HP 9800 Computer Systems

BASIC

Interfacing Techniques
for the 9826 Computer

[cickaro

ﬂﬁ HEWLETT

PACKARD

Warranty Statement

Hewlett-Packard products are warranted against defects in
materials and workmanship. For Hewlett-Packard Desktop
Computer Division products sold in the U.S.A. and Canada
this warranty applies for ninety (90) days from the date of
delivery.” Hewlett-Packard will, at its option, repair or replace
equipment which proves to be defective during the warranty
period. This warranty includes labor, parts, and surface
travel costs, if any. Equipment returned to Hewlett-Packard
for repair must be shipped freight prepaid. Repairs
necessitated by misuse of the equipment, or by hardware.
software, or interfacing not provided by Hewlett-Packard are
not covered by this warranty.

HP warrants that its software and firmware designated by HP
for use with a CPU will execute its programming instructions
when properly installed on that CPU. HP does not warrant
that the operation of the CPU, software, or firmware will be
uninterrupted or error free.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
A PARTICULAR PURPOSE. HEWLETT-PACKARD SHALL
NOT BE LIABLE FOR CONSEQUENTIAL DAMAGES.

*For other countries, contact your local Sales and Service
Office to determine warranty terms.

~)

BASIC

Interfacing Techniques
for the 9826 Computer

Part No. 09826-90020
Microfiche No. 09826-99020

Hewlett-Packard Desktop Computer Division
3404 East Harmony Road, Fort Collins, Colorado 80525

Copyright by Hewlett-Packard Company 1981

il Printing History

Printing History

New editions of this manual will incorporate all material updated since the previous edition.
Update packages may be issued between editions and contain replacement and additional
pages to be merged into the manual by the user. Each updated page will be indicated by a
revision date at the bottom of the page. A vertical bar in the margin indicates the changes on
each page. Note that pages which are rearranged due to changes on a previous page are not
considered revised.

The manual printing date and part number indicate its current edition. The printing date
changes when a new edition is printed. (Minor corrections and updates which are incorporated
at reprint do not cause the date to change.) The manual part number changes when extensive
technical changes are incorporated.

October 1981.. First Edition

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is not
furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of
this document may be photocopied, reproduced or translated to another program language without the prior written
consent of Hewlett-Packard Company.

Table of Contents

Chapter 1: Manual Overview

Introduction 1
Manual Organization 1
Chapter Preview 2

Chapter 2: Interfacing Concepts

Introduction 5
Terminology 5
Why Do You Need an Interface? 7
Electrical and Mechanical Compatibility 8
Data Compatibility. 8
Timing Compatibility. 8
Additional Interface Functions 8
Interface Overview. 9
The HP-IB Interface 9
The Serial Interface. 10
The GPIO Interface. 10
Data Representations 11
Bitsand Bytes 11
Representing Numbers. 12
Representing Characters 12
Representing Signed Integers 13
Internal Representation of Integers. 13

ASCII Representation of Integers 14
Representing Real Numbers. 15
Internal Representation of Real Numbers 15

ASCII Representation of Real Numbers. 15

The l/O Process 16
/O Statements and Parameters., 16
Specifyinga Resource 16
Firmware 16
Registers. 16

Data Handshake 17

VO Examples 18
Example Output Statement 18
Source-ltem Evaluation 18
Copying Data to the Destination. 19
Example Enter Statement. 19
Destination-Item Evaluation. 20

iii

iv Table of Contents

Chapter 3: Directing Data Flow

Introduction 21
Specifyinga Resource. 22
String-Variable Names 22
Device Selectors 23
HP-IB Device Selectors 24
[JOPath Names. 25
Assigning /O Path Names 26
Re-Assigning /O Path Names 28
Closing /O Path Names 28
[/O Path Names in Subprograms 29
Assigning I/0O Path Names Within Subprograms 29
Passing [/O Path Names as Parameters 30
Declaring I/O Path Namesin Common. 31
Benefits of Using /O Path Names 31
Execution Speed. 31
Re-Directing Data 32
Attribute Control 33

Chapter 4: Outputting Data

Introduction 35
Free-Field Outputs. 35
The Free-Field Convention 35
Standard Numeric Format. 36
Standard String Format 36

[tem Separators and Terminators 36
Outputs that Use Images. 40
The OUTPUT USING Statement 40
Images. 40
Example of UsinganImage 41
Image Definitions During Outputs 42
Numeric Images. 42
Sign Specifiers. 44
String Images. 45
Binary Images 46
Special-Character Images. 46
Termination Images 47
Additional Image Features 48
Repeat Factors. 48
Repeatable Specifiers. 48

Image Re-Use 49

Nested Images 50

Table of Contents

SettingUp Branches 82
Enabling Events to Initiate Branches. i 82
Interface Interrupts 82
Setting Up Interrupt Events 83
Enabling Interrupt Events. 83
Service Requests 84
Interrupt Conditions 86
Interface Timeouts. 87
Setting Up Timeout Events 87
Timeout Limitations 87

Chapter 8: The Internal CRT Interface

Introduction 89
CRT Display Description. 89
The Output Areaand theDispLine, 90
Outputtothe CRT. e 90
Numeric QUtPULSo 91
String OQUIPULS oo 91
Control Characterst 92
The Display FunctionsMode o 94
Output-Area MemoOryottt 94
Determining Above-Screen Lines L. 95
Screen AdAresses i 96
Scrollingthe Display 97
Entering fromthe CRT 98
Readinga ScreenLine R 98
Reading the Entire Output-Area Memory. 98
Additional CRT Features e 100
The DISP Line.o 100
Disabling the Cursor Character. 101
EnablingtheInsert Mode 101
Summary of CRT STATUS and CONTROL Registers 102
Chapter 9: The Internal Keyboard Interface
Introduction 103
Keyboard Description 103
ASCIland Non-ASCILKeys.o 104
The Shiftand Control Keys 104
Keyboard OperatingModes. i 106
The CapsLockMode 106
The Print All Mode 106
Modifying the Repeat and Delay Intervals 107
Entering from the Keyboard. 108
Sendingthe EOI Signal 109
Outputs to the Keyboard 110
Sending Non-ASCII Keystrokes to the Keyboard 110
Closure Keyso 113
Locking Out the Keyboard. 114
Sensing Knob Rotation. 116

Summary of Keyboard STATUS and CONTROL Registers. 117

\Y%

vi Table of Contents

Chapter 5: Entering Data

Introduction 51
Free-Field Enters. 51
[temn Separators. 52
[tem Terminators. 52
Entering Numeric Data. 52
Entering String Data 56
Terminating Free-Field ENTER Statements 58
EOI Termination 58
Entersthat Use Images 60
The ENTER USING Statement 60
Images. 60
Example of an Enter UsinganImage 60
Image Definitions During Enter 62
Numeric Images. 62
StringImages. 63
Ignoring Characters. 64
Binary Images 65
Terminating Enters that Use Images 66
Default Termination Conditions 66
EOI Re-Definition 66
Statement-Termination Modifiers 66
Additional Image Features 68
Repeat Factors. 68
Repeatable Specifiers. 68

Image Re-Use 68
Nested Images. 68

Chapter 6: Registers

Introduction 69
Interface Registers. 70

The STATUS Statement. s 70

The CONTROL Statement. s, 71
[/O Path Registers 72
Summary of /O Path Registers 73
Direct Interface Access 74

Chapter 7: Interface Events

Introduction 75
Review of Event-Initiated Branching. 75
Events. ... 75
Service Routines 76
Required Conditions. 76
A Simple Example. 76
Logging and Servicing Events 78
Software Priority 78
Hardware Priority 79

Servicing Pending Events. 81

Table of Contents

Chapter 10: Unified I/O

INtrodUctiono 119
The Format Attributes. 119
The Format On Attribute 120
Specifying [/O Path Attributes 121
The Format Off Attribute 121
INtegers 122

Real Numbers 122

String Data. 122
Conceptsof Unified /O 123
Data-Representation Design Criteria. 123
[/O Paths to Files. 124
BDAT Files 124
ASCILFIleS. . . oot 126

Data Representation Summary o 127
Applications of Unified /O 127
I/O Operations with String Variables. 127
Outputting Data to String Variables 127
Entering Data From String Variables 131
Taking a Top-Down Approach i, 133

Chapter 11: The HP-IB Interface

INtrodUcCHiono 139
Initial Installationo 139
Communicating with Devices. 141
HP-IB Device Selectorst 141
Moving Data Throughthe HP-IB 141
General Structure of the HP-IB. o 142
Examples of Bus Sequences i 144
Addressing Multiple Listeners 144
Addressing a Non-Controller 9826. 145
Secondary Addressing 146
Determining Controller Status and Address. 146
Changing the Controller Address 147
General Bus Management 148
Remote Control of Devices i 148
Locking Out Local Control 149
Enabling Local Control. 149
Triggering HP-IB Devices. 150
Clearing HP-IB Devices P 150
Aborting Bus Activity 151
Polling HP-IB Devices« e 151
Configuring Parallel Poll Responses., 151
Conductinga Parallel Poll 152
Disabling Parallel Poll Responses 152

Conductinga Serial Poll 152

vii

viii Table of Contents

HP-IB Interrupts e 153
The SRQ Interrupt 153
Servicing External Requests 154
Requesting Service from Another Computer. 155
Interrupts While Non-Active Controller 155
HP-IB Interrupt Registers. 156
Interface-State Information 158
HP-IB Control Lines 160
Handshake Lines 160
The Attention Line (ATIN) 161
The Interface Clear Line (IFC). 161
The Remote Enable Line (REN) 161
The End or Identify Line (EOI) 161
The Service Request Line (SRQ) 162
Determining Bus-Line States. 162
Advanced Bus Management 163
The Message Concept 163
Types of Bus Messages. 164
Bus Commandsand Codes......... 165
Address Commandsand Codes i 166
Explicit Bus Messages. 167
Examples of Sending Commands. 167
Examples of SendingData. 169

HP-IB Message MNemoOniCsottt e e e e 169
Servicing Interrupts that Require Data Transfers. 171
Summary of HP-IB STATUS and CONTROL Registers. 173
Summary of HP-IB READIO and WRITEIO Registers 178
READIO Registers. 178
HP-IB WRITEIO Registers. i 183
Summary of Bus Sequences 188

Appendix A

Non-ASCII Key Output Codes.t e A-1
US ASCII Character Codest A-2
European Display Characters. A-4

Katakana Display Characters i, A-5

Table of Contents ix

Figures
Block Diagram of the Computer 6
Backplane Hardware. 6
Functional Diagram of anInterface, 7
Block Diagram of the HP-IB Interface. 9
Block Diagram of the Serial Interface 10
Block Diagram of the GPIO Interface 10
Voltage and Positive-True Logic 11
ASCII Representation of Integers. 14
Internal Representation of Real Numbers. 15
ASCII Representation of Real Numbers 15
Data is Copied from Memory to a Resource During Output. 18
Data is Copied from a Resource to Memory DuringEnter 19
Diagram of the Default I/O Path Used for String-Variable /O Operations 23
Diagram of the Default [/O Path Used when a Device Selector is Specified........... 25
I/O Paths to Devices and Mass-Storage Files 26
[/O Path Variable Contents. i 27
Events with Higher Software Priority Take Precedence 77
An Event with Lower Software Priority Must Wait. 78
Interface Interrupts 82
Alphanumeric Display. 90
Line Positions of the Qutput Area i, 95
Repeat and Delay Intervals 107
Display After Running Program. 114
The FORMAT ON Attribute Requires Data To Be Formatted 120
The Internal Data Representation Is Maintained with FORMATOFF 120
HP-IB Interface 139
HP-IB Control Lines oo e 160
Tables
ASCII Representation of Integers. i 14
Internal Representation of Real Numbers. 15
ASCII Representation of Real Numbers 15
[/O Path Variable Contents. 27
Digit, Radix and Exponent Specifiers 42
SIgN Specifiers e 44
Character Specifiers 45
Binary Specifiers 46
Special-Character Specifiers. 46
Termination Specifiers 47
Numeric Specifiers. 62
String Specifiers. 63
Specifiers Used to Ignore Characters. 64
Binary Specifiers 65
Statement-Termination Modifiers 67
Summary of /O Path Registers 73
Hardware Priorities of 9826 Interfaces 80
Control-Character Functionsonthe CRT............ 93

X Table of Contents

Generating Control Characters with CTRL and ASCll Keys 105
Mnemonic Nature of Non-ASCIl Key Sequences 111
Look-Up Table for Non-ASCIl Key Sequences. 112
Data Representation Summary 127
Definition of EOI During ENTER Statements. 162
Bus Commands and Codes i 165
Address Commands and Codes i 166
HP-IB Message MNemONiCSottt et 170
Auxiliary Commands. 184
Non-ASCII Key Output Codes., S A-1
US ASCII Character Codest A-2
European Display Characters. i A-4

Katakana Display Characters i A-5

Chapter 1

Manual Overview

Introduction

This manual is intended to present the concepts of computer interfacing that are relevant to
programming the 9826. However, it is not a text dealing with computer architecture or hard-
ware in general. It is intended to present the topics that will increase your understanding of
interfacing to the 9826 computer. If you would like a more detailed discussion of these con-
cepts, you may want to consult a text on computer architecture.

Manual Organization

This manual is organized by topics. The text is arranged to focus your attention on interfacing
concepts rather than to present only a serial list of the BASIC-language I/O statements. Once
you have read this manual and are familiar with the general and specific concepts involved,
you can use either this manual or the BASIC Language Reference when searching for a
particular detail of how a statement works. Keep in mind that this manual has been designed
as a learning tool, not as a quick reference.

This manual begins by discussing the terminology and fundamental concepts of interfacing
and continues through the specific details of using each type of interface. To get maximum
benefit from the manual, you should read it serially through Chapter 7 to gain an complete
picture of the relevant terminology, the overall communication process, and the general pro-
gramming techniques common to all 9826 interfaces. The remainder of the chapters then
explain the details of programming each type of interface. Chapter 10, ‘“‘Unified /O, de-
scribes the overall interfacing scheme of the 9826 and provides some additional insight on
using the features of the machine to their fullest extent.

The brief descriptions in the next section will help you determine which chapters you will need
to read for your particular application.

2 Manual Overview

Chapter Preview

Chapter 2 - Interfacing Concepts

This chapter presents a brief explanation of relevant interfacing concepts and terminology. This
discussion is especially useful for beginners as it covers much of the why and how of of
interfacing. Experienced programmers may also want to skim this material to better understand
the terminology used in this manual.

Chapter 3 - Directing Data Flow

This chapter describes how to specify which computer resource is to send data to or receive
data from the computer. The use of device selectors, string variable names, and the new data
type known as “‘I/O path names’ in [/O statements are described. All readers should read all
of the information in Chapters 3 through 7.

Chapter 4 - Outputting Data

This chapter presents methods of outputting data to devices. All details of this process are
discussed, and several examples of free-field output and output using images are given. Since
this chapter completely describes outputting data to devices, you may only need to read the
sections relevant to your application.

Chapter 5 - Entering Data

This chapter presents methods of entering data from devices. All details of this process are
discussed, and several examples of free-field enter and enter using images are given. As with
Chapter 4, you may only need to read sections of this chapter relevant to your application.

Chapter 6 - Registers

This chapter describes the use and access of registers. The uses of registers are explained, and
programming techniques used to examine and change register contents are presented. Indi-
vidual interface register definitions are not contained in this chapter, but are discussed in the
corresponding interface chapter.

Chapter 7 - Interface Events

This chapter describes event-initiated branching from an interface’s point of view. The uses of
both interrupts and timeouts are discussed, and several examples are given. Again, the inter-
face-dependent details are not given in this chapter, but are covered in the chapter dedicated
to discussing programming techniques for each interface.

Chapter 8 - The Internal CRT Interface

This chapter describes accessing the built-in CRT display through its interface to the computer.
Since this device can be accessed via its interface, most of the programming techniques pre-
sented in Chapters 3 through 7 can be used with this device. If you have no experience in
programming interfaces, you will find this chapter very useful; many tools are presented that
will help you program and understand the other interfaces.

Chapter 9 - The Internal Keyboard Interface

As with Chapter 8, this chapter describes several programming techniques applicable to inter-
facing to the built-in keyboard, and several examples are given that will help you understand
many of the general programming techniques presented in previous chapters. All of the capa-
bilities of the keyboard are explained in this chapter.

Manual Overview 3

Chapter 10 - Unified I/O
This chapter presents several powerful capabilities of the /O scheme of the 9826. Interfacing
to devices is compared to interfacing to mass storage files, and the benefits of using the same

statements to access both types of resources are explained. This chapter is also highly recom-
mended to all readers.

Chapter 11 - The HP-IB Interface
This chapter describes programming techniques specific to the HP-IB interface. Details of

HP-IB communications processes are also included to promote better overall understanding of
how this interface may be used.

4 Manual Overview

Chapter 2

Interfacing Concepts

Introduction

This chapter describes the functions and requirements of interfaces between the computer
and its resources. Most of the concepts in this chapter are presented in an informal manner.
Hopefully, all levels of programmers can gain useful background information that will in-
crease their understanding of the why and how of interfacing.

Terminology

These terms are important to your understanding of the text of this manual. They are not
highly technical, so don’t worry about not having a PhD. in computer science to be able to
understand all of them. The purpose of this section is to make sure that our terms have the
same meanings.

The term computer is herein defined to be the processor, its support hardware, and the
BASIC-language operating system; together these system elements manage all computer re-
sources. The term computer resource is herein used to describe all of the ‘‘data-handling”
elements of the system. Computer resources include: internal memory, CRT display,
keyboard, and disc drive, and any external devices that are under computer control.

The term hardware describes both the electrical connections and electronic devices that make
up the circuits within the computer; any piece of hardware is an actual physical device. The
term software describes the user-written, BASIC-language programs. Firmware refers to the
pre-programmed, machine-language programs that are invoked by BASIC-language state-
ments and commands. As the term implies, firmware cannot be modified by the user. The
machine-language routines of the operating system are firmware programs.

6 Interfacing Concepts

(includes operating
system and user

memory)
Internal CRT
Memory Display Keyboard
Backplane
Connector
Data and A A
Control Buses
Backplane
Connectors
Di Built-in
Processor DI$C HP-IB < 25 >
rive Interface
HP-IB
Connector

Block Diagram of the Computer

The term /0 is an acronym that comes from “‘Input and Output’’; it refers to the process of
copying data to or from computer memory. Moving data from computer memory to another
resource is called output. During output, the source of data is computer memory and the
destination is any resource, including memory. Moving data from a resource to computer
memory is input; the source is any resource and the destination is a variable in computer
memory. Input is also referred to as enter in this manual for the sake of avoiding confusion
with the INPUT statement.

The term bus refers to a common group of hardware lines that are used to transmit informa-
tion between computer resources. The computer communicates directly with the internal re-
sources through the data and control buses. The computer backplane is an extension of
these internal data and control buses. The computer communicates indirectly with the exter-
nal resources through interfaces connected to the backplane hardware.

Electronic
Buffering

Hardware

Eight Connectors
in the Card Cage

Processor

Jeee LULJ

Backplane Hardware

Interfacing Concepts

Why Do You Need an Interface?

The primary function of an interface is, obviously, to provide a communication path for data
and commands between the computer and its resources. Interfaces act as intermediaries be-
tween resources by handling part of the ‘‘bookkeeping’” work, ensuring that this communica-
tion process flows smoothly. The following paragraphs explain the need for interfaces.

First, even though the computer backplane is driven by electronic hardware that generates
and receives electrical signals, this hardware was not designed to be connected directly to
external devices. The electronic backplane hardware has been designed with specific electrical
logic levels and drive capability in mind. Exceeding its ratings will damage this electronic
hardware.

Second, you cannot be assured that the connectors of the computer and peripheral are com-
patible. In fact, there is a good probability that the connectors may not even mate properly,
let alone that there is a one-to-one correspondence between each signal wire’s function.

Third, assuming that the connectors and signals are compatible, you have no guarantee that
the data sent will be interpreted properly by the receiving device. Some peripherals expect
single-bit serial data while others expect data to be in 8-bit parallel form.

Fourth, there is no reason to believe that the computer and peripheral will be in agreement as
to when the data transfer will occur; and when the transfer does begin the transfer rates will
probably not match. As you can see, interfaces have a great responsibility to oversee the
communication between computer and its resources. The functions of an interface are shown
in the following block diagram.

r-r—-——~—~>—"———"=—=——=—=——=——+— M
| Interface l
' Computer |
I Compatible) I
Connector Logic |
| Interf Level
— nterface Matcher |
- Logic Cabl
Computer I = - - [] abe | Peripheral
L Device
I — Device |
1 = Compatible |
| Logic Connector |
Level
| Matcher I
I I
I {
e e e e e e e e e e e e e —J

Functional Diagram of an Interface

7

8

Interfacing Concepts

Electrical and Mechanical Compatibility

Electrical compatibility must be ensured before any thought of connecting two devices occurs.
Often the two devices have input and output signals that do not match: if so, the interface
serves to match the electrical levels of these signals before the physical connections are made.

Mechanical compatibility simply means that the connector plugs must fit together properly. All
of the 9826 interfaces have 64-pin connectors that mate with the computer backplane. The
peripheral end of the interfaces may have unique configurations due to the fact that several
types of peripherals are available that can be operated with the 9826. Most of the interfaces
have cables available that can be connected directly to the device so you don’t have to wire
the connector yourself.

Data Compatibility

Just as two people must speak a common language, the computer and peripheral must agree
upon the form and meaning of data before communicating it. As a programmer, one of the
most difficult compatibility requirements to fulfill before exchanging data is that the format
and meaning of the data being sent is identical to that anticipated by the receiving device.
Even though some interfaces format data, most interfaces have little responsibility for match-
ing data formats; most interfaces merely move agreed-upon quantities of data to or from
computer memory. The computer must generally make the necessary changes, if any, so that
the receiving device gets meaningful information.

Timing Compatibility

Since all devices do not have standard data-transfer rates, nor do they always agree as to
when the transfer will take place, a consensus between sending and receiving device must be
made. If the sender and receiver can agree on both the transfer rate and beginning point (in
time), the process can be made readily.

If the data transfer is not begun at an agreed-upon point in time and at a known rate, the
transfer must proceed one data item at a time with acknowledgement from the receiving
device that it has the data and that the sender can transfer the next data item; this process is
known as a ‘“‘handshake’”. Both types of transfers are utilized with different interfaces and
both will be fully described as necessary.

Additional Interface Functions

Another powerful feature of some interface cards is to relieve the computer of low-level tasks,
such as performing data-transfer handshakes. This distribution of tasks eases some of the
computer’s burden and also decreases the otherwise-stringent response-time requirements of
external devices. The actual tasks performed by each type of interface card vary widely and
are described in the next section of this chapter.

Interfacing Concepts 9

Interface Overview

Now that you see the need for interfaces, you should see what kinds of interfaces are avail-
able for the 9826. Each of these interfaces is specifically designed for specific methods of data
transfer; each interface’s hardware configuration reflects its function.

The HP-IB Interface

This interface is Hewlett-Packard’s implementation of the IEEE-488 1975 Standard Digital
Interface for Programmable Instrumentation. The acronym ‘“HP-IB” comes from Hewlett-
Packard Interface Bus, often called the ‘‘bus’’.

Logic and Shield
Grounds

8

i

Data
—
HP-IB
Interface
Handshake S | Shielded Cable
Data and 3 8 to Device(s)
Control Hardware S
Backplane and S
Connector Firmware Control c
< 5 > a
Yo
[aV]

N

Block Diagram of the HP-IB Interface

The HP-IB interface fulfills all four compatibility requirements (hardware, electrical, data, and
timing) with no additional modification. Just about all you need to do is connect the interface
cable to the desired HP-IB device and begin programming. All resources connected to the
computer through the HP-IB interface must adhere to this IEEE standard.

The “‘bus’ is somewhat of an independent entity; it is a communication arbitrator that pro-
vides an organized protocol for communications between several devices. The bus can be
configured in several ways. The devices on the bus can be configured to act as senders or
receivers of data and control messages, depending on their capabilities.

10

Irterfacing Concepts

The Serial Interface

The serial interface changes 8-bit parallel data into bit-serial information and transmits the
data through a two-wire (usually shielded) cable; data is received in this serial format and is
converted back to parallel data. This use of two wires makes it more economical to transmit
data over long distances than to use 8 individual lines.

Backplane
Connector

Data and

Control I

>

Parallel Data

Serial
Interface
Hardware

Bit-Serial Data

1
1 Parallel/Serial

Converter
(UART)

(In)

(Out)
Handshake,

il

Special Purpose

6

<

Grounds

7

G

N N/

50-Pin Connector

Shielded Cable
to a Device

Block Diagram of the Serial Interface

Data is transmitted at several programmable rates using either a simple data handshake or no

handshake at all.

The GPIO Interface

This interface provides the most flexibility of the three interfaces. It consists of 16 output-data
lines, 16 input-data lines, two handshake lines, and other assorted control lines. Data is trans-
mitted using several types of programmable handshake conventions and logic sense.

Backplane
Connector

Data and

| Control |

s

GPIO
Interface
Hardware

Parallel Data Out

16

V.

Parallel Data In

16

AN

Handshake

4

e

Special Purpose

50-Pin Connector

6

Grounds

7

VANVANVAN

N N\

Block Diagram of the GPIO Interface

Shielded Cable
to a Device

Much of the flexibility of this interface lies in the fact that you have almost direct access to the
internal data bus for outputting and entering data.

Interfacing Concepts

Data Representations

As long as data is only being used internally, it really makes little difference how it is repre-
sented; the computer always understands its own representations. However, when data is to
be moved to or from an external resource, the data representation is of paramount impor-
tance.

Bits and Bytes

Computer memory is no more than a large collection of individual bits (binary digits), each of
which can take on one of two logic levels (high or low). Depending on how the computer
interprets these bits, they may mean on or not on (off), true or not true (false), one or zero,
busy or not busy, or any other bi-state condition. These logic levels are actually voltage levels
of hardware locations within the computer. The following diagram shows the voltage of a
point versus time and relates the logic levels to voltage levels.

Voltage of
a Point
A
+5v
- Logic High
\,\J/\ Logic Low
Logic Ground >
(Ov) ty to ta Time

Voltage and Positive-True Logic

In some cases, you want to determine the state of an individual bit (of a variable in computer
memory, for instance). The logical binary functions (BIT, BINCMP, BINIOR, BINEOR,
BINAND, ROTATE, and SHIFT) provide access to the individual bits of data.

In most cases, these individual bits are not very useful by themselves, so the computer groups
them into multiple-bit entities for the purpose of representing more complex data. Thus, all
data in computer memory are somehow represented with binary numbers.

The computer’s hardware accesses groups of sixteen bits at one time through the internal data
bus; this size group is known as a word. With this size of bit group, 65536 (=2 1 16) different
bit patterns can be produced. The computer can also use groups of eight bits at a time; this
size group is known as a byte. With this smaller size of bit group, 256 (=2 1 8) different
patterns can be produced. How the computer and its resources interpret these combinations
of ones and zeros is very important and gives the computer all of its utility.

11

12

Interfacing Concepts

Representing Numbers

The following binary weighting scheme is often used to represent numbers with a single data
byte. Only the non-negative integers 0 through 255 can be represented with this particular
scheme.

Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 0 0 1 0 1 1 0

Value = 128| Value = 64 | Value = 32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1

Notice that the value of a 1 in each bit position is equal to the power of two of that position. For
example, a 1 in the Oth bit position has a value of 1 (=2 1 0), a 1 in the 1st position has a value
of 2 (=21 1), and so forth. The number that the byte represents is then the total of all the
individual bit’s values.

Determining the Number Represented

Number represented =

4
0
= 16 2+ 4+ 16 + 128 = 150
0
0
8

The preceding representation is used by the “NUM” function when it interprets a byte of
data. The next section explains why the character “A” can be represented by a single byte.

100 Number=NUM("A"™)
110 PRINT " Number = "iNumber
120 END

Printed Result
Number = 65

Representing Characters

Data stored for humans is often alphanumeric-type data. Since less than 256 characters are
commonly used for general communication, a single data byte can be used to represent a
character. The most widely used character set is defined by the ASCII standard'. This stan-
dard defines the correspondence between characters and bit patterns of individual bytes.
Since this standard only defines 128 patterns (bit 7 = 0), 128 additional characters are de-
fined by the 9826 (bit 7 = 1). The entire set of the 256 characters on the 9826 is hereafter
called the “‘extended ASCII"’ character set.

1 ASCII stands for ‘‘American Standard Code for Information Interchange’”. See the Appendix for the complete table.

Interfacing Concepts

When the CHRS$ function is used to interpret a byte of data, its argument must be specified by
its binary-weighted value. The single (extended ASCII) character returned corresponds to the
bit pattern of the function’s argument.

100 Number=G65 ! Bit pattern is "0Q1000001"
110 PRINT " Character is "3

120 PRINT CHR$(Number)

130 END

Printed Result
Character is A

Representing Signed Integers

There are two ways that the computer represents signed integers. The first uses a binary
weighting scheme similar to that used by the NUM function. The second uses ASCII charac-
ters to represent the integer in its decimal form.

Internal Representation of Integers

Bits of computer memory are also used to represent signed (positive and negative) integers.
Since the range allowed by eight bits is only 256 integers, a word (two bytes) is used to
represent integers. With this size of bit group, 65536 (=2 1 16) unique integers can be repre-
sented.

The range of integers that can be represented by 16 bits can arbitrarily begin at any point on
the number line. In the 9826, this range of integers has been chosen for maximum utility; it
has been divided as symmetrically as possible about zero, with one of the bits used to indicate
the sign of the integer.

With this ‘2’s complement’’ notation, the most significant bit (bit 15) is used as a sign bit. A
sign bit of 0 indicates positive numbers and a sign bit of 1 indicates negatives. You still have
the full range of numbers to work with, but the range of absolute magnitudes is divided in half
(— 32768 through 32767). The following 16-bit integers are represented using this 2’s-
complement format.

Binary representation Decimal equivalent
1111 1111 1111 1111 -1
0000 0000 0000 0001 1
1111 1111 0000 0001 —255
0000 0000 1111 1111 255

sign biti[’ T>2T0
2114 217
2713

218

13

14

Interfacing Concepts

The representation of a positive integer is generated according to place value, just as when
bytes are interpreted as numbers. To generate a negative number’s representation, first derive
the positive number’s representation. Complement (change the ones to zeros and the zeros to
ones) all bits, and then to this result add 1. The final result is the two’s-complement repre-
sentation of the negative integer. This notation is very convenient to use when performing
math operations. Let’s look at a simple addition of 2 two’s-complement integers.

Example: 3+(-3) = ?

First, +3 is represented as: 0000 0000 0000 0011
Now generate — 3’s representation:

first complement + 3, 1111 1111 1111 1100
then add 1 + 0000 0000 0000 0001
—3’s representation: 1111 1111 1111 1101
Now add the two numbers: 1111 1111 1111 1101
+ 0000 0000 0000 0011

1< l<— carry on

final carry 0000 0000 0000 0000 all places

not used

ASCII Representation of Integers

ASCII digits are often used to represent integers. In this representation scheme, the decimal
(rather than binary) value of the integer is formed by using the ASCII digits O through 9
{CHR$(48) through CHR$(57), respectively}. An example is shown below.

Example

The decimal representation of the binary value “1000 0000 is 128. The ASCII-decimal
representation consists of the following three characters.

Character 1 2 8

Decimal value
of character

49 50 56

Binary value

of character 00110001 | 00110010 | 00111000

Interfacing Concepts

Representing Real Numbers

Real numbers, like signed integers, can be represented in one of two ways with the 9826.
They are represented in a special binary mantissa-exponent notation within the 9826 for
numerical calculations. During output and enter operations, they can also be represented with
ASCII-decimal digits.

Internal Representation of Real Numbers

Real numbers are represented in the 9826 using a special binary mantissa-exponent
notation'. With this method, all numbers are represented by a 52-bit, two’s-complement,
signed mantissa and a 11-bit, biased, signed exponent. Since this is a binary representation,
each place value is still an integral power of two. The real number “1/3" is shown below using
this representation.

Byte 1) 3 4 8

Decimal value

of character 63 213 85 85 85

Binary value

of characters ?0111111 1101(2101 01010101 01010101 ... | 01010101
exponent sign exponent mantissa sign mantissa

Even though this notation is an international standard, most external devices don’t use it;
most use an ASCII-digit format to represent decimal numbers. The 9826 provides a means so
that both types of representations can be used during I/O operations.

ASCII Representation of Real Numbers

The ASCII representation of real numbers is very similar to the ASCII representation of inte-
gers. Sign, radix, and exponent information are included with ASCII-decimal digits to form
these number representations. The following example shows the ASCII representation of 1/3.
Even though, in this case, 18 characters are required to get the same accuracy as the eight-
byte internal representation shown above, not all real numbers represented with this method
require this many characters.

ASCII characters 0 . 313|333 [3|3|3]|]33(3|3|3[3][|3]3

Decimal value
of characters

48 {46 | 51 |61 |51 |51 151 511515151 (51 (5151|5151 }51]51

1 The internal representation used for real numbers is the IEEE standard 64-bit floating-point notation.

15

16

Interfacmag Concepts

The I/O Process

When using statements that move data between memory and internal computer resources.
you do not usually need to be concerned with the details of the operations. However, you
may have wondered how the computer moves the data. This section takes you "“behind the
scenes’ of /O operations to give you a better intuitive feel for how the computer outputs and
enters data.

I/O Statements and Parameters

The /O process begins when an /O statement is encountered in a program. The computer
first determines the type of I/O statement to be executed (such as. OUTPUT. ENTER USING.
etc.). Once the type of statement is determined. the computer evaluates the statement’s
parameters.

Specifying a Resource

Each resource must have a unique specifier that allows it to be accessed to the exclusion of all
other resources connected to the computer. The methods of uniquely specifying resources
(output destinations and enter sources) are device selectors, string variable names. and 1/0
path names. These specifiers are further described in the next chapter.

For instance. before executing an OUTPUT statement, the computer first evaluates the
parameter which specifies the destination resource. The source parameter of an ENTER state-
ment is evaluated similarly.

QUTPUT Dest_rarameters>ource_item
ENTER Sourc_rarametersDest_item

Firmware

After the computer has determined the resource with which it is to communicate, it “‘sets up”
the moving process. The computer chooses the method of moving the specified data accord-
ing to the type of resource specified and the type of I/O statement. The actual machine-
language routine that executes the moving procedure is in firmware. Since there are differ-
ences in how each resource represents and transfers data, a dedicated firmware routine must
be used for each type of resource. After the appropriate firmware routine has been selected,
the next parameter(s) must be evaluated (i.e., source items for OUTPUT statements and
destination items for ENTER statements).

Registers

The computer must often read certain memory locations to determine which firmware
routines will be called to execute the 1/0 procedure. The content of these locations, known as
registers, store parameters such as the type of data representation to be used and type of
interface involved in the I/O operation.

Interfacing Concepts

An example of register usage by firmware is during output to the CRT. Characters output to
this device are displayed beginning at the current screen coordinates. After the computer has
evaluated the first expression in the source-item list, it must determine where to begin display-
ing the data on the screen. Two memory locations are dedicated to storing the X’ and “Y”’
screen coordinates. The firmware determines these coordinates and begins copying the data
to the corresponding locations in display memory.

The program can also determine the contents of these registers. The statements that provide
access to the registers are described in Chapter 6. The contents of all registers accessible by
the program are described in the interface programming chapters.

Data Handshake

Each byte (or word) of data is transferred with a procedure known as a data-transfer hand-
shake (or simply ‘*handshake’’). It is the means of moving one byte of data at a time when the
two devices are not in agreement as to the rate of data transfer or as to what point in time the
transfer will begin. The steps of the handshake are as follows.

The sender signals to get the to get the receiver’s attention.
The receiver acknowledges that it is ready.
A data byte (or word) is placed on the data bus.

BN

The receiver acknowledges that it has gotten the data item and is now busy. No further
data may be sent until the receiver is ready.

5. Repeat these steps if more data items are to be moved.

17

18

[teriacmg Coneepts

I/O Examples
Now that you have seen all of the steps taken by the computer when executing an l/O state-

ment, let's look at how two typical I/O statements are executed by the computer.

Example Output Statement

Data can be output to only one resource at a time with the OUTPUT statement (with the
exception of the HP-IB Interface). This destination can be any computer resource, which is
specified by the destination parameter as shown below.

/—the destination parameter

OUTPUT Destinationi Strind$ sCHR$(C+32),"That’s all”

the source items are expressions

The source of data for output operations is always memory. Either string or numeric expres-
sions can specify the actual data to be output. The flow of data during output operations is
shown below. Notice that all data copied from memory to the destination resource by the
OUTPUT statement passes through the processor under the control of operating-system firm-
ware.

Internal Memory

Source String
Expression(s) Variable

Data Bus

Data Flow To Other Resources

P e

{irs

Processor

Data is Copied from Memory to a Resource During Output

Source-Item Evaluation

The source items. listed after the semicolon and separated by commas. can be any valid
numeric or string expression. As the statement is being executed. these expressions must be
individually evaluated and the resultant data representation sent to the specified destination.
The results of the evaluation depend on the type of expression (numeric or string) and on
which data representation (ASCII or internal) is to be used during the I/O operation.

If the expression is a variable and the internal data representation is to be used. the data is
ready to be copied byte-serially (or word-serially) to the destination: otherwise. the expression
must be completely evaluated. The representation generated during the evaluation is stored in
a temporary variable within memory. In both cases, once the beginning memory location and
length of the data are known, the copying process can be initiated.

Interfacing Concepts

Copying Data to the Destination

The 9826 employs “‘memory-mapped’ 1/O operations; all devices are addressable as memory
locations. All output operations involve a series of two-step processes. The first step is to copy
one byte (or word) from memory into the processor. The second step is then to copy this byte
(or word) into the destination location (a memory address). Each item in the list is output in
this serial fashion. The appropriate handshake firmware routine is executed for each byte (or
word) to be copied.

Since there may be several data items in the source list, it may be necessary to output an
item-terminator character after each item to communicate the end of the item to the receiver.
If the item is the last item in the source list, the computer may signal the receiver that the
output operation is complete. Either an item terminator or end-of-line sequence of characters
can be sent to the receiver to signal the end of this data transmission. The OUTPUT statement
is described in full detail in Chapter 4.

Example Enter Statement

Data can be entered from only one resource at a time. This source can be any resource and is
specified by the source parameter as shown in the following statement.

/—the source parameter

ENTER SourceiNumbers sStrings

v

destination items are program variables

The destinations of enter operations are always variables in memory. Both string and numeric
variables can be specified as the destinations. The flow of data during enter operations is
shown below.

Internal Memory

Source String
Expression(s) Variable
v
1
/t ; Data Bus
Data Flow ! From Other Resources

i
-)

Processor

Data is Copied from a Resource to Memory During Enter

19

20 Laafocmg Conceps

Destination-Item Evaluation

The destination(s) of data to be entered is (are) specified in the destination list. Either string or
numeric variables can be specified. depending on the type of data to be entered. In general.
as each destination item is evaluated. the computer finds its actual memory location so that
data can be copied directly into the variable as the enter operation is executed. However. if
the ASCII representation is in use. numeric data entered is stored in a temporary variable
during entry.

Copying Data into the Destinations

As with output operations, entering data is a series of two-step processes. Each data byte (or
word) received from the sender is entered into the processor by the appropriate handshake
firmware. It is then copied into either a temporary variable or a program variable. If more than
one variable is to receive data. each incoming data item must be properly terminated. If the
internal representation is in use. the computer knows how many characters are to be entered
for each variable. If the ASCII representation is in use. a terminator character (or signal) must
be sent to locate the end of each data item. When all data for the item has been received. it is
evaluated. and the resultant internal representation of the number is placed into the appropri-
ate program variable. Further details concerning the ENTER statement are contained in
Chapter 5.

21

Chapter 3
Directing Data Flow

Introduction

As described in the previous chapter, data can be moved between computer memory and
several resources, including:

e Computer memory (string variables in memory)
e Internal and external devices
® Mass storage files

This chapter describes how string variables and devices are specified in I[/O statements. Speci-
fying mass storage files in I/O statements is briefly described in Chapter 10.

22

Directing Data Flow

Specifying a Resource

Each resource must have a specifier that allows it to be accessed to the exclusion of all other
computer resources. String variables are specified with their names, while devices can be
specified with either their device selector or with a new data type known as an I/O path name.
This section describes how to specify these resources in OUTPUT and ENTER statements.

String-Variable Names

Data is moved to and from string variables by specifying the string variable’s name in an
OUTPUT or ENTER statement. Examples of each are shown in the following program.

100 DIM To_dest$[BOJIsFrom_source$lB0]

110 DIM Data_outslB80]

120 |

130 From_source$="5ource data"

140 Data_outs="0UTPUT data"”

150 !

160 PRINTER IS 1

170 PRINT "To.dest% hefore QUTRPUT= "iTo_dest®
180 PRINT

190 !

200 DUTPUT To_dest$iData_out$; I "3" gsuppresses CR/LF.,
210 PRINT “"To.destd after QUTPUT= "3To.dest$
220 PRINT

230 !

240 ENTER From.source$3iTo.dest®$

250 PRINT "To_dest$ after ENTER= "3To_dest$
260 PRINT

270 '

280 END

Printed Results
To_dest$ before OUTPUT= (nullstring)
To_dest% after OUTPUT= OUTPUT data
To_dest% after ENTER= Source data
As with 1/O operations between the computer and other resources. the source and destination
of data are specified in software (in an [/O statement within a BASIC program). The data is

then moved through a hardware path under operating-system firmware control. An overview
of this process is illustrated in the following diagram.

Directing Data Flow 23

Variables Area
of Computer Memory

[Variable(s)J String Variable

Data Data
Operating Default
System Attribute
Hardware
ENTER |) ___ B OUTPUT

Operating System
Firmware

Control

BASIC Program

Diagram of the Default I/O Path Used
for String-Variable 1/0 Operations

Data is always copied to the destination string (or from the source string) beginning at the first
position of the variable; subscripts cannot be used to specify any other beginning position
within the variable.

The use of outputting to and entering from string variables is a very powerful method of
buffering data to be output to other resources. With OUTPUT and ENTER statements that use
images, the data sent to the string variables can be explicitly formatted before being sent to
(or while being received from) the variable. Further uses of string variables are described in
the section of Chapter 10 called “‘Applications of Unified 1/0”".

Device Selectors

Devices include the built-in CRT and keyboard, external printers and instruments, and all
other physical entities that can be connected to the computer through an interface. Thus,
each device connected to the computer can be accessed through its interface.

Each interface has a unique number by which it is identified, known as its interface select
code. The internal devices are accessed with the following, permanently assigned interface
select codes.

CRT Display 1
Keyboard 2
Built-in HP-IB. 7

21

[

vectineg Date Fiow

Optional interfaces all have switch-settable select codes. These interfaces cannot use select
codes 1 through 7: the valid range is 8 through 31. The following settings on optional inter-
faces have been made at the factory but can be reset to any unique select code between 8
and 31. See the interface’s installation manual for further instructions.

HP-IB 8
Serial 9
GPIO. 12

Examples of using interface select codes to access devices are shown below.

OUTPUT 13"Data to CRT"
ENTER 135Crt.lines

Int_.sel_code=12
QUTPUT Int_.sel_codeiString$d"ExPrression’ sNum_exrPrression
ENTER Int_sel_codesStr_variable$ sNum_.variable

Number=2
ENTER 7+NumbersSerial_data%
OUTPUT 11-Numberi"Data to serial card"

The device selector can be any numeric expression which rounds to an integer in the range 1
through 31. If the interface select code specifies an HP-IB interface, additional information
must be specified to access a particular HP-IB device. since more than one device can be
connected to the computer through HP-IB interfaces.

HP-IB Device Selectors

Each device on the HP-IB interface has an address by which it is uniquely identified: each
address must be unique so that only one device is accessed when one address is specified.
The device selector is then a combination of the interface select code and the device's
address!. Two examples are shown below.

To access the device on:

interface select code 7 at address 01, use device selector 701
interface select code 10 at address 13, use device selector 1013

1 The HP-IB also has additional capabilities that add to this definition of device selectors. See Chapter 11 for further details

Directing Data Flow 25

Accessing devices with device selectors in BASIC statements is described in the following
diagram.

Variables Area
of Computer Memory ~<——ENTER OUTPUT —

I Data Operating

Default Interface Data
| Variable(s) k M System ¢ <:>
Hardware Attribute Hardware Device

Operating System
Firmware

Control

BASIC Program

Diagram of the Default I/O Path Used
when a Device Selector is Specified

Disc drives are also considered to be devices and are connected to the computer through
interfaces. However, files on the disc media cannot be uniquely accessed with only the select
code of its interface; additional information specifying which file is to be accessed must be
included. Accessing mass storage files is fully described in the BASIC Language Reference
and is compared to accessing devices in Chapter 10 of this manual.

I/0 Path Names

As shown in the previous diagrams, all data entered into and output from the computer is
moved through an “I/O path”. An I/O path consists of the hardware and operating-system
firmware used to carry out this moving process. When a string variable or device selector is
specified in an ENTER or OUTPUT statement, the operating system first evaluates the ex-
pression that specifies a resource and then chooses the corresponding default /O path
through which data will be moved.

With the /O language of the 9826, the I/O paths to devices and mass storage files can be
assigned special names; 1/O paths to string variables cannot be assigned names. Assigning
names to I/O paths provides many improvements in performance and additional capabilities
over using device selectors, described in ‘‘Benefits of Using I/O Path Names’’ at the end of
this chapter.

26

Directing Data Flow

The concept of using I/O path names is shown in the following diagram: by comparing it to
the previous diagram, you can see several major differences between using I/O path names
and device selectors in 1/O operations. These differences are described in the section of this
chapter called ‘“‘Benefits of Using /O Path Names’'.

Variables Area
of Computer Memory -+——ENTER OUTPUT ———p

l Data Operating Attribute Data
Variable(s) ~ System can be Interface @ Device
Hardware specified Hardware

Operating System
Firmware

A Includes Internal Devices

Control and Disc Drive

1/0-Path Name in
an /O Statement

BASIC Program

1/0 Paths to Devices and Mass-Storage Files

Assigning I/O Path Names

An /O path name is a new data type that can be assigned to either a device or a data file on a
mass storage device. Any valid name' preceded by the “@’’ character can be used. Examples
of the statement that makes this assignment are as follows.
Examples

ASSIGN @Diseplay TO 1

ASSIGN BPrinter TO 701

ASSIGN BSerial TO 8

ASSIGN @Gepio TO 11X

Now you can use the /O path names instead of the device selectors to specify the resource
with which communication is to take place.

1 A “name’’ is a combination of 1 to 15 characters, beginning with an uppercase alphabetical character or one of the characters CHR$(161)
through CHR$(254) and followed by up to 14 lowercase alphanumeric characters, the underbar character (-), or the characters CHR$(161)
through CHR$(254). Numeric-variable names are examples of valid names.

Directing Data Flow 27

OUTPUT @Displavi"Disrplay messade"

QUTPUT @Printeri"Messade to the Printer”
ENTER @BSerialiVariablesWariables

ENTER @BGrioiWordl sWordl

Since an /O path name is a data type. a fixed amount of memory is allocated. or *‘reserved’,
for the variable similar to the manner in which memory is allocated for other program vari-
ables (INTEGER. REAL. and string variables). Since the variable does not initially contain
usable information. the validity flag, shown below. is set to false. When the ASSIGN state-
ment is actually executed, the allocated memory space is then filled with information describ-
ing the 1/0 path between the computer and the specified resource. and the validity flag is set
to true.

I/O Path Variable Contents
validity flag

type of resource

device selector
of resource

additional information,
if any, depends on the
type of resource

Attempting to use an I/O path name that does not appear in any program line results in error
910 (“‘Identifier not found in this context’’). This error message indicates that memory space
has not been allocated for the variable. However, attempting to use an /O path name that
does appear in an ASSIGN statement in the program but which has not yet been executed
results in error 177 (*‘Undefined 1/O path name”). This error indicates that the memory space
was allocated but the validity flag is still false; no valid information has been placed into the
variable since the [/O path name has not yet been assigned to a resource.

This I/O path information is only accessible to the context in which it was allocated, unless it is
passed as a parameter or appears in the proper COM statements’. Thus, an I/O path name
cannot be initially assigned from the keyboard, and it cannot be accessed from the keyboard
unless it is presently assigned within the current context. However, an I/O path name can be
re-assigned from the keyboard, as described in the next section.

This information describing the 1/O path is accessed by the operating system whenever the [/O
path name is specified in subsequent I/O statements. A portion of this information can also be
accessed with the STATUS and CONTROL statements described in Chapter 6. For now, the
important point is that it contains a description of the resource sufficient to allow its access.

1 Additional action may also be taken when the 1/O path name assigned to a mass storage file is closed.

28

[ivecting Data Flow

Re-Assigning 1/O Path Names

If an [/O path name already assigned to a resource is to be re-assigned to another resource,
the preceding form of the ASSIGN statement is also used. The resultant action is that the
validity flag is first set false. implicitly “‘closing™ the /O path name to the device. A "‘new
assignment’’ is then made just as if the first assignment never existed. Making this new assign-
ment places information describing the specified device into the variable and sets the validity
flag true. An example is shown below.

100 ASSICGHN BPrinter TO 1 I Initial assidnment.

110 QUTPUT EBPrinteri"Datal”

120 I

130 ASSIGH @Frinter TO 701 b Znd ASS5IGN closes 1st

140 QUTPUT EBPrinteri"DataZ" | and maKes a new assidgnment.
150 PAUSE

160 END

The result of running the program is that “Datal™ is sent to the CRT. and “"Data2" is sent to
HP-IB device 701. Since the program was paused (which maintains the program context). the
IO path name @ Printer can be used in an l/O statement or re-assigned to another resource
from the keyboard.

Closing I/O Path Names

A second use of the ASSIGN statement is to explicitly close the name assigned to an 1.O
path. When the name is closed, the validity flag is set false. labeling the information as
invalid'. Attempting to use the closed name results in error 177 (**Undefined | O path name ™).
Examples of statements that close path names are as follows.
Examples

ASSIGN EPrinter TO #*

ASS5IGN ESerial_card TO *

ASSIGN BGrpi1o TO *
After executing this statement for a particular I O path name. the name cannot be used in
subsequent 1'O statements until it is re-assigned. This same name can be assigned either to

the same or to a different resource with a subsequent ASSIGN statement. However. if it is
used prior to being re-assigned. error 177 occurs.

I See the BASIC T anguage Wererenee tor taether detanis

Directing Data Flow 29

[/O Path Names in Subprograms

When a subprogram (either a SUB subprogram or a user-defined function) is called, the
“context’’ is changed to that of the called subprogram. The statements in the subprogram
only have access to the data of the new context. Thus, in order to use an I/O path name in
any statement within a subprogram, one of the following conditions must be true.

® The /O path name must already be assigned within the context (i.e., the same instance
of the subprogram).

e The [/0O path name must be assigned in another context and passed to this context by
reference (i.e., specified in both the formal-parameter and pass-parameter lists).

o The 1/O path name must be declared in a variable common (with COM statements) and
already be assigned within a context that has access to that common block.

The following paragraphs and examples further describe using [/O path names in subprog-
rams.

Assigning 1/0O Path Names Within Subprograms

Any /O path name can be used in a subprogram if it has first been assigned to an I/O path
within the same context of the subprogram. A typical example is shown below.

10 CALL Subprodram.x

20 END

30 !

40 SUB SubPprogram.x

20 ASSIGN BlLog.dewice TO 1 |t CRT.
GO OQUTPUT GlLog.devices"Subrprodram”
70 SUBEND

When the subprogram is exited, all /O path names assigned within the subprogram are auto-
matically closed. [f the program (or subprogram) that called the exited subprogram attempts
to use the [/O path name. an error results. An example of this closing upon return from a
subprogram is shown below.

10 CALL Subrrodram_x

11 OUTPUT BlLogd_deuvices"Main'" - Insert into previous
Z0 END example.

300

40 SUB Subrrodram_x
S50 AS55ICH ElLod_dewl
GO OUTPUT BlLog_deul
70 SUBEND

e TO 1 ! CRT.

LRI g

c
ces"Subprogram”

When the above program is run. error 177, “*‘Undefined /O path name’’, occurs in line 11.

30

Divecting Data Flow

Each context has its own set of local variables, which are not automatically accessible to any
other context. Consequently, if the same /O path name is assigned to [0 paths in separate
contexts, the assignment local to the context is used while in that context Upon return to the
calling context, any [/O path names accessible to this context remain assigned as before the
context was changed.

1 ASSIGN BLog_device TO 701 J Insert these lines into
2 CUTPUT BlLog_deviceis"First Main" previous example.
10 CALL Subrrodram—x

11 OQUTPUT BLod_devicei"Second Main" - Change this line.
20 END
30 1

40 S5UB Subeprodram_x

20 ASS5IGN BlLod_dewvice TO 1 ! CRT.
GO OUTPUT @lLog_deviceis"Subprodram’
70 SUBEND

The results of the above program are that the outputs *‘First Main™" and ‘‘Second Main’ are
directed to device 701. while the output “‘Subprogram’ is directed to the CRT. Notice that
the original assignment of @Log_device to device selector 701 is “‘restored”” when the sub-
program’s context is exited. since the assignment of @Log_device made to interface select
code 1 was local to the subprogram.

Passing I/O Path Names as Parameters

I/0O path names can be used in subprograms if they are assigned and have been passed to the
called subprogram by reference: they cannot be passed by value. The I/0O path name(s) to be
used must appear in both the pass-parameter and formal-parameter lists.

1 ASSIGN BLod_device TO 701
2 O0OUTPUT BLog_devicei"First Main"

10 CALL Subeprodram_x(Blog_device) - Add pass parameter.
11 QUTPUT @GLog_devicei"Second Main"

20 END

30 I

40 SUB Subprodram_x(@BLog_device) - Add formal parameter.

20 AS5IGN BLod_device TO 1 t CRT.
60 OUTRPUT EBLod_deviceis"Subprodram”
70 SUBEND

Upon returning to the calling routine, any changes made to the assignment of the I/O path
name passed by reference are maintained; the assignment local to the calling context is not
restored as in the preceding example, since the [/O path name is accessible to both contexts.
In this example, @ Log _device remains assigned to interface select code 1: thus, ““Subpro-
gram’ and ‘‘Second Main’’ are both directed to the CRT.

Directing Data Flow

Declaring I/O Path Names in Common

An [O path name can also be accessed by a subprogram if it has been declared in a COM
statement (labeled or unlabeled) common to calling and called contexts. as shown in the
following example.

i COM BLod_device - Insert COM
3 ASSIGN @BLod_deuvice TO 701 statement
4 OQUTPUT BLog_devices"First Main"

10 CALL Subprogdgram_x = Parameters
11 CQUTPUT @Log_devicei"Second Main" not necessary
20 END

30 1

40 SUB Subrrodram.x -

41 COM BLod_device - Insert COM
30 ASSICGN RLog.device TO 1 ! CRT. statement
G0 QUTPUT RBLod_devicei"Subprodram’

70 SUBEND

If an I/O path name in common is modified in any way. the assignment is changed for all
subsequent contexts: the original assignment is not ‘“‘restored’” upon exiting the subprogram.
In this example. “‘First Main’’ is sent to HP-IB device 701, but *‘Subprogram’™ and *‘Second
Main"" are both directed to the CRT. This is identical to the preceding action when the /O
path name was passed by reference.

Benefits of Using I/O Path Names

Devices can be accessed with both device selectors and /O path names, as shown in the
previous discussions. With the information presented thus far, you may not see much differ-
ence between using these two methods of accessing devices. This section describes these
differences in order to help you decide which method may be better for your application.

Execution Speed

When a device selector is used in an I/O statement to specify the I/O path to a device, the
numeric expression must be evaluated by the computer every time the statement is executed.
If the expression is complex, this evaluation might take several milliseconds.

device selector expression

QUTPUT Value_ 1+4BIT(Value_Z2,5)%2°33"Data"

If a numeric variable is used to specify the device selector, this expression-evaluation time is
reduced; this is the fastest execution possible when using device selectors. However, more
information about the I/O process must be determined before it can be executed.

31

32

Directing Data Flow

In addition to evaluating the numeric expression, the computer must determine which type of
interface (HP-IB, GPIO, etc.) is present at the specified select code. Once the type of interface
has been determined. the corresponding attributes of the [/O path must then be determined
before the computer can use the I/O path. Only after all of this information is known can the
process of actually copying the data be executed.

If an [/O path name is specified in an OUTPUT or ENTER statement, all of this information
has already been determined at the time the name was assigned to the I/O path. Thus, an 1/O
statement containing an /O path name executes slightly faster than using the corresponding
[/O statement containing a device selector (for the same set of source-list expressions)

Re-Directing Data

Using numeric-variable device selectors, as with /O path names, allows a single statement to
be used to move data between the computer and several devices. Simple examples of re-
directing data in this manner are shown in the following programs.

Example of Re-Directing with Device Selectors

100 Device=1

110 GOS5UB Data_out

200 Device=4

210 GOsUB Data_out

410 Data_out: QUTPUT Devicesilata$
420 RETURN

Example of Re-Directing with I'O Path Names

100 ASSIGN @Device TO 1

110G GOsSUB Data_out

200 ASSTIGN @Device 10O

210 GOsSUB Data.ont

410 Data_out: OUTPUT @DevicesDatah

420 RETURN

Directing Data Flow 33

The preceding two methods of re-directing data execute in approximately the same amount of
time. As a comparison of the two methods, executing the ‘‘Device ="" statement takes less
time than executing the ““ASSIGN @Device” statement. Conversely, executing the ‘“OUT-
PUT Device’’ statement takes more time than executing the “OUTPUT @Device’. However,
the overall time for each method is approximately equal.

There are two additional factors to be considered. First, device selectors cannot be used to
direct data to mass storage files; I/O path names are the only access to files. If the data is ever
to be directed to a file, you should use /O path names. A good example of re-directing data
to mass storage files is given in Chapter 10. The second additional factor is described in the
next paragraph.

Attribute Control

The FORMAT attribute possessed by an 1/O path determines which data representation will
be used by the path during communications. If the path possesses the attribute of FORMAT
ON, the ASCII data representation will be used. This is the default attribute automatically
assigned by the computer when device selectors are used. If the I/O path possesses the attri-
bute of FORMAT OFF, the internal data representation is used. Further details of these attri-
butes are discussed in Chapter 10, *‘Unified I/O"".

The second additional factor that favors using 1/O path names is that you can specify the
FORMAT attribute to be assigned to the I/O path to devices and to BDAT files. If device
selectors are used, this control is not possible. Chapter 10 also describes how to specify the
attribute to be assigned to an /O path.

34 ivecting Data Flow

35

Chapter 4
Outputting Data

Introduction

The preceding chapter described how to identify a specific device as the destination of data in
an OUTPUT statement. Even though a few example statements were shown, the details of
how the data are sent were not discussed. This chapter fully describes the topic of outputting
data to devices; outputting data to string variables and mass storage files is described in Chap-
ter 10 and in the BASIC Language Reference.

There are two general types of output operations. The first type, known as ‘‘free-field out-
puts’’, use the computer’'s default data representations'. The second type provides precise
control over each character sent to a device by allowing you to specify the exact “‘image’’ of
the ASCII data to be output.

Free-Field Outputs

Free-field outputs are invoked when the following types of OUTPUT statements are executed.
Examples

OUTPUT @Dewicei3,14%Radius"2

OUTPUT Printeri"String data"iNum.1

OUTPUT 93iTestsScoresStudent$

DUTPUT Escare_code$iCHR$(27)8R"BALG" S

The Free-Field Convention

The term “‘free-field" refers to the number of characters used to represent a data item. During
free-field outputs. the computer does not send a constant number of ASCII characters for each
type of data item. as is done during "'fixed-field outputs”™ which use images. Instead. a special
set of rules is used that govern the number and type of characters sent for each source item. The
rules used for determining the characters output for numeric and string data are described in the
following paragraphs.

1 The ASCII representation described briefly in Chapter 2 is the default data representation used when communicating with with devices:
however. the internal representation can also be used. See Chapter 10 for further details.

36

Fivectingg Data FFlow

Standard Numeric Format

The default data representation for devices is to use ASCII characters to represent numbers.
The ASCII representation of each expression in the source list is generated during free-field
output operations. Even though all REAL numbers have 16 (and INTEGERs can have up to
5) significant decimal digits of accuracy. not all of these digits are output with free-field OUT-
PUT statements. Instead. the following rules of the free-field convention are used when gener-
ating a number’s ASCII representation.

All numbers between 1E-5 and 1E +6 are rounded to 12 significant digits and output in
floating-point notation with no leading zeros. If the number is positive. a leading space is
output for the sign: if negative. a leading **—"" is output.

Examples

32767
-32768
123456.789012
—-.000123456789012

If the number is less than 1E-5 or greater than 1E + 6, it is rounded to 12 significant digits and
output in scientific notation. No leading zeros are output, and the sign character is a space for
positive and ** — "’ for negative numbers.

Examples

—1.23456789012E +6
1.23456789012E-5

Standard String Format

The internal representation of string data consists of the string characters prefaced by a four-
byte header that contains the length of the string (number of characters in the string). The
data actually sent consists only of all actual data characters in the string; the length header is
not output during free-field outputs in which the ASCII representation is being used. Thus, no
leading or trailing spaces are output with the string’s characters.

[tem Separators and Terminators

Data items are output one byte (or word) at a time. beginning with the left-most item in the
source list and continuing until all of the source items have been output. Items in the list must
be separated by either a comma or a semicolon. However, items in the data output may or may
not be separated by item terminators. depending on the use of item separators in the source
lists.

The general sequence of items in the data output is as follows.

1st item 2nd item | last EOL
item | terminator | item | terminator item | sequence
[(- v- - N v

optional optional optional

Directing Data Flow

Using a comma separator after an item specifies that the item terminator (corresponding to
the type of item) will be output after the last character of this item. A carriage-return,
CHR$(13), and a line-feed, CHR$(10), terminate string items.

OQUTPUT Dewvicei"Item" »-1234

EOL
sequence

| t | e|m|CR|LF| - | 1 2 13| 4 The default EOL sequence is a CR/LF sequence.

A comma separator specifies that a comma, CHR$(44), terminates numeric items.

DUTPUT Devices-1234"Item"

EOL
sequence

If a separator follows the last item in the list, the proper item terminator will be output instead
of the EOL sequence.

QUTPUT Devices"Item" QUTPUT Dewvices-1234,

L[t le[mfcrlr] EIENENER RN

Using a semicolon separator suppresses output of the (otherwise automatic) item’s termi-
nator.

QUTPUT 13"Itemi"3i"ITtem2" OUTPUT 13-123-34

EOL EOL
sequence sequence

If a semicolon separator follows the last item in the list, the EOL sequence and item termina-
tors are suppressed.

DUTPUT 13"Iteml"3"ITtem2"3

L| | t] e]m I 1 I I | t l e ‘m] > I 2luetig:ﬁ.r of the item terminators nor the EOL sequence are

37

38 Dinecting Data How

If the item is an array. the separator following the array name determines what is output after
each array element. (Individual elements are output in row-major order.)

100 OPTION BASE 1
110 DIM Arrav (2,32
120 FOR Row=1 TO Z

130 FOR Column=1 TO 3

140 Arrav{Row:Column)=Row*10+Column
150 NEXT Column

160 NEXT Row

170 !

180 QUTPRUT 13iArray (*) I No trailindg serarator.
190 !

200 QUTRPUT 13Arravy (%} | Trailing comma.

210 I

220 OUTPUT 1s3Arrav(#): ! Trailing semi-colon.
230 !

240 QUTPUT 13"Done”

Z50 END

Resultant Output

Directing Data Flow 39

[tem separators cause similar action for string arrays.

100 OPTION BASE 1
110 DIM Arravs(2,3)02]
120 FOR Row=1 TO Z

130 FOR Column=1 T0O 3

140 Arravd(Row»Column)=YALS (Rowx*10+Column)
150 NEXT Column

160 NEXT Row

170 I

180 OUTPUT 13Arrav$s(*) I No trailind serparator.
190 I

200 QUTRPUT 1%Arrav$e(*), | Trailind comma.

210 !

220 QUTPUT 13Arrays(*)3 ! Trailind semi-colon.,
230 {

240 QUTPUT 13"DONE"

250 !

260 END

Resultant Output

)

[rrvcciine Dara o

Outputs that Use Images

The free-field form of the OUTPUT statement is very convenient to use. However, there may
be times when the data output by the free-field convention is not compatible with the data
required by the receiving device.

Several instances for which you might need to format outputs are: special control characters
are to be output: the EOL sequence (carriage-return and line-feed) needs to be suppressed:
or the exponent of a number must have only one digit. This section shows you how to use
image specifiers to create your own, unique data representations for output operations.

The OUTPUT USING Statement

When this form of the OUTPUT statement is used, the data is output according to the format
image referenced by the “USING’ secondary keyword. This image consists of one or more
individual image specifiers which describe the type and number of data bytes (or words) to be
output. The image can be either a string literal, a string variable, or the line label or number of
an IMAGE statement. Examples of these four possibilities are listed below.

1. 100 QUTPUT 1 USING "GAS5DDD.DD"s" K= "»123.405
2. 100 Imade_str$="GA.,.DDD.DDD3KX"

110 DUTPUT 1 USING Imade_str$s" K= ",123.45
3. 100 QUTPUT 1 USING Imade_stmts" K= ",123.45

110 Imagde.stmt: IMAGE BA.,5DDD.DOD,3X

4. 100 OQUTPUT 1 USING 1103" K= ",123.43
110 IMAGE BA.5DDD.DDD 33X

Images

Images are used to specify the desired format of data to be output. Each image consists of
groups of individual image (or ‘““field’’) specifiers which either describe the desired format of
each item in the source list or specify that special characters are to be output. Thus, you can
think of the image list as either a precise format description or as a procedure. It is
convenient to talk about the image list as a procedure for the purpose of explaining how this
type of OUTPUT statement is executed.

Again, each image list consists of images that each describe the format of a data item to be
output. The order of images in the list corresponds to the order of data items in the source list.
In addition, image specifiers can be added to output (or to suppress the output of) certain
characters. The following example steps through exactly how the computer executes all of the
preceding equivalent statements.

Directing Data Flow 41

Example of Using an Image

We will use the first of the four, equivalent output statements shown above. Don’t worry if
you don’t understand each of the image specifiers used in the image list; each will be fully
described in subsequent sections of this chapter. The main emphasis of this example is that
you will see how an image list is used to govern the type and number of characters output.

QUTPUT 1 USING "GA5DDD.DDD»3X"3" K= ",123.4d5

The data stream output by the computer is as follows.

CK[=T [[[+Tlza] T«lsTo] [[Jealwr]
67\ S D D Dv. D D D 3;(default EOL
sequence

Step 1. The computer evaluates the first image in the list. Generally, each groups of speci-
fiers separated by commas is an “‘image’’; the commas tell the computer that the
image is complete and that it can be “‘processed’. In general, each group of speci-
fiers is processed before going on to the next group. In this case, 6 alphanumeric

characters taken from the first item in the source list are to be output.

Step 2. The computer then evaluates the first item in the source list and begins outputting it,
one byte (or word) at a time. After the 4th character, the first expression has been
“exhausted”. In order to satisfy the corresponding specifier, two spaces (alpha-
numeric “‘fill”’ characters) are output.

Step 3. The computer evaluates the next image (note that this image consists of several
different image specifiers). The *'S” specifier requires that a sign character be out-
put for the number, the D" specifiers require digits of a number, and the “.”
specifies where the decimal point will be placed. Thus, the number of digits follow-
ing the decimal point have been specified. All of these specifiers describe the format
of the next item in the source list.

Step 4. The next data item in the source list is evaluated. The resultant number is output one
digit at a time, according to its image specifiers. A trailing zero has been added to the
number to satisfy the “DDD"" specifiers following the decimal point.

Step 5. The next image in the list (*“3X"")is evaluated. This specifier does not ‘‘require’”
data, so the source list needs no corresponding expression. Three spaces are output
by this image.

Step 6. Since the entire image list and source list have been ‘‘exhausted’, the computer
then outputs the current (or default. if none has been specified) ‘‘end-of-line’” sequ-
ence of characters (here we assume that a carriage-return and line-feed are the
current EOL sequence).

The execution of the statement is now complete. As you can see, the data specified in the
source list must match those specified in the output image in type and in number of items.

42 Dacetineg Date Flow

Image Definitions During Outputs

This section describes the definitions of each of the image specifiers when referenced by
OUTPUT statements. The specifiers have been categorized by data type. It is suggested that
you scan through the description of each specifier and look over the examples. You are also
highly encouraged to experiment with the use of these concepts.

Numeric Images
The digit. sign. and radix image specifiers are used to describe the format of numbers.

Digit, Radix and Exponent Specifiers

Image
Specifier Meaning

D Specifies one ASCII digit (*'0" through *9") is to to be output. Leading
spaces and trailing zeros are used as fill characters. The sign character, if
any. “‘floats” to the immediate left of the most-significant digit. If the num-
ber is negative and no sign specifier is used. one digit specifier will be used
for the sign.

Z Same as ‘D'’ except that leading zeros are output. This specifier cannot
appear after the decimal point.

Specifies the position of a decimal point within a number (the American
radix). There can be only one decimal point in each numeric image.

E Specifies that the number is to be output using scientific notation. The
“E” must be preceded by at least one digit specifier. The default exponent
is a four-character sequence consisting of an “'E’’, the exponent sign, and
two exponent digits, equivalent to an “ESZZ"" image. Since the number is
left-justified in the specified digit field. the image for a negative number
must contain a sign specifier (see the next section).

ESZ Same as “‘E’" but only 1 exponent digit is output.
ESZZZ Same as ‘‘E'"" but three exponent digits are output.
K, -K Specifies that the number is to be output in a “‘compact’” format, similar to
the standard numeric format: however, neither leading spaces (that would

otherwise replace a ** + ' sign) nor item terminators (commas) are output,
as would be with the standard numeric format.

Numeric Examples

OUTPUT @Device USING "DDDD"3-123,769

EIEERERCITS

OUTPUT BDevice USING "2Z2D"3i-1.72
L= [1 [cR]LF]

OUTPUT @Dewice USING "ZZ.DD"31.B75

Lot [e]sfcrlF]

OUTPUT @Dewvice USING "Z.D"3.,35

Lo] . [a]cr]LF]

OUTPUT @Device USING "DD.E" 312345

1]2] JE[+]o]3][cR]LF]

OQUTPUT @EDevice USING "ZD.DDE"3Z2E-4
2ol Tololel-To s [ea[wF]
QUTPUT BDewvice USING "K"31Z.,400

[+ 2] T4]cR[iF]

Directing Data Flow 43

44

Frovectney Dae T

Sign Specifiers
These specifiers are used to control the sign information for numeric images. If no sign speci-
fier is included in the image for a negative number. one digit's place will be used for the

minus-sign character. Only one or two of these specifiers can be used in any image: for
instance, MZZ.DDD and SDD.DDESZZ are both legal images.

Sign Specifiers

Image
Specifier Meaning
S Specifies a = + 7 for positive and a " - " for negative numbers.
M Specifies a leading space for positive and a ** — " for negative numbers.

Sign Examples

DUTPUT 1 USING "MDD.ZD"s-12.449

(-l f2] [4]sonltr]

OUTPUT 1 USING "MED.DD"32.08

[[T2 [o]seR[tr]

DUTPUT 1 USING "SD.D"3Z.449
EAENEENCAES

OUTPUT 1 USING "SZ.DD";.49
[+ [ol [4]o[crltr]

QUTPUT 1 USING "SDD.DDE"3-2.305

[-T2fsl [s[ofef-fofr]crtr]

Directing Data Flow

String Images
These types of image specifiers are used to describe the format of string data.

Character Specifiers

Image
Specifier Meaning

A Specifies that one character is to be output. Trailing spaces are used as fill
characters if the string contains less than the number of characters speci-
fied.

“literal” All characters placed in quotes form a string literal, which is output exactly
as is. Literals can be placed in output images which are part of OUTPUT
statements by enclosing them in double quotes.

K, -K Specifies that the string is to be output in “‘compact’” format, similar to the
standard string format; however, no item terminators are output as with
the standard string format.

String Examples
OUTPUT EBDewvice USING "BA"i"Characters"
LCIhIa[r|a’c[tle|CR[LFJ

OUTPUT @Dewvice USING "K:""Literal""";"AB"

(aflefc]ifJelelr[alr[cR[tF]

OUTPUT @Device USING "K"i" Hello "
L L [TnfefvTiTo]l [T for[tF]
OUTPUT @Device USING "SA"3" Hello "

L1 [[#Hlefcrltr]

45

46 [ecting Date Flow

Binary Images

These image specifiers are used to output bytes (8-bit data) and words (16-bit data) to the
destination. Typical uses are to output non-ASCII characters or integers in their internal repre-

sentation.
Binary Specifiers
Image
Specifier Meaning

B Specifies that one byte (8 bits) of data is to be output. The source expres-
sion is evaluated, rounded to an integer, and interpreted MOD 256. If it is
less than —32768. CHR$(0) is output. If is greater than 32767,
CHR$(255) is output. If the destination expects 16 bits of data, the eight
most-significant bits are set to 0.

W Specifies that one word of data (16 bits) are to be output. The source
expression is evaluated and rounded to an integer. If it is less than
—-32768, then — 32768 is output: if it is greater than 32767. then 32767
is output. If the interface handles 8-bit data. the most significant byte is
sent first: if it handles 16-bit data, all bits are sent in a single operation.

Binary Examples

OQUTPUT @Device USING "BBsB"3i6354+66:67

{A]B][ccR[LF]

QUTPUT BDewvice USING "B"313

OUTPUT @Device USING "W"3G3*#Z56+GE

| A | B [CR]LF|

Special-Character Images

These specifiers require no corresponding data in the source list. They can be used to output
spaces, end-of-line sequences, and form-feed characters.

Special-Character Specifiers

Image
Specifier Meaning
X Specifies that a space character. CHR$(32). is to be output.

/ Specifies that a carriage-return. CHR$(13). and a line-feed character.
CHR$(10). are to be output.

(@ Specifies that a form-feed character. CHR$(12). is to be output.

Directing Data Flow 47

Special-Character Examples

OUTPUT BDevice USING "A4X,A"i"M","A"

(ML [[[[al[cr[ir]

OUTPUT @Dewice USING "3oOX"

[—(50 spaces)— ICRI LF !

OUTPUT @Dewice USING "@.,/"

[FF|CR|LF[CR|LF|

OUTPUT @Dewice USING "/*

|CR|LF |CR]LF |

Termination Images

These specifiers are used to output or suppress the end-of-line sequence output after the last
data item.

Termination Specifiers

Image
Specifier Meaning

L Specifies that the current end-of-line sequence is to be output (default is a
CRI/LF sequence).

Specifies that the end-of-line sequence that normally follows the last item
is to be suppressed.

% Is ignored in output images but is allowed to be compatible with ENTER
images.

Termination Examples

OUTPUT @Device USING "4d4AsL"i"Data"

lD'altla

CR|LF [CR]LF |

OUTPUT @Device USING "#,K"i"Data"

[D]aft]a]

OUTPUT EDevice USING "#,B"i1Z

48

Drvecting Data Flow

Additional Image Features

Several additional features of outputs which use images are available with the 9826. Several
of these features, which have already been shown. will be explained here in detail.

Repeat Factors

Many of the specifiers can be repeated without having to explicitly list the specifier as many
times as it is to be repeated. For instance. to a character field of 15 characters. you do not
need to use “‘AAAAAAAAAAAAAAA™: instead, you merely specify the number of times that
the specifier is to be repeated in front of the image (*"15A""). The following specifiers can be
repeated by specifying an integer repeat factor: the specifiers not listed cannot be repeated in
this manner.

Repeatable Specifiers
Z.D,A X/ (@ L

Examples

DUTPUT GDevice USING "4Z,3D"3:328,03

[o]3]2]8] J[o]3]o]cR[LF]

QUTPUT BDevice USING "GBA"3i"Data hvtes®
[pfla]t]al] [b [CR]LF]

OUTPUT @Device USING "SXy2A"i"Data”
[T T T T lolajen[tF

DUTPUT @Device USING "ZLs4A"3i"Data"

[cR[LF[cR][LF[D[a [t [a]CR]LF]

DUTPUT BDevice USING "8BA+28"3"The End"

(1 n]e] Je[n]a] [FF[FF[cR]LF]

OUTPUT EDevice USING "Z/"

[CR]LF [CR|LF [CR]LF |

Directing Data Flow 49

Image Re-Use

If the number of items in the source list exceeds the number of matching specifiers in the
image list, the computer attempts to re-use the image(s) beginning with the first image.

110
120
130
140
130
160
170

ASSIGN BDevice TO 1
Num_1=1
Num_2=2

!
OUTPUT @Device USING "K"iNum_1,,"Data_i"sNum_Z,"Data_2"

i 4

OUTPUT @Device USING "K,/"iNum_1l:"Data_1"»Num_2:"Data_2"
END

Resultant Display

1Data_1Z2Data.?2
1
Data_1

s

a~

Data_?Z

Since the K" specifier can be used with both numeric and string data, the above OUTPUT
statements can re-use the image list for all items in the source list. If any item cannot be
output using the corresponding image item, an error results. In the following example, ‘‘Error
100 in 150" occurs due to data mismatch.

110
120
130
140
150
160

ASSIGN BDewvice TO 1

Mum.1=1

Num_2=2

I

OUTPUT EDevice USING "DD.DD"3iNum_1 sNum_Z+"Data_1"
END

50

Directing Data Flow

Nested Images

Another convenient capability of images is that they can be nested within parentheses. The
entire image list within the parentheses will be used the number of times specified by the
repeat factor preceding the first parenthesis. The following program is an example of this

feature.

100
110
120
130

ASSICN @Device TO 701

!

DUTPUT BDewuvice USING "3(B)+4:DDXDD"365+66+67+68+69
END

Resultant Output

ENERCE

[el8] [o[s]erfr]

This nesting with parentheses is made with the same hierarchy as with parenthetical nesting
within mathematical expressions. Only eight levels of nesting are allowed.

Chapter D
Entering Data

Introduction

This chapter discusses the topic of entering data from devices. You may already be familiar
with the OUTPUT statement described in the previous chapter; many of those concepts are
applicable to the process of entering data. Earlier in this manual, you were told that the data
output from the sender had to match that expected by the receiver. Because of the many
ways that data can be represented in external devices, entering data can sometimes require
more programming skill than outputting data. In this chapter, you will see what is involved in
being the receiving device. Both free-field enters and enters that use images are described,
and several examples are given with each topic.

Free-Field Enters

Executing the free-field form of the ENTER invokes conventions which are the ‘‘converse’ of
those used with the free-field OUTPUT statement. In other words, data output using the
free-field form of the OUTPUT statement can be readily entered using the free-field ENTER
statement; no explicit image specifiers are required. The following statements exemplify this
form of the ENTER statement.
Examples

100 ENTER BUoltmeteriReading

100 ENTER 7243Readings (%)

100 ENTER From_.string$iAveradgesStudent_names$

100 ENTER BFrom_fileiData_codesStr_element$ (¥ ¥

51

52

nrering Date

Item Separators

Destination items in ENTER statements can be separated by either a cornma or a semicolon.
Unlike the OUTPUT statement. it makes no difference which is used: data will be entered into
each destination item in a manner independent of the punctuation separating the variables in
the list. However, no trailing punctuation is allowed. The first two of the following statements
are equivalent, but an error is reported when the third statement is executed.

Examples
ENTER BFrom_a_deuvicesNl . NZ N3
> These first two statements are equivalent.
ENTER BFrom_a.deviceiNliNZiN3
ENTER BFrom_a_deuvice sN1 sNZ N3y -—— Executing this statement causes an error.

Item Terminators

Unless the receiver knows exactly how many characters are to be sent, each data item output
by the sender must be terminated by special character(s). When entering ASCII data' with the
free-field form of the ENTER statement, the computer does not know how many characters
will be output by the sender.

Item terminators must signal the end of each item so that the computer enters data into the
proper destination variable. The terminator of the last item may also terminate the ENTER
statement (in some cases). The actual character(s) that terminate entry into each type of
variable are described in the next sections.

In addition to the termination characters, each item can be terminated (only with selected
interfaces) with a special signal known as EOI (End-or-Identify). The EQOI signal is only avail-
able with the HP-IB. CRT, and keyboard interfaces. EOI termination is further described in
the next sections.

Entering Numeric Data

When the free-field form of the ENTER statement is used, numbers are entered by a routine
known as the ‘‘number builder’. This firmware routine evaluates the incoming ASCII numeric
characters and then “‘builds” the appropriate internal-representation number. This number
builder routine recognizes whether data being entered is to be placed into an INTEGER or
REAL variable and then generates the appropriate internal representation.

1 The ASCII data representat:on described briefly in Chapter 2 is the default data representation used with devices: however. the internal
representation can also be used. See *'1/O Path Attributes™ in Chapter 10 for further details.

Entering Data

The number builder is designed to be able to enter several formats of numeric data. However,
the general format of numeric data must be as follows to be interpreted properly by the
computer.

Mantissa | Mantissa | E | Exponent | Exponent | Terminator
sign digit(s) sign digit(s) (character
or EQI)

Optional At least one Optional Required

digit is required

Numeric characters include decimal digits “‘0”’ through 9"’ and the characters **.”, ‘47,
“=7“E”, and “e’’. These last five characters must occur in meaningful positions in the data
stream to be considered numeric characters; if any of them occurs in a position in which it
cannot be considered part of the number, it will be treated as a non-numeric character.

The following rules are used by the number builder to construct numbers from incoming
streams of ASCII numeric characters.

1. All leading non-numerics are ignored; all leading and imbedded spaces are ignored.
Example

100 ASSIGN BDevice TO Device_selector

110 ENTER EDeviceiNumber I Default 1s data tvee REAL.
120 END
Lost
~
(NJulm[oJe[r]=] [[r]2[[3]cF]
- v - v e
Ignored Number Terminator (for both

item and statement)

The result of entering the preceding data with the given ENTER statement is that Num-
ber receives a value of 123. The line-feed (statement terminator) is required since
Number is the last item in the destination list.

53

54 Entering Data

2. Trailing non-numerics terminate entry into a numeric variable, and the terminating
characters (of both string and numeric items) are “‘lost”. In this manual, “lost” charac-
ters refers to characters used to terminate an item but not entered into the variable;
“ignored”’ characters are entered but are not used.

Example

ENTER BDevicesReal_number:String%$

Lost Lost
N]ulm[bJe]r[=] [1]2]3] Jala[B]c][D]LFrcRLR
N ~ ~ y P . e -)
Ignored Real_number Numeric String$ Terminator (for both
item terminator item and statement)

The result of entering the preceding data with the given ENTER statement is that Real
number receives the value 123.4 and String$ receives the characters “BCD’". The A"
was lostwhen it terminated the numeric item; the string-item terminator(s) are also lost.
The string-item terminator(s) also terminate the ENTER statement, since String$ is the
last item in the destination list.

3. If more than 16 digits are received. only the first 16 are used as significant digits.
However. all additional digits are treated as trailing zeros so that the exponent is built
correctly.

Example

ENTER @DeviceiReal_number_1

Lost

—_——

[+ [2]sfafslef[7[s]o]ofr][2]3[a]s]6]LF]

< -~ S
Real_number_1 Terminator (for both

item and statement)

The result of entering the preceding data with the given ENTER statement is that Real
number_1 receives the value 1.234567890123456 E + 15.

Entering Data

Example

ENTER @DevicesReal_number_2

Used only to build

the exponent. Lost

A

(1 [2Tasfafs[e[7[efofof[1[2]a]afs]e6][7][8]LF]

N g S
Real_number_2 Terminator (for both

item and statement)

The result of entering the preceding data with the given ENTER statement is that Real_
number_2 receives the value 1.234567890123456 E + 17.

Any exponent sent by the source must be preceded by at least one mantissa digit and
an “E” (or “‘¢”") character. If no exponent digits follow the “E™ (or “'e""). no exponent
is recognized, but the number is built accordingly.

Example

ENTER EDevicesReal_number

Lost

~—

(el [e] Jefs[[ef[-[r]2f[clojufr]tF]

—— ~ e ~ S’
Ignored Real_number Numeric Ignored Terminator

item terminator

The result of entering the preceding data with the given ENTER statement is that Real
number receives a value of 8.85 E—12. The character *"'C"" terminates entry into Real
number, and the characters “‘oul’” are entered (but ignored) in search of the required
line-feed statement terminator. If the character *'C’" is to be entered but not ignored,
you must use an image. Using images with the ENTER statement is described later in
this chapter.

55

56

Faviering Date

5. If a number evaluates to a value outside the range corresponding to the type of the
numeric variable, an error is reported. If no type has been declared explicitly for the
numeric variable, it is assumed to be REAL.

Example

ENTER @DeviceisReal_numhber

Lost
iy
1213 [4a]le|+[3]o]7]LF] Evaluates to 1.234 E +309.
« ~) et
The resultant value cannot Terminator (for both items
be stored in Real_number. and statement)

The data is entered but evaluates to a number outside the range of REAL numbers.
Consequently, error 19 is reported, and the variable Real_number retains its former
value.

6. If the item is the last one in the list, both the item and the statement need to be
properly terminated. If the numeric item is terminated by a non-numeric character, the
statement will not be terminated until it either receives a line-feed character or an EOI
signal with a character. The topic of terminating free-field ENTER statements is de-
scribed later in this chapter in the section of the same name.

Entering String Data

Strings are groups of ASCII characters of varying lengths. Unlike numbers. almost any charac-
ter can appear in any position within a string; there is not really any defined structure of string
data. The routine used to enter string data is therefore much simpler than the number builder.
[t only needs to keep track of the dimensioned length of the string variable and look for
string-item terminators (CR/LF, LF, or EOI sent with a character).

String-item terminator characters are either a line-feed (LF) or a carriage-return followed by a
line-feed (CR/LF). As with numeric-item terminators characters, these characters are not en-
tered into the string variable (during free-field enters); they are “lost”” when they terminate
the entry. The EOI signal also terminates entry into a string variable, but the variable must be
the last item in the destination list (during free-field enters).

All characters received from the source are entered directly into the appropriate string vari-
able until any of the following conditions occurs:

® an item terminator character is received.
e the number of characters entered equals the dimensioned length of the string variable.
e the EOI signal is received.

The following statements and resultant variable contents illustrate the first two conditions; the
next section describes termination by EOI. Assume that the string variables Five_char$ and
Ten_char$ are dimensioned to lengths of 5 and 10 characters, respectively.

Entering Data

Example

ENTER BDevicesFive_char%

Lost

—_—

a[B]c|p|E[F|G|H][CR[LF]

— N v o S—]
Five_char$ Ignored Terminator (for both

item and statement)

The variable Five_char$ only receives the characters “ABCDE", but the characters “FGH™
are entered (and ignored) in search of the terminating carriage-return/line-feed (or line-feed).

Example

ENTER @DevicesTen_char%

Lost Lost
—— ——
AlB|[c|D|[E|F|G]|LF] or [a[B]c|p[E[F[G][cR[LF]
N - S N . A ,
Ten_char$ Terminator (for Ten_char$ Terminator (for both
both item and statement) item and statement)

The result of entering the preceding data with the given ENTER statement is that Ten_char$
receives the characters “ABCDEFG’”’ and the terminating LF (or CR/LF) is lost.

57

58

Intering Data

Terminating Free-Field ENTER Statements

Terminating conditions for free-field ENTER statements are as follows.

1. If the last item is terminated by a line-feed or by a character accompanied by EOI, the
entire statement is properly terminated.

2. If the preceding statement-termination condition has not occurred but entry into the
last item has been terminated. up to 256 additional characters are entered in search of
this condition. If it is not found. an error occurs.

One case in which this termination condition may not be obvious can occur while entering
string data. If the last variable in the destination list is a string and the dimensioned length of
the string has been reached before a terminator is received, additional characters are entered
(but ignored) until the terminator is found. The reason for this action is that the next charac-
ters received are still part of this data item, as far as the data sender is concerned. These
characters are accepted from the sender so that the next enter operation will not receive these
“leftover’” characters.

Another case involving numeric data can also occur (see the example given with “‘rule 4
describing the number builder). If a trailing non-numeric character terminates the last item
(which is a numeric variable), additional characters will be entered in search of either a line-
feed or a character accompanied by EOI Unless this terminating condition is found before
256 characters have been entered, an error is reported.

EOI Termination

A termination condition for the HP-IB Interface is the EOl (End-or-Identify) signal. When this
message is sent. it immediately terminates the entire ENTER statement, regardless of whether
or not all variables have been satisfied. However, if all variable items in the destination list
have not been satisfied, an error is reported.

Example

ENTER BDeviceiStrings$

‘.A,B]CIDJE[F] oo [alB]c[p]eE[F[tF] or [A|B[Cc|D[E]F[CR[LF]

The result of entering the preceding data with the given ENTER statement is that String$
receives the characters “ABCDEF"". The EOI signal being received with either the last charac-
ter or with the terminator character properly terminates the ENTER statement. If the character
accompanied by EOl is a string character (not a terminator). it is entered into the variable as
usual.

Entering Data

Example

ENTER @DeviceisNumber

Used Lost Lost
—— —— ——
[1]2]3]a]s5] or [1]2]3]4]s5]A] or l1]2[3]a]s5]LF]
M et N \ . —— \ - O N’
Number Sent with Number Sent with Number Sent with

EOI EOI EQI

The result of entering any of the above data streams with the given ENTER statement is that
Number receives the value 12345. If the EQI signal accompanies a numeric character, it is
entered and used to build the number; if the EOI is received with a numeric terminator, the
terminator is lost as usual.

Example

ENTER BDeviceiNumber:Strings

An error is reported
[1]2]3]4]5] (Error 153 Insufficient data for ENTER).
[E————— 8
Number Sent with
EOI

The result of entering the preceding data with the given statement is that an error is reported
when the character 5" accompanied by EOI is received. However, Number receives the
value 12345, but String$ retains its previous value. An error is reported because all variables
in the destination list have not been satisfied when the EQOI is received. Thus, the EOI signal is
an immediate statement terminator during free-field enters. The EOQI signal has a different
definition during enters that use images, as described later in this chapter.

The EOI signal is implemented on the HP-IB Interface, described in Chapter 11 of this manu-
al. Since it is often convenient to to use the keyboard and CRT for external devices, these
internal devices have been designed to simulate this signal. Further descriptions of this fea-
ture’s implementation in the keyboard and CRT are contained in Chapters 8 and 9 of this
manual, respectively.

59

60

Intering Data

Enters that Use Images

The free-field form of the ENTER statement is very convenient to use: the computer automati-
cally takes care of placing each character into the proper destination item. However, there are
times when you need to design your own images that match the format of the data output by
sources. Several instances for which you may need to use this type of enter operations are:
the incoming data does not contain any terminators: the data stream is not followed by an
end-of-line sequence: or two consecutive bytes of data are to be entered and interpreted as a
two’s-complement integer.

The ENTER USING Statement

The means by which you can specify how the computer will interpret the incoming data is to
reference an image in the ENTER statement. The four general ways to reference the image in
ENTER statements are as follows.

1. 100 ENTER BDewvice.x USING "GBA:DDD.DD"3iString_var$Num_var

2. 100 Imade_str$="6ADDD.DD"
110 ENTER BDevice_x USING Imade_stré¢iStrind_var$ sNum_var

3. 100 ENTER @Dewice USING Imade_stmtiString_var$:Num_var
110 Image_stmt: IMAGE GA,DDD.DD

4 100 ENTER BDeuvice USING 11035tring_var$ Num_var
110 IMAGE GADDD.DD

Images

Images are used to specify how data entered from the source is to be interpreted and placed
into variables; each image consists of one or more groups of individual image specifiers that
determine how the computer will interpret the incoming data bytes (or words). Thus, image
lists can be thought of as either a format description of the expected data or as a procedure
that the ENTER statement will use to enter and interpret the incoming data bytes. The exam-
ples given here treat the image list as a procedure.

All of the image specifiers used in image lists are valid for both enters and outputs. However,
most of the specifiers have a slightly different meaning for each operation. If you plan to use
the same image for output and enter, you must fully understand how both statements will use
the image.

Example of an Enter Using an Image

This example is used to show you exactly how the computer uses the image to enter incoming
data into variables. Look through the example to get a general feel for how these enter
operations work. Afterwards, you should read the descriptions of the pertinent specifier(s).

Entering Data

Assume that the following stream of data bytes are to be entered into the computer.

Tlefm[e] [=1 [[+fof8] [a] [Fla[nf[rfef[n[nhfe]il]t]
N . n iy S~ . ,
Ignored Degrees Units$ Ignored —_T

Assume EOl is sent

with this character

Given the above conditions, let’s look at how the computer executes the following ENTER
statement that uses the specified IMAGE statement.

300
310

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

ENTER @Device USING Imade_lsDegreessUnitss$
Image_1: IMAGE 8X +SDDD.D A

The computer evaluates the first image of the IMAGE statement. It is a special image
in that it does not correspond to a variable in the destination list. It specifies that
eight characters of the incoming data stream are to be ignored. Eight characters,
“Temp.= ", are entered and are ignored (i.e., are not entered into any variable).

The computer evaluates the next image. It specifies that the next six characters are
to be used to build a number. Even though the order of the sign, digit, and radix are
explicitly stated in the image, the actual order of these characters in the incoming
data stream does not have to match this specifier exactly. Only the number of
numeric specifiers in the image, here six, is all that is used to specify the data for-
mat. When all six characters have been entered, the number builder attempts to
form a number.

After the number is built, it is placed into the variable ‘‘Degrees’’; the representation
of the resultant number depends on the variable’s type (REAL or INTEGER).

The next image in the IMAGE statement is evaluated. It requires that one character
be entered for the purpose of filling the variable ‘‘Units$”’. One byte is then entered
into Units$.

All images have been satisfied; however, the computer has not yet detected a state-
ment-terminating condition. A line-feed or a character accompanied by EOI must be
received to terminate the ENTER statement. Characters are then entered, but
ignored, in search of one of these conditions. The statement is terminated when the
EOI is sent with the ““t”’. For further explanation, see ‘“‘Terminating Enters that Use
Images”’, near the end of this chapter.

The above example should help you to understand how images are used to determine the
interpretation of incoming data. The next section will help you to use each specifier to create
your desired images.

61

62 lntering Data

Image Definitions During Enter

This section describes the individual image specifiers in detail. The specifiers have been
categorized into data and function type.

Numeric Images

Digit, sign, radix, and exponent specifiers are all used identically in enter images. The number
builder can also be used to enter numeric data.

Image
Specifier

Numeric Specifiers

Meaning

D.Z

S.M

ESZ
ESZZ

ESZZ7

Specifies that one byte is to be entered and interpreted as a numeric charac-
ter. If the character is a non-numeric (including terminators and leading
spaces), it will still ““‘consume’ one of the digit specifiers in the image.

Like “D” in that one byte is to be entered and interpreted as a numeric
character. At least one digit specifier must follow either of these specifiers in
the image.

Like “D” in that one byte is to be entered and interpreted as a numeric
character. At least one digit specifier must accompany this specifier in the
image.

Equivalent to 4D if preceded by at least one digit specifier in the image.
The same is true for the following three images.

Equivalent to 3D’ (if preceded by at least one D", 2", or *'."" specifier).
Equivalent to 4D’ (if preceded by at least one D", **Z"", or *."" specifier).
Equivalent to 5D (if preceded by at least one D", "2, or *'."" specifier).

Specifies that characters are to be entered and interpreted according to the
rules of the number builder.

Examples of Numeric Images

ENTER BDevice USING "5DD.D"3sNumber

ENTER @Device USING "3D.D"3Number
ENTER @GDewvice USING "30D"iNumber

These four images
are equivalent.

ENTER BDevice USING "DESZZ"iNumber

ENTER @Device USING "K"iNumber

Use the rules of the number builder.

String Images

Entering Data

The following specifiers are used to determine the number of and the interpretation of data
bytes entered into string variables.

String Specifiers

Image
Specifier Meaning

A Specifies that one byte is to be entered and interpreted as a string charac-
ter. Any terminators are entered into the string when this specifier is used.

K Specifies that string-freefield convention is to be used to enter data into a
string variable; characters are entered directly into the variable until a ter-
minating condition {CR/LF, LF, or EOI) is received.

-K Similar to "K' except that line-feeds do not terminate entry into the
string; instead, they are interpreted as string characters and are entered
into the string variable. (Receiving EOI with a character or reaching the
dimensioned string length terminates the item.)

L @ These specifiers are ignored for enter operations: however, they are

allowed for compatibility so that an image can be referenced by both EN-
TER and OUTPUT statements.

Examples of String Images

ENTER E@Device USING "10A"3iTen_chars% Enter 10 characters.

ENTER @Device USING "K"3iAnv_string$ Enter using the free-field rules.

ENTER EDewvice USING "SA+K"iStringds Number$ Entertwo strings.

ENTER BDevice USING "SAK"3String$ +Number Enter a string and a number.

ENTER EBDevice USING "-K"3jAll_chars$ Enter all characters until the

string is "full” or EOl is received.

63

64

ey Dan

Ignoring Characters

These specifiers are used when one or more characters are to be ignored (i.e.. entered but not
placed into a string variable).

Specifiers Used to Ignore Characters

Image
Specifier Meaning
X . Specifies that a character is to be entered and ignored.
“literal™ Specifies that the number of characters in the literal are to be entered and
ignored.
/ Specifies that all characters are to be ignored (i.e.. entered but not used)
until a line-feed is received. EOI is also ignored until the line-feed is re-
ceived.

Examples of Ignoring Characters
. oLy o Ignore first five and use
ENTER BDevice USING "SXSA"sFive_chars# sgecondfivecharacters.
ENTER BEDeuice USING "SA»4X»10A"35.1%:5_2% Ignore 6th through 9th characters.

ENTER BDevice USING "/ sK"3i5tringls$ ignore 1st item of unknown length.

ENTER BDewvice USING """zz"" AA"3i6_Z% Ignore two characters.

Entering Data

Binary Images
These specifiers are used to enter one byte (or word) that will be interpreted as a number.

Binary Specifiers

Image
Specifier Meaning

B Specifies that one byte is to be entered and interpreted as an integer in
the range of O through 255.

W Specifies that one word is to be entered and interpreted as a two’s-
complement integer; the first byte received is the most significant. If the
interface only handles eight bits at a time. the most significant byte will
always be all zeros.

Examples of Binary Images

ENTER @Deuice USING "B,B,B"iN1,NZ,N3 Enterthreebytes then look

ENTER BDevice USING "W K" 3Ns:N% Enter the first two pytes as an INTEGER,
then the rest as string data.

65

66

Fntering Data

Terminating Enters that Use Images

This section describes the default statement-termination conditions for enters that use im-
ages (for devices). The effects of numeric-item and string-item terminators and the EOI signal
during these operations are discussed in this section. After reading this section, you will be
able to better understand how enters that use images work and how the default statement-
termination conditions are modified by the “#’" and %’ image specifiers.

Default Termination Conditions

The default statement-termination conditions for enters that use images are very similar to
those required to terminate free-field enters. Either of the following conditions will properly
terminate an ENTER statement that uses an image.

1. The EOI signal is received with the byte that satisfies the last image item or within 256
bytes after the byte that satisfied the last image item.

2. A line-feed is received as the byte that satisfies the last image item (exceptions are the
“B” and ‘W’ specifiers) or within 256 bytes after the byte that satisfied the last image
itemn.

EOI Re-Definition

It is important to realize that when an enter uses an image (when the secondary keyword
“USING” is specified). the definition of the EOI signal is automatically modified. If the EOI
signal terminates the last image item. the entire statement is properly terminated, as with
free-field enters. In addition, multiple EOI signals are now allowed and act as item termina-
tors: however, the EOI must be received with the byte that satisfies each image item. If the
EOI is received before any image is satisfied, it is ignored. Thus, all images must be satisfied,
and EOI will not cause early termination of the ENTER-USING-image statement.

Statement-Termination Modifiers

These specifiers modify the conditions that terminate enters that use images. The first one of
these specifiers encountered in the image list modifies the termination conditions for the EN-
TER statement. If another of these specifiers is encountered in the image list. it again modifies
the terminating conditions for the statement.

Entering Data

Statement-Termination Modifiers

Image
Specifier Meaning
Specifies that a statement-termination condition is not required; the EN-
TER statement is automatically terminated as soon as the last image item
is satisfied.
% Also specifies that a statement-termination condition is not required. In

addition, EOI is re-defined to be an immediate statement terminator,
allowing early termination of the ENTER before all image items have
been satisfied. However, the statement can only be terminated on a ‘‘legal
item boundary”’. The legal boundaries for different specifiers are as fol-
lows.

Specifier Legal Boundary

K, —K With any character, since this specifies a variable-width
field of characters.

S.MD.E Only with the last character that satisfies the image (e.qg..
Z,.,AX with the 5th character of a "*5A"" image). If EOI is received
“lit” with any other character, it is ignored.

B,W

/ Only with the last line-feed character that satisfies the im-

age (e.g., with the 3rd line-feed of a *'3/"" image): otherwise
it is ignored.

Examples of Modifying Termination Conditions

ENTER BDevice USING "#,B"iBvte Enter a single byte.

ENTER BDevice USING "#,W"iInteger Enter a single word.

ENTER @Dewvice USING "%sK"3Arrav (%} Enteranarray, allowing early termination by EO).

67

68

Fanterng Data

Additional Image Features

Several additional image features are available with the 9826. Some of these features have

already been shown in examples, and all of them resemble the additional features of images
used with OUTPUT statements.

Repeat Factors

All of the following specifiers can be preceded by an integer that specifies how many times the
specifier is to be used.

Repeatable Specifiers
D.Z A X/ @ L

Image Re-Use

If there are fewer images than items in the destination list, the list will be re-used. beginning
with the first item in the image list. If there are more images than there are items, the addition-
al specifiers will be ignored.

Examples
ENTER @BDevice USING "#,B"iB1,BZ,B3 The "B is re-used.
ENTER BDewvice USING "ZA,ZAW"3A%,B% The "W is not used.

Nested Images
Parentheses can be used to nest images within the image list. The hierarchy is the same as

with mathematical operations:; evaluation is from inner to outer sets of parentheses. The max-
imum number of levels of nesting is eight.

Example

ENTER @Source USING "Z(Bs5A:/) /" iN1N1& N2 NZ$

Chapter 6

Registers

Introduction

A register is a memory location. Thus, some registers store parameters that describe the
operation of an interface, some store information describing the I/O path to a device, and
some are the locations at which interface cards reside (remember that the 9826 implements
“memory-mapped 1/0”’).

Registers are accessed by the computer when executing /O statements that specify either an
interface select code, a device selector, or an 1/O path name. Thus, each interface and /O
path has its own set of registers. The general programming techniques used to access these
registers and the specific definitions of all I/O path registers are given in this chapter;
however, the specific definitions of the interface registers are given in the chapter that de-
scribes each interface.

There are three levels of register access. The first level of access is automatically made by
the computer when an I/O statement is executed. The second level of access (provided by the
STATUS and CONTROL statements) allows interrogating and changing interface and 1/O
path registers. The third level of access (provided by the READIO function and the WRITEIO
statement) is used to read from and write to interface hardware directly.

69

70

Reaisters

Intertace Registers

A simple example of an interface register being accessed explicitly by the program and then
automatically by [/O statements is shown in the following program. Register O of interface
select code 1 is the “X”" screen coordinate at which subsequent characters output to the the
CRT will begin being displayed; register 1 is the corresponding “*Y"" coordinate.

100 STATUS 13Red_0OsRedg_1 ! Pgrm accessing X & ¥ coords,
110 QUTPUT 13"Print coordinates before lst OUTPUT:"
120 QUTPUT Ls3"X="3Reg_0," Y="iReg_1

130 0OUTPRUT 1

do
120 OUTPUT
160 STATUS

1im1234567" I Note "3",
1
170 0OUTPUT 1
1
1
1

iRedg_0sRed_1

i"Print coordinates after QUTPUTs:"
PUH=IReg 0Oy ¥="iRed_ 1

180 QUTPUT
190 0OUTPUT

200 OQUTPUT 13" *
210 1
220 END

The STATUS Statement

The contents of a STATUS register can be read with the STATUS statement. Typical exam-
ples are shown below. A complete listing of each interface’s registers is given in the chapter
that describes programming each interface; the definitions of /O path registers are described
later in this chapter.

Example

STATUS register 7 of the interface at select code 2 is read with the following statement. The

first parameter identifies the interface and the optional second parameter identifies which

register is to be read. The specified numeric variable receives the register’s current contents.
Interface select code

STATUS Z2+73Reg_7

Register number Numeric variable(s) to
(optional) receive register(s) contents

Example

'O path STATUS register O is read with the following statement. Since the second parameter
is optional and has been omitted in this instance. register 0 is accessed.

5TATUS BKevhoardiRed 0O

Registers

Example

STATUS registers 4 and 5 of the interface at select code 7 are read with the following state-
ment. Since two numeric variables are to receive register contents, the next highest register is
accessed. If more than two variables are specified, successive registers are read.

100 STATUS 7+4iRed_4:Red 5

The CONTROL Statement

When some [/O statements are executed, the contents of some CONTROL registers are auto-
matically changed. For instance, in the above example registers 0 and 1 were changed
whenever the OUTPUT statements to the CRT were executed. The program can also change
some register’s contents with the CONTROL statement, as shown in the following examples.
Again, all of the CONTROL register definitions for each interface are given in the chapter that
describes programming each interface.

Example

Register 0 of interface select code 1 is modified with the following statement. This register
determines the X" screen coordinate at which subsequent characters output to the CRT
display will appear.

Interface select code

100 CONTROL 13X_Pos

Numeric expression(s) to be sent
to the appropriate register(s)

Example
Register 8 of interface select code 1 is modified with the following statement. This register’s
contents determine how many lines of display memory will be ‘‘above screen’: changing the

contents of this register allows scrolling the display.

100 CONTROL 1:B3Line_ros

Register number

71

72

Roeagisters

[/O Path Registers

At this point you know how to access the registers associated with interfaces and /O path
names, but you may not know much about the differences or about the interaction between
these two types of registers. Let’s first review the definition of an I/O path name.

An I/O path name is a data type that contains a description of an ['O path between the
computer and one of its resources sufficient to allow accessing the resource. You learned in
Chapter 3 that the computer uses this information whenever the I/O path name is used in an
[/O statement. Much of this information stored in this [/O-path-name table can be accessed
with the STATUS and CONTROL statements.

When an [/O path name is used to specify a resource in an I/O statement, the computer
accesses the first table entry (the validity flag) to see if the name is currently assigned. If the
/O path name is assigned. the computer reads 1/O path register O which tells the computer the
type of resource involved. If the resource is a device, the computer must also access the
registers of the interface specified by the device selector. If the resource is a file, the table
contains additional entries that govern how the [/O process is to be executed.

As you can see, the set of /O path registers is not the same set of registers associated with an

interface. The following program is an example of using I/O path register 0 to determine the
type of resource to which the I/O path name has been assigned.

700 Find_tvpe: STATUS BResourcesReg_0

710 !

720 IF Reg_0=0 THEN GOTO Not_assidned
730 |

740 IF Reg_0=1 THEN GOTO Dewvice

730 I

760 IF Reg_0=2 THEN GOTO File

770 !

780 PRINT "Resource t¥pe unrecodnized”

790 PRINT “Program STOPPED."

800 STOP

g1l0 !

820 Not.assidgned: PRINT "I/0 epath name not assigned”
830 GOTO Common.exit

840 !

850 Dewvice: S5TATUS BResocurcerliRed_1

860 PRINT "@BResource assidned to device®
870 PRINT "at intf. select code "iRed_1
880 GOTD Common_exit

890 !

goo |

910 File: STATUS BResourcesl iRed_1Red_ 2+ Redg 3
gz0 !

Registers

930 PRINT "File tvpe "iReg_1

940 PRINT "Device selector "IReg 2

950 PRINT “Number of sectors "iReg.3

a0 !

g70 !

980 Commor_exits: | Exit point of this routine.

Once the type of resource has been determined, it can be further accessed with the 1/O path
registers or the interface registers, depending on the resource type. If the [/O path name has
been assigned to a device, the interface registers should be accessed for further information;
if the name has been assigned to a mass storage file, the 1/O path registers should be
accessed.

Summary of I/O Path Registers

The following list describes the information contained in I/O path STATUS and CONTROL
registers. Note that only STATUS register O is identical for all types of I/O paths; the rest of
the /0O path registers’ contents depend on the type of resource to which the name is assigned.

For all I/O Path Names:

Returned
Value Meaning
Status Register O 0 = Invalid I/O path name
1 = /O path name assigned to a device
2 = /O path name assigned to a data file

I/0 Path Names Assigned to a Device:

Status Register 1 — Interface select code
Status Register 2 — Number of devices
Status Register 3 — Address of 1st device

If assigned to more than one device, the addresses of the other devices are available
starting in Status Register 4.

I/0O Path Names Assigned to an ASCII File:

Status Register 1
Status Register 2
Status Register 3
Status Register 4
Status Register 5
Status Register 6

File type = 3

Device selector of mass storage device
Number of records

Bytes per record = 256

Current record

Current byte within record

73

74 Reaisters

I/O Path Names Assigned to a BDAT File:

Status Register 1
Status Register 2
Status Register 3
Status Register 4
Status Register 5
Control Register 5
Status Register 6
Control Register 6
Status Register 7
Control Register 7
Status Register 8
Control Register 8

|

File type = 2

Device selector of mass storage device
Number of defined records
Defined record length
Current record

Set record

Current byte within record
Set byte within record
EOF record

Set EOF record

Byte within EOF record
Set byte within EOF record

Direct Interface Access

The third level of register access provides direct access to interface hardware: this level of
access is identical to that possessed by the operating-system firmware. Consequently, these
interface-access techniques should only be used if you have a complete understanding of
both the specified register’s definition and of the consequences of reading from or writing to
these registers. The READIO and WRITEIO interface register definitions and access methods

are listed in the chapter that describes each interface.

75

Chapter 7

Interface Events

Introduction

The 9826 computer can sense and respond to the occurrence of several events. This chapter
describes programming techniques for handling the interface events called “interrupts” and
“timeouts”’ which can initiate program branches. For more details on event-initiated bran-
ches, consult the BASIC Language Reference.

Review of Event-Initiated Branching

Event-initiated branches are very powerful programming tools. With them, the computer can
execute special routines or subprograms whenever a particular event occurs; the program
doesn't have to take time to periodically check for each event’s occurrence.

Events

The events that can initiate branches are summarized as follows; only the last two, which are
interface events, are discussed in this chapter. The KNOB event is described in Chapter 9,
“The Internal Keyboard Interface’”: the END, ERROR, and KEY events are described in the
BASIC Language Reference.

END — occurs when the computer encounters the end of a mass storage file while
accessing the file.

ERROR — occurs when a program-execution error is sensed.

KEY — occurs when a currently defined softkey is pressed.

KNOB — occurs when the “knob’’ (rotary pulse generator) is turned.

INTR — occurs when an interrupt is requested by a device or when an interrupt condi-
tion occurs at the interface.

TIMEOUT — occurs when the computer has not detected a handshake response from a
device within a specified amount of time.

76

Intorfoce Foeats

Service Routines

The software that is executed when an event occurs is called a service routine: the service
routine takes action that has been programmed as the computer's response to the event.
Since most events have only one cause. most service routines execute the same action each
time the event occurs. However, if an event can be caused by more than one event, the
service routine must also be able to determine which event(s) have occurred and then take
the appropriate action(s).

Required Conditions

In order for any event to initiate a branch. the following prerequisite conditions must be met.
Later sections describe how to meet these prerequisites for interface events.

1. The branch must be set up by an ON-event-branch statement. and the service routine
must exist.

2. The event must currently be enabled to initiate a branch.

w

The event must occur.

4. The software priority assigned to the event must be greater than the current system
priority".

When all of these conditions have been met, the branch is taken.

A Simple Example

The following program shows how events (of different software priorities) are serviced by the
computer. Subprograms called “Key_0"" and “‘Key_1"" are the service routines for the events
of k0 and k1 being pressed: the software priorities assigned to these events are 3 and 4.
respectively. Run the program and alternately press these softkeys: the branch to each key's
service routine is initiated by pressing the key. The system priority is “'graphed’” on the CRT.

100 ON RKEY 0:3 CALL Kev_G I 5et upP euvents and
110 ON KEY 1.4 CALL Kev_1 b assign priorities.
120

130 Low_tone=100
140 Mid_tone=300
150 Hi_tone=400

160

170 1

180 OUTPUT 13" Svstem"s"Priority"

190 Us=CHR%(B)1&CHR$(10) I B5 & LF.

200 0UTPUT 13" AUBUSR"I"EVSETZRVRR I "EVER O

210 1

I Software priotity is specified in the event’s set-up statement: the range of priorities that can be specified in this statement is O through 15,
Interfaces also have a “hardware’ priority which is different from the software priority. For further details of hardware priority. see the next

sections of this chapter,

Interface Events

220 Main: CALL Bar.grarh(7"%*") | Sys, Prior. 1is
230 P alwavs »= 0O,
240 BEEP Low_tone sl

230 FOrR Jiffw=1 TO 5000

260 NEKXKT Jiffy

270 !

280 GOTO Main I Main loor.

290 !

300 END

310 f

320 5UB Kev_0

330 CALL Bar_draprh{(4,"*") | Plot Prioritv.,
340 BEEP Mid_towne .1

350 FOR Iota=1 TO 2000

360 NEXT Iota

370 CALL Bar_dgrarh(4," ") | Erase.

380 SUBEND

380 I

400 5UB Kev_1

410 CALL Bar_drarh(3,"%*") ! Grarh pPrioritv,
420 BEERP Hi_tones.1

430 FOR Twinkle=1 TO 2000

440 NEXT Twinkle

430 CALL Bar_drarh(3:" ") | Erase.

460 SUBEND

470 I

480 S5UB Bar_grarh(LinesChar$)

490 CONTROL 1s+13Line I Locate line.

2300 QUTPUT 13Char% ! Bar-dgrarh character.
210 SUBEND

If k1 is pressed after k0 but while the Key_0 routine is being executed, execution of Key_0 is
temporarily interrupted and the Key_1 routine is executed. When Key_1 is finished, execu-
tion of Key_0 is resumed at the point where it was temporarily interrupted. This occurs be-
cause k1 was assigned a higher software priority than k0.

System
Priority . .
‘Key_0" execution pre-empted.

; |

) 1

2

1)

time

0 N J . ~ ~ :
Main program’s “Key_0" "Key_1" “Key_0" Main program's
lines being executed. | being executed. being executed. execution execution continued.

completed.

pressed pressed

Events with Higher Software Priority Take Precedence

77

78

Interface Fverts

On the other hand. if k0 is pressed while k1 is being serviced, the computer finishes executing
Key_1 before executing Key_0. The event of pressing k0 was ‘‘logged’ but not processed
until after the routine having higher software priority was completed. This is a very impor-
tant concept when dealing with event-initiated branching. The action of the computer in log-
ging events and determining assigned software priority is further described in the next section.

System

Priority

4

5 |

2

1 time

0 < = — Iw v "Iu v >
Main program's i "Key_ 1" “Key_0" Main program’s
execution continued. being executed. being executed. lines being executed.

(k) t
pressed

pressed

An Event with Lower Software Priority Must Wait

Logging and Servicing Events

The preceding events may occur at any time: however. the computer is only “‘concerned’ if
these events have been *‘set up’ to initiate a branch. An example of the computer ignoring an
event is seen when an undefined softkey is pressed. Since the event has not been set up, the
computer beeps. No service routine is executed. even though the computer was “‘aware’” of
the event. Thus. only when an event is first set up and then occurs does the computer “‘service™
its occurrence.

Software Priority

The computer first “'logs’ the occurrence of an event which is set up.' After recording that the
event occurred, the computer then checks the event's software priority against that of the
routine currently being executed. The priority of the routine currently being executed is
known as system priority. If no service routine is being executed. the system priority is O;
otherwise the system priority is equal to the assigned software priority of the routine currently
being executed. The following table lists the software priority structure of the computer; prior-
ity increases from O to 16.

1 The process of logging event ocurrences is described in the section called “Hardware Priority”

Interface Events

Software Priorities of Events

O....... System priority when no service routine is being ex-
ecuted (known as the ‘‘quiescent level’’).

1-15. ... Software-assignable priorities of service routines.

16. Priority of END, ERROR, and TIMEOUT events; the

software priorities of these events cannot be changed.

In the above example, system priority was 0 before either of the events occured. When k0 was
pressed, the system priority became 3. When ki1 was subsequently pressed, the system first
logged the event and then checked its priority against the current system priority. Since k1 had
been assigned a priority of 4, it pre-empted k0's service routine because of its higher software
priority.

It is important to note that the computer only services event occurrences when a program
line is exited. This change of lines occurs either at the end of execution of a line or when the
line is exited when a user-defined function is called. When the program line is changed, the
computer attempts to service all events that have occurred since the last time a line was
exited. The next section further describes logging and servicing events.

When execution of Key_1 started, the system priority was set to 4. If any event was to inter-
rupt the execution of this service routine, it must have had a software priority of 5 (or greater).
When execution of Key_1 completed. the Key_0O service routine had the highest software
priority, so its execution was resumed at the point at which it was interrupted.

If k0 was pressed again while its own service routine was being executed. execution of the first
service routine was finished before the service routine was executed again. Thus. if an event
occurs that has the same software priority as the system priority. its service routine will not
interrupt the current routine. The service routine will only be executed if the event’s software
priority becomes the highest priority of any event which has been logged (i.e.. after all other
events of higher software priority have been serviced).

Hardware Priority

There is a second event priority. hardware priority, that also influences the order in which the
computer responds to events. Hardware priority determines the order in which events are
logged by the system. while software priority determines the order in which events are ser-
viced. The hardware priority of an interface interrupt is determined by the priority-switch
setting on the interface card itself'. Hardware priority is independent of the software prior-
ity assigned to the event by the ON INTR statement.

All events have a hardware priority but not all have hardware priorities that can be changed.

The following table lists the hardware-priority structure of the 9826. Only the optional inter-
faces’ hardware priorities can be changed.

1 Setting hardware priority on an optional interface is described in the interface’s installation manual

79

80

hitcrface Fvents

Hardware Priorities of 9826 Interfaces

Hardware Interface(s) and Event(s)
Priority at This Priority
0 (Quiescent level: no interface

is currently interrupting)

1 Internal Keyboard
(KEY and KNOB events)

2 Internal Disc Drive
{(END event)
3 Internal HP-IB
(INTR and TIMEOUT events)
3 6 Optional Interface Cards

(INTR and TIMEOUT events)

7 Non-Maskable Interrupts
(such as the RESET key)

In order to fully understand the differences between hardware and software priority. it is
helpful to first understand how the computer logs and services events. When any event
occurs, the interface (at which the event has occurred) signals it to the computer. The com-
puter responds by temporarily suspending execution of its current task to poll (interrogate)
the currently enabled interfaces.

When the computer determines which interface is interrupting, it records that it has occurred
on this interface (i.e.. logs the event) and disables further interrupts from this interface.
This event is now logged and pending service by the computer. The computer can then
return to its former task (unless other events have occurred which have not been logged).

If other events have occurred but have not yet been logged, they will be logged in order of
descending hardware priority. This occurs because events with hardware priority lower than
that of the event currently being logged are ignored until all events with the current hardware
priority are logged.

Interface Events

Servicing Pending Events

If the computer was interrupted while executing a program line. execution of the line is re-
sumed (after logging all events) and continues until either the line is completely executed or a
user-defined function causes the line to be exited. When the line is exited. the computer
begins servicing all pending events.

When servicing pending events, the computer begins with the event of highest software prior-
ity and executes the event of lowest software priority last. However, if two or more events
have the same software priority, the ccmputer services the events in order of descending
interface select codes. If events have both the same software priority and interface select
code (such as softkeys with the same software priority). the events are serviced in the order
in which they occurred.

The process of logging of events is still taking place while events are being serviced. This
concurrent action has two major effects. First, events of higher hardware priority will interrupt
the current activity to be logged by the computer. Second, events which also have higher
software priority will interrupt the computer’s present activity to be serviced. Thus, events of
high hardware and software priority can potentially occur and be serviced many times
between program lines.

For example, suppose that the following events have been set up and enabled to initiate
branches. Assume that the events have the hardware priorities shown in the program’s com-
ments.

100 ON INTR 8:15 CALL Serv_8 I Hardware priority B.
110 ON INTR 7:14 CALL Seruv.7 ! Hardware priority 3.
120 ON KEY 03 CALL Seruv_ KO ! Hardware pPriority 1.

The following diagram shows the INTR event on interface select code 8 occuring and being
serviced several times after one program line has been exited.

Line
exited.
Program line Serv_8 Serv_7 Serv_8 Serv_kO Serv_8 Serv_k0 Next line
being executed. executed. executed. executed. begun. executed. finished. executed.
I ~ - N ~~ ~NF -~ Nt e ~r - "
1 1 f f |
———e— X X
INTR on interface INTR on interface
These three events select code 8. select code 8.

occur and are logged.

Hardware priority’s main function is to keep events of lower hardware priority from being
logged so that more ‘‘urgent’” events can be serviced quickly: This delay of polling the inter-
faces at lower hardware priorities helps these urgent events get the immediate attention they
may require. Decreasing the system’s response time to these urgent events may also increase
overall system throughput.

81

&2

Faterface BEveats

Setting up Branches

Again for review, the methods of setting up an event-initiated branch to a service routine are
as follows for all events.

1. ON event CALL subprogram name
2. ON event GOSUB service routine

3. ON event GOTO service routine

4. 0ON event RECOVER service routine

The term service routine is any legal branch location for the type of branch specified and
current context. The BASIC Language Reference fully describes the differences between
these types of branches.

Enabling Events to Initiate Branches

Before an event (which is set up) can initiate a branch, it must first be enabled to do so. The
power-up state of the computer is that the END, ERROR, KEY, KNOB and TIMEOUT events
are already enabled to initiate branches: the INTR events must be enabled explicitly with
separate statements. Further details of enabling these events are described in the “‘Interface
Interrupts’” and “Interface Timeouts™™ sections of this chapter.

Interface Interrupts

All interfaces have a hardware line dedicated to signal to the computer that an interrupt event
has occurred. The source of this signal can be either the device(s) connected to the interface
or the interface hardware itself. These possibilities are shown in the following diagram.

Logical OR of the Two Signals

Interface / Computer

Interrupt —— 4———» Both types of interrupts are
from Device — signalled to the computer in
the same manner.
Interrupt
from
Interface
Hardware

There are two general types of interrupt events. The first type of event occurs when a
device determines that it requires the computer to execute a special procedure. The second
type occurs when the interface itself determines that a condition exists or has occurred that
requires the computer's attention.

Interface Events

The first type of interrupt event is usually called a service request. Service requests originate
at the device. An example is a voltmeter signaling to the computer that it has a reading;
another is a printer generating a service request when it is out of paper. The service routine
takes the appropriate action, and the program (usually) resumes execution.

The second type of interrupt event is used to inform the computer of a specific condition at
the interface. This type of event originates at the interface. An example of this interrupt
event is the occurrence of a parity error detected by the serial interface. This error usually
requires that the erroneous data just received be re-transmitted. The service routine can often
correct this error by telling the sender to keep sending the data until the error no longer
occurs, after which the computer can resume its former task.

The specific abilities of each interface to detect interrupt conditions and to pass on service
requests from devices are described in the interface programming chapters.

Setting Up Interrupt Events

Both of the preceding types of interrupt-initiated branches are set up with statements such as
those in the following examples.

Example

Set up an interrupt event to be logged, and define the location and software priority of the
service routine.

ON INTR Int_sel_codesPriority CALL Service_routine

The select code of the interface is specified by the first parameter: /O path names cannot be
used to specify the interface. The second parameter specifies the software priority assigned to
the event. A subrogram called Service_routine must exist in computer memory at the time the
program is run. Parameters cannot be passed to the service routine in the ON INTR
statement; any variables to be used jointly by the service routine and other contexts must be
defined in common. See the BASIC Language Reference for further details.

Enabling Interrupt Events

Before the INTR event can initiate its branch. it must be enabled to do so. The following
examples show how to enable interrupt events to initiate branches.

Example

Enable interrupts occuring at interface select code 7 to initiate the branch set up by an ON-
event-branch statement.

ENABLE INTR 7iMask

The bit pattern of Mask is copied into the “‘interrupt-enable’" register of the specified interface:
in this case, register 4 of the built-in HP-IB interface receives Mask's bit pattern. Individual
bits of the mask are used to enable different types of interrupt events for each interface. Each
bit which is set (i.e., which has a value of 1) in the mask expression enables the correspond-
ing interrupt condition defined for that bit.

83

84

Interface Events

For instance, bit 1 of the HP-IB's interrupt-enable register is used to enable and disable
service-request interrupts. To enable this event to initiate a branch, bit 1 must be set to a “1".
Specifying a mask parameter of “2”’ causes a value of 2 to be written into this register, thus
enabling only service requests to initiate branches.

ENABLE INTR 732

Most Significant Bit Least Significant Bit
Bit 15 Bit 14 Bit 3 Bit 2 Bit 1 Bit 0
. _ . See
- Other interrupt causes Service Sub
described in subsquent sections Request ubsequent
Sections
Value = Value = — = - -
~32 768 16 384 Value =8 | Value=4 | Value=2 | Value =1

The mask parameter is optional. If it is included, the specified value is written into the
appropriate register of the specified interface. If this parameter is omitted, the mask specified
in the last ENABLE INTR is used. If no ENABLE INTR statement has been executed for the
specified interface, a value of 0 (all interrupt events disabled) is used.

Example
Re-enable a previously enabled interrupt event.
ENABLE INTR 7

Since no interrupt-enable mask is specified, the last mask used to enable interrupts on this
interface is used.

Service Requests

You can program a service routine to perform any task(s) that is “‘requested” by the device
that initiated the branch. If this event can occur for only one reason, the service routine just
performs the specified action. However, with many devices, the service request can occur for
several different reasons. In this case, the program must have a means of determining which
event(s) occurred and then take action.

<

Interface Events

Example

The following program shows an example of using a service routine that can be initiated by
only one cause — a service request from a device at address 22 on the built-in HP-IB inter-

face.

100
110
120
130
140
150
160
170
180
1906
200
210
220
230
240
230
260
270
280
280

' Example of service routine for HP-IB service redauests.,
i

ON INTR 73 CALL Intr7 Set urp interfaces Priority:

branch tvees and location.

(kit 1) are enahbled,

Loor: GOTO Loor

!

!

I

ENABLE INTR 732 I Only service requests

!

i

b Idle loor.

|

END
i
SUB Intr7 ‘
Z2=8POLL(T722) I Clear INTR cause first,
i
ENTER 7ZZ2iReading i Take desired action.
{
ENABLE INTR 7 i Re-enable service requests.
i
SUBEND .

The program shows the sequence of steps required to set up and enable interrupt events.
These steps are as follows.

1.

The interrupt event is set up to be logged, as in line 120. This statement also assigns the
event’s software priority; in this case, the priority is 5.

The event must be enabled to initiate its branch, as in line 150. The mask value speci-
fies that only service requests (enabled by setting bit 1) can initiate branches.

When the event occurs it is logged. Any further interrupts from this interface are auto-
matically disabled until this interrupt event is serviced.

A serial poll (line 230) must be performed by the service routine, clearing the interrupt-
cause register so that the same event will not cause another branch upon return to the
interrupted context. The serial poll is particular to the HP-IB interface, but analogous
actions can be performed with the other interfaces.

The actual requested action is performed (line 250).

If subsequent events are to be enabled to initiate branches, they must be enabled be-
fore resuming execution of the previous program segment, as in line 270. Since no
interrupt-enable mask is explicitly specified, the previous mask is used.

85

86

Iterface BEvents

Interrupt Conditions

The conditions that can be sensed by each type of interface are different. All interrupt condi-
tions signal to the computer that either its assistance is required to correct an error situation or
an operating mode of the interface has changed and must be made known to the computer.

The following service routine demonstrates typical action taken when a receiver-line status
(“RLS”) interrupt condition is sensed by the serial interface.

100 I Example of interface-condition interrurt event.
110
120 ON INTR 9+4 CALL Intr.9 Set urp for interface select

i

130 I code 9 and epriority of 4.

140 ENABLE INTR 9id ! Bit 2 in maskK enables
|

150 "RLS"-tvre interrurts only.,
° "
: Main program here.
GOO SUB Intr_ 9
B10o !
G20 STATUS 9103Intr_cause ' Clear intrs.-cause red,
B30 !
4O ! Check errors and branch to "fix" routines.
650 !
BGO IF BIT(Intr_cause+3)=1 THEN GOTO Framindg error
670 IF BIT(Intr_causes2)=1 THEN GOTO Paritv_error
68O IF BIT(Intr_causesi)=1 THEN GOTO QOuerrun_.error
630 IF BIT(Intr_cause»0)=1 THEN GOTO Recuv_buf_full
700 ENABLE INTR 9.4 I Idnore others:s re-enable
710 SUBEXIT I INTRs» and return.
720 !
730 Framind_error: ! "Fix" and re-enable.
740 SUBEXKIT
730 !
760 Paritvy_error: I "Fix" and re-enable,
770 SUBEXIT
780 !
790 Ouerrun_error: ! "Fix" and re-enable,
800 SUBEXIT
g10 !
820 Recuv_buf_full:z ' "Fix" and re-enable.
830 SUBEXIT

840 SUBEND

Interface Events

Interface Timeouts

A “‘timeout’’ occurs when the handshake response from any external device takes longer than
the specified amount of time. The time specified for the timeout event is usually the maximum
time that a device can be expected to take to respond to a handshake during an I/O state-
ment.

Setting Up Timeout Events

The following statements set up this event-initiated branch. The software priority of this event
cannot be assigned by the program; it is permanently assigned priority 15. The maximum
time that the computer will wait for a response from the peripheral can be specified in the
statement with a resolution of 0.001 seconds.

Example

Set up a timeout to occur after the Serial Interface has not detected a response from the
peripheral after 0.200 seconds. Branch to a subroutine called ‘‘Serial_down”’.

ONTIMEQUT 9.2 GOSUB Serial_down
Example
Set up a timeout of 0.060 for the interface at select code 8.
ON TIMEOUT B, 0B GOTO HP_ib_status

Timeout Limitations
Timeout events cannot be set up for any of the internal interfaces except the built-in HP-IB.

Event-initiated branches are only executed at certain times during program execution, usually
after a program line has been executed. Consequently, the time in which the computer re-
sponds to the event’s occurrence is only accurate to within +/- 25% of the specified time,
even though the resolution of the time parameter is 0.001 seconds.

There is no default timeout time parameter. Thus, if no ON TIMEOUT is executed for a
specific interface. the computer will wait indefinitely on the device to respond. The only way
that the computer can continue executing the program is for the operator to use the CLR I0
key. This key aborts the I/O operation that was left “*hanging’” by the failure of the device to
respond to the handshake.

The times specified for timeouts are passed to subprograms. Thus, unless the time for a time-
out event is changed in the subprogram. it remains the same as it was in the calling routine. If
the time parameter is changed by the subprogram, it is restored to its former value upon
return to the calling context.

87

88 Interface Events

89

Chapter 8
The Internal CRT Interface

Introduction

This chapter describes programming techniques for “‘interfacing’’ the computer to the internal
CRT. Access to this device with I/O statements (OUTPUT, ENTER, STATUS, and CON-
TROL) is described herein. Many of the concepts and programming techniques presented in
the previous chapters of this manual are applied in this chapter.

CRT Display Description

The CRT is accessed through the interface permanently assigned to select code 1. This dis-
play features the following capabilities.

e Both alphanumerics and graphics information can be displayed on this device either
simultaneously or separately’. The alphanumeric display consists of 25 lines by 50 col-
umns of dot-matrix characters.

e Characters OUTPUT to the CRT appear in the top 18 display lines (known as the output
area).

e All character positions in display memory can be addressed individually, and the display
can be scrolled up and down under program control.

e Characters can be read from any location of the display with the ENTER statement. The
EOQI signal (simulated) is sent with the line-feed following the last non-blank character-in
the line.

1 Programming the graphics display is described in the BASIC Language Reference.

90 The Internal CRT Intertace

The 25 lines of the alphanumeric display are organized as follows.

4 N
Output Area
} Blank Line
} Display Line
} Keyboard Area (iwo lines)
Its Li
Arrow Run Indicator } Message/Results Line
S i |} Softkey Labels (two lines)
N~ J

The Output Area and the Disp Line

The alphanumeric display is divided into several areas which are used for different purposes.
Characters sent to the CRT with the PRINT statement appear in the top 18 lines of the
display, known as the CRT’s “‘output area’’. Characters sent to the CRT with the DISP state-
ment appear in the ‘DISP line’’. Type in and run the following example program to see these
two different areas.

100 PRINTER IS 1

110 I

120 FOR Line=1 TO 18

130 PRINT "The OUTPUT Area"
140 NEXT Line

150 !

160 DISP "The DISP Area"

170]

180 END

Output to the CRT

Data can also be sent to the output area by directing OUTPUT statements to interface select
code 1. The following example uses an [/O path name to direct the data to the CRT; the
default data representation used with the CRT is the ASCII representation.

100 ASSIGN E@Printer TO 1

110 !

120 FOR Line=1 TO 18

130 OQUTPUT @Printers"The OUTPUT Area"
140 NEXT Line

150 i

160 END

The Internal CRT Interface

Numeric Outputs

When numbers are output to the CRT by the free-field form of the OUTPUT statement, the
standard numeric format is used!. The following statements show how trailing punctuation
within the OUTPUT statement affects the item terminators output after each numeric item.

Examples Results
OQUTPUT 13123,456 123 456
QUTPUT 135-123,456 -123, 456
QUTPUT 13-123,+-456 -123,-436
OUTRPUT 13-1233%-456 -123-456
OUTPUT 131233456 123 456

leading “ + " signs
replaced by a space

String Outputs

Strings are output to the CRT in a similar manner with free-field outputs; trailing punctuation
in the statement determines whether or not string-item and statement terminators are output.
The following examples show how trailing punctuation within the OUTPUT statement affects
the output of string-item terminators.

Examples Results
OUTPUT 13#"0ne” »"Two" One
Two

DUTPUT 13"Three"$i"Four" ThreeFour

As with free-field outputs to other devices, a trailing semicolon causes the separator of the
item that it follows to be suppressed. In the above case, the carriage-return and line-feed
separators which normally follow the output of a string item are suppressed by the semicolon.
The next paragraphs describe how the carriage-return and line-feed (control characters) are
interpreted by the CRT.:

1 ““Standard numeric format” is further described in Chapter 4, “*Outputting Data’".

91

92 The Internal CRT Interfece

Control Characters

ASCII characters with codes 0 through 31 are defined to be ‘“‘control’”’ characters. When one
of these characters is sent to a system resource, it is usually interpreted as a command, rather
than as data. The complete list of control characters and their corresponding codes and defini-
tions is given in the ASCII table in the Appendix.

Four of these characters are used for controlling the 9826’s CRT display, and all others are
ignored (i.e., are not displayed and cause no special action when received by the CRT). Run
the following program and note the results.

130 Backsprpace$=CHR$(8)

140 Line_feed$=CHR$(10)

150 Form_feed$=CHR$(12)

160 Carriade_return$=CHR$(13)
170 !

180 !

190 ASSIGN EBCrt TO 1

200 I

210 CUTPUT ECrti"Back"}

220 WAIT 1

230 OQUTPUT @CrtiBackspace$i"srpace"
240 WAIT 1

250 !
260 DUTPUT @Crti"Line"s
270 WAIT 1

280 DUTPUT @Crtiline_feedsi"feed"

290 WAIT 1

300 !

310 OUTPUT @Crti"Carriade"?

320 WAIT 1

330 OUTPUT @CrtiCarriade.return$i"return”
340 WAIT 1

350 !

360 DUTPUT @Crti"Form"3

370 WAIT 1

380 DUTPUT @CrtiForm_feedsi"feed"
390 DISP "Scroll down to view pPrevious displav"
400 !

410 END

Display Before Scroll

The Internal CRT Interface

Display After Scroll

-

feed

The following table describes the display functions invoked when the specified control charac-
ter is sent to the CRT (in the ‘‘Display functions off”” mode). The print position is the column

BacspPace
Line
feed
returnde
Form

feed

and line at which the next character sent to the display will appear.

Control-Character Functions on the CRT

(CR)

All other control
characters.

Character Value Defined Action
Bell 7 |Causes beeper to output the standard tone;
no display action is invoked.
Backspace 8 |If the print position was not in column 1,
(BS) it is moved ‘‘back’ one character position;
if it was in the first column, no action is
invoked.
Line-feed 10 |Moves the print position ‘‘down’’ one line.
(LF)
Form-feed 12 |Scrolls the screen “‘up’’ as far as possible,
(FF) prints two blank lines, and places the print
position at column 1 of the second, print-
ed blank line.
Carriage-return 13 |Causes the print position to be moved to

the beginning (first column) of the current
screen line.

Ignored.

93

94

The Internal CRT Intericce

The Display Functions Mode

The preceding program showed the control characters which are defined to invoke a special
display function when sent to the CRT. To display all control characters sent to the CRT,
rather than have the CRT interpret them as commands, turn the Display functions mode on
by pressing the DISPLAY FCTNS key. Repeatedly pressing this key toggles this display mode
between ‘“‘on’’ and ‘‘off”’. Using the CRT with Display functions on is very useful when you
need to see exactly which control characters have been output.

Except for the carriage-return character, all subsequent control characters sent to the display
(while in this mode) do not invoke their defined function, but are only displayed. The car-
riage-return is both displayed and causes the print position to move to the beginning of the
next line (both CR and LF functions invoked).

The Display functions mode can also be enabled from BASIC programs with the use of the
CONTROL statement. The following program shows how this is accomplished. Notice that the
carriage-return invokes both carriage-return and line-feed functions.

100 CONTROL 1,431 I Non-zero => set.

110 !

120 I First send with default CR/LF sequence.
130 QUTPUT 13"DISPLAY FUNCTIONS ON"

140 !

150 | Then suppress the CR/LF (with "3").

160 QUTPUT 135CHR$(12) 3

170 END

Notice that the ‘‘Display functions on’’ message normally displayed when the DISPLAY FCTNS
key is pressed is not automatically displayed when the value of CONTROL register 4 is
changed; instead, the program must display the message, if so desired.

Output-Area Memory

In addition to the 18 visible display lines in the output area, there are 39 additional lines (57
lines total) available within output-area memory. These additional lines of display memory
can be viewed by running the following program and then scrolling the display down (turning
the knob counterclockwise). The 18 visible lines of output-area memory will hereafter be
called the screen.

The Internal CRT Interface 95

100 I Example to show scrolling,

iilo !

120 PRINTER IS 1 I' PRINT on CRT.
130 !

140 FOR Line=1 TO 37 I Write 57 lines,
150 PRINT Line

160 NEXT Line

170 ! Now scroll manuallvy.
180 END

Determining Above-Screen Lines

Scrolling the display up and down allows you to view different 18-line portions of the (up to)
57 lines within output-area memory. If the display is scrolled down as far as possible (i.e., the
first 18 lines of output-area memory are visible), there are no lines ‘“‘above screen’’. Similarly,
if the display is scrolled up as far as possible, there are (up to) 39 lines above screen. The
following drawing shows 6 lines above screen.

Six))]
Above-Screen
Lines
([, N
2
3
Lines 1 through 18 . 57
Are Visible ¢ 1§ Lines L Total
Displayed Lines
18

_J
7)
Line Positions of the Output Area

The number of lines that are above screen can be determined from BASIC programs by
reading STATUS register 3 of interface select code 1. The returned value is the number of
lines currently above screen.

96

The Internal CRT Interte ce

If the screen has just been cleared (SHIFT-CLR LN), the following program displays
0 limes above screen. Running the program a second time displays
18 lines above screen, andso forthuntil 39 lines abouve screen is display-
ed continually.

100 FDOR Line=1 TO 18
110 OUTPUT LiLine
120 NEXT Line

130 !

140 STATUS 1:+3%Lines_above
150 DISP Lines_aboves" lines above screen"
160 END

Screen Addresses

All of the characters in output-area memory can be addressed individually by the character’s
screen column and line. The character in the upper left corner of the screen is in column 1
and line 1, and the character in the lower right corner is in column 50 and line 18. The
addresses of the characters ‘‘off screen’ are limited by the number of lines currently above
screen.

The screen addresses (both column and line) at which a subsequent character sent to the
display will appear on the screen are known as the print position. The current print position is
automatically changed as characters are output to the display. For instance, the print-position
column is incremented each time a character is sent; when the 51st character is sent to a line,
the print-position column is reset to 1 and the print-position line is incremented, sending the
character to the next line. The following program shows how the print-position line varies
during output to the CRT.

100 FOR Line=1 TO 57

110 QUTPUT 1ilLine

120 STATUS 1:13Print_line

130 DISP "Print-position line = "3iPrint_line
140 IF Line<23 THEN WAIT .2

150 NEXT Line

160 I

170 END

Notice that the print-position line is always relative to the first line of the current screen.
This accounts for the print position (read with STATUS) remaining at a value of 19 while the
19th through 57th lines are being printed. When the print position is off screen, the display is
scrolled (when it receives a character) so that the character appears on the screen. When the
display is finished scrolling, all line addresses are again relative to the new top screen line. The
next section describes using this feature to scroll the display from the program.

The Internal CRT Interface

Scrolling the Display

The program can scroll the display up and down by changing the print position to a location
off screen and then outputting character(s) to the CRT. Thus, in order to scroll up, values
greater than 18 must be written to register 1. If the screen is to be scrolled up 4 lines, the
following statements can be used. In this case, the OUTPUT statement outputs the “Null”
control character so that no characters will be overwritten.

100 CONTROL 1:1318+4 ! Move Print position off screens
110 CUTPUT 135CHR$(0O) 3 ! scrollindg takes eplace when next
120 i character sent to the CRT.

The screen is not scrolled up until the OUTPUT statement actually writes to the CRT at the
current print position (even though, in this case, no visible character is actually output to the
display).
In order to scroll down, a non-positive number must be written into register 1. For instance,
to scroll down one line, a 0 would be written into register 1. Again, the display is not actually
scrolled until an OUTPUT (or PRINT) to the CRT is executed.
The only restriction on the value of the line. number is that it must not attempt to scroll the
screen down past the first line of output-area 'memory. In other words, to scroll down as far as
possible, the following value would be used; using smaller values results in an error.

Top line’s address = — (number of lines above screen) + 1

Thus, if no lines are above screen, the top line’s address is 1.

An example of scrolling down ‘‘as far as possible’’ is shown in the following program.

100 FOR Line=1 TO 57

110 OUTPUT 1iLine
120 NEXT Line
130 !

140 STATUS 1s13bine_pros
150 DISP "Print-rosition line ="jLine_rosi" after OQUTPUT "
160 WAIT 2

170 !

180 STATUS 1:33Lines_above ! Find # lines above screen.,
180 DISP "and"iLines.aboves’s" lines are above screen"
200 WAIT 3

210 !

220 CONTROL 1s1%-Lines_above+1 ' Chande line-rPos.

230 OUTPUT 13"Line 1™ I Scroll made when 1st
240 I character is sent.,
250 !

260 STATUS 1:35Lines_above

270 DISP "Nows: number of lines above screen ="3jL_above

280 END

97

98 The Internal CRT Interte

Entering from the CRT

Data is entered from the CRT beginning at the current print position. As characters are read
from the screen (from left to right), the print position is updated. When the ENTER statement
attempts to read past the last non-blank character on a line, the CRT display’s hardware sends
a line-feed character accompanied by a (simulated) EOI signal, and the print position is ad-
vanced to the beginning of the next line.

Reading a Screen Line

The following program uses the line-feed accompanied by EOI to terminate entry into a string
variable. Since the free-field ENTER statement is used, only one line can be read because of
the EOI sent with the line-feed character.

100 CONTROL 135.8 | Moue print Position to
110 ' Sth column of line 8,

120 QUTPUT 13i"ABCDEFGH" ' then OUTPUT (with CR/LF).
130 !

140 QUTPUT 13" IJRKLMNOP "1 QUTPUT to line 9 with
150 Il trailind sPaces.

160 !

170 CONTROL 1,138 I Mopue print eposition back
180 I to 1lst column of line B.
190 I

200 ENTER 13iLine_B%

210 DISP LEN{(Line_B8%)i"characters read from line 8"
220 WAIT 2

230 !

240 ENTER 13iLine_9%

250 DISP LEN(Line_.9%)i"characters read from line 39"
260 END

This feature of the CRT is very useful when simulating entry from the HP-IB interface; howev-
er, keep in mind that no spaces can be read after the last visible character at the end of
each line. Notice in the preceding example that the trailing space characters sent to the
display were not read back by the ENTER statement. These trailing characters are treated as
“blanks” by the CRT, which sends the line-feed with EOI when the ENTER statement
attempts to read the first one.

Reading the Entire Output-Area Memory

In order to read all lines within output-area memory, an ENTER statement that uses an image
must be used to prevent the EOI signal from terminating the statement prematurely (since the
EOI signal acts as an item terminator during ENTER-USING-image statements which contain
no “%” image specifiers). The following program shows the entire contents of output-area
memory being read.

The Internal CRT Interface

100 OPTION BASE 1

110 DIM Memorv$(37)L301 ! To read all 57 lines.,
120 !

130 FOR Screen_line=1 TO 57

140 QUTPUT 1i"Line"3Screen_line

150 NEXT Screen.line

160 WAIT 1

170 |

180 S5TATUS 1,3iLines_above

190 CONTROL 13ls+-Lines_above+l I Seroll to read

200 ENTER 1 USING "K"iMemorv$%(*) | entire memory.
210 |

220 FOR Screen_.line=1 TO 57 ! Display all liness
230 PRINT Memorv$(Screen_line)s" "3 | pno CR/LF.
240 NEXT Screen_line

230 END

Final Display

Line 49
Line S0
Line 51
Line 52
Line 53
Line 54
Line 355
Line 56
Line 57
Line 1 Line 2 Line 3 Line 4 Line 5 Line B Line 7 L

ine 8 Line 8 Line 10 Line 11 Line 12 Line 13 Line

14 Line 15 Line 16 Line 17 Line 18 Line 19 Line 20
Line 21 Line 22 Line 23 Line 24 Line 25 Line 26 L

ine 27 Line 28 Line 28 Line 30 Line 31 Line 32 Lin
e 33 Line 34 Line 35 Line 36 Line 37 Line 38 Line

39 Line 40 Line 41 Line 42 Line 43 Line 44 Line 45
Line 4B Line 47 Line 48 Line 49 Line 50 Line 51 L

ine 32 Line 53 Line 54 Line 55 Line 56 Line 57

Notice that the print position was moved to the top line before attempting to read memory
contents, since the ENTER statement reads characters beginning at the print position. If the
print position is not at the “top line”” of memory before attempting to read all 57 lines, the
lines above screen will not be read. However, the statement executes with no errors, because
the CRT sends line-feeds (with EOI) for each line that does not really exist ‘‘below screen’’.
For instance, if the print position is at line 10 when the ENTER begins, only the last 47 lines of
output-area memory will be read (and placed into the first 47 elements of Memory$). When
the ENTER statement attempts to fill last ten elements of Memory$, the CRT sends only
line-feeds accompanied by EOI because the print position is past the last non-blank character.

99

100

The Internal CRT Interiace

Additional CRT Features

This section describes the remainder of features of the CRT display controllable by BASIC
programs. Interrupt and timeout events are not available with the CRT interface.

The DISP Line

BASIC programs can output characters to the DISP Line with the DISP statement, as de-
scribed in the BASIC Language Reference. As with the output-area’s print position, the posi-
tion (column) within the DISP line at which subsequent characters will appear can be read
and changed explicitly by BASIC programs. This DISP-line position can be read and
changed with STATUS register 8 and CONTROL register 8 (of interface select code 1), re-
spectively.

100 FOR Disp_pos=46 TO 1 STEP -1
110 CONTROL 1:B3Disp_pPos

120 DISP "HELLO™

130 WAIT 2

140 NEXT Disr.prPos

150 END

Keep in mind that if trailing carriage-return and line-feed characters are output to the DISP
line, the carriage-return returns the DISP-line position to column 1. A subsequent DISP state-
ment clears the entire line. However, if these trailing characters are suppressed, the DISP-line
position is left unchanged. Run the following program to see these effects.

100 PRINT "First with trailing CR/LF "
110 DISP "HI"

120 WAIT +3

130 DISP " THERE"

140 WAIT 1

150 |

160 PRINT "then with no CR/LF."
170 DISP "HI":

180 WAIT .3

190 DISP " THERE®

200 END

Also notice that if a DISP attempts to send characters to the DISP line so that any character
will be past the 50th column, the entire line is shifted left so that all of the new characters will
be displayed (i.e., so that the last character written will end up in column 50).

100 CONTROL 18340

110 DISP "CHARACTERS"S I No CR/LF.
120 WAIT 1

130 DISP " SHIFTED LEFT"

140 !

150 END

The Internal CRT Interface

Disabling the Cursor Character

BASIC programs even have control over whether any cursor is displayed (during all computer
modes, such as during EDITs and other keyboard-entry modes). The cursor is disabled with
the following statement.

CONTROL 11030

Any non-zero value written to this register re-enables the cursor to be displayed. Resetting
the computer also re-enables the cursor being displayed.

CONTROL 110351

Enabling the Insert Mode

The insert mode of the keyboard area can be enabled and disabled with STATUS and CON-
TROL statements. If any non-zero numeric value is written to register 2, the insert mode is
enabled. All subsequent characters typed into this area are ‘‘inserted’”’ between the cursor
and the character to its immediate left, and characters to its right are shifted appropriately.

The following program turns insert mode on for approximately five seconds. During this time,
use the knob to move the cursor left and right while typing in characters from the keyboard.

100 Insert_mode=1
110 CONTROL 1s2%Insert_mode
120 !

130 DISP "Insert mode is now being used"

140 BEEP 200,.2

150 WAIT 5

160 !

170 Insert_mode=0

180 CONTROL 1sZ%Insert_mode

190 DISP "Now the mode has chanded to overwrite"

200 BEEP 100,,2
210 WAIT 5
220 1

230 BEEP S504.2
240 DISP "Prodram ended"
250 END

101

102 The Internal CRT Inter ace

Summary of CRT STATUS and CONTROL Registers

STATUS Register 0 — Current print position (column)
CONTROL Register 0 — Set print position (column)

STATUS Register 1 ~ — Current print position (line)
CONTROL Register 1 — Set print position (line)

STATUS Register 2 — Insert-character mode
CONTROL Register 2 — Set insert character mode if non-0
STATUS Register 3 — Number of lines ‘‘above screen’’.
CONTROL Register 3 — Undefined

STATUS Register 4 — Display functions mode
CONTROL Register 4 — Set display functions mode if non-0
STATUS Register 5 — Undefined

CONTROL Register 5 — Undefined

STATUS Register 6 — ALPHA ON flag

CONTROL Register 6 — Undefined

STATUS Register 7 — GRAPHICS ON flag

CONTROL Register 7 — Undefined

STATUS Register 8 — Display line position (column)
CONTROL Register 8 — Set display line position {column)

STATUS Register 9 — Screenwidth (number of characters)
CONTROL Register 9 — Undefined

STATUS Register 10 — Cursor-enable flag
CONTROL Register 10 — Cursor-enable; 0 = cursor visible.
non-0 = cursor visible.

STATUS Register 11 — CRT character mapping flag
CONTROL Register 11 — Disable CRT character mapping if non-0

103

Chapter 9
The Internal Keyboard Interface

Introduction

As with the CRT, access to the internal keyboard can be made with the OUTPUT, ENTER,
STATUS, and CONTROL statements. This chapter describes programming techniques for
“interfacing’’ to this internal device.

Keyboard Description

The internal (or built-in) keyboard of the 9826 is controlled by its own processor, allowing
many more capabilities than most other desktop-computer keyboards. This keyboard is a
device that resides at interface select code 2 and provides the following capabilities.

e Data can be entered using the ENTER statement, allowing simulation of other devices
and program debugging.

e Commands can be output to the keyboard to simulate an operator; data can be output to
the keyboard allowing the operator to edit the data.

® The keyboard processor maintains a real-time clock, which can be read by BASIC pro-
grams.

® The processor monitors the ‘‘knob’ (the rotary pulse generator) and can periodically
interrupt the program when the knob is turned.

® The processor controls the programmable beeper.

The INTR and TIMEOUT interface events cannot be sensed by the keyboard.

104

The Internal Keyboar:d Interface

Cursor
Control Editing
Softkeys Keys Keys System Control Keys

L3 - CLR SCR SET T

oo 1= oo or] () [e | |

DOOOO000000000E £ QOO0
@cccocoooooes|jajoooo
m(ojojojcooojocee OO0
CIOC0OEO000CT — 0000

~ - N———t = v —
ASCII Keys Program ASCII Keys
Control
Keys

ASCII and Non-ASCII Keys

The keys of the 9826 can be generally grouped by function into the ASCII and non-ASCII
keys. The ASCII (or alphanumeric) keys all produce an ASCII character when pressed, and
include the character entry and numeric keys. The non-ASCII (or non-alphanumeric) keys do
not produce characters but initiate specific action when pressed; the ENTER, CAPS LOCK, TAB,
and BACK SPACE keys are non-ASCII keys for this reason. Non-ASCII keys also include all
program control, editing, cursor control, and system control keys.

The Shift and Control Keys

The SHIFT and CTRL keys are not really either type of key because neither can cause action on
its own; instead, they are used only with the other types of keys. Pressing the SHIFT key with
another key qualifies the other keypress, allowing the other key to have a second meaning.
For instance, in the ‘“‘Caps lock off’ mode, pressing an alphabetic ASCII key generates a
lowercase alphabetic character. Pressing the SHIFT key simultaneously with an alphabetic key
in the “Caps lock off’” mode generates an uppercase character. The SHIFT key is used similarly
with the non-ASCII keys, allowing many of those keys to have a second function.

The CTRL (Control) key is also used to further qualify both ASCII and non-ASCII keypresses.
Pressing the CTRL key simultaneously with an ASCII key generates an ASCII control character
in the display, and is often faster than using the ANY CHAR key. The following table shows how
to generate control characters by simultaneously pressing the CTRL key and typing key(s).

The Internal Keyboard Interface

Generating Control Characters with CTRL and ASCII Keys

Key ASCII Character’s Key(s) Pressed Character
Code Character Description with CTRL on CRT

0 NUL Null (space bar) Ny
1 SOH Start of Header @ Sk
2 STX Start of Text Sy
3 ETX End of Text Cce)) Ex
4 EOT End of Transmission @ Er
5 ENQ Enquiry (E Eg
6 ACK Acknowledgement @ Ak
7 BEL Bell Ce)

8 BS Backspace @ Bs
9 HT Horizontal Tab (D Hy
10 LF Line-Feed Le
11 VT Vertical Tab Cx) vy
12 FF Form-Feed Fr
13 CR Carriage-Return Cwm) Cr
14 SO Shift Out Cn) sg
15 Sl Shift In (o) >
16 DLE Data Link Escape Cr) o,
17 DC1 Device Control @ Dy
18 DC2 Device Control Cr) D,
19 DC3 Device Control (Cs) D3
20 DC4 Device Control Dy
21 NAK Neg. Acknowlegdement Cv) Ng
22 SYN Synchronous Idle @ Sy
23 ETB End of Text Block Cw) £p
24 CAN Cancel (x) N
25 EM End of Media Ey
26 SUB Substitute Cz) Sg
27 ESC Escape 1) Ec
28 FS File Separator sHFT)-(C [) Fs
29 GS Group Separator 1) Gg
30 RS Record Separator Rg
31 (0N} Unit Separator sHIFT)-(/) Ug

The keys listed in the preceding table are not the only ways to generate control characters, but
are generally the simplest and most easily memorized method. For instance, to generate a
line-feed character, press the CTRL and the J keys simultaneously; alternate methods are also
shown below.

(CetrL)-(C 4) or (etRL)-(sHFT)-(_J) or (ctRL)-(SHIFT)-(C 8) or (etRL)-(C +)

Pressing the CTRL key with a non-ASCII key is used to generate and store non-ASCII key-

strokes within strings and is further discussed in ‘“Outputs to the Keyboard™.

105

106

The Internal Keyboard interface

Keyboard Operating Modes

The keyboard has two operating modes which can be changed either manually by pressing
the CAPS LOCK or the PRT ALL key or from the program with the CONTROL statement. This
section describes changing these modes from the program.

The Caps Lock Mode

Pressing the CAPS LOCK key toggles the keyboard between the ‘Caps lock on” and ‘‘Caps lock
off” modes. In the “‘Caps lock on’”’ mode, pressing any alphabetic key causes an uppercase
letter to be displayed on the screen; in the “Caps lock off” mode, these keys generate lower-
case letters. This mode can be changed with the CONTROL statement and sensed with the
STATUS statement. Writing any non-zero numeric value into register O (of interface select
code 2) sets the caps lock mode on; writing a zero into this register sets the mode off.

100 5TATUS ZiCaps_lock I Check mode.
110 !

120 PRINT "Initially, "3

130 IF Caps_lock=1 THEN

140 Mode$="0ON"

150 ELSE

160 Mode$¢="0FF"

170 END IF

180 |

190 PRINT "CAPS LOCK was "&Mode$BCHR$(10) ! SKiep line,
200 BEEP

210 WAIT 1

220 !

230 CONTROL 23

240 PRINT "CAPS LOCK now ON"

230 PRINT "Tvrpe in a few characters"&CHR$(10)
260 WAIT 4

270 !

280 CONTROL 230

290 PRINT "CAPS LOCK now OFF®

300 PRINT

310 BEEP

320 END

The Print All Mode

Pressing the PRT ALL key toggles the “‘Print all” mode “‘on’” and ‘“‘off”’. The *‘Print all” mode
can also be sensed and changed by reading and writing to STATUS register 1 and CONTROL
register 1 (of interface select code 2). Writing a non-zero numeric value into this register sets
the “‘Print all”’” mode on; writing a value of zero turns this mode “off”’. The following state-
ment turns the ‘‘Print all”’ mode off.

CONTROL 29130

The Internal Keyboard Interface

Modifying the Repeat and Delay Intervals

The keyboard has an auto-repeat feature which allows you to hold a key down to repeat its
function rather than pressing and releasing it repeatedly. Holding a key down will cause it to
be repeated every 80 milliseconds for as long as it is is held down, resulting in a repeat rate of
approximately 12.5 characters per second. However, you may have noticed that the initial
delay between the key being pressed and the key being repeated is longer than successive
delays between repeats; the initial delay before a key is repeated for the first time is 700
milliseconds (7/10 second). The following plot of a key’s default repeat function shows these
two intervals.

Initial 1st 2nd 3rd 4th
Keystroke Repeat Repeat Repeat Repeat ...
4 700ms { 80ms { 80ms ll 80ms {
1 1 1 1 T
Initialvdelay Re;;eat
intervals

These intervals can be changed from the program, if desired, by writing different values into
CONTROL registers 3 and 4 (of interface select code 2). Register 3 contains the parameter
that controls the auto-repeat interval, and register 4 contains the parameter that controls the
initial delay. The values of these parameters, multiplied by 10, give the respective intervals in

milliseconds with the following exception; if register 3 is set to 256, the auto-repeat is dis-
abled.

The following program sets up softkeys 0, 4, 6, and 8 to change these parameters. Run the
program and experiment with these intervals to optimize them for your own preferences and
needs.

100 ON KEY LABEL "Faster" GOSUB Decr_interval

110 ON KEY 4 LABEL "Slower" GOSUB Incr_interval
120 ON KEY 6 LABEL "Sooner" GOSUB Decr.delav
130 ON KEY 8 LABEL "Later" GOSUB Incr_delav

140 !

150 Interval=80 I Defaults,

160 Delav=700

170 I

180 DISP "Interval="3iIntervali" Delav= "3Delav
180 GOTO 180 ! Looe.,

200 |
210 Incr_interval:Interval=Interval+lO*(Interval<2560)

220 CONTROL Z+33Interval/io

230 RETURN

240 !

230 Decr.interval: Interval=Interval-10¥(Interval<>10)
260 CONTROL Z+33%Interval/io

270 RETURN

280 !

107

108 The Internal Keyboar:! Interface

290 Incr_delav: Delav=Delav+10#(Delavi2360)

300 CONTROL 2+435Delav/10

310 RETURN

320 !

330 Decr_delav: Delav=Delav-10%(Delav>10)
340 CONTROL Z2+4iDelav/10

350 RETURN

360 !

370 END

Entering from the Keyboard

When the keyboard is specified as the source of data in an ENTER statement, the computer
executes the process just as if entering data from any other device. The computer signals to
the keyboard that the keyboard is to be the sender of data. The keyboard in turn signals that
it is not ready to send data and waits for you to type in and edit the desired data.

The characters you type in appear in the keyboard area of the display, but they are not
automatically sent to the computer. As long as you can see the characters, you can edit them
before sending them to the computer, just as during an INPUT statement. Available charac-
ters include all 256 characters that can be generated either with keystrokes or with the ANY
CHAR key.

Pressing the ENTER, STEP, or CONTINUE key signals the keyboard that the data is to be sent to
the computer. The data is then sent byte-serially according to an agreed-upon handshake
convention. The computer enters the data in byte-serial fashion and processes it according to
the specified variable(s), type of ENTER statement, and image (if it is an ENTER USING
statement).

The differences in pressing the ENTER, STEP, and CONTINUE keys are as follows. Keep in mind
that the ENTER statement is still being executed as long as the *“*"” appears in the lower right
corner of the display.

ENTER All of the characters displayed in the keyboard area are sent to the computer,
or followed by carriage-return and line-feed characters. These last two characters
STEP usually terminate entry into the current item in the ENTER statement. In addi-

tion, the STEP key causes the computer to remain in the single-step mode after the
ENTER statement has been completely executed.

All of the characters displayed in the keyboard area are sent to the computer for
processing; no trailing carriage-return and line-feed characters are sent. The
CONTINUE key is pressed if more characters are to be entered into the current
variable in the destination list of the ENTER statement.

The Internal Keyboard Interface

Type in and run the following program. Experiment with how entry into each variable item is
terminated by using the different keys (i.e., the CONTINUE key versus the ENTER or STEP keys).
Pressing the ENTER or STEP key terminates entry into the current variable, while pressing the
CONTINUE key allows additional characters to be entered into the current variable.

100 DIM Strind_.arrav$(1:3)L100]

110 ASSIGN EDevice.simulate TO 2

120 !

130 ENTER BDevice_simulateiStringd_arrav${(*)
140 !

150 OUTPUT 1s3String_arrav$(*)

160 [

170 END

This use of the keyboard is very powerful when tracing the cause of an error in an enter
operation. With this tool, you can ‘“debug” or verify any type of ENTER statement, including
ENTER statements whose source is intended to be a device on the HP-IB interface. The next
section describes this topic.

Sending the EOI Signal

The EOI signal is implemented on the HP-IB interface. This line ordinarily signals to the
computer that the data byte being received is the last byte of the item; thus, it is either an item
terminator or a terminating condition for the ENTER statement'.

The EOI signal can be simulated from the keyboard when this feature is properly enabled.
CONTROL register 12 of interface select code 2 controls this feature; the following example
statement shows how to enable this feature.

CONTROL 2+1231

To simulate the EOI signal with a character, the CTRL and E keys are pressed simultaneously
before the character to be accompanied with EOI is typed in. For instance, if the characters
“DATA” are to be entered and the EOI is to accompany the last “A”, the following key
sequence should be pressed before pressing the ENTER, STEP, or CONTINUE key.

() (AT Cemy-CEJCA)

The same result can be obtained by placing an ENQ character (ASCII control character
CHR$(5),Eq) in front of the character to be accompanied by the EOI signal (see the previous
section for further details).

1 Sce Chapter 5 for further explanation of the EOI signal’s effects during ENTER.

109

110

The Internal Keyboard [aterface

Outputs to the Keyboard

Characters output to the keyboard are indistinguishable from characters typed in from the
keyboard. All characters output to the keyboard, including control characters, are displayed
in the keyboard area. The following program outputs the BEEP statement to the keyboard.

80 I "KBD_2"

90 !

100 OUTPUT 25"BEEP"3 ! No CR/LF.
110 I

120 END

Sending Non-ASCII Keystrokes to the Keyboard

The preceding program sent the characters BEEP to the keyboard, but the statement was not
executed. Pressing the EXECUTE key after the program has ended executes the statement.
Modify the program to ‘‘press’’ the EXECUTE key by typing in CTRL-EXECUTE following the BEEP.
Sending this special two-character sequence to the keyboard is equivalent to the operator
pressing the EXECUTE key. Thus, in general, to store a non-ASCII “‘keystroke’” within a program
line, press the CTRL key while simultaneously pressing the desired non-ASCII key.

Since CHR$(255) does not generate the same character on most printers as it does on the
9826 display, it is recommended that some explicit means of documenting these character
sequences be employed. For instance, string variables can be defined to contain these se-
quences; then when the program is listed on an external printer, it will be much easier to
determine which non-typing keys are being represented. The CTRL key is still used with the
non-ASCII key to generate the two-character sequence, but the special character should be
changed to a CHR$ (255).

100 Execute_Kev$=CHR$(Z55)R" K"
110 Printall _Kev$=CHR$(253)8"A"
120 I
130 QUTPUT Z23Printall_Kev$3i ! Use "§" to suppress CR/LF.
140 QUTPUT Z23"BEEP"BExecute_Kev$s
150 END
Note

Since this type of output can be used to send immediately executed
commands (such as SCRATCH A) it is very important that you be
very cautious when outputting commands to the keyboard. It is also
advised that you use care when editing statements and commands
sent to the keyboard due to the two-character non-ASCII key se-
quences; unexpected results may occur when carelessly editing
non-ASCII key sequences output by a program.

The following table shows the resultant characters that follow CHR$(255) in the two-character
sequences generated by these keystrokes. The table is included only to show the general
mnemonic nature of the second character in these sequences. The next table can be used to
look up which non-ASCII key is to be output if the second character is known.

The Internal Keyboard Interface

Mnemonic Nature of Non-ASCII Key Sequences

Key Character Key Character Key Character
Softkeys Cursor Controls
(k) 0 a v
k) 1 b "
(k) z (ki) c g
(k) 3 (ks) g =D >
(k) 4 e sFr)-(C 7) T
(ks) 5 (ks f ELEE W
(ks) B g sHIFT)-(<) H
(k) 7 h sHFT)-(-) G
(ke) 8 i
9 J Editing Keys
System Keys *
DEL LN /
D F RECALL ?
(_GRAPHICS) L DUMP GRAPHICS N ((SHIFT) -(__RECALL) @
M 0 +
(sTep) 5 $ -
(CLRIN) # K
= 1 Character Entry
A [
I !)
SHIFT J-(_TAB (
Program Controls u
ENTER E
P R Roman Y
CONTINUE C EXECUTE R Katakana J

111

112 The Internal Keyboard nterface

Look-Up Table for Non-ASCII Key Sequences

Character Key Character : Key Character Key
space ! @ (SHIFT)-(RECALL) : !
! (stop)* A (CPRT AL) a ‘
" ‘ B b G ®
C (CONTINUE) ¢ (Ckz)c
% (ANY CHAR)? D d g
p E ENTER)? e 2
B 1 F (DISPLAY FCTNS)* f (Cks)®
! ! G SHIFT)-(-) g 2
(SHIFT) -(_TAB H (shiFm)-(<) h 2
) I CLR 10 i 2
* INS LN)? J Katakana Mode? J 2
+ K (CCLR SCR)” < ‘
' 1 L (GRAPHICS)* 1 1
- M (ALPHA)® m !
. Ignored N (DUMP GRAPHICS) m !
/ (OEL LN)® 0 (_DUMP_ALPHA) 0 :
0 (o) P (PAUSE)* P 1
1 (k)2 Q ! g !
z (e) R (RN) r 1
3 (k)2 5 STEP)? 5 !
4 () T CsiFD)-C 1) t ‘
5 (ks)2 U CAPS LOCK)? u !
G 2 Y 2 u !
7 2 W — 2 W L
8 (s) X (LEXECUTE) X 1
g (ke)2 Y Roman Mode? y !
. 1 d 1 - 1
; 1 C { 1
\ 1 1 1
= RESULT ‘ 1 SET TAB b ‘
| o - ‘
7 RECALL L - ! :

1 These characters cannot be generated by pressing the CTRL key and a non-ASCII key. If one of these characters follows CHR$(255) in an
output to the keyboard, an error is reported (Errar 131 Bad non-alephanuneric Kevcode).

2 pProcessing of these keys, known as ‘‘closure keys'’, is described in the following section.

The Internal Keyboard Interface

Closure Keys

Several of the non-ASCII keys are known as ‘‘closure keys”’. Closure keys are so named
because of the way the computer processes these keys when output to the keyboard. The
important feature of closure keys is that the computer can only process two closure keys
between program lines during a running program. If more than two appear in the data
output to the keyboard, the additional keys may be processed in an unexpected order.

As an example, the following program sends four closure keys to the keyboard with a single
OUTPUT statement. Only the first two closure keys are processed after this OUTPUT state-
ment (but before DISP "Next BASIC line" is executed). The third and fourth closure
keys are processed after DISP "Next BASIC line" is executed (but before DISP "2rnd
BASIC line" is executed). This accounts for the following display after running the program,
since the “Printall’’ command was not executed until after DISP "Next BASIC line" was
executed.

100 | Define non-ASCII Kevs.

110 Ex$=CHR$ (253) 8" X" | EXECUTE Kev.

120 Upb=CHRE(233)8&""" I Ur arrow Kev.

130 Prt$=CHR$(2535)8"A" | PRT ALL Kev.

140 !

150 CONTROL 24150 ! Turn PRINTALL off.

160 CONTROL 1,131 I Bedin on topP screen line.
170 QUTPUT 13"Line 1"

180 OUTPUT 13i"Line 2"
190 DUTPUT 13i"Line 3"
200 WAIT 1

210]
220 ! Now send statement with 4 closure Kevs.
230 QUTPUT 23"DISP ""Hello"""3iEx$iUrsillrEiPrts}
240 DISP "Next BASIC line" | PRT ALL still off.
250 DISP "Znd BASIC line" I Now PRT ALL is on.
260 !

270 END

113

114 The Internal Keyboard nterface

Display After Running Program

e)
Line 3
Z2nd BASIC line
2nd BASIC line
Printall on
_J

In addition, if the last character sent to the keyboard is a CHR$(255), the next character typed
in by the user will give unexpected results. Again, it is important to exercise care when using this
feature.

Locking Out the Keyboard

There are certain times during program execution when it is expedient to prevent the operator
from using the keyboard, such as during a critical experiment which cannot be disturbed. The
the knob and groups of keyboard keys can be enabled and disabled separately.

Setting bit 0 of register 7 (of interface select code 2) disables all keys (excluding the RESET
key) and the knob. The following program first sets up the KNOB and KEY events to initiate
program branches. It is assumed that the keyboard is already enabled; if you are not sure,
press the RESET key. When the program is run, the keyboard and knob remain enabled for
about five seconds, after which they are disabled. The program then displays the time of day
indefinitely; the only way to stop the program is to press the RESET key.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
220
260
270
280
280
300
310
320
330
340

If the value of the variable RESET_disable is set to 1 in the preceding program, the only way
to prematurely stop the program is to turn off power to the 9826, losing the program and all

The Internal Keyboard Interface

ON KEY O LABEL "SFK 0O" GOSUB Kev0
ON KNOB .2 GOSUB Knob
]
PRINT "You‘ve dot 5 seconds, Ggor ¢
FOR Iteration=1 TO 20
WAIT .25
NEXKT Iteration
I
Reset.disabkle=0 I RESET remains EMABLED.
Ky _knb_disable=1 ! DISABLE rest of Kbd,
CONTROL 27 3i2%¥Reset_disable+Kv_Knb_disable
PRINT "Time‘s up!®”

BEEP
!
SET TIME ©
Loorp: DISP DROUND(TIMEDATE MOD (Z24*G0O*B0.,) »d)
GOTO Loor
!
!
KevOQs PRINT "Special function Kevy O pPressed.,"”
RETURN
I
Knob: PRINT "Knob rotation sensed,"

RETURN
END

data currently in computer memory.

Note

Use care when locking out both the RESET key and the keyboard
keys. If both are locked out, the only way to prematurely stop
the program is to turn the computer off.

115

116 The Internal Keyboard Interface

Sensing Knob Rotation

The “‘event” of the knob (rotary pulse generator) being rotated can be sensed by the pro-
gram. The branch location, interval at which the computer interrogates the knob for the
occurrence of rotation, and branch priority are set up with a statement such as the following.

ON KNOB IntervalsPriority CALL Knob_turned

In addition to the program being able to sense rotations of the knob, it can also determine
how many pulses the knob has produced and whether or not either or both of the CTRL or
SHIFT keys are being pressed. This ability to “‘qualify’’ the use of the knob allows it to be used
for up to four different purposes. The following program shows how to set up the branch, how
to determine the number of pulses, and how to determine the direction of rotation.

100 ON KNOB .25 GOSUB Knob ! Check Knob every 1/4 sec.
110 !

120 FOR Iteration=1 TO 200

130 WAIT .1

140 DISP Iteration

150 NEXT Iteration

160 !

170 5TOP

180 !

190 Knob: STATUS Z24105Kev_with_Knob

200 PRINT KNOBX3i" Pulses "3j

210 IF Kev.with_Knob=0 THEN

220 PRINT | CR/LF.

230 ELSE

240 IF Kev_with_Knob=1 THEN PRINT "with SHIFT®
230 IF Kev_with_Knob=2 THEN PRINT "with CTRL"
260 IF Kev.with_Knob=3 THEN PRINT "with SHIFT and
CTRL"

270 END IF

280 RETURN

290 END

The interval parameter of 0.25 seconds was specified in the preceding program; consequent-
ly, the knob will be interrogated approximately every 0.25 seconds. If any pulses have occur-
red since the last interrogation, the specified branch will be initiated.

One full rotation of the knob produces 120 pulses. The service routine calls the KNOBX
function to determine how many pulses (only net rotation) have been generated since the
last call to this function. If the number is positive, a net clockwise rotation has occurred; a
negative number signifies that a net counterclockwise rotation has occurred. Since the pulse
counter can only sense + 128 to — 127 pulses during the specified interval, the interval
parameter should be chosen small enough to interrogate the knob before the pulse counter
reaches one of these values. Experiment with this parameter to adjust it for your particular
application.

The Internal Keyboard Interface

Summary of Keyboard
STATUS and CONTROL Registers

STATUS Register 0 — CAPS LOCK flag
CONTROL Register 0 — Set CAPS LOCK if non-0
STATUS Register 1 — PRINTALL flag
CONTROL Register 1 — Set PRINTALL if non-0
STATUS Register 2 — Undefined

CONTROL Register 2 — Undefined

STATUS Register 3 — Undefined

CONTROL Register 3 — Set auto-repeat interval. If 1 thru 255, repeat interval in mil-
liseconds is 10 times this value. 256 = turn off auto-repeat. The
power-on default is 8, causing repeat intervals of 80 mil-
liseconds.

STATUS Register 4 — Undefined

CONTROL Register 4 — Set delay before auto-repeat. If 1 thru 256, delay in mil-
liseconds is 10 times this value. The power-on default is 70,
causing a delay before auto-repeat of 700 milliseconds.

STATUS Register 5 — Undefined
CONTROL Register 5 — Undefined
STATUS Register 6 — Undefined
CONTROL Register 6 — Undefined
STATUS Register 7 Interrupt Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
lN;;';gtLZtE Reserved | Reserved RizET ::gbs:;g
0 0 0 For Future | For Future y
Interrupt Use Use Interrupt Interrupt
Disabled Disabled Disabled
Value = 128| Value = 64 | Value =32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value =1
Control Register 7 (Set bit to disable) Interrupt Disable Mask
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reserved | Reserved
INITIALIZE RESET Keyboard
Not Used Timeout For Future | For Future Key and Knob
Use Use
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value =1

117

118

The Internal Keyboaidl Interface

STATUS Register 8 — Keyboard language jumper
0 = US ASCII
1 = French

2 = German

3 = Swedish/Finnish

4 = Spanish

5 = Katakana
CONTROL Register 8 — Undefined

STATUS Register 9 — Keyboard configuration jumper (0 thru 8)
CONTROL Register 9 — Undefined
STATUS Register 10 Keyboard State at Last Knob Pulse
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
CTRL SHIFT
0 0 0 0 0 0 Key Key
Pressed Pressed
Value = 128| Value = 64 | Value = 32 | Value =16 | Value =8 | Value=4 | Value=2 | Value =1

CONTROL Register 10 — Undefined

STATUS Register 11 — Reserved for future use
CONTROL Register 11 — Undefined

STATUS Register 12— “Pseudo-EOI for CTRL-E” flag
CONTROL Register 12 — Enable pseudo-EOI for CTRL-E if non-0

STATUS Register 13 — Katakana flag
CONTROL Register 13 — Set Katakana if non-0 (must be a katakana keyboard)

119

Chapter 10
Unified I/O

Introduction

This chapter contains two major topics, both of which involve additional features provided by
I/O path names. The first topic is that [/O path names provide the ability of using either
internal or ASCII data representation during I/O operations. The FORMAT attribute assigned
to an I/O path determines which representation is used.

The second topic is that the OUTPUT and ENTER statements can be used to access most
system resources, including the CRT display, the keyboard, and mass storage files (rather
than using a separate set of BASIC statements for each type of resource). This second topic is
herein called ‘‘unified 1/0”’. This chapter also presents several useful applications of this
powerful I/O scheme.

The Format Attributes

All I/O paths used as means to move data have certain attributes; the general attributes of a
particular I/O path consist of both hardware and software characteristics. However, the attri-
bute of interest in this discussion is that of data format, or how the computer represents the
data it sends and how it interprets the data it receives through /O paths.

All I/O paths possess either the FORMAT ON or the FORMAT OFF attribute. If an I/O path
possesses the FORMAT ON attribute, the ASCII data representation is used during output and
enter operations. If the [/O path possesses the FORMAT OFF attribute, the 9826’s internal
data representation is used. This section first describes how the FORMAT ON attribute is
automatically assigned to 1/0O paths to devices and then shows how to assign the FORMAT
OFF attribute to I/O paths. The actual internal representations are described in ‘‘The Format
Off Attribute”’.

120 Unified 'O

The Format On Attribute

Names are assigned to 1/O paths between the computer and devices with the ASSIGN state-
ment. A typical example is shown below.

110 ASSIGN BAnv_rname TO Device_selector

As you know from Chapter 3, this assignment fills a fixed amount of memory space with
information describing the /O path between the specified device and the computer. This
information includes the device selector, the FORMAT attribute possessed by the path, and
other relevant information. When the I/O path name is specified in subsequent ENTER and
OUTPUT statements, this information adequately describes the 1/0 path to be used.

Since most devices use an ASCII data representation, the default attribute automatically
assigned to the I/O path between the computer and devices is FORMAT ON. When an [/O
path possesses this attribute, the ASCIl data representation is automatically used by the
computer when executing the OUTPUT and ENTER statements. Data output from the com-
puter is ‘‘formatted” into an ASCII representation, and data entered into the computer is
converted back into its internal representation'. The following diagram pictorially describes
these operations.

Internal-Form Data ASCII Data

Computer B ASCII " Computer

Memory Formatter Resource
Routine

The FORMAT ON Attribute Requires Data To Be Formatted

Data items moved through /O paths which possess this attribute are formatted by operating-
system firmware. This formatting process takes a finite amount of time for each data item to
be moved, but is required for data compatibility when communicating with devices which use
this data representation. Contrast the preceding diagram to the following diagram which
shows data being moved through an [/O path possessing the FORMAT OFF attribute.

Internal-Form Data
Computer Computer
Memory Resource

The Internal Data Representation Is Maintained with FORMAT OFF

Using the internal data representation during communication does not require the additional
formatting time taken when the ASCII representation is used. However, the device must also
use the internal data representation.

1 The ASCII data representation used when an 1/0 path possesses the FORMAT ON attribute was fully described in Chapters 4 and 5. The
internal data representation used when an I/O path possesses the FORMAT OFF attribute is described later in this chapter.

Unified IO

One of the most powerful features of an I/O path is that its FORMAT attribute can be
changed from BASIC programs. The next section describes specifying the FORMAT attri-
bute and describes outputting and entering data through an 1/O path which possesses the

FORMAT OFF attribute.

Specifying I/0 Path Attributes

There are two methods of explicitly specifying attributes. The first is to specify the desired
attribute when the name is initially assigned to the resource, as shown below. Either the
default FORMAT attribute or the alternate FORMAT attribute may be specified, as required
for the application.

Example
100 ASS5IGN @Device TO Deuv_selectoriFORMAT OFF
100 ASSIGN @Device TO Int_.sel_codesFORMAT ON
Example

The second method allows you to change only the attribute currently assigned to the 1/O
path. As a result, the ““TO resource’” portion of the ASSIGN statement is not necessary;
however, the I/O path name must currently be assigned in this context, or an error is reported.

ASSIGN @Device iFORMAT OFF Assign only the attribute.

The result of executing this statement is to modify the entry in the [/O-path-name table that
describes which FORMAT attribute is currently assigned to this /O path. The implicit
“ASSIGN @Device TO %, which is automatically executed when the “TO resource”
portion is included, is not executed. Also, the [/O path name must currently be assigned (in
this context) to an I/O path, or an error results.

Example

If any attribute is specified, the corresponding entry in the /O-path-name table is changed (as
above). If no attribute is explicitly specified (as below), the attribute is changed to its default
state (FORMAT ON for devices).

340 ASSIGN EBDevice Assigns the default attribute

The Format Off Attribute

Chapter 2 briefly described the internal data representations used for both computations and
data storage. These internal representations are also used when moving data through /O
paths that possess the FORMAT OFF attribute. Since this chapter has already described how
to assign the FORMAT OFF attribute to I/O paths, the only remaining information needed is a
description of the actual FORMAT OFF (internal) data representations.

121

122

Unified I'O

Notice that, in all cases, when an I/O path has been assigned the FORMAT OFF attribute:

® no item terminator and no EOL sequence are sent by the OUTPUT statement.

® no item terminator and no statement-termination condition are required by the ENTER
statement.

e if either an OUTPUT or an ENTER statement uses an image, the FORMAT ON attribute
is automatically used.

Compare this lack of terminators to those sent by the OUTPUT statement (and required by the
ENTER statement) when using an [/O path possessing the FORMAT ON attribute (see Chapters
4 and 5). The next section describes the rationale behind the design of the following internal
representations.

Integers

Integers are internally represented by two bytes (one word) of data. When an integer is out-
put, only two bytes are sent with no trailing item terminator; no EOL sequence follows the last
item in the source list. The most significant byte is sent first (on an eight-bit interface). When
an integer is entered. only two bytes are entered from the source, and no search for an item
terminator or statement-termination condition is made. If the source does not send two char-
acters, a timeout may occur (if the event is set up on the interface involved)'.

Real Numbers

Real numbers are internally represented by eight bytes. When a real number is output, only
eight bytes are sent with no trailing item terminator; no EOL sequence follows the last item of
the source list. When a real number is entered, only eight bytes are entered, and no search is
made for item terminators. If eight bytes are not sent by the source, a timeout may occur (if
set up on the interface).

String Data

String-data items are internally represented by a four-byte, binary length header followed by
the actual string characters. When a string is output, this length header is output (most signifi-
cant byte first) followed by the actual string characters. If the number of characters in the
string is odd, a trailing space character (CHR$(32)) is sent to make an even number of char-
acters. No trailing item terminator is output after the item, and no EOL sequence follows the
last item in the source list.

When string data is entered into a string variable, the first four bytes entered determine the
number of characters that the computer will attempt to enter. The source is expected to send
the specified number of characters, so there is no need to search for item terminator or state-
ment-termination condition.

1 Timeout events are discussed in Chapter 7. “'Interface Events".

Unified IO

If the length specified by the header is greater than the dimensioned length of the string
variable, an error is reported (Error 18 Strind ovfl, or substring err)and
the string retains its former value. If the number of characters sent is less than that specified by
the length header, an interface timeout may occur while the computer is waiting for the last
character(s) to be sent by the source. If a timeout does occur (or if the CLR 10 key is pressed
before all characters have been received), the variable contains the characters that have been
received.

Concepts of Unified I/0

The 9826’s BASIC language and hardware provide the ability to communicate with the sever-
al system resources with the OUTPUT and ENTER statements. Chapters 8 and 9 described
how to communicate with the operator by using these I/O statements. The next section of this
chapter describes how data can be moved to and from string variables with OUTPUT and
ENTER statements. Chapter 11 describes how these 1/O statements are used to communicate
with HP-IB peripheral devices. And, if you have read about mass storage operations, you
know that the ENTER and OUTPUT statements are also used to move data between the
computer and mass storage files. This ability to move data between the computer and all of its
resources with the same statements is a very powerful capability of the 9826’s BASIC lan-
guage.

Before briefly discussing I/O paths to mass storage files, the following discussion will present
some background information that will help you understand the rationale behind im-
plementing these two representations in the 9826. The remainder of this chapter then pre-
sents several uses of this language structure.

Data-Representation Design Criteria

As you know, the 9826 supports two general data representations — the ASCII and the
internal representations. This discussion describes these representations and presents the
rationale of their design.

The data representations used by the computer were chosen according to the following
criteria.

® to maximize the rate at which computations can be made
® to maximize the rate at which the computer can move the data between its resources
® to minimize the amount of storage space required to store a given amount of data

e to be compatible with the data representation used by the resources with which the
computer is to communicate

The internal representations implemented in the 9826 are designed according to the first
three of the above criteria. However, the last criterion must always be met if communication
is to be achieved. If the resource uses the ASCII representation, this compatibility requirement
takes precedence over the other design criteria. The ASCII representation fulfills this last
criterion for most devices and for the computer operator. The first three criteria are further
discussed in the following description of data representations used for mass storage files.

123

124

Unified I/O

I/0 Paths to Files

There are two types of internal-disc data files, known as BDAT and ASCI]I files. Only the ASCII
representation is used with ASCII files, but either representation can be used with BDAT files.
The 1/O paths to these files are described in this section to further justify the internal data
representations implemented in the 9826 and to preface the applications presented in the last
section of this chapter.

BDAT Files

BDAT (binary data) files have been designed with the first three of the preceding design criteria
in mind. These internal representations allow much more data to be stored on a disc because
there is no storage overhead (i.e., data items do not require a header that describes the type
and length of the item). The transfer time required for each data item is also decreased.
Numeric output operations are always much faster because the data are not formatted; all enter
operations are also much faster because the computer does not have to search for item or
statement terminators.

In addition, I/O paths to BDAT data files can use either the ASCII or the internal data represen-
tation; however, unless otherwise specified, the I/O path to a BDAT file is automatically
assigned the default attribute of FORMAT OFF.

The following program shows a few of the features of BDAT files. The program first outputs an
internal-form string (with FORMAT ON) and then enters the length header and string characters
with FORMAT OFF. The positions of the file’s pointers are shown during the program to
illustrate how they are updated as data is output to the file.

100
110
120
130
140
130
160
170
180
190
200
210
220
230
240
230
260
270
280
290
300
310
320
330
340
330
360
370
380
3890
400
410
420
430
440
430
460
470

Unified I/O

DPTION BASE 1

DIM Lendth$l41:Data$l2561yInt_form$L[2561]

|

! Create a BDAT file (1 record’ 256 bvtes/record.)
ON ERROR GOTO Alreadv_created

CREATE BDAT "B_file" 1

Alreadvy_created: OFF ERROR

i
' Use FORMAT ON during outeut,
ASSICGN Blo_path TO "B_file" sFORMAT ON
!
Length$=CHR$(O)RCHR$(0) ! Create lendth header.
Lendthé=Lendth$dCHR$(O)RCHR$(252)
|
| Generate Z56-character string,
Data$="01234567"
FOR Doubling=1 TO B
Data¢=Data¢dDatas
NEXT Doubling
I Use only 1st 252 characters.
Data$=Datas$l[1,252]
!
I Generate internal-form and output.
Int_form$=Lendth$&Data%
QUTPUT Rlo_pathsInt_form%s
ASSIGN Blo_path TO *
!
I Use FORMAT OFF durind enter (default).
ASSICGN BIo_path TO "B_file"
i
' Enmter and pPrint data and # of characters.
ENTER Data$
PRINT LEN(Data%$)i"characters entered,"”
PRINT
PRINT Data%
ASS5IGN Blo_path TO *# | Close I/0 path.
I
END

125

126 Unified /O

ASCII Files

ASClII files are designed both for compatibility with other HP disc drives and for program files.
This compatibility requirement imposes the restriction that the data must be in its ASCII repre-
sentation. Each data item sent to these files is a special case of the FORMAT ON representa-
tion: each item is preceded by a two-byte length header (analogous to the internal form of string
data). Also, the FORMAT OFF attribute cannot be assigned to I/O paths to ASCII files, and
OUTPUT or ENTER statements cannot use images when sending data to or receiving data
from ASCII files.

The following program shows the 1/O path name ‘“‘@Ilo_path” being assigned to the ASCII file
called “ASC_FILE”. Notice that the file name is in all uppercase letters; this is also a compatibil-
ity requirement if the file is to be used with other disc drives. The program creates a program
file, then gets and runs the program it has created. If you type in and run the program, be sure
to save (or store) it before running it, as the program is scratched before running the “‘new’”
program.

100 DIM Line$(1:3)01001]
110 ON ERROR GOTO Alreadv_exists

120 CREATE ASCII "ASC_FILE" s1 ' 1 record,
130 Already_.exists: OFF ERROR
140 |

150 ASSIGN BIo_path TO "ASC_FILE"

160 STATUS RBIo_path:GiPointer

170 PRINT "Imitiallv: file pointer= "jPointer
180 PRINT

190 |

200 Line$(1)="100 PRINT ""New program.,"" "

210 Line$(Z)="110 BEEP"

220 Line$(3)="120 END"

230 !

240 QUTPUT RBIo.pathilLine$(*)

230 STATUS Blo.pathsBiPointer

260 PRINT "After OUTPUT: file pointer= "3jPointer
270 PRINT

280 !

290 GET "ASC_FILE" ! Implicitly closes I/0 path.
300 |

310 END

Unified I/O

Data Representation Summary

The following table summarizes the control that the program has over which FORMAT attribute
is assigned to [/O paths.

Type of Default Format Can Default Format
Resource Attribute Used Attribute Be Changed?
Devices FORMAT ON Yes, if an I/O path
name is used'
BDAT Files FORMAT OFF Yes!
ASCII Files FORMAT ON No?
String Variables FORMAT ON No

Applications of Unified I/O

This section describes two uses of the powerful unified-I/O scheme of the 9826. The first
application contains further details and uses of I/O operations with string variables. The second
application involves using a disc file to simulate a device.

I/O Operations with String Variables

Chapter 3 briefly described how string variables may be specified as the source or destination of
data in I/O statements, but it described neither the details nor many uses of these operations.
This section describes both the details of and several uses of outputting data to and entering
data from string variables.

Outputting Data to String Variables

When a string variable is specified as the destination of data in an OUTPUT statement, source
items are evaluated individually and placed into the variable according to the free-field rules or
the specified image, depending on which type of OUTPUT statement is used. Thus, item
terminators may or may not be placed into the variable. The ASCII data representation is
always used during outputs to string variables; in fact, data output to string variables is
exactly like that sent to devices through I/O paths with the FORMAT ON attribute.

Characters are always placed into the variable beginning at the first position; no other position
can be specified as the beginning position at which data will be placed. Thus, random access of
the information in string variables is not allowed from OUTPUT and ENTER statements; all
data must be accessed serially. For instance, if the characters “1234"" are output to a string
variable by one OUTPUT statement, and a subsequent OUTPUT statement outputs the charac-
ters “5678”" to the same variable, the second output does not begin where the first one left off
(i.e., at string position five). The second OUTPUT statement begins placing characters in
position one, just as the first OUTPUT statement did, overwriting the data initially output to the
variable by the first OUTPUT statement.

.

1 FORMAT ON is automatically used as the attribute whenever an image is used by an OUTPUT or ENTER statement, regardless of the
attribute currently assigned to the I/O path.

2 The data representation used with ASCII files is a special case of the FORMAT ON representation.

127

128 Unified 1O

The string variable’s length header (4 bytes) is updated and compared to the dimensioned
length of the string as characters are output to the variable. If the string is filled before all items
have been output, an error is reported; however, the string contains the first n characters output
(where n is the dimensioned length of the string).

Example

The following program outputs string and numeric data items to a string variable and then calls
a subprogram which displays each character, its decimal code, and its position within the

variable.

100 ASSIGN EBCrt TO 1 I CRT is disep, device.
110 !

120 QUTPUT Str_varsil2,»"AB" +34

130 !

140 CALL Read_.string{(@CrtsStr.vars$)

150 [

160 END

170 !

180 I

190 SUB Read_strind(@Disp:S5tr_var$)

200 |

210 | Table heading.

220 QUTPUT EBDigP i " mm e e e e e e m e e e "
230 QUTPUT @Dispi"Character Code Pos."
240 QUTPUT EBDispPi"-----m-=- ———— et
250 Dsp_imd$="2X,»4A 53X »3D2X+3D"

260 i

270 I Now read the string’s contents.

280 FOR Str_pos=1 TO LEN(Str_vars$)

290 Code=NUM(Str_var$[Str_rPosill)

300 IF Code«<32 THEN ! Don’t disp. CTRL chars.
310 Char$="CTRL"

320 ELSE

330 Char$=5tr_var$lStr_posill | Disp, char.
340 END IF

330 !

360 OUTPUT @DisPp USING Dsp.imdg$iChar$:CodesStr_pPos
370 NEXT Str_.Pos

380 !

390 i Finish table.

400 DUTPUT BDisPI" e e e e e e e e e — "

410 QUTPUT @Disep ! Blank line.

420 |

430 SUBEND

Unified I/O

Final Display

Character Code Pos.,

32 1
1 49 2
e 80 3
’ 44 4
A 69)
B 66 B
CTRL 13 7
CTRL 10 8

32 9
3 51 10
4 52 11
CTRL 13 12
CTRL 10 13

Outputting data to a string and then examining the string’s contents is usually a more conve-
nient method of examining output data streams than using a mass storage file. The preceding
subprogram may facilitate the search for control characters, because they are not actually
displayed, which could otherwise interfere with examining the data stream.

Example

The following example program shows how outputs to string variables can be used to reduce
the overhead required in ASCII data files. The first method of outputting data to the file requires
as much media space for overhead as for data storage, due to the two-byte length header that
precedes each item sent to an ASCII file. The second method uses more computer memory, but
uses only about half of the storage-media space required by the first method. The second
method is also the only way to format data sent to ASCII data files.

100 PRINTER IS 1

110 !

120 I Create a file 1 record londg (=256 bvtes).,
130 ON ERROR GOTO File.exists

140 CREATE ASCII "TABLE" 1

150 File_exists: OFF ERROR

160 !

170 |

180 ! First method outputs B4 items individually..
190 AS5IGN RAscii TO "TABLE"

129

130 Unified I'O

200 FOrR Item=1 TO G4 ! Store B4 2-bvte items.

210 QUTPUT RAsciiCHR%(Item+31)RCHR$(B4+RND*32)
220 STATUS BAsciisSikecsBrte

230 DISP USING Image_liltemsRec:Bvte

240 NEXT Item

250 Imade_1: IMAGE "Item " DD." Record " D" Byte " 3D
260 DISP

270 Brtes_used=236%(Rec-1)+Brte-1

280 PRINT Bvtes_usedi” bvtes used with 1lst method."
290 PRINT

300 PRINT

310 |

320 !

330 | Second method consolidates items.

340 DIM Arrav$(1:684)[21+8tring$sl 1281

350 ASSIGN BAscii TO "TABLE"

360 !

370 FOR Item=1 TO G4

380 Arrav$(Item)=CHR${(Item+31)RCHRE(G4+RND*32)
390 NEXT Item

400 !

410 QUTPUT StrindsiArrav$(*)5 | Consolidate.

420 QUTPUT RGAsciiiStringds I QUTPUT as 1 item.
430 !

440 STATUS BAsciisdiRecsBrte

430 Brtes_used=2536#%#(Rec-1)+Brte-1

460 PRINT Bytes_used’" bvtes used with Znd method."
470 |

480 END

The program shows many of the features of using ASCII files and string variables. The first
method of outputting the data items shows how the file pointer varies as data are sent to the file.
Note that the file pointer points to the next file position at which a subsequent byte will be
placed. In this case, it is incremented by four by every OUTPUT statement (since each item is a
two-byte quantity preceded by a two-byte length header).

The program could have used a BDAT file, which would have resulted in using slightly less
disc-media space; however, using BDAT files usually saves much more disc space than would
be saved in this example. The program does not show that ASCII files cannot be accessed
randomly; this is one of the major differences between using ASCII and BDAT files.

Unified /1O 131

Example

Outputs to string variables can also be used to generate the string representation of a number,
rather than using the VAL$ function (or a user-defined function subprogram). The main
advantage is that you can explicitly specify the number’s image while still using only a single
program line. The following program compares the string generated by the VAL$ function to
that generated by outputting the number to a string variable.

100 K=12343678

110 !

120 PRINT UVAL$(X)

130 !

140 DUTPUT WVal$ USING "#,3D.E"iX
130 PRINT Yal$

160 !

170 END

Printed Results

1.2345678E+7
123.,E+053

Entering Data From String Variables

Data are entered from string variables in much the same manner as output to the variable. All
ENTER statements that use string variables as the data source interpret the data according to
the FORMAT ON attribute. Data is read from the variable beginning at the first string position; if
subsequent ENTER statements read characters from the variable, the read also begins at the
first position. If more data are to be entered from the string than are contained in the string, an
error is reported; however, all data entered into the destination variable(s) before the end of the
string was encountered remain in the variable(s) after the error occurs.

When entering data from a string variable, the computer keeps track of the number of charac-
ters taken from the variable and compares it to the string length. Thus, statement-termination
conditions are not required; the ENTER statement automatically terminates when the last
character is read from the variable. However, item terminators are still required if the items are
to be separated and the lengths of the items are not known. If the length of each item is known,
an image can be used to separate the items.

132 Unified 1O

Example

The following program shows an example of the need for either item terminators or length of
each item. The first item was not properly terminated and caused the second item to not be

recognized.

100 QUTPUT Strindsi"ABC123"3 ! OUTPUT w/0 CR/LF.
110 !

120 I Now enter the data.

130 ON ERROR GOTO Trv_adain

140 !

150 First.try: !

160 ENTER Strind$iStré:Num

170 OUTPUT 13i"First try results:”

180 DUTPUT 13"Str$= "35tr%»"Num="3iNum

190 BEEP | Report detting this far.

200 STOP

210 !

220 Trv_adains: OUTPUT 13"Error"3SERRN3I" on 1st try"
230 QUTPUT 13"STR$="3i5tr%»"Num="3Num
240 QUTPUT 1

230 OFF ERROR I The next one will work,
260 !

270 ENTER String$ USING "3A,3D"iStr#%»Num

280 DUTPUT 13i"Second try results:"

280 OUTPUT 13"Str$= "35S5tr$d»"Num="3iNum

300 |

310 END

This technique is convenient when attempting to enter an unknown amount of data or when
numeric and string items within incoming data are not terminated. The data can be entered into
a string variable and then searched by using images.

Example

ENTERs from string variables can also be used to generate a number from ASCII numeric
characters (a recognizable collection of decimal digits, decimal point, and exponent informa-
tion), rather than using the VAL function. As with outputs to string variables, images can be
used to interpret the data being entered.

30
40
30
GO
70

Number$="Value= 43.,5873E-13"

ENTER Number$iValue
PRINT "VALUE="3iValue

END

Unified /O 133

Taking a Top-Down Approach

This application shows how the 9826’s BASIC-language structure may help simplify using a
“top-down’’ programming approach. In this example, a simple algorithm is first designed and
then expanded into a program in a general-to-specific, stepwise manner. The top-down
approach shown here begins with the general steps and works toward the specific details of
each step in an orderly fashion.

One of the first things you should do when programming computers is to plan the procedure
before actually coding any software. At this point of the design process, you need to have a
good understanding of both the problem and the requirements of the program. The general
tasks that the program is to accomplish must be described before the order of the steps can be
chosen. The following simple example goes through the steps of taking this top-down approach
to solving the problem.

Problem: write a program to monitor the temperature of an experimental oven for one hour.

Step 1. Verbally describe what the program must do in the most general terms. You may want
to make a chart or draw a picture to help visualize what is required of the program.

Initialize the monitoring equipment. Start the timer and turn the oven on. Begin monitoring
oven temperature and measure it every minute thereafter for one hour. Display the current
oven temperature, and plot the temperatures vs. time on the CRT.

Step 2. Verbally describe the algorithm. Again, try to keep the steps as general as possible.

This process is often termed writing the “‘pseudo code”. Pseudo code is merely a written
description of the procedure that the computer will execute. The pseudo code can later be
translated into BASIC-language code.
Setup the equipment.
Set the oven temperature and turn it on.
Initialize the timer.
Perform the following tasks every minute for one hour.
Read the oven temperature.
Display the current temperature and elapsed time.
Plot the temperature on the CRT.
Turn the oven and equipment off.

Signal that the experiment is done.
Step 3. Begin translating the algorithm into a BASIC-language program.

The following program follows the general flow of the algorithm. As you become more fluent in
a computer language, you may be able to write pseudo code that will translate more directly
into the language. However, avoid the temptation to write the initial algorithm in the computer
language, because writing the pseudo code is a very important step of this design approach!

134 Unified 'O

100
110
120
130
140
150
160
170
180
1890
200
210
220
230
240
290
260
270
280
290
300
310
320
330
340
350
360
370
380
3890
400
410
420
430
440
430
460
470
480
490
300
210
220
230
o40
330
360
270
380

' This prodram: sets uP measuring eauipment:
I turns an oven ons and initializes a timer.
! The oven’s temperature is measured every

Il minute thereafter for one hour. The temp.
| readindgs are displaved and plotted on the
I

|

CRT.
Rdgs_interuval=G60 I B0 seconds bhetween readings.
Test_lendgth=60 I Run test for GO minutes.

CALL Egquip_setur
CALL Set_temp
GOSUB Start_timer
!
Keep_monitorings: ! Main loor.,
!
GOS5UB Timer
!
IF Seconds«<=Rdgs_interval THEN
GOTO Keep_monitoring
ELSE
Minutes=Minutes+1
CALL Read_temp
CALL Plot.temp
END IF
I
I
IF Minutes<Test_lendth THEN
GOTD Keep_monitoring
ELSE
caLL Off_eauir
PRINT "Evnd of exrperiment"
END IF
!
STOP
!

i
| First the subroutines.
]

Start_timer: Init_-time=TIMEDATE
PRINT "Timer initialized."
PRINT
PRINT
RETURN
I
Timer: !
Seconds=TIMEDATE-Minutes*B60-Init_time
DISP USING Time_imadeiMinutes»Seconds
Time_imade: IMAGE "Time: "+DD»" min "HyDD.D "

sec

Unified /O 135

590 RETURN

BOO !

G10O END

620 !

630 !

G40 I Now the subprodrams.

G50 !

GBC SUB EquipP.setupr

670 PRINT "Eauirpment setup."

G880 SUBEND

690 !

700 SUB Set.temp

710 PRINT "Quen tempPerature set.,"
720 SUBEND

730 |

740 SUB Read_.temp

750 PRINT "Tempr.= xx dedrees F "3
760 SUBEND

770 !

780 S5UB Plot_temp

790 PRINT "(plotted)."

800 PRINT

810 SUBEND

820 !

830 SUB Off_eauip

840 PRINT

830 PRINT "Equirpment shut down.,"
860 PRINT

870 SUBEND

At this point, you should run the program to verify that the general program steps are being
executed in the desired sequence. If not, keep refining the program flow until all steps are
executed in the proper sequence. This is also a very important step of your design process; the
sooner you can verify the flow of the main program the better. This approach also relieves you
of having to set up and perform the actual experiment as the first test of the program.

Notice also that some of the program steps use CALLs while others use GOSUBs. The general
convention used in this example is that subprograms are used only when a program step is to be
expanded later. GOSUBs are used when the routine called will probably not need further
refinement. As the subprograms are expanded and refined, each can be separately stored and
loaded from disc files, as shown in the next step.

Step 4. After the correct order of the steps has been verified, you can begin programming and
verifying the details of each step (known as stepwise refinement).

The 9826 features a mechanism by which the process of expanding each step can be simplified.
With it, each subprogram can be expanded and refined individually and then stored separately
in a disc file. This facilitates the use of the top-down approach. Each subprogram can also be
tested separately, if desired.

136

Unified 'O

In order to use this mechanism, first save or store the main program; for instance, execute
SAVE "MAIN1". Then, isolate the subprogram by deleting all other program lines in mem-
ory. In this case, executing DEL 10650 and DEL 700,900 would delete the lines which
are not part of the “‘Equip_setup’’ subprogram. The subprogram can then be expanded, tested,
and stored in a separate disc file. The following display shows that only the ‘“Equip_setup”
subprogram is currently in memory.

66O SUB Eauirp_seturp

G670 PRINT "EauirPment setup.,"
G680 SUBEND

690 !

At this point, two steps can be taken. The temperature-measuring device’s initialization routine
can be written, or a test routine which simulates this device by returning a known set of data can
be written. The most convenient approach at this point is to simulate the device. And with the
9826’s BASIC language, the “‘Read_temp’’ subroutine will not have to be re-written later when
the experiment is performed with the actual device.

The “Equip_setup’’ subprogram might be expanded as follows to create a disc file and fill it with
a known set of temperature readings so that the program can be tested without having to write,
verify, and refine the routine that will set up the temperature-measuring device. In fact, you
don’t even need the device at this point.

100 CALL Equip_setur(BTempr_meter:Temp)

110 END

120 !

130 SUB Eauip_setur(BTemp_meter:TempP)

140 !

150 This subroutine will set ur a BDAT file to

I
160 ' ke used to simulate a temPerature-measuring
170 I device, Refine to set up the actual
!
!

180 equirment later.

190

200 ON ERROR GOTO Already

210 CREATE BDAT "Temp.rddgs" i

220 !

230 ! Duteput fictitious readings.

240 ASS5IGN BTemp.meter TO "Temp_rdgs"”
250 FOR Reading=1 TO GO

260 OUTPUT BTemp.meteriReading+70
270 NEXT Reading

280 ASS5IGN BTemp_meter TO * | Reset Pointer,
290 !

300 Alreadv: OFF ERROR

310 !

320 ASS5IGN BTemp_meter TO "Temp_rdds”
330 !

340 PRINT "Eauipment setur.,"

330 SUBEND

Unified /O 137

Notice that two pass parameters have been added to the formal parameter list. These para-
meters allow the main program (and subprograms to which these parameters are passed) to
access this I/0 path and variable. The CALL statements in the main program must be changed
accordingly before the main program is to be run with these subprograms. These parameters
can also be passed to the subprograms by declaring them in variable common (i.e., by including
them in the appropriate COM statements).

After the subprogram has been expanded, tested, and refined, it should be stored in a disc file
with the STORE command (not the SAVE command). For instance, store the subprogram by
executing STORE "SETUP1". When the main program is to be tested again, the ‘“Equip_
setup’’ subprogram can be loaded back into memory by executing a
LOADSUB ALL FROM "SETUPL"™.

Since this subprogram names an [/O path which is to be used to simulate the temperature-
measuring device, the ‘“Read_temp’’ subprogram can also be expanded at this point. The
““Read_temp’’ subprogram only needs to enter a reading from the measuring device (in this
case, the disc file which has been set up to simulate the temperature-measuring device). The
following program shows how this subprogram might be expanded.

740 SUB Read_temp(@BTemp.meteryTempr)

741 ENTER BTemp_metersTemp
730 PRINT "Temp.="3Tempr3s" dedrees F "3}
760 SUBEND

This subprogram can also be stored in a disc file by executing a statement such as
STORE "READ_T1". Now that both of the expanded subprograms have been stored, the
main program can be retrieved and modified as necessary. Perform a GET "MAIN1" (or
LOAD "MAIN1"), and add the pass parameters to the appropriate CALL statements (lines
200 and 320). Since the main program still contains the initial versions of the expanded
subprograms, these two subprograms should be deleted. Executing DELSUB Equip_seturp
and DELSUB Read_temp will delete only these subprograms and leave the rest of the
program intact.

Now that the main program has been modified to CALL the expanded subroutines, you may
want to save (or store) a copy of it on the disc. This will relieve you of deleting the old
subprograms from the program every time it is retrieved. Execute a SAVE "MAINZ" (or
STORE "MAINZ"). Now load the subprograms into memory by executing
LOADSUB ALL FROM "SETUP1" and LOADSUB ALL FROM "READ_T1".

Running the program first ‘‘sets up’’ the device simulation and then accesses the file as it would
the actual temperature-measuring device. As you can see, this approach can be used very easily
on the 9826. In addition, the ‘‘Read_temp’’ subprogram need not be revised to access the real
device. Only “Equip_setup’ needs to be revised to assign the I/O path name “@Temp_meter”’
to the real device. This unified-I/O scheme makes the 9826 very powerful and reduces *‘throw-
away’’ code when using this top-down approach.

138 Unified I/O

The remainder of the solution of this problem is to fill in the details of each remaining step of the
process. Each major step of the program can be expanded tested, and refined separately. The

use of hypothetical data is also a very good technique to isolate program errors before perform-
ing the experiment.

139

Chapter 11
The HP-IB Interface

Introduction

This chapter describes the techniques necessary for programming the HP-IB interface. Many of
the elementary concepts have been discussed in previous chapters; this chapter describes the
specific details of how this interface works and how it is used to communicate with and control
systems consisting of various HP-IB devices.

The HP-IB (Hewlett-Packard Interface Bus), commonly called the ‘“‘bus’’, provides compatibil-
ity between the computer and external devices conforming to the IEEE 488-1978 standard.
Electrical, mechanical, and timing compatibility requirements are all satisfied by this interface.

i

Logic and Shield

Grounds

-

8

N\

Data
5 >
HP-IB
Interface
Handshake S | shielded Cable
Data and 3 & to Device(s)
Control Hardware g
Cackpane o s K=
Connector Firmware Control (g
< 5 > a
Ve
[aV]

The HP-IB Interface is both easy to use and allows great flexibility in communicating data and
control information between the computer and external devices. It is one of the easiest methods
to connect more than one device to the same interface.

Initial Installation

Refer to the HP-IB Installation Note for information about setting the switches and installing an
external HP-IB interface. Once the interface has been properly installed, you can verify that the
switch settings are what you intended by running the following program. The defaults of the

internal HP-IB interface can also be checked with the program. The results are displayed on the
CRT.

140

The HP-IB Interface

100 PRINTER IS 1

110 PRINT CHR$(12) ! Clear screen w/ FF,

120 |

130 Ask: INPUT "Enter HP-IB interface select code":lsc
140 IF Isc<7 OR Isc>30 THEN GOTO Ask

150 I

160 STATUS IsciCard.id

170 IF Card_id<»1 THEN

180 PRINT "Interface at select code"3iIsc3s
190 PRINT "is not an HP-IB"

200 PRINT

210 STOP

220 END IF

230 !

240 PRINT "HP-IB interface pPresent"”

250 PRINT " at select code"ilsc

260 PRINT

270 I

280 STATUS Iscslilntr.dma

290 Level=3+(BINAND(3Z2+168+Intr_dma) DIV 16)
300 PRINT "Hardware interrurt leuvel ="jLevel
310 |

320 STATUS Iscs3i5Addr_ctrlr

330 Address=Addr_ctrlr MOD 32

340 PRINT "Primary address ="31Address

350 I

360 Svs_.ctrl=BIT(Addr_ctrlr,7)

370 IF Svs_.ctrl THEN

380 PRINT "Svstem Controller”

390 ELSE

400 PRINT "Non-svstem Controller”
410 END IF

420 1

430 END

The hardware interrupt level is described in Chapter 7. Hardware interrupt level is set to 3 on
the internal HP-IB interface, but can range from 3 to 6 on external interfaces. Primary address is
further described in ‘““HP-IB Device Selectors’ in the next section.

The term “‘system controller’ is also further described later in this chapter in ‘‘General Struc-
ture of the HP-IB”’. The internal HP-IB has a jumper that is set at the factory to make it a system
controller. This jumper is located below the lowest interface slot at the computer backplane.
The lowest interface (or memory board) in the backplane must be removed to access this
jumper. If the jumper in the center of the clear plastic cover is placed on the middle and
rightmost pins, (as seen from the rear of the computer), the computer is set to be a system
controller. If it is on the middle and leftmost pins, the computer is not a system controller.
External HP-IB interfaces have a switch that controls this interface state.

The HP-IB Interface

Communicating with Devices

This section describes programming techniques used to output data to and enter data from
HP-IB devices. General bus operation is also briefly described in this chapter. Later chapters
will describe: further details of specific bus commands, handling interrupts, and advanced
programming techniques.

HP-IB Device Selectors

Since the HP-IB allows the interconnection of several devices, each device must have a means
of being uniquely accessed. Specifying just the interface select code of the HP-IB interface
through which a device is connected to the computer is not sufficient to uniquely identify a
specific device on the bus.

Each device “on the bus’’ has an address by which it can be identified; this address must be
unique to allow individual access of each device. Each HP-IB device has a set of switches that
are used to set its address. Thus, when a particular HP-IB device is to be accessed, it must be
identified with both its interface select code and its bus address.

The interface select code is the first part of an HP-IB device selector. The interface select code
of the internal HP-IB is 7; external interfaces can range from 8 to 31. The second part of an
HP-IB device selector is the device’s primary address, which are in the range of O through 30.
For example, to specify the device:

on interface select code 7
with primary address 22 use device selector = 722

on interface select code 10
with primary address 2 use device selector = 1002

Remember that each device’s address must be unique. The procedure for setting the address of
an HP-IB device is given in the installation manual for each device. The HP-IB interface also
has an address. The default address of the internal HP-IB is 21 or 20, depending on whether or
not it is a system controller. The addresses of external HP-IB interfaces are set by configuring
the address switches on each interface card. Each HP-IB interface’s address can be determined
by reading STATUS register 3 of the appropriate interface select code, and each interface’s
address can be changed by writing to CONTROL register 3. See ‘‘Determining Controller
Status and Address”’ and ‘‘Changing the Controller Address’ for further details.

Moving Data Through the HP-IB

Data is output from and entered into the computer through the HP-IB with the OUTPUT and
ENTER statements, respectively; all of the techniques described in Chapters 4 and 5 are
completely applicable with the HP-IB. The only difference between the OUTPUT and ENTER
statements for the HP-IB and those for other interfaces is the addressing information within
HP-IB device selectors.

141

142

The HP-IB Interface

Examples
100 Hrib=7
110 Device_addr=22
120 Device_selector=Hpib*100+Device_addr
130 !
140 OQUTPUT Device_selectors"FIR7T2T3"
150 ENTER Device_selectoriReading
320 ASSIGN BHrpib._device TO 702
330 QUTPUT @Hpib_devicei"Data message”
340 ENTER BHpib_device iNumber
440 QUTPUT BZZ3"FIR7TZT3"
380 ENTER 724iReadinds (%)

All of the IMAGE specifiers described in Chapters 4 and 5 can also be used by OUTPUT and
ENTER statements that access the HP-IB interface, and the definitions of all specifiers remain
exactly as stated in those chapters.

Examples
100 ASSIGN BPrinter TO 701
110 OUTPUT @Printer USING "BAs3X:2D.D"31tem$sQuantity
8BGO ASSIGN @Device TO BZ25
870 OUTPUT BDevice USING "#,B"365:66:67:13,10
870 ENTER BDewvice USING "#3K"3iDatas

General Structure of the HP-IB

Communications through the HP-IB are made according to a precisely defined set of rules.
These rules help to ensure that only orderly communication may take place on the bus. For
conceptual purposes, the organization of the HP-IB can be compared to that of a committee. A
committee has certain ‘‘rules of order’” that govern the manner in which business is to be
conducted. For the HP-IB, these rules of order are the IEEE 488-1978 standard.

One member, designated the ‘‘committee chairman,” is set apart for the purpose of conducting
communications between members during the meetings. This chairman is responsible for over-
seeing the actions of the committee and generally enforces the rules of order to ensure the
proper conduct of business. If the committee chairman cannot attend a meeting, he designates
some other member to be ‘‘acting chairman.”

On the HP-IB, the system controller corresponds to the committee chairman. The system
controller is generally designated by setting a switch on the interface and cannot be changed
under program control. However, it is possible to designate an ‘‘acting chairman’ on the
HP-IB. On the HP-IB, this device is called the active controller, and may be any device
capable of directing HP-IB activities, such as a desktop computer.

The HP-IB Interface

When the system controller is first turned on or reset, it assumes the role of active controller.
Thus, only one device can be designated system controller. These responsibilities may be
subsequently passed to another device while the system controller tends to other business. This
ability to pass control allows more than one computer to be connected to the HP-IB at the same
time.

In a committee, only one person at a time may speak. It is the chairman’s responsibility to
““recognize”” which one member is to speak. Usually, all committee members present always
listen; however, this is not always the case on the HP-IB. One of the most powerful features of
the bus is the ability to selectively send data to individual (or groups of) devices.

Imagine slow note takers and a fast note takers on the committee. Suppose that the speaker is
allowed to talk no faster than the slowest note taker can write. This would guarantee that
everybody gets the full set of notes and that no one misses any information. However, requiring
all presentations to go at that slow pace certainly imposes a restriction on our committee,
especially if the slow note takers do not need the information. Now, if the chairman knows
which presentations are not important to the slow note takers, he can direct them to put away
their notes for those presentations. That way, the speaker and the fast note taker(s) can cover
more items in less time.

A similar situation may exist on the HP-IB. Suppose that a printer and a flexible disc are
connected to the bus. Both devices do not need to listen to all data messages sent through the
bus. Also, if all the data transfers must be slow enough for the printer to keep up, saving a
program on the disc would take as long as listing the program on the printer. That would
certainly not be a very effective use of the speed of the disc drive if it was the only device to
receive the data. Instead, by ‘‘unlistening’’ the printer whenever it does not need to receive a
data message, the computer can save a program as fast as the disc can accept it.

During a committee meeting, the current chairman is responsible for telling the committee
which member is to be the talker and which is (are) to be the listener(s). Before these assign-
ments are given, he must get the attention of all members. The talker and listener(s) are then
designated, and the next data message is presented to the listener(s) by the talker. When the
talker has finished the message, the designation process may be repeated.

On the HP-IB, the active controller takes similar action. When talker and listener(s) are to be
designated, the attention signal line (ATN) is asserted while the talker and listener(s) are being
addressed. ATN is then cleared, signaling that those devices not addressed to listen may ignore
all subsequent data messages. Thus, the ATN line separates data from commands; com-
mands are accompanied by the ATN line being true, while data messages are sent with the ATN
line false.

On the HP-IB, devices are addressed to talk and addressed to listen in the following orderly
manner. The active controller first sends a single command which causes all devices to unlisten.
The talker’s address is then sent, followed by the address(es) of the listener(s). After all listeners
have been addressed, the data can be sent from the talker to the listener(s). Only device(s)
addressed to listen accept any data that is sent through the bus (until the bus is reconfigured by
subsequent addressing commands).

143

144

The HP-IB Interface

The data transfer, or data message, allows for the exchange of information between devices on
the HP-IB. Our committee conducts business by exchanging ideas and information between
the speaker and those listening to his presentation. On the HP-IB, data is transferred from the
active talker to the active listener(s) at a rate determined by the slowest active listener on
the bus. This restriction on the transfer rate is necessary to ensure that no data is lost by any
device addressed to listen. The handshake used to transfer each data byte ensures that all data
output by the talker is received by all active listeners.

Examples of Bus Sequences

Most data transfers through the HP-IB involve a talker and only one listener. For instance,
when an OUTPUT statement is used to send data to an HP-IB device, the following sequence of
commands and data is sent through the bus.

BUTPUT 70135"Data"

1. The unlisten command is sent.

The talker’s address is sent (here, the address of the computer; “My Talk Address’’),
which is also a command.

3. The listener’s address (01) is sent, which is also a command.

4. The data bytes D", “a’”", “t”’, “a”’, CR, and LF are sent; all bytes are sent using the
HP-IB’s interlocking handshake to ensure that the listener has received each byte.

Similarly, most ENTER statements involve transferring data from a talker to only one listener.
For instance, the following ENTER statement invokes the following sequence of commands and
data-transfer operations.

ENTER 7223iUoltade

1. The unlisten command is sent.
2. The talker’s address (22) is sent, which is a command.

3. Thelistener’s address is sent (here, the computer’s address; ‘‘My Listen Address’’), also a
command.

4. The data is sent by device 22 to the computer using the HP-IB handshake.

Bus sequences, hardware signal lines, and more specific HP-IB operations are discussed in the
“HP-IB Control Lines” and ‘“‘Advanced Bus Management’’ sections.

Addressing Multiple Listeners

HP-IB allows more than one device to listen simultaneously to data sent through the bus (even
though the data may be accepted at differing rates). The following examples show how to
address multiple listeners on the bus.

100 ASSICGN @BListeners TO 701,702,703
110 QUTPUT BListenersiString%
120 DUTPUT @Listeners USING Imade_liArrav$(*)

The HP-IB Interface

This capability allows a single OUTPUT statement to send data to several devices simultaneous-
ly. It is however, necessary for all the devices to be on the same interface. When the preceding
OUTPUT statement is executed, the unlisten command is sent first, followed by the computer’s
talk address and then listen addresses 01, 02, and 03. Data is then sent by the computer and
accepted by devices at addresses 1, 2, and 3.

If an ENTER statement is performed using the same 1/O path name, the first device is addressed
as the talker (the source of data) and all the rest of the devices, including the 9826, are
addressed as listeners. The data is then sent from device at address 01 to devices at addresses
02 and 03 and to the computer.

130 ENTER BListenersiString$
140 ENTER BListeners USING Imade_2iArrave(*)

Addressing a Non-Controller 9826

The bus standard states that a non-active controller cannot perform any bus addressing.
When only the interface select code is specified in an ENTER or OUTPUT statement that uses
an HP-IB interface, no bus addressing is performed.

If the 9826 currently is not the active controller, it can still act as either talker or listener,
provided it has been previously addressed as such. Thus, if an ENTER or OUTPUT statement
is executed while the 9826 is not an active controller, the computer first determines whether or
not it is an active talker or listener. If not addressed to talk or listen, the computer waits until it is
properly addressed and then finishes executing the statement. It relies on the active controller
(another computer or device) to perform the bus addressing, and then simply participates as a
device in the exchange of the data. Example statements which send and receive data while the
computer is not an active controller are as follows.

100 OQUTPUT 73i"Data" ! If not talKers then wait until
110 ! addressed as talKer to send data.

200 ENTER 73iData$! If not listeners then wait until
210 I addressed as listener to accerpt data.

If the 9826 is the active controller, it proceeds with the data transfer without addressing which
devices are talker and listener(s). However, if the bus has not been configured previously, an
error is reported (Error 170 I/0 operation not allowed). The following pro-
gram does not require the ‘‘overhead’ of addressing talker and listeners each time the OUT-
PUT statement in the FOR-NEXT loop is executed, because the bus is not reconfigured each
time.

100 QUTPUT 701 USING "# K" I Confidure the bus:

110 | 9826 = talKers and

120 I printer (701) = listener,
130 !

140 FOR Iteration=1 TO 295

150 QUTPUT 73"Data messade"

160 NEXT Iteration

170 [

180 END

145

146

The HP-IB Interface

This type of HP-IB addressing should be used with the understanding that if an event initiates a
branch between the time that the initial addressing was made (line 100) and the time that any of
the OUTPUT statements are executed (line 150), the event's service routine may reconfigure
the bus differently than the initial configuration. If so, the data will be directed to the device(s)
that have been addressed to listen by the last 1/O statement executed in the service routine.
Events may need to be disabled if this method of addressing is used.

In general, most applications do not require this type of bus-overhead minimization: the 9826’s
I/O language has already been optimized to provide excellent performance. Advanced methods
of explicit bus management will be described in the section called ‘‘Advanced Bus Manage-
ment’’.

Secondary Addressing

Many devices have operating modes which are accessed through the extended addressing
capabilities defined in the bus standard. Extended addressing provides for a second address
parameter in addition to the primary address. Examples of statements that use extended
addressing are as follows.

100 ASS5IGN BDevice TO 722053 I 22=primarvy s OS=secondarvy,
110 OUTPUT @DevicesMessades$

200 DUTPUT 72203 iMessade$

130 ASSIGN @Device TO 7220529 ! Additional secondary

160 ' address of 29,

170 QUTPUT BDeviceiMessage$

120 OQUTPRUT 7220529 iMessade$

The range of secondary addresses is 00-31; up to six secondary addresses may be specified (a
total of 15 digits including interface select code and primary address). Refer to the device’s
operating manual for programming information associated with the extended addressing capa-
bility. The HP-IB interface also has a mechanism for detecting secondary commands. For
further details, see the discussion of interrupts.

Determining Controller Status and Address

It is often necessary to determine if an interface is the system controller and to determine
whether or not it is the current active controller. It is also often necessary to determine or
change the interface’s primary address. The example program shown in the beginning of this
chapter interrogated interface STATUS registers and printed the resultant system-controller
status and primary address. Those operations are explained in the following paragraphs.

Example
Executing the following statement reads STATUS register 3 (of the internal HP-IB) and places

the current value into the variable Stat_and_addr. Remember that if the statement is executed
from the keyboard, the variable Stat_and_addr must be defined in the current context.

The HP-IB Interface

STATUS 7:335tat_and_addr

Status Register 3 Controller Status and Address
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

System Active

Controller | Controller 0 Primary Address of Interface

Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

If bit 7 is set (1), it signifies that the interface is the system controller; if clear (0), it is not the
system controller. Only one controller on each HP-IB interface should be configured as the
system controller.

If bit 6 is set (1), it signifies that the interface is currently the active controller; if it is clear (0),
another controller is currently the active controller.

Bits 4 through 0 represent the current value of the interface’s primary address, which is in the
range of O through 30. The power-on default value for the internal HP-IB is 21 (if it is the
system controller) and 20 (if not the system controller). For external HP-IB interfaces, the
default address is set to 21 at the factory but may be changed by setting the address switches on
the card itself.

Example

Calculate the primary address of the interface from the value previously read from STATUS
register 3.

Intf_addr=8tat-and_addr MOD 32

This numerical value corresponds to the talk (or listen) address sent by the computer when an
OUTPUT (or ENTER) statement containing primary-address information is executed. Talk and
listen addresses are further described in ‘‘Advanced Bus Management’.

Changing the Controller Address
It is possible to use the CONTROL statement to change an HP-IB interface’s address.

Example

CONTROL 733Intf_addr
The value of Intf_addr is used to set the address of the HP-IB interface (in this case, the internal
HP-IB). The valid range of addresses is O through 30; address 31 is not used. Thus, if a value

greater than 30 is specified, the value MOD 32 is used (for example: 32 MOD 32 equals 0, 33
MOD 32 equals 1, 62 MOD 32 equals 30, and so forth).

147

148

The HP-IB interface

General Bus Management

The HP-IB standard provides several mechanisms that allow managing the bus and the devices
on the bus. Here is a summary of the statements that invoke these control mechanisms.

ABORT is used to abruptly terminate all bus activity and reset all devices to power-on states.
CLEAR is used to set all (or only selected) devices to a pre-defined, device-dependent state.
LOCAL is used to return all (or selected) devices to local (front-panel) control.

LOCAL LOCKOUT is used to disable all devices’ front-panel controls.

PPOLL is used to perform a parallel poll on all devices (which are configured and capable of
responding).

PPOLL CONFIGURE is used to setup the parallel poll response of a particular device.

PPOLL UNCONFIGURE is used to disable the parallel poll response of a device (or all devices
on an interface).

REMOTE is used to put all (or selected) devices into their device-dependent, remote modes.
SEND is used to manage the bus by sending explicit command or data messages.

SPOLL is used to perform a serial poll of the specified device (which must be capable of
responding).

TRIGGER is used to send the trigger message to a device (or selected group of devices).

These statements (and functions) are described in the following discussion. However, the
actions that a device takes upon receiving each of the above commands are, in general,
different for each device. Refer to a particular device’s manuals to determine how it will
respond. Detailed descriptions of the actual sequence of bus messages invoked by these state-
ments are contained in ‘‘Advanced Bus Management’’ near the end of this chapter.

Remote Control of Devices

Most HP-IB devices can be controlled either from the front panel or from the bus. If the device’s
front-panel controls are currently functional, it is in the Local state. If it is being controlled
through the HP-IB, it is in the Remote state. Pressing the front-panel ‘‘Local’” key will return the
device to Local (front-panel) control, unless the device is in the Local Lockout state (described
in a subsequent discussion).

The Remote message is automatically sent to all devices whenever the system controller is
powered on, reset, or sends the Abort message. A device also enters the Remote state auto-
matically whenever it is addressed. The REMOTE statement also outputs the Remote message,
which causes all (or specified) devices on the bus to change from local control to remote
control. The 9826 must be the system controller to execute the REMOTE statement.

The HP-IB Interface

Examples
REMOTE 7

ASSIGN BDevice TO 700
REMOTE EDevice

REMOTE 700

Locking Out Local Control

The Local Lockout message effectively locks out the ‘“‘local” switch present on most HP-IB
device front panels, preventing a device’s user from interfering with system operations by
pressing buttons and thereby maintaining system integrity. As long as Local Lockout is in effect,
no bus device can be returned to local control from its front panel.

The Local Lockout message is sent by executing the LOCAL LOCKOUT statement. This
message is sent to all device on the specified HP-IB interface, and it can only be sent by the
9826 when it is the active controller.

Examples

ASSIGN @Hpib TO 7
LOCAL LOCKOUT @Hepib

LOCAL LOCKOUT 7

The Local Lockout message is cleared when the Local message is sent by executing the LOCAL
statement. However, executing the ABORT statement does not cancel the Local Lockout
message.

Enabling Local Control

During system operation, it may be necessary for an operator to interact with one or more
devices. For instance, an operator might need to work from the front panel to make special tests
or to troubleshoot. And, in general, it is good systems practice to return all devices to local
control upon conclusion of remote-control operations. Executing the LOCAL statement returns
the specified devices to local (front-panel) control. The 9826 must be the active controller to
send the LOCAL message.

Examples

ASSIGN BHeib TO 7
LOCAL BHrib

ASSIGN BDevice TO 700
LOCAL @Device

149

150 The HP-IB Interface

If primary addressing is specified, the Go-to-Local message is sent only to the specified de-
vice(s). However, if only the interface select code is specified, the Local message is sent to all
devices on the specified HP-IB interface and any previous Local Lockout message (which is still
in effect) is automatically cleared. The 9826 must be the system controller to send the Local
message (by specifying only the interface select code).

Triggering HP-IB Devices

The TRIGGER statement sends a Trigger message from the controller to a selected device or
group of devices. The purpose of the Trigger message is to initiate some device-dependent
action; for example, it can be used to trigger a digital voltmeter to perform its measurement
cycle. Because the response of a device to a Trigger Message is strictly device-dependent,
neither the Trigger message nor the interface indicates what action is initiated by the device.

Examples

ASSIGN BHeib TO 7
TRIGGER @Heihb

ASSICGN BDewvice TO 707
TRIGGER @Dewvice

Specifying only the interface select code outputs a Trigger message to all devices currently
addressed to listen on the bus. Including device addresses in the statement triggers only those
devices addressed by the statement. The 9826 can also respond to a trigger from another
controller on the bus. See ‘“‘HP-IB Interrupts’ for details.

Clearing HP-IB Devices

The CLEAR statement provides a means of “‘initializing” a device to its predefined, device-
dependent state. When the CLEAR statement is executed, the Clear message is sent either to all
devices or to the specified device(s), depending on the information contained within the device
selector. If only the interface select code is specified, all devices on the specified HP-IB interface
are cleared. If primary-address information is specified, the Clear message is sent only to the
specified device. Only the active controller can send the Clear message.

Examples

ASSIGN EBHpibk TO 7
CLEAR BHpib

ASSIGN @Device TO 700
CLEAR @Dewvice

The HP-IB Interface 151

Aborting Bus Activity

This statement may be used to terminate all activity on the bus and return all the HP-IB
interfaces of all devices to a reset (or power-on) condition. Whether this affects other modes of
the device depends on the device itself. The 9826 must be either the active or the system
controller to perform this function. If the system controller (which is not the current active
controller) executes this statement, it regains active control of the bus. Only the interface
select code may be specified; device selectors which contain primary-addressing information
(such as 724) may not be used.

Examples

ASSIGN BHeib TO 7
ABORT EHPik

ABORT 7

Polling HP-IB Devices

The parallel poll is the fastest means of gathering device status when several devices are
connected to the bus. Each device (with this capability) can be programmed to respond with
one bit of status when parallel polled, making it possible to obtain the status of several devices
in one operation. If a device responds affirmatively to a parallel poll, more information as to its
specific status can be obtained by conducting a serial poll of the device.

Configuring Parallel Poll Responses

Certain devices can be remotely programmed by the active controller to respond to a parallel
poll. A device which is currently configured for a parallel poll responds to the poll by placing its
current status on one of the bus data lines. The logic sense of the response and the data-bit
number can be programmed by the PARALLEL POLL CONFIGURE statement. No multiple
listeners can be specified in the statement; if more than one device is to respond on a single bit,
each device must be configured with a separate PARALLEL POLL CONFIGURE statement.

Example

AS5ICN @EDevice TO 701
PPOLL CONFIGURE @DeviceiMask

The value of Mask (any numeric expression can be specified) is first rounded and then used to
configure the device’s parallel response. The least significant 3 bits (bits O through 2) of the
expression are used to determine which data line the device is to respond on (place its status
on). Bit 3 specifies the “‘true’ state of the parallel poll response bit of the device. A value of 0
implies that the device’s response is 0 when its status-bit message is true.

Example

The following statement configures device at address 01 on interface select code 7 to respond
by placing a 0 on bit 4 when its status response is “‘true’’.

PPOLL CONFIGURE 70134

152

I'he HP IB Iterface

Conducting a Parallel Poll

The PPOLL function returns a single byte containing up to 8 status bit messages of all devices
on the bus capable of responding to the poll. Each bit returned by the function corresponds to
the status bit of the device(s) configured to respond to the parallel poll. (Recall that one or more
devices can respond on a single line.) The PPOLL function can only be executed by the 9826
when it is the active controller.

Example
Response=PPOLL(7)
Disabling Parallel Poll Responses
The PARALLEL POLL UNCONFIGURE statement gives the 9826 (as active controller) the
capability of disabling the parallel poll responses of one or more devices on the bus.
Examples
The following statement disables device 5 only.
PPOLL UNCONFIGURE 703
This statement disables all devices on interface select code 8 from responding to a parallel poll.
PPOLL UNCONFIGURE 8
If no primary addressing is specified, all bus devices are disabled from responding to a parallel
poll. If primary addressing is specified, only the specified devices (which have the parallel poll
configure capability) are disabled.
Conducting a Serial Poll
A sequential poll of individual devices on the bus is known as a serial poll. One entire byte of
status is returned by the specified device in response to a serial poll. This byte is called the
Status Byte message and, depending on the device, may indicate an overload, a request for
service, or a printer being out of paper. The particular response of each device depends on the

device.

The SPOLL function performs a serial poll of the specified device; the 9826 must be the active
controller.

Examples

ASSIGN EBDewvice TO 700
Status_byte=SPOLL{(BDevice)

SPoll_2d4=8POLL(724)

The HP-IB Interface

Just as the parallel poll is not defined for individual devices, the serial poll is meaningless for an
interface; therefore, primary addressing must be used with the SPOLL function.

HP-IB Interrupts

Interrupts allow the most efficient use of the power of the computer by allowing the computer to
proceed with meaningful tasks while waiting for external devices to complete some action
requested or intiated by the computer. Chapter 7 described several uses of interrupts and
presented a few general techniques for their use. This chapter describes HP-IB interrupts in
particular.

There are two general types of interrupts in an HP-IB system. Interrupts may be generated
either by external devices or by the interface when it detects a specific change in a bus operating
mode. First, service requests will be discussed, which are the most common interrupt condition
for most HP-IB systems. Then, the second type of interrupts are described in ‘“‘Interrupts while
Non-Active Controller’.

The SRQ Interrupt

The mnemonic SRQ stands for service request. Many HP-IB devices, such as voltmeters,
counters, and spectrum analyzers, are capable of generating a service request when they have
completed some action, such as taking a reading or finishing a scan. Devices such as printers
and plotters are often able to generate a service request when out of paper, and many other
devices are able to signal error conditions using this mechanism.

The HP-IB standard has made provision for a signal line within the interface cable over which
devices may signal to the computer their service request. This line has the mnemonic SRQ.
Though this method of requesting service is defined by the standard, it is completely up to the
device as to the meaning of any request. The operating and programming manuals for the
device provide this information.

Example

The following program segment sets up and enables an SRQ interrupt.

100 ASSIGN BHeib TO 7

110 ON INTR BHpib GOSUB Service_routine
120 !

130 Mask=2 I Bit 1 ernables SRQ interruprts.
140 ENABLE INTR BHepib iMask

The value of the mask in the ENABLE INTR statement determines which type(s) of interrupts
are to be enabled. The value of the mask is automatically written into the HP-IB interface’s
interrupt-enable register (CONTROL register 4) when this statement is executed. Bit 1 is set in
the preceding example, enabling SRQ interrupts to initiate a program branch. Reading STA-
TUS register 4 at this point would return a value of 2.

153

154

The HP-IB Interface

When an SRQ interrupt is generated by any device on the bus, the program branches to the
service routine when the current line is exited (either when the line’s execution is finished or
when the line is exited by a call to a user-defined function subprogram). The service routine
must (in general):

o determine which device is requesting service (parallel poll)
e determine what action is requested (serial poll)

o clear the SRQ line (automatic with serial poll)

® perform the desired action

e re-enable interrupts

@ return to the former task (if applicable)

Servicing External Requests

The SRQ is a level-sensitive interrupt; in other words, if an SRQ is present momentarily but
does not remain long enough to be sensed by the computer, the interrupt will not be generated.
The level-sensitive nature of the SRQ line also has further implications, which are described in
the following paragraphs.

Example

Assume that only one device is currently on the bus. The following service routine first serially
polls the device requesting service, thereby clearing the interrupt request. In this case, the
computer did not have to determine which device was requesting service because it is the only
device on the bus. It is also assumed that only service request interrupts have been enabled;
therefore, the type of interrupt need not be determined either. The service is then performed,
and the SRQ event is re-enabled.

300 Serv_rtn: Ser_poll=5P0OLL(@Device)

310 ENTER @DeviceilValue

520 PRINT WValue

330 ENABLE INTR 7 I Use previous mask,
sS40 RETURN

The standard has defined that when an interrupting device is serially polled. it is to stop
interrupting until a new condition arises (or the same condition arises again). In order to “‘clear”
the SRQ line, it is necessary to perform a serial poll on the device. The poll is an acknowledge-
ment from the controller to the device that it has seen the request for service and is responding.

Had the SRQ line not been cleared, the computer would have branched to the service routine
immediately upon re-enabling interrupts on this interface. This is another implication of the
level-sensitive nature of the SRQ interrupt.

It is also important to note that once an interrupt is sensed and logged. the interface cannot
generate another interrupt until the initial interrupt is serviced. The computer disables all
subsequent interrupts from an interface until a pending interrupt is serviced. For this reason, it
was necessary to re-enable the interrupt to allow for subsequent branching.

The HP-IB Interface 155

Requesting Service from Another Computer

Imagine a system where the computer is one of two or more controllers on the same bus.
Remember that only-one of the controllers may be the active controller on the bus at any time.
However, suppose that one of the non-controller computers needs service from the active
controller.

Example
A service request is generated when the computer executes the following statement.
CONTROL 7+13684 ! Setting bit G denerates an SR,

This statement instructs the HP-IB interface to generate a service request by setting the SRQ
signal line true. The computer’s response to the serial poll is executed within a service routine
that is initiated by the serial poll from the active controller. Interrupts of this type (while the
computer is a non-active controller) are described in the following section.

Interrupts While Non-Active Controller

When the computer is not an active controller, it must be able to detect and respond to many
types of bus messages and events. One way to do this is to continually monitor the HP-IB
interface by executing the STATUS statement and then taking action when the values returned
match the values desired. This is obviously a great waste of computer time if the computer
could be performing other tasks. Instead, the interface hardware can be enabled to monitor bus
activity and then generate interrupts when certain events take place.

The computer (as a non-active controller) needs to keep track of the following information.

e It must keep track of itself being addressed as a listener so that it can enter data from the
current active talker.

o [t must keep track of itself being addressed as a talker so that it can transmit the informa-
tion desired by the active controller.

e [t must keep track of being sent a Clear, Trigger, Local or Local Lockout message so that it
can take appropriate action.

e It must keep track of control being passed from another controller.

The 9826 has the ability to keep track of the occurrences of all of these events. In fact, it can
monitor up to 16 different interrupt conditions. STATUS registers 4, 5 and 6 provide access to
the interface state and interrupt information necessary to design very powerful systems with a
great degree of flexibility.

Each individual bit of STATUS register 4 corresponds to the same bit of STATUS register 5.
Register 4 provides information as to which condition caused an interrupt, while register 5
keeps track of which interrupt conditions are currently enabled. To enable a combination of
conditions, add the decimal values for each bit that you want set in the interrupt-enable register.
This total is then used as the mask parameter in an ENABLE INTR statement.

156

I'he HP-IB Interface

HP-IB Interrupt Registers

Status Register 5 Interrupt Enable Mask
Most Significant Bit
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
Parallel . Talker/
Active Poll My Talk My Listen EOI Remote/ Listener
. , Address Address . SPAS Local
Controller |Configuration . . Received Address
Received | Received Change
Change Change
Value = Value = Value = Value = Value = Value = Value = Value =
—32768 16 384 8192 4096 2048 1024 512 256

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Secondary

Unrecognized Unrecognized

Trigger | Handshake) Command Clear SRQ IFC
Received Error Universal While Received Addressed Received Received
Command Command

Addressed

Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value =1

Bit 0 enables an interrupt upon detecting an Interface Clear (IFC). The interrupt is generated
only when the computer is not the system controller, as only a system controller is allowed to
set the Interface Clear signal line. The service routine typically is used to recover from the
abrupt termination of an 1/O operation caused by another controller sending the IFC message.

Bit 1 enables an interrupt upon detecting a Service Request.

Bit 2! enables an interrupt upon receiving an unrecognized Addressed Command, if the com-
puter is currently addressed to listen. This interrupt is used to intercept and respond to bus
commands which are not defined by the standard.

Bit 3 enables an interrupt on receiving a Clear message. Reception of either a Device Clear
message (to all devices) or a Selected Device Clear message (addressed to the computer) will
cause this type of interrupt. The computer is free to take any ‘‘device-dependent’ action; such
as, setting up all default values again, or even restarting the program, if that is defined by the
programmer to be the ‘‘cleared’ state of the machine.

Bit 4! enables an interrupt upon receiving a Secondary Command (extended addressing) while
in the command mode, if the 9826 is addressed to either talk or listen. Again, this interrupt
provides the computer with a way to detect and respond to special messages from another
controller.

1 This condition requires accepting data from the bus and then explicitly releasing the bus. Refer to the “*Advanced Bus Management'" section
for further details.

The HP-IB Interface

Bit 5! enables an interrupt upon receiving an unrecognized Universal Command. This interrupt
condition provides the computer with the capability of responding to new definitions that may
be adopted by the I[EEE standards committee.

Bit 6 enables an interrupt if a bus error occurs during an OUTPUT statement. Particularly, the
error occurs if none of the devices on the bus respond to the HP-IB’s interlocking handshake
(see “HP-IB Control Lines’’). The error typically indicates that either a device is not connected
or that its power is off.

Bit 7 enables an interrupt upon receiving a Trigger message, if the computer is currently
addressed to listen. This interrupt can be used in situations where the computer may be “‘armed
and waiting’’ to initiate action; the active controller sends the Trigger message to the computer
to cause it to begin its task.

Bit 8 enables an interrupt upon a change in talk or listen address. An interrupt will be generated
if the computer is addressed to listen or talk or ‘‘idled’”’ by an unlisten command.

Bit 9 enables an interrupt upon receiving either the Remote or the Local message from the
active controller, if addressed to listen. The action taken by the computer is, of course, depen-
dent on the user-programmed service routine.

Bit 10 enables an interrupt when the active controller performs a serial poll on the computer (in
response to its service request).

Bit 11 enables an interrupt when an EOl is received during an ENTER operation (the EOI signal
line is also described in ‘“‘HP-IB Control Lines’’).

Bit 12 enables an interrupt upon being addressed as an active listener by the active controller.
Bit 13 enables an interrupt upon being addressed as an active talker by the active controller.
Bit 14! enables an interrupt upon detecting a change in parallel poll configuration.

Bit 15 enables an interrupt upon becoming the active controller. The computer then has the
ability to manage bus activities.

Note that most of the conditions are state- or event-sensitive; the exception is the SRQ event,
which is level-sensitive. State-or event-sensitive events can never go unnoticed by the compu-
ter as can service requests; the event’s occurrence is ‘‘remembered’ by the computer until
serviced.

For instance, if the computer is enabled to generate an interrupt on becoming addressed as a
talker, it would interrupt the first time it received its own talk address. After having responded to
the service request (most likely with some sort of OUTPUT operation), it would not generate
another interrupt, even if it was still left assigned as a talker by the active controller. Thus, it
would not generate another interrupt until the event occurred a second time.

1 This condition requires accepting data from the bus and then explicitly releasing the bus. Refer to the ‘‘Advanced Bus Management’” section
for further details.

157

158

The HP-IB Interface

A simple example of a service routine that is to respond to multiple conditions might be as
follows.

100 OM INTR @Hpib GOSUB Service
110 Mash=INT(Z2"13)+INT{(Z2712)

120 ENABLE INTR @HepibiMaskK ! Interruprt on receiving
130 ' talk or listen addr,
140 Idle: GOTO Idle

150 !

160 Service: STATUS EBHeib4iStatus s+Mashk

170 IF BIT(135tatus) THEN Talker

180 IF BIT(12+5tatus) THEN Listener

180 !

200 TalKker: ! TaKe action for talker.

210 GOTO Exit_Point

220 !

230 Listener:s ! TaKe action for listener,

240 !

250 Exit_point: ENABLE INTR EBHepibkiMask

260 RETURN

270 END

Register 4, the interrupt status register, is a ‘‘read-destructive’ register; reading the register with
a STATUS statement returns its contents and then clears the register (to a value of 0). If the
service routine’s action depends on the contents of STATUS register 4, the variable in which it
is stored must not be used for any other purposes before all of the information that it contains
has been used by the service routine.

The computer is automatically addressed to talk (by the active controller) whenever it is serially
polled. If interrupts are concurrently enabled for My Address Change and/or Talker Active, the
ON INTR branch will be initiated due to the reception of the computer’s talk address. However,
since the Serial Poll is automatically finished with the Untalk Command, the computer may no
longer be addressed to talk by the time the interrupt service routine begins execution.

Interface-State Information

It is often necessary to determine which state the interface is in. STATUS register 6 contains
interface-state information in its upper byte; it also contains the same information as STATUS
register 3 in its lower byte. In advanced applications, it may be necessary to detect and act on
the interface’s current state. Register 6’s definition is shown below.

The HP-IB Interface 159

Status Register 6 Interface Status
Most Significant Bit
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
REM LLO ATN LPAS TPAS LADS TADS *
True
Value = Value = Value = Value = Value = Value = Value = Value =
—-32768 16 384 8 192 4 096 2048 1024 512 256

Most Significant Bi

t Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

System Active

Controlier | Controller 0 Primary Address of Interface

Value = 128| Value = 64 | Value = 32 | Value=16 | Value=8 | Value=4 | Value=2 | Value=1

* Least-significant bit of last address recognized

Bit 15 set indicates that the interface is in the Remote state.
Bit 14 set indicates that the interface is in the Local Lockout state.
Bit 13 set indicates that the ATN line is currently set (true).

Bit 12 set indicates that the interface is in the Listener Primary Addressed State (has received its
primary listen address and is currently an active listener).

Bit 11 set indicates that the interface is in the Talker Primary Addressed State (has received its
primary talk address and is currently an active talker).

Bit 10 set indicates that the interface is in the Listener Addressed State. This state is entered
only after the interface has received a secondary command and accepted it as valid by writing
a non-zero value to CONTROL register 4 to release the NDAC holdoff.

Bit 9 set indicates that the interface is in the Talker Addressed State. This state is entered in a
manner similar to the Listener Addressed State.

Bit 8 contains the least-significant bit of the last address recognized by this interface.

Bits 7 through 0 have the same definitions as STATUS register 3.

160 The HP IB Interface

HP-IB Control Lines

Device A < Handshake Lines

Able to talk. (\) (8 signal lines)

listen, and

control
(e.g..

HP 9826)

Device B <

Bus Lines
Able to tatk - 5 signal lines)
and listen ™ (9
(e.g.,
multimeter)

Data Bus
(8 signal lines)

Device C < N
Only able to >

listen
(e.g.. signal
generator)
Device D
Only able to
talk
(e.g., counter)
__:} DIO1..8
L—— DAV
l———— NRFD
NDAC
IFC
ATN
SRQ
REN
EOI

Handshake Lines

The preceding figure shows the names given to the eight control lines that make up the HP-IB.
Three of these lines are designated as the ‘*handshake’” lines and are used to control the timing
of data byte exchanges so that the talker does not get ahead of the listener(s). The three
handshake lines are as follows.

DAV Data Valid
NRFD Not Ready for Data
NDAC Not Data Accepted

The HP-IB Interface

The HP-IB interlocking handshake uses the lines as follows. All devices currently designated
as active listeners would indicate when they are ready for data by using the NRFD line. A device
not ready would pull this line low (true) to signal that it is not ready for data, while any device
that is ready would let the line float high. Since an active low overrides a passive high, this line
will stay low until all active listeners are ready for data.

When the talker senses that all devices are ready, it places the next data byte on the data lines
and then pulls DAV low (true). This tells the listeners that the information on the data lines is
valid and that they may read it. Each listener then accepts the data and lets the NDAC line float
high (false). As with NRFD, only when all listeners have let NDAC go high will the talker sense
that all listeners have read the data. It can then float DAV (let it go high) and start the entire
sequence over again for the next byte of data.

The Attention Line (ATN)

Command messages are encoded on the data lines as 7-bit ASCII characters, and are distin-
guished from normal data characters by the logic state of the attention line (ATN). That is, when
ATN is false, the states of the data lines are interpreted as data. When ATN is true, the data
lines are interpreted as commands. The set of 128 ASCII characters that can be placed on the
data lines during this ATN-true mode are divided into four classes by the states of data lines
DIO6 and DIO7. These classes of commands are shown in a table in the section called ‘‘Adv-
anced Bus Management”’.

The Interface Clear Line (IFC)

Only the system controller can set the IFC line true. By asserting IFC, all bus activity is uncon-
ditionally terminated, the system controller regains the capability of active controller (if it has
been passed to another device), and any current talker and listeners become unaddressed.
Normally, this line is only used to terminate all current operations, or to allow the system
controller to regain control of the bus. It overrides any other activity that is currently taking
place on the bus.

The Remote Enable Line (REN)

This line is used to allow instruments on the bus to be programmed remotely by the active
controller. Any device that is addressed to listen while REN is true is placed in the Remote mode
of operation.

The End or Identify Line (EOI)

Normally, data messages sent over the HP-IB are sent using the standard ASCII code and are
terminated by the ASCII line-feed character, CHR$(10). However, certain devices may wish to
send blocks of information that contain data bytes which have the bit pattern of the line-feed
character but which are actually part of the data message. Thus, no bit pattern can be desig-
nated as a terminating character, since it could occur anywhere in the data stream. For this
reason, the EQOI line is used to mark the end of the data message.

161

162 The HP-IB Interface

The EOI line is used during ENTER statements and during an identify sequence (the response
to parallel poll). During data messages, the EOI line is set true by the talker to signal that the
current data byte is the last one of the data transmission. Generally, when a listener detects that
the EOIl line is true, it assumes that the data message is concluded. However, EOl may either be
used or ignored by the computer when entering data with an ENTER statement that uses an
image. Chapter 5 fully describes the definitions of EOI during all ENTER statements and shows
how to use the image specifiers that modify the statement-termination conditions.

ENTER statements can use images to re-define the meaning of EOI to provide a very great
degree of flexibility. Using the “#’” or “%” specifier in an ENTER statement affects the defini-
tion of the EQOI signal as shown in the following table.

Definition of EOI During ENTER Statements

Free-field | ENTER statements that use an image:
ENTER
statements without
“g” or U with “‘#”’ with <%’
Definition | Immediate Item Item Immediate
of EOI statement separator separator statement
terminator | or statement | terminator | terminator
terminator
Statement
terminator Yes Yes No No
required?
Early
termination No No No Yes
allowed?

The Service Request Line (SRQ)

The active controller is always in charge of the order of events that occur on the HP-IB. If a
device on the bus needs the controller’s help, it can set the service request line true. This line
sends a request, not a demand, and it is up to the controller to choose when and how it will
service that device. However, the device will continue to assert SRQ until it has been “‘satis-
fied”. Exactly what will satisfy a service request depends on the requesting device, which is
explained in the device’s operating manual.

Determining Bus-Line States

STATUS register 7 contains the current states of all bus hardware lines. Reading this register
returns the states of these lines in the specified numeric variable.

STATUS Hpib +73Bus_lines

Status Register 7
Most Significant Bit

The HP-IB Interface

Bus Control and Data Lines

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

ATN DAV NDAC* NRFD* EOI SRQ** IFC REN

True True True True True True True True
Value = Value = Value = Value = Value = Value = Value = Value =

—-32768 16 384 8 192 4 096 2048 1024 512 256

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DIO8 D107 DIO6 DIO5 DIO4 DIO3 DIO2 DIO1
Value = 128 Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

* Only if addressed to TALK, else not valid.
** Only if Active Controller, else not valid.

Note
Due to the way the bi-directional buffers work, NDAC and NRFD are
not accurately read by this STATUS statement unless the interface is
currently addressed to talk. Also, SRQ is not accurately shown unless
the interface is currently the active controller.

Advanced Bus Management

Bus communication involves both sending data to devices and sending commands to devices
and the interface itself. ‘“‘General Structure of the HP-IB” stated that this communication must
be made in an orderly fashion and presented a brief sketch of the differences between data and
commands. However, most of the bus operations described so far in this chapter involve
sequences of commands and/or data which are sent automatically by the computer when
HP-IB statements are executed. This section describes both the commands and data sent by
HP-IB statements and how to construct your own, custom bus sequences.

The Message Concept

The main purpose of the bus is to send information between two (or more) devices. These
quantities of information sent from talker to listener(s) can be thought of as messages. Howev-
er, before data can be sent through the bus, it must be properly configured. A sequence of
commands is generally sent before the data to inform bus devices which is to send and which is
(or are) to listen to the subsequent message(s). These commands can also be thought of as
messages.

164

The HP-IB Interface

Most bus messages are transmitted by sending a byte (or sequence of bytes) with numeric
values of 0 through 255 through the bus data lines. When the Attention line (ATN) is true, these
bytes are considered commands; when ATN is false, they are interpreted as data. Bus com-

mand groups and their ASCII characters and codes are shown in “‘Bus Commands and
Codes’.

Types of Bus Messages

The messages can be classified into twelve types. This computer is capable of implementing all
twelve types of interface messages. The following list describes each type of message.

1. A Data message consists of information which is sent from the talker to the listener(s)
through the bus data lines.

2. The Trigger message causes the listening device(s) to initiate device-dependent action(s).

3. The Clear message causes either the listening device(s) or all of the devices on the bus to
return to their device-dependent ‘‘clear’ states.

4. The Remote message causes listening devices to change to remote program control when
addressed to listen.

5. The Local message clears the Remote message from the listening device(s) and returns
the device(s) to local front-panel control.

6. The Local Lockout message disables a device’s front-panel controls, preventing a de-
vice's operator from manually interfering with remote program control.

7. The Clear Lockout/Local message causes all devices on the bus to be removed from
Local Lockout and to revert to the Local state. This message also clears the Remote
message from all devices on the bus.

8. The Service Request message can be sent by a device at any time to signify that the
device needs to interact with the the active controller. This message is cleared by sending
the device’s Status Byte message, if the device no longer requires service.

9. A Status Byte message is a byte that represents the status of a single device on the bus.
This byte is sent in response to a serial poll performed by the active controller. Bit 6
indicates whether the device is sending the Service Request message, and the remaining
bits indicate other operational conditions of the device.

10. A Status Bit message is a single bit of device-dependent status. Since more than one
device can respond on the same line, this Status Bit may be logically combined and/or
concatenated with Status Bit messages from many devices. Status Bit messages are
returned in response to a parallel poll conducted by the active controller.

11. The Pass Control message transfers the bus management responsibilities from the active
controller to another controller.

12. The Abort message is sent by the system controller to assume control of the bus uncon-
ditionally from the active controller. This message terminates all bus communications,
but is not the same as the Clear message.

These messages represent the full implementation of all HP-IB system capabilities; all of these
messages can be sent by this computer. However, each device in a system may be designed to
use only the messages that are applicable to its purpose in the system. It is important for you to
be aware of the HP-IB functions implemented on each device in your HP-IB system to ensure
its operational compatibility with your system.

Bus Commands and Codes

The table below shows the decimal values of IEEE-488 command messages. Remember that
ATN is true during all of these commands. Notice also that these commands are separated into
four general categories: Primary Command Group, Listen Address Group, Talk Address
Group, and Secondary Command Group. Subsequent discussions further describe these com-

The HP-IB Interface

mands.
Decimal ASCII Interface
Value Character Message Description
PCG Primary Command Group
1 SOH GTL Go to Local
4 EOT SDC Selected Device Clear
5 ENQ PPC Parallel Poll Configure
8 BS GET Group Execute Trigger
9 HT TCT Take Control
17 DC1 LLO Local Lockout
20 DC4 DCL Device Clear
21 NAK PPU Parallel Poll Unconfigure
24 CAN SPE Serial Poll Enable
25 EM SPD Serial Poll Disable
LAG Listen Address Group
32-62 Space through > Listen Addresses O through 30
(Numbers & Special Chars.)
63 ? UNL Unlisten
TAG Talk Address Group
64-94 @ through 4 Talk Addresses 0 through 30
(Uppercase ASCII)
95 _ (underscore) UNT Untalk
SCG Secondary Command Group
* through ~ Secondary Commands 0 through 30
96-126 (Lowercase ASCII)
127 DEL Ignored

165

166 The HP-IB Interface

Address Commands and Codes

The following table shows the ASCII characters and corresponding codes of the Listen Address
Group and Talk Address Group commands. The next section describes how to send these

commands.

Address Characters

Address Code

Address Switch Settings

Listen Talk

Decimal

(5) @) @) (2)

Space
!

"

#
$
%
&
(
)
+

VONOUTARWNHO -
> -~ NYXSE<CCHO IO UVOZIrXR~TOMmMUOIP>E

VoA

0
1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

el e e e e N N N N e e NeoNoleReRoeNoNoNo ol oo oo N
=t = = = = R OO OO OO OO HHMEMHEHEEHEFFEFOOOOOOOO
—H = = OO0 KRR EHEHOOOOHHMHEEREOOOOR R, OOOO
HOOHMHOOHROOHFHOOHRHMHOOFHMHOORHOOH,HOO
O O OHOHOFH,ROHRHOFH,ROHOROFHOHOHOFORORO

The table implicitly shows that:

e listen address commands can be calculated from the primary address by using one of the

following equations

Listen_address=32+Primarv_address

or

Listen_.address$=CHR%(32+Primarv_.address)

The HP-IB Interface

® similarly, talk address commands can be calculated from the primary address by using one
of the following equations

Talk.address=G4+Primarv_address
or
Talk_addresss=CHR$(G4+Primarv_address)
However, the table does not show that:

e the Unlisten command is “‘?”’, CHR$(63)
e the Untalk command is ‘_’’, CHR$(95)

e therefore, primary address 31 is an unusable device address, but can be used to send the
Unlisten and Untalk commands

Explicit Bus Messages

It is often desirable (or necessary) to manage the bus by sending explicit sequences of bus
messages. The SEND statement is the vehicle by which explicit commands and data can be sent
through the bus. The SEND statement is also the only method of sending data with odd parity
through the bus. This section shows several uses of this statement.

Examples of Sending Commands

As a simple example, suppose the following statement is executed to configure the bus (i.e., to
address the talker and listener).

OUTPUT 701 USING "#,K"

The SEND statement can be used to send the same sequence of commands, as shown in the
following statement.

SEND 735CMD "wryt"
This statement configures the bus explicitly by sending the following commands:

e the unlisten command (ASCII character ‘?”’; decimal code 63)
e talk address 21 (ASCII character ‘‘U’’; decimal code 85)
e listen address 1 (ASCII character ““!"’; decimal code 33)

The same sequence of commands and data is sent with any of the following statements.
SEND 73iCMD UNL MTA LISTEN 1
SEND 735CMD UNL TALK 21 LISTEN 1

SEND 73CMD 32+3164+21,32+1

167

168

The HP-IB Interface

Commands can be sent by specifying the secondary keyword CMD. The list of commands
(following CMD) be any numeric or string expressions. If more than one expression is listed,
they must be separated by commas. A numeric expression will be evaluated, rounded to an
integer (MOD 256), and sent as one byte. Each character of a string expression will be sent
individually. All bytes are sent with ATN true. The computer must be the current active
controller to send commands.

SEND IsciCMD B I Group Execute Tridder
SEND 83CMD 1 I Go to Local

If SEC is used, the specified secondary commands will be sent. An extended talker may be
addressed by using SEC after the talk address; extended listener(s) may be addressed by using
SEC after the listen address(es).

SEND 73iMTA UNL LISTEN 1 CMD 5 SEC 16 ! SENDPPD.

The computer must be the active controller to send CMD, LISTEN, UNL, MLA, TALK, UNT,
MTA, and SEC. If a non-active controller attempts to send any of these messages, an error is
reported.

Simulate the following SPOLL function with a SEND statement.
A=5POLL(724)
When an SPOLL is performed, the resulting bus activity is:

® Unlisten command

® My Listen Address (the computer’s listen address; MLA)
® device’s talk address (one of the TAG commands)

® Serial Poll Enable command (SPE; decimal code 24)

® one data byte is read (the Status Byte message)

e Serial Poll Disable (SPD; decimal code 25)

e Untalk command

This is accomplished by either of the following sequences:

SEND 73CMD "?SH"RCHR$(24) | Configure the busi send SPE.
ENTER 7 USING "#,B"3A | Read Status Brte.
SEND 73CMD CHR$(Z3)&"_" I Send UntalK and SPD.

SEND 73UNL MLA TALK 24 CHMD 24
ENTER 7 USING "#,B"iA
SEND 73CMD 25 UNT

The preceding secondary keywords provide the capability of sending various command mes-
sages through the bus. The activity that results on the bus when several other high-level
commands are issued is summarized in ‘‘HP-IB Message Mnemonics”’.

The HP-IB Interface

Examples of Sending Data

Data messages can be sent by specifying the secondary keyword DATA. If the computer is the
active controller, the data is sent immediately. However, if the computer is not the active
controller, it waits to be addressed to talk before sending the data.

SEND 73DATA "Messade" 13,10 ! Send with CR/LF.
SEND BusiDATA "Data" END I Send with EOI.

The data list may contain any mixture of numeric or string expressions; if more than one
expression is specified, they must be separated by commas. Each numeric expression is evalu-
ated as an integer (MOD 256) and sent as a single byte. Each string item is evaluated and all
resultant characters are sent serially. Each byte is sent with ATN false (sent as a data message).
The last expression may be followed by the secondary keyword END, which causes the EOI
terminator to be sent concurrently with the last data byte.

As another example, simulate this ENTER statement with a SEND statement.
ENTER 724iNumber:String$
Any of the following pairs of statements can be used to accomplish the same operation.

SEND 73UNL TALK 24 MLA
ENTER 73iNumbersStringds$

SEND 73UNL TALK 24 LISTEN 21
ENTER 73iNumbersStrinds$

SEND 73CMD "7?XS"
ENTER 7 iNumbers Strings$

HP-IB Message Mnemonics

This section contains the descriptions of several bus messages described by the IEEE 488-1978
standard. The following table describes message mnemonics, their meanings, and the secon-
dary keywords used with the SEND statement. The HP-IB messages that require primary
keywords are noted in the table.

All BASIC statements which send HP-IB messages (except SEND) always set ATN-true (com-
mand) messages with the most-significant bit set to zero. Using CMD (with SEND) allows you to
send ATN-true messages with the most-significant bit set to one. This may be useful for non-
standard IEEE-488 devices which require the most-significant bit to have a particular value.

The CMD and DATA secondary keywords of SEND statements allow string expressions as well
as numeric expressions (e.g., CMD ““?”’ is the same as CMD 63). All other secondary keywords
which need data require numeric expressions. Keep this in mind while reading through this
table.

169

170

The HP-IB Interface

Message Message SEND Clause Required
Mnemonic Description (numeric values are decimal)
DAB Data Byte DATA 0 through 255
DCL Device Clear CMD 20 (or 148)
EOI End or Identify DATA data list END
GET Group Execute Trigger CMD 8 (or 136)
GTL Go To Local CMD 1 (or 129)
IFC Interface Clear Not possible with SEND;
use the ABORT statement.
LAG Listen Address LISTEN 0 through 30;
or CMD 32 through 62;
or CMD 160 through 190
MLA My Listen Address MLA
MTA My Talk Address MTA
PPC Parallel Poll CMD 5 (or 133)
Configure
PPD Parallel Poll SEC 16; or CMD 112 (or 240)
Disable (Must be preceded by PPC.)
PPE Parallel Poll SEC 0 + Mask:
Enable SEC 0 through 15;
or CMD 96 through 111;
or CMD 224 through 239
(Must be preceded by PPC.)
PPU Parallel Poll CMD 21 (or 149)
Unconfigure
PPOLL Parallel Poll Not possible with SEND;
use the PPOLL function.
REN Remote Enable Not possible with SEND;
use the REMOTE statement.
SDC Selected Device Clear CMD 4 (or 132)
SPD Serial Poll Disable CMD 25 (or 153)
SPE Serial Poll Enable CMD 24 (or 152)
TAD Talk Address TALK 0 through 30;
or CMD 64 through 94;
or CMD 192 through 222
TCT Take Control CMD 9 (or 137)
UNL Unlisten UNL; or LISTEN 31;
or CMD 63 (or 191)
UNT Untalk UNT; or TALK 31,

or CMD 95 (or 223)

The HP-IB Interface

Servicing Interrupts that Require Data Transfers

During the discussion on interrupts, three special types of interrupt conditions were described
(which are enabled by setting bits in CONTROL register 4). These interrupts occur upon
receiving: an unrecognized Universal command, an unrecognized addressed command, or a
Secondary command. These situations all require the computer to read a byte of information
from the bus and respond as desired by the programmer.

Status Register 4 Interrupt Status
Most Significant Bit Least Significant Bit

Bit 14

Parallel

Bit 5 Bit 4
Unrecognized Secondary
. Command
Universal . Addressed
Command While Command
Addressed
Value = 32 | Value = 16 Value = 4

As a reminder, these interrupt conditions occur under the following circumstances.

Bit 2 enables an interrupt upon receiving an unrecognized Addressed Command, if addressed
to listen. This interrupt is used to detect and respond to commands that are undefined by the
standard (but which may be recognized by the computer).

Bit 4 enables an interrupt upon receiving a Secondary Command, if addressed to either talk or
listen during the command mode. Again, this allows the computer to detect and respond to
special information from another controller.

Bit 5 enables an interrupt upon receiving an unrecognized Universal Command. This interrupt
condition provides the computer with the ability to respond to new definitions that may be
adopted by the IEEE standards committee.

Bit 14 enables an interrupt on any change in parallel poll configuration. If a Parallel Poll
Configure command is received, the computer must set up its own parallel poll response
designated by the controller. The response itself is set up by writing to CONTROL register 2 of
the HP-IB interface.

171

172 7The HP-IB Interface

Whenever any of the above interrupt conditions are enabled and occur, the computer logs the
interrupt and then sets a bus holdoff. In other words, all bus activity is ‘‘frozen’ until the
program has released this holdoff. The holdoff is established to allow the program time to
determine the current state of the bus.

The bus state is determined by reading HP-IB STATUS register 7, which returns the current
logic state of the data and control lines as a 16-bit integer.

S5TATUS 7+73iBus_lines

After reading the state of the lines, it is necessary to release the bus holdoff by writing any value
into HP-IB CONTROL register 4.

CONTROL 7s4d3Anv_value

Control Register 4 Release NDAC Holdoff
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 = Don't Accept Secondary Command
All Non-zero Values Accept Secondary
(Writing anything to this register releases NDAC holdoff)

Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

When a Secondary Command is received, two computer responses are possible. The first is to
accept the address as a valid secondary address and consequently become an Extended Talker.
The second is not to accept the address as valid and consequently remain in the primary
addressed state.

If Secondary Command interrupts are enabled (while the computer is a non-active controller),
the computer will not respond to its primary address alone; a valid secondary address is also
required. Statements such as ENTER 7, OUTPUT 7, and LIST #7 should only be executed in
the interrupt service routine after CONTROL has been used to indicate that a valid secondary
address has been received but before interrupts are re-enabled.

When you no longer want the computer to respond as an Extended Talker/Listener, execute an
ENABLE INTR with a mask which has bit 4 equal to zero.

The HP-IB Interface

Summary of
HP-IB STATUS and CONTROL Registers

Status Register 0
Most Significant Bit

Card Identification
Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 0 0 0 1
Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1
Control Register 0 Interface Reset
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Any Bit Will Reset Interface
Value = 128 Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1
Status Register 1 Interrupt and DMA Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DMA DMA
oty | nemaena | e o | o | cnamel 1 |cramelo
q Enabled Enabled
Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value = 1
Control Register 1 Serial Poll Response Byte
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device SRQ
Dependent | 1 = | did it Device Dependent Status
Status 0 = | didn't
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value =1

173

The HP-IB Interface

Status Register 2
Most Significant Bit

Busy Bits

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Handshake Interrupts Reserved
Reserved For Future Use In P For Future
Enabled
Progress Use
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value =8 | Value=4 | Value=2 | Value =1
Control Register 2 Parallel Poll Response Byte
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
D108 DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DIO1
1=True | 1 =True | 1 =True | 1 =True | 1 =True | 1 =True | 1 =True | 1 = True
Value = 128| Value = 64 | Value = 32 | Value =16 | Value =8 | Value=4 | Value =2 | Value =1
Status Register 3 Controller Status and Address
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
System Active .
Controller | Controller 0 Primary Address of Interface
Value = 128| Value = 64 | Value = 32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1
Control Register 3 Set My Addrress
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Not Used Primary Address
Value = 128| Value = 64 | Value = 32 | Value =16 | Value =8 | Value=4 | Value =2 | Value =1

Status Register 4

The HP-IB Interface

Interrupt Status

Most Significant Bit
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
. Parallel |\ Taik | My Listen Remote/ | laiker/
Active Poll EOI Listener
) . Address Address - SPAS Local
Controller |Configuration Received | Received Received Chanae Address
Change 9 Change
Value = Value = Value = Value = Value = Value = Value = Value =
-32768 16 384 8 192 4 096 2048 1024 512 256
Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit @
Unrecognized Secondary Unrecognized
Trigger | Handshake) Command Clear SRQ IFC
: Universal) . Addressed . :
Received Error While Received Received Received
Command Command
Addressed
Value = 128| Value = 64 | Value = 32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1
Control Register 4 Release NDAC Holdoff
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 = Don't Accept Secondary Command
All Non-zero Values Accept Secondary
(Writing anything to this register releases NDAC holdoff)
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

175

176 The HP-IB Interface

Status Register 5

Interrupt Enable Mask

Most Significant Bit

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
. Parallel | \\ Talc | My Listen Remote/ | 2ker/
Active Poll Address | Address EO! SPAS Local Listener
Controller |Configuration Received | Received Received Chanae Address
Change 9 Change
Value = Value = Value = Value = Value = Value = Value = Value =

—32768 16 384 8192 4 096 2048 1024 512 256

Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
. Secondary ,

Trigger | Handshake Uar:ﬁlog:\sl:?d Command Clear Tégiiﬂﬁj SRQ IFC
Received Error While Received Received Received
Command Command

Addressed
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1
Status Register 6 Interface Status
Most Significant Bit
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
REM LLO ATN LPAS TPAS LADS TADS *
True
Value = Value = Value = Value = Value = Value = Value = Value =
-32768 16 384 8192 4 096 2048 1024 512 256
Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
System Active)
Controller | Controller 0 Primary Address of Interface
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

* Least-significant bit of last address recognized

Status Register 7
Most Significant Bit

The HP-IB Interface 177

Bus Control and Data Lines

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

ATN DAV NDAC* NRFD* EOI SRQ** IFC REN

True True True True True True True True
Value = Value = Value = Value = Value = Value = Value = Value =

—32768 16 384 8 192 4 096 2 048 1024 512 256

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DiO8 DIO7 D106 DIO5 DIO4 DIO3 DIO2 DIO1
Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value=1

* Only if addressed to TALK, else not valid.
** Only if Active Controller, else not valid.

178 The HP-IB Interface

Summary of HP-IB READIO and WRITEIO Registers

READIO Registers

Register 1 — Card Identification

Register 3 — Interrupt and DMA Status
Register 5 -— Controller Status and Address
Register 17 — Interrupt Status 0'

Register 19 — Interrupt Status 1!

Register 21 — Interface Status

Register 23 — Control-Line Status

Register 29 — Command Pass-Through
Register 31 — Data-Line Status’

HP-IB READIO Register 1

Most Significant Bit

Card Identification
Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Future Use
Jumper 0 0) 0 0 0 1
Installed
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

Bit 7 is set (1) if the ‘‘future use’’ jumper is installed and clear (0) if not.

Bits 6 through 0 constitute a card identification code (=1 for all HP-IB cards).

Note

This register is only implemented on external HP-IB cards. The inter-
nal HP-IB, at interface select code 7, “floats’’ this register (i.e., the

states of all bits are indeterminate).

HP-IB READIO Register 3

Most Significant Bit

Interrupt and DMA Status

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Interrupt Interrupt Interrupt
Enabled Request Level X X DMAT DMAD
Value = 128 Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value =1

1 Indicates that-a READIO operation will change the state of the interface.

The HP-IB Interface

Bit 7 is set (1) if interrupts are currently enabled.
Bit 6 is set (1) when the card is currently requesting service.

Bits 5 and 4 constitute the card’s hardware interrupt level (a switch setting on all external cards,
but fixed at level 3 on the internal HP-IB).

Bit5 | Bit4 Hardware Interrupt
Level
0 0 3
0 1 4
1 0 5
1 1 6

Bits 3 and 2 are not used (indeterminate).
Bit 1 is set (1) if DMA channel one is currently enabled.
Bit 0 is set (1) if DMA channel zero is currently enabled.

Note

Bits 7, 5, 4, 3, 2, and 1 are not implemented on the internal HP-IB
(interface select code 7).

HP-IB READIO Register 5 Controller Status and Address
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
System Not ~+————— HP-IB Primary Address of Interface —————

Active X

Controller (MSB) (LSB)

Controller

Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

Bit 7 is set (1) if the interface is the System Controller.

Bit 6 is set (1) if the interface is not the current Active Controller and clear (0) if it is the Active
Controller.

Bit 5 is not used.

Bits 4 through 0 contain the card’s Primary Address switch setting. The following bit patterns
indicate the specified addresses.

179

180

The HP-IB Interface

Bit Primary
43210 Address
00000 0
00001 1
11101 29
11110 30
11111 (not allowed)

Note

Bits 5 through O are not implemented on the internal HP-IB.

HP-IB READIO Register 17 MSB of Interrupt Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Ready Remote/ My
MSB LSB Byte End
. for Next SPAS Local Address
Interrupt Interrupt Received Byte Detected Change Change
Value = 128| Value = 64 | Value = 32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1

Bit 7 set (1) indicates that an interrupt has occurred whose cause can be determined by reading
the contents of this register.

Bit 6 set (1) indicates that an interrupt has occurred whose cause can be determined by reading
Interrupt Status Register 1 (READIO Register 19).

Bit 5 set (1) indicates that a data byte has been received.

Bit 4 set (1) indicates that this interface is ready to accept the next data byte.
Bit 3 set (1) indicates that an End (EOI with ATN =0) has been detected.
Bit 2 set (1) indicates that the Serial-Poll-Active State has been entered.

Bit 1 set (1) indicates that a Remote/Local State change has occurred.

Bit 0 set (1) indicates that a change in My Address has occurred.

The HP-IB Interface

HP-IB READIO Register 19 LSB of Interrupt Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

. Secondary .
Trigger | Handshake Unrepogmzed Command Clear Unrecognized SRQ IFC
: Universal .) Addressed . .
Received Error While Received Received Received
Command Command
Addressed
Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1

Bit 7 set (1) indicates that a Group Execute Trigger command has been received.
Bit 6 set (1) indicates that an Incomplete-Source-Handshake error has occurred.
Bit 5 set (1) indicates that an unidentified command has been received.

Bit 4 set (1) indicates that a Secondary Address has been sent in while in the extended-
addressing mode.

Bit 3 set (1) indicates that the interface has entered the Device-Clear-Active State.
Bit 2 set (1) indicates that My Address has been received.
Bit 1 set (1) indicates that a Service Request has been received.

Bit 0 set (1) indicates that the Inteface Clear message has been received.

HP-IB READIO Register 21 Interface Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ATN LSB of
REM LLO LPAS TPAS LADS TADS Last
True
Address
Value = 128| Value =64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1

Bit 7 set (1) indicates that this Interface is in the Remote State.

Bit 6 set (1) indicates that this interface is in the Local Lockout State.

Bit 5 set (1) indicates that the ATN signal line is true.

Bit 4 set (1) indicates that this interface is in the Listener-Primary-Addressed State.
Bit 3 set (1) indicates that this interface is in the Talker-Primary-Addressed State.
Bit 2 set (1) indicates that this interface is in the Listener-Addressed State.

Bit 1 set (1) indicates that this interface is in the Talker-Addressed State.

Bit 0 set (1) indicates that this is the least-significant bit of the last address recognized by this
interface.

181

182 The HP-IB Interface

HP-IB READIO Register 23 Control-Line Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ATN DAV NDAC* NRFD* EOI SRQ™" IFC REN
True True True True True True True True

Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value=1

*Only if addressed to TALK, else not valid.
**Only if Active Controller, else not valid.

A set bit (1) indicates that the corresponding line is currently true; a O indicates that the line is
currently false.

HP-IB READIO Register 29 Command Pass-Through
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DIOH

Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

This register can be read during a bus holdoff to determine which Secondary Command has
been detected.

HP-IB READIO Register 31 Bus Data Lines
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DIO1

Value = 128| Value = 64 | Value = 32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1

A set bit (1) indicates that the corresponding HP-IB data line is currently true; a O indicates the
line is currently false.

The HP-IB Interface

HP-IB WRITEIO Registers

Register 3 — Interrupt Enable

Register 17 — MSB of Interrupt Mask
Register 19 — LSB of Interrupt Mask
Register 23 — Auxiliary Command Register
Register 25 — Address Redgister

Register 27 — Serial Poll Response
Register 29 — Parallel Poll Response
Register 31 — Data Out Register

HP-IB WRITEIO Register 3 Interrupt Enable
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Enable Enable Enable
interrupt X X X X X Channel 1 | Channel 0

Value = 128 Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

Bit 7 enables interrupts from this interface if set (1) and disables interrupts if clear (0).

Bits 6 through 2 are ‘‘don’t cares’’ (i.e., their values have no effect on the interface’s opera-
tion).

Bit 1 enables DMA channel 1 if set (1) and disables if clear (0).
Bit 0 enables DMA channel O if set (1) and disables if clear (0).

Note

Bits 7 through 1 are not implemented on the internal HP-IB interface
and thus have no effect on the interface’s operation.

WRITEIO Register 17 MSB of Interrupt Mask

Setting a bit of this register enables an interrupt for the specified condition. The bit assignments
are the same as for the MSB of Interrupt Status Register (READIO Register 17), except that bits
7 and 6 are not used.

WRITEIO Register 19 LSB of Interrupt Mask

Setting a bit of this register enables an interrupt for the specified condition. The bit assignments
are the same as for the LSB of Interrupt Status Register (READIO Register 19).

183

184 The HP-IB Interface

HP-IB WRITEIO Register 23 Auxiliary Command Register
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Set X X Auxiliary Command Function

Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

Bit 7 is set (1) for a Set operation and clear (0) for a Clear operation.
Bits 6 and 5 are ‘‘don’t cares’’.

Bits 4 through 0 are Auxiliary-Command-Function-Select bits. The following commands can
be sent to the interface by sending the specified numeric values.

Decimal Description of
Value Auxiliary Command
0 — Clear Chip Reset.
128 — Set Chip Reset.
1 — Release ACDS holdoff. If Address Pass Through is set, it indicates an invalid second-
ary has been received.
129 _— Release ACDS holdoff; If Address Pass Through is set, indicates a valid secondary
has been received.
2 — Release RFD holdoff.
130 — Same command as decimal 2 (above).
3 — Clear holdoff on all data.
131 — Set holdoff on all data.
4 Clear holdoff on EOI only.
132 — Set holdoff on EOI only.
5 — Set New Byte Available (nba) false.
133 — Same command as decimal 5 (above).
6 — Pulse the Group Execute Trigger line, or clear the line if it was set by decimal
command 134.
134 — Set Group Execute Trigger line.
7 — Clear Return To Local (rtl).
135 — Set Return To Local (must be cleared before the device is able to enter the Remote
state).
8 — Causes EQI to be sent with the next data byte.
136 — Same command as decimal 8 {(above).
9 — Clear Listener State (also cleared by decimal 138).
137 — Set Listener State.
10 — Clear Talker State (also cleared by decimal 137).
138 — Set Talker State.

(Continued)

Decimal
Value

11
139

12
140

13
141

14
142

15
143

16
144

17

145
18

146

19
147

20
148

21
149

22
150

The HP-IB Interface

Description of
Auxiliary Command

Go To Standby (gts; controller sets ATN false).
Same command as decimal 11 (above).

Take Control Asynchronously (tca; ATN true).
Same command as decimal 12 (above).

Take Control Synchronously (tcs; ATN true).
Same command as decimal 13 (above).

Clear Parallel Poll.
Set Parallel Poll (read Command-Pass-Through register before clearing).

Clear the Interface Clear line (IFC).
Set Interface Clear (IFC maintained >100 ps).

Clear the Remote Enable (REN) line.
Set Remote Enable.

Request control (after TCT is decoded, issue this to wait for ATN to drop and receive
control).
Same command as decimal 17 (above).

Release control (issued after sending TCT to complete a Pass Control and set ATN
false).
Same command as decimal 18 (above).

Enable all interrupts.
Disable all interrupts.

Pass Through next Secondary Command.
Same command as decimal 20 (above).

Set T1 delay to 10 clock cycles (2 ps at 5 MHz).
Set T1 delay to 6 clock cycles (1.2 ps at 5 MHz).

Clear Shadow Handshake.
Set Shadow Handshake.

185

186 The HP-IB Interface

HP-IB WRITEIO Register 25 Address Register
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Enable . .
Dual [i_lissisr‘? E;.':ﬁ(t:re Primary Address
Addressing

Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

Bit 7 set (1) enables the Dual-Primary-Addressing Mode.

Bit 6 set (1) invokes the Disable-Listen function.

Bit 5 set (1) invokes the Disable-Talker function

Bits 4 through 0 set the device’s Primary Address (same address bit definitions as READIO

Register 5).

HP-IB WRITEIO Register 27 Serial Poll Response Byte
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Device Request
Dependent au Device-Dependent Status
Service
Status
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value =4 | Value =2 | Value =1

Bits 7 and 5—0 specify the Device-Dependent Status.
Bit 6 sends an SRQ if set (1).

Note

Given an unknown state of the Serial Poll Response Byte, it is neces-
sary to write the byte with bit 6 set to zero followed by a write of the
byte with bit 6 set to the desired final value. This will insure that a
SRQ will be generated if one was desired.

The HP-IB Interface

HP-IB WRITEIO Register 29 Parallel Poll Response
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 DIO7 DIO6 DIO5 DI04 DIO3 DIO2 DIO1

Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

A 1 sets the appropriate bit true during a Parallel Poll; a O sets the corresponding bit false.
Initially, and when Parallel Poll is not configured, this register must be set to all zeros.

HP-IB WRITEIO Register 31 Data-Out Register
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
D108 DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DIO1

Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

187

188 The HP-IB Interface

Summary of Bus Sequences

The following tables show the bus activity invoked by executing HP-IB statements and func-
tions. The mnemonics used in these tables were defined in the previous section of this chapter.

Note that the bus messages are sent by using single lines (such as the ATN line) and multi-line
commands (such as DCL). The information shows the state of and changes in the state of the
ATN line during these bus sequences. The tables implicitly show that these changes in the
state of ATN remain in effect unless another change is explicitly shown in the table. For
example, if a statement sets ATN (true) with a particular command, it remains true unless the
table explicitly shows that it is set false (ATN). The ATN line is implememted in this manner to
avoid unnecessary transitions in this signal whenever possible. It should not cause any dilem-
mas in most cases.

ABORT
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

. ATN

Active IFC (duration =100psec) MTA
REN

Controller ATN UNL

ATN

Not Active IFC (duration =100 usec)* No

Controller REN Action

ATN

* The IFC message allows a non-active controller (which is the system controller) to become the active controller.

CLEAR
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
Active ATN MTA ATN MTA
Controll DCL UNL DCL UNL
ontrofier LAG LAG
SDC SDC
Not Active
Controller Error

The HP-IB Interface

LOCAL
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
Active REN m’: ATN 'SL’:‘
Controller ATN LAG GTL LAG
GTL GTL
Not Active REN Error Error
Controller ATN
LOCAL LOCKOUT
System Controlier Not System Controlier
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
Active ATN Error ATN Error
Controlier LLO LLO
N‘ot Active Error
Controller
PPOLL
System Controller Not System Controller [
Interface Select Primary Addressing Interface Select Primary Addressing }
Code Only Specified Code Only Specified
ATN & EOI ATN & EOI
(duration=25pus) (duration=25ps)
Active Read byte Error Read byte Error
Controller EOI EOI
Restore ATN to Restore ATN to
previous state previous state
Not Active
Controller Error

190

The HP-IB Interface

PPOLL CONFIGURE
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
MTA MTA
Active Emor UNL Error UNL
Controller LAG LAG
PPC PPC
PPE PPE
Not Active Error
Controller
PPOLL UNCONFIGURE
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
MTA MTA
Active ATN UNL ATN UNL
Controller PPU LAG PPU LAG
PPC PPC
PPD PPD
Not Active Error
Controller
REMOTE
System Controller Not System Controlier
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
REN
. ATN
c ::ttr‘gﬁer REN MTA Error
UNL
LAG
Not Active
Controller REN Error Error

The HP-IB Interface

SPOLL
System Controtier Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
UNL UNL
MLA MLA
TAD TAD
Active Error SPE Error SPE
Controller ATN ATN
Read data Read data
ATN ATN
SPD SPD
UNT UNT
Not Active
Controller Error
TRIGGER
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
Active ATN MTA ATN MTA
Controller GET UNL GET UNL
LAG LAG
GET GET
Not Active
Controller Error

192 The HP-IB Interface

A-1

Appendix A

Non-ASCII Key Output Codes

97 98 99 100 101 84 87 64 70 79 78 36
48 49 50 51 52 86 94 42 47 63 68 77 76 83
102 103 104 105 106 72 71 75 93 91 33
53 54 55 56 57 60 62 43 45 37 35 61 65 73

0000000000060 0 000
000000000000 0000
PO0O00000000O6E @ 0000
G 0000000006 & 0008

To output non-ASCII keys to the keyboard, precede each key code with CHR$(255) in an
OUTPUT statement (directed to interface select code 2).

80

.;\.;.

88

A-2 Appendix A

US ASCII Character Codes

EQUIVALENT FORMS

ASCIt HP-IB
Char. Binary Oct | Hex | Dec
NULL | 00000000 | 000 00 0
SOH | 00000001 [00t 01 1 GTL
STX | 00000010 | 002 02 2
ETX [00000011 [003 03 3
EOT | 00000100 | 004 04 4 SDC
ENQ | 00000101 | 005 05 5 PPC
ACK | 00000110 | 006 06 8
BELL | 00000111 | 007 07 7
8s 00001000 | 010 08 8 GET
HT 00001001} 011 09 9 TCT
LF 00001010 | 012 0A 10
vT 00001011 | 013 oB 1
FF 00001100 014 oC 12
CR 00001101 | 015 oD 13
SO 00001110 [016 OE 14
Si 00001111 | 017 oF 15
DLE | 00010000 { 020 10 16
DC1 | 00010001 | 021 11 17 LLO
DC2 | 00010010 | 022 12 18
DC3 | 00010011 | 023 13 19
DC4 | 00010100 | 024 14 20 oCL
NAK | 00010101 | 025 15 21 PPU
SYNC | 00010110 026 16 22
ETB | 00010111 027 17 23
CAN | 00011000 | 030 18 24 SPE
EM 00011001 | 03t 19 25 SPD
SUB | 00011010} 032 1A 26
ESC | 0001101t 033 1B 27
FS 00011100] 034 1C 28
GS 00011101 035 1D 29
RS 00011110| 036 1E 30
us 00011111 037 1F 31

EQUIVALENT FORMS

AsCIl HP-1B
Char.| Binary Oct | Hex | Dec
space | 00100000 | 040 | 20 32 | LAO
! 00100001 [041 | 21 33 | LAt
" | ootoo010| 042 | 22 | 34 | LA2
| 00100011 | 043 | 23 35 | LA3
$ | 00100100 | 044 | 24 36 | LA4
% | 00100101 | 045 | 25 | 37 | LAS
& | 00100110 | 046 | 26 38 | Las
“ | o00100111| 047 | 27 | 39 | LA7
(00101000 | 050 | 28 40 | LA8
) 00101001 | 051 29 41 LA9
*x | 00101010| 052 | 2A | 42 | LA10
+ | ooto1011| 053 | 2B | 43 | LAt
, 00101100 | 054 | 2C | 44 | LA12
—~ | ooto1101| 055 | 2D | 45 | LA13
00101110| 056 | 2E 46 | LA14
/ 00101111 | 057 | 2F 47 | LAts
0 | 00110000 | 060 | 30 48 | LA1G
1 00110001 | 061 | 31 49 | LA17
2 | oo110010| 062 | 32 50 | LA18
3 | 00110011 063 | 33 51 | LA19
4 | 00110100 | 064 | 34 52 | LA20
5 | oo110101| 065 | 35 53 | LA21
6 | oo110110| 066 | 36 54 | LA22
7 | oo110111| 067 | 37 55 | LA23
8 | 00111000| 070 | 38 56 | LA24
9 | 00111001 | 071 | 39 57 | ta2s
. 00111010} 072 | 3A 58 | LA26
y 00111011 073 | 3B 59 | LA27
< | o0111100| 074 | 3C | 60 | LA28
= | oo111101| 075 | 30 | 61 | LA29
> | o0111110| 076 | 3E | 62 | LA30
? 00111111 | 077 | 3F 63 UNL

US ASCII Character Codes (Continued)

ASCHi EQUIVALENT FORMS HP-1B
Char.| Binary Oct | Hex | Dec
@ 01000000 | 100 40 64 TAO
A 01000001 | 101 41 65 TA1
B 01000010 | 102 42 66 TA2
o] 01000011 | 103 43 67 TA3
D 01000100 | 104 44 68 TA4
E 01000101] 105 45 69 TAS
F 01000110 | 106 46 70 TAS
G 01000111 | 107 47 71 TA7
H 01001000 | 110 48 72 TA8
| 01001001 | 111 49 73 TA9
J 01001010 | 112 4A 74 TA10
K 01001011 | 113 4B 75 TA1
L 01001100 | 114 4C 76 TA12
M 01001101 | 115 4D 77 | TA13
N 01001110 | 116 4E 78 TA14
(e} 01001111 | 117 4F 79 TA1S
P 01010000 | 120 50 80 TA16
Q 01010001 | 121 51 81 TA17
R 01010010 | t22 52 82 TA18
s 01010011 | 123 53 83 TA19
T 01010100 | 124 54 84 TA20
U 01010101 | 125 55 85 TA21
v 01010110 | 126 56 86 | TA22
w 01010111 | 127 57 87 TA23
X 01011000 | 130 58 88 TA24
Y 01011061 | 131 59 89 | TA25
Z 01011010 | 132 5A 90 TA26
[01011011 133 | 5B 91 | TA27
\ 01011100 | 134 5C 92 | TA28
1 |[oto11101| 135 5D [93 | TA29
A 01011110 | 136 5E 94 TA30
— 01011111 [137 5F 95 UNT

asch EQUIVALENT FORMS HP-1B
Char. Binary Oct | Hex | Dec

* | 01100000 | 140 | 60 | 96 | SCo
a | 01100001 | 141 | 61 | 97 | sci
b | o1100010 | 142 | 62 | 98 | sc2
¢ |[o1100011 | 143 | 63 | 99 | sc3
d | 01100100 | 144 | 64 | 100 | sC4
e | 01100101 | 145 | 65 | 101 | SC5
t | 01100110 | 146 | 66 | 102 | sce
g | 01100111 | 147 | 67 | 103 | sc7
h | 01101000 | 150 | 68 | 104 | scs
i | 01101001 | 151 | 69 | 105 | SCo
i | 01101010 | 152 | A | 106 | SC10
k | o1101011| 153 [eB | 107 | sc11
i | 01101100 | 154 | 6C | 108 | SC12
m | 0110110t | 155 | 6D | 109 | SC13
n | 01101110 | 156 | 6E | 110 | SC14
o | o1101111| 157 | 6F | 111 | sci1s
p | 01110000 | 160 [70 | 112 | sc1e
q | 01110001 | 161 | 71 | 113 | sc17
r | o1110010| 162 | 72 | 114 | sc18
s | 01110011 | 163 | 73 | 115 | sc19
t | 01110100 | 164 | 74 | 116 | sC20
u | 01110101 | 165 | 75 | 117 | sc21
v | o1110110| 166 | 76 | 118 [sce2
w | 01110111 | 167 | 77 | 119 | sces
x | 01111000 [170 | 78 | 120 | scas
y | 01111001 | 171 | 79 | 121 scas
z | ot111010| 172 | 7A | 122 | scze
{ | o1111011| 173 7B | 123 | sc27
I { o1111100| 174| 7c | 124 sces
} | 01111101 | 175| 7D | 125 scae
~ | o1111110f 176| 7E | 126 scso
DEL| ot11111| 177 7F | 127 sca

Appendix A

A-3

A-4 Appendix A

European Display Characters

Chatacter Decimal Character Tecimal Character Devcimal

Value Walue Walue

i

’F T
b 17
g

SUE R H

-
1

- 3
o= Mmooz

oo
=]
T
-

-~
-
[I
-,
o

[
I SR
- -

on

T
-

Dr I I O

}F' £ 7
b b P b
b =] he

(B (B T
Ol D
I
-

L
Jao Ll o

.,..
IR]
P

[Na Ny

b] ¥ 5 b
'r S1 A 26 e
t 52 & 37 b
ke b3 & EE b
b 54 ¥ ER 3
(55 i Hi b
2 SE & a1 b
}F' :_-. T |f| L“ .: };-
b 3] i 5] b

oo
DI SN R LN
-

i

— o0
B B) (I 1 UL
M

U
-

oo o
ORI ORI O I LN I O T I T T O T S e e e e e e et el e e e e
L1 X

AR A
(DA A

@ - T
N o 0 [e

LU SRS (N

Ty
™

fua
—
—_

0=

w000
o= e
[O]
—
[XR}

-
e b A e b e b e e e b b e b b e b A s b e e
D)

e B Bt B e O S S T T AR R SR A R

i -
— T i
Fa
—
ag

Appendix A A-5

Katakana Display Characters

Character Decimal Character Tecimal Character Decimal
- - [- . - N -
Yalue Yalide Yalue

b a 17z L
e 3 174 o
e o 175 n
b - T -
b 7 7T
b i 175 a
3 " 179 b
b I 136 b
b | 121 '
t n 132 b
by ¥ 123 b
b n 124 iz
% ¥ 155 e
b 1 1586 b
b * 187 e
b z 1a88 e
b = 123 b
by r 136 b
b " 191 b
b 3 1oz b
b 3 193 h
2 " 134 e
b 7 195 b
b h 138 b
b + 197 '
e - 193 :"
b 7 199 F
} AR U
F ¥ <R ’P
b | 21 A
b " g b ¥
- b
b E 283 b
e 3 2E4 b
e 205 b
d "
: : 295 v
. 283 .
: & k1 b
7 + 212
A 165 1 213
- 169 3 214
T 17a 5 215
* 171 1 216
r 172 " 217

Part No. 09826-90020
Microfiche No. 09826-99020

(D

HEWLETT
PACKARD

Printed in U.S.A.
First Edition, October 1981

senbiuysa | Burepaiu] DISYY 9286 dH

	000000
	000001
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	A-01
	A-02
	A-03
	A-04
	A-05
	xBack

