HP 64873

V-Series

Cross Assembler/
Macro Preprocessor

Reference

[ﬁﬁ HEWLETT

PACKARD

HP Part No. 64873-97007
Printed in U.S.A.
June 1991

Edition 3

Certification and
Warranty

Certification

Warranty

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory.
Hewlett-Packard further certifies that its calibration measurements are
traceable to the United States National Bureau of Standards, to the
extent allowed by the Bureau’s calibration facility, and to the
calibration facilities of other International Standards Organization
members.

This Hewlett-Packard system product is warranted against defects in
materials and workmanship for a period of 90 days from date of
installation. During the warranty period, HP will, at its option, either
repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer’s facility

at no charge within HP service travel areas. Outside HP service travel
areas, warranty service will be performed at Buyer's facility only upon
HP’s prior agreement and Buyer shall pay HP’s round trip travel
expenses. In all other cases, products must be returned to a service
facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay
shipping charges to HP and HP shall pay shipping charges to return the
product to Buyer. However, Buyer shall pay all shipping charges,
duties, and taxes for products returned to HP from another country. HP
warrants that its software and firmware designated by HP for use with
an instrument will execute its programming instructions when properly
installed on that instrument. HP does not warrant that the operation of
the instrument, or software, or firmware will be uninterrupted or error
free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from
improper or inadequate maintenance by Buyer, Buyer-supplied
software or interfacing, unauthorized modification or misuse, operation

outside of the environment specifications for the product, or improper
site preparation or maintenance.

No other warranty is expressed or implied. HP specifically
disclaims the implied warranties of merchantability and fitness for
a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive
remedies. HP shall not be liable for any direct, indirect, special,
incidental, or consequential damages, whether based on contract,
tort, or any other legal theory.

Product maintenance agreements and other customer assistance
agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and
Service Office.

Notice

Hewlett-Packard makes no warranty of any kind with regard to

this material, including, but not limited to, the implied warranties

of merchantability and fithess for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1991, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the
prior written consent of Hewlett-Packard Company. The information
contained in this document is subject to change without notice.

UNIX is a registered trademark of UNIX System Laboratories Inc. in
the U.S.A. and in other countries.

V20 and V30 are registered trademarks of NEC Corporation.

V25, V33, V35, V40, V50, V53, and V60 are trademarks of NEC
Corporation.

Hewlett-Packard Company

Logic Systems Division

8245 North Union Boulevard
Colorado Springs, CO 80920, U.S.A

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure

by the U.S. Government is subject to restrictions set forth in
subparagraph (C) (1) (ii) of the Rights in Technical Data and Computer
Software Clause at DFARS 252.227-7013. Hewlett-Packard Company,
3000 Hanover Street, Palo Alto, CA 94304

Printing History

New editions are complete revisions of the manual. The date on the
title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was issued.
Many product updates and fixes do not require manual changes, and
manual corrections may be done without accompanying product
changes. Therefore, do not expect a one-to-one correspondence
between product updates and manual revisions.

Edition 1 64873-97001, February 1990
Edition 2 64873-97004, July 1990

Edition 3 64873-97007, June 1991

Using This Manual

The Reference
Manuals

The User’s Guide

Your HP 64873 V-Series Cross Assembler/Linker documentation
consists of three manuals:

m 64873 V-Series Cross Assembler/Macro Preprocessor
Reference

m 64873 V-Series Cross Linker/Librarian Reference

m A 64873 V-Series Cross Assembler/Linker User’s Guide

The twoReferencenanuals are in the same binder. Reference

manuals document the basic features of the HP 64873 Cross
Assembler/Linker (assembly language, assembler syntax, directives,
macros, assembler controls, program segments, and relocation, linker
and librarian commands, and so on).

TheHP 64873 V-Series Cross Assembler/Linker User’s Caodiéains
information on how to start the HP 64873 product on your host
computer. It also gives the command syntax and some short examples
to get you started with the product.

In this Book

This documentation is written for the experienced program developer,
and assumes a working knowledge of the V-Series family of
microprocessors, and the Intel 8087 or NEC 72291 coprocessors.

Several useful and informative program examples and example
fragments have been provided to clarify the references.

This manual is intended as a reference for the features of the HP 64873
Advanced Cross Assembler/Macro Preprocessor. However, this
documentation does not describe the microprocessor itself, nor does it

Manual Organization

teach you how to write working programs. For such information, refer
to the following source:

m NEC 70108(V20) Microprocessor User’'s Manual.
m NEC 70320 (V25) Microprocessor User’'s Manual

m NEC 70136 (V33) Microprocessor User's Manual
For additional information call (800) 632-3531.

This manual is organized in two sections. The first nine chapters of

this manual describe the asv20/asv33 assembler. The last four chapters
describe the apv20/apv33 macro preprocessor. There are several
appendixes that contain information about both the assembler and
macro preprocessor including a description of the acvtv20 porting tool.
This nonsupported porting tool can help with translation of source files
from the HP 64853 dialect to the HP 64873 dialect. Another
nonsupported tool is intel2nec, which can assist in the translation of
8086 assembly source to NEC V20 assembly source. The information

in this manual consists of the following topics:

Assembler Information:
m Functional description and list of features.

m Assembly language syntax, character set, symbols (including
reserved words), and constants.

m Symbol and expression attributes.

m Alphabetical description of the assembler directives on pages
specially formatted for quick reference.

m Thorough discussion of assembler expressions, operands, and
a list of the V-Series, Intel 8087, and NEC 72291 instruction
mnemonics with accepted operands.

m Description of assembler control statements, including
primary and general controls.

m Description of assembler listings and symbol table listings.

Macro Preprocessor Information:
m Introduction to the macro preprocessor and macro functions.
m Discussion of the elements of macro expressions.
m Description and reference for the pre-defined apv20/apv33

macro functions. How to create user-defined macros and how
they are treated by the macro preprocessor.

Notes

Contents

1 Assembler Introduction

Introduction 11
Instruction Set 1-1
Target MiCroproCeSSOrS v v v v v v v i e e e e 1-1
Assembler Operation 1-2
File Formats. 1-2
Input File Characteristics 1-2
Output File Characteristics 1-3
asv20/asv33Features 1-3
Macro Preprocessoro 1-4

Assembler Syntax

Introduction 2-1
Assembler CharacterSet 2-1
Symbols 2-2
Symbol Formation 2-2
Keywords e 2-3
Instruction Mnemonics 2-6
Codemacro. e 2-6
Label e 2-6
Variableo 2-6
Structure Name 2-7
Structure FieldName 2-7
RecordName 2-7
Record FieldName 2-7
SegmentNameo 2-7
GroupName 2-8
EQUSymbols 2-8
Constants e 2-8
IntegerConstant o 2-8
RealConstant 2-10
CharacterConstant 2-11
Delimiters e 2-12
Assembler Statements L L L 2-12

Contents-1

2-Contents

General Syntax o 2-12
Comment e e e 2-13
Continuation Lines 2-14

3 Symbol and Expression Attributes

Introduction 3-1
TYPE . . . e e 3-2
OFFSET e 3-2
BASE e 3-3
INDEX e e 3-3
SEGMENT e e e 3-4
SEGMENT RELOCATION 3-4
RELOCATIONTYPE o o . 3-4
SEGMENT ADDRESSABILITY 3-5
PS ADDRESSABILITY 3-6

Assembler Directives

Introduction 4-1
Syntax Conventions 4-1
EXTRN . . . e 4-2
Segmentation Directives 4-3
Program Segmentation 4-3
Default Segment-??SEG, 4-4
Data Definition Directives 4-5
DataObjects 4-6
Program Linkage Directives 4-6
ProgramLinkage 4-7
ASGNSFR e 4-8
ASSUME e 4-10
DB,DW, DD, DS, DQ,DL, DT 4-13
END e 4-22
EQU 4-24
EVEN e 4-28
EXTRN . . . e 4-29
V33 Considerations Lo 4-32
GROUP 4-33
LABEL e 4-36
NAME e 4-38
ORG e 4-39
PROC/ENDP 4-40
PUBLIC 4-43

PURGE 4-44

RECORD e 4-46
Allocating Record Storage 4-48
SEGMENT/ENDS o 4-50
Multiple Definitions of a Segment 4-53
SETIDB e 4-56
STRUC/ENDS e e 4-58
Allocating Structure Storage 4-59
Expressions
Introduction L 5-1
Reference Syntax Conventions 5-1
Expression Overview oo 5-2
Absolute Expressiono Lo o 5-2
Relocatable Expression 5-3
External Expressiono oo o 5-3
ExpressionOperands 5-4
NumericValues 5-4
Memory and Register Expressions 5-7
EQU 5-10
Expression Operators Introduction 5-11
Arithmetic Operators 5-11
Unary Plus, UnaryMinus 5-11
Binary Addition, Subtraction, 5-12
[ISquareBrackets 5-13
.(Dotoperator) e 5-14
Multiplication, Division,Modulo 5-15
SHL,SHR 5-16
HIGH,LOW 5-17
Logical Operators 5-19
AND,OR, XOR 5-19
NOT . . . e 5-20
EQ, NE, LT,LE,GT,GE 5-20
Memory Operators 5-22
SHORT e 5-22
THIS . . . o e 5-22
PTR . . e 5-23
Segmentor Group Override 5-24
OFFSET 5-25
SEG . . . e 5-26
TYPE . . . e 5-27

Contents-3

4-Contents

LENGTH 5-28

SIZE . . . e 5-29
Record Operators 5-31
MASK . . . 5-31
WIDTH 5-32
Segment and Group Operators 5-33
SMOFFSET o e 5-33
GROFFSET o 5-33
SMSIZE 5-34
GRSIZE e 5-35
Operator Precedence 5-36

Instructions and Operands

Introduction 6-1
Operand L e 6-1
Accepted Operands 6-1
Operand Positioning 6-3
Immediate Values 6-3
Registers 6-4
Memory Expressions and the MODRMByte 6-8
Segment Addressability and Overrides 6-10
Addressability Checking 6-10
Default Segments 6-11
SegmentOverrideso 6-11
Improper Uses of Segment Overrides 6-12
Segment OverrideByte 6-12
Overrides and Checking AgailS6SUME 6-12
Segment Override Byte Generation 6-13
The V25 Family of Processors 6-14
The Instruction Set 6-21
asv20 Assembler Instruction Set 6-23

Assembler Controls

Introduction 7-1
General Syntax for Assembler Controls 7-2
Primary and GeneralControls 7-2
Controls on the Command Line 7-2
Control Conflicts 7-3
Controlsand File Names 7-3
Control Abbreviations 7-3
Controls and Macro Preprocessor (apv20/apv33) 7-3

Primary Controls 7-4

[NOJCAPITALS s e e e 7-4
DATE(String) o o e e 7-4
[NOIDEBUG e e 7-4
[NOJERRORPRINT (filename) 7-5
EXTERN_CHECK 7-5
GROUP_INFO e 7-5
[NOJHLASSYM e e 7-6
[NOJMACRO(string) o i i e e 7-6
MODOB7 o e e e 7-6
MOD287 o e 7-6
MOD72291 e e 7-6
MODV20 e 7-6
MODV25 e 7-7
MODV33 e 7-7
[NOJOBJECT (filename) 7-7
OPTIMIZE e 7-7
PAGELENGTH(n) 7-8
PAGEWIDTH(N) i e 7-8
[NOJPAGING e e 7-8
[NOJPRINT(filename) 7-8
[NOJSYMBOLS e et e e 7-8
[NOJTYPE e e 7-9
[NOJUNREFERENCED EXTERNALS 7-9
WARNING e 7-9
WORKFILES(...) e 7-9
INOIXREF e 7-9
GeneralControlso 7-11
BJECT e 7-11
[NOJGEN e 7-11
GENONLY e 7-11
INCLUDE(filename) 7-11
[NOJLIST 7-12
RESTORE e e e 7-12
SAVE . . . e 7-13
TITLE(String) o 7-13
Operational Differences in the Different Modes 7-14
V20Mode 7-14
V25 Mode 7-14
V33Mode 7-14
8087 Mode 7-14

Contents-5

6-Contents

8

10

80287 Mode 7-14

Assembler Listing Description

Introduction L 8-1
Assembly Listing 8-1
Cross Reference and Symbol Table Format Description 8-5
Label 8-6
Type . . 8-6
Value 8-7
CrossReferenceo 8-8
Codemacros
Overview 9-1
Referencing Codemacros 9-1
Alphabetical Listing of the Codemacro Directives 9-2
Codemacro Directives 9-3
CODEMACRO e e 9-3
ENDM e 9-6
Codemacro Matching 9-6
The Specmod Field, 9-8
Range Specification 9-12
Examples: 9-13
Codemacro Matching Examples 9-14
Expressions in Codemacros 9-16
Syntax: e e 9-16
Directives within Codemacros 9-17
DB,DD,DW e 9-18
MODRM e 9-20
Syntax 9-20
NOSEGFIX e 9-21
Record Name Initialization 9-22
RELB,RELW 9-23
RFIX, RFIXM, RNFIX, RNFIXM, RWFIX 9-24
SEGFIX e 9-26
Macro String Preprocessor Introduction
Introduction 10-1
Input Source Characteristics 10-2
The Metacharacter '%’ And The Call Pattern 10-2
Metacharacter Syntax 10-4

Literal Character* 10-5

InputParsing 10-5
Output Buffering 10-6
Include Files 10-6

11 Elements Of Macro Expressions

Introduction 11-1
CharacterSet 11-2
Numbers 11-3
Symbols 11-3
Balanced Text String (baltex) 11-4
Expressions and Operators 11-4
HIGH,LOW 11-5
NOT . . . e 11-6
Add (+), Subtract (—)o oo 11-6
Multiply (*), Divide (/), MOD 11-6
SHL,SHR 11-7
AND,OR, XOR 11-7
EQ,LE,LT,GE,GT,NE 11-7

12 Pre-Defined Macro Functions

Introduction 12-1

Pre-Defined Macro Functions 12-1
%’ (Comment Function) 12-2
%n and %((Escape and Bracket Functions) 12-3
%EQS, %NES, %LTS, %LES, %GTS,%GES 12-5
QEVAL 12-6
QEXIT . . . 12-6
%IF (Conditional Assembly Function) 12-7
QLEN 12-8
QMATCH o 12-9
%METACHAR 12-11
%REPEAT e 12-12
QSET . . . e 12-13
%SUBSTR 12-14
QWHILE 12-14

Example Problem oo 12-15

13 User-Defined Macros
Introduction 13-1

Contents-7

8-Contents

%DEFINE 13-2

Macro Reference 13-4
WhatisOutput? 13-6
Referencing Macro-time Symbols 13-7

Error Message Formats

ErrorClasses e e A-1
Warning L A-1
Error A-1
FatalError e A-1

Assembler Error Messages

Introduction B-1
Syntax Errors L B-1

Macro String Preprocessor Error Messages
Error Codesand Messages oo C-1

ASCII Codes

Converting HP 64853 Assembly Language Programs

Introduction E-1
acvtv20 Introduction oL Lo E-2
Assembler Differences L. E-2
IF e e E-3
EQU e E-3
MACRO e E-3
REPT e E-4
SET . . e E-4
External Declarations, E-4
Porting Procedure— Main Files with INCLUDE Files E-6
acvtv20 Warnings, apv20 Errors, asv20 Errors E-7
Code Substitution E-8
BIN, DECIMAL, HEX,OCT E-10
BIN e E-10
DECIMAL e E-10
HEX . . e e E-10
OCT . . e e E-10
V25/35 Considerations E-11
Manual Macro Translations E-12

AF, .GOTO, and .NOP Directives E-12

Looping Structures E-13
Numeric, String, and Null Comparisons E-13
Indexed Parameters L. E-14
MacroCalls E-15
acvtv20(1) Command Syntax E-16
OldandNew List E-20
ASCIl . . e E-20
ALIGN E-20
ASSUME e E-20
COMN e E-21
DATA . . e E-21
DBS . . . e e E-21
DDS e E-21
DWS . . . e E-21
<EOF> e E-22
EQU e E-22
EXPAND e E-22
EXT . e E-22
GLB e E-23
IF (Macro) E-23
INCLUDE Control E-23
LABEL Directive E-23
LabelField. E-24
LIST e E-24
MACRO e E-24
MASK . . . e E-25
NAME e E-25
NOLIST E-25
NOWARN e E-25
OperatorField, E-25
ORG e E-26
PROC e E-27
PROG e e E-28
REAL e E-28
ReservedWords oo E-28
SPC . . e E-28
SKIP . . E-29
TITLE o e E-29
WARN . . . e E-29
*Comment) e E-29

Contents-9

10-Contents

INTEL2NEC(1) o o e e e e e e e
F V-Series Instructions in Hexadecimal Order

G V-Series Instruction Set Summary
FOOTNOTES e

Index

lllustrations

Figure 2-1. Syntax for Decimal Real Without Exponent
Figure 2-2. Syntax for Decimal Real with Exponent

Figure 4-1. "Partial" Record Definition
Figure 4-2. Structure Definition and Allocation
Figure 5-1. SHL Operator
Figure 6-1. V20/25/33 Registers
Figure 8-1. Sample Assembler Listing
Figure 8-2. Cross Reference for Sample Listing

Figure 13-1. Syntax for User-Defined Macros

Contents-11

Tables

12-Contents

Table 2-1. Assembler CharacterSet 2-2
Table 2-2. asv20/asv33 Keywords and Instructions 2-4
Table 5-1. Binary Plus and MinusResults 5-12
Table 5-2. Operator Precedence 5-37
Table 6-1. RAM Register Bank Structure Definitions 6-15
Table 6-2. RAM and Special Function Register Mapping 6-16
Table 6-3.Operand Codes 6-22
Table 6-4. Assembler InstructionSet 6-23
Table 9-1. Codemacro Directives 9-2
Table 9-2. Specmods and Parameter Matches 9-8
Table 9-3. Absolute Number Conversion for Registers 9-12
Table 9-4. Arguments and Actual Parameters 9-14
Table 9-5. Directives within Codemacros 9-17
Table 11-1. Macro Preprocessor CharacterSet 11-2
Table 11-2. Operator Precedence 11-5
Table 12-1. Predefined Macro Functions 12-2
Table D-1.ASCIICodes v D-2
Table F-1. V-Series and 8087 Instructions F-1
Table F-2. 72291 Instructions F-31

'

Assembler Introduction

Introduction This chapter introduces the assembler by discussing the instruction set,
target microprocessors, input and output file formats, and other similar
information about the asv20/asv33 Advanced Cross Assembler. This
chapter is primarily a brief overview, but it does highlight some
important features of the asv20/asv33 assembler. The asv20 assembler
is very similar to the asv33 assembler, but they differ in terms of their
default targets.

Instruction Set The asv20/asv33 assembler supports NEC instruction mnemonics, op
codes, and syntax for the target microprocessors and thus is compatible
with those used in NEC software and documentation.

The supported instruction set is listed in the chapter titled "Instructions
and Operands." For further information about the instruction set, refer
to the70108(V20) Microprocessor User's Manuakntioned in the
"Using This Manual" section at the beginning of this manual.
References for the V25 and V33 are also noted in that section.

Target The asv20/asv33 assembler supports the NEC V20, V25, and V33 chip

; families. The V20 family includes the V20, V30, V40, and V50. The
I\/Ilcroprocessors V25 family includes the V25, V35, V25+, and V35+. The V33 family
includes the V33 and V53. The asv20 assembler defaults to the V20
and 8087 instruction set, while asv33 defaults to the V33 and 72291
instruction sets.

Assembler Introduction 1-1

The asv20/asv33 assembler also translates instructions specific to the
Intel 8087 or NEC 72291 floating-point coprocessors for coprocessor
execution.

Assembler
Operation

asv20/asv33 is a two pass assembler. On the first pass, labels,
variables, and other user-defined symbols are examined and placed in
an internal symbol table. Additionally, structure definitions are stored.

On the second pass, asv20/asv33 generates the object code, resolves
symbolic addresses, and outputs the object module if the assembly was
error free. If it was not error free, then asv20/asv33 displays errors on
the output listing device and also a cumulative error count. In addition
to the object module, asv20/asv33 can also output an HP 64000 format
assembler symbol file for use in analysis tools.

The assembly listing produced during pass two contains information
pertaining to the assembled program, including opcodes, assembled
data, and the original source statements. Based on command line
options, asv20/asv33 may also output a symbol table or cross reference
table which gives further information not found in the standard
assembly listing. Refer to the chapter titled "Assembler Listing
Description™ for a more complete explanation of the assembly listing
and cross reference or symbol table information.

File Formats

Input File
Characteristics

1-2 Assembler Introduction

The source file input for the asv20/asv33 assembler is a text file
containing V-Series instructions, assembler directives, and assembler
controls. This file can be produced from an editor or the output file
from another component of the HP 64873 package, the apv20/apv33
macro preprocessor.

Output File
Characteristics

HP-OMF 86

asv20/asv33 produces a relocatable output object file in HP-OMF 86
format relocatable. HP-OMF 86 format relocatable is a superset of Intel
Binary OMF relocatable. HP-OMF 86 format relocatable contains
extensions to facilitate code integration and debugging. This format has
not been verified to be strictly compatible with Intel Binary OMF
relocatable. HP-OMF 86 format relocatable files, therefore, may not
work correctly with tools or systems designed to consume Intel Binary
OMF relocatable.

HP 64000 Assembler Symbol File

asv20/asv33 can optionally produce an HP 64000 format assembler
symbol file. This file is used by analysis tools. The purpose of the
assembler symbol file is to preserve the relationship between symbolic
names that appeared in the original source file and the memory
locations that they referenced.

asv20/asv33 This final section lists some of the notable features of the asv20/asv33
Features Advanced Cross Assembler. The asv20/asv33 assembler

m generates code for the complete NEC V20, V25, and V33
instruction set

m supports Intel 8087 and NEC 72291 floating-point
coprocessor instructions

Assembler Introduction 1-3

Macro Preprocessor

1-4 Assembler Introduction

m permits repeated definition of the same or of different code,
data, and constants segments within a single source file

m has high-level-language-like data structures which permit the
definition of structured data types and bit fields

m supports symbolic memory references via symbol names

m allows high degree of control over the assembly process
(conditional assembly, structured control, listing and output
control) through a flexible set of assembly control statements

m gives detailed, well-documented error messages

m produces extensive program listings that can include symbol
table/cross reference information

m has a command line interface tailored to the host operating
system

m as part of the HP 64873 V-Series Advanced Cross
Assembler/Linker package, is well-integrated with the HP
64906 V-Series C Advanced Cross Compiler

The HP 64873 V-Series Advanced Cross Assembler/ Linker software
package also includes a powerful, string-oriented macro preprocessor.
The macro preprocessor adds even more flexibility to the assembler
with its features (including support for recursive macros).

Assembler Syntax

Introduction

Assembly language, like other programming languages, has a character
set, a vocabulary, rules of grammar, and conventions that allow for
definition of new words or elements. The rules that describe the
language are referred to as the "syntax" of the language. This chapter
describes the basic elements of assembler language:

m the character set
m symbols
m constants

m delimiters

These basic elements, in turn, are put together to form assembler
statements. This chapter also gives the general syntax of those
statements.

Input source lines over 1024 characters in length will be truncated and
an error message will be generated.

Assembler
Character Set

The assembler recognizes the characters in Table 2-1. Any other
characters, except those in a comment field, generate errors. Many of
the special characters have no previously-defined meaning except as
character constants. The characters are case sensitive by default. If
case sensitivity is turned off, then all lower case alphabetic characters
are treated as if they were upper case, unless they appear in quoted
strings.

Assembler Syntax 2-1

Table 2-1. Assembler Character Set

Alphabetic Characters

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqgrstuvwxyz

0123456789

blank horizontal tab > greater than
$ dollar sign < less than * asterisk
' single quote (left parenthesis , comma
) right parenthesis + plus sign @ commercial at
- minus sign period & ampersand
: colon ! exclamation point ; semicolon
" double quote = equal sign # sharp
? question mark % percent _ underscore
[left bracket] right bracket \ back slash

Numeric Characters

Special Characters

‘ accent grave { left brace } right brace
| vertical bar ~ tilde A caret (uparrow)
/ slash
Symbols

Symbol Formation

2-2 Assembler Syntax

A symbol is a sequence of characters. The first character must be

m A-Z or a-z (alphabetic)
m ? (question mark)
m @ (commercial at sign)

m _ (underscore)

The second and following characters can be any of these characters or
the numerals 0-9. Symbols can be up to 255 characters in length, but
only the first 31 characters are significant.

Symbols are used to represent arithmetic values, memory addresses, bit
arrays (masks), and so on.

Examples of valid symbols:

LAB1
@mask
LOOP_NUM

L2345678901234567890123456789012345

;(entire symbol is stored, but only
31

;used for comparison)

Examples of invalid symbols:

ABORT* ;contains special character
1LAR ;begins with a numeric
PAN N ;embedded blank, symbol is PAN

Different symbols represent different kinds of data objects. In general,
only a few kinds of symbols are allowed in any particular syntactic
construct. Any of the following elements are considered to be symbols.

Keywords Keywords (also called Reserved Words) are symbols pre-defined by
the assembler which you can reference in certain acceptable
constructs. Keyword symbols are not user-definable, nor can you
create a user-defined symbol with a name that conflicts with a
keyword. Keywords include directives and register names, among
others. Keywords are not case-sensitive. The full list of assembler
keywords appears in the following table. Although the keywords in the
table are in upper case, there is no requirement that they appear in
upper case in the source code.

Assembler Syntax 2-3

Table 2-2. asv20/asv33 Keywords and Instructions

??SEG
ABS
ADDA4S
ADD
ADDC
ADJ4A
ADJ4S
ADJBA
ADJBS
AH

AL
AND
ASGNSFR
ASSUME
AT
AW
BC
BCWZ
BE
BGE
BGT
BH

BL
BLE
BLT
BN
BNC
BNE
BNH
BNL
BNV
BNZ
BP
BPE
BPO
BR
BRK
BRKCS

BRKEM
BRKV
BRKXA
BTCLR
BUSLOCK
BV

BW
BYTE

BZ

CALL
CH
CHKIND
CL

CLR1
CMP4S
CMP
CMPBK
CMPBKB
CMPBKW
CMPM
CMPMB
CMPMW
CODEMACRO
COMMON
CvTBD
CvTBW
CVvTDB
CVTWL
Cw

CY

DB
DBNZ
DBNZE
DBNZNE
DD

DEC

DH

DI

DIR
DISPOSE
DIV
DIVU
DL

DQ

DSO
DS1
DS

DT
DUP
DW
DWORD
E

END
ENDM
ENDP
ENDS
EQ

EQU
ESC
EVEN
EXT
EXTRN
F2XM1
FABS
FACOS
FADD
FADDP
FAR
FASIN
FATAN2
FATAN
FBLD
FBSTP
FCHS
FCLEX
FCMP

FCMPA
FCMPAE
FCMPE
FCOM
FCOMP
FCOMPP
FCOS
FCTW
FCVTDL
FCVTDS
FCVTLD
FCVTLQ
FCVTLS
FCVTQL
FCVTQS
FCVTSD
FCVTSL
FCVTSQ
FDECSTP
FDIAG
FDISI
FDIV
FDIVP
FDIVR
FDIVRP
FDWORD
FENI
FEXPE
FEXPEMI
FEXPR
FFREE
FIADD
FICOM
FICOMP
FIDIV
FIDIVR
FILD
FIMUL

FINCSTP
FINIT
FINT
FIP3V
FIP4V
FIST
FISTP
FISUB
FISUBR
FLO-FL7
FLD1
FLD
FLDCW
FLDENV
FLDL2E
FLDL2T
FLDLG2
FLDLN2
FLDPI
FLDZ
FLOGE
FMOD
FMOV
FMOVCR
FMOVRT
FMUL
FMULP
FNCLEX
FNDISI
FNEG
FNENI
FNINIT
FNOP
FNSAVE
FNSTCW
FNSTENV
FNSTSW
FPATAN

2-4 Assembler Syntax

Table 2-2. asv20/asv33 Keywords and Instructions (Cont'd)

FPO1
FPO2
FPOWER
FPREM
FPTAN
FPTW
FQWORD
FRO-FR7
FREM
FRND
FRNDINT
FRPOP
FRPUSH
FRSTOR
FSO-FS7
FSAVE
FSCALE
FSIN
FSINCOS
FSQRT
FST
FSTCW
FSTENV
FSTP
FSTSW
FSTW
FSUB
FSUBP
FSUBR
FSUBRP
FTAN
FTST
FWAIT

FXAM
FXCH
FXTRACT
FYL2X
FYL2XP1
GE
GROFFSET
GROUP
GRSIZE
GT
HALT
HIGH

IN

INC
INM
INPAGE
INS

IX

Y
LABEL
LDEA
LDM
LDMB
LDMW
LE
LENGTH
LOW
LT
MASK
MOD
MODRM
MOV
MOVBK

MOVBKB
MOVBKW
MOVSPA
MOVSPB
MUL
MULU
NAME
NE
NEAR
NEG

NIL

NOP
NOSEGFIX
NOT1
NOT
NOTHING
OFFSET
OR

ORG
ouT
OUTM
PAGE
PARA
POLL
POP
PREFX
PREPARE
PROC
PROCLEN
PS

PSW
PTR
PUBLIC

PURGE
PUSH
QWORD
RECORD
RELB
RELW
REP
REPC
REPE
REPNC
REPNE
REPNZ
REPZ
RET
RETI
RETRBI
RETXA
RFIX
RFIXM
RNFIX
RNFIXM
ROL4
ROL
ROLC
ROR4
ROR
RORC
RWFIX
SEG
SEGFIX
SEGMENT
SET1
SETIDB

SHL
SHORT
SHR
SHRA
SIZE
SMOFFSET
SMSIZE
SP

SS

ST
ST™M
STMB
STMW
STOP
STRUC
SUB4S
SUB
SUBC
TBYTE
TEST1
TEST
THIS
TRANS
TRANSB
TSKSW
TYPE
WIDTH
WORD
XCH
XOR

Assembler Syntax 2-5

Instruction
Mnemonics

Codemacro

Label

Variable

2-6 Assembler Syntax

A full set of instruction names (mnemonics) is pre-defined by the
assembler. Instruction names can be removed from the symbol table
with the PURGE directive and re-defined as something else. If you do
this, the original meaning of the instruction is lost. There are six
instructions (the operators AND, NOT, OR, SHL, SHR and XOR) that
cannot be removed. A full list of the pre-defined instruction
mnemonics, including the argument combinations acceptable for each,
appears at the end of the chapter titled "Instructions and Operands.”

A codemacro is a user-defined instruction or prefix to an instruction.
The output generated from a codemacro can be a new instruction, a
mixture of normal instructions, or just about anything that a customer
might want (some assemblers define the normal instructions through
the use of codemacros). A codemacro can be defined with the same
name as an existing instruction or it can have a completely unique
name that describes a new operation. Codemacros can be used
anywhere that a predefined instruction can be used.

A label is a user-defined symbol denoting the address of an instruction.
Labels can be referenced only in the BR and CALL instructions and
variations thereof. A label can be defined with the PROC directive or
with the LABEL directive, but there is a another way to define a label
that is used most often.

The most common way of defining a label is to place a name (followed
by a colon) before an instruction mnemonic, which defines it as a label.
Labels have certain attributes, but a discussion of those aspects of
labels is left to the chapter titled "Symbol and Expression Attributes."
Example:

THIS_IS_A_LABEL: MOV AW,2

A variable is a user-defined symbol denoting the address of a location
to be used for data storage. Unlike many other assembly languages,
asv20/asv33 distinguishes between a label and a variable. They are
defined according to syntax and cannot be used interchangeably in
expressions or instructions. However, when the LABEL directive is
used with the keywords BYTE, WORD, DWORD, FDWORD,
QWORD, FQWORD, TBYTE, or with a variable that is a structure
name or record hame, it defines a variable. When the LABEL directive
is used with the type designator NEAR or FAR, it defines a label.

Structure Name

Structure Field Name

Record Name

Record Field Name

Segment Name

Group Name

Variables have certain attributes, which are discussed in the chapter
titled "Symbol and Expression Attributes."

A structure is a user-defined template describing the manner in whi
block of storage is to be broken up into elements. A structure temp|
does not have a storage area associated with it which means that
structure name, while it is still a symbol, is not a variable. A structure
template name does not have attributes associated with it.

The individual elements of the structure template are called structure
fields. Structure fields may be optionally assigned names, but again,
since the structure template does not occupy storage, the structure field
name is not a true variable. A structure field name, when a structure is
allocated using the template, can be used with the dot operator to
access an element of the structure, but the structure field name cannot
be used alone. Structure field names do not have attributes associated
with them.

A record is a user-defined template describing how a one- or two-byte
block of storage is to be broken up into bit fields. A record template
does not have a storage area associated with it which means that a
record name is not a variable. Record names do not have attributes
associated with them.

Each bit field describes a number of bits and has a name associated
with it. Record field names are not variables, however, and do not have
any attributes associated with them.

A segment is a user-defined logical division of the assembly source
program. A logical segment can contain code, data, or stack
information. Logical segments have names associated with them.
These names are used to identify the logical segments to the assembler
and loader so that they will eventually be placed together in the same
physical segment in memory.

A group name identifies a collection of logical segments gathered
together because of some common factor. At load time, a group will be
placed in memory such that any segment that is a member of the group

Assembler Syntax 2-7

EQU Symbols

will be within 64k of the base of the group. Group names are also
significant to the assembler and loader.

EQU symbols are names associated with other symbols or expressions
through the use of the EQU assembler directive. EQU symbols are
simply "replacement names" that can be used anywhere the symbols or
expressions they replace could be used. Unlike symbols, however,
EQU symbols are not variables and are not allocated storage.

Constants

Integer Constant

2-8 Assembler Syntax

A constant is an invariant quantity that can be either an arithmetic
value or a character constant. Arithmetic values can be represented in
either integer or floating-point format.

This section describes integer constants, real constants, and character
constants.

Decimal (base-10) constants can be defined as a sequence of numeric
characters optionally preceded by a plus or a minus sign. If unsigned,
the value is positive by default.

Internally, the assembler performs arithmetic on 17-bit quantities. A
17-bit value is 16-bit value with the 17th bit (the leftmost bit) as a sign
bit. This value may range from -65535 to 65535 (-OFFFFH to

OFFFFH). However, integer constants are only allocated 16 bits when
the assembler stores them in the output code. The 17-bit value can be
interpreted as a signed or unsigned value and stored in one or two bytes.

A one byte constant can contain an unsigned number with a value from
0 to 255. A two byte unsigned number can range from 0 to 65535.

When a constant is negative, its equivalent twos complement
representation is generated and placed in the field specified. A 1-byte
twos complement number can range from -128 to +127. A 2-byte twos
complement number can range from -32768 to +32767. Whether or not
a number is interpreted as a twos complement or an unsigned number is
typically up to you.

Integer constants outside this range (-65535 to +65535) can appear
only in the DD, DQ and DT directives, and on the right side of an EQU

directive. The legal range is different for each directive, as discussed in
the chapter called "Assembler Directives."

Other Bases

Constants with bases other than decimal are defined by specifying
coded descriptor after the constant. In addition, the base may restrict or
expand the accepted digits for the constant. The following list is of the
available descriptors and their meanings and the range of acceptable
digits for each kind of constant. If no descriptor follows a constant, the
number is decimal by default.

m B - a binary constant - digits must be either O or 1
m O - an octal constant - digits are 0-7 inclusive
m Q - an octal constant - digits are 0-7 inclusive

m D - a decimal constant (the default if no descriptor appears) -
digits are 0-9 inclusive

m H - a hexadecimal constant - digits are 0-9 inclusive and the
letters A-F (or a-f — either are allowed regardless of case
sensitivity)

Note Hexadecimal constants may not begin with the letters A-F (a-f). In
those cases, prefix the constant with a zero.

ﬁ' Examples of acceptable constants:

10011B ;binary constant

25 :defaults to decimal
constant

-OFFH :hex constant - notice
leading O

1377Q ;octal constant
255d900h ;hex constant

Assembler Syntax 2-9

Real Constant Real constants can only appear in DD, DQ, DT and EQU directives.
There are three syntactically distinct ways of defining real numbers.

Decimal Real Without Exponent

See the following figure for the syntax diagram of decimal reals with

exponents.
:i d j—{ .
N/

Figure 2-1. Syntax for Decimal Real Without Exponent

xamples:

1.234
1234
1234.

Decimal Real With Exponent

See the following figure for the syntax diagram for decimal reals with
exponents.

e

Figure 2-2. Syntax for Decimal Real with Exponent

2-10 Assembler Syntax

This format is interpreted to mean that the number to the left of the E is
multiplied by 10 raised to the power of the number to the right of the E.

Examples:
3.14159E-27 :means 3.14159 * 10 27
-led :means -10000.

Hex Real

The syntax is 8, 16, or 20 hex digits followed by the letter R (or 9, 17,
or 21 hex digits if a 0 must be prefixed to constants with leading hex
digits of A-F).

Note that no sign is permitted. This format represents the actual bit
pattern to be placed in a variable of type DWORD (8 or 9), QWORD
(16 or 17), or TBYTE (20 or 21). (Intel's documentation describes the
bit patterns used to represent real numbers.) Examples:

40490FDBR
0c0000000r

Character Constant An ASCII character constant is specified by enclosing one or two
characters within single or double quotation marks. The constant is
encoded as a 16-bit number stored in different ways depending upon
usage.

A character string of arbitrary length can be specified with the DB
assembler directive.

A more complete discussion of character constants in contained in
several of the chapters that follow.

Assembler Syntax 2-11

Delimiters

The characters "blank” and "tab" are referred to as delimiters and are
generally ignored by the assembler.

Note ﬁ' There must be at least one delimiter between adjacent symbols and/or
numeric constants to prevent them from being interpreted as a single
item.

Delimiters are significant in character strings. Delimiters are not
required between characters that have special meaning to the assembler
(such as [, +, =, $, and so on).

Assembler

Statements

General Syntax

The basic elements just described are put together to create statements
and instructions that the assembler understands. The rules that govern
the ways that statements may be formed are called syntax rules. The
general syntax for an asv20/asv33 assembly language instruction
statement is as follows:

[label :] [prefix] keyword [operand [, ...]] [;comment]

2-12 Assembler Syntax

Each field in the general syntax has one or more of the delimiters
discussed in the previous section between it and adjacent fields. Each
field has a different purpose.

Label

The label is optional and, if present, identifies or marks the offset of the
instruction. This label may be used as a destination in CALL, BR or
conditional branch instructions. Notice the colon following the label. It
must be present if the label is present.

Comment

Prefix

The prefix, if present, causes looping with string instructions or forces
a bus lock during the instruction’s execution. New prefixes can be
defined through the use of codemacro definitions.

Keyword

Keywords can be any of the instruction mnemonics (a list of instruction
mnemonics appears at the end of the chapter titled "Instructions and
Operands"), codemacros defined by the user, or an EQU symbol set to
an instruction or codemacro name.

Operand

An operand is an argument to the instruction in the keyword field.
Commas separate multiple operands. Operands are discussed more
completely in the chapter titled "Instructions and Operands."

Comment

The comment begins with a semicolon and continues until the end of
the line. Comments are used to make "notations" about the assembly
language code so that you or others may better understand the purpose
of the code or how it works.

Comments can appear after instructions, assembler directives, control
statements, macro definitions, or on lines by themselves. In fact,
comments can appear anywhere in the assembly source file as long as
they are preceded by semicolons. Comments are not processed by the
assembler, but are passed through to the assembler listing.

When a comment is on a line by itself, a leading semicolon must be the
first non-blank character (tabs are considered blank characters) on the
line. The comment follows it. The comment is considered to continue
to the end of the line.

Blank lines are also treated like comments, but they do not require
semicolons to lead them. Blank lines appear in the output listing as
blank lines. Blank lines may make the code more readable.

Assembler Syntax 2-13

Continuation Lines

2-14 Assembler Syntax

Some assembler statements will not fit on a single line. If a statement
will not fit on a single line, it may be continued to the next line by
beginning the next line with the ampersand (&) character. The
ampersand must be in column one of the next line. Symbols, numbers,
and strings cannot be broken across lines. It is not acceptable to use
the ampersand to continue a comment line. In most cases, an error is
likely to occur. Simply begin the new line with a semicolon to make it
another comment line. Similarly, blank lines cannot be continued with
the continuation character.

Symbol and Expression Attributes

Introduction

In the chapters that follow, frequent reference will be made to the
attributes of variables, labels, and expressions. In order that those
references may be understood, this chapter introduces attributes,
identifies them, and explains their uses.

Symbols and expressions have certain attributes that determine where
they may be used with an instruction and what object code will be
generated if they are used. Most attributes are only important when a
symbol or expression involves a relocatable or external value.
Absolute values will not involve most attributes since absolute values
are not modified by the loader.

There are nine possible attributes that a symbol or expression can have.
They are

m TYPE

m OFFSET

m BASE

m INDEX

m SEGMENT

m SEGMENT RELOCATION

m RELOCATION TYPE

m SEGMENT ADDRESSABILITY

m PS ADDRESSABILITY

Symbol and Expression Attributes 3-1

Not all attributes will apply in all cases, however. The following
sections discuss the different attributes and how they affect symbols
and expressions.

TYPE The TYPE attribute may belong to either a variable, label, or memory
expression. The fixed types are
m BYTE (1 byte)
= WORD (2 bytes)
= DWORD /FDWORD (4 bytes)
m QWORD /FQWORD (8 bytes)
m TBYTE (10 bytes)
m FAR (same or different segment)
m NEAR (same segment)
User-defined types are also possible and are created when a record or
structure template is defined. See the chapter titled "Assember
Directives" for more about records and structures.
It is possible for a memory expression to not have a type. Instead, the
type is determined by using the expression. These explicitly typeless
memory expressions are the so-called anonymous references.
OFFSET The OFFSET attribute for a variable, label, or memory expression is

the offset from the start of a segment or group. It is simply the number
of bytes from the start of the segment or group. If the variable or label
belongs to a noncombinable segment or if the expression was
generated from a numeric value, the offset will be absolute. If the

3-2 Symbol and Expression Attributes

variable or label belongs to a combinable segment or to a group, the
offset will be relocatable.

BASE

The BASE register may be set as part of a memory reference. If a
register is used as part of an expression, the expression is known
register expression, to set it apart from the simpler memory expres

The base registers are BW and BP. Only one of these registers may be
present in a any single register expression, although an index register
may be present with the base register. If a base regsstised in a

memory expression, its contents are added to the memory offset at
run-time to calculate a final offset for a memory location. If both a

base and index register are present in the memory expression, then their
values are first added together and then added to the offset to produce
the memory reference. If the memory expression does not have a
SEGMENT attribute (i.e., no variable, label, or segment override was
used as part of the expression), then a default segment register will be
used depending upon which base register appears in the register
expression. If the BW register is used, DSO is the default segment
register. If BP is used, the default is SS. The default to SS for BP holds
even if an index register is also present in the memory expression.

INDEX

The INDEX register may also be used as part of a memory reference.
If an index register is used as part of an expression, either with or
without a base register, then the expression is known as a register
expression, to set it apart from the simpler memory expression.

The valid index registers are IX and Y. Only one index register can be
present in a single register expression. It is also possible, of course,
that no index register will be used. If an index register is used in a
register expression, its contents are added, at run-time, to a memory
offset to calculate a final offset for a memory location. If both an index
and base register are used in a register expression, both registers are
added to the offset to calculate the final offset. If the memory

Symbol and Expression Attributes 3-3

expression does not have a SEGMENT attribute and no base register is
used, then the DSO segment register is used as a default.

SEGMENT

The SEGMENT attribute determines which segment a variable, label,
or memory expression belongs to. The segment attribute is the base
value of that segment. The base value is absolute if the segment has
been placed using the AT keyword. Otherwise, itis a relocatable value
until load time. (This attribute is also the value that is returned by
using the SEG operator.)

SEGMENT
RELOCATION

The SEGMENT RELOCATION attribute becomes important when a
variable, label, or memory expression belongs to a group. In contrast
to the SEGMENT attribute, this attribute determines whichup the

item belongs to. The SEGMENT attribute identifies which segment
within the group the item belongs to. These two values must be known
to correctly calculate offsets for a memory expression. Normally, this
attribute is the same as the SEGMENT attribute unless the expression
contains a group override. This attribute can be ignored unless groups
are used.

RELOCATION
TYPE

The RELOCATION TYPE is determined by a combination of the type
of an expression and by operators that are applied to it. This value will
be null if the expression can be completely determined at assembly
time. This is true of offsets within non-combinable segments and for
segment bases of segments that use the AT keyword. This value will
be set, however, if the item is an offset from either a combinable
segment or a segment base for a non-located segment or group. The
possible types of relocation are:

m OFFSET: This type of relocation will generate the offset of a
variable, label, or memory expression as part of the object

3-4 Symbol and Expression Attributes

code. A 16-bit offset value will be calculated by the loader
and inserted into the object code. The offset will be
calculated relative to the base of the segment or, if a group
override is used, relative to the base of the group. Itis
possible to add a 17-bit value to this offset.

BASE: This type of relocation causes a 16-bit base value t
written directly to the object code. The base will be the ba
address of the segment that the variable, label, or memory
expression belongs to unless a group override is used. In that
event, the base will be the base address of the group. Itis
possible to add a 17-bit value to this base.

HIGH: This type of relocation causes the upper 8-bit portion
of an offset to be written to object code. The offsetis
calculated using the same rules as noted above, but only the
high byte will be written out. It is possible to add an 8-bit
value to this byte.

LOW: This type of relocation causes the lower 8-bit portion
of the offset to be written to object code. The offset is
calculated using the same rules as noted above, but only the
low byte will be written out. It is possible to add an 8-bit
value to this byte.

SEGMENT
ADDRESSABILITY

The SEGMENT ADDRESSABILITY of a meary location is

determined by the segment the memory location belongs to and by any
segment or group overrides applied. If a segment override is used to
name a specific segment register, that register is used to address the
memory location. Otherwise, the values found in the ASSUME
directives must be tested. If the segment or group is found through the
current ASSUME values, then that segment register is used to address
that memory location. If no match is found, an error is generated, since
the memory cannot be accessed.

It is possible to have a memory location that does not belong to a
segment or group. This would be true of an anonymous memory
reference, which looks like

Symbol and Expression Attributes 3-5

[BW][IX]
; base and index registers

In such a reference, the segment addressability will be determined by
using the default segment registers defined for the base and index
registers. Recall that the default segment register will be DSO unless

the BP base register is used, in which case the default will be the SS
. segment register.

PS The PS ADDRESSABILITY of a label is determined from both the
ADDRESSABILITY current ASSUME value for the PS register, and any segment or group
overrides that are applied to the label.

3-6 Symbol and Expression Attributes

Assembler Directives

Introduction

This chapter describes the asv20/asv33 assembler directives. In a
assembly language program, assembler directives are written as a
other program statement might be, but directives are not translated
equivalent machine language instructions. Instead, assembler
directives are interpreted gxstructions to the assembler control the
program assembly process itself.

In this chapter, directives are organized in alphabetical order for easy
reference. (The DB, DW, DD, DS, DQ, DL, and DT directives are
described together because of their similarity.) However, assembler
directives may also be grouped into three broad categories
—Segmentation Directives, Data Definition Directives, and Program
Linkage Directives— which identify the parts of the assembly process
the different directives are designed to affect. Segmentation Directives
help you to inform the assembler about the logical organization of your
program. Data Definition Directives control the allocation and
initialization of data, variables, and labels. Program Linkage Directives
make it possible for you to create modular assembly language
programs. The first sections of this chapter list the directives grouped
by these three categories, briefly describe their functions, and more
thoroughly discuss some concepts important to understanding how
these directives work.

Syntax
Conventions

This section gives the syntax conventions used in this chapter. Part of
the EXTRN Directive reference follows with explanations of the
different areas of the reference.

Assembler Directives 4-1

EXTRN The EXTRN directive is used to declare certain symbols as external

references.
The name of the A one or two sentence summary of function of
directive appears the directive appears here next to the name.

on the upper left
of the reference.

Syntax:

Next appears the proper syntax that the directive uses.
Arguments outside of brackets are required for the
directive use to be syntactically correct. Arguments that
appear inside brackets are options. A square bracket with
a comma and ellipsis means that the preceding argument
may be repeated one or more times.

Where: nameis a symbol.........

Arguments that
appear W the syntox segment- unknown unless
are explained below
it. Arguments may be
still further broken
down, if needed.

4-2 Assembler Directives

Description Symbols declared &XTRN are not expected to be defined in the
current module (they cannot be), but are passed to the loader to be
matched against symbols declaRddBLIC in other modules. In
asv20/asv33 the EXTRN directive will specify the name of the symbol
and its associated type. The type declaration must...

K

Finally, a description

will explain the

directive further and
possibly discuss usage
and other issues not
strictly related to syntax.

Segmentation
Directives

ASSUME informs the assembler of the contents of the
segment registers.

GROUP combines several logical segments together.

SEGMENT/ENDS defines a logical segment in the assembly
language program code.

These directives control program segmentation (the dividing of the
assembly program into logical parts). To better understand program
segmentation, read the following discussion.

Program The V20, V25, and V33 can directly address one megabyte of memory.
Segmentation (For the V33, there is only one megabyte of memory addressable at any
specific moment.) This memory is viewed by the CPU through four
segments, known as physical segments, each containing up to 64K
bytes. The start of each segment is defined by a value, called a
paragraph number, placed in one of the four special registers known as

Assembler Directives 4-3

Default Segment -
??SEG

4-4 Assembler Directives

segment registers. A paragraph number, or boundary, is located at a

memory address which is divisible by 16 (that is, the least significant

hexadecimal digit of the address is OH). A physical segment is said to
beactiveif one of the segment registers contains the base address of
the start of the segment.

The four segments are classified as the code, data, stack, and extra
segments. They are each pointed to by a separate segment register:

PSfor code
DSOfor data
SSfor stack
DS1for extra

Executable instructions will be in a physical segment defined by the
value in PS. Any stack operation will occur within the segment

defined by SS. Data is generally found in the segment pointed to by
DSO0, but it can also be placed in any of the other segments. The
segment accessed through the DS1 register will usually hold data also.

A logical segment is a segment as defined within a single assembly
file. The linking loader can combine this logical segment with other
segments of the same name to form a single physical segment. The
size of the physical segment is limited to 64K, so the sum of the logical
segments cannot exceed this limit. The collection of segments into a
group is another form of physical segment.

All code and data within a source file must exist within some segment.
Any code or data defined outside of segment directives within a source
file will be assigned to a segment automatically created by the
assembler. This segment is named ??SEG and exists in all object files.
The ??SEG segment is defined to be public, so it is combined with all
other ??SEG segments from other modules. It is also defined to be
paragraph aligned.

Data Definition
Directives

Data Objects

DB defines one byte of storage.

DW defines one word (two bytes) of storage.

DD defines one double word (four bytes) of storage.

DS defines one double word (four bytes) of storage (72291.
data types).

DQ defines one quad word of storage (eight bytes - 8087
data types).

DL defines one quad word of storage (eight bytes - 72291
data types).

DT defines one thyte (ten bytes - 8087 data types) of storage.
EQU assigns a particular value to a symbol.

EVEN aligns code or data with a word boundary.

ORG adjusts the location counter within the current segment.
PROC/ENDP assigns a label to a sequence of instructions.
PURGE causes a user-defined symbol to become undefined.
RECORD defines a record template.

STRUC/ENDSdefines a structure template.

Data Definition Directives control the definition and initialization of

data and/or storage as labels, variables, records, or structures. The short
discussion on data objects that follows may help you to better
understand the data definition directives.

The two most referenced data objects are variables and labels. With the
Data Definition Directives, you may define these and other data objects
in your program. Variables are data items, or areas of memory where

Assembler Directives 4-5

values are stored. Labels allow you to "mark" locations or sections in
your code that may be BRed to or CALLed. One use of labels is to
define "subroutine” locations in order to create structured programs.
Unlike high-level language subroutines, however, scoping of names
does not occur and you can "fall into" an embedded "subroutine."

Records and structures may also be defined by this category of
directives. Records and structures are alike in that they are
user-defined templates for storage allocation and initialization, they are
not allocated storage at definition time, the assembler "remembers”
what they look like, they can be referenced as often as you like, and
each reference generates one or more copies of storage in the format of
the template. At the time of the reference, records and structures may
optionally have certain of their definition-time default values replaced.

Records and structures are different, however, in their basic makeups.
When you define a structure, you specify how many bytes the template
covers, how the bytes will be broken up into variables, and what
default values will be placed into those bytes at allocation-time. In
contrast, arecord must be a one or two byte collection of bit fields.
When defining a record, you specify how the record is to be broken up
into bit fields, and any default values to be placed in the bit fields at
allocation-time. The record size depends upon the sum of the number
of bits in all the bit fields, which means the total may not exceed 16
bits.

Program Linkage
Directives

4-6 Assembler Directives

ASGNSFR specifies which segment contains the V25 SFR
and RAM registers.

END specifies the end of an assembly module.
EXTRN specifies symbols defined in other modules.
NAME assigns a name to an assembly module.

PUBLIC specifies which symbols are public.

Program Linkage

SETIDB specifies the memory location where the V25 SFR
and RAM registers are located.

Program Linkage Directives make it possible for you to create modular
assembly language programs. Refer to the discussion of program
linkage that follows to better understand the use of these directives.

asv20/asv33 supplies the necessary directives to support multi-module
programs. A program may be composed of many individual modul
that can be separately assembled or compiled. Each module may
define variables or labels that other modules may use. The Progral
Linkage Directives are the mechanisms in asv20/asv33 for
communicating symbol information from module to module, for
identifying those symbols within the current module that may be used
by other modules, for stating what symbols (defined elsewhere) can be
used within the current module, and for uniquely naming different
object modules that are to be linked together. Using these directives,
you may specify a "main module," that is, a module which contains

the code that will be initially executed upon loading the program (the
address the loader will use to initialize the start address of the
program). At the same time, you may also supply initialization values
for other segment registers.

The ASGNSFR and SETIDB directives are used for linking together
multiple modules when the target processor is a member of the V25
family. These directives are used to inform the linker as to where in
memory the V25 RAM and SFR registers are to be found. Any
disagreements will result in error messages at link time.

Assembler Directives 4-7

ASGNSFR

Syntax:

Where:

Description:

4-8 Assembler Directives

The ASGNSFR directive is used to inform the assembler as to
which segment contains the V25 SFR and RAM registers.

ASGNSFR segmentname

segmentnamas the name of a segment in the assembly file.

The ASGNSFR directive must be used whenever the V25 SFR or
RAM registers are to be accessed within an assembly file. This
directive informs the assembler to pass information to the linker as to
whether V25 registers were accessed in this file and which segment
they were associated with. All references to the V25 SFR or RAM
registers will result in relocatable values that are placed in the object
file. The ldv20 linker will resolve these values by comparing the start
address for the ASGNSFR segment with the SETIDB address of the
SFR and RAM registers. Any reference to the SFR or RAM registers
must be within 64k of the start address for the ASGNSFR segment.

The ASGNSFR directive allows the use of the V25 SFR and RAM
keywords within the assembler. These keywords refer to the location

of the various registers within the V25 register space. Any use of these
keywords without an accompanying ASGNSFR directive will result in
undefined values and error messages. The relocatable values generated
by these V25 keywords will have offset values ranging from OH to

1FFH. These offsets correspond to the address of the specified register
within the V25 RAM and SFR register bank.

The ASGNSFR directive is only valid in the V25 mode. Itis an error
to useitin the V20 or V33 modes. Also, the ASGNSFR directive may
only appear once within an assembly file. At link time, there can be
many modules that contain ASGNSFR directives. No errors occur as
long as these segments are placed within 64k of the SFR and RAM
registers.

ASGNSFR (Cont'd)

An example of using the ASGNSFR directive follows:

SFRSEG SEGMENT
SFRSEG ENDS

ASGNSFR SFRSEG .
CODE SEGMENT PUBLIC

ASSUME PS:CODE, DS0:SFRSEG

MOV TMO, 80H; DSO register used
MOV MDO, 40H; to access these
registers

CODE ENDS

In the example, the SFRSEG segment is assumed to contain the V25
RAM and SFR registers. The instructions that use the V25 keywords
will generate relocatable values that indicate an offset within the V25
RAM and SFR register bank. The Idv20 linker will check the
placement of SFRSEG, as well as the placement of the V25 RAM and
SFR register bank as specified by the SETIDB directive, to make sure
that each reference to a V25 register is within 64k of the start of the
segment. If this is not the case, a linktime error will be generated.

Assembler Directives 4-9

ASSUME

Syntax:

Where:

4-10 Assembler Directives

The ASSUME directive is used to inform the assembler of the
contents of the segment registers.

ASSUME segreg:segpatrt [,...]
(
ASSUME NOTHING

is one of the segment registers PS,DS0,DS1 or SS.

segpart is one of the following:

m A segment nameThe base address of the segment is

assumed to be in the named register. All data (or code) in the
segment is addressable through this register.
Example:

ASSUME PS:CODE, DSO:DATA

m A group name(must have been previously defined). The

base address of the group is assumed to be in the named
register. All code or data in all segments in the group are
addressable through this register. Example:

ASSUME PS:CODEGRP, DSO0:DATAGRP

m A forward reference. Forward references with ASSUME are

only allowed for symbols which will be defined as segment
names later in the program. When the segment name is later
defined, then it may be used to address memory within the
segment. Failure to define the segment name will cause an
error to be reported.

m The keyword SEG followed by the name of a

previously-defined label, variable or external symbolThe
base address of the segment containing the symbol (which
may not be known until link-time) is assumed to be in the

ASSUME (Cont'd)

named register. The specified symbol and any other data
known to be in the segment are addressable through the
register. (For an external symbol defined outside a segment,
no such data is known.) Example:

ASSUME PS:SEG START, DS0:SEG COUNT

m The keyword NOTHING. The register is assumed to contain
garbage. The register will not be used to address any memory.
The format

ASSUME NOTHING

is also legal; this is equivalent to

ASSUME PS:NOTHING,DSO:NOTHING,DS1:NOTHING,SS:NOTHING

Description: ASSUME is used by the assembler to

m determine if the code or data your program references is
addressable

m decide whether a segment override byte should be generated.

Initially, the segment registers contain NOTHING (garbage) by

default. The assembler assumes the contents of each segment register
has not changed —since initialization or the last ASSUME— unless an
ASSUME for that register is encountered. ASSUME itself, however,
does not alter the value in the segment register. For example, the

Assembler Directives 4-11

ASSUME (Cont'd)

Note

4-12 Assembler Directives

statement '"ASSUME DSO0:DATA'’ does not alter the contents of DSO.
You must, at some point, follow the ASSUME with a MOV instruction
to DSO in order to access data in the DATA segment without error.

PS register initialization, since it is done by the loader, does not require
a MOV, but PS still requires an ASSUME before it may be used.

There is an exception to the requirement that the PS register must have
an ASSUME before it is used. When a BR instruction is used without

a current PS-ASSUME value, the default is to ASSUME the current
segment. The segment registers will not be checked. This only applies
to NEAR references, since a BR to a FAR label requires that the PS
register be updated.

DB, DW, DD, DS, The DB, DW, DD, DS, DQ, DL, and DT directives are used to
DQ, DL, DT define variables and/or initialize memory.

Syntax:

1 byte (Byte) initialization:
[name] DB init [,...] .

2 byte (word) initialization:
[name] DW init [,...]

4 byte (dword) initialization:
[name] DD init [,...]

4 byte (fdword) initialization:
[name] DS init [,...]

8 byte (qword) initialization:
[name] DQ init [,...]

8 byte (fqword) initialization:
[name] DL init [,...]

10 byte (tbyte) initialization:
[name] DT init [,...]

(or)

[name] Dx repeatval DUP(init,[,...])
(wherexisB,W, D, S,Q,L,T)

Where:

name is a unique asv20/asv33 symbol. Its associated attributes will
be:

m segment- current segment

Assembler Directives 4-13

DB, DW, DD, DS,
DQ, DL, DT
(Cont’d)

4-14 Assembler Directives

m offset- current location counter

m type - type of data initialization unit

init may take on many possible values depending upon what type of
initialization you wish to do. Init may be any of the following:

m A constant expression.

— DB - 1 byte initialization. An integer constant or an
expression which fit into 8 bits (either 0-extended or
sign-extended) when stored in twos complement format.
The range is -255 to +255. High and low relocatable
numbers (created by the HIGH and LOW operators) are

also acceptable scalars. Other relocatable numbers, such as

the offset of a variable, are not acceptable.
Examples:

DB O
DB 65535 ;not accepted, out of range

DB -1 ;these are equivalent
DB 255 ;both generate hex FF
— DW - 2 byte initialization. A constant or expression that

evaluates to a number (either absolute or relocatable)
which must fit into 16 bits (either 0-extended or
sign-extended) when stored in twos complement format.
The range is
-65535 to +65535. Examples:

DW O
DW 65536 ;not accepted, out of range

DW -1 ;these are equivalent
DW 65535 ;and generate hex FFFFH

DB, DW, DD, DS,
DQ, DL, DT
(Cont’d)

— DD /DS - 4 byte initialization. An integer constant or an
expression that evaluates to an absolute number. The value
must fit into 16 bits (either 0-extended or sign-extended
Therange is -65535 to +65535. The 16-bit value is st
in the lower 2 bytes in twos complement format (least
significant byte first) and the higher 2 bytes are
sign-filled. Relocatable numbers are not permitted (it is
impossible to determine how to fill the higher 2 bytes at
assembly-time).

An integer constant in the range

-4 294 967 295 to +4 294 967 295

(from -(2%2+1) to +(2%1),

but not small enough to qualify for DW. Note that an
expression cannot yield a value this large; all expressions
evaluate to 17-bit numbers. The value is stored as a 32-bit
twos complement integer, low byte first.

A decimal real. The valid range is roughly
-3.4E38 to -1.2E-38, 0, 1.2E-38 to 3.4E38.

A hex real of 8 digits (or 9 digits if its leading digit is 0).

Examples of the possibilities:

DD O ;yields 00000000

DD 65535 ;yields FFFF0000 (low byte first)
;in 16-bit range

DD -1 ;yields FFFFFFFF

DD 65537 ;yields 01000100 (low byte first)
DD -65537 ;yields FFFFFEFF (low byte first)

DD 0.0 ;a decimal real
DD 3.14159 ;another decimal real

DD 0CO000000R ;a hex real
— DQ/DL - 8 byte initialization. An integer constant, or
an expression whose value resolves to a 17-bit absolute
number. The range of constants isﬁ‘-‘{ﬂ) to +(f4-1).

Assembler Directives 4-15

DB, DW, DD, DS,
DQ, DL, DT
(Cont’d)

DT 65535 ;generates 35550600000000000000H
;(low byte first)

DT -65535 ;generates 35550600000000000080H
;(low byte first)

Such integer values are stored in 64-bit twos complement
format.

A decimal real number which has an approximate legal
range of values is
-1.7E308 to -2.3E-308, 0, 2.3E-308 to 1.7E308.

A hex real number consisting of 16 digits (or 17 digits if
its leading digit is 0).

DT - 10 byte initialization. An integer constant, or an
expression that resolves to a 17-bit absolute number. The
range of constants is -(18-1) to +(13%-1). All integer
values are stored in 80-bit signed-magnitude packed
decimal (BCD) format, least significant byte in the
lowest address.

A decimal real number that has an approximate range of
-1.1E4932 t0 -3.4E-4932, 0, 3.4E-4932 to 1.1E4932.

A hex real number consisting of 20 digits (or 21 digits if
its leading digit is 0). Examples:

m The character "?" for indeterminate initialization.

In situations where you wish to reserve storage but do not
need to initialize the area to any particular value, use

the special character "?" instead of a value. The area will
be reserved with an indeterminate value. Examples:

ABYTE DB ? ;reserve a byte

AWORD DW ? ;reserve a word (2 bytes)
ADWORD DD ? ;reserve a double word
(4 bytes)

4-16 Assembler Directives

DB, DW, DD, DS,
DQ, DL, DT
(Cont’d)

AFDWORD DS ? ;reserve a double word

(4 bytes)

AQWORD DQ ? ;reserve a quad word (8

bytes)

AFQWORD DL ? ;reserve a quad word (8
bytes)

ATBYTE DT ? ;reserve a tbyte (10

bytes)

m An address expression.

¥

Note Assume registers are not checked when these directives are used with
address expressions. Therefore, the only way to get a group-relative
reference is to use a group override in the address expression.

— DW - 2 byte initialization. DW may be used with a
variable name, a label name, a group name, or a segment
name. Using DW with a variable or label name causes the
offset of a variable or label (relative to its segment or, if a
group override is used, to its group) to be stored. Using
DW with a group or segment name causes the paragraph
number of that group or segment to be stored. Examples:

DW COUNT ;COUNT is a variable or label
;store offset of COUNT from its segment

DW DATAGRP :COUNT ;store offset of COUNT from its
;group (DATAGRP)

DW CODE ;CODE is a segment or group hame
;store the paragraph number

Assembler Directives 4-17

DB, DW, DD, DS,
DQ, DL, DT
(Cont’d)

DD COUNT ;COUNT is a variable or label, a
;pointer to it is stored

DW COUNT ;store offset of COUNT
DW SEG COUNT ;store COUNT'’s segment

— DD /DS - 4 byte initialization. DD may be used with a

variable name, a label name, a group name, or a segment
name. Using DD with a variable or label name causes the
offset (relative to its segment or, if a group override is
used, to its group) of the variable or label to be stored in
the low order word and the segment or group base address
for the label or variable to be stored in the high order
word. Using DD with a group or segment name causes the
paragraph number of that group or segment to be stored in
the low order word. The high order word will be set to
O00H. Using DD with a variable or label name is equivalent
to storing a pointer to the variable or label address.
Examples:

is equivalent to

m Initialize with a string.

— DB- 1 byte initialization. A string of up to 1024

characters may be specified with the DB directive. Each
character in the string, left to right, is assigned one byte of
memory, low address to high address. The string must be
enclosed within single or double quotes. A single quote
may be embedded in the string by using two consecutive
guotes. Examples:

ALPHABET DB 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
WITHQUOTE DB 'THIS AIN"T HARD! ;inserting single

;quote in string

4-18 Assembler Directives

DB, DW, DD, DS,
DQ, DL, DT
(Cont’d)

— DW, DD, DS, DQ, DL, You may use these directives to

code a string of 1 or 2 characters. Such a string is
interpreted as a 17-bit number that is stored differently
than it would be if DB were used. If two characters are
stored, the second character in the string appears in th
low byte of the storage and the first character appears in
the next higher byte of the storage. If only one character
is stored, the low byte of the storage contains the
character. With either a 1 or 2 byte string, if any bytes of
the storage remain unfilled, they are set to 00H. Using
more than 2 characters in a string results in a warning
message and only the first 2 characters are used.

DT DT can also code a two character string, but it does it
in a way different from the other directives. DT stores the
string in BCD packed decimal format. If a single character
is stored, its decimal ASCII value is stored in the low byte
of storage. The remaining bytes are set to 00H. If two
characters are stored, however, it becomes more
complicated. It is done as follows:

The 17-bit hexadecimal number representing the string is
converted to its decimal equivalent. (The

17-bit hex number is formed by placing the ASCII hex
value of the first character of the 2 character string in the
leftmost byte of the 17-bit word and placing the ASCII

hex value of the second character in the rightmost byte of
the 17-bit word. The sign bit is zero.)

Beginning with the rightmost digit of the resulting

decimal value, the decimal representation is stored 2 digits
per byte, working from right to left in the decimal value,
until all digits are stored.

Any remaining bytes of storage are set to OOH.

Assembler Directives 4-19

DB, DW, DD, DS,
DQ, DL, DT
(Cont’d)

Examples:

DB '01’ ;generates 3031H (shown low byte first)

DW '01’ ;generates 3130H (shown low byte first)

DW '1’ ;generates 3100H (shown low byte first)

DD '01’ ;generates 3130 0000H (shown low byte first)

DQ '01’ ;generates 3130 0000 0000 0000H
;(shown low byte first)

DT '01’ ;generates 3723 0100 0000 0000 0000H
;(shown low byte first)

Repeating value. The special construct, DUP, can initialize an area
of memory with a repeated value or a repeated list of values.

m repeatval specifies the number of data initialization units
(from 1 to 65535) to be filled (bytes, words, dwords, gwords,
or tbytes depending upon whether Dx is DB, DW, DD, DS,
DQ, DL, or DT).

m init (as an argument to DUP) may be a single occurrence of
the possibilities that were acceptableifar in the
non-repeating-value syntax, including another DURior
may be dist of these same values. DUPs may be nested to
eight levels deep. Below are some examples:

WORD1 DB 2 DUP (?) ;two consecutive bytes form word

DD 2 DUP ('01’) ;generates 3130000031300000H

NESTEDDUP DB 3 DUP (4 DUP (5 DUP (1, 6 DUP (0))))
;60 occurrences of 1,6 DUP (0)

4-20 Assembler Directives

DB, DW, DD, DS,
DQ, DL, DT

(Cont’d)

Description:

If an indeterminate initialization is repeated, the memory reserved by
that data directive will NOT be initialized to 0. Also, repeating a
relocatable value (such as a location in memory) will result in only the
first value being assigned correctly. So this practice is discourage

The DB, DW, DD, DS, DQ, DL, and DT directives are used to defin
variables and/or initialize memory. The descriptions of the parts of the
syntax adequately describe these directives.

The DD/DS and DQ/DL data directive pairs accept the same form of
arguments and generate the same object code. The only differences
between these forms are that the DS and DL directives are only usable
on a word boundary and cannot appear inside a segment thatis BYTE
or INPAGE aligned. Errors are generated under those conditions.

The DS and DL directives may only be used when the assembler is in
the 72291 mode.

Assembler Directives 4-21

END The END directive is used to inform the assembler that the last
source statement has occurred and to specify the load module
starting address for the main module.

Syntax:
END [regint [,...]]
Where:

regint This field defines the contents for a segment register (and the
PC and SP registers). To initialize the segment registers, the field may
include some, or all, of the following symbols:

m segnamds either a segment name or a group name. It
identifies the paragraph number to be loaded into the segment
register.

m labelnameis the name of a label defined in the module. If it is
used alone, its segment will be used to initialize the PS
register and its offset will initialize the PC. If it is used with a
segname, then just its offset will be used to initialize PC.

m varname is the name a variable defined in the module. Its
offset will be used to initialize SP.

The following examples show the proper syntax for
initializing different segment registers.

PS (code) segment register initialization

END labelname ;initializes PS and PC
;(the segment part of the
;label is used for PS)

or

END PS:labelname ;same as 'labelname’

(o)

END PS:segname:labelname ;the segment part (paragraph
;number) to be loaded into
;PS is taken from segname

4-22 Assembler Directives

END (Cont'd)

SS (stack) segment register initialization

END SS:segname ;SP will be initialized to be
;equal to the size of the
;segment

(on)

END SS:segname:varname ;initializes SS and SP
;(SP will be initialized to
;the offset of varname)

DSO0 (data) segment register initialization
END DSO:segname ;initializes DSO

Description: An END directive is required for all assembly language programs. Any
statements that follow the END directive will not be processed.
Specifying a load address with the END directive also informs the
loader that the current module is the main program. The main program
defines the start of execution because execution begins at the address
specified with the END directive for the main program. If multiple load
modules are combined by the loader, only one module can specify a
load address and therefore be considered the main program. (The
loader issues warning messages if it encounters more than one main
program.)

The END directive may also be used to define the initial contents of the
DS0 and SS segment registers by specifying values to be placed in
these registers by the linker/loader at load-time.

Note If the code is to be targeted for HP 64000 format absolute, you may
only initialize the PS:PC register with END. Initialize the other

registers explicitly within the code.

Assembler Directives 4-23

EQU The EQU directive causes the assembler to assign a particular
value to a symbol.

Syntax:
equate_symbol EQU expression
Where:
equate__symbol is a mandatory symbol defined by this statement.
expression is one of the following items:

m A numeric constant or expressionThe value of the
expression must be determined at assembly time. Any
symbols used in the expression must have been previously
defined. See the Description section below for more
discussion about real constants. Examples:

Pl EQU 3.14159 ;real constant stored with
;10 byte precision

DD PI ;4 byte floating point

DQ PI ;8 byte floating point

DT PI ;10 byte floating point

E1EQU 2 +3 ;numeric expression

E2 EQU E1 AND 4 ;E1 previously defined
E3 EQU (E1- E2)/ 12 ;E1 and E2 previously defined

4-24 Assembler Directives

EQU (Cont’d)

m A variable or label name(which may be a forward
reference).

ALABEL EQU ALAB ;ALAB not defined yet
ALAB: MOV AW, 0

m Aregister name including ST and 72291 registers. Example:

COUNT EQU CW

POINTER EQU BW

MOV COUNT, 10 :CW =10

MOV POINTER, OFFSET ARRAY ;BW = offset of array
FREQ EQU ST(1)

FADD ST, FREQ

m An instruction or codemacro name.

BUMP EQU INC ;instruction name
BUMP AW ;same as INC AW

m A register expression.These may be single register
expressions, or they may also include a segment override.
This construct is useful when defining data items to be
accessed on the stack. Refer to the Description section for a
more information about the use of register expressions.
Examples:

STACKWORD EQU WORD PTR SS:[BP + 2]
AVAR EQU [BW + 3]
ANEXTVAR EQU DS1:[BW]

Assembler Directives 4-25

EQU (Cont’d)

Description:

4-26 Assembler Directives

The EQU directive in asv20/asv33 is more powerful than the EQU
found in most other assemblers. All the various attributes of address
expressions are stored, and any missing attributes may be added later
with expression operators at the time the EQUed symbol is referenced.

Decimal real numberare stored in a full 10-byte format to prevent a

loss of precision; they may be used in DD, DS, DQ, DL, or DT

directives later in your code. Hex real numbers, however, are stored in
as many bytes as the specification indicates; they can be used later only
in the single directive that accepts a hex real of that size.

It is possible for a symbol to appear as a forward reference before it is
defined in an EQU. When this happens, the assembler assumes that the
forward reference will resolve to a number, variable or label. If this
turns out not to be the case, an error may occur on pass 2 if the
assembler did not leave enough room for an instruction on pass 1.

Symbol chaining (defining a symbol in terms of another symbol which
is in turn defined by another symbol) can be accomplished with the
EQU directive, but the chain must eventually end as a numeric or
address expression. An error occurs if the definition ends in a register
or real number expression. Circular EQU definitions are also errors.
Example:

AEQU B
BEQUA ;ERROR! circular
reference

A symbol defined by an EQU to adldress expressiaonsisting of

more than one symbol (for example, BYTE PTR VBL) is stored as a
variable or label, if possible. The entire EQU expression takes its
attributes from the sub-expression on the right-side of the EQU.
However, not all attributes will be set if attributes are missing from the
right-side sub-expression. If that is the case, missing attributes must be
supplied when the symbol on the left-side of the EQU is used
elsewhere in an expression.

Examples:

EQU (Cont’d)

A EQU [BW][IX][5] ;anonymous reference — type
;information must be supplied
;when A used elsewhere

B EQU WORD PTR 10 ;segment information must be
;supplied later

Assembler Directives 4-27

EVEN

Syntax:

Description:

4-28 Assembler Directives

The EVEN directive causes the Location Counter to be aligned to
an even value (a word boundary).

EVEN

The assembler brings about alignment by generating a NOP (90H)
instruction if the current location counter contains an odd address
value. The EVEN directive cannot be used in a byte aligned segment.
Doing so will cause an error message to be generated.

EXTRN The EXTRN directive is used to declare certain symbols as
external references.

Syntax:

Where:

EXTRN name:type [,...]

name is a symbol, declared PUBLIC (see PUBLIC directive later i
this chapter) in another module, to be defined as an external reference.
Its associate attributes are the following:

type

segment- unknown unless defined within a
SEGMENT/ENDS pair

offset- unknown
type - type declared itype argument

relocation type - external

is one of the following:

The keywordBYTE, WORD, DWORD, FDWORD,
QWORD, FQWORD, or TBYTE for a variable which is
one of these types.

A structure name.Names a variable whose type is equal to
the number of bytes allocated in a preceding structure
definition.

A record name.Names a variable whose type will be either
byte or word depending on the preceding record definition.

NEAR or FAR. A label of type near or far.

ABS. A constant (17-bit number), always of type word.

Assembler Directives 4-29

EXTRN (Cont'd)

Description:

4-30 Assembler Directives

Symbols declared as EXTRN are not expected to be defined in the
current module (they cannot be), but are passed to the loader to be
matched against symbols declared PUBLIC in other modules. In
asv20/asv33, the EXTRN directive will specify the name of the symbol
and its associated type. The type declaration must agree with the type
of the symbol declared PUBLIC, but the loader does not do
type-checking. It is your responsibility to maintain type compatibility.

The type ABS is used to declare a constant. Despite the mnemonic
ABS, this number can prove to be offset relocatable or absolute when it
is resolved depending upon how it was defined as a PUBLIC symbol.

In either case, name can be used and treated like a constant value.

You must be careful in the placement of the EXTRN directive in
relation to the definition of the program segment. If you know the
segment in which the external symbol was defined as PUBLIC, place
the EXTRN directive between a SEGMENT/ENDS pair that is
identical to the SEGMENT/ENDS pair in which the object was defined
in the other module. An external symbol defined in this manner will be
addressable through the segment register containing the segment in
guestion. In particular, a NEAR label defined EXTRN must be defined
in segment identical to the one where it is defined PUBLIC because of
the NEAR type restrictions. Example:

EXTRN (Cont'd)

In module "A"
DATA SEGMENT WORD PUBLIC
COUNT DB 0 ;declared as byte through DB
PUBLIC COUNT
DATA ENDS

In module "B"

DATA SEGMENT WORD PUBLIC ;different module, but same

;segment declaration

EXTRN COUNT:BYTE ‘typed as byte

DATA ENDS

Note #

If you do not know the segment in which the external

symbol is defined, or if the segment in which it is defined is
non-combinable, place the EXTRN directive outside of all
SEGMENT/ENDS pairs in your program. To address the

external symbol you must load the segment part (paragraph number) of
the symbol into a segment register using the SEG operator and then
either use an ASSUME directive to verify addressability or use a
segment override for each use of that symbol.

The V-Series linker does NOT verify that the definition of an external
symbol matches the definition of its resolving public symbol. Itis up

to the user to make sure that external symbol definitions are placed
within the correct segment or they should NOT be placed in a segment
atall.

Assembler Directives 4-31

EXTRN (Cont'd)

V33 Considerations

4-32 Assembler Directives

Example:
MOV AW, SEG COUNT
MOV DS1, AW ;loads segment
(then)

ASSUME DS1:SEG COUNT ;verify
addressability

MOV DL, COUNT ;use symbol

(or)

MOV DL, DS1:COUNT ;use segment
override

In the V33 mode, there are three forms of external symbols that do not
act the same as a normal external symbol. These externals are of the
following forms: ?jump?MODULENAME?PROCNAME,
?addr?MODULENAME, and ?pgrn?MODULENAME. The
MODULENAME refers to the module name for a V33 executable. The
PROCNAME refers to a public procedure or label within the named
module.

The ?jump?MODULENAME?PROCNAME external is a FAR
external which refers to an address to begin execution. The
?addr?MODULENAME and ?pgrn?MODULENAME are ABS
externals and represent 16-bit values that are used for initializing the
V33 page table to map the 1-megabyte address space into the V33's
16-megabyte address space.

These externals are not resolved by the 1dv33 linker, but are processed
by the HP 64875 elv33 locator tool. The definitions of these externals
are not affected by their relationship to segment definitions (that is,
they do not belong to a segment, even if they are defined within one).

GROUP The GROUP directive is used to specify several logical segments
that are to be placed in the same physical segment.

Syntax:
name GROUP segpart [,...]
Where:
name is a mandatory, unique, user-defined name for the group.
segpart is one of the following:
m A segment name.

m The keyword SEG followed by the name of a
previously-defined variable, label, or external symbol.
This construct refers to the segment in which the specified
symbol lies. For externals, this may not be discovered until
link-time.

m An undefined symbolthat must be defined later in the
program as a segment name or the assembler reports an error.

Description: At assembly-time you may specify that certain logical segments will all
go in the same physical segment so the assembler will know that all
such segments may be accessed from the same segment register. Such
a collection of segments is callegm@up. The ordering of the
segments in a GROUP directive will not necessarily control or
represent the ordering of the segments in memory nor are the segments
in a group necessarily adjacent in memory. GROUPing them only
implies that they should lie within the same physical segment.

The total address space covered by all segments in a group must be less
than or equal to 64K bytes. The size of the group is the equal to the

sum of the sizes of all segments in the group. The assembler does not
check whether the size of the group is greater than 64K bytes, but the
loader does.

Assembler Directives 4-33

GROUP (Cont’d)

A group has a base address. The base address of a group refers to the
lowest memory address of any segment in that group. The loader sets
the group base address, and all segments in the group are addressable
from this same group base address.

Forward references to group names are not allowed.

One of the uses of the group name is with the ASSUME directive. If,

for example, you have defined many different data segments that you
intend to form into one physical segment when the program is located
in memory, you could combine these segments with the GROUP
directive. Since the contents of all these data segments will be
addressable through DSO0 during the execution of the program, you may
use the group name in the ASSUME and to initialize DSO. For example,

DATAGRP GROUP DATAL, DATA2 ;DATAL and DATA2 not
;defined yet

DATA1l SEGMENT
ABYTE DB O
DATA1 ENDS

DATA2 SEGMENT
AWORD DW 0
DATA2 ENDS

ASSUME DS0:DATAGRP, PS:CODE ;use group name in ASSUME
CODE SEGMENT

MOV AW, DATAGRP ;AW = base address of group

MOV DS0, AW ;initialize DSO

MOV AW, AWORD ;addressable through DSO

CODE ENDS

4-34 Assembler Directives

GROUP (Cont’d)

Use of the OFFSET Operator With Groups

When using the OFFSET operator with a variable or label whose

segment is in a group, you must use the group name as a segment

override in an expression which references that variable or label, a
MOV BW, OFFSET DATAGRP:COUNT

Also, if you wish to store the paragraph number of a variable or label
defined with a group, you must use a group override. Otherwise, the
paragraph number of the segment that contains the variable is stored
instead. Example:

DW SEG DATAGRP:COUNT
DD DATAGRP:COUNT

Assembler Directives 4-35

LABEL The LABEL directive is used to create a name for the current
location of assembly, whether it is data or code.

Syntax:

name LABEL type

Where:

name is a unique user-defined symbol. Its associated attributes are
the following:

m segment- current segment
m PS-assume current PS-assume value (labels only)
m offset- current location counter
m type - as specified below
type is one of the following:
m The keywordBYTE, WORD, DWORD, FDWORD,
QWORD, FQWORD, or TBYTE to create a variable

which is one of these types.

m A structure name Creates a variable whose type is equal to
the number of bytes allocated in a structure definition.

m Arecord name Creates a variable whose type will be either
byte or word depending on the record definition

m NEAR orFAR To create a label of type near or far.

4-36 Assembler Directives

LABEL (Cont'd)

Description:

AFARLABEL LABEL FAR
NEARLAB: MOV AW, BW

The LABEL directive and the idea of a "label" should not be confused.
The LABEL directive creates a label or variable at the current location
being assembled. A label is a hame for a location in the code that

be BRed to or CALLed.

The LABEL directive is used primarily to address the same data ite

or same piece of code as different types. As a rule, asv20/asv33
requires that the type of a data reference match the type of the data
definition (known as strong typing), which makes this dual addressing
difficult. If you want to access a variable either as a word or as 2 bytes
depending upon the context, the following would allow you to do so:

WORDNAME LABEL WORD
LOWBYTE DB 0
HIBYTE DB O

The LABEL directive also allows you to define two labels of different
types (for instance, both NEAR and FAR) but be careful that the right
RET is executed for the type of CALL made. The following
(potentially fatal) example illustrates this use:

RET ;would be near, so some information
;:would be left on the stack

asv20/asv33 does not, in general, permit data storage at label
locations—that makes writing self-modifying code difficult.

The FDWORD and FQWORD labels are only valid if the current offset
is word aligned, and the current segment is not BYTE or INPAGE
aligned. Errors are generated if either condition is not valid.

The FDWORD and FQWORD types may only be used when the
assembler is in the 72291 mode.

Assembler Directives 4-37

NAME

Syntax:

Where:

Description:

4-38 Assembler Directives

The NAME directive is used to assign a name to an object module.

NAME module_name

module_name is a user-defined identifier. The name identifier can
be any length, but only the first 40 characters are meaningful.

Every object module produced by asv20/asv33 has a name; if you do
not provide one, the assembler issues a warning and gives the file a
special name. The special name is the source file base name stripped
of any path and suffix. A module name is not stored as a symbol. You
can therefore duplicate a keyword or a user-defined label without
conflict. Module names are not affected by the case control. They are
always case-sensitive.

The linker does not require that modules have unique names, but it
identifies its input files by module name on its listing map. For this
reason, assign each module a unique name for clarity.

The librarian program does identify its modules by name. Every
module used as input to the librarian must have a unique name or an
error will result.

ORG The ORG directive is used to alter the value of the Location
Counter within the current segment.

Syntax:

ORG expression
expression evaluates to

m an absolute number (modulo 65536) that does not contain
forward references or

m an offset relocatable number (modulo 65536) that is only
relocatable from the current segment. Using the offset of '$’
(dollar sign is the special character for the current location
counter value) in a PUBLIC segment is an example of this
form of ORG.

Description: The ORG directive is used to locate code or data at a particular location
(offset) within a segment. Using ORG with an absolute segment
allows you to specify an actual memory location at which the code or
data will be located.

Note ﬁl Avoid expressions of the form
ORG OFFSET ($-1000)

since this particular expression will overwrite your last 1000 bytes of
assembly (or will re-ORG high in the current segment if the expression
evaluates to a negative number). An expression with the syntax
"$+1000" will produce an error because this expression evaluates to a
label, not to a number. To achieve what is intended, the expression
"OFFSET ($+1000)" can be used.

Assembler Directives 4-39

PROC/ENDP The PROC/ENDP directive pair is used to delimit a section of code
which can then be CALLed from elsewhere in the program, much
like a procedure in a high-level language.

Syntax:

name PROC [type]

(instructions)

name ENDP

Where:

name is a unique user-defined symbol providing a label for the
beginning of the PROC. The name on the ENDP directive must match
that on the most recently defined PROC for which an ENDP was not
already encountered. The ENDP directive signals the end of a PROC
definition to the assembler. The attributes of the PROC name are the
following:

segment- current segment

PS-assume current PS-assume

offset- current location of PROC directive
type - depends on type indicated

relocation type - depends on enclosing segment

type is the type of the label defined at the beginning of the PROC.
Type can be NEAR or FAR. NEAR is the default if no type is specified.

4-40 Assembler Directives

PROC/ENDP

(Cont’d)

Description:

The primary use of the PROC/ENDP pair is to give a type to the RET
instruction enclosed by the pair. A RET instruction generates a NEAR
return or a FAR return depending on whether the most recently defined
PROC is NEAR or FAR. A RET or RETI outside of a PROC/ENDP

pair or inside a pair which has no type specified is, by default, of ty
NEAR. Therefore, any code you wish to CALL FAR and then
successfully RET from should be enclosed in a PROC/ENDP pair
typed FAR.

Code execution begins at the instruction immediately following the
PROC Directive when PROCs are CALLed or BRed to.

Nested PROCs

When a PROC is defined inside another (nested), it does not
necessarily have the same type assigned to its RET or RETI instruction
as does the enclosing PROC. For instance, an enclosing PROC may be
typed FAR. When the next PROC occurs, it might be a NEAR. For

the duration of that PROC until the ENDP, the type of any return
instruction will be NEAR and not FAR. When the ENDP is found for

the nested PROC, however, the type reverts to the type of the enclosing
PROC, in this case FAR. Having a NEAR PROC inside a FAR PROC,
then, does not affect the enclosing PROC.

Differences Between PROCSs and "Subroutines"

The code in a PROC/ENDP pair is not a procedure in the same sense as
itis in high-level languages. A few differences are of note:

m In contrast to the scoping of names in block-structured
languages, all labels and variables within the PROC/ENDP
pair are not local to the "subroutine”, but are global to the
entire file.

m [t is possible for execution to "fall into" a PROC from the
previous instruction; it is not necessary to CALL a PROC to

Assembler Directives 4-41

PROC/ENDP
(Cont’d)

4-42 Assembler Directives

execute it. Executing a RET or a RETI from a "fallen into"
PROC can cause unpredictable results.

The ENDP does not function as a return-from-procedure; it
marks the end of the PROC for the assembler. It is possible
for execution to "fall out of* a PROC through the ENDP into
the next instruction. To return from a CALL, a RET or RETI

instruction must be used.

PUBLIC The PUBLIC directive is used to specify symbols, defined in one
module, that are available to other modules at link time.

Syntax: PUBLIC name [,...]

Where:

name is the name of the symbol defined in the current module.

Description: Symbols designated PUBLIC will be placed in the object file and used
by the loader to resolve external references (made with the EXTRN
directive) from other modules.

PUBLIC symbols must be variables, labels or 17-bit constants defined
by using EQU; any other types will generate an error. A 17-bit constant
can be absolute or offset relocatable only; other relocation types are not
allowed.

Assembler Directives 4-43

PURGE The PURGE directive places a flag on the specified user-defined
symbol in the symbol table so that the symbol is no longer
recognized.

Syntax:
PURGE symbol [,...]
symbol can be any keyword or user-defined symbatept
m register names
m segment namegincluding ??SEG).
m group names

m hands-off keywords(see keyword list in chapter titled
"Assembler Syntax")

m any user-defined symbol that appears in a PUBLIC
statement

Description: A PURGEd symbol can be redefined following the PURGE statement.
A reference to the symbol following the PURGE statement, but before
a re-definition, is treated as a forward reference to the second
definition. If a PURGEd symbol is never redefined, references to the
symbol following the PURGE statement are considered errors
(reference to undefined symbol).

Purging symbols does not physically remove them from the symbol
table and therefore PURGE cannot be used to deal with symbol table
overflow.

If a variable or label that is defined in the current module but does not
appear in a PUBLIC or EXTRN statement (that is, a local symbol) is
purged, it will not appear in the object module. A PURGE directive,
placed just before the END statement can —in combination with the
$DEBUG assembler control statement— be used to pass on only a few
selected symbols for debugging purposes.

4-44 Assembler Directives

PURGE (Cont'd)

Any variable, label or absolute number that was defined by an EXTRN
statement can be purged, but the symbol will still appear in the object
module as an external reference.

If a symbol is defined by an EQU to another symbol (not an
expression), a PURGE on one of the symbols can cause unexpec
results. The rule is that if a symbol in a EQU chain is PURGEG(, it a
all symbols that precede it to the beginning of the chain are also
PURGEd.

Given the EQU chain that follows:

AEQU B
BEQUC
CDWO ;EQU chain resolving at C

The following PURGEs, which should not be considered as sequential
code but as separate lines somewhere in the assembly source program,
would have the described effects.

PURGE A ;purges only A (B and C are still defined)

PURGE B ;purges A and B (C still defined)

PURGE C ;purges A, B, and C

Assembler Directives 4-45

RECORD

Syntax:

Where:

Description:

4-46 Assembler Directives

The RECORD directive defines a record template.

name RECORD recfieldname:nnn[=datum]

...

name is a mandatory user-defined name for the record template.
recfieldname is a mandatory user-defined name for a bit field.

nnn is an integer constant, or an expression containing no forward
references, that evaluates to an absolute number. The ranga &f
from 1 to 16, inclusive, and denotes how many bits will be in a bit
field. Bits are counted from high bit to low bit within the full byte or
word. Thus, the first bit field following the RECORD keyword is the
most significant field of the record.

datum is an optional integer constant, or an expression containing no
forward references which evaluates to an absolute number, specifying a
default value for this bit field. This value can be overridden when the
record is allocated. If no datum is present, zero is the default. If the
datum is present, it must fit into the number of bits specified (nnn),
zero-filled. For example, the legal default values for a 1-bit field are O
and 1. Values that are either negative or too large are truncated to fit
within a given field. A warning is also generated.

The RECORD directive always defines a record template of either 1 or
2 bytes in size. This definition only describes a record; it does not
allocate any memory at definition time. The total number of bits in all
bit fields within the record cannot exceed 16. When the template is
used to define an occurrence of the record, memory is allocated in
multiples of 8 bits (1 byte). If the total number of bits in a record
template is one to eight inclusive, the unit used to allocate storage

RECORD (Cont’d)

REC1 RECORD R1:3=7,R2:5

when the record template is used is 1 byte. If the number of bits is 9 to
16 inclusive, then allocation is 2 bytes.

You might experience some confusion in those cases where the bit
field allocation does not fill exactly 8 or 16 bits. While it is true that bit
counting begins with the most significant bit in cases where the byt
word is completely filled, partially allocated records (the number of
bits in the bit fields do not total exactly 8 or 16 bits) will have their
fields right-justified in the byte or word and the remaining most
significant bits will be zero-filled. This means that the first bit in the
left-most bit field where counting begins will not be the left-most bit of
the byte or word. The following definition

;generates 11100000B or EOH

defines an 8-bit pattern which has all 8 bits filled. Note that R2,
because it is not initialized, is set to zero by default. However, the
definition

REC2 RECORD R3:3=7,R4:3=3 ;generates 00111011B or 3BH

leaves two bits remaining in an 8-bit byte. The two three-bit bit fields
are right justified, and the remaining two bits, the two most significant
bits, are zero-filled. The following figure illustrates how, for the above
example of record template REC2, the partial record is defined by the
RECORD directive.

Zeroed

Bitfield R3 Bitfield R4

Figure 4-1. "Partial" Record Definition

Assembler Directives 4-47

RECORD (Cont’d)

Similarly, the two 16-bit record definitions below illustrate what
happens to 16-bit partial records.

REC3 RECORD R5:3=7,R6:13=4095
;generates 1110111111111111B or OEFFFH
REC4 RECORD R7:1=1,R8:8=127
;generates 0000000101111111 or 017FH
Remember, the RECORD directive only defines a template, it does not
allocate storage. To see how to allocate storage using a record
template, read the next section.

Allocating Record After you have defined a record template, the template definition can
Storage be used in the following syntax to allocate storage:

Syntax:
[name] recname <[[datum],] [...]>

(on)
[name] recname repeatval DUP (<[[datum],] [...]>)

Where:

m hameis an optional name to be declared as a variable with the
following attributes:

— segment current segment being assembled
— offset- current location counter value

— type - total number of bytes in the record template (either
lor2)

m recnameis the name assigned to a previously-defined record
templaterepeatval is a 17-bit integer constant, or an
expression containing no forward references and evaluating to
a 17-bit absolute number, between 1 and 65535 inclusive.
Repeatval specifies the number of copies of the record to
allocate.

4-48 Assembler Directives

RECORD (Cont’d)

m datum is an optional value to be used instead of the default
value provided in the template. All such values must be
17-bit integer constants, or expressions that evaluate to 17-bit
absolute numbers. Relocatable values are not allowed.

— The first datum replaces the default value of the first bit
field within the record, the second datum replaces the
default on the second bit field, etc. Null data items are
permitted (separated by commas) to direct the assembler
to use the default values; null data values are useful when
a default value other than the first needs to be overridden.
If a field is mmm bits wide, the least significant mmm bits
of the twos complement representation of the datum are
used. For example, if a 3-bit field is being overridden,
values of 6, -2, and 14 will all generate the 3 bits 110.
Examples (using the REC1 definition shown above):

FIRSTREC REC1 <> ;no overrides to defaults,
;generates OEOH

SECNDREC REC1 <4> ;overrides R1 - generates 080H

THIRDREC REC1 <,5> ;overrides R2 - generates OE5SH

FIVERECS REC1 5 DUP (<>) ;5 copies of default record

It is allowable to nest record allocations up to 10 deep.

Assembler Directives 4-49

SEGMENT/ENDS The SEGMENT/ENDS directive pair is used to define a logical
segment.

Syntax:

name SEGMENT [align-type][combine-type]['’classname’]

. name ENDS

Where:

name is a mandatory user-defined name that cannot conflict with any
other symbol.

align-type specifies what boundary the logical segment must be
placed on. If the align-type is not specified, PARA is the default.
Align-type may be any of the following keywords:

m BYTE - byte alignment. Segment can start anywhere.

= WORD - word alignment. The segment must start on an
address divisible by 2. (An address which has a least
significant bit of 0.)

m PARA - an address divisible by 16. (An address which has its
least significant hexadecimal digit equal to OH.)

m PAGE - page alignment. The segment must start on an
address divisible by 256. (An address which has its two least
significant hexadecimal digits equal to OOH.)

m INPAGE - inpage alignment. The entire logical segment
cannot be more than 256 bytes long; it cannot cross a page
boundary (an address divisible by 256). It will be moved to
start on an address divisible by 256 only if movement is
necessary to prevent the segment from crossing a page
boundary.

4-50 Assembler Directives

SEGMENT/ENDS
(Cont’d)

combine-type specifies the way in which the linking loader
combines this segment with other logical segments of the same name to
form a physical segment in memory. If combine-type is not specified,
the logical segment will not be combined with any other logical

segment, not even one with the same name from a different modul

Combine-type can be any of the following keywords:

m PUBLIC - all segments of the same name defined to be
PUBLIC will be concatenated to form a single physical
segment. The loader controls the order of concatenation. The
length of the resulting physical segment will be equal to the
sum of the lengths of the segments that have been combined.

m COMMON - all segments of the same name defined to be
COMMON will be overlapped, starting at the same physical
address, to form a physical segment. The size of the resulting
physical segment will be equal to the size of the largest
segment of those overlapped.

m STACK - all segments of the same name defined to be
STACK will be concatenated into a physical segment such
that the combined segment welhdat a certain physical
address (overlaid against high memory) and will grow
"downward." The length of the resulting segment will be the
sum of the lengths of the combined segments. (STACK is not
a true keyword. You can define a symbol to be STACK
without conflicting with the usage in the SEGMENT
directive.)

m MEMORY - all segments of the same name defined to be
MEMORY will be combined so that the first memory segment
encountered by the linker will be treated as the physical
"memory" segment. In the list of linked modules, the first
module that contains a "memory” segment will be used to
define the physical "memory" segment. It will be located at an
address above all other segments in the program. Any other

Assembler Directives 4-51

SEGMENT/ENDS
(Cont’d)

Description:

4-52 Assembler Directives

segments of the type memory that are encountered by the
linker will be treated as common with the first segment. The
length of the physical memory segment will be equal to the
length of the first memory segment encountered (Memory,
like Stack, is not a true keyword. You can define a symbol to
be MEMORY without conflicting with the usage in the
SEGMENT directive).

AT nnn - this segment will be placed at the paragraph number
specified. The expression nnn cannot contain forward
references and must evaluate to an absolute number. Absolute
segments are not aligned by the linker; the various align-type
keywords are syntactically correct when used in combination
with AT but are ignored. Note thainn represents a

paragraph number, not an actual address; therefore if AT
0444H is specified, the segment will start at address 04440H.
A segment created with AT will be non-combinable with
segments from other modules.

‘classname’ is a name that may be used to indicate that segments are
to be located near each other in memory. When assigning physical
addresses to these logical segments, the linking loader attempts to place
logical segments with the same classnames close together. However,
the classname cannot be used to combine segments such that they may

be addressed through the same segment register.

The classname must be enclosed in single quotes, as shown, or in

double quotes.

Classnames are not stored as symbols; they may duplicate symbol

names (even keywords) without conflict. If a classname is to be

assigned to a segment, assign it at the first occurrence of the segment in

the source file.

The SEGMENT/ENDS directive pair is used to define a logical

segment. This segment may be combined with other segments of the
same name defined in either the same module or in other modules.

SEGMENT/ENDS
(Cont’d)

These logical segments will form the physical segments, located in
memory, that are pointed to by the segment registers. Within a source
module, each occurrence of an equivalent SEGMENT/ENDS pair (with
the same name) is viewed as being one part of a single program
segment.

Multiple Definitions The assembler keeps the value of the offset from the current segment
of a Segment (i.e., the most recent SEGMENT directive) in an internal location

called the location counter. The assembler saves the location counter
for each segment when it finds an ENDS for that segment, or if it finds
a new SEGMENT directive. Later, if the assembler finds another
SEGMENT directive which uses the name of that previously defined
segment, the earlier location counter is retrieved and used. For this
reason, a segment may be broken into pieces within a module, or
between modules if it is combinable, and those pieces will still be
placed in the same physical segment.

The align-type, combine-type and classname need not be included with
the second and later SEGMENT directives for a segment of the same
name. If they are absent, the assembler takes the segment’s
characteristics from the first definition. However, any keywords that

are present must match the first definition, or an error is reported. If an
absolute segment is broken into pieces and the AT keyword is used on
a SEGMENT directive for the second or later piece, the absolute base
address must match the first definition, even though the location
counter is taken from the stored value. The second part of the segment
will not start at the specified base address, but the AT value must
match. Examples of breaking a segment:

Assembler Directives 4-53

SEGMENT/ENDS
(Cont’d)

S1 SEGMENT PUBLIC
NOP ;relocatable location 0
S1 ENDS

S1 SEGMENT ;assembler uses PUBLIC attribute

ADD AW,2 ;instruction at relocatable location 1
S1 ENDS

S2 SEGMENT AT 0444H

NOP ;instruction at absolute location 04440H
S2 ENDS

S2 SEGMENT AT 0444H

NOP ;instruction at absolute location 04441H
DB 14 dup(0) ;skip 14 bytes

S2 ENDS

S2 SEGMENT AT 0445H ;an error! Must use 0444H
NOP ;instruction at absolute location 04450H
S2 ENDS

Nested or Embedded Segments

It is legal to nest SEGMENT/ENDS pairs. Each ENDS must refer to
the most recently-defined SEGMENT whose ENDS was not yet
encountered. The fact that a segment is nested inside another does not
mean that the code for the nested segment is placed inside the
enclosing segment. The code is the same as it would be if no nesting
occurred. Nesting helps you to define logical structures and makes
programming easier. Example:

S1 SEGMENT PUBLIC

NOP ;goes into S1 segment

S2 SEGMENT PUBLIC

ADD AW,2 ;goes into S2 segment

S2 ENDS

SUB AW,3 ;goes into S1, S2 is "closed"

Improper Nesting:

S1 SEGMENT PUBLIC

NOP

S2 SEGMENT PUBLIC

ADD AW,2

S1 ENDS ;ENDS does not match most recent SEGMENT
SUB AW,3

S2 ENDS ;ENDS does not match remaining SEGMENT

4-54 Assembler Directives

SEGMENT/ENDS
(Cont’d)

Maximum Number of Segments

If you use the default HP-OMF 86 object file format, you may use an
unlimited number of segments. The HP 64000 (.A) object file formay
allows only three named segments. Therefore, if you use the HP 6
object file format (theh command -line option), use three or fewer
relocatable segments per module.

The first relocatable segment with code will be assigned the PROG
segment. The first relocatable segment with data will be assigned the
DATA segment, if that segment is not used for PROG. The next
relocatable segment, whether it contains code or data, will be assigned
the COMN segment.

Assembler Directives 4-55

SETIDB

Syntax:

Where:

Description:

4-56 Assembler Directives

The SETIDB directive indicates to the assembler and linker where
in memory the V25 SFR and RAM registers are located.

SETIDB [value]

value is a constant numeric expression ranging from 0 to OFFH. If the
value is not present, the expression defaults to OFFH.

The SETIDB directive is used to pass information to the Idv20 linker as
to where in memory the V25 SFR and RAM registers are to be located.
The value that is passed in to this directive indicates the upper 8 bits of
the 20-bit physical address for these registers. If no value is given with
the SETIDB directive, the default value of OFFH is used. The V25
SFR and RAM registers starts at OEOOH bytes beyond the SETIDB
address indicated. The physical address of any register in the V25 SFR
and RAM registers can be obtained by shifting the SETIDB value to
the left by 12, adding OEOOH to that value, and then adding the offset
of the register to that value. This is, in fact the process used by the
Idv20 linker. The linker will take the relocatable value for any
references to V25 SFR and RAM registers and resolve them such that
they refer to the register’s physical location. This requires any
ASGNSFR segment to be placed within 64k of the start of the V25
registers, so the resulting segment/offset pair can reach the correct
physical address.

The SETIDB directive is optional for using the V25 SFR and RAM
registers, but it must be used if these registers are to be placed at a
location other than OFFEOOH in physical memory. The SETIDB
directive generates object code to modify the V25 IDB register to
contain the value used in this directive. The assembler also passes this
value to the Idv20 linker so it can validate that the ASGNSFR

segments are located at acceptable addresses. The object code
generated by the SETIDB directive pushes some registers to the stack,
so it should only be used after the SS and SP registers are initialized. It
should also be used before any of the V25 SFR and RAM registers are
accessed.

SETIDB (Cont’d)

The SETIDB directive can only be used once in any single module.

Also, the Idv20 linker will check the modules that it is given so as to

verify that only one of its input modules contains a SETIDB directive.
Multiple SETIDB directives will result in a linktime error.

The SETIDB directive is only valid in the V25 mode. Itis an error t.
use it in the V20 or V33 modes.

An example of using the SETIDB follows:

CODE SEGMENT PUBLIC
ASSUME PS:CODE

; Initialize the Stack registers
: SO the stack can be used
MOV AW, STACKSEG

MOV SS AW

MOV SP,0FFFFH

; Change the V25 IDB register to

; point to where | want the SFR

; and RAM registers to reside.

; In this example, the V25 registers
; will be at 080EOOH through

; O80FFFH.

SETIDB 080H

CODE ENDS

Assembler Directives 4-57

STRUC/ENDS The STRUC/ENDS directive pair is used to define a structure

template.
Syntax:
name STRUC
'<data directives>
hame ENDS
Where:

name is a unique user-defined symbol that becomes the structure
name. The name on the ENDS must match the name on the STRUC.
Its type attribute is the following:

m type - number of bytes defined in structure data directives

Description: The structure definition only describes a given structure and its
contents; it does not allocate any memory at that time. All statements
between the STRUC and ENDS directives must be one of the
following: DB, DW, DD, DS, DQ, DL, or DT directives, comment
lines, blank lines, or assembler controls. Any assembler controls that
are included within the STRUC/ENDS pair are not stored as part of the
template and therefore are not executed anew each time the structure is
referenced. Any symbols referenced in the argument field of any of the
included directives must have been previously defined. Forward
references are not allowed within a structure definition.

You will notice that the ENDS directive is also used to terminate a
SEGMENT definition. This is unambiguous, since an ENDS closing a
SEGMENT is not legal within a structure definition.

If a DB or other directive within a structure definition has a name in its
name field (which must be unique, and cannot previously have been
the object of a forward reference), this name is known as a structure

4-58 Assembler Directives

STRUC/ENDS
(Cont’d)

field. Itis not the same as a variable, and it is not associated with any
particular storage location or segment. Structure names and structure
fields can be used in very few syntactic constructs. Forward references
to structure names and structure fields are not allowed.

Structure field names do have associated attributes. They follow:

offset - offset from the beginning of the structure definition

type - type of data definition directive

Allocating Structure After you have defined a structure template, it can be used in the
Storage following syntax to allocate storage:

Syntax:

[name] strucname <[[datum],] [...]>
(on)

[name] strucname repeatval DUP (<[[datum],] [..

Where:

1)

nameis an optional name to be declared as a variable with the
following attributes:

— segment current segment being assembled
offset - current location counter value
type - total number of bytes in the structure template

strucnameis the name assigned to a previously defined
structure template.

nnn is a 17-bit integer constant, or an expression containing
no forward references and evaluating to a 17-bit absolute
number between 1 and 65535 (inclusive); it is the number of
copies of the structure to allocate.

Assembler Directives 4-59

STRUC/ENDS
(Cont’d)

4-60 Assembler Directives

m datum is an optional scalar to be used in place of the default
value provided in the template. The first datum replaces the
default value on the first data definition directive within the
structure, the second datum replaces the default on the second
data definition directive, etc.

— Null data (separated by commas) is permitted and directs
the assembler to use the default value; this is useful when
a value other than the first occurring value must to be
overridden. The legal values for these scalars are the same
as in the data definition directive to which they apply,
including the indeterminate-initialization keyword '?".
Note that repeated data (i.e., DUP expressions) cannot be
used as an override.

— Not every default value can be overridden. Default values
can be replaced only if the template defined just one unit
of data for the data definition directive (structure field)
that is to be overridden, or the template defined a character
string in a DB directive. These conditions mean that such
defaults as DB 1,2 and DW 10 DUP (0O) cannot be
overridden.

The number of bytes used in a DB string is fixed when the structure is
defined. Such a string can be overridden only by another string. If a
longer string is used to override, it is truncated, and a warning message
is given. If a shorter string is used to override, it is filled out, using the
characters at the end of the default string.

Errors may occur upon allocation of a structure if the structure
definition used DS or DL data directives, and the allocation of the
structure occurs in either a BYTE or INPAGE aligned segment, or the
location counter is not on a word boundary.

The figure on the following page illustrates structure definition and
allocation.

STRUC/ENDS
(Cont’d)

The structure definition

BLUEPRINT STRUC
FIRST DW OFFFEH
SECOND DW BUFFER
THIRD DB 7,5
FOURTH DB A
FIFTH DB ?
SIXTH Dw 257

BLUEPRINT ENDS

yields a structure template like this:

15 0
FIRST
.SECOND
.THIRD+1 .THIRD
.FIFTH .FOURTH
SIXTH

Figure 4-2. Structure Definition and Allocation

The instruction
B1 BLUEPRINT < >
allocates storage for B1 that looks like:

15 0

FFFE

Assembler Directives 4-61

STRUC/ENDS
(Cont’d)

OFFSET (BUFFER)

0 5 0o 7
. indeterminate 4 1

0101

The instruction
B2 BLUEPRINT <,0... 255>
allocates storage for B2 that looks like:

15

OFFFE

0000O

0101

Figure 4-2. Structure Definition and Allocation (Cont’'d)

4-62 Assembler Directives

Expressions

Introduction

Reference Syntax
Conventions

This chapter describes the syntax and semantics of expressions. The
early part of the chapter explains the kinds of expressions and discusses
expression operands. The latter part lists the different expression
operators and their uses. The end of the chapter has a table showi
precedence ranking of the expression operators.

The sections that include the references about the expression operators
follow certain conventions:

1.

The name of the operator (or a descriptive term for the
operator) appears in the lefthand column.

. The proper assembler syntax appears next under a heading of

"Syntax."

. A short description follows the syntax. The description

explains the syntax and any arguments appearing in the
syntax. There may also be other information relating to the
operator itself or to using the operator.

. Some expression operators may affect the attributes (see

chapter named "Attributes”) of its operands. If that is so, a
list of attributes and their values follows the description.

. Some short examples that use the operator may follow the

description or attributes sections.

Expressions 5-1

Expression
Overview

Absolute Expression

5-2 Expressions

An expression is a simple or complex combination of operands that
may be bound by operators. Operands can be numeric values or
address expressions. Operators include conventional unary and binary
arithmetic operators (+, -, *, /, MOD, etc.), logical operators (AND,

OR, XOR, NOT), or special operators such as memory and record
operators.

Expressions have certain attributes. Attributes are discussed
thoroughly in the chapter named "Symbol and Expression Attributes."

Expressions are in turn used as operands to assembly language
instructions and assembler directives. Expressions may be absolute,
relocatable, or external.

An absolute expression is one whose value is known completely at
assembly time. Assembly of absolute expressions results in object
code that does not need to be further modified by the loader. An
absolute expression will have an operand that is

m a numeric constant

m a constant memory expression (addresses which are known at
assembly time)

m record allocation values

m a record bit field offset

m a segment base located during assembly time with the AT
keyword (AT is discussed in the SEGMENT/ENDS directive

in the "Assembler Directives" chapter)

m an offset for a variable or label from a segment which is
non-combinable

m aregister name

Relocatable
Expression

External Expression

A relocatable expression contains a relocatable operand as part of the
expression. The value of a relocatable expression is not known at
assembly time and must be assigned later by the loader. Relocatable
expression values are 16-bit values unless modified by the HIGH or
LOW operators to become 8-bit values. A relocatable expression will
have an operand that is

m a segment base where the segment is combinable (including
all groups, since their bases are not set until load time)

m a variable or label which belongs to a combinable segment

An external expression is a relocatable expression which contains i
that are not within the module being assembled. These expressio
reference external variables, labels, or numbers. Their values mu
assigned by the loader when the module containing the referenced item
is available for relocating. External expressions, like relocatables, are
assumed to be 16-bits in size, but may be modified with the HIGH or
LOW operators to be 8-bit values. More information about external
references appears in the chapter called "Assembler Directives."

During the assembly process, the assembler uses 17-bit numbers to
perform arithmetic and other operations involving expressions. A
17-bit number is a 16-bit number with an additional sign bit. The
17-bit number is used within the assembler so that negative numbers
with large absolute values (to -65535) may be used in calculations.
When the value is coded, the sign bit is discarded and is not output,
since only 16-bit values are used in the object code.

Expressions 5-3

Expression
Operands

Numeric Values

5-4 Expressions

An expression may consist of only an operand, or an operand or
operands modified by an operator or operators. Operands are broadly
divided into two groups: numeric values and memory or register
expressions. A numeric value will be directly represented in the
assembled code. A memory or register expression is an indirect value
because the assembler is coding a reference —or reserving a space that
will be filled later— which points to a location in memory where the
actual data resides. Expressions involving the EQU directive can be
either a numeric or memory expression.

Numeric values result from a variety of different operands. Numeric
constants, obviously, are numeric values, but other, less clearly
numeric operands also produce numeric values. Any of the following
operands can generate numeric values:

m A constant. There are several ways that an absolute number,
or constant, may be represented to the asv20/asv33 assembler.
The easiest and most straightforward way is to make the
expression operand a decimal, octal, hexadecimal, or binary
number. The various representations are as follows:

— A decimal number is a series of digits, ranging from O to
9, that optionally ends with the character 'D’. Decimal
numbers are base-10 and are the numbers people are most
familiar with.

— An octal number is a base-8 number represented by a
series of digits, ranging from 0 to 7, and ending with either
the character 'O’ or 'Q’.

— A hexadecimal number is a base-16 number represented
by a series of digits, ranging from 0 to 9, or by characters,
ranging from 'A’ to 'F’. These numbers must end with the
character 'H'. A hexadecimal number may not begin with
a character; in those instances, place a leading zero in
front of the hex number.

— A binary number is a base-2 number represented by a
series of digits, either O or 1, and ending with the character
B

Examples of numeric constants:

MOV AW, 35 ;decimal number
MOV AW, 12D ;decimal number with optional
;following 'D’

MOV AW, 370 ;octal number with the letter 'O’
MOV AW, 12Q ;octal number with following 'Q’

MOV AW, 12H ;hexadecimal number

MOV AW, 0A34H ;hexadecimal number with leading 0

MOV AW, 0110101B ;binary number

MOV AW, 'A#’ ;generates 04123H
MOV AL, HIGH 'B’ ;generates 00H

Quoted string. A one or two character quoted string which is
used as an expression operand will be stored as a hexadecimal
number in a two byte word. Each byte contains the ASCII
value of the character it stores. If two characters are stored in
a word, the first character is represented in the high byte

the word and the second character is represented in the lo
byte. If only a single character is stored, it is represented i
the low byte and the high byte is set to OOH. A quoted strin
always evaluates to a positive 17-bit value. This method of
representing numbers is cumbersome and not very useful. It
is also much more difficult to verify that the value is correct.
Examples:

Record template. The chapter named "Assembler

Directives" discusses the record structure. A record is a series
of bit fields which may be defined within a one or two byte
structure called a template. Template definition does not
allocate storage, but specifying an occurrence of a record can
allocate memory, much like a DB (define byte) or a DW
(define word) directive might allocate memory. A record
template may also be used as an expression operand, butin
this usage no memory is allocated. Instead, the operand is
evaluated to be a positive 17-bit value and used the same as
any number.

Examples:
R1 RECORD F1:3, F2:5, F3:2 ;the RECORD directive

;defines record template
MOV AW, R1<> ;value is 0 since

;no defaults specified

;in template definition

Expressions 5-5

MOV AW, R1<2,14,3> ;value is 0013BH
MOV AW, R1<2,14,3>+5 ;value is 00140H

m Record field. You may also use a record field name by itself
as an expression operand. If the field name is used without a
MASK or WIDTH operator, then the assembler replaces the
field name with a number which is the shift value required to
move the lower bit of its bit field to the Oth bit position. For
example, using the record template definition above, the
value that would be replaced for F1 is 7 since there are 7 bits
of data to the right of the field F1. The shift value, combined
with the MASK operator described later in this chapter, may
be used to extract field values from a record.

m Segment or group name.When used as an expression
operand, the name becomes an immediate value that is the
paragraph number for the segment or group. Since most
segments and all groups are not assigned this value by the
assembler, it will usually be relocatable. Only segments that
use the AT keyword will have a fixed paragraph number
known by the assembler. These values may be used as is —to
initialize a segment register, for instance— or used wherever a
relocatable number may be used (except with HIGH and
LOW). Examples:

MOV AW, SEG1 ;load paragraph number for segment
MOV DSO0, AW ;initialize DSO register
MOV AW, GRP1 ;load paragraph number for group

5-6 Expressions

Memory and Register There are several ways to reference memory in assembly source files.
Expressions Memory might be referenced with operands which are any of the
following:

m Variables or labels. Variables are defined through data
directives and structure or record allocations. Labels are
defined through assembly instructions or PROC directives.
Either variables or labels may also be defined through
EXTRN statements or LABEL directives. Given the variable
and label definitions in the first three lines of the example
below, the last two lines use those definitions as memory

operands:
WMEM DW 2 ;word variable
R1 RECORD F1:3, F2:4 ;record template definition
Ul R1<> ;byte variable, from

;arecord allocation
L1: MOV AW, WMEM ;NEAR label, using a word

;variable
MOV AL, U1 ;uses byte variable as operand
BR L1 ;uses NEAR label as operand
m Variable with offset. Variables used as memory operands

may have offsets added to them in order to refer to memory
locations near the memory location of the variable. The
variable with offset operand may be expressed in two ways.
Examples of both:

MOV AW, WMEM + 5 ;adds 5 to variable address

;accesses memory 5 bytes higher
;than location of variable WMEM

MOV AW, 5 + WMEM ;same result from slightly different
;way of expressing it
MOV AW, WMEM[5] ;same result from very different

;way of expressing it

m Structure field. Much the same as using an added offset to a
variable, using a structure field name as part of a memory
operand allows access to memory that is near a variable.
Offset is from the variable named when storage using the
structure template was allocated. Using a structure field
name as a memory operand also changes the type of the
memory expression to that of the field. Example:

Expressions 5-7

ST1 STRUC

BFIELD DB ? field offset value from ST1is 0
WFIELD DW ? ;field offset value from ST1lis 1
ST1 ENDS

MOV AW, BMEM.WFIELD ;adds 1 to offset, word type

m Register indirect reference The V20, V25, and V33
processors also allow an instruction to indirectly refer to
memory by using base and/or index registers. The contents of
these registers are added to a variable’s offset at runtime,
which means a memory address can be created that is not
known when the assembly code is written. A register
expression operand can contain one base register name, one
index register name, or one base and one index register name.
Additionally, constants may be part of the operand along with
the registers.

The valid base registers are BW and BP and the valid index
registers are IX and Y.

Base or index registers used this way must be enclosed in
square brackets in a register expression, but there are several
different ways to represent expressions given this restriction.

— A base and index register may be added together explicitly
by using a '+ sign within the brackets or added implicitly
by enclosing each register name in separate, adjacent
brackets.

— A base or index register alone may have a constant added
to it or subtracted from it in the same manner. (The '~
sign must be used for subtraction, since adjacent brackets
are, by default, added.)

— A base and index register added together may also have a
constant added using either a '+’ sign or adjacent brackets,
or a constant may be subtracted by using a -’ sign within
the brackets.

— A base and index register cannot be subtracted from one
another, however.

5-8 Expressions

MOV AW,

MOV AW,
MOV AW,

MOV AW,

MOV AW,
MOV AW,

MOV AW

MOV AW,
MOV AW,

Examples:

WMEM[BW)] ;one base register,
;no index register
WMEMI[BP][IX] ;these two slightly different

;expressions are equivalent
WMEMI[BP+IX] ;both add one base register
;and one index register

WMEM[IX] ;no base register,
;one index register

WMEMI5][BP] ;both of these expressions use
WMEMI[5+BP] ;an index register with a
;constant added

, WMEMI[BP-5] ;one base register with

;constant subtracted,
;no index register

WMEMI[BWI][IY][5] ;one base and one index
;register added

WMEM[BW+IY+5] ;with constant added also
;both expressions equivalent

m Anonymous referenceThis form of register expression

operand contains only constants and registers and does not
include a variable or label name. Because there is no variable
or label name, no segment or type information is inherent in
the expression.

This expression may be given a type and segment, using the
PTR and segment override operators. Otherwise, default
values are assumed, depending upon the instruction and the
registers that are used. If the base register BP is used, the
default segment register is SS. Otherwise, the DSO segment
register is the default segment register.

A default type value may be assumed if other operands to the
instruction provide enough information to limit the type of the
memory expression. Otherwise, an error is generated. For a
constant to be used as a memory reference, it must be typed
with the PTR operator so the assembler knows to treat the
value as such. Otherwise, the constant is treated as an
immediate value.

Examples:

Expressions 5-9

MOV AW, [BW] ;default is DSO segment
MOV AW, [BP][IX] ;default is SS segment

MOV AW, DS1:[BW] ;segment is DS1

MOV AW, DS0: WORD PTR 5 ;segment is DSO
MOV AW, [BW].WFIELD ;defaultis DSO segment

EQU The EQU directive, discussed in the chapter titled "Assembler
Directives," allows you to assign a value to a symbol. Some of the
possible assignments include register names, variables, memory
expressions, or constants. The symbol on the left side of the EQU
directive may be used in an expression as an operand. The result is the
same as if whatever appears on the right side of the EQU were used as
an operand instead. Examples:

E1 EQU BW ;V20 register

MOV AW, E1 ;register to register
MOV AW,BW ;same as MOV AW, E1
E2 EQU WMEM ;variable

E3 EQU BMEMIBP][IX] ;register expression

E4 EQU 037B2H ;constant

MOV AW, WMEMIE1] ;register from memory
MOV AW, E2[E1] ;register from memory

MOV AL, E3 ;register from memory

MOV AW, E4 ;immediate value into register
MOV AW, E4 /5 ;immediate value into register

5-10 Expressions

Expression

Operators are functions that take one or more operands and return a
new value. Operators are used to build expressions that cannot be

Ope ratorg defined strictly as simple operands. Use operators to add numbers,
Introduction change the type of a memory expression, or to cause segment
overrides. You may use a complex expression involving operators
anywhere a simple operand may be used if the value returned by the
complex expression is equivalent to the value of the simple operand.
Arithmetic The arithmetic operators conform to the commonly understood noti
Ope rators of these operators. Arithmetic involving these operators is done usi
the full 17-bit representation of the operands. Negative number results
are stored, however, in twos complement form.
Unary Plus,
Unary Minus

MOV AW, +5 ;resultis 5 or 00005H

Syntax:

Unary Plus: + operand
Unary Minus: - operand

Description: The unary operators '+ and -’ each take a single
operand and return a single value as the result. The '+ operator may
be applied to an absolute or a relocatable value and the result will be an
absolute or relocatable value. The -’ operator may only be applied to
absolute values. The result will be the 2's complement of the value.
These operators may be thought of as being the binary operators '+
and -’ with a lefthand operand of 0. Examples:

MOV AW, -2 ;resultis -2 or OFFFEH
MOV AW, + WMEM ;result is memory expression

Binary Addition,
Subtraction

Expressions 5-11

Syntax:

Addition: operandl + operand?2
Subtraction: operandl - operand2

Description: The binary operators '+ and ’-’ each take two

operands and return a single value as the result. If memory addresses
are used, the offset from the segment base is the value used as an
operand. The types of operands that are allowed and the types of the
results are shown in the following table.

The shorthand words in the table mean the following:

ABSNUM = absolute number, constant
RELOCNUM = relocatable number (OFFSET, external ABS, SEG)

ADDR = memory address, possibly relocatable or external

Table 5-1. Binary Plus and Minus Results

Operand 1 Operator Operand 2 Result
ABSNUM +, - ABSNUM ABSNUM
RELOCNUM +, - ABSNUM RELOCNUM
ABSNUM + RELOCNUM RELOCNUM
ADDR +, - ABSNUM ADDR
ABSNUM + ADDR ADDR
ADDR - ADDR ABSNUM

EXTRN EXABS: ABS
MEMSTART DB ?
WMEM DW 2
MEMEND DW ?

MOV AW, 5 + 15

MOV AW, 3 - 12
MOV AW, WMEM + 5

5-12 Expressions

Note that ADDR-ADDR is only valid if both memory addresses are
either absolute or relocatable. They must also belong to the same
segment so that their offsets are relative to the same base value. This
allows the result to be absolute. Neither address may be of an external
reference, since its offset is not known at assembly time. Examples:

;declared labels - variables

;result is 20 or 00014H
;result is -9 or OFFF7H
;result is offset of WMEM + 5

MOV AW, 4 + EXABS ;result is external const + 4

MOV AW, MEMEND - MEMSTART

;result is number of bytes

;between MEMSTART and MEMEND

[] Square Brackets

Syntax:
address [data_or_reg |

Description: Square brackets give base and/or index attributes to an
address expression or create a new address expression. The square
brackets must occur in pairs. Such pairs cannot occur within angle
brackets. However, more than one pair of square brackets can oc

a single expression.

The contents of the brackets are very limited. The only valid register
names that can be used are BW, BP, IX, and IY. The first two, BW
and BP, are base registers and only one of the two can be present
within an entire expression. The IX and 1Y registers are index registers
and, like base registers, only one of these registers can be present
within an entire expression. It is valid to have both a base register and
an index register in an expression. It is also possible to place numeric
constants within the brackets.

The above items can appear singly within square brackets, as in:
mov AW, wmem[BW][IX][5]

It is also valid to replace '] [pairs with a '+’ sign, as in:
mov AW, wmem[BW+1X+5]

The only time a minus sign is valid within square brackets is to subtract
a constant, as in:

mov AW, wmem[BW+IX-5]

Expressions 5-13

. (Dot operator)

5-14 Expressions

The constant expression part of the square brackets modifies the offset
value of any memory value that is also part of the expression. The base
and index registers are used to denote indirect addressing as part of an
expression. The contents of the indicated registers are added to any
memory expression offset in the expression to create a final memory
address.

A memory address is not required to be part of an expression which has
square brackets as part of itself. For example, take the following
expression:

mov AW, [BW][IX][5]

This expression represents a memory location that is 5 bytes past the
sum of the contents of the BW and IX registers at the moment of
execution for that instruction. The segment register used for this
instruction would be the DSO register. The SS register is used if the BP
base register is part of the expression. It is also valid to specify a
different segment register through the use of a segment override, such
as:

mov AW, DS1: [BW][IX][5]
mov AW, SEG1: [BW][IX][5]
mov AW, GRP1: [BW][IX][5]

Syntax:
address '.’ struc_field

Description: This operand accepts an address expression as its left
operand and a structure field as its right operand. The result of the
operation is an address expression whose offset is equal to the offset
attribute of the left operand plus the offset of the structure field within

its structure template (in bytes). The type of the resulting memory
expression is the type of the structure field. All other attributes are
derived from the left operand. This operator is convenient for
addressing fields within memory that contains one or more occurrences
of a given structure. For example, suppose a structure was defined like
this:

STRUCNAME STRUC
BYTEFLD DB 0
WORDFLD DW 5 DUP (3)
DT 3.14159
STRINGFL DB 'DEFAULT’
STRUCNAME ENDS

The offset of BYTEFLD, WORDFLD, and STRINGFL within this
structure template are 0,1, and 21, respectively. These structure field
names can be used to reference fields within a structure in memory, as
in:

DATABLOCK STRUCNAME<>
MOV AW, DATABLOCK.WORDFLD ; WORD type
MOV CL, DATABLOCK.BYTEFLD ; BYTE type

MOV IY, OFFSET DATABLOCK
MOV AW, [IY].WORDFLD ; indirectly referencing memory

It is not valid to use the dot operator immediately after a digit, due to
the possible confusion with a real number. Instead, the operator must
be separated from the digit by parenthesis, such as:

(DATABLOCK + 2).WORDFLD ; valid
DATABLOCK + 2.WORDFLD ; illegal
Multiplication,

Division, Modulo

Syntax:
Multiplication: absval * absval
Division: absval / absval
Modulo: absval MOD absval

Description: These three operators each take two absolute values as
operands and return a single absolute value. The '* operator
multiplies the two operands and returns the result. The '/ operator
divides the first operand by the second operand. The MOD operator
returns the value of the first operand modulo the second operand.
Modulo division discards the integer quotient and returns a value that is
only the remainder. For either straight division (/") or modulo

division, the righthand operand cannot have a value of 0 . Examples:

Expressions 5-15

MOV AW, 5*3 ;resultis 15 or 0000FH
MOV AW, (-2) *5 ;result is -10 or OFFF6H
MOV AW, 5/2 ;resultis 2

MOV AW, 13 MOD 3 ;resultis 1

SHL, SHR

Syntax:

absval SHL shiftvalue
absval SHR shiftvalue

Description: The SHL and SHR operators shift the first operand
bitwise by the value of the second operand. Both operands must be
absolute values; the result is also absolute. The SHL operator shifts
bits to the left and SHR shifts bits to the right. Bits that are shifted to
the left beyond the leftmost bit and bits that are shifted to the right
beyond the rightmost bit are lost. Bits with a value of 0 are shifted in
to fill. The sign bit of the 17-bit value can be modified as a result of a
shift operation, since it is possible to shift 1's into or out of the sign bit.
See the following figure for an example.

L et s e e I O B A e A

#

MOV AW, (—=1) SHR 3

#

0 o011 1111 1111 1111 = 3FFFH in AW

—® Shifted 3 bits to the right

Figure 5-1. SHL Operator

Notice that the sign bit (the leftmost bit) of the argument in the above
figure was shifted in when the shift right occurred.

Some other shifted values:

5-16 Expressions

MOV AW, 5 SHL 2 ;resultis 20 or 00014H
MOV AW, 13 SHR 2 ;resultis 3

MOV AW, 44 SHL 11 ;resultis 24576 or 06000H
MOV AW, (-54) SHR 3 ;result is 16377 or 3FF9H

HIGH, LOW

Syntax:

HIGH operand
LOW operand

Description: These operators take either an absolute value or
relocatable memory expression as an argument and return a
BYTE-sized value of the same type. HIGH returns the high byte of the
operand, LOW returns the low byte.

If the operand is a memory expression, it cannot contain index or base
register names. The value returned will be the HIGH or LOW byte of
the memory location offset. Since this value is not always known
during assembly, it may be relocatable and therefore set by the loader.

Attributes:
relocation type - high or low

Examples:

MOV AL, HIGH 01234H ;result is 012H

MOV AL, LOW 01234H ;result is 034H

MOV AH, HIGH WMEM ;result is high byte of offset
MOV AL, LOW WMEM ;result is low byte of offset

EXTRN EXTABS:ABS

MOV AL, HIGH EXTABS ;result is high byte of
;external number

Expressions 5-17

The following identities apply to HIGH and LOW.

High (High X) = OH
Low (Low X) = Low X
High (Low X) = OH
Low (High X) = High X

5-18 Expressions

Logical Operators The logical operators return values that are the result of comparing
operands. (NOT can be seen as an exception.) AND, OR, and XOR
compare the bits of their operands while EQ, NE, ...,GE all compare
the values of their operands.

AND, OR, XOR

Syntax:

absval AND absval
absval OR absval
absval XOR absval

Description: These operators each take two absolute values as
operands and return a single absolute value. If n is used to identify any
given bit of the result, bit n has its value set differently depending on
the operator used. The following rules apply:

m The AND operator will set a bit n of the resultto 1 if bit n of
both operands is a 1; otherwise bit n is set to 0.

m The OR operator will set bit n of the resultto 1 if bit n of
either operand is a 1; otherwise bit n is set to O.

m The XOR operator will set bit n of the resultto 1 if bit n of
each operand is different; bit n is set to O if both bits are the
same.

The operations are performed on full 17-bit values. Examples:

MOV AW, 035H AND 3145H ;resultis 5
MOV AW, 035H OR 3145H ;resultis 3175H
MOV AW, 035H XOR 3145H ;resultis 3170H

Expressions 5-19

NOT

MOV AW, NOT 1 ;result is OFFFEH
MOV AW, NOT 55 ;result is OFFC8H

EQ, NE, LT,
LE, GT, GE

5-20 Expressions

Syntax:
NOT absval

Description: The NOT operator takes an absolute value as its
operand and returns an absolute value that is the one’s complement of
the operand. The one’s complement is derived by toggling the bits of
the operand. If bit n of the operand is 1, then bit n of the result will be
0. Similarly, if bit n of the operand is 0, bit n of the result will be 1. The
operation is performed on full 17-bit values. Examples:

Syntax:

equal: operandl EQ operand2

not equal: operand1l NE operand2
less than: operandl LT operand2
less than or equal: operandl LE
operand2

greater than: operand1l GT operand2
greater than or equal: operandl GE
operand2

Description: These operators each compare their operands and

return a value that depends upon the result of the comparison. The
result will be 0 if the comparison is false and the value will be

OFFFFH if the comparison is true. The operands must both be absolute
numbers, both be memory expressions, or both be segment base values.
Memory expressions may not contain base or index register names,

may not refer to externals, and must reside in the same segment. Itis
the offset portion of the memory addresses that are compared. Offsets
and absolute values are compared using 17-bit arithmetic.

Examples:

MOV AW, 15 GT 3 ;result is OFFFFH

MOV AW, WMEM EQ BMEM ;result is 00000H

MOV AW, SEG WMEM EQ A ;result depends upon whether
;WMEM lies within segment A

Expressions 5-21

Memory Operators

5-22 Expressions

SHORT

THIS

Syntax:
SHORT label

Description: The SHORT operator takes a label as its operand. The
SHORT operator assures the assembler that the label will be within 127
bytes of the current location counter. SHORT is mainly used with the
BR instruction, where a forward reference to a label can result in either
a one- byte or two-byte displacement. The SHORT operator informs
the assembler that a one-byte displacement may be used (which only
requires one byte of storage) where otherwise a two-byte displacement
would result in extra object code size. It is up to you to ensure that the
label is within 127 bytes because an error occurs if it is not. Example:

BR SHORT FWDLAB

Syntax:
THIS type

Description: The THIS operator takes a type name as an operator
and returns a memory reference of the given type. The memory
referenced will be for the current location and segment. The length of
the memory will be 1. The valid types for the operand are BYTE,
WORD, DWORD, FDWORD, QWORD, FQWORD, TBYTE, NEAR,
and FAR. The result of this operator may be used as either the
right-hand side of an EQU (in which case it acts the same as a LABEL
directive) or as a memory reference in an instruction (which would be a
rare use). Note that THIS NEAR is the same as '$’. (Dollar sign is the
special character used to represent the location counter.) Also, use of
FDWORD or FQWORD could result in errors if the current segment is
BYTE or INPAGE aligned, if the current location counter is not on a
word boundary, or if the assembler is not in the 72291 mode.

Attributes:

segment- current segment

offset - current location counter

type - as defined

relocation type - depends upon current segment
segment- current segment if defining variable
PS-assume current PS assume value if defining label

Examples:

LAB2 EQU THIS FAR ;create FAR label

LAB1: NOP

DATAW EQU THIS WORD ;allow word accesses to bytes
DATABL DB 1

DATABH DB 2

PTR

Syntax:
type PTR operand

Description: The PTR operator is used to either set or change the
type of its operand. The valid types that may be used are BYTE,
WORD, DWORD, FDWORD, QWORD, FQWORD, TBYTE, NEAR,

and FAR. The resulting expression will behave as a variable, label,
memory expression, or register expression of the given type. Valid
operands depend upon the type used. For instance, it is not possible to
change the type of a register expression to a NEAR or FAR label.

Attributes:

type - as defined

Expressions 5-23

MOV AW, WORD PTR BMEM

BR NEAR PTR LABFAR
MOV AL, BYTE PTR [BP]
;memory reference

MOV DS0: WORD PTR 10, AW

Segment or Group

5-24 Expressions

Override

Examples:

;access as word
;use far label as NEAR
;typing an anonymous

;absolute offset typing

Syntax:
operandl : operand2

Description: The segment override changes the segment attribute of
the second operand to that of the first operand for the duration of the
instruction statement. The first operand may be

m one of the segment registers (DSO, DS1, SS, or PS)
m the name of a segment

m the name of a group

The second operand must be a variable, label, memory expression, or
register expression. If the first operand is a segment register, then the
second operand’'s segment addressability attribute is changed to that of
the segment register and no further testing is done. If the first operand
is a segment name or group name, then the ASSUME values are
checked to see if a segment register has been assumed to point to the
segment or to the group. If one is found, the segment relocation and
addressability attributes are changed to that of the matching segment
register. If one is not found, it is an error. Remember, segment
overrides only affect the current instruction; the ASSUME directive
should be used for more global overrides.

The group override is useful when referring to variables or labels that
belong to segments in the group. If no override is used, all offsets are
relative to the base of the segment that the memory belongs to. The
group override must be used to make the offset relative to the base of
the group, which is probably a different value.

Attributes:

segment relocation set to value of group or segment name used
segment addressability set for variables

PS-assume set for labels if group or segment name used

Examples:

MOV AW, DS0: WMEM ;offset from DSO0, base of segment

;that WMEM belongs to

MOV AW, SEG1: WMEM ;offset from base of SEG1, or group
;that SEG1 belongs to, depending upon

;order of ASSUMES

MOV AW, GRP1: WMEM ;offset from base of GRP1
BR FARLAB ;offset from base of segment
BR GRP1: FARLAB ;offset from base of GRP1

OFFSET

Syntax:

OFFSET variable
OFFSET label

Description: The OFFSET operatorkes a variable, label, or

memory expression as its operand and returns the offset value from
some base as the result. If no segment override appears in the operand,
the offset will be from the beginning of the segment. If a group name

is used as a segment override, then the offset will be from the group
base. Remember that no checking is done againdS3B&IME values

for the registers. To get the offset from a group, an explicit group
override must be used. In either case, the result is an immediate value,
not a memory address. The value may be relocatable, depending upon
whether the operand resides in a combinable segment or in a group.
The result of an OFFSET operator occupies 2 bytes if it is a relocatable
value. Otherwise, the number of bytes depends upon the value of the
offset. Example:

MOV IX, OFFSET WMEM ;offset from segment base
MOV IX, OFFSET GRP1:WMEM ;offset from group base

Expressions 5-25

Note

5-26 Expressions

SEG

Syntax:

SEG variable
SEG label

Description: The SEG operator takes a variable, label, or memory
expression as its operand and returns a segment base as its result. The
base may be relocatable, depending upon the type of the segment or
group that the operand belongs to or on any overrides that have been
applied to the operand. The memory expression may not contain index
or base register names. Externals are allowed in the operand. The size
of a relocatable segment base is always 2 bytes unless the segment
definition used the AT keyword. In that instance, the number of bytes
may be 1 or 2, depending upon the segment location.

The SEG operator should not be used with operands that belong to a
group. Instead, a segment register should be initialized to the group
base so that all memory addresses will be offset from that base.
Otherwise, the group is not being used correctly.

Note that the SEG operator may also be used in the ASSUME
directive. See the reference about the ASSUME directive in the chapter
titled "Assembler Directives" for more discussion on how SEG may be
used with ASSUME.

The SEG operator will also accept a segment name or a group hame as
an operator. Since segment names and group names do not have
segment attributes, SEG with a segment or group name does not
perform any function. The assembler ignores the SEG operator and
acts as if only the segment or group name were used.

Attributes:
relocation type - base

Example:

MOV AW, SEG WMEM,; load base value into AW

MOV DSO0, AW; initialize DSO register

TYPE

Syntax:

TYPE variable
TYPE label

Description: The TYPE operator takes a variable, label, structure
name, or memory expression as its operand. TYPE returns an absolute
value that represents the type of the operand.

For most operands, the result is equal to the number of bytes alloc
by a single occurrence of the operand. This value could then be u
for incrementing a pointer into a data array, for example. The following
are the returned values for variables or labels of a given type:
m BYTE -returns 1
m WORD - returns 2
= DWORD /FDWORD - returns 4
m QWORD /FQWORD - returns 8
m TBYTE - returns 10
m NEAR - returns -1 in two’s complement form

m FAR -returns -2 in two’s complement form

m record - returns number of bytes described by an occurrence
of record

m structure - returns the sum of the sizes of the directives within
the structure

Expressions 5-27

Examples:

MOV AW, TYPE WMEM result is 2

MOV AW, TYPE LABFAR ;resultis -2 in two's
;complement form (FFFEH)

REC1 RECORD F1:3, F2:5 ;record definition with
:RECORD directive

R1 REC1 <> ;storage allocation
;using record template
MOV AW, TYPE REC1 ;resultis 1
MOV AW, TYPE R1 resultis 1
ST1 STRUC ;structure template
;definition
DB ?
DW ?
ST1 ENDS
SU1 ST1 <> ;storage allocation using
;structure template
MOV AW, TYPE ST1 ;result is 3
MOV AW, TYPE SU1 ;result is 3
LENGTH
Syntax:

LENGTH variable

Description: The LENGTH operator takes a variable as its operand.
It returns an absolute value equal to the number of units that were
defined with the variable. A unit may include several bytes allocated
by a single occurrence of a type, but it still counts as just one unit. For
instance, a single word allocation occupies two bytes, but from the
point of view of LENGTH, it is one unit (in this case one word). The
length of external symbols is always defined to be 1, regardless of how
it is defined in a different file. LENGTH does not operate on structure
or record templates. Examples:

5-28 Expressions

L1DB 1
MOV AW, LENGTH L1 ;resultin AW is 1

L2 DW 1,2
MOV AW, LENGTH L2 ;result in AW is 2

L3 DB 5 DUP (2)
MOV AW, LENGTHL3 resultin AW is 5

L4 DW 1, 4 DUP (?)
MOV AW, LENGTHL4 resultin AW is 5

REC1 RECORD F1:3, F2:5 ;record template definition

R1 REC1 <> ;variable declared using record
;template

MOV AW, LENGTH R1 result in AW is 1

R2 REC1 5 DUP (<>) ;another variable with record
;template
MOV AW, LENGTH R2 ;result in AW is 5

ST1 STRUC ;structure template def.
DB ?
DW ?

ST1 ENDS

SU1 ST1 <> ;variable declared

;using structure template
MOV AW, LENGTH SU1 result in AW is 1

SIZE

Syntax:
SIZE variable

Description: The SIZE operator takes a variable, structure name,
structure field, or record name as its operand and returns an absolute
value equal to the total number of bytes defined by the operand. The
size is generally equal to the length of the operand multiplied by the
operand’s type. Examples:

Expressions 5-29

L1DB 1

MOV AW, SIZE L1 ;resultin AW is 1
L2 DW 1,2
MOV AW, SIZE L2 ;result in AW is 4

L3 DB 5 DUP (2)
MOV AW, SIZE L3 ;result in AW is 5

L4 DW 1, 4 DUP (?)
MOV AW, SIZE L4 ;result in AW is 10

REC1 RECORD F1:3, F2:5 ;record template definition

R1 REC1 <> ;storage allocation using record
; template

MOV AW, SIZE R1 ;result placed in AW is 1
MOV AW, SIZE REC1 ;result placed in AW is 1
ST1 STRUC ;structure template def.

DB ?

STF1 DW ?
ST1 ENDS
SU1 ST1 <> ;variable declared using

;structure template
MOV AW, SIZE ST1 ;result placed in AW is 3
MOV AW, SIZE SU1 ;result placed in AW is 3
MOV AW, SIZE STF1 ;result in AW is 2

5-30 Expressions

Record Operators Record operators are used with record structure templates and record
allocations to isolate bit fields of records and to find the actual number
of bits in a record.

MASK

Syntax:
MASK recfield

Description: The MASK operator takes a record field as its opera

It returns an absolute number that will mask all the bits in a record
except for those that belong to the record field operand. A mask is
number that will have 1’s for all bits within the record field and havel
0’s for all other bits. It can be either a byte- or word-sized value,
depending upon the size of the record and the positioning of the field
within the record.

The MASK operator is useful when combined with the shift value (see
Expression Operands in this chapter) for a record field. Together, they
allow you to extract the value of a field. First, mask the record to
isolate the bits that belong to the field. Then, shift the field so that its
least significant bit is in the Oth bit position. The value of the result

will now be equal to the value in the record field. Example:

R1 RECORD F1:5, F2:2
Ul R1 <14,3>

MOV AL,U1 ;load record into register
AND AL,MASK F1 ;mask out extra bits with MASK
;operator and AND command

MOV CL, F1 ;put field shift value
;in register
SHR AL,CL ;shift field to lowest bit

;position - AL now contains
;value of record field

WIDTH

Syntax:
WIDTH operand

Expressions 5-31

Description: The WIDTH operator takes a record name or record

field as its operand. It returns an absolute number that is the number of
bits defined in the operand. For a record name, the value will be the
sum of the bits in the record fields, and will not include unused bits.
For a record field, the value is the number of bits within that particular
field. Examples:

R1 RECORD F1:5, F2:2
MOV AW, WIDTH R1 ;resultin AW is 7
MOV AW, WIDTH F1 ;resultin AWis 5

5-32 Expressions

Segment and
Group Operators

SMOFFSET

A SEGMENT BYTE

These operators return values that are only known at link-time. They
generally refer to the size or address of segments and groups within a
program.

Syntax:
SMOFFSET segmentname

Description: The SMOFFSET operator returns a value that is the
offset of the indicated segment from the next-lowest paragraph
boundary. This value is the same as the last hex-digit of the base
address for the segment. If the segment is paragraph or page alig
is at an absolute location, then this value will be 0. Otherwise, this
value is a relocatable value that will be known at final link time. The
value will be range from 0 to 15, but will be word-sized if it is
relocatable. Example:

; LOAD PARAGRAPH VALUE FOR SEGMENT

MOV AW, A

; LOAD OFFSET OF SEGMENT FROM NEAREST
; PARAGRAPH. TOGETHER, THEY FORM THE
; START LOCATION FOR THE SEGMENT

MOV BW, SMOFFSET A

GROFFSET

Syntax:
groupname GROFFSET segmentname

Description: The GROFFSET operator returns the offset of a
segment’s base from the start of a group that it belongs to. The
segment must be defined as part of the group or this operator will result
in an error. Since the offset within the group is not known until link
time, this operator will result in a word-sized relocatable value. The
linker will generate a value from 0 to OFFFFH at link time, which will

the offset of the segment’s base from the start of the group. Example:

Expressions 5-33

5-34 Expressions

SMSIZE

GRGRP GROUP A,B

; POINT DSO AT GROUP
MOV AW, GRGRP
MOV DSO, AW

; SET UP POINTER TO START

; OF SEGMENT SO LOCATIONS

; WITHIN THE SEGMENT CAN BE

; REFERENCED FROM THE GROUP
; SELECTOR

MOV IX, GRGRP GROFFSET B

Syntax:
SMSIZE segmentname

Description: The SMSIZE operator returns a word-sized value that
is the size of the indicated segment. Since this size is not known
(usually) at assembly time, this operator generates a word-sized
relocatable value. The linker will generate a value from 0 to OFFFFH
at link time. Note that the linker will return the value 0 if the group size
is 64k.

Example:
A SEGMENT PUBLIC

; LOAD SEGMENT SIZE.

; COULD BE USED TO MAKE

; SURE INDEX VALUES DON'T

; GO OUTSIDE OF A SEGMENT.
MOV AW, SMSIZE A

GRSIZE

Syntax:
GRSIZE groupname

Description: The GRSIZE operator returns a word-sized value that

is the size of the indicated group. Since this size is not known at
assembly time, this operator generates a word-sized relocatable value.
The linker will generate a value from 0 to OFFFFH at link time, which
will be the size of the group. Note that the linker will return the value

0 if the group size is 64k. Examples:

GRGRP GROUP AB .
MOV AW, GRSIZE GRGRP

Expressions 5-35

Operator
Precedence

5-36 Expressions

Complex expressions, or expressions that contain multiple operators,
are evaluated according to operator precedence rules:

m Expressions enclosed within parentheses are evaluated from

the innermost set of parenthesis to the outermost set. Within a
set of parenthesis, operators conform to the other precedence
rules below.

Excluding parentheses, sub-expressions that have operators of
higher precedence will be calculated before sub-expressions
with operators of lower precedence. For example, a multiply
operation is done before an addition operation.

Excluding parentheses, sub-expressions which have operators
of equal precedence (Operators that appear on the same line in
the table below are of equal precedence.) are evaluated
left-to-right. Left-to-right evaluation means that if two

operators of equal precedence appear in the same expression,
the operator which is closer to the leftmost end of the
expression will be evaluated before an operator closer to the
rightmost end. For instance, in the expression’'6* 5/3 the
order of evaluation is to multiply 6 by 5 and then divide by 3.
The result is 10.

The ranking of operators from higher to lower precedence is given in
the following table.

Table 5-2. Operator Precedence

Precedence

Operators

Higher

Lower

0, [], <>, .,LENGTH, SIZE, WIDTH, MASK , SMOFFSET, SMSIZE
GROFFSET, GRSIZE

PTR, OFFSET, SEG, TYPE, THIS, Segment Override
HIGH, LOW

*, [, MOD, SHR, SHL

Unary +, -

Binary +, -

EQ, NE, LT, LE, GT, GE

NOT

AND

OR, XOR

SHORT

Expressions 5-37

Notes

5-38 Expressions

Instructions and Operands

Introduction

This chapter, in the early part, thoroughly discusses the operand field
of the general assembly language statement syntax found in the
"Assembler Statements" section of the chapter titled "Assembler
Syntax." (No need to refer back to it. The syntax has been repeated at
the beginning of the next section.)The latter part of this chapter
contains a listing that specifies the recognized instructions for the
asv20/asv33 assembler and also the acceptable operand combina

for each instruction.

Operand

You may recall that the general syntax of an assembler statement is as
follows:

[label :] [prefix] keyword [operand [,...]] [;comment]

Accepted Operands

This section concentrates on the operand field of this syntax.

A list of assembly language instructions and the operand combinations
acceptable for each instruction is at the end of this chapter. Each
allowable combination has a limited range of values. Any other
combination results in an error condition.

Compatible Types

In most instances, if an instruction takes more than one operand, the
operands must be of the same type. For example, it is only possible to
move a WORD-sized value into a WORD destination. A mismatch
error occurs if an instruction attempts to move a WORD into a BYTE.

Instructions and Operands 6-1

It is possible, however, to move a BYTE-sized immediate value into a
WORD-sized destination. The immediate is either stored as a WORD
or it is sign-extended during execution.

Some instructions allow operands to be of different types. It is best to
check the list of instructions at the end of the chapter for allowable
operand combinations.

Required Typing

Many instructions do require that the memory operand be typed.
Instructions that take a single operand generate different object code
depending upon the type of the operand. Or, perhaps the type of one
operand does not restrict the valid type of the other operand. The
assembler cannot decide what object code to output in these instances.
The following instructions demonstrate some unacceptable operand
combinations:

INC [BW] ;generate byte or word instruction?
ESC 5,[BW] ;5 doesn't restrict memory
MOV [BW], 2 ;2 fits in a byte or word storage

6-2 Instructions and Operands

The INC instruction accepts both BYTE and WORD memory
operands. In the above example, the assembler could not decide which
instruction to generate.

The ESC instruction also accepts BYTE and WORD memory
operands. The immediate value 5, in the example above, does not help
limit the type of the memory operand since the value is independent of
the memory type.

For the MOV instruction above, the immediate value 2 is small enough
to fit in either a BYTE or a WORD. Again, the immediate operand
does not restrict the type sufficiently.

When in doubt, type these ambiguous expressions to avoid possible
error conditions.
Anonymous References

Most instructions are able to accept operands that do not have type
information—references known as anonymous memory references.
These references do not have a variable or any type information

associated with them, so the assembler must use other knowledge to

guess the type. The assembler may type the anonymous operand to be
the same as another operand in the instruction, or not require a type at
all. The following examples are of typing the same as another operand:

MOV AW, [BW] ;WORD since AW is a WORD-sized register
MOV [BW], AL ;BYTE since AL is a BYTE-sized register
MOV [BW], 1000 ;WORD since 1000 can't be stored in BYTE

Operand Positioning

Immediate Values

Assumed Type With Register

The assembler can easily guess the type of an anonymous reference if
the other operand is an V20 register. Notice in the above example when
AW and AL were used. Another example of an instruction not needing

a type (since it handles all memory operands the same) is an 8087
floating point instruction. Example:

FLDCW [BW]

If an instruction takes a single operand, the operand position (other

than it must be in the proper place) is not critical. Instructions which
accept two operands generally treat the first operand as the destination
operand and the second operand as the source operand. The movement
of data is then from the second operand into the first. The instruction

MOV AW, BW

takes the contents of the BW register and places it in the AW register.
There are exceptions. Some string instructions use the first operand as
the source operand and the second operand as the destination operand.
Check the usage of the operands when in doubt. The instruction list at
the end of this chapter —and in tiNEC 70116 User’s Manuat

includes information on data movement between operands.

Immediate values are operands in many assembly language
instructions. In most cases, the immediate value is a source operand.
This value is stored directly in the destination operand or used to
modify a value already stored elsewhere, say in a register or memory
location.

Instructions and Operands 6-3

Registers

6-4 Instructions and Operands

Immediate values are not always numbers. Immediate values are also
generated in many non-obvious ways as shown in the chapter titled
"Expressions."

Range of Immediate Values

Immediate values can be absolute, relocatable, or external numbers.
The size of the value is determined by the instruction used, by the value
itself, and by what type is assumed for it.

An absolute immediate may range anywhere from -65535 to 65535
depending upon the instruction and the type of the operand. The BRK
(interrupt) instruction, for instance, can only take a value from O to
255 since that is the range of interrupt values for the V20. A variable of
type BYTE may take a value from -255 to 255. A variable of type
WORD may take a value from -65535 to 65535.

A relocatable or external immediate is always assumed to be a 16-bit
value unless modified with a HIGH or LOW operator.

A very common operand is a processor register. A processor register is
a memory store that is internal to the V20, V25, and V33 processors,
and the 8087 or 72291 co-processors. Internal registers can be source
operands or destination operands for data. Some registers have special
tasks which restrict their uses in programs. Since some instructions
may indirectly use or modify these restricted registers, take care their
contents are not accidentally modified or misused.

The figure below shows the general purpose and special registers for
the V-Series processor. Following the figure is a more detailed
description of the various processor registers.

DATA REGISTERS

7 07 0
AH (HIGH BYTE OF AW) AL (LOW BYTE OF AW)
BH (HIGH BYTE OF BW) BL (LOW BYTE OF BW)
CH (HIGH BYTE OF CW) CL (LOW BYTE OF CW)
DH (HIGH BYTE OF DW) DL (LOW BYTE OF DW)

POINTER AND INDEX REGISTERS
15

SP (STACK POINTER)

BP (BASE POINTER)

IX (SOURCE INDEX)

Y (DESTINATION INDEX)

SEGMENT REGISTERS

PS (CODE)

DSO0 (DATA)

Figure 6-1. V20/25/33 Registers

Instructions and Operands 6-5

6-6 Instructions and Operands

16-bit Registers AW, BW, CW, DW, 1Y, IX, SP, BP

There are eight 16-bit (WORD-sized) general purpose registers located
on the V20, V25, and V33 processors referenced by the unique register
names AW, BW, CW, DW, IY, IX, BP and SP. AW, BW, CW, and

DW are general purpose data registers. For most instructions that allow
a register as an operand, these four registers are used. lY, IX, BW and
BP are the index and base registers.

Some instructions explicitly use certain registers. The CW register, for
instance, is used to control looping. Many string instructions use the IX
as a source pointer and lY as a destination pointer. The SP register
points to the top of stack and is modified whenever CALLs, PUSHS,
or POPs occur. Data loss can occur through a side effect of these
explicit usages. Be careful to protect the contents of these registers so
they are not accidentally modified through the use of an instruction.

8-bit Registers AL, AH, BL, BH, CL, CH, DL, DH

There are also eight 8-bit (BYTE-sized) registers. The unique names
given to them are AL, AH, BL, BH, CL, CH, DL, and DH. These
registers are not separate registers; instead they are the
byte-addressable upper and lower halves of the four 16-bit
general-purpose data registers (AW, BW, CW, and DW). AW, for
instance, is equivalent to AL+AH. (Not the value, but the register.)

The 'L’ in AL means the low byte of AW and the 'H’ in AH means the
high byte AW. If you refer to AL, the assembler understands that you
mean the low byte of AW. If you refer to AW, the assembler
understands that you mean the entire 16 bits of AW.

You may load data into these registers either as a single 16-bit quantity
or as two 8-bit quantities. The resulting value in the register is the same.

Segment Registers PS, DSO, SS, DS1

V-Series memory addresses are generated by offsetting from segment
registers. To be able to address a particular location in memory, that
address must be contained in one of the four, currently active physical
segments. Each segment has a maximum size of 64K and each has a
particular register that contains the base address (lowest memory
location) of the segment. Each segment has a different purpose:

m Executable code (program code) is located in the Code
segment and is addressable through the PS (Code Segment)
register.

m Data is most often located in the Data segment (although it
can be in any of the four segments) and is addressed through
the DSO (Data Segment) register.

m The program stack is located in the Stack segment and is
addressed through the SS (Stack Segment) register.

m Data often is located in the Extra segment and is addressed via
the DS1 (Extra Segment) register.

Memory Addressing A memory address is a 20-bit value
—allowing the V20, V25, and V33 to address 1 megabyte of
memory— that is calculated from the segment base address locate
one of the segment registers, and an offset supplied either by the PC
(instruction pointer), or by operands contained in the instruction itself.
To calculate the memory address, the 16-bit value in a given segment
register is first shifted to the left 4 bits. Then the offset value (either a
16-bit or 8-hit value) is added to the shifted value to generate the 20-bit
address necessary to access memory.

Segment Register Use The four segment registers have restricted
use. The only assembly instructions that may reference these registers
as operands are the MOV, PUSH, and POP instructions.

Some Assembler Directives also use the register names as part of their
syntax, but this use does not cause object code to be generated.

Other instructions indirectly reference the segment registers. CALLs
and BRs, for example, change the PS register if the branch takes
execution out of the current segment. Finally, as noted in the chapter
titled "Expressions,” segment register names may be used as overrides
in memory operands.

8087 Floating Point Registers ST(0)...ST(7)

The 8087 co-processor has eight floating point stack registers. They
are referenced by the names ST(0), ST(1), ST(2), ST(3), ST(4), ST(5),

Instructions and Operands 6-7

Memory Expressions
and the MODRM Byte

MOV AW, WMEM
MOV AW, [BW][IX]

,memory reference
MOV AW, [BP].SFWORD

ST(6), and ST(7). ST(0) may be referenced as just ST without the
appended (0). These registers are only used with some 8087 floating
point instructions.

They are not directly accessible to the V20, V25, and V33 processors.
Instead, 8087 instructions make the contents of these registers
available in memory. The 8087 floating point stack registers are 80
bits in size and store their values in IEEE floating point format.

72291 Floating point Registers
FRO,..,FR7,FSO0,..,FS7,FLO,..,FL7,FCTW,FPTW,FSTW

The 72291 co-processor has 8 stack registers and 3 status registers.
The 8 stack registers, labeled FRO through FR7, are each 96 bits in size
when stored. The contents of each stack register can be either a short,
32-hit floating point value (FSO through FS7) or a long, 64-bit floating
point value (FLO through FL7). Itis invalid to mix types when
performing floating point operations. The three status registers

(FCTW, FPTW, and FSTW) store information about the current state

of the 72291 co-processor.

These registers are not directly accessible to the V33 processor.
Instead, 72291 instructions must be executed to make the contents of
these registers available in memory.

Memory expressions may be either simple memory references (using a
variable name by itself) or a complex expressions involving register
indirection or offsets within structures. A simple memory reference

will always take the type of the variable, so that type must either be
compatible with an instruction or it must be re-typed with the PTR
operator. Examples:

;simple variable
;indirect anonymous

;indirect anonymous memory

;reference with offset

MOV AW, WMEM[BP][IY]
MOV AW, STR1.SFWORD
MOV AW, WORD PTR DMEM

6-8 Instructions and Operands

;indirect memory reference
;structure field reference
;typed memory reference

Physical Address Calculation

The processor must generate a physical address for each memory
reference. The offset part of the address —the value which is added to

the shifted segment register address— may be coded into the
instruction in one of four ways:

m As a direct 16-bit offset.

m As an indirect offset through a base register, BW or BP,
optionally with an added (or subtracted) 8-bit or 16-bit
displacement.

m As an indirect offset through an index register, IX or 1Y,
optionally with an added (or subtracted) 8-bit or 16-bit
displacement.

m As an indirect offset through the sum of one base register and
one index register, optionally with an added (or subtracted)
8-bit or 16-bit displacement.

MODRM Byte

The information describing how the offset is derived is stored in the
object code in a special byte called the MODRM byte. This byte has
three fields:

1. The first field describes how many bytes are required to hold
the displacement portion of the address. This field can specify
that 0O, 1, or 2 bytes are required. If the value is a relocatable
or external value, two bytes are always required.

2. The second field contains a register code or part of the code
for the instruction; it is not relevant to this section.

3. The third field contains information describing what base and
index registers are used, if any, when generating the address.

The MODRM byte, along with any displacement value, determines the
offset of the memory address referenced in an instruction. Remember,
the value is just the offset of the memory address. The base from which
to offset must still be decided.

Instructions and Operands 6-9

Single Memory Expression per Instruction

Each memory expression is either a source or destination for the
instruction. Most instructions allow only a single memory expression,
since the MODRM byte can only describe one. Some string

instructions may have two memory expressions as operands, but these
instructions are special cases because the operands are only used to
check for segment addressability. Their offsets are not emitted as
object code. Instead, the IX and 1Y registers are used for addressing the
memory.

Segment
Addressability
and Overrides

Addressability
Checking

6-10 Instructions and Operands

The V20, V25, or V33 processor generates a memory address by
shifting the value from a segment register four bits to the left and then
adding an offset to the shifted value. A segment of memory, up to a
maximum of 64K bytes in size, is active only if one of the four
segment registers points to that particular piece of memory.

Note that the segment is a physical segment, a physical piece of
memory. These physical segments contain the logical segments of
your assembly language program that you identified through
SEGMENT/ENDS assembler directive pairs and other, similar means.

With the ASSUME assembler directive, you tell the assembler what
values to assume as the base locations of the currently active segments.
The ASSUME directive, then, lets you inform the assembler of the
relationship between the logical segments you have defined in the
program and the physical segments where they will eventually be
located.

During assembly, if the assembler encounters an instruction that
generates a memory reference, the assembler checks that reference
against the value in the ASSUME for that segment. The assembler
generates an error if the location in memory cannot be accessed
through that particular segment register. The exception to checking
against theASSUME is when a memory reference camtaa specific
segment override.

NEAR and SHORT label references are also checked for addressability
through the PS segment register to assure the assembler that the label

Default Segments

Segment Overrides

can be reached during execution. A segment or group name may be
used to override a label if the PS segment register value will be
different than that currently assumed.

Addressability checking is done so that the correct object code may be
generated. Unless a memory reference contains a segment override, the
instruction is not preceded by a segment override byte in the generated
object code. If no segment override byte is coded with the instruction,
then the instruction memory reference defaults to a certain segment,
depending upon the nature of the instruction.

If a memory reference does not specifically name a segment register
through a segment override, there are default segment registers for
memory references. The PS register is the default for instruction
fetching. The DSO segment register is the default for most memory data
references, unless BP (a base register) is specified for register
indirection. The SS segment register is the default if BP is used. S
string instructions default to the DS1 segment register with certain
operands.

Although there are default segment registers for references, you must
still use theASSUME directive to inform the assembler where the
bases of these segments are located; again, to specify the relationship
between logical and physical segments and to aid in addressability
checking.

An instruction may override these default registers by including a
segment override in the instruction operand. There are two reasons
why a segment override might be included in a memory reference:

m The memory location accessed in not located in the default
segment that would be used with a particular instruction.

m The memory location accessed is located within a group in a
segment. In this instance, the base of the group must be used
for memory access, not the base of the segment.

The override holds for the duration of the instruction only. Segment
overrides do not alter the contents of segment registers or the values
specified in ASSUME directives.

Instructions and Operands 6-11

Improper Uses of The section on default segments mentions that some string instructions
Segment Overrides default to the DS1 register. For these string instructions, you may not
use segment overrides for string operands. You may use segment
overrides, however, for the other memory operands in those
instructions.

These and other exceptions are noted in the listing of instructions at the
end of this chapter.

Segment Override When the assembler generates code for an instruction containing a
Byte segmentoverride, the assembler precedes the instruction code with a

segment override byte. (Whether it will appear or not is discussed
below.) This override byte, if present, causes a specific segment
register to be used to address that memory, regardless of which
segment the variable belongs to. In the segment override byte, specific
values are associated with specific registers. Examination of these
values can tell you which segment the override has been generated for.
The values are

PS - 2EH
DSO - 3EH
SS - 36H
DS1 - 26H

Overrides and If a segment name is used to override the default segment value for a
Checking Against memory reference, then the ASSUME value for the override segment is
ASSUME checked to see if it has been set to either

m the segment named in the override, or

m to a group that contains the segment named in the override.
If a group name is used, then the group name must match exactly.

Examples of segment overrides:

MOV AW, SEG1: WMEM ;matches segment or group
MOV AW, GRP1: WMEM ;matches group only

Segment Override A memory reference that includes a segment override generates a
Byte Generation segment override byte depending upon the outcome of the following
checks:

6-12 Instructions and Operands

1. If the memory is addressable by the default segment register
for that type of instruction and operand, then the instruction
needs no override byte.

2. Ifthis test fails, then the segment registers are checked in the
following order: DSO, DS1, PS, and SS. If the memory
expression is addressable by one of these registers, then an
override byte is generated for that register.

3. If no register match occurs, an error is generated. The checks
are specific. If the variable used in the memory expression
was an external defined outside of a segment, it can only
match an ASSUME segment that has been set to the SEG
value of the external or to a group that includes that segment.

Instructions and Operands 6-13

The V25 Family of
Processors

6-14 Instructions and Operands

The V25 Family of processors include the V25, V35, V25+, and V35+
microprocessors. These processors accept the same instruction set as
the V20 Family, but they contain some additional instructions and
peripherals. The biggest difference between the two families is that the
V25 processors have a 512-byte block of memory mapped into register
memory onboard the processors. This block of register memory
defaults to starting at OFFEOOH in memory, but can be placed
anywhere in memory by modifying the IDB register at the top of the
register block.

The 512-byte block is broken up into 2 256-byte pieces. The first
block contains 8 sets of register banks, numbered from 0 to 7. Each
register bank contains a full complement of the registers needed by the
V25 for normal operation. The existence of these register banks
allows the V25 to perform context switching with very little overhead.
This context switching is normally used during interrupts since the
switching of register banks means that the registers do not need to be
saved on stack during the processing of the interrupt. A new feature of
the V25 is the task switch. There are new instructions that allow a task
to switch register banks and begin processing at a new location in
memory. Again, the advantage of the register bank switch is that
registers do not need to be saved to stack and processing can be
resumed at the previous location by simply returning from the context
switch to the original register bank. While the various registers in the
current register bank can be accessed through the normal V20
instructions, the contents of other register banks can be accessed
through the use of memory addressing. There are 2 predefined
variables and 23 predefined structure field names that allow accessing
of these register values. The RAM and REGBANK variables refer to
the beginning of the register bank. These variables can be further
modifying by using the correct series of structure field names to
reference a specific register. For example, to get the contents of the IX
register in the 6th register bank, the following instruction could be used:

MOV AW, RAM.BK6.BIX

The structure field names are of type 'word’, so the typing of the
instruction operands is correct. Table 6-1 contains a list of the
predefined structure field names and the offset values associated with
these names.

The second piece of register memory contains the registers that control
the many peripherals that exist on the V25 processors. These registers,

Table 6-1. RAM Register Bank Structure Definitions

Name Type Length Offset Meaning

bkO word 16 0 Register Bank 0
bkl word 16 32 Register Bank 1
bk2 word 16 64 Register Bank 2
bk3 word 16 96 Register Bank 3
bk4 word 16 128 Register Bank 4
bk5 word 16 160 Register Bank 5
bk6 word 16 192 Register Bank 6
bk7 word 16 224 Register Bank 7
bvpc word 1 2 VPC register
bpsw word 1 4 PSW register
bpc word 1 6 PC register
bds0 word 1 8 DSO register
bss word 1 10 SSregister

bps word 1 12 PS register
bds1 word 1 14 DS1 register
biy word 1 16 IY register

bix word 1 18 IX register

bbp word 1 20 BP register

bsp word 1 22 SP register

bbw word 1 24 BW register
bdw word 1 26 DW register

Instructions and Operands 6-15

called the Special Function Registers or SFRs, can be written to or read
from the same as if they were memory locations. The V25 BTCLR
instruction may also be used to access these memory locations directly.
There are predefined mnemonics for each Special Function Register, so
the user can reference the SFR directly instead of using a numeric
value to reference a specific register. For example, to place a value in
the Timer Interrupt Request Control register, the following instruction
could be used:

MOV TMICO, 03H

Table 6-2 contains a list of the predefined SFR register names and the
offsets associated with these names.

The mnemonics for the RAM and SFR registers are valid only in the
V25 mode of the assembler and preclude the use of these names as
user-defined variables or codemacros in the assembly code. There are
also some other conditions upon their use, which are described in the
ASGNSFR and SETIDB sections of the "Assembler Directives"
chapter.

More information on the V25 processor can be obtained from the NEC
70320 User's Manual.

Table 6-2. RAM and Special Function Register Mapping

SFR Name Type Offset Meaning
RAM byte OEOO Register Bank
RAMBANK word OEOO Register Bank

PO byte OFO00 Port 0

PMO byte OF01 Port Mode 0

PMCO byte 0F02 Port Mode Control O
P1 byte OF08 Port 1

6-16 Instructions and Operands

Table 6-2. RAM and Special Func. Reg. Mapping (Cont'd)

SFR Name Type Offset Meaning

PM1 byte OF09 Port Mode 1

PMC1 byte OFOA Port Mode Control 1

P2 byte OF10 Port 2

PM2 byte OF11 Port Mode 2

PMC2 byte OF12 Port Mode Control 2

PT byte OF38 Port T

PMT byte OF3B Port Mode T

INTM byte O0F40 Interrupt Mode

EMSO byte OF44 External interrupt Macro Service 0
EMS1 byte OF45 External interrupt Macro Service 1
EMS2 byte OF46 External interrupt Macro Service 2
EXICO byte OF4C EXternal I/O request Control O
EXIC1 byte OF4D EXternal I/0 request Control 1
EXIC2 byte OF4E EXternal I/O request Control 2
RXBO byte 0F60 Receive Buffer 0

TXBO byte 0F62 Transmit Buffer O

SRMSO0 byte OF65 Serial Receive Macro Service 0
STMSO byte 0F66 Serial Transmit Macro Service 0
SCMO byte OF68 Serial Communication Mode 0
SCCO byte 0F69 Serial Communication Control O

Instructions and Operands 6-17

Table 6-2. RAM and Special Func. Reg. Mapping (Cont'd)

SFR Name Type
BRGO byte OF6A
SCEO0/SCS0 byte OF6B
SEICO byte OF6C
SRICO byte OF6D
STICO byte OF6E
RXB1 byte OF70
TXB1 byte OF72
SRMS1 byte OF75
STMS1 byte OF76
SCM1 byte OF78
SCC1 byte OF79
BRG1 byte OF7A
SCE1/SCSs1 byte OF7B
SEIC1 byte OF7C
SRIC1 byte OF7D
STIC1 byte OF7E
TMO word 0F80
TMOL byte OF80
TMOH byte OF81
MDO word 0F82

Offset Meaning
Baud Rate Generator reg 0

Serial Communication Error/Status 0
Serial Error 1/0 request Control O
Serial Receive I/O request Control 0
Serial Transmit I/O request Control O
Receive Buffer 1
Transmit Buffer 1

Serial Receive Macro Service 1
Serial Transmit Macro Service 1
Serial Communication Mode 1

Serial Communication Control 1
Baud Rate Generator reg 1

Serial Communication Error/Status 1
Serial Error 1/0 request Control 1
Serial Receive I/O request Control 1
Serial Transmit I/O request Control 1
Timer Register O
Timer Register 0 Low
Timer Register 0 High

Modulo register 0

6-18 Instructions and Operands

Table 6-2. RAM and Special Func. Reg. Mapping (Cont'd)

SFR Name Type Offset Meaning

MDOL byte O0F82 Modulo register 0 Low
MDOH byte OF83 Modulo register 0 High
™1 word OF88 Timer Register 1

TM1L byte OF88 Timer Register 1 Low
TM1H byte 0F89 Timer Register 1 High
MD1 word OF8A Modulo register 1

MD1L byte OF8A Modulo register 1 Low
MD1H byte OF8B Modulo register 1 High
TMCO byte 0F90 Timer Control O

TMC1 byte 0F91 Timer Control 1

TMMSO byte 0F94 Timer Macro Service 0
TMMS1 byte O0F95 Timer Macro Service 1
TMMS2 byte 0F96 Timer Macro Service 2
TMICO byte OF9C Timer I/O request Control O
TMIC1 byte OF9D Timer I/O request Control 1
TMIC2 byte OF9E Timer I/O request Control 2
DMACO byte OFAO DMA Control O

DMAMO byte OFA1 DMA Mode 0

DMAC1 byte OFA2 DMA Control 1

DMAM1 byte OFA3 DMA Mode 1

Instructions and Operands 6-19

Table 6-2. RAM and Special Func. Reg. Mapping (Cont'd)

SFR Name
DICO
DIC1
SAROL
SAROM
SAROH
DAROL
DAROM
DAROH
TCO
TCOL
TCOH
SAR1L
SARIM
SAR1H
DAR1L
DAR1IM
DAR1H
TC1
TC1L
TC1H

byte
byte
byte
byte
byte
byte
byte
byte
word
byte
byte
byte
byte
byte
byte
byte
byte
word
byte
byte

Type

OFAC
OFAD
OFCO
OFC1
OFC2
OFC4
OFC5
OFC6
OFC8
OFC8
OFC9
OFDO
OFD1
OFD2
OFD4
OFD5
OFD6
OFD8
OFD8
OFD9

Offset Meaning

DMA 1/O request Control 0

DMA I/O request Control 1

DMA source address 0 Low

DMA source address 0 Middle
DMA source address 0 High
DMA destination address O Low
DMA destination address 0 Middle
DMA destination address 0 High
DMA counter 0

DMA counter O Low

DMA counter 0 High

DMA source address 1 Low

DMA source address 1 Middle
DMA source address 1 High

DMA destination address 1 Low
DMA destinati