User’s Guide

HP B1493 8086/186 C Cross
Compiler

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose.Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damagesimection

with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1987-1993, 1995, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the prior
written consent of Hewlett-Packard Company. The information contained in
this document is subject to change without notice.

HP-UX 9.* and 10.0 for HP 9000 Series 700 and 800 computers are X/Open
Company UNIX 93 branded products.

MS-DOS is a U.S. registered trademark of MicrosaftjC

UNIX is a registered trademark in the United States and othertdes,
licensed exclusively through X/Open Company Limited.

Hewlett-Packard Company

P.O . Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure bythe U.S.
Government is subject to restrictions set forth in subparagraph (C) (1) (ii) of
the Rights in Technical Data and Computer Software Clause in DFARS
252.227-7013. Hewlett-Packard Company, 3000 Hanover Street, Palo Alto,
CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are set
forth in FAR 52.227-19(¢)(1,2).

About this edition

Many product updates and fixes do not require manual changes, and manual
corrections may be done without accompanying product changes. Therefore,
do not expect a one-to-one correspondence between product updates and
manual revisions.

Edition dates and the corresponding HP manual part numbers are as follows:

Edition 1
Edition 2
Edition 3
Edition 4
Edition 5

64904-90902, September 1988 E0988
64904-97000/97001, September 1989
64904-97002/97003, February 1990
B1493-97000, September 1993
B1493-97001, June 1995

B1493-97000 inarporates information which previously appeared in
64904-92007, 64904-97002, and 64904-97003.

Certification and Warranty

Certification and warranty information can be found at the end of this manual
on the pages before the back cover.

Features

The 8086/186 C Cross Compiler translate®Gree code int@086/186

assembly language which can be accepted by the HP B1449 assembler. This
compiler has special features to help meet the needs of the embedded system
designer:

ANSI standard C compiler and preprocessor.

Standard command line interface for compiéitipwith make and other
utilities.

Complete C support and math libraries from ANSI standard for
nonhosted environments.

In-line code generation and libraries tgpport the8087 floating point
COprocessor.

Three ways to embed assembly language in C source.

Named section specification in Gugce.

Choice of small or large memory model for function calls and static data
access.

Option to copy initial value data from ROM to RAM at load time.
Listings with generated assembly language, C source, and cross references.
Fully reentrant generated code.

Optimization for either time or space.

Constant folding, automatic register variable selection, and other global
optimizations.

Full symbol information and C source line numbers provided for
debugging, emulation, simulation, and analysis tools.

Compiler reliability ensurechrough object-oriented design and
exhaustive testing.

Contents

Part 1

Quick Start Guide

Getting Started

In this chapter 2
What you need to know 2

Parts of the compiler 3

Summary of compiler options 4

Summary of file extensions 6

To install the software 7

To create a simple C program 8

To compile a simple program 9

To generate an assembly listing 10

To select a memory model 11

Large Model 11

Small Model 11

Medium Model 12

Compact Model 12

An Example Using Large Memory Model 12
An Example Using Small Memory Model 16
An Example Using Compact Memory Model 19
An Example Using Medium Memory Model 22

Calling Run-Time and Support Libraries 25

To specify the target microprocessor 28
To compile for a debugger 29

To use a makefile 30

To modify environment libraries 33
About environment libraries 35

To view the on-line man pages 36

Vii

Contents

Part 2 Compiler Reference

2 C Compilation Overview

Execution Environment Dependencies

C Compilation Overview 41

Compilation Control Routine 44
C Preprocessor 44

C Compiler 44

Peephole Optimizer 44
Assembly Preprocessor 45
Assembler 45

Source File Lister 45

Librarian 45

Linker 46

ANSI| Extensionsto C 46

Assignment Compatility 46
Function Prototypes 47
Pragmas 48

Thevoid Type 49
Thevolatile Type Modifier 49
TheconstType Modifier 50
Translation Limits 51

Internal Data Representation

Arithmetic Data Types 54

Floating-Point Data Types 54
Characters 57

Derived Data Types 58
Pointers 59

Arrays 59
Structures 61
Unions 63

Enumeration Types 63

40

viii

Contents

Alignment Considerations 64
Alignment Examples 66

Compiler Generated Assembly Code

Assembly Language Symbol Names 69

Symbol Prefixes 69

Situations Where C Symbols are Modified 70
pragma ALIAS 71

Compiler Generated Symbols 71

Debug Directives 72

Stack Frame Management 72

Structure Results 77

Parameter Pasing 77

Pushing the Old Frame Pointer 78
Reserving Space For "C"Variables 78
Pushing Data Segment (DS) Register 78
Buffering Register Variable (SI) 79
Buffering 8087 Floating Point Register Variables 79
Accessing Parmeters 79

Accessing Locals 85

Using the Stack for Temporary Storage 85
Function Results 85

Function Exit 85

Register Usage 87

Register Variable SI 87
Passing Data 88
8087 Registers 89

Run-Time Error Checking 90
Memory Model Mismatch Checking 90

Using Assembly Language in the C Source File 92

pragma ASM
pragma END_ASM 93

Contents

__asm ("C_string") 97

pragma FUNCTION_ENTRY,

pragma FUNCTION_EXIT,

pragma FUNCTION_RETURN 99

Assembly Language in Macros 102

Assembly Language and the Small Memory Model 102

Optimizations

Universal Optimizations 106

Constant Folding 107

Expression Simplification 108

Operation Simplification 109

Optimizing Expressions in a Logical Context 110
Loop Construct Optimization 110

Switch Statement Optimization 111

Automatic Allocation of Register Variables 111
String Coalescing 111

The Optimize Option 114

Time vs. Space Optimization 115

Maintaining Debug Code 115

Peephole Optimization 116

Effect ofvolatile Data on Peephole Optimizations 118
Function Entryand Exit 118

What to do when optimization causes problems 119

Embedded Systems Considerations
Execution Environments 122

Common problems when compiling for an emulator 123

Loading supplied emulation configuration files 123
Using the "-d" option 123
Using embedded assembly code with small memory model 124

Memory Models 124

Small memory model 125
Large memory model 125

Medium Memory Model 126
Compact Memory Model 126

Segment Names 127

Segment name defaults 127
pragma SEGMENT 128
#pragma DS 131

RAM and ROM Considerations 131

No initialized RAM data 131

RAM data initialized from mass storage 132
RAM data initialized from ROM 133

Where to load constants 133

RAM and ROM for small memory model 133

Placement of External Declarations 134
The 'volatile" Type Modifier 136

Reentrant Code 138
Nonreentrant library routines 138

Implementing Functions as Interrupt Routines

pragma INTERRUPT 139
Loading the vector address 139

Eliminating I/O 140

Libraries
Run-Time Library Routines 144

Support Library and Math Library Routines

Library Routines Not Provided 145
Include (Header) Files 146

Contents

139

145

xXi

Contents

List of All Library Routines

148

Support Library and Math Library Descriptions

abs, labs 157

assert 158

atexit 159

bsearch 160

div, Idiv 162

exp 163

fclose, fflush 164

ferror, feof, clearerr 165
fgetpos, fseek, fsetpos, rewind, ftell
floor, ceil, fmod, frem, fabs 168
fopen, freopen 169

_fp_error 171

fread, fwrite 175

frexp, [dexp, modf 176

getc, getchar, fgetc 177
gets, fgets 178

isalpha, isuppeitslower,... 179
localeconv 181

log, logl0 186

malloc, free, realloc, calloc 187

166

mblen, mbstowcs, mbtowc, wecstombs, wetomb, strxfrm

memchr, memcmp, memcpy, memmove, memset

perror, errno 192
pow 193

printf, fprintf, sprintf 194
putc, putchar, fputc 199
puts, fputs 201

gsort 202

rand, srand 203
remove 204

scanf, fscanf, sscanf 205
setbuf, setvbuf 210
setjmp, longimp 212
setlocale 214

sin, cos, tan, asin, acos, atan, atan2
sinh, cosh, tanh 218
sqrt 219

strcat, strncat,. 220

216

191

156

189

Xii

Contents

strtod, atof 223

strtol, strtoul, atol, atoi 224

toupper, tolower, _toupper, _tolower 226
ungetc 227

va_list, va_start, va_arg, va_end 228
vprintf, viprintf, vsprintf 230

Environment-Dependent Routines

Program Setup 235

Differences Between "crt0" and "crt1" 235
The " _display_message()" Routine 236
Linking the Program Setup Routines 236
Emulator Configuration Files 236

Memory Map 238

Dynamic Allocation 241
Rewriting the "_getmem" Function 241

Input and Output 242

Environment-Dependent I/O Functions 242
clear_screen 243

close 244

exec_cmd 245

exit, exit 247

_getmem 248

initsimio 250

kill 251

Iseek 252
open 254
pos_cursor 257
read 258

sbhrk 260
unlink 261
write 263

Xiii

Contents

9

10

11

Compile-Time Errors
Errors 266
Warnings 274

Run-Time Errors
Floating-Point Error Messages

Debug Error Messages 279

Pointer Faults: 280
Range Faults: 280

Startup Error Messages 281

Run-Time Routines

Conversion Routines 286

F64 TO_F32size> 286
F32_TO_F64size> 286
F64 TO_UI3Z size> 287
UlI32_TO_F64size> 287
F64 TO_Ull& size> 288
Ull6_TO_F64size> 288
F64_TO_I3Z size> 289
I132_TO_F64&size> 289
F64 _TO_l16 size> 290
116 TO_F64size> 290
F32_TO_UI3Z size> 291
UlI32_TO_F3Zssize> 291
F32_TO_Ull& size> 292
Ul16_TO_F3Zsize> 292
F32_TO_I3Z size> 293
132_TO_F3xsize> 293
F32_TO_l1&size> 294
116 TO_F3Zsize> 294

278

Xiv

Floating Point Addition Routines

ADD_F64A<size>
ADD_F64B<size>
ADD_F64C< size>
INC_F64k size>

ADD_F32A<size>
ADD_F32B<size>
ADD_F32C size>
INC_F3Xsize>

Floating Point Subtraction Routines

SUB_F64A< size>
SUB_F64B:size>
SUB_F64G size>
DEC_F64 size>

SUB_F32A< size>
SUB_F32B:size>
SUB_F32G size>
DEC_F3Xsize>

Floating Point Multiplication Routines

MUL_F64A<size>
MUL_F64B< size>
MUL_F64C<size>
MUL_F32A<size>
MUL_F32B<size>
MUL_F32C<size>

Floating Point Division Routines

DIV_F64A<size>
DIV_F64B<size>
DIV_F64C<size>
DIV_F32A<size>
DIV_F32B<size>
DIV_F32C<size>

Floating Point Comparison Routines

EQUAL_F6& size>
EQUAL_F3Xsize>

LESS F64size>

Contents

295

295
296
296
297
297
298
298
299

300

300
300
301
301
302
302
303
303

304

304
304
305
305
306
306

307

307
307
308
308
309
309

310

310
311
311

Contents

12

13

LESS_F3%size> 312
LESS EQ_F6dsize> 312
LESS EQ_F32size> 313

Integer Multiplication Routines 314

MUL_I32A< size> 314
MUL_I32B<size> 314

Integer Division Routines 315

DIV_UI32A<size> 315
DIV_UI32B<size> 315
DIV_I32A<size> 316
DIV_I32B<size> 316

Integer Modulo Routines 317

MOD_UI32A< size> 317
MOD_UI32B<size> 317
MOD_I32A<size> 318
MOD_I32B< size> 318

Pointer and Range Fault Routines

FAULT_PTR<size> 319
FAULT_UI32<size> 320
FAULT_UIl16<size> 321
FAULT_UI8<size> 322
FAULT_I32<size> 323
FAULT_l16<size> 324
FAULT_I8<size> 325

Stack Frame Figures 326
Behavior of Math Library Functions

Comparison to C/64000

General C/64000 Options 338

AMNESIA 338
ASM_FILE 339
ASMB_SYM 339

319

DEBUG 339
EMIT_CODE 339
END_ORG 339
ENTRY 339
EXTENSIONS 339
FIXED_PARAMETERS
FULL_LIST 340
INIT_ZEROS 340
LINE_NUMBERS 340
LIST 340

LIST_ CODE 340
LIST OBJ 340
LONG_NAMES 340
OPTIMIZE 341
ORG 341

PAGE 341
RECURSIVE 341
SEPARATE 341
SHORT_ARITH 341
STANDARD 341
TITLE 341
UPPER_KEYS 342
USER_DEFINED 342
WARN 342
WIDTH 342

8086-Specific C/64000 Options

ALIGN 342

CS_EXTVARS, ES_EXTVARS, SS_EXTVARS
DS _EXTVARS, FAR_EXTVARS
FAR_LIBRARIES, SHORT_LIBRARIES

339

FAR_PROC, POINTER_SIZE

INT 343
INTERRUPT 343
SEPARATE_CONST

343

Contents

Xvil

Contents

14

15

16

17

Differences from HP 64818 Code
ASCII| Character Set
Stack Models

About this Version

Version 4.01 364

New memory models 364
Control of NOPs 364

C+ + style comments 364
Enhanced -M option 364
New usage message 364

Version 4.00 364

New product number 364
New commansdine options 365
New default environments 365
Re-organized manual 365

Version 3.50 365

Behavior of sprintf 365

Formatted printing 365

Streams 366

Void pointers 366

gsort function 366

Environment library modules 366
Improved performance 366

__asm ("C_string") function 366
Modifying function entry/exit code 367
New segment names 367

On-line Manual Pages

cc8086 (1) 370
cpp8086(1) 387
clst8086 (1) 392

344

Xviii

Part 1

Quick Start Guide

Part 1

Chapter 1: Getting Started

. B

Getting Started

How to get started using the compiler.

Chapter 1: Getting Started

In this chapter

This chapter contains the following information:

* An overview of the 8086/186 C compiler.

» Instructions for common tasks, such as cdimg a simpleprogram.

* Short examples so you can practice the common tasks.

What you need to know

Before you begin to learn how to use this compiler, you should biégam
with the following:

 The C progamming language.
* The Intel 8086 mimprocessor architecture.

» Basic host operating system commands (sudp,asv, Is, mkdir, rm, and
cd) and a text editor (such &9.

In addition, most sections in this manual assume that you are familiar with
8086/186 assembly language.

Chapter 1: Getting Started

Parts of the compiler

The "compiler”is really a set of programs:

e ¢c8086the C compilation control command.

* cpp8086 the C preprocessor.

+ cIst8086 the lister.

e ccom8086the C compiler.

» 0pt8086G the peephole optimizer.

The compiler makes use of several assembler programs:
» ap86 the assembler preprocessor.

* as86the assembler.

» 1d86, the linking loader.

To compile a C program, you can use justab®86C compilation control
command. Thec8086command W run the other programs as needed.

Chapter 1: Getting Started
Summary of compiler options

Summary of compiler options

- dir

-k linkcomfile
-K

-Ix

-L[i][X]

-m memoryModel

Invoke Basis Branch Analyzer pyeocessor.
Do not link programs (object files are generated).
Do not strip C-style comments in gmecessor.

Separate data into initialized and uninitialized
segments.

Definenameto the preprocessor.

Fast error checking (no code is generated).
Preprocess only (send result to standard output).
Generate code to use the 808pmcessor.
Generate run-time error checking code (overrid®s
Generate HP 64000 formaikj files.

Change include file search algorithm.

Link using thelinkcomfilelinker command file.
Enforce strict segment consistency.
Searchibx.awhen linking.

Generate ".O" listing(s). The option causes include
files to be expanded and included in the listing. Dhe

option causes cross-reference tables to be included in

the listings. (Overridden b, -E, and-P.)

Specify memory modegmall, compact medium, or
large.

-0 outfile

-O[G][T]

-p processor

-P

-S

-t c,name

Chapter 1: Getting Started
Summary of compiler options

Cause generation of more warning messages than a
generated by default.

Cause static functions in the large memory model to be
called "NEAR".

Cause linking witHinkcom.k (no 1/0) rather than
iolinkcom.k.

Name absolute fileutfileinstead ofi.out.x

Optimize.-O for space;OT for time,-OG for
debugging.

Compile code for the specified processor.
Preprocess only (send result.idiles).

Byte align data in memory instead of default word
alignment.

Use default linker command file in /usr®4000/en\dir
instead of the default.

Strip symbol table information (overridden {gyand
-L).

Only generate assembly source files (witbxtensions).
Insert subprocesswhose full path imame

Consider non-constant static data uninitialized.
Undefinenameto the preprocessor.

Verbose (produce step-by-step descriptiorster).
Suppress warning messages.

Passargsas parameters to spipcess.

Chapter 1: Getting Started
Summary of file extensions

. Summary of file extensions

.Ys

Library (archive) files.

HP format assembler symbol file.

C source files.

Emulator configuration files.

Include (header) files.

"Preprocess only" output (generated with {Reption).
Linker command file.

HP format linker symbol file.
Relocatable object file.

Listing files (generated with th& option).
Assembly language source file.
HP-OMF 86 absolute (executable) file.

HP format absolute (executable) file. (Generated with
the-h option.)

Symbol file directory.

Chapter 1: Getting Started
To install the software

To install the software

1 Load the software from the software media.

Instructions for inst#ing the software arerovided with the software media,
or in your operating system’s system administration guide.

2 Set the HP64000 emanment variable.

Set this variable to the location of the software, usually /Jusr/hp64000.

3 Set the MANPATH environment variable.

Add $HP64000/man to this variable so that you can read the on-line "man
pages."

4 Set the PATH environment variable.

Add $HP64000/bin togur path so that you can run the compiler programs.

You should add these eomands to gur .login, .vueprofile, or .profile file (if
they are not there already) so that you won't need to re-enter them every time
you log in.

Examples If you installed the compiler in the root directory on an HP-UX system, enter:

export HP64000=/usr/hp64000
export PATH=$PATH:$HP64000/bin
export MANPATH=$MANPATH:$HP64000/man

On a Sun system, you would enter:

setenv HP64000 /usr/hp64000
setenv PATH $PATH:$HP64000/bin
setenv MANPATH $MANPATH:$HP64000/man

Chapter 1: Getting Started
To create a simple C program

. To create a simple C program

* Use atext editor to create the file simple.c:

main()
char str[80];
printf("Enter string: ");

gets(str);
printf("\nYou entered: \"%s\"\n", str);

Figure 1-1. The 'simple.c" Example Program

Chapter 1: Getting Started
To compile a simple program

To compile a simple program .

* Use the cc8086 comand atw host operating system prompt.

Example To compile the "simple.c" example program, enter the followimgroand:
cc8086 simple.c
This command generates the executableafiet.x by default. The compiler

will print a warning message because a tapgetessor was not specified.
Because this is just an example, ignore the warning.

Chapter 1: Getting Started
To generate an assembly listing

Example

To generate an assembly listing

Use the-L compiler option.

This option generates a listing of the @isce, which includes the generated
assembly code, and a linker listing.

To generate the listings for "simple.c”, enter:

cc8086 -L simple.c

The mixed source and assemlidying is sent to filesimple.O, and a linker
listing is sent to filea.out.O.

Examine thesimple.Ofile and note how:

e Addresses of strings are passed as parameters to the "_prppé'rs
library routine (Stringl+ 0 is pushed, then _printfis called).
e String literals are placed in the "const" section.

Now look ata.out.O and note that:

* The file shows the default linker command (generated by the compilation
control command).

* The linker command is followed by the contents of the default linker
command file. The default linker command file loads some libraries and
an emulation monitor or monitor stub.

* Modules are listed in the order they are loaded. Modules within library
files are listed in alphabetical order.

* The module crt0 is the program setup routine. Program execution will
begin with this routine.

10

Chapter 1: Getting Started
To select a memory model

To select a memory model

The 8086/186 C compiler allows you to select on@af favailablenemory
models: large, medium, compact, or small. The compiler defaults to the large
memory model (optioAm large).

Large Model

The large memory model allows your code and data to be broken up into many
named segments obyr own choosing. These segments can be located
anywhere in memory at link time, independent of each other. Segments
containing "constant" data may be located next to code segments to facilitate
putting code and data constants in ROM. In fact, "constant” data may be
placed in the same segment as code. Segments may also be "'ORGed"to
absolute physical memory locations through the use of gfragma

SEGMENT directive. The efficiency of the compiler in calling functions and
accessing data is controllablerdugh the use @f pragma SEGMENTand

pragma DSdirectives and then option.

Small Model

The small memory model produces more compact code than therlargery
model. The small memory model places all code in a single, pre-defined,
physical segment and places all data, stack, heap, and constants into a second,
pre-defined physical segment. Code in the first segment is accessed
"segment-relative,"”, but all data in the second physical segment is accessed
"group-relative" because the pre-defined segments that are combined to form
the second physical segment are part of a grampetdata_const Because

the small memory model uses just two physical segments, code is limited to
64K bytes and data, stack, heap, and constants together are limited to 64K
bytes.

The# pragma SEGMENT directive and thé& pragma DSdirective cannot be

used with the small memory model and are therefore warned at and ignored if
they are encountered. Also, smakmory model does not support "ORGing"

a segment because this conflicts with the "rules" of small memory model.

11

Chapter 1: Getting Started
To select a memory model

Note

It is possible to place constant data in ROM when using the smeatlory

model if the embedded environment has RAM near the ROM and both RAM
and ROM can be addressed within the 64K limit required for group-relative
accesses. If the embedded system canrest these requirements, then the
constant data must be placed in RAM and initialized at either load-time or at
run-time (depending upon the embedded environment).

Medium Model

The medium memory model has one or more code segments, like the large
memory model, and one data segment.

Compact Model

The compact memory model has one or more data segments, like the large
model, and one code segment.

An Example Using Large Memory Model

The compiler generates code to load the DS register with the paragraph
number of the currently active static data segment (providing any such
accesses are made in the function) at the beginning of each function.
Thereatfter, accesses to items in the data segment are performed DS-relative
and all other accesses are performed ES-relative; which is far more expensive
since ES must, potentially, be reloaded prior to each access. Thus, care should
be taken to have the most appropriate data segment active at function
definition (using the# pragma SEGMENT and# pragma DSdirectives).

Auto variables and parameters are acceS&delative since they are on the
stack and therefore located in theerstacksegment.

The example program demonstrates how the compiler selects the segment
with which to perform DS-relative accesses. Whagemodel.cis compiled
using the following command line, thergemodel.Olisting file results.

$ cc8086 -SOL largemodel.c <RETURN>

12

Chapter 1: Getting Started
To select a memory model

#pragma SEGMENT DATA=my_datal

intil;
#pragma SEGMENT PROG=my_prog2 DATA=my_data2
inti2; /* This is in the "active" static data segment. */

void function()

i1+=1i2; [*i2is in "active" static data segment. */
#pragma SEGMENT PROG=my_progl
main()

long al; /*alis a dynamic variable on the stack. */

al =1, /* Accessed SS-relative. */
i1++; /* Accessed DS-relative. */
i2++; /* Accessed ES-relative. */
function();

Figure 1-2. largemodel.c

13

Chapter 1: Getting Started
To select a memory model

HPB1493-19303 8086 C Cross Compiler A.04.01 largemodel.c

EMKT:@(#) B1493-19303 A.04.01 8086 C CROSS COMPILER 03May95
; Memory Model: large

$PAGEWIDTH(230)
$NOPAGING

NAME “largemodel"
%DEFINE(MM_CHECK_)(MM_CHECK_L)
%DEFINE(lib)(lib)
%DEFINE(SS)(SS)
%DEFINE(DS)(DS)
%DEFINE(ALIGN)(WORD)
%DEFINE(DALIGN)(WORD)
my_prog2 SEGMENT %ALIGN PUBLIC 'CODE’
%DEFINE(CodeSegment)(my_prog2)
#pragma SEGMENT DATA=my_datal

intil;
#pragma SEGMENT PROG=my_prog2 DATA=my_data2
inti2; /* This is in the "active" static data segment. */

void function()

~NOoOUBRAWNE

PUBLIC _function

ASSUME CS:%CodeSegment,DS:my_data2
_function PROC FAR
%SET(SAVE_ALL_NPX,2)

PUSH DS
MOV AX,my_data2
MOV DS,AX

8 il1+=i2; [*i2isin"active" static data segment. */
MOV DX,SEG _il
MOV DI, OFFSET _i1+0
MOV AX,%DS:WORD PTR _i2[0]
MOV ES,DX
ADD ES:WORD PTR [DI],AX
9 }
functionExit1:
POP DS
returnLabell:
RET
_function ENDP
my_prog2 ENDS
my_progl SEGMENT %ALIGN PUBLIC 'CODE’
%DEFINE(CodeSegment)(my_progl)
10
11 #pragma SEGMENT PROG=my_progl
12 main()
13
PUBLIC _main
ASSUME CS:%CodeSegment,DS:my_data2
_main PROC FAR
%SET(SAVE_ALL_NPX,2)
PUSH BP
MOV BP,SP

Figure 1-3. largemodel.O

14

SUB SP/4
PUSH DS
MOV AX,my_data2
MOV DS,AX
%SET(S_al,-4)
14 long al; /*alis a dynamic variable on the stack. */
15
16 al=1, I* Accessed SS-relative. */

MOV SS:WORD PTR [BP+%S_a1+0],1
MOV SS:WORD PTR [BP+%S_al+0+2],0

17 il++ /* Accessed DS1-relative. */
MOV DX,SEG _il
MOV DI,OFFSET _i1+0
MOV ES,DX

INC ES:WORD PTR [DI]

18 i2++;

/* Accessed DSO-relative. */

INC %DS:WORD PTR _i2[0]
19 function();

CALL FA
20
functionExit2:
POP DS

R PTR _function

MOV SP,BP

POP BP
returnLabel2:
RET
main ENDP

my_progl ENDS
my_datal SEGMENT %DALIGN PUBLIC

PUBLIC _i
EVEN

1

_il LABEL BYTE
DB 2 DUP(0)

my_datal ENDS

my_data2 SEGMENT %DALIGN PUBLIC
PUBLIC _i2

EVEN

_i2 LABEL BYTE
DB 2 DUP(0)
my_data2 ENDS
EXTRN %MM_CHECK_:BYTE

mm_check

SEGMENT BYTE COMMON

DW OFFSET %MM_CHECK_

mm_check
END

ENDS

Figure 1-3. largemodel.O (continued)

Chapter 1: Getting Started
To select a memory model

15

Chapter 1: Getting Started
To select a memory model

intil;
inti2;

An Example Using Small Memory Model

Notice that the difference between the source file for large model and the
source file for small model is the absence offthpgagma SEGMENT
directives. Thef pragma SEGMENT directive and thé pragma DSdirective
are not valid for small model. If they appear, they are warned and ignored.

All functions are called "NEAR" and are accessed CS-relative. Data, stack,
heap, and constants all become part ofddita_constgroup and are accessed
group-relative. The DS, ES, and SS registers are loaded with the same value,
thedata_constparagraph number, by the program startup roune.f).

The smallmodel.O listing shows some of the pre-defined segments that make
up thedata_constgroup. (Segmentseapanduserstackare added to the

group at link time.) Through the use of an ASSUME estagnt, the DS

register is associated with the group basdatd_constinstead of a segment
base value. For this reason, all DS-relative accesses to data are
group-rame-relative instead of segment-name-relative.

/* Will be put in segment "data". */
/* Will be put in segment "data". */

void function()
{ /* Will be put in segment "prog/CODE" */
/* (segment "prog" is in class "CODE").*/

i1+=i2;

main()
/* Will be put in segment "prog/CODE". */
long al; /*alis a dynamic variable on the stack. */

al=1,
i1l++;
i2++;
function();

Figure 1-4. smallmodel.c

16

Chapter 1: Getting Started
To select a memory model

Whensmallmodel.cis compiled using the following command line, the
smallmodel.Olisting file results.

$ cc8086 -SOL -m small smallmodel.c <RETURN>

HPB1493-19303 8086 C Cross Compiler A.04.01 smallmodel.c

EMKT:@(#) B1493-19303 A.04.01 8086 C CROSS COMPILER 03May95
; Memory Model: small

$PAGEWIDTH(230)
$NOPAGING

NAME "smallmodel"
%DEFINE(MM_CHECK_)(MM_CHECK_S)
%DEFINE(SS)(DS)
%DEFINE(DS)(data_const)
%DEFINE(GRP)(data_const)
%GRP GROUP data,idata,udata,const
data SEGMENT WORD PUBLIC

data ENDS

idata SEGMENT WORD PUBLIC

idata ENDS

udata SEGMENT WORD PUBLIC

udata ENDS

const SEGMENT WORD PUBLIC

const ENDS

prog SEGMENT BYTE PUBLIC 'CODFE’
1 intil; /* Will be put in segment "data". */
2 inti2; /* Will be put in segment "data". */
3
4 void function()
5 { /* Will be put in segment "prog/CODE" */

PUBLIC _function
ASSUME CS:prog,DS:%GRP
_function PROC NEAR
%SET(SAVE_ALL_NPX,2)
6 /* (segment "prog" is in class "CODE").*/
7 il+=i2;
MOV AX,%DS:WORD PTR _i2[0]
ADD %DS:WORD PTR _i1[0],AX
8
functionExit1:
returnLabell:
RET
_function ENDP
9

10 main()
{ /* Will be put in segment "prog/CODE". */
PUBLIC _main

ASSUME CS:prog,DS:%GRP
_main PROC NEAR
%SET(SAVE_ALL_NPX,2)

PUSH BP

MOV BP,SP

Figure 1-5. smallmodel.O

17

Chapter 1: Getting Started
To select a memory model

SUB SP4
%SET(S_al,-4)
12 long al; /*alis a dynamic variable on the stack. */
13
14 al=1,
MOV SS:WORD PTR [BP+%S_al+0],1
MOV SS:WORD PTR [BP+%S_a1+0+2],0

15 il++
INC %DS:WORD PTR _i1[0]
16 i2++;

INC %DS:WORD PTR _i2[0]
17 function();
CALL NEAR PTR _function

18

functionExit2:
MOV SP,BP
POP BP

returnLabel2:
RET

_main ENDP

prog ENDS

data SEGMENT WORD PUBLIC
PUBLIC _i1
EVEN

_i1 LABEL BYTE
DB 2 DUP(0)
PUBLIC _i2
EVEN

_i2 LABEL BYTE
DB 2 DUP(0)

data ENDS

EXTRN %MM_CHECK_:BYTE
mm_check SEGMENT BYTE COMMON
DW OFFSET %MM_CHECK_
mm_check ENDS

END

Figure 1-5. smallmodel.O (continued)

18

Chapter 1: Getting Started
To select a memory model

An Example Using Compact Memory Model

All functions are called "FAR." Data, stack, heap, and constants all becom
part of thedata_constgroup and are accessed group-releative just as with the
small memory model.

Through the use of an ASSUME statent, the DS register is associated with
the group base alata_constinstead of a segment base value. For this reason,
all DS-relative accesses to data are groape-relative instead of
segment-name-relative.

#pragma SEGMENT DATA=my_datal

intil;
#pragma SEGMENT PROG=my_prog2 DATA=my_data2
inti2; /* This is in the "active" static data segment. */

void function()

i1+=1i2; [*i2is in "active" static data segment. */
#pragma SEGMENT DATA=my_progl
main()

long al; /*alis a dynamic variable on the stack. */

al =1, /* Accessed SS-relative. */
i1++; /* Accessed DS-relative. */
i2++; /* Accessed DS-relative. */
function();

Figure 1-6. compactmodel.c

Whencompactmodel.ds compiled using the following command line, the
compactmodel.Olisting file results.

$ ¢cc8086 -SOLm compact compactmodel.c <RETURN>

19

Chapter 1: Getting Started
To select a memory model

HPB1493-19303 8086 C CROSS COMPILER A.04.01 compactmodel.c

EMKT:@(#) B1493-19303 A.04.01 8086 C CROSS COMPILER 03May95
; Memory Model: compact

$PAGEWIDTH(230)
$NOPAGING

NAME “"compactmodel”
%DEFINE(MM_CHECK_)(MM_CHECK_C)
%DEFINE(SS)(SS)
%DEFINE(DS)(DS)
%DEFINE(ALIGN)(WORD)
%DEFINE(DALIGN)(WORD)
my_prog2 SEGMENT %ALIGN PUBLIC 'CODE’
%DEFINE(CodeSegment)(my_prog2)
#pragma SEGMENT DATA=my_datal

intil;
#pragma SEGMENT PROG=my_prog2 DATA=my_data2
inti2; /* This is in the "active" static data segment. */

void function()

~NOoOORAWNE

PUBLIC _function

ASSUME CS:prog,DS:my_data2
_function PROC NEAR
%SET(SAVE_ALL_NPX,2)

PUSH DS
MOV AX,my_data2
MOV DS,AX

8 i1+=i2; [*i2isin"active" static data segment. */
MOV DX,SEG _il
MOV DI,OFFSET _i1+0
MOV AX,%DS:WORD PTR _i2[0]
MOV ES,DX
ADD ES:WORD PTR [DI],AX

9}
functionExit1:
DS
returnLabell:
RET
_function ENDP
10
11 #pragma SEGMENT DATA=my_progl
12 main()
13
PUBLIC _main
ASSUME CS:prog,DS:NOTHING
_main PROC NEAR
%SET(SAVE_ALL_NPX,2)

PUSH BP
MOV BP,SP
SUB SP4

%SET(S_al,-4)
14 longal; /*alis adynamic variable on the stack. */
15

Figure 1-7. compactmodel.O

20

16 al=1,; /* Accessed SS-relative. */
MOV SS:WORD PTR [BP+%S_al+0],1
MOV SS:WORD PTR [BP+%S_al+0+2],0

17 il++ /* Accessed DS-relative. */
MOV DX,SEG _il
MOV DI,OFFSET _i1+0
MOV ES,DX
INC ES:WORD PTR [DI]

18 i2++; /* Accessed DS-relative. */
MOV DX,SEG _i2
MOV DI,OFFSET _i2+0
MOV ES,DX
INC ES:WORD PTR [DI]

19 function();

CALL NEAR PTR _function

20
functionExit2:
MOV SP,BP
POP BP
returnLabel?2:
RET
_main ENDP
my_prog2 ENDS
my_datal SEGMENT %DALIGN PUBLIC
PUBLIC _i1
EVEN
_i1 LABEL BYTE
DB 2 DUP(0)
my_datal ENDS
my_data2 SEGMENT %DALIGN PUBLIC
PUBLIC _i2
EVEN
_i2 LABEL BYTE
DB 2 DUP(0)
my_data2 ENDS
EXTRN %MM_CHECK_:BYTE
mm_check SEGMENT BYTE COMMON
DW OFFSET %MM_CHECK_
mm_check ENDS
END

Figure 1-7. compactmodel.O (continued)

Chapter 1: Getting Started
To select a memory model

21

Chapter 1: Getting Started
To select a memory model
An Example Using Medium Memory Model
All functions are called "NEAR" and are accessed CS-relative.

The ES, DS, and SS registers are loaded with the same tadudata_const
paragraph number, by the program startup routit@o, just as with the
small memory model.

#pragma SEGMENT DATA=my_datal

intil;
#pragma SEGMENT PROG=my_prog2 DATA=my_data2
inti2; /* This is in the "active" static data segment. */

void function()
i1+=1i2; [*i2is in "active" static data segment. */
#pragma SEGMENT DATA=my_progl
main()
long al; /*alis a dynamic variable on the stack. */
al=1,;
i1l++;

i2++;
function();

Figure 1-8. mediummodel.c

Whenmediummodel.cis compiled using the following command line, the
mediummodel.Olisting file results.

$ cc8086 -SOLmM medium mediummodel.c <RETURN>

22

HPB1493-19303 8086 C CROSS COMPILER A.04.01 mediummodel.c

EMKT:@(#) B1493-19303 A.04.01 8086 C CROSS COMPILER
; Memory Model: medium

$PAGEWIDTH(230)
$NOPAGING

NAME "mediummodel"
%DEFINE(MM_CHECK_)(MM_CHECK_M)
%DEFINE(lib)(lib)
%DEFINE(SS)(DS)
%DEFINE(DS)(data_const)
%DEFINE(GRP)(data_const)
%DEFINE(ALIGN)(WORD)
%DEFINE(DALIGN)(WORD)
%GRP GROUP data,idata,udata,const
data SEGMENT WORD PUBLIC
data ENDS
idata SEGMENT WORD PUBLIC
idata ENDS
udata SEGMENT WORD PUBLIC
udata ENDS
const SEGMENT WORD PUBLIC
const ENDS
my_prog2 SEGMENT %ALIGN PUBLIC 'CODE’
%DEFINE(CodeSegment)(my_prog2)
#pragma SEGMENT DATA=my_datal

intil;
#pragma SEGMENT PROG=my_prog2 DATA=my_data2
inti2; /* This is in the "active" static data segment. */

void function()

~NOORAWNE

PUBLIC _function
ASSUME CS:%CodeSegment,DS:%GRP
_function PROC FAR
%SET(SAVE_ALL_NPX,2)
8 i1+=i2; [*i2isin "active" static data segment. */
MOV AX,%DS:WORD PTR _i2[0]
ADD %DS:WORD PTR _i1[0],AX
9
functionExit1:
returnLabell:
RET
_function ENDP
10
11 #pragma SEGMENT DATA=my_progl
12 main()
13
PUBLIC _main
ASSUME CS:%CodeSegment,DS:%GRP
_main PROC FAR
%SET(SAVE_ALL_NPX,2)
PUSH BP
MOV BP,SP

03May95

Figure 1-9. mediummodel.O

Chapter 1: Getting Started
To select a memory model

23

Chapter 1: Getting Started
To select a memory model

SUB SP4
%SET(S_al,-4)
14 long al; /*alis a dynamic variable on the stack. */
15
16 al=1,
MOV SS:WORD PTR [BP+%S_al+0],1
MOV SS:WORD PTR [BP+%S_a1+0+2],0

17 il++
INC %DS:WORD PTR _i1[0]
18 i2++;

INC %DS:WORD PTR _i2[0]
19 function();
CALL FAR PTR _function
20
functionExit2:
MOV SP,BP
POP BP
returnLabel?2:
RET
_main ENDP
my_prog2 ENDS
my_datal SEGMENT %DALIGN PUBLIC
PUBLIC _i1
EVEN
_il LABEL BYTE
DB 2 DUP(0)
my_datal ENDS
my_data2 SEGMENT %DALIGN PUBLIC
PUBLIC _i2
EVEN
_i2 LABEL BYTE
DB 2 DUP(0)
my_data2 ENDS
EXTRN %MM_CHECK_:BYTE
mm_check SEGMENT BYTE COMMON
DW OFFSET %MM_CHECK_
mm_check ENDS
END

Figure 1-9. mediummodel.O (continued

24

Chapter 1: Getting Started
To select a memory model

Calling Ru n-Time and Support Libraries

Run-time library routines are call@dplicitly by the generated assembly code.

For example, with large and medium memory modPD_F32A LM,

ADD_F32B L, orADD_F32C_Lwould be called to add two floats. Which of

the three routines the compiler actually uses depends on where the arguments
are found and how the code is being optimized. For the small adn compact
memory modeADD_F32A SC, ADD_F32B_Sor ADD_F32C_Swould be

called. Note that the names are different between memory models to
guarantee that the correct run-time library is used.

Since these implicitly called routines are nisible in the C surce, a special
segment namelib is reserved and understood by the compiler to be the

segment in which the run-time library is defindib (s replaced wittprog for

the small and compact memory model).

Support library routines, unlike run-time library routines, are cadigdicitly

in the C source. Thus, they behave just as though they were user-written
functions. For the large and medium memory model, their segment names are
the same as the base name of the library (lbbga's segment isibc). For the

small and compact model, the segment narmpeoy, the same as with

user-written code.

The libcalls.c listing shows the callingafn-time library routines and the
calling of a sipport library routine. Note that it is important to #saclude

< stdio.h> since without it the compiler does not know tpantf() is in

named segmetibc. Whenlibcalls.cis compiled using the following command
line, thelibcalls.O listing file results.

$ ¢cc8086 -SOL libcalls.c

#include <stdio.h>

main()
float f = 1.0;
float g = 1.0;

printf("Sum is %f\n", f+q);

Figure 1-10. libcalls.c

25

Chapter 1: Getting Started
To select a memory model

HPB1493-19303 8086 C Cross Compiler A.04.01 libcalls.c

EMKT:@(#) B1493-19303 A.04.01 8086 C CROSS COMPILER
; Memory Model: large

$PAGEWIDTH(230)
$NOPAGING
NAME ‘libcalls"
%DEFINE(MM_CHECK_)(MM_CHECK_L)
%DEFINE(lib)(lib)
%DEFINE(SS)(SS)
%DEFINE(DS)(DS)
%DEFINE(ALIGN)(WORD)
%DEFINE(DALIGN)(WORD)
prog_libcalls SEGMENT %ALIGN PUBLIC 'CODFE’
%DEFINE(CodeSegment)(prog_libcalls)
1 #include <stdio.h>
2 main()
3 {
PUBLIC _main
ASSUME CS:%CodeSegment,DS:NOTHING
_main PROC FAR
%SET(SAVE_ALL_NPX,2)

PUSH BP
MOV BP,SP
SUB SP,8

%SET(S_f,-8)

MOV SS:WORD PTR [BP+%S_f+0],00H

MOV SS:WORD PTR [BP+%S_f+0+2],03F80H
%SET(S_g,-4)

MOV SS:WORD PTR [BP+%S_g+0],00H

MOV SS:WORD PTR [BP+%S_g+0+2],03F80H

4 floatf=1.0;

5 floatg=1.0;
6
7

printf("Sum is %f\n", f+g);
LES DI,SS:DWORD PTR [BP+%S_f+0]
PUSH ES
PUSH DI
LES DI,SS:DWORD PTR [BP+%S_g+0]
PUSH ES
PUSH DI
%lib SEGMENT WORD PUBLIC 'CODE’
EXTRN ADD_F32A_LM:FAR
%lib ENDS
CALL FAR PTR ADD_F32A_ LM
POP AX
POP DX
SUB SP,8
%lib SEGMENT WORD PUBLIC 'CODE’
EXTRN F32_TO_F64_LM:FAR
%lib ENDS
CALL FARPTR F32_TO_F64_LM
MOV DX,SEG Stringl
MOV AX,OFFSET String1+0

Figure 1-11. libcalls.O

03May95

26

PUSH DX
PUSH AX
CALL FAR PTR _printf
ADD SP,12
8
functionExit1:
MOV SP,BP
POP BP
returnLabell:
RET
_main ENDP
prog_libcalls ENDS
EXTRN _printf:FAR
const SEGMENT %DALIGN PUBLIC
Stringl LABEL BYTE

DB 'Sum is’
DB 37
DB f
DB 10
DB 0
const ENDS

EXTRN %MM_CHECK_:BYTE
mm_check SEGMENT BYTE COMMON
DW OFFSET %MM_CHECK_
mm_check ENDS

END

Figure 1-11. libcall s.O (continued)

Chapter 1: Getting Started
To select a memory model

27

Chapter 1: Getting Started
To specify the target microprocessor

. To specify the target microprocessor

» Use the appropriate compilerraonand:

* ¢c8086 for the 8086
 ¢c80186 for the 80186

28

Chapter 1: Getting Started
To compile for a debugger

To compile for a debugger

To gain the most benefit from HP debuggers and emulators, follow these
guidelines:

* Use theOG option to generate debugging information.

* Avoid optimizing modes-Q© or -OT).

* Turn off the automatic creation of register variab&sc(-F).

» Do not use theh option. HP debuggers now ugegather thanX files.

» Use the C compiler’s floating point library routines to generate code that
will run interchangeably in both the debugger/simulator and the
debugger/emulator.

* Use the same environment files as you would use to compile for an HP
64700-series emulator.

Example To compile the simple.c program to be run in a debugger, use the following
command:

cc8086 simple.c -LM -OG simple.c

See Also See theJser's Guidefor your debugger/emulator, debugger/simulator, or
emulator interface for information on how to run a program in the debugger
or emulator environment.

29

Chapter 1: Getting Started

To use a makefile

To use a makefile

Themake command can simplify thgrocess of compng your programs. This
command allows you to specify which files are dependent on which other files
(for examplemake "knows" that files which end i are produced by

compiling orresponding files that end inor by assembling programs that

end in.s). If your host operating system is HP-U X, see the man pagedie

in section 1 of thé&lP-UX Reference Manuabee also "Make, a Program for
Maintaining Computer Programs" in the "Programming Eorvinent” volume

of HP-UX Concepts and Tutorials

Becausec8086is similar to the hostccommand, it is easy to tetlake how
to compile, assemble, and link using cross tools. To any makefile designed for
the host, you need to add some definitions and set up some options. These are:

CC=/usr/hp64000/bin/cc8086
AS=/usr/hp64000/bin/as86
LD=/usr/hp64000/bin/Id86

These definitions will causmake’s "built-in" rules to access the cross tools,
and because the built-in options mean the same thing to the cross tools as they
do to the host tools, the built-in rules now work when invoking the cross tools.

Assembling asfile produced by thec8086compiler requires that two
programs be executed in suss®n, the assembly macro preprocesap86)
and the assemblea$86. Because of this, the implicit suffix rule.o:cannot
be used; you should explicitly putso:rule in your makefile:

5.0
$(CC) $(CFLAGS) -c $*.s

A second difference involves the implicit rutewhich tells make to build to
an executable file from a C source fildake expects that the executable file
has no suffix, but the 8086/186 cross language tools expestuéfix (.X if -h
option has been selected). The solution is to simply specify your own suffix
rule (.c.x:or.c.X)) which performs the functionality of the: implicit rule:

.c.X:
$(CC) $(CFLAGS) -0 $*.X $*.c

30

Chapter 1: Getting Started
To use a makefile

Note The SunO S$nake command adds a "-target" option to the compiler comma
line. To remove this option, add the following statement to the beginning
the makefile:

COMPILE.c= $(CC) $(CFLAGS) $(CPPFLAGS) -c

Make also has a mechanism for passing additional options to the compiler,
assembler, and linker. The additional options are passed each time the
program is invoked and are thus set only for "global" options. For example, to
always have the compiler and assembler prodisgegs, one might use:

CFLAGS ="-L"
ASFLAGS = "-Lfnot"

Some versions ahake give default values for these options.

Here is an example makefile:

These definitions are added to use the cc8086 cross tools.
CC =cc8086

All object files (make knows how to generate them from
sources based on implicit rules).

OBJECTS = main.o filel.o grammar.o
This dependency links the program together.

program.x: $(OBJECTS)
$(CC) $(OBJIECTS) -0 program.x

This dependency causes make to recompile filel.c
whenever filel.h has been touched.

filel.o: filel.h

When run in a directory containing sources:

main.c filel.c grammar.y filel.h

The commands generated by HP-lhdke will be:

€c8086 -O -¢c main.c
cc8086 -0 -c filel.c
yacc grammar.y
€c8086 -O -c y.tab.c
rmy.tab.c

31

Chapter 1: Getting Started
To use a makefile

mv y.tab.o grammar.o
cc8086 main.o filel.o grammar.o -0 program.x

This example assumes thasr/hp64000/binhas been added to your PATH
environment variable.

You can see what commandsl e generated bgnake by using the following
command:

make -n

32

Chapter 1: Getting Started
To modify environment libraries

To modify environment libraries

To modify the environment-dependent librany.a the startup routines
crt0.o or crtl.o, or the monitor stumon_stub.a

1 Set up directories for the different memory models.

Select a directory from which you expect to run the compiler.rifées utility
will be used to create new enenment-dependent libraries and object files
which contain the changes made to the source files. As proitiefile
assumes there are five directories namrediarge, medium, compactand
smallin a parent directory. Makefile expects to be located in, and run from
thesrc directory. The object and library-archive files will be built in Bwge,
medium, compact,andsmall directories; the emulation monitor is built in the
parent directory (the directory you are currently in). The followingrmand
sets up the needed directories.

$ mkdir src large medium compact small

2 Copythe source files.

The following command copies the eromment-dependent source files to the
current directory.

cp /usr/hp64000/env/hp <emul_env> /src/* src

3 Edit the source files.

The following command changes the pé&sions of thesurce files so that
you will be able to save any changes you make while editing the files.

cd src
chmod 644 *

Now you may edit the source files as needed.

4 Run the "make" command.

33

Chapter 1: Getting Started
To modify environment libraries

cp /usr/hp64000/env/hp

The following command il¥ create, for both large and smatlemory models,
new environment-dependent library filesv.a new startup and
error-handling modulesrt0.0, crtl.o, init_stub.o, anddiv_by 0.g and a new
emulation monitor modulenonitor.o, which is common to both memory
models.

make all

In addition to theall target, other targets are available for teke command
which will create only those files needed. A list of these available targets is
displayed by the following command.

make help

The following command iNremove unnecessary intermediate files left by the
make all command.

make clean

Now return to the parent directory.

cd ..

Modify the default linker command file.

The following commands copy the default I1/O linker command file to the
current directory so that you can edit it to load the environment file just
created. (Coplinkcom.k if your programs do not use 1/0O.)

<emul_env> [largeliolinkcom.k large

chmod 644 large/iolinkcom.k

vi large/iolinkcom.k

Changeall lines which read:

LOAD /usr/hp64000/env/hp <emul_env> [large/env.a
to

LOAD large/env.a

If small memory model is being used, do the same procedure as for the large
memory except substitutamall for large in all the commands.

If the medium or compact memory model is used, follow the same procedure
as for the large memory model, except substitute "medium" or "compact" for
"large" in all the commands.

34

Chapter 1: Getting Started
To modify environment libraries

Similarly, if you have modified the startup module sourceciité.s or crtl.s,
or the monitor stulnon_stub.s you should also change the linkenumand
file so that it loads the local version instead of the shipped version.

If no emulation monitor is needed, the LOADnomand formonitor.o may be
commented out or removed. Thev.alibrary, which is loaded aftemonitor.o,
will resolve the necessary external symbols. Note itfatitor.o, when used,
must be loaded befoenv.a

Note The environment for HP 64700 series emulators for the Intel family does not
include amonitor.o file. These emulators use a background monitor which
does not need to be linked to the user’s code.

Specifying the modified linker command file when cdlimg your program
(with the-k option) wil cause the linker to call inoutines from the modified
environment-dependent library. Remember to-ksememory

modeb /iolinkcom.k to get the appropriate modified linkemsmand file.

About environment libraries

Many files are linked into the C program from the environment libraries.
These libraries reside in the subdirectorie&isf/hp64000/envand are
designed to support the emulator (and simulator, if available). But these do
more than just help you use the emulator.

The 8086/186 C compiler has only limited information about therenmient

in which compiled programsillwltimately execute. All the high level

functions depend on the environment libraries to provide the low level hooks
into the execution environment (or target system). The supplied environment
libraries provide the hooks necessary to operate in the emulator environment.
They also serve as a pattern for you to create your own low level hooks to
allow the 8086/186 C compiler to work inyr own execution environment.

You may either modify our environment files (the source code is provided) or
use the files as a pattern to create your own equivalent files. HP has made
every effort to narrow this "hook-up point"as much assitde, but you will

need to make some modifications in order to run your programs in your own
execution environment.

35

Chapter 1: Getting Started
To view the on-line man pages

Example

To view the on-line man pages

Use the host operating systemman command.

You can display on-line "man pages" for any of pnegrams which make up
the 8086/186 C Cross Compiler:

e cc8086
e cpp8086
+ lst8086

Refer to the on-line man pages for detailed information abautrandline
options and compiler directives.

Because the man pages contain important information which is not included
in this manual, HP recommends that you printdt&86man page and keep
it near your computer.

The man pages are in the directory $HP64000/man. thdrecommand
cannot find the man pages, check that you have added this directory to the
MANPATH environment variable.

To view thecc8086on-line manual page, just type in the followingrooand
from the operating system prompt:

man cc8086

Information on thec8086compiler syntax and options will be scrolled onto
your display.

36

Part 2

Compiler Reference

Part 2

38

Chapter 2: C Compilation Overview

2
B

C Compilation Overview

An overview of the 8086/186 C Cross Compiler and a description of the ANSI
C language.

39

Chapter 2: C Compilation Overview
Execution Environment Dependencies

Execution Environment Dependencies

Providing the "standard I/O" and storage allocation C library functions creates
dependencies on the environment in which programs execute.

Since the 8086/186 C compiler is a tool to help you develop software for your
own target system execution environments, HP has been careful about any
execution environment dependencies associated with this compiler or its
libraries.

The compiler provides the "standard I/O" and storage allocation library
functions; therefore, there are some environment dependencies to be aware of.
The compiler isolates these environment dependencies to make it easier to
tailor the compiler to your own target system execution environment.

The execution environment-dependent routines provided witBa8@/186 C
compiler are written to work in the HP development environments, but they
need to be rewritten for target system execution environments.

40

Chapter 2: C Compilation Overview
C Compilation Overview

C Compilation Overview

An overview of the 8086/186 C compiler is shown in figure 2-1. The entire
process is controlled by theroanand line fed to the compilation control
routine. Rectangles in the diagram represent either data provided by the
progammer (C surce file, for example) or data produced by one of the
circular processes (outplisting, for example). Eachrocess is described
following the figure.

In the following figure, the names pfograms appear in parentheses. These
names refer to the cross tools, and not to the native tools. For example, "cc"
refers tocc8086¢ross compiler and not to the native hastompiler.

41

Chapter 2: C Compilation Overview
C Compilation Overview

COMMAND
LINE

& SOURCE
LINE

INCLUDE

COMPILATION
CONTROL
{cc)

PREPROCESSOR
(cpp)

C COMPILER

'

{ccom)

|
|
|
|
|
1
I
1
|
I
1 FILES
|
|
1
1
I
I
\

SUPPLIED
LIBRARIES

LIBRARY
BUILDER
(ar)

PEEPHOLE
OPTIMIZER
(opt)

OPTIMIZED
ASSEMBLY
CODE WITH
SYMBOLIC
DIRECTIVES

OTHER
LIBRARIES

ASSEMBLY
CODE WITH
SYMBOLIC
DIRECTIVES

ASSEMBLER
(os)

OBJECT
CODE WITH
SYMBOLIC
INFORMATION

EXECUTABLE
WITH
SYMBOLIT
INFORMATION

LISTER
(clst)

ASSEMBLER
LISTING

OPTIONAL
“asmb_sym"

FILE

OPTIONAL
“link _sym"
FILE

Figure 2-1. C Compilation Overview

ERROR
MESSAGES

QUTPUT
LISTING

LINKER
LISTING

42

Note

Chapter 2: C Compilation Overview
C Compilation Overview

When you use the cc8086rmmand, the8086/186 C compiler generates 8086
code. When you use the cc80186nenand, the3086/186 C compiler generates
80186 insructions where it isptimalto do so. In cases where 80186-specific
instructions have no advantage 08686 insructions,8086 insructions are
generated.

Except for the generation of 80186tinstions, theB086 and 80186 compilers
are identical.

Throughout theegmainder of the manual, thpsoduct is referred to as the
8086/186 C compiler. Youhsuld take that tonean8086/186 C Cross
Compiler.

43

Chapter 2: C Compilation Overview
C Compilation Overview

Compilation Control Routine

The entire system is controlled by a compilation control routir898& (or
cc80186 for the 80186). The compilation contrmitine cdls in sequence: the

C preprocessor (cB®86), the C compiler (ccom8086S/C/M/L), optionally the
peephole optimizer (0f086), the assembly macro precessor (ap86), the
assembler (as86), optionally the lister (cIst8086), and the linker (1d86). Many
of these programs may be run individually using tt8986 canmand’s

options. See the on-line man pages for the description of themaad syntax
and options.

The librarian (ar86) is a separate tool for building archive files used by the
linker.

C Preprocessor

The 8086/186 C pprocessor accepts C preprocessor directives which modify
the source code that the compiler sees. This modification includes expansion
of include files, expansion of macros, and management of conditional
compilation. See the on-line man page for a description of the@@quessor.

C Compiler

The 8086/186 C compiler accepts C language as defined by the ANSI C
Standard. The compiler performs a translation with optional optimizations
(see the "Optimizations" chapter) and emits an assembly language source file
containing embedded directives which provide information to be used by the
lister and later by the debugger and analyzer (see the "Compiler Generated
Assembly Code" chapter). The compiler also emits error and warning
messages to the standard error output. These messages include the original
source line on which the error occurred with a pointer to the offending token.

Peephole Optimizer

The peephole optimizer is run when the "optimizehawand line option is
specified. It performs peephole optimization on the assembly output of the
compiler. The optimizer makes allowances\olatile data types and

embedded assembly code to avoid changing the functionality of the generated
code. The optimizer works properly only on compiler-generated assembly
code and isot a stand alone tool for use on hand-written assembly code.

44

Chapter 2: C Compilation Overview
C Compilation Overview

Refer to the "Optimizations" chapter for more information on the peephole
optimizer.

Assembly Preprocessor

The assembly preprocessor is the BilFl249 assembly pprocessor which
accepts an assembly language source file (optionally containing symbolic
debug information defined by special directives) and produces another
assembly language file which has all assembly preprocessor macros, etc.
expanded. The 8086/186 C compiler generates assemphogessor macros;
therefore, assembly language code generated by the 8086/186 C compiler must
pass through the assembly preprocessor before being assembled.

Assembler

The assembler is the HP B1449 assembler which accepts an assembly language
source file (optionally containing symbolic debug information defined by

special directives) and produces an object code file (optionally containing a
representation of the symbolic debug information from the assembly source)
and an optional listing for use by the lister in generating the final listing. The
assembler also has a switch for generating HP 64000 format assembler symbol
files.

Source File Lister

The source fildister isrun when thelfsting” command line option is

specified. The lister uses the assembderse ofisting, C ®urce file, and
include files to produce lssting. The listing includes embedded assembly
language and, optionally, expanded include files and a cross reference table.
The lister is controlled by *LINE*" directives inserted by the compiler into
the output assembly code. Because the lister is usuallyy the compilation
control routine, defits of the lister directives are not described in this manual.
See the on-line man page for the description of clst8086rmand syntax and
options.

Librarian

The librarian is the HP B1449 librarian which combines several object code
files (generated by the assembler) into an archive file which the linker will

45

Chapter 2: C Compilation Overview

ANSI Extensions to C

search when it tries to resolve external references. The libraries that are part
of the compiler product are made with this librarian.

Linker

The linker is the HP B1449 linker which accepts several object code or archive
files (generated by the assembler or librarian, respectively) and creates an
absolute file containing all object code and symbols to be loaded. Optional
load maps may be generated as well as HP 64000 format linker symbol and
absolute files.

ANSI Extensions to C

The B1493 8086/186 C Cross Compiler complies with ANSI/ISO standard
9899-1990. In some casg@spgrams which compile with no errors on old C
compilers will result in erors or warnings with this compiler. Although this
may seem inconvenient, modifying the sourdéresult in portablity to other
ANSI standard C compilers.

Assignment Compatibility

The ANSI standard has more carefully regulated assignment contipatiln
particular, pointers and integers are no longer considered to be assignment
compatible without casts, and pointers to different typed objects are not
assignment compatible thiout casts.

Pointers and Integers

Because assignments between pointers and integers occur often in many
existing C programs, suclsgignments are warned rather than being flagged as
errors by the3086/186 C Cross Compiler. It is still resmended practice not

to perform such assignmentgidut casts.

Pointers and Pointers

The assignment of a "pointer to one type"to a "pointer to another type" only
generates a warning message. However, the ANSI standard has provided a

46

Chapter 2: C Compilation Overview
ANSI Extensions to C

new type Yoid) to which a pointer may point; the resulting "pointer to void"
may be assigned to any pointer.

Function Prototypes

Function prototypes allow you to specify the types of functiommpaters and
whether a function accepts variable parameters. They allow the compiler to
check the consistency of maneter types between declarations arid cda
function in a file. Because the linker does not check for incompatible calls
across file boundaries, we resmend that you use an include file to declare
the function at all reference and definition points.

Function prototype information is used by the compiler to generate more
efficient code byotwidening passed parameters. Thastrt andchar
passed parameters are not wideneihtpandfloat parameters are not
widened todouble, as is the case in the absence of function prototypes.

Old style function declarations (those without anygmaeter information)
continue to have the same meaning as beforeshiitt andchar parameters

are widened tint, and allfloat parameters are wideneddouble at the

function call. The appropriate inverse conversions are performed at function
entry. Old style and prototype declarations for the same symbol can coexist as
long as all of the parameter types specified ingtotype are the widened

types and as long as the ellipsis is not used. It is good practice to convert all
declarations to prototype syntax if prototypes are going to be used.

The consistency checking between the type of expression passed as a
parameter to prototyped function and the declared type of the corresponding
parameter requires that the two types mgnment compatible. The

parameter expision will be converted to the formal paneter type prior to

its value being passed.

The following is an example of function prototype usage:

extern int printf(const char *format, ...);

/* Note the optional use of identifier "format" to document the parameter’s
meaning. The ellipsis indicates zero or more additional parameters. */

extern float float_operation(float,float);

/* In this case, only type names are given for the parameters. */

I* The following is the prototype syntax for a function definition. */

void func(int i)

47

Chapter 2: C Compilation Overview

ANSI Extensions to C

f = float_operation(i,

/* The int "i" and the

2.0);

double "2.0" will be converted to float

before being passed (the "2.0" is converted at compile time).
Both parameters are passed as floats without the expensive
run time conversion to double which old style functions cause. */

Pragmas

Pragmas are special preprocessor directives which allow compilers to
implement special features. By definition, any pragma that a compiler does
not understand will be ipred. However, because pragmas allow compilers to
deviate from the standard, their number has been kept to a minimum.

The pragmas which the 8086/186 C compiler understands are listed below.
Pragmas which are not recognized cause a warning message to be written to
the standard error output.

pragma SEGMENT

Provides for renaming the default program segmamtes. (Refer to the
"Segment Names" section of the "Embedded Systems Considerations" chapter
for more information.)

pragma DS

Provides for re-specifying which segment will be accessed DS-relative. (Refer
to the "Segment Names" section of the "Embedded Systems Considerations"
chapter for more information.)

pragma ASM/END_ASM

Provides for including assembly language in the C source file. (Refer to the
"Using Assembly Language in the C Source File" section of the "Compiler
Generated Assembly Code" chapter for more information.)

pragma FUNCTION_ENTRY/EXIT/RETURN "C_string"

Provides for including assembly language instructions in the function entry
and exit code of the compiler-generated assembly code. (Refer to the "Using
Assembly Language in the C Source File" section of the "Compiler Generated
Assembly Code" chapter for more information.)

48

Chapter 2: C Compilation Overview
ANSI Extensions to C

pragma INTERRUPT

Provides for implementing functions as interrupt routines. (Refer to the
“Implementing Functions as Interrupt Routines" section of the "Embedde
Systems Considerations" chapter for more information.)

pragma ALIAS

Provides for the naming of an assembly language symbol associated with a C
source file symbol. (Refer to the "Assembly Language Symboiés" section
of the "Compiler Generated Assembly Code" chapter for more information.)

The void Type

A new typeyvoid, has been added by ANSI. It has two fundamemigboses.

The first is to allow a function to be defined to have no return value (i.e., a
procedure). Sinceoid typed objects cannot besigned to other objects, such
procedures cannot be used in a context where a return value is required. (Of
course, the protection afforded by this mechanism is limited to programs
where functions are declared witlv@d return type using old style

declarations or function prototypes.)

The second use of typeid is to declare generic pointers. By definition,
pointers tovoid, e.g., "void *genericPtr;", are assignment compatible with
pointers to any other type. This can also be a convenient type for the return
type of a function such asallocwhose result is then assignment compatible
with any pointer.

The volatile Type Modifier

The type modifievolatile specifies that a particular variable’s value may
change from one read to another or following a write. An obvious example of
such a "variable"is an I/O port in an embedded system.vdlatle type

modifier informs the compiler of this behavior so that the compiler can avoid
performing optimizations which assume that variables’ contents are not
changed unexpectedly. (Refer to the "Effectalétile Data on Peephole
Optimizations" section in the "Optimizations" chapter; also, refer to "The
volatile Type Modifier" section in the "Embedded Systems Considerations"
chapter for examples of its use.)

49

Chapter 2: C Compilation Overview

ANSI Extensions to C

The const Type Modifier

An object declared with theonsttype modifier tells the compiler that the
object cannot bessigned to, in@mented, or decremented; statements which
attempt to do so will causerers. Pointers tgonststorage cannot be
assigned to pointers twn-conststorage. Objects declared with ttonst

type modifier can be accessed, but they cannot be written to. An object
declared with theonsttype modifier, which hastatic storage class, is placed
in the CONST segment (see the "# pragma SEGMENT" section in the
"Embedded Systems Considerations" chapter). Some examples of how the
consttype modifier is used follow.

static const char message[][7] = {
"First ",

"Second",
"Third "

¥

constchar *cnst_chr_ptr; /* The pointer may be modified, */
/* but that which it pointsto ~ */
/* may not. */

char *const ptr; /* The pointer may not be modified,*/
/* but that which it points to may.*/

const char *const ~ ptr; /* Neither the pointer nor that */
/* which it points to may be */
/* modified. */

50

Chapter 2: C Compilation Overview
ANSI Extensions to C

Translation Limits

The ANSI C Standard has set standard translation limits which must be met or
exceeded by conforming implementations. The followingntisets or exceeds
all such limits put forth by the standard.

» Approximately 50 nesting levels in compound etagénts, iteration
control structures, and selection control structures.

* Unlimited levels of nesting in preprocessor conditional compilation
blocks.

» Approximatelyl00 pointer, array, and function declarators modifying a
basic type in a declaration.

» Limited to 128 levels of expression nesting.

* There are 255 significant case-sensitive characters in an internal identifier.
* There are 255 significant case-sensitive characters in a maare.n

» There are 30 significant case-sensitive characters in an external identifier.
« Limited to 262 bytes of local variables in one function block.

* Unlimited simultaneous macro definitions.

« Limited to 2%-2 bytes of parameters in function definition and call.

* Limited to 127 paameters in pnerocessor macro.

» Limited to 1024 characters in a logicaksce line.

e 1023 charactersin a single string literal (1024 including a trailing null
character). There is no limit on the size of string made from adjacent
string literals.

» A single object may be as large 82 bytes in size.
* Unlimited nesting levels of include files.
* Unlimited number of cases in a switch statement.

» Size of a switch statement body is limited t8a bytes of generated code.

51

Chapter 2: C Compilation Overview
ANSI Extensions to C

52

Chapter 3: Internal Data Representation

Internal Data Representation

How arithmetic and derived data types (arrays, pointers, structures, etc.) are
represented in memory.

53

Chapter 3: Internal Data Representation
Arithmetic Data Types

This chapter does not describe how to use data types in your programs. Refer
to The C Programming Languafer information such as escape sequences,
printf conversions, and declaration syntax.

Arithmetic Data Types
The arithmetic data types are listed in the following table:

Table 3-1. Arithmetic Data Types

Type # of Bits Range of Values (Signed) (Unsigned)
char 8 —128 to 127 0 to 255
short 16 —-32768 to 32767 0 to 65535
int 16 —-32768 to 32767 0 to 65535
long 32 —2147483648 to 2147483647 0 to 4294967295
float 32 +/-1.18 x15%t0 + /- 3.4 x 18°
double 64 +/-2.23x 1880 + /- 1.8 x 18%8

The integral data typeslfar, short, int, andlong) are signed by default;
however, they may be used in combination withuhsignedkeyword to yield
unsigned data typesiisignedby itself meansinsigned inf). All integral data
types use two’s complement representation.

Floating-Point Data Types

Floating-point data types are stored in tB&E single and double pris@mn
formats. Both formats have a sign bit field, an exponent field, and a fraction
field. The fields represent floating-point numbers in the following manner:

Floating-Point Number = <sign> 1.<fraction field> x 2(<exponent field> - bias).

Sign Bit Field. The sign bit field is the most significant bit of the
floating-point number. The sign bit is 0 for positive numbers and 1 for
negative numbers.

54

Chapter 3: Internal Data Representation
Arithmetic Data Types

Fraction Field. The fraction field contains the fractional part of a
"normalized" number. "Normalized" numbers are greater than or equal to 1
and less than 2. Since all normalized numbers are of the form
"LXXXXXXXX", the "1" becomes implicit and is not stored memory. The
bits in the fraction field are the bits to the right of the binary point, and they
represent negative powers of 2. For example:

0.011 (binary) = 2 2 42 "3 =0.25+0.125 = 0.375.

Exponent Field. The exponent field contains a biased exponent; that is, a
constant bias is subtracted from the number in the exponent field to yield the
actual exponent. (The bias makes negative exponessiiye)

If both the exponent field and the fraction field are zero, the floating-point
number is zero.

NaN. A NaN (Not a Number) is a special value which is used when the result
of an operation is undefined. For example, adding positive infinity to negative
infinity results in a NaN.

Float

Thefloat data type is stored in thEEE single preision format which is 32

bits long. The most significant bit is the sign bit, the next 8 most significant
bits are the exponent field, and themaining 23 bits are the fraction field. The
bias of the exponent I27. The range of single precision format values is from
1.18 x 10®%t0 3.4 x 188 The floating-point number is precise to 6 decimal
digits.

31 30 23 22 0

‘S ‘Exp.+ Bias | Fraction

000 0000 0 000 0000 0000 0000 0000 0000
011 1111 1000 0000 0000 0000 0000 0000
011 1111 1011 0000 0000 0000 0000 0000 = -1.375

111 1111 1111 1111 1111 1111 1111 1111 = NaN (Not a Number)

= 0.0
=10

PR OO

55

Chapter 3: Internal Data Representation
Arithmetic Data Types

Double

Thedouble data type is stored in thEEE double presion format which is

64 bits long. The most significant bit is the sign bit, the next 11 most significant
bits are the exponent field, and themaining 52 bits are the fraction field. The
bias of the exponent i923. The range of double precision format values is
from 2.23 x 10°%t0 1.8 x 16% The floating-point number is precise to 15
decimal digits.

63 62 52 51 0
S |Exp. + Bias Fraction

0 000 0000 0000 0000 0000 0000 ... 0000 0000 0000 0000 = 0.0

0 011 1111 11110000 0000 0000 .. 0000 0000 0000 0000 = 1.0

1 011 1111 11100110 0000 0000 ... 0000 0000 0000 0000 = -0.6875

1 111 1111 11111111 1111 1111 .. 1111 1111 1111 1111 =NaN

Precision of Real Number Operations

In the absence of the "generate code for the 808iwand line option, all

real number operations are accomplished by calls to the real nuaiares
(described in the "Conversion" and "Floating-Point Routines" sections of the
"Small Memory Model Run-Time Routines"and "Large Memory Model
Run-Time Routines" chapters) or to math library routines which eventually
call run-time library routines. With the "generate code for&@d&7" conmand
line option, most real number operations are performed in-line with 8087
instructions.

All of this has a subtle effect on the precision of floating-point results.

Without the 8 087. When routines are used to perform floating-point
operations, all intermediate results are truncateg#itbit precision

immediately, and no 80-bit intermediate results are carried on into subsequent
calculations. The precision of the results reflects this implementation.

With the 8087. When the "generate code for the 8087)' ¢ommand line
option is used, many intermediate results are kept with 80 bits of precision and
are passed on into subsequent operations without truncation.

The 8087 allows you to control its precisisaunding, trapping, and infinity
behaviors. You may change the behavior of the 8087 by using the
_set_fp_control()function, which is described undeifp_error in the
"Libraries" chapter.

56

Chapter 3: Internal Data Representation
Arithmetic Data Types

Characters

In addition to thechar type, the 8086/186 C compilemngports wide
(extended) characters with tivehar_t type. Theachar_t type is
implemented aansigned long Constants in the extended character set are
written with a preceedinlg modifier. Library routines which support wide
characters are described undeblenin the "Libraries" chapter.

Multi-byte characters are not supported.

If a multi-character constant (for example, ‘abc)) is encountered, the compiler
multiplies the value of the first character by 256 and adds the value of the
second character. Ifthere are remaining characters, the new value is
multiplied by 256 and the next character is added until no more characters are
left. (Some previous versions of the compiler technology simply accepted the
first character and discarded the others.)

57

Chapter 3: Internal Data Representation
Derived Data Types

Derived Data Types

The following objects are derived data types. The sizes of each data type (or
the calculation used to determine the size) are listed.

Pointers 16-bits (Smathemory model); 32-bits (Largaemory
model).

Arrays (Number of elements)*(Size of one element).

Structures Sum of the sizes of eachmber. (Members, as well as

the structure itself, may be padded for alignment.)

Unions Size of the largest member. (This member, as well as
the union itself, may be padded for alignment.)

Enum types 1 or 2 bytes depending on the constant values of the
elements.

58

Chapter 3: Internal Data Representation
Derived Data Types

Pointers

Pointers are addresses which point to stored values. Pointers occupy four bytes
(two bytes for the small memory model) and are aligned on two byte
boundaries. The following program is a simple example of how pointers are
used.

main()

int value;
int *ptr /*"ptr" is of type pointer to "int". */

value = 256;
ptr = &value; /* "ptr" = the address of the Iocatlon */
/* at which "value" is stored.

Arrays

Arrays are made up of a fixed number of elements of the same type.
Multi-dimensional arrays can be thought of as arrays of arrays (of arrays, etc.)
where each array represents a single dimension. Index values for each
dimension are used to access the elements of a multi-dimensional array.

The amount of storage allocated for an array is the sum of the space used by

all its elements. An array is aligned on the alignment boundary of its elements.
For example, ahort array with 10 elements would use 20 bytes and be aligned

on a two byte boundary.

The first element of a one-dimensional array (index equals zero) is located at
the lowest address of the storage allocated for the array. Elements of
multi-dimensional arrays are stored in row-major order (in other words, the
rightmost index changes more rapidly with succegsigenory locations).

The following program shows some simple arrays.

float fpns[10]; /* 10*4 = 40 Bytes of storage allocated */
/* at 2-byte aligned address. */
main()

int array[4][7], /*4*7*2 =56 Bytes allocated */
int i,j; /* on the stack. */

fpns[1] = 1.0;
for (i=0;i<4;i++)
for(j=0;j<7;j++)
arrayl[i][j] = 0;

59

Chapter 3: Internal Data Representation
Derived Data Types

Strings

Strings are a sequence of characters or escape sequences enclosed in double
quotes ("). Strings may be used in two distinct contexts. The firstisin C
program stagments or as intitializers of tymwhar * where they are treated as

if they are of typeconst char *. For example:

char *p, *q = "abc";
p ="xyz",

When used in such a context, the compiler places the string, together with an
additional NULL (0) termination character, in the named CONST linker
segment (named "const" by default).

The second context in which strings may be used is as initializers of arrays of
char. Ifthe initialized array is an automatic, the initialization occurs at
run-time, and the compiler places the string and NULL terminator in the
named CONST linker segment just as above. If, however, the array being
initialized is a static, the initialization occurs at load-time (or isin ROM). For
example:

constchar string[] = "abcdefghi”;

When a string is used to initialize an array, the compiler places the initialized
array in either the named DATA linker segment (if the array's type is not
"const) or in the named CONST linker segment (if the array’s typeoisst).

A terminating NULL (0) character is appended to the string only if there is
room in the declared array (or if it is "open" as above).

Note Trying to change the value of a string constant may cause unwanted side
effects. The reason for this is explained in the "Optimizations" chapter.

The compiler accepts hexadecimal escape sequences of unlimited length. The
example below s interpreted as a single hex value:

*str = "\x064f";

In order to produce the string "df", you could modify the string in the following
way:

*str = "\x064" "f";

60

Chapter 3: Internal Data Representation
Derived Data Types

Structures

Structures areamed collections of memberdr@cturemembers may be of
different types, they may be specified as bit fields, or they may even be pointers
to the structure in which they are defined (self-referential structures).

Structures may be passed asgmaeters to and retned from functions. (See
the "Stack Frame Management" section of the "Compiler Generated Asse
Code" chapter for more information on how structures are passed to and
returned from functions.)

The amount of storage allocated for a structure is the sum of the space
required by all its members, the alignment padding between members, and
padding at the end of the structure to make its size a multiple of two bytes. For
example, a structure whosembers are ehar, anint, and adouble would be
allocated 12 bytes (one byte following tttear is "wasted" to align that).

Members are located in the allocated space in the order that they are declared.

An example of a simple structure follows.

struct example { /* 12 bytes of storage allocated at 2-byte boundary. */
char «c; /* First byte of structure. */

int i; /*Begins at 3rd byte of structure. */
double d; /* Begins at 5th byte of structure. */
} var;
main()
var.c ='a’;
var.i = -1,
var.d = 1.0;

When the "byte align data" option is used, there will be no alignment padding
between members or at the end ofracture. The structure size may be other
than a multiple of two bytes.

61

Chapter 3: Internal Data Representation
Derived Data Types

struct {

ta

int

unsigned

unsigned

int

Bit Fields

Bit fields are structure or uniomembers which are defined as a number of
bits. A colon separates the length of a bit field from the declarator. Bit fields
can be signed (declared as plain integral types) or unsigned (declared as
unsignedintegral types). All integral types are allowed in bit field
declarations, but are convertedinb or unsigned int The high order bit of a
signed bit field is the sign bit.

Bit fields are packed from the high-order bits to the low-order bits in the
words of memory they occupy. Bit padding can be generated by omitting the
name from the bit field declaration. Consecutive bit fields are packed
adjacently regardless of integer boundaries. However, a bit field with a
specified width of zero will cause the following bit field to start on the riretxt
(word) boundary.

Examples of bit field declarations follow.

fl:4; /*flis a signed bit field, */
/* occupying bits 0-3 of the */

[* first word. */
/* */

:8; /* 8 bits of padding occupy */
/* bits 4-11 of the first */
/* word. */
I* */

f2:8; /* f2 occupies bits 12-15 of the */
/* first word and bits */
/* 0-3 of the second word. */
I* */

:0,3:7; /* 3 occupies bits 0-6 of */

/* the third word. */
/* The size of the structure is */
/* 6 bytes. *

62

Chapter 3: Internal Data Representation
Derived Data Types

Unions

Unions are like structures except that eamber has a zero offset from the
beginning of the union. Unions provide a way to access the semmry
locations in more than one format. A simple example of a union is shown
below.

union {

float fp_rep;
struct {
unsigned int lowbits;
unsigned int :15;
unsigned int sign: 1;
} parts
} fp_num;
main()

fp_num.fp_rep = 1.0;
if (fp_num.parts.sign == 0)
fp_num.parts.sign = 1;

Enumeration Types

Enumeration type declarations define elements of a finite set. Each element
of the enumerated type becomes a constant. The first element is equal to a
constant value of 0, the second is equal to 1, and so on. You can assign a
particular constant value to an element, and the values of the elements which
follow will increment from that value.

An enumeration type is considered to be the smallest integral type which can
represent all the values of the enumeration.

» Ifthe constant values for all elements are between -128 and + 127, the
enumeration type is allocated the same spacharsypes.

« Ifthe condition above is not true, but the constant values for all elements
are between -32768 and + 32767, the enumeration type is allocated the
same space a&hort int types.

» Ifthe constant value of any element is outside the range
-32768 to + 32767, it is arrmor.

63

Chapter 3: Internal Data Representation
Alignment Considerations

An enumtyped variable can be used in expressions wherever integral typed
variables are allowed. An enumerated constant is always of type integer. The
following program shows a simple enumerated type.

enum color {yellow, red, green, blue=8, violet} paint;

/* The elements of the enumeration type "color" equal the */
/* following constants: yellow = 0, red = 1, green = 2, */

/* blue = 8, and violet = 9. */

main()

enum color marker;
if (marker == green)

paint = marker;

marker++; /* This statement is allowed, but */
/* marker = 3 instead of "blue" */
/* which is 8. */

The values of an enumerated type are considered to be declared the moment
they are encountered in the source file. Thus it sside to have a
declaration like the following:

enum {apple, orange = apple} e;

Alignment Considerations

Variable and constant data, as opposed to executable instructions, may be
alignedor paddedby the compiler. In this contexlignedis defined to mean

that the memory allocated to the variable begins at a particular byte boundary
(e.g., an alignment of two bytes means that a variable’s absolute address is a
multiple of two);paddeds defined to mean that the size of a type mwasmded

up to guarantee that the number of bytes in that type is a multiple of two.

Arrays are aligned according to their element type’s alignment and are not
padded. Note, however, that an array’s elements may be padded (if it is an
array of structures or unions).

Structuremembers are aligned relative to the start of thecsure (and
padded if they are structures or unions) in accordance with their type.

64

Note

Chapter 3: Internal Data Representation
Alignment Considerations

Unless function prototypes are used (see the "ANSI Extensions" section in the
"C Compiler Overview" chapter), athar andshort parameters are widened to
ints when they are passed and, thus, folldvwalignment rules when they are
passed. Note that inside a called functwgr or short parameters are

reduced to their norma&har andshort size.

Alignment can be changed by using the compiler’s "byte align da@a" (
option. In the presence of this option, data is aligned at byte boundaries.

The following table summarizes the default alignment and padding of the
various data types when the "byte align data" option is not used.

If the "byte align data" option is used, alignment is always 1 and there is no
padding.

Table 3-2. Arithmetic Data Type Alignment

Data Type Alignment Padded?
char 1 N
short 2 N

int 2 N
long 2 N
pointer 2 N
float 2 N
double 2 N
struct 2 Y
union 2 Y

65

Chapter 3: Internal Data Representation
Alignment Considerations

Alignment Examples
These examples assume that the "byte align data" option is not used.

Default alignment dictates thatchar variable followed by amt variable

"‘wastes" one byte of memory between the two objects. Note that there are no
‘wasted" bytes when ehar variable is followed by an array ofiar, but one

byte is "wasted" when ehar variable is followed by a structure.

Thesizeofbytestruct declared with:

struct {char element;} bytestruct;

is two (the minimunsizeofanystruct type) and theizeofbiggerstruct
declared with:

struct {char element1;
int element2;} biggerstruct;

is four (one for elementl, one "wasted" for alignment, two for element2, and
none for padding as the size is a multiple of two).

66

Chapter 4: Compiler Generated Assembly Code

Compiler Generated Assembly Code

Description of the assembly code generated by the compiler.

67

Chapter 4: Compiler Generated Assembly Code

The compiler generates assembly code for the HP B1449 assembly macro
preprocessor (ap86) and assembleB@d. Knowing how the compiler
generates this code will help you to write assembly langraggnes that
interface with C functions.

In this chapter you will find information about the following subjects:

Assembly language symbol names

Debug directives

Stack frameghow paameters are passed to and from C functions)
Register usage

Run-time error checking

Memory model mismatch checking

Ways to include assembly language in a C source file

68

Chapter 4: Compiler Generated Assembly Code
Assembly Language Symbol Names

Assembly Language Symbol Names

The compiler prefixes characters to the names given in tle@Ce (to

prevent potential conflicts with assembler reserved words) when generating
assembly language symbols to represent addresses and stack offsets of C
variables.

Symbol Prefixes

The _ Prefix

Externs, globals, statics, and functions have an underscore (_) prefix. You can
change the prefix for external variables (externs, globals, and functions) to a
different string by using a cc8086 optiotW,-I). Refer to the on-line man

page for more information on changing this prefix character.

The S_ Prefix

Parameters and automatics have "S_" prefixed. The "S"indicates symbols that
are SET equal to stack offsets.

The L_ Prefix

The only other symbol names from thed@isce which are passed on to the
assembly code are C label names. These labels have "L_"and a unique ASCII
number prefixed to them in the generated assembly code.

See figure 4-1 for an example of how the compiler creates syrabwd s

These symbol names amet used by debuggers and emulators unless the
debuggers and emulators consume HP format absolute files. The C source
symbol names are defined using debug directives (see the following "Debug
Directives" section).

69

Chapter 4: Compiler Generated Assembly Code
Assembly Language Symbol Names

/* Assembly Symbol Name: */
I* *

float ext_var; ¥ _ext_var */
I* *
main() /¥ _main */
I* */
char auto_var; /* S_auto_var */
static int number; /* _1 number */
I* *
auto_var ='a’; I* */
goto label; I* */
label: /¥ L_2_label */
function(number); I* */
I* */
I* *
int number; /¥ _number */
I* *
function(i) /¥ _function */
inti; * S_i */
{ 1* */
i=1; I* *

} r*

Figure 4-1. Examples of Generated Symbol Names

Situations Where C Symbols are Modified

There are four cases where the compiler modifies #meers of C variables to
guarantee that they are unique in the assembly code:

1

If a parameter or automatic name exceeds 29 characters in length, then it
must be made unique since the assembler only recognizes 31 (29 + 2 for
"S_") significant characters in a symbol.

If there is a variable with the same name in a containing scope in the C
source, then a pameter or automatic name must be made unique since
both symbols must exist at the same time in the assembler (which doesn't
understand scoping).

All local statics (those declared inside a function) are made unique, since
a global static of the same name may be declared later.

External statics (those declared outside a function) are made unique if
their name exceeds 30 characters in length since the assembler only
recognizes 31 (30 + 1 for "_") significant characters in a symbol.

70

Chapter 4: Compiler Generated Assembly Code
Assembly Language Symbol Names

In all four cases, symbolmes are made unique by inserting a unique ASCII
number and an underscore between the initial underscore (or "S_") and the C
name. For example:

123 name
S 123 name

pragma ALIAS

Syntax:

pragma ALIAS Csymbolname Assemsymbolname
pragma ALIAS Csymbolname "Assemsymbolname”

This pragma allows overriding of the C compiler algorithm for converting C
source file symbolames into unique assembler symbol names (the algorithm
generally prefixesan " "or "S_"). This pragma shouldided with great care

as it may generate assembly-time errors due to conflicts between
Assemsymbolnanaand other assembly language symbols. Use the quotation
marks if theAssemsymbolnanveuld not be a valid C identifier. This pragma
should be placed before any references to the symbol.

Compiler Generated Symbols

The compiler generates assembly language labels for C loops, switch
statements, and other cangcts which require labels. Thame of the label

is related to the use of the label; for example, the label "forLoop3" might be
used to implementfor loop.

71

Chapter 4: Compiler Generated Assembly Code

Debug Directives

Debug Directives

If the "strip symbol table information” compiler command line option is not
used, the compiler generates all the HP B1449 debug directives necessary to
use debugger, emulation, and analysis tools. This debug information consists
of source file and line references, typgmes andtsucture, symbol type and
access information, and function call information. One LINE directive is
output for each C source statent to associate the generated assembly code
with the C source file line number.

Note

Stack Frame Management

In block-structured languages (C, Pascal, etc.), the stack is used to pass
parameters into and receive results from each of the blocks which make up the
program. In C, these blocks are called functions. In additiondsinmavalues

and returning results, the stack is used for a function’s local variables and to
buffer register variables. The area of the stack used by a function is called a
"stack frame". Tallustrate what makes up staclafmes and how they are
managed, one must observe what happens to the stack when a function is
called; these events are listed below and described in this section.

This section applies onlyto C function calls. Run-time libraries invoked in
compiler-generated code may use different (and more efficient) stack frame
management because theskisare not constrained by C language calling
conventions.

» Space is reserved for a structure result (if the size returned is greater than
4 bytes).

e Parameters are pushed (last is pushed first).

* A pointer to the result address is pushed (if size returned is greater than 4
bytes).

* The subroutine call is made and the return address is pushed.

» The old frame pointer is pushed.

72

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

» Space for automatics (locals) is allocated.

 The old Data Segment (register DS) is pushed and DS is loaded with the
new data segment paragraph number. (Large memory model only.)

* The old register variable (register Sl) is pushed to buffer its value.

» The complete internal state of the 8087 is push#te "generate code for
the 8087" conmand line option was used and one or more floating-point
register variables are used in the function.

» During function execution, intermediate values may be stored on the
temporarily.

* Function return values are stored in working registers or returned
indirectly through a pointer on the stack §gibly into space reserved on
the stack).

» At function exit, the 8087 state, if it was saved, isoBesd; any8087
registers which were saved are restored; register variables are restored and
locals are deallocated; and the callingtine deallocates pameters and
uses the structure result.

The general format of a stack frame is shown in figtfe An example of the
code generated for stack frame management is shown in figBire

73

Chapter 4: Compiler Generated Assembly Code

Stack Frame Management

High Address

Frame pointer (BP)

Stack pointer (SP)

Low Address

Used stack space

Reserved space for
structure result

Last parameter
O
First parameter

[segment] Result
[offset] address

[segment] Return
[offset] address

Old frame pointer
(BP)

Last local
O
First local

Buffered data
segment (DS)

Buffered register
variable (SI)

8087 register
variables

Temporaries
O

Top of stack

Absent if result is <= 4 bytes or if
result is returned through a variable.

Absent if no parameters are passed.
(Last passed parameter is pushed
first.)

Absent if size returned is < = 4 bytes.
(Address size is 2 words.)

(Address size is 2 words.)

Absent if there are no parameters or
locals. (Size is 1 word.)

Absent if function does not declare
any local (automatic) variables. (Last

declared local is first on stack.)

Absent if function does not access
DS-relative static data.

Absent if function does not use
register variables.

Present when "-f* option is usaad
8087 register variables are used

Stack changes as temporaries are
saved and used in expressions.

Figure 4-2. Stack Frame Format

74

Chapter 4: Compiler Generated Assembly Code

HPB1493-19303 8086 C Cross Compiler A.04.01 esfm.c

;MKT:@(#) B1493-19303 A.04.01 8086 C CROSS COMPILER

; Memory Model: large

$PAGEWIDTH(230)
$NOPAGING

NAME ‘"esfm"
%DEFINE(MM_CHECK_)(MM_CHECK_L)
%DEFINE(lib)(lib)
%DEFINE(SS)(SS)
%DEFINE(DS)(DS)
%DEFINE(ALIGN)(WORD)
%DEFINE(DALIGN)(WORD)
prog_esfm SEGMENT %ALIGN PUBLIC 'CODE’
%DEFINE(CodeSegment)(prog_esfm)
typedef struct {
int month,day,year;
} date;

int year = 87,

main()

O~NOURAWNEF
-~

PUBLIC _main

ASSUME CS:%CodeSegment,DS:data
_main PROC FAR
%SET(SAVE_ALL_NPX,2)

PUSH BP
MOV BP,SP
SUB SP,6
PUSH DS
MOV AX,data
MOV DS,AX

%SET(S_d,-6)

9 date d,set_date();

10

11 set_date(d,5,18,year);
SUB SP,6

PUSH 9%DS:WORD PTR _year[0]

MOV AX,18
PUSH AX

MOV AXS5 Parameters
PUSH AX pushed.

PUSH SS:WORD PTR[BPF%S_0+0+4]
PUSH SS:WORD PTR [BP+%S_d+0+2]
PUSH SS:WORD PTR [BP+%S_d+0]
MOV AX,SP
ADD AX,12
PUSH SS
PUSH AX
CALL FAR PTR _set_date
ADD SP,6+0+12+4

12 } ’
functionExit1:

Function
call.

Stack Frame Management

03May95

Space reserved for
structure result.

Structure
result address
pushed.

Stack pointer incremented
(parameters popped).

Figure 4-3. Example St ack Frame Management Code

75

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

POP DS
MOV SP,BP
POP BP
returnLabell:
RET
_main ENDP
13
14 date set_date(x,mo,da,yr)
15 date x;
16 int mo,da,yr;
17
PUBLIC _set_date
ASSUME CS:%CodeSegment,DS:NOTHING
_set_date PROC FAR
%SET(SAVE_ALL_NPX,2)

PUSH BP ~ i
MOV BP.SP Old frame pointer
SUB SP,16 pushed and
PUSH SI
%SET(S, x.10) space for locals
%SET(S_mo,16) allocated.

%SET(S_da,18)
%SET(S_yr,20)
%SET(S_i1,-16)
%SET(S_i2,-8)

;S_i3 is in register Sl.

18 double i1,i2;
19 register int i3;
20

21 x.month = mo;

MOV AX,SS:WORD PTR [BP+%S_mo+0]
MOV SS:WORD PTR [BP+%S_x+0],AX
22 x.day = da;
MOV AX,SS:WORD PTR [BP+%S_da+0]
MOV SS:WORD PTR [BP+%S_x+2],AX
23 x.year = yr,
MOV AX,SS:WORD PTR [BP+%S_yr+0]
MOV SS:WORD PTR [BP+%S_x+4],AX
24 return(x);
PUSH SS:WORD PTR [BP+%S_x+0+4]
PUSH SS:WORD PTR [BP+%S_x+0+2]
PUSH SS:WORD PTR [BP+%S_x+0] Structure
I(_:EL% DI,SS:DWORD PTR [BP+6] result
POP AX returned.
STOSW
POP AX
STOSW
POP AX
STOSW
25
functionExit2:
POP SI - -
MOV SP,BP Function exit.
POP BP
returnLabel?2:
RET
_set_date ENDP

Figure 4-3. Example St ack Frame Mgmt. Code (Cont'd)

76

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

prog_esfm ENDS
data SEGMENT %DALIGN PUBLIC

PUBLIC _year
EVEN

_year LABEL BYTE
DW 87

data ENDS

EXTRN %MM_CHECK_:BYTE
mm_check SEGMENT BYTE COMMON
DW OFFSET %MM_CHECK_
mm_check ENDS

END

Figure 4-3. Example St ack Frame Mgmt. Code (Cont'd)

Structure Results

C allows functions to return results of typteuct. Although most function
results are returned in a working register (AL, AX, DL-AX, or DX-AX),
structures greater in size than 4 bytes are returned to a location specified by
the result location pointer. The result location pointer is pushed onto the
stack after the parameters and before therreaddress.

In a C statement such agructure = f(x)", the address of the variable
"structure" may be pushed as the result location pointer, and the called
function will return its resultant structure directly inboemory reserved for
the "structure" variable.

In other statements, such as "f(x).field", space must be reserved on the
stack (prior to pushing pameters) to hold the functiotrscture result. The
address of this reserved stack space will be pushed as the result location
pointer (after the parameters and before therreaddress), and the function
will return its resultant structure into the reserved stack spHue.approach
maintains reentrancy for functions returning structures.

Parameter Passing

Parameters are pushed on the stack in right to left order as they appear in the
function call (in other words, the last passed parameter is pushed first).
Unless function prototypes are used (see the "ANSI Extensions" section in the
"C Compiler Overview' chapter), parameters of tghar are rounded up to

int when passed, and parameters of tfiigest are rounded up tdouble when
passed.

77

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

After the parameters (and, ggibly, a result address) are pushed, the function
is called. The subroutine call pushes the return address on the stack following
the parameters.

Pushing the Old Frame Pointer

Within a called function’s prolog, a PUSH BP instruction followed by a MOV
BP,SP instruction (or just a ENTER instruction) is used to save the old frame
pointer (BP) and set up the new stack frame. This occurs only if one or more
of the following conditions is true:

* The "optimize" option is off.

e The "run-time error checking"option is on.

« Automatic variables exist for the current function.
» Parameters exist for therent function.

* The current function returns a value which has a size greater than 4 bytes.
(This causes a "result address" to be placed on the stack.)

Reserving Space For 'C"Variables

After the instructions for setting up the stacknfre, any automatic variables

and any register variables that cannot &sgned to the Sl register are

allocated by decrementing the stack pointer (SP). No stack pointer
adjustment instructioniwbe generated if there are no automatic variables or
unassigned register variables. (Total local space is padded to a multiple of two
bytes.)

Pushing Data Segment (DS) Register

(Large and compact memory models only). Following the allocation of
automatics, if the memory model is "large" and the current function references
any static data, the data segment (DS) register will be pushed on the stack and
then loaded with a new segment paragraph number. This is to allowthe
DS-relative accesses within the current function to address the appropriate
static data segment. This code for setting up a new DS-relative static data
segment will never appear for the small and medivemory models, and

does not appear for the large memory model when there is no static data
associated with the current function.

78

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

Buffering Register Variable (SI)

Next, the function prolog pushes the old register variable (SI) on the stack if
Sl has been allocated for use by the function as a register variable. Also, the
compiler may use this register for an automatic regardless of whether or not it
has been declared with thegister storage class specifier (see the "Register
Usage" section which follows).

Buffering 8087 Floating Point Register Variables

The last code in the function prolog saves floating point register variables
ST(2) through ST(6). In general, it is more cost effective when saving sev
8087 registers to save the whole 8087 state instead of saving individual
registers. Therefore, if the 8087 is being used (that is, if the "generate code for
the 8087" option isn) and one or more floating point register variables are to
be used by the function then the complete 8087 internal state is saved into a
94-byte space on the stack. Thisis accomplished with an FSAWHGtien
followed by an FLDCW instruction. The FLDCW instruction is necessary to
propagate the previously set 8987 control word into the reset 8087. (The
FSAVE instruction also resets tB887.) At function epilog the internal state
of the 8087 is rasred with instructions FSTCW and FRSTOR. Here, the
FSTCW is required to propagate back any changes made 898feontrol

word while in this function.

Observe that the 8087 status word is piatpagated whe8087 register

variables are saved. This is normally not a problem, except when exceptions
are masked that are to be later unmasked and acted upon. These pending
exceptions might not be retained outside of the function where they occur.
This loss of "exceptions history" occurs only when the "generate code for the
8087" option is on and floating point register variables are used.

For interrupt routines, if the "generate code for8B87" option is on the
complete 8087 internal state is saved regardless of whether or not floating
point register variables are used. Also, the 8087 control word is not
propagated, so the interrupt routine writer must set up the control word
before using the 8087.

Accessing Parameters

Each parameter’s assembly symbol name is SET to that parameter’s offset
from the frame pointer. The value of these offsets differ from one stack model

79

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

to another. Refer to the "Stack Models" chapter for illustrations of the stack
models.

In the stack shown in figure 4-2, the offset of the firstapaeter Wl be 6

(large memory model) if the value returned is 4 bytes or less. The offset of the
first parameter W be 10 (largememory model) if the result size is greater

than 4 bytes. For example, if "p"is the first parameter passed, the compiler
may generate the following line in the assembly:

%SET(S_p,6)

Parameters are accessed by using the symbol names relative to BP. Notice that
when referencing a parameter, a percent sign (%) must precede the parameter
name. For example:

MOV SI,SS:WORD PTR [BP+%S_p+0]

Shortening Parameters

Unless function prototypes are used (see the "ANSI Extensions to C" section
in the "C Compiler Overview" chapter), parameters of tiper are widened

to int when passed. Thus, any parameters formally declared to be achigpe
must be shortened fromt. Since this shortening is defined to be by
truncation, it is acconlghed by simply using the pameter as if it were a

char. (The parameter’s offset needs no adjusting.)

Similarly, float parameters are wideneddouble when passed. Thus, any
formalfloat parameters must béartened from their passedubleform. To
avoid problems when such @aneters are optionalfl@at local variable is
allocated, and thdouble value is converted tfboat and stored in the local
variable. The formal parameter’s offset from the frame pointer is then set to
be that of the new local variable.

An example of the widening and shortening ofgraeters is shown in figure
4-4. The same example using functjpnototypes is shown in figur5.

80

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

HPB1493-19303 8086 C Cross Compiler A.04.01 parmshrt.c

EMKT:@(#) B1493-19303 A.04.01 8086 C CROSS COMPILER
; Memory Model: large

$PAGEWIDTH(230)
$NOPAGING
NAME “parmshrt"
%DEFINE(MM_CHECK_)(MM_CHECK_L)
%DEFINE(lib)(lib)
%DEFINE(SS)(SS)
%DEFINE(DS)(DS)
%DEFINE(ALIGN)(WORD)
%DEFINE(DALIGN)(WORD)
prog_parmshrt SEGMENT %ALIGN PUBLIC 'CODE’
%DEFINE(CodeSegment)(prog_parmshrt)
1 main()
2
PUBLIC _main
ASSUME CS:%CodeSegment,DS:NOTHING
_main PROC FAR
%SET(SAVE_ALL_NPX,2)

PUSH BP
MOV BP,SP
SUB SP,6

%SET(S_c,-6)
%SET(S_f,-4)
3 char c, char_funct();
4 float f, float_funct();
5
6 char_funct(c);
MOV AL,SS:BYTE PTR [BP+%S_c+0]

03May95

CBW
PUSH AX
CALL FAR PTR _char_funct
POP CX
7 float_funct(f);

LES DI,SS:DWORD PTR [BP+%S_f+0]
MOV DX,ES
XCHG AX,DI
SUB SP,8

%lib SEGMENT WORD PUBLIC 'CODFE’
EXTRN F32_TO_F64_LM:FAR

%lib ENDS

char widened to int.

CALL FARPTRF32_TO_F64 LM
CALL FAR PTR _float_funct

ADD SP,8
8
functionExit1:
MOV SP,BP
POP BP
returnLabell:
RET
_main ENDP

Figure 4-4. Widening and Shortening of

float widened to double

Parameters

81

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

9
10 char char_funct(chr)
11 char chr;
12
PUBLIC _char_funct

ASSUME CS:%CodeSegment,DS:NOTHING ;
char_funct PROC FAR int shortened to

%SET(SAVE_ALL_NPX,2) char (offset
PUSH BP ;
MOV BP.SP p_om_tg to least
%SET(S_chr,6) significant byte
13 chr ="A’;
MOV SS:BYTE PTR [BP+%S_chr+0],65 of parameter.)
14 return(chr);
MOV AL,65

15
functionExit2:
POP BP
returnLabel2:
RET
_char_funct ENDP
16
17 float float_funct(flt)
18 float fit;
19
PUBLIC _float_funct
ASSUME CS:%CodeSegment,DS:NOTHING
_float_funct PROC FAR
%SET(SAVE_ALL_NPX,2)

PUSH BP
MOV BP,SP
SUB SP4

%SET(S_flIt,-4)
%SET(S_wide_param1,6)
PUSH SS:WORD PTR [BP+%S_wide_param1+0+6]
PUSH SS:WORD PTR [BP+%S_wide_param1+0+4]
PUSH SS:WORD PTR [BP+%S_wide_param1+0+2]
PUSH SS:WORD PTR [BP+%S_wide_param1+0]
%lib SEGMENT WORD PUBLIC 'CODE’
EXTRN F64_TO_F32_LM:FAR

%lib ENDS
CALL FARPTRF64 TO F32 LM double shortened to float.

MOV SS:WORD PTR [BP+%S_{lt+0],AX
MOV SS:WORD PTR [BP+%S_flt+0+2],DX
20 flt = 1.0;
MOV SS:WORD PTR [BP+%S_flt+0],00H
MOV SS:WORD PTR [BP+%S_flt+0+2],03F80H

21 return(flt);
LES DI,SS:DWORD PTR [BP+%S_flt+0]
MOV DX,ES
XCHG AX,DI
22
functionExit3:
MOV SP,BP
POP BP
returnLabel3:
RET

_float_funct ENDP
prog_parmshrt ENDS

82

Chapter 4: Compiler Generated Assembly Code

Stack Frame Management

HPB1493-19303 8086 C Cross Compiler A.04.01 protypes.c

;MKT:@(#) B1493-19303 A.04.01 8086 C CROSS COMPILER 03May95

; Memory Model: large

$PAGEWIDTH(230)
$NOPAGING
NAME ‘"protypes"
%DEFINE(MM_CHECK_)(MM_CHECK_L)
%DEFINE(lib)(lib)
%DEFINE(SS)(SS)
%DEFINE(DS)(DS)
%DEFINE(ALIGN)(WORD)
%DEFINE(DALIGN)(WORD)
prog_protypes SEGMENT %ALIGN PUBLIC 'CODFE’
%DEFINE(CodeSegment)(prog_protypes)
1 main()
2
PUBLIC _main
ASSUME CS:%CodeSegment,DS:NOTHING
_main PROC FAR
%SET(SAVE_ALL_NPX,2)

PUSH BP
MOV BP,SP
SUB SP,6

%SET(S_c,-6)
%SET(S_f,-4)
3 char c, char_funct(char);
4 float f, float_funct(float);
5
6 char_funct(c);
MOV AL,SS:BYTE PTR [BP+%S_c+0]
PUSH AX
CALL FAR PTR _char_funct
POP CX
7 float_funct(f);
LES DI,SS:DWORD PTR [BP+%S_f+0]
PUSH ES
PUSH DI
CALL FARPTR _float_funct
ADD SP4
8
functionExit1:
MOV SP,BP
POP BP
returnLabell:
RET
_main ENDP
9

10 char char_funct(
11 char chr)

char no longer

\ widened to int.

float no longer

widened to double.

Figure 4-5. Function Prototype Parameter Passing

83

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

12 {
PUBLIC _char_funct
ASSUME CS:%CodeSegment,DS:NOTHING
_char_funct PROC FAR
%SET(SAVE_ALL_NPX,2)
PUSH BP
MOV BP,SP
%SET(S_chr,6)
13 chr ="A’;
MOV SS:BYTE PTR [BP+%S_chr+0],65
14 return(chr);
MOV AL,65
15
functionExit2:
POP BP
returnLabel2:
RET
_char_funct ENDP
16
17 float float_funct(
18 float flt)
19
PUBLIC _float_funct
ASSUME CS:%CodeSegment,DS:NOTHING
_float_funct PROC FAR
%SET(SAVE_ALL_NPX,2)
PUSH BP
MOV BP,SP
%SET(S_fIt,6)
20 flt = 1.0;
MOV SS:WORD PTR [BP+%S_flt+0],00H
MOV SS:WORD PTR [BP+%S_flt+0+2],03F80H

21 return(flt);
LES DI,SS:DWORD PTR [BP+%S_flt+0]
MOV DX,ES
XCHG AX,DI
22
functionExit3:
POP BP
returnLabel3:
RET

_float_funct ENDP
prog_protypes ENDS
EXTRN %MM_CHECK_:BYTE
mm_check SEGMENT BYTE COMMON
DW OFFSET %MM_CHECK_
mm_check ENDS
END

Figure 4-5. Function Prototype

Parameters (Cont'd)

84

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

Accessing Locals

The last local (automatic) variable declared appears first on the stack. Each
local variable’s assembly symbol name is SET to that variable’s offset from the
frame pointer. For example, if "r"is the first local declared, and there are 20
bytes of local variables, then the compiler generates the following line in the
assembly:

%SET(S_r,-20)

Local variables are accessed using the symbol name relative to BP. Notic
when referencing a local (automatic) variable, a percent sign (%) must
precede the variable name. For example:

MOV SS:WORD PTR[BP+%S_r+0],DX

Using the Stack for Temporary Storage

Code generated by the function’s body may or may not use the stack for
temporary storage of intermediate results. This temporary storage size is
dynamic through the function, but has all been removed by the time the
function exit code is executed.

Function Results

Function return values of one, two, three, or four bytes are returned in
working registers AL, AX, DL-AX, or DX-AX respectively. Results greater in
size are returned indirectly through a "result address" pointer pushed by the
callingroutine. This pointer may point to a statiemory location, an
automatic variable, or temporary space on the stack.

Function Exit

At function exit, if the 8087 state was saved, it isoesd. If the register

variable (SI) has been buffered it is popped. Ifthe data segment register (DS)
has been buffered and altered, it is popped. And finally, if there is a stack
frame, it is removed by adjusting the stack pointer past the automatics (if any)
and popping the old&me pointer back into BP. The functionumat itself

pops the return address. Thdiog routine is responsible for inementing

85

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

the stack pointer, popping the passedapeeters, and, if necessary, removing
the space reserved for structure function results. Function exit behavior may
be modified by using the pragmas described in this chapter.

86

Chapter 4: Compiler Generated Assembly Code
Register Usage

Note

Register Usage

This section applies onlyto C function calls. Run-time libraries invoked in
compiler-generated code may use other conventions understood bijitige ca
code. (See the "Run-Time Library Description” chapter.)

For the small memory and medium models, registers AX, BX, CX, DX, an

DI are reserved as working registers for use in holding intermediate value
calculations. For the large and compact memory models, the working regi
include those registers used for the small memory model and additionally
register ES. Function return values of one, two, three, or four bytes are
returned in working registers AL, AX, DL-AX, or DX-AX respectively.

Larger types are returned on the stack. Registers BP and SP are the frame
pointer and stack pointers.

For all memory models, the compiler will use the lower byte of registers AX,
BX, CX, and DX (registers AL, BL, CL, and DL) to hottiars. The compiler
also pairs up word registers in multiple combinations to create pseudo 32-bit
registers for holdingpngs,floats, and additionally, pointers when large or
compact memory model is in effect. For the small and medium memory
model, these pseudo registers are in MSW-LSW order: DX-AX, AX-BX,
CX-BX, DX-BX, AX-DI, CX-DI, and DX-DI. If the "byte align data"

compiler option is used, the register pair DL-AX is used for 24-bit data. The
large and compact memory models include those pseudo registers used by the
small memory model as well as ES-BX and ES-DI. allfmemory models

also include a 64-bit pseudo register CX-BX-DX-AX.

Register Variable Sl

Register Sl is allocated by the compiler for use as a register variable. For the
small and medium memory model this register variable may be either an
integer or a pointer; for the large and compact memory model, it can only be
an integer because a pointer will not fit.

87

Chapter 4: Compiler Generated Assembly Code
Register Usage

Using the priorities listed below, the compiler allocates one of the following
types of objects to register Sl:

1 The first variable (parameter or local) declared withister storage class.

2 Alocal non-static or function variable, or the address of a static variable,
according to frequency of occurrence of the variablefs@in the
function.

Specific use of thauto storage class prevents a local variable from becoming a
register variable.

To better understand the allocation scheme, consider the following example.
Suppose a local non-static variable appears just once in the function body. A
parameter appears twice in the function body. Which gets the register? The
local variable does because the parameter, which aplesatbian three times
has not "qualified" for consideration for frequency of occurrence.

Now let us suppose that the pareter appearstimes where n is three or
greater. Suppose the local non-static variable appedrismes. Which gets

the register? The parameter because it has "qualified" for consideration and
has a greater number of occurrences.

Passing Data

For C functions, no registers are used to explicitly passtda@alled

function. Data is passed implicitly by using segment registers (according to
the memory model) to maintain segment bases across a call boundary. The
following registers are used to explicitly pass data back to the caller: AL for
8-bit data, AX for 16-bit data, DL-AX for 24-bit data, and the DX-AX pair for
32-bit data. All other retrn data is passed back via the stack. No other
registers are used explicitly for passing data back to the caller.

The following registers mustot be corrupted by a called routine (that is, the
called routine must return with the same value sent by the caller):

* CS, DS, and SS segment registers for all four models.
» ES segment register for the small and medium memory model.
* SP, BP, and Sl registers for all fomemory models.

The compiler makes the following assumptions about segment registers, which
affect whether a register will be reloaded or assumed to contain the needed
value:

88

Chapter 4: Compiler Generated Assembly Code
Register Usage

* CSdoes not change for the small and compact memory model.

« DS, SS, and ES contain the same value and do not change for the small
and medium memory model.

* SSdoes not change for all four models.

8087 Registers

When using the "generate code for the 8087" option the compilerse8087
registers ST(0), ST(1), and ST(7) as working registers. The remaining five
8087 registers ST(2htough ST(6) are reserved filmat anddouble register
variables.

At code startup (crtO or crtl) the 8087 is reset and its control word initialized.
The 8087 NPX stack pointer (STP) is initialized to 0. STP can be from0to 7
and determines which 8087 hardware register is actually at "top of stack".
Normally the compiler operates with STP equal to 0. When an object is to be
loaded into the 8087 the compiler may "push”the object onto the 8087 "top of
stack", causing STP to become 7. The compiler will eventyzdly"'this

value, with STP returning to 0. This "pushing”and "popping" effectively moves
objects through register ST(7).

Registers ST(0) and ST(1) are general purpose working registers and are
allowed to be either "empty" or contain a number, NaN, etc. Register ST(7) is
a special purpose working register. The compiler expects that Sil([7¢ w
"empty" except when the compiler is moving data through it. It is imperative
that ST(7) be "empty" following in-line assembly code, or an 8087 "illegal
operation" exception may occur. It is also required that in-line assembly code
end with the 8087 NP X stack pointer (STP) in its original statemally 0).

In-line assembly code may leave registers ST(0) and ST(1) in any state.

89

Chapter 4: Compiler Generated Assembly Code
Run-Time Error Checking

Run-Time Error Checking

Specifying the "generate run-time error checking) option causes the
compiler to generate code for the following types of additional run-time error
checking:

» Dereferences of all NULL pointers and uninitialized automatic pointers
are detected and reported. (Dereferencing is also datledction; in
other words, it is access to the object to which a pointer points.) This
requires the initialization of automatic pointers at run-time with a value
(-1) indicating they are uninitialized. Note that static variables are not
initialized to the uninitialized pointer value, because the default value for
static variables is zero.

» Arrayreferences outside declaration index bounds are detected and
reported.

The "generate run-time error checking" optiofi ewerride the "optimize"and
"strip symbol table information” options. See the on-line man pages for more
information on the compiler command line options.

Memory Model Mismatch Checking

Because the compiler supports four differer@mory models it is important

to distinguish code generated using one memory model from that generated
with the other. Program modules compiled with small memory model may not
be linked with modules compiled with large memory model. An attempt to do
so will result in a link-timeunresolved symbol" error with thenémory model
check" symbol.

Run-time libranyib routines have differentames from one memory model to
the other. Small memory model routines end with "_S", compaatory

model routines end with "_C", mediumemory model routines end with "_M",
and large memory model routines end with "_L". This guarantees that the
wrong run-time library can never be accidentally linked to the user’s code.
Many routines can be used by twmemory models; thus "_LM" routines can be
used by the large or medium memory model.

90

Chapter 4: Compiler Generated Assembly Code
Memory Model Mismatch Checking

Code from compiled libraries, suchlde andlibm, and the user’s C code is
guaranteed to be linkable only with modules compiled with the same memory
model. This memory model checking is accomplished withenfory model

check" symbol which is different for each memory model. They symbol is
MM_CHECK_S for the small memory mode¥JM_CHECK_C for compact,
MM_CHECK _M for medium, andMM_CHECK_L for large. The memory

model checking symbol adds only two bytes to the length of a program because
the data word that holds the symbol is placed in a COMMON segment.

Figure 4-6 shows the assembly code which makes an external reference t
"memory model check" symbol. This symbol is defined by the startup code
(crt0 or crtl) in the environment librargr(y). Thus, crtO (or crtl) determine
which memory model is expected to be in effect.

HPB1493-19303 8086 C Cross Compiler A.04.01 mmcheck.c

EMKT:@(#) B1493-19303 A.04.01 8086 C CROSS COMPILER 03May95
; Memory Model: large

$PAGEWIDTH(230)
$NOPAGING
NAME "mmcheck"”
%DEFINE(MM_CHECK_)(MM_CHECK_L)
%DEFINE(lib)(lib)
%DEFINE(SS)(SS)
%DEFINE(DS)(DS)
%DEFINE(ALIGN)(WORD)
%DEFINE(DALIGN)(WORD)
prog_mmcheck SEGMENT %ALIGN PUBLIC 'CODE’
%DEFINE(CodeSegment)(prog_mmcheck)
1 main()
2 {
PUBLIC _main
ASSUME CS:%CodeSegment,DS:NOTHING
_main PROC FAR
%SET(SAVE_ALL_NPX,2)
3}

functionExit1:
returnLabell:
RET
_main ENDP
prog_mmcheck ENDS
EXTRN %MM_CHECK_:BYTE
mm_check SEGMENT BYTE COMMON
DW OFFSET %MM_CHECK_
mm_check ENDS
END

Figure 4-6. Memory Model Checking

91

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

Using Assembly Language in the C Source File

The 8086/186 C compilgrovides three mechanisms to embed assembly
language instructions. Which one you choose depends on where you want the
assembly language to appear and your purpose for including the assembly
language instructions. The mechanisms are:

e # pragma ASM and# pragma END_ASM
e __asm(C_string

e #pragma FUNCTION_ENTRY "C_string",
pragma FUNCTION_EXIT "C_string", and
pragma FUNCTION_RETURN "C_string"

The compiler changes the names of C variables and functions into assembly
language symbols. If you know how the changed symbol naiiepwear in

the generated assembly code, you may easily use C variables and functions in
your embedded assembly code. (For more information on syrabwds, see

the "Symbol Names" section in this chapter.)

When you embed assembly language, all assumptions about working registers
for optimization purposes are forgotten. The register variable (SI), the frame
pointer (BP), and the stack pointer (SP) are not buffered prior to embedded
assembly language sections. You should buffer these registers ifithey w

used by your assembly code.

Optimizations do not affect your embedded assembly code.

None of these mechanisms are part of the ANSI standard, so programs which
use embedded assembly language may not be portable to other compilers.

92

Syntax:

Example

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

pragma ASM
#pragma END_ASM

#pragma ASM
(assembly language statement(s))

#pragma END_ASM

These two pragmas bracket a portion of inline assembly code. You may u

these pragmas anywhere a C statement or external declaration can occur. Place
the# pragma ASM before the beginning of your embedded assembly code and
place the# pragma END_ASMafter the code.

The assembly instructions must conform to the format and syntax required by
the HP B1449 assembler. The C compiler does not check the embedded
assembly instructions for correctness. The compiler simply passes the assembly
language statements, unchanged, to the assembler. You may, however, use the
C preprocessor to alter embedded assembly language instructions.

Figures 4-7, 4-8, and 4-9 give examples of usingitpmgma ASM/END_ASM
to embed assembly code in a C source file.

93

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

main()

printf("Starting interrupt test.\n");
#pragma ASM
INT 33 ;Interrupt handler is at 00084H.
#pragma END_ASM

printf("Ending interrupt test.\n");

#pragma ASM
interrupt_table SEGMENT AT 8 ;Locate segment at 00080H.
ORG 4 ;Org to 00084H.

DD _interrupt_handler
interrupt_table ENDS
#pragma END_ASM

#pragma INTERRUPT
static void interrupt_handler()

printf("An interrupt 33 has occurred.\n");

Figure 4-7. # pragma ASM/END_ASM Example 1

94

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

/* Example of embedded assembly language code when using large memory model. */
main()

auto intil, i2;

i1=1,
i2 = get_global();

/* Swap i1 and i2 but do it in assembly. */

#pragma ASM
MOV AX,[BP+%S_il] ;Percent needed for auto or parameter.
XCHG AX,[BP+%S_i2]
MOV [BP+%S_il1],AX

#pragma END_ASM

printf("il = %d\ni2 = %d\n", i1, i2);

#pragma SEGMENT DATA=my_data
int global_var = 1234;
#pragma SEGMENT UNDO

int get_global()
register int reg_var; /* reg_var is held in register Sl. */

#pragma ASM
PUSH DS ;Save current data segment.
MOV AX,SEG _global_var
MOV DS,AX
MOV SI,DS:WORD PTR _global_var ;Put it in reg_var.
POP DS ;Restore data segment
#pragma END_ASM

return(reg_var);

Figure 4-8. # pragma ASM/END_ASM Example 2

95

Ch

apter 4: Compiler Generated Assembly Code

Using Assembly Language in the C Source File

int *p;
inti;

m

ain()

p=&i; /*Getaddress ofi. */
I++; /* Increment i. */
printf("Using C: p = %p, i = %d\n",p,i);

/* The following lines of assembly do the same thing as the lines */

[*"p = &i;" and "i++;" in C. It illustrates the GROUP override */

/* requirements when embedding in-line assembly for small memory */
/* model. The compiler defines both %DS and %GRP to be the group */
/* name "data_const" when using small memory model. The macros */
/* could be replaced with "data_const" directly in this source but */

[* this could mean incompatibility with future releases of the ~ */

/* compiler. For large memory model %DS is defined to be just */
/*"DS"; %GRP is not defined. Because %DS is available for both */

/* memory models it can be used to write assembly code that will */

/* work for both small and large memory models. Note the "INC..." */

[* line of assembly. */

#pragma ASM
#ifdef _ SMALL_MODEL/* SMALL memory model */
MOV %DS:WORD PTR _p,OFFSET %GRP:_i
#else/* LARGE memory model */
;Compiler has set up DS register to access p and i DS-relative.
MOV DS:WORD PTR _p,OFFSET _i
MOV DS:WORD PTR _p[2],SEG _i
#endif
INC %DS:WORD PTR _i;For both small and large model.
#pragma END_ASM

printf("Using assembly: p = %p, i = %d\n",p,i);
}

Figure 4-9. # pragma ASM/END_ASM Example 3

96

Syntax:

Example

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

__asm ("C_string")

__asm("C_string")

The quotes are part of tl stringargument and the two preceding
underscores are required to meet ANSI nhame space requirements.

The__asmfunction is another way to embed assembly code. It differs from
pragma ASM/END_ASM pair in two ways:

e # pragma ASM/END_ASM brackets a section of inline assembly code. |
contrast, the assembly language instructions are contained in a "C_string"
argument to the_asmfunction.

» #pragma ASM/END_ASMmay appear either inside or outside of a
function body. Because asmis syntactically a function call, it may only
appear inside a function body just as any other function call must.

The__asmfunction has some advantages over#lpgagma ASM/END_ASM
mechanism. First, this function can be part of a macro definition which means
you may define a macro that contains embedded assembly language. The

pragma ASM/END_ASM pair cannot be used to do this. Second, for single
assembly instructions, the asmfunction is more expedient because it

requires just the function call on a single line.

The "C_string"argument is a character string containing one or more lines of
assembly code. (The quotes are part of the argument.) It must contain white
space so that when the string is output to the generated assembly code, it will
conform to the format and syntax required by the HP B1449 Assembler. The C
compiler does not check the C_string for correctness. The compiler simply
outputs the string to the assembly code.

Figure 4-10 gives an example of using thasmfunction.

97

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

/* Example of embedded assembly code when using large memory model. */

#define SAVE_DS __asm("tPUSH DS ;Save current data segment.");
#define RESTORE_DS __asm("tPOP DS ;Restore data segment");

main()
auto int i1, i2;

i1=1;
i2 = get_global();

/* Swap i1 and i2 but do it in assembly. */

/* Notice the "\t" white space that must appear in order to conform */
/* to the Assembler requirement that instructions cannot begin in */
/* column 1. Spaces or a tab character would also have worked. */
/* Notice also that there is no need to terminate the string with */

/* a newline. Also, more than one assembly line may be handled */
/* by a single __asm() function by separating the lines with a "\n".*/

__asm("tMOV AX,[BP+%S_il] ;Percent needed for auto or parameter.");
__asm("tXCHG AX,[BP+%S_i2]\n\tMOV [BP+%S_i1],AX");

printf("il = %d\ni2 = %d\n", i1, i2);

#pragma SEGMENT DATA=my_data
int global_var = 1234;
#pragma SEGMENT UNDO

int get_global()
{
register int reg_var; /* reg_var is held in register Sl. */

/* Notice the use of cpp macros to specify assembly code. */
SAVE_DS
asm("tMOV AX,SEG _global_var");
asm("\tMOV DS,AX");
__asm("tMOV SI,DS:WORD PTR _global_var ;Putitin reg_var.");
RESTORE_DS

return(reg_var);

Figure 4-10. __asm Function Embedded Assembly

98

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

#pragma F UNCTION_ENTRY,
#pragma F UNCTION_EXIT,
#pragma F UNCTION_RETURN

Syntax:
#pragma FUNCTION_ENTRY "C_string”
#pragma FUNCTION_EXIT "C_string”
#pragma FUNCTION_RETURN “C_string”

The third mechanism i pragma FUNCTION_ENTRY /EXIT /RETURN .
These pragmas are not a pair likpragma ASM/END_ASM. They may be
used independently of each other or they may be used together.

pragma FUNCTION_ENTRY may be used to insert assembly language
instructions into function entry code. Similarypragma FUNCTION_EXIT

and# pragma FUNCTION_RETURN may be used to insert assembly language
instructions into function exit code. Neithipragma ASM/END_ASM nor
the__asmfunction is able to place embedded assembly in the function entry
or exit code. The embedded code is placed as follows:

» #pragma FUNCTION_ENTRY places the embedded assembly code
immediately after the label generated from the function name. Because
the embedded assembly occurs before any function entry code, you can
modify the way a function is entered.

o # pragma FUNCTION_EXIT places the embedded assembly immediately
beforethe function return label. That is, it follows the function exit code,
but precedes the function return. (Some NOPs may appear between the
embedded assembly code and the return label.) This pragma gives you the
flexibility to control function retirn and also allows you to perform extra
instructions before function return.

e #pragma FUNCTION_RETURN places the embedded assembly
immediatelyafterthe function return label. Use this pragma if you want to
use your own function return code. For example, you might want to trap
to a debugging routine.

Remember, you may ugepragma FUNCTION_ENTRY, FUNCTION_EXIT,
andFUNCTION_RETURN by themselves, or you may use all of them together.

99

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

Example

Two limitations apply to these pragmas:

» #pragma FUNCTION_ENTRY, # pragma FUNCTION_EXIT, and
pragma FUNCTION_RETURN may only appear outside of a function
body.

» #pragma FUNCTION_ENTRY, # pragma FUNCTION_EXIT, and
pragma FUNCTION_RETURN must precede the function they are to
affect. They are in effect only for the immediately following function and
no other.

These pragmas take a "C_string"argument. (The quotes are part of the
argument and no parentheses surround the argument.) As withase

function, the "C_string" argument is a character string containing assembly
language instructions. It must contain white space and newlines ("\n") so that
when the string is output to the generated assembly code, it will conform to
the format and syntax required by the HP B1449 assembler. The C compiler
does not check the C_string for correctness. The compiler simply outputs the
string to the assembly code.

Figure 4-11 gives an example of usthgragma FUNCTION_EXIT along with

pragma INTERRUPT (discussed in the "Embedded Systems Considerations"
chapter) to cause an interrupt service routine to trap back to the operating
system instead of allowing it to terminate with an IRET instruction as it would
if # pragma INTERRUPT were used alone. When this routine enters its
function exit code, it will do the cleap of the stack and other choresin
preparation of the IRET. But because thgragma FUNCTION_EXIT code
causes the routine to trap back to the operating systerill,iewer execute

the IRET.

100

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

#pragma INTERRUPT
#pragma FUNCTION_EXIT "\tINT 2 ;Trap back to operating system."

static void interrupt_handler()
printf("An interrupt 33 has occurred.\n");

[* Interrupt routine exits via "INT 2" instead of "IRET". */

Figure 4-11. # pragma FUNCTION_EXIT

101

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

Assembly Language in Macros

To use assembly language in a macro, use themfunction. The# pragma
mechanism does not work in a macro.

When you write the macro, remember the following suggestions:
e Use__asmnot one of the pragmas.

» Do not use macro parameters in the assemly code. Thep@opessor
does not expand names inside the quotation marks.

* Use spaces and tabs (entered as "\t") to place "white space"in the assembly
code.

» Ifyou need to place more than one line of assembly language in the
macro, either use an asmstatement for each line or place a "\n" between
lines. The C preprocessoilhplace the entire macro on one line, then
the compiler will change the "\n"to a newline when generating the
assembly code.

» Be careful about changing the values of C variables (side effects) in the
macro. You may wish to include the names of such variables in the name
of the macro.

* You can examine the generated assembly code by compiling with
cc8086 -SL and looking at theO file. If you need to understand how
the C preprocessor affected the code,ac8686 -E

Assembly Language and the Small Memory Model

When writing embedded assembly code in a C source file that is expected to be
compiled using small memory model certain considerations must be made.

For small memory model the compiler places all segments containing data or
constants (data, idata, udata, heap, userstack, and const) into an assembly
language group calledhta_const.The compiler then accesses objects in the
data_constgroup "group-relative" instead of "segment-relative". For large
memory model the compiler does "segment-relative" accesses to all data and
constant objects because no segments are in a group. Objects contained in
program segments (functions, for example) are always accessed (or called)
"segment-relative", regardless of the memory model.

Figure 4-7 can be compiled using eitmeemory model. It does not contain
memory model dependent pragmas or assembly code.

102

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

Figure 4-8 can be compiled only for langemory model because it does
contain aSSEGMENT pragma and also contains memory model dependent
assembly code. If compiled with small memory modelSEGMENT pragma
would simply be warned at and ignored when encountered. However, the
assembly instructions ag®ng_global_varwould not produce functional

code. Specifically, 1) the line "MOV AX,SEG _global_var"would load the AX
register with the segment paragraph numbergiifbal_varinstead of the

group paragraph number as it should, and 2) the line "MOV SI,DS:WORD
PTR _global_var"may accesglobal_varas if it were not contained in a group
and therefore go to the wrong placerniemory.

Figure 4-9 demonstrates how to write assembly code that funcoorectly

no matter which memory model is used. At the beginning of the assembly 1ile
it produces, the compiler defines an assembly language rb&t be either
DSfor large memory model (nothing needs to be changedigtar constfor

small memory model. Thereafté,DS:can be used insteadDB§:to specify

a "segment-relative" override for large memory model and at the same time a
"group-relative" override for smathemory model. For small memory model
only, the compiler also defines another ma@mPto bedata const This

second macro allows embedded, "small memory model only" assembly code to
reference the groupame independently of thea@up rame created by the
compiler. Figure 4-9 shows its use as well.

103

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

104

Chapter 5: Optimizations

Optimizations

Description of optimizations performed by the compiler.

105

Chapter 5: Optimizations
Universal Optimizations

The 8086/186 C compiler performs many optimizations automatically; there is
also an "optimize" command line optiofD] to cause peephole optimization,
time or space optimization, and other compile-time costly optimizations. This
chapter first describes the optimizations which are always performed; next, it
describes the optimizations which occur as a result of the "optimize" command
line option.

Universal Optimizations

The 8086/186 C compiler automatically performs many optimizations on C
programs. Several of the most notable types of optimizatiorstee below
and described in this section.

» Constant Folding.
» Expression Simplification.

» Operation Simplification (involves multiplies, divides, and mods by
powers of two).

» Optimizing Expressions in a Logical Context (involves expressions which
contain logical operators).

* Loop Construct Optimization.
» Switch Statement Optimization.
» Automatic Allocation of Register Variables.

The compiler may do many specific things for each type of optimization. The
descriptions which follow contain examples to illustrate the kinds of things
which are done for each type of optimization; they do not show every specific
optimization performed by the compiler.

Note In the general examples which follo/yepresents any expressi@h,
represents any constald,represents a constant with a non-zero value, and
other operator symbols are their C equivalents.

106

Chapter 5: Optimizations
Universal Optimizations

Constant Folding

Whenever an expression contains operations made on constants, the compiler
combines the constants to form a single constant. By folding constants, the
compiler can eliminate the code which would otherwise be generated to
perform the operations. A general and specific example of constant folding is
shown below.

Cl*C2-C3/C4 g C5
i=4*3-10/2; g i= 7,

107

Chapter 5: Optimizations
Universal Optimizations

Constant Folding Across Expressions

The compiler will rearrange integer exgs®ns to fold constants.

(E1+ C1)*C2

(E1+ C1)+ (E2+ C2) g (E1+ E2)+ (C1+ C2)
(E1*C1)*(E2*C2)

(E1<< C1)*(E2*C2)

i= (x*3+ 1)*3+ 2 O i= x*9+ 5

O (EL*E2) *(C1*C2)
O (E1*C2) + (C1*C2)
O (E1*E2) * ((FY *C2)

Maintaining Order of Evaluation

Parentheses force grouping (prevent constant folding) of floating-point
expressions. The unary plus (+) operator may be used to force grouping of
arithmetic expressions. The unary plus operator may not be used to force
grouping of pointer expssions. For example:

i = x+4.141+ y+2.067 + 3.287; O i= x+ y+ 9.495;
i= x+4.141 + (y+ 2.067)+ 3.287; O i= x+ +(y+ 2.067) + 7.428;
i= x+ 4.141 + + (y+ 2.067)+ 3.287; O i= x+ +(y+ 2.067) + 7.428;

Expression Simplification

The compiler will simplify expresions, if possible, by using the basic laws,
identities, and definitions of conditional, logical, bitwise, and arithmetic
operations. Some examples of expressions which get simplified follow.

Conditional:

0?E1:E2
I0?7EL1:E2

108

Chapter 5: Optimizations
Universal Optimizations

Logical:
E &&O O 0 (unless E has side effects; then E,0)
E||O O E
El1&&'E2 O I'E1|| E2)
Bitwise:
E&O O 0 (unless E has side effects; then E,0)
E|O O E
E~ O O E
E<< 0 O E
Arithmetic:
E+0 O E
-E1-(-E2) O E2-E1
E*0 O 0 (unless E has side effects; then E,0)
E*1 O E
E/-1 O -E
E%1 g 0 (unless E has side effects; then E,0)
Operation Simplification
Multiplications (whether explicit or as a result of scaling an array index),
divisions, and mods of integral types by constants which equal powers of two
can be simplified to bitwise operations which are shorter and faster. Generally:
E *(2°) O E<< C
E /() O E>>C
E % (£) O E&(2°-1)

109

Chapter 5: Optimizations
Universal Optimizations

Optimizing Expressions in a Logical Context

When expressions containing logical operators are used in a logical context
(for example, to yield a "true" or "false" in a control flow statement test
expression), the compilerilhgenerate code which evaluates the expression
piece by piece. For example, suppose the test esiprefor anf statement is

two expressions ANDed together. The compiler generates code which
evaluates the first expression and branches out if it is "false" (if, at run-time,

the first expression is "false", the second expression will not be evaluated). The
compiler also generates code to evaluate the second expression in case the first
is "true". The code generated as a result of this optimization is smaller and
faster. Several "pseudo code" examples of optimizations on expressions in a
logical context are shown below.

if (0) goto label

if (10) goto label

if (E1 || E2) goto label O if (E1) goto label

if (E1 && E2) goto label O if ('"E1) goto skip

O (Nothing.)

O goto label

if (E2) goto label

if (E2) goto label
skip:

Loop Construct Optimization

The compiler places the evaluation of a loop construct’s test ®sipreat the

end of the loop to avoid the execution of a "goto" at each loop iteration. A
"goto"is generated to branch to the test for the first iteration. However, if the
compiler can determine that the loopl execute at least once, the "goto" can
be optimized out. Whenever the test expression becomes 'false", execution
simply "falls through".

110

Chapter 5: Optimizations
Universal Optimizations

The loop construct optimization can be generally expressed as follows.

while (E) { statements } O goto end

for (i= 0;i< 10;)
{ statements }

beginning:
{ statements }
end: if (E) goto beginning

O i=0
beginning:
{ statements }
if (i < 10) goto beginning

Switch Statement Optimization

If there is code associated with at least 25% of the cases in a switch statement,
the compiler will generate a jump table to access the code associated with each
case. Iflessthan 25% of the cases have associated code, the compiler will
generate a hybrid binary/linear search to access the cases. The linear search
can be up to four items long, otherwise a binary test is performed.

Automatic Allocation of Register Variables

Operating on variables which reside in registers is faster and more efficient
than operating on variables in memory. The 8086/186 C compiler will
automatically allocate variables to registers even in the absencereftster
storage class specifier. Note that the presence @lttoestorage class
specifier prevents this optimization. For more information on the algorithm
used by the compiler to allocate these variables, see the "Register Usage"
section in the "Compiler Generated Assembly Code" chapter.

String Coalescing

When the compiler finds identical string constants, it stores them at a single
memory location. In the following example, both stringl and string2 will point
to the same memory location containing the string "abcde":

char *stringl, *string2;
stringl = "abcde";
string2 = "abcde";

111

Chapter 5: Optimizations
Universal Optimizations

Note

Only string constants allocated by the compiler are coalesced. For example,
the following strings will not be coalesced because the user, rather than the
compiler, is allocating the storage:

char string3[8] = "abcde";
char string4[8] = "abcde";

Trying to change the value of a string constant may cause unwanted side
effects.

The compiler treats string literals as constants. Do not attempt to change the
contents of a string which has been defined as a string literal. Be especially
careful if you are using character pointers. For example, the following
statements i change the value dfothstringl and string2 to "abXde":

char *stringl, *string2;
stringl = "abcde";
string2 = "abcde";
*(stringl + 2) ='X’;

The compiler will not warn you about this.

112

1 struct test {

2 int a,\b,c,de,f

3 Ixy

4

5 main()

6

0000 PUBLIC _main

0000 ASSUME CS:prog_space,DS:data
0000 _main PROC FAR

0000

0000 1E PUSH DS

0001 B8 00 00 R MOV AX,data
0004 8E D8 MOV DS,AX

7 y=X;

0006 BA 00 00 R MOV DX,SEG _x
0009 B8 00 00 R MOV AX,OFFSET _x+0
000C 83 ECOC SUB SP,12
000F 96 XCHG AX,SI

0010 8C DB MOV BX,DS
0012 8E DA MOV DS,DX
0014 8B FC MOV DI,SP
0016 8CD1 MOV CX,SS
0018 8E C1 MOV ES,CX
001A B9 06 00 MOV CX,6
001D FC CLD

001E F3 A5 REP MOVSW
0020 8E DB MOV DS,BX
0022 8B FO MOV SIAX
0024 BA 00 00 R MOV DX,SEG _
0027 BF 0C 00 R MOV DI, OFFSET _y+0
002A 8E C2 MOV ES,DX
002C B9 06 00 MOV CX,6
002F FC CLD
0030 LO:
0030 58 POP AX
0031 AB STOSW
0032 E2FC LOOP LO

8 }

1 struct test {

2 int a,\b,c,de,f

3 Ixy

4

5 main()

6
0000 PUBLIC _main
0000 ASSUME CS:prog_time,DS:data
0000 _main PROC FAR
0000
0000 1E PUSH DS
0001 B8 00 00 R MOV AX,data
0004 8E D8 MOV DS,AX

7 y=X;

Chapter 5: Optimizations
Universal Optimizations

OPTIMIZED FOR SPACE (Default)

OPTIMIZED FOR TIME. (More byteg
used to accomplisttraicture asignment
but code executes faster.)

Figure 5-1. Example of Time vs. Space Optimization

113

Chapter 5: Optimizations

The Optimize Option

0006
0009
000C
000F
0010
0012
0014
0016
0018
001A
001D
001E
0020
0022
0024
0027
002A
002C
002E
0030
0032
0034
0037
0038
003A
003D
003F

8 }

BA 00 00
B8 00 00

83 EC0C

96

8C DB
8E DA
8B FC
8CD1
8E C1
B9 06 00
FC

F3 A5
8E DB
8B FO
BA 00 00
BF 0C 00
8E C2
8B F4
8C DA
8CD1
8E D9
B9 06 00
FC

F3 A5
83 C40C
8E DA
8B FO

R MOV DX,SEG _x
R MOV AX,OFFSET _x+0
SUB SP,12
XCHG AX,SI
MOV BX,DS
MOV DS.DX
MOV DI,SP
MOV CX,SS
MOV ES,CX
MOV CX.,6
CLD
REP MOVSW
MOV DS,BX
MOV SI,AX
MOV DX,SEG _
MOV DI, OFFSET _y+0
MOV ES,DX
MOV SI,SP
MOV DX,DS
MOV CX,SS
MOV DS.CX
MOV CX.,6
CLD
REP MOVSW
ADD SP,12
MOV DS,DX
MOV SI,AX

PPyl

Figure 5-1. Example of Time vs. Space Optimization

The Optimize Option

The "optimize" command line optior@) causes the compiler to use a more
exhaustive algorithm in an attempt to generate locally optimal code; it also
causes the compiler to run the peephole assembly code optimizer (unless the
"generate run-time error checking code" option is also specified, in which case
the "optimize" command line option isnigred).

You may find it easier to debug your code if you do not use the "optimize"
option. Optimizations may make it difficult to follow the program flow. After
the code is executing properly, use optimization to improve execution speed or
to shrink the size of the executable code.

114

Chapter 5: Optimizations
The Optimize Option

Time vs. Space Optimization

By default, the O option causes the generated code to be optimized for space.
That is, the compiler tries to generate as few bytes of code as possible (even,
occasionally, at the expense of execution speed). However, if optimizing for
time is more important (in other words, the generated code should execute as
fast as possible), you can append the "time" option to the "optimize" option
(-OT). Optimizing for time will cause the compiler to use more space if
machine cycles can be saved. The listings in figure 5-1 give an example of a
time vs. space trade-off.

Maintaining Debug Code

The compiler normally generates code which makes the resulting progra
easier to debug with an HP emulator or simulator. This debug code inclu

1 Generation of no-operation (NOP) instructions preceding all labels. This
provides unique addresses for all labels.

2 Buffering of the frame pointer on the stack at function entry and
restoration of the &me pointer at function exit, even when this is known
to be unnecessary.

When the "optimize" option is specified, this debug code is optimized out.
However, if you wish the compiler to generate debug emkperform the

other optimizations, use the "generate debug code" option with the "optimize"
option. See the on-line man pages for more information on the compiler
command line options.

115

Chapter 5: Optimizations

The Optimize Option

Peephole Optimization

The peephole optimizer, which is run when the "optimizefc@and line

option is specified, adds another pass to the compilation process. The
peephole optimizer examines the assembly language instructions generated by
the compiler and performs the optimizations described in the following
subsections.

Branch (Jump) Shortening

Perhaps the most common peephole optimization is branch shortening.
Neither the compiler (by itself) nor the assembler is capable of determining
the distance of a forward branch. Consequently, NEAR jumps with 16-bit
displacements are generated by default.

The peephole optimizer, on the other hand, is capable of determining the
distance of forward branches, and it will replace NEAR jumfrircsions with
SHORT jump instructions wherever ggible.

Tail Merging
A tail is a sequence of instructions before an unconditional jump.

When two blocks of code end in identical branches, the peephole optimizer
checks if the blocks have the same tail statements. If the blocks do have
identical tail statements, the pe®le optimizer W replace the first tail with

a "goto"the second. For example:

{tail 1}
goto label

{tail 2} (Same astail 1.)

goto label

label:

O ce

O goto sametail
O ce

O sametail:

O { tail 2}

O goto label

O ce

O label:

Tail merging can take place wherever tails anenfd, includingf-then-else
andswitch statements. The compiler does not limit the sizeitsftlaat can be
merged.

116

Chapter 5: Optimizations
The Optimize Option

If tail merging would cause an additional branch to be executed, it is not
performed when "optimize for time" is specified.

Redundant Register Load Elimination

When the peephole optimizer detects that a register is being loaded with a
value it already contains, the second load is eliminated. (Compare to
"Strength Reduction" below.)

MOV BX,DS: WORD PTR__i[0]

MOV BX,DS: WORD PTR__i[0] ; This insuction is removed.

Redundant Jump Elimination

When one jump occurs immediately after another jump, the two jumps are
combined to form a single jump. Note that this optimization is performed on
the generated assembly code, but a C code equivalent example would be the
following:

if (x==y) goto aaa,; O if (x==y) goto bbb;

aaa:goto bbb

bbb:

aaa: goto bbb;

bbb:

Unreachable Code Elimination

As compilers normally generate code, they can produce assembly instructions
which will never get executed. The pdwle optimizer can recognize
unreachable assembly instructions and remove them.

Strength Reduction

Strength reduction refers to optimizations which can be made due to the
optimizer’s ability to emember the contents of registers. For example, the
compiler may generate code to move a variable into one register, and later
generate code to move the same variable into another register. The peephole
optimizer can replace the second move with a move from the first register to
the second (which is shorter and faster). One to two bylldsevsaved by the
example strength reduction optimization shown below.

117

Chapter 5: Optimizations

The Optimize Option

MOV BX,DS: WORD PTR__i[0] O MOV BX,DS: WORD PTR__i[0]
MOV AX,DS: WORD PTR__i[0] O MOV AX,BX

Redundant Scale Calculat ion Elimination

The array indexin C must be scaled to its corresponding value in assembly
code. For example: In an array of integers, the index value must be doubled.
The peephole optimizer removes any redundant scaling. In the code shown
below, the second scaling calculation would be removed:

MOV
SHL

MOV
SHL

BX,DS: WORD PTR__i[0]

BX,1

BX,DS: WORD PTR__i[0]

BX,1

Before the second scaling calculation, the optimizer verifies that the contents
of BX and _i have not been changed between the two scaling operations.

Effect of volatile Data on Peephole Optimizations

Any function that includes wolatile declaration or which follows anglatile
declaration in a file will not have "data motion" optimizations performed on it.
Data motion optimizations include redundant load elimination, strength
reduction optimizations, and redundant scale calculation elimination.

These optimizations account for considerably less than half of the space
savings and roughly half of the speed savings that the peephole optimizer is
capable of.

Branch shortening and branch structure simplification optimizations (tail
merging, redundant jump elimination, and unreachable code elimination) are
unaffected byolatile data.

Function Entry and Exit

The-O option also affects function entry and exit code. Whenever a called
function has no parameters, no automatics, antdmsta result whose size is

118

Chapter 5: Optimizations
The Optimize Option

four bytes or less, the instructions which are used to push the old stack frame
pointer at function entry and restore thanfre pointer on exit are not
generated.

What to do when optimization causes problems

Occasionally, the peephole optimizer can make incorrect assumptions,
resulting in code that does not execute properly. Usetbem

commandline option to eliminate some of the risky optimizations (especially
common sub-expression optimizations). If the code still doesn't execute
properly, you may need to avoid tH2 optimizations.

119

Chapter 5: Optimizations
The Optimize Option

120

Chapter 6: Embedded Systems Considerations

Embedded Systems Considerations

Issues to consider when using the 8086/186 C compiler to generate code for
your target system.

121

Chapter 6: Embedded Systems Considerations
Execution Environments

Execution Environments

The compiler cannot know the design of your target system. Therefore, all
high-level functions and library routines depend on environment-dependent
libraries to supply low-level hooks into the target execution environment.

The environment-dependent routines which are supplied with the compiler
allow programs produced by the compiler to execute in an emulator. The
supplied routines also support the debugger/simulator. Use these files as
examples to create your own environment-dependent routinesxpéetthat
you will need to modify theupplied files. You must use your own knowledge
of your target system to decide what changes must be made.

122

Chapter 6: Embedded Systems Considerations
Common problems when compiling for an emulator

Common problems when compiling for an
emulator

If you plan to execute your program in an emulator environment, follow these
guidelines:

» Copyemulation configuration files.EA) from the environment directory
to a local directory prior to using.

» Use# pragma SEGMENT DATA= idata to specify the segment for
“initialized" data external declarations when using-theption (separate
initialized and uninitialized data).

Loading supplied emulation configuration files

Symptoms: In the emulator, one of the two supplied emulation .
configuration files is loaded from the directory

/usr/hp64000/env/hp<emul_envend the following error message appears:

ERROR: Could not create
/usr/hp64000/env/hp <emul_env> lioconfig.EB

Description: There are two forms of emulator configuration files. The first
form (.EA), which is supplied, is an ASCII file. The second forEB], which

is created from the ASCII file by the emulator, is a binary file. This binary file
is not portable between versions of B4000 emulators and therefore not
supplied.

When loading a configuration file, the emulator attempts to create the binary
version of the file if one does not already exist. This binaryfile is created in
the same directory as the ASCII file. The directory which contains the
supplied configuration files is not meant to be modified and is ypritdected.

In order to use the supplied configuration file, it must first be copied to a local
(writable) directory.

Using the "d" option

Symptoms: During compilationcc8086displays the following warning:

warning- Extern 'variable_name’ assumed to be in UDATA.

123

Chapter 6: Embedded Systems Considerations

Memory Models

Description: The "Separate Initialized and Uninitialized Data" optied (

causes the compiler to place static variable definitions with initializers in
segmenidata by default, and static variable definitions without initializers in
segmenudata by default. When an external declaration of a static variable is
encountered the compiler assumes the external variable is uninitialized, places
the external declaration in segmenata, and issues a warning regarding this
assumption. It is very important that if the external is instead an initialized
variable that this warning be heeded and the external declaration placed in the
proper segmentdata). To do this, place # pragma SEGMENT

DATA= idata directive before the initialized variable's external declaration

and a# pragma SEGMENT UNDOfollowing it. The second pragma merely
“undoes" the first pragma. See the "Embedded Systems" chapter for more
details on using these pragmas.

Using embedded assembly code with small memory model

Description: For the small memory model, the compiler places all data

objects in an assembly language group calktd_const When writing

embedded assembly code, group-relative accesses MUST be performed instead
of segment-relative accesses to static variables and constants. Using
segment-relative accesses can cause non-functional code to be produced.

Memory Models

Memory models determine how both segments are to be mapped into memory
and the size of pointers. The 8086/186 C compitenvides fourmemory

models, small, compact, medium, and large. 3thall memory modeises

fixed segments and 16-bit pointers. Tdoenpact memory modetovides one

or more data segments and one code segmenmE&d&im memory model

uses one or more code segments and one data segmelargeireemory
modelprovides a flexible number of non-fixed segments and 3&4xt

pointers. Throughout a program, a singlemory model must be used; code
modules compiled with different memory models cannot be linked together.

124

Chapter 6: Embedded Systems Considerations
Memory Models

Small memory model

The small memory model has tywbysicalsegments which never change. One

is a code segment (CS register does not change). The other is a combined
microprocessor stack and DS-relative static data group adledconst.(DS,

SS, and ES registers are identical and do not change.) This group contains all
the data, stack, heap, and constant type segments. This group is placed into a
single physical segment at link time. Data and constants are accessed
group-relative.

There are no ES-relative static data segments in this model. Both the function
and data pointer sizes are 16 bits. Pointer subtraction between function and
data pointers will yield unknown results.

Segment groups and classes are discussed in greater detail in your linker
manual.

Large memory model

The large memory model may have one or more code segments (CS register
may change), one independent stack segment (SS register does not change),
zero or one DS-relative static data segment for each C function (DS register
may change), and zero or more ES-relative static data segments (ES register
may change). Both function and data pointer sizes are 32 bits.

Except for comparisons between two pointers, pointer arithmetic is performed
only on the lower 16 bits (the OFFSET part of the SEGMENT:OFFSET
address). Operations to compare two pointers are performed using the
complete logical address; no translation to a physical address is done.

Functions are considered to be FAR and are called as such (except when a
static function is encountereshdthe user has specified the compiler option
which says that static functions are to be NEAR).

The last defined static data segment preceding a function is accessed
DS-relative. (Se¢ pragma SEGMENT and# pragma DS) All other static
data segments are accessed ES-relative within that function.

Note Only one static data segment can be DS-relative per function, but that
segment can be different for each function.

125

Chapter 6: Embedded Systems Considerations

Memory Models

Medium Memory Model

The medium memory model may have one or more code segments (the CS
register may change) and one data segment (the DS, SS, and ES registers are
identical and do not change). The function pointer size is 32 bits, and the data
pointer size is 16 bits.

Compact Memory Model

The compact memory model has one fixed code segment (the CS register does
not change) and one or more data segments (the DS, SS, and ES registers are
not identical and may change). The function pointer size is 16 bits, and the
data pointer size is 32 bits.

126

Chapter 6: Embedded Systems Considerations
Segment Names

Segment Names

Segment names are used by the linker/loader to Ipecagram code and data
at the addresses appropriate for the target system environment. Code
generated by the compiler is placed in relocatable program segments as
follows:

» Executable code is placed in the PROG segment (by default, named either
prog_basenamehen using the largeor medium memory modeprog
when using the small or compact memory model).

» Static variables are placed in the DATA segment (nada¢alby default).

» Constants and string literals are placed in the CONST segment (named
constby default).

When declaring external data, it is important that the declaration be plac
the segment where the data actually resides. If this is not done, a run-tim
error may occur when the wrong segment base is used fasaugan external.

All code generated by the compiler is placed in segments with the class name
"CODE". Thusthe complete name of the default PROG segment is
prog_basename/CODE

If there are multiple declarations for the same symbol within a single file, the
compiler checks that the segment in which the symbol is declared is the same
in all cases.

Segment name defaults

For large and medium memory model, the compiler allows more than one user
program segment. To fditate easy use of the compiler when user code

exceeds 64K bytes (the maximum that can be placed in a single segment), the
default PROG segment name is based, in part, on theCesfilerame. Thus,

with large and medium memory model the default PROG segment name is of
the formprog_basenameaherebasenamés the C source fileame with the
".c"suffixremoved and any illegal characters (for a segmante) changed to
underscore ().

127

Chapter 6: Embedded Systems Considerations

Segment Names

When using the small and compact memory model, the PROG segment name
is alwaysprog. Since theSEGMENT pragma is not valid for small memory

model (only one user program segment is allowed) the user cannot change this
segment name.

The DATA segment name defaultsdata. When the "separate initialized
data and uninitialized data" option is used, DATA is replaced with IDATA
and UDATA which default respectively f{data andudata.

The CONST segment name defaultsonst.

Like the PROG segment name, DATA, IDATA, UDATA, and CONST
segment namescaot be altered from their defaults when using small and
compact memory model. When using large and medium memory model, these
segment names can be changed WiS8EGMENT pragma in the C source.

pragma SEGMENT

Syntax:

#pragma SEGMENT [PROG=pname] [DATA= dname] [CONST= cname]

#pragma SEGMENT [PROG=address] [DATA= address][CONST= address]

#pragma SEGMENT [PROG=pname] [UDATA= udname] [IDATA= idname] [CONST= cname]
#pragma SEGMENT [PROG=address] [UDATA= address][IDATA= address] [CONST= address]
#pragma SEGMENT UNDO

Note

This pragma is only valid for the large, medium, and compact memory model.
It is warned and ignored if it is used with the srnaéimory model.

Description

The first form of this pragma causes the program, static data, and static
constant information to be placed in segments nggnachednameand
cnamerespectively until the ne@EGMENT pragma is encountered. The
linker also expects to find external data in these named segments.

In the second form, 20-bit physical addresses are given in place of the segment
names causing the subsequent information to be ORG'd starting at the given
address. The segment name associated with an ORG'd segment is of the form
orghexaddresswherehexaddresss the physical address of the segment. For
example, segment org00012345H is located at 0x12345.

128

Chapter 6: Embedded Systems Considerations
Segment Names

When absolute addresses are used, all information (program, data, or
constant) to be ORG'd must immediately follow the # pragma SEGMENT
line and come prior to any information (program, data, or constant) which is
output in another named or ORG'd segment. For example:

#pragma SEGMENT DATA=0x1000
inti, j, k;

const int [;

intm, n, o;

will cause an gor since constant integer "l"is output in another segment
(const) and since integers "m, n, 0" also need to be ORG'd as they are data.
Corrected this becomes:

#pragma SEGMENT DATA=0x1000
inti, j, k;

intm, n, o;

const int [;

Other cases that cause information to be put out in new segments includ
extern definitions and string literals.

The third and fourth formlisted are the same as the first two forms, but with
IDATA and UDATA substituted for DATA. These forms make sense onlyin
the presence of the "separate initialized and uninitialized data" option that
forces separation of explicitly initialized data from implicitly initialized data
(or uninitialized data with the "uninitialized data" option). Non-constant,
static data items explicitly initialized by means of a C initializer go into the
IDATA named segment. Non-constant, static data items, not explicitly
initialized by means of a C initializer, go into the UDATA named segment.

129

Chapter 6: Embedded Systems Considerations

Segment Names

Note

The absolute addresses and segment names may be intermixed for the three
different information types (program, static data, static constant) in the same
SEGMENT pragma. If the target segment is not specified for one of the
information types, then it remains unchanged.

In the absence of @S pragma, the DATA segment (or UDATA segment

when using "separate initialized and uninitialized data" option) in effect at
function entryis the default segment for DS-relative data accesses. (See below
for information on thédS pragma.)

The last form# pragma SEGMENT UNDO, "undoes"the effect of the
immediately precedinEGMENT directive. That is, it restores thame (or
address) of any segment renanfjedORG'd) in the last directive. This form is
useful at the end gfincludefiles to restore the segment environment which
existed prior to theé includefile. (Include files must contaiSBEGMENT
directives to define the segments that externs are in.)

This compiler places all code in the class CODE’. No other class names are
supported.

The SEGMENT pragma must be placed outside a function body.

pragma SEGMENT UNDOis implemented by a one-level-deep stack. That

is, only the most recelBEGMENT pragma may be "undone" or, said another
way, two# pragma SEGMENT UNDGOs in a row willnot undo twoSEGMENT
pragmas. This is of particular importance when an include file further includes
other files. Since include files will generallyrsound theirextern declarations

with aSEGMENT-SEGMENT UNDO pair, care must be takemot to put an
include inside of this pair as it will result logically in two "UNDQO"s in a row.

130

Note

Chapter 6: Embedded Systems Considerations
RAM and ROM Considerations

pragma DS

Syntax:

#pragma DS segmentName

This pragma is only valid for the large and compact memory model. It is
warned and ignored if it is used with the small and mednemory model.

Description

This pragma specifies that all subsequent functions should arrange to access
any data in segmesegmentNameather than the default of the current

DATA (or UDATA) segment ame, using DS-relative addi®ng. (See the
SEGMENT pragma regarding default segment names.) If subsequent func
access any static data in segmssgmentNameheir preambles load DS with
segmentNamand use it in accesses. The effect of this is that oD a

pragma is used, the DS-relative segment name is fixed until anidger

pragma is encountered.

RAM and ROM Considerations

This section addresses special considerations of loading your programs into
RAM and ROM environments.

The C language specifies that, without explicit initialization, statisté@cor
extern) variables will be initialized to zero. Declarator initializers allow you to
specify initial values other than zero. The following subsections discuss how
these variables are initialized in different environments.

No initialized RAM data

There is an "uninitialized data" option for the compiler which prevents
initialization to zero of all static variables which have no explicit initialization.
Normally, these static variables are specified by the C language to be
initialized to zero.

131

Chapter 6: Embedded Systems Considerations
RAM and ROM Considerations

The "uninitialized data" option also causes warning messages to be printed
whenever static initializers are used in non-constant declarations. Observe that
this option does not prevent the generation of "initialized data" when the user
explicitly initializes a static (Gtaticor extern variable. By using this option

you can verify that your program contains no variables requiring initialization.

The "uninitialized data" option cannot check for the use of a static variable
which has not been assigned a valueh@igh the compiler generates
warnings occasionally), so make sure your programs do not assume an
initialized value.

RAM data initialized from mass storage

Programs executed in operating systems, in emulation environments, or in
simulation environments have a "load time" where initialization can occur.
The initial values, or default values of zero, for static variables are therefore
written to RAM at load time.

To facilitate optimal load time initialization of static data, anoceand line
option has been provided to separate explicitly initialized data from
uninitialized data (or data initialized to zero by default) into differemmhed
segments. By default, these segments are néfatdandudata, but these
names can be changed by usingragma SEGMENT (see above).

The value of this "separate initialized and uninitialized data" option is that it
allows the loader to load initialized static datatiguouslynto RAM from
theidata segment. Also, locations in thielata segment can be set to zero in
an efficient, contiguous manner, if uninitialized data is to be given default
initialization.

The use of the "separate initialized from uninitialized" option together with
the "uninitialized data" option (described above) supports emulation of an
environment with a load time (for initializing explicitly initialized static data)
which does not initialize uninitialized data to zero. When used together, the
compiler does not warn on explicit initializations of non-constant static data,
but places such data in segmatata (by default). Static data which is not
explicitly initialized is reserved space in segmedata (by default), but is not
initialized to zero at emulation/simulation load time.

132

Chapter 6: Embedded Systems Considerations
RAM and ROM Considerations

RAM data initialized from ROM

Unlike environments with mass storage, such as in operating systems or
emulators, embedded environments have no "load time" and therefore cannot
have load time initialization. As an example, when a target system is powered
up, the contents of RAM data locations are not defined. However, the C
language allows for a "prior to execution" initialization of static variables. To
accomplish this initialization, thgrogram’s start-up coderO or crtl) can

invoke a run time routine_(nitdata()) to copy initial value data from ROM to

RAM for these variables. The "initial value data" ROM tables which

_initdata() reads are placed in a special series of segments. These segments are
named??DATAL, ??DATAZ2, etc. in segment cla8INIT. The segment class is

used when referencing the segments in the linker command file. The number

of segments actually used depends on how much space is needed for the tables.

The default linker command files which are shipped with the compiler are
configured such that the "initial value data"tables are not constructed and
run time initialization of static variables is not performed. Only minor
modification of the linker command file is needed for the tables to be built
the linker and theinitdata() routine to be called frorortO (or crtl).

Where to load constants

Symbols declared with th@nsttype modifier are considered to be ROM
locations and are initialized by definition (small memory model differs in this
regard, see the next subsection for more detail). For RAM/ROM embedded
systems, both program and constantkultimately reside in ROM and
therefore the default segmemi®g andconstcontain ROMable information.

In contrast, segments which hold program variables are not ROMable, but
instead must be placed in RAM.

RAM and ROM for small memory model

With the small memory model, constants will be placed in a segnaeané¢ah

const, and static data will be placed in a segmerhaddata (idata or udata if

the "separate initialized and uninitialized data" option is on). These four
segmentsdqonst data, idata, udata) plus the stack and heap segments
(userstack heap) are placed by the compiler in a grougmmeddata_const

The total size of this group, after linking, must be no more than 64K bytes; all
segments in the group are linked to become a single physical segment.
Therefore, although it is sible to position theonstsegment to be placed in

133

Chapter 6: Embedded Systems Considerations
Placement of External Declarations

ROM, there must be RAM nearbyin the address space to hold the other
non-constant segments in the group. If the embedded environment is such that
RAM and ROM are are too distant (sizedata_constvould become greater

than 64K bytes) then segmesunstmust be placed in RAM and initialized at
either load time, if it exists, or at run time. Initialization of constants in RAM

is done identically to that for "initialized data"; the assembly code produced by
the compiler for allocating a constant is the same as that for allocating an
“initialized data" variable.

In summary, for small memory model, constants can be placed in ROM if
there is RAM nearbyto hold data. Otherwise constants must be placed in
RAM, along with the data, and then initialized at either load time (emulator,
simulator, or operating system environment) or at run time (embedded
environment).

Placement of External Declarations

The compiler expects that all external data or constant declarations be
explicitly placed in the same named segment in which the data or constant is
defined (where storage is allocated). For example, if a static vanbles

defined in one file to be in DATA segmemiy_datal, then anyextemn int x
declaration MUST be placed in segmemt_datal Failure to place external
delcarations in their correct segments may result in non-functional code. The
compiler uses this segment information to determine if it can or cannot
perform a DS-relative access on a given variable or constant.

With small memory model, because the segment names are predefined and not
alterable by the user, externals are handled properly without the use of
SEGMENT pragmas.

Care must be taken when declaring external, initialized data when the
"separate initialized and uninitialized data" option is in effect under large
memory model. With this option in effect, initialized data definitions will be
placed in segmerndata by default (hna(SEGMENT pragma). However, with
this same option, all external data declarations will be placed in segieat
by default. The compiler cannot know whether an external variable is
initialized or uninitialized and therefore assumes it to be uninitialized and
chooses the UDATA default segmeragme (data). The compiler warns

134

Chapter 6: Embedded Systems Considerations
Placement of External Declarations

when it makes this assumption. But because this assumption is wrong
(external initialized variables are reallyidata), incorrect code i result.

It is imperative that when using the "separate initialized and uninitialized
data" option all external declarations of initialized data be placed in the
correct segment as shown in the following example. Note that DATA must be
used, instead of IDATA or UDATA, to tell the compiler where an external is

located.
File: main.c
#pragma SEGMENT DATA=idata
extern int abc; /* Tell compiler "abc" is in segment "idata". */

#pragma SEGMENT UNDO

#pragma SEGMENT DATA=udata
extern int def; /* Tell compiler "def" is in segment "udata". */
#pragma SEGMENT UNDO

main()
abc++;
def = abc;
}
File: ext_data.c
int abc=123; /* "abc" is allocated space in segment "idata". */
int def; /* "def" is allocated space in segment "udata". */

135

Chapter 6: Embedded Systems Considerations
The "volatile” Type Modifier

The 'volatile" Type Modifier

Thevolatile type modifier is used in declarations to specify that an object’s
value may change in ways unknown to the compilerolatile type modifier
makes the compiler access an object literally, as specified in C statements.
Literal interpretations of C staments can be iportant in programs which

are closely tied to hardware such as memory mapped I/O devices or device
drivers. Thevolatile type modifier is necessary because optimizations can take
short-cuts, using methods which differ from the literal interpretation but
which yield the same result.

The listings shown in figure 6-1 give an example of the effect given by the
volatile type modifier. The top listing shows code in which the assignment of
“ijo_port"to "secondValue" has been optimized into a "MOV AX,SI"
instruction which does not actually read "io_port" (whose value may have
changed since its assignment to 'firstValue"). The bottom listing shows the
“ijo_port" variable declared with thlatile type modifier. Notice that the
assignment of "ioport"to "secondValue" does not get optimized.

For the user who wants a controlled way of toggling an address line, it is
guaranteed that a simple assignment Yolatile variable which has a size
equal to the data bus width of the target procesfibcause exactly one write.

An access of such a variable will cause exactly one read. For example:
volatile char *p = (char *) 0x12340005; /* 0x12340005 is logical address of
1/0 port. 0x12345 is physical

address of 1/0 port. */
main()

n=0; / Exactly one write to address 0x12345. */
p; / Exactly one read of address 0x12345. */

A pointer-tovolatile cannot be ssigned to a pointer-tnen-olatile without a
cast.

Note If the "byte align data" option is oshort andint variables may be accessed
with two reads or writes instead of just one.

136

Chapter 6: Embedded Systems Considerations
The "volatile” Type Modifier

1 intio_port;
2
3 main()
4

PUBLIC _main

ASSUME CS:%CodeSegment,DS:data
_main PROC FAR
%SET(SAVE_ALL_NPX,2)

PUSH BP
MOV BP,SP
SUB SP4
PUSH DS
MOV AX,data
MOV DS,AX
PUSH SI

;S_firstValue is in register Sl.
%SET(S_secondValue,-4)
%SET(S_tmp,-2)

5 int firstValue, secondValue, tmp;

6
7 firstValue = io_port; OPTIMIZATION
MOV SI,.%DS:WORD PTR _io_port[0] PERFORMED
8 secondValue = io_port;

MOV AX,SI —

MOV SS:WORD PTR [BP+%S_secondValue+0],AX
9 tmp = firstValue;

MOV SS:WORD PTR [BP+%S_tmp+0],SlI
10 }

1 volatile intio_port;
2
3 main()

PUBLIC _main

ASSUME CS:%CodeSegment,DS:data
_main PROC FAR
%SET(SAVE_ALL_NPX,2)

PUSH BP
MOV BP,SP
SUB SP4
PUSH DS
MOV AX,data
MOV DS,AX
PUSH SI

;S_firstValue is in register Sl.
%SET(S_secondValue,-4)
%SET(S_tmp,-2)

5 int firstValue, secondValue, tmp;

NO OPTIMIZATION

6
7 firstValue = io_port;

MOV SI,%DS:WORD PTR _io_port[0] PERFORMED
8 secondValue = io_port;

MOV AX,%DS:WORD PTR _io_port[0]

MOV SS:WORD PTR [BP+%S_secondValue+0],AX
9 tmp = firstValue;

MOV SS:WORD PTR [BP+%S_tmp+0],SlI
10 }

Figure 6-1. 'volatile" Type Modifier Example

137

Chapter 6: Embedded Systems Considerations

Reentrant Code

Reentrant Code

Reentrant code is code that can be interrupted during its execution and
re-invoked by subsequent calls any number of timeso#reentrant routine
might, for example, operate on static data or external variables; if this routine
is interrupted and called from somewhere else, the data it was originally
operating on might be destroyed. Interrupt handlers and other routines which
may be interrupted and called again must be reentrant.

The 8086/186 C compiler generates reentrant code.

Nonreentrant library routines

Most of the library routines which have been shipped with the compiler are
reentrant. However, some of the libraries are not reentrant; they are listed
below.

Table 6-1. Nonreentrant Library Routines

assert free malloc rewind
atexit freopen open scanf
calloc fscanf printf setbuf
close fseek putc setvbuf
fclose fsetpos putchar srand
fflush ftell puts strtok
fgetc fwrite rand strtol
fgetpos getc read ungetc
fgets getchar realloc unlink
fopen gets remove viprintf
fprintf Iseek vprintf
fputc write
fputs

fread

Nonreentrant routines should not be called from interrupt handlers or other
reentrant routines.

Some libraries use the global symleaho. Note that the value efrno can be
overwritten in a multitasking or reentrant environment.

138

Chapter 6: Embedded Systems Considerations
Implementing Functions as Interrupt Routines

#pragma INTERRUPT

void int_routine()

Implementing Functions as Interrupt Routines

Interrupt routines are not intended to return values. Therefore, the type
specifiervoid must be used to declare functions which you wish to implement
as interrupt routines. THBITERRUPT pragma is used to specify that a
function should be implemented as an interrupt routine.

#pragma INTERRUPT

This pragma specifies that the next encountered function be implemented as
an interrupt routine. Thismeans that all working registers are saved at
function entry (plus any register variables which have been allocated), no
parameter pssing or refirned result is allowed, and a return from interrupt is
generated at the return point.

If you are using assembly language code, remember that registers which
not used by the compiler as working registers or as register variablestare
saved at function entry. See page 87 for a list of the compiler’s working
registers.

Note that only the next encountered function is affected--not subsequent
functions.

TheINTERRUPT pragma may be used any place a C external declaration may.
An example of a function implemented as an interrupt routine is shown below.

Loading the vector address

Using theINTERRUPT pragma will cause all registers to be pushed onto the
stack upon function entry, and a return from interrupt instruction is generated
for function exit. However, you must make sure that the address of the
function is loaded into the vector table. For example, integer divide-by-zero
interrupts are handled by an environment-dependent file which is
automatically linked in. Its sourcéiy_by 0.9 contains a vector table which

may be modified to contain the address of your interrupt handler written in C.

139

Chapter 6: Embedded Systems Considerations
Eliminating I/O

In your own target system, ititlhbe easiest to implemenbwur vector table in
C. For example, if you had implemented one routine totally in assembly
language and named it "_asm_irdutine", you could declare your vector table
and initialize it with:

extern void asm_int_routine();

#pragma SEGMENT DATA=0x00

void (*vectorTable[])() ={. . ., asm_int_routine, . . .,
int_routine, . . .}

#pragma SEGMENT UNDO
#pragma INTERRUPT

void int_routine() {

Note When using small memory model, the vector table must be coded in assembly
in order to specify both the segments and offsets of the interrupt handlers. See
the figure in the "Compiler Generated Assembly Code" chapter for an example.

Eliminating 1/0

Your embedded system may well have no file I/O cdjppblf this is the case,

you can specify a linker command file which avoids the overhead of initializing
emulation simulated 1/O buffers fetdin stdout andstdert. See the

description of cc8086 in the on-line man page.

140

Chapter 7: Libraries

Libraries

Descriptions of the run-time and support libraries.

141

Chapter 7: Libraries

Four varieties of libraries are provided with #@86/186 C compiler. Each of
these libraries comes in four versions: smamory model, compact memory
model, medium memory model, and large memory model. Four versions are
provided because you cannot nmemory models within a program. All code
must be compiled and linked with the same memory model option.

A check is done at link-time to ensure that all libraries and user-written code
have been compiled using the same memory model. This feature eliminates
code defects due to mixing the memory models. These defects could be stack
misalignment, use of garbage data, and incompatibility of code or data sizes.
These code defects would be very hard to find.

A separate version of the math library is provided for use witlBO8&. The
cc80186 compiler shares the cc8086 libraries.

The four varieties of libraries are:

» Environment libraries which contain environment-dependent routines,
such a=xit(), open() sbrk(), etc. See the "Environment Dependent
Routines" chapter for full details.

* Run-time libraries which contain routines required to do real number
arithmetic, initializations, run-time debug checks, etc.

e Support libraries which contain C functions such fapen() getchar()
malloc(), printf(), etc.

« Math libraries which contain C functions such eg(), floor(), sin(), etc.
A group of.h include files are also provided for use with the various libraries.

The names of the various libraries and the segment names used to locate them
by the linker are given below. The names of the libraries foratenriemory

models are the same, but the directories where they reside on your computer
are different.

142

Table 7-1. Library Names

Chapter 7: Libraries

Library Library Large Memory Model Small Memory Model
Name Segment (PROG, DATA) Segment (PROG, DATA)
Environment env.a env/CODE, envdata, prog/CODE, data,
userstack, heap userstack, heap
Run-time lib.a lib/CODE, libdata prog/CODE, data
Run-time [ib87.a lib/CODE, libdata prog/CODE, data
(8087)
Support libc.a libc/CODE, libcdata prog/lCODE, data
Math libm.a libm/CODE prog/CODE
Math (8087) libm87.a libm/CODE prog/CODE

143

Chapter 7: Libraries

Run-Time Library Routines

The run-time librarylib.a or lib87.a, contains routines used at run-time by

the compiler-generated code. The calls to tliea¢ines are placed in the
assembly code file by the compiler in place of generated assembly code (in-line
code). The reasons for using library calls instead of generating in-line code
vary from conserving space to minimizing repetition of in-line code to
maintenance considerations (the same reasons C functions are used).

The run-time libraries may be called from compiler-generated code and
assembly code (including embedded assembly code within the C source). Also,
it should be pssible to replace any or most of the librewytines with your

own routines.

The names of allun-time library routines end in _S for smadémory model
libraries, _C for compact memory model libraries, _M for medium memory
model libraries, and _L for large memory model libraries. This is to guarantee
that a library routine from onmemory model will never be accidentally linked
to a call for the other memory model.

The names of allun-time library routines end in _SC for small and compact
memory model libraries, and in _LM for large and medium memory model
libraries.

See appendices "Small Memory Model Run-time Routines" and "Large
Memory Model Run-Time Routines" for descriptions of the interface and
functionality of all run-time library routines.

144

Chapter 7: Libraries

Support Library and Math Library Routines

In general, the implementation of the support library routines is likely to
deviate subtly from the standard due to environment dependencies. Where
possible, theaurces for these environment-dependent routines (which are
customized to HP development environments) are provided as part of the
compiler product (see the chapters describing "Environment Dependent
Routines").

Library Routines Not Provided

Several "standard" C library routines a@ provided with the8086/186 C
compiler.

* General Utilities. The < stdlib.h> functionabort, geteny andsystemare
not supported.

e Input/Output . The < stdio.h> definitionk_tmpnam, FILENAME_MAX ,
andTMP_MAX, as well as theename, tmpfile, andtmpnam routines, are
not supported.

» Signal Handling. The < signal.h> routines are not provided because of
their exreme envonment dependencies.

» Date and Time The <time.h> routines are not provided because of their
extreme envonment dependencies.

145

Chapter 7: Libraries

Include (Header) Files

The following is a list of include files which are shipped with the compiler:
assert.h Defines the macrassert

ctype.h Defines the "character classification" macros (e.g.,
isalnum, isalpha, etc.).

errno.h Declaresrrno and macros used to test errno.

float.h Describes the IEEE single- and double-fsien
floating-point representations and contains definitions
of the limiting values of floating-point types.

fp_control.h Declares the floating-point error functions. This
header file also defines the macros which can be used as
arguments to theset_fp_controlfunction, or to check
the return value of theget fp_statusfunction.

limits.h Contains definitions of the limiting values for integral
types.
locale.h Declares thesetlocaleandlocaleconvfunctions and

defines thdconv structure. Also defines the categories
which the functions can change.

math.h Declares the standard math library routines and
HUGE_VAL .

memory.h Declaresbrk and_getmem

setjmp.h Defines thgmp_buf type and declares tlsetjimp and
longjmp functions.

simio.h Declares the simulated 1/0 functions and companion
macros.

stdarg.h Provides theva_listtype and the macros which are used

to access variable-length argument ligés,start,
va_arg, andva_end For a description of the variable

146

Chapter 7: Libraries

argument list macros, see the entry for "va_list" in this
chapter.

stddef.h Defines theptrdiff_t , size_t andwchar_t types and the
NULL null pointer constant. This header file also
defines theoffsetof macro.

stdio.h Declares all the functions that handle input and output.
This header file also defines tRLE type, buffering
macros, file positioning macros, the maximum number
of open files, and buffer size macros.

stdlib.h Defines the typediv_t andldiv_t, and also the macros
EXIT_SUCCESS EXIT_FAILURE ,RAND_MAX, and
MB_CUR_MAX. This header file also declares standard
library functions.

string.h Declares the character string and memory operations.

147

Chapter 7: Libraries

List of All Library Routines

The following table lists all of the librarputines shipped with this compiler.

An asterisk (*) in thdndex column means that you can find a description of
the routine in this manual by looking in the index.

The routines not marked with an asterisk are not described in this manual.
These routines are run-time routines or subroutines used by the libraries. You
should not use these undocumented routines in your programs because they
are likely to be changed or even deleted in future versions of the compiler.

Index Definition name Library Index Definition name Library
+» | ADD_F32A size lib + |DIV_F64A_size lib
lib87 lib87
» | ADD_F32B size lib » |DIV_F64B size lib
lib87 lib87
» | ADD_F32C size lib + |DIV_F64C size lib
lib87 lib87
» | ADD_F64A size lib x» |DIV_I32A_size lib
lib87 lib87
» | ADD_F64B size lib + |DIV_I32B_size lib
lib87 lib87
» | ADD_F64C size lib x» |DIV_UI32A_size lib
lib87 lib87
* DEC_F32size lib + |DIV_UI32B_size lib
lib87 lib87
* DEC_F64 size lib DPADD_size lib
lib87 lib87
* DIV_F32A_ size lib DPDIV_size lib
lib87 lib87
* DIV_F32B size lib DPMUL_size lib
lib87 lib87
* DIV_F32C size lib DPRDIV_size lib
lib87 lib87

148

Chapter 7: Libraries

Index Definition name Library Index Definition name Library

* EQUAL_F32 size lib + |FAULT_PTR size lib
lib87 lib87

* EQUAL_F64 size lib + |FAULT_UI16_size lib
lib87 lib87

Err_Handler lib + |FAULT_UI32 size lib
lib87 lib87

* F32_TO_F64size lib + |FAULT_UI8 size lib
lib87 lib87

* F32_TO_l16size lib FPADD_size lib
lib87 lib87

* F32_TO_132size lib FPDIV_size lib
lib87 lib87

* F32_TO_Ul16size lib FPMUL_size lib
lib87 lib87

* F32_TO_UI32size lib FPRDIV_size lib
lib87 lib87

* F64_TO_F32size lib x |116_TO_F32size lib
lib87 lib87

* F64_TO_l16size lib + |I116_TO_F64size lib
lib87 lib87

* F64_TO_132size lib x |I32_TO_F32size lib
lib87 lib87

* F64_TO_Ull6size lib + |I32_TO_F64size lib
lib87 lib87

* F64_TO_UI32size lib x+ |INC_F32 size lib
lib87 lib87

* FAULT_I16_size lib + |INC_F64 size lib
lib87 lib87

* FAULT_I32_size lib + |LESS_EQ_F32size lib
lib87 lib87

* FAULT_I8 size lib + |LESS_EQ_F64size lib
lib87 lib87

149

Chapter 7: Libraries

Index Definition name Library Index Definition name Library
« | LESS_F32size lib « |SUB_F32A size lib
lib87 lib87
« | LESS_F64size lib « |SUB_F32Bsize lib
lib87 lib87
L_1 10_check_loop env + |SUB_F32Csize lib
lib87
L_2 10_exit_loop env . .
x |SUB_F64A size lib
« | MOD_I32A size lib lib87
lib87 « |SUB_F64B size lib
« | MOD_I32B_size lib lib87
libg87 « |SUB_F64Csize lib
« | MOD_UI32A_size lib lib87
lib87 TOP_OF_STACK env
« | MOD_UI32B size lib ,)
ibS7 Ul16_TO_F32size lib
lib87
MONITOR_MESSAGE | env . U6 TO_Feasize ib
« | MUL_F32A_size lib lib87
lib87 « |UI32_TO_F32size lib
« | MUL_F32B_size lib lib87
lib87 « |UI32_TO_F64size lib
« | MUL_F32C size lib lib87
lib87 USER_ENTRY env
* MUL_F64A_size ::Es7 USR_STACK onv
* MUL_F64B size lib XEnv_86_except env
lib87
. | MUL_F64C size lib —TOP_OF_HEAP env
lib87 __USR_HEAP env
* MUL_I32A_size lib X
- - libg7 x | fflush libc
* MUL_132B_size lib %« |__assert libc
lib87

150

Chapter 7: Libraries

Index Definition name Library Index Definition name Library
__bufendtab env %+ |__get_fp_control lib
buf b lib87
ufsync ibc
—_ m * |__get_fp_status lib
« | _ clear_fp_status lib lib87
lib87 « |__getmem env
ctype lib
S e __hex NaN libm
__dbl_to_str libc libm87
X __hex NaNf libm
x» | __display_message env libm8&7
__doprnt libc x |__infinity libc
__doscan libc * |__init_fp lib
lib87
__err_handler lib .
libg7 % |__Initdata env
x | __error_msg env __io_bufsiz env
__exec_funcs libc __iob env
x| __exit env _lastbuf env
__exit_msg env __lconv_data libc
__filbuf libc __malloc_init libc
__findbuf libc __memccpy libc
__findiop libc x |__open_max env
__fisbuf libc __rand_seed libc
x» | __fp_control lib __readFile libc
+ | __fp_error libm __readStr libc
libm87 . I b
. x |__set_fp_contro i
x | _ fp_status lib libg7
__fp_trap env __sibuf env

151

Chapter 7: Libraries

Index Definition name Library Index Definition name Library
__smbuf env % |_calloc libc
__sobuf env « |_ceil libm

libm87

* startup env
—_ x |_clear_screen env
stdbuf env .
—_ % |_Clearerr libc
swrite libc
—_ x+ |_close env
__top_of _func_stack libc .

% |_COS libm

__wrtchk libc libm87
_ % |_cosh libm

__xflsbuf libc libm87

x | _abs libc _count env
_abs out_adrs env _data_buff env

% | _acos libm _data_ptr env

libm87 : -
. . x| _div libc
% | _asin libm
libm87 « |_errno libc
x | _atan libm
libm87 % |_exec_cmd env
% | _atan2 libm % |_exit env
libm87 i
. . * _exp 1nm
x | _atexit libc libm8s7
% | _atof libc « |_fabs libm
. b libm87
atoi ibc .

- x |_fclose libc
atol libc .

i « |_feof libc
bsearch libc :

- x |_ferror libc

152

Chapter 7: Libraries

Index Definition name Library Index Definition name Library
% | _fflush libc x |_fwrite libc
= | _fgetc libc * |_getc libc
x» | _fgetpos libc x |_getchar libc
x| _fgets libc * |_gets libc
% | _floor libm % |_initsimio env

libm87 : :
. “fmod libm x |_isalnum libc
libm87 « |_isalpha libc
fopen libc
* —oP x |_iscentrl libc
fprintf libc
o « |_isdigit libc
fputc libc
* | -P x |_Isgraph libc
fputs libc
* —P x |_islower libc
% | _fread libc . :
x |_isprint libc
x | _free libc . :
x |_ispunct libc
x | _frem libm . .
libm8s7 * |_Isspace libc
x» | _freopen libc % |_isupper libc
* _frexp libm x |_isxdigit libc
libm87 :
« | _fscanf libc » | Kl env
« | _fseek libc + | labs libc
. x| _ldexp libm
x | _fsetpos libc libm8&7
« | _ftell libc x |_ldiv libc

153

Chapter 7: Libraries

Index Definition name Library Index Definition name Library
% | _localeconv libc * |_pow libm
I i libm87
o ibm . .
* |98 libm87 * |_printf libc
» | _logl0 libm x |_putc libc
libm87 o b
. . utchar ibc
« | _longimp libc = P
uts libc
= | _lseek env =P
. sort libc
« | _malloc libc = A !
rand libc
« | _mblen libc i
: read en
% | _mbstowcs libc - v
. realloc libc
« | _mbtowc libc - !
= | _memchr libc » | femove libe
. x |_rewind libc
= | _memcmp libc
. % | _sbrk env
* | _memcpy libc
: x |_scanf libc
x | _memmove libc
. % |_setbuf libc
* | _memset libc
setjm libc
| _modf libm | SeUmp
libm87 « | _setlocale libc
open env
S « |_setvbuf libc
_open_file env . :
x |_Sin libm
« | _perror libc libm87
% |_sinh libm
%= | _pos_cursor env libm87

154

Index Definition name Library Index Definition name Library
% | _sprintf libc % |_strtok libc
x| _sqrt libm % |_strtol libc

libm87
. strtoul libc
= | _srand libc =
. * strxfrm libc
% | _sscanf libc -
: systemio_buf env
x | _Strcat libc =S¥ -
. * |_tan libm
% | _strchr libc libm8s7
% | _stremp libc % |_tanh libm
. libm87
x| _strcoll libc .
% |_tolower libc
strc libc .
A Eitihind x= |_toupper libc
strcspn libc .
A P * |_ungetc libc
* strerror libc :
- % |_unlink env
strlen libc . :
A x |_viprintf libc
strncat libc . .
A * |_vprintf libc
strncm libc . :
N P * |_vsprintf libc
strnc libc . .
* - Py _wait_for_io env
strpbrk libc :
* | P % |_wcstombs libc
strrchr libc .
i % |_wctomb libc
* | _strspn libc .
* |_write env
x | _Strstr libc
% | _strtod libc

Chapter 7: Libraries

155

Chapter 7: Libraries

Note

Support Library and Math Library Descriptions

The remainder of this chapter describes thygp®rt and math library
functions. Functions declared in thmath.h include file are found in the math
library archive filelibm.a. All other functions are found in the support
library archive filelibc.a.

Theopen, close read, write, Iseek unlink, exit, _exit, _getmem
andsbrk functions have execution environment dependencies; therefore, these
libraries are described in the "Environment-Dependent Routines" chapter.

156

Chapter 7: Libraries
abs, labs

abs, labs
Return Integer Absolute Value
Synopsis # include < stdlib.h>

int abs (inti);
long int labs (long int i);
Description Absreturns the absolute value of its integer operand.
Labsis similar toabsexcept that the argument and the returned value each

have typdong int.

Warnings In two's-complement representation, the absolute value of the negative
integer with the largest magnitude is undefined. This error is ignored.

See Also floor.

157

Chapter 7: Libraries
assert

Synopsis

Description

Diagnostics

See Also

assert

Put Diagnostics into Programs

include < assert.h>

void assert (const char *expression);

Theassertmacro puts diagnostics into programs. When it is executed, if
expressions false (equal to zero), tlssertmacro writes information about

the particular call that failed (including the text of the argument, the name of
the source file, and the source line numbethe latter are respectively the
values of the preprossing macros FILE__and__LINE_) on the standard
error file in the format shown below. It therllsdahe exitfunction.

Assertion failed: <expression>, file <_ FILE__ >, line <__LINE__ >

When the assert.h header file is included and the mM¥DEBUG is defined,
theassertmacro will be defined to do nothing. This allows you to compile
your code with or without thassertchecking by simply defining or undefining
the macraNDEBUG. Assertreturns no value.

_exit.

158

Chapter 7: Libraries
atexit

atexit

Call Function at Program Termination

Synopsis # include < stdlib.h>

int atexit (void (*func)(void));

Description Atexitwill register thefuncfunction to be called without arguments at normal
program termination. Up to 32 separate function registrations can be
performed.

Diagnostics Atexitreturns zero if the registration succeeds, or non-zero ifst fa

See Also exit.

159

Chapter 7: Libraries

bsearch
bsearch
Binary Search a Sorted Table

Synopsis # include < stdlib.h>
void *bsearch (
const void *key,
const void *base,
size_tnel, size_t size,
int (*compar)(const void *, const void *));

Description Bsearchis a binary search routine generalized from Knuth (6.2.1) Algorithm
B. It returns a pointer into a table indicating where a datum may be found.
The table must be previously sorted in increasing order according to a
provided comparison functiorKeypoints to a datum instance to be sought in
the table.Basepoints to the element at the base of the tallglis the
number of elements in the tabl€omparis the name of the comparison
function, which is called with two arguments that point to the elements being
compared. The function must return an integer less than, equal to, or greater
than zero as accordingly the first argument is to be considered less than, equal
to, or greater than the second.

Notes The pointers to the key and the element at the base of the table should be of
type pointer-to-element, and cast to type void pointer. The comparison
function need not compare every byte, so arbitrary data may be contained in
the elements in addition to the values being compared. Although declared as
void pointer type, the value returned should be cast into type
pointer-to-element.

Example The example below searches a table containing pointers to nodes consisting of

a string and its length. The table is ordered alphabetically on the string in the
node pointed to by each entry.

This code fragment reads in strings and either finds the corresponding node
and prints out the string and its length, or prints an error message.

160

See Also

Diagnostics

Bugs

#include <stdio.h>
#include <stdlib.h>

#define TABSIZE 1000

struct node { [* these are stored in the table */
char *string;
int length;
h
struct node table[TABSIZE]; /* table to be searched */
{

struct node *node_ptr, node;
int node_compare('); /* routine to compare 2 nodes */
char str_space[20]; /* space to read string into */

node.string = str_space;
while (scanf("%s", node.string) != EOF)
node_ptr = (struct node *)bsearch((void *)(&node),
(void *)table, TABSIZE,
sizeof(struct node), node_compare);
if (node_ptr '= NULL) {
(void)printf("string = %20s, length = %d\n",
node_ptr->string, node_ptr->length);
}else {
(void)printf("not found: %s\n", node.string);

| }

/* This routine compares two nodes based on an
alphabetical ordering of the string field. */

int

node_compare(nodel, node2)

struct node *nodel, *node2;

return strcmp(nodel->string, node2->string);

gsort.

Chapter 7: Libraries
bsearch

A NULL pointer is returned if the key cannot be found in the table.

A random entryis returned if more than one entry matches the selection

criteria.

161

Chapter 7: Libraries
div, Idiv

Synopsis

Description

Diagnostics

div, Idiv

Divide Functions

include < stdlib.h>
div_t div (int numer, int denom);

Idiv_t Idiv (long int numer, long int denom);

Div computes the quotient and remainder of theswim of the numerator
numerby the denominatadenom If the division is inexact, the sign of the
quotient is that of the mathematical quotient, and the magnitude of the
qguotient is the largest integer less than the magnitude of the mathematical
quotient. Ifthe result cannot be represented, the behavior is undefined.

Ldivis similar todiv except that the arguments and members of thermed
structure (which has typdiv_t) all have typdong int.

Thediv function returns a structure of tyd_t, comprising both the
qguotient and the remainder. Theusture is defined bgtdlib.h as shown
below.

typedef struct {
int quot; /* Quotient */
int rem; /* Remainder */
}div_t;

typedef struct {
long int quot; /* Quotient */
long int rem; /* Remainder */
}Idiv_t;

162

Chapter 7: Libraries

exp
exp
Exponential Functions
Synopsis # include < math.h>
double exp (double x);
Description Expreturnsg®
Diagnostics Expsetserrnoto ERANGE and return$lUGE_VAL when the correct value

would overflow, or 0 when the correct value would underflow. In addition to
ermo, bits in a global status flag or in the floating point coprocessor
floating-point status register are set when error conditions arise.

The error-handling is done by the run-timfe_error routine.

See Also _fp_error, _get_fp_status "Behavior of Math Library Functions" chapter.

163

Chapter 7: Libraries

fclose, filush
fclose, fflush
Close or Flush a Stream

Synopsis # include < stdio.h>
int fclose (FILE *stream);
int filush (FILE *stream);

Description Fclosecauses any buffered data for the namstegmto be written out, and
thestreamto be closed. Buffers allocated by the standard input/output system
are freed.

Fcloseis performed automatically for all open files upoftliog exit.

Fflush causes any buffered data for the namsteehmto be written to that file.
If the argument is NULL, then all open files are flushed. Jtneamor
streamgemain open.

Diagnostics These functions return O for success, BQF if any error (such as trying to
write to a file that has not been opened for writing) was detected.

See Also close exit, fopen, setbuf.

164

Chapter 7: Libraries
ferror, feof, clearerr

Synopsis

Description

Note

See Also

ferror, feof, clearerr

Stream Status Inquiries

include < stdio.h>
int ferror (FILE *stream);
int feof (FILE *stream);

void clearerr (FILE *stream);

Ferror returns non-zero when an 1/O error has previously occurred reading
from or writing to the namestream otherwise zero. Unless cleared by
clearer, or unless the specifstdioroutine so indicates, the error indication
lasts until the stream is closed.

Feofreturns non-zero whelBOF has previously been detected reading the
named nputstream otherwise zero.

Clearerrresets the error indicator ai@®F indicator to zero on the named
stream

These functions are implemented as macros and functions. To use a function
instead of a macrd, undefthe macro before function invocation.

open, fopen.

165

Chapter 7: Libraries
fgetpos, fseek, fsetpos, rewind, ftell

fgetpos, fseek, fsetpos, rewind, ftell

Position File Pointer

Synopsis # include < stdio.h>
int fgetpos (FILE *stream, fpos_t *pos);
int fseek (FILE *stream, long offset, int ptrname);
int fsetpos (FILE *stream, const fpos_t *pos);
long ftell (FILE *stream);

void rewind (FILE *stream);

Description Fgetposstores the current value of the file pointer ongtreamin the object
pointed to byos The value stored contains unspecified information usable
by thefsetpodunction for repositioning the stream to its position at the time
of the call to thdgetposfunction.

Fsetpossets the file pointer for thetreamto the value of the object pointed to
byposwhich is a value returned by an earlier caligetposon the same stream.

Fseeksets the position of the next input or output operation ostthkam

The new position is at the signed distanffsetbytes from the beginning, from
the current position, or from the end of the file, accordingi@amehas the
valueSEEK_SET, SEEK_CUR, or SEEK_END.

Rewind (stream is equivalent tqvoid) fseel stream , OL, SEEK_SET).

Fsetposfseek andrewindclear the end-of-file indicator and undo any effects of
theungetcfunction on the same stream. Afterfaatposfseek orrewindcall,

the next operation on an update stream may be eitpet or output.Rewind
also does an implicitlearerr call.

Ftell returns the offset of the current byte relative to the beginning of the file
associated with the nametteam

166

Chapter 7: Libraries
fgetpos, fseek, fsetpos, rewind, ftell

See Also Iseek fopen, ungetc

Diagnostics Thefgetposandfsetpodunctions return zero if successful; otherwise, they
return non-zero anermois set to a non-zero value.

Fseekreturns non-zero for improper seeks, otherwise zero. An improper seek
can be, for example, dseekdone on a file that has not been openedopan
in particular fseekmay not be used on a terminal.

Ftell returns —1 for error conditions and set®oto a non-zero value. If
either the argument titell is NULL or if the file is not open, theftell sets
errno to EBADF.

Warning In UNIX-base operating sytems, the offset returneftddyis measured in
bytes, and a program may seek to positions relative to that offset. Htrtab
to non-UNIX systems requires that an offset be usdddakdirectly. Do not
use the offset in calculations—the offset might not be measured in bytes.

167

Chapter 7: Libraries

floor, ceil, fmod, frem, fabs

Synopsis

Description

See Also

floor, ceil, fmod, frem, fabs

Floor, Ceiling, Remainder, and Absolute Value

include < math.h>

double floor (double x);

double ceil (double x);

double fmod (double x, double y);
double frem (double x, double y);
double fabs (double x);

Floor returns the largest integer (as a double-gi@es number) not greater
thanx.

Ceilreturns the smallest integer (as a double-ipi@t number) not less than

Fmodreturns the floating-pointemainder of the dision ofxbyy. NaN ifyis
zero or+ [-HUGE_VAL if x/lywould overflow; otherwise the numbgwith the
same sign ag such thak = iy + f for some integer, and [f| < |y .

Fremis the same dsmodexcept that the remainder is computed in
round-to-nearest mode, and the result may have a different sigi. tfram
example:

fmod (x, y) =x — (y*i) Where i = (int) (x/y)

frem (x, y) =x—(y*) Where i = (int) (x/y + 0.5)

fmod (5.2, 10) = 5.2 — (10*0) = 5.2
frem (5.2, 10) = 5.2 — (10*1) = -4.8

Fabsreturns the absolute valuexof x| ; ermois set whenever an exception
condition occurs.

abs, "Behavior of Math Library Functions" chapter.

168

Chapter 7: Libraries
fopen, freopen

Synopsis

Description

fopen, freopen

Open or Re-Open a Stream File

include < stdio.h>

FILE *fopen (
const char *file_name,
const char *type);

FILE *freopen (

const char *file_name,
const char *type,

FILE *stream);

Fopenopens the file named ile_nameand associatesstreamwith it.
Fopenreturns a pointer to the FILE structure associated witlstieam

File_namepoints to a character string that contains the name of the file to
opened.

Typeis a character string having one of the following values:

", rb" Open for reading.

"W, "wb" Truncate or create for writing.

"a", "ab" Append; open for writing at end of file, or create for
writing.

“r+ " 'rb+ ", "r+ b" Open for update (reading and writing).

‘Wt ", "wb+ ", "w+ b" Truncate or create for update.

a+", "ab+ " "a+ b" Append; open or create for update at end-of-file.

A character "b"in the type string signifies that the file is a binary file. In this
implementation, the presence or absence of the "b" has no effect.

169

Chapter 7: Libraries
fopen, freopen

See Also

Diagnostics

Freopensubstitutes the named file in place of the optegam The original
streamis closed, regardless of whether the open ultimately succEestspen
returns a pointer to the FILE structure associated strdam

Freopenis typically used to attach the preopemstrdamsassociated witlstdin,
stdout, andstderr to other files.

When a file is opened for update (i.e., the character "+ "is present fypthe
string), both input and output may be done on the resudtregm However,
input may not be directly followed by output unless there is an intervening call
to fflushor to one of the file positioning functiongwind fseek fsetpo$. The
same is true for following output directly with input.

When a file is opened for append (i.e., the character "a" is presenttyp¢he
string), information already present in the file cannot be overwrittseek

may be used to reposition the file pointer to any position in the file, but when
output is written to the file, the current file pointer is disregarded. Undefined
behavior will occur if the file is also opened for update and the preceding rules
for update mode are not followed.

open, fclose fseek

Fopenandfreopenreturn a NULL pointer ifle-namecannot be accessed, if
there are too many open files, or if the arguments are incorrect.

170

Chapter 7: Libraries
_fp_error

Synopsis

Description

_fp_error

Floating-Point Error Functions

include < fp_control.h>

void _clear_fp_status (void);

int _get fp_status (void);

void _set_fp_control (int mode);
int _get_fp_control (void);

void _init_fp (void);

Technically, fp_erroris a run-time routine in that it is only called from other
run-time library and math library functions. Its purpose is to simulate the
exception procssing that is present on the 8087 NPX. Therefdye,erroris
referenced only when the 8086/186 libriloyn.a) is loaded.

_fp_emorcomposes the return value defined by thEE Floating Point

Standard 754 (see the "Behavior of Math Library Functions" chapter) and
returns the value if trapping does not take place. The trappiigatecs

handled by a piece of common code in the run-time library. This code inspects
a global control flag to see if the trap bit associated with the current exception
is set. If the bit is set, an error message is composed and control passes to the
monitor program so that the message can be displayed. If the bit is not set,
then a global status flag is updated to reflect the exception that just occurred
and procssing continues.

The following functions can be used to inspect and set the global control flag
and the global status flag:

_clear_fp_statuslears the global status flag.
_get_fp_statuseturns the global status flag.

_set_fp_controsets the global control flag tnode

171

Chapter 7: Libraries
_fp_error
_get_fp_controteturns the global control flag.

_init_fpresets the 8087 by executing the FINITtinstion (iflib87.ais being
used) and clears the global status flag and the global control flag.

The 8086/186 libraries always perform operations in double precision and
round to nearest. By default, trapping is enabled on all floating-point
exceptions except inexact results. The following macro disables trapping:

NOTRAP Disable all traps.

The remaining macros may be OR’ed together to forodewhen invoking
_set_fp_control(Do not OR them with NOTRAP.)

INEXACT Trap on inexact result.
DIVZERO Trap on division by zero.

UNDERFLOW Trap on underflow.

OVERFLOW Trap on overflow.
OPERROR Trap on operand error.
PLOSS Trap on loss of precision (applies to 8086/186—not

8087—math libraries).

The following macros may be used when inspecting the return value from
_get_fp_status

NOERRORS No errors have been detected since the last invocation
of _clear_fp_status

INEXACT
DIVZERO
UNDERFLOW
OVERFLOW
OPERROR
PLOSS

172

Chapter 7: Libraries
_fp_error

When using the 8087 chip, the control word contains some additional
information. The 8087 allows you to control trapping, precision, infinity, and
rounding behaviors.

The following macros can be used to select the 8087 behavior that is desired:

Precision:

SGLPREC Single precision (32-bit floating point number).
DBLPREC Double precision (64-bit floating point number).
EXTPREC Extended precision (80-bit floating point number).
Infinity:

PROJECTIVE Infinity is unsigned.

AFFINE Distinguish + infinity from —infinity.

Rounding:

RNDNEAR Round towards the "nearest" number.
RNDNEGINF Round towards negative infinity.

RNDPOSINF Round towards positive infinity.

RNDZERO Round towards zero.

Trapping:

DENORM_OP Trap when a denormalized operand is encountered.

Select exactly one macro each from the precision, rounding, and infinity
categories every time thaset_fp_controis called. Any number of trapping
macros can be selected.

Note that an OPERROR trap can occur when a 8087 floating point register is
used before it is initialized.

Example You may change the control word without respecifying all of the different
categories. This can be done by using the current value of the control variable

173

Chapter 7: Libraries
_fp_error

and using masking. For example, the following function call turns on
divide-by-zero trapping without altering any of the other control flags:

_set_fp_control(_get_fp_control() | DIVZERO);

The next example turns off the overflow and underflow traps:

_set_fp_control(_get_fp_control() &
~(UNDERFLOW | OVERFLOW));

174

Chapter 7: Libraries
fread, fwrite

fread, fwrite

Buffered Binary 1/0O to Stream

Synopsis # include < stdio.h>

size_t fread (void *ptr, size_t size,
size_t nitems, FILE *stream);

size_t fwrite (const void *ptr, size_t size,
size_t nitems, FILE *stream);

Description Freadcopies, into an array pointed to fiity, nitemsitems of data from the
named nput steam, where an item of data is a sequence of fytEs
necessarily terminated by a null byte) of lengitte Freadstops appending
bytes if an end-of-file or error condition is encountered while reastiegm
or if nitemsitems have been rea#freadleaves the file pointer istream if
defined, pointing to the byte following the last byte read if there is Bread
does not change the contentstyéam

Fwrite appends at mosiitemsitems of data from the array pointed topbyto
the named outpudtream Fwrite stops appending when it has appended
nitemsitems of data or if an error condition is encounteredtegam Fwrite
does not change the contents of the array pointed ptr.by

The argumensizeis typicallysizeof(*ptr)where the pseudo-functicizeof
specifies the length of an item pointed toplry If ptr points to a data type
other thanvoid it should be cast into a pointeryoid.

See Also read, write, fopen, getg gets printf, putc, puts, scant

Diagnostics Freadandfwrite return the number of items read or writtensiteor nitemsis
zero, no characters are read or written and 0 is returned byrbadtand
fwrite.

175

Chapter 7: Libraries
frexp, [dexp, modf

frexp, ldexp, modf

Return Mantissa and Ex ponent

Synopsis # include < math.h>
double frexp (double value, int *eptr);
double Idexp (double value, int *exp);

double modf (double value, double *iptr);

Description Every non-zero number can be written uniquelya2n where the "mantissa"
(fraction)xis in the range 0.5 <=x] < 1.0, and the "exponent'ls an integer.

Frexpreturns the maigsa of a doublgalue and stores the exponent
indirectly in the location pointed to leptr. If valueis zero, both results
returned byrexpare zero.

Ldexpreturns the quantityalue* 2exp.

Modfreturns the signed fractional partva@lueand stores the integral part
indirectly in the location pointed to liptr.

Diagnostics If Idexpwould cause overflow; /-HUGE_VAL is returned (according to the
sign ofvalug, andermois set toERANGE. If Idexpwould cause underflow,
zero is returned anetmois set toERANGE.

See Also _fp_error, "Behavior of Math Library Functions" chapter.

176

Chapter 7: Libraries
getc, getchar, fgetc

Synopsis

Description

See Also

Diagnostics

Warning

Bugs

getc, getchar, fgetc

Get Character from Stream

include < stdio.h>

int getc (FILE *stream);
int getchar (void);
int fgetc (FILE *stream);

Getcreturns the next character (i.e., byte) from thead nputstream as an
integer. It also moves the file pointer, if defined, ahead one character in
stream Getcharis defined agetc(stdin) Getcis a macro and so cannot be

used if a function is necessary; for example one cannot have a function pointer
point to it. Getcharis implemented as a macro and as a function. To use a
function instead of a macr#,undefthe macro before function invocation.

Fgetcbehaves likgetg but is a function rather than a maciegetcruns more
slowly thangetg but it takes less space per invocation and its name can be
passed as an argument to a function.

fclose ferror , fopen, fread, gets putc, scant
These functions return the const&@F at end-of-file or upon an error.

If the integer value returned bgtc getchar or fgetcis stored into a character
variable and then compared against the integer conB@Rtthe comparison
may never succeed, because sign-extension of a character on widening to
integer is machine-dependent.

Because it isimplemented as a mageictreats incorrectly atream
argument with side effects. In particulgetc(*f+ +) does not work sensibly.
Fgetcshould be used instead.

177

Chapter 7: Libraries

gets, fgets
gets, fgets
Get a String from a Stream

Synopsis # include < stdio.h>
char *gets (char *s);
char *fgets (char *s, int n, FILE *stream);

Description Getsreads characters from the standard inpwastr,stdin, into the array
pointed to bys, until a new-line character is read or an end-of-file condition is
encountered. The nelime character is discarded and the string is terminated
with a null character.
Fgetsreads characters from tegeaminto the array pointed to tsyuntiln-1
characters are read, or a new-line character is read and transfesred an
end-of-file condition is encountered. The string is then terminated with a null
character.

See Also ferror , fopen, fread, getg puts, scant

Diagnostics If end-of-file is encountered and no characters have been read, no characters

are transferred teand a NULL pointer is returned. If a read error occurs,
such as trying to use these functions on a file that has not been opened for
reading, a NULL pointer is returned, and the contentsané indeterminate.
Otherwisesis returned.

178

Chapter 7: Libraries
isalpha, isupper, islower, ...

isalpha, isupper, islower, ...

Classify Characters

Synopsis # include < ctype.h>

int isalpha (int ¢);

Description These routines c&sify character-coded integer values by table lookup. Each is
a predicate returning nonzero for true, zero for false. These routines are
implemented both as macros and functions. To use a function instead of a
macro # undefthe macro before function invocation.

isalpha cis a letter.

isupper cis an upper-case letter.

islower cis a lower-case letter.

isdigit cis a digit [0-9].

isxdigit cis a hexadecimal digit [0-9], [A-F] or [a-f].

isalnum cis an alphanumeric (letter or digit).

isspace @s a space, tab, carriage return, Hewg, vertical tab,

or form-feed.

ispunct cis a printing character that is neither a control
character nor an alphanumeric character nor a space.

isprint cis a printing character, code 040 (spatebtgh0176
(tilde).

isgraph cis a printing character, liksprint except false for
space.

179

Chapter 7: Libraries
isalpha, isupper, islower, ...

iscntrl cis a delete character (0177) or an ordinary control
character (less than 040).

Diagnostics If the argument to any of these macros is not in the domain of the function,
the result is undefined. The domain for these functions is the integer values
[0, 255] andEOF.

180

Chapter 7: Libraries

localeconv
localeconv
Locale Conversion
Synopsis # include < locale.h>
struct Iconv *localeconv (void);
Description localeconwsets the components of an object of tgpect lconvto the

appropriate numeric quantity formatting values for the current locale.

Within the structurécony, members of typehar * point to strings. Any char
pointer, excepthar *decimal_point may point to a null string (") to indicate
that the value is either not available in the current locale or of zero length in
the current locale.

The following are members of theonv structure:

char *decimal_point

is the decimal point character used to format
non-monetary quantities.

char *thousands_sep

is used to separate groups of digits before the decimal
point in non-monetary quantities.

char *grouping

is a string, the elements of which indicate the size of
each group of digits in formatted non-monetary
guantities.

char *int_curr_symbol

is the international currency symbol used in the current
locale. The first three characters in this string contain
the alphabetic international currency symbol in
accordance withSO 4217 Codes for the Representation

181

Chapter 7: Libraries
localeconv

of Currency and Fund§ he fourth character is (last
before the null terminator) is the character used to
separate the currency symbol from the monetary
guantity.

char *currency_symbol

is the local currency symbol for the current locale.

char *mon_decimal_point

is the decimal point used to format the monetary values.

char *mon_thousands_sep

char *mon_grouping

char *positive_sign

char *positive_sign

char int_frac_digits

char frac_digits

is the separator for groups of digits before the decimal
point in the monetary values.

is a string, the elements of which indicate the size of
each group of digits in formatted monetary quantities.

is the string used to signify non-negative formatted
monetary values.

is the string used to signify negative formatted monetary
values.

is the number of fractional digits (after the decimal
point) to display in an internationally formatted
monetary value.

is the number of fractional digits (after the decimal
point) to display in a formatted monetary value.

182

Chapter 7: Libraries
localeconv

char p_cs_precedes

for a formatted non-negative monetary value, is set to
one if thecurrency_symbolprecedes the value or set to
zero if the currency_symbol follows the value.

char p_sep_by space

for a formatted non-negative monetary value, is set to
one if thecurrency_symbolis separated from the value
by a space and set to zero if it is not separated from the
value by a space.

char n_cs_precedes

for a formatted negative monetary value, is set to one if
thecurrency_symbolprecedes the value or set to zero if
the currency_symbol follows the value.

char p_sep_by space

for a formatted negative monetary value, is set to on
thecurrency_symbolis separated from the value by a
space and set to zero if it is not separated from the
value by a space.

char p_sign_posn

is a value indicating the positioning of the negative sign
for a formatted non-negative monetary value.

char n_sign_posn

is a value indicating the positioning of the negative sign
for a formatted negative monetary value.

The elementgroupingandmon_groupingpecify the grouping of digits in
non-monetary and monetary quantities. Both strings are strings of grouping
counts. The first element of the string, sf§], unless itis CHAR_MAX, is

the number of digits to group before the first separator charafigrunless

it is zero or CHAR_MAX, is the number of digits to group after grougioy
digits. s[2], unless it is zero or CHAR _MAX, is the number of digitsrtg
after s[0] digits and s[1] digits have beawgped. And so on. H[i] is zero,

183

Chapter 7: Libraries

localeconv
then the value in s[i-1] is theguping value for all subsequent digitss]if is
CHAR_MAX, then no further grouping is performed.
The value of eithep_sign_posrandn_sign_posris interpreted in the following
way:
0 Parentheses surround the quantity eumiency_symbol
1 The sign string precedes the quantity and
currency_symbol
2 The sign string follows the quantity andirency_symbol
3 The sign string immediately precedes the
currency_symbol
4 The sign string immediately follows tltarrency_symbol
Diagnostics Thelocaleconwoutine returns a pointer to thiddd object. The returned
structure is not to be modified directly by the program, but may be overwritten
by further calls to localeconv. In addition, callssetlocalewith the categories
LC_ALL,LC_MONETARY, and LC_NUMERIC may overwrite the contents
of the structure.
Note The locale supported by the libraries is the "C" lodalkaleconwill return

the "C"locale only. The following table lists the ueth values for the various
structure elements.

184

See Also

Chapter 7: Libraries
localeconv

Additionally, there is a macr@lB_CUR_MAX defined instdlib.h that returns

the maximum number of bytes a multi-byte character could have in the current
locale. Because multi-byte characters are not supported, this macro always
returns one.

setlocale

Table 7-2. Element Values Returned by /ocaleconv

Element Returned Value
char *decimal_point

char *thousansl_sep

char *grouping

char *int_curr_symbol

char *currency_symbol

char *mon_decimal_point
char *mon_thousarsd sep
char *mon_grouping

char *positive_sign
char *negative_sign
char int_frac_digits

char frac_digits CHAR_MAX
char p_cs_precedes CHAR_MAX
char p_sep_by space CHAR_MAX
char n_cs_precedes CHAR_MAX
char n_sep_by space CHAR_MAX
char p_sign_posn CHAR_MAX
char n_sign_posn CHAR_MAX

185

Chapter 7: Libraries
log, log10

log, log10

Logarithm Functions

Synopsis # include < math.h>
double log (double x);

double log10 (double x);

Description Logreturns the natural logarithm xf The value ok must be positive.

LoglOreturns the logarithm base tenxofThe value ok must be positive.

Diagnostics LogandloglOreturn-HUGE_VAL and seermoto EDOM whenxis negative.
LogandloglOreturn an NaN and setrnoto ERANGE wherxis zero. The
error action is determined by the bits of the global control flag.

These error-handling procedures may be changed with the fundgioerror.

See Also _fp_error, "Behavior of Math Library Functions" chapter.

186

Chapter 7: Libraries
malloc, free, realloc, calloc

Synopsis

Description

malloc, free, realloc, calloc

Main Memory Allocator

include < stdlib.h>

void *malloc (size_t size);

void free (void *ptr);

void *realloc (void *ptr, size_t size);

void *calloc (size_t nelem, size_t elsize);

Malloc andfreeprovide a simple general-purpasemory allocation package.
Malloc returns a pointer to a block of at leagiebytes suitably aligned for an
use.

The argument téreeis a pointer to a block previously allocatednballoc
afterfreeis performed this space is made available for further allocation.

Undefined results will occur if the spacss@ned bynallocis overrun or if
some random number is handedrea

Malloc calls_getmento get more memory when there is no suitable space
already free.

Reallocchanges the size of the block pointed tetyo sizebytes and returns

a pointer to the (possibly moved) block. The conteiiltbeunchanged up to

the lesser of the new and old sizes. If the size argument to realloc is zero, then
a free operation is done.

If no free block oBizebytes is available in the storage arena, tieatioc will
askmallocto enlarge the arena bizebytes and will then move the data to the
new space.

Callocallocates space for an arraymlemelements of sizelsize The space
is initialized to zeros.

Each of the allocation routines returns a pointer to space suitably aligned
(after possible pointer coenai) for storage of any type of object.

187

Chapter 7: Libraries
malloc, free, realloc, calloc

See Also _getmem (Described in the "Environment-Dependent Routines” chapter.)

Diagnostics Malloc, reallocandcallocreturn a NULL pointer if there is no available
memory or if the arena has been detectably corrupted by storing outside the
bounds of a block. When this happens the block pointed pir byay be
destroyed.

188

Chapter 7: Libraries
mblen, mbstowcs, mbtowc, westombs, wctomb, strxfrm

mblen, mbstowcs, mbtowc, wcstombs, wctomb,
strxfrm

Multi-byte Character Operations

Synopsis # include < stdlib.h>
int mblen (const char *s, size_t n);
size_t mbstowcs (wchar_t *pwcs, const char *s, size_t n);
int mbtowc (wchar_t *pwc, const char *s, size_t n);
size_t westombs (char *s, const wchar_t *pwcs, size_t n);

int wctomb (char *s, wchar_t wchar);

include < string.h>

size_t strxfrm (char *s1, const char *s2, size_t n);

Description mblen because multi-byte characters are not supported, returns zero if the
first argument is NULL—without regard to the value of n. If the first
argument is not NULL, themblenreturns negative onerifis zero or returns
one ifnis nonzero.

mbstowcgopies n multi-byte characters from the second argument into the
first, transforming each multi-byte character into its wide character
representation. Because multi-byte characters are not suppotitxlycs

copiesn bytes from the second argument to the first while transforming each
byte to its wide character representation. Transformation is accomplished by
moving the character value into the least significant byte and zero-filling the
remaining bytes of the wide character. If thereom left in the first

argument after copying all bytespstowcappends a null terminating

character to the first argumemtbstowcseturns the number of multi-bytes
copied (which, in this implementation, is the number of bytes copied). That

189

Chapter 7: Libraries

mblen, mbstowcs, mbtowc, wecstombs, wctomb, strxfrm

Note

number may be less thanf a null character is found in the second argument
beforen bytes are read.

mbtowctransforms the multi-byte character from the second argument into its
wide character representation and places it into the first argumeétdwc

uses at most bytes from the second argument. Because multi-byte characters
are not supportedanbtowccopiesn characters from the second argument into
the first and transforms each character as it is copied by moving the character
value into the least significant byte and zero-filling thmaining bytes of the

wide charactembtowcreturns zero if the second argument is NULL or

returns one if the second argument is not NULL.

wcstombgopiesn wide characters from the second argument into the first
while transforming each wide character into its multi-byte character
representation. Because multi-byte characters are not suppwctethbs
copies at mosh characters from the second argument into the first while
transforming each character by copying just the least significant byte of the
wide character. If there is room in the first argument after copyicggombs
appends a null terminatoxcstombseturns the number of bytes copied,
which may be less thamif a null terminating character is found in the second
string beforen bytes are read.

wctombtransforms the wide character pointed to by the second argument into
a multi-byte character and places it in the first argument. The wide character
will be represented by at most MB_CUR_MAX characters in the multi-byte
character. Because multi-byte characters are not supported, MB_CUR_MAX
is always one and therefore the wide character transformed into a single
character. The transformation is accomplished by copying the least significant
byte of the wide character into the chactombreturns zero if the second
argument is NULL or returns one if the second argument is not NULL.

strxfrm, because multi-byte characters are not supported, simply does a
byte-by-byte copy from s2 to sl of upn@haracters.

In addition to the multi-byte character operations, the mtBoCUR_MAX
returns the maximum number of bytes a multi-byte character could have in the
current locale. Because multi-byte characters are not supported, this macro
always returns one.

190

Chapter 7: Libraries
memchr, memcmp, memcpy, memmove, memset

memchr, memcmp, memcpy, memmove, memset

Memory Operations

Synopsis # include < string.h>

void *memchr (const void *s, int c, size_t n);

int memcmp (const void *s1, const void *s2, size_t n);
void *memcpy (void *s1, const void *s2, size_t n);
void *memmove (void *s1, const void *s2, size_t n);
void *memset (void *s, int ¢, size_t n);

Description These functions operate efficiently on memory areas (arrays of characters
bounded by a count, not terminated by a null character). They do not check
for the overflow of any receiving memory area.

Memchrreturns a pointer to the first occurrence of characterthe firstn
characters of memory arspor a NULL pointer ift does not occur.

Memcmprompares its arguments, looking at the firsharacters only, and
returns an integer less than, equal to, or greater than 0, accordihig as
lexicographically less than, equal to, or greater tan(n equal to zero yields
equality.) In some operating systemmemcm pseaunsigned charfor
character comparisons. This may not be true for other implementations.

Memcpycopiesn characters from memory arsatosl It returnssil

Memmovevorks likememcpyexcept thamemmovéandles overlapping
moves properly.

Memsesets the firsh characters in memory areao the value of character

It returnss.
Bugs Strcpyandmemcpynay fail for overlapping moves; usgemmovénstead.
See Also strchr, strrchr, stremp, strncmp, strcpy, strncpy.

191

Chapter 7: Libraries
perror, errno

Synopsis

Description

See Also

perror, errno

System Error Messages

include < stdio.h>
void perror (const char *s);
include < errno.h>

extern int errno;

Perror produces a message on the standard error output, describing the last
error encountered during a call to a system or library function. The argument
stringsis printed first, then a colon and a blank, then the message and a
new-line. To be of most use, the argument strivaudd include the ame of

the program that incurred the error. The error number is taken from the
external variablerno, which is set when errors occur but not cleared when
non-erroneous dia are made.

The value ofrmo might not be what you expect if your program uses
multitasking;ermo can be overwritten by some library routines.

strerror .

192

Chapter 7: Libraries
pow

pow

Power Function

Synopsis # include < math.h>

double pow (double x, double y);

Description Powreturns?. If xis zeroymust be positive. bis negativey must be an
integer.

Diagnostics Powreturns NaN (Not a Number) and setisio to EDOM whenxis 0 andyis
non-positive, or wheris negative angis not an integer. The error action is
determined by the bits of the global control flag. When the correct value for
powwould overflow or underflowpowreturnst+ /-HUGE_VAL or 0
respectively, and seesmoto ERANGE.

These error-handling procedures may be changed with the fundgpioerror.

See Also _fp_error, "Behavior of Math Library Functions" chapter.

193

Chapter 7: Libraries
printf, fprintf, sprintf

Synopsis

Description

printf, fprintf, sprintf

Print Formatted Output

include < stdio.h>
int printf (const char *format, ...);
int fprintf (FILE *stream, const char *format, ...);

int sprintf (char *s, const char *format, ...);

Printf places output on the standard output stretout Fprintf places
output on the named outpstream Sprintfplaces "output”, followed by the
null character\Q), in consecutive bytes startingsait is the user’s
responsibility to ensure thaheugh storage is available. Each function
returns the number of characters transmitted (not includin@tinehe case
of sprintf), or a negative value if an output error was encountered.

Each of these functions converts, formats, and printsgssunder control of
theformat Theformatis a character string that contains two types of objects:
plain characters, which are simply copied to the output stream, and conversion
specifications, each of which results in fetching of zero or rm@e The

results are undefined if there are insufficiargs for the format. If the format

is exhausted whilargs remain, the excessgs are evaluated but ignored.

The behavior of the sprintf function is undefined if the destination array is also
one of the other arguments. This undefined behavior of sprintf is particularly
important because the behavior has changed between versions of the HP cross
compilers.

Each conversion specification is introduced by the char&atekfter the%%,
the following appear in sequence:

Zero or mordlags which modify the meaning of the conversion
specification.

An optional decimal digit string specifying a minimdfield width". If the
converted value has fewer characters than the field width, it will be padded
on the left (or right, if the left-adjustment flag “', described below, has

194

Chapter 7: Libraries
printf, fprintf, sprintf

been given) to the field width. If the field width for a conversion is
preceded by a 0, the padding is done with zeros instead of spaces.

A precisionthat gives the minimum number of digits to appear fordthge

0, U, X, or X conversions, the number of digits to appear after the decimal
point for thee, E, andf conversions, the maximum number of significant
digits for theg andG conversions, or the maximum number of characters
to be printed from a string imconversion. The precision takes the form
of a period () followed by a decimal digit string; a null digit string is
treated as zero.

An optionall (ell) specifying that a following, i, o, u, x, or X conversion
character applies to a long integag, or an optionah specifying that a
following d, i, 0, u, X, or X conversion character applies to a short integer
arg. A "%In" format means that the argument is a pointer to a long integer
and a "%hn"format means that the argument is a pointerhora s

integer.

An optionalL specifies that a following, E, f, g, or G conversion
character applies to a long doublg,

An | orL before any other conversion character is ignored.
A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterikir{stead of a digit
string. In this case, an integaig supplies the field width or precision. The
argthat is actually converted is not fetched until the conversion letter is seen,
so theargs specifying field width or precision must appéeaforethearg (if

any) to be converted.

195

Chapter 7: Libraries
printf, fprintf, sprintf

The flag characters and their meanings are:

- The result of the conversion will be left-justified within
the field.

+ The result of a signed conversion will always begin with
asign ¢ or-).

blank If the first character of a signed conversion is not a sign,
a blank will be prefixed to the result. This implies that
if the blank and+ flags both appear, the blank flag will
be ignored.

This flag specifies that the value is to be converted to an
"alternate form." Foc, d, i, s, andu conversions, the
flag has no effect. Farconversion, it increases the
precision to force the first digit of the result to be a
zero. Fomix or X conversion, a non-zero resuliiaave
Ox or OX prefixed to it. Foe, E, f, g, andG conversions,
the result will always contain a decimal point, even if no
digits follow the point (normally, a decimal point
appears in the result of these conversions only if a digit
follows it). ForgandG conversions, trailing zeroes will
notbe removed from the result (which they normally
are).

The conversion characters and their meanings are:

d,i,o,u,x,X The integerargis converted to signed decimaldri),
unsigned octal, unsigned decimal, or hexadecimal
notation & andX), respectively; the letterbcdefare
used forx conversion and the letteABCDEF for X
conversion. The precision specifies the minimum
number of digits to appear; if the value being converted
can be represented in fewer digits, it will be expanded
with leading zeroes. (For compatibility with older
versions, padding with leading zeroes may alternatively
be specified by prefixing a zero to the field width. This
does not imply an octal value for the field width.) The
default precision is 1. The result of converting a zero
value with a precision of zero is a null string.

196

e E

0,G

Chapter 7: Libraries
printf, fprintf, sprintf

The doubleargis converted to decimal notation in the
style "F]ddd.ddd", where the number of digits after the
decimal point is equal to the precision specification. If
the precision is missing, six digits are output; if the
precision is explicitly 0, no decimal point appears.

The doubleargis converted in the style

"[-]d.ddde+ /-ddd", where there is one digit before the
decimal point and the number of digits after it is equal
to the precision; when the precision is missing, six digits
are produced; if the preston is zero, no decimal point
appears. The& format code wilbroduce a number

with E instead ok introducing the exponent. The
exponent always contains at least two digits.

The doubleargis printed in styld or e (or in styleE in
the case of & format code), with the precision
specifying the number of significant digits. The style
used depends on the value converted: styiél be

used onlyif the exponent resulting from the conversi
is less than —4 or greater than the precision. Trailing
zeroes are removed from the result; a decimal point
appears only if it is followed by a digit.

The characteargis printed.

Theargis taken to be a string (character pointer) and
characters from the string are printed until a null
character\Q) is encountered or the number of
characters indicated by the precision specification is
reached. Ifthe precision is missing, it is taken to be
infinite, so all characters up to the first null character
are printed. A NULL value foargwill yield undefined
results.

Theargis taken to be a pointer toid. The value of
the pointer is converted to a sequence of printable
characters, in the same mannef@®s

197

Chapter 7: Libraries
printf, fprintf, sprintf

Examples

See Also

n Theargis taken to be a pointer to an integer into which
is written the number of characters written to the
output stream so far by this callpantf. No argument
is converted.

% Print a%; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field,;
if the result of a conversion is wider than the field width, the field is simply
expanded to contain the conversion result. Characters genergieutignd
fprintf are printed as {futc had been called.

To print a date and time in the form "Sunday, July 3, 10:02", wivee&day
andmonthare pointers to null-terminated strings:

printf("%s, %s %d, %d : % 2d", weekday, month, day, hour,
min);

To printpito 5 decimal places:

printf("pi = % . 5", 4 * atan(1 . 0));

The value oftringl is undefined after the following line of code:

sprintf (stringl, "%s %d", stringl, integerl);

putc, scanf vprintf .

198

Chapter 7: Libraries
putc, putchar, fputc

Synopsis

Description

See Also

putc, putchar, fputc

Put a Character on a Stream

include < stdio.h>
int putc (int ¢, FILE *stream);
int putchar (int ¢);

int fputc (int ¢, FILE *stream);

Putcwrites the characteronto the outpustream(at the position where the
file pointer, if defined, is pointingPutchaf ¢) is defined aputc(c, stdout).
Putcis implemented as a macqtcharis implemented as a macro and as a
function. To use a function instead of a maérandefthe macro before
function invocation.

Fputcbehaves likgutg but is a genuine function rather than a macro; it ma
therefore be used as an argumefgutcruns more slowly thaputg but it
takes less space per invocation and its name can be passed as an argument to a
function.

Output streams, with the exception of the standararestreamstder; are by
default buffered if the output refers to a file. The standard error output
streamstderris by default unbuffered, but usefecdfopen(seefopen) will cause

it to become buffered. When an output stream is unbuffered, information is
gueued for writing on the destination file or terminal as soon as written; when
it is buffered, many characters are saved up and written as a block. When it is
line-buffered, each line of output is queued for writing as soon as the line is
completed (that is, as soon as a e character is written onput is

requested) Fflushcan also be used to explicitly write the buff&etbufor
setvbufmay be used to change the stream’s buffering strategy.

These routines do not have timeans to determine if a file is associated with a
terminal. Therefore, files are fully buffered, exceptdtinandstdoutwhich
are set to line-buffered by thetartup routine andtderrwhich is not buffered.

fclose ferror , fopen, fwrite , getg fread, printf , puts, setbuf

199

Chapter 7: Libraries
putc, putchar, fputc

Diagnostics

Bugs

On success, these functions each return the value they have written. On
failure, theyreturn the constaBOF. This will occur if the filestreamis not
open for writing or if the output file cannot be increased.

Line buffering may cause confusion or malfunctioning of programs which use
standard I/O routines but ussad themselves to read from standard input. In
cases where a large amount of computation is done after printing part of a line
on an output terminal, it is necessaryftesh the standard output before

going off and computing so that the output will appear.

Because it is implemented as a magutctreats incorrectly atream
argument with side effects. In particulputc(c, *f+ +); doesnt work
sensibly. Fputcshould be used instead.

200

Chapter 7: Libraries
puts, fputs

Synopsis

Description

Diagnostics

See Also

puts, fputs

Put a String on a Stream

include < stdio.h>
int puts (const char *s);

int fputs (const char *s, FILE *stream);

Putswrites the null-terminated string pointed toshfollowed by a new-line
character, to the standard output strestaout

Fputswrites the null-terminated string pointed tostp the named output
stream

Neither function writes the terminating null character. Note poappends
a new-line character, béputsdoes not.

If the routine is successfudutsandfputsboth return the number of characters
written. In the case qfuts the return value includes the implied newline
character which means that theuwet value vill equal the length of the
argument string + 1.

ferror , fopen, fread, printf, putc.

201

Chapter 7: Libraries
gsort

Synopsis

Description

Notes

See Also

gsort

Table Sorting Routine

include < stdlib.h>

void gsort (

void *base,

size_tnel, size_t size,

int (*compar)(const void *, const void *));

Basepoints to the element at the base of the taNlelis the number of
elements in the table&Comparis the name of the comparison function, which

is called with two arguments that point to the elements being compared. The
function passed ammpamust return an integer less than, equal to, or
greater than zero as a consequence of whether its first argument is to be
considered less than, equal to, or greater than the second. This is the same
return convention thatrcmpuses.

The pointer to the base of the table should be of type pointer-to-element, and
cast to type pointer-to-character. The comparison function need not compare
every byte, so arbitrary data may be contained in the elements in addition to
the values being compared. The order in the output of two items which
compare as equal is unpredictable.

bsearch

202

Chapter 7: Libraries
rand, srand

Synopsis

Description

Note

rand, srand

Simple Random Number Generator

include < stdlib.h>
int rand (void);

void srand (unsigned int seed);

Randuses a multiplicative congruential random-number generator with
period 22 that returns sucssive pseudo-random numbers in the range from O
to 21°-1.

Srandcan be called at any time to reset the random-number generator to a
random starting point. The generator is initially seeded with a value of 1.

The spectral properties @fndleave a great deal to be desired. These
functions use a global variable to seed the random number generator. Calling
one of these routines from an interrupt routinkkcsuse the random number
sequence to be non-repeatable.

203

Chapter 7: Libraries

remove
remove
Remove a File

Synopsis # include < stdio.h>
int remove (const char *filename);

Description Removeauses the file whose name is the string pointed filehgmeto be
removed. Subsequent attempts to open the file will fail, unless it is created
anew. Ifthe file is open, the behavior of thenovefunction is the same as
unlink. Removés implemented as a macro and as a function. To use the
function instead of the macr#undefthe macro before function invocation.

Return Value Removeeturns zero if the operation succeeds, non-zero ilst fa

See Also fopen, open, unlink.

204

Chapter 7: Libraries
scanf, fscanf, sscanf

Synopsis

Description

scanf, fscanf, sscanf
(standard I/O library function)

Formatted Input from Stream

include < stdio.h>
int scanf (const char *format, ...);
int fscanf (FILE *stream, const char *format, ...);

int sscanf (const char *s, const char *format, ...);

Scanfreads from the standard inputesimstdin Fscanfreads from the
named nputstream Sscanfeads from the character strisgEach function
reads characters, interprets them according to a format, and stores the r
in its arguments. Each expects, as arguments, a controlfetmimgtdescribed
below, and a set gbinterarguments indicating where the converted input
should be stored.

The control string usually contains conversion specifications, which are used
to direct interpretation of input sequences. The control string may contain:

1 White-space characters (blanks, tabs, new-lines, or form-feeds) which
cause input to be read up to the next non-white-space character.
White-space in the format string does not mean that white spase
appear in the input.

2 An ordinary character (n@6), which must match the next character of the
input steam.

3 Conversion specifications, consisting of the charaitean optional
assignmentiugppressing charactet, an optional numerical maximum field
width, an optional (ell), L, or h indicating the size of the receiving
variable, and a conversion code.

A conversion specification directs the conversion of the next input field; the
result is placed in the variable pointed to by the corresponding argument,
unless assignmentigpression was indicated By The supprssion of

205

Chapter 7: Libraries
scanf, fscanf, sscanf

assignmenprovides a way of describing an input field which is to be skipped.
An input field is defined as a string of non-space characters; it extends to the
next inappropriate character or until the field width, if specified, is exhausted.
For all descriptors except '[" and "c", white space leading an input field is
skipped.

The conversion code indicates the interpretation of the input field; the
corresponding pointer argument must usually be of a restricted type. For a
suppressed field, no pointer argument is given. The following conversion
codes are legal:

% A single% s expected in the input at this point; no
assignment is done.

d A decimal integer is expected; the corresponding
argument should be an integer pointer.

i A signed integer is expected (whose format is the same
as expected kstrtol when itsbaseargument is zero); the
corresponding argument should be an integer pointer.

u An unsigned decimal integer is expected; the
corresponding argument should be an unsigned integer
pointer.

o] An octal integer is expected; the corresponding

argument should be an integer pointer.

X A hexadecimal integer is expected; the corresponding
argument should be an integer pointer.

e,fg A floating point number is expected; the next field is
converted accordingly and stored through the
corresponding argument, which should be a pointer to a
float. The input format for floating point numbers is an
optionally signed string of digits, possibly containing a
decimal point, followed by an optional exponent field
consisting of arkt or ane, followed by an optional + or
— followed by an integer.

S A character string is expected; the corresponding
argument should be a character pointer pointing to an

206

Chapter 7: Libraries
scanf, fscanf, sscanf

array of characters large enough to accept the string and
a terminating0, which will be added automatically.

The input field is terminated by a white-space character.
Note thatscanfcannot read a null string.

A character is expected; the corresponding argument
should be a character pointer. The normal skip over
white space is suppressed in this case; to read the next
non-space character, u##s. If a field width is given,

the corresponding argument should refer to a character
array, the indicated number of characters is read.

Indicates string data and the normal skip over leading
white space is suppressed. The left bracket is followed
by a set of characters, which we will call heansetand

a right bracket; the input field is the maximal sequence
of input characters caisting entirely of characters in

the scanset. The circumflex {j, when it appears as the
first character in the scanset, serves as a complemen
operator and redefines the scanset as the set of all
charactersotcontained in the remainder of the scan
string. There are some conventions used in the
construction of the scanset. A range of characters may
be represented by the constriit-last, thus
[0123456789] may be expressed [0-9]. Using this
conventionfirst must be lexically less than or equal to
last, or else the dash will stand for itself. The dash will
also stand for itself whenever it is the first or the last
character in the scanset. To include the right square
bracket as an element of the scanset, it must appear as
the first character (possibly preceded by a circumflex) of
the scanset, and in this case it will not be syntactically
interpreted as the closing bracket. The corresponding
argument must point to a character array large enough
to hold the data field and the terminati@gwhich will

be added automatically. At least one character must
match for this conversion to be considered successful.

A hexadecimal number, which should be the same as
the set of sequences that may be produced bphe
conversion of therintf function. The corresponding

207

Chapter 7: Libraries
scanf, fscanf, sscanf

Examples

argument should be a pointer to a pointexéa. For
anyinput item other than a value converted earlier
during the same program execution, the behaviéfpof
is undefined.

n No input is consumed. The corresponding argument
should be a pointer to integer into which is to be
written the number of characters read from the input
stream so far by this call to tlseanffunction.

Execution of artn directive does not increment the
assignmentaunt returned at the completion of
execution of thecanffunction.

The conversion charactedsu, o, andx may be preceded byr h to indicate
that a pointer tdong or toshort rather than tant is in the argument list.
Similarly, the conversion charactegd, andg may be preceded tbprL to
indicate that a pointer tdouble or long double rather than tdloat is in the
argument listlpong doubleis equivalent talouble with this compiler). Thé,
h, orL modifier is ignored for other conversion characters.

Scanfconversion terminates BOF, at the end of the control string, or when
an input character conflicts with the control string. In the latter case, the
offending character is left unread in the inpueam.

Scanfreturns the number of successfully matched asdyaedmput items;

this number can be zero in the event of an early conflict between an input
character and the control string. If the input ends before the first conflict or
conversionEOF is returned.

The call:

inti, n; float x; char name[50];
n = scanf("%d%f%s", &i, &x, name);

with the input line:

25 54.32E-1 thompson

will assign ton the value3, toi the value2s, to x the values.432 andnamewill
containthompson\Q Or:

208

See Also

Note

Diagnostics

Chapter 7: Libraries
scanf, fscanf, sscanf

int i; float x; char name[50];
(void) scanf("%2d%f%*d %][0-9]", &i, &x, hame);

with input:

56789 0123 56a72

will assign56toi, 789.0to x, skip0123 and place the strirg6\0in name The
next call togetchar(seegetg will return a.

getg printf, strtod, strtol.

Trailing white space (including a new-line) is lafiread unless matched in the
control string.

These functions returBOF if an input failure occurs before any conversion.
Otherwise, the number of input itemssggned (which may be fewer than
provided for, or even zero, in case of an early conflict) is returned.

209

Chapter 7: Libraries
setbuf, setvbuf

setbuf, setvbuf

Assign Buffering to a Stream File

Synopsis # include < stdio.h>
void setbuf (FILE *stream, char *buf);

int setvbuf (
FILE *stream,

char *buf,
int type,
size_t size);

Description Setbufmay be used after a stream has been opened but before it is read or
written. It causes the array pointed toboiyto be used instead of an
automatically allocated buffer. bufis the NULL pointer input/outputilbe
completely unbuffered. A constaBUFSIZ, defined in the< stdio.h> header

file, tells how big an array is needed:

char buf[BUFSIZ];

Setvbuinay be used after a stream has been opened but before it is read or
written. Typedetermines howtreamwill be buffered. Legal values faype
(defined in stdio.h) are:

_IOFBF Causes input/output to be fully buffered.

_IOLBF Causes output to be line buffered. The buffer will be
flushed when a newline is written, the buffer is full, or
when input is requested from otherestms.

_IONBF Causes input/output to be completely unbuffered.

If bufis not theNULL pointer, the array it points to will be used for buffering
instead of an automatically allocated buffer (fromalloc). Sizespecifies the
size of the buffer to be used. The consBIIFSIZ in < stdio.h> is suggested
as a good buffer size. Ifinput/output is unbuffetmd,andsizeare ignored.

210

Chapter 7: Libraries
setbuf, setvbuf

By default, all input/output is fully buffered.
See Also fopen, getg malloc, putc.

Diagnostics If an illegal value fortypeor sizeis providedsetvbufreturns a non-zero value.
Otherwise, the value returnedioe zero.

Note A common source of error is allocating buffer space as an "automatic" variable
in a code block, and then failing to close theatn in the same block.

211

Chapter 7: Libraries
setjmp, longjmp

Synopsis

Description

setjmp, longjmp

Non-Local Goto

include < setjmp.h>
int setjmp (jmp_buf env);

void longjmp (jmp_buf env, int val);

These functions are useful for dealing with errors and interrupts encountered
in a low-level subroutine of a program.

Setjmpsaves its stack environmentenv(whose typejmp_buf is defined in
the<setjmp.h>header file) for later use fgngjmp It returns the value 0.

Longjmprestores the environment saved by the last cakirh pwith the
correspondingnvargument. Aftefongimpis completed, program execution
continues as if the corresponding calsefimphad just returned the valwal.
Longjmpcannot caussetjmpto return the value 0. léngjmpis invoked with

a second argument of €gtjm pwill return 1.

All globally accessible objects have values as of the kimgimpwas called.

All automatics local to the destination stack frame have values as of the time
setjmpwas called, provided none were modified aftdlirog setjimp if

modified, the value of an automatic is undefined.

If a longimpis executed and the environment in which $bgmpwas executed

no longer exists, errors can occur. The conditions under which the
environment of theetjimpno longer exists include: exiting the procedure

which contains theetjmpcall, and exiting an inner block with temporary

storage (e.g., a block with declarations in @ijth statement in Pascal). This
condition may or may not be detectable. An attempt is made by determining if
the stack frame pointer Envpoints to a location not in the currently active
stack. If thisisthe caslngimpwill return a —1. Otherwise, tHengimpwill

occur, and if the environment no longer exists, the contents of the temporary
storage of an inner block are unpredictable. This condition may also cause
unexpected process termination. If the procedure has been exited the results
are unpredictable.

212

Chapter 7: Libraries
setjmp, longjmp

Passindongjmpa pointer to a buffer not createddstjmp or a buffer that has
been modified by the user, can cause all the problietesl above, and more.

Warning If longjmpis called even thougbnvwas never primed by a call setjimp or
when the last such call was in a function which has since returned, absolute

chaos is guaranteed.

213

Chapter 7: Libraries
setlocale

Synopsis

Description

Diagnostics

setlocale

Locale Control

include < locale.h>

char *setlocale (int category, const char *locale);

Setlocaleselects the appropriate piece of the program'’s locale as specified by
thecategoryandlocaleargumentsSetlocalemay be used to read or modify all

or part of the program’s current locale. Uskityy ALL for categornyspecifies

the program’s entire locale. Other valuesdategoryname only a part of the
program’s locale LC_COLLATE affects the behavior of thedrcoll function.
LC_TYPE affects the behavior of the character handling functions.
LC_NUMERIC affects the decimal-point character for the formatted
input/output functionsgrintf, scanf etc.) and the string conversion functions
(strtod, strtol, etc.).

A value of "C" forlocalespecifies the minimal environment for C translation; a
value of ""forlocaleis equivalent to "C". At present, the onlylocale that is
implemented is "C".

At program startup, the equivalent of

setlocale (LC_ALL, "C");

is executed.

If a pointer to a string is given fdwcaleand the selection can be honored, the
setlocalefunction returns the string associated with the speaifidegoryfor

the newlocale If the selection cannot be honored, setocalefunction

returns a null pointer, and the program’s locale is not changed.

A null pointer forlocalecauses theetlocalefunction to return the string
associated with theategonyfor the program’s current locale; the program'’s
locale is not changed. This inquiry can fail by returning a null pointer only if
thecategonis LC_ALL and the most recent successful locale-setting call used
acategonpother thar,C_ALL .

214

Chapter 7: Libraries
setlocale

The string returned by theetlocalefunction is such that a subsequent call with
that string and its associated category wiltoes that part of the program’s
locale. The string returned shall not be modified by the program, but may be
overwritten by a subsequent call to getlocalefunction.

See Also localecony strtod, strtol, printf , scanf strcoll, strxfrm .

215

Chapter 7: Libraries

sin, cos, tan, asin, acos, atan, atan2

Synopsis

Description

Diagnostics

sin, cos, tan, asin, acos, atan, atan2

Trigonometric Functions

include < math.h>
double sin (double x);
double cos (double x);
double tan (double x);
double asin (double x);
double acos (double x);
double atan (double x);

double atan2 (double y, double x);

Sin, cosandtanreturn respectively the sine, cosine, and tangent of their
argumenty, measured in radians.

The approximate limit for the values passed to these functions is 2.98&8 for
andcos and 1.49E8 fotan.

Asinreturns the arcsine @fin the range ®2 to 1/2.
Acosreturns the arccosine gfin the range 0 tat.
Atanreturns the arctangent xfin the range #/2 to1w/2.

Atan2returns the arctangent vf x in the range rto 1, using the signs of
both arguments to determine the quadrant of the return value.

Sin, cos andtan lose accuracy when their argument is far from zero. For
arguments sufficiently large, these functions return zero when there would
otherwise be a complete loss of significanesnois set toERANGE.

216

Chapter 7: Libraries
sin, cos, tan, asin, acos, atan, atan2

If xis greater than one fasinor acos a Not-a-Number (NaN) is returned. If
both arguments foatan2are zero, 0.0 is the resulErmo is set toEDOM for
both of these conditions.

Error actions are determined by the bits of a global control flag (see the
_fp_error description).

See Also _fp_error, "Behavior of Math Library Functions" chapter.

217

Chapter 7: Libraries
sinh, cosh, tanh

sinh, cosh, tanh

Hyperbolic Functions

Synopsis # include < math.h>
double sinh (double x);
double cosh (double x);

double tanh (double x);

Description Sinh cosh andtanhreturn, respectively, the hyperbolic sine, cosine, and
tangent of their argument. These are double-precision routines.

Diagnostics Sinhandcoshsetermoto ERANGE and returrHUGE_VAL (sinhmay return
-HUGE_VAL for negativex) when the correct value would overflow.

These error-handling procedures may be changed with the fundgioerror.

See Also _fp_error, "Behavior of Math Library Functions" chapter.

218

Chapter 7: Libraries
sqrt

sqrt

Square Root Function

Synopsis # include < math.h>

double sqrt (double x);

Description Sqrtreturns the non-negative square roox.of he value ok may not be
negative.

Diagnostics Sqrtreturns a NaN and setgno to EDOM whenxis negative. The error
action is determined by the bits of a global control flag.

These error-handling procedures may be changed with the fundgioerror.

See Also _fp_error, "Behavior of Math Library Functions" chapter.

219

Chapter 7: Libraries
strcat, strncat, ...

strcat, strncat, ...

String Operations

Synopsis # include < string.h>
char *strcat (char *s1, const char *s2);
char *strncat (char *s1, const char *s2, size_t n);
int strcmp (const char *s1, const char *s2);
int strncmp (const char *s1, const char *s2, size_t n);
int strcoll (const char *s1, const char *s2);
char *strcpy (char *s1, const char *s2);
char *strncpy (char *s1, const char *s2, size_t n);
char *strerror (int errnum);
size_t strlen (const char *s);
char *strchr (const char *s, int c);
char *strrchr (const char *s, int ¢);
char *strpbrk (const char *s1, const char *s2);
size_t strspn (const char *s1, const char *s2);
size_t strcspn (const char *s1, const char *s2);
char *strstr (const char *s1, const char *s2);

char *strtok (char *s1, const char *s2);

220

Description

Chapter 7: Libraries
strcat, strncat, ...

These functions operate on null-terminated strings. The argumgstzand

s point to strings (arrays of characters terminated by a null character). The
functionsstrcat strncat strcpy andstrnepyall alters1 These functions do not
check for overflow of the array pointed to sy

Strcatappends a copy of strirs@to the end of stringl Strncatappends at
mostn characters. It copies less#is shorter tham characters. Each
returns a pointer to the Hderminated result (the original value).

Strcmpcompares its arguments and returns an integer less than, equal to, or
greater than 0, according 8kis lexicographically less than, equal to, or

greater thars2 Strncmpmakes the same comparison but looks at most
charactersr{less than or equal to zero yields equality). Both of these routines
useunsigned charfor character comparison.

Thestrcoll function returns an integer greater than, equal to, or less than zero,
according to whether the string pointed toshys greater than, equal to, or

less than the string pointed to 4% The comparison is based on strings
interpreted as appropriate to the program’s locale.

Strcpycopies string2to sl, stopping after the null character has been copi
Strncpycopies exactinp characters, truncatirg or adding null characters to
slif necessary. The result will not be null-terminated if the leng82afn or
more. Ifthe length od2is less tham, characters from the first null 82to
thenth character are copied as nulls. Each functioarretsl

Note thatstrncpyshould not be used to copyytes of an arbitrary structure.
If that structure contains a null byte anywhesteycpywill terminate the copy
when it encounters the null byte, thus copying fewer thibytes. Use the
memcpyunction for these cases.

Strerrormaps the error number @rnum (returned fronerrmno) to an error
message stringStrerrorreturns a pointer to the string, the contents of which
describe the meaning of therer number. The array pointed to must not be
modified by the program.

Strlenreturns the number of charactersjmot including the terminating null
character.

Strchr(strrchr) returns a pointer to the first (last) occurrence of charadtan
8-bit ASCII value) in string, or a NULL pointer ift does not occur in the
string. The null character terminating a string is considered to be part of the
string.

221

Chapter 7: Libraries
strcat, strncat, ...

Note

Bugs

Strpbrkreturns a pointer to the first occurrence in statgf any character
from strings2 or a NULL pointer if no character frog2 exists ins1

Strspn(strcsprn) returns the length of the initial segment of stsidgvhich
consists entirely of characters frdmot from) strings2

Strstrlocates the first occurrence in the string pointed tellnf the sequence
of characters (excluding the terminating null character) in the string pointed
to bys2 Strstrreturns a pointer to the located string, or a null pointer if the
string is not found. If the second argumes® has a length of zero, thetrstr
returns the first argument as the return value.

Strtokconsiders the stringlLto consist of a sequence of zero or more text
tokens separated by spans of one or more characters from the separator string
s2 The first call (with pointes1specified) returns a pointer to the first
character of the first token, and will have written a null charactersihto
immediately following the returned token. The function keeps track of its
position in the string between separate calls, so that subsequent calls (which
must be made with the first argument a NULL pointer) will wdriough the
stringslimmediately following that token. In this way subsequent calls will
work through the stringluntil no tokens remain. The separator sts@g

may be different from call to call. When no token remairssljra NULL

pointer is returned.

Since thestrtok function must keep track of its position in the input string, this
function cannot be made reentrant.

For user convenience, all these functions are declared in the optional
<string.h> header file.

The copy operations cannot check for overflow of any receiving stiidgL
arguments cause undefined behavior.

Character movement is performed differently in different implementations.
Memmovehould be used for overlapping moves.

222

Chapter 7: Libraries
strtod, atof

Synopsis

Description

See Also

Diagnostics

strtod, atof

String to Double -Precision Number

include < stdlib.h>
double strtod (const char *str, char **ptr);

double atof (const char *str);

Strtodreturns as a double-piision floating-point number the value
represented by the character string pointed tstbyT he string is scanned up
to the first unrecognized character.

Strtodrecognizes an optional string of "white-space" characters (as defined by
isspacg, then an optional sign, then a string of digits optionally containing
decimal point, then an optionabr E followed by an optional sign, followed

by an integer.

If the value ofptris not (char *)NULL, the variable to which it points is set
to point at the character after the last number, if any, that was recognized. If
no number can be formedptt is set tostr, and zero is returned.

Atof(str) is equivalent testrtodstr, (char *)NULL).
scanf strtol .

If the correct value would cause overflow/-HUGE_VAL is returned
(according to the sign of the value), agrtho is set toERANGE. If the correct
value would cause underflow, zero is returned emtb is set toERANGE.

223

Chapter 7: Libraries

strtol, strtoul, atol, atoi

Synopsis

Description

strtol, strtoul, atol, atoi

Convert String to Integer

include < stdlib.h>
long strtol (const char *str, char **ptr, int base);

unsigned long strtoul (
const char *str,

char **ptr,

int base);

long atol (const char *str);

int atoi (const char *str);

Strtolreturns as a long integer the value represented by the character string
pointed to bystr. The string is scanned up to the first character inconsistent
with the base. Leading "white-space" characters (as definisdgacen

ctype.h) are ignored.

If the value ofptris not (char *)NULL, a pointer to the character terminating
the scan is returned in the location pointed tpthyIf no integer can be
formed, that location is set &tr, and zero is returned.

If baseis positive (and not greater than 36), it is used as the base for
conversion. After an optional leading sign, leading zeros are ignored, and "0x"
or "0X"is ignored ifbaseis 16.

If baseis zero, the string itself determines the base as follows: After an
optional leading sign a leading zero indicates octal conversion, and a leading
"0x" or "0X" hexadecimal conversion. Otherwise, decimal conversion is used.

Strtoulis the same astrtol except that no leading plus or minus is allowed in
the string pointed to bstr.

Atol(str) is equivalent tastrtol(str, (char *)NULL, 10).
Atoi(str) is equivalent to (int¥trtol(str, (char *)NULL, 10).

224

Chapter 7: Libraries
strtol, strtoul, atol, atoi

See Also atof, ctype, scanf strtod.

Bugs Overflow conditions are ignored.

225

Chapter 7: Libraries

toupper, tolower, _toupper, _tolower

Synopsis

Description

See Also

toupper, tolower, toupper, _tolower

Translate Characters

include < ctype.h>
int toupper (int c);
int tolower (int c);
int _toupper (int c);

int _tolower (int c);

Toupperandtolowerhave as domain the rangegetc the integers from -1
through255. If the argument dbupperrepresents a lower-case letter, the
result is the corresponding upper-case letter. If the argumésibafker
represents an upper-case letter, the result is the corresponding lower-case
letter. All other arguments in the domain are returned uncharigagoper
andtolowerare implemented both as macros and functions. To use a function
instead of a macrd undefthe macro before function invocation.

The macros toupperand_toloweraccomplish the same thingtasipperand
tolowerbut have restricted domains and are fastéoupperequires a

lower-case letter as its argument; its result is the corresponding upper-case
letter. The macrotolowerrequires an upper-case letter as its argument; its
result is the corresponding lower-case letter. Arguments outside the domain
cause undefined results. Use of this form will never work with foreign
character sets.

getc

226

Chapter 7: Libraries

ungetc
ungetc
Push Character Back into Input Stream
Synopsis # include < stdio.h>
int ungetc (int ¢, FILE *stream);
Description Ungetcinserts the characterinto the buffer associated with an inptieam

That character, will be reuurned by the nexgetccall on thatstream Ungetc
returnsc, and leaves the filstreamunchanged.

One character of pushback is guaranteed, provided something has already
been read from the stream and the stream is actually buffered. In the case that
streamis stdin, one character may be pushed back onto the buffer without a
previous read statement.

If c equals€EOF, ungetcdoes nothing to the buffer and retuEGF.

Fseekerases all memory of inserted characters.

See Also fseek getg setbuf

Diagnostics UngetcreturnsEOF if it cannot insert the character.

227

Chapter 7: Libraries

va_list, va_start, va_arg, va_end

Synopsis

Description

Example

va_list, va_start, va_arg, va_end

#include < stdarg.h>

va_list

void va_start(va_list list, arg_n)
type va_arg(va_list list, type)
void va_end(va_list list)

The preceding macros are used for functions that have variable numbers of
arguments. The type va_list is used to track which of the optional arguments
are being processed.

Theva_startmacro is used to initialize the variable of type va_list. Its second
argument, arg_n, is the last of the non-optional arguments of the current
function. The type of arg_n must be of the default argument promotion types
(int, long, double; not char, short, enum, or float).

Theva_argmacro evaluates to the value of the next optional argument from
when the function was invoked. Each successive caltarggives the next
argument that was given. The second argumenéatargis the type of the
argument that was passed next in the list. Again this typeld only be from

the set of default argument promotion types (int, long, double, pointers, and
structures). Using a type of short, char, enum, or fladhtause undefined
behavior because these types can not be passed as optional arguments.

Theva_endmacro should be called when the last of the optional arguments
has been processed. This ensures proper termination of the optional
argument procssing.

The following function takes a variable number of arguments that are all of
type integer. The function returns the sum of all of the optional arguments.

#include <stdarg.h>
int
sum(int count, ...)
{
va_list args;
int result=0;

228

Chapter 7: Libraries
va_list, va_start, va_arg, va_end

va_start(args, count);
while (count-- > 0)
result +=va_arg(args, int);
va_end(args);
return result;

See also vprintf

229

Chapter 7: Libraries
vprintf, viprintf, vsprintf

vprintf, vprintf, vsprintf

Formatted Output of Varargs List

Synopsis # include < stdio.h>
include < stdarg.h>

int vprintf (const char *format, va_list ap);

int vprintf (

FILE *stream,
const char *format,
va_list ap);

int vsprintf (
char *s,

const char *format,
va_list ap);

Description Vprintf, vfprintf, andvsprintfare the same gwsintf, fprintf, andsprintf
respectively, except that instead of being called with a variable number of
arguments, they are called with an argument list as definstiiéings.h

230

Chapter 7: Libraries
vprintf, viprintf, vsprintf

Example The following demonstrates hoxfprintf could be used to write an error
routine.

#include <stdio.h>
#include <stdarg.h>

I error” should be called like:
* error(function_name, format, arg1, arg2...); */
void

error(char *function_name, char *format, ...)
va_list args;

va_start(args, format);

[* print out name of function causing error */
(void)fprintf(stderr, "ERROR in %s: ", function_name);
[* print out remainder of message */
(void)vfprintf(stderr, format, args);

va_end(args);

exit(1);

See Also printf , stdarg.h.

231

Chapter 7: Libraries
vprintf, viprintf, vsprintf

232

Chapter 8: Environment-Dependent Routines

Environment-Dependent Routines

Description of the emulator environment-dependent routines.

233

Chapter 8: Environment-Dependent Routines

This chapter describes the HP emulator execution environment-dependent
routines. The source files for these interface routines (as well as the object
code files) are provided so they can be customized for target system execution
environments.

The environment-dependent routines (exsaphitor andmon_stub and

library functions are all located in linker segment nane This segment

name may be used just as any other segment name would be (for example, in
SEGMENT pragmas). See the on-line man pages for a complete description of
the cc8086 and cc80186rammand syntax and options.

The environment-dependent routines relate to the following areas of C
progamming.

* Program Setup.
» Dynamic Memory Allocation.

* Program Input and Output.

234

Chapter 8: Environment-Dependent Routines

Program Setup

Two program setup routines are provided with 8086/186 C compiler.
crt0.0 For programs which use 1/O.

crtl.o For programs which do not use 1/O.

These routines define the entry point for program setoiy(), and are
responsible for general preexecution setup such as initialization of the stack
pointer. At the end of preexecution initialization, these setup routines call
main().

The source files of the program setup routines have been provided (and are
well commented) in case they need to be rewritten, for example, to change any
of the default initializations or to add any new program setup such as
establishing values other than zero dogv andargc.

Differences Between "crt0" and 'crt1"

The difference between the two program setup routines itt@atill call
the_startup() library routine to open the standard input, output, and error
files: stdin, stdout, andstderr. Thecrtl routine does not open the standard
input, output, and error tams and has beg@mnovided to avoid the overhead
of loading thestdio library for a program which doesn't use it.

When usingrtl instead otrt0, the behavior of thexit() and_exit() library
routines is different. Sinagtl is used in non-l/O applications, neithexit()
nor _exit() will flush buffers or close open files. Tlegit() routine simply
executes functions which have been logged bythxet() routine, and the
_exit() routine just chs _exit_msg()

235

Chapter 8: Environment-Dependent Routines

The " display_message()" Routine

The_display_message(doutine displays run-time error messages. A call to
_display_message(yuarantees program termination. The
_display_message()outine is called fromexit() (via_exit_msg() and other
library routines; it is also called by the code generated when the "generate
run-time error checking" eomand line option is specified.

The_display_message(joutine causes the emulation monitor program to
display a message on the emulation display’s STATUS line.

An example of how thedisplay _message(joutine is called can be found in
thestartup.c source file.

Linking the Program Setup Routines

The program setup routines are loaded, respectively, by the following linker
command files.

iolinkcom.k Links program withcrt0.o.
linkcom.k Links program withcrtl.o.
fiolinkcom.k Links program containin§087 code witkert0.o.
flinkcom.k Links program containin§087 code witkertl.o.

Since C assumes thstidin, stdout, andstderr are opened prior tmain()
being called, cc8086 automatically usesidimkcom.k (or fiolinkcom.k)
linker command file. To link witlertl.o instead, use the cc8086 "no 1/0"
option to specify that thiinkcom.k (or flinkcom.k) command file be used.

If you use the "generate code for the 808f)"¢ption,fiolinkcom.k or
flinkcom.k will be used instead adlinkcom.k or linkcom.k. These linker
command files substituté87.afor lib.a andlibm87.a for libm.a.

Whenever the environment-dependent librany.a is modified, you must
also modify the default linker command file to load the new library.

Emulator Configuration Files

Two to four configuration files are provided for each supported emulator:

236

Chapter 8: Environment-Dependent Routines

ioconfig.EA For programs linked with crt0.0.

config.EA For programs linked with crtl.o.

fioconfig.EA For programs containing087 code and linked with
crt0.0.

fconfig.EA For programs containing087 code and linked with
crtl.o.

Polling for simulated I/O is enabled by tloeonfig.EA andfioconfig.EA files
because thstdin, stdout, andstderr streams (which are set up by ttrtd
routine) are implemented via simulated 1/O in the emulation environment.
Theconfig.EA andfconfig.EA files do not enable polling for simulated I/O
becausertl does not set up the standard input, output, and erearss.

Configuration filedioconfig.EA andfconfig.EA are supplied only for those
emulation environments which support 8@7. These configuration files
should be used whenever the program cont2083 code.

237

Chapter 8: Environment-Dependent Routines

Note

Memory Map

Notice that each memory model has its own memory map. Check figures 8-3
and 8-4 (figures 8-5 and 8-6 for HP 647xx emulation mmwents) to find out
where the segments are placed for a particular memory model. The segment
ordering is specified by the default linker command fibdiskcom.k and

linkcom.k (fiolinkcom.k andflinkcom.k when using the 8087). Theemory

map is defined by the provided emulator configuration fdesnfig.EAand
config.EA (fioconfig.EA andfconfig.EA when using the 8087). Because
emulator configuration files map memory for absolute code located by the
linker, modifications to the default linker command filal wsually

necessitate modifications to the emulator configuration as well.

When using small memory model with the run-time error checking option
turned onno user code (PROG Segmgmbg/CODE) or data (DATA
Segmentata) should be placed where OFFSET0800. The NULL pointer
is defined to be 0000. If youse code or data at OFFSBU00, the address
of that code or data will be confused with the NULL pointer.

Note that the small memory model map has the PROG and DATA segments
beginning at 80002H and 10002H to avoid this situation.

238

Chapter 8: Environment-Dependent Routines

00000H Space reserved for interrupt
(emul ROM) SEGMENT interrupt vectors.
003FFH (1K)
10000H SEGMENT envdata Environment-dependent data
SEGMENT libdata Run-time library data
SEGMENT libcdata Support library data
(emul RAM) SEGMENT data Dgfaglt for user data
SEGMENT idata Initialized user data
SEGMENT udata Uninitialized user data
SEGMENT heap (4K) System dynamic pool
SEGMENT userstack System stack
1F3FFH (61K)
80000H CLASS CODE All code space
SEGMENT libcconst Support library constants
SEGMENT libmconst Math library constants
(emul ROM) CLASS ??INIT Initialized-data tables
SEGMENT mm check Memory model check
SEGMENT const Default for user constants
8FFFFH (64K)
FFFFFH .

Figure 8-1. Default Memory Map for Large Memory Model

239

Chapter 8: Environment-Dependent Routines

00000H
(emul ROM)
003FFH

10002H

(emul RAM)

1F3FFH

80002H
(emul ROM)

8FFFFH

FFFFFH

SEGMENT interrupt
(1K)

SEGMENT data
SEGMENT idata
SEGMENT udata
SEGMENT heap (4K)
SEGMENT userstack
SEGMENT const
SEGMENT envdata
(61K)

CLASS CODE
CLASS ??INIT
SEGMENT mm_check

(64K)

Space reserved for interrupt

vectors.

Library & default user data

Initialized user data
Uninitialized user data
System dynamic pool
System dynamic stack
User constants
INITDATA data

All code space
Initialized-data tables
Memory model check

Figure 8-2. Default Memory Map for Small Memory Model

240

Chapter 8: Environment-Dependent Routines

Dynamic Allocation

There are several dynamic allocation routines inlitieea support library
(e.g.,malloc, realloc, etc.). The only environment dependency is isolated in
the function_getmem() For these dynamic allocation routines to work, the
function_getmem()must returrmemory allocated from the system. The
source for the getmem()function is provided in the "shipped sources"
directory.

As provided, getmem()returns an address to a block of dynama&mory and
the size of that block. If the block size requestethaljoc() cannot be
satisfied, the largest block left in the heap will bairaed. The déing
sequence is:

void *_getmem(int *size);
ptr = _getmem(&size);

The size of the block allocated, whether it is larger or smaller than the size
requested, is returned indirectly through the pointeapater. Ching
_getmem()with asizeequal to zero will cause thement address of the heap
to be returned.

If desired, getmem()may be written to return more than the requested
amount ofimemory; the dynamic allocation routine#l vake advantage of this.

Rewriting the " getmem" Function

This routine (in filegetmem.g¢ should be rewritten to retumemoryin the

best way for the target system. In a simple embedded system this routine
should probably be written to return the address of an array big enough to use
up all available RAM not used by the rest of the program. If an operating
system is present, the routine should be written to return a large chunk of
memory from the operating system at each call. This routine is similar to the
host operating systesbrk() function.

After the_getmem()function is rewritten and compiled, the nggtmem.o
object file should be loaded before ttrev.alibrary, or be used (with ar86) to
replace the existingetmemobject module in thenv.alibrary. Refer to the
"Getting Started" chapter for an automated way to rebuiletivealibrary
using themakeutility.

241

Chapter 8: Environment-Dependent Routines

Input and Output

Many of the functions defined Isydio.h use the basic I/O functions found in

the systemiosupport library module. These basic I/O functions apen(),

close() read(), write() , Iseek(), andunlink() . Thesystemiofunctions provided
use the simulated I/O feature of the emulation environments. The C source
code for the basic I/0O functions is provided in the "shipped sources" directory.

As provided, the I/O system defines the maximum number of I/O control
blocks available as 12 (which equals the maximum number of simulated 1/0
files that can be open at the same time), and the size of the 1/0 buffers is
defined to be 1020 bytes (based on the 255 byte size of the simulated 1/O
buffer). These values can be changed by redefining the ma@©REN_MAX
andBUFSIZ in the header filstdio.h; after the values of these macros are
changed, you must recompile the fitertup.c. Changes t6OPEN_MAX and
BUFSIZ will not take effect until a negtartup.o object file is made and

placed in the environment dependent librany.a

Thesystemio.cfile should be rewritten for the target system environment.

After thesystemio.cfile is rewritten and compiled, the newstemio.oobject
file should either be loaded before trav.alibrary, or be used (with ar86) to
replace the existingystemioobject module in thenv.alibrary. Refer to the
"Getting Started" chapter for an automated way to rebuileétivalibrary
using themakeutility.

Environment-Dependent I/O Functions

The remainder of this chapter describes the 1/O library functions which are
dependent on the emulator execution environments. Functions declared in the
simio.hinclude file are found in the environment-dependent library archive

file env.a

242

Chapter 8: Environment-Dependent Routines
clear_screen

clear_screen

Clear the Simulated 1/O Display

Synopsis # include < simio.h>
int clear_screen (int fildes);

Description Clear_screertlears the simulated 1/0 displasifioutis directed to the display.
Fildesis the file descriptor obtained from apensystem call to opestdout

Errors Clear_screemwill fail and the display will not be cleared if one of the following
conditions is trueermo will be set accordingly.

[INVALID_CMD]

Attempt to clear the display on a file that is not a
display.

[INVALID_DESC]

Fildesis not an open file descriptor.

[CONTINUE_ERROR]

Attempt to clear the display after a continued
emulation session (emulation is exited and then
reentered).

Return Value Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned anérmois set to indicate the error.

243

Chapter 8: Environment-Dependent Routines

close
close
Close a File Descriptor
Synopsis # include < simio.h>
int close (int fildes);
Description Fildesis a file descriptor obtained from apensystem call.Closecloses the
file indicated byfildes
Errors Closewill fail and the file will not be closed if one of the following conditions
is true;erro will be set accordingly.
[INVALID_DESC]
Fildesis not an open file descriptor.
[CONTINUE_ERROR]
Attempt to close any file descriptor after a continued
emulation session (emulation is exited and then
reentered).
[UNIX_ERROR]
Any error from the host operating systetose(2)
function.
Return Value Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned an@rmois set to indicate the error.
See Also open

244

Chapter 8: Environment-Dependent Routines
exec_cmd

exec_cmd

Execute Operating System Command on the Host

Synopsis # include < simio.h>

int exec_cmd (

const char *command,
int *filel,

int *file2,

int *file3);

Description Exec_cmaxecutes an operating system command on the host computer.
Commands a pointer to a string composed of the command to be executed
and any parameters required by that commdildl, file2, andfile3 are
pointers to variables which will be set to the file descriptors of the pipes
connected tstdin, stdout andstderrof the process spawned. If any pointer is
NULL, that pipe is connected tdev/null and no file descriptor is returned.

Errors Exec_cmahill fail and the canmand vill not be executed if one of the
following conditions is truegrmo will be set accordingly.

[CANNOT_READ_MEMORY]

Read of command name failed.

[NO_FREE_DESC]

The simulated I/O descriptor table is full.

[TOO_MANY_FILES]

Hostpipe(2) command failed.

[NO_FREE_PROC_ID]

The maximum number of processes are already active.

[TOO_MANY_PROCESSES]

245

Chapter 8: Environment-Dependent Routines

exec_cmd
Hostfork(2) failed andermo= EAGAIN.
[INVALID_CMD_NAME]
The command name length is zero.
[UNIX_ERROR]
Hostfork(2) failed andermo does not equal EAGAIN.
Return Value Upon successful completion, a process ID number > = 0, and the pipes’file

descriptors are returned. Otherwise, a value of -1 is returneenads set
to indicate the error.

246

Chapter 8: Environment-Dependent Routines
exit, _exit

Synopsis

Description

See Also

exit, _exit

Terminate Process

include < stdlib.h>
void exit (int status);

void _exit (int status);

Exitis equivalent to exit except thaexitflushes stdio buffers, whileexitdoes
not. Also.exitexecutes any routines that have been logged batéxe
routine;_exitdoes not do this. Botéxitand_exitterminate the calling
process by closing all open file descriptordisplay_message(3 called via
_exit_msg() with the message: "Prog end, returned < arg> ", where "arg" is
either the value returned Imain() or the argument passed to an explicit call
to exit

When programs are not linked with the 1/0O routines (the "no I/@imand
line option is used), the behavior is the same as above excepkitithtes not
flush stdio buffers, and neither function closes open file descriptors.

atexit.

247

Chapter 8: Environment-Dependent Routines

_getmem
_getmem
Get Block of Memory from System Heap
Synopsis # include < memory.h>
void *_getmem(int *size);
Description _getmenis called by the support library dynamic allocation routines (e.g.,

Return Value

Warnings

malloc, realloc, etc.) and thebrk function. For these functions to work,
_getmenmust returrmemory allocated from the system.

_getmentreturns an address to a block of dynamémory and the size of that
block. Ifthe block size requestedtmgalloccannot be satisfied, the largest
block left in the heap will be retned.Sizecan be negative, in which case the
amount of allocated space is decreased.

The size of the block allocated, whether it is larger or smaller than the size
requested, is returned indirectly through the pointeapater. Ching
_getmenmwith asizeequal to zero will cause thercent address of the heap to
be returned.

If desired, getmenmmay be rewritten to return more than the requested
amount ofmemory; the dynamic allocation routines (engglloc, realloc, etc.)
will take advantage of this.

Deallocating memory (callinggetmenmwith a negativesizg without first
having allocated the memory will cause unknown results.

248

Chapter 8: Environment-Dependent Routines
_getmem

Example An example of how thegetmenfunction is used can be found in the shipped
source filesbrk.c shown below.
#include <memory.h>

#pragma SEGMENT PROG=env DATA=envdata CONST=env
extern void *_getmem();

void

*sbrk(incr)

int incr;
void *ptr; /* pointer to memory block allocated */
char *tptr; /* used to zero memory block allocated */

int size =incr;

ptr = _getmem(&size);

if(size !=incr) [* was request satisfied? */
size = -size; /* free block returned by _getmem since */
getmem(&size); /* did not satisfy request. */

return (char *)-1;

}

[* initialize memory block to be returned to zero */
for (tptr = ptr; tptr < (char *)ptr+incr; tptr++)

*tptr = 0;
return ptr;

See Also malloc, free, realloc, calloc, sbrk.

249

Chapter 8: Environment-Dependent Routines

initsimio
initsimio
Initialize Simulated 1/0
Synopsis # include < simio.h>
int initsimio (void);
Description It is not necessary to call thi@tsimio function prior to calling any other
functions implemented via simulated 1/0; however, doing so will allow you to
restart a program, which was stopped with simulated I/O filksgen,
without any side effects from the previously opened files.
Return Value Upon successful completion, a value of 0 is returned. Otherwise, a value of -1

is returned anérrnois set to indicate the error.

250

Chapter 8: Environment-Dependent Routines
kill

Synopsis

Description

Errors

Return Value

kill
Kill Simulated I/O Process

include < simio.h>

int kill (int pid, int sig);

Kill sends signaigto a process running on the host which is identified by the
process ID numbgpid.

Kill will fail and theprocess Vil not be killed if one of the following conditions
is true;erro will be set accordingly.

[NO_PERMISSION]

Hostkill(2) failed because of a permissionsce.

[INVALID_PROC_ID]

The simulated I/O process ID is unused or out of ran
(the simulated 1/O process entry does not exist).

[INVALID_SIGNAL]

Hostkill(2) failed becaussigis not a valid signal.

[NO_SUCH_PROCESS]

The host operating system process does not exist.

[UNIX_ERROR]

Hostkill(2) failed for some other reason.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned anérmois set to indicate the error.

251

Chapter 8: Environment-Dependent Routines

Iseek
Iseek
Move Read/Write File Pointer
Synopsis # include < simio.h>
include < stdio.h>
long Iseek (int fildes, long int offset, int whence);
Description Fildesis a file descriptor returned fromopensystem call.L seeksets the file

pointer associated witfiildesas follows. (The SEEK_* macros are defined in
<stdio.h> which must be included.)

If whencas SEEK_SET, the pointer is set toffsetbytes. Ifwhencds
SEEK_CUR, the pointer is set to its current location pdffset If whencds
SEEK_END, the pointer is set to the size of the file pdifset

Upon successful completion, the resulting pointer locatiomessured in
bytes from the beginning of the file, is returned.

L seekwill fail and the file pointer will emain unchanged if one or more of the
following are true:

[INVALID_DESC]

Fildesis not an open file descriptor.

[NO_SEEK_ON_PIPE]

Fildesis associated with a pipe or fifo.

[INVALID_OPTIONS]

Whencsds any illegal value.

[INVALID_OPTIONS]

The resulting file pointer would be negative.

252

Chapter 8: Environment-Dependent Routines
Iseek

[INVALID_CMD]

Fildesis display or keyboard.
[CONTINUE_ERROR]
Attempt to move a file pointer after a continued

emulation session (emulation is exited and then
reentered).

[UNIX_ERROR]

Some host operating system call has failed. Some
devices are incapable of seeking. The value of the file
pointer associated with such a device is undefined.

Return Value Upon successful completion, a non-negative integer indicating the file pointer
value is returned. Otherwise, a value of -1 is returneceandis set to
indicate the error.

See Also open

253

Chapter 8: Environment-Dependent Routines

open
open
Open File for Reading or Writing

Synopsis # include < simio.h>
int open (const char *path, int option);

Description Openrequests the host to open a file specifiegdth with the givenoptions

If the operation is successfolpenwill return a valid file descriptor. If
unsuccessfubpenwill seterrnoand return -1Optionvalues are constructed
by OR-ing flags from the list below.

O_READ
O_WRITE
O_RDWR
O_NDELAY

O_APPEND

O_CREATE

O_TRUNC

O_EXCL

Open for reading only.

Open for writing only.

Open for reading and writing.

This flag may affect subsequent reads and writes.

If set, the file pointer will be set to the end of the file
prior to each write.

If the file exists, this flag has no effect. Otherwise, the
file is created, the owner ID of the file is set to the
effective user ID of the process, and the group ID of the
file is set to the effective group ID of the process.

If the file exists, its length is truncated to 0 and the
mode and owner are unchanged.

If O_EXCL and O_CREATE are saipenwill fail if
the file exists.

254

Chapter 8: Environment-Dependent Routines
open

Errors Openwill fail and the file will not be opened if one of the following conditions
is true. Ermo will be set accordingly:

[UNIX_ERROR]
A component of the path prefixis not a directory, or,

The named file is a directory agtionis write or
read/write, or,

The named file resides on a read-only file system and
optionis write or read/write, or,

The named file is a character special or block special
file, and the device associated with this special file does
not exist, or,

The file is open for execution amgtionis write or
read/write. Normal executable files are only open for a
short time when they start execution. Other executable
file types may be kept open for a long time, or
indefinitely under some circumstances, or,

A signal was caught during tlopensystem call, or,
The system file table is full.

[FILE_NOT_FOUND]
O_CREATE is not set and the named file does not exist.

[NO_PERMISSION]
A component of the path prefix denies search
permission, or,

Optionpermission is denied for themed file.

[TOO_MANY_FILES]
More than the maximum number of file descriptors are
currently open.

[FILE_EXISTS]
O_CREATE and O_EXCL are set, and the named file
exists.

255

Chapter 8: Environment-Dependent Routines

open
[INVALID_FILE_NAME]
Path is null.
[INVALID_OPTIONS]
Optionspecifies both O_WRITE and O_RDWR. Also,
undefined bits set in theptionparameter.
[NO_FREE_DESC]
The maximum number of simulated 1/O files are already
open.
Return Value Upon successful completion, the file descriptor is returned. Otherwise, a
value of -1 is returned aradrois set to indicate the error.
See Also close Iseek read, write .

256

Chapter 8: Environment-Dependent Routines
pos_cursor

Synopsis

Description

Errors

Return Value

pos_cursor

Position Cursor on Simulated 1/0O Display

include < simio.h>

int pos_cursor (int fildes, int col, int row);

Pos_cursopositions the cursor to (column, line) on the displaydbutis
directed to the display.

Pos_cursomill fail if one of the following conditions is trueymo will be set
accordingly.

[INVALID_CMD]
Attempt to position the cursor on a file that is not a
display.

[INVALID_ ROW_OR_COLUMN]

Rowis greater than or equal to 50 rowsgotis greater
than or equal to 80 columns (or the number of columns
on the display, whichever is greater).

[INVALID_DESC]
Fildesis not an open file descriptor.

[CONTINUE_ERROR]
Attempt to position the cursor after a continued
emulation session (emulation is exited and then
reentered).

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned anérmois set to indicate the error.

257

Chapter 8: Environment-Dependent Routines

read

Synopsis

Description

Errors

read

Read Input

include < simio.h>

int read (int fildes, void *buf, int nbyte);

Readrequests the host to reallytesfrom the file specified bfldesand place
them intobuf. If the operation is successftdadreturns the number of bytes
read. If unsuccessfukadsetserroand returns -1.

On devices capable of seeking, thadstarts at a position in the file given by
the file pointer associated wiftdes Upon return fromead the file pointer
is incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position.
The value of a file pointer associated with such a device is undefined.

Upon successful completiorgadreturns the number of bytes actually read
and placed in the buffer; this number may be less tgteif the number of
bytes left in the file is less tharbytebytes. A value of 0 is returned when an
end-of-file has been reached.

Readwill fail if one of the following conditions is true andrao will be set
accordingly:
[INVALID_DESC]

Fildesis not a valid file descriptor open for reading.

[INVALID_CMD]

Attempt to read from the display.

258

Chapter 8: Environment-Dependent Routines
read

[CONTINUE_ERROR]

Attempt to read anything after a continued emulation
session (emulation is exited and then reentered).

[UNIX_ERROR]

Any error from hostead(2).

Return Value Upon successful completion a non-negative integer is returned indicating the
number of bytes actually read. Otherwise, a -1 is returne@ramalis set to
indicate the error.

Note

Although no more tha@55 bytes are transferred from the host at one time,
there is no practical limit to the number of bytes that can be read per
invocation ofread

See Also open

259

Chapter 8: Environment-Dependent Routines

sbrk
sbrk
Get Block of Zero-Filled Memory from System Heap
Synopsis # include < memory.h>
void *sbrk (int increment);
Description Sbrkis used to get a block of dynamically allocated memocyementoytes in

Return Value

Warnings

See Also

length, from the system heap. The newly allocated space is set to zero.
Incrementcan be negative, in which case the amount of allocated space is
decreased.

Upon successful completioghrkreturns a pointer to the first byte of the
memory block requested. Otherwise, a value of -1 is returned.

The pointer returned kgbrkis not aligned in any manner. Loading or storing
words through this pointer could cause alignment problems.

Care should be taken when ussigkin conjunction with calls to the main
memory allocator routinesr@lloc, calloc, realloc, andfree). All these

routines allocate and deallocate datamory from the system heap. Although
you should not attempt this, it is ggible to deallocate damaemory allocated
through the maimemory allocator functions with a subsequent cadtdc

malloc, free, realloc, calloc, _getmem

260

Chapter 8: Environment-Dependent Routines

unlink
unlink
Remove Directory Entry
Synopsis # include < simio.h>
int unlink (const char *path);
Description Unlink causes the file whose name is pointed tpdiato be removed; the file

remains open, however, and can be accessed until it is closed. Subsequent
attempts to open the file will fail, unless it is created anew.

Errors Unlink will fail if one of the following conditions is true, aredmo will be set
accordingly.

[INVALID_FILE_NAME]

A component of th@ath prefix is not a directory.

[FILE_NOT_FOUND]

The named file does not exipgthis NULL, or a
component opathdoes not exist.

[NO_PERMISSION]

Search permission is denied for a goment of the
path prefix. Write permission is denied for the
directory containing the file to be removed.

[UNIX_ERROR]

The hostunlink(2) function failed for some reason
other than denied permissions.

261

Chapter 8: Environment-Dependent Routines

unlink

Return Value Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned andrmois set to indicate the error.

See Also close open

262

Chapter 8: Environment-Dependent Routines
write

Synopsis

Description

write

Write on a File

include < simio.h>

int write (int fildes, const void *buf, int nbyte);

Write requests the host to writdytebytes frombufto the file specified by
fildes Ifthe operation is successfulite returns the number of bytes written.
If unsuccessfublyrite setsermo and returns -1.

On devices capable of seeking, the actual writing of data proceeds from the
position in the file indicated by the file pointer. Upon return frorite, the
file pointer is incremented by the number of bytes actually written.

On devices incapable of seeking, writing always takes place starting at the
device’s current position. The value of a file pointer associated with such a
device is undefined.

Ifthe O_APPEND flag of the file status flags is set when the file is opened
file pointer will be set to the end of the file prior to the first write.

If a write requests that more bytes be written than there is room for, only as
many bytes as there is room foitllwe written. For examplepuppose there is
space for 20 bytes more in a file before reaching a limit. A write of 512 bytes
will return 20. The next write of a non-zero number of bytélgive a failure
return (except as noted below).

263

Chapter 8: Environment-Dependent Routines

write

Errors

Return Value

See Also

Write will fail and the file pointer will emain unchanged if one of the
following conditions is true and errnallbe set accordingly:

[INVALID_DESC]

Fildesis not a valid file descriptor open for writing.

[UNIX_ERROR]

The current file position (as set lsgeR is less than
zero.

[INVALID_COMMAND]

Fildesindicates the keyboard.

[CONTINUE_ERROR]

Attempt to write anything after a continued emulation
session (emulation is exited and then reentered).

Write will fail and the file pointer will be updated to reflect theamt of data
transferred if one of the following conditions is true and erritidoe set
accordingly:

[UNIX_ERROR]

An attempt was made to write a file that exceeds the
process’s file size limit or the maximum file size.

Upon successful completion, the number of bytes actually written is returned.
Otherwise;1is returned, andrmois set to indicate the error.

Iseek open

264

Chapter 9: Compile-Time Errors

Compile-Time Errors

Explanations of compile-time error messages.

265

Chapter 9: Compile-Time Errors

Errors are problems which prevent a program from cdimg successfully.
When you see an error message, you must correct the error then compile the
program again.

Warnings are possibl@roblems which may cause your program to execute
incorrectly. When you see a warning message, you need to decide whether
your code is correct. Warnings disted at the end of this chapter.

The errors and warnings disted here in alphabetical order.

In addition to the error or warning message, the compiler shows the line of
code, the file name, and the line number.

Errors

Address initializer is too large to fit in declared type. This error can
occur when an attempt is made to store a pointer in a variable which was
declared with too small a size, such as "short" or "char."

Address of automatic variable is not constant.

Assign of ptr to const to ptr to non-const. This error occurs when a
pointer to constant is assigned to a pointemda-constant. For example:

ptr_to_non_const = ptr_to_const;

This error prevents the inadvertent modification of constant data via pointers.
A cast can be used to override this checking.

Assign of ptr to volatile to ptr to non-volatile. This error occurs when a
pointer to volatile is assigned to a pointentin-volatile.

ptr_to_non_volatile = ptr_to_volatile;

This error prevents optimizations from being inadvertently made where the
volatile type modifier has said that they shouldnt. A cast can be used to
override this checking.

Bad command line syntax.

266

Chapter 9: Compile-Time Errors

Bad constant expression. This means that aon-constant expssion has
been used in a context where a constant expression is required.

Bad digit in octal constant.
Bad function declarator. This is a syntax error which occurs when the
parser is expecting the start of a function definition. It is often followed by

many errors due to the parser being out of sync.

Bad integer constant. This error occurs when a non-integral constant is
used in a context where an integer constant is required.

Bit field < name> must be integral type.

Bit width of < bit field nhame> cannot be O.

Bit width of < bit field name> too large.

Break must be inside looping construct or switch.
Can only initialize first member of a union.

Can't access array member of non-Ilvalue structure.

Can't declare void object < identifier/member name> . The only objects
which may be declared with typeid are functions returning void and pointe
to void.

Cannot assign to a constant. This error occurs when a symbol declared
with the "const" type modifier is assigned a value.

Cannot have array of functions. Arrays may not have functions as
elements, but they may hapeintersto functions as elementsHipt: use
typedef to declare a type "pointer to function,"then declare an array of this

type.)

Cannot have array of void. Although you cannot declare an array of void
objects, you may declare an array of pointers to void. For example, you may
declarevoid *ptr_array[10]

267

Chapter 9: Compile-Time Errors

Cannot take address of a bit field. ~ This error occurs when the unary
address operator (&) is used on a bit field.

Cannot take address of a register. This error occurs when the unary
address operator (&) is used on a variable declared witretfister storage
class specifier.

Cannot take sizeof this type. Sizeof cannot be applied to a function, bit
field, a void, or an undimensioned array.

Case statement must be inside switch.
Case values must be integral.

Character string constant exceeds maximum length. The maximum
length for character strings is 1023 characters (1024 if the NU Lduisted).

Comment terminator */” without comment start.

Condition of '?." must be scalar. The scalar types include the arithmetic
types (char, short, int, long, float, double) and pointers.

Constant literal too large. A constant literal has an implied type. If the
value is too large for that type, then an error occurs.

Continue must be inside looping construct.

Control expression must be scalar. The scalar types include the
arithmetic types (char, short, int, long, float, double) and pointers.

Declaration for nonexistent parameter. This error occurs when a
declaration list of formal pameters contains a declaration for a parameter
not listed in the function declarator.

Default statement must be inside switch.

Division or modulo by zero. This error occurs when the compiler
determines that a constant folding optimization will cause a divide by zero.
Use the unary plus (+) operator to prevent the rearrangement o$sixpre

Duplicate label < identifier> .

268

Chapter 9: Compile-Time Errors

Duplicate structure or union member < name> .
Empty character literal.

Enum constant value not representable as int. All enumeration values
must be representable in an int type.

Exceeded automatic variable space. This error occurs when there is too
much local storage. The limit i4%2 bytes.

Exceeded parameter passing space. This error occurs when there is too
much parametettgrage. The limit is ¥ bytes.

Expression too complex.

Function call has fewer params than prototype.
Function call has more params than prototype.
Function cannot return array.

Function cannot return function.

Function parameter cannot be void.

Goto non-existent label < identifier> .

lllegal cast operands. This error occurs when an exgson cannot be
converted to the type specified by the cast construct (for example, casting
between a data pointer and a float). The cast operator can only be applied to
scalar or void types

lllegal character in input. This is usually caused when a control character
has been placed in the C source code.

lllegal function name.

lllegal operand types of < operator>. The operand types are incompatible
with the operator.

lllegal preprocessor directive in input.

269

Chapter 9: Compile-Time Errors

Incompatible array initializer. The initializer given for an array is not
compatible with the type of the array elements.

Incompatible initializer. The initializer given is not compatible with the type
of the variable being initialized.

Initializer too large for array.
Interrupt routine must return type void.

Left operand of < operator> must be an Ivalue. An "lvalue"is an
expression to which values can be assigned.

Missing right delimiter on string literal.

Mixed new and old style parameter declarations.
More initializers than structure members.
Multiple defaults in switch.

Must init arithmetic type with arithmetic value. Arithmetic types (char,
short, int, long, float, and double) must be initialized with arithmetic values.

Must initialize bit field with integral constant.

Must init pointer with compatible pointer or 0. A compatible pointer is a
pointer with the same type or a data pointer with {yo& *). (The NULL

pointer constant is 0.)

Near function < identifier> called across segments. A call to a static

function in a different segment has been attempted with the cc8086 "near calls"
option specified.

Negative or zero array size.

No digits in hexadecimal constant.

Only high order dimension of array can be empty.

Operand of < operator> cannot be constant.

270

Chapter 9: Compile-Time Errors

Operand of < operator> must be an Ivalue. An "lvalue" is an expression
to which values can be assigned.

Operand of < operator> must be arithmetic. The arithmetic types are:
char, short, int, long, float, and double.

Operand of < operator> must be integral. The integral types are: char,
short, int, and long.

Operand of < operator> must be scalar. The scalar types include the
arithmetic types (char, short, int, long, float, double) and pointers.

Operand of pointer dereference must be a pointer. Something other

than a pointer was found immediately following a dereferencing (indirection)
operator*. Check the declaration of the operand to make sure it is a pointer.
You may also see this error message if an arithmetic ssjoreis incorrect
(remember that* is not an arithmetic operator in C).

Operands of '[]" must be a pointer and an integral. This error occurs
when the array name and the index are not alternately a pointer and an
integral type (char, short, int, long).

Operands of < operator> must be integral. The integral types are: char,
short, int, and long.

Operands of < operator> must be scalar. ~ The scalar types include the
arithmetic types (char, short, int, long, float, double) and pointers.

Overflow during floating point constant folding. This error occurs when

the compiler determines that a constant folding optimization on floating-point
values will cause an overflow. Use the unary plus (+) operator to prevent the
rearrangement of expssions.

Param expr type not compatible with prototype.

Param list can only appear in definition. An old style declaration of a
function so that another function may use it, like

extern char foo ();

cannot include pameters, as in

271

Chapter 9: Compile-Time Errors

extern char foo (a, b);

Only the function definition may include a paramdistr
Param type of < name> differs from prototype.
Parameter type must have id in function definition.
Parameters not allowed for interrupt routine.

Parser stack overf low. This error occurs when the compiler has reached a
syntactic translation limit. This will only occur in egtne cases. The
translation limits are listed in the "C Compiler Overview" chapter.

Redeclaration of section/segment for symbol < id> .
This error occurs when the same symbol is declared in two differeartigd
program segments.

Redeclaration of symbol < identifier> . Rename one of the symbols. In
some previous versions of the compiler technologyamp@ter names were
ignored in prototype declarations.

Redeclaration of tag < identifier> .

Redeclaration of whether symbol < identifier> is ORGed.

This error occurs when the same symbol is declared in a relocatable program
segment and in an absolute program segment (defined with the SEGMENT
pragma).

Redefinition of function < identifier> .

Repeated case value.

Return expression does not match function type.

Reuse of absolute address for symbol < name> . This error occurs when
absolute address segment declarations have been given such that address
overlaps occur in the assembly code. All symbols located at a particular

address must be in the same segment (prog, data, or const) and they must all
be either defined in the same module or defined externally.

272

Chapter 9: Compile-Time Errors

Static initializer not a representable constant.

Structure can’t contain function < member name> . If you want to store a
function in a structure, storepainterto the function. For exampliet
(*funcptr)() would be a valid structure element.

Structure can’t contain undimensioned array < identifier> . You must
give a dimension for any array inside a structure; for examplé[l1i§e
instead off]

Structure can’t contain void < member name> . Structure elements may
not be objects of typeoid. However, pointers twoid are allowed. For
examplevoid v is not allowed in a structure, butid *pv is allowed.

Structure element reference of non-structure. The identifier in front of
the "." was not declared as a structure.

Switch condition must be integral. In switch (expressiohtheexpression
must return a value of typet.

Syntax error. This error is often caused by assing semicolon on the
preceding line.

Type cannot have zero size. This error vill occur if the onlymember of a
structure is a bit field whose size is zero.

Type too large. This error occurs when a type'’s size is greater tHée 2
bytes.

Undeclared structure member <name>. This error occurs when you
attempt to access a structunember which has not been declared.

Undeclared symbol < identifier> .

Underflow during floating point constant folding. This error occurs when

the compiler determines that a constant folding optimization on floating-point
values will cause an underflow. Use the unary plus (+) operator to prevent
the rearrangement of exm®ons.

273

Chapter 9: Compile-Time Errors

Uninitialized definition of undimensioned array. This error occurs when
no dimension is specified in an array declaration. The highest order
dimension in an array declaration may be empty if the declaration is initialized.

Unknown or incorrect pragma (ignored).

Unknown type size. This error can occur when a variable declared with the
type of an undeclared structure tag is used before the structure is declared.

Unresolved static function < name> . This error indicates that a static
function of the form "static f();" was declared, but the function body was never
defined.

Warnings

Alias symbol < name> already referenced. Place thet pragma ALIAS
before the symbol is used. For example, place it immediately before or after
the declaration. The alias will not cause substitution of the syngménn
anyreferences which precede the alias.

Array index out of range.

Assignment between different pointer types.

Assignment between pointer and integer.

Cast from less to more restrictive pointer. This warning message is
enabled when the cc8086 "generate additional warnings" option is specified.

Comparison between different pointer types.

Comparison between pointer and integer.

Confusing line directives may affect debug info. This warning indicates
that the line synchronization information passed to the compiler did not

correspond to a proper nesting of include files. This is probably due to
inconsistent # line directives in thewsce.

274

Chapter 9: Compile-Time Errors

Duplicate const qualifier on type. The type was already declared as const.

Duplicate volatile qualifier on type. The type was already declared as
volatile.

Empty body of control statement. This warning message is enabled when
the cc8086 "generate additional warnings" option is specified.

Empty external declaration.

Extern <identifier> assumed to be in UDATA. The compiler cannot
determine if the external identifier was initialized and has placed the identifier
in theUDATA segment. If the variable is initialized, it is very important to
place the variable in the correct segmeadatg). To do this, use # pragma
SEGMENT DATA= idata before the external declaration to name the
initialized data segment. See the "Embedded Systems" chapter for more
information. (This condition occurs only when the "separate initialized and
uninitialized data" option is used).

External symbol < identifier> exceeds significant length.

lllegal escaped character. Backslash ignored. As an example, the string
"\q" would cause the warning to be generated, and the string would become "q".

Local variable < identifier> referenced only once.

Missing parameter declaration (defaulted to int). This warning message
is enabled when the cc8086 "generate additional warnings" option is specified.

Mixing extern declaration of < identifier> with near calls. This warning
message is enabled when the cc8086 "NEAR calls" compiler option is specified
and a function is declared astern and later astatic. The resulting symbol is
changed fronextern to static in midstream, which may result in mect

"NEAR" calls to a "FAR" function. Bmember that thextern declaration may

be implicit.

Mixing function pointer < identifier> with near calls.
This warning message is enabled when the cc8086 "near calls" option is
specified and function pointers are declared.

More than one character in character literal.

275

Chapter 9: Compile-Time Errors

No emulation local syms if .c and .A file not in same directory. This
warning is generated whenever a path to a source file is specified and the
"generate HP 64000 format files" option is used. If you will be using an
emulator, compile all sources in the directory where they exist.

Non-constant initializer for constant type variable.
Octal or hex character constant too big (truncated).
Shift by out of range constant value.

Static initializer will not be loaded. This warning is enabled when the
“uninitialized data" compiler command line option is specified. It warns that
there is no load-time initialization for statics and externals

Struct, union, or enum tag used but not declared. It is possible to

declare pointers to structures or unions before they are defined. The C
language allows this form of forward referencing. This message means that a
forward reference for a tag was seen, but never resolved. This warning message
is enabled when the cc8086 "generate additional warnings" option is specified.

Test expression is an assignment. This warning message is enabled when
the cc8086 "generate additional warnings" option is specified.

Unreferenced symbol < identifier>. The symbol was declared but is not
used.

276

Chapter 10: Run-Time Errors

10

Run-Time Errors

Explanations of run-time error messages.

277

Chapter 10: Run-Time Errors

There are three basic types of run-time error messages. The largest group is
generated by floating-point exceptions. The two smaller groups are debug
error messages and startup error messages.

Floating-Point Error Messages

In accordance with the IEEE floating-point standard, trapping on
floating-point exceptions may be enabled or disabled. (Seefpherror

description in the "Libraries" chapter.) If the trap associated with a specific
exception is disabled, an IEEE defined value isme¢d, a global exception

flag is set, and no error message is displayed. Conversely, if the trap is enabled
and an exception is detected, an error message is displayed on the emulation
status line and the program terminates. This type of error message is
composed as follows:

278

Chapter 10: Run-Time Errors

Flt Pt Invalid Operation. This error occurs when an operand is invalid for
the operation performed. Examples include:

e 0 *Infinity.

e (+ Infinity) + (=Infinity).

e 0/0 or Infinity/Infinity.

e Comparison between NaN and any other value.

» Floating point register variable is read without having been initialized
(8087 only).

FIt Pt Overflow. This error occurs when the result of an operation is too
large to be represented in the destination format.

FIt Pt Underflow. This error occurs when the result of an operation is too
small to be represented in the destination format. If trapping is disabled, the
result will be daormalized.

FIt Pt Divide by Zero. This error occurs when attempting to divide a
non-zero value by zero. (Zero divided by zero is an invalid operation error.)

FIt Pt Imprecise. This error occurs when the result requires rounding. Due
to the high probaibty of rounding, this trap is typically disabled.

FIt Pt Significance Loss. This error occurs when prison is lost during the
reduction of large arguments in the trigpnometric functions.

FIt Pt Denormal This error occurs after an operation is attempted on a
denormal number (8087 only).

Debug Error Messages

If programs are compiled using the "generate run-time error checking" option,
code is generated to perform checks for the dereferencing of NULL and
uninitialized pointers, and for range errors in array accesses. If one of these
conditions occurs, the following type of message is displayed:

279

Chapter 10: Run-Time Errors

Pointer Faults:

<file>:<line number> nil ptr
<file>:<line number> uninit ptr

Range Faults:

<file>:<line number> <index> > <max index>
<file>:<line number> <index> < 0

Where<file> refers to the C source file containing the offending instruction.
This field may be truncated, if necessary, to 12 characters after the ".c"
extension is removed from the file name.

Where<line number>is the line number within the C source file which
contains the offending instruction.

Where<index> is the indexinto the array.

And where<max index>is the upper bound of the array. This field may be
replaced with "max"if the message won' fit on the status line.

280

Chapter 10: Run-Time Errors

Startup Error Messages

If the crt0O program setup file is linked with the program, gtartup routine is
called to open thestdin, stdout, andstderr streams. If for any reason one of
these files cannot be opened, the following type of message is displayed:

Can't open <file>, prog aborted

Where<file> is either "stdin", "stdout", or "stderr".

At program termination, a message is always displayed. This message is
composed within theexit_msg()library routine and is:

Program end, returned <arg>

Where<arg> is either the value returned main() or the argument passed
to an explicit call taexit().

If an integer divide by zero is attempted, the prograltevminate with the
following message displayed:

Integer divide by zero

281

Chapter 10: Run-Time Errors

282

Chapter 11: Run-Time Routines

11

Run-Time Routines

Descriptions of run-time routines.

283

Chapter 11: Run-Time Routines

Note

Run-time library routines are usually called by compiler generated code;
however, they may be called from assembly language programs as well
(including embedded assembly code within the C source file). The routines
listed here may inurn call other subroutines; those subroutines ardisted
here.

These run-time routines may change in future versions of the compiler.

The names of somain-time routines have changed between versions of the
compiler; for example, many large model routines weramesd from _L to

_LM when support for the mediumemory model was added.

The following conventions are followed for this appendix:

<size> _Sor_SC for the small memory model, L or LM for
the large memory model, _C or _SC for the compact
memory model, _M or _LM for the medium model.

< pointer size> 16 for the small memory model, 32 for the large
memory model.

DXAX 32-bit pseudo-register consisting of registers DX and
AX with DX holding the most significant word.

ESDI 32-bit pseudo-register consisting of registers ES and DI
with ES holding the segment and DI holding the offset.

F64 Double (8 bytes).

F32 Float (4 bytes).

ul32 Unsigned Long (4 bytes).

132 Signed Long (4 bytes).

ull6 Unsigned Integer (2 bytes).

116 Signed Integer (2 bytes).

284

Chapter 11: Run-Time Routines

0O Indirection. For example, (DI) represents the memory
location pointed to by register DI.

PARMO Last parameter pushed on the stack.

PARM1 If present, this parameter is pushed on the stack just
prior to PARMO. These parameters may terfor
eight bytes in size, depending on the specific library
routine. Some routines do not use the stack to pass
parameters.

Figures 9-1trough9-4 can bedund at the end of this appendix.

285

Chapter 11: Run-Time Routines

Conversion Routines

Conversion Routines

F64_TO F32<size>

Converts a 64-bit floating point value to a 32-bit floating point value by
rounding to nearest. A zero is returned for a deno6#diit floating point
value.

Input: F64 in PARMO (8 bytes).

Output: F32 in register DXAX.

Registers Destroyed: BX, CX.

Side Effects: PARMO is deallocated by this routine via RET 8.
Synopsis: XAX - cast PARMO.
Stack Upon Entry: Figure-1.

F32_TO_F64< size>

Converts a 32-bit floating point value to a 64-bit floating point value. A zero is
returned for a denorm&B-bit floating point value. The additional mantissa
bits of the 64-bit floating point value are alwayaureted zero, even when
converting an NaN.

Input: F32 in register DXAX.

Output: F64 in PARMO (8 bytes).

Registers Destroyed: BX, CX, DI.

Side Effects: None.
Synopsis: PARMO- cast DXAX.
Stack Upon Entry: Figure-1.

286

Chapter 11: Run-Time Routines
Conversion Routines

F64_TO_Ul32< size>

Converts a 64-bit floating point value to a 32-bit unsigned integer by
truncation. Floating point values that cannot be represente82ya
unsigned integer returdx80000000

Input: F64 in PARMO (8 bytes).

Output: U132 in register DXAX.

Registers Destroyed: BX, CX, DI.

Side Effects: PARMO is deallocated by this routine via RET 8.
Synopsis: XAX - cast PARMO.
Stack Upon Entry: Figure-1.

UI32_TO_F64< size>

Converts a 32-bit unsigned integer to a 64-bit floating point value.
Input: UlI32 in register DXAX.
Output: F64 in PARMO (8 bytes).

Registers Destroyed: AX, BX, CX, DX, DI.

Side Effects: None.
Synopsis: PARMO- cast DXAX.
Stack Upon Entry: Figure-1.

287

Chapter 11: Run-Time Routines

Conversion Routines

F64_TO_UI16< size>

Converts a 64-bit floating point value to a 16-bit unsigned integer by
truncation. Floating point values that cannot be represented®pi
unsigned integer retur@x8000Q

Input: F64 in PARMO (8 bytes).

Output: UI16 in register AX.

Registers Destroyed: BX, CX, DX, DI.

Side Effects: PARMO is deallocated by this routine via RET 8.
Synopsis: AX < cast PARMO.
Stack Upon Entry: Figure-1.

UI16_TO_F64< size>

Converts a 16-bit unsigned integer to a 64-bit floating point value.
Input: UI16 in register AX.
Output: F64 in PARMO (8 bytes).

Registers Destroyed: AX, BX, CX, DX, DI.

Side Effects: None.
Synopsis: PARMO- cast AX.
Stack Upon Entry: Figure-1.

288

Chapter 11: Run-Time Routines
Conversion Routines

F64_TO_132< size>

Converts a 64-bit floating point value to a 32-bit signed integerumcation.
Floating point values that cannot be represented32ylait signed integer
return0x80000000

Input: F64 in PARMO (8 bytes).

Output: 132 in register DXAX.

Registers Destroyed: BX, CX, DI.

Side Effects: PARMO is deallocated by this routine via RET 8.
Synopsis: XAX - cast PARMO.
Stack Upon Entry: Figure-1.

132_TO_F64< size>

Converts a 32-bit signed integer to a 64-bit floating point value.
Input: 132 in register DXAX.
Output: F64 in PARMO (8 bytes).

Registers Destroyed: AX, BX, CX, DX, DI.

Side Effects: None.
Synopsis: PARMO- cast DXAX.
Stack Upon Entry: Figure-1.

289

Chapter 11: Run-Time Routines

Conversion Routines

F64_TO_116< size>

Converts a 64-bit floating point value to a 16-bit signed integerumcation.
Floating point values that cannot be representedliylait signed integer
return0x8000

Input: F64 in PARMO (8 bytes).

Output: 116 in register AX.

Registers Destroyed: BX, CX, DX, DI.

Side Effects: PARMO is deallocated by this routine via RET 8.
Synopsis: AX < cast PARMO.
Stack Upon Entry: Figure-1.

116_TO_F64< size>

Converts a 16-bit signed integer to a 64-bit floating point value.
Input: 116 in register AX.
Output: F64 in PARMO (8 bytes).

Registers Destroyed: AX, BX, CX, DX, DI.

Side Effects: None.
Synopsis: PARMO- cast AX.
Stack Upon Entry: Figure-1.

290

Chapter 11: Run-Time Routines
Conversion Routines

F32_TO_UlI32< size>

Converts a 32-bit floating point value to a 32-bit unsigned integer by
truncation. Floating point values that cannot be represente8bpi
unsigned integer retur®80000000

Input: F32 in register DXAX.

Output: UI32in register DXAX.

Registers Destroyed: BX, CX, DI.

Side Effects: None.

Synopsis: XAX ~ cast DXAX.

UI32_TO_F32<size>

Converts a 32-bit unsigned integer to a 32-bit floating point valueunyding
to nearest.

Input: UI32 in register DXAX.
Output: F32 in register DXAX.
Registers Destroyed: BX, CX, DI.

Side Effects: None.

Synopsis: XAX ~ cast DXAX.

291

Chapter 11: Run-Time Routines
Conversion Routines

F32_TO_Ul16< size>

Converts a 32-bit floating point value to a 16-bit unsigned integer by
truncation. Floating point values that cannot be represented®pi
unsigned integer returdx8000

Input: F32 in register DXAX.

Output: UI16 in register AX.

Registers Destroyed: CX, DX.

Side Effects: None.

Synopsis: AX < cast DXAX.

Ul16_TO_F32<size>

Converts a 16-bit unsigned integer to a 32-bit floating point value.

Input: UI16 in register AX.
Output: F32in register DXAX.
Registers Destroyed: None.

Side Effects: None.

Synopsis: IXAX ~ cast AX.

292

Chapter 11: Run-Time Routines
Conversion Routines

F32_TO I32<size>

Converts a 32-bit floating point value to a 32-bit signed integerumcation.
Floating point values that cannot be represented32ylait signed integer
return0x80000000

Input: F32 in register DXAX.

Output: 132 in register DXAX.

Registers Destroyed: BX, CX, DI.

Side Effects: None.

Synopsis: XAX ~ cast DXAX.

132_TO_F32< size>

Converts a 32-bit signed integer to a 32-bit floating point valu@byding to
nearest.

Input: 132 in register DXAX.
Output: F32 in register DXAX.
Registers Destroyed: BX, CX, DI.

Side Effects: None.

Synopsis: XAX ~ cast DXAX.

293

Chapter 11: Run-Time Routines
Conversion Routines

F32_TO_l16< size>

Converts a 32-bit floating point value to a 16-bit signed integerumncation.
Floating point values that cannot be representedliylait signed integer

return0x8000
Input: F32 in register DXAX.
Output: 116 in register AX.

Registers Destroyed: CX, DX.
Side Effects: None.

Synopsis: AX < cast DXAX.

116_TO_F32< size>

Converts a 16-bit signed integer to a 32-bit floating point value.

Input: 116 in register AX.
Output: F32in register DXAX.
Registers Destroyed: None.

Side Effects: None.

Synopsis: IXAX ~ cast AX.

294

Chapter 11: Run-Time Routines
Floating Point Addition Routines

Floating Point Addition Routines

ADD_F64A<size>

Adds two 64-bit floating point values, tghing a64-bit floating point value.

Input: F64 addend in PARML1 (8 bytes).
F64 addor in PARMO (8 bytes).

Output: F64 result in PARML1 (8 bytes).

Registers Destroyed: AX, BX, CX, DX, DlI.

Side Effects: PARMO is deallocated by this routine via RET 8.
Synopsis: PARM1- PARM1 + PARMO.
Stack Upon Entry: Figure-2.

295

Chapter 11: Run-Time Routines
Floating Point Addition Routines

ADD_F64B < size>

Adds two 64-bit floating point values, tghing a64-bit floating point value in

two places.

Input:

Output:

Registers Destroyed:
Side Effects:
Synopsis:

Stack Upon Entry:

ADD_F64C< size>

Pointer to F64 addend/result in DI.
F64 addor in PARMO (8 bytes).

F64 result in memory location pointed to by DI.
F64 result in PARMO (8 bytes).

AX, BX, CX, DX.
None.
(DI),PARMO- (DI) + PARMO.

Figure-1.

Adds two 64-bit floating point values, tghing a64-bit floating point value.

Input:

Output:

Registers Destroyed:
Side Effects:
Synopsis:

Stack Upon Entry:

Pointer to F64 addend/result in DI.
F64 addor in PARMO (8 bytes).

F64 result in memory location pointed to by DI.
AX, BX, CX, DX.

PARMO is deallocated by this routine via RET 8.

(Dl)< (DI) + PARMO.

Figure-1.

296

INC_F64< size>

Chapter 11: Run-Time Routines
Floating Point Addition Routines

Adds 1.0 to a 64-bit floating point value, uehing two64-bit floating point
values; the original value and the incremented value.

Input:

Output:

Registers Destroyed:
Side Effects:

Synopsis:

Stack Upon Entry:

ADD_F32A<size>

Pointer to F64 sourcelresult operand in DI.

Original F64 source value (pointed to by DI) in

PARMO (8 bytes).

F64 result in memory location pointed to by DI.
AX, BX, CX, DX.

None.

PARMO- (DI).
(DI) — (DI) + 1.0.

Figure-1.

Adds two 32-bit floating point values, tghing a32-bit floating point value.

Input:

Output:

Registers Destroyed:
Side Effects:
Synopsis:

Stack Upon Entry:

F32 addend in PARML1 (4 bytes).
F32 addor in PARMO (4 bytes).

F32 result in PARML1 (4 bytes).

AX, BX, CX, DX, DI.

PARMO is deallocated by this routine via RET 4.
PARM1- PARM1 + PARMO.

Figure-4.

297

Chapter 11: Run-Time Routines
Floating Point Addition Routines

ADD_F32B<size>

Adds two 32-bit floating point values, tghing a32-bit floating point value in

two places.

Input:

Output:

Registers Destroyed:
Side Effects:
Synopsis:

Stack Upon Entry:

ADD_F32C< size>

Pointer to F32 addend/result in DI.
F32 addor in PARMO (4 bytes).

F32 result in memory location pointed to by DI.
F32 result in PARMO (4 bytes).

AX, BX, CX, DX.
None.
(DI),PARMO- (DI) + PARMO.

Figure-3.

Adds two 32-bit floating point values, tghing a32-bit floating point value.

Input:

Output:

Registers Destroyed:
Side Effects:
Synopsis:

Stack Upon Entry:

Pointer to F32 addend/result in DI.
F32 addor in PARMO (4 bytes).

F32 result in memory location pointed to by DI.
AX, BX, CX, DX.

PARMO is deallocated by this routine via RET 4.

(Dl)< (DI) + PARMO.

Figure-3.

298

Chapter 11: Run-Time Routines
Floating Point Addition Routines

INC_F32< size>

Adds 1.0 to a 32-bit floating point value, uehing two32-bit floating point
values: the original value; the incremented value.

Input: Pointer to F32 source/result operand in DI.
Output: Original F32 source value (pointed to by DlI) in
PARMO (4 bytes).
F32 result in memory location pointed to by DI.
Registers Destroyed: AX, BX, CX, DX.
Side Effects: None.

Synopsis: PARMO- (DI).
(DI) < (DI) + 1.0.

Stack Upon Entry: Figure-3.

299

Chapter 11: Run-Time Routines
Floating Point Subtraction Routines

Floating Point Subtraction Routines

SUB_F64A<size>

Subtracts a 64-bit floating point value from another 64-bit floating point
value, returning #4-bit floating point value.

Input:

Output:

Registers Destroyed:
Side Effects:
Synopsis:

Stack Upon Entry:

SUB_F64B < size>

F64 minuend in PARM1 (8 bytes).
F64 subtrahend in PARMO (8 bytes).

F64 result in PARML1 (8 bytes).

AX, BX, CX, DX, DI.
PARMO is deallocated by this routine via RET 8.
PARM1- PARM1 - PARMO.

Figure-2.

Subtracts a 64-bit floating point value from another 64-bit floating point
value, returning #4-bit floating point value in two places.

Input:

Output:

Registers Destroyed:
Side Effects:
Synopsis:

Stack Upon Entry:

Ptr to F64 minuend/result in DI.
F64 subtrahend in PARMO (8 bytes).

F64 result in memory location pointed to by DI.

F64 result in PARMO (8 bytes).

AX, BX, CX, DX.
None.
(DI),PARMO- (DI) — PARMO.

Figure-1.

300

Chapter 11: Run-Time Routines
Floating Point Subtraction Routines

SUB_F64C< size>

Subtracts a 64-bit floating point value from another 64-bit floating point
value, returning #4-bit floating point value.

Input: Pointer to F64 minuend/result in DI.
F64 subtrahend in PARMO (8 bytes).

Output: F64 result in memory location pointed to by DI.

Registers Destroyed: AX, BX, CX, DX.

Side Effects: PARMO is deallocated by this routine via RET 8.
Synopsis: (D)~ (DI) = PARMO.
Stack Upon Entry: Figure-1.

DEC_F64< size>

Subtracts 1.0 from a 64-bit floating point value ur@ting two64-bit floating
point values; the original value and the decremented value.

Input: Pointer to F64 source/result operand in DI.
Output: Original F64 source value (pointed to by DI) in
PARMO (8 bytes).
F64 result in memory location pointed to by DI.
Registers Destroyed: AX, BX, CX, DX.
Side Effects: None.

Synopsis: PARMO- (DI).
(DI) < (DI)-1.0.

Stack Upon Entry: Figure-1.

301

Chapter 11: Run-Time Routines
Floating Point Subtraction Routines

SUB_F32A<size>

Subtracts a 32-bit floating point value from another 32-bit floating point
value, returning 82-bit floating point value.

Input:

Output:

Registers Destroyed:
Side Effects:
Synopsis:

Stack Upon Entry:

SUB_F32B< size>

F32 minuend in PARM1 (4 bytes).
F32 subtrahend in PARMO (4 bytes).

F32 result in PARML1 (4 bytes).

AX, BX, CX, DX, DI.
PARMO is deallocated by this routine via RET 4.
PARM1- PARM1 - PARMO.

Figure-4.

Subtracts a 32-bit floating point value from another 32-bit floating point
value, returning 82-bit floating point value in two places.

Input:

Output:

Registers Destroyed:
Side Effects:
Synopsis:

Stack Upon Entry:

Pointer to F32 minuend/result in DI.
F32 subtrahend in PARMO (4 bytes).

F32 result in memory location pointed to by DI.

F32 result in PARMO (4 bytes).

AX, BX, CX, DX.
None.
(DI),PARMO- (DI) — PARMO.

Figure-3.

302

Chapter 11: Run-Time Routines
Floating Point Subtraction Routines

SUB_F32C< size>

Subtracts a 32-bit floating point value from another 32-bit floating point
value, returning 82-bit floating point value.

Input: Pointer to F32 minuend/result in DI.
F32 subtrahend in PARMO (4 bytes).

Output: F32 result in memory location pointed to by DI.

Registers Destroyed: AX, BX, CX, DX.

Side Effects: PARMO is deallocated by this routine via RET 4.
Synopsis: (D)~ (DI) = PARMO.
Stack Upon Entry: Figure-3.

DEC_F32<size>

Subtracts 1.0 from a 32-bit floating point value ur@ting two32-bit floating
point values; the original value and the decremented value.

Input: Pointer to F32 source/result operand in DI.
Output: Original F32 source value (pointed to by DI) in
PARMO (4 bytes).
F32 result in memory location pointed to by DI.
Registers Destroyed: AX, BX, CX, DX.
Side Effects: None.

Synopsis: PARMO- (DI).
(DI) < (DI)-1.0.

Stack Upon Entry: Figure-3.

303

Chapter 11: Run-Time Routines
Floating Point Multiplication Routines

Floating Point Multiplication Routines

MUL_F64A< size>

Multiplies two 64-bit floating point values, netning a64-bit floating point

value.

Input:

Output:

Registers Destroyed:
Side Effects:
Synopsis:

Stack Upon Entry:

MUL_F64B < size>

F64 multiplicand in PARML1 (8 bytes).
F64 multiplier in PARMO (8 bytes).

F64 result in PARML1 (8 bytes).

AX, BX, CX, DX, DI.

PARMO is deallocated by this routine via RET 8.
PARM1- PARM1[PARMO.

Figure-2.

Multiplies two 64-bit floating point values, netning a64-bit floating point

value in two places.

Input:

Output:

Registers Destroyed:
Side Effects:
Synopsis:

Stack Upon Entry:

Pointer to F64 multiplicand/result in DI.
F64 multiplier in PARMO (8 bytes).

F64 result in memory location pointed to by DI.

F64 result in PARMO (8 bytes).

AX, BX, CX, DX.
None.
(DI),PARMO- (DI) CPARMO.

Figure-1.

304

Chapter 11: Run-Time Routines
Floating Point Multiplication Routines

MUL_F64C < size>

Multiplies two 64-bit floating point values, netning a64-bit floating point
value.

Input: Pointer to F64 multiplicand/result in DI.
F64 multiplier in PARMO (8 bytes).

Output: F64 result in memory location pointed to by DI.

Registers Destroyed: AX, BX, CX, DX.

Side Effects: PARMO is deallocated by this routine via RET 8.
Synopsis: (D)~ (DI) CPARMO.
Stack Upon Entry: Figure-1.

MUL_F32A< size>

Multiplies two 32-bit floating point values, netning a32-bit floating point
value.

Input: F32 multiplicand in PARML1 (4 bytes).
F32 multiplier in PARMO (4 bytes).

Output: F32 result in PARML1 (4 bytes).

Registers Destroyed: AX, BX, CX, DX, DlI.

Side Effects: PARMO is deallocated by this routine via RET 4.
Synopsis: PARM1- PARM1[PARMO.
Stack Upon Entry: Figure-4.

305

Chapter 11: Run-Time Routines
Floating Point Multiplication Routines

MUL_F32B < size>

Multiplies two 32-bit floating point values, netning a32-bit floating point
value in two places.

Input: Pointer to F32 multiplicand/result in DI.
F32 multiplier in PARMO (4 bytes).

Output: F32 result in memory location pointed to by DI.
F32 result in PARMO (4 bytes).

Registers Destroyed: AX, BX, CX, DX.

Side Effects: None.
Synopsis: (DI),PARMO- (DI) (PARMO.
Stack Upon Entry: Figure-3.

MUL_F32C<size>

Multiplies two 32-bit floating point values, netning a32-bit floating point

value.
Input: Pointer to F32 multiplicand/result in DI.
F32 multiplier in PARMO (4 bytes).
Output: F32 result in memory location pointed to by DI.

Registers Destroyed: AX, BX, CX, DX.

Side Effects: PARMO is deallocated by this routine via RET 4.
Synopsis: (D)~ (DI) CPARMO.
Stack Upon Entry: Figure-3.

306

Chapter 11: Run-Time Routines
Floating Point Division Routines

Floating Point Division Routines

DIV_F64A< size>

Divides a 64-bit floating point value by another 64-bit floating point value,
returning a64-bit floating point value.

Input: F64 dividend in PARML1 (8 bytes).
F64 divisor in PARMO (8 bytes).

Output: F64 result in PARML1 (8 bytes).

Registers Destroyed: AX, BX, CX, DX, DlI.

Side Effects: PARMO is deallocated by this routine via RET 8.
Synopsis: PARM1- PARM1/PARMO.
Stack Upon Entry: Figure-2.

DIV_F64B< size>

Divides a 64-bit floating point value by another 64-bit floating point value,
returning a64-bit floating point value in two places.

Input: Pointer to F64 dividend/result in DI.
F64 divisor in PARMO (8 bytes).

Output: F64 result in memory location pointed to by DI.
F64 result in PARMO (8 bytes).

Registers Destroyed: AX, BX, CX, DX.

Side Effects: None.

Synopsis: (DI),PARMO- (DI) / PARMO.

Stack Upon Entry: Figure-1.

307

Chapter 11: Run-Time Routines
Floating Point Division Routines

DIV_F64C< size>

Divides a 64-bit floating point value by another 64-bit floating point value,
returning a64-bit floating point value.

Input: Pointer to F64 dividend/result in DI.
F64 divisor in PARMO (8 bytes).

Output: F64 result in memory location pointed to by DI.

Registers Destroyed: AX, BX, CX, DX.

Side Effects: PARMO is deallocated by this routine via RET 8.
Synopsis: (D)~ (DI) / PARMO.
Stack Upon Entry: Figure-1.

DIV_F32A< size>

Divides a 32-bit floating point value by another 32-bit floating point value,
returning a32-bit floating point value.

Input: F32 dividend in PARML1 (4 bytes).
F32 divisor in PARMO (4 bytes).

Output: F32 resultin PARML1 (4 bytes).

Registers Destroyed: AX, BX, CX, DX, DlI.

Side Effects: PARMO is deallocated by this routine via RET 4.
Synopsis: PARM1- PARM1/PARMO.
Stack Upon Entry: Figure-4.

308

Chapter 11: Run-Time Routines
Floating Point Division Routines

DIV_F32B<size>

Divides a 32-bit floating point value by another 32-bit floating point value,
returning a32-bit floating point value in two places.

Input: Pointer to F32 dividend/result in DI.
F32 divisor in PARMO (4 bytes).

Output: F32 result in memory location pointed to by DI.
F32 result in PARMO (4 bytes).

Registers Destroyed: AX, BX, CX, DX.

Side Effects: None.
Synopsis: (DI),PARMO- (DI) / PARMO.
Stack Upon Entry: Figure-3.

DIV_F32C< size>

Divides a 32-bit floating point value by another 32-bit floating point value,
returning a32-bit floating point value.

Input: Pointer to F32 dividend/result in DI.
F32 divisor in PARMO (4 bytes).

Output: F32 result in memory location pointed to by DI.

Registers Destroyed: AX, BX, CX, DX.

Side Effects: PARMO is deallocated by this routine via RET 4.
Synopsis: (D)~ (DI) / PARMO.
Stack Upon Entry: Figure-3.

309

Chapter 11: Run-Time Routines
Floating Point Comparison Routines

Floating Point Comparison Routines

EQUAL_F64 < size>

Compares two 64-bit floating point values,uating al6-bit value of O if
operand® operand2, and 1 if operandl = operand?2.

Input: F64 operandlin PARM1 (8 bytes).
F64 operand2 in PARMO (8 bytes).

Output: Boolean in AX where 0 = false,
1= true.

Registers Destroyed: CX, DX, DlI.

Side Effects: PARMO and PARM1 are deallocated by this
routine via RET 16.

Synopsis: AX<~ 1if{PARM1 = PARMO} is true,
0 otherwise.

Stack Upon Entry: Figurg-2.

310

Chapter 11: Run-Time Routine

S

Floating Point Comparison Routines

EQUAL_F32< size>

Compares two 32-bit floating point values,uating al6-bit value of O if
operand® operand2, and 1 if operandl = operand?2.

Input: F32 operandl in register DXAX.
F32 operand2 in register CXBX.

Output: Boolean in AX where 0 = false,
1= true.

Registers Destroyed: BX, CX, DX, DI.

Side Effects: None.

Synopsis: AX <~ 1if{DXAX = CXBX}istrue, 0 otherwise.

LESS F64< size>

Compares two 64-bit floating point values,uating al6-bit value of O if
operandX operand2, and 1 if operandl < operand?2.

Input: F64 operandlin PARM1 (8 bytes).
F64 operand2 in PARMO (8 bytes).

Output: Boolean in AX where 0 = false,
1= true.

Registers Destroyed: CX, DX, DlI.

Side Effects: PARMO and PARM1 are deallocated by this
routine via RET 16.

Synopsis: AX<~ 1if{PARM1 < PARMO} is true,
0 otherwise.

Stack Upon Entry: Figurg-2.

311

Chapter 11: Run-Time Routines
Floating Point Comparison Routines

LESS F32<size>

Compares two 32-bit floating point values,uating al6-bit value of O if
operandX operand2, and 1 if operandl < operand2.

Input: F32 operandl in register DXAX.
F32 operand2 in register CXBX.

Output: Boolean in AX where 0 = false,
1= true.

Registers Destroyed: BX, CX, DX, DI.
Side Effects: None.

Synopsis: AX <~ 1if{DXAX < CXBX}istrue, O otherwise.

LESS EQ_F64< size>

Compares two 64-bit floating point values,uating al6-bit value of O if
operandl > operand2, and 1 if operagd@perand?2.

Input: F64 operandlin PARM1 (8 bytes).
F64 operand2 in PARMO (8 bytes).

Output: Boolean in AX where 0 = false,
1= true.

Registers Destroyed: CX, DX, DlI.

Side Effects: PARMO and PARM1 are deallocated by this
routine via RET 16.

Synopsis: AX<~ 1if{PARM1< PARMO} is true,
0 otherwise.

Stack Upon Entry: Figurg-2.

312

Chapter 11: Run-Time Routines
Floating Point Comparison Routines
LESS EQ_F32<size>

Compares two 32-bit floating point values,uating al6-bit value of O if
operandl > operand2, and 1 if operaadtperand2.

Input: F32 operandl in register DXAX.
F32 operand2 in register CXBX.
Output: Boolean in AX where 0 = false,
1= true.
Registers Destroyed: BX, CX, DX, DI.
Side Effects: None.
Synopsis: AX <~ 1if{DXAX < CXBX}istrue, 0 otherwise.

313

Chapter 11: Run-Time Routines
Integer Multiplication Routines

Integer Multiplication Routines

MUL_I32A<size>

Multiplies two 32-bit long values (signed or unsigned)uratng a32-bit long
value (signed or unsigned as appropriate).

Input: 132 or U132 multiplicand in register CXDI.
132 or U132 multiplier in register AXBX.

Output: 132 or U132 result in register DXAX.
Registers Destroyed: CX.
Side Effects: None.

Synopsis: XAX ~ CXDI OAXBX

MUL_I32B < size>

Multiplies two 32-bit long values (signed or unsigned)uratng a32-bit long
value (signed or unsigned as appropriate) in two places.

Input: Pointer to 132 or U132 multiplicand/result in DI.
132 or U132 multiplier in register AXBX.

Output: 132 or U132 result in memory location pointed to by
BJIZ or UI32 result in register DXAX.

Registers Destroyed: CX.

Side Effects: None.

Synopsis: (DI),IXAX < (DI) * AXBX.

314

Chapter 11: Run-Time Routines
Integer Division Routines

Integer Division Routines

DIV_UI32A< size>

Divides a 32-bit unsigned long value by another 32-bit unsigned long value,
returning a32-bit unsigned long value.

Input: U132 dividend in register CXDI.
U132 divisor in register AXBX.

Output: U132 result in register DXAX.
Registers Destroyed: BX, DI.
Side Effects: None.

Synopsis: XAX ~ CXDI/AXBX.

DIV_UI32B< size>

Divides a 32-bit unsigned long value by another 32-bit unsigned long value,
returning a32-bit unsigned long value in two places.

Input: Pointer to U132 dividend/result in DI.
U132 divisor in register AXBX.

Output: U132 result in memory location pointed to by DI.
UI32 result in register DXAX.

Registers Destroyed: BX, CX.
Side Effects: None.

Synopsis: (DI),IXAX ~ (DI) / AXBX.

315

Chapter 11: Run-Time Routines
Integer Division Routines

DIV_I32A< size>

Divides a 32-bit signed long value by another 32-bit signed long value,
returning a32-bit signed long value.

Input: I32 dividend in register CXDI.
132 divisor in register AXBX.

Output: I32 result in register DXAX.
Registers Destroyed: BX, CX, DI.
Side Effects: None.

Synopsis: XAX ~ CXDI/AXBX.

DIV_I32B< size>

Divides a 32-bit signed long value by another 32-bit signed long value,
returning a32-bit signed long value in two places.

Input: Pointer to 132 dividend/result in DI.
132 divisor in register AXBX.

Output: I32 result in memory location pointed to by DI.
I32 result in register DXAX.

Registers Destroyed: BX, CX.
Side Effects: None.

Synopsis: (DI),IXAX ~ (DI) / AXBX.

316

Chapter 11: Run-Time Routines
Integer Modulo Routines

Integer Modulo Routines

MOD_UI32A< size>

Divides a 32-bit unsigned long value by another 32-bit unsigned long value,
returning a32-bit unsigned longamainder.

Input: U132 dividend in register CXDI.
U132 divisor in register AXBX.

Output: U132 result in register DXAX.
Registers Destroyed: CX, DI.
Side Effects: None.

Synopsis: XAX ~ CXDI mod AXBX.

MOD_UI32B< size>

Divides a 32-bit unsigned long value by another 32-bit unsigned long value,
returning a32-bit unsigned longamainder in two places.

Input: Pointer to U132 dividend/result in DI.
U132 divisor in register AXBX.

Output: U132 result in memory location pointed to by DI.
UI32 result in register DXAX.

Registers Destroyed: CX.
Side Effects: None.

Synopsis: (DI),IXAX ~ (DI) mod AXBX.

317

Chapter 11: Run-Time Routines
Integer Modulo Routines

MOD_I32A< size>

Divides a 32-bit signed long value by another 32-bit signed long value,
returning a32-bit signed longemainder.

Input: I32 dividend in register CXDI.
132 divisor in register AXBX.

Output: 132 result in register DXAX.
Registers Destroyed: CX, DI.
Side Effects: None.

Synopsis: XAX — CXDI mod AXBX.

MOD_132B< size>

Divides a 32-bit signed long value by another 32-bit signed long value,
returning a32-bit signed longemainder in two places.

Input: Pointer to 132 dividend/result in DI.
132 divisor in register AXBX.

Output: I32 result in memory location pointed to by DI.
I32 result in register DXAX.

Registers Destroyed: CX.
Side Effects: None.

Synopsis: (DI),IXAX ~ (DI) mod AXBX.

318

Chapter 11: Run-Time Routines
Pointer and Range Fault Routines

Pointer and Range Fault Routines

FAULT_PTR < size>

Traps the appropriate error when a pointer is checked and found to be
uninitialized or containing a NIL. A call toerror_msg(fault_type, text_ptr,
line_num)is made withfault_typeset to O for a NIL pointer and -1 for an
unitialized pointer.text_ptrpoints to the filename arithe_numis the line
number.

Input: Fault code number in register AX where:
0 = NIL pointer
—1 = Uninitialized pointer

< pointer size>bit pointer at TOS to information
block of the form:
U132 line number
Filename (variable number of bytes)
0 (Filename terminator)
Output: None.
Registers Destroyed: N/A

Side Effects: This routine may not be returned from.

Synopsis: Call error_msg(fault_type, text_ptr, line_numnd
never return.

319

Chapter 11: Run-Time Routines
Pointer and Range Fault Routines

FAULT_UI32 < size>

Traps the appropriate error when an unsigned long variable is checked and
found to be outside of a predefined range. A callewor_msg(fault_type,
text_ptr, line_num, value, limity made withfault_typeset to 1.text_ptrpoints

to the filenameline_numis the line numbewalueis the bad index value, and
limit is the index limit.

Input: U132 out of range index value in register DXAX

< pointer size>bit pointer at TOS to information
block of the form:

U116 index limit

U132 line number

Filename (variable number of bytes)

0 (Filename terminator)

Output: None.

Registers Destroyed: N/A

Side Effects: This routine may not be returned from.

Synopsis: Call error_msg(fault_type, text_ptr, line_num, value,

limit) and never return.

320

Chapter 11: Run-Time Routines
Pointer and Range Fault Routines

FAULT_UI16 < size>

Traps the appropriate error when an unsigned integer variable is checked and
found to be outside of a predefined range. A callewor_msg(fault_type,

text_ptr, line_num, value, limity made withfault_typeset to 2text_ptrpoints

to the filenameline_numis the line numbewalueis the bad index value, and

limit is the index limit.

Input: UI16 out of range index value in register AX.

< pointer size>bit pointer at TOS to information
block of the form:

U116 Index limit.

U132 Line number.

Filename (variable number of bytes).

0 (Filename terminatr).

Output: None.

Registers Destroyed: N/A

Side Effects: This routine may not be returned from.

Synopsis: Call error_msg(fault_type, text_ptr, line_num, value,

limit) and never return.

321

Chapter 11: Run-Time Routines
Pointer and Range Fault Routines

FAULT_UI8 < size>

Traps the appropriate error when an unsigned char variable is checked and
found to be outside of a predefined range. A callewor_msg(fault_type,
text_ptr, line_num, value, limity made withfault_typeset to 3.text_ptrpoints

to the filenameline_numis the line numbewalueis the bad index value, and
limit is the index limit.

Input: UI8 Out of range index value in register AL.

< pointer size>bit pointer at TOS to information
block of the form:

U116 index limit

uli32

Line number.

Filename (variable number of bytes).

0 (Filename terminator)

Output: None.

Registers Destroyed: N/A

Side Effects: This routine may not be returned from.

Synopsis: Call error_msg(fault_type, text_ptr, line_num, value,

limit) and never return.

322

Chapter 11: Run-Time Routines
Pointer and Range Fault Routines

FAULT 132 < size>

Traps the appropriate error when a signed long variable is checked and found
to be outside of a predefined range. A call éaor_msg(fault_type, text_ptr,
line_num, value, limit)s made withfault_typeset to 4.text_ptrpoints to the
filename line_numis the line numbewalueis the bad index value, atihit is

the index limit.

Input: 132 out of range index value in register DXAX.

< pointer size>bit pointer at TOS to information
block of the form:

U116 Index limit.

U132 Line number.

Filename (Variable number of bytes).

0 (Filename terminator)

Output: None.

Registers Destroyed: N/A

Side Effects: This routine may not be returned from.

Synopsis: Call error_msg(fault_type, text_ptr, line_num, value,

limit) and never return.

323

Chapter 11: Run-Time Routines
Pointer and Range Fault Routines

FAULT_I16 < size>

Traps the appropriate error when a signed integer variable is checked and
found to be outside of a predefined range. A callewor_msg(fault_type,
text_ptr, line_num, value, limity made withfault_typeset to 5text_ptrpoints

to the filenameline_numis the line numbewalueis the bad index value, and
limit is the index limit.

Input: 116 out of range index value in register AX.

< pointer size>bit pointer at TOS to information
block of the form:

U116 Index limit

U132 Line number.

Filename (Variable number of bytes).

0 (Filename terminator)

Output: None.

Registers Destroyed: N/A

Side Effects: This routine may not be returned from.

Synopsis: Call error_msg(fault_type, text_ptr, line_num, value,

limit) and never return.

324

Chapter 11: Run-Time Routines
Pointer and Range Fault Routines

FAULT 18 < size>

Traps the appropriate error when a signed char variable is checked and found
to be outside of a predefined range. A call éaor_msg(fault_type, text_ptr,
line_num, value, limit)s made wittfault_typeset to 6.text_ptrpoints to the
filename line_numis the line numbewalueis the bad index value, atihit is

the index limit.
Input: I8 out of range index value in register AL.

< pointer size>bit pointer at TOS to information
block of the form:

U116 Index limit.

U132 Line number.

Filename (Variable number of bytes).

0 (Filename terminator)

Output: None.

Registers Destroyed: N/A

Side Effects: This routine may not be returned from.

Synopsis: Call error_msg(fault_type, text_ptr, line_num, value,

limit) and never return.

325

Chapter 11: Run-Time Routines
Stack Frame Figures

Stack Frame Figures

This section contains the figures that are referred to throughout this appendix.

High Address Used stack space

(msw] PARMO (8 bytes)

64-bit ©urce and/or
result operand
[Isw]

Caller's return segment:offset if large model

Stack pointer (SP) address

Low Address Top of stack

(unused stack space)

. Figure 11-1. St ack Frame with Do uble Parameter

326

Chapter 11: Run-Time Routines
Stack Frame Figures

High Address Used stack space

(msw] PARML (8 bytes)

64-bit left ®urce
and/or result
operand
[Isw]

64-bit right ®urce
operand
[Isw]

Caller's return segment:offset if large model

Stack pointer (SP) address

Low Address Top of stack

(unused stack space)

Figure 11-2. St ack Frame with Two Do uble Parameters

327

Chapter 11: Run-Time Routines

Stack Frame Figures

High Address

Stack pointer (SP)

Low Address

Used stack space

[msw]
32-bit ©urce and/or
result operand
[Isw]

Caller’'s return
address

Top of stack
(unused stack space)

PARMO (4 bytes)

segment:offset if large model

Figure 11-3. St ack Frame with Float or L ong Parameter

High Address

Stack pointer (SP)

Low Address

Used stack space

[msw]
32-bit left urce
and/or result
operand
[Isw]

[msw]
32-bit right ®urce
operand
[Isw]

Caller’'s return
address

Top of stack
(unused stack space)

PARM1 (4 bytes)

PARMO (4 bytes)

segment:offset if large model

Figure 11-4. St ack Frame with 2 Float/L ong Parameters

328

Chapter 12: Math Library Functions

12

Behavior of Math Library Functions .

Results of math library functions for various types of floating-point input
values.

329

Chapter 12: Math Library Functions

The first table which follows describes the behavior of the math library
functions which are passed a single parameter. The remaining tables describe
the math library functions which are passed two parameters.

Wherever the result is an exception, the IEEE definadrnetalue is also
listed. The EEE defined value is ratned if trapping on that exception is
disabled. (See thefp_error description in the "Libraries" chapter for
information on enabling/disabling trapping on floating-point exceptions.)

NUMBER TYPES EXCEPTION TYPES

D Denormalized number DBZ Divide by zero

N Normalized number DMN Domain error

NaN Not a number IOP Invalid operation

R Real number OVR Overflow

X,y Function input RNG Range error

[] Possible result TLS Total loss of significance
UND Underflow

Figure 12-1. Legend for Math Library Behavior Tables

330

Chapter 12: Math Library Functions

Table 12-1. Behavior of Functions with One Parameter
FUNCTION INPUT
Funct. | -® -N -D -0 +0 +D +N +00 NaN
IOP NaN [IOP NaN] TU2 TU2 TU2 TU2 [IOP NaN] |IOP X
acos NaN
. IOP NaN [lOP NaN] Kk 0 D [IOP NaN] IOP X
asin NaN
atan - TU2 R X 0 0 X R TU2 X
ceil -~ R 0 0 0 1 R +00 X
IOP NaN [TLS NaN] |1 1 1 il TLS NaN] 1QP X
cos NaN
cosh +00 [OVR+0o0] | 1 1 1 1 [OVR +] | + o X
exp 0 [UNDO0.0] [il i 1 [OVR +] | + o X
floor _ o0 R -1 0 0 0 R +00 X
IOP NaN R R 0 0 R R IOP X
frexp NaN
ldexp | ~® R R 0 0 R R +00 X
| IOP NaN IOP NaN IOP NaN I0P IOP R R +00 X
0og - 00 - 00
IOP NaN IOP NaN IOP NaN I0P IOP R R +00 X
log10 o o
IOP NaN R R 0 0 R R IOP X
modf NaN
. IOP NaN [TLS NaN] |x 0 0 TLS NaN] 1OP X
sin NaN
sinh - 00 [OVR - 0] 1 1 1 1 [OVR +] | + 00 X
sqrt IOP NaN IOP NaN IOP NaN 0 0 R R +00 X
¢ IOP NaN [TLS NaN] |x 0 0 TLS NaN] 1OP X
an NaN
tanh -1 R X 0 0 X R 1 X

331

Chapter 12: Math Library Functions

Table 12-2. "atan2" Behavior

atan2(xy) | Y
-00 -N -D -0 +0 +D + N +00 NaN
-00 IOP -TU2 -T2 -T2 -T2 -T2 -T2 IOP y
NaN NaN
-N -Tt R R U2 -T2 R R 0 y
-D -Tt R R -T2 -T1/2 R R 0 y
-0 - -TU -TT IOPO | IOPO | O 0 0 y
X +0 T T T IOPO | IOPO | O 0 0 y
+D T R R /2 /2 R R 0 y
+ N T R R /2 /2 R R 0 y
+ 00 IOP /2 /2 /2 /2 /2 /2 IOP y
NaN NaN
NaN X X X X X X X X X

332

Chapter 12: Math Library Functions

Table 12-3. 'pow" Behavior

pow(xy) Y
-00 -N -D -0 +0 +D +N +00 NaN
-00 0 0 0 1 1 IOP+oo| [IOP+ [<0]| IOP+ |y
< -1 0 R R 1 1 R R IOP+0| y
=-1 IOP10 R R 1 1 R R IOP 10 y
>-1<0| IOP R R 1 1 R R 0 y
+ o0
-0 IOP IOP IOP IOP IOP 0 0 0 y
NaN NaN NaN NaN NaN
+0 IOP IOP IOP IOP IOP 0 0 0 y
NaN NaN NaN NaN NaN
>0,<1| +o R R 1 1 R R 0 y
=+1 | 1.0 R R 1 1 R R 1.0 y
>+1 |0 R R 1 1 R R 400 y
+ o0 0 0 1 1 +00 + o0 + o0 y
NaN X X X X X X X X
Table 12-4. "add" Behavior
add(xy) Y
-00 -N -0 +0 +N + 00 NaN
-00 -00 -00 -00 -00 -00 IOP NaN | y
-N -00 X X + 00 y
-0 -00 y -0 +0 y +00 y
+0 -0 y +0 +0 y +00 y
+N -00 R X X R +00 y
+ o IOP NaN | +w + o + o0 + o0 + o0 y
NaN X X X X X X

333

Chapter 12: Math Library Functions

Table 12-5. "sub" Behavior

sub(xy) | Y
-00 -N -0 +0 +N + 00 NaN
-00 IOP NaN | <o -00 -00 -00 -00 y
-N + 00 R X X R -0 y
-0 + 00 -y +0 -0 -y -00 y
X +0 + o0 -y +0 +0 -y -0 y
+N + o0 R X X R -0 y
+ o0 + o0 + o0 + o0 + o0 + o0 IOP NaN | y
NaN X X X X X X X
Table 12-6. 'mul"Behavior
mul(xy) |Y
-00 -N -0 +0 +N + 00 NaN
-00 + o + o0 IOP NaN | IOP NaN| -00 y
-N + o0 +R +0 -0 -R €0 y
-0 IOP NaN | +0 +0 -0 -0 IOP NaN vy
X +0 IOP NaN | -0 -0 +0 +0 IOP NaN vy
+ N -00 -R -0 +0 +R +00 y
+ -00 -00 IOP NaN | IOP NaN| +e + y
NaN X X X X X X X

334

Chapter 12: Math Library Functions

Table 12-7. 'div'Behavior

div(xy) y
-00 -N -0 +0 + N + 00 NaN
-00 IOP NaN | +o + 00 -00 -00 IOP NaN | vy
-N +0 +R DBZ + | DBZ -« -R -0 y
-0 +0 +0 IOP NaN | IOP NaN| -0 -0 y
+0 -0 -0 IOP NaN | IOP NaN| +0 +0 y
+N -0 -R DBZ - DBZ +o | +R +0 y
+ 00 IOP NaN | < -00 + 00 + 00 IOP NaN | y
NaN X X X X X X X
Table 12-8. 'fmod"and 'frem"Behaviors
fmod(xy) Y
frem(x,y) -00 -N -0 +0 +N +00 NaN
-00 IOP NaN | IOP NaN| IOP NaN| IOP NaN IOP NaN IOPNaN vy
-N X +R IOP NaN | IOP NaN| -R X y
-0 -0 -0 IOP NaN | IOP NaN| -0 -0 y
+0 +0 +0 IOP NaN| IOP NaN| +0 +0 y
+N X +R IOP NaN | IOP NaN| +R X y
+ 00 IOP NaN | IOP NaN| IOP NaN| IOP NaN |IOP NaN IOPNaN vy
NaN X X X X X X X

335

Chapter 12: Math Library Functions

336

Chapter 13: Comparison to C/64000

13

Comparison to C/64000

Information needed to convert files from C/64000. .

337

Chapter 13: Comparison to C/64000
General C/64000 Options

The 8086/186 C Cross Compiler is more similar to native C implementations
than C/64000. Specifically, iupports register variables as intended by C and
it includes a robust set of support libraries.

Another area in which this implementation of C differs significantly from
C/64000 is in the area of compiler options. A list of the C/64000 options
follows (both general and processor-specific), and comparable options of this
implementation are described. Note that many C/64000 options could be
specified in the source file and, thus, could be varied within the file; some of
the 8086/186 C compiler's comparable options are specified on thmaod

line and affect the entire file.

All of the absolute) files generated by the 8086/186 C Cross Compiler use a
data bus width of 16 bits. If you used the directives "8088" or "80188" with
C/64000, be aware that you must now specify the data bus width when
progamming PROMs. Thus instead of

program from file.X start 0 rom addr O
you should use

program from file.X start 0 rom addr 0 system rom data width 0

If you do not specify the data width, the PROM will contain only alternate
bytes from the file.

General C/64000 Options

AMNESIA

This directive in C/64000 encompassed two distinct compiler concerns which
are addressed separatelyin this compiler. First, it was intended to allow for
memory mapped I/O locations or locations which could change in value as a
result of an asynchronous event such as an interrupt. Second, it was intended
to defeat a limited form of common subexpression elimination implemented

in C/64000. Both of these intents are addressed by the ANSI standard
qualifier volatile in this implementation.

338

Chapter 13: Comparison to C/64000
General C/64000 Options

ASM_FILE

This is not implemented. A listing with embedded assembly caandaded
with the 'listing" and "add assembly code to listingfeoand line options; the
"generate assembly source files" option causes assembly source files to be
created.

ASMB_SYM

HP format "asmb_sym"files can be generated via a command line option.

DEBUG

This occurs by default. The "strip symbol table information” command line
option will remove debug symbols.

EMIT_CODE

This is implemented by a command line option.

END_ORG

This was used to terminate an ORG'd segment. In the new compiler, ORG
functionality is accomplished via ttIBEGMENT pragma which is terminated
by anothelSEGMENT pragma.

ENTRY

This is handled by thertO or crtl routines to which programs are linked.

EXTENSIONS

This is not supported.

FIXED_PARAMETERS .
The intention of this option was to allow the calling of PASCAL/64000

routines from G34000routines. This capality can be accomplishedhtough
the ASM pragma.

339

Chapter 13: Comparison to C/64000
General C/64000 Options

FULL_LIST

This is implemented by specifying all the command line options which affect
the listing sent to the standard output.

INIT_ZEROS

The main purpose of this option was to avoid large compiler output
containing primarily zero initializers for large arrays. Thisis not a problem
with the new assemblers and object file formats which can express large
initializers more compactly. There is a related option which gives warnings
that no load-time initialization can occur.

LINE_NUMBERS

This occurs by default. The "strip symbol table information” command line
option will remove line number symbols.

LIST

This is handled from the command line with thstthg" option.

LIST CODE

This is handled from the command line with thistthg" option in addition to
the "add assembly code to listing" option.

LIST_OBJ
Object listing is always given with "add assembly code to listing” option

(specified in addition to the "listing" o).

LONG_NAMES

All internal names in this compiler ha285 character significance; external
names have 30 character significance.

340

Chapter 13: Comparison to C/64000
General C/64000 Options

OPTIMIZE

This is implemented via the "optimize" command line option.

ORG
This is implemented via theEGMENT pragma.

PAGE

A page break can be generated by inserting a form feed in the source.

RECURSIVE

This is not implemented since, in C, the user may declare local variables to be
static (the only potential gain of this option).

SEPARATE

This option had no effect in the C/64000 8086/186 C compiler and is not
implemented in this compiler. However, t8EGMENT pragma permits
control over the segments in which program, data, and constants are placed.

SHORT_ARITH

This is not implemented. However, the new C is able to perform arithmetic
calculations on floats without expanding to double which provides much of the
savings that this option provided.

STANDARD

This is not implemented.

TITLE
This is not supported. .

341

Chapter 13: Comparison to C/64000
8086-Specific C/64000 Options

UPPER_KEYS

This is not supported.

USER_DEFINED

This is not implemented.

WARN

This is implemented via the "suppress warning messagashemd line
option.

WIDTH

This option caused the 64000/C compiler to read oplyréion of a source file
line (e.g., the first 80 characters). This option has no equivalent in the
8086/186 C compiler.

8086-Specific C/64 000 Options

ALIGN

By default, data and constants larger than one byte are aligned to a word
boundary for efficient access. When the "byte align data" compiler option is
used, data and constants are no longer necessarily aligned to a word boundary.

CS_EXTVARS, ES_EXTVARS, SS_EXTVARS

These are not implemented

DS_EXTVARS, FAR_EXTVARS

These are in effect supported. These are implemented viathe SEGMENT
pragma and the command line option that controls the memory model.

342

Chapter 13: Comparison to C/64000
8086-Specific C/64000 Options
FAR_LIBRARIES, SHORT_LIBRARIES

These are not implemented. The FAR and NEAR aspects correspond to the
large and small memory models respectively.

FAR_PROC, POINTER_SIZE

These can be implemented by choice of memory model and the "near calls"
command line option in the large memory model.

INT

This is not implemented since the functionality can be accomplished by coding
the "INT" with in-line assembly (see ASM and END_ASM pragmas).

INTERRUPT
This is implemented in the new C via the INTERRUPT pragma.

SEPARATE_CONST

Switch tables for "case" statements (jump vectors) are always placed in code
segments. C constantofstdeclarations and strings) are put into their own
CONST segment. Constants are ROMable in the large memory model, since
the CONST segment can be placed adjacent to the PROG segment. In the
small memory model, the CONST segment is more restricted in its placement
in memory. See the section on "RAM and ROM Considerations"in the
chapter "Embedded Systems Considerations" for more details.

343

Chapter 13: Comparison to C/64000
Differences from HP 64818 Code

Differences from HP 64 818 Code

This section describes:
1 The differences between the HP 64818 and HP B1493 C compilers.

2 Ways to convert code written for the HP 64818 so that it will work with
the B1493 C compiler.

Alignment
HP 64818 Word alignment is set by the $SALIGN ON$ option.
HP B1493 Word alignment is performed. Refer to the

"Alignment Considerations" section in the "Internal
Data Representations" chapter.

Integral promotions
HP 64818 Achar, ashort int, or anint bit-field, when used in
an expression will be converted toiahunless

$SHORT_ARITH ONS$ is specified.

HP B1493 The effect is the same as if integr@motions were
always performed.

Float promotions
HP 64818 Promotion fromfpat to adoublewill be
performed in an arithmetic operation unless

$SHORT_ARITH ONS$ is specified.

HP B1493 Promotion from #oat to adouble will not be
performed unless one of the operandsdsuble.

344

Shift operations

HP 64818

HP B1493

To convert:

Operations on structures

HP 64818

HP B1493

To convert:

Symbol names

HP 64818

HP B1493

To convert:

Chapter 13: Comparison to C/64000
Differences from HP 64818 Code

Logical shift on all shift operations. Shift by a
negative value will reverse the shift direction.

Logical shift on all left shifts and on right shifts of
unsigned expressions. Arithmetic shift is used on
all right shifts of a signed expression. Shift by a
negative value will cause unexpected behavior.

Reverse the direction for every negative shift. Cast
the expression to unsigned before the shift
operation if logical shift is required.

Huctures may besasigned, compared for equality,
passed as parameters, omurated from functions.

$ructures may bessigned, passed as pareters,
and returned from functions. No comparison for
equality is allowed.

Comparison for equality between structures must
be done with in-line code or with userpplied
function calls.

The first 15 characters in a symbarhe are
significant.

Internal ames hav@55 significant characters.
External names have 30 significant characters.

A23456789012345__ bcd and
A23456789012345 xyz are taken as two differen
symbols in HP B1493.

345

Chapter 13: Comparison to C/64000
Differences from HP 64818 Code

Numeric constant formats

HP 64818 $EXTENSIONS ONS$ permits use of HP 64000
format for defining binary, octal, decimal, and
hexadecimal constants (e.g., OFFH).

HP B1493 Spports the standard constant formats (e.g., Oxff).

To convert: Conversion from HP 64000 format to C constant
format (e.g., OFFH to 0xff) is needed.

String constant allocation

HP 64818 Identical string constants or string constants that
are a subset of another will be mapped into the
same location to minimize space.

HP B1493 Each string constant will have its aweamory
space allocated in segmesunst

To convert: Affects only the assembly code that accesses the
absolute location of the constant.

Memory management

HP 64818 INITHEAP, INCREASEHEAP, NEW, DISPOSE,
MARK and RELEASE are provided for dynamic
memory management.

HP B1493 calloc(), free(), malloc(), realloc(), __getmemdénd
others are provided.

To convert: Callsto INITHEAP, NEW, DISPOSE must be
converted to calls tmalloc(), andfree(). Be aware
that the calling sequences and thairatvalues are
different in these sets of functions. The heap is
initialized during the provided program setup
procedures for later use bygetmem()

346

Chapter 13: Comparison to C/64000
Differences from HP 64818 Code

Math functions

HP 64818 ABS, SQRT, SIN, COS, ARCTAN, LN, and EXP
are provided.

HP B1493 abs(), sqgrt(), sin(), cos(), atan(), log(), expgnd
others are provided in the standard C arithmetic
library.

To convert: Calls to ABS, SQRT, SIN, COS, ARCTAN, LN,

and EXP must be converted to calls to the
corresponding function in the C math library.

Passing a byte-sized parameter

HP 64818 All signed and unsigned scalar values are extended
to a 16-bit value and then pushed on the stack.

HP B1493 Same as HP 64818.

Passing a p ointer

HP 64818 Pointers are pushed on the stack as 16 or 32 bit
quantities as specified by the $SPOINTER_SIZE
option.

HP B1493 32-bit pointers are pushed on the stack for large

memory model, 16-bit pointers for smalemory
model.

Passing a float ing-point value

HP 64818 All floating point values are pushed on the stack as
64 bit double precision qualities, with the least
significant bytes in lower memory addresses.

HP B1493 Same as HP 64818.

347

Chapter 13: Comparison to C/64000
Differences from HP 64818 Code

Passing a structure

HP 64818

HP B1493
Passing an array

HP 64818

HP B1493
Function return values

HP 64818

HP B1493

Removing parameters

HP 64818

Huctures are pushed on the stack on word
boundaries. The last word of the structure is passed
first.

Same as HP 64818.

The address of the array is pushed on the stack.

Same as HP 64818.

One byte resultsivbe returned in register BL, two
byte results in register BX. Return values greater
than two bytes will be saved in the location pointed
to by the result address pushed by the calling
routine.

One byte resultslibe returned in register AL, two
byte results in AX, three byte results in register pair
DL, AX, and four byte results in register pair DX,
AX. Return values greater than four byte be
saved in the location pointed to by the result
address pushed by the callirutine. This pointer
may point to a static memory location, an automatic
variable, or temporary space on the stack.

Ifthe SFIXED_PARAMETERS option is OFF
(default), the callingoutine is responsible for
removing parameters from the stack. Ifthe option
is ON, the parameters are removed by the called
routine.

348

Chapter 13: Comparison to C/64000
Differences from HP 64818 Code

HP B1493 The callingoutine is responsible for removing
parameters from the stack.

Assembly Code Considerations

Stack frame management is different in the 64818 and HP B1493
compilers, as you can see by the parametssipg differences listed above.

The assemblers used with each of the compilers are also different. The HP
B1449 assembler is used with the HP B1493 compiler.

Refer to the8086/186 Assembler, Linker, Librariamanual for a description of
the differences between the assemblers.

When converting assembly language routines, it is best to surround the
routines with C function headers andg¢@and embedgur assembly language
instructions insideét pragma ASM and# pragma END_ASMdirectives. You

may have to change the instructions which access tleergders and return
values, but if you use the compiler generated symbols (SET equal to BP
offsets), you will beprotected should anything about the compiler ever change.
Refer to the "Compiler Generated Assembly Code" chapter for information
about the HP B1493 compiler’s calling conventions.

349

Chapter 13: Comparison to C/64000
Differences from HP 64818 Code

350

Chapter 14: ASCII Character Set

14

ASCII Character Set

351

Chapter 14: ASCII Character Set

Asc Dec Hex Oct Chr |Asc Dec Hex Oct Chr | Asc Dec Hex Oct Chr
nul O 00 000 MO + 43 2B 053 \Y 86 56 126
soh 1 01 001 \I’ , 44 2C 054 W 87 57 127
stx 2 02 002 \2 - 45 2D 055 X 88 58 130
etx 3 03 003 \3 . 46 2E 056 Y 89 59 131
eot 4 04 004 ¢4 / 47 2F 057 Z a0 5A 132
enqg 5 05 005 15’ 0 48 30 060 [91 5B 133
ack 6 06 006 76’ 1 49 31 061 \ 92 5C 134 W\
bel 7 07 007 A7 2 50 32 062] 93 5D 135
bs 8 08 010 b’ 3 51 33 063 N 94 5E 136
tab 9 09 011 W\’ 4 52 34 064 95 5F 137
If 10 OA 012 W\’ 5 53 35 065 ‘ 96 60 140
vt 11 OB 013 Af 6 54 36 066 a 97 61 141
ff 12 oC 014 W\ 7 55 37 067 b 98 62 142
cr 13 OD 015 A\15 |8 56 38 070 c 99 63 143
SO 14 OE 016 \16' | 9 57 39 071 d 100 64 144
Si 15 OF 017 \17° | : 58 3A 072 e 101 65 145
dle 16 10 020 720" | ; 59 3B 073 f 102 66 146
dcl 17 11 021 7\21' | < 60 3C 074 g 103 67 147
dc2 18 12 022 \22' | = 61 3D 075 h 104 68 150
de3 19 13 023 \23" | > 62 3E 076 i 105 69 151
dc4 20 14 024 \24' | ? 63 3F 077 i 106 6A 152
syn 22 16 026 \26" | A 65 41 101 | 108 6C 154
etb 23 17 027 \27' | B 66 42 102 m 109 6D 155
can 24 18 030 7\30" | C 67 43 103 n 110 6E 156
em 25 19 031 \31' | D 68 44 104 0 111 6F 157
sub 26 1A 032 7\32' | E 69 45 105 p 112 70 160
esc 27 1B 033 A\33" | F 70 46 106 o} 113 71 161
fs 28 1C 034 \34' | G 71 47 107 r 114 72 162
gs 29 1D 035 A35 | H 72 48 110 S 115 73 163
rs 30 1E 036 7\36' || 73 49 111 t 116 74 164
us 31 1F 037 \37" | J 74 4A 112 u 117 75 165

32 20 040 K 75 4B 113 Y 118 76 166
! 33 21 041 L 76 4C 114 w 119 77 167
" 34 22 042 M 77 4D 115 X 120 78 170
35 23 043 N 78 4E 116 y 121 79 171
$ 36 24 044 (@] 79 4F 117 z 122 7A 172
% 37 25 045 P 80 50 120 { 123 7B 173
& 38 26 046 Q 81 51 121 | 124 7C 174
’ 39 27 047 V R 82 52 122 } 125 7D 175
(40 28 050 S 83 53 123 ~ 126 7E 176
) 41 29 051 T 84 54 124 del 127 7F 177 \177
* 42 2A 052 U 85 55 125

352

Chapter 15: Stack Models

15 _

Stack Models

Diagrams of the five stack models used in the 8086/186 C Cross Compiler.

353

Chapter 15: Stack Models

The stack models are:

Stack Model for Small Memory Model
Stack Model for Large Memory Model
Stack Model for Medium Memory Model
Stack Model for Compact Memory Model

Near Stack Model for Large and Compact Memory Model (The near stack
model applies when the "near calls" option is used.)

Interrupt Stack Model for Large and Compact Memory Model

Interrupt Stack Model for Small and Medium Memory Model

354

High Address

Frame pointer (BP)

Stack pointer (SP)

Low Address

Used stack space

Reserved space for
structure result

Last parameter
O
First parameter

Result address

Return address

Old frame pointer
(BP)

Last local
O
First local

Buffered register
variable (SI)

Saved 8087 state

Temporaries
O

Top of stack

Chapter 15: Stack Models

Absent if result is <= 4 bytes or if
result is returned through a variable.

Absent if no parameters are passed.
(Last passed parameter is pushed
first.)

Absent if size returned is < = 4 bytes.
(Address size is 1 word.)

(Address size is 1 word.)

Absent if there are no parameters or
locals. (Size is 1 word.)

Absent if function does not declare
any local (automatic) variables. (Last
declared local is first on stack.)

Absent if function does not use
register variables.

Present when -f option is usadd
floating point register variables are
used. (Size is 94 bytes.)

Stack changes as temporaries are
saved and used in expressions.

Figure 15-2. St ack for Small Memory Model

355

Chapter 15: Stack Models

High Address Used stack space

Reserved space for Absent if result is <= 4 bytes or if
structure result result is returned through a variable.
Last parameter Absent if no parameters are passed.

0 (Last passed parameter is pushed
First parameter first.)
[segment] Result Absent if size returned is < = 4 bytes.
[offset] address (Address size is 2 words.)

[segment] Return (Address size is 2 words.)

[offset] address

Old frame pointer Absent if there are no parameters or
Frame pointer (BP) (BP) locals. (Size is 1 word.)
Last local Absent if function does not declare
0 any local (automatic) variables. (Last
First local declared local is first on stack.)
Buffered data Absent if function does not access
segment (DS) DS-relative static data.
Buffered register Absent if function does not use
variable (SI) register variables.
Saved 8087 state Present when -f option is usadd

floating point register variables are
used. (Size is 94 bytes.)

Temporaries Stack changes as tempora.ries are
Stack pointer (SP) 0 saved and used in expressions.

Low Address Top of stack

Figure 15-3. St ack for Large Memory Model

356

High Address

Frame pointer (BP)

Stack pointer (SP)

Low Address

Used stack space

Reserved space for
structure result

Last parameter
O
First parameter

Result address

[segment] Return
[offset] address

Old frame pointer
(BP)

Last local
O
First local

Buffered register
variable (SI)

Saved 8087 state

Temporaries
O

Top of stack

Chapter 15: Stack Models

Absent if result is <= 4 bytes or if
result is returned through a variable.

Absent if no parameters are passed.
(Last passed parameter is pushed
first.)

Absent if size returned is < = 4 bytes.
(Address size is 1 word.)

(Address size is 2 word.)

Absent if there are no parameters or
locals. (Size is 1 word.)

Absent if function does not declare
any local (automatic) variables. (Last
declared local is first on stack.)

Absent if function does not use
register variables.

Present when -f option is usadd
floating point register variables are
used. (Size is 94 bytes.)

Stack changes as temporaries are
saved and used in expressions.

Figure 15-4. St ack for Me dium Memory Model

357

Chapter 15: Stack Models

High Address

Frame pointer (BP)

Stack pointer (SP)

Low Address

Used stack space

Reserved space for
structure result

Last parameter
O
First parameter

[segment] Result
[offset] address

Return address

Old frame pointer
(BP)

Last local
O
First local

Buffered data
segment (DS)

Buffered register
variable (SI)

Saved 8087 state

Temporaries
O

Top of stack

Absent if result is <= 4 bytes or if
result is returned through a variable.

Absent if no parameters are passed.
(Last passed parameter is pushed
first.)

Absent if size returned is < = 4 bytes.
(Address size is 2 words.)

(Address size is 1 words.)

Absent if there are no parameters or
locals. (Size is 1 word.)

Absent if function does not declare
any local (automatic) variables. (Last
declared local is first on stack.)

Absent if function does not access
DS-relative static data.

Absent if function does not use
register variables.

Present when -f option is usadd
floating point register variables are
used. (Size is 94 bytes.)

Stack changes as temporaries are
saved and used in expressions.

Figure 15-5. St ack for Compact Memory Model

358

High Address

Frame pointer (BP)

Stack pointer (SP)

Low Address

Used stack space

Reserved space for
structure result

Last parameter
O
First parameter

[segment] Result
[offset] address

Return address

Old frame pointer
(BP)

Last local
O
First local

Buffered data
segment (DS)

Buffered register
variable (SI)

Saved 8087 state

Temporaries
O

Top of stack

Chapter 15: Stack Models

Absent if result is <= 4 bytes or if
result is returned through a variable.

Absent if no parameters are passed.
(Last passed parameter is pushed
first.)

Absent if size returned is < = 4 bytes.
(Address size is 2 words.)

(Address size is 1 word.)

Absent if there are no parameters or
locals, and size returned is < = 4 bytes.
(Size is 1 word.)

Absent if function does not declare
any local (automatic) variables. (Last
declared local is first on stack.)

Absent if function does not access
DS-relative static data.

Absent if function does not use
register variables.

Present when -f option is usadd
floating point register variables are
used. (Size is 94 bytes.)

Stack changes as temporaries are
saved and used in expressions.

Figure 15-6. NEAR St ack for Large and Compact Model

359

Chapter 15: Stack Models

High Address

Frame pointer (BP)

Stack pointer (SP)

Low Address

Used stack space

[segment] Interrupt

return
[offset]

address

Processor flags

Old AX

Old CX

Old DX

Old BX

Old DI

OIld ES

Old frame pointer
(BP)

Last local
O
First local

Buffered data
segment (DS)

Buffered register
variable (SI)

Saved 8087 state

Temporaries
O

Top of stack

Absent if there are no locals.
(Size is 1 word.)

Absent if function does not declare
any local (automatic) variables. (Last
declared local is first on stack.)

Absent if function does not access
DSO-relative static data.

Absent if function does not use
register variables.

Present iff is used (94 bytes).

Stack changes as temporaries are
saved and used in expressions.

Figure 15-7. Interrupt St ack for Large & Compact Model

Chapter 15: Stack Models

High Address Used stack space
[segment] Interrupt
return
[offset] address
Processor flags
Old AX
Old CX
Old DX
Old BX
Old DI
0Old frame pointer Absent if there are no locals.
Frame pointer (BP) (BP) (Size is 1 word.)
Last local Absent if function does not declare
0 any local (automatic) variables. (Last
First local declared local is first on stack.)
Buffered register Absent if function does not use
variable (SI) register variables.
Saved 8087 state Present itf is used (94 bytes).
Temporaries Stack changes as temporaries are
Stack pointer (SP) 0 saved and used in expressions.
Low Address Top of stack

Figure 15-8. Interrupt St ack for Small & Compact Model

361

Chapter 15: Stack Models

362

Chapter 16: About this Version

16
B

About this Version

How this version of the compiler differs from previous versions.

363

Chapter 16: About this Version
Version 4.01

Version 4.01

New memory models

The compact and medium memory models are supported. The "-m compact"”
option tells the compiler to generate code for the compachory model.

The "-m medium" option tells the compiler to generate code for the medium
memory model.

Control of NOPs

The -Wc,Hx option allows you to specify the number of NOPs between
functions. The default number is 1.

C+ + style comments

C+ + style comments are now accepted byBE86.

Enhanced -M option

The compiler warns when a function is used without a previously declared
prototype if the -M conmandline option is used.

New usage message

cc086 prints a usage message if no options are used onnimeaca line.

Version 4.00

New product number
The product number has been changeB1493 for all hosts.

The old product number w4904 (for HP 300/400 hosts), and B1427 (for
Apollo hosts—no longer supported).

364

Chapter 16: About this Version
Version 3.50
New command-line options
The-Wo,m option tells the optimizer to avoid certain optimizations.

The-K option enforces strict segment information consistency.

New default environments

All of the default environments supplied with the compiler are now HP
64700-series emulators.

Renamed run-time library routines

Some run-time library routines have beenamed in anticipation of the
addition of medium and compact memory models. Routines which will be
supported by both the large and medium models now have a _LM suffix.
Routines which will bewgpported by both the small and compact models have
a _SC suffix.

Re-organized manual

TheUser's GuideandReferencenanuals have been combined and the chapters
have been re-organized a bit.

Version 3.50

Behavior of sprintf

The behavior of the sprintf function is undefined if the destination array is also
one of the other arguments. For example, the vals&in§l is undefined
after the following line of code:

sprintf (stringl, "%s %d", stringl, integerl);

This undefined behavior of sprintfis particularly important because the
behavior has changed between versions of the compiler.

365

Chapter 16: About this Version

Version 3.50

Formatted printing

The formatted printing functions, such as printf and sprintf, use less stack
space. They use 350 fewer bytes than in version 3.40 compilers.

Streams

The ungetc library function can now be used as the first operation on a stream.

Void pointers

Void pointers now may be compared using the relational operators <", "< =",
ll> Il, and ll> — ll.

gsort function
The gsort function is now reentrant.

The variable gsort_buffer has been removed from thiec.a library. In
previous versions of the compiler, this variable needed to be initialized in the
program startup code. All references tgsort_buffer should be removed.

Environment library modules

Previous versions of the compiler loaded some modulesdronaeven
though those modules were not used. The library has been restructured so that
fewer modules will be loaded.

You may need to load the environment libraamy.g twice to resolve all
external references. The linker command files (for example,
/usr/hp64000/env/hp64X#olinkcom.k) show how this can be done.

Improved performance
The compile speed has been significantly improved. @S2 = Code sharing

You will see greatly reduced code size if you use sprintf or vsprintf and one of
the file-oriented printf routines (printf, fprintf, vprintf, or viprintf). These
functions now share much of their code.

The string versions of the printf routines ard stentrant.

366

Chapter 16: About this Version
Version 3.50

__asm ("C_string") function

In addition to thet pragma ASM/END_ASM method of embedding assembly
code in the C source, tl8©86/186 C compilerupports the _asm
('C_string) function. (Itis not a true function, but is treated syntactically a
function.) __asmwhich may only appear inside a function body just as any
other function call might, outputs one or more lines of assembly to the output
compiler-generated assembly code. The two leading underscores are required
and are present to conform to ANSI nhame space requirements.

The assembly language instructions are contained i€ th#ingargument.
The compiler does not check the assembly instructions for correctness. It
simply passes the instructions to the assembler.CTls&ingargument must
contain whitespace and newlines so assembly instructitirc®ownform to the
format and syntaxrequired by the HP B1449 Assembler.

The__asmfunction has two advantages over the ASM/ENDASM pragmas:
first, it may be used in macro definitions, and second, it is sometimes more
expedient for single instructions.

Modifying function entry/exit code

Three new pragmas are available in this release of the compiler. Theyare
pragma FUNCTION_ENTRY 'C_string", # pragma FUNCTION_EXIT
'C_string", and# pragma FUNCTION_RETURN 'C_string". These pragmas
allow you to insert embedded assembly code in the entry and exit code of a
function. They are useful for monitoring and debugging functidis.ca

New segment names

All compiler-generated code is now placed in segments with the class name
"CODE."Thus there are now segment names inkliiees such as "lib/CODE"
and "libm/CODE"in place of "lib"and "libm."

This change affects thelinkcom .k linkcom .k fiolinkcom .k andflinkcom .k
files in /usr/hp64000/env/hp64 7frge /usr’hp64000/env/hp647Bxmall, and
the corresponding directories for the other supported emulators.

Library constants are no longer placed in the same segment as the code. The
constants for "libc" and "libm" are now placed in segments "libcconst"and
"libmconst," respectively.

367

Chapter 16: About this Version
Version 3.50

If you will be using thek that are shipped with the compiler, these changes
will not affect you. If, however, you have modifiddfiles for a previous
version of the compiler, you will need to add the new sectames.

368

Chapter 17: On-line Manual Pages

17

On-line Manual Pages

Printed copies of the on-line documentation.

369

Chapter 17: On-line Manual Pages

cc8086 (1)
cc8086 (1)
NAME cc8086 - C cross compiler for Intel 8086 noiprocessor
SYNOPSIS /usr/hp64000/bin/cc8086 options] files
/usr/hp64000/bin/cc80186 options] files
DESCRIPTION Thecc8086program is a C cigs-compiler which generates object code for the

Intel 8086 micoprocessorCc80186generates object code for the Intel 80186
microprocessor. They accept several types of arguments:

Arguments whose names end wittare taken to be C source programs. They
are compiled and each object program is left on the file whaseiis that of
the source witho substituted forc. The.ofile is deleted only if a single C
program is compiled and linked all in one step.

In the same way, arguments whose nhames endsdite taken to be assembly
source programs and are assembled, producinfile.

Arguments whose names end witlare taken to be C source programs which
have already been preprocessed (B¢e They are compiled without invoking
cpp80861) and each object program is left on the file whosma is that of

the source witho substituted fori.

Arguments whose names end withare taken to be relocatable object files
which are to be included in the link operation.

Arguments can be passed to the compiler througiC@80860PTS

environment variable as well as on the command line. The compiler picks up
the value ofCC80860PTSand places its contents before any arguments on the
command line. For example (&in(1) notation):

CC80860PTS=-v
export C@0860PTS
cc8086 -Lprog.c

is equivalent to:
cc8086 -v -Lprog.c

The compiler also checks the environment vari&?€4000Q If it has been set
and exported, it is used as the directory path (in place of the default
/usr’hp6400) for executables (e.dlib/cpp808§, libraries specified by using

370

Chapter 17: On-line Manual Pages
cc8086 (1)

(e.g./lib/8086/largdlibm .a), include files (e.ginclude/8086/stdio .y and the
default linker command file/énv/hp6476x/large/iolinkcom).k

The following options are recognized 8086

-b

Cause the compiler to use the Branch Validator preprocessor, which inse
additional code for branch counting. S#mcpp8086L).

-C

Suppress the link edit phase of the compilation and force an olggfite(to
be produced even if only one program is compiled. Produgefilefor each
.cfile.

-C

Do not strip C-style comments in the precessor except those found on
preprocessor directive lines. Sgp80861).

-d

Separate data output into initialized (non-constant data explicitly initialized
with a C initializer) and uninitialized (non-constant data implicitly initialized
to zero, in the absence af, at load time). The default output segments are
udataandidata. See als@ pragma SEGMENT.

-D name=def
-D name

Definenameto the preprocessor. Segp808§1).
-e

Turn off code generation allowing fast syntactic and semantic error checking
of the source program. This option overrides-thec, and-S options.

-E

Run onlycpp808§1) on the named @rograms and send the result to the
standard output.

-f

Generate 8087 (floating poinbprocessor) code for floating point operations.
This option causes code to be generated in-line for operations which might

371

Chapter 17: On-line Manual Pages

cc8086 (1)

otherwise be performed with run-time libraryisa It also causes linker
command filefiolinkcom .k(or flinkcom .k if -N used) to be used. These linker
command files use th@087run-time (ib87.a) and mathIpbm87.9 libraryfiles.

-9

Generate additional (but less optimal) code which performs run-time error
checking. Note that it is not necessary to 4g® get complete symbolic
debugging.

The two types of run-time checks made are:

1) Dereferences of all NIL pointers and uninitialized automatic pointers
are detected and reported. This requires the initialization of automatic
pointers at run-time with a value (-1) indicating that they are
uninitialized. Note that initialization of statics to the uninitialized pointer
value is not possible, as statics default to zero.

2) Arrayreferences outside declaration index bounds are detected and
reported.

This option overrides th€ or -s option.
-h

Cause generation of an HP 64000 format assembler symbol file, linker symbol
file, and absolute file for debugging purposes. The assembler symbol file is
named (surce baseamme)A, the linker symbol file (output fileame)L, and

the absolute file (output fileame)X. The symbol file names can be changed
with the-H assembler or linker option passed via f\eoption.

-1 dir

Change the search algorithm used by the preprocessor for finding include files.
Seecpp80861).

-k linkcomfile

Cause the namdimhkcomfileto be used by the linker rather than the default
/usr’hp64000/env/hp6476x/large/iolinkconfsee alsof, -N and-r).

Note that if the environment varialit?64000is set and exported, the
Jusr/hp6400(@art of the path for the default file becon$&切

Seeld86(1) for details about the format of linkerrnonand files.

The-k option overrides any linker command file implications of the

372

Chapter 17: On-line Manual Pages
cc8086 (1)

-N, -p, or-r options.
-K

Cause the compiler to strictly enforce section information for variables. By
default, the compiler does not require that the section information between a
symbol declaration and definition match exactly. This option forces the
information to be identical.

Section information for variables and functions are communicated to the
compiler via theSEGMENT pragma. With this information the compiler can
address different sections of code and data with different address modes. If a
different section is named for a "extern" reference than the actual variable
declaration, then undesired addressing modes could be used. This could lead
to a defect in code generation that is very difficult to locate. Usage ethe
option will cause this type of codingrer to be found at compile time. Its use

is highly recommended.

See also the discussion abéuytragma SEGMENT.
-Ix

Cause the linker to search the librargr/hp64000/lib/8086/large/lilx.a (or
/usr/hp64000/1ib/8086/small/lix.a if -m smallis used, ofusr/hp64000/lib/
8086/medium/libc.a if -m mediumis used, ofusr/hp64000/lib/8086/compact/
libx.aif -m compactis used,). Usd ™ to loadlib.a. If the environment
variableHP64000is set and exported, thesr’hp6400(art of the path
become$HP64000 Note thatl options must appeafterany files which
reference library routines, typically at thedof the command line. You do

not need to use theoption if the library is loaded by the linker command file.

-L[i][X]

Cause the compiler to generate a listing file (suffixed vhfor each C
source compiled. Thissting contains Caurce intermixed with generated
assembly code.

If the -S (do not assemble) option is present, the intermixed assembly is just as
it appears in thesfile; otherwise, the intermixed assembly is taken from the
assembler’s listing file witlprogram counters and object code.

If the -i option is present, include files are expanded and included in the listing.

If the -x option is present, a symbol cross-reference table is appended to the
compiler listing and also to any assembler or linker listings.

373

Chapter 17: On-line Manual Pages

cc8086 (1)

If the assembler is invoked for argffiles on the command line, an assembler
listing isproduced in the corresponditigting file suffixed.O and-x invokes
the assembler’s cross-reference.

If the linker is invoked, a linker listing groduced in disting file named
outfile O (defaulta.out.Q see-0) and-x invokes the linker’s cross-reference.

Options which prevent compilatiore(-E, and-P) prevent the generation of
listings.

-m memoryModel

Cause the compiler to generate code for the selected memory model. If this
option is not present, the large memory model is assumedh oryModemay
be either:

large large memory model (default)
small small memory model

medium for the medium memory model
compactfor the compact memory model

The small memory model has two segments which never change. Oneis a
code segment (CS does not change). The other is a combined stack and
DS-relative static data segment (DS, SS, and ES are identical and do not
change). In this model all pointers are 16 bits.

The large memory model may have one or more code segments (CS may
change); one independent stack segment (SS does not change); zero or one
DS-relative static data segment for each C function (DS may change); and
zero, one, or more ES-relative static data segments (ES may change). In this
model all pointers are 32 bits. Functions are considered to be "FAR"and are
called as such except when a static function is encountered anddpgon is

in effect.

The medium memory model may have one or more code segments (the CS
register may change) and one data segment (the DS, SS, and ES registers are
identical and do not change). The function pointer size is 32 bits, and the data
pointer size is 16 bits.

The compact memory model has one fixed code segment (the CS register does
not change) and one or more data segments (the DS, SS, and ES registers are
not identical and may change). The function pointer size is 16 bits, and the
data pointer size is 32 bits.

-M

374

Chapter 17: On-line Manual Pages
cc8086 (1)

Cause the compiler to generate more warning messages for possibteie
the C source than are generated by default.

-n

Cause all static functions in large memory model to be called "NEAR". This
option should be used only when the user can guarantee that all static
functions within the source file(s) being compiled are called from the sam
segment and that no pointer arithmetic is being performed to generate th
call. This option isignored in the presencemfmall.

-N

Cause the compiler to link using thekcom .k(flinkcom .k if -f used) linker
command file rather than thelinkcom k(fiolinkcom .k if -f used) command
file. The ff]linkcom.kcommand file loads thetl.o program setup routine
which does not opestdin, stdout or stderr. -N is overridden by thek option,
but works in conjunction with the option.

-o outfile

Name the output file from the linkewtfilex (or outfile. X andoutfile.L if the
-h option is specified)Outfile is a.out by default.

-O[G][T]

Generate locally optimal code and invoke an assembly code optimizer. Code is
optimized for space (even, possibly, at the expense of time) uililesalso
specified.

If the -T option is present, code is optimized for time whenever time and space
optimizations conflict. If theG option is present, additional code is generated
(as it is whenO is not used) to make the program easier to debug using an HP
emulator or debugger. This includes:

1) Generation of no-operatiolNQP) instructions preceding all labels.
This provides unique addresses for all labels. Note that the peephole
optimizer will remove any of these no-operationtinstions that it
considers to be dead code (following an unconditional branch).

2) Buffering of the frame-pointer on the stack at function entry and
restoration of the &ame-pointer at function exit, even when this is known
not to be necessary.

375

Chapter 17: On-line Manual Pages
cc8086 (1)

The-O option is overridden by thg option.
-P

Run onlycpp808§1) on the named @rograms and leave the result on
corresponding files suffixed.

-Q
Cause the compiler to byte align data in memory, rather than the default word
alignment. Data of types short, int, long, pointer, float, double, struct, and

union will be aligned on byte rather than wolindaries. Data of types
struct and union W not be padded. Note that the size olistures and
unions as well as the offsets of their members are affected by this option.
Therefore, modules which define structures or unions and those which
reference them or their members must both be compiled with the same
alignment. For the sake of safety, it is recommendedalhaburces linked
together be compiled with the same alignméitic.a, libm.a, and the run-time
(lib.a) and environment librarieg(v.g are compatible with modules
compiled under either alignment.

-r dir

Cause the compiler to use default linker command ifil@skcom .k linkcom .k
fiolinkcom .k or flinkcom.k(see-N and-f) in run-time environment directory
/usr/hp64000/enwdir/large (or /usr/hp64000/enwdir/[mem_model] if -m
[mem_model] present) rather than in the default
/usr’hp64000/env/hp6476x/largeor the Intel family of the HP 64700 series of
emulators, the run-time environmenhig6476xIf the environment variable
HP64000is set and exported, thesr/hp6400(art of the path for the above
environments becom&$P64000 The-r option is overridden by th

option, but works in conjunction with thBl and-m options.

-S

Cause the output of the compiler, assembler, and linker to be stripped of
symbol table information. The use of this option will prevent the use of
symbols for analysis/debymurposes in any consumers of the executable. This
option is overridden by the option and, for file and line information, by the
-L option.

-S

376

Chapter 17: On-line Manual Pages
cc8086 (1)

Compile the named @rograms and leave the assembly language output on
corresponding files suffixed. This option prevents invocation of the
assembler.

-t c,name

Substitute or insert subprocessith namewherecis one or more of a set of
identifiers indicating the subprocess(es). This option works in one of two
modes:

1) If cis a single identifiemamerepresents the full path name of the ne
subprocess. For example8686 -tp,/mydir/cppaurce.c

2) If cis a set of identifier;syamerepresents a prefix to which the standard
suffixes are concatenated to construct the full patnes of the new
subprocesses. For exampleB@86 -tpc2L,/mydir/ -tal,/mydir2/aurce.c

c can be one or more of the following identifiers:

p preprocessor (standard suffix is §986)

c compiler body (standard suffix is ccom8086L or ccom8086S)
0 same as c

o] optimizer (standard suffix is opt8086)

2 same as o

m macro preprocessor for assembler (standard suffix is ap86)
a assembler (standard suffix is as86)

L lister (standard suffix is clst8086)

I linker (standard suffix is 1d86)
Note also in this context that the standard processes invokedezn

/usr/hp64000/lib/cpp8086

/usr/hp64000/lib/ccom8086(or cconB086S, ccomB8086C, or ccom8086M)
/usr/hp64000/lib/opt8086

/usr/hp64000/bin/ap86

/usr/hp64000/bin/as86

/usr/hp64000/lib/clst8086

/usr/hp64000/bin/Id86

377

Chapter 17: On-line Manual Pages
cc8086 (1)

If the environment variablelP64000is set and exported, thesr/hp6400(art
of the path for the above files becon$H#64000

-u

Cause the compiler to consider all non-constant static data as uninitialized
and to issue a warning whenever an initializer is placed on such static data.
This option is useful for embedded environments where no load-time
initialization is possible (aspposed to environments, such as emulation or
simulation, where load-time initialization of static data is possible only when
the user loads the memory).

-U name

Remove any initial definition afame wherenameis a reserved symbol that is
predefined by the preprocessor or a symbol defined-bByaption regardless

of the order of the options. Normalbg(1) predefines symbols that reflect
simultaneously the host and execution environment. SicR@86is a cross
development tool, it predefines one symbol indicating the cross environment
and one target processor symbol. Additionally, a symbol is predefined to
indicate which memory model is being used. The reserved symbols are:

cross environment: __hp64000

target processor: i8086

memory model: _ LARGE_MODEL or _ SMALL_MODEL or
__ MEDIUM_MODEL or _ COMPACT_MODEL

-V

Enable verbose mode, producing a step-by-step description of the compilation
process orstderr

-w
Suppress warning messages.
-W c,argl[,arg2,...,argN]

Causeargl throughargN to be passed as parameters tgpsabess of the
compilation process. Thargsare of the formargoption[,argvalue] where
argoptionis the name of an option to be passed to thpradess andrgvalue
is an argument targoption The valid values foc are those listed under thte
option. For example, to invoke thteoption ofclst808¢1): cc8086 -L -WL,-t
source.c

378

Chapter 17: On-line Manual Pages
cc8086 (1)

Note that options other than the above are not recognized and cause a
warning message to be writtengualerr.

The following options tacom8086Gare accessible via th#/ option described
above:

-C segname

Change the default segment name for constant outpu€C@N&T under
pragma SEGMENT below) from the defaultonstto the argumensegname

-D segname
-D segnamel,segname?2

If one argument is given, change the default segment name for data output
(seeDATA under# pragma SEGMENT) from the defaultiatato the
argumentsegname

If two arguments are given, change the default segment name for uninitialized
data output (se&gDATA under# pragma SEGMENT) from the defaultdata

to the first argumensegnameland change the default segment name for
initialized data output (sd®ATA under# pragma SEGMENT) from the
defaultidatato the second argumesggname2

‘F

Turn off the compiler’s automatic creation of register variables for addresses
of statics and frequently used variables.

-| prefix

Alter the compiler’s algorithm for creating assembly language labels from C
symbols. Rather than using an underscore at the beginning of such labels, the
compiler will useprefix Since the defaufirefixis ' ', it is used as a special case

for specifying that no prefix be used via -Wc,-l_. This optibawdd beused

with great care as it may generate assembly-time and/or link-time errors due

to conflicts between compiler-generated assembly language labels and other
assembly symbols. See akspragma ALIAS.

-N modulename

Cause the compiler to useodulenaméor the argument to thAME
directive in the assembly source produced rather than the default modulename
which is the C source file baseme (sedasenam@)).

379

Chapter 17: On-line Manual Pages

cc8086 (1)

-P segname

Change the default segment namegosgram output (seBROG under
pragma SEGMENT) from the default prodpasenameo the argument,
segname

In addition to standard C in the C source file8086accepts and ignores all
pragmas except the following:

pragma ALIAS Csymbolname Assemblysymbolname
pragma ALIAS Csymbolname ""Assemblysymbolname

This pragma allows overriding of the C compiler’s algorithm for converting a
C source file symbolame into a unique assembler symbol name (the
algorithm generally prepends an " _"or "S_"). This pragma must be placed
before anyreferences to the symbol. This pragma shoulddzbwith great

care as it may generate assembly-time and/or link-time errors due to conflicts
betweenAssemblysymbolnanaead other assembly symbols. Use the quotation

marks if theAssemblysymbolnanw®uld not be a valid C identifier.

pragma ASM
pragma END_ASM

These pragmas are used to bracket sections of assembly code which are
inserted into the assembly code generated by the compiler. The assembly code
optimizer assumes that working registers AX, BX, CX, DX, DI, processor
status word (PSW), ST(0) and ST(1) when usfngnd in large memory

model ES are destroyed in embedded assembly code sections; therefore, they
may be freely used. The register variable (Sl), the frame pointer (BP), the
stack pointer (SP), the segment registers (CS, DS, SS, and, for small memory
model, ES), and the floating point register variables (ST(2) through ST(6))
when usingf are not buffered prior to embedded assembly language sections.
So, inadvertently writing over one of these registers should be avoided. Also,
when using thef option the 8087 stack pointer must not be left in an altered
state and ST(7) must be "free". Embedded assembly code may reference C
variables. The compiler incorporates thed@ne of variables and functions

into their corresponding assembly code symboliitiating the referencing of

C variables from embedded assembly code. In particular: externs, globals,
statics, and functions have an underscore () prepended to their C name and,
for each parameter and automatic, an assembly-time constant is created by
prepending S_ to its C name. This constant is a frame-pointer-relative offset
used to access the parameter or automatic value. Because of scoping
requirements and a 30 character significance limit on assembly names, C
names longer than 29 characters and those which appear in nested scopes may

380

Chapter 17: On-line Manual Pages
cc8086 (1)

have an additional ASCIl number prepended to make them unique. See the
COMPILER GENERATED ASSEMBLY CODE chapter in the manual for a
complete discussion and examples of assembly symbol name generation. The
ASM pragma may be used any place in a C source (i.e. inside or outside ofa C
function).

pragma DSsegmentName

This pragma is only valid for large memory model; it is ignored in the pres
of -m small. This pragma specifies that all subsequent functions should
arrange to access any data in segnseginentNamgather than the default of
the currenDATA or UDATA segment name, séfgpragma SEGMENT) using
DS-relative addressing. If subsequent functions access any static data in
segmensegmentNameheir preambles load DS widtegmentNameand use it

in accesses. The effect of this is that onBSgragma is used, the DS-relative
segment name is fixed until anotHa® pragma is encountered.

pragma FUNCTION_ENTRY "C_String
pragma FUNCTION_EXIT "C_String
pragma FUNCTION_RETURN "C_String

These pragmas also allow you to insert assembly code into the generated
assembly code. They differ from tA8M pragma in several ways:

They are not required to be paired and may be used independently or together.
They may only appear outside of a function body. They affect only a single
function and must precede that function in the C source. They do not bracket
the embedded assembly. Instead, the assembly is contained @ Stariy
argument. This argument is a C character string. It must contain whitespace
and newlines so that when the compiler outputs the string to the generated
source, it Wl conform to the format and syntax required by the assembler.

pragma FUNCTION_ENTRY will place the embedded assembly in a

function’s entry code. The embedded code appears immediately after the label
generated from the function name in theo@Qrge and Vil precede the code
generated for function entry.pragma FUNCTION_EXIT will place the

embedded assemblyin a function’s exit code. The embedded code appears
after the code generated for the function exit and precedes the function return
label.# pragma FUNCTION_RETURN will place the embedded assemblyin a
function’s exit code. The embedded code appears after the return label. These
pragmas give you the flexibility to modify the function entry and exit code. An
example is using FUNCTION_RETURN to force an interrupt service routine

to trap back to the operating system instead of simply returning to the point of
interrupt. (See als® pragma INTERRUPT.) The information found under

381

Chapter 17: On-line Manual Pages

cc8086 (1)

pragma ASM about accessing C symbols and about register buffering holds
true for these pragmas as well.

pragma INTERRUPT

This pragma specifies that the next encountered function be implemented as
an interrupt routine. Thismeans that all working registers are saved at

function entry and restored prior to function exit (in addition to the register
variable which ordinarily is buffered), no parametesgiag or retirned result

is allowed, and a return from interrupt is generated at the return point. In the
presence of the option, the 8087's complete internal state is saved. Note that
only the next encountered function is affected--not subsequent functions. The
INTERRUPT pragma may be used any place a C external declaration may.

pragma SEGMENT [PROG= pnam¢ [DATA= dnamé[CONST=cnam#¢
pragma SEGMENT [PROG= addi] [DATA= addi [CONST=addf

pragma SEGMENT [PROG= pnamé [UDATA= udnam¢[IDATA= idnam¢g
CONST=cnamé¢

pragma SEGMENT [PROG= addi [UDATA= addi [IDATA= addi
CONST=addi

pragma SEGMENT UNDO
pragma SEGMENT [PROG= pnam¢ [DATA= dnamé[CONST=cnam#¢

pragma SEGMENT [PROG= addf [DATA= addi
CONST=addi

pragma SEGMENT [PROG= pnamé [UDATA= idnamé
IDATA= udnamg[CONST=cnamé¢

pragma SEGMENT [PROG= addil [UDATA= addi
IDATA= addi] [CONST=addq

pragma SEGMENT UNDO

This pragma is valid for large, medium, and compact memory model; it is
ignored in the presence afi small. The first form of this pragma causes the
program, static data, and static constant information to be placed in segments
namedpnamedname andcnamerespectively until the ne @EGMENT

pragma is encountered. This segment information is used for specifying the
location of symbols to the linker. The linker expects to find external data in

the segment whose name is active when the external declaration is made. In
the second form, 20-bit physical addresses, whose syntax is the same as for C

382

FILES

Chapter 17: On-line Manual Pages
cc8086 (1)

constants, are given in place of the segment names causing the subsequent
information to be ORG'd starting at the given address. The segment name
associated with an ORG'd segment is of the forghexaddressvhere

hexaddresss the physical address where the segment is located. For example,
0rg00012345H is located at 0x12345. The third andth formdisted are the
same as the first two forms withDATA andIDATA substituted for data.
These forms make sense only in the presence ctitbption which forces
separation of explicitly initialized data from implicitly initialized (or
uninitialized with-u) data. Non-constant static data items explicitly initializ
by means of a C initializer go into tHeATA named segment. Non-constant
static data items not explicitly initialized by means of a C initializer go into the
UDATA named segment. Always uBATA (as opposed tdDATA or IDATA)

to locate an external declaration in a segment. Note that chaDgiig also
changes botlUDATA andIDATA . The absolute addresses and segment names
may be intermixed for the three (four, countiigATA andIDATA) different
information types (program, static data, static constant) in the same
SEGMENT pragma. If the target segment is not specified for one of the
information types, then it remains unchanged. The last fépragma

SEGMENT UNDO, "undoes"the effect of the immediately preceding
SEGMENT directive. That is, it restores thame(or address) of any segment
renamedor ORG) in the last directive. This form is useful at the end of

includefiles to restore the segment environment which existed prior to the
includefile. (Include files should contalBEGMENT directives to define

the segments that externs are in.) Default (withdut

PROG=prog basenam®ATA= dataCONST=const Default (withd):

PROG=prog basenam&DATA= udatalDATA= idataCONST=const
basenamés the C source file basame (sedvasenamgl)) with all characters

not legal for a segment name changed to underscore ().

Note that pragmas other than the above are not recognized and cause a
warning message to be writtenstalerr

file.c C source file

file.s assembly source file

file.o object file

file.a library (archive) file
/usr/hp64000/lib/cpp8086 ppeocessor

/usr/hp64000/lib/ccom8086L compiler for langeemory model

383

Chapter 17: On-line Manual Pages

cc8086 (1)

/usr/hp64000/lib/ccomB8086S compiler for snrmaémory model
/usr/hp64000/lib/ccom8086C compiler for compaamory model
/usr/hp64000/lib/ccom8086M compiler for mediumemory model

/usr/hp64000/lib/opt8086 optimizer
/usr/hp64000/bin/ap86 macro precessor for assembler
/usr/hp64000/bin/as86 assembler
/usr/hp64000/lib/clst8086 lister (C listing generator)
/usr/hp64000/bin/Id86 linker
/usr/hp64000/include/8086 standard directoryfamclude files

Note that, when environment varialtl®64000is set and exported, it replaces
“lusr/hp64000"in all of the above filames.

/usr/hp64000/lib/8086/large/lib.arun-time library
/usr/hp64000/lib/8086/large/libc.a standardu@ort library

/usr/hp64000/lib/8086/large/libm.a
auxiliary math C gpport library

/usr/hp64000/lib/8086/large/lib87.a
run-time library usin@087

/usr/hp64000/1ib/8086/large/libm87.a
auxiliary math C gpport library usin@087

/usr/hp64000/env/ihp6476x/large/env.a
execution environment dependent library

/usr/hp64000/env/hp6476x/largefiolinkcom.k
default linker command file

/usr/hp64000/env/hp6476x/large/linkcom.k
linker command file wherN (no 1/0) used

/usr/hp64000/env/ihp6476x/large/fiolinkcom.k
linker command file wherf (8087 code) used

/usr/hp64000/env/ihp6476x/large/flinkcom.k
linker command file wherN (no 1/0) andf (8087 code) used

384

Chapter 17: On-line Manual Pages
cc8086 (1)

/usr/hp64000/env/hp6476x/large/crt0.o
default program setup routine

/usr/hp64000/env/ihp6476x/large/crtl.o
program setup routine with no 1/O initialization

/usr/hp64000/env/hp6476x/large/div_by 0.0
integer divide by zero interrupt routine
/usr/hp64000/env/hp6476x/large/vector8087.0 8087

exceptions interrupt routine

Note that when them small (small memory model}m medium (medium
memory model), orm compact(compact memory model) option is used the
largein the above paths is changedstonall medium or compact

/usr/hp64000/env/ihp6476x/ioconfig.EA
emulation configuration file corresponding to
iolinkcom .kandfiolinkcom kif present

/usr/hp64000/env/hp6476x/config.EA
emulation configuration file corresponding to
linkcom.kandflinkcom .kif present

/usr/hp64000/env/hp6476x/fioconfig.EA
emulation configuration file correspondingfiolinkcom .k

/usr/hp64000/env/ihp6476x/fconfig.EA
emulation configuration file correspondingftimkcom .k

/usr/hp64000/env/hp6476x/src
directory containing sources for environment
dependent routines and emulation monitor

See ther option for easy access.

AUTHOR Thecc8086program was developed by the Hewlett-Packard Company.
SEE ALSO ap86(1), ar86(1), as86(1), bbacpp8086(1), clst8086(1), cpp8086(1), Id86(1)

B. W. Kernighan and D. M. Ritchi&he C Programming Languaggecond
Edition, Prentice-Hall, 1988
HP 8086/186 C Cross Compiler User's Guitewlett-Packard, 1995

385

Chapter 17: On-line Manual Pages
cc8086 (1)

DIAGNOSTICS cc8086returns zero if no errors are detected during the compilation process,
otherwise it returns non-zero.

The diagnostics produced bg8086are intended to be self-explanatory.
Occasional messages may be writtesttierrby the assembler. Error messages
produced by the compiler are always writterstlerrand consist of the

original C source line on which the error was detected followed by a line
containing a pointer to the token at which the error was detected and an
explanatory message. Note that, for syntax errors, the token indicated will
often be the tokefollowingthe error.

386

Chapter 17: On-line Manual Pages
cpp8086(1)

NAME
SYNOPSIS
DESCRIPTION

cpp8086(1)

cpp8086 - C cross language precessor for Inteé8086 micoprocessor
/usr/hp64000/lib/cpp808[options | ifile [ofile]

Thecpp8086command is the ANSI/ISO standa@B09-1990) C language
preprocessor which is invoked as the first pass of any C compilation using
cc808§1) command. Itpurpose is to processclude files, conditional
compilation instructions, and macros. Thus the outpepp8086is designed
to be in a form acceptable as input to the next pass of the C compiler. The
preferred way to invokepp8086is through thec8081) command, since the
functionality ofcpp8086may someday be moved elsewhere. Therefore, the
direct invocation o€pp8086is not recommended. See4(1) for a general
macro processor.

Thecpp8086command optionally accepts one or two file names as arguments.
The argumentiile andofile are respectively the input and output for the
preprocessor. ibfile is not supplied it defaults to standard output.

The following options tapp8086are recognized:
-P

Preprocess the input without producing the line control information used by
the next pass of the C compiler.

-C

By default,cpp8086strips C-style comments. If th€ option is specified, all
comments (except thoseund oncpp8086&directive lines) are passed along.

-U name

Remove any initial definition afame wherenameis a symbol defined by-®
option regardless of the order of the options.

-D name
-D name=def

Definenameas if by a# definedirective. If no=defis given,nameis defined as
1. The-D option has lower precedence than tbeption. That is, if the same
name is used in both-b) option and aD option, the name is undefined
regardless of the order of the options.

387

Chapter 17: On-line Manual Pages

cpp8086(1)

-1 dir Adddir to the directory search list féirinclude files whose names do
not begin with/. Thus# include files whose names are enclosed|ih are
searched for first in the directory of the file containing#heclude line, then
in directories named il options in left-to-right order. Faf include files
whose names are enclosedin , the directory of the file containing the

include line is not searched. However, all directories specified with
options will still be searched.

To access the standard header files shipped with the C compiler, add the
directory/usr/hp64000/include/808@® the search list via this option.

-9

Causegpp8086to generate file date and column position information. File

date information is appended to the line and file synchronization information
which is normally generated indicating the last modified date of the source and
include files. Column position synchronization information is provided
whenever macro substitution takes place. The line thisis a line’, where is’is a
macro defined to be was’, would generate the output this® Awas” Bis® C a
line’. The three control characters are used to delimit the new and old strings.
Consumers of the output can use this information to determine actual source
file column positions. The original characters reflect the state of the input line
after trigraphs are substituted, continuation lines are catenated, and comments
are removed. Use of these constructs preceding functional code on a line
makes the column information inaccurate. UseCodivoids this problem for
comments.

-w
Preventpp8086from generating warnings.

Five special names are und@esd bycpp8086 They can be used anywhere
(including in macros) just as any other defined name.

LINE is defined as the current line number (as a decimal integer) as known by
cpp8086

FILE is defined as the current fileame (as a C string) as known dpp8086
DATE is defined as the current date (as a C string) of the form "Mmygystti
TIME is defined as the current time (as a C string) of the form "hh:mm:ss".

STDC is defined as 1 indicating an ANSI standard C compiler.

388

Chapter 17: On-line Manual Pages
cpp8086(1)

All cpp8086adirectives start with lines begun #y Any number of blanks and
tabs are allowed before and after theThe directives are:

define "name"""token-string Replace subsequent instances afamewith
token-string (token-stringmay be null).

definenam¢ arg, ...,arg) token-stringNotice that there can be no space
betweemameand the(. Replace subsequent instancesarhe(arg...,arg) by
token-stringwhere each occurrence ofam in thetoken-strings replaced by
the corresponding set of tokens in thenooa-separated list. When a macro
with arguments is expanded, the arguments are placed into the expanded
token-stringafter they have been recursively macro substituted. After the
entiretoken-stringhas been expanderhp8086re-starts its scan for names to
expand at the beginning of the newly creatdden-stringAny name which was
expanded in a nested macro invocation is not available for expansion until the
end of the parent macro.

The # operator in the replacement token-string is a "stringization" unary
operator causing the parameter name following it to become a C string literal
containing the substituted argument. For example:

define stringize(a) # a
stringize(This will be a "string".\n)

becomes:
"This will be \"string\".\n"

The # # operator in the replacement token-string is a concatenation operator
which allows the user to substitute for a portion of an identifier, operator, or
other token by placing the # # between the parameter and the remainder of
the token. First the parameter is substituted and then the ## and any white
space surrounding it are removed. For example:

define f(X) var ## X
f(3)

results in:
var3

undef "name"
Cause the definition afame(if any) to be forgotten from now on.

389

Chapter 17: On-line Manual Pages
cpp8086(1)

include "filename”

include <filename>

include token-string

Include at this point the contentsfiéname(which is then run through

cpp808§. If the# include doesn't match one of the first two forms then the
token-strings macro substituted and retried to see if it matches one of the first
two forms. See thd option above for more detail.

line integer-constant "filename"

Causegpp8086to generate line control information for the next pass of the C
compiler. Integer-constanis the line number of the next line afidnameis

the file where it comes from. ffilename"is not given, the current fileame is
unchanged.

endif
Ends a section of lines begun by a test directivié, ¢ ifdef, or# ifndef). Each
test directive must have a matchihgndif.

ifdef "name"

The lines following will appear in the output if and onlp&@mehas been the
subject of a previous definewithout being the subject of an intervening

undef

ifndef "name"

The lines following willnotappear in the output if and onlyniimehas been
the subject of a previodsdefinewithout being the subject of an intervening
undef

if "constant-expression"

Lines following will appear in the output if and only if thenstant-expression
evaluates to non-zero. All binary nossggnment C operators, tRe
operator, the unary!, and~ operators are all legal Tonstant-expression
The precedence of the operators is the same as defined by the C language.
There is also a unary operatafined, which can be used in
constant-expressioim these two formgefined (name) or definedname This
allows the utility of# ifdef and# ifndef in a# if directive. Onlythese
operators, integer constants, and names which are knogpp8§86should
be used irconstant-expressionin particular, theizeofoperator is not
available.

elif "constant-expression”

Any number of# elif directives can occur between one of the test directives
and the matching endif. If none of the preceding test#elif directives have
been true and thimnstant-expressioavaluates to true then the following

390

FILES
AUTHOR
SEE ALSO

DIAGNOSTICS

NOTES

Chapter 17: On-line Manual Pages
cpp8086(1)

lines will appear in the output. Tlwenstant-expressiois evaluated the same
as in thet if directive.

else

Can occur after a test directive and any interve#ielf directives and before
the matchingt endif directive. If none of the preceding tests have been true
then the following lines will appear in the output.

All lines with the# pragma directive are passed unchanged to the output
except for removal of leading whitespace.

error "token-string"

Write a diagnostic message to stderr. The preprocesbcomtinue
processing after this directive is eoentered, buec8086will not continue the
compilation process. Theerror directive is useful for debuggirgif and

ifdef directives.

The test directives and the possiflelif and# elsedirectives can be nested.
Thecpp8086command spports mmes up t@55 characters in length.

/usr/hp64000/include/8086 directory for stand#iidclude files.
Thecpp8086command was developed by the Hewlett-Packard Company.

€c8086(1), m4(1)

B. W. Kernighan and D. M. Ritchi&he C Programming Languaggecond
Edition, Prentice-Hall, 1988

HP 8086/186 C Cross Compiler User's Guitewlett-Packard, 1995

The error messages produceccpp8086are intended to be self-explanatory.
The line number and filename where thieoe occurred are printed along with
the diagnostic.

When new-line characters amuhd in argumenlists for macros to be
expanded, the current versionapp8086replaces these new-lines with blanks.

391

Chapter 17: On-line Manual Pages
clst8086 (1)

clst8086 (1)

NAME clst8086 - Listing generator for the 8086 C cross compiler
SYNOPSIS /usr/hp64000/lib/clst8084 options] outputfile
DESCRIPTION Theclst8086program is thdisting generator of the C cross-compiler for the

Intel 8086 micoprocessor. It generatedigting in outputfile(stdout if -0
present) from the assembly sourcdisting file read fromstdin. The lister’s
ability to include C surce file lines is driven b¥file, ?line, and "*LINE*"
directives in the assembly code. The preferred way to ineisk&086is
through thecc80861) command, since the functionality may someday be
moved elsewhere. Therefore, the uselsiB086other than in this framework
is not suggested.

The default listingoroduced contains C source lines with line numbers and
interleaved assembly code (except special ?directives] smow). C include

files are not expanded, and no cross reference is listed. The contents of listings
generated vary with the following options:

The first two options support optionsafB08§1).

-i

Add C source included vi#include C pre-processor directives.

-X

Add cross reference of symbols in C source and any expanded include files.

The following remaining options are not directly usedt808§1), but may
be used vi@c808§1)'s -W option or by invoking the lister directly.

-a

Delete assembly source lines gsibly with associateprogram counter and
object code values).

-C

Suppress the C source lines. This results in, essentially, an asskstibigior
source file.

392

Chapter 17: On-line Manual Pages
clst8086 (1)

-d

Do not omit assembly source lines containing "?pseudo-operations".

-H header

Causeheaderto be used as the first line generated on each page of the listing.

-0

Override the output file specified and write the listingtiout This may be
used, viaW, to causec808§1) to producdistings tostdout

-t

Surround C source st&nents with HP terminal "inverse video on" (i.e. esc &

d B) and "inverse video off' (i.e. esc & d @) escape sequences for convenient
terminal viewing. This is particularly handy when viewing lister output with
themorg1l) command; it is not too handy when viewlisger output with the
vi(1) command.

Note that options other than the above are not recognized and cause a
warning message to be writtengualerr.

AUTHOR Clst8086was developed by the Hewlett-Packard Company.

SEE ALSO as86(1), cc8086(1)
HP 8086/186 C Cross Compiler User's Guitiewlett-Packard, 1995

393

Chapter 17: On-line Manual Pages
clst8086 (1)

394

Index

* (indirection operator)
Seepointers, dereferencing
80186 sipport,43, 142
8087
Sedfloating point coprocessor
_error_msg319

abort (standard C function}45
abs (math library function},57
access

Seesegment relative access
accessing on-line comand descriptions, note a3
acos (math library function16-217
ADD_F32A addition routine297
ADD_F32B additionroutine,298
ADD_F32C addition routine298
ADD_F64A addition routine295
ADD_F64B additionroutine,296
ADD_F64C addition routine296
ALIAS pragma,71

Seethe on-line man page
alignment considerations, internal dat4;-66
ANSI standard46-52

embedded assembly languag@,
ar86 librarian45
arguments

optional,228-229
arithmetic data types, internal data representatidn57
array

of pointers to function®67
arrays

alignment 64, 66

initializing with strings 60

internal data representatiosg
as86 assembledb
asin (math library function16-217

395

Index

__asm () function97, 102
ASM pragma93
assembler (as86) and C compilatidh,
assembly languagé7-104
in the C source file92-104
memory model independent cod®3
symbol name£9-71
with small model102
assembly preprocessdig
assert (support library function)58
assert.h, include file,46
assignment compatiiiy, 46
between pointer and integed§
between pointer and pointed§
atan, atan2 (math library functior®16-217
atexit (support library function,59
atof (support library function23
atoi, atol (support library function224-225
auto variables]2
auto, storage class specifiéd,1
AXLS (Advanced Cross Language Syste89;52

behavior of exit and _exit when using cr2B5
behavior of math library function829

binary search, bsearch routiri$0-161

bit fields, internal data representati®?,

branch shortening (peephole optimizatiot)¢, 118
bsearch (standard library functiong0-161
buffering of output stream&99

bufsiz, macro defining 1/0 buffer siz242

bus width 338

C compilation overviewd9-52
C compiler (ccom8086)
Seethe on-line man pages
C compiler (ccom8086L, ccom80868%
C language
ANSI extensions46-52
translation limits51
C preprocessor (c/3086),44

396

Index

C/64000 comparison
general options338-341
processor specific option342-343
calling conventions (stackdme managementj2-86
calling libraries
Sedibraries
calloc (support library function},87-188
casts46, 160, 175, 202
cc8086
option summary-5
cc8086 (compilation contrabutine),44
See alsdhe on-line man pages
ccom8086 C compiled4
ceil (math library function)168
character data typesy
characters, multi-byte,85
checking for memory model mismat&Q-91
_clear_fp_status (math library functiod),1-174
clear_screen (env. dependent library functi@4g
clearerr (standard I/O library functior)5
close (environment-dependent library functiazg4
clst8086 listerd5
coalescing (optimization),11
CODE class namd27
commandline options369
compact memory model24-126
compilation control routine (8086),44
compilation control routine (8086, cc80186%4
compiler featuresy
compiler generated assembly co@é;-104
compiler generated symbol&l
config.EA, emulator configuration fil@36
configuration files for HP emulator236
const type modifier50
const, default constant segment nafr#y,
constant folding (optimization},07
constants
string,60
constants, multi-charactes?
constants, strind,11
constants, where to loati33

397

Index

cos (math library function16-217
cosh (math library functionp18
cpp8086 C prprocessor44
crtO program setup routin235
crt0.o file,16
crtl program setup routin235
behavior of exit and _exit when usir&p5
ctype.h, include file146

??DATA segment133
data bus width338
data motion optimization418
data types
arithmetic,54-57
character57
derived,58-63
floating-point,54
integral,54
volatile modifier,136-137
data, default data segment nah27
data_const103
debug code, maintaining despite optimizatibth
debug directives]2
debug error messages (run-tim2j9
DEC_F32 subtraction routind803
DEC_F64 subtraction routindQ1
default linker command file, iolinkcom.R36
default modes of operation in the 8087 and 8086 librati&s,
default PROG names, small and large memory mdael,
denormal numbeg79
denormalized operand, trap di7,3
dependencies, execution environmeif,
dereferencing
Seepointers, dereferencing
dereferencing, definition 090
derived data types, internal data representa&iBng3
diagnostics, assert maciih8
display_message (display run-time error messagas),
div (math library function)162
DIV_F32A division routine 308
DIV_F32B divisionroutine,309
DIV_F32C division routine309

398

Index

DIV_F64A division routine307
DIV_F64B divisionroutine,307
DIV_F64C division routine308
DIV _132A division routine 316
DIV _132B divisionroutine,316
div_t type (defined in stdlib.h}1,47
DIV_UI32A division routine 315
DIV_UI32B divisionroutine,315
divide by zero, trapping 01,72
double data type, examples 66
double-precision (IEEE) floating-point form&
DS pragmal3l

dynamic allocation241

embedded assembly language

in C source92-104

memory model independerit)3

small model102
embedded systems consideratidiis],
emulator configuration file236
END_ASM pragma93
enumeration types, internal data representai@n,
env, segment name of enmhment-dependent routine34
env.a, environment-dependent libra2g2
environment35
environment-dependent libraries, modifyi38-35
environment-dependent routind§, 122, 145, 233-264
EQUAL_F32 comparison routingl1
EQUAL_F64 comparison routin8,10
errno (support library function}46, 192
errors

compile-time 265-276

multiple declarationsl27

run-time,277-282
escape sequencé&s
example

callingrun-time and support librarie25

using large memory model2
examples, alignmen€6
exceptions history, loss 6f9
exec_cmd (env. dependent library functio2)5-246

399

Index

execution environmen8b
See alsdibraries
execution environment dependenci,
execution environment$22
exit and _exit, how crtl affects behavi@aBs, 247
exit, _exit (env. dependent library functio@}7
exp (math library function}163
exponent field55
expressions
constant folding acrossp8
in a logical context (optimization),10
simplification (optimization)108
extended character séf
extensions (ANSI) to G46-52
extensions, file namé,
extern definitions129
external declarationdy, 70
placement 0f134-135
static,131
warning about275
warning about NEAR call&75
external declarations, segment name ch&2k,
external definitions130
external identifiers
length of51
external referencedp

F32_TO_F64 conversioroutine,286
F32_TO_116 conversioroutine,294
F32_TO_132 conversioroutine,293
F32_TO_UI16 conversioroutine,292
F32_TO_UI32 conversioroutine,291
F64 TO_F32 conversioroutine,286
F64 _TO_116 conversioroutine,290
F64_TO 132 conversioroutine,289
F64 _TO_UI16 conversioroutine,288
F64 _TO_UI32 conversioroutine,287
fabs (math library function),68

FAR functions 125

FAULT_I16 fault routine 324
FAULT_I32 fault routine 323
FAULT_I8 fault routine 325

400

Index

FAULT_PTR fault routine319
FAULT _UI16 fault routine 321
FAULT _UI32 fault routine 320
FAULT_UI8 fault routine 322
fclose (standard I/O library functior)64
features of the compileiy
ferror, feof (standard I/O library functior)65
fflush (standard 1/O library functionl64
fgetc (standard I/O library function}77
fgetpos (standard 1/O library functior)66-167
fgets (standard I/O library function)78
fields in floating-point data typeS4
file extensionst
file names
extensionst
file output,199
files
emulator configuratior36
include (header)142, 146
library, 142
linker command236
program setup routines (crt0, crt2B5
float data type, examples &5
float.h, include file 146
floating point coprocessot,/1-174
floating point coprocessoB8087),56, 79, 142, 279
control word, 173
precision of real number operatioBs$,
registersg9
floating-point data type&4
floating-point error functions,46
floating-point error messages (run-tim2y8
floating-point formats (single- and double-precisidsh,
floor (math library function)168
fmod (math library function)168
fopen (standard 1/O library functiond69-170
fopen_max macro (max. number of I/O control block4p,
fp_control.h, include filel46, 171
_fp_error (math library function,71-174
fprintf (standard I/O library function},94-198
fputc (standard I/O library function}99—-200

401

Index

fputs (standard 1/O library function201
fraction field,55
frame pointer, offset of parameters,
frame pointer, stack frame managemé&igt,
fread (standard I/O library function75
free (support library function),87-188
frem (math library function)168
freopen (standard I/O library functiorf)g9-170
frexp (support library function),76
fscanf,205-209
fseek (standard 1/O library functior)66—167
fsetpos (standard 1/O library functiorip6-167
ftell (standard I/O library function),66—167
function entry and exit118
function prototypes

example47

how to use47

parameter pssing exampleg0
FUNCTION_ENTRY pragma99
FUNCTION_EXIT pragma99
FUNCTION_RETURN pragmé&9
functions

array of pointers ta267

calls,72

data passin@8

exit, 85

FAR calls,125

implementing as interrupt routinel39

prolog,79

results 85

return value on stack8
fwrite (standard 1/O library function},75

generate code for 8087 (oonand line option)
precision of operation§6, 173
precision of real number operatioBs,
register usage37—89

generate debug code (command line op}tj115

generate run-time error checkirég)

generic pointers}9

_get_fp_control (math library functiomd71-174

_get_fp_status (math library functior){1-174

402

getc, getchar (standard /O library functiohy/

getenv (standard C functior45

_getmem (env. dependent library fuoet), 241
rewriting, 241

getmem (env. dependent library furoet), 248249

gets (standard 1/O library functior)78

getting startedl-36

groups125

GRP macro103

header files146
memory.h 248, 260
simio.h,242
hex escape sequencés,
hooks for execution environmers
HP-UX commands?

I/0, eliminating,140
116_TO_F32 conversioroutine,294
116_TO_F64 conversioroutine,290
I32_TO_F32 conversioroutine,293
I32_TO_F64 conversioroutine,289
INC_F32 addition routine299
INC_F64 addition routineg97
include files,130, 146
conflict with SECTION pragmél,30
memory.h 248, 260
simio.h,242
inexact result, trapping ody2
infinity, controlling 8087 behaviol,73
??INIT segment clas$33
_init_fp (support library function fo8087),172
initdata,133
initializing arrays60
initsimio (env. dependent library functior2s0
input and output242
installation,7
integers, assignment compality, 46
integral data type$4, 146
internal data representatids3—66
INTERRUPT pragmal39
See alspragmas

Index

403

Index

interrupt routines

implementing functions a&39

stack models354
interrupt routines and th&087,79
ioconfig.EA, emulator configuration fil236
iolinkcom.k

default linker command fil&236
isalnum (support library function},79-180
isalpha (support library function}79-180
iscntrl (support library function),79-180
isdigit (support library function}179-180
isgraph (support library function}79-180
islower (support library function)179-180
isprint (support library function),79-180
ispunct (support library function),79-180
isspace (spport library function)179-180
isupper (support library function}79-180
isxdigit (support library function179-180

jmp_buf type (defined in setjmp.h)46
jump shortening
Seebranch shortening

kill (environment-dependent library functior2g1

|_tmpnam, standard C definitioh45
labs (math library function},57
large and small memory mismatch, link tir86-91
large memory model,24-126
Seememory model
segment name defaults}7
1d86 linker/loader46
Idexp (support library function)},76
Idiv (math library function)162
Idiv_t type (defined in stdlib.hY,47
LESS_EQ_F32 comparisooutine,313
LESS EQ_F64 comparisagoutine,312
LESS_F32 comparisomoutine,312
LESS F64 comparisoroutine,311
librarian, C compilation overview5

404

Index

libraries,141-232
callingrun-time and supporg5
default modes of operation in the 8087 and 8238,
environment-dependent library file®}
environment-dependent segment nag84,
list of allroutines, 148
math,56
nonreentrant routine$38
purpose of environment librarie3s
routine rames144
run-time,56, 144
support,145
support routines not providet45
limits, translationb1
limits.h, include file 146
linkcom.k, linker command filéno 1/0),236
linker (Id86) and C compilatio6
linker command file (default), iolinkcom.R36
lister (clst8086)45
listing generatedl 2, 17, 19, 22
literals, string,111
loading constants, where to lod®3
local variables, how the compiler allocates stack spac&8&or,
locale.h, include file146
localeconv (support library function)}81-185
locals, howthe compiler accesses,
log, log1l0 (math library function),86
longjmp (support library function12-213
loop construct optimizatiori,10
loss of precision, trapping oh72
Iseek (environment-dependent library functioc2§2—253

macros
embedding assembly languae?2
make utility,33—-34
makefiles, using with cc80880—-32
malloc (support library function),87-188
man, on-line coomand description86, 369
map memory mode238
mass storage initialization of RAM datk82

405

Index

math library145
behavior of functions329
descriptions156
math.h, include file146
MB_CUR_MAX macro,185
mblen (support library function},89-190
mbstowcs (support library function)89-190
mbtowc (support library function},89-190
memchr (spport library function)191
memcmp (apport library function)191
memcpy (apport library function)191
memmove (spport library function)191
memory access (forced by volatilé36-137
memory model34
discussion of124-126
example using large memory modg2,
independent assembly cod®3
library dependenciedd?2, 284
map,238
mismatch checkin0-91, 142
segment name defaultl7
selection11-27
small, 16, 19, 22
stack usage3s4
memory.h, include file248, 260
memset (gpport library function)191
"mixing extern declaration ..." warningy5
MOD_I132A modulo routine318
MOD_132B moduloroutine,318
MOD_UI32A modulo routine317
MOD_UI32B moduloroutine,317
modes of operation in the 8087 and 8086 libraries, defhrat,
modf (support library function),76
mon_stub.o file33
MUL_F32A multiplication routine305
MUL_F32B multiplicationroutine,306
MUL_F32C multiplication routine306
MUL_F64A multiplication routine304
MUL_F64B multiplicationroutine,304
MUL_F64C multiplication routine305
MUL_I132A multiplication routine 314

406

Index

MUL_132B multiplicationroutine,314

multi-byte character4,85

multi-character constantsy

multiple symbol declarations, segment name ch&2k,

names
Seesymbol names

NaN,55

near stack modeB54

nil pointers
Seenull pointers

no initialized RAM datal31

nonreentrant library routine$38

normalized numberg5

Not a Number (NaN)35

note on
accessing on-line comand description86

notes
changing string constan®), 112
environment-dependent library functiod$6
nested SEGMENT-SEGMENT UNDO paits30
universal optimizations exampld€6

NPX
Sedfloating point coprocessor

NULL character
in initialized arraysg0
in strings,60

null pointers90, 279

on-line caonmand descriptions (HP-UX man commarg,
open (environment-dependent library functia2§4—-256
operand error, trapping oh72
operating modes in the 8087 and 8086 libraries, defardt,
operating system comman@s,
operation simplification (optimization),09
opt8086 pephole optimizer44
optimizations105-120

automatic allocation of register variablégl

constant foldingl07

expression simplificatiorl,08

expressions in a logical context,0

function entry and exit118

407

Index

optimizations (cont)
loop construct110
maintaining debug code durintl5
operation simplification109
switch statement,11

those activated with the command line optibi4—120

time vs. spacel 15
universal (always performed)06-113
See alspeephole optimizations
option summary-5
options, detailed descriptiorn369
order of evaluation, maintaining08
overflow, trapping on172
overview of C compilation39-52

padding
internal data representatiosy
structuresgl
parameters]2
how the compiler access&$,
passing of (stack #fme managementjy
shortening of80
widening of,47, 65, 77
parenthese4,08
peephole optimization4,16-118
branch shortenind,16
branch shortening/simplification optimizatioi4,8
data motion optimization4,18
effect of volatile data orl,18
redundant jump eliminatior, 17
redundant register load eliminatioli,7
strength reductior, 17
tail merging,116
unreachable code eliminatiohl 7
peephole optimizer (0p086),44
perror (standard 1/O library function)92
pointers
assignment compatikty, 46
dereferencing0, 271
subtraction125
void, 46
pos_cursor (env. dependent library functidi§?

408

Index

pow (math library function)193
pragmaslé, 19, 22, 48
ALIAS, 71
ASM and END_ASM93
DS,103, 131
FUNCTION_ENTRY,99
FUNCTION_EXIT,99
FUNCTION_RETURNJ99
INTERRUPT,102, 139
See alsmames of specific pragmas
SEGMENT,103, 128, 131
Seethe on-line man pages
precision of real number operatios$, 173, 279
prefixes for assembly language symb68&;71
preprocessor
C,44
assembly45
C,102
preprocessor directives
Seepragmas
printf (standard 1/O library function},94-198
prog, default small model PROGme, 127
prog_baseame, default large model PROG nanies,
program setup routine®35
differences between crtO and cr2B5
linking the,236
PROM progamming,338
prototypes
Seefunction prototypes
ptrdiff_t type (defined in stddef.hl47
putc, putchar (standard I/O library functiot9—200
puts (standard I/O library functiord01

gsort (support library function02

RAM and ROM consideration$31-133

RAM and ROM for Small Memory Model,33

RAM data initialized from mass storadge32

RAM data initialized from ROM133

RAM data, no initialization131

rand (support library function03

read (environment-dependent library functia2§8-259

409

Index

real number operations, precision ®, 173
realloc (support library function},87-188
redeclaration of extern as stat2@5
redundant jump elimination (peephole optimizatidii)7
redundant register load elim. (peephole optimizatiahy,
reentrant codel38
functions returning structuresy
register usage37—89
buffering(8087 registersy9
register variables
automatic allocation (optimization}11
buffering (SI),79
reserved register89
register, storage class specifigt,l
relocatable segments27-130
remove (support library function2p4
rename (standard C funeti), 145
reseting the 80879
return valuesy7
rewind (standard 1/O library function}66—-167
ROM and RAM for Small Memory Model,33
rounding, and th&087,173
run-time error checking, generating code 0,
run-time libraries
Sedibraries
run-time library,144
See alsdibraries
precision of real number operatioBs,

S sbrk (environment-dependent library functio2$p
sbrk, operating system library functidzdl
scanf (standard I/O library functior§05-209
scope
assembler namin@0

segment name$27-130
changing default]31
defaults for large memory modéaR7
defaults for memory model$27
defaults for small memory moddl28
environment-dependent routines (er234
external datal27
multiple declarations of the same symiddly

410

Index

SEGMENT pragmalb, 19, 22, 128
segment relative acced®
SEGMENT-SEGMENT UNDO pairs, note on nest&80
_set_fp_control (math library function)71-174
setbuf, setvbuf (standard 1/O library functio@)0-211
setjmp (support library function212-213
setjmp.h, include file146
setlocale (support library functior14-215
shortening of pameters80
side effects102, 112
sign bit field,54
signal.h, standard include fil&45
signed integral data types}
simio.h, include file242
simple example program, coilipg and executing®
sin (math library function)216-217
single-precision (IEEE) floating-point formd5
sinh (math library function218
size_t type (defined in stddef.H¥47
small and large memory model mismatch, link ti®@;91
small memory model,24-126
and assembly languadE)2
Seememory model
RAM and ROM,133
segment name default?8
sprintf (standard 1/O library function}94-198
sgrt (math library function®19
srand (support library function203
sscanf (standard 1/O library functior2Q5
stack frame managemet—86
stack models354
stack pointer, 808 B9
standards
SeeANSI standard
startup error messages (run-timag1
startup, library routine called by crt235
static variables/0
accidental redeclaratio@y5
const,50
initialized arrays60
stdarg.h, include filel46

411

Index

stddef.h, include file147
stdin, stdout, stderr strean285
stdio.h

definitions and functions not providet45

include file,147
stdlib.h

functions not supported45

include file,147
strcat (support library function220-222
strchr (support library function20-222
stremp (support library function220-222
strcoll (support library function20-222
strepy (support library function20-222
strespn (support library functiond20-222
streams

buffered binary 1/0 tol175

closing and flushindl 64

EOF,200

failure to close211

file buffering,210

formatted print to194

formatted read fron205

opening,169

print string to201

printing character ta,99

push character back27

reading character&y7

standard error199

status inquiriesl 65
strength reduction (peephole optimizatioh)y
strerror (support library function220-222
string.h, include file147
strings

and character pointerk]2

coalescing (optimization},11

constantp0

constants, optimizatioi11

definition, 60

escape sequencé&s)

initializing an arrayg0

412

Index

strings (cont)

literals,129

literals in CONST segment27

printing to a stringl94, 230-232

side effects112
strip symbol table information optiom2
strlen (support library function20-222
strncat (support library function220-222
strncmp (support library function220-222
strncpy (support library function220-222
strpbrk (support library function20-222
strrchr (support library function20-222
strspn (support library function220-222
strstr (support library function20-222
strtod (support library function223
strtok (support library function20-222
strtol, strtoul (support library function224-225
structure resultg2, 77
structures

internal data representatios,

size of,61
strxfrm (support library function),89-190
SUB_F32A subtraction routin8p2
SUB_F32B subtractionoutine,302
SUB_F32C subtraction routing)3
SUB_F64A subtraction routin8p0
SUB_F64B subtractionoutine,300
SUB_F64C subtraction routing)1
summary of c8086 options4—-5
support libraries

Sedibraries
support library145

descriptions156

routines not provided,45
switch statement optimizatioall
symbol hames

assembly languagé9-71

parameters{9

situations where C symbols are modifi&Q,
system (standard C functiori45
systemio, environment dependent I/O functi@42

413

Index

T table
binary search routind,60-161
character classification,79
sort routine202
tail merging (peephole optimizatiorf)16
tan (math library function16-217
tanh (math library function18
temporary storage, use of the st
time vs. space optimizatiof15
time.h, standard include fil&45
tmp_max, standard C definitioh45
tmpfile (standard C function}45
tmpnam (standard C functiorf)45
tolower, _tolower (support library functiorf26
toupper, _toupper (support library functiog26
translation limitsb1
traps,172
types
Seedata types

U UDATA SEGMENT,275
Ul1l6_TO_F32 conversioroutine,292
Ul1l6_TO_F64 conversioroutine,288
UI32_TO_F32 conversioroutine,291
UI32_TO_F64 conversioroutine,287
unary plus (+) operatoi08
underflow, trapping ol 72
undo, form of the segment pragnma&p
ungetc (standard 1/O library functior®27
uninitialized data option,32
unions
internal data representatio§
size of,58
unlink (environment-dependent library functio@$1-262
unreachable code elimination (peephole optimizatibhy,
user-defined option (C/64000 onlg42

V va_arg, va_end, and va_start macfas§
va_list,228-229
va_list type (defined in stdarg.H)}46
variable argument list228-229

414

Index

variable names/0
symbol name£9-71
vector address, functions as interrupt routiigs,
void type,49
assignment compatiliy of pointers,47
volatile type modifier49, 136-137
effect on peephole optimizatiorisl 8
vprintf, viprintf, vsprintf (std. /O library function30-232

warnings, compile-time274
uninitialized datal132
wchar_t type (defined in stddef.ly7, 147
westombs (support library functior89-190
wctomb (support library function},89-190
white spacel02
wide characterg7
widening of parameterd,, 77, 80
write (environment-dependent library functio@$3—-264

415

Index

416

Certification and W arranty

Certification

Hewlett-Packard Company certifies that this product met it§ighed
specifications at the time of shipment from the factory. Hewlett-Packard
further certifies that its calibration measurements are traceable to the United
States National Bureau of Standards, to the extent allowed by the Bureau'’s
calibration facility, and to the calibration facilities of other International
Standards Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in materials
and workmanship for a period of 90 days from date of installation. During the
warranty period, HP will, at its option, either repair or repfaeaducts which

prove to be defective.

Warranty service of this producilibe performed at Buyer’s facility at no
charge within HP service travel areas. Outside HP service travel areas,
warranty service will be performed at Buyer’s facility onpyon HP’s prior
agreement and Buyer shall pay HRIsind trip travel expenses. In all other
cases, products must be returned to a servidéyatesignated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping
charges to HP and HP shall pay shipping charges to return the product to
Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for
products returned to HP from another country. HP warrants that its software
and firmware designated by HP for use with an instrument will execute its
programming insructions when properly installed on that instrument. HP
does not warrant that the operation of the instrument, or software, or
firmware will be uninterupted or error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,

unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fithess for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other custssistance agements
are available for Hewlett-Packard products.

For any assistance, contaouy nearest Hewlett-Packard Sales and Service
Office.

	Features
	Contents
	Quick Start Guide
	Getting Started

	Compiler Reference
	C Compilation Overview
	Internal Data Representation
	Compiler Generated Assembly Code
	Optimizations
	Embedded Systems Considerations
	Libraries
	Environment-Dependent Routines
	Compile-Time Errors
	Run-Time Errors
	Run-Time Routines
	Behavior of Math Library Functions
	Comparison to C/64000
	ASCII Character Set
	Stack Models
	About this Version
	On-line Manual Pages

	Index
	Certification and Warranty

