new current line.

If the line number specified in merge from < LINE # > is greater than the
number of lines in the file, the merge is not done.

However, if the line number for thru < LINE # > is greater than the total
number of lines in the file, the merge is done through the end of the file,
providing the from < LINE # > used is valid (that is, less than or equal to the
total number of lines in the file, as described above).

Tab characters from the text being merged are handled according to the
options selected for the merge command. The tab_conv option should be
selected if tab characters are used to represent movement of the cursor to the
next tabstop. In this case, you can select the number of < SPACES> between
tabstops or you can use the default action which places fixed tabstops every 8
spaces (that is, at 1, 9, 17, etc.). With tab_conv, when a line of text being
merged is read into the editor, the tab characters in it will be converted into
the number of spaces needed to move to but not including the next tabstop. A
special case occurs if 1 is chosen for < SPACES>, as that will cause tab
characters to be replaced with a single space.

If the text being merged contains tab characters that are meaningful as control
characters, then the no_tab_c (no_tab_convert) option will prevent conversion
of tab characters into spaces.

Note that the tabconvert options for the text being merged do not affect how
tab characters in the current edit session will be stored; the tabconversion for
saving depends entirely upon that specific save or end command.

Chapter 5: Editor Command Syntax
merge

107

range

Syntax

Function The range command defines the width in columns of text to which all find and
replace commands are restricted. (As noted under the syntax description for
POINT variable, the setting for range command does not affect the
< STRING> searches.) The value entered for the thru < COLUMN> option
must be greater than or equal to the value for the range < COLUMN> option.

Default Value range < COLUMN> : Defaults to 1 (one) if no entry, or if number is not
within 1 to 240.
range thru < COLUMN> : Defaults to 240 if number is not within 1 through
240, or if not specified, defaults to same number as range < COLUMN> .

Example(s) range
range 5 thru 15
range thru 200
range 16

Description As indicated in the Default Value above, if values entered for either
< COLUMN> are not within 1 through 240, a default will be set depending
upon which column number is in error. If the first < COLUMN> entry is in
error, it is set to 1. If the second < COLUMN> entry is in error, it is set to 240.

Chapter 5: Editor Command Syntax
range

108

If the range command is executed without any options, then the RANGE mode
is entered to allow visual setting of the range. In this mode, the current range
of columns will be shown on-screen as a line of R’s, that is, RRRRRRR, etc.
The cursor appears in column 1, regardless of the autotab setting. The line of
R’s can now be moved anywhere within the file, much like in the INSERT*
mode, and it also may be modified. Pressing either Return or the RANGE*
softkey causes the new line settings to take effect.

When you leave the range mode with a blank line, then the range defaults to
the maximum of 1 through 240, If the range line is not blank, the new range is
set using the leftmost and rightmost nonblank characters.

Chapter 5: Editor Command Syntax
range

109

renumber

Syntax

Function The renumber command will renumber the text lines in a current edit file after
lines have been added or deleted. Lines will be renumbered consecutively
starting with 1 from the first line through the last line of text. You may wish to
renumber text lines any time after you have made extensive changes by adding
NEW lines or deleting text.

Default Value none

Example(s) renumber

Chapter 5: Editor Command Syntax
renumber

110

repeat

Syntax

Function The repeat command will duplicate the current line of text a specified number
of times and insert the duplicated line(s) immediately after the current line of
text. The last inserted line becomes the new current line. Any nonzero value
may be used for the number of times the line is to be duplicated. If the current
line is the START line when repeat is invoked, then the first text line is the
one which is repeated.

Default Value repeat < # TIMES> : Defaults to 1, that is, repeats once.

Example(s) repeat
repeat 2

Chapter 5: Editor Command Syntax
repeat

111

replace

Syntax

Function The replace command allows searching for the first string which, if found
within the range defined by LIMIT, will be replaced by the second string. It
only has to find the beginning character of the first (matching) string within
the range limit. It is not possible to replace a null string, so the matching
string cannot be empty. For more information, see Description under this
same syntax heading.

Default Value replace < STRING> : Defaults to string used in previous replace or find
command.
replace < STRING> with < STRING> : with < STRING> defaults to
< STRING> from previous replace command, or to null string if no previous
replace command used.
replace LIMIT : Defaults to current line if no LIMIT defined.

Example(s) replace "hello" with "HELLO" all
replace "m?c*n" with "M?cn" thru end
replace "5 + 3 *" with "(5+ 3) * 7"

Description The first string, as replace < STRING1>, is a matching string which is
searched for with the range and LIMIT boundaries. This search is identical to
the find < STRING> command, except that it will match multiple occurrences
on the same line. The first character in this string must be found within the
specified range for the string to be recognized. If this matching string

Chapter 5: Editor Command Syntax
replace

112

< STRING1> is found, it is deleted from the line and the with < STRING2>
is put in its place. The search for the next possible match on that line begins
with the character following the last character in the text matched by the
search string.

Note that the default for < STRING1> in the replace command may come
from the last executed find or replace command, and the default for
< STRING2> may come from the previous replace command. This defaulting
action allows you to alternate find and replace commands without having to
define < STRING1> and < STRING2> each time.

The replace command makes special use of "anycharacter", represented by "?",
and of "anystring", represented by "*" in the < STRING1> pattern-matcher
and the < STRING2> replacement string. (Also refer to the syntax for
< STRING> variable.) Use of anycharacter and anystring in the replace
command is explained in the following paragraphs.

USING anycharacter: The "?" is used in < STRING2> to insert text matched
by "?" in < STRING1> . If no "?" was used in < STRING1> , then a space is
inserted at every occurrence of a "?" in < STRING2> (the "?" is removed in all
cases). However, if "?" is used in < STRING1> (the pattern-matcher), then
the "?" in < STRING2> matches the character of the "?" in < STRING1> on a
one-on-one basis. If there are more "?" in < STRING2> than in
< STRING1> , they wrap around to begin matching at the start of
< STRING1> again.

USING anystring: The "*" is used in < STRING2> to insert text matched by
"*" in < STRING1> . If no "*" was used in < STRING1> , then no text is
inserted into < STRING2> , the replacement string (the "*" is removed in all
cases). However, if "*" is used in < STRING1> , then the "*" in < STRING2>
matches the "*" text in < STRING1> on a one-to-one basis. If there are more
"*" in < STRING2> than in < STRING1> , they wrap around to begin
matching at the start of < STRING1> again.

It is not valid to have a pattern-matcher < STRING1> which is either empty
or which consists entirely of anystrings, as in replace "**" with "hello".
However, this is valid for the replacement string < STRING2> , as in replace
"a*b*d" with "**".

Here are some examples for use of "?" and "*", using "ABCDEF" as the text.
Range is restricted to column 1 for the first example, and to columns 1
through 3 for the other examples.

Chapter 5: Editor Command Syntax
replace

113

 replace "B*D" with "DDD"
 RESULT: ABCDEF, because, due to the range, the search
 string "B*D" is not found.

 replace "B" with "?"
 RESULT: "A CDEF", because the "?" default, which is a
 blank, was substituted for B.

 replace "C" with "*"
 RESULT: "ABDEF", because the "*" default null string was
 substituted for C.

 replace "?1?2?3" with "?1?2?3?1"
 where: ?1 = "A"; ?2 = "B"; and ?3 = "C".
 RESULT: "ABCADEF", because only one match occurs due
 to the range restriction. The "extra" ? in string 2 wraps
 around and begins matching at the start of string 1 again.

 replace "*C" with "**C" where: * = "AB"
 RESULT: "ABABCDEF", because the additional "*" match
 in string 2 wraps around and reuses the "AB" from string 1.

 replace "*D?1?2" with D?1?2*
 where: * = "ABC"; ?1 = "E"; and ?2 = "F".
 RESULT: "DEFABC", because of the placement of "?" and
 "*" characters.

A backslash (\) can be used as an escape which will allow finding occurrences
of * , ? , or $ in a file. For example, if the exact string sought is "a*b", a
match would occur for any string consisting of the letter "a", followed by any
number of other characters, and ending with the letter "b". However, if the
string "a*b" is used, the match will be exactly "a*b". If the string to be
matched includes a \ , it must be escaped, as in "\\". If any other character
preceded by a \ , for example, "\a", is to be matched, a second backslash must be
added, making "\\a". Use of the backslash to escape characters for
pattern-matching is the same for the first string used with the replace
command, covered in the command syntax section.

Using an octal number in a string is a special case which requires the backslash
as an escape. The octal string can be used in either the matching or the
replacement string, represented by "\nnn", where the first digit can be 0
through 3, the second and third digits from 0 through 7. All three digits must
be used for recognition of the string. An example in a replace command to
replace ASCII character DEL (octal 177) with ESC (octal 033) would be:

Chapter 5: Editor Command Syntax
replace

114

 replace "\177" with "\033"

You can enter control characters in octal equivalent on the command line for
the find or replace strings.

Chapter 5: Editor Command Syntax
replace

115

retrieve

Syntax

Function The retrieve command provides access to the contents of the temporary
storage buffer used with the copy and extract commands by placing a copy, or
copies, of that storage buffer text into the current edit file, immediately
following the current line of text. The last line of text retrieved from the
temporary storage buffer becomes the new current line. You specify the
number of copies of text with the < # TIMES> option, which accepts any
positive integer. If no entry is made for < # TIMES> , the text is copied only
one time.

Default Value retrieve < # TIMES> : If no number entered, defaults to 1 (once).

Example(s) retrieve
retrieve 2

Chapter 5: Editor Command Syntax
retrieve

116

REVISE* (MODE)

Syntax Example(s) REVISE*

Function The REVISE* editor mode is used to change existing lines of text. It is one of
the three editor modes (the other two are Command and INSERT*), and it is
entered by pressing the softkey labeled REVISE, located second from the left
on the first level of softkeys. For more information, see Description under
this same syntax heading.

Default Value none

Syntax Example(s) REVISE (press softkey to enter mode)
REVISE* (press softkey to exit mode)

Description In the REVISE* mode, you can move about the file and modify text by writing
over it or inserting text at any desired line or column in the file. The current
text line is indicated by the symbol > in the left-hand column and the cursor
is positioned at the current column.

You can exit the REVISE* mode either by pressing the INSERT softkey to
enter the INSERT* mode, or by pressing the REVISE* softkey which will take
you to the Command mode on the command line.

When you are in the REVISE* mode, you can press any command softkey and
move temporarily to the Command mode. When you then execute a
command, you are placed back in the REVISE* mode at the previous location
in the text file. However, if you cannot execute the command or if you change
your mind, it will be necessary to clear the command line before you can
re-enter the REVISE* mode. The command line is cleared either by using the
Back Space key or the "kill" character from your operating system stty setting.
Once the command line has been cleared, you can re-enter the REVISE*
mode by pressing Return or the REVISE key.

Chapter 5: Editor Command Syntax
REVISE* (MODE)

117

save

Syntax

Function The save command is used to place a copy of the current edit file onto the
system disk, and is similar to the end command except that with save, the edit
session continues rather than returning to the shell. For more information,
see Description under this same syntax heading.

Default Value save : Defaults to current destination file name.
save tab_conv < SPACES> : If not specified, defaults to 8 spaces per tabstop.

Example(s) save
save afile
save /tmp/bfile
save bfile tab_conv 4

Description When you enter a save command, a check is made to see if the destination file
already exists. If a file with that name already exists, and it is not the same as
the current edit file name, you will be asked whether or not the file still should
be saved. If your answer is "yes", and if you have created a $HOME/.recover
directory, the old file copy is moved to the recovery directory before the file
being saved is written to the disk.

Chapter 5: Editor Command Syntax
save

118

A save will be done with no tabconversion unless you specify tab_conv. With
no tabconversion, tab characters will not be used to replace spaces even
though that might save disk space. With no tabconversion, the file can be
printed or edited and it will be exactly as it appears in the editor.

For "make" files, use tabconversion so the file is acceptable to the "make"
command.

Chapter 5: Editor Command Syntax
save

119

split

Syntax

Function The split command allows you to split a line of text into two lines at a specific
POINT, including specification of a line number, a column number, and even
a < STRING> . This results in two lines, with the second one being a NEW
line containing the text following the POINT at which the split occurred,
which now starts in column 1. For more information, see Description under
this same syntax heading.

Default Value split at POINT : Defaults to current edit line and column position.

Example(s) split
split at column 30
split at -5
split at 5 column 5
split at "h*o"

Description If no option is specified for split, the current cursor position is used in
INSERT* or REVISE* mode, or column 1 of the current line if split is invoked
from Command mode (would insert blank line preceding the line used for the
split).

Chapter 5: Editor Command Syntax
split

120

A special case occurs when you enter split at < STRING> . If no column is
indicated, the line split occurs at the column where the start of the string
match occurs. For example, if the string were "hello", the split would be done
on the line following the current line where "hello" first appears, and in the
column where the "h" in "hello" occurs. If a column number is indicated, the
split is done at that column, and not at the column where the string match was
made. The range boundaries are not used to restrict possible matches for a
< STRING> .

Chapter 5: Editor Command Syntax
split

121

tabset

Syntax

Function The tabset command is used to define the column positions the cursor moves
to when Tab or Shift Tab (backtab) is pressed while you are in either the
REVISE* or INSERT* mode. There is always a tabstop in column 1,
regardless of other settings, and the initial (and default) setting will provide
tabstops every 16 columns (that is, columns 1, 17, 33, etc.). For more
information, see Description under this same syntax heading.

Default Value tabset default : Places tabstops in every 16 columns starting with column 1.

Example(s) tabset
tabset 5 10 15 20
tabset fixed 4
tabset default

Description Note that tabset only affects how the Tab key works in INSERT* and
REVISE* modes. It does not affect text or tab control characters in text.

You can reset tabstops to standardize the appearance of text or to create
tables. For tabset < COLUMN> , you can enter any number from 1 through
240 for any number of tabstops. The tabset fixed < SPACES> command is
used to set tabstops at every < SPACES> columns, starting at column 1; the

Chapter 5: Editor Command Syntax
tabset

122

valid values are from 1 through 239. The tabset default command resets to a
default which is the same as a tabset fixed 16 command. Any values outside of
the valid range are ignored.

When the tabset command has been executed and any new tabstops assigned,
you are automatically placed in the TABSET* mode, and current tabstop
positions are denoted by the letter "T" in each position. The TABSET* mode
is similar to the INSERT* mode in that the line of T’s can now be modified
and it can be moved anywhere within the file. The final tab settings are
determined by the nonblank characters on this line. Pressing either Return or
the TABSET* softkey will remove the tabset display line and cause the tabset
specification to take effect.

Chapter 5: Editor Command Syntax
tabset

123

wait

Syntax

Function The "wait" command is a hidden command, which only can be entered from
the keyboard, and which will cause command files to be halted temporarily,
either for a specified number of seconds or until CTRL c is pressed. After the
wait period, the command file continues processing from that point. Note that
CTRL c is only appropriate if the ’intr’ stty option is set to that character. If a
different character is set, then that control sequence should be used instead of
CTRL c. The wait command will show the correct character to use.

Default Value wait < TIME> : Press CTRL c to continue processing.

Example(s) wait 10 seconds

Chapter 5: Editor Command Syntax
wait

124

while

Syntax

Function The while command allows repeated execution of editor commands based on
the result of a test clause. The while command is allowed with all editor
commands EXCEPT the following (all of which could cause drastic results if
allowed):

cd
CMDFILE
column_numbers
edit
end
help
log_commandsRsave
wait
!

For more information, see Description under this same syntax heading.

Chapter 5: Editor Command Syntax
while

125

Default Value < COUNT> : If no number entered, defaults to 1 (one).

Example(s) while count 5 do insert "hello"; delete thru + 2 doend
while count 10; find "aline" do delete doend
while find "change" do replace with "newstuff" doend

Description Execution of the while command involves two sets of commands called a "Test
Clause" and a "Body Clause". The "Test Clause" consists of one or more editor
commands which are all executed at the beginning of each iteration of the
while command. The allowable commands, exceptions noted above in
Function, are assigned truth values for this use. For example, autotab, insert,
range, and tabset commands are always true. Truth values for the other
commands are assigned based on the results when they are executed.
Appendix B contains a summary of the truth values.

If the "Test Clause" returns a true value, meaning that execution of all
commands in it returned a true value, then the "Body Clause" is executed.
However, if the "Test Clause" result is false, meaning that one or more of the
editor commands in it returned a false value, then the while command is
terminated. Note that all commands in the "Test Clause" will be executed to
determine its truth value.

The truth value for the while statement itself depends upon the truth value of
the "Body Clause". Before the while statement begins, the "Body Clause" is
assumed to have a true value. After each iteration when all the commands in
the "Body Clause" are executed, the value is set depending on the result
returned. If the "Body Clause" is empty or if all the statements returned a true
value, the "Body Clause" value is set to true. However, if one or more of the
statements in the "Body Clause" was false, the value is set to false. After
further iterations, when the "Test Clause" finally fails, the value of its last
"Body Clause" execution is returned.

The count command is used to control the number of iterations for the while
command. In the "Test Clause", the count is evaluated as true as long as the
number of iterations of the while command is less than or equal to the value of
the < COUNT> variable. If no number is entered for < COUNT> , it defaults
to 1. If count < COUNT> is used in any other location than mentioned here,
it has no effect on the truth value.

Chapter 5: Editor Command Syntax
while

126

(Shell Command) !

Syntax

Function The "!" represents Shell Command, which is a hidden command, and it allows
you to invoke shell commands from the Command mode without having to
end the edit session. It does not allow you to move text from or to the editor
with the "!" command. For more information, see Description under this same
syntax heading.

Default Value shell command : Will invoke a shell, using the SHELL variable, if set.

Example(s) !ls /users
!sh
!sk anotherfile
!uucp anothersystem\!~ /afile ~ !

Description Once the shell command has terminated, you must press a key to cause the
display to be redrawn for the current edit state. Any shell valid command may
be used by prefixing it with ! and following it with ! . If the "!" is a part of the
shell command, it must be escaped with a backslash (\).

Chapter 5: Editor Command Syntax
(Shell Command) !

127

Here is a brief explanation for the examples shown above:

!ls /users: Lists directory for /users.

!sh: Moves to a new shell temporarily; exit that shell back to the editor with
CTRL d.

!sk: Starts a different edit session.

!uucp anothersystem\!~ /afile ~ !: Gets a file from another computer system
and moves it to the public directory. Note backslash (\) to escape ! inside
command.

Chapter 5: Editor Command Syntax
(Shell Command) !

128

Installation Notice

Help and Problem-Solving

Chapter Overview

This chapter provides the following information to assist you in finding
answers to both general and specific questions or problems while you are using
the Softkey Driven Editor:

• What is the meaning of an error or status message displayed on my
screen?

• Can I get answers by reading the operating system "man" (manual) pages
and is there help built into the editor?

• What should I look at to get a better understanding about strings,
especially as used in find and replace commands?

• Where do I look for information about recovering saved files, and
especially what happens if my session "crashes"?

• Have some of my other questions about problems with file names, control
characters, and strange on-screen displays been answered somewhere in
this manual?

Chapter 6: Help and Problem-Solving
Chapter Overview

130

Error and Status Messages

While you are using the Softkey Driven Editor, messages will appear on the
STATUS line and some messages or questions appear along the command
line. Most of the messages and questions have sufficient information in them
to let you proceed or correct a problem pointed out by the Editor.

Chapter 5, which covers editor command syntax, and chapter 3, which covers
editor modes and operating system connections, will help your understanding
of the terminology used in the messages and questions. Those chapters also
will give you a better idea of why the message or question appears on-screen
just as you have completed a particular action or keystroke.

Finally, appendix A contains a listing and explanations for all of the on-screen
messages and questions which you may encounter in using the editor.

"man" Pages and Editor "help"

In addition to this printed manual, there are two other sources of information,
much of which contains the same information as in this manual. You can
access "man" pages from the operating system shell for the various Softkey
Driven Editor shell commands such as sk, purge, rcvr , dirrec, skpreserve, and
skrecover. This is usually done by entering the shell command: "man
< subject> ". In addition, the editor has a help command which is described in
chapter 5. It is accessible from a softkey in all editor modes, with the
convenience of pressing any of the softkeys displayed for information about
the subject represented by the label on the softkey. In other words, if you want
to read an explanation on-screen about the join command, you would first
press the help softkey (or just type "help", from the keyboard, on the command
line), and then press the join softkey. Information begins appearing on-screen
and you move to additional information (when the message at the bottom of
the screen says "more") by pressing the Space bar.

Chapter 6: Help and Problem-Solving
Error and Status Messages

131

Understanding Strings

Strings are a very powerful tool to use in checking and modifying large files. If
you have questions in general about strings and their use with the editor, you
can refer to the syntax for < STRING> as a variable in chapter 5. For further
information about strings, the find and replace command syntax in chapter 5
should be helpful. In particular, the syntax for the replace command has some
examples involving use of anycharacter ("?") and anystring ("*") to help clarify
how those editor tools work.

Recovery of Files and Session "Crashes

There are two aspects of recovering files: 1.) moving files into and out of your
$HOME/.recover directory; and 2.) recovering files which are being edited
when some sort of "crash" occurs (such as a power failure or a phone/modem
hang-up). Chapter 3 provides you with the information about using shell
commands "purge", "rcvr ", and "dirrec" to manipulate files into and out of your
$HOME/.recover directory. If you should be unfortunate enough to have a
"crash" occur during an edit session, you can find information in chapter 3
about what to do and what happens to allow you to recover most, if not all, of
the files involved in the session. (This involves the "skrecover" command, run
by you after "skpreserve" has been run as explained in chapter 2.)

Chapter 6: Help and Problem-Solving
"man" Pages and Editor "help"

132

Questions and Possible Answers

The following paragraphs contain some questions about subjects on which you
may encounter a problem, along with some information which may help you
find a solution or at least point the way to a possible solution.

Why Aren’t My Control Characters Entered or Displayed?

Control characters are entered into the editor by a two-step method: You
press CTRL v , followed by the control character. For example, to enter a
CTRL l (lower-case L), you first type CTRL v and then CTRL l (pressing the
control key and the letter at the same time). A control character is shown as a
" . ". In the text area of the Softkey Driven Editor, you can use the
WHATCHAR softkey with the cursor positioned over the "period", and find
what the real character is, as well as its numerical value in decimal,
hexadecimal, or octal. The subject of entering control characters is discussed
in chapters 3 and 5.

Why Doesn’t My File Print Okay Outside the Editor?

The problem probably is caused by conversion of tab characters. The editor
normally does not have tab characters in it. When a file is sent to the printer
using the list command, there are only spaces in the file and the printout
should look exactly like the text inside the editor. The problem usually occurs
when the file is saved to the disk from the editor. If the file was saved using
the tabconvert option, then tab characters are used whenever space can be
saved in the disk file. Then, when the file is sent to the printer, the tab
characters can cause the output to look quite different. The solution is to
either save the file without the tabconvert option (using the default) or to
convert the tabs to spaces before sending the file to the printer using the
"expand(1)" shell command. See the syntax in chapter 5 for more
information.

Why Do I Get a Syntax Error When I Enter a File Name?

The likely problem has to do with the scanner of the Softkey Driven Editor.
The standard file name format used by the editor is any name starting with a
letter, followed by any number of letters and/or numbers. A possible problem
is that the file name you entered is a "token" used by the editor, such as the

Chapter 6: Help and Problem-Solving
Questions and Possible Answers

133

word "copy", which is also an editor command. Another possibility is that the
file name has some strange characters, such as "-" or "@", or starts with a
number. The solution to getting the file accepted is to escape the offending
character with a backslash " \ ". For example, to edit the file named "copy", the
command might look like this: "edit \copy". To edit a file where the name
contains a "-", the command could be "edit the\-file". Another solution is to
put the entire file name in quotes, as in "edit ’the-file’". However, if "$" is part
of the file name, you must escape the "$" regardless of whether the file name is
quoted or not. Otherwise, the "$" will be taken as part of a shell variable and
will be replaced by any text that it matches.

Why Doesn’t My "Make" File Work Any More?

One of the requirements for a "make" file to work is that tab characters must
be used in front of all commands that are to be executed as part of the make(1)
process. The problem can occur in using the editor because the default action
for saving a file is to save with only spaces and no tab characters. In this way,
the "make" file no longer will be acceptable to make(1). The solution is to
re-edit the file using the editor, and to save the file using the tabconvert
option, thus putting tab characters back into the file.

Why Do I Sometimes Get Strange Characters Displayed
On-Screen?

This may occur when you are scrolling up and down in a file or when you make
a large jump from one place in the file to another. It may be caused by the
terminal being used. In some cases, the terminal is not able to keep up with
the baud rate of transmission of the computer. When this happens, the data is
scrambled on the display into what is commonly called "garbage". The best
solution for this is to lower the baud rate for your terminal and the computer
it is networked to. If this change in baud rate appears to solve the problem,
you should inform your System Administrator so the baud rate is changed as
far as the computer is concerned. This should involve changing the "getty" file
in the "/etc/inittab" and "/etc/gettydefs" files to reflect the new baud rate. The
change procedure is documented in the manual available to the System
Administrator. The change made does not take effect until the computer is
brought back into the multi-user state.

Chapter 6: Help and Problem-Solving
Questions and Possible Answers

134

Installation Notice

Editor Status and Error Messages

Introduction

The Softkey Driven Editor displays error and status messages on the STATUS
line and on the command line. The messages and questions relate to editor
modes, to editor command syntax, and to various shell commands. The
messages are summarized in this appendix, along with explanations of the
meaning or purpose for the message or question.

COMMAND

MESSAGE

EXPLANATION

Invoking Editor status/error messages

display size is NUMBER lines by NUMBER columns.
It must be at least 24 by 80.

The Softkey Driven Editor will only work on displays that are at least 24
lines and 80 columns in size. The editor will stop if you attempt to run it
in a window that is smaller than 24 lines by 80 columns.

terminal initialization failed

Problem with window system.

usage: sk [-c] [-n] [-v] [-f number] [-t number] [-i filename] [filename]

Bad option or filename while invoking editor from shell.

Chapter A: Editor Status and Error Messages
Introduction

136

$HOME/.recover directory not accessible

Protection on $HOME/.recover directory has been set so user can’t
modify it, or the $HOME/.recover directory doesn’t exist.

Maximum number of recoverable files available is NUMBER

MAXREC shell variable set outside of limits from 1 to 128.

syntax error

Command not formed correctly. If an ’R’ appears in the right corner of
the STATUS line, then the command is syntactically correct.

Keyword completion not possible

No valid keywords are possible given the current command line.

Possible tokens: COMMAND_LIST

A list of valid keywords given the current command line.

Response pipe create

An internal problem occurred while trying to create a pipe to the feeder.

Data pipe create

An internal problem occurred while trying to create a pipe to the feeder.

exec of feeder

An internal problem occurred while trying to exec the feeder.

Cannot status input

The feeder does not respond to the editor.

No homedown in shell escape

The terminal is not able to do a homedown.

yacc stack overflow

Command too complex or too large to be parsed.

yacc reduce stack overflow

Command too complex or too large to be parsed.

Disk full, line truncated

System disk is full, editor cannot write data.

Chapter A: Editor Status and Error Messages
Introduction

137

Disk full, some data was lost

System disk is full, editor cannot write data.

Disk error, line truncated

Error occurred on system disk, editor cannot write data.

Number overflows a 32-bit integer

Entered number is too large.

Command status/error messages

autotab

Autotab is now off

Autotab mode is now off.

Autotab is now on

Autotab mode is now on.

Autotab in columnar mode, column: NUMBER

Autotab mode to a specific column is now on.

cd

Working directory is DIRECTORY

The change directory command worked.

< CMDFILE>

Can’t execute command file - No feeder

The command file cannot be executed since the file
$HP64000/lib/feeder does not exist.

Chapter A: Editor Status and Error Messages
Introduction

138

Can’t execute commandfile - Feeder rev. NUMBER != Feature rev.
NUMBER

The command file cannot be executed since the file
$HP64000/lib/feeder revision number does not match the editor
internal revision number.

Define parameter

If the user did not specify enough parameters, then the editor will
prompt for them.

Parameter > 130 characters

The size of the parameter is greater than maximum of 130
characters.

Parameter name is invalid or longer than 30 chars

The parameter name given in the command file is too long or
incorrect.

Parameter must be specified

A parameter must be entered.

Missing parameters in nested invocation

When invoking a command file from another command file, all
parameters must be defined.

CMDFILE :not a text file

The command file to be executed is not a normal text file.

column_numbers

Column number updating on

Column number updating to the status line during the REVISE,
INSERT, range, and tabset modes is turned on.

Column number updating off

Column number updating to the status line during the REVISE,
INSERT, range, and tabset modes is turned off.

Chapter A: Editor Status and Error Messages
Introduction

139

copy

String not matched; no lines copied

The match string used as part of the limit was not found.

Lines copied: NUMBER

The indicated number of lines have been copied to the internal
buffer.

delete

String not matched; no lines deleted

The match string used as part of the limit was not found.

Lines deleted: NUMBER

The indicated number of lines have been deleted.

edit

Invalid tab conversion; using default

The tab conversion value entered was less than 1 or greater than
239, so default of 8 was used.

Do you want to lose changes?

Occurs if the current edit file has been modified. If the answer is
anything but ’yes’ or ’y’, then the edit session continues without
losing those changes. If the answer is ’yes’ or ’y’, then the modified
current file is lost and the new file is edited.

Answer is too long

The answer to the question was too long.

No changes lost, edit resumed

The answer to the question was something other than ’yes’ or ’y’.

file FILE is read protected

The file to be edited is read-protected, so it cannot be read.

Chapter A: Editor Status and Error Messages
Introduction

140

edit (Cont’d)

file FILE is not ordinary

The file to be edited is not an ordinary text file, so it cannot be
edited.

file FILE is not accessible

The file either does not exist or the path to that file is protected.
As a result, the file cannot be edited.

Loading FILE

File is being loaded into editor.

Editing new file

An edit session is begun without any data or file name. The user
is placed in the INSERT* mode.

Editing into FILE

An edit session is begun without any data, but is given a filename.
The user is placed in the INSERT* mode.

Editing FILE

This file is been loaded into the editor.

Editing FILE, truncation

This file has been loaded, but some lines were truncated due to
being over 240 characters long.

Interrupt, editing FILE

This file has been loaded, but loading of the file was interrupted,
so some data may be missing.

Interrupt, editing FILE, truncation

This file is being edited, but some lines were truncated due to
being over 240 characters long. Also, loading of the file was
interrupted, so some data may be missing.

Editing FILE into FILE

The first file has been loaded into the editor and its current name
is the second.

Editing FILE into FILE, truncation

The first file has been loaded into the editor and its current name
is the second. Some lines were truncated due to being over 240
characters long.

Chapter A: Editor Status and Error Messages
Introduction

141

Interrupt, editing FILE into FILE

The first file has been loaded into the editor and its current name
is the second. Also, loading of the file was interrupted, so some
data may be missing.

Interrupt, editing FILE into FILE, truncation

The first file has been loaded into the editor and its current name
is the second. Some lines were truncated due to being over 240
characters long. Also, loading of the file was interrupted, so some
data may be missing.

end

Invalid tab conversion; using default

The tab conversion value entered was less than 1 or greater than
239, so default of 8 was used.

Can’t update recoverable files directory

Protection on $HOME/.recover/directory has been set so user
can’t modify it.

Can’t set permissions on recoverable list

Protection on $HOME/.recover/directory has been set so user
can’t modify it.

No destination file

No file name was given to the current edit file nor was one used as
part of the command.

file FILE already exists, delete old?

If writing to an existing file with a name other than the current
edit file, then this question is asked. If the answer is ’yes’, or ’y’,
then the existing file is either put in the recovery directory or
removed. The file is then written to disk. If the answer is
anything else, then no action occurs and the edit session continues.

Answer is too long

The answer to the question was too long.

File FILE not deleted, edit resumed

The answer to the query was something other than ’yes’ or ’y’.

Chapter A: Editor Status and Error Messages
Introduction

142

end (Cont’d)

Unable to purge FILE, no save made

The purging of the file to the recovery directory failed, so the
current edit file could not be written. The recovery directory is
possibly read- or write-protected.

File FILE is a directory or special file, edit resumed

The file to be saved to is an existing directory or special file, which
is not allowed.

File FILE not accessible, edit resumed

Part of the path for the file is protected against writing.

writing FILE

The file is being written to disk.

error opening file FILE

Some internal error occurred while opening the file for writing.

Interrupt, wrote NUMBER lines

The writing of the file was interrupted, so it may not be
completely written.

extract

String not matched; no lines extracted

The match string used as part of the limit was not found.

Lines extracted: NUMBER

The indicated number of lines have been extracted and placed in
the internal buffer.

find

Can’t have two ’*’s next to each other; no find made

Illegal match string in find command.

String not matched; no find occurred

The match string used as part of the limit was not found.

Finding ^ MATCHSTRING^

Indicates that a find command is executing.

Chapter A: Editor Status and Error Messages
Introduction

143

find (Cont’d)

Invalid limit

The limit specified for the find command was illegal or invalid.

Interrupt, ^ MATCHSTRING^ not found

The find command was interrupted before the pattern could be
found.

Found at column: NUMBER

Indicates the column position of the found pattern.

^ MATCHSTRING^ not found

The string could not be found in the given limit and range margins.

NUMBER: Too many ? or * in matching string

More than 240 ? and/or * used in the pattern.

NUMBER: matching string overflow

The pattern was too large for internal storage.

help

Finding help text

The help file is being searched.

Help softkeys are not defined properly

The help file contains lines that are not in the proper format.

$HP64000 is the only environment variable allowed

The help file may only contain the $HP64000 shell variable as part
of the file names.

(MALLOC) unable to allocate memory

No memory was available for the help command.

Help file did not close

The editor was not able to close the help file for some internal
reason.

Chapter A: Editor Status and Error Messages
Introduction

144

insert

Data lost due to truncation

The inserted line was greater than 240 characters, so some
characters were lost.

INSERT

To leave, press INSERT key again

Indicates how to leave the INSERT* mode to return to the
command mode.

Null character not allowed

User cannot enter a null character as text.

Text line number or + /- offset from current line

User temporarily leaves INSERT* mode. Enter a line number
and press Return. The editor will move to the line and resume
editing the file in the INSERT* mode.

join

String not matched; no strings joined

The match string used as part of the limit was not found.

Join: range error

Bad limit for join.

Interrupt, no join occurred

An interrupt occurred before the join could complete.

Join: line too long

The resulting line was longer than 240 characters.

Number of lines joined: NUMBER

Indicates the number of joined lines.

< LINE+ ->

Line not present

An absolute line value was given, so the editor uses the nearest
existing line number for positioning.

Chapter A: Editor Status and Error Messages
Introduction

145

< LINE+ -> (Cont’d)

Line not present, plus NUMBER

Given offset would go outside of the current file, so the editor
uses the end of file.

Line not present, minus NUMBER

Given offset would go outside of the current file, so the editor
uses the START line.

Jumping to NUMBER

Going to a specific line.

Jumping to line 0

Going to the START line.

Jumping to new line

Going to a line without a line number.

list

String not matched; no lines listed

The match string used as part of the limit was not found.

Listing ...

Listing is proceeding.

Invalid limit

A bad range was given for listing.

Tried to list to directory or special file

The file name given was a directory or special file.

Cannot access file

The path to the given file is write-protected.

Unable to purge FILE

The editor was unable to purge the existing file so it could be
listed to.

Can’t open FILE

The editor was not able to open the designated file for writing.

Chapter A: Editor Status and Error Messages
Introduction

146

list (Cont’d)

Interrupt, listed NUMBER lines

An interrupt occurred during listing.

Listed NUMBER lines

Indicates the number of lines listed.

PRINTER environment variable not defined

In order to use the ’printer’ option, the PRINTER shell variable
must be defined and exported.

PRINTER environment variable must not be blanks

The PRINTER shell variable must be assigned a shell command.

Command must not be blanks

When using a shell command as a destination for the list
command, it must not be left blank.

Hit return to continue

After using a shell command as a destination for listing, the user
must press a key to cause the display to be redrawn in case some
output was generated.

Listed help text

Help text was listed.

Help softkeys are not defined properly

The help file contains lines that are not in the proper format.

$HP64000 is the only environment variable allowed

The help file may only contain the $HP64000 shell variable as part
of the file names.

(MALLOC) unable to allocate memory

No memory was available for the help command.

Help file did not close

The editor was not able to close the help file for some internal
reason.

error is NUMBER

Some error occurred while listing.

Chapter A: Editor Status and Error Messages
Introduction

147

list (Cont’d)

error in closing file; FILENAME

Some error occurred while closing the file that was listed to.

error in closing file; error is NUMBER

Some error occurred while closing the file that was listed to.

log_commands

Appending commands to LOGFILE until "log off"

Logging to a file, appending to its contents.

Logging commands to LOGFILE until "log off"

Logging to a file, overwriting the current file contents.

Appended NUMBER lines to LOGFILE

When logging is turned off, indicates the number of lines
appended to the log file.

Logged NUMBER lines to LOGFILE

When logging is turned off, indicates the number of lines written
to the log file.

No log file active

When using the ’log_commands off’ command and no logging is
occurring.

merge

Invalid Line specification

Bad limit given for merge command.

No merge file name given

No file name was specified nor does the current edit session have
a file name.

file FILE not accessible

The file to be merged either does not exist or a part of its path is
read-protected.

file FILE read protected

The file to be merged is read-protected.

Chapter A: Editor Status and Error Messages
Introduction

148

merge (Cont’d)

file FILE not ordinary

The file to be merged is either a directory or a special file.

error opening file FILE

The editor was not able to open the file.

Merging ...

A merge is occurring.

Interrupt, merged NUMBER lines, truncation

The merge command was interrupted, having merged some lines,
with some of those lines being over 240 characters in length and
requiring truncation.

Merged NUMBER lines, truncation

The merge command merged some lines, with some of those lines
being over 240 characters in length and requiring truncation.

Interrupt, merged NUMBER lines

The merge command was interrupted, having merged some
number of lines.

Merged NUMBER lines

The merge command merged some number of lines.

Merged NUMBER lines, NUMBER nulls

Nulls are removed from merged text.

range

Range column NUMBER

The current range is for the specified column.

Range columns NUMBER thru NUMBER

The current range is from the first column to the second column.

Insert line key not implemented

The ’insert line’ key is not defined for the range mode.

Chapter A: Editor Status and Error Messages
Introduction

149

range (Cont’d)

Range is now columns NUMBER thru NUMBER

The resulting range after using the range mode is from the first
NUMBER column to the second NUMBER column.

renumber

Renumbering

Renumbering is occurring.

Lines of text: NUMBER

The number of lines in the current file.

repeat

Repeat: range error

A bad limit for the repeat command.

No repeat made, repeat value 0

A value of 0 was used, so no repeat was made.

Repeating

Repeating is occurring.

Lines repeated: NUMBER

The number of lines actually repeated.

replace

Can’t have two ’*’s next to each other; no replacement made

Illegal match string in replace command.

String not matched; no strings replaced

The match string used as part of the limit was not found.

Illegal range - No replacements made

Invalid limit was given for replace command.

No replacement string available

No replacement string was given and no previous replacement
string was available.

Chapter A: Editor Status and Error Messages
Introduction

150

replace (Cont’d)

Null matching string - No replacements made

The first pattern-matching string cannot be the null string.

replacing ^ MATCHSTRING^ with ^ REPLACESTRING^

Replacement is occurring.

Interrupt, no replacements made

The replace command was interrupted before any replacements
could be made.

Interrupt, replaced NUMBER occurrences, truncation occurred

The replace command was interrupted. The replace command
had replaced some strings, the result of which was that some lines
were truncated when their length exceeded 240 characters.

Replaced NUMBER occurrences, truncation occurred

The replace command had replaced some strings, the result of
which was that some lines were truncated when their length
exceeded 240 characters.

Interrupt, replaced NUMBER occurrences

The replace command was interrupted, having replaced some
number of strings.

Replaced NUMBER occurrences

The replace command replaced all occurrences of the string in the
given limit and range.

No replacements made

The replace command was not able to find any occurrences of the
pattern in the given limit and range.

NUMBER: Too many ? or * in matching string

More than 240 ? and/or * used in the pattern.

NUMBER: matching string overflow

The pattern was too large for internal storage.

Chapter A: Editor Status and Error Messages
Introduction

151

retrieve

NUMBER lines retrieved

Indicates the number of lines retrieved from the internal buffer.

REVISE

To leave, press REVISE key again

Indicates how to leave the REVISE* mode to return to the
command mode.

Unable to enter REVISE mode since file is empty

If there are no lines in the current file, then the user may not enter
the REVISE* mode.

Must exit REVISE mode since file is empty

Since there are no lines in the current file, the user must leave the
REVISE* mode.

Null character not allowed

User cannot enter a null character as text.

Text line number or + /- offset from current line

User temporarily leaves REVISE* mode. Enter a line number
and press Return. The editor will move to the line and resume
editing the file in the REVISE* mode.

save

Invalid tab conversion; using default

The tab conversion value entered was less than 1 or greater than
239, so default of 8 was used.

Can’t update recoverable files directory

Protection on $HOME/.recover/directory has been set so user
can’t modify it.

Can’t set permissions on recoverable list

Protection on $HOME/.recover/directory has been set so user
can’t modify it.

No destination file

No file name was given to the current edit file nor was one used as
part of the command.

Chapter A: Editor Status and Error Messages
Introduction

152

save (Cont’d)

file FILE already exists, delete old?

If writing to an existing file with a name other than the current
edit file, then this question is asked. If the answer is ’yes’ or ’y’,
then the existing file is either put in the recovery directory or
removed. The file is then written to disk. If the answer is anything
else, then no action occurs and the edit session continues.

Answer is too long

The answer to the question was too long.

File FILE not deleted, edit resumed

The answer to the query was something other than ’yes’ or ’y’.

Unable to purge FILE, no save made

The purging of the file to the recovery directory failed, so the
current edit file could not be written. The recovery directory is
possibly read- or write-protected.

File FILE is a directory or special file, edit resumed

The file to be saved to is an existing directory or special file, which
is not allowed.

File FILE not accessible, edit resumed

Part of the path for the file is protected against writing.

writing FILE

The file is being written to disk.

Saved FILE

The file has been written to the disk.

error opening file FILE

Some internal error occurred while opening the file for writing.

Interrupt, wrote NUMBER lines

The writing of the file was interrupted, so it may not be
completely written.

Chapter A: Editor Status and Error Messages
Introduction

153

split

String not matched; no split occurred

The match string used as part of the limit was not found.

Split: line NUMBER not found

The split command was not able to find the line that was to be
split (as in an empty file).

Split: illegal column NUMBER

A column value was given that was less than 1 or greater than 240.

tabset

Using default value

The tab value entered was less than 1 or greater than 239, so
default of 16 was used.

Insert line key not implemented

The ’insert line’ key is not defined for the tabset mode.

Too many variable tab positions

Too many tab positions were entered for the tabset command.

wait

Waiting for SIGINT (ctrl-c) or NUMBER seconds

To continue, either a CTRL c must be pressed or some number of
seconds must pass.

Waiting for SIGINT (ctrl-c)

To continue, a CTRL c must be pressed.

Not able to get system time

The editor was not able to determine the system time used for
waiting.

Chapter A: Editor Status and Error Messages
Introduction

154

!

Executing shell command ...

The shell command is being executed.

Hit return to continue

After a shell command has completed, this message informs the
user that a key must be pressed to continue. After the key is
pressed, the display is redrawn and the edit session continues.

Can’t homedown when escaping to the shell

The terminal is not able to do a homedown before executing the
shell command.

WHATCHAR

Control character CONTROLCHARACTER (nnD,0xnn,0nnn)

The character under the cursor is a control character, with the
given decimal (nnD), hexadecimal (0xnn), and octal (0nnn) values.

Space character (nnD,0xnn,0nnn)

The character under the cursor is the space character, with the
given decimal, hexadecimal, and octal values.

Normal character CHARACTER (nnD,0xnn,0nnn)

The character under the cursor is a normal character, with the
given decimal, hexadecimal, and octal values.

ESC character (nnD,0xnn,0nnn)

The character under the cursor is the ESC character, with the
given decimal, hexadecimal, and octal values.

DEL character (nnD,0xnn,0nnn)

The character under the cursor is the DEL character, with the
given decimal, hexadecimal, and octal values.

Unknown character (nnD,0xnn,0nnn)

Editor cannot display type of character under cursor if greater
than 127 decimal (7F hex, 177 octal).

Chapter A: Editor Status and Error Messages
Introduction

155

CTRL d

Do you really want to quit?

This query occurs when a CTRL d is pressed. If the user wishes to
leave the editor, a ’yes’ or ’y’ answer is needed. Otherwise, the edit
session continues.

Answer is too long

The answer to the question was too long.

No changes lost, edit resumed

The answer to the question was something other than ’yes’ or ’y’.

CTRL r or CTRL b

Recall buffer empty

No commands have been placed in the recall buffer, so nothing
can be recalled.

Recall buffer broken

Internal problem with the recall command.

skpreserve status/error messages

usage: skpreserve

The skpreserve command does not allow any options to be used in
invoking it.

Unable to open temporary directory DIRECTORY

The directory where the crashed edit sessions reside could not be
opened. This may be due to a protection problem.

Couldn’t copy file TMPFILE to PRESERVEFILE

Due to being on different file systems, an attempt was made to
copy the temporary file to the preserve directory. This was not
possible for some internal reason.

Couldn’t link file TMPFILE to PRESERVEFILE

Some internal error occurred while trying to link the temporary
file to the preserve file.

Chapter A: Editor Status and Error Messages
Introduction

156

Couldn’t unlink TMPFILE

Some internal problem has prevented the link from being
removed.

Error while trying to open pipe for mailing

Some system error caused the mail message to not be sent.

Error on closing pipe

Some system error caused the pipe, used to mail the message, to
close improperly.

skrecover status/error messages
usage: skrecover [-d] [-r] [-u] [-n fileid] [-t number] [-f file] [file]

User did not follow the syntax for the command. For example, the
’-d’ option may not be used with any other option.

No filename available, use -f option

Recovery of an unnamed edit session requires that the -f option
be used to give the recovered file a name.

Can’t find recovery file for an unnamed file

The user is trying to recover an unnamed file and that file cannot
be found.

Can’t find recovery file for FILE

The user is trying to recover a file and that file cannot be found.

unknown option: NUMBER

The recovery file has bad data in it, so complete recovery may not
be possible.

Recovery file incomplete, some data may be lost.

The recovery file is missing some data, so complete recovery may
not be possible.

copy: error
delete: error
extract: error

An error occurred during the recovery process. Some data may be
lost.

Chapter A: Editor Status and Error Messages
Introduction

157

File FILE exists, no save made

The -u option was not used, so an existing file will not be
overwritten. $HOME/.recover directory not accessible.

Protection on $HOME/.recover directory has been set so user
can’t modify it, or the $HOME/.recover directory doesn’t exist.

Maximum number of recoverable files available is NUMBER

The shell variable MAXREC was set to a bad value or a number
greater than 128.

Can’t update recoverable files directory

Protection on $HOME/.recover/directory has been set so user
can’t modify it.

Can’t set permissions on recoverable list

Protection on $HOME/.recover/directory has been set so user
can’t modify it.

Unable to open temporary directory DIRECTORY

The temporary directory where the crashed edit sessions originally
resided could not be opened. This may be due to a protection
problem.

Can’t unlink FILE

Some internal problem has prevented the link from being
removed.

Unable to write file FILE

The skrecover command is not able to write the file due to either
an existing file or not being able to open a file to write to.

Unable to purge existing file FILE, no save made

The purging of an existing file did not work, so the edit session
could not be recovered.

Disk full, some data was lost

The system disk being written to is full, so the recovery of the edit
session is not possible.

Chapter A: Editor Status and Error Messages
Introduction

158

Purge status/error messages

no $HOME shell variable

The user does not have a $HOME shell variable defined and
exported.

Maximum number of records available is NUMBER

The shell variable MAXREC was set to a bad value or a number
greater than 128.

Can’t open recover file directory

Protection on $HOME/.recover directory has been set so user
can’t modify it, or the $HOME/.recover directory doesn’t exist.

Can’t copy file across file system

An error occurred while trying to copy the file between file
systems.

Can’t link to file

Some internal problem has prevented the link from being made.

Can’t unlink old file

Some internal problem has prevented the link from being
removed.

Can’t update recoverable files directory

Protection on $HOME/.recover/directory has been set so user
can’t modify it.

Can’t set permissions on recoverable list

Protection on $HOME/.recover/directory has been set so user
can’t modify it.

FILE purged

The purge to the $HOME/.recover directory worked.

Can’t purge FILE

The purge command was unable to place the file in the
$HOME/.recover directory.

Chapter A: Editor Status and Error Messages
Introduction

159

rcvr status/error messages
usage: rcvr [-f newfile] file [file2 ...]

Indicates when bad options are used.

Only one file may be recovered when using -f option

Recovery of more than one file was attempted while using the -f
option, which is not allowed.

no $HOME shell variable

The user does not have a $HOME shell variable defined and
exported.

file FILE not found

The file does not exist in the recovery directory. This may be due
to the fact that an absolute path must be matched. If a relative file
name is entered as part of the rcvr command, then the current
directory will be used as part of the absolute path to that file.

File FILE already exists

The rcvr command will not overwrite an existing file.

Can’t open recover file directory

Protection on $HOME/.recover directory has been set so user
can’t modify it, or the $HOME/.recover directory doesn’t exist.

Not able to copy file across file system

An error occurred while trying to copy the file between file
systems.

Not able to link to old file

Some internal problem has prevented the link from being made.

Can’t unlink recoverable alias

Some internal problem has prevented the link from being
removed.

Can’t update recoverable files directory

Protection on $HOME/.recover/directory has been set so user
can’t modify it.

Can’t set permissions on recoverable list

Protection on $HOME/.recover/directory has been set so user
can’t modify it.

Chapter A: Editor Status and Error Messages
Introduction

160

FILE recovered

The recovery worked for the given file.

FILE not recovered

The rcvr command was unable to recover the file.

dirrec status/error messages

No personal recovery directory

The user does not have a $HOME/.recover directory.

Chapter A: Editor Status and Error Messages
Introduction

161

Installation Notice

Editor Command Truth Tables

Introduction

Editor truth values in the following table are related to the "Test Clause"
which is executed at the beginning of each iteration of the while command. It
also affects the "Body Clause" as to what truth value is returned at the end of
the while command. For more information on the while command, refer to
the syntax in chapter 5.

Editor Command Truth Values

Command Value

autotab true

copy true if lines copied
false if 0 lines copied

delete true if lines deleted
false if 0 lines deleted

extract true if lines extracted
false if 0 lines extracted

find true if string found
false if string not found

insert true

join true if lines joined
false if no lines joined

list true if lines listed
false if 0 lines listed

Chapter B: Editor Command Truth Tables
Introduction

164

Command Value

< LINE+ -> true if line is found
false if line not found

merge true if file merged
false if no lines merged

range true

renumber true if lines renumbered
false if 0 lines renumbered (empty file)

repeat true if lines repeated
false if 0 lines repeated

replace true if strings replaced
false if no strings replaced

retrieve true if lines retrieved
false if 0 lines retrieved

split true if line split
false if no split occurs

tabset true

while true if body is not empty and all statements in body true
during last loop; or true if body is empty
false if body is not empty and one or more statements
were false during last loop

Chapter B: Editor Command Truth Tables
Introduction

165

The following editor commands have no truth value and may NOT be used in
multiple constructs:

cd
< CMDFILE>
column_numbers
edit
end
help
log_commands
save
wait
!

Chapter B: Editor Command Truth Tables
Introduction

166

Installation Notice

Comparison with HP 64000 Editor

Introduction

The Softkey Driven Editor is based on the HP 64000 workstation editor, but
has been enhanced to take advantage of your development environment. If
you are familiar with and have used the HP 64000 workstation editor, you will
note some differences between that editor and the Softkey Driven Editor.
These differences and others of less significance are referenced where
appropriate throughout this manual. The following is a summary of some
differences and a description of how this may affect your approach to using the
Softkey Driven Editor.

List Command

In the HP 64000 workstation editor, the list command writes to a file with the
"listing" extension, which file would always be overwritten. On the operating
system, these extensions are no longer separate from the file name. For user
file protection, on the Softkey Driven Editor, the list command appends to
existing text unless the user specifically directs the command to overwrite the
file; this is intended to minimize text loss. Also, if a $HOME/.recover
directory exists, a copy of an existing file will be placed there before the listing
takes place.

Chapter C: Comparison with HP 64000 Editor
Introduction

168

Control Characters

In the HP 64000 workstation editor, control characters are entered with a
special key and are displayed with a special character on-screen. With the
Softkey Driven Editor, control characters are entered with a two-step
sequence. First you press CTRL v , followed by the control character. For
example, with the Softkey Driven Editor, you would enter CTRL L by pressing
the following sequence of keys: CTRL v CTRL L . This will generate a "."
which represents the control character. If this "." is on the command line, then
the user will be unable to identify whether it is a period or a control character.
If the "." is in the text area, the WHATCHAR softkey may be used from the
REVISE* or INSERT* mode to identify it.

Command Separators and Comments

In the HP 64000 workstation editor, multiple commands are separated by a
backslash " \ " and comments are started with a semicolon " ; ". Because the
operating system uses the backslash as an escape character, multiple
commands on the Softkey Driven Editor are separated by semicolons " ; ". On
the Softkey Driven Editor, comments start with a number symbol " # ". Both
editors allow comments anywhere on the command line and they continue
until the end of the line.

Command Files

Command files on the HP 64000 editor were chained, whereas on the Softkey
Driven Editor, command files are nestable. This means that on the Softkey
Driven Editor, when a command file is invoked from another command file,
the original command file waits for the second command file to finish before it
continues. If the command file call is the last line in the command file, then it
will "chain" like the HP 64000 editor. On the HP 64000, the call to the second
command file causes the first command file to terminate. Because of this

Chapter C: Comparison with HP 64000 Editor
Control Characters

169

difference, it may be necessary to do some editing of HP 64000 command files
to ensure that they will run with the Softkey Driven Editor.

Find and Replace Commands

In the HP 64000 workstation editor, the anychar and anystring softkeys
produce an enhanced "c" and "s", respectively, on the command line. These
are, in reality, CTRL X and CTRL V characters.

In the Softkey Driven Editor, the anycharacter and anystring softkeys still
exist, but they produce the characters ’?’, for anycharacter, and ’*’, for
anystring.

Editing of existing HP 64000 command files will be necessary to convert these
control characters to their new equivalents. Also, if ’*’ or ’?’ characters were
used in the old replace or find strings, then they will need to be escaped with
the ’ \ ’ backslash character so the character ’*’ or ’?’ will be matched, rather
than the anystring or anychar. The following command file that operates on
the current edit file might be useful (these commands might cause unexpected
results if the find or replace commands are on the same line as other editor
commands):

escape ’?’ and ’*’ characters in find commands
0
while find ’find’ do replace "\?" with "\\\?"; replace "*" with "*"; -1 doend
escape ’?’ and ’*’ characters in replace commands
0
while find ’replace’ do replace "\?" with "\\\?"; replace "*" with "*"; -1 doend
convert ^ x and ^ v to ? and * in find commands
0
while find ’find’ do replace "\030" with "?"; replace "026" with "*"; -1 doend
convert ^ x and ^ v to ? and * in replace commands
0
while find ’replace’ do replace "\030" with "?"; replace "\026" with "*"; -1 doend

Chapter C: Comparison with HP 64000 Editor
Find and Replace Commands

170

Other Differences

There are some other minor differences between the Softkey Driven Editor
and the HP 64000 workstation editor. The following is a list of some other
differences, which may be helpful reminders if you have previously worked
with the HP 64000 editor.

• Operation of the up-arrow and down-arrow keys. In the Command mode
of the Softkey Driven Editor, these keys operate differently. Refer to
"Keyboard Input And Functions" in chapter 4.

• Use of a "placeholder" symbol for Insert Char: There is no "placeholder"
symbol in the Softkey Driven Editor, whereas there was an underlined
caret symbol for this function in the HP 64000 editor.

Chapter C: Comparison with HP 64000 Editor
Other Differences

171

Index

! !CMD! prompt softkey, 56
!shell command! syntax, 127/128
"skpreserve" command for "crashes", 24
#LINES prompt softkey, 66
#TIMES prompt softkey, 73
$HOME directory, 22
$HOME/.recover directory, 22/23
$HP64KPATH shell variable, 10
$MAXREC shell variable, 10
$PATH shell variable, 10
$shell variable, HP64KPATH, 10
--ETC-- softkey, 38
.profile directory, 3
.profile file, changing/creating, 9
.profile file, making it active, 9

A absolute file name, 61, 81
absolute file names, 23
absolute path, 79, 87
absolute path name, 23
all, as LIMIT, 63
all, used with LIMIT, 63
answers, 5
answers to some possible questions, 133/134
anycharacter string, 71, 113
anystring string, 72, 113
automatic command completion, 3
autotab, 41
autotab command syntax, 77/78

B backslash character escape, 170
backslash escape, 72, 128
backslash escape for !, 127
backslash escape for $, 52, 72, 114
backslash escape for *, 72, 114
backslash escape for ?, 72, 114

173

backslash escape for file name, 61, 134
backslash escape for string with an octal number, 72
backslash escape for string with octal value, 114
backslash escape for strings, 71, 114
Backtab (Shift Tab) keys, 35
baud rate problems, 134
baud rate, changing "getty" file to reflect change, 134
baud rate, reducing, 14
body clause for while command, 126

C cd (change directory), 47, 79
change directory (cd), 47
change directory command syntax, 79
changing an existing file, 42
character identification, 75
characters, decimal value, 75
characters, hex value, 75
characters, octal value, 75
clear command line, 20, 46
Clear Line key, 33
Clear Line keys, 35
cmdfile (hidden command) syntax, 57, 80
CMDFILE command syntax, 57, 80/81
colm_num command, 38
column number sk option -c, 12
column numbers command syntax, 82/83
COLUMN prompt softkey, 58
command completion, 46
command completion, automatic, 3
command entry, 46
command entry completion using Tab key, 34
command error messages, 138
command file compatibility, 3
command file differences between editors, 169
command files, 4, 8, 52, 57, 74, 80, 105, 124
command files, creating, 43
command files, entering and editing, 42/44
command files, parameter substitution, 42
command interrupts, 18
command line, 40
command line clear, 46
command line comments, 19, 40

174

command line entries, 50
command line erase, 46
command line placement, 11
command line recall, 36, 46
command mode, 19
command mode cursor operation, 33
command mode description, 19
command separator differences between editors, 169
command status messages, 138
command syntax, 51/52

autotab, 77/78
change directory (cd), 79
CMDFILE, 57, 80/81
column numbers, 82/83
command, 51/52
conditional command, 53/54
copy, 84
delete, 85
edit, 86/87
end, 88/89
extract, 90
find, 91/92
help, 93/94
insert, 95
INSERT* (mode), 96/97
join, 98/99
LIMIT, 63
list, 102/105
loner command, 55
merge, 106/107
POINT, 68/69
range, 108/109
renumber, 110
repeat, 111
replace, 112/115
retrieve, 116
REVISE* (mode), 117
save, 118/119
shell command!, 127/128
split, 120/121
tabset, 122/123

175

wait, 124
WHATCHAR, 75/76
while, 125/126

commands not used in multiple constructs, 166
commands summary, 47/48
commands, logging, 42
comments differences between editors, 169
comments on command line, 19, 40
comparison with HP 64000 editor, 167/171
compatibility

command file, 3
display, 3
operating system, 3

conditional command syntax, 53/54
configuration, data terminal, 14
control "pipe", 18
control character, shown as ".", 133
control characters, 70, 75/76, 87, 107, 122
control characters differences between editors, 169
control characters not generated using keyboard, 43
control characters, created using octal value, 43
control characters, creating on command line, 43
control characters, entering, 133
control characters, octal value replacement, 115
control characters, why are they not displayed, 133
control characters, why are they not entered, 133
conventions and terms, 5
conventions, syntax, 49
conversion of tab characters, problems with, 133
copy append option, 84
copy command syntax, 84
COUNT prompt softkey, 59
count, with while command, 126
crash recovery file, 19
crash skrecover command, 9
crashed edit sessions, recovery of, 24/27
crashed session, 19
crashes, recovery from, 132
creating a new file, 41
creating command files, 43

176

creating files, 40/41
CTRL d, 36
CTRL "pipe", 43
CTRL |, 18, 43
CTRL b, 36, 41, 46
CTRL c, 19, 43, 74, 124
CTRL d, 20/22, 36, 75/76, 128
CTRL l, 14, 36, 104
CTRL q, 43
CTRL r, 36, 41, 46
CTRL s, 43
CTRL u, 35
CTRL v, 36, 43, 76, 133
current line designator (), 39
cursor keys, 32
cursor operation, 32

D data terminal configuration, 14
decimal value of characters, 75
Delete Char key, 33
delete command syntax, 85
Delete Line key, 34
delimiter symbols, 49
description, softkey driven editor, 3
differences between editors

command file, 169
command separator, 169
comments, 169
control characters, 169
down-arrow key, 171
find command, 170
placeholder symbol for Insert Chars, 171
replace command, 170
up-arrow key, 171

differences between SK and HP 64000 editors, 168
DIR prompt softkey, 60
directory listing, shell command, 24
directory, .profile, 3
dirrec command, 24
dirrec error messages, 161
dirrec status messages, 161
disk space, saving, 41

177

display compatibility, 3
display format description, 37
display preference sk option -v, 12
display redrawing, 14
display scrambled, 134
display text area, 39
display with sk -v option, 38
display, garbage on, 14
display, placing softkeys, STATUS, and command lines at top, 11
display, understanding, 30/39
display: softkey, command, and STATUS lines at top, 38
display: softkey, command, and STATUS lines at top, 38, 40
dot profile (.profile) file, changing/creating, 9
down-arrow key, 33
down-arrow key differences between editors, 171

E echo $PATH, 10
edit command, 42
edit command syntax, 86/87
editor

familiarization, 4
features, 4
moving between editor and the shell, 3
suggestions for learning, 4
using command files with, 8

editor access, 3
editor command syntax, 46
editor command truth tables, 163/166
editor crash, recover from, 8
editor description, 16
editor functional modes, 19/21
editor options, 12/14
editor relationship to the operating system, 3
EDITOR shell variable, 11
editor structure, 16
editor syntax, introduction, 50
editor, comparison with HP 64000 editor, 167/171
editor, differences with HP 64000 editor, 168
editor, invoking, 12/14
editor, sk, 11
end command, 41
end command syntax, 88/89

178

end softkey, 41
end, as a POINT, 68
ending a file, 42
ending files, 40/41
ending the edit session, 41
entering and editing command files, 42/44
entries, command line, 50
enunciator letters on STATUS line, 38
erase command line, 46
error and status messages, 131
error message displays, 38
error messages, 135/161
exclamation mark (!) for commands, 51, 56, 127
Exit Editor keys, 36
expand(1) shell command, 133
extract append option, 90
extract command syntax, 90

F features, softkey driven editor, 3
file

modifying, 42
file name in quotes, 61
file name problems - don’t use editor "tokens", 133
file name problems, strange characters, 134
file name sk option -i FILE1, 13
file name sk option FILE2, 13
file name syntax error, 133
FILE prompt softkey, 61/62
file, overwriting, 22
files

command, 42/44
creating, 40/41
ending, 40/41
modifying, 40/41
saving, 40/41

filters and pipes, 47
find command, 43
find command differences between editors, 170
find command syntax, 91/92
find string in replace command, 112

179

G garbage on the display, 14, 36, 104, 134
getting started, 29/44
getty file, changing to reflect change in baud rate, 134
guide to using manual, 4

H halting command files, 57
halting command files (temporarily), 74, 124
help, 5, 129/134
help command, 131
help command syntax, 93/94
help text, 103
help using HP-UX "man" (manual) pages, 131/132
hex value of characters, 75
hidden commands summary, 47
HOME directory, 9
Home Down key, 35
Home Up key, 35

I Insert Char key, 33
insert command syntax, 95
Insert Line key, 34
INSERT mode, 19, 42
INSERT mode description, 20
INSERT* (mode) command syntax, 96/97
INSERT* mode, 39/41
installing software, 8
interrupts, 18
invoking editor and options, 12/14
invoking editor error messages, 136
invoking editor status messages, 136

J join command syntax, 98/99

K keyboard functions, 32
keyboard functions with special meaning, 32
keyboard input, 32
keyboard keys

Backtab, 35
Clear Line, 33, 35
Control Characters, 36
Delete Char, 33
Delete Line, 34
Exit Editor, 36

180

Home Down, 35
Home Up, 35
Insert Char, 33
Insert Line, 34
left-arrow and right-arrow, 32
Next-Prev, 34
Recall<, 36
Recall>, 36
Redraw Display, 36
Tab, 34
up-arrow and down-arrow, 33

keyboard labels, 31
keyboard layout, 31
keyboard, understanding, 30/39
keywords, 5
kill character from your operating system stty setting, 46
kill character, clear command line, 20
kill character, stty setting, 20

L learning suggestions, 4
left-arrow key, 32
LIMIT syntax, 63
LIMIT variable with delete command, 85
LIMIT variable with extract command, 90
LIMIT variable with find command, 91
LIMIT variable with join command, 98
LIMIT variable with list command, 103
LIMIT variable with replace command, 112
line #, 39
LINE # prompt softkey, 65
LINE+- as a POINT, 64
LINE+- prompt softkey, 64, 100/101
LINE+-, as a POINT, 68
list command differences between editors, 168
list command syntax, 102/105
list help text, 103
list printer shell variable, 10, 104
log command file, 43
log command file, adding comments to, 43
log command file, adding parameters to, 43
log on command, 41
log_commands command, 43

181

log_commands noappend option, 105
logging commands, 42
loner command syntax, 55

M make file, 41
make file, tabconversion, 119
make file, why doesn’t it work, 134
manual (man) pages and editor help, 131/132
matching string, 71/72, 114
merge command syntax, 106/107
messages, command error, 138
messages, command status, 138
messages, dirrec error, 161
messages, dirrec status, 161
messages, invoking editor error, 136
messages, invoking editor status, 136
messages, purge error, 159
messages, purge status, 159
messages, rcvr error, 160
messages, rcvr status, 160
messages, skpreserve error, 156
messages, skpreserve status, 156
messages, skrecover error, 157
messages, skrecover status, 157
messages, status and error, 131, 135/161
mode indicators, 38
modifying a file, 42
modifying files, 40/41
multiple commands, 50, 53, 55
multiple commands on a line, 40
multiple commands on one line, 46

N NEW line, 41
new lines, entering, 20
Next key, 34
null string, 52, 62, 72, 91, 112, 114
number of lines,with join command, 98
number of times, with repeat command, 111
number of times, with retrieve command, 116

O octal value of characters, 75
octal value replacement for control characters, 115
operating system and HP 64000 relationship, 3

182

options, editor, 12/14
overwriting a file, 22

P parameter substitution, command files, 42
PARMS prompt softkey, 67
pattern-matcher, 72
pattern-matcher search, 91
pattern-matcher string, 68, 72, 113/114
pipes, 47
placeholder symbol (underlined caret), 33
placeholder symbol for Insert Char differences between editors, 171
pmon, 4
pmon (user interface software), 80
pmon (user interface software) for command files, 42
POINT syntax, 68/69
POINT variable , with split command, 120
preparation for use, 7/14
Prev key, 34
printer listing, 104
PRINTER shell variable, 103
PRINTER=lp, setting up, 10
printing file outside editor, problems with, 133
problem solving, 5, 129/134
prompt softkey

!CMD!, 56
 #LINES, 66
#TIMES, 73
COLUMN, 58
COUNT, 59
DIR, 60
FILE, 61/62
LINE #, 65
LINE+-, 64, 100/101
PARMS, 67
SPACES, 70
STRING, 71/72
TIME, 74

prompts, softkey, 49
purge command, used to move files, 23
purge error messages, 159
purge status messages, 159

183

Q questions and possible answers, 133/134

R range command, 40
range command syntax, 108/109
RANGE* mode, 39
rcvr command, 23/24
rcvr error messages, 160
rcvr status messages, 160
Recall Keys, 36
recall, command line, 46
recover from an editor crash, 8
recoverable file, 27
recoverable files, 25
recovery directory, default number of files, 10
recovery of "crashed" edit sessions, 24/27
recovery of files, 132
recovery of saved files, 22
recovery of session "crashes", 132
redraw display, 14
Redraw Display keys, 36
relative file name, 27, 61, 81
relative file names, 23
relative path, 87
renumber command syntax, 110
repeat command syntax, 111
replace command, 43
replace command differences between editors, 170
replace command syntax, 112/115
replace STRING examples, 113
replacement string, 72, 113/114
response center, 6
retrieve command syntax, 116
REVISE mode, 19, 42
revise mode description, 21
REVISE* (mode) syntax, 117
REVISE* mode, 39/40
revision numbers, software, 6
right-arrow key, 32

S save command, 41
save command syntax, 118/119
saving files, 40/41

184

saving the file, 41
scrambled display, 14, 36
screen width, 3
scrolling, 3
searching directories, 10
setting up "PRINTER=lp", 10
shell

csh, 9
ksh, 9
sh, 9

shell variables, 3
shell variable, $MAXREC, 10
shell variable, $PATH, 10
shell variable, EDITOR, 11
shell variable, list printer, 10
shell variable, SKTOP, 11
shell variables, 9/10
shell variables, added to .profile, 10
shell variables, other, 11
SIGHUP signal, 19
SIGINT signal, 19
SIGKILL signal, 19
signal interrupts, 18
SIGQUIT signal, 18
sk command, 42
sk editor, 11
SK editor, comparison with HP 64000 editor, 167/171
SK editor, difference with HP 64000 editor, 168
sk option -c, 12
sk option -f NUMBER, 12
sk option -i FILE1, 13
sk option -n, 12
sk option -t NUMBER, 13
sk option -v, 12
sk option FILE2, 13
skpreserve command for "crashes", 9
skpreserve error messages, 156
skpreserve status messages, 156
skrecover command for "crashes", 9, 25
skrecover error messages, 157
skrecover options, 25

185

skrecover status messages, 157
SKTOP shell variable, 11
softkey driven editor description, 3
softkey driven editor features, 3
softkey label line, 38
softkey levels, 17
softkey line placement, 11
softkey prompts, 49
software installation, system administrator, 8
software materials subscription, 6
software revision numbers, 6
software updates, 6
SPACES prompt softkey, 70
split command syntax, 120/121
standard keyboard, 31
START line of text, 39
start, as a POINT, 68
status and error messages, 131
STATUS line description, 38
STATUS line messages, 38
STATUS line placement, 11
status messages, 135/161
string (with replace) examples, 113
STRING prompt softkey, 71/72
string wrap around, 113
string, as a POINT, 68
string, in find command, 71, 91
string, in insert command, 71, 95
string, in replace command, 71, 112
string, in split command, 71
strings understanding, 132
stty setting, 20, 22
syntax conventions, 49
syntax error, file name, 133
syntax for commands, 50
syntax for variables, 50
system administration tasks, 9

T tab characters, 12/13
tab characters, importance of, 17
tab conversion prevention sk option -n, 12
tab conversion sk option -t NUMBER, 13

186

tab conversion when invoking sk, 12/13
Tab key, 34
Tab key, command entry completion using, 34
tab_conv command, 41/42
tabconversion for "make" command, 89, 119
tabconversion for edit command, 86
tabconversion for end command, 88
tabconversion for merge command, 106
tabconversion for save command, 119
tabconversion of file being recovered, 27
tabconvert option, 41, 134
tabconvert option, problems using, 133
tabset, 41
tabset command syntax, 122/123
tabset default, 122
TABSET* mode, 39
tabstop preset sk option -f NUMBER, 12
terminal baud rate problems, 14
terminal configuration, 14
terminal display problems, 14
terms and conventions, 5
test clause for while command, 126
text area, 39
text area of display, 39
text entry, 3
text manipulation, 3
thru, as LIMIT, 63
TIME prompt softkey, 74
truth tables, editor command, 163/166
truth values for while command, 126

U understanding keyboard and display, 30/39
until, as LIMIT, 63
up-arrow key, 33
up-arrow key differences between editors, 171
user interface software (pmon), 4, 80
user interface software (pmon) for command files, 42

V variables summary, 47/48
variables, shell, 3

W wait command syntax, 124
WHATCHAR command syntax, 75/76

187

WHATCHAR softkey, 36, 43
WHATCHAR, used to find characters numerical value, 133
WHATCHAR, used to identify characters, 133
while command syntax, 125/126
while command, used with conditional variables, 126
wildcards, 3

188

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software
on equipment that is not furnished by Hewlett-Packard.

© Copyright 1986, 1987, 1989, 1990, 1991, Hewlett-Packard Company.

This document contains proprietary information, which is protected by copyright.
All rights are reserved. No part of this document may be photocopied, reproduced
or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject
to change without notice.

UNIX is a registered trademark of AT&T.

TORX is a registered trademark of Camcar Division of Textron, Inc.

Hewlett-Packard Company
Logic Systems Division
8245 North Union Boulevard
Colorado Springs, CO 80920, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the U.S.
Government is subject to restrictions set forth in subparagraph (C) (1) (ii) of the
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304

Printing History

New editions are complete revisions of the manual. The date on the title page
changes only when a new edition is published.

A software code may be printed before the date; this indicates the version level of
the software product at the time the manual was issued. Many product updates
and fixes do not require manual changes, and manual corrections may be done
without accompanying product changes. Therefore, do not expect a one-to-one
correspondence between product updates and manual revisions.

Edition 1
Edition 2
Edition 3
Edition 4
Edition 5

64790-90901 E0686, June 1986 (Preliminary)
64790-90901 E0587, May 1987
64790-97000, July 1989
64790-97001, July 1990
64790-97002, February 1991

Edition 6 B1444-97000, November 1991

	How To Use This Manual
	Contents
	General Information
	Preparation for Use
	Modes, Structure, and Operating System Connections
	Getting Started
	Editor Command Syntax
	Help and Problem-Solving
	Editor Status and Error Messages
	Editor Command Truth Tables
	Comparison with HP 64000 Editor
	Index

