) Cickano Manual Update

HP 9826/9836 BASIC 2.0 Language Update

Manual Part Nos. 09826-90055 and -90020

This update has two purposes: first, it describes additions to HP 9826 BASIC 1.0 Language;
second, it describes the features of the HP 9836 Computer which are additions to those of the
HP 9826. Additions to both the BASIC Language Reference and BASIC Interfacing Techni-
ques are provided as part of this Update; BASIC Programming Techniques already includes all
BASIC 2.0 features. ‘

Summary of Additional Features

BASIC 2.0 Language can be used with both the HP 9826 and 9836 Computers. The
language contains all of the features of BASIC 1.0 language, plus several additions to the
language. These additions fall into two cateriories: those applicable to both HP 9826 and 9836,
and those particular to only the HP 9836.

Additions to the BASIC 1.0 Language !

The following capabilities have been added to HP 9826 BASIC 1.0 Language. All of these
additional language capabilities are common to both HP 9826 and HP 9836.

® Structured-programming constructs: LOOP, REPEAT...UNTIL, SELECT...CASE, and
WHILE. '

e Additional graphics statements: PLOT, IPLOT, and RPLOT.

e External mass storage and file-transfer capabilities, provided by the COPY statement and
additional mass storage unit specifiers.

@ Enhanced keyboard control provided by ON KBD, KBD$, and SUSPEND/RESUME IN-
TERACTIVE.

e Powerfail protection {optional).

e The capability' of using the HP 98628 Data Communication Interface.

1 No additional keywords have been added to the tanguage to support the use of this interface; only the definitions of existing language features
have been updated.

Supplement to 09826-90055
January 1982
Printed in U.S.A.

Features of the HP 9836
The following hardware features are particular to the HP 9836.

® CRT enhancements: eighty-character CRT width, with inverse, underlined, and blinking
character capabilities. '

® A second, built-in disc drive.

Documentation Overview

The documentation provided with these additional language and computer features is in the
form of pages, sections, and a chapter describing each new capability. This additional text is to
be inserted into the appropriate place within the specified, currently existing manual.

Techniques :or using the structured-programming constructs, additional graphics statements,
and mass storage and file-transfer capabilities are already included in the first edition of BASIC
Programming Techniques, the corresponding language-reference descriptions are included in
this update.

Upd~ates to the BASIC Language Reference

Descriptions of the following new BASIC statements have been provided. These bages méy be
inserted into the appropriate place in the manual.

L]

e Additional Keyword Descriptions — provides descriptions of the following keywords/

constructs.

COPY

IPLOT

LOOP ... EXIT IF ... END LOOP
KBD$

OFF KBD/ON KBD

PLOT

RESUME INTERACTIVE
REPEAT ... UNTIL
.RPLOT

SELECT ... CASE ... CASE ELSE ... END SELECT
SUSPEND INTERACTIVE

WHILE ... END WHILE

Updates to BASIC Interfacing Techniques

Descriptions of the following new BASIC statements have been prov.Jed in this update. All of
this text may be inserted into the appropriate place in the manual; it will be incorporated into
the manual in the second edition.

o HP 9836 CRT Enhancements — describes the additional features of the CRT: eighty-
character screenwidth, and enhanced characters (underlined, blinking, and inverse-video
characters, in any combination).

e Enhanced Keyboard Control — describes the additional keyboard control available to
BASIC programs. The new capabilities include keystroke trapping and suspending interac-
tive keyboard operations.

e Chapter 14: Powerfail Protection — describes the powerfail protection capabilities of HP
9826 and 9836 computers. Both interface operation and programming are described.

Current Interface Manuals

The following chapters are not provided with this update; however, each chapter is automati-
cally shipped with the interface it describes and is currently available as a separate chapter of
the interfacing manual by ordering the specified HP part number.

e Chapter 12: Data Communication Programming (09826-90021) describes how the HP
98628 Data Communications Interface operates and provides several BASIC program-
ming techniques. !

e Chapter 13: RS-232 Serial Interface (09826-90022) provides the same information for
the HP 98626 Serial Interface.

e Chapter 15: The GPIO Interface (09826-90023) provides the same information for the
HP 98622 GPIO Interface.

Using the BASIC 2.0 Language

The BASIC 2.0 language may be loaded into either the HP 9826 or 9836 computer in the same
manner in which BASIC 1.0 is loaded. First, insert the system disc into the disc drive (the
right-hand drive of the 9836). Either cycle power off and the on again, or turn power on if
previously off. The system is automatically loaded into the computer, which takes a few mo-
ments. When the language system is completely loaded, the following message is displayed:

BASIC Ready 2.0

Many of the new enhancements provided by BASIC 2.0 were préviously available with the
BASIC Enhancements Binary program (BEB). However, it is no longer necessary (or possible)
to load the BEB program into the computer while BASIC 2.0 is resident.

BASIC 1.0 Compatibility

All programs written on the HP 9826 equipped with BASIC 1.0 can be run on the HP 9836,
including those programs written on the 9826 equipped with the BASIC Enhancement (BEB)
capabilities.

Conversely, all programs written on either the HP 9826 or 9836 with BASIC 2.0 may be run on
the HP 9826 with BASIC 1.0 and BEB, with the following exception. The mass storage unit
specifier:

“:INTERNAL »4,0"

cannot be used on the 9826 with BASIC 1.0 and BEB. The solution is to spécify
": INTERNAL " when the 9826 drive (or 9836 right-hand drive) is to be used, if software is to
be transported in this manner.

Additional Keyword Descriptions

This section contains descriptions of the additional keywords provided by BASIC 2.0. These
pages may be inserted into the appropriate places in the BASIC Language Reference.

39.1

COPY

Minimum Requirement BASIC 2.0
Keyboard Executable Yes

Programmable Yes
In an IF...THEN... Yes

This statement allows copying of individual files or entire discs.

old mass storage 10 new mass storage
unit specitier unit specifier

litera! form of file specifier

protect code is ignored for old BDAT file
all protect codes give errors for ASCIl and SYSTM files

INTERNAL

> mass storage
unit specifier -

literal form of mass storage unit specifier

P "
A C

device
selector

39.2

] < e g Range
Item Description/Default Restrictions
file specifier string expression (see drawing)

mass storage
unit specifier
file name

protect code

device type

device selector

unit number

string expression
literal
literal;

only the first two characters are significant

literal

integer constant; when only INTERNAL is
specified with no device selector, the default
value is 4.

integer constant;
Default = 0

Example Statements

COPY "OLD_FILE" TO "New_file"

COPY File$ TO File$BMsuss

COPY ":INTERNAL »4,0" TO ":INTERNAL ¢4 41"
COPY Int_disc$ TO Ext_disc$

Semantics
Copying a File

(see drawing)

any valid
file name

INTERNAL
HP9895
HP82901
HP82902
HP8290X

(see Glossary)

0 thru 255
(often device dependent)

The contents of the old file is copied into the new file, and a directory entry is created. A protect
code, to prevent accidental erasure, may be specified for the new file. The old file and new file
may exist on the same device, but the new file name must be unique.

- COPY is canceled and an error returned when there is not enough room on the destination

device.

If the mass storage unit specifier (msus) is omitted from a file specifier, the MASS STORAGE IS

device is assumed.

Copying the Entire Disc

Discs may be duplicated between identically sized media or when the destination media is
larger. Any attempt to copy from a larger capacity media to a smaller capacity media generates

an error.

When copying a disc, msus's must be specified and unique. File names are not allowed.
Disc-to-disc copy time is dependent on media type and interleave factors.

HP 9836 CRT Enhancements

The HP 9836 CRT display has all of the features of the HP 9826 but also has additional
capabilities. The 9836 CRT has an 80-character screen width, while the 9826 has a 50-
character width. The 9836 CRT has the ability of underlining characters, making them blink,
and displaying the characters in inverse video. Access to these enhancement features is discus-
sed in these sections, which may be added to Chapter 8 of the BASIC Interfacing Techniques
manual.

93.1

Display-Enhancement Characters

The HP 9836 CRT also has the ability of displaying underlined, blinking, and inverse-video
characters. These features are accessed by displaying special characters. Both the Output Area
and the Display Line have these abilities.

There are eight special bit patterns that control the use of these features. CHR$ (128) through
CHR$ (1395) cause the following display actions.

Character Action Resulting from

Code Displaying the Character
128 All enhancements off.
129 Inverse mode on.
130 Blinking mode on.
131 Inverse and Blinking modes on.
132 Underline mode on.
133 Underline and Inverse modes on.
134 Underline and Blinking modes on.
135 Underline, Inverse, and Blinking

modes on.

When one of these characters is sent to the CRT, it turns on the corresponding enhancement(s).
All subsequent characters on the CRT are also displayed in the specified enhancement mode; if
only a few characters are to be enhanced, a CHR$(128) must be sent to the display after the
last character to be enhanced, which turns off all enhancements.

From the preceding table, you may have deduced that certain bits within the character bytes
turn on these display modes. The following bit pattern and individual bits control these features.

Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Underline Blinking Inverse
! 0 0 0 0 On On On
Value = 128 Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

93.2

Notice that the upper five bits (7 through 3) must be in the pattern shown (numeric value
= 128). Thus, adding the values 4, 2, or 1 enable the Underline, Blinking, and Inverse features.
Several examples follow.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

PRINTER IS 1
0off=128
Underline=4
BlinKing=2
Inverse=1

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
END

CHR$(Off)3i"Normal"

CHR$(128+Inverse)i"Inverse"
"carries over onto"
"subseaquent lines"

CHR$(128+Underline) i"Underline"
"also remains on until turned off"

CHR$(128+BlinKing) i"Blinking"
"is the same"

CHR$(Off)3i"Back to normal"

These same features can also be placed in strings by using the {ANY CHAR) key while initially
assigning the string variable its value. Keep in mind that, even though these characters are not
shown on the screen, they are counted in the length of the string. Dimension string variables

accordingly.

-

Determining Screenwidth

All programs written and stored on the 9826 can be run on the 9836, and vice versa. Programs
that use the display extensively have probably been written with the 50-character screenwidth
in mind. Since all programs are transportable between these computers, the program should
have the ability to distinguish in which computer it is being executed. The BASIC language
system provides this capability.

Interface select code 1 is used to access the CRT from BASIC programs. Several registers are
associated with this interface which allow interrogating and controlling the CRT through its
interface. In particular, STATUS register 9 of the CRT interface is dedicated to storing the
current screenwidth. The following statement is an example of determining the current screen-
width.

STATUS 1+9355creenwidth

The resultant value of Screenwidth differs for each computer: the value of 80 is returned in the
9836, and 50 is returned in the 9826.

96.1

Enhanced Keyboard Control

This section is to be added to Chapter 9, “‘The Internal Keyboard Interface’, of the BASIC
Interfacing Techniques manual.

Enhanced Keyboard Control

Normally, the BASIC operating system handles all keyboard inputs. Several BASIC statements
allow programs to handle inputs from the keyboard; examples are the INPUT, LINPUT, EN-
TER. ON KEY, and ON KNOB statements. Additional keyboard statements provide BASIC
programs with a means of intercepting both ASCII and non-ASCII keystrokes for processing by
the program. The statements are:

ON KBD sets up and enables keystrokes to be trapped.

ON KBD »ALL includes (PAUSE), (STOP), (CLR 110}, and softkeys.
KBD$ returns keystrokes trapped in the buffer.
OFF KBD resumes normal keystroke processing.

ON KBD allows terminal emulation, keyboard masking, and special data inputs. Each keystroke
produces unique code(s) that allow the program to differentiate between different keys being
pressed. The program can also determine whether the (SHIFT) or (_CTRL) keys are being pressed
with a particular key, but these keystrokes cannot be detected by themselves. Also, the
key cannot be trapped by ON KBD.

Trapping Keystrokes

The ON KBD statement sets up a branch that is initiated when the keyboard buffer becomes
“non-empty”’. The service routine may then interrogate the buffer as desired, processing the
keystrokes as determined by the program. The HP 9826's keyboard buffer may contain up to
100 characters. while the HP 9836's buffer may contain up to 160 characters. Calling the
KBD$ function does two things: it returns all keystrokes trapped since the last time the buffer
was read and then clears the keyboard buffer.

The following program uses ON KBD, KBD$, and OFF KBD to trap and process keystrokes,
rather than allowing the operating system to do the same. The program defines each keystroke
to print a complete word.

100 OPTION BASE 1

110 DIM Strind$(26)I[G61]

120 READ String$(*)

130 |

140 DATA A:BROWN,,CAT»DOGIEXIT »FOX GOT
150 DATA HIIN,JUMPS)KICKED »LAZY +MY

160 DATA NO,OVER,PUSHED,,QUICK »RED »SMART
170 DATA THE,UNDER,UERY,NHERE¢XRAY,YESpZDd
180 !

190 PRINTER IS 1

200 PRINT "Many ASCII Kevs have been"
210 PRINT "defined to produce words.,"

220 PRINT

115.1

115.2

230
240
250
260
270
280
290
300

310

320
330
340
350
360
370
380
390
400
410
420
430
440
430
460
470
480
490
S00
310
220
930
o240
550
260
370
S80
280
BOO
G610
G20
630
Gdo
650
660
670
680
G990
700
710

PRINT "Press the followind Kevs,"
PRINT "T @ B F JOTLD ."

ON KBD GOSUB Process_Kevs

Loor

EXIT IF Word$="EXIT"
END LOOP
!
STOP
! :
Process_Kevs: Kev$=KBD% I Read buffer,

REPEAT ! Process ALL Kevs trappred,.
KRey_code=NUM(kev$[1511)! Calculate code,

SELECT Kev_code ! Choose respPaonse.

[
CASE B5 TO 90 I CASE "A" TO "Z2",

Wordée=String$(Kev_code-0G4d)

Kev$=Kev$[21] | Remouve Processed Kev.

I

CASE 97 TO 122 ' CASE "a" TO "z".

Wordé=String$(kKev_code-90G))

Kev$=Kev$[2] I Remove Processed Kev.

I

CASE 255 I CASE non-ASCII Kev,

IF Kev3[2311<*CHR$(255) THEN
Words=Kev$[1,21 ' Non-ASCII Kev alone
Kevy$=Kev$(3] ! so take 2 codes,

ELSE '
Words=Kev$[1,3] ' Non-ASCII w/ CTRL
Keve=Keve$l[d] | so take 3 codes.

END IF

CASE ELSE ' CASE all others,

Wordg=""

Key$=Kev$[2] | Remove pProcessed Kev.

END SELECT

! Execute respPonse.

Defined=LEN(Word$)« >0
IF Defined THEN

PRINT Words$i" "3
DISP

ELSE

BEEP 100,.,05
DISP "Key undefined.,"

END IF

720 !

730 UNTIL LEN{(hevy$)=0 ! Until ALL Kevs processed,
740 |

750 RETURN

760]

770 Quit: END

Notice that all non-ASCH keys produce two-character sequences: CHR$(255) followed by an
ASCII character. Pressing the (CTRL) key with non-ASCII keys produce three-character sequ-
ences: another CHR$(255) character preceding the two-character sequence produced by
pressing the non-ASCII key by itself. See the tables in **Outputs to the Keyboard’’ for a listing of
the sequences produced by non-ASCII keys.

BASIC programs can output ASCII keystrokes to the keyboard, via OUTPUT 2, without initiat-
ing an ON KBD branch; however, outputting non-ASCII ‘‘closure’’ keys will initiate the ON
KBD branch. For example, executing the following statement (in a program line):

OUTPUT 23i"32%2"3CHR$(283)3"E"i"KBD";

causes !..e characters K BD which follow the closure key to be placed in the KBD$ buffer, which
also initiates the ON KBD branch. The -key sequence which was sent to the keyboard
executes the numeric expression 32*Z2 before the branch is initiated. This type of operation
may result in unpredictable results and is therefore not recommended while ON KBD is in

effect.

ON KBD branching is disabled by DISABLE, deactivated by OFF KBD, and temporarily deacti-
vated when the program is executing LINPUT, INPUT, or ENTER 2 statements.

Softkeys and Knob Rotation
When ON KNOB is not in effect, knob rotation is also trapped by ON KBD. Rotation will

[XERAS

produce the ‘‘cursor’ keystrokes; clockwise rotation produces CHR$(255)followed by *‘ ",
while counter-clockwise rotation produces CHR$(255) followed by 4.

ON KBD »ALL allows softkey trapping (‘‘overrides” ON KEY) but does not change the softkey
labels.

Disabling Interactive Keyboard
Another group of statements is used to disable the interactive keyboard functions:

SUSPEND INTERACTIVE ignores the (_EXECUTE), (PAUSE), (STOP), (STEP), a

CLR 10 keys.

SUSPEND INTERACTIVE +RESET ignores (RESET) too.

RESUME INTERACTIVE returns to normal operation

SUSPEND INTERACTIVE can be used to prevent interruption of programs which gather data

or which control other systems.

115.3

115.4

Special care should be taken when using SUSPEND INTERACTIWVE ,RESET. If an “infinite
loop™ is executed while interactive keyboard functions are disabled. only the power switch will
stop execution of the program.

110 ! This pProdram cannot be stopred by

120 I PAUSE,» STOP+» OR RESET

130 ! before its normal completion

140 !

150 !

160 SUSPEND INTERACTIVEJRESET ! idnore Kevboard
170 |

180 PRINT "COUNTDOWN IS "

190 PRINT

200 I=10 I Initial value.
210 REPEAT

220 PRINT " T minus "3l ' Print count,

230 =I-1 ! Decrement count,
240 WAIT 1 ! Wait one second.
250 UNTIL I<0O

260 i

270 PRINT

280 BEEP 100,1

290 PRINT "Done"

300 RESUME INTERACTIVE I Return to normal,
310 ! !
320 END

Powerfail Protection

This chapter may be added to the BASIC Interfacing Techniques manual.

IPLOT

Minimum Requirement BASIC 2.0
Keyboard Executable Yes
Programmable Yes

InanIF... THEN Yes

This statement moves the pen from the current pen position to a position calculated by adding
the specified X and Y displacements to the current pen position using the current line type.

(IPLO‘I’ Hﬁ.placemem y displacement >]
O

s

Item Description/Default Range
Restrictions
x displacement numeric expression, in current units —
y displacement numeric expression, in current units —
pen control numeric expression, rounded to an integer; - 32768 thru 32767
Default=1 (down after move)

Example Statements ;

IPLOT O,sUPs-1
IPLOT Right,0sDown_after_mouve

Semantics

The specified X and Y displacement information is interpreted according to the current unit-of-
measure.

The line is clipped at the current clipping boundary. The PIVOT statement rotates the coordi-
nates for the IPLOT, but the logical pen position receives the value of the unpivoted coordi-
nates. The logical pen may bear no obvious relationship to the physical pen’s position.

If none of the line is inside the current clipping limits, the pen is not moved, but the logical pen
position is updated.

Applicable Graphics Transformations

| Scaling | PivoT | csize | LDR

Lines (generated by moves and draws) X X

Characters (generated by LABEL) X X
Axes (generated by AXES & GRID X

Location of Labels Note 1 Note 2

Note 1: The starting point for labels drawn after lines or axes is affected by scaling
Note 2: The starting point for labeis drawn after other labels is affected by LDIR

118.1

118.2

The optional pen control parameter specifies following plotting actions; the default value is + 1
(down after move).

Pen Control Resultant Action
— Even Up before move
- 0Odd Down before move
+ Even Up after move

+ Odd Down after move

KBD$

Minimum Requirement BASIC 2.0
Keyboard Executable No

Programmable Yes
In an IF.. THEN... Yes

This function returns the contents of the keyboard buffer.

Example Statements

Kevys$=KkBD$%
Process$=Process$8&KkBD%

Semantics

When an ON KBD statement is in effect, all subsequent keystrokes are trapped and held in the
keyboard buffer. The first keystroke also initiates the branch to the service routine. The KBD$
function returns the keystrokes and clears the buffer. A null string is returned if the buffer is
empty or the ON KBD statement has not been executed.

Non-ASCII keys are stored in the buffer as two bytes; the first byte has the decimal value of
255, and the second specifies the key. Pressing and a non-ASCII key simultaneously
generates three bytes; the first two bytes have the decimal value of 255, and the third specifies
the key. The tables on pages 306-307 in the “‘Useful Tables” Appendix show the code and
character produced by each non-ASCII key.

The 9826's keyboard buffer can hold up to 100 keystrokes, while the 9836's can hold up to
160. Further keystrokes are not saved and produce beeps. An overflow flag is set after the
buffer is full, which is cleared by KBD$, SCRATCH A, and RESET. The flag can be checked by
reading STATUS register 5 of interface select code 2.

The keyboard buffer is cleared by OFF KBD, INPUT, LINPUT, ENTER 2, RESET, RUN, STOP,
END. SCRATCH, SCRATCH A, LOAD, and GET.

118.3

145.1

LOOP

Minimum Requirement BASIC 2.0
Keyboard Executable No

Programmable Yes
InanIF... THEN... No

This construct defines a loop which is repeated until the boolean expression in an EXIT IF
statement evaluates to be logically true (evaluates to a non-zero value).

program
segment

boolean

CEX'T IF) ? | expression
program
segment

END LOOP

o
-~
® .
3

Description/Default Range
Restrictions

boolean numeric expression; evaluated as true if non- . —_—
expression zero and false if O

program segment any number of contiguous program lines not —
containing the beginning or end of a main '
program or subprogram, but which may con-
tain properly nested construct(s).

Example Program Segments

460 LOOoP
470 DISP "Loopring"
480 END LOOP

390 LOOP

400 PRINT Count

410 EXIT IF Count>=Max
420 Count=Count+l

430 END LOOP

145.2

Semantics

The LOOP...END LOOP construct allows continuous looping with conditional exits which
depend on the outcome of relational tests placed within the program segments. The program
segments to be repeated start with the LOOP statement and end with END LOOP. Reaching
the END LOOP statement will result in a branch to the first program line after the LOOP
statement.

Any number of EXIT IF statements may be placed within the construct to escape from the loop.
The only restriction upon the placement of the EXIT IF statements is that they must not be part
of any other construct which is nested within the LOOP...END LOOP construct.

If the specified conaitional test is true, a branch to the first program line following the END
LOOP statement is performed. If the test is false, execution continues with the next program
line within the construct.

Branching into a LOOP...END LOOP construct (via a GOTO) results in normal execution from
the point of entry. Any EXIT IF statement encountered will be executed. If execution reaches
END LOOP. a branch is made back to the LOOP statement, and execution continues as if the
construct had been entered normally.

Nesting Constructs Properly

LOOP...END LOOP may be placed within other constructs, provided it begins and ends before
the outer construct can end.

‘

161.1

OFF KBD

Minimum Requirement BASIC 2.0
Keyboard Executable No

Programmable Yes
In an IF...THEN. . Yes

This statement cancels the event-initiated branch previously defined by an ON KBD statemert.

OFF KBD

Example Statements

OFF KBD
IF NOT Process_Keys THEN OFF KBD

Semantics

When this statement is executed, any pending ON KBD branch is cancelled, and the keyboard
buffer is cleared.

If OFF KBD is executed in a subprogram such that it cancels an ON KBD in the calling context,
the cancelled ON KBD definition is restored when the calling context.s restored. However, the
keyboard buffer's contents are not restored with the calling context, because the buffer was
cleared with the OFF KBD.

Minimum Requirement BASIC 2.0

Keyboard Executable

Programmable
Inan IF... THEN...

No
Yes
Yes

171.1

ON KBD

This statement defines an event-initiated branch which occurs when a key is pressed.

{ONKBD} -
o

line label
=t

Subprogram
name

Item Description/Default Range
Restrictions
priority numeric expression, rounded to an inieger 1 thru 15
line label name of program line any valid name
)
line number integer numeric constant identifying a pro- 1 thru 32766

subprogram name

gram line

name of a SUB subprogram

Example Statements

ON KBD GOSUB Get_kKevrs
ON KBD+9 CALL Process_Kevs

Semantics

any valid name

Specifying the secondary keyword ALL causes all keys except (RESET), (SHIFT), and to be
trapped. When ALL is omitted, the softkeys, (PAUSE), (STOP), and (CLR 10) keys retain their normal
functions. When the softkeys are trapped, ON KBD branching will override ON KEY branching.

The first keystroke triggers a keyboard interrupt and initiates a branch to the service routine
when priority allows. Subsequent keystrokes are stored in the buffer unfil read with the KBD$
function. Any keystrokes made after reading the keyboard buffer will be entered into the buffer,
an-! the branch will be initiated when priority allows.

171.2

Knob rotation will generate ON KBD interrupts unless an ON KNOB statement has been
executed. Clockwise rotation of the knob produces Up-Arrow keystrokes; counterclockwise
rotation produces, Down-Arrow keystrokes. Since one rotation of the knob is equivalent to 20
keystrokes, keyboard buffer overflow may occur if the BASIC service routine does not process
the keys rapidly.

Live keyboard, editing. and display control functions are suspended during ON KBD. To
restore a key's normal function, the keystroke may be OUTPUT to select code 2.

The most recently executed ON KBD definition replaces any previous definitions, except when
changing program segments.

The priority can be optionally specified, with highest priority represented by 15. The highest
priority is still less than the priority for ON ERROR, ON END, and ON TIMEOUT. ON KBD can
interrupt other ON INTR, ON KNOB, ON KEY, or ON KBD service routines if the ON KBD
priority is higher than the priority of the current routine. CALL and GOSUB service routines get
the priority specified in the ON KBD statement which set up the branch that invoked them. The
system priority is not changed when a GOTO branch is taken.

CALL and GOSUB will return to the line immediately following the one during which the
interrupt occurred. RECOVER forces the program to return directly to the context in whxch the
ON KBD was defined.

CALL and RECOVER remain active when the context changes to a subprogram, unless the
change in context is caused by a keyboard-originated CALL. GOSUB and GOTO remain active
when the context changes to a subprogram, but the branch is not initiated until the calling
context is restored.

ON KBD is. disabled by DISABLE, deactivated by OFF KBD, and temporarily deactivated when
the program is executing LINPUT, INPUT, or ENTER 2.

PLOT

Minimum Requirement BASIC 2.0
Keyboard Executable Yes
Programmable Yes
In an IF... THEN... Yes

This statement moves the pen from the current pen position to the specified X and Y coordinate
position using the current line type.

PLOT x coordinate y coordinate s |
o
Item Description/Default Range
Restrictions
x coordinate numeric expression, in current units —_
y coordinate numeric expression, in current units —
pen control numeric expression, rounded to an integer; - 32768 thru + 32767
?
Default =1 (down after move).

Example Statements

PLOT XY Down_before
PLOT 0,100

Semantics

The specified X and Y coordinate information is interpreted according to the current unit-of-
measure.

The line is clipped at the current clipping boundary. The PIVOT statement rotates the coordin-
ates for the PLOT. but the logical pen position receives the value of the unpivoted coordinates.
The logical pen may bear no obvious relationship to the physical pen’s position.

If none of the line is inside the current clipping limits, t - pen is not moved, but the logical pen
position is updated.

Applicable Graphics Transformations
| scaling | PvOT | csize | LDIR

Lines (generated by moves and draws) X X

Characters (generated by LABEL) X X
Axes (generated by AXES & GRID X

Location of Labels Note 1 Note 2

Note 1. The starting point for labels drawn after lines or axes is affected by scaling.
Note 2: The starting point for labels drawn after other labels is affected by LDIR

191.1

191.2

The optional pen control parameter specifies following plotting actions; the default value is + 1
(down after move).

Pen Control l Resultant Action
— Even Up before move
- Odd Down before move
+ Even Up after move

+ Odd Down after move

219.1

REPEAT...UNTIL

Minimum Requirement BASIC 2.0
Keyboard Executable No

Programmable Yes
In an IF... THEN... No

This construct defines a loop which is repeated until the boolean expression in the UNTIL
statement evaluates to be logically true (evaluates to non-zero).

program
segment

boolean
UNTIL exprassion

Item Description/Default Range
Restrictions

boolean expression | numeric expression; evaluated as true if non- —
zero and false if zero

program segment any number of contiguous program lines not] —
containing the beginning or end of a main
program or subprogram, but which may con-
tain properly nested construct(s).

Example Program Segments

330 REPEAT

540 PRINT Count
530 Count=Count+l
o660 UNTIL Count>10

590 REPEAT

60O Char$=CHR$(B3+RND*Z6)
610 PRINT Char%$i

B20 UNTIL Char$="N"

219.2

Semantics

The REPEAT.. .UNTIL construct allows program execution dependent on the outcome of a
relational test performed at the end of the loop. Execution starts with the first program line
following the REPEAT statement, and continues to the UNTIL statement where a relational test
is performed. If the test is false a branch is made to the first program line following the REPEAT
statement.

When the relational test is false, program execution continues with the first program line
following the UNTIL statement.

Branching into a REPEAT...UNTIL construct (via a GOTO) results in normal execution up to
the UNTIL statement, where the test is made. Execution will continue as if the construct had
been entered normally.

Nesting Constructs Property

REPEAT...UNTIL constructs may be nested within other constructs provided the inner con-
struct begins and ends before the outer construct can end.

222.1

RESUME INTERACTIVE

Minimum Requirement BASIC 2.0
Keyboard Executable Yes!
Programmable Yes
Inan IF... THEN... Yes

This statement enables the (EXECUTE), (PAUSE), ((STOP), ((STEP), (CLR 10}, and after a SUS-
PEND INTERACTIVE statement.

RESUME
INTERACTIVE

Example Statements

RESUME INTERACTIVE
IF Kbd_flad THEN RESUME INTERACTIVE

1 This statement is executable from the keyboard, but only while SUSPEND INTERACTIVE is not in effect.

227.1

RPLOT

Minimum Requirement BASIC 2.0
Keyboard Executable Yes

Programmable Yes
InanIF... THEN Yes

This staterment moves the pen from the current pen position to the specified X and Y coordinate
position relative to a relative origin using the current line type.

(RPLOD—’-{ x coordinate }-—»@—-@

Y

° pen control

Item Description/Default Range
Restrictions

x relative coordinate | numeric expression, in current units S
y relative coordinate | numeric expression, in current units —_—

pen . introl numeric expression, rounded to an integer; '_ 32768 thru +32767
Default=1 (down after move).

Example Statements

RPLOT Rel_x Rel_v
RPLOT OsUPsDown_before_move

Semantics

The specified X and Y coordinates are interpreted according to the current unit-of-measure
from the current relative origin; the current relative origin is the last point resulting from any of
the following statements:

AXES DRAW FRAME GRID IDRAMKW
IMOVE IPLOT LABEL MOVE PLOT

The current relative origin is not changed by the RPLOT statement.

227.2

The line is clipped at the current clipping boundary. The PIVOT statement rotates the coordi-
nates for the RPLOT, but the logical pen position receives the value of the unpivoted coordi-
nates. The logical pen may bear no obvious relationship to the physical pen’s position. If none
of the line is inside the current clipping limits, the pen is not moved, but the logical pen position
is updated.

Applicable Graphics Transformations

| Scaling | PIvOT | CsizE | LDIR

Lines (generated by moves and draws) X X

Characters (generated by LABEL) X X
Axes (generated by AXES & GRID X

Location of Labels Note 1 Note 2

Note 1. The starting point for iabels drawn after ines or axes is affected by écaling
Note 2° The starting point for labels drawn after other labels is affected by LDIR.

The optional pen control parameter specifies following plotting actions; the default value is +1
(down after move).

Pen Control Resultant Action
— Even Up before move
- Odd Down before move ‘
+ Even Up after move

+ Odd Down after move

231.1

SELECT...CASE

Minimum Requirement BASIC 2.0
Keyboard Executable No

Programmable Yes
Inan IF.. THEN. . No

This construct provides conditional execution of one program segment of several.

(SELECT H expressi;l—ﬂ

(e

{ T]
(case) > - match

beginning
match item

program
segment

CASE ELSE

program
egment

END SELECT

Item Description/Default Range
. Restrictions

expression a numeric or string expression —

match item a numeric or string expression optionally pre- —
ceded by a relational operator

program segment any number of contiguous program lines not —
containing the beginning or end of a main
program or subprogram, but which may con-
tain properly nested construct(s).

231.2

Example Program Segments
650 SELECT Expression

GGO CASE <0

670 PRINT "Negative number"

680 CASE ELSE

690 PRINT "Non-wnegative number"

700 END SELECT

750 SELECT ExpPression%

760 CASE "A" TO "2"

770 PRINT "Uppercase alphabetic"”
780 CASE II:Il ’II;" ,II ’II ’Il.ll

790 PRINT "Punctuation"

BOO END SELECT

Semantics

SELECT...END SELECT is similar to the IF.. THEN...ELSE...END IF construct, but allows
several conditional program segments to be defined; however, only one segment will be
executed each time the construct is entered. Each segment starts after a CASE or CASE ELSE
statement and ends when the next program line is a CASE, CASE ELSE, or END SELECT

statement.

The SELECT statement specifies an expression, whose value is compared to the list of valu s
found in each CASE statement. When a match is found, the corresponding program segment 5
executed. The remaining segments are skipped and execution continues with the first program
line following the END SELECT statement.

All CASE expressions must be of the same type, (either string or numeric) and must agree in
type with the corresponding SELECT statement expression.

The optional CASE ELSE statement defines a program segment to be executed when the
selected expression's value fails to match any CASE statement’s list.

Branching into a SELECT...END SELECT construct (via GOTO) results in normal execution
until a CASE or CASE ELSE statement is encountered. Execution then branches to the first
program line following the END SELECT statement.

Errors encountered in evaluating CASE statements will be reported as having occurred in the
corresponding SELECT statement.

Nesting Constructs Properly

SELECT...END SELECT constructs may be nested, provided inner construct begms and ends
before the outer construct can end.

251.1

SUSPEND INTERACTIVE

Minimum Requirement BASIC 2.0
Keyboard Executable No

Programmable Yes
Inan IF... THEN... Yes

This statement disables the (_EXECUTE J, (PAUSE), (STOP), ((STEP), (CLR 10), and (optionally)
key functions.

1

SUSPEND - i,
INTERACTIVE I o | B

Example Statements

SUSPEND INTERACTIVE ,RESET
IF NOT Kbd_flag THEN SUSPEND INTERACTIVE

Semantics

Execution of a PAUSE statement, a TRACE PAUSE statement, or a fatal execution error
temporarily restores the suspended key functions. CONTINUE after a PAUSE will again sus-

pend their normal operation.

SUSPEND INTERACTIVE is canceled by RESUME INTERACTIVE, STOP, END, RUN,
SCRATCH, GET, or RESET.

Note

Specifying the (RESET) key will prevent you from stopping a
program before it ends.

267.1

WHILE

Minimum Requirement BASIC 2.0
Keyboard Executable No

Programmable Yes
Inan IF... THEN... No

This construct defines a loop which is repeated until the boolean expression in the WHILE
statement evaluates to true (evaluates to a non-zero value).

boolean
CWHILE) l expression

program
segment
(END WHILE Y-
Item Description/Default Range
Restrictions

boolean expression | numeric expression; evaluated as true if non- —
zero and false if zero.

program segment any number of contiguous program lines not : —
containing the beginning or end of a main
program or subprogram, but which may con-
tain properly nested construct(s).

Example Program Segments

840 WHILE Boolean=True

850 DISP "Boolean is still true"
860 Boolean=INT(.1+RND)

870 END WHILE

880 DISP "Boolean is no londer true"

920 AHILE NOT True
930 PRINT "Not true"
940 END WHILE

267.2

Semantics

The WHILE...END WHILE -onstruct allows program execution dependent on the outcome of a
relational test performed at ‘ne start of the loop. If the condition is true, the program segment
between the WHILE and END WHILE statements is executed and a branch is made back to the
WHILE statement. The program segment will be repeated until the test is false. When the
relational test is false. the program segment is skipped and execution continues with the first
program line after the END WHILE statement.

Branching into a WHILE...END WHILE construct (via a GOTO) results in normal execution up
to the END WHILE statement, a branch back to the WHILE statement, and then execution as if
the construct had been entered normally.

Nesting Constructs Properly

WHILE.. END WHILE constructs may be nested within other constructs, provided the inner
construct begins and ends before the outer construct can end.

281

Chapter 14

Powerfail Protection

The HP 9826 and 9836 have the optional capability of up to about one minute of powerfail
protection. This feature is available as Option 050 on either computer. This chapter describes
the capabilities provided by this optional internal interface, which ~as been permanently
assigned to interface select code 5.

This optional feature is discussed in this Interfacing Techniques manual because of the nature of
its access from BASIC programs. If you need additional explanation regarding interface regis-
ters or interface interrupt events, refer to Chapters 6 and 7 of this manual, respectively.

282 Powerfail Protection

Overview of Capabilities Provided

The powerfail protection provided by the internal battery-backup circuitry is as follows.

e Up to one minute of operation after powerfail may be specified.

o The interface may optionally interrupt the computer when a powerfail has occurred. A
delay time before interrupt may also be programmed to allow the computer to ignore
power “‘glitches™.

e The program can read both the powerfail interrupt cause and determine current power: tail
status information, including ac power status, battery time remaining, and time elapsed
since power was returned.

® The real-time clock and 64 bytes of memory registers are maintained after power has been
down for greater than one minute.

Powerfail Protection

The Computer’s Reaction to Powerfails

There are two general categories of computer reactions to powerfail situations. The default
response is to continue running as before the failure for up to one minute. The alternate
response is to interrupt the current routine’s execution to service the failure. In either case, the
computer beeps and the following warning message is displayed on the CRT when t* > power-
fail is detected.

Power failed

If power remains off for more than one minute, or if the computer turns itself off, only a real-time
clock and 64 bytes of low-power memory registers are maintained. If power is restored, the
computer powers on in its normal powerup sequence.

Continuous-Memory Registers

The sixty-four, single-byte registers on the interface are maintained after power has failed. The
contents of these registers can be written with CONTROL statements and read with STATUS
statements. The registers are numbered 8 through 71.

Real-Time Clock

The clock on the powerfail interface is read at powerup and is used to set the BASIC system
clock. However, the system clock, not the powerfail clock, is read by the TIMEDATE function.

Executing either SET TIME or SET TIMEDATE sets both clocks to the specified value.
Thus, the two c'ncks may drift apart temporarily but may be synchronized by setting time with
either of these :atements. See Chapter 10 of BASIC Programming Techniques for further
detail.

Powerfail-Protection Timers

Three additional timers are used by the interface to keep track of times between different
powerfail events. These timers allow the program to keep track of Powerfail events so that the
desired service response may be initiated.

When a powerfail occurs, the Powerfail Timer is cleared and begins to count the seconds
elapsed since the powerfail occurred. After waiting the Powerfail Delay Time, the interface
may generate a Powerfail interrupt, if enabled to do so. If and when the Powerfail Timer timer
reaches the value of the Protection Time, the computer automatically powers down.

When power is returned, the Power Back Timer is cleared and begins counting seconds
elapsed since the power back occurred. When this timer reaches the value of the Power Back
Delay, the computer is no longer in the Powerfail State: a Power Back interrupt is generated, if
enabled. '

When a powerfail occurs, the Overheat Protection Timer begins to increment, counting the
seconds elapsed since the powerfail event occurred. When power is restored, this timer is
decremented one second for every two seconds that power is back. If power remains on long
enough, the timer decrements to 0. However, if the timer reaches 60 seconds, the computer
automatically powers down. These actions ensure that the fan adequate'y cools the computer
during continuous power fluctuations.

283

284 Powerfail Protection

Further description of delay times, timer actions, and enabling interrupt events are described in
the remainder of this chapter.

Interrupt Events

Interrupts can be generated by the powerfail-protection controller when three different events
are sensed: when power fails, when power is returned, and when approximately one second of
battery power remains. Enabling these events to initiate interrupts and typical responses to
these events are explained in this and in the following section.

Setting Up and Enabling Interrupts

The desired interrupt condition(s) may be enabled by specifying the appropriate numeric mask
value. The bits of the Interrupt Enable register enable the following interrupts.

Powerfail Interrupt Enable Mask

Most Signiticant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
One Power Power
Not Used Second Is Has
Left Back Failed
Value = 128} Value = 64 Value = 32 | Value = 16 | Value =8 | Value=4 | Value=2 | Value =1

One Second Left — When this bit is set (1), an interrupt to the computer is generated when
approximately one second of battery power remains.

Power Is Back — When this bit is set (1), an interrupt to the computer is generated when
power has been returned (after a previous powerfail).

Power Has Failed — When this bit is set (1), an interrupt to the computer is generated when a
powerfail has been detected.

The branch to the powerfail service routine is set up and enabled in the same manner as are
other interrupt service routines. A typical example is as follows.

200 ON INTR S GOSUB Power_down
210 Mask=1 | Emable Powerfail Interrupt.
210 ENABLE INTR SiMask

Service Routines .

The service routine must determine which type of event initiated the interrupt branch. The bits
of the Interrupt Cause register have the same definitions as those of the Interrupt Enable Mask
register.

Powerfail Protection 285

STATUS Register 1 Powerfail Interrupt Cause
P‘_"s,',..sﬁf‘,'ﬂ??i‘! B e R . Least Significant Brt
!
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 U S e
One Power Power
Not Used Second Is Has
Left Back Failed
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value =4 | Value =2 | Value =1

100 STATUS SslilnterruPpt_cause

If more than one interrupt cause has occurred, more than one bit will be set in this register. Also,
the register’s contents must be stored in a variable which is not used until all causes have been
determined, because reading this register clears its contents.

Also keep in mind that when the “‘One Second Left’" bit is a 1. the computer will power down
regardless of whether on not power is back before the end of the one second.

The action performed by the service routine is usually to store critical data. The internal disc
drives remain fully operational for this purpose. External drives usually lose power when the
computer loses its power: if so, they should not be used for this purpose. Other external devices
may also be affected by the failure and therefore may not respond to the request to transfer the
data. Therefore, all attempts to communicate with external devices should have ON TIMEOUT
branches set up and enabled so that the program will not spend the entire minute waiting for
the device to respond.

Powerfail Status and Timers

The Powerfail Status register and Timer registers provide useful information describing the state
of computer power. The following example service routine reads these STATUS registers and
displays the information on the CRT.

100 ON INTR 5 GOSUB Pfail_service

110 ENABLE INTR 537 ! Evable all three causes.

120 !

130 Phack_delav=300 ! Delay 3 s before PhbackK interrupt.
140 Protection=2000 I 20 s max, of Pfail protection.
130 Pfail_delav=100 ! Delavy 1 s bhefore Pfail interrupt.,

160 CONTROL SsS3iPback_delavsProtectionsPfail_delav
170 !
180 LOOP

190 CONTROL 1311 I Uprer-left corver.
200 OQUTPUT 1 3Number
210 Number=Number+1

220 END LOOP

286

Powerfail Protection

230 !

240 Pfail_service: CONTROL 131,3 ! Bedin on third line.
250 QUTPUT 13" Powerfail Interface Rediste
rs" ’

260 OUTPUT 135" m e e e e e e e e e e e e oo e a2
270 !

280 “EPEAT

290 CONTROL 131,55 I Bedin pPrinting on line 5.

300 STATUS S,+33iPf_status

310 Pfail=BIT(Pf_status ,0)

320 Ac_down=BIT(Pf_status,1)

330 Batt_on=BIT(Pf_status2)

340 One_sec=BIT(Pf_status3)

350 S_.test=BIT(Pf_status;7)

360 OUTPUT 1

370 OUTPUT 13"STATUS Redister 3 - Powerfail Status:"
380 QUTPUT 13" Test Fail 1 Sec, Batt, On Ac
Down In Pfail"

390 OUTPUT 1 USING "#,5X,D»SX"3iS_tstOne_secsBatt_on
rAc_down sPfail

400 OUTPUT 1 USING "/

410 !

420 STATUS 5+4d4350vheat

430 QUTPUT 13"STATUS Register 4 - Overheat Timer: "
¥

440 OUTPUT 1 USING "DD.D,s/"3i0vheat/100

450 I

460 STATUS S5s53iPback

470 OUTPUT 153"STATUS Redister 5 - Power Back Timer:"
b

480 QUTPUT 1 USING "DD«D:+/"3Pback/100

490 !

SO0 STATUS S,65Pf _timer

510 OUTPUT 13"STATUS Redister 6 - Powerfail Timer: "
1

520 OUTPUT 1 USING "DD.Ds»/"3sPf_timer/100

530 I

540 STATUS S5+4i0uv_heat

550 UNTIL Ou_heat=0 I UNTIL Querheat timer expires,
560 |

S70 ENABLE INTR S I Use same maskK.,

580 RETURN

290 !

GOO END

Type in and run the program. Alternately remove and replace the power cord while watching
the status values and timers change. You are highly encouraged to experiment with the para-
meters until you are familiar with how the computer responds to power failures. The next
section presents several simple examples of service routines.

Powerfail Protection

Typical Service Routines

The Powerfail Protection option allows programming several types of service responses. A few
typical examples are shown in this section. All STATUS and CONTROL registers are summa-
rized at the end of the chapter.

Using the Continuous-Memory Registers

The most common function of service routines is to store any critical data and then turn the
computer off to conserve battery power. The following simple example shows the use of the
continuous-memory registers for storing a message.

100 ON INTR S5 GOTO Pfail_serve

110 ENABLE INTR 531 I Pfail interrurts onlvy.
120 I

130 I Use defaults of: D00 ms Pback Delav
140 ! GO 5 Protection Time
150 ! 100 ms Pfail Delav.
160 |

170 LOOP

180 DISP Number

190 Numbher=Number+1

200 END LOOP

210 !

220 STOP

230 ! !
240 Pfail_serve: | Write messade in Cont-Mem, Redisters.
2350 !

260 Messade$="Adioss amidos."

270 Messade$=Messades®CHR$(10) | Add LF.
280 No_bvtes=LEN(Messade$)

290 !

300 FOR Reg=8 TO B+No_bvtes-1

310 CONTROL SsRedgiNUM(Messade$[Red-7311)
320 NEXT Red

330 !

340 CONTROL 531 ! Shut down when finished.
350 !

360 END

Type in the program and press (RUN). The CRT shows a counter running continuously.
Unplugging the power cord initiates the Powerfail interrupt after the default delay of 100
milliseconds. Thus, if power had failed for a duration of less than 100 milliseconds, the interrupt
would not have been generated. Similarly, the Power Back Delay determines how long the
computer will delay after power has been restored before generating a Power Back interrupt,
when enabled.

The program did not allow the Powerfail Timer to reach the default Protection Time (60
seconds). Instead. it powered itself down after storing a message in the registers in order to save
battery power. If power is subsequently restored, the computer powers on in the normal
powerup sequence. If an Autostart routine exists, it will be run automatically.

287

288 Powerfail Protection

The following program shows a method for reading the message stored in the continuous-
memory registers by the preceding program. The program makes use of the fact that the
message was terminated by a line-feed character, CHR$(10).

100 PRINTER IS 1

110 !

120 I Read messade in Continuous-Memory Redisters.,
130 DIM Redisters$(B4]1 Messade$(G4]

140 !

150 FOR Resgister=8 TO 71 I Read all B4 redisters.
160 STATUS SsRedisteriBvte

170 Redisters$[Redister-7]1=CHR$(Bvte)

180 NEXT Redister

190 i

200 ENTER Redisters$iMessagde$d ! Enter and stop at LF.
210 !

220 PRINT Messade%

230 J

240 END

Storing Data on Disc

Service routines can be programmed to take many other actions, such as to store data on an
internal disc. The following program shows a technique for storing the ALPHA and GRAPHICS
displays and the value of the clock at the time the powerfail occurred.

100 INTEGER Crt_drarhics(1:12480) ! (1:7500) for 9826,
110 DIM Crt_alrha$(1:57)[801] I [501 for 9826,

120 !

130 ON INTR S5 GOTO Pfail_serue

140 ENABLE INTR 531 ! Pfail interruPrts onlv.

150 !

160 Pback_delavy=100 ! Delay | s before PhacK interrurts
170 Protection=3000 1 30 s max. of Protection Time.

180 Pfail_delav=200 I Delay 2 s before Pfail interrupts

+

1390 CONTROL S+53Pback_delavsProtectionsPfail_delavy

200 !

210 FOR Crt_line=1 TO 57

220 QUTPUT 13i"0uteput Area line"iCrt_line
230 NEXT Crt_line

240 !

250 GCLEAR

260 GRAPHICS ON
270 FRAME
280 MOWVE 50,30

290 LABEL "GRAPHICS DISPLAY"
300 |

310 LOOP

320 DISP Numter

330 Number=Number+1

340 END LOOP

Powerfail Protection

350 |

360 STOP

370 I

380 Pfail_serve: ! Firstsy store GRAPHICS displav.

390 GSTORE Crt_drarhics (%)

400 !

410 ' Thern store ALPHA diselav.

420 STATUS 1+3ilines_abouve

430 CONTROL 131,-Lines_abkove+! ! Move Print position
440 ' to "tor" of diseplav.
4350 ENTER 1 USING "K"iCrt_alrhas$(%*) ! Enter screen.
460 I

470 ON ERROR GOTO Alreadvy

480 CREATE BDAT "Pfail_data:INTERNAL4,1"»116

490 Alreadv: OFF ERROR ' File already created.

500 ASSIGN BFile TO "Pfail_data:INTERNAL4,1"

310 OUTPUT @FilesCrt_drarhics(*)Crt_alrha$(*)

220 !

230 CONTROL 531 ! Shut down when finished,

540 END

The INTEGER array used to store the graphics display was dimensioned for the 9836’s display
(12 480 INTEGER elements). Exactly 7 500 INTEGER elements are required to store the
0826’s graphics display. , '
The size of the BDAT file was chosen for the “worst case’ storage requirement. In order to
calculate the maximum number of of disc sectors required to store both displays, you must
determine three facts: the maximum number of data elements to be stored, the data type of
each item, and the number of bytes required to store one element of each data type.

The 9836 display’s Output-Area memory can hold up to 57 lines of 80 characters each (4 560
bytes). The 9836's graphics display requires 12 480 INTEGERs (24 960 bytes). A total of
29 520 bytes of storage is required. Since BDAT files contain default records of 256 bytes each,
the file “‘Pfail_data’’ was dimensioned to 116 256-byte records.

The following program gives a method of restoring the alpha and graphics displays and real-
time clock. Actual program would probably also restore other variables and resume program
execution that was interrupted by the powerfail.

100 ! This prodram for use on a 983635 chande

110 I array sizes and msus for use on a 9826.

120 ! -

130 INTEGER Graphics(1:12480) ! (1:7500) for 9826,

140 DIM Crt_alpha$(1:57)[B0] I [S50]1 for 9826.

150 !

160 ASSIGN @BFile TO "Pfail_data:INTERNALs4,1"

170 ! ":INTERNAL y4,0" for 9826,

180 ENTER @FileiGraprhics (%)
190 ENTER @FileiCrt_alrha$(*)
200 ENTER @FileiClock

210 !

289

1290

Powerlail Protection

220 GRAPHICS ON

230 GLOAD Grarhics(#*)

240 !

250 DUTPUT 135Crt_alrha$(*)

260 !

270 SET TIME Clock

280 DISP "Powerfail occurred at"iClock
290 !

300]

310 END

A very important consideration for the powerfail service routine is that it has enough battery
time to store all the specified data. If there is insufficient battery time to allow storing all desired
data, the service routine should be able to record exactly how far it got into the backup when
battery power went down. The next example shows how to enable interrupts to signal that
power is back or that only one second of battery power is left.

Power-Is-Back and One-Second-Left Interrupts

The powerfail-interface controller has the ability to sense when power is back and when
approximately one second of battery power remains; it can optionally generate interrupts to the
BASIC program when these events occur. The following example program shows how to
enable and service these types of interrupts.

100 COM Important_datas(1:8192)[281]

110 DIM Random$[281

120 I .

130 ON INTR S5:14 CALL Pfail_respanse

140 ENABLE INTR S531 ! "Power Has Failed" interrupts.,
150 !

160 !

170 REPEAT

Main Prodram.

370 UNTIL Error<l.E-12
380 !

390 END

400 !

410
420
430
4a4o0
450
460
470
480
490
300
510
220
230
540
350
560
570
280
5390
GO0
610
620
630
640
G3¢
GE .

680
690
700
710
720
730
740
750
760
770
780
790
BOO
810
820
830
840
850
860

Powerfail Protection

| xx#x%%%%% Powerfail Service Routine #¥¥¥*¥¥%#
SUB Pfail.response
COM Important_data$(1:8192)0281
DIM Messade$l[6d]
]
I Set up and enable service routine for
I "One-Sec-Left" and "Power-BacK" 1nterruptss
I priority 15 allows data storade to be 1interrupted.
ON INTR 5,15 GOSUB Stop_storing
ENABLE INTR S3d+2
I
I Assume BDAT file (1024 records) exists.,
ASSIGN @Storade TO "PFAIL_DATA"
! Store elements individually to Permit interruprts.
FOR Element=1 TO 81392
OQUTPUT @StoragdesImportant_datas(Element)
NEXT Element
]
! Power Down after all data stored.
CONTROL 531
i
I ®%x%x%%%%%%¥ New service routine., *¥¥F¥dxix
Stop_storingd: STATUS Sslilntr_.cause
|
IF BIT(Intr_causes2) THEN I One Second Left.
I Define Messade.
Messade$="0nly the f:. st "&VAL$(Element)
Messade$=Messadedd" elements have been stored."”
Messade$=Messagde$d" Error="8YVAL$(Error)
Messade$=-Message$d CHR$(10) ! End with LF.
| Write to Continuous-Memory Reds.
FOR Red=8 T0O LEN(Messade$)+7
CONTROL 5sRediNUM(Messade$[Red-7i11)
NEXT Red
I Power Down.
CONTROL S31
END IF
|
IF BIT(Intr_cause 1) THEN ! Power Is Back,
| Re-enable "Power Has Failed" interrupts,
ENABLE INTR 531
! Thewn return to interrupPrted context.
SUBEXIT
END IF
]
SUBEND | #¥¥X¥%¥%F¥XXHHHEHHHEENENEEXXNXXNERERR

291

292 Powerfail Protection

The service routine first enables two types of interrupts; one is generated when power is back
after the powerfail. and the other is generated when approximately one second of battery
power remains. Then. the service routine attempts to store the specified data. Notice that the
service routine stores the data one item at a time so that either interrupt may be serviced while
the data are being stored.

If the Power-Is-Back interrupt is generated, the service routine ends and returns to the main
program. You may want to expand the service routine to sense recurring power flutuations and
to respond accordingly. If the One-Second-Left interrupt is generated, the program stores a
message to show how much of the desired data have been stored. Keep in mind that once this
interrupt is generated. the computer powers down, regardless of whether power is restored
before the end of the one second.

Powerfail Protection

Register Summary
This section lists all STATUS and CONTROL registers of the Powerfail-Protection Intarface,
which is permanently assigned to interface select code 5.

STATUS Registers
STATUS Register 0 — Card Identification is always 5.

STATUS Register 1 Powerfail Interrupt Cause
Most Signtficant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

One Power Power
Not Used Second Is Has
Left Back Failed
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value =1

STATUS Register 2 — Interrupt Mask has bit definitions identical to the preceding register
(Powerfail Interrupt Cause).

STATUS Register 3 Powerfail Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit @
Failed One Currently Ac In the

Self Not Used Second Using Is Powertail
Test Left Battery Down State
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value =8 | Value=4 | Value=2 | Value =1

Bit 7 — Failed Self Test indicates the outcome of the self test: a 1 indicates failure, and O
indicates successful results.

Bit 3 — One Second Left indicates that approximately one second of battery power remains.
The computer will automatically power itself down, even if power is restored before one second
has expired.

Bit 2 — Currently Using Battery indicates whether or not the battery is being used: 1 indicates
it is currently being used for computer power, and « ndicates that it is not.

293

294 Powerfail Protection

Bit 1 — Ac Is Down indicates the current status of ac-line power: a 1 indicates that ac power is
completely gone. If bit 2 is a 1 and this bit is O, the battery is being used because ac power is not
completely gone but has dropped below an acceptable level; in this case, a “brown-out”’
condition is indicated.

Bit 0 — In the Powerfail State indicates whether or not the computer is currently in the
Powerfail State: a 1 indicates Powerfail State, and 0 indicates that the computer is not currently
in the Powerfail State. The Powerfail State is exited when power is back and the Power Back
Timer reaches the value of the Power Back Delay.

STATUS Register 4 — Overheat Protection Timer contains the amount of battery time used
during this Powerfail State (in tens of milliseconds). For every second the power is down, it
must be back for two seconds to ensure adequate cooling for the machine. Thus, the value of
this register bounds the maximum amount of time that can be obtained from the battery, even
though 60 seconds may have been specified as the protection time (CONTROL Register 6).

STATUS Register 5 — Power Back Timer contains the time elapsed since power was restored
after the last powerfail (in tens of milliseconds).

STATUS Register 6 — Powerfail Timer contains the time elapsed since the last powerfail (in
tens of milliseconds).

STATUS Register 7 — is not used.

STATUS Registers 8 thru 71 — Continuous-Memory Registers contain the 64 bytes of data
written by the last CONTROL statement directed to these registers.

CONTROL Redgisters

CONTROL Register 0 — Shut Down. Any non-zero value written to this register will turn off
both battery and ac-line power to the computer, which conserves battery power after the
service routine has finished responding to the powerfail. If ac-line power is on when this
statement is executed, the computer will be turned back on in the normal powerup sequence.

CONTROL Registers 1 thru 4 — are not used.

CONTROL Register 5 — Power Back Delay. The value of this register determines the
amount of time (in tens of milliseconds) that the computer will delay, after power is back, before
leaving the powerfail state {i.e., before generating a ‘‘Power Is Back’ interrupt). The power-on
default value is 50 (500 milliseconds).

CONTROL Register 6 — Protection Time. The value of register determines the maximum
amount of time (in tens of milliseconds) that the computer is to have battery backup. Power-on
defautlt is 6000 (60 seconds).

Powerfail Protection 295

CONTROL Register 7 — Powerfail Delay Timer. The contents of this register determine the
amount of time (in tens of milliseconds) that the Powerfail-Protection Interface will wait, after a
powerfail, before generating a “"Power Has Failed™ interrupt. Power-on default is 10 (100
milliseconds).

CONTROL Registers 8 thru 71 — Continuous-Memory Registers. These sixty-four, single-
byte registers can be filled with any desired data, one byte (ASCII character) per register.

	0001
	0002
	0003
	0004
	0005
	039.1
	039.2
	093.0
	093.1
	093.2
	096.1
	115.0
	115.1
	115.2
	115.3
	115.4
	115.5
	118.1
	118.2
	118.3
	145.1
	145.2
	161.1
	171.1
	171.2
	191.1
	191.2
	219.1
	219.2
	222.1
	227.1
	227.2
	231.1
	231.2
	251.1
	267.1
	267.2
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295

