Product Identification

Product Naue: MODCAL

Product Mnemonic: MODCAL

Project Number: 6651-0064

Project Engineers:: Steve Saunders
,.Chns Maitz
Ron Smith .
Jon Henderson

Project Manager: ‘Jean Danver .

Product Manager: Ann Tse |

Product Assurance Engineer: Ray Ling
Product Abstract:

MODCAL is: the systems programming language for- ‘the Vision- Computer
Family (VCF).:. It is based on-HP. S&andard Paseal. Features have been added
tb ena'bié hzgh level sy,s;;:_ems program:mg . 'MODCAL mll be :melemented on

Table of Contents

Version 6.3 ChangeS....coevecsssscsesssscossosecsssssssossssssssscssssssasl
Version 6.1 ChangeS.....ceeeescessossssscsscsssssssssossssssscasssasssesssl
Version 6.0 ChangesS...ccoeeersssscesssssoocesssssscssossossncosccssessessssd
Version 5.0 ChangesS. .ccecsvecesssscscscssncscssssssssscncscsasssssssssscssl
TNETOAUCEION . ¢ o v s veeessasasseasesasessasasssscsssssssassocsssnsscsssessnsold
Notation...... ceeecesesanas ceceresesesses PP -3
A. HP MODCAL Standardized and Required Featurescccceeeeeceensce?

1. HP Standard Pascal....ccseeeeerscccsasssoscssnscsssssacnncossovoocsl

2, MOGULES.esoseeeoaneecosocasossosssssssssasosascsosssssssscancncsd

a. Programs and MoQULeS.....ceeeeesescescesasscssoascssscsssascoesd

D. PrOIaMS...ccceueesrasecosoronscsssssssssscsasssssssssssssssee

c. The Program BloCK....c.cceoeeeoccctcstcocoiosssssssssssssseeasesll

Q. MOAULES. e cveeevesasosessssscsassnsassssssssssnsssoscsosscsooseseoll

e. Libraries NOT IMPLEMENTED .::coseecesscosssccosccccsccccescld

3. Try Recover Statement.....cceeceecsssccssccscasssssscacscssesssslbh

a. Try Recover StIrUCtUr@....ceeeereereeccecescasssnnsccssonsasnsslb

b. Try Recover SemantiCS.....cceeveveceseocssceccscossssascasssslb

C. Escape(i).eeeeeireiitseecoeeocanennceocssosecscsosnsnansnseasd]

d. Escapecode: integer.....cveeeeeecrccccsccosssscvcsssosescssssd?

e. Error Code Assignment........c.ccc0een ciesecessescasessanasne .17

f. EXamMPle..coecscocseacrotoasasocssasscscasssasasscssesssessesell
4, Type COGTrCiON..ceesreeeerrosassonssssssssesasssssssssscsssssssssld

a. Syntax/Semantics....ccvetiercetirccrtccscssscrcesraecrscsesssl

b. Compatibility Levels....coceceveencocecsrccccossescosascesesssly

C. EXampPle..vcoeeeerocrcccecsososcssassoosssrssssasssesssscsesssssll

5. Type Transfer function ReOrdcccccevcrccecrccnsosccnsesess23

6. Procedural/Functional VariableS......cceeeeeessoscosccescesssess2l
‘a. Procedural VariableS....ceececeesccsrccssssascconscnnnnsessss2l

1. Type Procedure. ... ceesesssscscsessascesssssnsssosnnnosess2l

2. CB11 +vvereerscacnesoasaccsoscasessssacsscssosscscassecsss 2l

3. Procedural Type Operations Model.......ccvceeeeccccscesess25

b, EXADPLe..ccoesernccsssscosessassssssssasassssscsssasnssessld

b. Functional VariableS.....ceeeeeececseccococsssvoossossssnssss2

1. Type Function....... cetececienieenans Ceceesteecnns tecenenns 26

2. FCALL «cvvveecenoosasseaseassossssessscesssascscsssssossselb

3. Functional Type Operations Model.......ceeeevcccncccoossce]

" 7. Special Predefined FUNCtioNS.ccceeececscscsscrsssssassasscscssssel9
B. SiZEOT vvveceeeesocassossosesssaosssssssssssssssssoassoscsseseld

b. Addr Ceeearieneeneenesacenenesrtetrntesiasseseranes ee..30

B. HP MODCAL Standardized and Adaptableccecevevveencecsonsoosssall
C. HP MODCAL Standardized and NonAdaptableccccvvevecccen eeseeesl32
D. EXPerimentalccoceeeesossssssssssnssssccssssacccasscanssssssss3l
1. Read Only Parameters.....ceccesevesccarocsssscavssocasnscssscssseldl

a. Read Only Parameter Definition......ccececeeeiececococcocsees33

b. Read Only Parameter EXample.......evieeeenssesoccsceconasessa3l

2. Any Variable Parameters NOT IMPLEMENTED cecesesssnsesese3d

a. Any Variable Parameter Definition............ tesressecssecnns 35

b. Any Variable Parameter Example........ceeeeeeccecns R 1)

3. Schema Arrays NOT IMPLEMENTEDccocecececncnccs ceeeesesss38

a. Schema Array Definition............... G L«

8.

b. Formal Discriminant Part....cceeeeeeescesvosssssossssssesess 39
¢. Discriminated Schema....ceceeeeeecervosarocsssaciossscssssss B0
d. Schema Discriminants....eeeeeeeecscsvocsscccssosscasscsansasclil
€. Schema ATrray ParametersS......cceeesesacccssscssosasssscsscss i
f. Read Only ParameterS....cccetseeessscsscsccssssscsasoscssess li3
g. Discriminated Schema ACCESS...evveecreeoscassonssnsccacssnsssld3

h Exampleotogoonoo'ooooo...ooooooconoco.noc.-ooooooooo.ocnoo-oohs

ODJECtS . e v eeereanoceessosscsonnssossnsassassssssscssnasssassnss B
a. Introduction...cceecececeaccnscs teeeeseececcecssoeessascsseas B
b. Syntax AQditionS....cceveescscerscossssssssssssscssssssscases sl
c. Object/Offset Model.....ceveeeeeceocscncsoacecscscsseasesnesadl
d. Semantic Definition..ccieerivecersorrecccccsccsccsccssaccssesed
e. Object Manipulation...ceeeeeceeossscsossssssossssnsssaseesessl
f. Pointer Arithmetic..ccvceerersaccesssccosssscscsssassocnscscesdd

Crunch PacKing....ceeueecsscscsocccosassasssssssssssssnsennsosssdBd
Move R_to_L & Move L to_R Predefined Procedures...ccceesesssess .60
XCall MeChaniSm. ceseserooeeoeensanseocsssescceasssascsnccscasasesb3
8. BaCKEIOUNA. «eeeoeeeeeosssassssasssssascsssssssescssssssssssssb3
D. Definition..eeeeeeeseeecasessceesossansccasscassssscsscssncssbdl
c. Supporting Definitions....cciviivesiocssssssrrsrcssossensees bl
d. XCall Example (HP3000)....ccveeeeociovssssccssssssssascnssessB5
Multiple Heaps NOT IMPLEMENTED +..ccooeoncsccccnnsanncansossssbBT

E. Standardized MOQULES ...c.ceeveeccececscccacscssssscsssoscsssssonea 68

2.

a. HP3000 Foundation.....eeeeeeeeesoessccscsoscsccsscssssssssessB9
b. Vision Foundation....eeveeeeeeeseesesassscsssscscsssssascsss 69
ASSembly Language....coceteeeccoscssossasesssscasssascssnssssnceesld
a. HP3000 Predefined ProcedUresS....ccesssecsasccsciscssscnscsnesld
b. Vision Predefined ProcedureS....ceeoeecvececcsoosssseassnnssssld

Appendix A: Options and DirectivescceveeeseccncescacnnscenanassTh

1.

PROCEDURE /FUNCTION DEFINITION OPTIONS...ccccveccccsncascanasssesTh
8, OPTION INline.c.ceeeececececconssscccassossosassscssnsssscnanslDd
D. OPTION GateWay..cecvoesrsscocscsosssoscssscscsssscassssscasesld
c. OPTION Extensible Gateway.....coseeseesoascasaessssccsonessssTb
d. OPTION Interrupt_| PaIMS . e eeeeenenensnnnnassonscssnaassassaseeslDd
e. OPTION Default | PaTTS e e e vveesennnnancassassinesosnsssssassssnes D
£. OPTION UnreSolved....ceueeeeseeseensocsccosssescsssssocsosaocssll
g. OPTION Uncheckable ANYVAR NOT IMPLEMENTEDcccceeeeeesll
h. HaveExtension and HaveOptVarParm Functions......cceeeceeoceees 7

i, Definition Option EXample.....ceececocosnccscsescccccssscsesslO
'PROCEDURE /FUNCTION DIRECTIVES. ceeeveesvenssronssaccascsscassasssld

a Extemal 'EEREEEEEENEIN N IS B A BB I RN R R NS N R R R I B R 2N B R B I I T 9?5 00 0 0 00 0 79
b Fomrd ® O 9 9 9 O T O T ST O OO O OP OO LN OSSO OES P o9 00000000 . . @ 6 ® 0 0 ¢ 00 0 0O ¢ 0 79
C. INtTINSIC s eeeeescceeocessossesssssscastocssssssssssscscsssees80

. COMPILER OHIONSO‘Q..'.......Q....'0.'....'..'...000.‘..'..‘.C. 81

a. ADC Vers;on..85
D. BliZS..ecececcacescsscasasesciosasesscsncssscscsssssacsssnsnse8
Co ANSieuevenecnoeescssososssssssasesncisssisosssssasacsosssces 89
d. Assert] Halt.ooeooooeoesoosesaocnonosasssiossscsesscsssssessseBD
e. Begin_ Change NOT IMPLEMENTEDccocoveecesascsccsaasesass85
f. Call Pr1v1lege...85
g. Cha.nge Info Wldth NOT IMPLEIENTED ieee..85
h. Check Actual ParmM...coevevueenenannns\.....86
i. Check FOIMAL PaIM..:ccereeenccacnsecassccsnsssssssscssasssess86

.
J' COde 000...'0.0"00‘00.0tolOC0000"60.0'0.0!‘0.0.00.0".0000686

K. CO@ OffSetE..cseeeeeennceneccennssesassssassiosesssanseasess86
1. COPYTABRL.seeeeerereeeeseeeanaasosaanassassessssccssaaceasss 86
m. Crunch Packing NOT IMPLEMENTEDccccoeeeerencnnncnacsss 86
n. Dynanzc Side Effects Ok NOT IMPLEMENTED -.cvveeecesonveess.86

0. ElS@uurreneeeronsoeasnnaseseseecsesanssassnainsnansssassensessB6
P EndIf..87
q. End_Change - NOT IMPLEMENTEDcetoiecisevoocnccosasseaas8T
r. Exec Privilege..ccccescsicerreiieiisiiionancsseisessansscosss87
8. External...............................‘
t. Font...87
Ue GLobAL. . eeeeeeneetoneecssoseasssosscsncssoosvossivisossssesaceeBT
V. Heap COmPact...cveernasossesvrosccnscsrssscesnasossssosesnnsss8T
w. Heap] DiSPOSE. v eeeneerececacacnaasaccoseacoonsccccccnccecsessBS
e If . e eeeeeeenonocaseorossoseessossessesssnnnasscssccsssneness88
Y. Include. .coecieerecncrccececssrsososcsasassenssonsvenasssscseB8
z. Index_Checking NOT IMPLEMENTEDecivveeococceenssess 88
aa. In1tlal Exec_Probe NOT IMPLEMENTED e eeisaecsvsvacsnaees 88

abo LlneSQQQDaoooootooooo.ooooo'ooo'.o'ooh'o03&’0.0'00-s0§’.000-.88

4“090.‘0.000...0.0.087

BC. LASEuueeruruoeneoseoennconnsessnssnsonseaioneiesessincessss 88
ad. List_ COAC . v et veenrennaneesinensssesassesssasnioseeoosonsesasssB8
ae, Multlple _Heaps NOT IMPLEMENTED89
af. Object Definition NOT IMPLEMENTED .:...veesececcascnceess.89
ag. Object Selection (will be implemented)ececeee...89
ah. Open_Scope_ Checking NOT IMPLEMENTEDccveeeeeececeesss B89
ai. Option Logging NOT IMPLEMENTEDcccceveecaveccccccss.B89
aj. Page..89
ak. Partial Eval.....cccceeieeracnccnrecennaeiiifposscassascnsesa89
BL. POPueccserossonssoscssossnsssnrssnssesssssessiossssessensess89
1. Compiler Options Unaffected BY POP..ssecscsetiosescnseisess 90
am. huwnean.”.“.“.“.“.n.“.n.“.".“.n.“.”.g.ngo
an. Probe_Insertlon -NOT IMPLEMENTED:.:
ao. Probe Resolution NOT IMPLEMENTED:
ap. Push................................
1. Compiler Options Unaffected by Push.
ag. Range.....coceeeenineionennnensnnsssia
1. Compiler Options Implied by $Range ON
2. Compiler Options Implied by $Range OFF$
ar. Reference Checking (will be 1mp1emented
as. Schema_Arrays NOT IMPLEMENTED .veevoosos
at. Schema _Checking: NOT IMPLEMENTEDi%.
au. Search NOT IMPLEMENTED‘....92
BV. SEEMENT.ccvtrerrarsocsosonsoonsoseitsssessnsssossnscnssiesessD2

;o,%c.ooq_.ﬁ-.o‘oogo

o'coooo;ooo-.‘-90
o’oo-oocc-aoooogov"

-09, 0.00..0"0'.091

.;.................91
'.............s...91
Weiesssesesinesedl
RS+ |
O A * 4

roooo'oooooooio'gz

AW, Set.c.cieiieiiorernsevorrarocncrnaborsivessttaosnionscasnessad2
ax. Skip ' Text.............................“
ay. Splintr...cccciieiiiciiniainans, N S TR 1
az. Standard_ Level..cevooososeasoasssn ..g.................»...93
ba. Static_| S1de Effects Ok - NOT IMPLEMENTED ...,...............93 .
bb. Stats NOT IMPLEMENTED;
bc. Symdebug NOT IMPLEMENTED
bd. SUDPIOETaM...sveeeroosisunneonsas
be. Subrange Checking NOT IMPLEMENTED93
bf. Tables.....................93
bg. Tabulate Change Info NOT IMPLEMENTEB B - X T
bh. Tag Checking ~ (will be implemented)coeeeeivesecienes 93"

S

'...............o...ga

LX) ‘l..000'0000300000000-00093

9-4.000.00000....-0.c-.o93

vo'oootc~ooo-0000000000093

e

bi. Target_Machine., ... e..vesueaissl,
bi. Title. ssinensnensione
bk. Type Coercion... . sevseeeses .
bl. Undefined_Parm_Checking = NOT IMPLEMENM'
bm. Undefmed Var.. Checking NOT IMPLEMENTED
UslInit.."..is. Setee e eue
With. . ooevunramnassnerins i ae e g ey tialee a ..‘....9h
. e SEPRE S e9h
. .91&‘

0.0 8 60 0 0

. .‘...;....9)4
.f....._...9h

~‘0000.ooc

9)4

b'q""xref......o.... o
Append:.x B: Data Types a.xix g

2 MODCAL Data Representation.......‘.................. ,.g.,...95
“a. Location Infomat:.on.........................-‘. '
b. Nonimbedded Des criptor Infomati ;
c. Active Component: Pogition Informa
d. Valid Component ‘Count. Information.....
e. Value Blt Vectors..........
f.
Appendix

:ANSI Standard m-“ ‘
‘2:. HP ‘Standard :Paskal -
-3, HP Standard MODCAL Addrbions. e
4. BCG Experimntal MODCAL Add:.t:.ons,

;“.....‘......100:

oosoooon.‘-o.oo.oo.o.oolOO'

&ocvgovotnoo‘.o'otooooootooloc

Version 6.3 Changes

Version 6.3 of the MODCAL ERS contains a number of changes to content
and formatting. A summary of the differences is given below: ' :

Corrected Module Qualification syntax.

Marked several features as NOT IMPLEMENTED.

- Correcfed assignment mechaniém for Procedural variables.
- Extended the definition of Sizeof.

- Made a separate section for READONLY.

- Added a section for ANYVAR.

- Added Object/Offset model diagram.

- Added én example of XCall.

- Updated predefined assembly instruction for Vision founééfion
module.

- Added $PRIVATE PROCE OFF$ requirement to OPTIONJInline.
- Added OPTION Uncheckable ANYVAR.
- Modified OPTION Extensible Gateway to work on the 3000.

- Added tables of permitted Definition Option / Directive
combinations. -

- Added $SET, $IF, $ELSE, and $ENDIF compiler options.

- Added several missing Pascal/3000 compiler options.

- Expanded the descriptions of $PUSH$ and $POPS.

- Added new reserved word ANYVAR

- Changes are shown in a BOLDER type face.

- Features that will not be implemented soon are shown in a smaller type face.7

Version 6.1 Changes

Version 6.1 of the MODCAL ERS contains the XCall Mechanism.

Version 6.0 Changes

Version 6.0 of the MODCAL ERS contains the changes made that weréf
reflected in the Delta ERS (May 19). A summary of the differences is given
below: : , ,

1

- Try recover statememt and Escape function are not permitted in code
" that will execute on the ICS. ”

- Variable type coercion is permitted only for actual parameters
- The grammar for object/offsets was changed. |

- Predefined procedure BuildPointer was added

- Predefined function CurrentObject was added.

- Predefined function GetObjectSize was added.

- Predefined procedure TestDown was changed to a Boolean function.

- Procedure definition options (Gateway, Extensible Gateway, Inline,
Default Parms, Interrupt Parms and Unresolved) were added.

- Predefined functions HaveExtension and HaveOptVarParm were added.

- The size of crunched structures is temporarily limited to 2048 words
(32 k-bits) or less.

Version 5.0 Changes

Version 5.0 of the MOﬁCAL ERS contains many significant changes and
additions over versions 3.0 and 4.0 (both of these versions were very
similar in-content). The differences in the order they appear in version
5.0 are:

- The syntax notation was changed to use regular expressions.

- Definition module feature was added. |

- Export qualifiers were added.

- Esca?e and EscapeCode definitions were refined.

- Type coercion definition was rewrittén.

- Variable type coercion was added.

- ReOrd function was added.

- Procedural type and Call definitions weré refined.

- Functionél type and FCall definitions were added.

- Sizeof and Addr functions were added.

- Schema array feature definitions were refined.

- Withobject syntax was extended.

Predefined object procedure definitions were refined.
Stack function was added.

Predefined pointer arithmetic procedure/function definitions
refined. '

OffsetPart and ObjectPart functions were added.
Crunch packing definition was rewritten.
Move R to L and Move L _to_R procedures were added.
Multiple heaps definition was removed.

Portability foundation definitions were refined.
Assembly language predefined procedures/functions were added.
Definition option explanations were added.
Unresolved definition option was added.

Inline and Split directive stuff was deleted.
Directive explanations were refined.

Compiler option explanations were added.

Data typé / data representation matrix was added.
Data representation explanations were added.

Type compatibility definitions were refined.

Reserved word lists were added.

were

Introduction

The original Pascal programming language 1is described in the
Pascal User Manual and Report by Jensen and Wirth. Three of the principal
design goals of the Pascal language were:

1) The language should be suitable for teaching the concepts of struc-
tured programming, '

2) It should be possible to construct simple, efficient and portable
compilers for the language, and,

3) The 1language should be type-safe and allow compile-time type
checking.

These design goals were essentially met; however they resulted in
Pascal being based on a very simple, restricted machine model. The
Pascal virtual machine consists of a program code area, a stack area for
local and global variables, and a heap area for dynamically allocated
data. This machine model does not give the programmer access to the
full power of the underlying computer architecture. For example, within
Pascal there is no way of storing and accessing variables in HP3000
extra data segments or Vision objects.

This is not surprising, since Pascal was never intended to be a
systems programming language. It is, however, quite feasible to use
Pascal as a basis for a systems programming language. Mesa and Ada are two
prime examples of Pascal-based systems programming languages. The main
sacrifice in converting Pascal to systems programming use is the loss of
full type-safety.

This document describes a set of extensions to HP Standard Pascal that
enables it to be useful for systems programming work such as operating
systems, data bases, and data communications. This extended version of
Pascal is called MODCAL.

MODCAL is an acronym for Modular Pascal. Hence, one of its main fea-
tures is a module facility, allowing for separate compilation, encapsula-
tion, and libraries.

In MODCAL heavy emphasis is placed on facilitating the construc-
tion of machine-independent programs, while not disallowing access to
low-level machine features where necessary. This is done through such fea-
tures as type coercion (interpreting data as a different type than it is
declared), Sizeof and Addr functions and procedure variables.

A Hewlett Packard Corporate Standard exists for MODCAL. This document
is organized to serve as a basis for the corporate standard. The table of
contents reflect the main elements of this standard, required, adaptable,
nonadaptable and experimental.

Required is a list of extensions to HP Standard Pascal which must be
in all Modcals in the coporation. Adaptable are a list of extensions which
appear in some existing Modcals which may not be possible or advisable to

put in another. However, the extension is easily adapted to another
extension in the other MODCAL. Nonadaptable are extensions to HP Standard
Pascal which are in an existing MODCAL today, but is so machine dependent
that using it would make porting very difficult. Experimental features are
those agreed to be desirable. However, they have not yet been implemented
or tested by an existing MODCAL.

BCG MODCAL for the HP3000 and VCF contains some experimental features
designed to allow the development of system code on the HP3000 that is of
acceptable efficiency and transportable to VCF. There is support for the
notion of an “object", which is found on HP3000, VCF, and Dawn architec-
tures. Crunch packing allows data structures to be defined which will have
the same bit offsets, no matter what computer the data was transfered to.
Schema Array types was designed to allow a type safe way of passing, al-
locating and slicing different sized arrays.

Notation
Notation

The syntax of the extensions are described by using a grammar notation
with regular expressions.

Terminal symbols are distinguished from other symbols by surrounding
quotes, e.g. 'if’. Nonterminals are represented by standard identifiers (a
letter followed by zero or more letters, digits, or underscores) enclosed

in angle brackets (’< >’). The following are other meta symbols used in
the notation:

-> means the nonterminal on the left is replaced with the
sequence of symbols on the right

* means zero or more occurrence of what precedes it

+ means one or more occurrence of what precedes it.

? means optional, zero or one occurrence of what precedes it.

| means alternative, either an occurrence of what precedes it
or an occurrence of what follows it,.

list means one or more occurrence of what precedes it separated
by an occurrence of what follows it

() parentheses to change binding rules

(juxtaposition)
means concatenation

Operator precedence hierarchy

0 _ most binding
?,%,+,1list _next, left to right
(juxtaposition) next

least binding

Examples:
(a typical expression grammar)

E->E’+ T F -> i
-)T

T ->T ' F
-)F

(The productions for a given nonterminal are collected together
and the left part is factored out.)
A -> ‘Sa’ ’b’*
a, ab, abb, abbb, abbbb, ...
A -3 !a! ,b"" 'c9
abc, abbe, abbbe, abbbbe, ...
A -> ’a’ ’be’ list ’§°
abc, abebe, abebesbe, ...

A -> ’a’ (’b’ | }c,)? Qd!
ad, abd, acd ‘

HP MODCAL

A. HP MODCAL Standardized and Required Features

1. HP Standard Pascai

At the core of the MODCAL language is HP Standard Pascal. It makes
up almost 90% of the language definition. HP Standard Pascal is not
described in this document. A description can be found in the HP
Standard Pascal document or the Pascal/3000 Reference Manual.

Modules

2. Modules

Note: Implementation of this feature requires segmenter changes.
The extensions to Modules from HP Standard Pascal (Implement,
Definition, Readonly, Hidden, Qualified) have been recently defined and
are not yet implemented in any MODCAL. These features are subject to
modification, especially if implementation difficulties arise.

A module is a program fragment which can be compiled independently
and later used to complete otherwise incomplete programs. A module
usually defines some constants, data types and variables, and
procedures which operate on these data. Such definitions are made ac-
cessible to users of the module by its export declarations. The module

may itself make use of other module definitions by importing the other
modules.

Additional Reserved Words

MODULE | EXPORT | IMPORT | IMPLEMENT | DEFINITION |
READONLY | HIDDEN | QUALIFIED

a. Programs and Modules

The source text input to a compiler (complete unit of compila-
tion) may be a program or a list of modules. The input text is ter-
minated by a period.

<compilation_unit>

-> <program>
-> (<module> list ’;’ *.?

9
.

A module is a program fragment which can be compiled indepen-
dently and later used to complete otherwise incomplete
programs. An implementation may allow only a single module of
input at a time, requiring multiple invocations of the com-
piler to process several modules. It will probably be implemented
this way in MODCAL/3000 and MODCAL/VCF cross compiler.

b. Programs

A MODCAL program is in form very similar to a proce-
dure declaration. It differs in its heading, and in that
modules may be declared and imported in the declaration part of the
program’s block.

<program>
-> <program heading> <program_block>

Modules

<program_heading>
. => ’PROGRAM’ <identifier>
(°(* <program_parameters> *)’)? ’;’°

<program_ parameters>
-> <identifier> list °,’

The identifier following the symbol program is the program name;
it has no further significance inside the program. The program
parameters denote entities that exist outside the program and
through which the program communicates with its environment.

These external entities (usually files) must be declared in
the block which constitutes the program like ordinary local
variables.

Identifiers declared to be program parameters may be of any
Pascal type. External entities which are not files are implementa-
tion defined.

The two standard files 1Input and Output must not be
declared but have to be listed as parameters in the program heading,
if they are used. The initializing statements Reset (Input) and
Rewrite(Output) are automatically generated and need not be specified
by the programmer.

Examples

PROGRAM copy (f,g);
VAR f,g: FILE OF real;
BEGIN
Reset(f);
Rewrite(g);
WHILE NOT Eof(f) DO
BEGIN
g = 73
Put(g);
Get(f)
END;
END.

| Modules

10

PROGRAM copytext(input, output),
VAR ch:char;
BEGIN
WHILE NOT Eof(input) DO
BEGIN
WHILE NOT Eoln(input) DO
BEGIN
Read(ch);
Write(ch);
END;
Readln; Writeln
END;
END.

c. The Program Block

Identifiers declared in the <program block> are said to have
global scope; that is, they constitute the outermost level of the
program’s declaration structure.

<program block>
-> <label _declaration_part> <global declaration>*
<procedure_and function_declaration_part> <statement_part>

<global declaration>
-> <constant_definition_part>
-> <type_definition_part>
-> <variable_declaration_part>
-> <module_declaration>
-> <import_part>

<module_declaration>

]

-> <module> °;’

<import_part>
-> 'IMPORT’ (<module_identifier> list *,”) °;’

we

<module_identifier>
-> <identifier>

Note: <label declaration_part>, <procedure_and_ function_ declaration-
part>, <statement_part>, <constant def1nt10n_part> <type-
defintion part>, <variable declaration_part>, <identifier>
are defined as in HP Standard Pascal.

Program blocks, unlike the block of a procedure or function,
may contain module declarations. A module is a collection of
global declarations which may be compiled independently and later
made part of a program block. Any module used by a program, whether
appearing in the program’s globals or compiled separately, must be
named in an import list. Modules, and the entities they export,
always belong to the global scope of a program which uses them.

Modules

A module cannot be imported before its definition has been com-
piled, either as a global of the importing program or by a
previous invocation of the compiler. This limits construction of
mutually-referring modules. Access to separately compiled modules
is discussed in Section le.

d. Modules

Although a module declaration defines data and procedures
which will become globals of any program importing the module, not
everything declared in the module becomes known to an importer. A
module specifies exactly what will be exported to the ‘'outside
world”, and lists any other modules on which the module being
declared is itself dependent. That is, a module has access only to
those global enitities which it either declares itself or imports.
The only exception is the program parameters INPUT and OUTPUT. The
default values for predefined file procedures and functions .are al-
lowed. An error will be issued, usually by the linker/segmenter if
INPUT or OUTPUT are used by a module and are not program parameters
of the importing program. :

<module>
-> °MODULE’ <module_identifier> '3’
<import_part>? <export_part>*
<implement_part> ’END’
-> °’DEFINITION’ ’MODULE’ <module_identifier> °;°
<import_part>? <export_part>+ ’END’

There are two ways to define a module. A module can be com-
pletely defined at once using the first form above. A module
defined this way must have an <export part>. A module which did not
export anything would be inaccessable, hence useless. A module can
be defined in two parts, allowing for a certain amount of mutual
referral of modules. This is done by using the ’DEFINITION’ °MODULE’
declaration. Here, anything the module will export is defined.
Hence the <export part> is required as in the complete definition.
Any modules needed for the export are listed in the <import part>.
There is no <implement part>. In order for the module to be com-
pletely defined, a module definition must appear later in the program
with an implement section. A warning will be issued for each incom-
pletely defined module (has DEFINITION MODULE only) in a <com-
pilation_unit>. This definition must not have an <export_part>, but
it may have an <import_part>. (Allowing this second <import part>
has not been definitely decided. It is desirable because it allows
mutually referring procedures in different modules. It also cuts
down the amount of information loaded into symbol tables at compile
time of +the importing module.” It is undesirable because the
'‘Definition’ ’Mocdule’ would not contain all the dependencies of that
module.). :

The <import part>, as in a program block, is a list of meodule

identifiers. The <export part> defines constants and types, declares
variables, and gives the headings of procedures and functions whose

11

Modules

12

complete specifications appear in the <implement part> of the module.
It is exactly the items in the <export part> which become accessible
to any other code which subsequently imports the module.

<export_part> .
-> ’EXPORT’ <qualifier>* (<export_declaration> list ’;’)

<qualifier>
-> °'HIDDEN’ | 'quaLFiED' | *READONLY’

<export declaration>
-> { <constant_definition_part> | <type_definition_part> |
<variable_declaration_part>)%
(<routine_heading> List 3’) °*;°?

There can be multiple <export part>s in a module. This allows
for different qualifiers to be used for different exported entities.
Multiple qualifiers can also be applied to an export declaration.
For example, one may want to make a list of variables ’qualified’
‘readonly’. '

’Hidden’ is a qualifier which only has meaning for types. Its
use on other entities is ignored. A hidden type behaves as if only
its name and size are known outside the module. When a hidden type
is imported it can only be used in certain ways. Variables of the
type can be declared. Other types can be declared equivalent to it.
Variables. of the same type (identical or equivalent) may be assigned
to each other (if assignable). Variables of hidden types may be
passed by value (if assignment compatible as defined above) or
reference. It is not possible to do anything which would require
knowing the structure of the type, such as field references, index-
ing, or assignment of expressions or constants. Any information
about the internal structure of the type is not exported. Type coer-
cion at any level except for structural compatibility is allowed.

’Readonly’ only applies to variables. Its use on other entities
is ignored. A readonly variable may not be altered by assignment,
nor passed as a Var parameter to a procedure or function.

Names which are exported ’qualified® can only be used in the
context of the name of the exporting module. This allows two
modules to export names which have identical spelling to the same
program or an importing program to have identically spelled names.

Whenever the name of something exported from the module is used
it must be qualified either with an explicit qualification
(modulename ! entityname) or by a WITH statement. The semantics of the With
statment is expanded from Pascal to allow module names to appear on the with list, syntax below
(NOT IMPLEMENTED). The same scoping rules apply to the modules names as to the HP Pascal
record expression list. Module names and record names can both appear in the same With list.
The syntax of identifiers is expanded from Pascal to allow any iden-
tifier to be qualified using the following syntax.

Modules

- <with__list> .
=> ((<module__name>)| <record__variable>) LIST*,

<identifier>
=> (<module__name> ¥)? <entity__name>

The modulename must be an imported module and entityname must be
a constant, type, variable, procedure or function name exported by
that module.

NOTE: *QUALIFIED’ most likely will go away!

NOTE: MODCAL/3000 will not support <variable definition_part>
code generation in this release.

The functionality or capability of the module -- what it can
do for an importer -- appears in the <implement part>.

- <implement_part>
-> °IMPLEMENT’ <module_capability>

<module_capability>
-> <declaration_part>
<procedure_and_function_declaration_part>

Note: <declaration_part> and <procedure_ and_function-
declaration_part> are defined as in HP Standard
Pascal. If <declaration_part> is not empty then
there must be a <procedure_and function_declaration_part>
also. :

Examining the syntax of <declaration_part> and
<procedure_and function_declaration part> reveals that the module
capability may be empty.

Any constants, types and variables declared in the implement
part will not be made known to importers of the modules; they are
only useful inside the module; outside of the module they are con-
cealed. To make them known outside the module, they must be
declared in the <export part>. Variables of the <implement_part> of
a module have the same lifetime as global program variables,
even though they are concealed. An identifier which is concealed in
one module may be reused as a concealed identifier in another
module, and the two are totally disjoint. '

Any procedures or functions whose headings are exported by
the module must subsequently be completely specified in its <im-
plement_part>. In this respect the headings in the export part
are like forward directives, and in fact the parameter list of
such procedures need not be repeated in the <implement part>.
_Procedures and functions which are not exported may be declared
in the <implement_part>; they are known and useful only within the
module.

13

Modules

1k

In the following example, module "Symboltable" is declared
to implement a generalized symbol table. This module defines
the only operations which can be performed on a symbol table
by exporting procedures “Add" and "Delete". The type of the
“"data" in the symbol table, and the maximum size of its "name" field,
are provided by module "Lexic". Since Symboltable depends on
Lexic, Lexic must be imported into Symboltable. Hence Lexic must be
compiled first.

MODULE Lexicj

EXPORT
CONST idsize = 16;
TYPE alpha = PACKED ARRAY [1..idsize] OF char;
attr = RECORD
level: integer;
name: alpha
END;
IMPLEMENT

{ empty <1mplement_part> since Lexic exports no procedures or
functions }
END;

MODULE Symboltable;

IMPORT Lexic;

EXPORT
PROCEDURE Add (ident: alpha; attrib: attr);
PROCEDURE Delete (ident: alpha);
PROCEDURE Initsymboltable;

IMPLEMENT
TYPE symptr = “symbol;
symbol = RECORD

link: symptr;
name: alpha;
data: attr
END;
VAR symtab: symptr;

PROCEDURE Initsymboltable;
BEGIN symtab := NIL END;

PROCEDURE Add (ident: alpha; attrib: attr);
BEGIN

{ body omitted for clarity }
END;

PROCEDURE Delete; (parameter list need not be repeated)
BEGIN '
{ body omitted for clarity)
END;
END.

Modules

e. Libraries NOT IMPLEMENTED

The modules Lexic and Symboltable as presented above illustrate that modules can aiways
be compiled without reference to a program. In fact, a module can directly refer to variables of
a program only if those variables are passed as parameters to procedures exported from the
module. This restriction is not so severe as it may sound, since a module can be set up to ex-
port global variables shared among the program and other modules.

Separately compiled modules are called "library modules”. To use library modules a
program imports them just as if they had appeared in the program block:

PROGRAM USER;
IMPORT Lexic, Symboltable;
VAR
instring: aipha;
characterize: attr;

PROCEDURE Scanner (VAR incoming: alpha; VAR description: attr);
BEGIN
{ code to scan a symbol and set up its attributes }
END;
BEGIN
END.

When an import declaration is seen, a module must be found matching each name in the import
list. If a module of the required name appears in the compilation unit before the import declara~
tion, the reference is to that module. Otherwise, external libraries must be searched.

The compiter option $SEARCH ’string’$ names the order in which externals libraries are
searched. The parameter is a literal string describing the external libraries in an
implementation ~dependent fashion; usually the string will be a list of file names. This option may
appear anywhere in a compilation unit, and overrides any previous SEARCH option. An im-
plementation may have a default library which will be searched upon failure of all other libraries
listed in 'string’, such as the system library.

|

\

15

Note: How SEARCH works in different impiementations is not yet defined.

Try Recover

16

3. Try Recover Statement

This statement defines error recovery code to be executed if an

execution error is detected within a controlled statement.

a. Try Recover Structure

<structured statement>
-> <compound_statement>
-> <conditional statement>
-> <repetitive_statement>
-> <with_statement>
-> <try_recover_statement>

<try_recover_statement>
-> ’TRY’ <statement_list> ’'RECOVER’ <unlabelled statement>

b. Try Recover Semantics

On detecting an error in the execution of <statement_list> the
following sequence of events occur:

1) The Escapecode for the error is set,

2) the runtime environment is cut back to the enviroment in
which the Try statement occurs,

3) Execution is transferred to the <unlabelled statement>
after the Recover.

If no error is detected in the execution of <statement list>
the <unlabelled statement> is skipped, and execution continues at the
first statement following the Try statement.

This construct divides the responsibilities of error recovery;
error recovery which requires the enviroment in which the error oc-
curs should use a trap handler provided by the system; for error
reporting, the Try construct should be used.

If an error occurs in the execution of the <unlabel-
led_statement> , then execution is transferred to the enclosing Try
statement. If there is no enclosing Try statement, then the
program aborts.

NOTE: Try Recover statements are not permited in code that will
execute on the ICS, for MODCAL/VCF.

Tfy Recover

c. Escape(i)

Calling this predefined procedure indicates that a software er-
ror has been detected. Execution is passed to the <unlabelled_stat-
ment> part of the first enclosing Try statement in the dynamic en-
vironment. The parameter i is evaluated before control is passed and
its value is made available to the Escapecode function defined in
(3.4). Errors detected by hardware will cause an Escape to be ex-
ecuted with a standard value. If Escape is called with no surround-
ing try statement, then the action taken is to abort the program.

WARNING: Escape will be 2-U orders of magnitude more expensive
then just entering and leaving a TRY statement normally,

d. Escapecode: integer

Calling this function returns the execution error number set
by the most recent Escape call. If Escape has never been called the
value zero (0) will be returned. If the <unlabelled__statement> passes con=
trol to the statement following the <try__recover__statement> in normal sequential
manner, then the escape code will be reset to zero {0).

e. Error Code Assignment

The error code numbers are assigned using the following. conven-
tion: The first 16 bits signifies which subsytem reported the error.
The negative range has been reserved for HP products where the posi-
tive range is for user. The second 16 bits indicates which error oc-
curred. The constants for HP products are defined in two include
files, one for Vision and one for 3000.

f. Example

The following program illustrates a wuse of the try
statement for error Trecovery in a hypothetical system. This
system defines a set of run time support procedures (only one is
shown) and a user program which may cause errors. If an error is
detected in the user program by the hardware or in the support
procedure by software, an Escape will be generated which causes ex-
ecution to continue in the recover section of the main program. This
section prints out an error message.

17

" Try Recover

PROGRAM xx3
CONST
$Include ’ModCode.Pub.Sys’$

PROCEDURE support;

BEGIN .
IF error THEN Escape(...)
END;

PROCEDURE userprogram;
BEGIN

support

END;

BEGIN
TRY userprogram
RECOVER
CASE Escapecode OF
MinUser. .MaxUser: Writeln(’Software detected errors’);

LanglRng : Writeln(’Value range error’);
SysStkovf : Writeln(’Stack overflow’);
SysIntOvf : Writeln(’Integer overflow’);
SysIntDiv : Writeln(’Integer divide by zero’);
SysF1ltOvf : Writeln(’Real overflow’);
SysFltUnf : Writeln(’Real underflow’);
SysF1tDiv : Writeln(’Real divide by zero’);
LanglNil : Writeln(’Nil pointer reference’);
LanglCase : Writeln(’Case expression bounds error’);
LanglStrovf : Writeln(’String overflow’);
FileErr : Writeln(’File 1/0 error’);

OTHERWISE ,
Writeln(’unknown error’)

END;

END.

The Escapecodes used in the example are not the actual
constants for the HP 3000 or VCF.

18

Type Coercion

4. Type Coercion

Type coercion allows a programmer to circumvent the strong type
checking of Pascal. The type coercion mechanism is a compile time
operation (except in some cases of discriminated schema acccess) for ap-
plying a different interpetation to the data value part of a data item
(Appendix B).

a. Syntax/Semantics
Type coercion has two (2) syntactic/semantic forms:
Value Type Coercion (no restrictions)

<factor>
-> <target type_id> ’(’ <expression> ’)’

This form of type coercion allows the value of an expression to
be coerced to the target type. The evaluation of the expression may
create a copy of the value to be coerced, thus any machine dependent
addressing problems can be avoided.

Variable Type Coercion (machine dependent addressing restrictions)

<variable>
-> <target_type_id> ’(’ <variable> ’)’

This form of type coercion allows the source variable to be
coerced to the target type. Variable type coercion is permitted only
for actual parameters. The source variable may not be addressable as
the target type on a given machine (e.g. a byte as a word on the
3000). When this occurs the type coercion is not allowed and an error
is issued. Three cases that are very likely to result in this con-
dition are:

- Coercing any component of any CRUNCHED structure.

- Coercing any component of any PACKED structure whose component
type BitSizeof is less than the BitSizeof of a SU.

- Coercing any component of any array whose component type
BitSizeof is less than the BitSizeof of a SU.

b. Compatibility Levels

The use of type coercion can lead to the development of un-
transportable system software. Additionally one form of type coer-
cion can result in the use or modification of storage beyond that oc-
cupied by the expression or variable coerced. These problems can be
reduced by defining several levels of type coercion that progress

19

Type Coercion

20

from safe and transportable to very dangerous and untransportable.

The four (4) levels of type coercion defined in MODCAL based on the
compatibilities in Appendix C are:

STRUCTURAL - This level permits any data item to be coerced to
any structurally compatible data type. This level simply permits
renaming components. It is safe and fully transportable. ‘

REPRESENTATION - This level permits any data item to be coerced
to any representation size compatible data type. This level requires
identical BitSizeof values. It is unsafe only if reference types are
involved (Appendix B). It is transportable because all untransport-
able uses are flagged as errors.

STORAGE - This level permits any data item to be coerced to any
storage size compatible data type. This level requires less or equal
Sizeof values. It is unsafe and many untransportable uses will NOT
be flagged as errors.

NONCOMPATIBLE - This level permits any data item to be coerced
to any data type, providing that syntactic/semantic form of type
coercion is defined on the target machine. This level is very dan-
gerous and no errors can be flagged.

The safest level sufficient to permit the required type coer-

cions is selected with the $Type Coercion ’string’$ compiler option
(Appendix A).

c. Example
MODULE MPE File System;

IMPORT
MPE IO System,
MPE_Kernalj;

EXPORT
TYPE
Word = ShortInt;
WordArray = ARRAY [1..1] OF Word;
TargetLen = ShortlInt;
FileNumbers = Shortint;

FUNCTION FRead (
FileNum : FileNumber;
VAR Target : WordArray;
TCount : TargetLen
): TargetLen;

Type Coercion

IMPLEMENT .
TYPE
ArrayLen = 1..32767;
FileSet = SET OF FileNumbers;
CONST '

ValidFiles = FileSet [1..255];

FUNCTION BoundsCheck (
Origin : OffsetSU;

Length : Arraylen;
ParmList : OffsetSU
): BOOLEAN

OPTION INLINE;

BEGIN { BoundsCheck }

$Type_Coercion *REPRESENTATION’$

IF (Word(GetDL) <= Word(Origin))

AND (Value Coercion }

(Word (ParmList) > Word(Origln)+Pred(Length)§

$Type_Coercion 'NONE’$

THEN |
BoundsCheck := TRUE

ELSE '
BoundsCheck := FALSE;

END; { BoundsCheck }

FUNCTION FRead (
FileNum : FileNumber;
VAR Target : WordArray;
TCount : TargetlLen
): Targetlen; '
VAR
Bufflen : Arraylen;
ByteLen : TargetLen;

PROCEDURE FRead_1 (
READONLY BufflLen : Arraylen

)
OPTION INLINE;

TYPE
WordSchema (Len : ArrayLen) = ARRAY [1..Len] OF Word;
. WordArray = WordSchema (Bufflen);

PROCEDURE FRead 2 (
VAR Buffer : WordSchema

OPTION INLINE;
BEGIN { FRead 2 }

{ body omitted }
END; { FRead_2 }

21

Type Coercion

BEGIN FRead 1 }

$Type_Coercion 'NONCOMPATIBLE'$

FRead_2 (WordArray (Target)); { Varaible Type Coercion }
$Type_Coercion "NONE'$

END; { FRead_1)}

BEGIN { FRead)}
IF FileNum IN ValidFiles THEN
BEGIN { have a file number }
IF TCount < O THEN
BEGIN { byte target count }
ByteLen := -TCount;
Bufflen := ByteLen DIV 2 + ByteLen MOD 2;
END { byte target count }
ELSE
BEGIN { word target count }
BytelLen := O3
Bufflen := TCount;
END; { word target count }

$Type_Coercion ’REPRESENTATION’$
IF BoundsCheck (0ffsetSU(Offsetpart (Addr(Target)))

, BuffLen, AddtoOffset (Get@ , -6))

$Type_Coercion ’NONE’$

THEN
BEGIN { target in stack)}
FRead_1 (Bufflen);
END { target in stack }

ELSE
FRead := 03
END { have a file number)
ELSE

FRead := 03
END; { FRead)}

END.

22

Type Transfer

§. Type Transfer function ReOrd

Type transfer allows a programmer to convert the representation of
one type into the representation of another type. Type transfer differs
from type coercion when the representation of one value is changed to
another representation. For example, converting an integer expression
to an enumerated type. The predefined function ReOrd performs the type
transfer.

Function ReOrd (ordtype, expression): ordtype

Example:
PROGRAM ReOrd_Example;
TYPE
numbers = (zero,one,two,three,four,five,six,seven,eight,

nine);
digit_range = 0 .. 9;

VAR
mnemonic: numbers;
binary value: digit_range;

BEGIN
binary value := T;
mnemonic := ReOrd (numbers,binary value);

(* mnemonic is now equal to enumerated value seven *)
mnemonic := ReOrd (numbers,binary _value + 1);

(* mnemonic is now equal to enumerated value eight *)
Assert (mnemonic = ReOrd (numbers,0rnd (mnemonic), 0);
END.

23

Procedural/Functional Variables

24

6. Procedural/ Functional Variables

a. Procedural Variables

1. Type Procedure

The Type definition syntax of Pascal is extended to allow
the specification of procedural datatypes. This allows the
creation and manipulation of procedural variables, and augments
the parameter procedure mechanism already present in Pascal. A
procedural type may be specified by using the keyword procedure
followed by an optional parameter 1list as a type specifier.
Variables of procedural types may be assigned procedures which
have congruent parameter lists as defined in HP Pascal. Any pro-
cedure assigned must have the same or wider scope than the vari-
able it is assigned to. To assign a procedure to a procedural variable, the
procedure name is used as a parameter to the Addr function. See example
below. A procedural variable can be assigned NIL. This means no
procedure has been assigned.

2. Call

The predefined procedure "Call(Pvar, parm, parm, ...)"
causes the indicated procedure to be called with the indicated
parameters. Pvar is the identifier of a variable of type
procedure. If during the execution of <the procedure of a
procedural variable, it accesses any non-local variables, then
the variables accessed are the variables which were accessible at
the time the procedure was assigned to the procedural variable.
It is an error if Pvar has the value NIL or is undefined. It may
not be possible to detect an undefined procedure variable.

Procedural/Functional Variables

3. Procedural Type Operations Model

R e *
| | :=
| \'4
P S, + LTTTTT TS T2 YTy
| Procedural | * Actual »
| Variable | * Procedure *
Frmrcnccmccme—- + (212222212222 X 2
A I |
| Jmmmsnnnaaaanns !
| := | (parm) / Addr(Proc_Name) | (parm)
| | \ Addr(Proc_Parm) |
| \'j \--e=cmcmcmnecaes \Y
4occccccccnan- + T —— +
| Procedural | | Procedure |
| Parameter | . | Parameter |
- + T p—— +
A A
| | (parm) l | (parm)
Proc_Parm (...) }
Call(Predrl Var,...) } = { Proc_Name (...)
Call(Precdrl_Parm,...) } '
4. Example

This program illustrates a use of a procedural type. First,
type "p" is declared to be a procedural type with two real
parameters. Subsequently, two procedures and one variable are
declared which are compatible with this type. In the main
program, the value of "pv" is set based upon some calculation and
then the procedure “Call" is used to call the procedure referred
to by "pv"'. Note that the identifiers in the parameter lists
need not be identical.

PROGRAM ProcVar(output);
TYPE p = PROCEDURE (rl,r2: real);

VAR pv : p;
test : boolean;

PROCEDURE procl(num,denom: real);
BEGIN

Writeln(num/denom);

END;

PROCEDURE proc2(ml,m2: real);
BEGIN

25

Procedural/Functional Variables

26

Writeln(mi*m2);
END;
BEGIN
IF test THEN
pv := ADDR(procl)
ELSE
pv := ADDR(proc2);
Call(pv,3.1,4.34);

END.

b. Functional Variables

1. Type Function

The Type definition syntax of Pascal is extended to allow
the specification of functional datatypes. This allows the
creation and manipulation of function variables, and augments
the parameter function mechanism already present in Pascal. A
function type may be specified by using the keyword Function fol-
lowed by an optional parameter list and a required colon and
result type identifier as a type specifier. Variables of func-
tion types may be assigned functions which have congruent parame-
ter lists as defined in HP Pascal and identical result types. Any
function assigned must have the same or wider scope that the vari-
able it is assigned to. To assign a function to a function vari-
able, the function name is used as a parameter to the Addr func-
tion. See example below. The reserved word NIL may be assigned
to a function variable. This means that no function is assigned
to it.

2. FCall

The predefined function "FCall(Fvar, parm, parm, ...)"
causes the indicated function to be called with the indicated
parameters. Fvar is the identifier of a variable of type
function. The type of the result of FCall is identical to the
result type of Fvar. If during the execution of the function
of a function variable, it accesses any non-local variables,
then the variables accessed are the variables which were acces-
sible at the time the function was assigned to the function vari-
able. It is an error if Fvar is NIL or undefined.

Procedural/Functional Variables

3. Functional Type Operations Model

® - *

| | :=

| v
$rmcmn e - +)) 12222222222 22 2)
| Functional | * Actual *
| Variable | * Function *
frmcccccccee-- <4 096 36 3 I6 20 4 I 96 36 8 I W 3
A | |
T |

| := | (parm) / Addr(Func_Name) | (parm)
| | \ Addr(Func_Parm) |

| v \---emmememneeca v
$ommcmcmccnnan + . +
| Functional | | Function |
| Parameter | | Parameter |
$mmmcmcmcecaaa + . +
A A

| | (parm)] | (parm)
[| S [|

Func Parm (...) }

FCaZT(Fnctnl_Var,...) } = { Func_Name (...)
FCall(Fnctnl_Parm,...) } ‘

4. Example

This program illustrates a use of a function type. First,
type "f" is declared to be a function type with two integer
parameters. Subsequently, two functions and one variable are
declared which are compatible with this type. In the main
program, the value of "fv" is set based upon some calculation and
then the function "FCall" is used to call the function referred to
by "fv". Note that the identifiers in the parameter lists need
not be identical.

PROGRAM FuncVar;

TYPE f = FUNCTION(INT1,INT2: integer):integer;

VAR fv : f;
test : boolean;
Answer:integer;

FUNCTION funcl(num,denom: integer):integer;
BEGIN
funcl:=num DIV denom;
END;

FUNCTION func2(ml,m2: integer):integer;
BEGIN

27

Procedural/Functional Variables

func2:=m1*m2;
END;

BEGIN
IF test THEN

fv := Addr(funcl)
ELSE

fv := Addr(func?);
Answer:=FCall(fv,3,4);
END.

28

Special Predefined Functions

7. Special Predefined Functions

a. Sizeof

The Sizeof function returns the number of bytes needed to
represent the data value part of a data item of the given type or the
actual allocated size of a variable.

Sizeof(t) Gives the number of bytes required to represent a
variable of type t.

Sizeoflv) Gives the number of bytes required to represent variable v or the actual
number of bytes allocated to represent variable v.

Sizeoflp) Gives the number of bytes required to represent ANYVAR parameter p
or the actual number of bytes allocated to represent the actual parameter passed to
ANYVAR parameter p.

Sizeof(tl, t2, ... ,tn) Gives the number of bytes
required to represent a variable of type tl1 with tag field values t2,
s 00y tno

Sizeof(sl, s2, ... ,sn) Gives the number of bytes required to

represent a variable of the discriminated schema type selected from
the schema array sl with discriminant values s2,...,sn (Section D).

29

Special Predefined Functions

30

b. Addr

The Addr function returns the reference part of the data item
given to it as a parameter.

Addr(V) returns a pointer to the variable, V. It returns a
pointer of the same type as NIL; that is, it is assignment compatible
to any other pointer. Implementations may restrict its result to a
pointer of type “type of V. It is implemented this way in
MODCAL/3000 and MODCAL/VCF. The pointer returned can be used as a pa-
rameter to the ObjectPart and OffsetPart pointer arithmetic
functions.

HP MODCAL

31

tandardized and NonAdaptable

D. Experimental

1. Read Only Parameters

Experimental

The current parameter passing mechanisms of HP Standard Pascal supports only "call-
by-value" and “"call-by-reference", denoted by VAR. The first protects the actual parame-
ter from modification, but requires making a copy. The second does not make a copy, but
provides no protection for the actual parameter.

MODCAL provides a third mechanism “call-by-value-reference", denoted READONLY.
This mechanism protects the actual parameter from modification, and makes a copy if and
only if the actual parameter is an expression or a constant. No modification of a variable
(actual parameter) is permitted between the call to and return from a routine with a
READONLY (formal) parameter.

a. Read Only Parameter Definition

The following shows the syntax for defining read only formal parameters.

<formal__parm__section>

->
->
-
->
->

<value__parm__spec>
<variable__parm__spec>
<read__only__parm__spec>
<procedure__parm__spec>
<function__parm__spec>

<variable__parm__spec>
=> VAR’ <identifier__list> *’ <type__id>

<read__only__parm__spec>

-> 'READONLY’ <identifier__list> *’ <type__id>

b. Read Only Parameter Example

33

READONLY Parameters

TYPE

ArrType = ARRAY [1.10] OF INTEGER;
CONST ,

ArrConst = ArrType [10 OF 0];
VAR ,

ArrVar: ArrType;

FUNCTION ArrFunc : ArrType;
EXTERNAL;

PROCEDURE Parm__Mechanisms (
Value__Parm :ArrType;
VAR Ref__Parm : ArrType;
READONLY Val__Ref_ Parm: ArrType
)
EXTERNAL;

BEGIN
Parm__Mechanisms (
ArrConst, {a copy is made}
ArrConst, {an ERROR}
ArrConst {a copy is made & address is passed}

]

Parm__Mechanisms (
ArrVar, {a copy is made}
ArrVar, {address is passed}

ArrVar {address is passed}

) ;

Parm__Mechanisms (
ArrFunc, {a copy is made}
ArrFunc, {an ERROR}
ArrFunc {a copy is made & address is passed}
)
END;

34

ANYVAR Parameters

2. Any Variable Parameters NOT IMPLEMENTED

The current "call-by-reference”, denoted VAR, parameter passing mechanism of HP
Standard Pascal requires any actual parameter be of the SAME TYPE as the formal
parameter. '

_ MODCAL provides another mechanism “call-by-any-reference’, denoted ANYVAR.
This mechanism removes the SAME TYPE requirement while retaining all other require-
ments of the "call-by-reference” mechanism (e.g. not passing components of PACKED or
CRUNCHED structures).

This feature permits some very dangerous programming practices. Some MODCAL im-
plementation may provide for some safety by creating a "phantom" parameter who value is
the SUSizeof its companion ANYVAR actual parameter. This “phantom" can then be used
by checking code and the Sizeof, SUSizeof, and BitSizeof functions (see Section E
and Appendix A). '

a. Any Variable Parameter Definition
The following shows the syntax for defining any variable formal parameters.
<formal__parm__section>
=> <value__parm__spec>
=> <variable__parm__spec>
~> <anyvar__parm__spec>
=~> <procedure__parm__spec>
=> <function__parm__spec>

<variable__parm__spec>
-> VAR’ <identifier__list> *’ <type__id>

<atiyvar__parm__spec>
-> 'ANYVAR’ <identifier__list> "’ <type__id>

STRING must not be specified as the <type__id> when ANYVAR is specified.

35

ANYVAR Parameters

b. Any Variable Parameter Example

TYPE
ArrTypel = ARRAY [1.10] OF INTEGER;
ArrType2 = ARRAY [1.20] OF INTEGER;
ArrType3 = ARRAY [1.11] OF REAL;
VAR
ArrVarl: ArrTypel,;
ArrVar2 : ArrType2;
ArrVar3: ArrType3;

PROCEDURE Parm__Mechanisms (
VAR Ref__Parml :ArrTypel;
VAR Ref__Parm2 :ArrType2;
ANYVAR Any__ Ref__Parm: ArrType2
3
EXTERNAL;

BEGIN
Parm__Mechanisms (
ArrVarl, {ok - std. Pascal}
ArrVarl, {an ERROR}
ArrVarl {ok / an ERROR for Any__Ref_ Parm[11]}
)

Parm__Mechanisms (

- ArrVar2, {an ERROR}
ArrVar2, {ok - std. Pascal}
Arrvar2 {ok}

)

Parm__Mechanisms {
ArrvVar3, {an ERROR}
ArrVar3, {an ERROR}
ArrVar3 {ok / an ERROR for Any_ Ref__Parm[12]}
)
END;

36

- ANYVAR Parameters

PROCEDURE Same__As__ ANYVAR__chkd (

VAR Ref__Parm : ArrType2;
Ref__Parm__Len : ObjectSize;
ANYVAR Any__Ref_ Parm: ArrType2

)
EXTERNAL;

PROCEDURE Same__As_ ANYVAR__unchkd (
VAR Ref__Parm : ArrType2; :
ANYVAR Any__Ref__Parm: ArrType2
) -

OPTION Uncheckable__ANYVAR;
EXTERNAL,;

BEGIN
Same__As__ ANYVAR__chkd (
‘$push, type__coercion *noncompatible’$
ArrType2(ArrVarl),
$Spop$
SUSizeof (ArrVarl), {allocated SU’s for Ref__Parm}
ArrVarl

)

Same__As__ ANYVAR__unchkd (
$push, type__coercion *noncompatible’$
ArrType2(ArrVarl),
pop
{allocated SU’s for Ref__Parm UNKNOWN}
ArrVarl
)
END;

37

Schema Arrays

38

3. Schema Arrays NOT IMPLEMENTED

Types in Pascal are used for determining the storage requirements of variables and for checking
the compatibility of assignments and procedure/function parameters. This double duty use of the
type concept is too restrictive for some areas of system programming. To alleviate some of these
restrictions, schema arrays have been added to MODCAL.

A schema can be thought of as a collection of types; each member of the coliection is related to
the other members in that they each have the same overall structure. The structure of each type is
that of an array with the same component type and packing. However, each array type has a dif-
ferent index type.

MODCAL permits a formal parameter of a procedure or function to specify that it will accept any
actual parameter whose type is a member of a specified schema. in this way the procedure or func-
tion can operate on a number of arrays with different index types, aithough only from the same
schema.

Through the use of schemata, MODCAL also allows local arrays declared within a procedure or
function to have their bounds specified at runtime. This permits the procedure or function to adapt its
activation storage requirements in cases where local work areas are required.

a. Schema Array Definition

<type__definition__part>
-> <type__def__section> ?

<type__def__section>
-> 'TYPE’ v
(<type__definition> | <schema__definition>) list

This says that the <type__ definition__part> of a block is composed of any number of type
and schema definitions.

<new__type>
-> <new__ordinal__type>
~> <new__structured_type>
~> <new__pointer__type>
~> <discriminated__schema>

This specifies that a <new__type> may be created by any of the means existing in Pascal or
by selecting one of the members of a schema. Selecting one of the members of a schema is'cal—
led discriminating a schema, that is, specifying its actual index types.

A schema -definition shall introduce an identifier to denote a schema. A schema defines a col-
lection of <new__type>s whose type-denoter is a discriminated schema.

Schema Arrays

<schema__definition>
-> <identifier> <formal__discriminant__part>
'=' <array__schema>

<formal__discriminant__part>
-> (" <discriminant__spec> list"’ ')’

<discriminant__spec>
=> <identifier__list> '’ <ordinal__type__id>

<array__schema>
=> ('PACKED’ | 'CRUNCHED’)?
'ARRAY’ '
(<schema__index__type> list ')
'T 'of' <component__type>

<schema__index__type>
-> (<constant> | <discriminant__id>)
'’ (<constant> | <discriminant__id>)

‘<discriminant__id>
=> <identifier>

The occurrence of an identifier in a <schema__definition> of a <type__definition__part> shall
constitute its defining point for the region that is a block. Each applied occurrence of that iden-
tifier shall- denote the same schema. Except for applied occurrences of the identifier as the
domain type of a pointer type, the schema shall not contain an applied occurrence of the schema
definition.

NOTE: Currently, the <schema__index__type> must be an explicit subrange; therefore, it may
not be the <type__id> of a subrange type.

The above definitions add the mechanism by which to define a schema. The leading identifier
on the schema -definition becomes known. A schema may not have any references to itself ex -
cept when used as the domain of a pointer. Thus, a schema has the same scope as a type
declared at the same place.

b. Formal Discriminant Part

The <formal__discriminant__part> in a schema definition shall define the formal discriminants.
The occurrence of an identifier in a- <discriminant__spec> shall constitute its defining point as a
<discriminant__id> for that region of the program that is the following <array__schema>.

For every <discriminant__id> In a <formal__discriminant__part>, there shall be at least one
applied occurrence In the <array_schema>. The occurrence of a <discriminant_id> in a
<schema__index__type> of an <array__schema> shall specify that there is one type denoter
which is a member of the schema for each allowed value of the <discriminant__id> such that all
other <schema__index__type> values in the schema are the same.

The <formal__discriminant__part> is used to associate identifiers with the schema so that the

domain (members of the schema) can be determined. Every identifier used in the
<formal__discriminant__part> must be used at least once in the following <array__schema>. In

39

Schema Arrays

Lo

the following, SmallVec is a collection of ten type denoters with index types "0..1",70.2", ...,
"0..10".

type _
Smallint= 1. 10;
SmallVec (HighBound : Smaliint) =
array [0 .. HighBound] of real;

¢. Discriminated Schema

A <discriminated__schema> selects one of the members of a schema as a <new-type>. The
<discriminant__value>s are bound to their corresponding <discriminant__specs> in the <for-
mai__discriminant__part> of the schema. The number of discriminant values must be equal to the
number of formal discriminants and each value must be assignment compatibie with the type of
the corresponding formal discriminant.

<discriminated__schema>
-> <schema__id> <actual__discriminant-part>

<actual__discriminant__part>
=> ' <discriminant__value> list ' ')

<discriminant__value>
-> <constant__expression> |
<read__only__variabie>

A <discriminated__schema> appearing in the declaration part of a block must have only con-
stant or read__only variable discriminant values. This restriction assures that evaiuation of dis-
criminant values in the declaration part of a biock can have no side effects.

Any schema designated PACKED and denoting an array schema having its <schema__in-
dex__type> specifying as its smallest value a constant whose value is 1, and having as its com-
ponent type a denotation of the char type, shall be a PAC schema. Any new type specifying a
discriminated ~schema which is a PAC schema shall be designated a PAC, and has all the special
properties of a PAC defined in Pascal.

A discriminated schema is a type denoter selected from the collection of type denoters in the
schema. The values given in the <actual__discriminant__part> are used (substituted) for the
<formal__discriminant__part> in the <array__schema>. Thus the discriminated schema
"Smalivec(7)” selects the member of the schema which is structurally compatible to (but not the

same as) the array: :

ARRAY [0 .. 7] OF REAL

An attempt to specify the schema as "Smallvec(1 1) will result in an error because the vaiue
11 is not assignment compatible with the type of Highbound.

It must be noted that although a <discriminated__schema> is equivalent in structure to an ar-
ray type, it is never the same (in the sense of Pascal type compatibility). Moreover, two dis-
criminated schemas that specify the same discriminant vaiues are not the same.

Any <discriminated__schema> having the same number of components of structurally
compatible types with the identical packing are said to be STRUCTURALLY compatible. Any

Schema Arrays

unpacked arrays or unpacked discriminated -schemas having the same number of components of
structurally compatible types are said to be structurally compatible (see Section A and Appendix
C).

Any <discriminated__schema> with <read__only__variable>s in its <ac-
tual__discriminant__part> = denotes a type that may be used only in a
<variable__declaration__part> or a type coercion.

d. Schema Discriminants

<factor>
=> <variable__access>
=-> <unsigned__constant>
=> <function__designator>
-> <set__constructor>
-> (" <expression> ')
=> 'NOT’ <factor>
~> <schema__discriminant>
-> <read__only__variable>

<schema__discriminant>
-> <variable__access> '’ <discriminant__id>

<read__only__variable>
-> <variable__access>

The schema discriminants for a discriminated schema value are simply the values that were
used to satisfy the formal discriminants in the declaration of the discriminated schema which is its
type. The notation to access this value uses the name of the formal discriminant from the
schema declaration. For example, consider the following schema, discriminated schema and dis -
criminated schema value:

TYPE
Smallint = 1..10;
Schema(StartLength : Smallint) = ARRAY[Start.Length] OF
INTEGER;

DiscSchema = Schema(1,5);
VAR

X : Smallint;

DiscSchemaValue : DiscSchema

The actual discriminant values for DiscSchemaValue are 1 and 5, accessible by the nota-
tion DiscSchemaValue .Start and DiscSchemaValue.Length, respectively.

Because a factor can hever appear as a target of an assignment, the discriminant may never
be aitered. The value of the discriminant could be thought of as a "read only variable” associated
with the variable or parameter. The vector addition exampie above shows the use of
<schema__discriminant>s.

L1

Schema Arrays

L2

e. Schema Array Parameters

Discriminant vaiues can be constants or read only variables (vériablés whose value cannot be
altered); thus discriminant values are constant over the entire scope of a discriminated schema.
The foliowing shows the syntax for defining read only variables and schema array formai
parameters.

<formal__parm__section>
~> <value__parm__spec>
~> <variable__parm__spec>
-> <read__oniy__parm__spec>
=> <procedure__parm__spec>
-> <function__parm__spec>

<variable__parm__spec>
-> 'VAR' <identifier__list> '’
(<type__id> | <schema_ id>)

<read__only__parm__spec>
-> 'READONLY’ <identifier__list> "’
(<type__id> | <schema__id>)

These productions deal with read only parameters and schema parameters. Read only para-
meters are discussed in the next section; this section deals exclusively with schema parameters.

A variable may be passed into a procedure or function whose type denoter is a member of a
schema. When a schema identifier is specified, the parameter may be of any type which is a
member of that schema.

If the formal parameters are specifiéd in a <variable__parm__spec> in which there is a
<schema__id>, the type possessed by the actual parameter shall be itseif a parameter that was
specified with the same <schema__id>; and the type possessed by the formal parameter shali be
distinct from any other type. '

This states that a formal parameter that was declared with a schema will only permit the ac-

" tual parameter to be of a type which is a member of the same schema. A formal parameter which

is a schema may in turn be passed on as a variable -parameter utilizing the same schema.

If the form of the parameter list includes an <identifier__list>, then all the actual parameters
must be of the same type (only for variable parameters); this is true for schemas as weil as other
types.

The following example adds two vectors, element by element, and returns the resuit in the
first parameter.

Schema Arréys

PROCEDURE AddVectors (VAR A,B,C : SmalivVec);
VAR
| : Smaliint;

BEGIN)
Assert (A HighBound = B.HighBound, 1);
Assert (A.HighBound = C.HighBound, 2);
FOR i := 0 TO B.HighBound DO

Ali] := B[i] + C[i};
END;

{. Read Oniy Parameters

The productions from the previous section state that read only variables are defined by
<read__only__parm__spec>s (read only variables are aiso exported by modules). The occur -
rence of an identifier in the <identifier__list> of a <read__only__parm__spec> shall constitute its
defining point as a read only variable for the region that is the block, if any, of which it is a formal
parameter.

All parameters that are specified with the read only mechanism are identified as being read
only variables; this permits them to be limited to being factors within the block. The actual pa~-
rameter shall be an expression. A formal parameter declared with a schema as its type
specification and occuring in a single <read__only__parm__spec> shall possess an array type
which is distinct from any other type. The type possessed by the actual parameter shall be a
discriminated schema designating the same <schema__id> as the formai__parameter or the ac~-
tual__parameter shall be itseif a parameter that was specified with the same schema identifier; or
the actual parameter must be a PAC and the formal parameter must designate a PAC-schema; or
the actual parameter must be of the same type as the formai-parameter.

For an actual parameter that denotes a read only variable access, there shall be no assigning
reference during the activation of the block of the procedure or function to the actual parameter.

This introduces a parameter mechanism into MODCAL that requires that the actual__parameter
may not be aitered during the activation of the associated procedure or function. Any expression

may be specified by the actual__parameter. Thus, the mechanism achieves not only protection of
the actual -parameter but aiso permits literal strings or value type coercions to be specified.

g. Discriminated Schema Access

L3

Schema Arrays

LY

<discriminated__schema__access>
-> <discriminated__schema__vaiue>
[<schema__access__list> ']

<discriminated__schema__value>
-> <variable__access>

<schema__access__list>
-> (<index__expression> '’)* <schema__access__expr>

<schema__access__expr>
-> <disriminant__value> 'FOR' <discriminant__length>

<index__expression>
-> <expression>

<discriminant__length>
-> <expression>

NOTE: Only <schema__access__List> -> <schema__access__expr> will be permitted in the
next several releases. Also, the following restrictions are being considered: 1) Discriminated
schema access only permitted with one -dimensional schemas and 2) <discriminant__iength> must
be a constant (e.g., DiscSchemavalue[x FOR §]).

A <discriminated__schema__value> is any variable, parameter, or constant which has a dis -
criminated schema as its type denoter. A <discriminated__schema__access> selects a con-
tiguous sequence of the components of a <discriminated_ schema__vaiue>. This contiguous se-
quence has a type denoted by another member of the same uniquely discriminated schema as the
<discriminated__schema__value>. A contiguous sequence of components of any array or <dis~
criminated__schema> type is just a sequence of components that occupy consecutive storage
units. That is, for array types stored in row major order, any subrange of the last index type of
the array defines a contiguous sequence of its components. A subrange can aiso be specified for
an index type other than the last one. In this case, no following index types may be specified; the
entire ranges of the following index types are used in order to ensure contiguity. Consider the
following schema, discriminated schema and discriminated schema value:

TYPE
Smaliint = 1..10;
Schema2D(L 1,U1,L2,U2 : Smallint) = {A schema}
Array[L1.U1,L2.U2] OF INTEGER,;

Square = Schema 2D(1,5,1,5); {A disc. schema}
VAR
Square 1 : Square; {A disc. schema value}

The discriminated schema access Squarel[4, 3 FOR 3] specifies the 3rd through Sth
components of the 4th row of Squarel Squarel[2 FOR 2] specifies the entire 2nd and 3rd
rows of Squarel Clearly, if a schema access expression (# FOR 1) were permitted for the
second index position of this second example, the selected components would not be contiguous.

Also a discriminated schema access is a discriminated schema value; its type is a member of
the same schema, but its index types are a subrange of the corresponding index types of the
original discriminated schema value. For example, Squarel[4, 3 FOR 3] is a discriminated

Schema Arrays

schema value; its type is a discriminated schema with its first index type the subrange 4..4and
its second index type the subrange 3..5. This discriminated schema is still 3 member of "the
schema Schema2D. '

it was mentioned above that a discriminated schema access is only permitted with a uniquely
discriminated schema. A uniquely discriminated schema is defined as any schema definition
having two formal discriminants in the formal discriminant part for each schema index type in the
array schema. This means that each of the upper and lower bounds of each index type has its
own formal discriminant. So the schema Schema2D is uniquely discriminated, whereas the
schema SmallVec from the preceding discussion of formal discriminants is not. We required ear -~
lier that a discriminated schema access itself be a member of the original schema. This is not
guaranteed when the discriminated schema is not uniquely discriminated. To see this, consider
again the schema SmallVec.
TYPE
Smallint = 0..10;
Smalivec(HighBound : Smallint) = ARRAY{O0.HighBound] OF REAL;
VAR
Vec7 : SmailVec(7);

Now if we were allowed to use Vec? in a discriminated schema access, say Vec?[3 FOR
4], then the type of the resuiting discriminated schema access would not be a member of the
schema SmallVec. Any member of SmallVec must have O as its lower bound; however, the
type of Vec?[3 FOR 4] has 3 as its lower bound. Clearly, this is not a member of the schema
SmallVec. :

The following example illustrates the use of discriminated schema access, declaration of a
uniquely discriminated schema, and schema array parameters.

PROGRAM Discrm__Schema__Access;
TYPE o
IndexType = 1.12;
Schema (L1,U1,L2,U2: indexType) =
ARRAY [L1.U1, L2.U2] OF ComponentType;
DiscrSchemat = Schema (1,10,1,12);
DiscrSchema2 = Schema (3,3,2,8);
DiscrSchema 3 = Schema (2,4,1,12);
VAR
DiscrSchema 1Value : DiscrSchema;
DiscrSchema2Value : DiscrSchema2;
DiscrSchema3Value : DiscrSchema 3;

PROCEDURE SchemaParm (VAR DiscrParm : Schema);

BEGIN
END;

U5

Schema Arrays

BEGIN
SchemaParm (DiscrSchema 1Value);
(*DiscrParm.L1 = 1
DiscrParm.U1 = 10
DiscrParmil2= 1
DiscrParm.U2 = 12%)

SchemaParm (DiscrSchema2Value);
SchemaParm (DiscrSchema 1Value[3, 2 FOR 7));
(*DiscrParm.L1= 3
DiscrParmUt = 3
DiscrParmlL2 = 2
DiscrParmU2 = 8%)

SchemaParm (DiscrSchema 1Vaiue[2 FOR 3]);
SchemaParm (DiscrSchema 3Value);
(*DiscrParm.L1 = 2
DiscrParmU1l1 = 4
DiscrParmlL2 = 1
DiscrParm.U2 = 12%)
END.

h. Example

PROGRAM ShowSchemaArrays,
- CONST
maxsize = 285;
$inciude 'other.consts.example’$

TYPE
Size = 1.Maxsize;
Matrix(Row,Col : Size) = ARRAY [1..Row, 1..Col] OF Real,

VAR
A : Matrix(10,5);
B : Matrix(5,10);

PROCEDURE MatrixMultiply (
VAR A : Matrix;
READONLY B : Matrix);

VAR
1,J,K : Size;
T :real;

C :Matrix(A.Row,B.Col);

L6

BEGIN (* MatrixMultiply ¥)
IF (A.Row = B.Col)
OR
(A.Col = B.Row)
THEN
BEGIN ‘
FOR1:= 1 TO A.Row DO
FORJ:= 1 TO B.Col DO
BEGIN
T:=0.0;
TRY
FORK:= 1 TO A.Col DO
T:=T + A[lJ] * B[K.,J]
RECOVER
CASE EscapeCode OF
FitPtOverfiow:
T := MaxReal;
FitPtUnder flow:
T := MinReal;
OTHERWISE
Escape (BscapeCode);
END;
CliJ]:=T,
END;
FOR1I:= 1 TO A.Row DO
FORJ:= 1 TO A.Col DO
A[l,J] := C[1,J}; (*return funky results¥*)
END
ELSE
Escape (BadMatrix);
END; (* MatrixMultiply *)

BEGIN
MatrixMultiply (A,B);
END.

Schema Arrays

47

Objects

L8

4. Objects

a. Introduction

The HP 3000 and Vision Computer families are segmented
machines. It is impossible to place Pascal variables in data
segments/objects, So the type classes object and offset have been
placed in MODCAL to correct this deficiency.

An object is a contiguous sequence of SU’s numbered from
zero to some maximum. An object may be dynamically created and
destroyed, and its lifetime 1is independent of any Pascal
scope. Upon creation, an object is given an initial size and a
maximum size in SU’s. An object may grow up to its maximum size and
may shrink down to. zero. Each object has a compile-time defined
storage area in its first n SU’s, where n is the size of this
static area (which may be O, e.g. RECORD END). The remaining space
in the object may be used as the programmer chooses.

A pointer in MODCAL is composed of +two parts: an object
specifier and an offset. An object specifier is declared and
used much in the same way that pointers are wused. The symbol
used for dereferencing an object specifier is '%’, while the
symbol used for dereferencing pointers is ’*’. A dereferenced ob-
Ject specifier with an offset forms a pointer. An offset is useless

in referencing data without a dereferenced object specifier.

Note: Heap pointers in MODCAL/3000 do not have the same under- |
lying representation as an object, offset pair.

Objects

b. Syntax Additions

Objects require the following changes to the syntax charts for
Pascal:

variable
e D el b > variable id ~-----=-----c--ccocceono- >+
| |
$ommmmmm— e —e - > field id ---=---=mcmccccccccccn—- >+

T T T e L L T T +
|
et +
l |
+--> *[* -+--> expression -+-->]’ ---ee--- >+
I ~ l l
| | v l
l +<mmmm- ,a, """ + l
I |
#--> %% —o-o> field id ====m=m==mmme-=m=ea- >+
| I
$mmmmm—c - O T L T T R >4+
|

v

or in grammar notation:

<variable>
-> <object_var> %’ (’(’ <offset_var>)’)?

<object_var>
-> <variable>

<offset_var>
-> <variable>

49

Objects

50

type
--+--> gsimple type ---------cc---ecccccccmcccncocnnna >4-~>
l A
T e L LT 4=t==> "’ e +-> type id ->+
I I g | "
4<-- "PACKED’ --+ +--> %’ ccccccecncoon + |
| I I I
+<- 'CRUNCHED’ -+ +-> *OFFSET’ -> 'TO’ -+ |
I : I
+==> "ARRAY® --> [’ -4--> simple type =+--> ']’ -+ |
I - I
| dee PP emmmoeenes + ||
I [
I R e L L L + |
b I
| +-=> 'OF’ --> type -~c-e-ccccecmmmcrccccccccemeeee >+
'. ~
+--> 'FILE’ --> "OF’ --> type =---vcmcececcceccocccnax >+
I I
+-=> 'SET’ --> *OF’ --> simple type ---=---=-=----c-- >+
I ‘ "
+=-=> *RECORD’ =--> field list --> ’END’ =----==ce-c-e- >+
I I
+--> schema arrays ----=--==c-cc-cccmcoccccccccnnnn0- >+
or in grammar notation:
<type>
-> <gimple_type>
-> (*PACKED’ | °CRUNCHED’) <type>
-> (| % | "OFFSET’ 'TO’) <type_ id>
-> ’ARRAY’ ’[> (<simple_type> list Ty '°p

*OF® <type>

-> °FILE® °OF’ <type>

-> ’SET’)OFQ

-> 'RECORD’

<type>

<field .list> ’'END’
-> <gchema definition>

-> <discriminated_schema>

<statement>
-> *WITHOBJECT’
’DO,

((<object _var> ’%’) list *,’)
<statement>

Objects

c. Object/Offset Model

VAR objl : % type_namel;
obj2 : % type_name2;
off : OFFSET TO type_namel;
ptrl : © type_namel;
ptr2 : ~ type_name2;
objl ====>+4--cc-cccccccno- ++ —--
| |l objs "o
I 1 I] : Static Area
| 11{ type_namel }|| :
off |+---ommc-momoooo- +|
I |
I |
I |
e g B e +| :
}: obji%(off)" =} :
|1{ type namel }|| GetObjectSize(objl)
[#==mmmmomoommaen +| s
l I
ptrl ====>44-----c-c-cocem- ++ :
Il ptrl” s
I e
|14 type name1 }|
b DD +|
l I
et + ---
obj2 ====>++-=m-c-mmccoceoo- 4 —--
| Il obj2k I
| |I{ type_name2 }|| : Static Area
I R +
off | |
I I
|| |
I I
===>|+ --------------- +| H
Il objek(off)~ 1|
I || GetObjectSize(obj2)
11{ type namel }|| :
J4-mcmmmmm e +]
I b
I I
ptr2 ====>4+-=---cccccc==-- ++ :
| ptr2” T
[1{ type_name2 }|
[#ommmmmmemeonaee +|
! |
4oemmmmm—emm—————e + ---

51

Objects

52

d. Semantic Definition

Consider the following MODCAL block:

TYPE
Foo = RECORD
intl, int2: integer
END;
Obj = %Foo;
OffsetInt = OFFSET TO integer;
VAR
systable : Obj;
b 4 : Fooj
off : OffsetiInt;
errcode : integer;
BEGIN

CreateObject(systable,100,100,errcode);

IF errcode = 0 THEN
BEGIN
systable%.intl :
systable%.int2 :
f := systablef;

1
systable%.intl;

MakeOffset(off, SUSizeof(Foo));
WITHOBJECT systable% DO
off” := T3
END;
END3

This declares systable as an object variable of type ’Obj’
with a static area containing two integers. The notation
systable% denotes systable’s static area and is a variable of
type Foo. The notation systable%(off) denotes a pointer of type
~“Integer. The first statement of the program stores a 1’ into
the first integer of the static area, and the second statement
copies the value of the first integer into the value of the second
integer in the static area. The third statement copies the entire
static area into f. The final two statements have the effect of
placing a seven following systable’s static area. See the sec-
tion on pointer arithmetic for the definition of MakeOffset.

As an abbreviated notation, a dereferenced object variable, sys-
table%, can be used as a variable in a Withobject list. 1In this use,
one can denote an offset in systable or part of systable’s static
area without having to qualify the offset or static area field
name with systable for the scope of the Withobject statement.

Note: On the 3660, only one object variable can be used in a .
Withobject list. ‘

The assignment and compatibility rules
offsets are the same as for pointers in Pascal.

Objects

for objects and

53

Objects

54

e. Object Manipulation :
The following predefined procedures which operate on
objects have been defined.

PROCEDURE Createobject (
VAR object : objectform;
size : ObjectSize;
maxsize : ObjectSize;
VAR status : errorcode);

The var parameter object contains the object number of
the object created. . The parameter size is the initial al-
location of space given to the object, and the parameter maxsize
is the maximum number of storage units that <the object may
grow - to. The var parameter status is an integer which indi-
cates the success of the operation (zero (0) = success).

PROCEDURE AlterObjectsize (
object : objectform;
newsize : ObjectSize;

VAR status : integer);

This predefined procedure alters the size of an object.
The var parameter object is the object whose size is to altered,
the value parameter newsize is the new size of the object, and the
var parameter status is an errocode vwhich indicates the success
or failure of the operation (zero (0) = success). If the newsize is
greater than the maxsize given in the call to Createobject, then the
results are system dependent.

PROCEDURE DestroyObject (
VAR object : objectform;
VAR status : integer);

This predefined procedure returns an object to the operating
system. The var parameter object is the object to be returned, and
the var parameter status is an integer which indicates the success
or failure of the operation (zero (0) = success).

Because target machines may provide more powerful operations
on objects through operating system intrinsics or a user may want to
gain access to an object maintained by the operating system or some
other user, the following operation is provided.

PROCEDURE AttachObject (
VAR object : objectform;

id objectid;

VAR status : integer);

se o0 o

or

Objects

PROCEDURE AttachObject (
VAR object : objectform;
id : objectid);
‘This predefined prbcedﬁre places the value parameter id into the
var parameter object, and returns the success or failure of the
operation in the var parameter status (zero (0) = success). It is

assumed that id is the object number of an already existing operating
system object.

FUNCTION Stack
: objectform;

This predefined function returns an object that corresponds to
the active process stack. The type of the object returned is struc-
turally compatible with any object having a fixed part with Sizeof
equal to zero. .

FUNCTION CurrentObject
: objectform;

This predefined function returns an object that corresponds to
the object refence of the most resently executed WITHOBJECT clause.
The type of the object returned is structurally compatible with any
object having a fixed part with Sizeof equal to zero. MODCAL/3000
will insure that DB points to this object when any procedure or func-
tion with a directive of EXTERNAL SPL is called.

FUNCTION GetObjectId (

Object: objectform
): objectld;

This predefined function returns the "object id" of the object
denoted by the value parameter object (basically the inverse of
AttachObject).

FUNCTION GetObjectSize (

Object: objectform
): ObjectSize;

This predefined function returns the number of SU’s currently
allocated to the object denoted by the value parameter object. - If
Stack is passed to GetObjectSize the size of the currently accessable
area is returned (HP3000 : S-DL, VISION : S-SB).

f. Pointer Arithmetic
The following predefined functions are provided to permit point-

er arithmetic. The types ObjectSize and ObjectDelta are defined in
-the portability foundation section.

55

Objects

56

PROCEDURE MakeOffset (
VAR offsetvar : offsetform;
value : ObjectDelta);

The var parameter offsetvar is made to point to the variable
beginning at the storage unit position given in <the value pa-
rameter value.

FUNCTION AddToOffset (
offsetvar : offsetform;
delta : ObjectDelta

): offsetform;

This predefined function adds the value parameter delta to the
value parameter offsetvar and returns this value. The type of offset
returned is identical to the type of the offset parameter.

PROCEDURE MakePointer (;
VAR ptr : pointerform;

object : objectform;
offset : offsetform);

This procedure constructs a pointer from the value parameters
object and offset, and returns the constructed pointer in the var pa-
rameter ptr. The reference type of the offset type and the pointer
type must be identical. MODCAL/3000 requires that the object parame-
ter be equal to the object returned by Stack.

PROCEDURE ButildPointer (

VAR ptr : pointerform;
object : Objectld;
offset : ObjectDelta);

This procedure constructs a pointer from the value parameters
object and offset, and returns the constructed pointer in the var pa-
rameter ptr. MODCAL/3000 requires that the object parameter be equal
0. This procedure is intended to replace a sequence of: AttachObject,
MakeOffset, MakePointer.

FUNCTION AddToPointer (

ptr : pointerform;
delta : ObjectDelta

): pointerform;

This predefined function returns a pointer value which
points delta storage units away from where the value parameter ptr
originally pointed. The type of the pointer returned is 1dent1cal to
the type of the pointer parameter.

Objects

FUNCTION OffsetPart (

ptr : pointerform
): offsetform;

This predefined function returns the offset part of the pointer
parameter. The offset has the same reference type as the pointer.

FUNCTION ObjectPart (

ptr : pointerform
): objectform;

This predefined function returns the object part of the pointer
parameter. The object has the same reference type as the pointer.

The meta-types "pointerform”, "objectform", and "offsetform" are
used above to indicate that these predefined procedures and functions
will accept and return any form of pointer type, object type, or off-
set type.

5T

Crunch Packing

§. Crunch Packing

The word ’crunched’” has been added to the reserved word list
to indicate that the components of a structured type are allocated
contiguously, first to last in a bit-aligned fashion. . Components may
cross any arbitrary machine storage unit boundry. The word ’crunched’
may be substituted for the word ’packed’.

Example

TYPE t = CRUNCHED RECORD
a:0..15;
b : -3276T7 .. 327673
c : #0 .. #255; {currect Char subrange)
END;

MSB LSB
T WA W W QT T Y
laaaalbbbbbbbbbd b
B S S ST R A RS
Jbbbbleccececee ||
$odotododotodododododototot-t

Layout of type crunched type t (assuming 16 bit SUs)
(note: the value of XXX is undefined)

The number of bits used to represent each component of a crunched
structured type is the minimum needed to represent the values associated
with that component. The calculation for the minimum number of bits is:

Integer Based Types (lo .. hi)
if (lo <> 0) or (hi <> 0)
then ceil(log2(max(abs(lo),succ(abs(hi))))) + ord(lo < 0)
else 1

Character & Enumerated Based Types (lo .. hi)
if ord(hi) > 0
then ceil(log2(succ{ord(hi))))
"else 1 '

Set Types (SET OF lo .. hi)
succ(abs{ord(hi) - ord(lo)))

Record, Array & Nonimbedded Descriptor Types
The sum of the minimum number of bits to represent all
of the components (consider largest variant only).

For example, it would take only four bits to represent a component
with the subrange type 0 .. 15 or the subrange type 14 .. 15, but it
will take five bits to represent a component with the subrange type -1

. 14,

58

Crunch Packing

The restrictions which apply to packed types also apply to crunched
types. This means that record comparisons are not allowed. In addi-
tion, it is not legal to pass by reference a component of a crunched
structured type to any procedure or function.

The primary purpose of crunch packing is to provide an implementa-
tion invariant specification of the data item type to data item
representation mapping. The implementation invariant requirement neces-
sitates the restrictions listed below.

No file types or any structured type containing any file, real,
string, or reference types may be crunch packed.

Any structured type contained in a crunched structured type must be
crunch packed also.

No structured type containing an Integer or Char may be crunch
packed. The range of these predefined types may be changed in the fu-
ture. The user can always replace the types Integer and Char with a sub-
range type.

NOTE: Crunched structures are temporarily required to be less than
or equal to 2048 words (16 k-bits) in length.

59

Move Procedures

6. Move_R _to_L & Move L_to_R Predefined Procedures

The Move predefined procedures provide generalized array structure
copying mechanisms in MODCAL. The syntax of the Move procedures is
identical to the syntax of the StrMove predefined procedure. The seman-
tics of the Move procedures are presented below in a Meta-MODCAL form.
The lower case identifiers denote the meta-parameters of the semantics.
The actual parameters to a Move are (structurally) type coerced to match
the formal parameters by the cm‘npiler.

TYPE
COUNT RANGE = 1 .. MAXINT}

SOURCE_TYPE (MIN, MAX : INTEGER) =
source_packing ARRAY [MIN .. MAX] OF component_type;

TARGET TYPE (MIN, MAX : INTEGER) =
target_packing ARRAY [MIN .. MAX] OF component_type;

PROCEDURE move r to_l move 1 to_r (

MOVE_CNT = : INTEGER;
READONLY SOURCE : SOURCE_TYPE;

SOURCE_BIAS : INTEGER;
VAR TARGET : TARGET TYFE;

TARGET BIAS : INTEGER
) OPTION INLINE;
VAR
LOOP_CNT,
LOOP_LIMIT : COUNT_RANGE;

60

Move Procedures

BEGIN { MOVE Semantics)

IF MOVE_CNT > O THEN
BEGIN { Move Some Components }
LOOP_LIMIT := Pred (MOVE_CNT),

v

A
wnnn

Assert (SOURCE_BIAS SOURCE.MIN, O, move_grror);
Assert (SOURCE_BIAS + LOOP_LIMIT SOURCE.MAX, 0, move_error);
Assert (TARGET BIAS TARGET.MIN, 0, move_error);

Assert (TARGET:BIAS + LOOP_LIMIT <= TARGET.MAX, 0, move_error);

v

CASE move_r_to_l move_l to_r OF
MOVE R TO L:
FOR LOOP CNT := LOOPLIMIT DOWNTO 0 DO
TARGET[LOOP CNT + TARGET BIAS]
SOURCE[LOOP CNT + SOURCE BIAS],

MOVE_L_TO_R:
FOR LOOP_CNT := 0 TO LOOP_LIMIT DO
TARGET[LOOP CNT + TARGET BIAS] =
SOURCE[LOOP CNT + SOURCE BIAS],
END; { CASE)}
END; { Move Some Components }
END; { MOVE Semantics }

The interpretation of each of the meta-parameters is given below:

component_ type '
This meta-parameter permits the basic generality of each Move,
such that the only restriction on component_type is that it
is identical for source and target.

source_packing
This meta-parameter permits the source to be unpacked, PACKED,
or CRUNCHED independent of target_packing.

target_packing
This meta-parameter permits the target to be unpacked, PACKED,
or CRUNCHED independent of source packing.

move_error
This meta-parameter permits implementation flexibility, such that
the method of signalling the error is not defined beyond that it is
signaled.

move_r to_l1l move 1l to r
This meta-parameter permits the description of both Move R to L
and Move L _to R in the procedure given above. The CASE on this
meta- parameter selects the component movement semantics for each
procedure.

MOVE Procedure Example

61

Move Procedures

62

MODULE MoveExample§

'IMPORT OtherModule;

EXPORT

PROCEDURE ExampleProc;

IMPLEMENT
TYPE
IxTypel = 0..20;
IxType2 = -3..17;

Schemal (L,H : IxType2) =

ARRAY [L..H,IxTypel] OF ImportedType;
Schema2 (L,H : IxTypel) =

CRUNCHED ARRAY [L..H] OF ImportedType;

Discrml = Schemal (0,15);

Discrm2 = Schema2 (5,10);

Arrayl = PACKED ARRAY [IxTypel] OF ImportedType;

Array2 = ARRAY [IxType2,IxTypel] OF ImportedType;
VAR

DVarl : Discrml;
DVar2 : Discrm2;
AVarl : Arrayl;
AVar2 : Array2;

PROCEDURE ExampleProc;
VAR

END.

ix : Integer;

BEGIN

Move L _to R (10,DVarl,6,AVar2,0);

FOR ix := 0 TO 9 DO (equlvalent FOR loop)
AVar2[ix] := DVarli[ix+6];

Move L to R (5, AVarZ[S],-3 AVarl,-3);
FOR ix := 0 TO 4 DO {equivalent FOR loop)}
AVarl[1x 3] := Avar2[5,ix-3];

Move R to L (6,DVar2,5,AVarl,5);

FOR ix := 5 DOWNTO 0 DO {equlvalent FOR loop)
AVarl[ix+5] := DVar2[ix+5];

END;

XCall Mechanism

7. XCall Mechanism

EXtermely Flexible Procedure CALL Mechanism

a. Background

Some system software needs to call routines whose identity and
parameter list structure are COMPLETELY UNKNOWN until the system is
executing. The unknown structure of the parameter list makes the
strong type checking of CALL/FCALL inadequate for this SMALL class of
system software. The predefined procedure XCall was included in BCG
MODCAL to support ONLY this small class of system software. The por-
tability of XCall is limited by the requirement that the system
programmer provide for the (machine dependent) structuring of the pa-
rameter list. The use of this feature should be VERY limited.

b. Definition

The following procedure declaration describes the calling se-
quence and semantics of the XCall predefined procedure. The defini-
tion of a supporting predifined procedure, predefined types and a
compiler option are described in a later section. Not all parameters
or operations of XCall may be supported on all target machines (e.g.
del_cnt for VISION), their use may be flagged.

Simply XCall checks the given preconditions. Copies a parameter
list from a buffer built by the system software into the "parameter-
area" of the target machine (e.g. the stack for the HP3000).
Invokes the routine denoted by the procedural variable paramenter.
The invoked routine may or may not clear/delete part of the
"parameter-area". When the invoked routine completes (a machine
dependent) part of the "parameter-area" may be copied into a buffer.
Finally the "parameter-area"” is cleared/deleted and XCall completes.

63

XCall Mechanism

6k

PROCEDURE XCall (

proc_var : NullProc;
ANYVAR in_ buf : SU;
in_cnt : ObjectSize;
del cnt : ObjectSize;
ANYVAR out_buf : SU;
out_cnt : ObjectSize
)
- OPTION
Inline
Default Parm (
in buf := NIL,
in ent := 0,
del _cnt := 0,
out_buf := NIL,
out_cnt := 0);
BEGIN
ASSERT (proc_var <> NIL » XCALL err);
ASSERT (in_cnt >= (del_cnt + out_cnt) » XCALL err);

ASSERT ((1n ent = 0) OR (HaveOpchrParm(in buf)) , XCALL err),
ASSERT ((out cnt = 0) OR (HaveOptVarParm(out buf)), XCALL err),

{coPY in_cnt SUs FROM in_buf INTO "PARAMETER-AREA"}
{INVOKE proc_var}
{COPY out_cnt SUs FROM "PARAMETER-AREA" INTO out_buf)

{CLEAR/DELETE in_cnt - del_cnt SUs FROM "PARAMETER-AREA"}

END;

c. Supporting Definitions .

The MakeRoutine predefined procedure is intended to provide a

‘mapping from a target machine dependent form to a target machine in-

dependent (language encapulated) form for procedural variables. If
the mapping can not made "proc_var" is set to NIL.

XCall Mechanism

PROCEDURE MakeRoutine (
VAR proc_var : NullProc;
plabel val : PLabel
)

 OPTION
Inline
Type_Coerce_Parms (:
proc_var := ’Similar_Form’);
BEGIN
{MAP plabel val INTO proc_var}
END;

The following type PLabel is added to the foundation module for
each target machine (operating system).

TYPE -
PLabel = -32768 .. -1; (*HP3000 - CST ext.*)
PLabel = -32768 .. 32767; (™HP3000 + CST ext.*)
_PLabel = MinInt .. MaxInt; (*VISION*)

The type NullProc is any user procedural type variable with no
parameters. For example:

TYPE
NullProc = PROCEDURE;

The XCALL MACHINE compiler option denotes to the compiler and
the system programmer which target machine’s parameter passing con-
ventions are used in any XCalls. This option must specify the same
target machine name as the $TARGET MACHINE compiler option did. This
option may appear anywhere between tokens. It must appear and must
specify a value other than NONE® before any XCall is encountered.
It should also be used to "bracket" any code used to build parameter
lists.

$XCALL_MACHINE 'NONE'$ {default}
$XCALL MACHINE *HP3000°$
$XCALL_MACHINE *VISION'S

d. XCall Example (HP3000)

65

XCall Mechanism

66

TYPE

NoParms = PROCEDURE;

VAR

ij,k : INTEGER;
buffer : ARRAY[1.3] OF INTEGER;

FUNCTION Min__Int (parml,parm2 : INTEGER). INTEGER;

EXTERNAL; -

BEGIN

$XCall__ MACHINE *HP3000’S
buffer[1] := 0; {function return space}
bufferf2] = i;

buffer[3] := j;

$PUSH,TYPE__ COERCION 'REPRESENTATION’S

. ————
XCall (NoParms(Addr{Min__Int)),
buffer, 6, {pushed onto stack}
4, {EXIT 4 from Min__Int}
k,2); {poped from stack}

$POP,XCALL_ MACHINE 'NONE’$
END;

Multiple Heaps

However, routines can be written to manage MODCAL objects in a "heap-like” fashion, by
manipulating offsets.

/I _/\
/ THE \
/ HEAP \
/N _ /\

/ _/\ [_/\
/ other \ / other \
/ Heap #1 \ / Heap #2 \
/N _ I\ _

/ _/\ L\
/ other / other \
/ Heap #3 \ / Heap #4 \

67

Multiple Heaps

1. Portability Foundation

In order to assist the programmer in writing programs which will
be portable between various machines, MODCAL must provide facilities for
determining attributes of the targeted computer architecture. This
section describes a set of predefined types, constants, and functions which
will provide this function. These facilities are essentially a subset of
the portability facilities found in Ada.

The cornerstone of these facilities is the notion of a storage unit
(SU). A SU is the most useful addressable unit of storage on the tar-
get machine. All memory-related features of MODCAL (e.g., pointers, off-
sets, and objects) are defined in terms of SU’s and many of the
predefined functions work in terms of SU’s.

In MODCAL/VCF integer is the default size for arithmetic expressionms.
No expression will use Longint arithmetic unless a variable or constant of
Longint is in the expression. Thus it possible to have arith-
metic traps on expressions involving only the integer type. Longint will
only be supported on Vision. The assignment compatibility rules which
apply to type integer also apply to type shortint and longint.

Note: LongInt constants MaxLongInt or MinLongInt or any constant
A which needs more than 32 bits of storage WILL NOT be available on the
MODCAL/VCF cross compiler.

Floating point is not generally required for systems program-
ming and so will not be addressed in this proposal.

Using the Sizeof function instead of absolute, hardcoded constants
will aid in portability, since the values will automatically be adjusted
when a program is recompiled for a different target machine. In
addition to Sizeof, MODCAL/3000 and MODCAL/VCF have:

Bitsizeof(t) Gives the minimum number of bits reQuired to
represent a variable of type t.

Bitsizeof(tl, t2, ... ,tn) Gives the minimum number of bits
required to represent a variable of type tl with tag field values t2, ... ,
tn.

BitSizeof(sl, s2, ... ,sn) Gives the minimum number of bits required
to represent a variable of the discriminated schema type select from the
schema array sl with discriminate values s2,...,sn.

SUsizeof (t)

SUsizeof (t1, t2, ... ,tn)

68

Portability Foundation

SUsizeof (s1, s2, ..., sn)

SUsizeof is similar to Bitsizeof but returns the storage size in SU
units instead of bits.

The following are the predefined types and constants. The exact
values of these types and constants are indicated below:

a. HP3000 Foundation

CONST
MachineName = *HP3000°;
Minint = -2147483648; (® -2%%31 %)
Maxint = 214TU836LT; (* (2%*31)-1 *)
MaxObjectSize = 32760; (* maximum number of SUs in a HP 3000
object *)
TYPE
SU = -32768..32767T; (* A type requiring a SU of space *)

(* 16 bits on HP 3000 *)
PointSU = “SU; .
OffsetSU = OFFSET TO SU;
ObjectSize = 0..MaxObjectSize;
ObjectDelta = -MaxObjectSize..MaxObjectSize;

ShortInt = -32768..32767; (* 16 bit, 2’s complement integer %)
Integer = Minint .. Maxint;

Objectid = Shortint;

b. Vision Foundation

CONST
MachineName = ’Vision’;
Minint = -2147483648; (* -2%%31 %)

‘Maxint = 2147u4836UT; (* (2%*31)-1 *)
MaxObjectSize = Maxint; (* maximum number of SUs in a Vision
object *)
{the following 2 constants are not implemented in the cross compiler}

Maxlongint = 9223372036854775807; (* (2**63)-1 Vision only*)

Minlongint = -9223372036854775808; (* -(2**63) Vision only *)
TYPE

SU = 0..255; (* A type requiring a SU of space *)

(* 8 bits on VCF %)
PointSU = ~SU;
OffsetSU = OFFSET TO SU;
ObjectSize = 0..MaxObjectSize;
ObjectDelta = -MaxObjectSize..MaxObjectSize;

ShortInt = -32768..32767; (* 16 bit, 2’s complement integer *)
Integer = Minint .. Maxint;
LongInt = -Minlongint .. Maxlongint; (* VCF machine only *)

=
=

69

Portability Foundation

Objectid = Integer;

70

Assembly Language

2. Assembly Language

A set of ©predefined procedures will ©be _provided,
which when seen by the compiler, will emit instructions that are
not normally generated, such as SINC, and DISP on the HP 3000,
and PROBE on VCF. This set of predefined procedures is in the
process of being determined. The list given here is for Version
5 of the Vision emulator only.

The normal method for accessing assembly language is to

 compile the code into a SPL procedure on the HP 3000, or using
the assembler on Vision.

a. HP3000 Predefined Procedures

TYPE
Word = ShortlInt; { SizeOf = 2 }
PAC = Any Packed Array of Char
or String

Function GetDl : Word;
Function GetQ : Word;
Function GetS : Word;
Function GetStatus : Word;
Procedure PutQ (Q_val : Word); {NOT IMPLEMENTED}
Procedure PutStatus (Status_val: Word);
Procedure MoveBytesWhile (var Source,
Target: PAC;
Alpha, Numeric, UpShift: Boolean;

var Position: Word);
Function ScanWhile (var Source: PAC;

TestChar, TermChar: Char;

var Position: Word) : Boolean;

Function ScanUntil (var Source: PAC;

TestChar, TermChar: Char;

var Position: Word) : Boolean;
Function CmpBytes (Len: Word;
var Source,
Target: PAC
) : Word;

b. Vision Predefined Procedures

TYPE
Byte = (opl, op2, op3); { SizeOf =1}
Byteld = Integer; { SizeOf = 4 }
Byte8 = LongInt; { SizeOf = 8 }

Procedure Break;
Procedure CIS (Channel: Byte;
Status: Byte
var ConditionCode: Byte);

71

Assembly Language

72

Procedure

Procedure
Procedure

Procedure
Procedure
Procedure
Procedure
Function

Procedure
Procedure

Procedure
Procedure
Procedure
Procedure
Procedure
Procedure

Procedure
Procedure
Procedure
Procedure
Procedure
Procedure

Procedure
Function

Procedure
Procedure
Procedure
Procedure
Procedure
Procedure

Procedure
Procedure

Procedure
Procedure

Length: Bytel;
StriPtr: Byte8;
Str2Ptr: Byte8;
var Index: Bytel;
var Result: Bytel);
CvLATVA (Operand: Byte;
' var GSVA: Byte8);
GSVA: Byte8;
var Physicalpage: Bytel);

CmpC (

CVWATPP (

Disable;
Disp;
Down (var Semaphore: Bytel);
Enable;
GetQ: Byte8;
Halt_Inst;
Hash (GSVA: Byte8;
var HashIndex: Bytel);
IEBxit;
Interrupt (var 0ldIntVal: Byte);
Ifc;
Idle;
ISwitch;
Launch (TCBA: Byte8;
TCBVA: Byte8);
MoveFSp4 (Selector: Byte;
var Destination: Bytel);
Selector: Byte;
var Destination: Byte8);
Operand: Bytel;
var Result: Bytel);
MoveTSp4 (Selector: Byte;
Source: Bytel);
MoveTSp8 (Selector: Byte;
Source: Byte8);
PDDel (Physpage: Bytel);
PDIns (Physpage: Bytel);
Probe (Ring: Byte; Access: Byte;
Address: Byte8;
Lenght: Byteli): Boolean;

MoveFSp8 (

MoveSemz (

PsDb;
PsEb;
PurgelB;
PurgeTLB;
RCl;
RDP (Channel: Byte;
var Data: ?777?
var Length: Byte;
var Result: Byte);
Restore_Registers (RegPtr: Byte8);
RIS (Channel: Byte;

var Status: Byte;

var Result: Byte);
RSwitch;

Save_Registers (var RegPtr: Byte8);

Assembly

Procedure SetIRT (Channel: Byte;
Intr_Pri_Level: Byte;
Parm: Byteld);
Procedure SetQ Exit (NewQ: Byte8);
Procedure SetQ IExit (NewQ: Byte8);
Procedure SIS (. Channel: Byte;
Status: Byte;
var Result: byte);
Procedure StartI0O_Inst (SubChannel: Bytel;
_ ChannelProg: Byte8);
Procedure Stop;
Procedure Switch;
Function Test4d : Boolean;
Function TestB : Boolean;
Function TestDown (var Semaphore: Bytel): Boolean;
Function TestOv : Boolean;
Function TestRef (GVSP: Byte8): Boolean;
Function TestSema (var Operand: Bytel;
Result: Byteli): Boolean;
Procedure Up (var Semaphore: Bytel);
Procedure VsimIn (ReadCount: Bytel;
var ActualCount: Bytel;
BufferPtr: Byte8);
Procedure VsimOut (WriteCount: Bytel;
BufferPtr: Byte8);
Procedure WDP (Channel: Byte;
Data: 77?7
var Lenght: Byte);

Language

The following Version 3 emulator prédefined procedures are

deleted from the ERS and the compiler:

IntOff
ReSetInt
IExit
CheckA
CheckB
EditTBL
EditIB
AsReset
GrpZero
CvLAtVP
CvVPtPP

73

Appendices

Appendix A: Options and Directives

1. PROCEDURE /FUNCTION DEFINITION OPTIONS

Definition options specify optional attributes of
a procedure or function (e.g. method of envoking it)
as part of the routine head; the form is:

PROCEDURE proc_name (parm name : type_name)

OPTION INLINE;
BEGIN
END;
the syntax is:

<routine heading>

-> <procedure_heading> <defn options> ?
-> <function_heading> <defn options> ?

<defn_options>
- -> ’OPTION’ <defn_opt> +

<defn opt>

->—<option_id> (<optiom_spec_list>
<option_spec_value>) ?

<option_id>
-> <identifier>

<option_spec_list>
-> *(* <opt_spec_assoc> LIST °,°

<opt_spec_assoc> .

-> <sgpec_parm_id> :=’ <expression>

<spec_parm_id>
-> <identifier>

<option_spec_value>

- -> <integer>

Pascal Definition Options
not a feature of Pascal

0

Appendices

MODCAL Definition Options and Restrictions
(which <option_id>’s can be used together)

MODCAL Parameter/Calling ' Optional Linker
Keyword Convention Parameters Binding Other
{}s
OPTION Unresolved {3};
OPTION Default_Parms{1} {};
OPTION Default_Parms{l1} Unresolved {3};
OPTION Inline {4};
OPTION Inline Default_Parms{1} {4}
OPTION Gateway {5};
OPTION Gateway Unresolved {5};
OPTION Gateway Default_Parms{1} {5});
OPTION Gateway Default Parms{l} Unresolved {5)};
OPTION Extensible_Gateway{2} {5};
OPTION Extensible Gateway{2} ' Unresolved {5}
OPTION Extensible Gateway{Z} Default_Parms{1} {5}
OPTION Extensible Gateway{z) Default Parms{l} Unresolved ({5)};
OPTION Interrupt_ “Parms{1) {3,6};
OPTION Interrupt_ “Parms{1) Unresolved {3,6};

{1} <opt_defn> -> <option_id> <option_spec_list>
{2} <opt_defn> -> <option_id> <option_spec_value> ?
{3} routine is declared on level 1

{4} routine is non-recursive

{5} routine is declared in EXPORT part

{6} PROCEDUREs only

note : Uncheckable__ ANYVAR can be used with any other
definition option

a. OPTION Inline

Definition option Inline denotes a procedure or function that
will be expanded inline wherever it is invoked. This macro-like ex-
pansion removes most procedure call overhead and increases the amount
of object code generated. This expansion is performed so as to
retain "Call-By-Reference" where a simple macro expansion would
result in "Call-By-Name" (i.e. variable parameters work the same with
OPTION Inline). Inline procedures or functions cannot invoke themsel-
ves or any other mutually recursive inline procedures or functions.
If an inline procedure or function contains any non-inline procedures or functions
$Private__Proc Off$ MUST BE specified for them.

b. OPTION Gateway

Definition option Gateway denotes a procedure or function that
is a gateway into +the MODCAL environment. That is, Gateway
procedures or functions are MODCAL procedures or functions that must
support the system defined calling conventions. In other words,
Gateway is used to denote intrinsics that can be called from any

75

-‘Appendices

76

programming language. This definition option can be specified only
on level one procedures or functionms.

c. OPTION Extensible_Gateway

Definition option Extensible Gateway denotes a procedure or
function that is ‘a gateway into the MODCAL environment and that has
an extensible parameter list. That is the parameter list has a fixed
number of non-extension parameters and any number of optional exten-
sion parameters. The integer value part of this definition option
specifies the number of non-extension parameters. This definition
option can be specified only on level one procedures or functions.
(see HaveExtension function)

NOTE: This option will be accepted by MODCAL/3000 but it will have
several special properties. The specification of extension parameters is not supported,
due to 3000 parameter stacking conventions. Code generated for one of these
Extensible__Gateway routines expects an EXTERNAL SPL VARIABLE (in
Pascal/MODCAL) style bit map. This implies that they should be specified as OPTION
VARIABLE EXTERNAL (in SPL) to BUILDINT .PUBSYS. The bit map is checked just
before any data references. Any omitted optional parameters are supplied (see Option
Default__Parms) and any omitted required parameter causes an Escape. This checking
delay permits the first statement in a routine to be a TRY, so missing parameter escapes
can be handled.

d. OPTION Interrupt Parms

Definition option Interrupt_Parms denotes a procedure that has
its parameter list allocated AS SPECIFIED BY the <option_spec_list>
part of this option. The <spec_parm_id> denotes the formal parameter
and the constant <expression> denotes the “activation base relative”
offset (on VCF the Q base register relative SU, byte, offset) of that
parameter. This option can be specified only on level one procedures.
Thesé procedure have their local variables allocated so as to not
overlay-any parameters. The consistency of the parameter offsets IS
NOT CHECKED. No procedure defined with the option may appear in any
procedure statement. No variable of a procedural type defined with
this option may appear in any Call. Only the standard activation
record or stack marker is deleted when this procedure exits.

NOTE: FORM OF PROCEDURE EXIT IS SUBJECT TO REVISION!!!
NOTE: MODCAL/3000 WILL TREAT THIS OPTION AS AN NO OP!!!
e. OPTION Default_Parms

Definition option Default Parms denotes which parameters may be
omitted in any actual parameter list for this procedure or function.
This is specified by the parameter name. appearing as the
<spec _parm_id> in the <option_spec_list> syntax, with an assignment
compatible constant <expression>. If the actual parameter is omitted
the compiler suppilies the default value for the formal parameter
corresponding to the position of the omitted actual parameter. This

Appendices

requires that the compiler supply all the parameters defined in the
formal parameter list for every call. Thus any formal parameter that
does not appear as a <spec_parm_id> in this definition option is
required and can not be omitted from ANY actual parameter list. The
only default value permitted for a variable (VAR), any variable
(ANYVAR), procedure, or function parameter is a SPECIAL CASE USE of
NIL. (see HaveOptVarParm function) .

f. OPTION Unresolved

Definition option Unresolved denotes a procedure or function
that is left unresolved by both the segmenter/linker and the loader.
The resolution of the symbolic name to its reference part is delayed
until the procedure or function is used (e.g. LOADPROC (); PCAL 0 /
CALLPROC (); CALLV). The suggested way to use this kind of procedure
or function is to use Addr to determine if it can be resolved (NIL
will be returned if it is not). This definition option can be
specified only on level one procedures or functions.

g. OPTION Uncheckable ANYVAR NOT IMPLEMENTED

Defintion option Uncheckable_ ANYVAR indicates the no "phantom" size-of pa-
rameter is to be created for the ANYVAR parameters in the formal parameter list. It
is an error to specify option Uncheckable_ ANYVAR if there are no ANYVAR formal
parameters. It is not possible to perform checking of ANYVAR parameter accesses if
this option is specified. The use of this definition option greatly increases the danger of
undetected errors in the use of ANYVAR parameters. (see Section D)

h. HaveExtension and HaveOPtVa.rPam'Functions

The predefined boolean function HaveExtension indicates for a
formal parameter name of the surrounding scope whether an actual ex-
tension parameter was supplied, either explicitly or by default
(TRUE) or the formal parameter appears after the last supplied actual
parameter in the parameter list (FALSE). If the formal parameter
name is not an extension parameter a compile time error is issued.

The predefined boolean function HaveOptVarParm indicates for a
formal parameter name of the surrounding scope whether an actual pa-
rameter was supplied (TRUE) or it was defaulted to NIL (FALSE). 1If
the formal parameter name 'is not an optional variable, any variable,
procedure, or function parameter a compile time error is issued.

T7

Appendices

i. Definition Option Example
$TARGET MACHINE °*VISION’$

PROCEDURE UseNewFuncs (
VAR Parml : Typel;
VAR Parm2 : Type2)
OPTION
Extensible_Gateway 1
Default_Parms (
Parml := NIL, , ‘
Parm2 := NIL);
BEGIN
IF HaveExtension (Parm2) THEN
IF HaveOptVarParm (Parml) THEN
IF HaveOptVarParm (Parm2) THEN
(" CALL 1 *)
- ELSE \"\;
(* CALL 3 *)

/' ELSE | ,
IF HaveOptVarParm (Parm2) THEN
(* CALL 2 *)
ELSE ‘
(* CALL L4 *)
ELSE
IF HaveOptVarParm (Parml) THEN
~ (* CALL 5 *)
~ Assert (NOT HaveOptVarParm (Parm2), 3)
ELSE
(* cALL 6 *)
Assert (NOT HaveOptVarParm (Parm2), 4);
END; . :

{ It is assumed that the following calls to "UseNewFuncs"
were compiled AFTER its parameter list was extended by
the addition of "Parm2")

(* CALL 1 *) UseNewFuncs (Varl,Var2);
(* CALL 2 *) UseNewFuncs (,Var2);

(* CALL 3 *) UseNewFuncs (Varl);

(* CALL 4 *) UseNewFuncs ();

{ It is assumed that the following calls to "UseNewFuncs"
were compiled BEFORE its parameter list was extended by
the addition of "Parm2" }

(* CALL 5 *) UseNewFuncs (Varl);
(* CALL 6 *) UseNewFuncs ()3

78

Appendices

2. PROCEDURE/FUNCTION DIRECTIVES
Pascal Procedure/Function Directives
#EXTERNAL
external SPL 3000 only
external SPL VARIABLE 3000 only
external FORTRAN
external COBOL
*FORWARD
*INTRINSIC :
MODCAL Procedure/Function Directives
*EXTERNAL
external ASSEMBLER Vision only NOT IMPLEMENTED

a. External

Directive External indicates that the procedure or function will
be compiled/assembled by another language processor (default is
Pascal). The MODCAL language processor assumes that the procedure or

. function will use the system defined calling conventions.

NOT IMPLEMENTED

e 4ocemmemecmecccem e ————a +
| | EXTERNAL |
| | - : any : SPL :ASSEMBLER]|
T T e - fmm——- - $mmmme - +
Gateway	yes	Error	Error	Error
Extensible Gateway	yes	Error	Error	Error
Unresolved	yes	yes	yes	yes
Inline	Error	Error	Error	some day?
Default Parms	yes	yes	yes	yes
Interrupt_Parms	yes	Error	yes	yes
Uncheckable ANYVAR	yes	yes	yes	yes
T $m———- $m———— - O —— +

{ any IN [COBOL,FORTRAN,SPL VARIABLE] }

b. Forward
Directive Forward indicates that the procedure or function body

occurs somewhere later in the compilation unit. This directive per-
mits mutually refering procedures and functions.

79

Appendices

NOT IMPLEMENTED

4omemmmecemem——enaa $mmmmm———— +
| | FORWARD |
e 4occcocann +
Gateway	yes
Extensible Gateway	yes
Unresolved	Error
Inline	Error
Default Parms	yes
Interrupt_Parms	yes
Uncheckable ANYVAR	yes
$ommemecceccemcn——- 4ecmcmeea +

¢. Intrinsic

Directive Intrinsic indicates that the procedure or function
declaration is contained in the system intrinsic file.

NOT IMPLEMENTED

Foom——eeememcem————— 4ocemmmceae- +
| | INTRINSIC |
4occcmcccccmcc e 4ecccccecaen +
Gateway	Error
Extensible Gateway	Error
Unresolved	yes
Inline	Error
Default_Parms	yes
Interrupt_Parms	Error
Uncheckable ANYVAR	yes
P $ocmmemee—an +

80

Appendices

3. COMPILER OPTIONS ‘ :
Compiler options specify compilation controls
(e.g. features allowed, disabling run-time checking);
the form is: '
$STANDARD LEVEL *BCG_MODCAL’$
PROGRAM prog name;
PROCEDURE proc_name
$EXEC_PRIVILEGE 0$
(parm_name : type_name);

$BEGIN_CHANGE *001601°$

.

$END_CHANGE *001601° ,PAGE$

Pascal Compiler Options
Compilation Unit Options
*COPYRIGHT

copyright
*EXTERNAL
© *GLOBAL
*HEAP_COMPACT
heap_compact ON
heap_compact OFF
“*HEAP_DISPOSE
heap_dispose ON
heap_dispose OFF
*SET
set
*SUBPROGRAM
subprogram
subprogram
*#USLINIT

'

R

9

Routine Head Options
*ALIAS
alias
SYMDEBUG
symdebug ON
symdebug OFF

L

Any Token Options, Deferred
*CHECK_ACTUAL_PARM
check actual parm 0..3
*CHECK_FORMAL_PARM
check_formal parm 0..3
*CODE
code ON
code OFF
*CODE_OFFSETS
code_offsets ON

81

Appendices

code_offsets OFF
*LINES)
* lines 20..MAXINT

*LIST_CODE

list_code ON

list_code OFF
*PRIVATE PROC

prin%e_proc.gg

private_proc OFF
*SEGMENT

segment '’
*SPLINTR

splintr
STATS

stats ON

stats OFF
*TABLES

tables ON

tables OFF
*TITLE

title
*XREF

xref ON

xref OFF

LR

L]

Any Token Options, Immediat

82

*ANSI :
ansi ON
ansi OFF
*ASSERT HALT
assert_halt ON
assert_halt OFF
*ELSE
else
*ENDIF
endif .
*FONT
font *°
*IF
if Y
*INCLUDE
include
*LIST
list ON
list OFF
*PAGE
*PARTIAL EVAL
partial eval ON
partial eval OFF
*RANGE
range ON
range OFF
*SKIP_TEXT .
skip_text ON

9

Appendices

skip text OFF
"’STANDARD LEVEL
standard level ‘ANSI’
standard level 'HP STANDARD’
standard__ level 'HP3000°
*WIDTH
width 10. .128

MODCAL Compiler Options
Compilation Unit Options
*ACD_VERSION
acd_version 3..5
CRUNCH_PACKING
crunch_packing ON
crunch_packing OFF
MULTIPLE_HEAPS
multiple heaps ON
multiple heaps OFF
INITIAL | EXEC PROBE
1n1t1al_exec_probe 0. .MAXINT
OBJECT_DEFINITION
object_definition ON
object_ “definition OFF
OPTION_ LOGGING
optlon_logglng ON
option_logging OFF
SCHEMA_ARRAYS
schema_arrays ON
schema_arrays OFF
*TARGET MACHINE
target_machine 'HP3000’
target] “machine VISION’

Routine Head Options
*CALL_PRIVILEGE
call_pr1v111ge 0..3
DYNAMIC SIDE EFFECTS_| OK
dynamlc s1de effects ok ON
dynamic_ s1de effects "ok OFF
*EXEC_PRIVILEGE
execdpr1v111ge 0..3
PROBE_RESOLUTION (see DEBUG)
probe_resolution 'NO PROBES’
probe_resolution ’ROUTINE’
probe_: “resolution *DECISION_PATH’
probe_: “resolution *STATEMENT®
probe_resolution *OPERATION’
STATIC | SIDE EFFECTS_OK
' statzc szde effects _ok ON
static_ “side effects ok OFF
UNDEFINED VAR CHECKING
undef1ned var_checking ON
undeflned var checklng OFF

83

Appendices

Any Token Options, Deferred .
BEGIN_CHANGE
beg1n change
CHANGE_INFO_WIDTH
change_info_width 4..30
END CHANGE 4
end _change
OBJECT SELECTION
obaect selection ON
object_selection OFF
PROBE_ INSERTION
probe insertion ON
probe_insertion OFF
SEARCH
search *°’
TABULATE_CHANGE _INFO
tabulate change info ON
tabulate change info OFF
*TYPE_COERCION
type_coercion ’NONE'
type_coercion ¥STRUCTURAL®
type_coercion ’REPRESENTATION’
type_coercion ’STORAGE’
type_coercion 'NONCOMPATIBLE’

9

L

Any Token Options, Immediate
INDEX CHECKING
index_checking ON
index _checking OFF
OPEN SCOPE _CHECKING
open_scope_pheck1ng ON
open_scope_checking OFF
*POP
*PUSH
REFERENCE_CHECKING
reference _checking ON
reference_checking OFF
*STANDARD LEVEL
standard level ’HP MODCAL’
standard level ’BCG MODCAL’
SUBRANGE CHECKING
ubrange checking ON
subrange _checking OFF
SCHEMA_CHECKING
schema_checklng ON
schema_checking OFF
TAG_CHECKING
tag_checking ON
tag_checking OFF
UNDEFINED PARM CHECKING
undefzned_parm_phecklng ON
undefined_parm_checking OFF
*XCALL_MACHINE
xcall_machine ’NONE’

84

Appendices

xcall machine 'HP3000’
xcall_machine 'VISION’

(*) denotes feature operational in current release MODCAL/3000
a. ADC Version

This compiler option is used to inform the compiler which version of the Vision ACD
is be used, so that the correct set of assembly instructions is made availible.

b. Alias

This compiler option substitutes an alias as an external name
for a procedure or function. See the Pascal/3000 reference manual.

c. Ansi

This compiler option causes all non ANSI Standard Pascal fea-
tures to be flagged. The default setting is OFF. See the Pascal/3000
reference manual.

d. Assert_Halt
This compiler option specifies that when an assertion fails, the
program will terminate. The default setting is OFF. See the

Pascal/3000 reference manual.

e. Begin Change NOT IMPLEMENTED

This compiler option specifies the identifying string to be made the most recent in the change
history of the source. The change history is displayed to the right of the source line with the
most resent change closest to the source.. See Tabulate__Change__Info option.

f. Call Privilege

This compiler option specifies the least privilege (largest numerical value) that any
procedure or function may be executing at when it invokes this procedure or function.
This compiler option provides the functionality of OPTION UNCALLABLE in
SPL /3000 (HP3000: 0 => Uncallable, 1 => Callable). Default is least privilege on target
machine (HP3000: 1, Vision: 3). .

g. Change Info Width NOT IMPLEMENTED

This compiler option specifies the number of characters displayed in each column of the
change history. Defauit is 8.

85

Appendices

86

h. Check_Actual_?arm

This compiler option specifies the level of checking the
Segmenter will perform when MODCAL calls a procedure or function.
The default setting is 1level 3. See the Pascal/3000 reference
manual.

i. Check Formal Parm

This compiler option specifies the level of checking the
Segmenter will perform when a procedure or function is called. The
default setting is level 3. See the Pascal/3000 reference manual.

Jj. Code

This compiler option casues object code to be generated at the
end of each procedure, function or outer block. The default setting
is on. See the Pascal/3000 reference manual.

k. Code Offsets

This compiler option causes a table of P locations to be printed
for each statement. The default setting is OFF. See the Pascal/3000
reference manual. :
1. Copyright

This compiler option inserts a copyright mnotice and the
specified name in the USL file. See the: Pascal/3000 reference

manual.

m. Crunch_Packing NOT IMPLEMENTED

Crunch__Packing ON tells the compiler that the Crunch Packing feature of MODCAL will be
used in the source. OFF tells the compiler that CRUNCHED will not be used; CRUNCHED will then
be flagged as an error. Default is ON.

Vn. Dynamic_Side Effects_Ok NOT IMPLEMENTED

This compiler option turns ON and OFF the ability to make modifications to the variables
referenced by reference types. Defauit is ON.

o. Else

This compiler option is used in conditional compilation. If the corresponding SIF ex-
pression is FALSE, then the source between the $SELSE and the corresponding SENDIF
will be compiled.

Appendices
p. EndIf

This compiler option is used in conditional compilation. SENDIF signals the end of a
S$IF block or a SELSE block.

q. End_Change NOT IMPLEMENTED

This compiler option specifies the (previously defined) identifying string that is to be removed
from the change history. if the identifying string appear more than once the most recent is
removed.

r. Exec_Privilege

This compiler option specifies the privilege at which this procedure or function will
execute. This compiler option provides the functionality of OPTION PRIVILEGED in
SPL /3000 (HP3000: 0 -> Priv-Mode, 1 => User-Mode). Default is least privilege on tar-
get machine (HP3000: 1, Vision: 3).

s. External

This compiler. option is used with the option Global to permit
separate compilation of procedures and functions. See Pascal/3000
reference manual.

t. Font

This compiler option is used to change the primary and alternate character set used
in the listing file (for use with 2680A laser printer) The string parameter is composed of
2 integers separated by a comma, the first is the number of the new primary set, and
the second is the number of the new secondary set. Note: the switch between the charac~
ter set can be done only within comments.

u. Global

This compiler option is used with the option External to permit
separate compilation of procedures and functions. See Pascal/3000
reference manual. '
v. Heap Compact

This compiler option causes free areas in the heap to be com-

bined. The default setting is OFF. See the Pascal/3000 reference
manual.

87’

Appendices

88

w. Heap Dispose

This compiler option permits disposed areas in the heap to be
reallocated. The default setting is OFF. See the Pascal/3000
reference manual.

x. If

This compiler option is used in conditional compilation. If the expression in the
string following the SIF evaluates to the logical value TRUE, then the source between
the SIF and the corresponding SENDIF or SELSE will be compiled. If the expression is
FALSE, then the source will be skipped. The expression may include the AND, OR, and
NOT operators and parenthesis. $IF may be nested to a depth of 16.

y. Include
This compiler option permits the inclusion of another file which
the compiler will process as source code. See the Pascal/3000

reference manual. :

z. Index_Checking NOT IMPLEMENTED

This compiler option turns ON and OFF the generation of checking
code for array indexing operations. Default is ON.

aa. Initial Exec_Probe NOT IMPLEMENTED

Not yet fully defined.

ab. Lines

This compiler option specifies the number of lines that will ap-
pear on a single page of the listing. The default setting is 55. See
the Pascal/3000 reference manual.

ac. List

This compiler option turns ON and OFF the compiler’s listing.
The default value is ON. See the Pascal/3000 reference manual.

ad. List_Code

This compiler option causes a mnemonic listing of the object
code generated to appear at the end of each procedure, function, or
outer block. The default setting is OFF. See the Pascal/3000
reference manual.

Appendices

ae. Multiple Heaps NOT IMPLEMENTED

Muitiple__Heaps ON tells the compiler that the Multiple Heap feature of MODCAL will be used in
the source. OFF telis the compiler that Multiple Heaps will not be used; any use of muitipie heap
features will then be flagged as an error. Default is OFF. Multipie heaps will not be available initial -
ly.

af. Object_Definition NOT IMPLEMENTED

Object__Definition ON tells the compiler that Object features will be used in the source. OFF
tells the compiler that Objects will not be used; any use of object features will then be flagged as
an error. Defauit is ON.

ag. Object_Selection (will be implemented)

This compiler option turns ON and OFF special code generation to
optimize the access of the object most recently selected in a
WITHOBJECT statement (e.g. on HP3000 calls to ExchangeDB). Default
is ON.

ah. Open_Scope_Checking NOT IMPLEMENTED

This compiler option turns ON and OFF generation of checking code for open scope checking.
The default value is ON.

ai. Option_Logging NOT IMPLEMENTED

This compiler option turns ON and OFF the generation of a statement by statement log file of

the compiler options in effect. The default setting is ON.
aj. Page

This compiler option causes the compiler 1listing to a line
printer to perform a page eject and start a new page. See the
Pascal/3000 reference manual.
ak. Partial Eval

This compiler option controls the way conditional (BOOLEAN) ex-
pressions are evaluated. Default is ON. See the Pascal/3000 reference

manual.

al. Pop

This compiler option restores the compile option to the state before the last Push.

89

Appendices

90

1. Compiler Options Unaffected by Pop

ACD__Version
Alias
Call__Privilege
Copyright
Exec__Privilege
External

Font

Global

Include

Page
Profile__Cnt
Push

Segment
Skip__Text
Splintr
Target__Machine
Title

am. Private_Proc

This compiler option is used to make (ON) nested procedures and functions (level >1)
private to the RBM containing the surrounding level 1. If it is OFF each procedure or
function is placed in a separate RBM, and must have a name unique at 15 characters.
Default is ON, See the Pascal/3000 reference manual. :

an. Probe_Insertion NOT IMPLEMENTED

This compiler option turns ON and OFF the generation of software probes without affecting
their syntactic resolution. Default is OFF. This option is set ON any time the Probe__Resolution
option is specified. ’

ao. Probe Resolution NOT IMPLEMENTED

This compiler option specifies the syntax unit resolution of software probes inserted into the
code generated. Default is that no probes are inserted.

ap. Push

This compiler option saves the current setting of options in an option set. No options
are changed.

1. Compiler Options Unaffected by Push

ACD__Version
Alias
Call__Privilege
Copyright
Exec__Privilege
External

Font

Global

Include

Page

Pop
Profile__Cnt
Segment
Skip__Text
Splintr
Target__Machine
Title

aq. Range

Appendices

This compiler option causes range checking code to be generated.
The default value is ON. See the Pascal/3000 reference manual.

1. Compiler Options Implied by $SRange ONS

$Index_ Checking ONS
SRaference__Checking ONS
$Subrange__Checking ONS$

2. Compiler Options Implied by SRange OFF$

$Index__ Checking OFF$
SRaference__Checking OFF$
$Subrange__Checking OFF$
$Open__Scope__Checking = OFF$
$Schema__Checking OFF$
$Tag__Checking OFF$
$Undefined__Parm__Checking OFF$

ar. Reference_Checking (will be implemented)

This compiler option turns ON and OFF generation of checking
code for references, i.e. pointer and object, offsets. The default

value is ON.

91

Appendices

92

as. Schema Arrays NOT IMPLEMENTED

Schema__Arrays ON tells the compiler that Schema Array features will be used In the source.
OFF telis the compiler that Schema Arrays will not be used; any use of schema array features will
then be flagged as an error. Default is OFF.

at. Schema_Checking NOT IMPLEMENTED

This compiler option turns ON and OFF generation of checking code for schema arrays. The
default value is ON.

au. Search NOT IMPLEMENTED

The string literal parameter for Search names external libraries to be searched when satisfy -
ing import lists. The libraries are searched in the order listed in the literal. This option overrides
all prior Search options. Exactly how Search works is implementation defined. it has not yet
been defined for MODCAL/VCF or MODCAL/3000.

av. Segment

This compiler option specifies the name for the current segment.
The default segment name is Seg’. See the Pascal/3000 reference
manual.

aw. Set

This compiler option is used in conditional compilation. $SET specifies all identifiers
to be used as flags in the conditional compilation of the soucre. (See SIF.) The string
which follows the $SET option contains a list consisting of an identifier, an ’=’, and the
value of the identifier, either TRUE or FALSE. Each clement is separated by a comma,
(e.g. SSET 'Red=TRUE Blue=FALSE’S)

ax. Skip Text

This compiler option causes the compiler to ignore all sub-
sequent source code, including any compiler options, until Skip Text
is turned OFF. See the Pascal/3000 reference manual.

ay. Splintr

This compiler option specifies which SPL intrinsic file to
search for a procedure or function declared with the INTRINSIC direc-
tive. The default file is Splintr.pub.sys. See the Pascal/3000
reference manual.

Appendices

az. Standard;Level

This compiler option specifies which syntax and semantics to ac-
cept. If the source code contains a feature which is not in the cur-
rent langage level, the compiler will issue a warning. See the
Pascal/3000 reference manual. ‘

ba. Static_Side Effects_Ok NOT IMPLEMENTED

This compiler option turns ON and OFF the ability to make modifications to noniocal variables.
Defauit is ON. :

bb. Stats NOT IMPLEMENTED

This compiler option produces statistical information about the
compilation. The default setting is OFF.

bc. Symdebug NOT IMPLEMENTED

This compiler option inserté symbolic debugging information into
the object code. The default setting is OFF.

bd. Subprogram

This compiler option permits compilation of a subset of level 1
procedures or functions.

be. Subrange Checking NOT IMPLEMENTED

This compiler option turns ON and OFF generation of checking
code for subrange violations. The default value is ON.

bf. Tables

This compiler option causes an idendifier map to be produced at
the end of each procedure, function or outer block. The map includes
the class, type, and address or constant value for each identifier.
The default setting is OFF. See the Pascal/3000 reference manual.

bg. Tabulate_Change_Info NOT IMPLEMENTED

This compiler option cause change information to appear in the right margin of the listing. The
Begin__Change and End__Change options are not listed while Tabulate__Change__Info is ON. The
default setting is ON. See Begin__Change option.

bh. Tag_Checking (will be implemented)
This compiler option causes checking code for references to

fields in the variant part of records to be checked against tag
fields. The default setting is OFF.

93

Appendiéés-

oYy

bi. Target Machine

This compiler option specifies which target machine to genérate
code for. '

bj. Title

This compiler option specifies the string to be printed next to
the page number on subsequent pages of the listing. See the
Pasca1/3000 reference manual.

bk. Type_Coercion

This compiler option specifies the level of type coercion to al-
low. The default setting is none.

bl. Undefined Parm Checking NOT IMPLEMENTED

This compiler option turns ON and OFF the generation of checking
code for references to optional parameters. Default is OFF.

bm. Undefined Var Checking NOT IMPLEMENTED

This compiler option turns ON and OFF the generation of checking code for references to local
variables not yet assigned to. Default is OFF.
bn. UslInit

This compiler option causes the USL file to be initialized to
empty. See the Pascal/3000 reference manual.

bo. Width
This compiler option specifies the number of columns which the
compiler will process from each input record. See the Pascal/3000

reference manual.

bp. XCall Machine ' -
See eXtremely flexible procedure CALL mechanism section.

bg. Xref

This compiler option causes a cross reference listing to be
produced for each procedure, function or outer block. The default
setting is OFF. See the Pascal/3000 reference manual.

Appendix B

1. MODCAL Data Types

Simple Types
Ordinal Types
Integer Based Types - integer
Character Based Types - char
Enumerated Based Types
Predefined - boolean
User Defined
Real Types
Single Binary Flt. Pt. - real
Double Binary Flt. Pt. - longreal
Reference Types
Routine Reference Types
Procedural Types - PROCEDURE
Functional Types - FUNCTION :
Data Reference Types
Pointer Types - ~
Object Types - %
Offset Types - OFFSET TO
Structured Types
Simple Structured Types
Record Types - RECORD CASE OF END
Array Types - ARRAY [] OF
Set Types - SET OF
Descripted Structured Types
Nonimbedded Descriptor Types
Schema Arrays - {) = ARRAY [] OF
Discriminated Schemas - ()
Imbedded Descriptor Types
File Types - FILE OF
String Types - STRING []

o Ead Eod Ead b b Ead Ead] o

Ll bt bt el b b B L

-
3

Ll b bt k)

-3

b

+ +
+ +
+ + 4N

SR A b b e B b e e e b e e e B B e s e Bl el e i e e b b e B K
+

B A b b b b B B b B B B Bl B

+
+
+

2. MODCAL Data Representation

Reference Part , . + +
Location Information -------------w--e--- ———————- + +
Nonimbedded Descriptor Information ------=--------- +

Data Value Part
Imbedded Descriptor Information

Active Component Position Information ---==-------+
Valid Component Count Information ----------------w- +
Value Bit Vector --------=-cccecocmccrnecmrcccccencennaa- +
Referenced Item Reference Part ------cc--ecccccccccccccaoa- +

T Y
++ 4+ + 4+ + 4
R E R

95

Appendix B

96

2. Location Information

The location information portion of the reference part of a data
item describes how to locate the data value part of the data item. In
its most generalized form this is an object offset pair or a static-
link STT-entry pair.

b. Nonimbedded Descriptor Information

The nonimbedded discriptor information portion of the reference
part of a data item describes what the discriminant_values associated
with that data item are. This can be viewed as dope vector
information.

c. Active Component Position Information

The active component position information portion of the data
value part of a data item describes which component of a sequence of
data items is currently contained in the value bit vector portion of
the data value part. This portion may contain additional
information.

d. Valid Component Count Information

The valid component count information portion of the data value
part of a data item discribes the number of valid components current-
ly contained in the value bit vector portion of the data value part.

e. Value Bit Vector

The value bit vector portion of the data value part of a data
item is the actual bit vector representing the value of the data
item. The value bit vector portion of structured data items contains
the value bit vector protions of all of the component data items plus
any "padding" bits.

f. Referehced Item Reference Part

The referenced item reference part portion of the data value
part of a data item contains the refernce part of the referenced
(pointed to) data item. This portion contains all the information
needed to locate and access the referenced (pointed to) data item.

Appendix C

Appendix C: Type Compatibility

1. Pascal Compatible Type Cbmpatihi]ities
Implicit Type Conversion for assignment

Identical Types (T1 <=> T2)
if either
(1) T1l.identifier = T2.identifier
(2) TYPE Tl.identifier = T2.idenitifier;
appears in a declaration part

Compatible Types (T1 <= T2)
if any

(1) T1 and T2 are Identical Types

(2) T1 and T2 are subranges of T3, or
Tl is a subrange of T2, or
T2 is a subrange of Tl

(3) TYPE T1 = SET OF T3; T2 = SET OF Th;,
and T3 and T4 are Compatible Types,
and Tl.packing = T2.packing

(4) T1 and T2 are PAC types with the same length or if a
value of either T1 or T2 is a literal whose length
<= the length of the other type which is a literal
or PAC, the literal is extended on the right with
blanks to reach a compatible type.

(5) T1 is a string type and T2 is a string type
or literal.

(6) TL and T2 are both Floating Point Types

Assignment Compatible Types (T1 <= T2)
A value of type T2 is assignment compatible with a
type T1 if any of the statements that follow are true
and the restrictions following them are observed.

(1) T1 and T2 are compatible types which are neither
file types mor structured types which {(recursively)
contain file types.

(2) T1 is a Real Type,
and T2 is an Integer Type

(3) T1 is a procedure type and T2 is a procedure
with a parameter list congruent (as defined
in HP Pascal) to the parameter list of Tl

(4) T1 is a function type and T2 is a function
with a parameter list congruent to the
parameter list of Tl and result type identical
to the result type of T1

The following rules must hold:

(1) If T1 and T2 are Ordinal Types,
then the value of type T2 must be in

97

Appendix C

98

Q

(3)

(4)

interval specified by T1

If T1 and T2 are Set Types, then

all members of the value of type T2 must be in
the interval of the base type of T1

If T1 is a string type, and T2 is any

string type or string literal, the length of the
value of T2 must be <= the maximun length of T1.
The length of the variable of type Tl is set to
the length of the value of type T2.

If T1 is a procedure or function type, then value
of T2 must have the same or wider scope than the
variable or parameter of type Tl being assigned
to. :

2. Pascal Incompatible Type Compatibilities
Explicit Type Coercion required for assignment

Structurally Compatible Types (T1 <=> T2)
Same number, order, and packing of Structurally
Compatible Typed components (1 for 1 mapping)

Two
any

(1)
(2)

(3)

(4)

(5)

types T1 and T2 are structurally compatible if
of the following are true: '

T1 and T2 are identical types
Tl and T2 are ordinal types and the
ORD(minimum value of T1)=ORD(minimum value of
T2) and the ORD(maximum value of T1)=ORD(
maximum value of T2)
AND
T1 & T2 base types are user enumerated types,
OR T1 & T2 base types are integer,
OR T1 & T2 base types are boolean,
OR T1 & T2 base types are char.
Tl and T2 are types of a procedure. Two
procedures have structurally compatible types
if they have the same number of parameters
and each corresponding parameter has the
same form (Var or value) and the type of
each corresponding parameter is structurally
compatible
Tl and T2 are types of a function. Two
functions have structurally compatible types
if they have the same number of parameters
and each corresponding parameter has the
same form (Var or value) and the type of
each corresponding parameter is structurally
compatible and the results types of both
functions are structurally compatible
T1 and T2 are data reference types of identical
form (i.e. both are either pointer, object, offset)
which reference data with structurally compatible types.

Appendix C

(6) TL and T2 are record types with the same
packing and each field in T1 is structurally
compatible with the corresponding field in
T2 and the number of fields in Tl= the
number of fields in T2 ;

(7) T1 and T2 are array types with identical packing
and structurally compatible components and index
types

(8) T1 and T2 are set types with identical packing and
structurally compatible base types

(9) T1 and T2 are file types with structurally compatible
component types

(10)T1 and T2 are schema types with structurally compatible
index types and structurally compatible component types
and identical packing

(11)T1 and T2 are string types with identical maximum
lengths

Representation Size Compatible Types (T1 <= T2)
BitSizeOf(T1) = BitSize0f(T2)

Storage Size Compatible Types (T1 <= T2)
SUSizeOf(T1) >= SUSizeOf(T2)

NonCompatible Types (Tl <=> T2)
(1) SizeOf(T1) < SizeOf(T2)
(2) SizeOf(T1) = SizeOf(T2)
(3) SizeOf(T1) > Size0f(T2)
- ANYTHING GOES -

Pascal/Modcal Special Case Compatibilities

(1) All Reference Types are Type Compatible with NIL
(2) All Set Types are Type Compatible with []

99

Appendix D

Appendix D:

100

1. ANSI Standard Pascal Reserved Words

AND FUNCTION PROGRAM
ARRAY GOTO RECORD
BEGIN IF REPEAT
CASE IN SET
CONST LABEL THEN
DIV MOD TO

DO NIL ' TYPE
DOWNTO NOT UNTIL
ELSE OF VAR
END OR WHILE
FILE PACKED WITH

FOR PROCEDURE

2. HP Standard Pascal Additions

OTHERWISE

3. HP Standard MODCAL Additions

DEFINITION IMPORT READONLY
EXPORT MODULE RECOVER
HIDDEN QUALIFIED TRY
IMPLEMENT

4, BCG Experimental MODCAL Additions

ANYVAR CRUNCHED OFFSET
OPTION WITHOBJECT

	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100

